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AN EMPIRICAL INVESTIGATION OF THE MULTIVARIATE 
MULTIPLE SAMPLE LOCATION PROBLEM

CHAPTER I 

INTRODUCTION

The biomedical researcher is often concerned with determining 
whether several drugs, several methods of therapy, or several such treat

ments have different effects on living organisms with respect to a speci
fied set of variables. An important scientific advance of this century 
has been the development of statistical tests which aid the researcher 
in his investigation of these treatment effects. If the researcher is 
willing to assume that his variables of interest have a multivariate 

normal distribution and that his observation vectors are independent, 
there are standard multivariate tests available. Anderson (1958) gives 
procedures for testing differences in mean vectors under the assumption 
of equality of dispersion (variance - covariance) matrices, for testing 

differences in dispersion matrices under the assumption of equality of 
mean vectors, and for simultaneously testing differences in either mean 
vectors or dispersion matrices. If significant differences are found 
in the third situation, it is not known whether the distributions are 
different with respect to mean vectors or to dispersion matrices.

These standard methods are somewhat restricted in their utility 
in an applied situation because of the assumptions required for their
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mathematical derivation and a lack of knowledge as to their robustness

properties. Ito and Schull (1964) and Holloway and Dunn (1967) have in-
2vestigated the robustness of the T test when the assumption of equality 

of the two dispersion matrices is violated. The literature does not seem 

to contain an investigation of the multivariate robustness problem for 

the multiple sample case or the non-normal case.
The researcher cannot always safely assume an underlying multi

variate normal distribution; the most obvious case being where one or 

more of the variables are dichotomous, i.e., where the measurement, or 
observation, is the presence or absence of a given characteristic. Re
search is presently being directed toward the development of suitable 
non-parametric multivariate procedures to aid in the elimination of these 

problems.
Research in the area of non-parametric multivariate statistics 

has utilized various approaches as well as attacked different problems. 
Chung and Fraser (1958) have developed a randomization test in order to 

test the equality of mean vectors in the two-sample problem. Anderson 
(1966) has investigated the properties of statistically equivalent blocks, 
which were developed for use as tolerance limits, in order to test 
whether two distributions are identical and to classify an observation 
into one of two populations. Bhapkar (1966) has worked with some multi
variate analogues of univariate rank-order statistics for his procedure 
to test the identity of several distributions. Murthy (1966) has used 
a univariate function F^(x) which is defined as the product of 1/n and 
the number of observations less than or equal to x among the n observa

tions. This function was generalized and a non-parametric multivariate
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procedure for estimating probability density functions was established. 
Koch and Sen (1968) have utilized ranks and a randomization model to test 
the equality of treatment effects in the mixed model, or repeated mea

surements, design. Koch and Sen have drawn heavily from mathematical de

velopments made by Puri and Sen (1966) and Sen and Puri (1967). Dorr 

(1969) has investigated the use of a clustering technique to test the 
equality of mean vectors in the multiple sample case.

The following is a detailed discussion of Dorr's method and is 

presented because the present study is an extension of this work. Clus
tering is the partitioning of a set of multivariate observations into 

disjoint subsets, or clusters, where a cluster is a set of the observa
tions which are close together in the multidimensional sample space, 
i.e., observations in the same cluster are close together in the sample 
space and observations in different clusters are relatively less close 
together. A clustering technique given by Ball and Hall (1965) was used 

to develop a test of the equality of mean vectors.
The first step in the procedure is to cluster the observations. 

Basically this consists of the determination of cluster centers which 

are scattered throughout the sample space and the assignment of observa
tions to clusters determined by these cluster centers. The assignment 

is made by assigning each observation to the closest cluster. The 
closest cluster is that cluster for which the distance between the obser
vation and the cluster center is a minimum. The distance between an ob

servation and a cluster center is measured by (X - Y^)' Sp^(X - Y^) 

where X is the p dimensional observation vector, Y^ is the p dimensional 
vector which is the cluster center for the i^^ cluster, Sp is the
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standard unbiased pooled estimate of the dispersion matrix, and p is the 

number of dimensions. Sp is computed from the equation;

k ni k
S_ = E E (X - X )(X,, - X, )' / ( E n - k)
^ i=l j=l i=l 1

where X^^ is the p dimensional observation vector in the i^^ treat

ment group, X^ is the p dimensional sample mean vector for the i^^
treatment group, n^ is the number of observation vectors in the i^^

treatment group, and k is the number of treatment groups.
After each observation has been assigned to the closest cluster, 

each cluster center can be replaced by the mean vector of the observations 

in that cluster and the procedure repeated. Techniques are available for 

combining two or more clusters which are relatively close together and 
for splitting a single cluster into two clusters when the observations 

are too distant from one another to be considered one cluster.
After the observations have been clustered, a k x m contingency 

table is constructed where k is the number of treatment groups and m is 
the number of clusters found. The contingency table is such that the 

ij^^ element is the number of observations from the i^^ treatment group 
which are in the cluster. The sum of the elements in the i^^ row is 

the sample size for the i^^ treatment group, and the sum of the elements 
in the column is the number of observations which are in the j 

cluster.
The final step is to test the contingency table. This is done 

using the test, and the null hypothesis of equal mean vectors is re

jected at the a level if the sample value is significant at the a 

level.
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The rationale underlying the test will now be discussed. The 

clustering procedure forms a cluster from observations which are close 

together in the multidimensional sample space. If the assumption of 

equal dispersion matrices is made, two observations from the same treat
ment group are no more likely to lie close together than two observations 
from two different treatment groups which have equal mean vectors since 

the two observations come from the same distribution in both situations. 

Thus the assignment of observations to clusters should be independent 
of the treatment groups from which they come when the mean vectors are 
equal. On the other hand, two observations from the same treatment group 

would be expected to be closer together than two observations from two 

treatment groups with different mean vectors since the distance between 
the two mean vectors should contribute to the distance between the two 
observations in the latter case. Thus the assignment of observations 
to clusters should not be independent of the treatment groups when the 

treatment groups have different mean vectors. Therefore the contingency 
table discussed above is constructed and the is used to test the inde
pendence of treatment groups and clusters. A significant lack of inde

pendence of treatment groups and clusters is taken to indicate a signi
ficant difference in location of the sampled observations from the treat

ment groups. It is not unreasonable to think that perhaps the method 
would also work for a wide variety of applied situations where the dis
persion matrices are not equal.

There are difficulties associated with using the clustering 

procedure to partition the observations. The number and configuration 
of the clusters formed by the clustering algorithm are dependent upon
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the values specified for the input parameters required by the algorithm. 

Specific values which seem to produce reasonable results for a wide 
variety of situations have been determined empirically, but it would be 

desirable to have a partitioning algorithm which is independent of input 

parameters. Also, the establishment of the original cluster centers is 

dependent upon the ordering of the observations within treatment groups 
and the ordering of the treatment groups. The determination of the 

original cluster centers is a critical step and most of the problems 

associated with the test procedure seem to result from improperly lo
cating the original cluster centers.

The clustering procedure was developed to investigate data 
structure and not to test hypotheses. There is information available in 

the test of hypothesis situation which is not utilized by the clustering 
algorithm, namely knowledge as to which observations are in which treat
ment groups and the knowledge that the observations in a treatment group 
are from the same distribution and may be from the same distribution as 

the observations from one or more of the other treatment groups. It seems 

desirable to use this additional information to partition the observations. 
The obvious approach is to use each treatment group sample mean vector 
as an original cluster center.

If this approach is taken a simplified method for partitioning 

can be seen. Associate a cluster with each treatment group sample mean 
vector in such a manner that the observations in the cluster are those 
which are closer to that sample mean vector than to any other sample mean 
vector. The contingency table described above can then be constructed. 
However, the measure of distance and the test of the contingency table
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used previously cannot be assumed to be appropriate. The distance mea

sure is suspect since the distance is no longer a distance between an 
observation and a cluster center but between an observation and a sample 
mean vector. An observation is a component of one and only one mean 

vector, namely the mean vector for the treatment group containing the 

observation. Then, even under the null hypothesis of equal mean vectors, 
the observation would be expected to be closer to that mean vector than 

to any other. Also, the effect of using the sample dispersion matrix is 
unknown. The test of the contingency table must be modified in that a 

significant is to be taken as a significant difference in mean vectors; 
but, a difference in mean vectors -is not necessarily indicated by lack 
of independence of treatment groups and clusters. For example, if the 
significant is due to large elements in the off diagonal positions, 
i.e., the observations in one treatment group are closer to the mean vec

tor for another treatment group, one would certainly not wish to reject 
the hypothesis of equal mean vectors even though the x^ were significant.

This dissertation is concerned with the development of a method 
to test the multivariate multiple sample null hypothesis of no treatment 
differences against the alternate hypothesis that the treatment effects 

are not equal, i.e., = Pg = ••• “ f Pj for some i
and j, where p^ is the p dimensional mean vector for the population re

ceiving the i^^ treatment, p is the number of dimensions or the number 
of variables per observation, and k is the number of treatments under 
consideration. The first method investigated consists of the construc
tion and test of a k x k contingency table where the i^^ row corresponds 
to the i^^ treatment group, the j^^ column corresponds to the sample



mean vector for the treatment group, and the element is the num

ber of observations in the i^^ treatment group which are closer to the 
sample mean vector for the treatment group than to any other sample 

mean vector. Difficulties in the use of the contingency table are en
countered and the use of a continuous statistic is investigated.

The Monte Carlo technique is used to determine an appropriate 
measure of closeness and a test method, and to investigate the effective

ness of the test procedure in detecting differences in mean vectors, as 
measured by the probability of both Type I and Type II errors. The Monte 
Carlo study investigates the test effectiveness for different combina
tions of underlying distributions, sample sizes, numbers of variables, 
numbers of treatment groups, and positions of mean vectors for both 

homogeneous and heterogeneous dispersion matrices.



CHAPTER II

METHOD OF INVESTIGATION

The selection of a distance measure between an observation and 
a sample mean vector is of the utmost importance in the development of 

the test procedure. The most promising distance measures involve the 
use of a sample dispersion matrix in a quadratic form. With the com

mencement of the investigation it was seen that this type of distance 
measure has extremely complex mathematical properties. The complexity 
of the measure seems to defy a purely analytical study and it was de

cided to use empirical techniques to supplement the analytical aspects 
of the investigation.

The Monte Carlo technique is a scientific approach which utilizes 
random numbers or samples from known artificial populations. These popu

lations are said to be artificial since they are constructed by the re
searcher solely for the purposes of the study. Since the sampled popu
lations are known, the samples can be used to compare various techniques 
or decision functions, or to estimate physical constants or system para

meters. The Monte Carlo approach is distinct from the more standard 
scientific method of utilizing samples from an unknown natural population 
to infer to that population. The technique has been used successfully 
in such fields as nuclear physics, numerical analysis, operations re

search, and statistics.
9
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An extremely large number of random samples is usually necessary 

to insure adequate precision and the method is not feasible without the 

aid of a high speed electronic .computer. Consequently, various methods 
have been devised to generate random numbers on high speed computers. 

Jansson (1966) gives salient .characteristics of the methods currently 

used to generate random numbers.
The Monte Carlo method will be used to evaluate the proposed 

test with respect to the probability of Type I and Type II errors (a and 
3 levels). The study will be conducted in a manner analogous to a fac
torial experiment where the factors of interest are distribution, 
equality of dispersion matrices, sample size, the number of treatment 
groups, and the separation of mean vectors. For a fixed level of each 
factor random vectors will be obtained from known populations. These 
random vectors will be tested at a specified a level using both the pro
posed test and the standard Multivariate Analysis of Variance (MVAOV) 

test as given by Cooley and Lohnes (1962).

Upon repeated replication of the procedure, a count is made of 
the number of times the null hypothesis is rejected using the proposed 
test and the MVAOV. Since the population mean vectors are known, the 

a or 3 level for the proposed test can be estimated, tested equal to a 
specified value, or tested equal to that of the MVAOV.

Three general cases will be investigated. First is the situa
tion that the assumptions for the MVAOV are met, i.e., the vectors are 
independently sampled from multivariate normal distributions with a com

mon dispersion matrix. The second case is that the vectors are inde
pendently sampled from multivariate normal distributions but the
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dispersion matrices for the treatment groups are not all equal; i.e., 

there is heterogeneity of dispersion matrices. The third case is that 

the vectors are independently sampled from multivariate non-normal dis
tributions with heterogeneous dispersion matrices. In this last case it 
is desired to investigate the situation where some of the variables are 

continuous, but not normal, and some of the variables are discrete.

A computer program has been written by the author in FORTPAN IV 

for the IBM 1800 which generates and tests random vectors, using both 
the proposed test and the MVAOV. The remainder of the chapter will be 
concerned with a description of the generation and characteristics of 

the random vectors.
Random vectors from a specific multivariate normal distribution 

are obtained from independent univariate normal samples, which are ob

tained, in turn, from the uniform distribution. First, 16384 independent 
samples from the uniform distribution on the interval (0,1), i.e., from 
U(0,1), were generated. These independent samples from the uniform were
obtained using the subroutine RANDU, which is described in Appendix 1.
These samples from the uniform were used to obtain 16384 samples from 

the standard univariate normal. The procedure for obtaining normals 
from uniforms is one given by Box and Muller (1958) and consists of using 

the transformation:

= (-2 An X^)l/2 cos(2R Xg)

Yg = (-2 An X^)l/2 sin(2n X%)

where X^ and Xg are independently distributed as U(0,1) and Y^ and Y^ 

are independently distributed as standard normals, i.e., as N(0,1).
The resulting 16384 random numbers were tested to insure a
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reasonable approximation to a random sample from N(0,1). The testing was 
done by using the goodness of fit test as given by Steel and Torrie 

(1960). The goodness of fit test was applied 163 times; each application 

involved 100 random numbers and ten classification cells so that each 

had nine degrees of freedom. Of the 163 tests, seven were significant 
at the five percent level. Thus the tests gave no reason to doubt that 

the numbers were a random sample from N(0,1).

A method given by Scheuer and Stoller (1962) is used to obtain 
a p dimensional random vector from N(p,Z). As the first step, p of the 

univariate samples from N(0,1) are considered to constitute the p compon

ents of the p dimensional vector Y, and Y is multiplied by the constant 
matrix C, where C is such that CC' = E. The p dimensional vector y is 
added to CY and the resultant vector can be considered to be a random 

vector from N(y,E). This follows from the fact that if a p dimensional 
random vector X is distributed N(ij),A) then CX + 6 is distributed 

N(C(j) + 6, CAC') where C is a real non-singular constant p x p matrix and 

Ô is a real p dimensional constant vector. This well known result from 
mathematical statistics is given as Theorem 3.22 by Graybill (1961). In 
this situation the dispersion matrix for Y is the p^^ order identity 
matrix since the components are independently distributed with unit vari
ance. The mean vector for Y is the p dimensional null vector, and 

CY + y is distributed N(y,E) since CIC’ = CC' = Z.
The matrix C can be determined uniquely if C is taken to be 

lower triangular with positive diagonal elements. The elements of C are 
determined recursively from the following equations:
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=ii = (*il - 1 1 - Pk=l

j-1
^ij - f =xk ‘̂jk 

c., = -------^ --------  1 < d < i  ; P

= 0 l < i < j < p

where c .. is the element of C and a . ,  is the ij^^ element of E.ij ij
The existence of C can be determined from the Gram-Schmidt 

orthogonalization process (Jacobson, 1953). The uniqueness of C can be 
seen from the equations given above.

Random vectors from a non-normal population are generated in a 
manner similar to that for the normal vectors. However, the non-normal 
vectors are obtained from independent observations from a skewed tri
angular distribution with zero mean and unit variance rather than from 

normal observations. The skewed triangular distribution was selected be
cause unimodality and skewness are not uncommon for distributions found 
in applied research situations. The independent samples from the skewed 

triangular distribution were obtained from the same 16384 samples from 
U(0,1) that were used to generate thg samples from N(0,1). The integral 
transform as given by Parzen (1960) was used to transform U(0,1) to a 
skewed triangular distribution. The transformation is given by;

Y = (2 X)l/2 for 0 < X < -|

Y = 3 - (7 - 7X)l/2 for |- < X < 1
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where X is distributed U(0,1). The probability density function for Y 

is given by:

y 0 < y < J

f(y) = ^ “ 7  Y  < y 1 3
0 elsewhere.

Each sample had the mean subtracted and the result was divided by the 

standard deviation in order to standardize the distribution.

To obtain a non-normal p dimensional random vector, p of the 
univariate samples are considered to constitute the p components of the 

p dimensional vector Y. Y is multiplied by the real lower triangular 

constant matrix C, and the real p dimensional constant vector 6 is added 
to the result. Y has the p dimensional null vector for its mean and the 

p*"̂  order identity matrix for its dispersion matrix. Since CY + 5 is a 

linear combination of the components of Y plus a translation, the mean 

of CY + 6 is 6 and the dispersion matrix is CIC' = CC'. The reader is 

referred to CHAPTER IV for a discussion of this property. The distribu
tion of CY + 6 can be derived for a specific C. However, in general 

this distribution is not a common distribution. Therefore, rather than 
deriving the distribution of CY + 6, random vectors of this type were 

generated and the empirical results investigated. For the C's used in 

this study the empirical marginal distributions were always unimodal 

and skewed. Correlations between the components ranged from strong nega

tive correlation to strong positive correlation. CHAPTER IV gives the 

population dispersion and correlation matrices used in the investigation. 

Random vectors generated in this manner are thought to be realistic 
since the marginals are unimodal and skewed, the correlations are not
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all equal, and the variances are -not all equal.

Next, some of the variables are categorized. For the three

dimensional case, this is done by assigning a value of zero to all ob
servations on the third dimension which are less than the mean of the

treatment group population means for the third dimension and assigning 
a value of one to all observations on the third dimension which are 
greater than this mean. In the analysis the zeroes and ones are used as 

if they were from a continuous distribution.

For the nine dimensional case, the first five dimensions are 
left continuous. The sixth dimension is categorized into five states 

and the seventh dimension into three states. The eighth and ninth di

mension are categorized into two states. In each case, a continuous ob
servation is replaced by an integer which corresponds to the interval 

in which the continuous observation fell. The integers are then treated 
as if they were continuous in the analysis.

As stated above, the 16384 samples from U(0,1) were used to
generate 16384 samples from N(0,1) and 16384 samples from the skewed 
triangular distributions. The investigation requires more than 16384 
random numbers but these are all that are available using RANDU. There 
would probably be no objection to the limited number of random numbers 
available if one number could be selected at random from the 16384 each 
time a number is required. However, this is not feasible since it would 

require some method of obtaining random numbers to decide which random 
number to use. Therefore, some of the samples must be used sequentially.

The following method is used in an attempt to reduce the conse

quences of not having a sufficient supply of random numbers. The normal
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and triangular random numbers have been placed in separate files on a 
magnetic disk from which they can be read as needed. For each series of 
experiments, RANDU is initialized, using a number selected from a random 

number table, and used to obtain one random number for each experiment 
in the series of experiments. As used here an experiment consists of 

obtaining a specified number of sample vectors from a specified number 

of known populations (not necessarily all different), analyzing the re

sultant vectors and noting significance or non-significance for both the 
proposed test and the MVAOV. A series of experiments consists of multiple 
replication of the experiment with the level of all factors (distribution, 

equality of dispersion matrices, etc.) held constant. The random number 

obtained from RANDU for every experiment is used to obtain a starting 
point for that experiment. The starting point Z is the random number 

modulo 16384 and will be an odd integer on the interval (0, 16384). If 
the number of p dimensional vectors needed for the experiment is n, the 
np random numbers are read sequentially, starting with the 2^^ number 
in the appropriate file (normal or triangular), from the magnetic disk.

The first p random numbers constitute the first vector, the second p 
numbers constitute the second vector, and so on. The first n^ vectors 

constitute the sample for the first treatment group, where n^ is the 
number of observations for the i^^ treatment group. The next n^ vectors 

constitute the second treatment group, and so on through the k treatment 
groups. At this stage the vectors all come from the same population and 
must be transformed so that the treatment groups have the desired popu
lation mean vectors and dispersion matrices. This is accomplished by 
multiplying each vector in the i^^ treatment group by and adding
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to the result. is such that the desired population dis

persion matrix for the i^^ treatment group. Also, is the desired
population mean vector for the i^4 treatment group.

The method explained assumes that when the np random numbers 
used in one experiment overlap the np random numbers used in another 

experiment, the overlap is such that the random numbers go into dif
ferent components and different treatment groups often enough in order 

not to invalidate the results. Since the number of dimensions, the num

ber of vectors per treatment group, and the number of treatment groups 
are all being changed, the assumption is thought to be reasonable.



CHAPTER III 

PRELIMINARY INVESTIGATION

A standard measure of the distance between two multivariate 

normal populations is the generalized distance, which was first pro
posed by Mahalanobis (1930). is defined by:

bP- = - Pg)'  ̂^ - ^2^
where p^ and p^ are the p dimensional mean vectors, Z is the p x p dis

persion matrix (assumed common to the two populations), and p is the 
number of dimensions. Reyment (1962) has utilized the measure A^, given
by:

a| 2(p̂  - PgJ'CZi + 2̂) (P̂  P2)
where and Zg are the two dispersion matrices and are not assumed to 
be equal. It is easily seen that tP  = A^ when Z^ = Zg. It will be 
assumed in the sequel that bP and A^ are meaningful measures of the dis- 

tance between two multivariate populations even when the underlying dis
tributions are non-normal. Under this assumption, it would be desirable 
for the expected value of the measure for the distance between an obser

vation and a sample mean vector to increase as tP increases. Here, P  

is the generalized distance between the population from which the one 

observation was selected and the population from which the observations 
contained in the sample mean vector were drawn. If the observation 

is in the i^^ treatment group, P  is zero when the sample mean vector

18
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under consideration is for the i^^ treatment group and also zero when 

= Pj, j=l> 2, ...» k, where the sample mean vector is for the 
treatment group.

The intuitive approach is to use (X.. - X )’ SL^(X., - X ) as
i j  in • Jc x j  m  #

the measure of distance between the observation in the i^^ treatment

group and the sample mean vector for the m^^ treatment group. X^^ is a
p dimensional observation vector, X^ is a p dimensional sample mean

vector, and is the standard unbiased pooled sample dispersion matrix
given in CHAPTER I. The primary objection to this measure is that if
i = m then X.. has been used to compute X . This can be circumvented ij m.

— ttlby removing X.. from X. , i.e., computing the mean vector for the i ij !•
treatment group excluding X^^. Let this new mean vector be designated 
“X iX. where the superscript designates the observation that has been de-1.
leted. Also, let X^^ be the standard mean vector for the m^^ treatmentm.
group when i f m, i.e., X^^ = X^ when i ^ m. It is pointed out for com
putational convenience that by simple algebraic manipulation 

(X., - xt^) = n.(X., - X ) / (n. - 1) where n. is the sample size forXj X # X X J X # X X
the i^^ treatment group. Then, the distance between the ij^^ observation
and the m^^ sample mean vector can be taken to be D^. , where D?. isijm xjm
given by:

■>«.. - «ij -
2This measure is similar to the studentized D statistic given

by:

- (%i. - %2.)' - %2.)-
is used to estimate and its distribution has been derived by Bose

and Roy (1938) who have assumed that the underlying distributions are
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2multivariate normal. The expected value of D is given by Defrisse- 

Gussenhoven (1966) as

n, + n„ - 2 t I
+  I+ «2 - p -3

where n^ and n^ are the sample sizes for the two treatment groups.
2The expected value of D is of little help in ascertaining 

2 2whether E(D.. ) = E(D.,.) when i m but y. = y . One problem is that ijm ij 1 1 m
2D is defined only when there are two treatments and another is that of

determining whether an n is associated with the sample size used to esti-
2mate a mean vector or is associated with the estimation of E. For D ,

contains n^ observations, X^ contains n^ observations, and the

divisor for the sums of squares matrix is n^ + n^ - 2. However, for 
2Dijm treatment groups, X^^ has one observation and there are no

observations available with which to compute deviations about this "mean
2vector". The derivation of the distribution of D., would be extremelyijm ■'

complex and is beyond the scope of the present study.
2Mahalanobis (1935) uses a similar measure, given by:

”m = - %?.)' «1. - X;.).
where it is assumed that there is a common dispersion matrix for the two

populations. Assuming multivariate normal distributions, the expected 
2value of D„ is:M

E(D^) = ^  ^  .

If the Sp in is replaced by E the result is a special case
2 -of with n^ equal to one since X^ is the observation. In this special

case the expected values are
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+ p + . when i = mHi-l

and

+ p + ̂  when i f m.
m

This measure can be adjusted for the bias and the result has 
an expected value of A^, both when i = m and when i f m. Thus the mea
sure has the desired characteristics.

In spite of having the desired characteristics, the measure is 
impractical since the researcher seldom knows Z in an applied situation.

For this reason is first used instead of Z. The measure to be in-
vestigated is given by:

%ijm “ <%ij - - P - ^ ”
and

%ijm ■ ' P ' ̂  ^ * ” •

It is pointed out that the use of D.. is not defended mathema-]_]m
tically since the expected value was derived assuming normality and

0,2knowledge of Z and is to be used when neither of these assumptions
applies. However, the invariance of expected values under changes in
underlying distributions is not uncommon, examples being the expected
values of the standard sample mean and variance. So the appears to
be a reasonable measure to investigate.

D?. can be used to partition the observations into k sets where ijm
the i^^ set contains the observations closer to the sample mean vector 
for the i^^ treatment group than to any other mean vector. Then the 

k X k contingency table given in CHAPTER I can be constructed. It is
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assumed for the time being that E(D?. ) does equal E(D^..) when y , = y .ijm 131 1 m
Then a reasonable approximation is that the probability that an observa

tion is closest to the i^^ sample mean vector, i = 1, 2 k, is 1/k
under the hypothesis of equal mean vectors since the expected value of 

the distance, adjusted for bias, to each sample mean vector is zero.
Also reasonable is the assumption that the probability is greater than 
1/k that an observation from the i^^ treatment group is closer to the 

sample mean vector for the i^^ treatment group when y^ f y^ for some m. 

This follows from the fact that is zero but is positive.
Under the preceding assumptions, the expected value for the sum

kof the diagonal elements in the contingency table is (1/k) E n. underi=l ^
the null hypothesis, since the i^^ diagonal element is the number of ob
servations from the i^^ treatment group which are closer to the i^^ 
sample mean vector than to any other sample mean vector. Also, the ex
pected value for the sum of the diagonal elements is greater than 

k
(1/k) I n. when y . y , for one or more of the i and j. Although thei=l ^  ̂ i
expected value for the sum of diagonal elements is known, its distribu

tion, which is required for a test of hypothesis, is not known unless 
another assumption is made. This assumption is that the distance mea
surements are independent. This assumption is perhaps the least tenable

made thus far since it is known that the distances are not independent;
it is only a question of whether the lack of independence is serious 

enough to invalidate the test procedure. However, proceeding under this 
assumption, the equality of mean vectors can be tested indirectly by 

testing whether the sum of the diagonal elements in the contingency table 
is greater than would be expected if the probability of an observation’s
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being on the diagonal is 1/k. The test is made using the binomial dis
tribution. The null hypothesis of equal mean vectors is rejected with 

the rejection of the hypothesis that the probability is less than or 

equal to 1/k that a given observation appears on the diagonal.
In order to ascertain the validity of the given test, an 

empirical study was conducted. This study consisted of sampling multi

variate normal vectors from known populations, using the techniques 
given in CHAPTER II, and testing the resultant vectors. At this stage 

primary interest was in the significance level, not the power level.
For this reason, the population mean vectors for the treatment groups 
were equal. The population dispersion matrices for the treatment groups 

were those used in the main study and are given in CHAPTER IV. All tests 
were performed at the five percent significance level, and there were 75 
independent experiments for each series of experiments, where a series 
of experiments is for a specific combination of the levels of the import

ant factors.
This empirical study revealed that there was a bias in the

method in spite of the correction factors employed in This bias

was such that an observation had probability greater than 1/k of being 
on the diagonal of the contingency table, i.e., of being closer to the

sample mean vector for the treatment group which it was in than to any
other mean vector. This bias was made obvious by the fact that the 
total number of observations on the diagonal was always significantly 
greater than (1/k) • 75 • N for a series of experiments. The value 
(1/k) • 75 • N is the number of observations expected on the diagonal 
if there is no bias, where N is the number of observations required for
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kone experiment, i.e., Z n ., and 75 is the number of experiments in ai=l 1

series of experiments. In addition to the bias evident in each series

of experiments, there was an increase in the observed error rate with an

increase in the number of dimensions. For nine dimensions, the true
error rate appeared to be close to 33 percent rather than the stated
error rate of five percent.

v2 2D.. is a special case of D„ if Z is used instead of S„. In ijm M P
order to determine the source of the problem, the sampled observation 

vectors were analyzed using Z instead of Sp. In this situation, the 
error rate exceeded five percent but the procedure did not appear to be 
biased and the error rate did not increase with an increase in the num

ber of dimensions.

Allais (1964) recommends that the number of observations used 
to estimate a dispersion matrix be greater than ten times the number of 

dimensions. It was thought that perhaps the trouble lay in an inadequ

ate estimation of the dispersion matrices. The data were analyzed again 
using Sp instead of Sp, where Sp is Sp with all off diagonal elements 
set equal to zero. Thus, the measure utilized makes no use of the 
correlations. Also, the sample size required for adequate estimation 
is reduced since the covariances are not estimated. The results showed 

no bias, but the results of further investigation showed that the method 
was only about ten percent as powerful as the MVAOV when population dis
persion matrices were not diagonal. Thus, a more efficient correction 
was sought.

Another possible cause of the problem was the manner in which 

Sp was computed and used. The deviation vector - X_ ) is a
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component of S„ but (X,, - X ) is'.not a component of S when i ^ m. Sor ij m • t
—there is a relationship between (X,, - X. ) and S in the measure D...1J 1 • Jr Ij 1

which does not exist between (X^^ - X^ ) and Sp. This difference in 

relationships does not exist if the total dispersion matrix, S^, is used. 
S^ is computed from:

k Ui _ k
S = E E (X.. - X )(X,. - X )' / ( E n. - 1)

i=l j=l ^  •• •• 1=1

where X is the mean vector for all observations. Under the null hypo
thesis of equal mean vectors, Sp and S^ are both unbiased estimates of 
E, so the use of S^ is not unreasonable.

The data were again analyzed, this time using S^ instead of Sp. 

The results indicated no bias and further work supported this finding. 
However, the error rate still exceeded five percent. The error rate did 
not increase with the number of dimensions. Since the use of S^ gave 

results quite similar to the results obtained when using E, the utiliza

tion of S^ was retained. The increased error rate was attributed to the 
lack of independence among the distance measurements. This lack of inde
pendence makes it difficult to use standard statistical tests since they 
usually require independence among the observations. Since standard 

statistical tests were of no help there were two alternatives: analyti
cal or empirical determination of the distribution function for the num

ber of observations on the diagonal of the contingency table. The latter 
approach was selected.

It was thought that the method would be feasible if the distri

bution function for the number of observations on the diagonal was in
variant under changes in distribution, dispersion matrices, and the
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number of dimensions even if it were not invariant under changes in the 
number of treatment groups, and-sample sizes. Therefore, for each of 

several different numbers of treatment groups and sample sizes 2000 ex
periments were generated using procedures given in CHAPTER II. The treat
ment groups* population mean vectors and dispersion matrices were equal 
and the number of dimensions was one. In each case, the empirical fre

quency distribution for the number of observations on the diagonal was 

tabulated for the 2000 sample values. Then a five percent rejection re
gion was constructed by assuming that the frequency distribution was a 

probability mass function.
Figure 1 gives the empirical frequency distribution of the num

ber of observations on the diagonal for two treatment groups with fifteen 
observations per group. Empirical distributions obtained for two treat
ment groups with thirty observations per group, four treatment groups 

with fifteen observations per group, and four treatment groups with thirty 
observations per group were quite similar to Figure 1 and are not pre
sented.

The use of the binomial test calls for rejection of the null 
hypothesis at the five percent level if there are twenty or more obser
vations on the diagonal, but Figure 1 can be used to ascertain that the 

probability of twenty or more is approximately .10 when the null hypo
thesis is true. Thus it can be seen why an excessive error rate was 
encountered when the binomial test was used.

Next, series of experiments were conducted where the number of 

dimensions was greater than one and the dispersion matrices were not 
necessarily equal. The results indicated that the method was
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satisfactory for two treatment groups but not always satisfactory for 

four treatment groups. The true a level appeared to be about five per
cent when the dispersion matrices were equal but to appreciably exceed 

five percent when the dispersion matrices were not equal for four groups. 

A possible explanation for the procedure's working for two groups but 

not for four is the manner in which the empirical distribution was ob
tained. The empirical distribution was for one dimensional observations. 

In a one dimensional space with four sample means, there is an unbounded 
region for both the smallest and largest means where an observation can 
be closest to the smallest or largest mean. The regions where an obser
vation will be closest to one of the two intermediate means are both 

bounded. However, for two treatment groups both sample means have un

bounded regions where an observation can be closer. For all dimensions 
greater than one, the regions are all unbounded for all numbers of treat
ment groups. Hence, for four treatment groups and one dimension the 

distribution for the number of diagonal elements could be different from 
the distribution for higher dimensions. This could result in a rejec
tion of the null hypothesis more often than the stated a level even when 
the null hypothesis was true. This explanation does not take into 

account the fact that the method seemed to work when the dispersion 
matrices were equal. Nevertheless, a procedure was desired which would 

eliminate the bounded regions.
The solution selected involved the computation of only two 

distances for each observation no matter how many treatment groups were 
present. The distances associated with each observation are the dis
tance to the sample mean vector of the treatment group which the
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observation is in and the distance to the sample mean vector for all 

observations not in the same treatment group. The two distances to be

associated with are given by:

»iij = (%ij - s'hxy - ifj) - P - ïfir

and

Dzij = «iJ - f - " k ^

A ”"
m?̂ i

where is the sample mean vector for all observations not in the i^^

treatment group. Next, a function (j) is defined on the observation vec

tors such that

= 1 when ^ 0

= 0 when < 0.

Also T is defined to be the sum of the ^(X^j) over all observations,

X • 6 • )
k n^

T =  E E *(X .). 
i=l j=l

Then T can be used to test the null hypothesis of equal mean vectors 

once its distribution is known. _ Since T is identical to the previous 
test statistic studied when there are two treatment groups, its empiri

cal frequency distribution had already been obtained. An empirical 
distribution of T for one dimensional observations and four treatment 
groups was generated and the test procedure was studied. The results 
indicated that the true a level was less than five percent; this was 
more noticeable when there were four groups. It appeared that the
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distribution for T was different in one dimension than in the higher

dimensions, so a standardization was determined.

If d y  is taken to be the difference in the two distances for

an observation, i.e., d,. = D^,, - D?.,, then the expected value of d, ,IJ ij
should be zero under the null hypothesis and positive under the alter

nate hypothesis. At least the expected value of d^^ should increase 

with an increase in the separation of the two population mean vectors, 

even if there is a bias such that the expected value under the null 

hypothesis is not zero. The standard univariate test for this situation 

is Student's t; however, it cannot be assumed that the d^^ are normally 

or independently distributed. Also there is no assurance that the ex

pected value of the mean difference is zero under the null hypothesis.

A statistic U can be computed from the d^^ as Student's t and the dis

tribution of U can be determined empirically. If

k n^ 
r z d

d . -k
Z n. '•

i=l ^

and

k n^ _ k k 1/2
Z Z (d.. - d)2 / [( E n - 1)( E n.)] j , then

i=l j=l i=l i=l

d

Four empirical frequency distributions of U were obtained where 

the null hypothesis of no difference in population mean vectors was 
known to hold. This was done by repeated sampling of known populations
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using the techniques given in CHAPTER II and computing the U value for 

each sample. Each frequency distribution was obtained where the obser
vation vectors were univariate and normally distributed. There were two 

thousand values of U computed for each frequency distribution.

The four empirical frequency distributions were for two treat

ment groups with fifteen observations per group, two treatment groups 

with thirty observations per group, four treatment groups with fifteen 

observations per group, and four treatment groups with thirty observa
tions per group. These frequency distributions are given as Tables 1,
2, 3, and 4 respectively.

A one-tailed rejection region for the test is used because a 
negative d implies that an observation tends to lie closer to the sample 
mean vector for the other treatment groups than to the sample mean vec
tor for its own treatment group and this cannot be attributed to dif
ferences in population mean vectors. However, a large positive d can 
be attributed to differences in population mean vectors.

In order to ascertain a five percent rejection region the criti

cal value was determined such that five percent, or 100, of the observed 
U ’s were greater than the critical value. The critical value was never 
on the boundary of an interval so linear interpolation was used. This 
resulted in respective critical values of 1.48, 1.55, 1.22, and 1.18 
for the four distributions. The use of U as a statistic was extensively 

investigated so a summary of the test procedure is given and the results 
of the investigation are presented in CHAPTER V.

The following notation is used; is the j^^ observation

vector in the i*"" group, is the mean vector for the i^^ group
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TABLE 1
EMPIRICAL FREQUENCY DISTRIBUTION OF U FOR TWO TREATMENT

GROUPS WITH FIFTEEN OBSERVATIONS PER GROUP

Interval Frequency Interval Frequency
-6.00 -5.87 1 -1.23 -1.10 43
-5.87 -5.75 0 -1.10 -0.98 42
-5.75 -5.62 0 -0.98 -0.85 59
-5.62 -5.50 0 -0.85 -0.73 55
-5.50 -5.37 2 -0.73 -0.60 57
-5.37 -5.25 3 -0.60 —0.48 48
-5.25 -5.12 1 -0.48 -0.35 60
-5.12 -5.00 5 -0.35 -0.22 64
-5.00 -4.87 4 -0.22 -0.10 60
-4.87 -4.74 5 -0.10 0.02 53
-4.74 -4.62 4 0.02 0.14 66
-4.62 -4.49 4 0.14 0.27 60
-4.49 -4.37 13 0.27 0.39 58
-4.37 -4.24 21 0.39 0.52 54
-4.24 -4.12 21 0.52 0.64 46
-4.12 -3.99 15 0.64 0.77 55
-3.99 -3.87 30 0.77 0.90 46
-3.87 -3.74 24 0.90 1.02 42
-3.74 -3.61 19 1.02 1.15 42
-3.61 -3.49 29 1.15 1.27 38
-3.49 -3.36 30 1.27 1.40 20
-3.36 -3.24 22 1.40 1.52 27
-3.24 -3.11 19 1.52 1.65 18
-3.11 -2.99 34 1.65 1.77 12
-2.99 -2.86 28 1.77 1.90 15
-2.86 -2.74 25 1.90 2.03 9
-2.74 -2.61 23 2.03 2.15 6
-2.61 -2.48 27 2.15 2.28 3
-2.48 -2.36 36 2.28 2.40 12
-2.36 -2.23 31 2.40 2.53 3
-2.23 -2.11 41 2.53 2.65 4
-2.11 -1.98 34 2.65 2.78 4
-1.98 -1.86 41 2.78 2.90 7
-1.86 -1.73 46 2.90 3.03 2
-1.73 -1.61 43 3.03 3.16 2
-1.61 -1.48 29 3.16 3.28 1
-1.48 -1.35 50 3.28 3.41 0
-1.35 -1.23 46 3.41 3.53 1

Critical value is 1.48
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TABLE 2

EMPIRICAL FREQUENCY DISTRIBUTION OF U FOR TWO TREATMENT
GROUPS WITH THIRTY OBSERVATIONS PER GROUP

Interval Frequency Interval Frequency

-7.24 -7.10 2 -1.94 -1.80 35
-7.10 -6.96 1 -1.80 -1.66 37
-6.96 -6.82 0 -1.66 -1.52 37
-6.82 -6.68 5 -1.52 -1.38 39
-6.68 -6.54 2 -1.38 -1.24 38
-6.54 -6.40 3 -1.24 -1.10 60
-6.40 —6.26 3 -1.10 -0.97 55
-6.26 -6.12 5 -0.97 -0.83 48
-6.12 -5.98 9 -0.83 -0.69 64
-5.98 -5.84 7 -0.69 -0.55 51
-5.84 -5.70 9 -0.55 -0.41 51
-5.70 -5.56 15 -0.41 -0.27 68
-5.56 -5.42 14 -0.27 -0.13 69
-5.42 -5.29 12 -0.13 0.00 80
-5.29 -5.15 14 0.00 0.14 80
-5.15 -5.01 24 0.14 0.28 55
-5.01 -4.87 15 0.28 0.42 67
-4.87 -4.73 15 0.42 0.56 65
-4.73 -4.59 13 0.56 0.70 50
-4,59 -4.45 21 0.70 0.84 65
-4.45 -4.31 10 0.84 0.98 46
-4.31 -4.17 9 0.98 1.12 43
-4.17 -4.03 13 1.12 1.25 34
-4.03 -3.89 19 1.25 1.39 29
-3.89 -3.75 23 1.39 1.53 27
-3.75 -3.61 20 1.53 1.67 25
-3.61 -3.47 29 1.67 1.81 28
-3.47 -3.33 26 1.81 1.95 19
-3.33 -3.19 17 1.95 2.09 9
-3.19 -3.06 23 2.09 2.23 7
-3.06 -2.92 29 2.23 2.37 4
-2.92 -2.78 23 2.37 2.51 4
-2.78 -2.64 31 2.51 2.65 3
-2.64 -2.50 32 2.65 2.79 1
-2.50 -2.36 30 2.79 2.93 1
-2.36 -2.22 22 2.93 3.07 0
-2.22 -2.08 25 3.07 3.21 1
-2.08 -1.94 34 3.21 3.35 1

Critical value is 1.55
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TABLE 3

EMPIRICAL FREQUENCY DISTRIBUTION OF U FOR FOUR TREATMENT
GROUPS WITH FIFTEEN OBSERVATIONS PER GROUP

Interval Frequency Interval Frequency

-4.05 -3.97 2 -0.98 -0.90 55
-3.97 -3.89 1 -0.90 -0.82 60
-3.89 -3.81 0 —0.82 -0.74 43
-3.81 -3.73 2 -0.74 -0.66 55
-3.73 -3.65 2 -0.66 -0.58 37
-3.65 -3.57 2 -0.58 -0.50 60
-3.57 -3.49 0 -0.50 -0.42 59
-3.49 -3.41 5 -0.42 -0.34 64
-3.41 -3.33 2 -0.34 -0.26 62
-3.33 -3.24 3 -0.26 -0.18 64
-3.24 -3.16 4 -0.18 -0.10 55
-3.16 -3.08 3 -0.10 -0.01 57
-3.08 -3.00 7 -0.01 0.06 67
-3.00 -2.92 1 0.06 0.14 64
-2.92 -2.84 5 0.14 0.22 63
-2.84 -2.76 5 0.22 0.30 63
-2.76 -2.68 7 0.30 0.38 53
-2.68 -2.60 10 0.38 0.46 59
-2.60 -2.52 5 0.46 0.54 39
-2.52 -2.44 12 0.54 0.62 55
-2.44 -2.36 9 0.62 0.70 51
-2.36 -2.28 10 0.70 0.78 52
-2.28 -2.19 19 0.78 0.86 46
-2.19 -2.11 11 0.86 0.94 38
-2.11 -2.03 16 0.94 1.03 25
-2.03 -1.95 18 1.03 1.11 25
-1.95 -1.87 21 1.11 1.19 24
-1.87 -1.79 19 1.19 1.27 26
-1.79 -1.71 26 1.27 1.35 15
-1.71 -1.63 12 1.35 1.43 19
-1.63 -1.55 24 1.43 1.51 16
-1.55 -1.47 27 1.51 1.59 13
-1.47 -1.39 22 1.59 1.67 4
-1.39 -1.31 30 1.67 1.75 3
-1.31 -1.23 35 1.75 1.83 2
-1.23 -1.149 35 1.83 1.91 6
-1.14 -1.06 41 1.91 1.99 5
-1.06 -0.98 42 1.99 2.08 1

Critical value is 1.22
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TABLE 4

EMPIRICAL FREQUENCY DISTRIBUTION OF U FOR FOUR TREATMENT
GROUPS WITH THIRTY OBSERVATIONS PER GROUP

Interval Frequency Interval Frequency

“6.06 -5.95 1 -1.95 -1.84 18
-5.95 -5.85 0 -1.84 -1.73 26
-5.85 -5.74 0 -1.73 -1.62 24
-5.74 -5.63 0 -1.62 -1.51 32
-5.63 -5.52 0 -1.51 -1.41 38
-5.52 -5.41 0 -1.41 -1.30 39
-5.41 -5.30 0 -1.30 -1.19 56
-5.30 -5.20 0 -1.19 -1.08 49
-5.20 -5.09 0 -1.08 -0.97 52
-5.09 -4.98 0 -0.97 -0.86 68
—4.98 -4.87 0 -0.86 -0.76 49
-4.87 -4.76 0 -0.76 -0.65 77
-4.76 -4.65 0 -0.65 -0.54 61
-4.65 -4.55 1 -0.54 -0.43 68
-4.55 -4.44 1 -0.43 -0.32 76
-4.44 -4.33 3 -0.32 -0.21 90
-4.33 -4.22 1 -0.21 -0.11 64
-4.22 -4.11 1 -0.11 -0.00 77
-4.11 -4.00 3 -0.00 0.10 85
-4.00 -3.90 2 0.10 0.21 89
-3.90 -3.79 3 0.21 0.32 89
-3.79 -3.68 2 0.32 0.42 92
-3.68 -3.57 3 0.42 0.53 74
-3.57 -3.46 7 0.53 0.64 74
-3.46 -3.35 1 0.64 0.75 64
-3.35 -3.25 11 0.75 0.86 59
-3.25 -3.14 13 0.86 0.97 51
-3.14 -3.03 2 0.97 1.07 58
-3.03 -2.92 4 1.07 1.18 39
-2.92 -2.81 9 1.18 1.29 28
-2.81 -2.71 12 1.29 1.40 23
-2.71 -2.60 11 1.40 1.51 19
-2.60 -2.49 9 1.51 1.62 10
-2.49 -2.38 8 1.62 1.72 7
-2.38 -2.27 11 1.72 1.83 6
-2.27 -2.16 13 1.83 1.94 0
-2.16 -2.06 10 1.94 2.05 2
-2.06 -1.95 24 2.05 2.16 1

Critical value is 1.18
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excluding X.., is the mean vector for all observations not in the ij
i^^ group, Sj is the sample total dispersion matrix, p is the number

of dimensions, n. is the number of observations in the i^^ treatment 1
group, and k is the number of treatment groups. First the two dis

tances associated with X^^ are computed for all observations. These 

two distances are computed from:

“L j  -  -  P -  an"

S-hx,. - xi ) - p - - f —  .

m?̂ i
Next the difference, dU^, is computed for each observation where 

-'2 -'2d., = D„.. - Dt . .. Then the mean difference is divided by the sample ij 2i] Ixj
standard error of the difference and the result is the test statistic,
i.e., U = d/s_. U is compared to the critical value given in the d
appropriate table. If U is greater than the critical value the null 

hypothesis of equal mean vectors is rejected at the five percent 

level.



CHAPTER IV 

THE EXPERIMENTAL DESIGN

A sampling study was utilized to test the effectiveness of the 

test procedure presented in CHAPTER III. The sampling study consisted 

of the generation of random vectors from known multivariate populations 

and analysis of the results using both the proposed test and the MVAOV. 

Different combinations of the levels of the important factors were in

vestigated. These important factors are distribution, equality of dis

persion matrices, number of treatment groups, sample size, and separation 

of mean vectors. The present chapter is concerned with the experimental 
design of the sampling study.

Underlying distributions were either normal or non-normal.

Salient characteristics of the non-normal distributions used were given 
in CHAPTER II. Basically, the non-normal distributions are characterized 

by a marked skewness for their continuous variables and having at least 

one discrete variable.
Desiderata for population dispersion matrices were generality 

and applicability to applied situations. Two general cases were investi
gated: equal and not equal dispersion matrices. When the population

dispersion matrices were equal, the common matrix was the p^^ order 

identity matrix. However, the inference is not restricted to the identity 

matrix. This is due to a certain invariance property of the test

37
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procedure which will now be shown. Let X be a continuous p dimensional 

random variable with mean equal to the null vector and dispersion matrix 

equal to the p^^ order identity matrix. Then if we let Y = CX, where 

C is a real p x p lower triangular constant matrix, it is known from 

mathematical statistics that Y also has the null vector for its mean and 

has dispersion matrix CC’. This property can be easily shown using two 
basic properties of univariate random variables :

E(c^ U + Cg V) = c^ E(U) + Cg E(V)
and

VAR(c^ U + Cg V) = c^ VAR(U) + c^ VAR(V) + ^c^Cg COV(U, V).
Here, U and V are univariate random variables, c^ and are scalar con

stants, E is the expected value operator, VAR is the variance operator, 
and COV is the covariance operator.

Thus a distribution with any desired dispersion matrix, E, can 
be obtained from X by determining C such that CC' = E. As given in 

CHAPTER II, C exists and is unique for E positive definite. The results 

for X and Y will be identical. This follows from the fact that

- cx«) =

(Xy - x«)' C  c'-l c-l c(Xy - x«) -(X.. - x«)s-l(Xy - x«).

where and are the sample total dispersion matrices for observa

tions sampled from X and Y respectively. Thus the distance between an 
observation and a mean vector is invariant under changes in the popula

tion dispersion matrix when there is homogeneity of dispersion matrices.

Tables 5 and 6 give the population dispersion matrices and 

correlation matrices that were used when the dispersion matrices were
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TABLE 5

POPULATION DISPERSION AND CORRELATION MATRICES 
FOR THREE DIMENSIONS

%1
1.00 1.00 -3.00 1.00 0.44 -0.60
1.00 5.00 -3.00 0.44 1.00 -0.26

-3.00 -3.00

%2

25.00 -0.60 -0.26

%2

1.00

4.00 2.00 0.00 1.00 0.31 0.00
2.00 10.00 3.00 0.31 1.00 0.42
0.00 3.00

%3

5.00 0.00 0.42

%3

1.00

2.25 0.75 -3.00 1.00 0.31 -0.53
0.75 2.50 0.50 0.31 1.00 0.08

-3.00 0.50

%4

14.00 -0.53 0.08

A
1.00

1.00 2.00 0.00 1.00 0.89 0.00
2.00 5.00 -1.00 0.89 1.00 -0.20
0.00 -1.00 5.00 0.00 -0.20 1.00

NOTE; and Zg are used when there are two treatment groups,



40

TABLE 6

POPULATION DISPERSION AND CORRELATION MATRICES 
FOR NINE DIMENSIONS

4.00 2.00 2.00 0.00 2.00 -2.00 0.00 0.00 -2.00
2.00 2.00 0.00 0.00 1.00 -1.00 1.00 0.00 0.00
2.00 0.00 3.00 1.00 1.00 -1.00 0.00 0.00 -1.00
0.00 0.00 1.00 2.00 -1.00 -1.00 1.00 1.00 0.00
2.00 1.00 1.00 -1.00 3.00 1.00 -1.00 -1.00 -1.00

-2.00 -1.00 -1.00 -1.00 1.00 4.00 -1.00 0.00 2.00
0.00 1.00 0.00 1.00 -1.00 -1.00 4.00 —1 • 00 3.00
0.00 0.00 0.00 1.00 -1.00 0.00 -1.00 4.00 0.00

-2.00 0.00 -1.00 0.00 -1.00

R,

2.00 3.00 0.00 7.00

1.00 0.70 0.57 0.00

1
0.57 -0.50 0.00 0.00 -0.37

0.70 1.00 0.00 0.00 0.40 -0.35 0.35 0.00 0.00
0.57 0.00 1.00 0.40 0.33 -0.28 0.00 0.00 -0.21
0.00 0.00 0.40 1.00 -0.40 -0.35 0.35 0.35 0.00
0.57 0.40 0.33 -0.40 1.00 0.28 -0.28 -0.28 -0.21

-0.50 -0.35 -0.28 -0.35 0.28 1.00 -0.25 0.00 0.37
0.00 0.35 0.00 0.35 -0.28 -0.25 1.00 -0.25 0.56
0.00 0.00 0.00 0.35 -0.28 0.00 -0.25 1.00 0.00

-0.37 0.00 -0.21 0.00 -0.21 0.37 0.56 0.00 1.00

2̂
1.00 1.00 1.00 -1.00 0.00 1.00 -1.00 1.00 -1.00
1.00 2.00 0.00 0.00 0.00 0.00 0.00 1.00 -2.00
1.00 0.00 3.00 -3.00 1.00 2.00 -1.00 1.00 1.00

-1.00 0.00 -3.00 4.00 -1.00 -1.00 1.00 -1.00 0.00
0.00 0.00 1.00 -1.00 2.00 1.00 2.00 0.00 0.00
1.00 0.00 2.00 -1.00 1.00 5.00 -2.00 0.00 -1.00

-1.00 0.00 -1.00 1.00 2.00 -2.00 6.00 1.00 2.00
1.00 1.00 1.00 -1.00 0.00 0.00 1.00 4.00 1.00
-1.00 -2.00 1.00 0.00 0.00 -1.00 2.00 1.00 8.00
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TABLE 6— Continued

^2

1.00 0.70 0.57 -0.50 0.00 0.44 -0.40 0.50 -0.35
0.70 1.00 0.00 0.00 0.00 0.00 0.00 0.35 -0.50
0.57 0.00 1.00 -0.86 0.40 0.51 -0.23 0.28 0.20

-0.50 0.00 -0.86 1.00 -0.35 -0.22 0.20 -0.25 0.00
0.00 0.00 0.40 0.35 1.00 0.31 0.57 0.00 0.00
0.44 0.00 0.51 -0.22 0.31 1.00 -0.36 0.00 -0.15

-0.40 0.00 -0.23 0.20 0.57 -0.36 1.00 0.20 0.28
0.50 0.35 0.28 -0.25 0.00 0.00 0.20 1.00 0.17

-0.35 -0.50 0.20 0.00 0.00 -0.15 0.28 0.17 1.00

^3

1.00 0.00 1.00 1.00 1.00 0.00 -1.00 1.00 -1.00
0.00 1.00 1.00 0.00 1.00 -1.00 0.00 1.00 0.00
1.00 1.00 3.00 1.00 3.00 -1.00 0.00 1.00 -2.00
1.00 0.00 1.00 2.00 0.00 -1.00 -2.00 0.00 0.00
1.00 1.00 3.00 0.00 5.00 0.00 1.00 3.00 -4.00
0.00 -1.00 -1.00 -1.00 0.00 3.00 0.00 0.00 -1.00

-1.00 0.00 0.00 -2.00 1.00 0.00 5.00 0.00 -2.00
1.00 1.00 1.00 0.00 3.00 0.00 0.00 7.00 -3.00

-1.00 0.00 -2.00 0.00 -4.00 -1.00 -2.00 -3.00 6.00

^3

1.00 0.00 0.57 0.70 0.44 0.00 -0.44 0.37 -0.40
0.00 1.00 0.57 0.00 0.44 -0.57 0.00 0.37 0.00
0.57 0.57 1.00 0.40 0.77 -0.33 0.00 0.21 -0.47
0.70 0.00 0.40 1.00 0.00 -0.40 -0.63 0.00 0.00
0.44 0.44 0.77 0.00 1.00 0.00 0.20 0.50 -0.73
0.00 -0.57 -0.33 -0.40 0.00 1.00 0.00 0.00 -0.23

-0.44 0.00 0.00 -0.63 0.20 0.00 1.00 0.00 -0.36
0.37 0.37 0.21 0.00 0.50 0.00 0.00 1.00 -0.46
-0.40 0.00 -0.47 0.00 -0.73 -0.23 -0.36 -0.46 1.00
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TABLE 6— Continued

^4

1.00 1.00 -1.00 -1.00 0.00 0.00 1.00 0.00 1.00
1.00 2.00 -1.00 0.00 0.00 0.00 2.00 -1.00 1.00

-1.00 -1.00 2.00 0.00 0.00 0.00 -1.00 1.00 0.00
-1.00 0.00 0.00 4.00 0.00 0.00 0.00 -3.00 -3.00
0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00
OjOO 0.00 0.00 0.00 1.00 2.00 1.00 -1.00 0.00
1.00 2.00 -1.00 0.00 1.00 1.00 4.00 -1.00 2.00
0.00 -1.00 1.00 -3.00 0.00 -1.00 -1.00 5.00 2.00
1.00 1.00 0.00 -3.00 1.00 0.00 2.00 2.00 7.00

1.00 0.70 -0.70 -0.50 0.00 0.00 0.50 0.00 0.37
0.70 1.00 -0.50 0.00 0.00 0.00 0.70 -0.31 0.26

-0.70 -0.50 1.00 0.00 0.00 0.00 -0.35 0.31 0.00
-0.50 0.00 0.00 1.00 0.00 0.00 0.00 -0.67 -0.56
0.00 0.00 0.00 0.00 1.00 0.70 0.50 0.00 0.37
0.00 0.00 0.00 0.00 0.70 1.00 0.35 -0.31 0.00
0.50 0.70 -0.35 0.00 0.50 0.35 1.00 -0.22 0.37
0.00 -0.31 0.31 -0.67 0.00 -0.31 -0.22 1.00 0.33
0.37 0.26 0.00 -0.56 0.37 0.00 0.37 0.33 1.00

NOTE: 2^ and Zg are used when there are two treatment groups
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not equal. The two tables give the four dispersion and four correlation 

matrices for three dimensions and nine dimensions, respectively. In 

both cases and Zg were the population dispersion matrices when there 
were two treatment groups and heterogeneity of dispersion matrices.

Of course, all four dispersion matrices were required when there were 

four treatment groups. These dispersion matrices were selected so that 
there would be unequal variances, both among variables within treatment 

group and among treatment groups for a given variable. Also, the cor
relations range from strong negative correlation to strong positive 

correlation.
The numbers of treatment groups investigated were two and four, 

and the sample sizes investigated were fifteen and thirty per treatment 

group.
Mean vectors were either equal or not equal. When population 

mean vectors were not equal an attempt was made to separate the mean 
vectors in such a manner that the power for the MVAOV was 75 to 95 

percent. This attempt was made because a power of 75 to 95 percent 
is reasonable for an applied situation, and a comparison of the pro
posed test and the MVAOV is most meaningful in this range.

All combinations of the given levels of important factors were 

investigated except for combinations where the distribution is non-normal 
and dispersion matrices are equal. For each combination, a series of 

75 experiments was conducted. CHAPTER V gives the results of the empiri
cal investigation and a discussion of the test procedure.



CHAPTER V

DISCUSSION AND EVALUATION

The results from the empirical investigation for the various 

combinations of the factor levels are given in two by two contingency 
tables with the column headings F Significant (FS) and F Not Significant 
(FNS), and with row headings U Significant (US) and U Not Significant 
(UNS). The number in the FS column and US row is the number of experi

ments for which the test statistic for both the proposed test and the 
MVAOV was significant at the five percent level. The number in the FS 
column and UNS row is the number of experiments where the test statistic 

for the MVAOV was significant but the proposed test statistic was not 
significant. The number of experiments where the proposed test statis
tic was significant but the F was not is given in the FNS column and 

US row. The number in the FNS column and UNS row is the number of ex
periments where neither test statistic was significant at the five per

cent level.
The sum of the two numbers in the first row is the number of 

experiments where the proposed U statistic was significant. Since there 
were 75 experiments in each series, this sum divided by 75 is an esti
mate of the a level for the proposed test when the mean vectors are 
equal and an estimate of the power for the proposed test when the mean 
vectors are not equal. The experiments within a series are statistically
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independent and the binomial test can be used to test whether the true a 

exceeds the stated five percent level, where the event associated with 

the binomial is the significance or non-significance of the test statis

tic. If the true a level for the proposed test is the stated five per

cent, U can be expected to be significant 3.75 times. When U is signi
ficant eight or more times, a true a level of five percent is not 
accepted since this would occur by chance only three percent of the time 

if a were truly five percent. If U is significant seven times or less, 
a true a of five percent or less is not inconsistent with the data.

The sum of the numbers in the first column is the number of ex

periments where the F was significant at the five percent level. This 

sum divided by 75 is an estimate of the a level for the MVAOV when the
mean vectors are equal and an estimate of the power when the mean vec
tors are not equal. A test of the true a level for the MVAOV can be

performed in the same manner as for the U statistic.

It is also possible to test whether the proposed test and the 
MVAOV are equivalent by using the binomial test. This is done by com
paring the lower left-hand number (FS-UNS) to the upper right-hand num
ber (FNS-US) since these are the values where the two test procedures 

give different results. If the two test procedures are equivalent, the 
FNS-US value should be approximately equal to the FS-UNS value, since 

only chance should cause any difference in the values.
Table 7 gives the results for two treatment groups with multi

variate normal distributions. The headings indicate the number of dimen

sions, the equality or non-equality of population mean vectors and dis
persion matrices, and the sample sizes.
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TABLE 7
RESULTS FOR TWO TREATMENT GROUPS WITH MULTIVARIATE

NORMAL DISTRIBUTIONS

Three Dimensions,
15 Observations/Group 30 Observations/Group

FS FNS FS ras
US 5 1 US 4 3
UNS 0 69 UNS 0 68

b
Three Dimensions, E^ f Eg, = Pg

15 Observations/Group 30 Observations/Group
FS FNS FS FNS

US 1 3 US 4 3
UNS 0 71 UNS 0 68

Three Dimensions, E^ = Eg, 5̂ Pg
15 Observations/Group 30 Observations/Group

FS FNS FS FNS
U8 62 7 UB 59 5
UNS 0 6 UNS 0 11

d
Three Dimensions, E^ f Eg, p^ Pg

15 Observations/Group 30 Observations/Group
FS FNS
65 1
0 9

FS FNS
US 60 3 US
UNS 0 12 UNS

US - U Significant 
UNS - U Not Significant 
FS - F Significant 
FNS - F Not Significant
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TABLE 7— Continued

Nine Dimensions, = Eg» = 1̂2
15 Observations/Group 30 Observations/Group

FS FNS FS FNS
US 3 3 US 3 5
UNS 0 69 UNS 0 67

f
Nine Dimensions, ^ Eg* “ ^2

15 Observations/Group 30 Observations/Group
FS FNS FS FNS

US 5 4 US 2 3
UNS 0 66 UNS 0 70

g
Nine Dimensions, Z^ = Eg, ^ 2̂

15 Observations/Group 30 Observations/Group
FS FNS FS FNS

US 68 3 US 63 6
UNS 0 4 UNS 0 6

Nine Dimensions, Z^ f Eg, P-j_ Pg
15 Observations/Group 30 Observations/Group

FS FNS FS FNS
US 70 3 U^ 67 3
UNS 0 2 UNS 0 5

US - U Significant 
UNS - U Not Significant 
FS - F Significant 
FNS - F Not Significant
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The numbers in Table 7a for 15 observations per group are 5, 1, 
0 and 69. Thus U was significant six times and the estimate of the true 

a is 6/75 = .08. This error rate is not significantly larger than five 

percent. The F was significant five times for an error rate of .07.
The MVAOV and the proposed test gave the same results for 74 of the 75 

experiments. Thus for this series there is little difference in the re

sults for the two test procedures.
The proposed test statistic was significant seven times in 

Table 7a for 30 observations per group. The error rate is not signifi
cantly higher than five percent, but the fact that U was significant 13 

times in the 150 experiments given in Table 7a indicates that perhaps 
the true a level for the proposed test does exceed five percent when 
there are three dimensions, homogeneity of dispersion matrices, and 

multivariate normal distributions.

The observed Type I error rate for the proposed test signifi
cantly exceeds the stated five percent rate for Table 7e with 30 obser

vations per group and Table 7f with 15 observations per group ( p = .03 
and p = .01). Although only the two values significantly exceed the 
five percent rate in Table 7, the consistency with which the number of 

observed significant U's is near eight when the null hypothesis is true 
indicates a possibility that the true a level does in fact exceed the 
stated a. Also, U was significant more often than F for every series of 
experiments in Table 7. There is no important difference between the 
results where and the results where Z^ f Z^. Based on the data
in Table 7, the proposed test cannot be recommended when there are two 
treatment groups and multivariate normal distributions because of the
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likelihood of an excessive Type I error rate.

There is no lack of robustness indicated for the MVAOV in 
Table 7. The true a level for the MVAOV seems to be about five percent 

even when the dispersion matrices are heterogeneous. This is supported 

by the fact that the overall observed Type I error rate is .04 for all 
series in Table 7 where the mean vectors are equal and the dispersion 

matrices are heterogeneous.

The results given in Table 8 are not so consistent as the re
sults given in Table 7. The rejection rate for the proposed test is at 
times greater than that of the MVAOV and at other times smaller. The 

F statistic was significant six more times than the U in Table 8f with 
15 observations per group. This could be taken as an indication that 

the proposed test has a smaller error rate than the MVAOV when there 
are four treatment groups and heterogeneity of dispersion matrices. 
However, the six and the zero are not significantly different, and the 

difference in the two test statistics is not so great for the same situ
ation when there are 30 observations per group.

The error rate is significantly greater than five percent for 
both the proposed test and the MVAOV in Table 8b with 30 observations 
per group where both statistics were significant eight times. Inspec

tion of the four series of experiments where the = ŷ  and  ̂

reveals that in three of the four cases the F was significant six or 
more times. This lends some support to the hypothesis that the MVAOV 

is not so robust for four treatment groups as it is for two when dis
persion matrices are heterogeneous. However, the quantity of the data 
is not sufficient to warrant a strong statement on this point.
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TABLE 8
RESULTS FOR FOUR TREATMENT GROUPS WITH MULTIVARIATE

NORMAL DISTRIBUTIONS

Three Dimensions,
15 Observations/Group

"i ■ "i
30 Observations/Group

FS FNS FS FNS
US 3 0 US 2 1
UNS 0 72 UNS 0 72

Three Dimensions, f
15 Observations/Group 

FS FNS
US 3 0
UÎ S 0 72

"j' "i ' “j
30 Observations/Group 

FS F ^
US 8 0
UNS 0 67

Three Dimensions, E. = E., p. f y.
15 Observations/Group 30 Observations/Group

FS FNS FS FNS
US 63 3 US 44 11
UNS 0 9 UNS 0 20

Three Dimensions, E^ ^ E^, y^ f ŷ
15 Observations/Group 30 Observations/Group

FS FNS FS FNS
US 70 2 US 43 0
UNS 0 3 UNS 7 25

US - U Significant 
UNS - U Not Significant 
FS - F Significant 
FNS - F Not Significant
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TABLE Sr-Continued

Nine Dimensions,
15 Observations/Group
US
UNS

FS
2
2

FNS
0
71

30 Observations/Group
US
UNS

FS
1
0

FNS
1

73

15 Observations/Group
Nine Dimensions, ^ E^;

US
UNS

FS
5
6

FNS
0
64

y. = Wj
30 Observations/Group
US
UNS

FS
5
1

FNS
0
69

Nine Dimensions, E^
15 Observations/Group 

FS FNS
US 41 5
UNS 0 29

Zj, ŷ  f yj
30 Observations/Group
US
UNS

FS
47
0

FNS
6

22

Nine Dimensions, E. fE.,y. fy.3 ^ 3
15 Observations/Group 30 Observations/Group

FS FNS FS FNS
US 49 3 US 37 4
UNS 2 21 UNS 0 34

US - U Significant 
UNS - U Not Significant 
FS - F Significant 
FNS - F Not Significant
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The proposed test was significantly more powerful than the 

MVAOV for Table 8c with 30 observations per group (p < .001). There is 
some indication that the MVAOV is more powerful for Table 8d with 30 ob

servations per group and that the proposed test is more powerful for 

Table 8g with 30 observations per group.

If one of the two test procedures were to be selected for all 

situations where there are four treatment groups based only on the in

formation in Table 8, it would be the proposed test since a lower a 
level is strongly indicated once and a lower g level is strongly indi
cated twice whereas a lower a level for the MVAOV is never strongly in
dicated and a lower g level for the MVAOV is strongly indicated once. 

This implies neither a significant nor a meaningful difference, between 
the two test procedures, but only that the data lend slightly more sup
port to the use of the proposed test than the MVAOV when there are four 

treatment groups and multivariate normal distributions.

The error rates for the proposed test are significantly larger 
than the stated five percent for both series of experiments in Table 9c 
(p = .03 and p = .01). The proposed test is significantly more powerful 

than the MVAOV for Table 9d with 15 observations per group ( ’ < .001). 
The only series that even indicates a lack of robustness for the MVAOV 

is Table 9c with 30 observations per group where the F was significant 
six times. The interpretation of the results for two treatment groups 

with non-normal distributions is similar to that for the normal distri
butions: the possibility of an excessive Type I error rate for the pro
posed test and robustness of the MVAOV.

The data presented in Table 10 do not show any great difference
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TABLE 9

RESULTS FOR TWO TREATMENT GROUPS WITH MULTIVARIATE
NON-NORMAL DISTRIBUTIONS

a
Three Dimensions, ^ ^2' = ^2

15 Observations/Group 30 Observations/Group
FS FNS FS FNS

US 0 1 US 4 1
UNS 0 74 UNS 0 70

b
Three Dimensions, Z^ f ^2’ f ^2

15 Observations/Group 30 Observations/Group
FS FNS FS FNS

US 61 5 US 69 0
UNS 0 9 UNS 0 6

c
Nine Dimensions, Z^ f ^2, ^1 = »̂2

15 Observations/Group 30 Observations/Group
FS FNS FS FNS

US 3 5 US 6 3
UNS 0 67 UNS 0 66

d
Nine Dimensions, Ẑ  f ^2'

15 Observations/Group 30 Observations/Group
FS FNS FS FNS

US 52 12 US 62 4
UNS 0 11 UNS 0 9

US - U Significant 
UNS - U Not Significant 
FS - F Significant 
FNS - F Not Significant
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TABLE 10

RESULTS FOR FOUR TREATMENT GROUPS WITH MULTIVARIATE
NON-NORMAL DISTRIBUTIONS

15 Observations/Group 
FS FNS

US 7 0
UNS 4 64

Three Dimensions, ^
30 Observations/Group 

FS F ^
6 0

UNS 0 69

Three Dimensions, ^ Z^, y^ f ŷ
15 Observations/Group 30 Observations/Group

FS FNS FS FNS
US 58 4 US 55 3
UNS 1 12 UNS 0 17

Nine Dimensions, IL ^ Z^, y^ = ŷ
15 Observations/Group 30 Observations/Group

FS FNS FS FNS
UB 5 0 US 3 1
UNS 1 69 UNS 0 71

15 Observations/Group 
FS FNS

US 64 2
UNS 0 9

Nine Dimensions, Z Z ., y .1 J ^ * “j
30 Observations/Group 

FS FNS
US 66 5
UNS 0 4

US - U Significant 
UNS - U Not Significant 
FS - F Significant 
FNS - F Not Significant
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between the two test procedures. There is a slight tendency for the pro

posed test to have smaller Type I and Type II error rates. This slight 
tendency is due to the results in Table 10a with 15 observations per 

group and Table lOd with 30 observations per group.

The Type I error rate for the MVAOV was significantly larger 

than five percent for Table 10a with 15 observations per group (p < .001). 
Although the results were not significant there is an indication that 
the MVAOV has a true error rate greater than five percent for Table 10a 

with 30 observations per group and for Table 10c with 15 observations per 

group. Thus it appears that the MVAOV may not be so robust for four 
treatment groups as it is for two when the distributions are non-normal 
and there is heterogeneity of dispersion matrices.

Some support of the validity of the data is provided by the 
fact that for the 600 experiments where the null hypothesis was true and 
the assumptions for the MVAOV were met, the F was significant 23 times.
The 23 is not significantly different from 30 which is the number ex
pected if the true a is five percent. Since it is known that the true 
a for the MVAOV is five percent when the assumptions are met, it can be 

assumed that the populations specified are quite similar to the popula
tions actually sampled.

The general impressions gained from the empirical study are 
that the proposed method should not be used when there are two treat
ment groups, the proposed method may be safely used when there are four 
treatment groups, and the MVAOV may not be so robust for four treatment 
groups as for two.

The prohibition against the use of the proposed test when there
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are two treatment groups is due to the possibility of an excessive Type 
I error rate for both normal and non-normal distributions. When there 
are four treatment groups the a and 3 levels of the proposed test appear 

no greater than the levels of the MVAOV when the assumptions for the 
MVAOV are met, and the observed Type I and Type II error rates are 
usually slightly lower for the proposed test than for the MVAOV when 

the assumptions for the MVAOV are not met.

The lack of robustness of the MVAOV for four treatment groups 
is indicated by the fact that when the null hypothesis is true and the 
assumptions for the MVAOV are not met, the MVAOV rejection rate is often 

large enough to be near the five percent critical value.
The proposed test procedure appears to be satisfactory for four 

treatment groups, but further investigation of the test statistic is re
quired before the method can be considered practical. Perhaps a de
tailed investigation of the distance measure utilized would reveal modi
fications which would result in a test procedure satisfactory for two 
treatment groups. A determination of the effect of unequal sample sizes 
would be beneficial for use in applied situations. Also of use would 
be methods which are satisfactory for partitioning the U when signifi

cant differences are found, in order to ascertain which treatment 

groups are responsible for the differences. Perhaps procedures could 
be found which would be used to determine those variables of importance 
in detecting differences in mean vectors.



CHAPTER VI

SUMMARY

This dissertation is concerned with the development and evalua

tion of a multivariate test of location for multiple samples. Various 

measures of the distances between an observation and the sample mean 

vectors, which are used to assign observations to subsets, and procedures 

for testing the resultant subsets are investigated using Monte Carlo 
techniques. Difficulties in the use of the subsets are encountered and 

a continuous statistic, U, is selected for investigation.

U is obtained by first associating two distances with each 

observation. The first distance is between the observation and the 

sample mean vector for that observation's treatment group, and the 
second distance is between the observation and the sample mean vector 

for all observations not in the same treatment group as the observation. 
Then a difference is associated with each observation, this difference 

being the difference of the two distances. U is the mean difference 

divided by the standard error of the mean difference.

The distribution of U under the null hypothesis of equal mean 

vectors is determined empirically, and the test procedure is evaluated 

with respect to Type I and Type II errors for different combinations of 
distributions, numbers of treatment groups, sample sizes, numbers of 

dimensions, and separations of population mean vectors for both
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homogeneous and heterogeneous dispersion matrices. This evaluation is 

based upon an empirical study, and the Multivariate Analysis of Variance 

(MVAOV) is used as a control test procedure.

The results from the empirical investigation indicate that the 

true a level for the proposed test exceeds the stated a level when there 

are two treatment groups, both for multivariate normal and multivariate 

non-normal distributions. For this reason the proposed test is not re

commended when there are two treatment groups.

Although the results are not conclusive, the data lend some 

support to the use of the proposed test rather than the MVAOV when there 

are four treatment groups. The a and 6 levels for the proposed test 

appear to be no higher than those for the MVAOV when the assumptions for 
the MVAOV are met. The observed Type I and Type II error rates for the 

proposed test are usually slightly lower than those of the MVAOV when 
the assumptions of normality and homogeneity of dispersion matrices do 

not hold.
No strong statement is warranted by the data, but there is some 

indication that the MVAOV is not so robust for four treatment groups as 

for two.
Although the proposed test appears to be satisfactory when there 

are four treatment groups, the evidence for preferring the proposed test 

to the MVAOV is very slight and further investigation is required before 

the test can be considered practical. More information on the properties 
of the distance measure utilized could reveal modifications which would 

result in a test suitable for two treatment groups and superior to the 
MVAOV when its assumptions are not met. Mathematical investigation of
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the distance measure is hampered by the complexity of the quadratic 

form involved, and it may be necessary to rely on empirical techniques. 

In spite of the complexity of the distance measure, the results of the 

present work seem to warrant continued research on the measure.
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APPENDIXES



APPENDIX 1

RANDU

RANDU is an IBM supplied subroutine and is contained in the

1130 Scientific Subroutine Package (1967). This subroutine generates

random numbers from the uniform distribution on the interval (0, 1),
i.e., from U(0, 1). RANDU is machine specific and is applicable to the

IBM 1800 and the IBM 1130. Random numbers from U(0, 1) are obtained by

generating odd random integers on the interval (0, 32768) and dividing
by 32768. Only the generation of the odd integers will be considered.

This random number generator produces a series of random numbers
from the recurrence relation

X = 899 • X (mod 2^^) n+l n
where X^ is the i*"̂  random number in the series and X^ is an odd integer 
on the interval (1, 32767) which is supplied by the user. Jansson (1966) 

refers to this type of random number generator as a multiplicative gener

ator and gives its properties.
13The maximum period of this generator is 2 or 8192, i.e., after 

8192 random numbers the numbers begin repeating themselves. Furthermore,
the generator produces numbers of the type 8 v + 1 and 8 v + 3 (v =

120, 1, ..., 2 -1) when X h 1, 3, 9, or 11 (mod 16) and numbers of the
12type 8 V + 5 and 8 v + 7 (v = 0, 1, ..., 2 -1) when X^ = 5, 7, 13, or

15 (mod 16).
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In effect, there are only two sequences each containing 8192 

numbers, with a fixed order. An determines only one of the two 
sequences and the starting point in the sequence.



APPENDIX 2 

COMPUTER TIME REQUIREMENTS

The following information is presented so that one interested 

in conducting an empirical investigation similar to the present study 

may have an approximation as to the computer time required. The times 

given are those that were required using FORTRAN IV programs and an IBM 

1800 with a four micro-second access time. All work was done in extended 

precision. There were three principal divisions for the computations 
performed: generation of the multivariate vectors, analysis using the 

MVAOV, and analysis using the proposed test.
The transformed univariate random numbers were generated and 

placed on a magnetic disk prior to the investigation so this time is not 

reflected in the times given. The generation of vectors consists of 
reading the univariate random number from magnetic disk and multiplying 
each vector thus obtained by the appropriate C matrix and adding the 

appropriate y vector to the result. The generation of the multivariate 
vectors appeared to require a small portion of the total time required, 

perhaps five percent.

The primary time requirements for the MVAOV analysis were for 
computation of sample mean vectors, dispersion matrices, and determinants 

of pooled and total dispersion matrices. The MVAOV analysis appeared to 
require about ten percent of the total time.
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Mean vectors and inverted matrices utilized by the proposed 

test had been computed during the execution of the MVAOV; still about 
85 percent of the total time was for the proposed test.

The times required for one experiment when there were three 

dimensions and two treatment groups were .007 hours and .009 hours for 

sample sizes of fifteen and thirty per group. For nine dimensions these 

times were .032 hours and .056 hours. When there were four treatment 

groups, .012 hours and .019 hours were required for three dimensions, 

and .060 hours and .107 hours for nine dimensions.
So that the reader is not misled by the smallness of the num

bers, it is pointed out that 8.04 hours of computer time were required 

for one series of seventy-five experiments when there were nine dimen
sions, four treatment groups, and thirty observations per group.


