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CHAPTER I 

DYNAMICAL SYSTEMS 

Introduction 

Historically, dynamical systems developed from the qualitative 

theory of differential equations, and hence, is often considered to be 

a topic in the theory of differential equations. Some mathematicians 

prefer to consider dynamical systems as applied topology. Others 

consider dynamical systems to be an independent matherna ti.cal discipline. 

Due to the development of topological dynamics as an independent 

mathematic"1-l discipline, it seems feasible to consider dynamical systems 

as a topic of topological dynamics with results applicable .to certain 

classes of differential equations. The author's point of view lies 

with the latter two concepts but is by no means fixed. 

The theory of dynamical systems appears to have evolved from the 

pioneering studies of the topological properties of solutions·of 

autonomus systems of ordinary differential equations with planar phase 

spaces by Poincare and Bendixson at the turn of the century. At ·about 

the same time Lyapunov introduced his theory of stability of motions. 

Birkhoff in his 1927 monograph "Dynamical Systems" was the first to 

undertake a systematic development of the theory and may well be 

considered the founder. The definition of an abstract dynamical system 

has been attributed to the independent works .of Markov and Whitney in. 

the early 1930's. In 1947, Nemytskii and Stepanov published their 

1 



"Qualitative Theory of Differential Equations'' which contains a survey 

of differential dynamical systems. Much effort in the late 1940's and 

1950's was directed toward generalizing the concept of a dynamical 

system to transformation groups. In 1955, Gottschalk and Hedlund 

published their book "Topological Dynamics" which surveys this work. 

2 

The recent devel.opments in dynamical systems are surveyed in four recent 

monographs. The major feature of Hajek's book, "Dynamical Systems in 

the Plane," is the extension of the Poincare-Bendixson theory to 

dichotomic 2-manifolds. Although Bhatia and Szego give a very adequate 

survey of recent thought on dynamical.systems in "Stability Theory of 

Dynamical Systems," the treatment is limited to metric spaces, Even 

though somewhat limited in scope, the notes "Theory of Dynamical Systems" 

and "Loca.i Semi-Dynamical Systems" by Bhatia and Hajek present the major 

developments of modern dynamical systems in the m©st general form. 

In [14] Ura .introduced his theqry of prolongations and pointed out 

its connection with stability theory. He suggested the importance of 

'Studying dynamical systems of. characteristic O+ which are flows 

satisfying a certain stabLj.ity .criterion expressed in. terms of prolonga

tion. Ahmad classified such.planar flows in [l] in terni.s df their 

critical points. 

In this paper we charact;erize planar flows of chalj'acteristic O+ as 

well as flows, satisfying the bilateral concept Of characteristic 0. In 

each case the characterizat,ion is: given in terms of the set s of 

critical points at1.d is based on three mutually exclusive and exhaustive 

cases: S = 0, S nonempty and compact, and S non compact• Examples 

of dynamical systems of characteristic O+ satisfying all of the 

properties obtained by Ahmad in [l] for the noncompact case are given 
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including one example,which, nontrivially satisfies every property. 

Examples of·the nontrivial fl9ws of characteristic.a are given. 

Finally, as a consequence of the characterization theerem for flows ,of· 

chara-cteristic 0, we extend a well-known result from tliffeqmtial planar 

flows to arbitrary planar.flows. 

This study essentially completes the planar versi_cms of the 

+ - + 
characteristic 0 , 0 , o-, .and 0 problems. 

Basic ·Definitions and Notations 

We shall denote the real numbers, nonnegative real numbers, .non-

posit;:ive real numbers, .and Euclidean plane with the, usual topology by 

R, R+, R-, and R2 , respectively. 

Definition 1.1: A pair (X,-n:) C0'11Sisting of a topological space · X, 

called the phase space, and a. cont:i.nuems mapping TI: X x R ,+ X from 

the product space X x R into X is called a c;lynamical syst;em or 

(continuous) flow whenever the following conditiqns are satisfied. 

(1) IQ,entity axiom: TI (x,O) = x • for each x e X. 

(2) Homomorphism axiom: TI(TI(x,t) ,s) = TI(x,t + :s) for each 

x e X and. t,s e R. 

(3) Continuity axi,om:. TI is continuous ,on X x R. 

Throughout this paper the phase space X of a dynamical system . 

(X,7f) will be Hausdorff. We shall denote TI(x,t;) by xt- for brevity. 

Unless othe-rwise specified, we shall let. (X,TI) denote a f:i.xed 

but arbitrary flow throughout· this chapter.. When we. refer to a _point 

or a set without mention of the location, then they are ass.urned to be 

in X. 



Definition 1. 2: For each x, 

{xt: t £ R+}, and C-(x) = x~ 

C(x) = xR z {xt: t £.R}, + + 
C (x) = xR = 

= {xt: t £ R-} are called the trajec-
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tory (or orbit), positive semi~trajectory, and negative semi-trajectory 

through x, respectively. 

Let F: X + P(X) be a function from X into the power set· P(X) 

of X. We .denote U {F(x): x £ M} by F(M) for any set M. When 

F(M) is a singleton {x}, we write F(M) = x. If· M is a sin,gleton 

{x}, wewrite F(x). 

Definition 1.3: A point x is called a critical or rest point if 

C(x) = x. If· C(x) rf x but xt = x. for some t > 0 then x· is 

called periodic. 

Proposition 1.4: The set of all critical points in X is closed. 

(See [7], I, p.14 and [8], p.17.) 

Remark: In each of the remaining sections of this chapter, we sl::iall 

state definitions, propositions, and t;:heorems which are basic·to the 

development of the succeeding chapters. Since these results are all 

well-known, we shall not prove any of them; however, we shall give a 

reference for each. Several results .are simple exer.cises; but they 

are incl,uded for completeness. 

Almost every definition, proposition, and theorem in this chapter· 

has a positive, negative, .and bilateral version. Since the positive 

and negative versions are duals, it is customary to state only.the 

positive versions of results. In this chapter, we shall state the· 

p0sitive versions except in definitions and shall usually .n<Dte when 

bilateral ~ersions hold. 



Invariance 

Definition 1. 5: A set M is called invariant if C (M) = M and 

positively (negatively) invariant if. C+(M) = M (C-(M) • M). 

5 

Proposition 1. 6: . A set M is positively (bilaterally) invariant if and 

only if. X - M is negatively (bilaterally) invariant. Furthermore, M 

is positively (bilaterally) invariant if and only if each of its com-

ponents ·is positively (bilaterally) invariant. (Seei [7], I, pp. 26-27 

and [SJ, p .13.) 

Propoi;iition 1. 7.: If {M.: i E I} is a family of posit,ively (bilater
J. . 

ally) invariant sets, then ·U{M.: i EI} and n {M.: i e: I} are 
l. l. 

positively (bilaterally) invariant; (See [7], I, p.26 and [8], p.12.) 

We shall denote the boundary, interior,. and closure of a set .. M 

by 0 -aM, M , and M, respecbively. 

Proposition 1.8: If a set M is positively· (bilaterally) invariant, 

then M and· M0 are positively (bilaterally) invariant. (See. [7], I, 

p.27 and [8]~ p.13.) 

Proposition 1.9: If a set M is invariant, then ClM is invariant. 

The converse holds if M is open or closed. (See [7], I, p.28 and [8], 

p.13.) 

For any simple closed curve C in R2 we shall denote the bounded 

and unbounded components of R2 - C by int C and ext C, respective-

ly. 
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The.oreI!l 1.10 : Let X = Rn be Euclidean n space and let M be a 

positively (bilaterally) invariant set _homeomorphic .to the closed ·unit·· 

b 11 · Rn •. Then . M t i · t · 1 i a · in con a ns a en. ica po .nt. (See [7J, I, p.30.) 

Corollaryl.11: Let X=R2 and x be a periodic point. ·Then 

int C(x) contains a critical point. (See [11], p.175.) 

Theorem 1.12: Let X' be an invariant subset of X and 7T' = 7T jx' 

(the restriction of 7T to X'). Then (X' ,TI') is a dynamical system. 

(See [ 7J , I, ·P. 32. ) 

Limit·Sets• 

For each x we let K(x) = C(x), 
+ + K (x) = C (x), 

Proposition 1.13: For each x, 

(1) + K -_ (x) is closed and positiyely invariant; 

(2) · K+(xt) C K+(x). for each 

(3) · K(x) = K+ (x) U K- (x). 

+ t E R , . and 

and 

The bilateral versions hold for (1) and (2). (See [6J, p.50; [7], I, 

p.30; and [8], pp.22~23.) 

Defin-i:tion 1.14: The positive (negative) limit· set of x. is 

L+ (·~) = {y: xt. -+ y for some net t. -+ -too} 
l; 1 

(L - (x) {y: -+ -oo}) • = xt. -+ y for some net t. 
1 1 

L (x) • L\(x) U -(x) • The limit· set of X. is L 



Proposition 1.15: For each x, 

(1) L+(x) = {) {K+(xt): t e: R},. 

(2} L+(x) is closed and invariant, 

(3) + 
L (x) = L+ (xt) for each t . e: R, 

(4) + K (x) + + 
= C (x) U L (x) , 

(5) · K(x) + = L (x) u C(x) u -L (x)., and 

(6) K(x) = K(xt) for each t e: R. 

The bilateral versions hold for (1) through (4). (See {6], p. 50; [7], 

I, p.35; an,d [8], pp.22-23,.58.) 

We shall let n (x) · and n (M) denote the neighborhood· filters of 

the ·point x .. and set M,. res·pectively. 

Definition l~ 16: A space Y is called rim-co,rnpact if for each y e: Y 

\ 

and V e: n (y) there is _a U ·i:: n (y) such that U C V and au is 

co111,pact. 
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If X is· -rim-compact,, then for any point x; + K (x) 

is ·compact. if and only if. L + (x) is nonempty and compact. (See [6], 

p. 54 · an4 [ 7] , I , p. 36. ) 

Theorem 1 .. 18: Let . X be a subspace o;f R2 • Then, for any point. x; 

x e: L + (x) if and only· if . x is either periodic;: or cr.i ti cal. (See 

[13].) 

Proposition 1.19~ If x is a point of 
2 

X = R + and L . (x) #: 0, then 

either L + (x) is a periodic trajectory or L +(y) and L ~ (y) consi.st 

of critic~! points ,for each + y e: L (x) • (See {11] , p .184.) 



* Theorem 1. 20: Let X be locally compt:;ict and X "" X U {co} be the 

one point co~pactification of X. Then there .is a uniquely determined 

* * * dynamical system (X ,TI ) such .that TI - TI Jx; furthermore, co is a 

critical point. (See [7], I, p.16.) 

* * We shall re:l;er to (X ,TI ) as the extended flow.. For each .point 

* x E:: x we let K*+(x) and L*+(x) denote C+(x) and the positive 
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limit set relative to the extended flow, respectively; Similar notation 

will be used in the next section for prolongation sets and prolongation-

al limit sets. 

Pro;eos it ion 1. 21: Let x be locaJ.ly compact. For each x E:: x, 

f K+(x) 
"":. 

*+ K (x) if is compact . 
K (x) = + 

u {co} + K (x) if K; (x) is not compact 

and 

L*+(x) 
{1+ (x) if L+ (x) is compact 

= L+(x) L+ (x) u {co} if is not. compact 

Furthermore, the li>iLateral versions of these statements hold. (See [7], 

I~ p.36.) 

Prolongation 

Definition 1.22: For each point x, the positive (negative) prolonga-

tion of x . is 

D+(x·) -- { X . y E:: : X;t. ~ y 
1 1 

for some nets 

The prolongation of x is 

x. ~ x and 
1 

+ . 
D (x). "' D (x) U D- (x) • 

t · > O} 
i-

t . .::_O}). 
1 
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Proposition L 23: For each x, 

(1) + D (x) is closed and positively invariant, 

(2) D+(xt) c D+(x) for each t E R+ 
' 

(3) + K (x) C + D (x), and 

(4) + D (x) = {) { C + (M) : M E 11 (x) }. 

The bilateral versions of these statements hold. (See [6], p. 60; [7],, 

I, pp.42-44; and [8], p.26.) · 

DefinitioIJ, 1. 24: For each point x,. the positive (negative) prolonga-

tional limit set of x is 

J+(x) = {y E X: x. t. + y for some nets 'X + x and t. + +oo} 
l. l. i l. 

-(J (x) {y + -oo}), = E X: xi ti +y for some nets x. + x and t .. 
l. l. 

. J (x) + u -
(x) .• The prolongational limit set of x. is = J (x) J 

Proposition· 1. 25: For each x, 

(1) J + (x) is closed .and invariant, 

(2) + J (xt) + = J <(x) for each t E R, 

(3) L+(x) C + J (x), 

(4) J+ (x) = {) {D+ (xt): t E R}, and 

The bilateral versions of these statements hold. (See [6], p.60; [7], 

I , pp. 44-45; . and [ 8] , »· 2.6 ~5 8. ) 

Proposit.ion 1. 26: + + If y E K(x), then. J (x) CJ (y). (See [6], p.72 

and [7 J, I, p. 51.) 

Proposition 1.27: + If y,z EL (x), then: · y E J + ( z) . (See·[6], p.71.) 
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Proposition 1.28: + y e: D (x) if and only if x ED (y). Moreover, 

ye: J+(x) if and only if x e: J-(y). (See {7], I, p.46; [8], p.29; 

and [14] , p .12 7.) 

Theorem 1. 29: Let X be locally compact and x e: X. If D + (x) is 

compact, then it is connected. F h if D+(x) urt ermore, is not connected, 

then it has no compact components. The bilateral versions of these 

st.atements hold. (See {7]., I, pp.46-48 and [8], pp.26-27.) 

Proposition 1. 30: Let x be·loca+ly compact. Then 

*+ t+(x) if D+(x) is compact 
D (x) = + u {co} D+ (x) D (x) if is not compact 

and 

· t+(x) + 

J*+(x) 
if ·. J (x) is compact 

J+ (x) u { 00} if J+ (x) is not compact. 

The bilateral versions of these sta.tements hold. (See [7], I, pp.45-46.) 

Definition 1. 31: A set M is called positively cl-invariant or 

d+ . . 'f -1nvar1an t 1 . D+(M) = M. The negative and bilateral versions are 

defined similarly. 

Proposition 1.32: Let 

(cl-invariant) sets. 

{M. : i e: I} be a family of d+ -invariant 
1 

and ("){M.: i e: I} 
1 

d+-invariant (cl-invariant). (See 17], II,. p. 3.) 

are 

Proposition 1.33: If X is locally compact, then a compact subset is 

d+-invariant (cl-invariant) if and only if each of its components is 

such.· (See (7], II, p. 4.) 



11 

Proposition 1. 34: A set M · is· d+ -invariant (d-invariant) if and only· 

if X - M is [-invariant (d-inva:i;-iant). (See [7 J, II, p. 4.) 

Dispersion and Parallelizability 

Definition 1.35: A point X· is called dispersive if + J (x) .. ~. The 

flow· (X,7f) is called dispersive if each of its points is dispersive. 

Theorem 1. 36: The flow (X' 7f) is dispersive if and only if 

+. + D (x} = C (x) for each x E: x ·and there are no periodic or critical 

po in.ts. (See [ 7] ' I, p.79 and [ 8] ' pp. 44 ,-4 7 •) 

Defiri.i tion 1. 3 7: Two flows (X, 7f) and (X' , 7f' ) are dynamically . 

isomorphic ·if and only if there exi,sts a homeomerphism f: X + X' such 

that f (;x:t) = f (x)t for each. x e:: X and t e:: R. · Let g: X + Y be a 

homeomorphiam from X to ¥. We call (Y,7f11 ) where 7f 11 (y,t) .. 

-1 
g(7f(g (y) ,t)) for each ·y t Y and t e:: R the .flow induced on Y 

from (X,n) by • g. 

Definition 1..38: A dynamicq.l system (Y x R;n:') is called pai;alle1 if 

and cmly if" (y,s)t = (y,s + t) for each ye:: Y and s,t e:: R. 

Definition 1. 39: The flow (X,7f) is. called. parallelizable if and only 

if it is dynamically isomorphic to a parallel flQw. 

Theorem 1.40:. If X is a locally compact separable metric space, then 

(X,7f) is parallelizable if and only if it is dispersive. (See [3], 

p.548 and [5], p.91.) 



Stability 

Definition 1. 41: . A se·t M is called positively stable if for every 

U e: n (M) thifre exists a V e: n (M) such that C+ (V) C U (or equi

valently, such that V C U · and C+(V) =- V). The negative and 

bilat;eral versions are defined in the obvious manner. 

It is customary to drop the adjective "positive" but never.the 

adject,ives "negative" or "bilateral" when referring to stability. We 

12 

shall adopt this procedure. We shall refer to a point x as (negitive

ly, bilaterally) stable if {x}, is such. 

The bilateral versions of the next seven results hol<;I~ This fact 

is stated. in Theorem 1. 46 for emphasis. 

Proposition 1.42: Every open positively invariant set is stp.ble. (See 

(7], II, p.6,) 

Proposition 1.43: The union of stable sets is. stable. (See Pl, II,· 

p.6.) 

Proposition 1. 44; If M is stable, then M is positively .invariant. 

(See [ 7] , II,_ p. 6 and [ 8] , p. 60. ) 

Proposition 1.45: ·Let X be regular and M be a closed set •. If M 

is stable then it is d+-invariant. (See [7], II, p. 8.) 

Theorem 1.46: Let X be locally compact and aM be compact. Then· M 

is stab,le (negatively stable). if and only if D+(M) = M (D-(M) .. M). 

Furthermore, M is bilaterally stable if and only ·if D(M) .. M. (See 

[ 6], p. 77; [ 7], II, p. 8; and [ 14], p. 12 7. ) 
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Proposition 1. 4 7: If X is locally compact, then a compact set M is· 

·stable if .and only if each of its components is such. (See [7], II_, 

p.10 and [8], p.62.) 

Proposition 1. 48: If each component of a set M is' a stable setJ then 

so is M. Conversely, .if M is compact and stable, then so is each 'of 

its components. (See [7], II, p.13.) 

Attraction and Asymptotic Stability 

Unless otherwise specified, we shall consider R to be a directed 

set directed by the usual ord~r. Thus, for each x, the mapping TI 

with x fixed is a net on R which we shall· denote by' (xt). The 

statement "(xt) is ultirnat.ely in V" means that there exists a T e: R 

such that xt e: V for t > T. Similarly, the negative net is defined 

relative to the reverse of the usual ·order on R. 

The bilate.ral versions of· the results which follow are valid 

through Proposition 1. 56. 

Definition 1. 49: For any set M and point x .. we say x is positively 

attracted to M if and only if for any 

T(V) e: R+ such that xt e:.V whenever 

is defined relative to the negative net 

V e: n (M) there exist;:s a 

t _::.. T(V). The negative version 

(xt) and the bilateral version 

is the conjunction of the positive and negative versions. 

We shall drop the adjective "positive" as we did for stability. 

If M = {p}, then we say_ x is attracted to p rather than {p}. 



14 

Definition 1. 50: If M is a set, then A+ (M:) = {x s x: x · is attracted 

to M}. The negative and bilateral versions are defined similarly and. 

denoted by A-(M) and A(M), res_pectively. 

Propositionl.51: If x isapointand M1 and M2 .·aresets,then· 

(1) xsA+(~) if and only.if C(x)C A+(M1 ), 

C + c + (2) M1 . M2 implies A (M1 ) A (M2), 

+ (3) C(M1 ) = M1 implies M1 C: A(~), and 

(4) A+ (M1 ) U A+(M2) C A+ (M1 U M2). 

(See [7], II, pp.17~25,26 and [6], p.81.) 

Theo·rem 1. 5 2 : Let M be a ·closed set with 3M. compact. If x E: 

then either (xt) is ultimately in. M or ~ :/: L+ (x) C M. The 

converse holds whenever X is rim-compact. (See [6], p.84.·) 

Definition 1. 53: A set M is called an attractor whenever 

A+ (M) s Tl (M). · The term global attractor is used in case A+ (M) • X. 

The negative and bi.lateral versions are defined similarly. 

Proposition 1.54: A set. M is an attractor if and only if A+ (M) · is 

the sm.allest open invariant set containing M• (See [6], p.81 and [7], 

II, pp.27-28.) 

Proposition 1.55: Le.t · M be an attractor. Then every set. M1 with 

MC M1 C A+(M) is also an attractor and A+(M1 ) .. A+(M). (See 

[7], II, p.27.) 

Proposi.tion L56: For any set M, J+(A+(M)) C J+(M).· (See [6], p.90 

and [7], II_, p.32.) 
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Definition 1.57: A set M is called asymptotically stable if and only 

if it is a stable attractor. The negative and bilateral versions are 

defined similarly. 

Theorem 1. 58: If X = R2 and x is a periodic point of X with G 

either of the components of X - C(x), then either 

(1) relative to G, C(x) is asymptotically stable or negatively 

asymptotically stable, and there exists a V 8 n (O(x)) such 

that V {) G contains no periodic points; .or 

(2) C(x) is bilaterally stable relative to G, and for each 

V 8 n(C(x)) there exists a periodic trajectory in V {) G. 

(See (11), p.196.) 

Theorem 1.59: If X = R2 and x is an isolated stable critical point, 

then x satisfies precisely one of the following conditions. 

(1) x is a focus + (x 8 L (y) for some point y ~ x). 

(2) x is a Poincare center (there is a neighborhood of periodic 

points surrounding x). 

(3) x is a center focus (every neighborhood of x contains both 

periodi~ and nonperiodic trajectories). 

(See [ll], p.198.) 

Flows of Characteristic O+, 0 , 0±, and 0 

Definition 1. 60: The flow (X 'TI) is said to have h · · a+ c.aracteristic 

(0 - ) D+ (x) + (D - (x) (x)) if and only if = K (x) = K for each x 8 x. 
+ -

If the flow has both characteristic 0 and 0 ' then it is said to have 

+ 
characteristic o-. The flow has characteristic 0 if and only if 

D(x) = K(x) for each x 8 X. 
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Theorem 1. 61: The flow (X,TI) has characteristic O+ if and only if 

J+(x) = L+(x) f h or eac x E X. The negative and bilateral versions 

hold. (See [6], p.138.) 

As we have already noted in the first sect,ion, the concepts of 

+ - + 
characteristics 0 , 0 , and o- were introduced by Ahmad in fl] where he 

classified such planar flows and characterized planar flows of 

+ 
characteristic o-. 

In [l] Ahmad defined a point x to be attracted to a closed 

invariant set M if + 0 f. L (x) C M. This is not equivalent to 

Definition 1.49. However, under suitable conditions the definitions 

are equivalent. Since we shall use the results of fl] in this paper, 

we show by means of the following proposition that the definitions are 

equivalent for the sets and sp_aces which we study. 

Proposition 1.62: Let X be regular a~d let M be a closed stable 

set with 0 1' L+(x) for each point x in M . Then, + y. E A (M) if 
. + . . 

and only if 0 ~ L (y)C M. The negative and bilateral versions hold. 

Proof: Let y E X such that 0 1' L + (y) C M and let U E n (M). Then 

there exists a V E n (M) such that C+ (V) = V C U. Since 

+ L (y) C V, the net (yt) must eventually be in V. The invariance 

of V implies (yt) is ultimately in U. 

Conversely, let + y EA (M). By virtue of the regularity of x, 

there exist disjoint neighborhoods U / n (M) and V E n (z) for any / 

z ~ M. The stability of M implies that (yt) is ultimately in U, 

so that z ~ 1 + (y). Hence, 0 1' 1 + (y) C M. 

The negative and bilateral versions follow similarly. The proof 

is complete. 
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The definition of attraction in [l] is applied to sets and spaces . . . 

satisfying the- cl;'_iterion of Proposition 1. 62. Consequently, the results 

obtained in [l] are valid with respect to Definition 1.49~ 

The following theorem is a compilation of the results obtained in 

+ [l] for ptanar flows of characteristic 0 . 

Theorem 1.63: Let (R2 ,n) be of characteristic O+ and S be the set 

of critical points. Then one of the following results. 

(1) 

(2) 

(3) 

(4) 

s = (6 and the flow is par allelizable. 

s is compact and one of the following holds. 

(a) s consists of a global Poincare center. 

(b)· s. consists of a local Peine.are center s. The set· N 

consisting of s and the periodic orbits surrounding s 

is a globally asymptotically stable simply connected 

continuum. 

(c} S is a globally asymptotically stable simply connected 

s 

·S 

(a) 

(b) 

continuum. 

is unbounded and 2 S = R • 

is unbotinded and the ~following 

R2 - s ·is unbounded. 

s· is asymptotically stable. 

holc,i. 

(c)- A+(S) has_.acount.able number of components each being 

2 h0meomorphic-to R and unbounded. 

(ci) 

(e) 

is a component of A+(S) 

a componen.t of . S. 

For each component S of 
0 

s, 

countable number of trajectories 

if and only · if S is 
0 

aA + (S ) consists ·of a 
0 

C (x) · such ·that 



(f) s has a countable number of components, each being 

noncompact and simply connected. 

(g) For each s e: as there is a nonperiodic noncritical 

+ point y with L (y) = {s}. 

(h) For each x, e: R2 
' ' 

L+ (x) is either empty or consists 

a single rest point. Further, + 
L (x) = !ll for all 

2 A+ (S) - (x) = !ll 2 
x e: R - and L for all x e: R - S. 

Corollary 1. 64: Under the conditions of Theorem 1. 63 part (4) (e) we 

have aA+(S ) dispersive. 
0 ' 

Proof: By Theorem 1.61, for each x e: 

The following theor,em based on Theorem 5 .1 of [l] characterizes 

+ 
planar flows of characteristic o-. 

18 

of 

Theorem 1.65:, A flow (R2 ,TI) has characteristic 0± if and only if one 

of,the following holds where S is the set of critical points. 

(1) S = !ll and the flow is parallelizable. 

(2) 
2 

S = R • 

(3) S consists of a global Poincare center. 



CHAPTER II 

DYNAMICAL SYSTEMS OF·CHARACTERISTIC O+ 

Charactei:ization of Planar.Flows of 

Characteristic 0+ 

Throughout this chapter .we sh.all denote the set of rest points for 

a given flow 2 
(R ,7T) by S. 

The fol!owing propositi6n is giv~n in order to sharpen Theorem 2.2 

+ which completely chara.cterizes dynamical sy~tems of characteristic _O 

on the plane. Dual results hold.for flows of characteristic.0-. 

Proposition 2.1: Let (R2 ,1T) be a flo~ and S = {s.} where s is a 
0 0 

local Poincare .center. If the set N = {x E R2 : x is periodic.or 

critical} is a connected glo~al attractot; then N = int C(x) · for some 

point x i~ N and N is glob~lly asymptotically stable. 

Proof; Suppose.that for some point p of N we have int C(p) q N. 

If y E (int C(p-)) - N, then C(y) c int C(p). There is a point z 

in N - s such ~hat y E (int C(p)) - int C(z) since s is a Poincare 
0 

center. Now L+(y) c int C(p) - int C(z) and s E int C(z) (se.e 
0 

Corollary 1.11)' so that 
+ L · (y) f. 0 and L+(y) (l s = 0. Thus, 

L+ (y) is a periodic orbit (see Proposition L 19). The component G 

of R2 - L+(y) to which. y belongs does not.contain periodic points 

+ near L (y) (see The.orem 1. 58). Thus, .if + G =.int L (y), then there is 

a simple closed curve C such tha.t G C int a: and 

19 
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(int C - G) {) N • '1), Since the connected set N meets· int C and 

ext C it meets C which is absurd. Similarly, + G • ext L · (y) leads 

to a contradiction. Hence, int C(p) C N. 

Next, we show that N is compact. Suppose. that . N (') aN • (ll, 

Then N is an open invariant. set, and hence, N • A+ (N) • R2 (see 

Proposition 1.54) which is a coptradiction. Hence, N (1 aN.;. (II. Let 

x E N (\ oN. If y E N - int C(x), then int C(x) C int C(y). Since 

int C(y) C N°. and C(x) C aN we have C(x) • C(y). Hence, 

N • int C(x). 

Finally, N is stable (see Theorem 1. 58) and A+ (N) • R2 , so 

that it. is globally asymptotically stable. The proof is complete. 

In case {.l) of the following theorem we characteriz.e flows of 

+ characteristic 0 which have a compact set of rest points. Parts (a), 

(b), and (c) of case (.l) are mutually exclusive and exhaustive. 

Properties (i.) (a) and (i.)(b) characterize those flows where S is 

empty (we regard (ll as compact) and S .. consi.sts _of exactly one 

Poincare center, respectively. All other flows are characterized by 

property (i.) (c). 

Theorem 2.2: A flow (R.2 ,7T) + 
i~ of characteristic 0 if and only if 

either case ():.) or (li) is satisfied. 

(i.) S is compact and one of the following holds. 

(a) 

(b) 

2 (R ,7T) is parallelizable. 

S = {s } where s is either a global Poincare center 
0 0 

or a local .Poincare center such that the set . N 

consisting of s and all the periodic points is a 
0 

connecte.d global attractor. 
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(c) {s} is stable for each s e: as and s is a global 

attractor. 

(li) s is not compact and each of the following holds. 

(a) {s} is stable for each s e: as. 

(b) Each x e: aA+ (S) is dispersive. 

(c) The flow restri.cted to R2 - A+(S) is parallelizable. 

Proof: By virtue of Theo.rem 1. 6 3, the proper ties in case (,£.) are 

2 + + 
nece.ssary. Parallelizability of. (R ,7T) requires that D (x) "' K (x) 

for each 
2 x e: R in view of.Theorems 1.36 and 1.40 since. 

+ + + K (x) C D · (~) "" C . (x); therefore, property (.l) (a) is also sufficient• 

Next, if property (.i.)(b) holds, th~n Theorem 1.58 and Proposition 2.1· 

infer that every periodic or critic~l orbit C(x) i~ stable, and hence, 

+ + . + 
D (x) • D (C(x)) = C(x) = K (x) (see Proposition 1.23 and Theorem 1.46). 

Furthermore,. Proposition 2.1 implies that L+(x) = .aN for each 

2 
x e: R - N where N is the set of periodic and critical,points. Also 

(see Proposition 1.56 and Theorem 1.46) and 

so that we must have 
+ + 

J . (x) = L (x) • Hence, property. 

{-l)(b) is .sufficient (see The.orem 1. 61). Finally, suppose that (-l.) (c) 

+ + for any point {s} is holds. Then D (s) • K (s) s· in s since· 

stable (see Theorem 1.46). . For any point x in A+(S) - s we have 

+ + 
r/J :f L (x) C s by virtue of Pr0position 1.62 •. If s, Bl e; L (x) , 

+ then s 1 e: D (s) = {s} (see Proposition !. 27). Thus; 

{s} • L+(x) C J+(':lc) C J+(s) • L+(s) • {s} (see .Proposition 1.26), 

and hen.ca, 
+ + 

L (x) = J (x). The proof of case (-l.) is now complete. 

The necessity of case (li) follows from Theorem 1.63 and Corollary 

1.64, an~ so we assume that (li) holds. For.any point s in S, 

D+(s) = {s} = K+(s). No point of S is in aA+(S) since J+(s) r/- 0 
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·for each point s in S. Thus, S is an attractor. By an argument 

similar to the one used to prove the sufficiency of property (..i.)(c) we 

obtain L+(x) + A+ (S) = J (x) for: each point x in - s. For any point 

3A+ (S) J+(x) 
<.a ' 

L+ (x) + 
x in we have = so that = J (x). The paral-

lelizabili ty of the flow restricted to R2 - A+(S) implies that, 

relative to R2 - A+ (S), + + D (x) .. K (x) for each. point x in 

(see Theorems 1. 36 and 1. 40). Since R2 - A+ (S) is open 

we also have 
+ + D (x) = K (x). The proof of the theorem is complete. 

The following four examples show that all conditions given in 

properties (..i.) (b) and (..i.) (c) are needed. Since 
2 

(R ,~) is paralleliz-

able if and only if it is dispersive (see Theorem 1. 40) property (..i.) (a) 

cannot be weakened. 

Example 2.3: The flow defined by:the sy_stem of differential equations 

0 for 0 < r < 1 

r = (r - 1) ln (r - 1) for 1 < r < 2 

. 

2r ln ~ 
r 

8 = 1 for r > 0 

for 2 < r 

(see Figure 2 .1) shows that the connectedness of N in property (..i.) (b) 

is necessary. Note t4at A+(N) = R2 but, since J+((2,0)).;. 1+((2,0)), 

the flow is not of characteristic o+. 

Example 2.4: The system of differential equations 

2 
r = -r sin 8 

. 
8 = 1 



Figure 2.1 

for r > 0 defines a flow for which N + 2 is connected but . A (N) ft. R 

(see Figure 2.2). Since J+ (x) = C(x) 

x in aN, the flow is not of characteristic O+. 

Example 2.5: The dynamical system defined by 

r = ~r - 1) ln (1 - r) 

tr ln r 
. 
e = 0 for r > 0 

for 0 < r < 1 

for 1 < r 

for any point 

(see Figure 2.3) does not satisfy the stability condition of property 

23 

(.l) (c) since {(O ,O)} is not stable. However, the set of rest points 

is a global attractor. Note that J+((O,O)) ~ L+((O,O)) which implies 

that the flow is not of characteristic a+. 
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Figure 2.2 

Figure 2.3 
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Example 2.6: For the flow 2 
(R ,TI) defined by the system of differen-

tial equations 

r = 

. 

j<1 - r) ln (1 

tr ln r 
e = 1 for r > 0 

- r) for 0 < r < 1 

for 1 < r 

(see Figure 2. 4) each point of as is stable but A+ (S) f.: R2 and 

J+((l,O)) # L+((l,O)), whence global attraction is necessary in 

property (,l) (c). 

Figure 2.4 

The fact that we cannot weaken the noncompact case for S in 

Theorem 2.2 follows by virtue of the next three examples. 
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Example 2.7: The flow 2 (R , lT) defined by the system of differential 

equations 

for 0 < r < 1 

for 1 < r 

. . 
e .. 0 for r > 0 

(see Figure 2.5) satisfies': properties (il) (b) and (il) (c) vacuously 

since. S is a global attractor. However, the point (O,O) in as is 

not stable. Since J+((O,O)) =I- L+((O,O)), the flow is not of 

•. + characteristic 0 • 

. rest points 

Figure 2.5 
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Example 2.8: Define a flow 2 
(R ,7T) by the system of differential 

equations 

for 2 2 
> 1 and y > 0 x x y 

2 3 2 for 2 2 
< 1 andy > 0 x = x y - x x y 

-x for y ~ 0 

for y > 0 

for y _:: 0 

(see Figure 2.6 and {4], p.118). Each point of S is stable and, since 

J+(x) • ~ for each point x in R2 - A+(S), the flow restricted to 

R2 - A+ (S) is parallelizable. Thus, properties (li) (a) and (li) (c) 

are satisfied. However, for any point p in aA+(S) = {(x,y): x2y2 = 1 

and y > O} we have 
+ . 

(O,O) e J (p) which implies that p is not 

y 

Figure 2.6 
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dispers;i.ve, .and hence, that property (U) (b) is not satisfied. Note 

that + + 
J (p) ~ ~ = L (p), + and so the flow is not of characteristic 0 . 

y 

'II' 

...._----------~F======================~ ______ .;..._ ______________ -+------------------------2_ 

'II' 

----------.;.------------+----------------~::::~2 

rest po1nts 

Figure 2.7 

Example 2 • 9 : If we define a dynamical system 2 
(R ;rr) by the system of 

differential equations 

'IT 3'1T - sin y for 2 ~ y 2 
'IT 'IT 3'1T. -2 for 2 ~ y <-

2 x = 
-y for 0 ~y 

'IT 
< --. 2 

for y < 0 
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7T 2 for 37T 2 cos y - < y 
2 -

0 for 7T 37T 
:;_ y < -

2 2 y = 2 7T -y cos y for 0 :;_ y < -2 

0 for y < 0 

_(see Figure 2.7 and [12], pp.30-31), then case (U) is satisfied except 

for property (il) (c). Each point of s is stable and, since + J (p) = el 

for any point p in ClA+(S), each point of ClA+(S) is dispersive. 

The flow restricted to R2 - A+(S) is not parallelizable because 
~ 

J+((O, ~TI)) ':/: ia. Since J+((O, ~TI)) ':/: L+((O, ~TI)) the flow is not of 

h . . o+ c aracteristic • 

Examples of Flows.of Characteristic O+ 

The purpose of this section is to present nontrivial examples of 

+ dynamical systems of charac~eristic.O on. the plane. Since flows of 

+ characteristic 0 having compact sets of rest points are easily found, 

we will give examples for which t~e sets of rest points are not compact. 

In particular, the examples will satisfy the statements (a) through (h) 

in case (4) of Theorem 1.63 and Corollary 1.64. 

Note that Example 2.8 satisfies all of the conditions given in 

(4) f h 1 63 H i · f h · · o+ case o T eorem • . owever, t is not o c.aracteristic . 

According to Theorem 2.2 the condition given in Corollary 1.64 must be 

satisfied in order for a flow to have characteristic o+. 

The first three examples lead us to Example 2.13 which nontrivially 

satisUes all eight statements of Theorem 1. 63 case (4) and Corollary 

1. 64. 
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Example 2.10: The flow defined by the system of.differential equations 

. {2nn for 4n - 1 4n + 1 - y 
2 1T 2.Y2. 2 1T 

x = 
(2n + lhr for 4n + l 

1T < y < 4n + 3 y -
2 2 1T 

~ t2n• .~ y) 
2 . for 4n - l 

1T ::_ y ::_ 4n + l cos y 
2 2 

1T 
y 

(2n + l)lT - y] 2 
for 4n + l 4n + 3 cos y 

2 
1T ·< y < 

2 
1T 

for n = O, ±1, ±2, nontrivially satisfies all of the statements in 

case (4) of Theorem 1.63 except (e). Figure 2.8 illustrates the 

trajectories for n = O. 

y 

____ _.; _______ ..;.... __________ ---+--------------------------- 31T 
2 

Figure 2. 8 
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Example 2~11: We give this example in order to facilitate the con-

struction of Example 2.12. 

The flow defined by the system of differential equatiOns 

0 1T 
for 2 < y 

• 1T 1T x = 2 - y for O~y~2 
1T 

for y < 0 2 

~ .!!. - y) 
. 2 

for 
1T 

• . 2 sin y O~y~2 
y = 

1T 0 for y < o, 2 < y 

is of characteristic o+ and its trajectories are illustrated in 

Figure 2.9. 

y 

-
rest points 

"' ............ .., ............................... ~-----------------.---2 

Figure 2.9 
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Example 2.12: The flow defined in this example nontrivially satisfies 

statement (4)(e) of Theorem 1.63. We will induce it on R2 by means 

of homeomorphisms from the phase plane of the flow of Example 2.11. 

Let 
Tr(2 + Tr} 

a= 4 and I = ((2n - l)a, (2n + l)a) 
n 

for n = O, 

±1, ±2, •.•• For each such n define mappings f : R2 + I x R by 
n n 

(tan x + 2na, _.i + x - y) -1 v 2 for y < 0 

f (x,y) ((1 + y) tan -1 2na, i1 + 2 - y) for Tr 
= x + x 0 < y < -

n - -2 

((1 Tr -1 2na, i1 + 2 
- y) for.:!!:.. + 2)tan x+ x 2 < y. 

The mapping f 
n 

carries horizontal lines in R2 bijectively onto 

nonintersecting secant curves filling the strip I x R. 
n 

Thus, by 

examining the images of basic.open sets in R2 consisting of rectangles 

having sides parallel to the coordinate axes, we can eas:ily see that 

these mappings are homeomorphisms. 

Let us denote the flow of Examp;Le 2.11 by Define a flow 

2 
(R ,Tr) by 

Tr((x,y) ,t) 
for (x,y) e I x R 

n 

for x = (2n - l)a 

for n = O, ±1, ±2, •••• The trajectories of this flow are illustrated 

in Figure 2.10. Note that, although S is connected, aA+(S) contains 

infinitely many trajectories. 

Example 2 .13: We now describe a flow 2 
(R , Tr) that nontrivially 

satisfies all of the statements in case (4) of Theorem 1.63. The 

trajectories of the flow are illustrated in Figure 2.11. 

In the regions Rx (2nTr, (2n + l)Tr) for n = O, ±1, ±2, .•. 

define the flow by the system of differential equations of Example 2.10. 
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rest points 

Figure 2.10 

Next, induce the flow on R x [-n,O] from the region [-a,a] x R of 

the flow in Example 2.12 by means of the homeomorphisms 

-n 1-n g : [-a,a] x R +Rx [(2 - l)n, (2 - l)n] 
n 

for n = 1, 2, 3, •.. where 

The effect of the g 's is one of rotation, contraction, and transla
n 

tion of [-a,a] x R. Finally, induce the flow on R x f (2n - !)TI, 2nn] 

for n = ±1, ±2, ••• by the translation mapping 

h : Rx [-TI,0] +Rx [(2n - l)TI, 2nTI] 
n 
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_._. ... _._._._. .... _. ... _._._._._._._._. .. _._._._._.. n 

c -----
rest points 

..................................................... -n 

where 

Figure 2.11 

h (x,y) • (x, y + 2nn). 
n 

Thus, if we let and denote the flows of Examples 

2.10 and 2.12, respectively, then for any x E R2 and t E R we have 

n1 (x,t) for X E R x (2nn,(2n+l)n), n E A 

n(x,t) = -1 for -n 1-n g (TI 2 (g (x) , t)) X E R x l(2 -l)n,(2 -l)n], n E B n n 

h 8n(n 2 (g-~-1 (x),t)) for X E R x [(2n-l)n,2nn], n EC n n n 

where A= {0,±1 , ±2, .•• }, B = {1,2,3, ... }, and C = {±1,±2,±3, •.. }. 



CHAPTER III 

DYNAMICAL SYSTEMS OF CHARACTERISTIC 0 

Planar Flows of Characteristic 0 

It seems natural to ask whether there is a connection between flows 

of characteristic 0 and flows of characteristic O+, 0 , or 0±. Since 

D+(x) = K+(x) and. D-(x) = K-(x) for each x E R2 implies 

+ 
D(x) = K(x), any flow of characteristic o- is a flow of characteristic 

O. A flow which has characteristic O+ (O-) but not characteristic 0 is 

given below in Example 3.1. Examples. 3. 2 _and 3. 3 consist of flows. of 

+ - + characteristic.O that are not of characteristic 0 , 0 , or o-. 

Example 3.1: The system of differential equations 

x = -x 

y = -y 

defines a flow of. characteristic O+ ·in which the origin is a proper 

node. Note, however, that D((O,O)) = R2 r/: {(O,O)} = K((O,O)), and so 

the flow does not have characteristic O. 

Similarly, the flow defined by x = x and y y is of 

characteristic ,0- but not of characteristic O. 

35 
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7 

Figure 3.1 

Example 3•2: Let a flow be defined by the system 

(1) 
• 2 
r = -r sin e 

. 
e = 1 

for r > 0. Figure 2.2 illustrates the trajectories of the flow. 

This flow is of characteristic 0 but not characteristic o+, 0-, or 

+ o-. For let x be a point on the parabolic boundary of the region 
0 

consisting of the pole and the periodic orbits surrounding the pole. 

+ 
Then D-(x) = C(x ), and hence, 

0 0 
whereas 

D(x) = C(x) = K(x) for each x E 
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Example 3.3: The flow defined by the system of differential equations 

(2) x = -xy 

-{: - 1 
2 for x > 0 - y 

y 
2 - 1 - y for x < 0 

is of characteristic O. System (2) can be obtained from system (1) by 

changing system (1) to Cartesian coordinates, translating to obtain the 

equations of (2) for x.::, O, and then reflecting the trajectories of 

(2) for x > 0 in the y axis to obtain the trajectories of (2) for 

x < 0. The orbits of the flow defined by (2) are illustrated in 

Figure 3.2. 

Figure 3.2 
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Characterization of Planar Flows 

of Characteristic 0 

The purpose of this section is to give necessary and sufficient 

conditions for a flow 2 
(R ,'IT) to have characteristic O. Unless other-

wise specified, we shall let 2 
(R ,'IT) be a fixed flow of characteristic 

0 and S be the set of critical points. We shall first prove a few 

lemmas. 

Lemma 3. 4: If L + (x) :/: 0 (L - (x) :/: 0) for so.me x E: R2 , then x is 

either periodic or critical. 

+ + Proof: Let y E: L (x). Then x E: J (y) since y E: J (x) (see 

Proposition 1.28). Hence, x E: D(y) =.K(y) C: L+(x). By Theorem 1.18, 

+ x E: L (x) if and only if x is either a critical point or a periodic 

point. The result for L-(x) # 0 follows similarly. 

Lemma 3.5: If x E: S or x. is periodic, then C(x) is bilaterally 

stable. 

Proof: The proof follows from Theorem 1.46 since D(xt) = K(xt) = 

K(x) = C(x) for each t in R implies D(C(x)) = C(x). 

Notation: For any s E: S we shall henceforth let 

N s 
2 = {x E:.R: x = s or x is periodic and S r-') int C(x) = {s}}, 

Lemma 3.6: If s is an isolated point of S, then s is a 
0 0 

Poincare center and N is an unbounded connected open set. 
SO. 

If 

2 Ns :/: R , then aNs is a single trajectory and Ns is a simply 
0 0 0 

connected component of 
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Proof: Let· C be a simple closed curve with s() int C = {s }, 
0 

By 

virtue of Lemma 3.5, there exists a v e: n (s ) 
0 

such that 

C(V) C int C. Since L+(x) ~ 0 for each x e: V, V - {s } 
0 

consists 

of periodic points. If x e: V - {s }, then 
0 

" r/: s n int c (x) c s n int c = {s } • 
0 

Thus, v consists of s and periodic orbits surrounding 

implying that 

Let x e: 

L+ (y) 
"' 0' 

y 

0 

s is 
0 

a Poincare cen.ter. 

Nso - {s } and y e: (int C(x)) - {s } • 
0 0 

is periodic. We have 

~ .f. S (l int C(y) C S {) int C(x) = 

Since 

{s } 
0 

s 
0 

so that y e: Nso' Hence, int C(x) C Nso' Furthermore, Ns 0 is 

connected since Ns0 = U {int C(x): x e: Ns 0 } is the un:i,on of 

connected sets each containing the point s . 
0 

If 3Ns = "' then NS = R2 and s is a global Po inc are center. 
0 0 0 

Suppose 3N8 "' 0. Note that 3Ns is invariant since Ns is 
0 0 0 

invariant. We shall show that in this case 3Ns contains no critical 
0 

points or periodic .points. First, suppose s e: 3Ns (\ S. There is an 
0 

open simply connected neighborhood u in n (s) such that s ~ u .. 
0 

Lemma 3. 5 the re exists a v1 e: n(s) such that C(Vl) C u. Let 

x e: Vl {) Nso' Then C(x) C u. Since u is simply connected 

int C(x) C Ns , s e: int C(x) C U which is a contradiction. 
0 0 

and 

By 

Hence, S () 3Ns = ~. Next, suppose there is a periodic point x in 
0 

3N8 • Let S = S () int C (x). There is· a simply connected neighbor-
o 0 

hood U e: n(C(x)) such that s n u a s . 
0 

By ·Lemma 3.5 there is a 

v2 e: n(C(x)) such that v2 = C(V2) C U. For any periodic point y 
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C(y) C v2. Since U is simply connected, in Ns 0 ("\ v2 we have 

int C(y) C U. Hence, s e: S r'\ U ·• S ·• The sets S and S - S o I I o o o 

are closed implying that there are simple closed curves · c1 ·. and c2 

contained·in int C(x) and ext C(x), respectively, such that· 

S (\ (ext· c1 ) (l (int c2) = 0. By Lemma, 3.5 there is a v3 e: n(C(x)) 

such that C(V3) C (ext c1) 

s 0 e: NSo and C (x) C oNs0 , 

NSo n v3 n int C(x). Thus' 

n (int c2). Now Ns is connected with 

so 

s 
0 

and C(y) C v3 C ext c1 imply 

0 

that we can select a point 

n int C(y) rf 0, 

S C int C(y). 
0 

. soc 

Henc.e, 

y from 

int ~l'. 

S • {s } 
0 0 

L+(x) r/a 0 and x. e: Ns0 • Finally, for any point z e: V 3 () ext C (x) ·, 

implying z is periodic. Since C(z) C C(V3) C int c 2 we have 

S (l int C(z) = S • 
0 

C(x) C int .c(z) C 

The pc>int z is in Ns and1 

0 

N~ ..•. This contradicts · x e; oN9 • 
0 0 

points of· oNs are nei.ther periG>dic nor critical. 
0 

Therefore, the 

By virtue of Lenma 3~4 a~d the fact ihat oNs contains no . 
0 

periodic or rest points, for each Thus,· 

is not bounded and hence is an unbounded open set. 

v:Je· now show that oN · is a single trajectory. So Let· x and y 

be d.istinct points of aNs0 • Let . c1 . and c2 be simple closed curves 

such that x e: int c1 , y e: int c2 , and int c1 (l int c2 = 0. For 

z in NSo rlint cl, we have int C(z) c NSo' and so 

ext C(z) f n(y). Thus, (int c2) ()(ext C(z)) e: n(y) and 

(in~ c2) (\ (ext C(z)) ()· Ns0 r/a 0. Let 

Then C(z) C int C(w) C Ns • We have z e:. int C(w) and 
0 

x e: ext C(w). Since x, ~ E int c1 and int. c1 is connecte.d, it 
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follows. that C(w) () int c1 .r/- (ll. Hence,. we can find nets (wi) and 

(w. t.) co.nverging to y and x, respectively. In other words, 
1 1 

x ~ n(y) = k(y) =·C(y). 

Suppose Ns 
0 

is not a component of 2 
R. - 8N8 • 

0 

connected, it is ·a subset of some cqmponent . B. If 

Since N80 is 

N8 .;. B, then 
0 

c~ntradicting 

2 
component of R - 8N8 • 

0 

2 
B C R - 8N8 • 

0 
Hence, is· a 

2 Finally, let R ;. N8 • Suppose that C is a simple clo~ed curve 
0 

lying in N80 with int C ¢ N80 • Then · int C connected and 

N80 n int C F .int C imply that 8N80 {) int C :f. {i1. Furthermore, 

8N8 ('\ext C .f (ll since 8N8 is unbounded. Thus, C (} 8N8 . rf (ll · 
0 0 0 

contradicting C C Ns • Therefore, . N8 is· simply connected. 
0 0 

Lemma.3.7: If for. some periodic point 

then S consists of exactly one Poincare center. 
o, 

x ' 0 

Proof: Let N • {x·E int C(x ): x is.periodic.and 
0 

S = S ("\int C(x)} 
0 

and n = ('){int C(x): x ,g N}. At least x E N, 
0 

and so, n ;. (ll. 

Also, n is the intersection of closed invariant sets containing s 
0 

so that n is a closed invariant set and S C n. 
0 

It also follows 

that an is invariant. 

In order to. facilitate the·argument we show.that.VE n(C(y)) 

implLies V n: N F (ll . for all· y E an. Suppose V (l N = (ll for some 

VE n(C(y)). By Lemma 3,5 there is a connected set U E.n(C(y)) such. 

that C(U) C V. For x E N, U {) C(x) • (ll, Si~ce y E int C(x) 

and U i~ connected, we have U C int C (x). The point x was 

arbitrary, so that U C n. But this implies 
o. 

y .E.n which 

contradicts y E an. 



Suppose that D is not a singleton. We fir.st show that there 

exists a point y E N such that D =int C(y). If D"' int C(x.), 
0 

then we are done. Assume D ~ int C(x ) and choose points x in D 
0 
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and y in an such that x .;. y. Either y E S or y is periodic. 
0 

Suppose there exists a simple closed curve C such that x & ext C 

and C(y) C: int C. By Lemma 3,5 there is a V E n(C(y)) such that 

C(V) C: int C. We have shown that V {) N .Jt. 0. Let z E V {) N. 

Then C(z) C: C(V) C int C. But thi~ '~implies that 

x E int C(z) C int C 

contradicting x E ext C. Thus, y is periodic and x E int C(y). 

Since x was an arbitrary point of D, we have D C int C(y). 

Furthermore, C(y) C: CJD C int C(z) for each z E N implying 

int C(y)C(}{int C(z): z EN}= D. Hence, D =int C(y). 

Since s is compact 
0 

there exists a simple closed curve 

c C int C(y) with s c int c. By Lemma 3.5 there is a 
0 

v .E n(C(y)) such that C(V) c ext c. Each point z in 

v (')int C(y) is periodic by Lemma 3.4. and so' s () int C (z) 
0 

Since. C(z) C: ext C, int C(z) () int c .;. 0' and int c is 

connected, we have S C: int C C: int C(z) and z E N. 
0 

Thus, 

D C: int C(z) _and C(z) C int C(y) imply that D C int C(y) 

which contradicts y E D. Consequently, D must be a singleton. 

:f ~. 

Finally, . 0 :f S C: D implies that D is composed of an isolated 
0 

critical point. By Lemma 3.6, S consists of a Poincare center. 
0 

Lemma 3. 8: If S :f 0 and S if: R2 , then S consists of Poincare 

cente.rs. 
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Proof: Let s 
0 

denote the set of Poincare. centers •. We can select a 

point s frotn as since s '/: .(6 . and s r/: R2. For any compact. set 

u e: n (s) there exists·a v e: n(s) su.ch that C(V) C u by ·Lenuna 3.5. 

x e: v (') (R2 - S) ' 
+ 

" 0 
For any L (x) implying that x is periodic. 

Th us , Lemma 3. 7 imp lies s " {6. 0 

Suppose s e: a (S - S0 ) •. Since s is bilaterally st_able, n (s) 

contains a compact connected simply connected i.mtariant set V. Either 

V contains a regular point or a Poincare center. If it contains a 

regular point x, . then x must be periodic so that int C (x), and 

hence v, tnust contain a Poincare center. Therefore, we can assume 

that V contains a Poincare center s . 
0 

Now, for each x.e: Ns0 - {s } 0 , 

s e: int C(x) ·and, by Lennna 3.7, s e: ext C(x). Thus, V must meet 
0 

C (x) = a±nt C (x) since it is connected. But this implies C(x) C V 

and hence Ns0 CV, contradicting Lemma 3.6. Therefore, 

a(s -'S)={6, 
0 

and so s D s • 
Q 

Lemma.3.9: If S.;. 0· and· s'',;. R2 , then S consists of at 'most two 

Poinca:t."e .cente.rs. 

Proof: - Suppose sl, sz, and s3 are distinct points of s. we shall 

show that this suppc::isition leads to a countable collection of mutually 

disjoint closed sets whose union is Rz which is impossible. Uriless · 

explicitly stated, the remainder of the proof will be consi.dered 

relative to the extended dynamical system on 2* R • We denote the. 

·* closure of the trajectory. through x in the extended system by K (x). 

Since. the se.ts N s are disjoint and open relative to 
2 , . \ 

A = R - U {Ns: . s e: S} is nonempty.. For each x e; A, 

* . 
K (x) = C(x) \.) {00 } . is a simple clc::ised curve. Let 
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M 111 {x c; A: N81 C Ax. and N82 U Ns 3 C Bx where Ax and Bx are 

h f RZ* - K*(x)}, B L 3 6 M ~ .~ i t e components o y ernma. , , r VJ s nee 

* Note that A • A lJ K (x) and let 
x x 

Each set A is connected and contains Nsl' and so Fsl is· x 

coqnected. 

For any point pl in aFsl - { 00} we have Fsl = ~1· For let 

pl and ql be distinct points in ClFsl - { 00} and let cl and c2 

be simple closed curves in R2 surrounding P1 and ql' respectively, 

such that int c1 (') int c2 "" ~. There exists a point p for which 

A r\ irit C and hence. C (p) (') p I I . l'. int c1 , are nonempty set~. Since 

BP (\ int c2 .E: n(q1) there exists a point q such that 

Aq (\ BP (} int c2 :/: 0; 

hence, c(q) () int c2 ./= (.;l. Now, A meets A 
q p 

and B , 
p so th.at 

A C A • Thus, A is a connected set which meets both int c1 and p q q 

ext c1 implying that C(q) () int c1 1' (.;l, We can find nets (xi) 

and (xi t 1) conv~rging to 

D(ql)· = K(ql) "" C(ql) and 

and respectively; hence, 

for any s in S since Ns () Fs1 :/: 0 implies there exists an x 

in M such that C(p1) C Ns C Ax C F~1 contradicting 

C(p1) C C3Fsl' Thus, C(p1 ) C A. 

either C(p1 ). C Fs1 or C(p1) (l 

Then F - {oo} 
s1 is the connected set 

Since Fs1 is an invariant set, 

Fs1 "" 0. Suppose · 

and so it is a component 



of Also, 

which means pl e: Fsl' contradicting C(pl) (') Fsl = 0. Hence, 

Fsl = Apl. 

Analogously, for s 2 and there exist points P2 and 

A and ~ets Fs 2 and Fs 3 such that Fs 2 = Ap2 and Fs 3 = Ap3 • 

* * Note that Fs 1 = Ap1 and Fs 2 C Bp1 • If ClF s 1 = K (p1) = K (p 2) = 

U 2* l u ClFs 2, then Fs1 Fs2 = R which contradicts . s 3 ~ Fs1 Fs 2 . 

Hence, Fsl {) Fs 2 .., {co}, Similarly, Fsl (\ Fs 3 = Fs 2 {') 'Fs 3 = {co}, 

Let F = Fs1 U Fs 2 UFs3 . Obviously, R2* :j: F, and so 

R2* - F r/: 0. Suppose that A (\ (R2* - F) = 0. Then R2* - F must 
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in 

consist of periodic and rest points, so that N c R2* - F for some 
s 

S E S. Furthermore , ClN - {co} CA implies that 
s 

c * u * u * ClN ClF = K (pl) K (p2) K (p3). s 

* 2* u By letting ClNs = K (pk) we have R • N F9k since N and 
s s 

0 2* * thils imp lie~ that Fsk are components of R - K (p ) • But Si E Fsk k, 

for i ;lz.k which is clearly not possible. Therefore, 

A {) (R 2* - F) r/: 0. 

For each point x in A () (R2* - F) one component of 

2* * * R K (x) contains F since K (x) does not separate any of the 

sets NSl' NS2' and Ns3 from the other two. Denote the components 

2* * by and where FC For any point of R - K (x) G H H . y 
x x x 

in A {) (R2* - F), let M = {x ·E A 
y 

{) (R2* - F) : G C G } • 
y x 

Note 

that M r/: ~ since y E M. Let F' = u {G : X E M }, By arguing 
y y y x. y 
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as we did for Fs , we can find a point w in aF' () A such that 
1 y 

F' = G • 
y w For each point p in A {) (R2* - F) for which F' "" F-' 

p y' 

select a point yo in C(w) and denote F' by Fy ' Let I' be the p 0 

index set for all the Fy sets and let I =I' u {sl' s2' s 3}. 
0 

If. x and z are distinct .points in I, then F (\ F = {co}. 
X-. z 

For suppose F (\F :/. {oo}, The sets . Fo and Fo are components of x z x z 
2* oF and R2* - oF respectively, where oF and oF R - z' are x x z 

simple closed curves each consisting of {00 } and a single trajectory. 

Thus, either oF. - {oo} C Fo, 
x z 

oF - { 00 } C Fo, 0r Fo {) Fo = ~. 
z x x z 

The first two statements imply that F = F x z' and .hence x = z, 

contradicting x :f. z. The third statement implies that 2* = R 

which is impossible. Therefore, 

Next, R2* = · U {Fx: 

where E = U {F : x E I}. 
x 

x E I}, 

Since 

F {) F = {oo}. 
x z 

For let z belong to 2* 
R - E 

ACE, there is a point s in 

* such that z E N • s For some point y in E, K (y) = oN . Further-s 

* more, there is a point x in I such that K (y) = since 

* K (y) C oE. The sets N and F0 are disjoint components of 
s x 

s 

2* * 
R - K (y), 

F for 

and so R2 * a N U F • 
s x 

This implies F = E 
x ' 

i 1,2,3, which is clearly impossible. Hence, 

and thus 

2* 
R = E •. s. E = 

J. x 

The set {F 
x 

such that F x (\ 

. x -c; . 
F = 

z 

I} 

{ 00} 

is a countable collection of closed. sets 

for x # z. Hence, {F - {oo}: x E I} . is 
x 

a countable collection of mutually disjoint sets closed in R2 and 

R2 = U {F - {00 }: x E I}. This is not possible as we indicated at x 

the outset of our argument. Therefore, and are not 

distinct. 



Lemma 3ol0: Let S .;. R2 • Then· the flow restricted -to 

is .parallelizable. 

R2 - U {N : s e: S} s 

Proof: · Let x e: R2 - U {N : s e: S}. s . Recalling 

that . J (y) = L (y) for each y e: R2 , we have J + (x) "" 0. Hence, 

D+(x) = C+(x). The result follows by Th.eorem 1.36. 
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Theore~ 3.11: A flow 2 
(R ,1T) has. characteristic 0 if and only if one 

of .. the fo,llow:ing holdi;i, · 

(1) S = 0 and 
2 

(R ,1T) is parallelizable. · 

(2) S consists·of at mosit·two Poincare centers. For each 

s e: s, either s is ~ global Poincare center or N. is s 

unbounded and aN . is a ,single trajectory. The restr,iction s 

(3) 

of the flow to · R2 - U {Ns: .s e: S}. is :Paralleliz:able. 

2 S = R • 

Proof: The necessity of .the co~ditions follows from.the lemmas. 

Conversely, Theorem 1.36 shows that condition (1) is sufficient. 

Similarly, if condition (2) holds, we get D(x) = K(x) for each 

x e: R2 - U {N ·· : s e: S } • 
s 

For each · s e: S , 

R2 - aN since s 
aN is a single traject.ory. 

s 

co.nnected simply connected set• Obviously, 

N is a component of 
s 

Thus, is a 

x-e: N implies s 

D(x) = K(x). Hence, condition (2) is sufficient. Condition (3) is 

trivially sufficient.· 

Corollary .3.12: A flow 2 (R ,1T) has charact;eristic 0 if and only if 

D(x) ... C(x) 2 for each x e: R • 
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Remark: Theorem 3.11 implies that there are six basic types of planar 

flows having cha.ractreristic ,0; namely, 

(1) parallelizable flows, . 

(2)· flows. having a global Poincare center, 

(3) flows similar to Example 2.4,. 

(4) flows similar to Example.3.3, 

(5) flows. similar to Example. 3. 3 except that aNs •. aNt where 

S = {s 9t},. and. 

(6) f!ows having only critical points. 



CHAPTER IV 

PERIODIC DYNAMICAL ·SYSTEMS 

M.a.ny well known.properties of _diffe,rential flows have proven to be 

valid for general dynamical systems. In this chapter we show that 

certain properties of. planar differential flows having only periodic 

and critical, points generalize to planar dynamical systems. 

Definition 4.1: We shall ca.ll a .flow (X,1T) having only periodic ·and 

critical points a periodic flow. 

Throughout the remainder of this chapter we shall denote the set 

of critical poi-n,ts for a given flow by s. 

Theorem 4.2: Let 

component of S, 

2 (R ,~) be a periodic flow. If · S is a compact 
0 

then S is bilaterally stable. 
0 

Proof: For each point x in R2 - S, C(x) is bilaterally stable 

(see Theorem l.58) yielding D(x) = D(C(x)) .. C(x) (see Theorem l.46). 

Thus, D(R2 - S) • R2 - S, and hence, 

point of s such that D(s ) ¢ s . 
0 0 0 

which meets both the component s and 
0 

connected. The set D(s) (") s is a o· 0 

D(S) = S. Suppose s· 
0 

is! a 

Since D(s ) is a subse~ of .. 
0 

the set s - s o' it is not 

compact cc;>mponent .of D(s ) o· 

which is absurd (see Theorem L29). Hence, D(S ) ... s and s is. 
0 0 0 

bilaterally stable (see Theor,em l.46). 
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s 
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Corollary 4.3: · Let. 
2 

(R ,n) be.a periodi~ flow. If s is an isol&ted 
0 

point of S, then s is a Poincare center. 
0 

Proof:. In view of Theorem 1.59 we need only observe that .. s is an 
0 

isolated bilaterally stable point. 

Corollary 4.4: Let 
2 

(R ,n) be .a periodi~ flow. If S is a finite 

set, then · S consists of a global Poincare center. 

Proof: .. By Corollary 4.3, S consists of Poincare centers. Each 

trajectory.is bilaterally stable (see Theorem 1.58 and Theorem 4.2), 

so that D(x) = D(C(x)) = C(x) a K(x) for each 
2 

x e: R (see Theorem 

1. 46). Thus, (R2 ,TI) has characteristic 0 and the desired result 

follows from Theorem 3. ll. 

Corollary 4.5: Let x · be a periodic point of a flow 
2 (R ,TI). If the. 

restriction of the .flow to int C(x) is periodic and S () int C(x) 

is finite, then it consists of exactly one Poincare center. 

Proof: Define a flow (R2 ,TI') which agrees. with 
2 

(R ,TI) on int C(x) 

and consists of periodic trajectories surrounding C(x) on ext C(x). 

The proof follows from Corollary 4. 4. 

In Corollary 4.5 the components of S () int C(x) are assumed 

to be a finite number of isolated critical points. The following 

example .illustrates that there can be countably many isolated critical 

points .if the set. s n int c (x) is not finite. 

Example 4.6: 
2 

Le.t · (R ,TI) be defined by the system of differential 

equations 



ro 
• = y Vf -;n)2+i(~· -~,f ~2 -~n+2) 

y (i-vx2 + l) 
0 
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for (x,y) E B - A 

for (x,y) EA, n = 1,2,3, .•. 
n 

2 for (x,y) E R - B 

for (x,y) E B - A 

y = r -;,,)lf(· -~n12+l(~n+2 -Vf -~J2~2)for (x,y) EA ,n=l,2,3, •.. 
n 

x ( vx2 + y2 - 1) 2 for (x,y) E R - B 

where 

2 2 B = {(x,y): x + y 2_ l}, 

and 
00 

A= U A. 
n=l n 

The phase plane is illustrated in Figure 4.1. Note that the points 

~n , o) for n = 1,2,3, •.• are local Poincare centers. 
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rest points 

Figure 4.1 



CHAPTER V 

SUMMARY 

In Chapter I we listed the basic properties of dynamical system 

theory used in this thesis. Included is a survey of the known results 

+ - + for planar dynamical systems having characteristic 0 , 0 , o-, or O. 

Chapter II contains a characterization of dynamical systems of 

+ - ' characteristic 0 (O ) in terms of. the set of critical points. 

Ex;amples are given to. show. that the conditions of the cl:J,aracterization 

are sharp. Examples of dynamical sys terns satisfying all of the 

properties obtained by Ahmad in [l] for flows having nonc~mpact sets of 

critical points are given including one which nontrivially satisfies 

all of the properties. 

In Chapter III we characterize dynamical system$ of characteristic 

0 in terms of the set of critical points. Examples of the nontr.ivial 

types of planar flows having characteristic. 0 are given. 

Finally, in Chapter IV we . show that .the se.t of . critical .points of . 

a planar periodic flow having a finite number of critical points 

consists of a global Poincare center. Also, if the interior of a 

planar periodic orbit is a periodic flow and the set of critical points 

is finite, then the ·set of ci;-itical points consists. of a single. 

Poincare center. 

There are many questions suggested by the results of this thesis. 

One might attempt similar characterizations of planar dynamic~l systems 
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+ + of characteristic a , a , a-· and a where a is any ordinal number; 

that is, . flows where for each x where D+(x) 
a . 

represents the · a.th prolongation of x and so forth.. Dynamical 

sys terns for which D: (x) = D; (x) for each x where a. and S are 

fixed ordinal numbers as well as their negative, conjunctive, and 

bilateral versions can be studied. ·Any of these problems .can be 
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stud,ied.for arbitrary rather than planar phase spaces~ Transformation 

groups having any of these properties can be studied. Planar periodic 

flows can be.classified and characterized in terms of their critical 

points. 
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