
SUPERADDITIVE n-HOMOGENEOUS FUNCTIONS 

AND n-CONVEX SETS 

By 

MELVYN WILLIAM JETER1 
/I 

Bachelor of Science 
Midwestern University 
Wichita Falls, Texas 

1964 

Master of Science 
North Texas State University 

Denton, Te:x;as 
1966 

Submitted to the.Faculty of the Graduate College 
of the Oklahoma Stat.e :U.tlive~sity 

in partial fulfillment of the r~tu.irements 
for the Degree of 

DOCTOR OF PHILOSOPHY 
Ju:J,y, 1971 



SUPER.ADDITIVE n-HOMOGENEOUS Fl}NCTIONS 

-!\ND n-CONVEX SETS 

Thesis Approved: 

Thesis Adviser 

J~U P~ . 

803916 

/l ,, 
./' 

y" 

.;i 

// 



PREFACE 

'!'his paper conta~ns a study of n-convex sets and the nonnegative, 

continuous, superadditive, n-homogeneous, real valued functions defined 

2 on the nonnegative orthant of euclidean n -space. One such function is 

the well-known, permanent function. An interesting feature of such a 

function is that each above set, that is, the set of points for which 

the function is greater than or equal to a nonnegative constant, has 

the property that if x and y belongs to the above set then ax + Sy 

1 b 1 t th b ~ h 0 8 > 0 and Nn + an -- 1. a so e ongs o e a ove se~, w ere· a,!_ , ~ µ 

Sets with this property are called n-convex. Moreover, the collection 

of all such functions, Pn' forms a convex cone, whose is the zero 

function, in the real linear space of real functions defined on the 

positive orthant of euclidean n2-space. 

Following the introductory chapter, Chapter II contains a study of 

n-convex sets and some examples of the 2-convex hull of pa~rs of points 

in the plane. A characterization of the n-convex hull of a set, similar 

to that of Caratheodory for the convex hull, is given. Also character-

ized is then-convex hull of a convex set. 

In the fo.:\.lowing chapter the functions of P , whose above sets 
n 

are the n-conv~x hulls of finite subsets of the above sets, are studied. 

Chapter V cont~ins a study of the extremal elements of this convex cone 

of functions. In particular, the functions n p (x) = sup{A : x > Aa}, 
a -

where a is a nonzero point of euclidean n2-space, are shown to be 

extremal elements of P. 
n 



A study of the infimum of a function of P over an n-convex sub
n 

set of the nonnegative orthant of euclidean n2-space is found in 

Chapter V. The last chapter is a summary and includes several questions 

that are open for further study. 

To avoid confusion, the collection of all elements that belong to 

set A but not set B ~ill be denoted by A\B. 

I would like to express my appreciation to all those who assisted 

me in the completion of this degree. Special thanks go to Professor E. 

K. McLachlan for his thoµghtful guidance and encouragement throughout 

my graduate studies at O~lahoma State University and to Professors John 

Jewett, Forrest Whitfield and Harold Fristoe for serving on my advisory 

committee. 

Also, I would like to thank Mrs. Cynthia Wise for her excellent 

typing of this thesis. 

Finally, I want to express my sincere appreciation to my parents, 

my wife Jerrie and our children Stephanie, Jeffery and Gerald all of 

whom made this work worthwhile. Thanks also go to my wife's parents . 
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CHAPTER I. 

INTRODUCTION 

The Permanent Function 

Let M denote the class 9f all n x n matrices with real 
n 

entries. Then, with addition and scalar multiplication defined in the 

usual way, Mn is a real vector space isomorphic to En2 , where 

denotes euclidean 2 n -space. In particular, consider the n-square 

matrices with nonnegative entries. The permanent of an n-square matrix 

A = (a .. )~ written per(A), is defined as 
1J 

where the summation 

numbers 1, ... , n 

ti on a • 

For example, if 

is 

n 

per (A) = L /i aicr (i) ' 
a 1 

extends over all n! permutations 

and a (i) denotes the i-th number 

n = 2 the permanent of 

a of the 

in the permuta-



When n = 3, the permanent of 

A= 

is 

An n x n matrix A = (aij) with elements in the real field is 

said to be doubly stochastic if and only if a .. > 0 
l.] 

for all i and 

j and each of the row sums and each of .the co.lumn sums are 1. An 

example is 

1 1 
n n 

J = 
n 

1 1 
n n 

2 

Let K denote the set of all n x n doubly stochastic matrices. 
n 

Then is. a compact convex subset of + where K En2' n 

positive orthant of En2 space [ 6 ] . The 

ture was made by B.L. Van der Waerden (10] 

n-square doubly stochastic matrix, then 

with equality if and only if 

n! 
> per(A) 
- n 

n 

A = J . 
n 

following 

in 1926: 

E+ 
n2 

is the 

unsolved conj ec-

If A is an 
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The permanent function is continuous everywhere and 

per(a.A) =an per(A), 

where is real. Furthermore, if A and B 
; 

are n x n real 

matrices with nonnegative entries, then 

per(A + B) > per(A) + per(B). ·- . 

The purpose of this the~is is to study a family of functions with the 

above properties. A more detailed discussion of the permanent function 

may be found. in Marcos and Minx [ 5 ] • 

The Convex Cone of p Functions 
n 

Recall E+ = {x: - ( n2 x - xl' 

where n = 1, 2, Let P be the collection of finite-:valued 
n 

functions such . that for p e: p 
n 

it follows that 

and in addition 

a. p is continuous; 

b. p(ax). = aµ p(x)~. a..::_ 0, 

c. p(x + y) .::_,p(x) + p(y). 

That;:· is, the functions of P are 110nnegative, continuous, 
n 

n-homogeri.eous and superadditive. 
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It follows that the permanent function belongs to P . Also, note 
n 

that since the functions in P are n-homogeneous, they are zero at 
n 

the origin. 

Definition 1.1: A set C in a linear space L is a cone with 

vertex x0 if x e C and A > 0 imply AX + (1 - A)x0 e c. C is 

called a convex cone if it is also convex. 

It can be shown that C is a convex cone in L with vertex the 

origin if and only if 

a. C + C C C 

b. AC Cc, for J,,> o 

(cf [7], p. 14). 

If p,qeP, define (p+q)(x)::::p(x)+q(x). Also, if a..:_O, 
n 

define (ap)(x) = a[p(x)]. With additfon and scalar multiplication 

defined as above, p 
n 

is a convex cone, whose vertex is the zero func-

tion, in the linear space of real functions defined on 

Proposition 1.1: The set P is a convex cone whose vertex is 
n 

the zero function. 

then 

Also, 

Proof: Let p,q e P . Then p + q is continuous and if A..:_ 0, 
n 

(p + q) (Ax) p(Ax) + q(Ax) = An p(x) + An q(x) 

= An(p(x) + q(x)) = An[(p + q)(x)]. 



(p + q)(x + y) = p(x + y) + q(x + y) > p(x) + p(y) + q(x) + q(y) 

= (p(x) + q(x)) + (p(y) + q(y)) 

= (p + q)(x) + (p + q)(y). 

Therefore, p + q £ P . Now let a > O. n Then ap is continuous and 

if A~ O, then 

(ap)(Ax) = a[p(Ax)] = a[Anp(x)] = (aAn)p(x) 

= (Ana)p(x) = An[a•p(x)] = An(ap)(x). 

Also, 

(ap)(x + y) = a[p(x + y)] ~ a[p(x) + p(y)] 

= a[p(x)] + a[p(y)] = (ap)(x) + (ap)(y). 

Hence, ap £ P and n is a convex cone With vertex the zero func-n ~n 

tion. 

Consider the convex cone . C in Figure 1. Notice that if 

xi = y + z, where i = 1, 2 and y,z £ C, then both y and z are 

5 

proportional to ~i' However, if x £ C such that x does not lie on 

either ray extending from 0 through or then there exists 

points y,z £ C, neither of which are proportional to x, but such 

that x = y + z. The vectors haviµg the properties of and 

are given a special name in the following definition. 

Definition 1.2: The extremal elements of a convex cone C in a 

real linear space are those x # 0 such that if x = y + z, then 

there exists a > 0 and S > 0 such that y = ax and z = Sx. 



-- - -

Figure 1. 

Consider the convex cone in Figure 2. The points xi' i = 1,2,3 

are all extremal elements of the convex.cone C. If x is a nonzero 

6 

element of C, then there exists A > 0 such that AX belongs to the 

smallest convex set containing and the convex hull of 

There exists nonnegative real numbers such 

Hence, for every x e: C, :x; of: 0, x can be expressed as a finite sum 

of extremal elements of C. 
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However, this :i.s not true :i.n general. In more complicated situa-

7 

tions analogous results are possible, by using a theorem of Choquet, to 

give an integral representation of any element of the cone in terms of 

the extremal elements of the cone. An excellent reference is Lectures 

_9E. Analysis by Choquet (2 ]. 

Part of Chapter III and all of Chapter IV of this thesis are 

devoted to a study of the extremal elements of P. 
n 

Monotone Concave Gauges 

Let x = (x1 , ... , x 2) 
n 

Then define x ..:_ y (x > y) 

all i. 

and. y = (y1 , ••• , y 2) 
n 

if and only if xi> y. - . ]. 

belong to + 
E 2' 

n 

for 
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1he following family of functions have been studied by 

R. T. Rockafellar [ 8 ] • 

Definition 1.3: A monotone concave gauge on is a continuous 

real-valued function on such that 

a. f(ax) = af(x), a,!_ 0, 

b. f(x + y) .!. f(x) + f(y), 

c. f(x) ,!_ f (y) when x ~ y. 

For brevity me-gauge means monotone convex gauge. 

Definition 1.4: A monotone~ of convex~ is a nonempty 

closed convex set such that x !. y and y e: C implies 

x e: c. 

If C is a monotone set of convex type, Rockefelli;ir defines the 

monot;one support function of C by 

<c ,x) = inf{x•y: y .. e: C}, 

where x•y denotes inner product, and proves the following proposi-

tion, 

Proposition 1. 2: If c is a monotone set of convex type in 

then (c ,x) ii;; a monotone concave gauge. Conversely, each monotone 

concave gauge f on is of the form 

f(x) = (c,x), 

where 



The set C is a monotoJ:le set of convex type. 

The collection of all monotone concave gauges defined on 

' be denoted as P • The following theorem shows that the product of n 
n 

mc~gauges belongs to p. 
n 

' Theorem 1.1: If for all i = 1, ••• , n, Ai E Pn, then the 

function A defined as 

is an element of p . 
n 

n 
r-

A (x) = / I Ai (x) 

1 

Proof: Clearly, A is.continuous. Also, 

n n n 
r- r-

A(ax) = / I Ai (ax) = / I aAi (x) 
1 1 

= C!-n /i Ai (x) 

1 

and 

n n n 
,-- r-- ,...--

A(x + y) = II A.(x+y) > II (Ai(x) + Ai(y)) > II l. 

1 1 1 

A(x) + A(y). 

Hence, A E p, 
n 

n 
=a A(x), 

n 
,--

Ai (x) + I I 
1 

Ai(y) 

9 
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Theorem 1.1 raises the question of whe~her all functions of r 
n 

are the products of n monotone ~oncave guages. However, this is not 

the case for consider the following example: 

Example 1.1: For every x = (x1 , ••• , x4) e E: define p(x) as 

follows, 

It is easy to see that p e p2• Now suppose there exists monotone con

cave functions A1 and A2 such that 

p(x) = A1 (:ii:) A2(x). 

Notice that if x1 > 0 or x2 > 0, then p(x) > O, which implies 

A1 (x) > 0 and A2(x) > O. In this case 

Consider (1,1,0,0) = (l,0,0,0) + (0,1,0,0). Since A1 is superad-

ditive, then 

A1 ((1,1,0,0)) .::_ A1((1,0,0,0)) + A1 ((0,l,O,O)). 

Hence, 

2 > 1 + 1 
Az((l,1,0,0)) - A2((1,0,0,0)) Az((0,1,0,0)) ' 

which implies that 



2A2 ((1,0 ,O ,O) )A2 ((0 ,1,0 ,o)) ~ A2 ((1,1,0 ,0) )A2 ((O ,1,0 ,0)) 

+ A2((1,l,O,O))A2((1,0,0,0)) 

> (A2((1,0,0,0)) 

+ A2((0,l,O,O))]A2((0,l,O,O)) 

+ [A2((1,0,0,0)) 

+ A2 ((O ,1,0 ,0)) ]A2 ((1,0 ,O ,O)) 

= 2A2((1,0,0,0))A2((0,1,0,0)) 

2 2 + A2((0,1,0,0)) + A2((1,0,0,0)) 

> 2Az((l,O,O,O))Az((0,1,0,0)), 

11 

since A2((0,1,0,0)) > 0 a~d A2((1,0,0.,0)) > O. This is a contradic

tion. Therefore, there does not exist two me-gauges A1 and A2 such 

that p (x) = Al (x) A2 (x-). However, if .·· f (x) = x1 and g (x) = x2 , 

then f ; g e; P ' and p 
n 

is the finite sum of products of functierts 

belonging to P' . 
n 

Let g denote all those p e: P which are finite linear. n . n 

combinations of functions of the type 

whe_re Ai e: P ~. Thus, 

n 
r--

A (x) = / I Ai (x) , 

1 

8 is clearly a subcone of P ~ n · · · · n Also, the 

.permanent funct.ion belon,gs to g . It would be -of interest to know if 
n 

8 is indeed P • 
n n 

n-Convex Sets 

A convex functional p is a mapping from a convex set K in a 

linear space L into the real numbers such tQat if x,y.e: K and 



12 

a e: [O,l], then 

p(ax + (1 - a)y) < ap(x) + (1 - a)p(y). 

For a convex functional f and real number A the below set 

{z: f (z) ..::_ A} and the strictly below set {z: f(z) < A}, relative to 

A, are convex. 

For p e: P the below sets and the strictly below sets are not 
n 

necessarily convex. For example, if define 

Then p e: p2 • 

{x: p(x) .::_ l}. 

Notice that (4,0,0,0) and (0,4,0,0) belong to 

Let 1 a=-2 
l l Then 2 (4,0,0,0) + 2 (0,4,0,0) = (2,2,0,0) 

and p((2,2,0,0)) = 4 > 1. ·Renee, {z: p(z).::., l} is not convex. 

However, some interesting results are obtained when the above sets 

{z: p(z) ..:::.. A} are studied. To get these results the following 

definition is given. 

Definition 1.5: In a real linear space a set S is n-convex if 

for all x,y e: S, a > 0 and S > 0 such that an+ Sn= 1, then 

ax+ Sy e: S. 

Notice that a set is convex if and only if it is !-convex. 

Proposition 1.3: For all p e: P and all A .::_ 0, 
n 

{z: p(z) > A} and {z: p(z) > A} are n-convex. 

the sets 

Proof: Let x,y e: {x: p(z) > A}. Let a > 0 and S > 0 such 

that an + Sn = 1. Then 
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n n = (a + S )A = A· 

Hence, ax+ Sy e:: {z: p(z) ~A} and thus {z: p(z) > A} is n-convex. 

Likewise, {z: p(z) > A} is n-convex. 

The sets {x: p(x) >A} will be denoted LevAp, i.e., 

LevAp - {x: p(x) > A}. 

A somewhat similar concept has been investigated by M. Landsberg 

[ 4 ] • He defines a set to be p-convex, where 0 < p 2_ 1, if x,y e: S, 

a .:_ 0, S > O and ap + SP = 1 implies ax + Sy e: S. 

rn the following proposition, each member of a family of sets, 

which. have been of some interest in recent literature, is shown to be 

n-convex [ 8 ] • 

Proposition 1.4: A monotone set of convex type in is n-convex. 

Proof: Let x,y e: S and a.:_ O, S > 0 such that an+ Sn= 1. 

Notice that a < 1 and S < 1. Since S is convex, then 

Since s is a monotone set of convex type, then 

implies ax+ Sy e: S. Hence, S is n-convex. 

n n ax + Sy .:_ a x + S y 

The converse is not true since, as will be seen in later examples, 

an n-convex set is not always convex. 

Particular use is made of the following concepts in studying 

n-convex sets. 
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Definition 1.6: If x and y belong to a real linear space L, 

then 

n-cr[x,y] = {ax+ Sy: a.:_ O, S > 0 and an+ Sn = l} 

and 

n-cr(x,y) = {ax + Sy: a > 0, S > 0 and an + Sn = l}. 

The sets n-cr[x,y] and n-cr(x,y) will be called n-curves and open 

n-curves, respectively. 

In a linear space L, the line segment, xy, joining x,y e L 

is the set of all points ax + Sy, where a .::_ O, S > 0 and a + S = 1. 

The set of all such points where both a > 0 and S > 0 is denoted by 

intv xy. Notice furthermore that if z e intv xy, then 

intv xz C intv xy. 

Clearly, the concept of an n-curve is a generalization of the 

concept of a line segment. However, the following example shows that 

an n-curve does not necessarily have the simple property noticed above 

for line segments. The absence of this property somewhat complicates 

the work in Chapter V. 

Exam:ele 1. 2: In E2 let x = (1,0) and y = (O ,1). Notice that 

if (a,S) = ax + Sy e 2 - er (x,y), then 2 + s2 1. Suppose a = 

1 /3 
(%:' 1r)· z=-x+-y = 2 2 

Then z e 2-cr(x,y). Let 1 and 13 1 13 a= - s = 2 . If w = 2 z + 2 x, 2 
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then w E 2 - cr(x,z) and 

( 1 + 213 13) 
4 ' 4 • 

However, since 

1 + 413 + 12 3 16 + 413 
16 + 16 = 16 > l, 

then. w ~ 2 - cr(x,y) (cf. Figure 3.). 

y = (O,l) 

' ' 
2 ':... Cr(x,z) 

\ 
2 - Gr(x,y) +\ w 

\ 

x = (1,0) 

Figure 3. 

Let x, y and z be three distinct points in a linear space L. 

If u E intv xy and v E intv yz, then there exists a point w at 

which uz and xv intersect (cf. Figure 4). 

The following result is a striking analogue with n-curves. 
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z 
x 

Figure 4. 

Proposition. 1.5: Suppose x, y, z are three distinct points of a 

real linear space L. If u e n - cr(x,y) and v e n - cr(y,z), then 

(n - cr[u,z]) I\ (n - cr[x,v]) ~ 0. 

Proof: Since u en - cr(x,y), u =ax+ Sy, where a> O, 

S > 0 and[ an+ Sn= 1. Also, v = crz.+ yy, where cr > O, y > 0 

and n n cr +y =1. Let 

A. = __ _.S_. __ 

o/ynan + Sn 
and crS 

w =------
-fl' ynan + Sn 

Clearly, A. > 0 and w > O. Also, 

and 

r;j 1 n - w 

-:Ji 0 n n n + 0 n 0 n 
__ .._1-> __ = n y a µ - µ = ___ y_a ____ > 0 
YnNn + 0 n ynNn + 0 n n/ 

"' µ .... µ {} ynan + Sn 

> o. 



Since 

An + ( fY 1 - An ) n "' 1 and wn + ( fY 1 - wn ) n = 1, 

then 

A(az + yy) + r1 - An x =AV+ f!/1.,.. An x e: n - cr[x,v) 

and 

o/i - w0 (a.x +Sy)+ wz = o/1 - wn u + wz e: n - cr[u,z]. 

Now 

A (az + yy) + o/ 1 - An x = __ ...,.;s ___ (az + yy) + __ y.._a. ___ x 

ry yna.n + Sn 

and 

n - w (a.x + Sy) + wz = ---Y~-- (a.x + Sy) + __ a_.s ___ z. 

ry yna.n + Sn ~ yna.n + Sn 

Hence, 

implies 

n - w 

(n - cr[u,z]) n (n - cr[x,v]) :f (a. 

(ax + Sy) + wz 

As the next example shows, n - cr[u,z] and n - cr[x,v] may 

intersect at more thpn one point. 

and 

Example 1.3: In E2 , let 

z = (1,0) (cf. Figure 5). 

x = 

Let 

y= (-1,1) 
13 

S = 2 , then 

17 



u 

Figure 5. 

ax+ Sy E 2 - cr(x,y). Now 

ax + Sy = t ( ~ ' ~ ) + 1 (- ~ ' 1 ) = ( .!. .! ) + (- .!. l) 4 ' 4 4 ' 4 

= (0,1) •. 

Let u = (0,1). Now let /3 1 a = 2 and y = 2 . Then 

crz + yy E 2 - cr(y,z). 

Further, 

crz + YY = ~ (1,0) + t (- I[ , 1 ) = ( 1 ' 0) + (- ~ ' 1) 
= ( /3 - /3 /3.) = ( s/3 /3) 

2 12 ' 4 12 ' 4 . 

Let 

v = ( 5~ ' If ) . 

18 
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Now 

2 - cr[u,z] = {A(l,0) + w(O,l): A> O, w > O, A2 + w2 = l} - -

i.e., that portion of the u,nit circle that is contained in the first 

quadrant. Also, 

2 2 2 - cr[x,v] = {Ax + wv: A..::_ O, w ..::_ 0, A + w = l} 

{ ( 1 1) /J 2 ( 513 13) . } =A 2•2 + i-A . 12 •4: O.::_A.::_l 

= {(l + 5/3h - AZ l+ 31Jh - A2 )· O , ·1} 2 12 ' 2 12 . ~ I\ 5-. • 

l,.et 

where A e: [O,l]. This f(A) gives the distance from the origin of 

the points on 2 - cr[x,v]. Moreover, f is a continuous real func""" 

tion. Also, 

(UH )2 ~ (33: /) ~ 
1 1 

f(O) ( 75 27 ) 2 ( 102) 2 < 1, = = 144 + m = 144 

f(~) = ((l+llf + (l+if) ~ 4 24 4 24 

(( 21 )2 + { 15 r) ~ 1 

= :;:: (ill+ 225 )2 
24 '"' .. 24 576 576 

. ' 1 

= (666) 2 > 1, 
576 ': 
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and 

The Intermediate Value Theorem from calcqlus implies there exists 

). e: 1 
such tqat f().) .. 1 and there ).' 

1 such (O, 2> exists e: <2, 1) 

that f (). 1 ) ... 1. Therefore, since and + then both x v e: E~, 
'~:1 

AX+ Ii - ).2 v and ).'x + Ii -·).,2 v 

belong to (2 - cr[u,~]) n (2 - cr[x,v]). 

Pressing further the analogy between n-curves and line segments, 

the n-curves are used'1 to define a type -of extreme point. 

Definition 1.7: Let K ~ea n-conv~x subset of a linear space L. 

A point z e: K is an n-extreme point of . K if there does not eJ!:ist 

x,y e: K such that z e: n - cr(x,y). 

Just as for convex sets, a point x of an n..;.convex set K is an 

n-extreme point of K if·. and only if K\ {x} is n-convex. 

Some.:Sasic Properties of pn Functions 

In the remainder of this chapter several basic properties of P n 

functions are developed. 

Proposition 1.6: 

then p(x) > p(y). 

Let p e: P . 
n 

If such that 

P+oof: Since x ?.... .y, the_n xi ?.... y i for all i. Let 

x?.... y, 



Then z e: )!;+, 
n2 
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and x = y + z. Therefore, 

p(x) = p(y + z) ~ p(y) + p(z) ~ p(y). 

Thus, p(x) + is nondecreasing on En2• The converse is not true. 

Let where Then 

p((2,l,l,l)) - 2 > 1 = p((l,l,4,5)). 

However, (2,1,1,1) i (l;l,4,5). 

If p # O, the next proposition shows that p(x) > 0 at each 

interior point of 

Let p e:. p . 
n 

If there exists 

that p(a) = O, then p ~ O. 

proof: Let (al' a 2>.• Since int a = ... ' a e: n . 

o. (xl' 2> 
+ For each i a. > Let x = ... ' x e: En2' l. 

Ai~ 0 such that xi = Aiai. Let A = max{A.i: i = 1, 

a e: int E+ such 
n2 

+ each E 2' n 
there exists 

2 ... ' n }. Then 

x = A.a. < Aai' implies Aa > x. :Sy Proposition 1.6 
i l. l. -

n 0 ,:: p(x) .:_ p(Aa) = A p(a) = O, 

implies p (x) = 0 , for all + x e: E 2 • 
n 

Hence, p = o. 

With the aid of the following comment, p(x) is shown to be 

strictly increasing. 

Comment 1.1: If p e: ~ and x, y e: E :z such that x ;_ y, then 

p(x) - p(y) ~ p(x - y). 



Proof: Since p(x) :::;:. P-(x,.- y + y) 2:.. p(x - y) + p(y), then 

p(x) - p(y) ~_p(x - y). 

Proposition 1. 8: 

p (x) > p (y) • 

~f x,y E E+ such that. x > y, 
n2 

then 

Proof: Since x > y, then • x - y > O. UsiQ.g Comment 1.1 and 

Proposition 1.7, it follows that 

p(x) - p(y) > p(x - y) > O. . -

Hence, p(x) > p(y). 

For n = 1, very special results hold for p E P • 
n 

Comment 1. 2: If n = 1 and p E pl' .: t.hen p is linear. 

Proof: + If x E E1 , then x = x·l and p(x) = p(x•i) = x•p(l). 

In particular, 

p(x + y) = p((x + y)•l) = (x + y)p(l) = xp(l) + yp(l) 

= p(x~l) + p(y,l) = p(x) + p(y). 

Actually, p is not linear. for n > 1, but the following 

proposition gives necessary and sufficient conditions for p being 

addit;i.ve. 

Proposition 1 •. 9: Let n > 1 and p € P. Then p is additive n 

if and only if p = o. 

Proof: Clearly, if p = O, then p is additive. Suppose p 

additive. Then 
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is 



p(x) = P ( ~ x + ~ x) = P( t x )+ P( t x) 

= ( t )n p(x) + ( ~ )n p(x) = ;!-1 p(x), 

which implies p (x) = 0, for all 

Note that if p,q E p 
n 

and p(x) ::: q (x) for all + 
x E int EnZ' 
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then p(x) = q(x) for all This follows from the continuity 

of p and q~ 

If p is a nonnegative, superadditive and n-homogeneous function 

on and p is continuous at one nonzero point of then 

is continuous at 0. 

Proposition 1 ,10: Suppose 

n p(ax) = a p(x), for all a > o -·· 
where x '# O, then 

p: E+ -+ 
n2. 

and X.E 

p is 

E+ 
1 

is superadditive and 

+ . 
If is continuous En2. p 

continuous at o. 

p 

Proof: Let E > O. If p is continuous at x ~ O, then there 

exists cS > 0 such that h E E:2 and I lhl I= I l<x+ h) - xi I < cS 

implies Ip (x + h) - p (x) I < ~. It follows from Comment 1.1 that 

jp(h) - p(O) I = jp(h) I = jp(x + h - x) I 
< lp(x + h) - p(x) I < E, 

Hence, p is continuous at 0, 

at 



CHAPTER II 

n-CONVEX SE'I'S 

The n-Convex Hull 

For any set S, let n(S) be the intersection of all n-convex 

sets containing S. Then . n(S) is called the n-convex hull of s~ 

If conv(S) denotes the intersection of all convex sets containing 

the set S, then it is known that 

k 

I a.i = 1, k 

1 

an integer} 

[ 9 ] • In this i;;ection a similar characterization will be developed for 

n(S). Consider the following: 

Proposition 2.1: Let G be a collection of n-convex sets. Then 

a. if {AA.: A. ~ Q} C a, then 

b. if A,B ~ a, then A+ B E a,. 
c, if A E a and cr is real, then crA E a. 

The proofs are simple and straightforward. This proposition means 

that the collection of n-c9nvex sets is closed under arbitrary inter~ 

sections, finite vector sums and under scalar multiplication. 
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Thus, then-convex hull of a set S :Ls n-convex, in fact, the 

smallest n-convex set containing S. T~e following theorem gives a 

characterization of n(S). 

Theorem 2.1: For any set S, 

n(S) 

where k is an integer and the x. 
J, 

are not necessarily distinct. 

Proof: Let 

B(S) • { t 
where k is an integer and the xi are not necessarily distinct. Let 

x e S. Then x = l·x e B(S), implies that SC::: B(S). Now show that 

B(S) is n-convex. Let x,y e B(S). Then 

where a. > 0, s > 0 and 
l. - i-

k .e. 

2= n 2: sr.1 1. a. = :; 

l. l. 

1 1 

Let > 0 and (J > 0 such that n + n 
1. Now y y (J = 



k 

crx + yy = cr ~ 
1 

where xi,yi e; S, cra.i ..::._ 0 and 

k .e. 

L ·n L n 
(cra.i) + (y8i) "" cr 

1 1 

n 

ySi ..::._ O. 

k 

L n 
a.+ y 

l. 

1 

.e. 

cra.ixi + L ySiyi, 

1 

Also, 

.e. 
n L Sn crn + n 

= y = 
i 

1 
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1, 

implies that O'X + yy e; B(S). Hence, B(S) is n-convex and contains 

S. Therefore, n(S)C B(S). 

Now show B(S) C n(S) by inducting on k. Suppose x e; B(S) 

such that x = a.y, then a = 1 and y e; S. H~nce, x e; S C n(S). 

Suppose. that for. each x e; B(S) such th.at 

where xi e; S, a.i > O, 

then x e; n(S). Let 

where xi e: S, a.i > 0 and 



Since 

then 

Hence, 

k-1 

x =I 
1 

Since 

k-1 

I 
a. 

]. 

ff; 1 I a; 
1 

then 

k-1 

L 
·1 

Let 

a .., 
k 

n 

k 

.L 
1 

k 

I 
1 

n I k-1 

J1 - I 
1 

a. 
]. 

nff,; 
1 

k-1 n 

I °'i 
= k-1 

1 I n a. 
J 

1 

°'i 
x. 

= 

~'f ·~ 
]. 

e:'n(S). 

1 
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k-1 

I n 
°'i 

1 = 1, k-1· 

I n a. 
J 

1 
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k-1 

y -L 
1 

Then 

Since n(S) is n-convex and 

k.,.l 

L 
1 

then x E n(S). Hence, B(S) C n(S) which implies n(S) = B(S). 

·'' 
Notice that B(S) = n(S) == n(n(S) ). :i;: B(B(S)). The following 

theorem shows that B(S) is inverse starlike from the origin, that is, 

x E B(S) implies AX E B(S) for all A > 1. 

Theorem 2.2: If x = A.y where A.> 1 and y E B(S), then 

x E B(S). 

Proof: Consider 

k • 1 -- = n/k 

n-1 

k n 
' 

where k is a positive integer. There exists a k such that 

n ... 1 

k n > A.. 



Also, · 

Therefore, 

Hence, 

Let· a > 0 and 

n-1 -
a.y + ak n 

k ( n~) n • 1. 

ti 
k n y e: B(S) and 

n-1 
n k . y ~ A.y. 

n-1 
n 

y 2. A.y 2. k y. 

a ~ o such that an + an .. 1. 

y e: B(S), i. ~.' ( 0 /1 - an + 

Then 

n-1) 
ak n y e: .B(S). 

It remains to be.shown that there exists a real number a such that 

For a e: [0,1), let 

n..:.1 

A. = n/1 - an + ak n . 

n-1 

f(a) = n/1 - an + Sk n • 

Notice that f is continua.us on [O ,1], 

Since 

n-1 

f(O) a 1 and £(1) ~ k n , 

n-1 

1 < A. < k n , 
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then there exists a (3 £ [O,l] such that f(S) = A. Hence, 

x • /..y £ B(S). 

Now for any set S, let 

where k is an integer and the xi are distinct.· 

It is easy to see that B(S) C B' (S). For example, if 

However, 

Hence., x £ B'(S). 

shows these sets are in fact equal •. 

Proposition 2.2: B(S)· = B'(S). 

Proof: Let x £ B'(S). Then 

where x1 £ S, ai~O and 

k 

l: 
1 

Let 

n a. > 1. 
l. -

where 

The followip.g proposition 

30 



Then 

implies that 

x ·.,.a 1 -x a 

l· 
- x e: B(S). a 

e: B(S). 

Since 
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a > 1, Theorem 2.2 implies that ..... 

Proposition 2.2 and Theorem 2.1 together give another character!-

zation of. n(S). 

Theorem 2.3: .For any set S, 

where k is an integer and the. x1 are distinc~. 

Actually, the followib.$ characteriz~tion of n(S) will prove to 

be the most·useful. 

Th~orem 2.4: For any set s, 

k 

n(S) 2: 
1 

where k is an integ~r and the xi are distinct. 
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Proof: Let 

where k is an ·integer and the· xi_ are distinct. Clearly, A C n(S). 

Let y E: n(S). Then .• 

m 

y = r a.xi' . ;L . 

1 

where ai ~ O, 

m 

r n a · > 1 i-
1 

and xi E: s. Let 

A 'if n 
= a· 

i 
1 

then· 

m 

( :i) xi 

m ( :i )n y = A. I and I = 1. 

1 1 

Therefore, y E: A and n(S) = A. 

Theorem 2.2 implies that an n-convex set is inverse starlike from 

0, The following exa~ple ~hows that the converse is not ttue. 
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Example 2.1: Let S be the shaded area in Figure 6. S is 

inverse starlike from O. 

Figure 6. 

Let Then ( l 13) 
2 ' 2 

1 /3 = z (1,0) + -Z (0,1) E 2(S). 

Since is not 2-convex. 

Examples of 2-Convex Sets 

In this section, several examples of the 2-convex hull of sets of 

two points in the plane are given. 

Example2.2: In E2 let S={(O,y1),(l,O)}, where y1 >0. 

Find 2 (S) .. 

Solution: Let a > 0 and S .:_ 0 such that a2 + s2 = 1. Then 

Let x = s and y = ayl. Then 



a "" X. 
Y1 

and 

/yi 2 

-f-U1l 2 Ii 2 - y 
x = s = - a = 

Y1 

i,.i 2 Hence, implies 2 2 2 2 Thus, xyl = - y x Y1 = Y1 - y . 

2 2 
X + L = 1 

2 ' 
yl 

where x .::_ O, y .::_ 0 and y1 > 0. When y1 = 1, then Theorem 2.4 

implies 2(S) is the region indicated in Figure 7(a). Likewise, if 
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y1 > 1, then 2(S) is the region indicated in Figµre 7(b). Finally, 

if y1 < 1, then 2(S) is the region indicat.ed in Figure 7(c). 

Example 2.3: In E2 let s = {(x1 ,y1),(1,0)}, where x1 > 0 

and Y1 > O. Find 2 (S). 

Solution: Let a > 0 and s .::. 0 such that a.2 + 62 = 1. Then 

Let x = ax1 + S and y = ay1 • Thus, x and y are nonnegative. 

Substituting, 

x = 

Hence, 
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(O ,1) 

(a) 

(b) 

.. (c) 

Figure 7, 



This can be shown to be the following ellipse 

by making the following change of variables 

where 

x = x'cos¢ - y'sin¢, 

y = x'sin¢ + y'coscj>, 

0 < ¢ < .!.. · such that 
- -2 

cot 2¢ = 

2 2 
x1 - yl + 1 

2xlyl 

Notice that the coefficients of and are positive. 

Let y be the angle between the vectors (x1 ,y1) and (1,0) 

(cf. Figure 8), then 

cot y 

Therefore, 
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Hence, 

Also, 

y 

Figure 8. 

2 ( ;~ )2 - 1 
.,... 1 

cot 2y cot y 
= = :;: 

2coty xl 
2-

Y1 

7T 
y,¢ e: [O, 2 ], implies that 
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2 2 2 2 
xl - y Y1 xl - Y1 1 . -= 

2 2x1 2xlyl 
. 

Y1 

Hence, y > ¢. 



Let 

2 2 7f If y 1 ..::_ x1 + 1, . then cot 2cp ~ 0. Hence, 0 ..::_ 2<j> ..::_ 2 · implies 

cos 24> ;:_ 0 and sin 24> ;:_ O. Therefore, 

and 

2 2 x1 + 1 - y1 cos 24> = ___ :t __ _ 

2xlyl 
sin 24> = -r 
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then cot 24> < O. 7f 
Hence., 2 !. 24> ..::.. 7r implies 

sin· 24> ;:_. 0 and cos 24> !_ 0. Hence, 

sin 24> = 
x2 + 1 "'7 y2 

and cos 2 <I> = L · 1 
r 

In either case 2x1y1 • r sin 24> and 
12 

lating the difference of the y and 

+ (xi + l)sin2cp) 

2 2 x1 + 1 - y 1 = r cos 2<j>. 

12 
x coefficients gives 

2 2 = r cos 2cp + r sin 24> = r > O. 

Calcu-
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12 12 
The coeffic;lent of y. is greater than the coefficient of x This 

implies the major axis of the ellipf:i!e is the· x'-axis. Therefore,, using 

Theorem 2.4, it follows that 2(5) is the· indica~ed.region in Figure 9. 

The next exampl,e considers the case of .two vectors with an obtuse 

angle between the):ll. 

Example2.3: In E2 l.et S = {(x1 ,y1),(l,O)} where x1 < 0 and 

yl > O. Find Z(S) •. 

Solution: . Let a .=:_ 0 and S .=:_ 0 
2 2 

such t;hat a + a - 1. Then 

p+evious example 

Now let O .::_.cf> i .; .such that . 

Making the chang.e of variables. 

x = x'coscf> - y'sincf>, 

y .'."" x'sincf> + y'coscf>, 

then as before 
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y' (xl~i.).. 
..,,. 

~ 
/ 

/ 

/ 

/ 
/ 

/ I' (1,0) 
/ 

/ / 

I 
/ 

/ 

I 
I 

I / 
/ 

/ ...-
'- -_.-- -

Figure 9. 
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If y· is the angle between (x1 ,y1) and (1,0), then 

cot y 

implies that 

Since x1 < O, then 

1 cot 2• ~ cot 2y + · < cot 2y. 
·2xlyl 

Also, 11' ..:_· 2y ..:_ 2rr. Hence, . rr < 2y < rr + 2•, whic~ gives 

(cf. Figure 10). 

Again let 

Recall that 

2 2 
x1 + 1 - Yl cot 2<!> = ____ .....;;.;. 

2xlyl 

and 2x1y1 < 0. Suppose Then cot 2• ,.:::. 0 , implies that 

0 ..:_ 2• ..:_f. Hence, sin 2<!>,.:::. 0 and cos 2•,.:::. O. Therefore,· 
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y 

x' 

Figure 10. 

2xlyl 
2 2 

sin 2~ • - and 2~ - -

x1 + ·1 - Y1 
cos r. r 

If 
2 2 then cot 2~ o. 1T 

2~ < implies y1 < x1 + 1, < Hence, -< 1T' 2 

that sin 2~ .::_ 0 and cos 

sin 

2~ .::. 0. 

and 

Therefore, 

2 2 x1 +1-y 
1 

cos 2~ "" - ----....-r 

2 2 2x1y1 = -r sin 2~ and x1 + 1 "'." y 1 "" 
2 

In either case, -r cos 2~. 

12 
and the x Therefore, the difference of the y1 coefficient 

coefficient is 

2 2 + (x1 + l)sin ~ 
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• -r < o. 

Thus, the major .axis of the ellipse is the y'-axis. Again using Theorem 

2.4, it follows that 2(S) is the indicated region in Figure 11. 

It remains to consider the cases of the two points on a line 

through the origin. In the following example the two points are on 

opposite sides of the origin, 

Exam:ele 2.4: In E2 let s = {(l,O),(x1 ,0)} where x1 < o. 

Find n(S). 

S0lution: Let a ·> 0 and 13 ;:_ 0 such that a.n + en = 1. Then 

0 < a < 1 and 0 ~ 13 ~ 1. Also , 

Let 

where A E [O,l]. Then f is continuous, f(O) a xi and f(l) = 1. 

Let a E (x1 ,1), then by the Intermediate Value Theorem there exists 

A E (O,l) such that f(A) = a. Therefore, 

{(a,O): a E [x1 ,l]} C::: n(S). 

Since Theorem 2.4 implies n(S) is inv.erse starlike from the origin, 

then n(S) is the x-axis (cf. Figure 12). 
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y 

\ 

\ 
\ 
\ 
\ x' 

\ x 
\ 

\ 

\ \ 

\ \ 

\ \ 
\ 

\ I 

\ 

"' j 
...... j 

Figure 11. 



n(S) 
(x ,O) (1,0) 

Figure 12. 

Example 2. 5: In . E2 let S • { (O ,O) , (1,0)}. Find n(S) • 

Solution: Let a> 0 and S ..::_U n n such that. q. + a = 1, 

45 

Then 

((3,0) = a(O,O) + S(l,Q) e: n(S), where 0.:5.,S..::._1. As ill Example.2.4, 

n(S) = {(S,O); S..::_O} (cf. Figure 13). 

y 

n(S) 

Figure 13. 

Additional Properties 

This sect.ion contains several additional properties of n-convex 

sets and the n .. convex hull of a set. The first proposition chat"acter--

izes then-convex ·hull of the union of two n~convex sets. 
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Proposition 2.3: Let C and K be two nonempt;y n-convex.sets, 
,/ 

" then 

., 

n(C UK)• Ufo - cr[x,y]: x e: C and ye: K,}. 

Proof: Clearly U {n - cr[x,y]: x e; C and y e: K} is .contained 

in n(C l) K). Let z e: n(C UK). By Theorem 2.1, 

·. where a.i .:_ 0, s1 .:. 0, 

and y. e; K. 
l. 

If ~i .. 0 for all i, then z e: K. 

any v E C, z·e: n - cr(v,z]. Therefore, supp:ase not all 

Likewise, assume not all Si .. O. Let 

Then 

z = a. 

Since 

: i .:_ o and L ( :i ) n = 1, 

then 

Hence, for 

a. - o. i 
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Likewise, 

Also' Nn + an • i· • li [ ] d th f i ~ ~ imp es z £ n - er x,y an e proo s com-

plete. 

Ne>te this analogot,is to the result that the convex hull of the 

union of two convex is the union of the line segments whose endpoints 

are such that one is in one of the sets and the other endpoint is in 

the other set. 

In the next proposi,tion the n-conv~x hull of a convex set is 

shown to be convex. 

Proposition 2.4: If C is a convex set, then 

n(C) a {ax: Cl...::. 1, x E C}, 

which is a convex set. 

Proof : First it will be shown that {ax: . a ..:_ 1, x E C} is convex. 

Let ci.x,Sy £ {ax: Cl._.::. 1, x EC} and A E ~O,l]. Let 

ACI. 
a= ACI. + 6(l ~A). and y = ACI. + 6(1 - A). 

Then 0 < a < 1 and y _.::. 1. Hence, crx + (1 - cr)y E C and 

y(crx + (1 - cr)y) E {ci.x: ci. _.::. 1, x E C}. Since 

1 - a ACI. + 6(1 - A) - ACI. =. 
ACI. + 6(1 -,A) 

.,. ..---6_..(~l_-_A...._) __..,.... 
ACI. + 6 (1 - A) ' 
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then 

y(ax + (1 - a)y) = yax + y(l - a)y = lax + (1 - A)Sy,_ 

which implies that: fox: a ~1, x e: C} is convex. 

By Theorem 2.4 fox: a> 1, x e: C} C n(C). r- . BY inductipn on m 

incl\lsion in the other direction will be shown. Suppose m = 1, then 

y =axe: B(C) = n(C). Thus, a= 1 and x e: C, which implies that 

y e: fo~: a > 1, x e: C}. Assum.e the induction hypothesis, that is, for - . 

every y e: B(C) such that 

where ai > 0, 

m-1 

L 
and x1 e: C then y e: {ax: a~ 1, x ·e: C}. Let 

where a1 > O, 

m 

La~·= 1 

and x1 e: c. Let 



then 

Since 

then 

m-1 L ( :i) n = 1, 

x • 
m 

m-1 

L (:i )xi e: {ax: a .>._1, x e: c}. 

Also, 0 <a< 1 implies 0 < a.n <a. Hence, 1 - an >.l - a> 0 

which implies that 

1 ---< 1 

1 _ an - 1 - a 

Therefore, 

a a a a. 1-n m m m m 
> = =-= (a. ) > 1. 

1 - a- n m m-1 n m -
1 - a. 

L L 
a. n n. m. 

a - a.i i 

As a result, 
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Then y e: {ax: a.>.. 1, x e: C} which implies n(C) = fox: a 2:. 1, x e: C}. 



Figure 14 illustrates .the converse is not true. That is, C a 

set in the xy~plane is not convex but 2(C) is convex. Recall that 

2(C) is inverse starlike from the odgin. The examples of the last· 

section show that 2(C) is as indicated. 

Figure 14. 

Next the convex hull of an n"'"convex set is shown to be n-convex. 

Proposition 2.5: If K is ? n-convex set, then canv(K) is 

n-convex. 

Proof: The conv(K) will be n-convex.if and only if 

n(conv(K)) = conv(K). 
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Clearly, conv(K) C: n(conv(K)), Let x e: n(conv(K)). By Proposition 

2.4, there exists a e: conv(K) and a.> 1 such that· x =a.a. Since 



a e: conv(K), 

where ai e: K, ai .:_ 0 and 

l'herefore, 

Since K is n-convex, Theorem 2.2 implies aai e: K. Hence, 

x e: conv(K) and conv(K) = n(conv(K)). 

Propositions .2.4 and 2.5 imply the following: 

Proposition 2.6: For any set: K, n(conv(K)) = conv(n(K)). 

Proof: Proposition 2.4 implies conv(n(D)) = n(D) when p is 

convex. Clearly, KC conv(K). Hence, n(K) C n(conv(K)). Thus, 

conv(n(K)) C conv(n(conv(K)) = n~conv(K)) 

by the above s ta temen t. 

Also, Proposition 2.5 implies n(conv(D)) = conv(D) when D is 

n-convex. Now K C n(K) and conv(K) C conv(n(K)). Hence, 

n(conv(K)) C n(conv(n(K))) = co.nv(n(K)). 

Therefore, n(conv(K)) = conv(n(K)). 

51 
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It was noticed earlier that an n...;.convex set is inverse starlike 

from the origin. Example 2.1 showed that the converse was not true. 

However, if a set S is inverse starlike from the origin and convex, 

then Proposition 2.4 implies the set S is n-convex. Clearly, the 

converse of this statement is not true, The next two result;s are 

similar to a couple of results obtained by Allen (cf. [lJ, pp. 16-17). 

Comment 2.1~ If K is n-convex, then K +Kc=: K. 

Proof; If x + y E K + K, then 

x + y = 

Since 

l. 1 =-+-= 1, 2 2 

then 

E K. 

Also, 

Hence, x + y E K. 

Proposition 2.7: Let 0 EK. Then K is a convex cone whose 

vertex is 0 if and only if K is n-convex. 
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Proof: Suppose K is a convex cone whose vertex is o. Since K 

is convex, n(K) = {a.x: X E K, Ci. > l} = K. Hence, K is n-convex. 

Now suppose K is n-convex. By the previous coml!lent, K+ KC K. 

Let a. > 0 and X E K. If Ci. ..:::. 1, then a.x E K. Suppose 0 < Ci. < 1, 

then 0 < Ci. 
n 

< 1. Let Sn = 1 - a. n Then + S·O e: K. Hence, . ax =.ax 

a.KC K and K is a convex cone with ver_tex · o. 

A Separation Theorem 

Let S be a subset of a linear space L. The core of S, denoted_ 

by Cr(S) is the -set of all x e: S, such that for all y E L, y r/: x, 

there exists z .e: intv xy, such that xz C S. 

A standard separation eheorem is as follows: If A and B are 

two convex ·subsets of a linear space L, where Cr(B) :f (II, A :f 0 and 

A n Cr(B) = !1), then there exists a hyperplane which separates A and 

B [10]. This secttiisn conta:i.ns a 'sim;f.lar :result for n-convex sets. 

·Consider first the following lemma• 

Lemma 2.1: Let K and C be two n-convex sets in a linear space 

L such that K n C = 0, then · conv(K) n conv(C) = (II, 

. , 
Proof: Suppose x e: conv(K) n conv(C) • 

where a.. > O, x1. e: K and 
1-

I a.i = 1. 

Then 



Also, 

where s > o, 
i- y. E C and 

l. 

Suppose al > 0 and Sm > O, then there exists o > 1 such that 

and oS > 1. m- Therefore, 

where oai.:. O, 

Also, 

where oSi .:_ O, 

x. E K and 
l. 

ox = ~ (oS .)y., 6 l. l. 

y. E C and 
l. 

~(oS.)n>l. 6 l. -

This implies ox EK nc, a contradiction. Hence, 

conv(K) n conv(C) : 0. 
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With the aid of Lemma 2.1, the following separation theorem is 

possible. 

Theorem 2.5: Let K and C be two n-convex sets in linear space 

L such that Cr(C) ':/: 0, K + 0 and K n C • 0, then there exists a 

hyperplane that separates K and C. 

Proof. Since Cr(C) C: CC: conv(c), then cr(conv(C)) :f 0. 

Also, K :fr. 0 implies conv (K) :f 0. Further, K n C :/= 0 implies that 

conv(K) n conv(C) = 0; hence, conv(K) fl Cr(aonv(C)) = 0. Therefore, 

there exists a hyperplane that separates conv(K) and conv(C); 

hence, K and C. 

·'· 
Complementary n-Convex Sets 

Let c and D be subsets of a linear space L. Then c and D 

are complementary if and only if L = C Un and en D = 0. 

In this section two disjoint n-convex subsets of a linear space L 

are shown to be contained in two complementary n-convex.subsets of L. 

The following lemma is similar to Proposition 1.5. 

Lemma 2.2: Suppose x, y, z are three distinct points of a 

linear space L. If u £ n({x,y}) and v £ n({y,z}), then 

n(fo,z}) n n({x,v}) "f: 0. 

Proof: Since u £ n({x,y}), then u = A(ax +Sy), where A.=:_ 1, 

a > O, e .=:_ 0 and an + en = L Also, v £ n({y,z}) implies that 

v = w (crz + yy), where w > 1, cr .=:_ O, y .:. 0 and n n cr +y =l. If 

$ = O, then u = Aax = A(ax + Sv) £ n({x,v}) and 
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n({u,id) n ~({x,v}) .;. (6. 

Suppose S > O. Then 

Let 

Then e > 0 and cp .:_O. As in Proposition 1.5 

n/1 en - ra . ;:.. 0' 
n/ynan + n-a 

n/1 n 
. > 0' - cp . = 

n/ynan + n-a 

and 

n/1 - cpn (cix + Sy) + ¢z = e (qz + yy) + Il:/1 - en x. 

Let 

t = n/1 - cpn (ax+ Sy) + <Pz = e(crz + yy) + nfi - et\ x. 

Since 
2 

I;> A. .:_1, there eixsts t;.' 2_ 1 such that 

where 
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<I>~ 2:_ 0 and 

Hence, ~t e; n({u,z}). Likewise, ~t e; n({x,v}). Therefore, 

n ( fo' z}) n n (fa 'v}) " ~ • 

The proof of the next lemma is similar to that of Pl'.'oposition 2.3. 

The basic difference is that'a ~ingle point is not an n-convex set. 

Lemma 2. 3: . If K is a n-convex subset 9f a line:ar space L and 

x e; L, then 

n(K U {x}) = fox + Sy: a ..::_ 0, S .:_ 0, an + Sn ..::. 1, y e; k}. 

Proof: Clearly, 

{ax+ Sy: a.:_ 0, S .:_ O, an+ Sn 2:_ l~ ye; K} C:. n(K l) {x}), 

Let z e; n(K U {x}). By Theorem 2.3 

where a i .:_ 0 , CJ. ..::. 0 , 

m 

z =I a .xi + ax, l. ' 

m 

I 
1 

1 

n n a..+a. .:_l 
l. 



and xi e: K. The result clearly holds if all the ot.1 = O. Suppose 

not all the ot.1 = 0. I.et 

A. .. ~· 
1 

Then 

m 

z ~ A. L ( :i) xi + ot.x. 

1 

As in Proposition 2.3, 

e: K, 

Since >.n + ot.n..:. 1, z e: {ot.x +Sy: ot...:. O, S .::_ 0, ot.n +Sn ..:.1, ye: K}. 

The following result is analogous to a result for convex sets 
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found in Valentine [10]. With the use of the two previous lemmas, the 

proposition is proved c;i.s in Valentine. 

Proposition 2.8: If . A and B are disjoint n-convex sets in a 

linear space L, then there exists complementary n-convex.sets C and 

D of L such that AC C and :;BC D. 

Proof: AC A,, 
' l. 

and A. n B , = (il}. 
l. l. 

Partially order !R by (A.,B1 ) < (A.,B.) 
l. J J 

if and only if A. C A .'fand B C B . • 1 Now let 
l. j \' i J 

I 

j 



m' ={(A ,B ): a e: Q} 
a a 

be a linearly ordered subset of m. Consider CUA ,UB ), where 
a c5 
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c:r e: Q. Clearly, for every CA ,B ) e: !R' , 
Cl. Cl. 

(A ,B) < ClJA ,lJB ). 
a. a. a a Also, 

A CU A and B C U B • Consider U A • Let x,y e: U A • Since 
a a cr a 

!R' is linearly ordered, there exists an cr' e: Q such that x,ye:A,. a 

Hence, Cl.X + By e: A I c u A ' f > 0 ° 0 and Nn + 0 n - 1. or a. _ , .., ;:_ .... .., -
cr a 

Therefore, U A is n-convex. Likewise, lJ B is n-convex. Suppose 
a a 

x e: [UA] n [UB ]. Then there exists a.,S e: Q such that x e: A a a a. 

and x e: BB' Without loss of generality, assume CAa.,Ba.) < CAB,BB). 

Then x e: AB n BB, a contradiction. Hence, [UA.0 ] n [UB0 ] .. ~' 

implies that CUA ,l)B ) e: m. Therefore, every linearly ordered sub-
cr a 

set !R' of !R has an upper bound in !R, As a result, there exists a 

maximal element (C ,D) in !R. Since CC ,D) e: !R, then A C C, 

B C D, both C and D are n-convex and C n D = (IJ. It remains to 

be shown that C lJ D ~ L. 

Suppose x e: L\(C U D). Consider the n-convex sets nCC U {x}) 

and n(D U {x}). Notice that A C C U {x} and B C D lJ {x}. 

Consider (n CC U {x}) ,D). Since (C ,D) is maximal in !R , then 

(n(C l) {x}) ,D) ~ !R· This means n(C lJ {x}) n D I= (/J, Therefore, 

there exists a dl e: n(C l) {x}) n D. Likewise, there exists a 

cl e: n(D u {x}) n c. By the last lenuna dl = Cl.C + Bx, where c e: c' 

a.2:_0, B _:: O and a.n + n Also, ad + yx, where d e: D' B 2:. 1. cl = 

02:_0, y ..:. 0 and crn + n 
y ..:. 1. Since x $ c Un, then x I= c and 

x #- d. Also, en D = (IJ implies c I= d. Therefore, x, C; d are 

three distinct points of L, d1 e: n({x,c}) and c1 e: n({x,d}), By 

Lemma 2.2, n({d1 ,d}) (\ n({c1 ,c}) I= (IJ. However, n({d1 ,d}) CD and 



n({c1 ,c}) C C. This implies that C n D ./: 11), a contradiction. 

Hence, L = C U D. 

The following proposition shows that the complementary n-convex 

sets in Proposition 2.8 are actually complementary convex sets. 

Proposition 2.9: If C and D are nonempty complemeµtary 

n-convex subsets of a linear space L, then both C and D are 

convex. 

Proof: Consider C. If C = {O}, then for any x E L, x ./: O, 

both x and -x belong to D. However, as in Example 2.4, this 

implies 0 E D,. a contradiction. If A 2:.. 1, then AV E C. Suppose 

O<A<l. If AV ~. C, then AV E D. Hence, 1 v =I (Av) E D, a 

contradiction. Therefore, AV E.C for all A > 0. 
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Now let x,y EC and a. E [O,l]. Let z = a.x + (1 - a.)y. Since 

a.n + (1 - a.)n > O, then 

Now 

a 1 - a 

n/o.h + a)n 
x + 

n;a.n + 
y E: c. 

(1 - (1 - a)n 

Hence, z E c and c is convex. Likewise, D is convex. 



CHAPTER III 

APPLICATIONS OF n-CONVEX SETS 

For every define 

Then p E;: p2' the nonnegative, continuous, 2-homogeneous, superadditive 

functions defined on + f. (JI'.) 
2 1, 2, 4. E4. Let = xi, where i = 3, 

1 

Suppose there exists Cl. > 0 such that fl = a.p. Then 

1 = f 1 ((1,0,0,0)) = a.p((l,O,O,O)) = a. 

and 

1 = f 1((1,l,O,O)) = a.p(l,l,O,O) = 2a., 

which is a contradiction. Therefore, there does not exists a. > 0 

such that f 1 = a.p. Likewise, there does not exists a. > 0 such that 

f. = ap for any i. Hence, p is not an extremal element of the convex 
1 

cone P2• 

Also, notice that 

where is that vector having all zero coordinates except the k-th 

coordinate which is 1. 
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If p E P , let 
n 

[p:a] a {x: p(x) = a}. 
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Note that [p:a] would be a hyperplane if p were a linear functional. 

It woulq be desirable to know more about [p:a]. For example, the 

n-convex hull of [p:a] is given in the following proposition. 

Proposition 3.1: If p E Pn, then n( [p :1)) = Lev1p. 

Proof: Clearly n([p:l]) C::: Lev1p. Let x € Lev1p. Then by 

Theorem 2.2, 

x = n/p(x) x E n([p:l]). 
n;P (x) 

Hence, n([p:l]) = Lev1p. 

Now for the function p(x) 

Also, 

Hence, x E 2({e1 ,e2 ,e3,e4}). Therefore, Lev1p = 2({e1 ,e2,e3,e4}), 

a finite subset of [p:l]. The following question arises: Is there 



any relation between the fact that Lev1p is the n-hull of a finite 

subset of [p:l] and the fact that p is not an extremal element of 

the cone p ? 
n 

The following concept will be needed. 

Definition 3.1: If A is a subset of a linear space L, the 

conical h!:!.!1 of A, denoted by coni(A), is the intersection of all 

convex cones containing A. 

The conical hull of A may be characterized as 

[ 7 ] • This charactel;'j,.zatian is used in the following: 

Theorem 3.;L: If p e; P such that p :f 0 and n 

such that then for every such that 

p(x) > O. 

Proof: Let x e: E+ 
n2 

such that x :f 0. Suppose p(x) = 

A ·{At a > O, I n 
1, A. > o} U {O}. a.a.: ai = i-l. l. 

Notice that n(S) C A. Clearly, ,A C coni(S) U {O}. Let 

y e: coni ( S) U { 0 } • 

x :f O, 

o. Let 
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If y = 0, then y E A. Suppose y r O, then 

m 

y =L: aiai, 
1 

where ai ~ O. Notice that not all of the ai are zero. If 

m 

L: n ,.. 1, ai 
1 

then y E A. Suppose 

m 

I n "_l. °'i 
1 

Clearly, 

m 

I a~ # o. 
l, 

1 

Let 

a = :If 
1 

Then 

y = a and i (t-) n - 1. 

1 



Hence, y ~ A. Therefore, A .. coni(I:?) U {OL Now let y E A\{O}. 

Then 

A > O, Ct > 0' i...,.. 

m 

I 
1 

Again notice that not all the ai are zero. Thus, 

m 

= An L ct~ = An > O. 

1 

Hence, y ~ x since p(x) = O. The set A is a closed set since S 

is finite and hence there exists an open neighborhood N of x such 

that N n A = ~. Let 

Hence, 

which implies that 

+ z E N n int E 2 . 
n 

Since p ~ 0, p(z) > O. 
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Therefore, z e: A. This is a contradiction. Hence, p (x) > 0. 

The next theorem shows; that each positive axis of contains 

an element of .the set S of Theorem 3.1. 

Theorem 3.2: Let p e: p s~ch that. p ~ O. Suppose there exists 
n 

a set 

Then for every 2 i e: {1, ••• , n } 

Proof: First notice 0 ~ S since S C [p :l]. Suppose there 

exists k such that Ray(ek) n S = 0. Let x e: Ray(ek) such that 

x ~ O. By the previous theorem p(x) > O. Hence, 

x --- e: [p:l]. 
n/p(x) 

Thus, without loss of generality assume p(x) = 1. Since 

x e: Lev1p = n(S), 

where ai ~ O, not all the ai = 0 and 
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Therefore, 

m 

x m I 
1 

-(t 
m 

I 
1 

Also, x e: Ray(ek)\{O} implies .there exists A > 0 such that . x = A~· 

Hence, 

Since A 

a.j > o. 

m 

I 
1 

> 

a..a. 1 "" O, ••• , 
]. 1 

o, there e~dsts 

Consider 

a.1~11 + 

a.l~lk + ... 
a.l~U. + 

a'la 2 + ... 
ln 

m 

I 
1 

m 

a.iaik .. A, "'' L 
1 

j e: {l, ... ' . 
n2} such 

+t-a.jajl ;+ + a. .a 1 m Ill 
I l 

~ a.jajk 
J 
1+ .... .+a.ak mm 

I I 
+, a.j ajl + + a.maml J 

I I 

+la.ja· 2fi-i_ - _Jl\ __ , 
+ a. .a- 2 

m mn 

a. .a 2 "" O. 
J. in 

that ajk > 

'II' 0 

• A 

- 0 

.. o. 

Notice there exists .e. ;/: k such that ajl > 0, since otherwise 

0 and 

aj = (ajl' ... , ajk' ... , a.' 2) = (O, ... , ajk' ... , 0) = ajkek e: Ray(ek). 
JO 

Hence, a.jajl. > 0. This implies that 



a contradiction. Therefore, Ray(ek) n S .fa !rJ for every 

2 ke:{l, ••• ,n}. 

Notice that S qontains at least n2 element.s since the sets 
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Ray(ei) have only the origin as a common point and S does not meet 

the origin. 

The next theorem attempts to answer the question raised at the 

first part of .this chapter. 

Theorem 3.~: Let p e: p such that p f. O. 
n 

If there exists a set 

S = {a1 , .•. , a02 } · C [p:l] such that n(S) • Lev1p, then p is not 

an extremal element of p • 
n 

Pr0of: .. By the previous theorem, it can be assumed with loss of 

generality that ai • (O, ••• , aii' ••• 0) • a1iei' where a11 > O. 

Let x e: E:2\{0}. Then by Theorem 3.1 p(x) > O. Since 

x 
e: Lev1.P "" n(S), 

n/p(x) 

it follows from Theorem 2. 4 that 

x ---s:A. 
n/p(x) 

where A. .:._ 1, ~i ~ 0 and 

2 
n 

I 
1 

2 
n 

I 
1 



Now 

2 

i = P (n,~w) = + t •1a1) 

n = >. ~ 1. 

Therefore, An • 1 which implies A • 1, Hence, 

Also, suppose 

2 
n 

x • nv'p(x) L ai ai. 

1 

x • n/p(x) 

2 
n 

I 
1 

That is, suppose the representation is not unique. Clearly, 

Therefore, 

2 n 

0 = I 
1 

= ((al 

2 
n 

=I 
1 

2 n 

(ai - apai = l: 
1 

(ai - aj_)aiiei 

- ai)all' ... , (a 
n2 - a~2)an2n2). 
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'~ 

Thus, for all i, (a1 - a;.) aii = 0 and aii . > 0, . which_ implies that 



ai • ai. Hence,. the. repres:entation for 

n2 

x • nlp(x) 2: a1ai 

1 

is unique. To illustrate the relatioqship between the a1 and x, 

den,ote 

n2 

x ·• nip(~) L ai(x)ai ~ 
1 

In order to show that. p 

will be necessary.tow'rite p 

are not· proportional to p •.. 

is not an extremal element of P , it . . n . 

as. a sum of elements . in p e: P which n 

' ' r 

Now for every. i e: {l, ••• ,• n2} defiµ.e 

o, ' x. o. 
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In either case, 

It remains to be shown that each 

n-homogenity. Let a > 0 and 

f i belongs to 

If x .. o, 

p. 
n 

then 

Hence, n 
fi(ax) = 0 =a fi(x). Suppose x ~ O. If a. = O, 

Thus, n 
· f i (ax) .. 0 = a. f i { x) • Suppose x ; 0 and a > 0. 

n2 

x = nlp(x) L °'i(x)ai. 

1 

This implies that 

a.x = 

2 
n 

= nlp(ax) ~ ai(x)ai. 

1 

Therefore, ai(ax) = ai(x). Henc«?, for each i 

Thus, for all a > 0 and + 
x e: En2' 
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First show 

ax= 0. 

then ax = O. 

Then 

Now show superadditivity. + Let x,y e: E02 • If x = 0 and y = O, 

then x + y = O. As a result, fi(x + y) = 0 = fi(x) + fi(y)~ Suppose 

x = 0 and y # O, n 
then fi(y) = ai(y)p(y). Also, x + y = y. Hence, 
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fi(x + y) = fi(y) = fi(y) + fi(x). Now suppose both x r/: 0 and y f. O. 

Then 

Hence, 

Then 

2 
n 

x = n/p(x) I 
1 

2 
n 

CLi(x)a:i, and y = nlp(y) L CL:i,(y)ai. 
1 

= .. · p (x) CL + .. I . Pty;L . CL . P (x + y) (Cl . n )n 
. p(x +'y) · i(x) \J p(x + y) i(y). · 

Ii( n I ··. P (x). . . CL . )n + ( n I . p(x) CL ) n] (x + ) 
> ll \/ p(x + y) i(x) V p(;ic + y) i(y) l' · Y 

= [ p (x) . n + · .P (y) n J ( + ) 
p(x + y) CLi(x) p(x +y) CLi(y) P x Y 

Therefore, fi (x + y) .:_ fi (x) + fi (y) + for all x,y E En2• 

To show fi E Pn' it only remains to b-e shown that fi is 

continuous. ln fact from Proposition 1.10, it is sufficient te show 

that 

x f. 0. 

f. is continuous for each x f O. 
l. 

Let such that 

assume xk f. 0 for each k. Then 

Suppose + 
x E :En2 such that 

Without loss of generality, 



Also, 

n2 

x = n/p(x) ~ a.i(x)ai and ~ = n/p(xk) 

1 

x ---+---

which implies that 

However, 

2 
n 

'\'1 =Li 
1 
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a.(.)a.-+ 0. 
l. x l. 

Therefore, for each i, (a.(, ) - a. ( ))a ... + o, which implies that 
i xk l. x · ii 

As a resµlt, 

f. (x). 
l. 

Hence, fi is continuous. Thus, ea.ch fi r:: Pn· 



Lastly, show the. f 1 are not proport;J.onal to p. Suppose 

fi = crp, a > O. Since p(a1) = 1 and 

then 

Hence, 

Now consider aJ for some j ;. i. Since p (aj) = 1 and .. 

then Thus,·· 
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a contradiction. Therefore, there does not exist a real number a > .0 

such th~t Hence, p is not an extremal:element of P. n· 

The tec~nique used in .this proof pr0vided the motivation from 

which arose Theorem 4.2 in the next chapter, Theorem 3.3 answers the 

question raised at the first of th.is chapter for a finite set S that 



contains exactly 2 
n elements of 
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[p:l] and has the property that 

n(S) = Lev1p. The question is still open if S 2 contains more than n 

elements. 

In trying to determine whether or not p E .p is an extremal n 

element of pn' it is important to determine how f and g are 

related to p when p = f + g. One immediate question is the following: 

If p = f + g, then how are the sets Lev1p, Lev1f and Lev1g 

related? The following proposition is an attempt to she.d some light on 

this question. First consider the following lemma: 

Lemma 3.1: Let K be an-convex set. If 0 < a. ~ 1, then 

K C. a.K. 

Proof: then 1 is n-convex and Let x E K, x = - (a.x). Since a.K a. . 
1 then a.K. Hence, K C a.K. - > 1 X E 
a - ' 

Proposition 3,2: Let p, f and g be nonzero elements o~ 

If p = f + g, then 

Proof: If x E Lev1 f, then p(x) = f(x) + g(x) ~-1' which 

implies that x E Lev1 p. Hence, Lev1 f C Lev1 p. Lik~wise, 

Lev1g C Lev1p. Therefore, Lev1f U.Lev1g CLev1p, and hence 

n(Lev1 f U Lev1g) C Lev1p. 

Now let If f (x) > 1 or g(x) > l, then 
' 

•. --.,..,, .. l 

x E n(Lev1 f U Lev1 g) C ~ n(Lev1 f U Lev1 g) 

P. • n 
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by Lemma 3.1. Suppose f (x) < 1 and g(x) < 1. If f(x) = O, then 

1 ..::_ p(x) = f(x) + g(x) = g(x), a contradiction. Hence, 0 < f(x) < 1. 

Likewise, 0 < g(x) < 1. Then 

1 x=-
2 [n~ x n~ x J vf(x) . + vg(x) . , 

0 /f (x) 0 v'g (x) 

where 

and 

Also, 

(nv'f(x)) n + (nv'g(x)) n = f(x) + g(x) = p(x) > 1. 

Therefore, 

The following are three basic properties of the sets Lev1p and 

[p: 1] • 

Proposition 3.3: If then p _:. q if and only if 

Proof: Suppose. p ..::_ q. Let x e: Lev1 q, then p (x) ..::_ q (x) > 1. 

Then x e: Lev1p, which implies that Lev1q C Lev1p. 

Now suppose Lev1q C Lev1p. Let + Clearly, if q(x) x··e: E 2 • 
n 

0 

then p (x) ..::_ q (x). Therefore, suppose q(x) > 0. Then 

Hence, 



since Lev1q C Lev1p. This implies that p ..::._ q. 

p(x) 

Let 

Then 

Thus, 

Propos i.tion 3. 4: If a > 0, then 

and a.Lev,p =Lev p, 
I\ an>.. 

l'roof: Let x E Lev>..ap. Then ap(x) ..::._ >.., which implies that 

A. 
> -. -a 

Hence, 

A. 
p(x) > ~ ' -a which implies that ap(x) > A. Therefore, 

Now let x E Lev p. 
n 

Then n 
p(x) ?_.a A. Hence, 

1 

a >.. 

p(x) > A.. 
n 

a 

which. implies that Therefore, 
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and aLev,p =Ley p. 
I\ an/.. 

Proposition 3.5: If p E p and a;::_ O, 
n 

n a[p:l] = [p:a ]. 

then 

Proof: The proof is similar to the preceding proof. 
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CHAPTER IV 

EXTREMAL ELEMENTS OF P n 

The first theorem gives some of the extremal elements of P . It n 

is conjectured that this set includes all of the extremal elements of 

r . Tl).e following lenunas will .be needed. 
n 

Lemini:i 4.1: Let p ,q e: P , 
n 

Define 

p A q(x) = min{p(x) ,q(x)}, 

Then p I\ q E p • n 

Also, 

Proof: First not;i.ce that p A q is n-homogeneous, that is, 

p I\ q(ax) = min{p(ax),q(ax)} = min{a0 p(x),anq(x)} 

= anmin{p(x) ,q(x)} = a0 p I\ q(x). 

p I\ q(x + y) = min{p(x + y), q(x + y)} 

> min{p(x) + p(y), q(x) + q(y)} 

.:_ m:im{p(x) ,q(x)} + min{p(y) ,q(y)} 

= p I\ q(x) + p I\ q(y). 

7Q 



[ 3 ] • 

Finally, p /\ q is continuous since 

Therefore, 

1 
P " q = 2 <P + q - l P - q I) 

p /\ q e; .p • 
n 

For all k = 1, •.. , 2 
n ' let 

+ x = (x1 , ... ,xi) e; E 2 . 
n n 

where 

Then pk e; Pn' · With this in mind, consider the followin~: 

Lemma 4.2: 

follows: 

Then p e; P . 
a n 

+ Let a = (a1 , ... , a 2) e; E 2\{0}. 
n n 

Define 

p (x) 
a 

80 

as 

Proof: Without loss of generality, assume the nonzero coordinates 

of a are 

Lemma 4.1 implies 

p(x) 

pe;P-, 
n 

2 k < n . Let 

Now for x given suppose. 

p(x) 
1 n 

= -- x n l ' 
al 

l<l<k. Thenforevery ie;{l, •.. ,k} 



Therefore, 

This implies 

1 n 1 n 
- xi > - x.e.· • n - n 
ai a.e. 

n 
n ai n 

X. > - Xo • 
i - n -l-a.e. 

x.e. 
=-a 

a i' .e. 

with equality when i = .e. If 2 i e: {l, •.• , Il }\{1, ••. , k}, 

ai = 0 in which case 

x.e. 
x · > -.- a .• 

i - a.e. i · 

Thus, 

Notice that the~e does not exist 

such that x > A.a, since otherwise .,.. 

Hence, 

81 

then 
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n k A L .P )<x) (4-1) 

for every which ~mplies that 

ak 

p E p • a n 

Notice that if ai is a nonzero coordinate of a and 

( ) E+ 
x = xl' ••• , xn2 E n2 

such that xi = Q, then x > Aa implies A = 0. 

Al!;!O, if then 

Thus, p (x) = 0. a 

In general, if p E p' n 
[p :l] is dif f icul~ to character-

ize. However, a characterization is possible when p = p a 
for some 

a :f O. 

To do this, let a = 

i E { 1, 2 
••• ' n } , 

· Lemma 4. 3: If 

define 

+ a EE 2\{0}, 
n 

[p :1] 
a 

then 

2 
n 

=U 
1 

R(a.). 
1 

Proof: Let y E R(a.). 
1 

Clearly, 'I ~a. 

exist A. > l such that y ~ I.a, for otherwise 

by definition p (y) = 1. 
a This implies that 

[p : 1]. 
a 

a :f 0. for every 

Notice there does not 

a > I.a > a i...... i i. Hence, 
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Now suppose y e: [p : 1] • 
a Considering equation (4-1), there exists 

2 
k e: {l, ••• , n} such that ~ > 0 and 

This implies 

ie:{l, .•• , 

Hence, n n 
Yi 2'.. a. 

l. 

that ai = O, 

n 
yk 
- = 1. 

n 
~ 

n 
~' which in turn implies 

such that a. > 0, 
l. 

which imp.l:i,.es 

n· 
Yi 
- > 1. n
a. 

l. 

y. > ai. 
l. -

If 

then y. >. ai. Therefere, y 
l. -

[p : l] 
a 

2 
n 

=U 
1 

R(a.). 
l. 

For all other 

i e: {l, ... ' n2} such 

e: R(ak). Hence,. 

Using this result, it is possible to.show that Pa= Pb if and 

only if a = b. 

Comment 4.1: pa = Pb if and only if a = b. 

Proof: Clearly, a = b implies Pa = Pb• S'-1.ppose Pa = Pb. 

Then 

2 2 n n 
u R(ai) = [p : l] = [pb: l] =U R(b.). 
1 

a 
1 

l. 

If a # b, then, without loss of generality, there exists k such 
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that 81<; >bk. Let x e R(bk). Th~µ. ~=bk<~· Hence, x ~ R(ak). 

Therefore, x e R(a1) for some i ~ k· Then xk ;_ ak > xk' a cont~a

diction. Heµ.c:;e, a: = b. 

Next pa is .shown to be an extremal:eleme,:lt of 

Theorem 4.1: The tunction pa is an extremal of p. 
n 

Proof:. Suppose p. = f_· + g~ Let y e R(a.), where a. . l. 
2 . 

i e { 1 , . . , , n } , . thetl 

p (a)= p (y) = f(y) + g(y) >-f(a) + g(a) = p (a). a. a. . - · a 

This implies f(y) =· f(a,) and g(y) = g(a), since . f(y) .:. f(a) and 

g(y) .:. g(a). Also, pa(a) = f(a) + g(a) implies p (a) > f(a) and a - . 

p (a)> g(a). Thetefolie; there exists a> 0 and 13 .:_.O such that 
a -

apa(a) = f(a) and Sp~(a) = g(a). 

Aga.i0 , without loss of.generality, suppose·the nonzero coordinates 

of a are a1 , ... , ~· Let such thi!lot x1 > 0 , • • • , -~ > O • 

Then :for every i e {l, •• , , k} there exists ·A. > 0 such that 
l. . 

j € {l, ... ' 
when i = j. 

k} such tt/.at ·· A = A.. Rene~, AXi ~ a1 with equality 
J. 

2 Clearly, .if i e {l, •.• , n ·}\{!, ••. , k}, then 

Therefore, AX e R(a.). Let y =Ax. 
J ·, 

1 Then x = I. y, where 

y E R(a.). Therefore, 
' J 

f(x> =f(~y)=Lf(y) 
(\ . An 

= L f(a) = L·ap (a) 
All · An a 



Clearly, if x e: E+ 
n2 

... a.p (x). 
a 

such that :x;; = 0 · for some 
:i. 

i e: u, ... ' k}, 

then 0 = p (x). 
a Th;i.s implies f(x) = O, which ·in turn implies that 
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f(x) ;::: a.p (x). In either case f (x) = a.p (x). Hence, f = ap • Like-
a a a 

wise, g = Sp • Therf!fore, Pa is an extremal,. element .of· p. 
a n 

Another property .of the func-tio"Q.s · pa . is ·of intei'East. 

Proposition 4.i: . The funct;i.on p8 is minimal in the set of .all 

elements of Pn which· agree with p at a. 

Proof:' Let g e: P such that g(a) c; 1 = p (a). Without loss of 
n . a. 

generality, :assume tqe nonzero coo~dinat.es of a are a1 , . ~., ak. 

+ E 2 • If :ic1 > 0, ••• , ~ > 0, then, as in the previous 
n 

Let x e: 

theorem~ there exists . i e: {l, ~ •• ; k}_. st.ich that x = a.y, where 

( ) ( ) n. ( . ) n ( ) n . ( ) g x = g ay = a S y 2:, a g a = a Pa, a: 

If there. exists 

pa(x) = O. Hence, 

g(x) > p (x). 
- a 

j . e: { 1, ••• ' k} such that then 

+ g (x) > p (x) • 'Therefore, for all x e: iE 2 , 
-.a n 

For these· functions . p8 . the set111. [p :1] 
a 

have the following 

properties. 
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Proposition 4.2: If a > O, then 

a[p :l] '"" [p :an] = [p :l]. a · a aa 

Proof: The first equality follows from Proposition 3.4 and holds 

in general, . It remains to be.shown that [p :an]•= [p :l]. Let 
a aa 

n x E: [p : a ] • 
a 

Th ( ) . { n } n en p x = sup A· : x > A = a • a. a As in the proof of 

Lemma 4. 2, .if p (x) = 
a 

n 
a ' then x > aa 

i E: {l, 2 
•• •.' n } such that. x = aa .• . . i J. 

and there exists 

Consider p (x). aa Since 

x _::. aa, then p (x) > 1. If pNa(x) = An > 1, then x _> A(aa) > aa, 
aa - .... 

a contradiction since x. = aai. Hence, p (x) = 1 which implies 
i aa 

that x 'E: [p. :l]. Therefore, [p :an] C [p :l]. 
aa a aa 

Now suppose x E: [p : 1 J , then p (x) = 1. aa · · aa · This implies x > aa 

and there exists 2 i E: {1, ••• , n } such that 

p (x) • 
a 

Since x ~ aa, P (x) > an. 
a -

Suppose 

xi aai. 

p (x) = An 
a 

Consider 

n 
> a ., then 

x > Aa > aa, a contradiction •. Hence, p (x) 
a 

n 
= a which implies that 

n x E: [p : a ] • 
a 

Therefore, [p :l] C [p :a0 ]. aa a 

Recall that g is the set of ·linear combinations of products of 
n 

n functions of r'. n 
let 

Then, as in the case for r· n' is an extremal element of P'. 
n 

Also, 

p (x) = [qa(x)]n, which impli¢s that p E: g • Since gn is a sub-
a a n 

cone of n u-n' 

tured that 

g . 
n 

then· p is an, extremal element of 
a 

g . 
n 

It is conjec-

+ {pa: a E: En2\{0}} represents. all the ext:rema.l elements of 



Lemma 4 • 4 : If 

n 
,---

p <x) . = / I 
l 

A. (x), 
]. 
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where Ai e: p~, is an extremal elemen.t of gn' then each Ai is an 

extremal element of p'. 
n 

not 

and 

Proof: . Suppose 

.extremal. in 

neither f 

n 
,---

P'. 
n 

or 

there exist;.s a k 

Then there exists 

g is proportiona:J. 

1, 2 
such that = ... , n 

f,g e: p~ such t;hat 

t<;> ~· Hence, 

p(x) = /I Ai(x) = A1 (x) ... (f(x) + g(x)) ••• An(:x;) 

1 

~ 

= A1 (x) • • • f (x) • • • An (x) + A1 (x) • • • g(x) • • • An (x). 

~ 
= f 

Since p is extremal in gn, there exists a > 0 and 13 > 0 such 

that 

is 

+ g 

A1 (x) ••• f(x) ••• An(x) = a.p(x) and A1 (x) ··• g(x) ••• An(x) = Sp(x). 

int + Then p(x) o. Also, as. in Proposition 1.3, each Let x e: En2' > 

A. (x) > a f(x) > 0 and g(x) > o. '.rherefore, 
]. . ' 

a.A1 (x) • • • ~ (x) • " An (x) = a.p (x) = A1 (x) • • • f (x) • • • An (x) , 

which implies that a.~(x) f (x), for all int + It follows, = x e: En2' 

as in Comment 1.3' that ~(x) = f(x) for all + This is a x e: En2' 

contradiction. Therefore, Ak is extremal in P' for each k •. 
n 
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In any convex cone,. if the sum of two µonzero elements is an 

extremal element, then the two elements are proportional. Hence, the 

only possible extremal elements of 

n 
2 

g are those elements of the form 
n 

p(x) = /[ Af(i)(x), 

1 

(4-2) 

where l(i) is a nonnegative integer and 

2 
n 

I l(i) = n. 

1 

Notice that l(i) > 0 for at most: n values.of i:::;: 1, ... ,, 2 n • More-

over, Lemma 4.4 ifD.plies the A. (x) 
J. 

must be extremal elements of p ' • 
n 

The Lemma 4.4 anq these connnents give conditions that are necessary 

when p is an extremal element in 3 . 
. n 

These conditions are not suf-

ficient as will be seen in Proposition 4.3. 

Attention will now be given to considering the extremal elements of 

P. 
n 

Theorem 

number of i 

4.2; Let 

= 1, . •, . ' 
not an extremal element 

p 

2 n· 

of 

be defined as in (4-2). 

for which_ l(i) > o. If 

p . 
n 

Proof: Without loss of generality, assume 

k 

p(x) = /[ Af(i)(x), 

1 

Let k be the 

]:<. > 1, then p is 



where l(i) is a positive integer, 

k 

I l(i) = n 

1 
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and the A. are distinct (pairwise nonproportional) extremal elements 
1 

in p'. Define 
n 

A. (x) 
1 p (x) , A1 (x) + • • • + A.. (x) > 0 A1 (x) + + ~(x) -1<. 

f. (x) = 
1 

0 A1 (x) + ••• + ~(x) = O. 

If A (x) + ••• +A (x) 1 k O, then Ai (x) 

Hence, 

k 

p(x) = 0 = I f. (x). 
1 

1 

If A1(x) + ••• + ~(x) > O, then 

In either case 

It will now be 

n-Homogenity: 

Hence, A1 (ax) = ... 

k 

p(x) =I 
.1 

k 

p(x) = I 
1 

shown that f. e: 
1 

Let a > 0 and 

f. (x). 
1 

f. (x). 
1 

Pn' for 

+ x e: E 2· 
n 

= ~(ax) = o. Tbyerefore, 

= O, for i = 1, ' .. ' k. 

each i. 

If a = O, then ax= 0. 

f. (ax) 0 n 
fi (x). = =a. 

1 
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Suppose a> 0. If 0 = A1 (ax) +•••+~(ax)= a(A1 (x) + ••• + Ak(x)), 

then A1 (x) + ••• + ~(x) = 0. Hence, n f.(ax) =a fi(x). 
1· 

Suppose 

a > 0 and a(A1 (x) + ..• + ~(x)) = A1 (ax) + • • • + ~(ax) > O, 

A1 (x) + ••• + ~(x) > 0. Therefore, 

Ai(ax) 
f.(ax) = p(ax) 

1 A1 (ax) + ••• + ~(a.x) 

So for all a .> 0 

A. (x) 
n 1 n 

=a A1 (x) + ••• + Ak(x) p(x) =a 

and + 
x E E 2' 

n 
f. (ax) 

1 

n =a f 1 (x). 

Superadditivity: Let + x,y E E 2 . 
n 

f. (x). 
1 

Case I: If A1 (x + y) + • • • + ~ (;ic + y) = 0, then 

0 =A (x + y) + ••• +A (x + y) 1 k 

then 

which implies A1 (x) + • • • + ~(x) = 0 and A1 (y) + · · • + ~(y) = O. 

Therefore, f.(x + y) = 0 = f.(x) + f.(y). 
1 1 1 

Case II: Suppose A1 (x + y) + • · • + i\ (:>F + y) > 0, 

A1(x) + ··· + ~(x) = 0 and A1 (y) + ••• + Ak(y) = O. Clearly, 

f.(x + y) > f.(x) + f;(y). 
1 ~ 1 1 

Case III: Suppose A1 (x+y) + ••• +~(x+y) > O, 

A1(x) + ·•• + ~(x) > 0 and A1 (y) + ••• + ~(y) = d. Then· 

f. (x + y) 
1 A1 (x + y) + · • • + ~(x + y) p(x + y)' 



A. (x) 
fi(x) = i pCx) A1 (x) + ••• + ~(x) 

and f.(y) = O. It must be shown that 
i 

Ai(x + y) Ai(x) 
A1 (x + y) + ••· + ~(x + y) p(x+ y) ~A1 (x) + ••• + ~(x) p(x). 

This is true if and only if 

k 

[A (x) + · • · 1 
,--- l(') 

+ i\(x)]Ai (x + y) /I Aj J (x + ,y) 

1 

k 
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> [A1 (x + y) + ··· + ~(x + y)]Ai(x) /i AJ(j)(x). (4-3) 

1 

Consider a term on the right side of this last inequality. Without 

loss of generality, consider 

k 
r-- l(') ·' 

Ak(x + y)Ai (x) / I Aj J (x). 

1 

Now consider the term 

k 

~ (x)Ai (x + y) /i A;(j) (x + y) 

1 

on the left side of the inequality. Now 
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k 
,-- l(j) ; 

Ak(x)Ai (x + y) / I Aj (x + y) 

1 

= ~(x)Ai(x + y)Af(l)(x + y) ••• l(k)-1 Ak_ (x + y)~(x + y) 

l(l) l(k)-1 
= ~ (x + y)Ai (x + y)A1 (x + y) • • • Ak_ (x + y)~ (x) 

k 
,-- l(') 

.::_ ~(x + y)Ai (x) / I Aj J (x), 

1 

which implies that (4-3) is true. Therefore, fi (x + y) ..:::.. fi (x) + fi(y). 

Case IV: Suppose, A1 (x + y) + • • • + Ak(x + y) > O, 

A1 (x) + • • • + Ak(x) > .0 and A1 (y) + • • • + Ak(y) > .0. Then. 

and 

f. (x + y) 
1 

It must be shown that 

A.(x +.y) 
= 1 . p(x +·y), 

A1 (x + .y) + · · · + ~ (x + y) 

A. (x) 
1 

= A ( ) A.( ) p(y). 1 y + .•• + -~ y 

Ai(x) ~ Al(j) Ai(y) ~ l(j) 
..:::.. A1 (x) + • • · + ~ (x) J I j (x) + A1 (y) + • • · + 1\ (y) J I Aj (y) • 

1 1 
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This will be true if and only if 

k 
r- l(') 

Ai (x + y) [A1 (x) + • • • + ~ (x) ][A1 (y) + • • • + ~ (y)] / I Aj J (x + y) 

1 

k 
r- l(') 

..::_ Ai (x) [A1 (y) + • • • + ~ (y)] [A1 (x + y) + • • • + ~ (x + y)] / I Aj J (x) 

1 

k 
r- l(') 

+Ai (y) [A1 (x) + • • • + ~(x) ][A1 (x + y) + • • • + ~(x + y)] /I Aj J (y). 

1 

Since 

k 

Ai (x + y) [A1 (x) + • • • + ~ (x) ][A1 (y) + • • • + ~ (y)] Ti Af (j) (x + y) 

1 

k 
r- l(') 

..::_ Ai (x)[A1 (x) + • • • + ~ (x) ][A1 (y) + ~ • • + ~ (y) J 11 Aj J (x + y) 

1 

k 
r- l(') 

+ Ai(y)[A1 (x) + ••• .+ ~(x)][A1 (y) + ••• + ~(y)] 11 A. J (x + y), 
' J 

1 

it is sufficient to show 

k 

Ai (x) [A1 (x) + • • • + ~(x)] [A1 (y) + • • • + ~(y)) /i Af (j) (x + y) 

1 

k 
r- l(') 

_:_Ai (x) [A1 (y) + • • • + ~ (y) ][A1 (x + y) + • • • + ~ (x + y) l / I Aj J (x) 

1 

(4-4) 



and 

k 
r- l(') 

Ai(y)[A1 (x) + ••• +~(x)][A1 (y) + ···+~(y)] /[ Aj J (x+y)' 

1 

k 
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> A.(y)[A1 (x) 
- l. 

+ ... r- l( ') 
+ ~(x)] [A1 (x + y) + • • • + ~(x + y)] / I Aj J (y). 

1 

(4-5) 

Consider (4-4). Clearly, (4-4) holds when Ai(x) =.O. Suppose 

A.(x) > 0, then (4-4) holds if apd only if 
l. 

k 

[A1 (x) + • • • + Ak(x)] /J Af (j) (x + y) 

1 

k 

> [A1 (x + .y) + • • • + ·~ (x + y)] /J Af <J) (x). · (4~6) 
1 

Consider a term on the right si.de of (4-6). In fact, without loss 

of generality, consider 

Consider the term 

k 

~(x + y) /J A;(j) (x). 

1 

k 

~(x) /J Af (j) (x + y) 

1 

on the left side of (4-6). Since 
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k 

i\(x) /i Af (j)(x + .y) = i\(x)Ai(l) (x + y) 

1 

.e. (k)-1 Ak:· (x + y)~(x + y) 

l(l) l(k)-1 
= i\ (x + y)A1 (x + y) • • • ·1\: (x + y)i\ (x) 

k 

~ i\(x + y) /i Af(j)(x), 

1 

inequality (4-6) is true, which implies (4-4) holds. Likewise, (4-5) 

holds. Therefore, each 

Continuity of f.: 
J,. 

f. is superadd:Ltive. · 
l. 

Let and such that 

yj + x. Suppose A1 (x) + ••• + i\(x) > O, then without loss of 

generality, it may be assumed that A1 (yj) + · • • + i\(yj) > 0 for each 

j. In this case 

Now suppose. A1 (x) + . .. + Ak(x) = O, then p(x) = f. (x) = o. If 
l. 

there exists m E: {l, ... , . k} such . that Am(yj) = o, then 

fi(yj) = 0 = f. (x). Suppose. A (y.) > o, for m = i, ... , k. Let 
l. m J 
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(4-7) 

As yj -+ x, A (y.) -+ A (x) = O, for each m. If there. is a A. ~bse-m J, m ,. 

quei;ice . of { y j } such .that . :e.ach . Am (y j) . > 0, . then . ( 4-7) implies . that 

f:i, (yj) -+ 0 as the sul>se.que"Q.ce approaches. x. Therefore,. given e; > 0, 

there. exists an integef. N sue~, that j .::_ N · implies that 

i.e. , f · is coi;it:i,nuous • Hence, ea.ch f i e; Pn. 

It remains to be $how:n that the.func'b;iC!lns :l=:f. form a nonpropor-

+ tional decomposition of p. Suppose fi(x): = ap(x), for all x e; En2 . 

+ + 
Let x e; E n2 • There exists a se~uence {y j} C :f;nt E n2 such tha.t 

+· yj -+ x. Since yj e; ~µt En2 , .. A1 (yj) > O, ••• , .Aic_(yj) > 0 and 

p(y.) > O. Hence; 
J 

which implies that 

A ·(y ) 
i j . . 

or 



Also, 

Hence, 

Since A1 , .•. , Ai, .•• , .~ . are pairwise nonproportional extremal. 

elements in· f>' this is a contradiction. The.refore, there does. not n' 

exist a> 0 such that f. = ap. Hence, the decomposition is non
l. 
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proportional, which implies that p is not an extremal element of P. 
n 

Two questions innnedia.tely .arise. First, is f. e: g ? Secondly, 
l. n 

is every extremal element of f>' of the form qa' where a e: E+~{O}? n n 
If both answers are affirmative, then every extremal element of 0 is ""n 

of the form pa, where It _is entirely possible that the 

functions f i do not belong to g. 
n 

The following is an example of a.subcone of t".\ that has as un. 

extremal elements some functions that are not extremal in f> • 
n 

Example 4.1: Let Q be the set of all 
n 

such that 

p(x) = 

where il .::_ · • • .::_ in, 

2 
n 

I 
il, •.• ,in=l 

Cl • x.. • •. • 
il , .•• , in i l · 

a .. 1 i > 0 and x = (x1 , ••• , x: ·2) • 
i , ••• , n - n 

Thus, 

Qn is the set of nonnegative, superadditive n-forms. Clearly, Qn is 

a subcone of g C f> • 
n n 

Therefore, the functions ••• , p 2 
. n 

are 

extremal elements of Q. However,. these are n<Dt all of tbe extremal 



elements of Qn, l!l fact, the extremal elements of Qn are the 

positive scalar multiples of functions of the form 

where 2 
kj E: {l, ••. , n .J, 

p(x) = xkl ••• xkn' 

for j=l, ••• ,n,. and kl < 

Proof: Let p be a function of the above form. Suppose 

p = f + g, where Suppose· 

and 

where il < 

f(x) = 

g(x) = 

2 
n 

I 
il, .•• ,in=l 

2 
n 

I 
il, ... ,in=l 

< in. Then 

xkl ••• ~n = f(x) + g(x) 

a. x • • • x 
il, .•. ,in il in 

B. x · ••• x. , il, •.• ,in tl in 

<.kn. 

= "\1 a. x .. • x + ~ B x • .. x. ~ il, .•. ,in il "ifi ~ il,, .• ,in il in 

~ (a. . 1 . + B · 1 i ) x · 1 ' .. • xi ' ~ i , ... ,in i , ... , n i n 

which implies that 

a..l · + 6·1 · i , ••• ,in 1 , •.• ,in 
= { 1, 

o, 

il = kl, ••. ,in = kn, 

elsewhere. 
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Therefore, 

f (x) = ~ et x x. 
~ il, ... ,in il 1n 

=et x. ••• x =et p(x) kl , • • • , kn Kl · kn kl , . . • , kn, 

and 

g(x) 8.1 . x.l 1 , ••• ,in 1 

= 8 x ••• x. = 8 p(~) 
kl, ••• ,kn kl Kn kl,, •• ,kn • 

Hence, p is an extremal element of ~· 

Now for every x = (x1 , .. ,, xn2) c: E:2 define p(x) as 

p(x) 

where l(i) is a nonnegative integer and 

2 
n 

I l(:i,) = n. 

1 

99 

(4-7) 

Notice tha:t l(i) > 0 for at most n · values 0£ i = 1, ... , n. 

Clearly, p E Qn· In fact, the preceding exampl!e sha1ws that p is an 

extremal element of Qn· 

for which l(i) > 0 and 

extremal element of P • 
n 

If 

k > 

Tl:le 

k :is the number of 

l~ Theorem. 4. 2 says 

following proposition 

i E {l, 

that p 

spows 

possible that p is not .an extremal element of g . 
n 

2 
• II • J n } 

is not an 

that it is 
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Proposition 4. 3: Let p l:>e 4efined as in (4-7) ~ If k ;:: 2, then 

p is not an extremal el,ement of g • 
n 

Proof: Without loss of generality, assume 

p(x) 

where l(l) > 0 and l(2) > 0. As ·seen in the proof of Theorem 4.2, 

2 

p(x) = 2: f. (x) 
l. 

1 

where 

x. l(l) l(2) . . l. x1 + x2 > O, ( xl + :;K2 Xl x2 ' 

=\ 
fi(x) 

0 x1 + x2 = O. 

Consider £1 (x). Notice 

0 

Let 



g(x) = 

0 ~l + x2 = 0. 

Then Since the objective is to show that 

f · e: ~ 
1 °n' it remains to be shown that g e: P' . n 

As in Theorem 4.2, 

is continuous aqd homogeneous of degree 1. It remains to pr0ve the 

superadditivity~ 

Let + x,y e:. E 2 • 
n . 

and then 

x 1 + y1 + x 2 + y2 = O. Hence, g(x + y) = 0 = g(x) + g(y). Suppose 

y1 + y2 > O, then x1 + y1 + x2 + y2 = yl + y2 > O. Hence, 

= g(y) + g(x). 
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g 

Finally, suppose x1 + x2 > 0 and y1 + y2 > O. In this case;). it must 

be shown that 

which is equivalent t0 proving 

By direct calculation 
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- [ (xlx2yl + xlx2y2)(xl + Y1 + x2 + Yz) 

+ (x1Y1Y2 + x2Y1Y2Hx1 +Yi+ x2 + Yz)] 

Hence, g is supe+addil;ive and g 
h. Likewise, Hence, 

p is not an extremal element of . g . 
n 



CHAPTE;R V 

THE INFIMUM OF A P FUNCTION 
n 

The supl;'emum of f(x) where. f is a_convex function defined on a. 

convex set; hE!.s l;>een studied by many persons.. For 1axat11~le, .Rockafellar 

(cf. [ 7 ] , pp. 342-349). The discussi9n here will consider the infimum 

p(x), · for ~ e Pn' where x is restricted on an n-convex set.· Recall. 

tha;t if z e: n - cr(x,y), then n - cr(x,z) ;i.s not always contained 

in· n - cr(x,y) (cf. Example 1.2). 

The first two resu.l,ts are analogot,ls ~o resu.l,ts in,velving the 

supremum of a convex.funct;Lon ov~r .a conyex set. 

If c is a nonempty subset of and 

then inffp(x): x e: C} = inf{p(x): ~ e: n~C)}. 

Proof: Since C ~ n(C), then 

inf{p(x): x e: n(C)} ~ ,inf{p(x): x e: C}. 

Let x e: n(C) •.. Then . 

where A ~ l~ a1 ~ P, 

pe:P, 
n 



and x . E: ·C • Hence , 
]. 

p(x) 

k 

..:_ inf{p (x): x E: C} L 
1 

k 

a~p(xi) > L 
1 

n· a.p(x.) 
l. ]. 

a~ = inf{p(x): x E: c}. 
]. 
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Ther·efore, inf{p(x): x ,i:; n(C)} ..:, inf{p(x): x e; C}. This implies that 

inf{p(x): x e; C} = inf~p(x): x E n(C)}. 

If C, in Proposition 5.1, _is compact, tl;len th~re exists 

x ·e; C C. K such that • p(x) = inf{p (y): y e: n(C) }. The foll.owing pro-

position is analogous to the maximum principle of harmonic functions, 

Proposition 5.2: Let p E: p and K be a n-convex subset of 
n 

+ E 02 • If there exists z e; rel int (K) such that: 

p(z) = inf{p(x): xi:: K}, 

then p is zero over K. 

Proof: Let x be any other point of K. Let 

f(8) = Sz - n/sn - 1 x, 

where 8 . .::_ 1. Then f is continuous and f (1) = z. Since 

z E: rel int (K), there exists y > 1 · such that f(y) e; re.1 int (K). 



Let 

y = f(y) = yz - n/yn - 1 x. 

Then 

yz = y + n/yn - 1 x, 

z - !_ Y + n/yn - l x = !_ Y + j ln - l x - !_ Y + n / 1 - ( Yl )n ·x. 
Y Y Y yn. Y j 

Let 

Also, 

1 a = - , then a e:: (O,l) 
y 

and 

z = ay + n/1 - an x. 

p(z) ~ anp(y) + (1 - a0 )p(x) .:_ anp(z) + (1 - an)p(z) = p(z). 

Hence, p(x) i p(z), which implies that p(x) = p(z). Now z e:: K 

implies th<"!-t 2z e:: K. Therefore, 

n 2 p(z) = p(2z) = p(z), 

which implies that p(z) = 0. 
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The following proposition is used several times in the remainder 

of this chapter. 

Proposition 5.3: Le:t p e:: p. 
n 

If there exists · z e:: n - cr(x,y) 

such that. p(z) = inf{p(w): we:: n - cr[x,y]}, then p(x) = p(z) = p(y). 
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Proof: Since z E .n - cr(x,y), then z =ax+ Sy, where a> O, 

S > 0 and an + Sn = 1. Hence, 

n n n n p(z) ..:_a p(~) + S p(y) ..:_a p(z) + S p(z) = p(z). 

Th.us, p (z) { p (x) and p (z) { p (y), w]:iicl:i implies that 

p(x) = p(z) = p(y). 

In the results to follow n-e~treme points are used to characterize 

those points of c~rtain sets for which the infimum of a fui:i-ction 

p E p is obtained. 
n 

Proposition 5.4: If K = n(C), where C is a convex subset of 

p e P and the~e exists z E K such that 
n 

p(z) = inf{p(x): x EK}, 

then z is an-extreme point of K and z e C. 

Proof; First notice. that z E C, since otherwise by P;-oposition 

2.4, z = ax wqere a > 1 and x E C. Hence, 

p(z) n =a p(x) > p(x) ..:_ p(z), 

a contradiction. Suppose z is not an n-extreme point of K. Then 

there exists x,y e K such that z =ax+ Sy, where a·> O, S > 0 

and an+ Sn = 1. By Proposition 5.3, p(x) = p(z) = 'p(y). As above, 

x,y s C. Since a + S > 1, 

z = (a + S) ( a ~ S x + a ! S y) > a ~ S x + a ! S .y • 
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The set C is convex implies .that 

a. s 
a. + S X + a. + S y E C. 

Hence, 

a contradiction. Therefore, z is an n.-extreme point of K. 

In the following the set K is allowed to be more general but p 

is restrict:ed to belonging to g, 
n 

Theorem 5.1: If K is a n-convex subset of 

and there exists z EK such that p(z) = inf{p(v): v EK}> 0, then· 

z is a n-extreme point of K. 

Proof I Su:ppose z is not a n-extrem~ p9int o~ . K. Then there 

exists x,y E K such that z = a.x + Sy; where ' .. a. > o, 13 > 0 and 

n + Sn = 1. Since let a. p E gn' 

As in Proposition 1. 7., X E int E+ implies that A}i (x) > o, for 
n2 

each i and j. Likewise, Aj i (y) > 0 for each i and j . By. 

Proposition 5.3 p(x) = p(z) = p,(y). Hence, 



p(y) = p(z) = t (ti Aji (ax + Sy)) 

~ t (ti (oAji (x) + SAji (y))) 

l 
( ~I aAji (x) + /:I SAji (y)) 

= t (fi aAj 1 (x)) + t (ti aAji(y)) 

·=an f (ti Aji(x))+an f (fl Aji(y)) 
l l 1 1 
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This implies that 

n 
,..--

{ I 
1 

(etA •• (x) + SA .. (y)) 
Jl, Jl. 

n n 
,.-- ,....--

= /'I aAji (x) + / I 13Aji (y) 

l 1 

for each j, a contradiction, since Ct > 0' 13 > 0' A .. (x) > 0 and 
J l. 

A .. (y) > 0. Therefore, z is an-extreme paint of K. 
J l. 

The following example shows that if the condition K C int E + is 
n2 

removed, then the theorem is no longer true. 

Example 5.1: For let 
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Le:t K = 2({(2,3,0,0),(0,0,2,3)}),. Notic~ that 

p((2,3,Q,0)) = p((0,0,2,3)) = 6. 

LE!'t· 

z = ~ (2,~,0,0) + 4 (0,0,2,3) = ( l, ~ ,13, 3;! )· 

Then z e: K. Also, p(z) = ~ + ~ = 6. If x e: K, then 

x = a(2,3,Q,O) + 6(0,0~2,3), 

where . . a 2:_ 0 , and 
2 2 . 

a + 13 2:,_,_l. Hence, 

2 ' 2 
p(x) 2:. a p((2,3,0,0)) + S p((o,0,-2,3)) 2:. ,6. 

H;ence,. p(z) = inf{p(x): x e: IO and z_ is not a 2-extreme p()int of I\. 

It;: shou:t,4 be noted, however, tha_t in Theor,em 5.1 the ~ondition 

+ that · K C itlt E nZ is stronger than n,~cessary. Hence, it;. shou_ld be 

possible to q~tain results analogous to those.of Theorem 5.1 ,for mqre 

general n-col;'lvex se.ts K._ 

The analogous question for 
'· 

p e: p 
n 

+ 
and KC: int En2 is more 

difficult to.answer. Considering Example 2.3, it would perb,-aps se.em 

likely that ;Lf. z e: n - cr(x,y) where X;Y e: K,. then either z > x -

or z > y •. This would imply that p (z) > p (x) or p (z) > p (y), - which 

in turn would imply that the · inf{ p (x) : x e: K} · is obtained at an · 

n-extreme point . of · K if it is obt~dned_ at all. However, it is not 

true that x,y e: K C: int E+ implies 'that 
n2 

z .· > x or z > y, for all 

z e: n - ci::_(x,y). For. example, consider 2 - er ( { (4 ,1) (1 ~4)}). Let --

10 a = 17 • · Then 



Therefore,. 

( 40 + 1189 10 + 41I89 ) 
17 , 17 

= a(4,1) + /i - a2 (1,4) e: 2 - cr({(4,l),(1,4)}). 

However, 

40 + 1189 
----·- < 

It can be shown, for 

17 

p e: p 
n 

40 + 20 
17 < 4 • 

and K an n-convex subset of 

+ int E 2 , that if there exists z e: K such that 
n 

p(z) =.inf{p(x): x e: K}, 

then either z is an n-extreme point of K or there exists 

x = (x1 , .. ~, x 2) and y = (y1 , ••• Y 2) 

such that 

z = ax + nJi - an y, 

where 

{ } { 

2 2 
2x.y. y. - xi· 

1 1 1 
O < min 2 2 : xi ~ y i 2_ a 2. max ~2--.-2 : 

x. + y. y. +xi 
1 1 1 
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CHAPTER VI 

SUMMARY 

The basic purpose, of this research has. been, to st:udy. the fup.ctions .. 

that . belong to P n and to study n-.convex sets. . It was found that the 

product of n monotone concave gau~es was a function in· Pn. In fact, 

the collection gn of all linear combinations of such products is a 

subcone of P • 
n 

The sets Lev p, where p E P and a > .0 are n..,convex. Also, 
a· n 

for any set S then-convex hull of s· i~ given by 

k 

L: 
1 

In particular, n(S) is inverse starlike from the origin. Several 

examples of the 2-convex hull of point;s in the plane were gf~n. The 

n .... convex hull of a convex set C was s·hown. to be fox: a ;_ 1, x ·g C}. 

More<;>ver, if K and C are two n-convex sets, where Cr(C) :f 0; 

K :f .0 and K (I C = 0, then .there exists a ~yperplane that separates 

K and C. Also,, if K and C are disjoint n-convex sets in a li:p.ear 

space L, then .there exists complementary n-convex sets A and B of 

L such that K C A and C C B. Moreover, A and B are convex 

sets. Further, if x, y, z are three distinct points of a,linear 
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space, u En - cr(x,y), v En - cr(y,z), then 

(n - cr[z,u]) () (n - cr[x,v]) r/: '1\. 

In fact, the point of interse.ction is not always unique. 

If p E p such that p :/: 0 and s = {al, ... , a} C [p:l] n m· 

such that n(S) = Lev1p, 

where x :/: o, then p(x) 

s on each positive axis. 

extremal element of . P . 
n 

then it was shown that for all + 
X E En2' 

> o. In. particular, there exists a point 

Moreover, if 2 m = n , then p is not an 

+ For each a E En~{O}, the functions pa' where 
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of 

are all extremal elements of P . 
n 

Since 8n is a subcone of P and 
n 

since each where qa (x) = sup{A.: x .:_ A.a} E P~, then 

each function is an extremal element of (cf (3), Figure 15). 

Notice that the functions that belong.to (4) of Figure 15 are the 

functions where 2 k=l, ••. ,n. Also, if 

p(x) 

where Ai E P~, is an extremal element of. g , then each. A. is an n . l. 

extremal element in pr 
n· One problem for further study would be to 

determine what are the extremal elements of P'. Are they just those 
n 

functions qa, where a E E : 2\ {O }? If so, then (2) and (5) in Figure 

15 are empty~ Does there exist an extremal element A, which is not.a 

qa function, in P' 
n 

such that. p(x) = [A(x)]n ·is an extremal element 



(1) 

(2) 

Tue p Functions 
a 

Unknown 
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f> n 

g 
n 

(8) 

I 
_ --) Nonextr..emal El.em.ents 

of Q 
n 

-- Ex.U:.ema.l....Ele~ of~ --'.) ~t,remal Elements of _Jin 

Figure 15. 



of p 
n 

element 

p(x) = 
Figure 

(cf . (2)' Figure l~)? Moreover, does there exist an 

A, again 

[A(x)]n is 

15)? It was 

not.a qa 

an extremal 

shown that 

function, 

element 

if 

2 
n 

in P' n 

of $n 

p(x) = ~ Af (i) (x), 

1 

such that . 

but not p 
n 

where -l(i) is a nonnegativ~ integer.and 

2 
n 

~ l(i) = n, 

1 
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extremal 

(cf . (5), 

belongs to g and if k is the number of 
n 

2 i = 1, ... , n · f Qr which 

l(i) > O,. then k > 1 implies that p is not an extremal element of 

P. Some.immediate problems for further study woulq be: Oetermine 
n 

what functions, if any, belong to p~g 
n n (cf. (1), Fi.gure 15). In 

particular, do the functions in Theor.em 4.2 belong.to g ?. Notice 
n 

that together Proposition 4.3 and Example 4.1 give examples of functions 

that belong to (6) of Figure l~. Is it possible to find a topology for 

p 
n 

in which the closure of 30 would be Pn? 

Proposition 4. ~ implies the funct~ons . p that; belong t0 (9), if 

any; in Figure 15 are of the form 

p (x) = xl(l) ••• xl(n2) 
1 '2 

n 

where l(i) is a nonnegative integer, 



n2 

L l(i) = n 

1 
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and there exists at least three i = 1, . ~ . ' 2 n for which l(i) > 0. 

Also, the functions in (7) of Figure 15 are those p E: Q 
n 

that can be 

expressed as the sum of two or more functions that also belong·to Qn. 

The functions in (8).-.of .Ej,gure 15 .a.rce for the most part unknown. 

It wq.s found that for p and K a n-convex subset of + p E: En2' n 

the existence of z E: rel int K such that p(z) = inf{p(x): x E: K} 

implies p is zero over K. Further, if K = n(C), where C is a 

+ 
E 2' p E f> n n 

convex subset of and there exists z E: K such that 

p(z) = inf{p(x): x E K}, then z is a n-extreme poin~ of K and 

z E: c. Also, if K is a n.-convex subset of int + 
En2' p E: gn and 

there exists z E: K such that p(z) = inf{p(v): v E: K} '.> 0' then 

is a n-extreme point of K. 

Numerous questions arise which woulQ. be of interest for further 

research. For example, if p E P and K is a n-convex subset of 
n 

+ EnZ' then does there exist an-extreme point of K at which p 

assumes its minimum value over. K? If not, what modifications are 

necessary for the result to hold? Perhaps K might be chosen to be 

z 

the n-convex hull of a compact set. Is it possible to prove a Krein-

Milman type theorem for n-convex sets and n-extreme points? Another 

possibility would be to assume the functions in P are differentiable 
n 

and study the cone P. 
n 

A further study of n-convex sets analogous to 

that for convex sets might prove profitable. Also, a further study of 

the topological properties of n-convex sets might prove interesting. 

Certainly, results analogous to Helly's Theorem and Blaschke's Theorem 
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for convex sets would be of interest. Finally, let p be a superad-

ditive, nonnegative, homogeneous function of degree n defined on some 

subset of + find an extension of all of + For example, En2' p to En2' 

let J+ CE+ where J+ = 
n2 n2 n2 

+ + 
p: J n2 + El such that p(x + 

for every nonnegative integer 

{(xl' ... , :x;n2) : 

y) _:.p(x) + p (y) 

Ct' extend p 

xi is an integer}. 

and p (ax) = a 

to an element of 

n p(x) 

P, 
n· 

If 



BIBLIOGRAPHY 

1. Allen, J.E. "Starlike Sets, Inverse Starlike Sets, and a General
ization of Convexity." Doctoral Thesis, Oklahoma State 
University, . (1963). 

2. Choquet, Gustave. Lectures. in Analysis Volume II: Representation 
Theory. W.A. Benjamin, Inc.; New York, (1969). 

3. Kelley, John. L. General Topology. D. Van Nostrand Company, Inc., 
Toronto'- (1955). 

4. Landsberg, M. "Lineare topologische Raiime, die nicht· lokalkcmvex · 
sind." Math. Zeitschr .• , 65, pp. 104-112, (1956). · 

5. Marcus, Marvin and Mine, Henry K. ! Survey of Matrix Theory and 
Matrix Inequalities. Allyn and Bacon, Inc., Boston, (1964). 

6. McMillan; R. D. "The Permanent Function." Doctoral Thesis, 
Oklahoma State University, (1969). 

7. Rockafellar, R. Tyrrell. Conve:ic Analysis. Pr.inceton University 
Press, Prince ton, (19 70) • 

8. "Monotone Processes of Convex and 
Concave Type. II . Memoirs of the Amer:J.can Mathematical s_ociety; 
77' (196 7). 

9. Valentine, Frederick A. Convex Sets. McGraw-Hill Book Company, 
· N~w York, (1964). 

10. Van derWaerden, B~L. "Aufgabe 45." Jahre$bericht der Deutsche 
Ma1;:hematiker - Vereiningung, 35, .p. 117, (1926)-.-



VITA. 

Melvyn William Jete.r 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: SUPERADDITIVE n-HOMOGENEOUS FUNCTIONS AND n-CONVEX SETS 

Major Field: Mathematics 

Biographical: 

Personal Data: Born.in Clovis, New Mexico, March 19, 1942, the son 
of William L. and Bonnie E. Jeter. 

Education: Attended grade school i~ Clovis, New Mexico and high 
school·in Wichita Falls, Texas, and was.graduated from 
Wichita Falls Senior High School in 1960; received the 
Bachelor of Science .degree from Midwestern University, 
Wichita Falls, Texas, with a major in mathematics, in May, 
1964; received the.Master of Science degree in mathematics 
from North Texas State University, Denton, Texas, in August, 
1966; attended Texas A & M University, College Stat:ion, Texas; 
in the summer of 1967; completed reqµirements for the Doctor 
of Philosophy degree in mathematics from Oklahoma State 
University in July, 1971. 

Professional Experience: Mathematics Instructor, W. F. Ge01;:-ge 
High School, Iowa Park, Texas, 1964-1965; Graduate Assistant 
in the Department of Mathematics, North Texas State Univer
sity, Denton, Texas, 1965-1966; Instructor in the Dep/:irtment 
of Mathematics, Southeastern Louisiana College, Hammond, 
Louisiana, 1966-1968; Graduate Assistant in the Department of 
Mathematics and Statistics, Oklahoma State University, 1968-
1971. 

Professional Organizations: American Mathematical Society; 
Mathematical Association of America. 


