SUPERADDITIVE n-HOMOGENEOUS FUNCTIONS
 AND n-CONVEX SETS

By

MELVYN WILLIAM JETER,
Bachelor of Science
Midwestern University
Wichita Falls, Texas 1964

Master of Science North Texas State University

Denton, Texas
1966

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1971

Thesis Approved:

PREFACE

This paper contains a study of n-convex sets and the nonnegative, continuous, superadditive, n-homogeneous, real valued functions defined on the nonnegative orthant of euclidean n^{2}-space. One such function is the well-known, permanent function. An interesting feature of such a function is that each above set, that is, the set of points for which the function is greater than or equal to a nonnegative constant, has the property that if x and y belongs to the above set then $\alpha x+\beta y$ also belongs to the above set, where $\alpha \geq 0, \beta \geq 0$ and $\alpha^{n}+\beta^{n}=1$. Sets with this property are called n-convex. Moreover, the collection of all such functions, P_{n}, forms a convex cone, whose is the zero function, in the real linear space of real functions defined on the positive orthant of euclidean n^{2}-space.

Following the introductory chapter, Chapter II contains a study of n-convex sets and some examples of the 2 -convex hull of pairs of points in the plane. A characterization of the n-convex hull of a set, similar to that of Caratheodory for the convex hull, is given. Also characterized is the n-convex hull of a convex set.

In the following chapter the functions of P_{n}, whose above sets are the n -convex hulls of finite subsets of the above sets, are studied. Chapter V contains a study of the extremal elements of this convex cone of functions. In particular, the functions $p_{a}(x)=\sup \left\{\lambda^{n}: x \geq \lambda a\right\}$, where a is a nonzero point of euclidean n^{2}-space, are shown to be extremal elements of P_{n}.

A study of the infimum of a function of P_{n} over an n-convex subset of the nonnegative orthant of euclidean n^{2}-space is found in Chapter V. The last chapter is a summary and includes several questions that are open for further study.

To avoid confusion, the collection of all elements that belong to set A but not set B will be denoted by $A \backslash B$.

I would like to express my appreciation to all those who assisted me in the completion of this degree. Special thanks go to Professor E. K. McLachlan for his thoughtful guidance and encouragement throughout my graduate studies at Oklahoma State University and to Professors John Jewett, Forrest Whitfield and Harold Fristoe for serving on my advisory committee.

Also, I would like to thank Mrs. Cynthia Wise for her excellent typing of this thesis.

Finally, I want to express my sincere appreciation to my parents, my wife Jerrie and our children Stephanie, Jeffery and Gerald all of whom made this work worthwhile. Thanks also go to my wife's parents.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
The Permanent Function 1
The Convex Cone of P_{n} Functions 3
Monotone Concave Gauges 7
n-Convex Sets 11
Some Basic Properties of P_{n} Functions 20
II. n-CONVEX SETS 24
The n-Convex Hull 24
Examples of 2-Convex Sets 33
Additional Properties 45
A Separation Theorem 53
Complementary n-Convex Sets 55
III. APPLICATIONS OF n-CONVEX SETS 61
IV. EXTREMAL ELEMENTS OF P_{n} 79
V. THE INFIMUM OF A P_{n} FUNCTION 103
VI. SUMMARY 111
BIBLIOGRAPHY 117

CHAPTER I

INTRODUCTION

The Permanent Function

Let M_{n} denote the class of all $n \times n$ matrices with real entries. Then, with addition and scalar multiplication defined in the usual way, M_{n} is a real vector space isomorphic to $E_{n 2}$, where $E_{n 2}$ denotes euclidean n^{2}-space. In particular, consider the n-square matrices with nonnegative entries. The permanent of an n-square matrix $A=\left(a_{i j}\right)$, written $\operatorname{per}(A)$, is defined as

$$
\operatorname{per}(A)=\sum_{\sigma} \overbrace{1}^{n} a_{i \sigma(i)},
$$

where the summation extends over all n ! permutations σ of the numbers $1, \ldots, n$ and $\sigma(i)$ denotes the $i-t h$ number in the permutation σ.

For example, if $n=2$ the permanent of

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

is

$$
\operatorname{per}(A)=a_{11} a_{22}+a_{12} a_{21}
$$

When $n=3$, the permanent of

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

is

$$
\begin{aligned}
& \operatorname{per}(A)=a_{11} a_{22} a_{33}+a_{11} a_{23} a_{32}+a_{12} a_{21} a_{33}+a_{12} a_{23} a_{31} \\
& +a_{13} a_{21} a_{32}+a_{13} a_{22} a_{31}
\end{aligned}
$$

An $n \times n$ matrix $A=\left(a_{i j}\right)$ with elements in the real field is said to be doubly stochastic if and only if $a_{i j} \geq 0$ for all i and j and each of the row sums and each of the column sums are 1 . An example is

$$
J_{n}=\left[\begin{array}{cccc}
\frac{1}{n} & \cdot & \cdot & \frac{1}{n} \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\frac{1}{n} & \cdot & \cdot & \frac{1}{n}
\end{array}\right]
$$

Let K_{n} denote the set of all $n \times n$ doubly stochastic matrices. Then K_{n} is a compact convex subset of $E_{n_{2}}^{+}$, where $E_{n 2}^{+}$is the positive orthant of $E_{n 2}$ space [6]. The following unsolved conjecture was made by B.L. Van der Waerden [10] in 1926: If A is an n-square doubly stochastic matrix, then

$$
\operatorname{per}(A) \geq \frac{n!}{n^{n}},
$$

with equality if and only if $A=J_{n}$.

The permanent function is continuous everywhere and

$$
\operatorname{per}(\alpha A)=\alpha^{n} \operatorname{per}(A),
$$

where α is real. Furthermore, if A and B are $n \times n$ real matrices with nonnegative entries, then

$$
\operatorname{per}(A+B) \geq \operatorname{per}(A)+\operatorname{per}(B) .
$$

The purpose of this thesis is to study a family of functions with the above properties. A more detailed discussion of the permanent function may be found in Marcos and Minx [5].

$$
\text { The Convex Cone of } P_{n} \text { Functions }
$$

$$
\text { Recall } E_{n^{2}}^{+}=\left\{x: x=\left(x_{1}, \ldots, x_{n 2}\right), x_{i} \geq 0,1 \leq i \leq n^{2}\right\}
$$ where $n=1,2, \ldots$. Let P_{n} be the collection of finite-valued functions such that for $p \in P_{n}$ it follows that

$$
\mathrm{p}: \mathrm{E}_{\mathrm{n}^{2}}^{+} \rightarrow \mathrm{E}_{1}^{+}
$$

and in addition

$$
\begin{aligned}
& \text { a. } p \text { is continuous, } \\
& \text { b. } p(\alpha x)=\alpha^{n} p(x), \quad \alpha \geq 0, \\
& \text { c. } p(x+y) \geq p(x)+p(y)
\end{aligned}
$$

That is, the functions of P_{n} are nonnegative, continuous, n-homogeneous and superadditive.

It follows that the permanent function belongs to P_{n}. Also, note that since the functions in P_{n} are n-homogeneous, they are zero at the origin.

Definition 1.1: A set C in a linear space L is a cone with vertex x_{0} if $x \in C$ and $\lambda>0$ imply $\lambda x+(1-\lambda) x_{0} \in C . C$ is called a convex cone if it is also convex.

It can be shown that C is a convex cone in L with vertex the origin if and only if
a. $\mathrm{C}+\mathrm{C} \subset \mathrm{c}$
b. $\lambda C \subset C$, for $\lambda>0$
(cf [7], p. 14).
If $p, q \in P_{n}$, define $(p+q)(x)=p(x)+q(x)$. Also, if $\alpha \geq 0$, define $(\alpha p)(x)=\alpha[p(x)]$. With addition and scalar multiplication defined as above, P_{n} is a convex cone, whose vertex is the zero function, in the linear space of real functions defined on $\mathrm{E}_{\mathrm{n} 2}^{+}$.

Proposition 1.1: The set P_{n} is a convex cone whose vertex is the zero function.

Proof: Let $p, q \in P_{n}$. Then $p+q$ is continuous and if $\lambda \geq 0$, then

$$
\begin{aligned}
(p+q)(\lambda x) & =p(\lambda x)+q(\lambda x)=\lambda^{n} p(x)+\lambda^{n} q(x) \\
& =\lambda^{n}(p(x)+q(x))=\lambda^{n}[(p+q)(x)] .
\end{aligned}
$$

Also,

$$
\begin{aligned}
(p+q)(x+y) & =p(x+y)+q(x+y) \geq p(x)+p(y)+q(x)+q(y) \\
& =(p(x)+q(x))+(p(y)+q(y)) \\
& =(p+q)(x)+(p+q)(y) .
\end{aligned}
$$

Therefore, $p+q \varepsilon P_{n}$. Now let $\alpha>0$. Then αp is continuous and if $\lambda \geq 0$, then

$$
\begin{aligned}
(\alpha p)(\lambda x) & =\alpha[p(\lambda x)]=\alpha\left[\lambda^{n} p(x)\right]=\left(\alpha \lambda^{n}\right) p(x) \\
& =\left(\lambda^{n} \alpha\right) p(x)=\lambda^{n}[\alpha \cdot p(x)]=\lambda^{n}(\alpha p)(x) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
(\alpha p)(x+y) & =\alpha[p(x+y)] \geq \alpha[p(x)+p(y)] \\
& =\alpha[p(x)]+\alpha[p(y)]=(\alpha p)(x)+(\alpha p)(y)
\end{aligned}
$$

Hence, $\alpha p \varepsilon P_{n}$ and P_{n} is a convex cone with vertex the zero function.

Consider the convex cone C in Figure 1. Notice that if $x_{i}=y+z$, where $i=1,2$ and $y, z \varepsilon C$, then both y and z are proportional to x_{i}. However, if $x \in C$ such that x does not lie on either ray extending from 0 through x_{1} or x_{2}, then there exists points $y, z \in C$, neither of which are proportional to x, but such that $x=y+z$. The vectors having the properties of x_{1} and x_{2} are given a special name in the following definition.

Definition 1.2: The extremal elements of a convex cone C in a real linear space are those $x \neq 0$ such that if $x=y+z$, then there exists $\alpha \geq 0$ and $\beta \geq 0$ such that $y=\alpha x$ and $z=\beta x$.

Figure 1.

Consider the convex cone in Figure 2. The points $\mathbf{x}_{\mathbf{i}}$, $\mathbf{i}=1,2,3$ are all extremal elements of the convex cone C. If x is a nonzero element of C, then there exists $\lambda>0$ such that λx belongs to the smallest convex set containing x_{1}, x_{2} and x_{3}, the convex hull of $\left\{x_{1}, x_{2}, x_{3}\right\}$. There exists nonnegative real numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that $\alpha_{1}+\alpha_{2}+\alpha_{3}=1$ and $\lambda x=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}$. Therefore,

$$
\mathrm{x}=\frac{\alpha_{1}}{\lambda} \mathrm{x}_{1}+\frac{\alpha_{2}}{\lambda} \mathrm{x}_{2}+\frac{\alpha_{3}}{\lambda} \mathrm{x}_{3}
$$

Hence, for every $x \in C, x \neq 0, x$ can be expressed as a finite sum of extremal elements of C.

Figure 2.

However, this is not true in general. In more complicated situations analogous results are possible, by using a theorem of Choquet, to give an integral representation of any element of the cone in terms of the extremal elements of the cone. An excellent reference is Lectures on Analysis by Choquet [2].

Part of Chapter III and all of Chapter IV of this thesis are devoted to a study of the extremal elements of P_{n}.

Monotone Concave Gauges

Let $x=\left(x_{1}, \ldots, x_{n}{ }^{2}\right)$ and $y=\left(y_{1}, \ldots, y_{n^{2}}\right)$ belong to $E_{n^{+}}^{2}$ Then define $x \geq y \quad(x>y)$ if and only if $x_{i} \geq y_{i}\left(x_{i}>y_{i}\right)$ for all i.

The following family of functions have been studied by R. T. Rockafellar [8].

Definition 1.3: A monotone concave gauge on E_{n}^{+}is a continuous real-valued function on $E_{n^{+}}^{+}$such that
a. $f(\alpha x)=\alpha f(x), \quad \alpha \geq 0$,
b. $f(x+y) \geq f(x)+f(y)$,
c. $f(x) \geq f(y)$ when $x \geq y$.

For brevity mc-gauge means monotone convex gauge.

Definition 1.4: A monotone set of convex type is a nonempty closed convex set $C \subset E_{n}^{+}$such that $x \geq y$ and $y \in C$ implies $x \in C$.

If C is a monotone set of convex type, Rockefellar defines the monotone support function of C by

$$
\langle C, x\rangle=\inf \{x \cdot y: y \in C\}
$$

where $x \cdot y$ denotes inner product, and proves the following proposition.

Proposition 1.2: If C is a monotone set of convex type in E_{n}^{+}, then $\langle C, x\rangle$ is a monotone concave gauge. Conversely, each monotone concave gauge f on E_{n}^{+}is of the form

$$
f(x)=\langle c, x\rangle
$$

where

$$
C=\left\{y \in E_{n}^{+}: y \cdot z \geq f(z) \text { for all } z \in E_{n}^{+}\right\}
$$

The set C is a monotone set of convex type.

The collection of all monotone concave gauges defined on $E_{n^{+}}^{+}$will be denoted as P_{n}^{\prime}. The following theorem shows that the product of n mc-gauges belongs to P_{n}.

Theorem 1.1: If for all $i=1, \ldots, n ; A_{i} \in P_{n}^{\prime}$, then the function A defined as

$$
A(x)=\overbrace{\left.1\right|_{1}}^{n} A_{i}(x)
$$

is an element of P_{n}.

Proof: Clearly, A is continuous. Also,

$$
A(\alpha x)=\overbrace{\left.1\right|_{1}}^{n} A_{i}(\alpha x)=\overbrace{1 \mid}^{n} \alpha A_{i}(x)=\alpha^{n} \overbrace{1}^{n} A_{i}(x)=\alpha^{n} A(x)
$$

and

$$
\begin{aligned}
A(x+y) & =\overbrace{1}^{n} A_{i}(x+y) \geq \overbrace{1}^{n}\left(A_{i}(x)+A_{i}(y)\right) \geq \overbrace{1}^{n} A_{i}(x)+\overbrace{1}^{n} A_{i}(y) \\
& =A(x)+A(y) .
\end{aligned}
$$

Hence, $A \in P_{n}$.

Theorem 1.1 raises the question of whether all functions of P_{n} are the products of \mathfrak{n} monotone concave guages. However, this is not the case for consider the following example:

Example 1.1: For every $x=\left(x_{1}, \ldots, x_{4}\right) \& E_{4}^{+}$define $p(x)$ as follows,

$$
p(x)=x_{1}^{2}+x_{2}^{2}
$$

It is easy to see that $p \varepsilon P_{2}$. Now suppose there exists monotone concave functions A_{1} and A_{2} such that

$$
p(x)=A_{1}(x) A_{2}(x)
$$

Notice that if $x_{1}>0$ or $x_{2}>0$, then $p(x)>0$, which implies $A_{1}(x)>0$ and $A_{2}(x)>0$. In this case

$$
A_{1}(x)=\frac{x_{1}^{2}+x_{2}^{2}}{A_{2}(x)}
$$

Consider $(1,1,0,0)=(1,0,0,0)+(0,1,0,0)$. Since A_{1} is superadditive, then

$$
A_{1}((1,1,0,0)) \geq A_{1}((1,0,0,0))+A_{1}((0,1,0,0))
$$

Hence,

$$
\frac{2}{A_{2}((1,1,0,0))} \geq \frac{1}{A_{2}((1,0,0,0))}+\frac{1}{A_{2}((0,1,0,0))}
$$

which implies that

$$
\begin{aligned}
& 2 \mathrm{~A}_{2}((1,0,0,0)) \mathrm{A}_{2}((0,1,0,0)) \geq \mathrm{A}_{2}((1,1,0,0)) \mathrm{A}_{2}((0,1,0,0)) \\
&+\mathrm{A}_{2}((1,1,0,0)) \mathrm{A}_{2}((1,0,0,0)) \\
& \geq {\left[\mathrm{A}_{2}((1,0,0,0))\right.} \\
&\left.+\mathrm{A}_{2}((0,1,0,0))\right] \mathrm{A}_{2}((0,1,0,0)) \\
&+\left[\mathrm{A}_{2}((1,0,0,0))\right. \\
&\left.+\mathrm{A}_{2}((0,1,0,0))\right] \mathrm{A}_{2}((1,0,0,0)) \\
&= 2 \mathrm{~A}_{2}((1,0,0,0)) \mathrm{A}_{2}((0,1,0,0)) \\
&+\mathrm{A}_{2}^{2}((0,1,0,0))+\mathrm{A}_{2}^{2}((1,0,0,0)) \\
&>2 \mathrm{~A}_{2}((1,0,0,0)) \mathrm{A}_{2}((0,1,0,0)),
\end{aligned}
$$

since $A_{2}((0,1,0,0))>0$ and $A_{2}((1,0,0,0))>0$. This is a contradiction. Therefore, there does not exist two mc-gauges A_{1} and A_{2} such that $p(x)=A_{1}(x) A_{2}(x)$. However, if $f(x)=x_{1}$ and $g(x)=x_{2}$, then $f, g \in P_{n}^{\prime}$ and p is the finite sum of products of functions belonging to P_{n}^{\prime}.

Let δ_{n} denote all those $p \in P_{n}$ which are finite linear combinations of functions of the type

$$
A(x)=\overbrace{1}^{n} A_{i}(x)
$$

where $A_{i} \in P_{n}$. Thus, g_{n} is clearly a subcone of P_{n}. Also, the permanent function belongs to g_{n}. It would be of interest to know if δ_{n} is indeed P_{n}.
n-Convex Sets

A convex functional p is a mapping from a convex set K in a linear space L into the real numbers such that if $x, y \in K$ and
$\alpha \in[0,1]$, then

$$
p(\alpha x+(1-\alpha) y) \leq \alpha p(x)+(1-\alpha) p(y) .
$$

For a convex functional f and real number λ the below set $\{z: f(z) \leq \lambda\}$ and the strictly below set $\{z: f(z)<\lambda\}$, relative to λ, are convex.

For $p \in P_{n}$ the below sets and the strictly below sets are not necessarily convex. For example, if $x=\left(x_{1}, \ldots, x_{4}\right) \varepsilon E_{4}^{+}$, define

$$
p(x)=x_{1} x_{2}
$$

Then $p \in P_{2}$. Notice that $(4,0,0,0)$ and $(0,4,0,0)$ belong to $\{x: p(x) \leq 1\}$. Let $\alpha=\frac{1}{2}$. Then $\frac{1}{2}(4,0,0,0)+\frac{1}{2}(0,4,0,0)=(2,2,0,0)$ and $p((2,2,0,0))=4>1$. Hence, $\{z: p(z) \leq 1\}$ is not convex.

However, some interesting results are obtained when the above sets $\{z: p(z) \geq \lambda\}$ are studied. To get these results the following definition is given.

Definition 1.5: In a real linear space a set S is n-convex if for all $\mathrm{x}, \mathrm{y} \in \mathrm{S}, \alpha \geq 0$ and $\beta \geq 0$ such that $\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}=1$, then $\alpha x+\beta y \in S$.

Notice that a set is convex if and only if it is l-convex.

Proposition 1.3: For all $\mathrm{p} \varepsilon \mathrm{P}_{\mathrm{n}}$ and all $\lambda \geq 0$, the sets $\{z: p(z) \geq \lambda\}$ and $\{z: p(z)>\lambda\}$ are n-convex.

Proof: Let $x, y \in\{x: p(z) \geq \lambda\}$. Let $\alpha \geq 0$ and $\beta \geq 0$ such that $\alpha^{n}+\beta^{n}=1$. Then

$$
\begin{aligned}
p(\alpha x+\beta y) & \geq p(\alpha x)+p(\beta y)=\alpha^{n} p(x)+\beta^{n} p(y) \geq \alpha^{n} \lambda+\beta^{n} \lambda \\
& =\left(\alpha^{n}+\beta^{n}\right) \lambda=\lambda .
\end{aligned}
$$

Hence, $\alpha x+\beta y \varepsilon\{z: p(z) \geq \lambda\}$ and thus $\{z: p(z) \geq \lambda\}$ is n-convex. Likewise, $\{z: p(z)>\lambda\}$ is n-convex.

The sets $\{x: p(x) \geq \lambda\}$ will be denoted $\operatorname{Lev}_{\lambda} p$, i.e.,

$$
\operatorname{Lev}_{\lambda} p=\{x: p(x) \geq \lambda\} .
$$

A somewhat similar concept has been investigated by M. Landsberg [4]. He defines a set to be p-convex, where $0<p \leq 1$, if $x, y \in S$, $\alpha \geq 0, \beta \geq 0$ and $\alpha^{p}+\beta^{p}=1$ implies $\alpha x+\beta y \varepsilon$ s.

In the following proposition, each member of a family of sets, which have been of some interest in recent literature, is shown to be n-convex [8].

Proposition 1.4: A monotone set of convex type in E_{n}^{+}is n-convex.

Proof: Let $x, y \in S$ and $\alpha \geq 0, \beta \geq 0$ such that $\alpha^{n}+\beta^{n}=1$. Notice that $\alpha \leq 1$ and $\beta \leq 1$. Since S is convex, then

$$
\alpha^{n} x+\beta^{n} y \in S .
$$

Since S is a monotone set of convex type, then $\alpha x+\beta y \geq \alpha^{n} x+\beta^{n} y$ implies $\alpha x+\beta y \varepsilon S$. Hence, S is n-convex.

The converse is not true since, as will be seen in later examples, an n-convex set is not always convex.

Particular use is made of the following concepts in studying n-convex sets.

Definition 1.6: If x and y belong to a real linear space L, then

$$
\mathrm{n}-\operatorname{cr}[\mathrm{x}, \mathrm{y}]=\left\{\alpha \mathrm{x}+\beta \mathrm{y}: \alpha \geq 0, \beta \geq 0 \text { and } \alpha^{\mathrm{n}}+\beta^{\mathrm{n}}=1\right\}
$$

and

$$
\mathrm{n}-\mathrm{cr}(\mathrm{x}, \mathrm{y})=\left\{\alpha \mathrm{x}+\beta \mathrm{y}: \alpha>0, \beta>0 \text { and } \alpha^{\mathrm{n}}+\beta^{\mathrm{n}}=1\right\}
$$

The sets $n-c r[x, y]$ and $n-c r(x, y)$ will be called n-curves and open n-curves, respectively.

In a linear space L, the line segment, $x y$, joining $x, y \varepsilon L$ is the set of all points $\alpha x+\beta y$, where $\alpha \geq 0, \beta \geq 0$ and $\alpha+\beta=1$. The set of all such points where both $\alpha>0$ and $\beta>0$ is denoted by intv $x y$. Notice furthermore that if $z \varepsilon$ intv $x y$, then

intv $x z$ intv $x y$.

Clearly, the concept of an n-curve is a generalization of the concept of a line segment. However, the following example shows that an n-curve does not necessarily have the simple property noticed above for line segments. The absence of this property somewhat complicates the work in Chapter V .

Example 1.2: In E_{2} let $x=(1,0)$ and $y=(0,1)$. Notice that if $(\alpha, \beta)=\alpha x+\beta y \varepsilon 2-c r(x, y)$, then $\alpha^{2}+\beta^{2}=1$. Suppose

$$
z=\frac{1}{2} x+\frac{\sqrt{3}}{2} y=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)
$$

Then $z \varepsilon 2-\operatorname{cr}(x, y)$. Let $\alpha=\frac{1}{2}$ and $\beta=\frac{\sqrt{3}}{2}$. If $w=\frac{1}{2} z+\frac{\sqrt{3}}{2} x$,
then $w \in 2-\operatorname{cr}(x, z)$ and

$$
w=\frac{1}{2} z+\frac{\sqrt{3}}{2} x=\left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)+\left(\frac{\sqrt{3}}{2}, 0\right)=\left(\frac{1+2 \sqrt{3}}{4}, \frac{\sqrt{3}}{4}\right) .
$$

However, since

$$
\left(\frac{1+2 \sqrt{3}}{4}\right)^{2}+\left(\frac{\sqrt{3}}{4}\right)^{2}=\frac{1+4 \sqrt{3}+12}{16}+\frac{3}{16}=\frac{16+4 \sqrt{3}}{16}>1,
$$

then $w \notin 2-c r(x, y) \quad(c f$. Figure 3.).

Figure 3.

Let x, y and z be three distinct points in a linear space L. If $u \in$ intv $x y$ and $v \varepsilon$ intv $y z$, then there exists a point $w a t$ which $u z$ and $x v$ intersect (cf. Figure 4).

The following result is a striking analogue with n-curves.

Figure 4.

Proposition 1.5: Suppose x, y, z are three distinct points of a real linear space L. If $u \varepsilon n-c r(x, y)$ and $v \varepsilon n-c r(y, z)$, then $(n-c r[u, z]) \cap(n-c r[x, v]) \neq \emptyset$.

Proof: Since $u \varepsilon n-c r(x, y), u=\alpha x+\beta y$, where $\alpha>0$, $\beta>0$ and $\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}=1$. Also, $\mathrm{v}=\sigma z+\gamma \mathrm{y}$, where $\sigma>0, \gamma>0$ and $\sigma^{n}+\gamma^{n}=1$. Let

$$
\lambda=\frac{\beta}{\sqrt[n]{\gamma^{n} \alpha^{n}+\beta^{n}}} \text { and } \omega=\frac{\sigma \beta}{\sqrt[n]{\gamma^{n} \alpha^{n}+\beta^{n}}} .
$$

Clearly, $\lambda>0$ and $\omega>0$. Also,

$$
\sqrt[n]{1-\lambda^{n}}=\sqrt[n]{1-\frac{\beta^{n}}{\gamma^{n} \alpha^{n}+\beta^{n}}}=\sqrt[n]{\frac{\gamma^{n} \alpha^{n}+\beta^{n}-\beta^{n}}{\gamma^{n} \alpha^{n}+\beta^{n}}}=\frac{\gamma \alpha}{\sqrt[n]{\gamma^{n} \alpha^{n}+\beta^{n}}}>0
$$

and

$$
\begin{aligned}
\sqrt[n]{1-\omega^{n}} & =\sqrt[n]{1-\frac{\sigma^{n} \beta^{n}}{\gamma^{n} \alpha^{n}+\beta^{n}}}=\sqrt[n]{\frac{\gamma^{n} \alpha^{n}+\beta^{n}-\sigma^{n} \beta^{n}}{\gamma^{n} \alpha^{n}+\beta^{n}}}=\sqrt[n]{\frac{\gamma^{n}{ }^{n}+\beta^{n}\left(1-\sigma^{n}\right)}{\gamma^{n} \alpha^{n}+\beta^{n}}} \\
& =\sqrt[n]{\frac{\gamma^{n} \alpha^{n}+\beta^{n} \gamma^{n}}{\gamma^{n} \alpha^{n}+\beta^{n}}}=\frac{\gamma}{\sqrt[n]{\gamma^{n} \alpha^{n}+\beta^{n}}}>0 .
\end{aligned}
$$

Since

$$
\lambda^{n}+\left(\sqrt[n]{1-\lambda^{n}}\right)^{n}=1 \text { and } \omega^{n}+\left(\sqrt[n]{1-\omega^{n}}\right)^{n}=1
$$

then

$$
\lambda(\sigma z+\gamma y)+\sqrt[n]{1-\lambda^{n}} x=\lambda v+\sqrt[n]{1-\lambda^{n}} x \varepsilon n-\operatorname{cr}[x, v]
$$

and

$$
\sqrt[n]{1-\omega^{n}}(\alpha x+\beta y)+\omega z=\sqrt[n]{1-\omega^{n}} u+\omega z \varepsilon n-c r[u, z]
$$

Now

$$
\lambda(\sigma z+\gamma y)+\sqrt[n]{1-\lambda^{n}} x=\frac{\beta}{\sqrt[n]{\gamma^{n} \alpha^{n}+\beta^{n}}}(\sigma z+\gamma y)+\frac{\gamma \alpha}{\sqrt[n]{\gamma^{n} \alpha^{n}+\beta^{n}}} x
$$

and

$$
\sqrt[n]{1-\omega^{n}}(\alpha x+\beta y)+\omega z=\frac{\gamma}{\sqrt[n]{\gamma^{n} \alpha^{n}+\beta^{n}}}(\alpha x+\beta y)+\frac{\sigma \beta}{\sqrt[n]{\gamma^{n} \alpha^{n}+\beta^{n}}} z
$$

Hence,

$$
\lambda(\sigma z+\gamma y)+\sqrt[n]{1-\lambda^{n}} x=\sqrt[n]{1-\omega^{n}}(\alpha x+\beta y)+\omega z
$$

implies $(n-c r[u, z]) \cap(n-c r[x, v]) \neq \emptyset$.

As the next example shows, $n-c r[u, z]$ and $n-c r[x, v]$ may intersect at more than one point.

Example 1.3: In E_{2}, let $x=\left(\frac{1}{2}, \frac{1}{2}\right), \quad y=\left(-\frac{\sqrt{3}}{6}, \frac{\sqrt{3}}{2}\right)$ and $z=(1,0)$ (cf. Figure 5). Let $\alpha=\frac{1}{2}$ and $\beta=\frac{\sqrt{3}}{2}$, then

Figure 5.
$\alpha \mathrm{x}+\beta \mathrm{y} \varepsilon 2-\mathrm{cr}(\mathrm{x}, \mathrm{y})$. Now

$$
\begin{aligned}
\alpha x+\beta y & =\frac{1}{2}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{\sqrt{3}}{2}\left(-\frac{\sqrt{3}}{6}, \frac{\sqrt{3}}{2}\right)=\left(\frac{1}{4}, \frac{1}{4}\right)+\left(-\frac{1}{4}, \frac{3}{4}\right) \\
& =(0,1) .
\end{aligned}
$$

Let $u=(0,1)$. Now let $\sigma=\frac{\sqrt{3}}{2}$ and $\gamma=\frac{1}{2}$. Then

$$
\sigma z+\gamma y \varepsilon 2-\operatorname{cr}(y, z) .
$$

Further,

$$
\begin{aligned}
\sigma z+\gamma y & =\frac{\sqrt{3}}{2}(1,0)+\frac{1}{2}\left(-\frac{\sqrt{3}}{6}, \frac{\sqrt{3}}{2}\right)=\left(\frac{\sqrt{3}}{2}, 0\right)+\left(-\frac{\sqrt{3}}{12}, \frac{\sqrt{3}}{4}\right) \\
& =\left(\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{12}, \frac{\sqrt{3}}{4}\right)=\left(\frac{5 \sqrt{3}}{12}, \frac{\sqrt{3}}{4}\right) .
\end{aligned}
$$

Let

$$
v=\left(\frac{5 \sqrt{3}}{12}, \frac{\sqrt{3}}{4}\right) .
$$

Now

$$
\begin{aligned}
2-\operatorname{cr}[u, z] & =\left\{\lambda(1,0)+\omega(0,1): \lambda \geq 0, \omega \geq 0, \lambda^{2}+\omega^{2}=1\right\} \\
& =\left\{\left(\sqrt{1-\omega^{2}}, \omega\right): 0 \leq \omega \leq 1\right\}
\end{aligned}
$$

i.e., that portion of the unit circle that is contained in the first quadrant. Also,

$$
\begin{aligned}
2-c r[x, v] & =\left\{\lambda x+\omega v: \lambda \geq 0, \omega \geq 0, \lambda^{2}+\omega^{2}=1\right\} \\
& =\left\{\lambda\left(\frac{1}{2}, \frac{1}{2}\right)+\sqrt{1-\lambda^{2}}\left(\frac{5 \sqrt{3}}{12}, \frac{\sqrt{3}}{4}\right): 0 \leq \lambda \leq 1\right\} \\
& =\left\{\left(\frac{\lambda}{2}+\frac{5 \sqrt{3} \sqrt{1-\lambda^{2}}}{12}, \frac{\lambda}{2}+\frac{3 \sqrt{3} \sqrt{1-\lambda^{2}}}{12}\right): 0 \leq \lambda \leq 1\right\} .
\end{aligned}
$$

Let

$$
f(\lambda)=\left(\left(\frac{\lambda}{2}+\frac{5 \sqrt{3} \sqrt{1-\lambda^{2}}}{12}\right)^{2}+\left(\frac{\lambda}{2}+\frac{3 \sqrt{3} \sqrt{1-\lambda^{2}}}{12}\right)^{2}\right)^{\frac{1}{2}}
$$

where $\lambda \varepsilon[0,1]$. This $f(\lambda)$ gives the distance from the origin of the points on $2-c r[x, v]$. Moreover, f is a continuous real function. Also,

$$
\begin{aligned}
f(0) & =\left(\left(\frac{5 \sqrt{3}}{12}\right)^{2}+\left(\frac{3 \sqrt{3}}{12}\right)^{2}\right)^{\frac{1}{2}}=\left(\frac{75}{144}+\frac{27}{144}\right)^{\frac{1}{2}}=\left(\frac{102}{144}\right)^{\frac{1}{2}}<1 \\
f\left(\frac{1}{2}\right) & =\left(\left(\frac{1}{4}+\frac{15}{24}\right)^{2}+\left(\frac{1}{4}+\frac{9}{24}\right)^{2}\right)^{\frac{1}{2}} \\
& =\left(\left(\frac{21}{24}\right)^{2}+\left(\frac{15}{24}\right)^{2}\right)^{\frac{1}{2}}=\left(\frac{441}{576}+\frac{225}{576}\right)^{\frac{1}{2}} \\
& =\left(\frac{666}{576}\right)^{\frac{1}{2}}>1
\end{aligned}
$$

and

$$
f(1)=\left(\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right) \frac{1}{2}=\left(\frac{1}{2}\right)^{\frac{1}{2}}<1
$$

The Intermediate Value Theorem from calculus implies there exists $\lambda \varepsilon\left(0, \frac{1}{2}\right)$ such that $f(\lambda)=1$ and there exists $\lambda^{\prime} \varepsilon\left(\frac{1}{2}, 1\right)$ such that $f\left(\lambda^{\prime}\right)=1$. Therefore, since x and $v \in E_{2}^{+}$, then both

$$
\lambda x+\sqrt{1-\lambda^{2}} v \text { and } \lambda^{\prime} x+\sqrt{1-\lambda^{\prime 2}} v
$$

belong to $(2-\operatorname{cr}[u, z]) \cap(2-\operatorname{cr}[x, v])$.

Pressing further the analogy between n-curves and line segments, the n-curves are used to define a type of extreme point.

Definition 1.7: Let K be a n-convex subset of a linear space L. A point $z \varepsilon K$ is an n-extreme point of. K if there does not exist $x, y \in K$ such that $z \in \mathrm{n}-\mathrm{cr}(\mathrm{x}, \mathrm{y})$.

Just as for convex sets, a point x of an n-convex set K is an n-extreme point of K if and only if $K \backslash\{x\}$ is n-convex.

Some Basic Properties of P_{n} Functions

In the remainder of this chapter several basic properties of P_{n} functions are developed.

Proposition 1.6; Let $p \in P_{n}$. If $x, y \in E_{n^{2}}^{+}$such that $x \geq y$, then $p(x) \geq p(y)$,

Proof: Since $x \geq y$, then $x_{i} \geq y_{i}$ for all 1 . Let

$$
z_{i}=x_{i}-y_{i} \geq 0
$$

Then $z \varepsilon E_{n^{2}}^{+}$and $x=y+z$. Therefore,

$$
p(x)=p(y+z) \geq p(y)+p(z) \geq p(y) .
$$

Thus, $p(x)$ is nondecreasing on $E_{n^{2}}^{+}$. The converse is not true. Let $p(x)=x_{1} x_{2}$, where $x=\left(x_{1}, \ldots, x_{4}\right) \in E_{4}^{+}$. Then

$$
p((2,1,1,1))=2>1=p((1,1,4,5))
$$

However, $(2,1,1,1) \nsupseteq(1,1,4,5)$.

If $p \neq 0$, the next proposition shows that $p(x)>0$ at each interior point of $\mathrm{E}_{\mathrm{n} 2}^{+}$.

Proposition 1.7: Let $p \in P_{n}$. If there exists a ε int $E_{n^{2}}^{+}$such that $p(a)=0$, then $p=0$.

Proof: Let $a=\left(a_{1}, \ldots, a_{n 2}\right)$. Since $a \varepsilon$ int $E_{n^{2}}^{+}$, each $a_{i}>0$. Let $x=\left(x_{1}, \ldots, x_{2}\right) \varepsilon E_{n^{2}}^{+}$. For each i there exists $\lambda_{i} \geq 0$ such that $x_{i}=\lambda_{i} a_{i}$. Let $\lambda=\max \left\{\lambda_{i}: i=1, \ldots, n^{2}\right\}$. Then $x_{i}=\lambda_{i} a_{i} \leq \lambda a_{i}$, implies $\lambda a \geq x$. By Proposition 1.6

$$
0 \leq p(x) \leq p(\lambda a)=\lambda^{n} p(a)=0,
$$

implies $p(x)=0$, for all $x \in E_{n^{2}}^{+}$. Hence, $p=0$.
With the aid of the following comment, $\mathrm{p}(\mathrm{x})$ is shown to be strictly increasing.

Comment 1.1: If $p \varepsilon p_{n}$ and $x, y \in E_{n^{2}}^{+}$such that $x \geq y$, then $p(x)-p(y) \geq p(x-y)$.

Proof: Since $p(x)=p(x-y+y) \geq p(x-y)+p(y)$, then $p(x)-p(y) \geq p(x-y)$.

Proposition 1.8: If $x, y \in E_{n^{+}}^{+}$such that $x>y$, then $p(x)>p(y)$.

Proof: Since $x>y$, then $x-y>0$. Using Comment 1.1 and Proposition 1.7, it follows that

$$
p(x)-p(y) \geq p(x-y)>0 .
$$

Hence, $p(x)>p(y)$.

For $n=1$, very special results hold for $p \in P_{n}$.

Comment 1.2: If $n=1$ and $p \varepsilon p_{1}$, then p is linear. Proof: If $x \in E_{1}^{+}$, then $x=x \cdot 1$ and $p(x)=p(x \cdot 1)=x \cdot p(1)$.

In particular,

$$
\begin{aligned}
p(x+y) & =p((x+y) \cdot 1)=(x+y) p(1)=x p(1)+y p(1) \\
& =p(x \cdot 1)+p(y \cdot 1)=p(x)+p(y) .
\end{aligned}
$$

Actually, p is not linear for $\mathrm{n}>1$, but the following proposition gives necessary and sufficient conditions for p being additive.

Proposition 1.9: Let $n>1$ and $p \in P_{n}$. Then p is additive if and only if $p=0$.

Proof: Clearly, if $p=0$, then p is additive. Suppose p is additive. Then

$$
\begin{aligned}
p(x) & =p\left(\frac{1}{2} x+\frac{1}{2} x\right)=p\left(\frac{1}{2} x\right)+p\left(\frac{1}{2} x\right) \\
& =\left(\frac{1}{2}\right)^{n} p(x)+\left(\frac{1}{2}\right)^{n} p(x)=\frac{1}{2^{n-1}} p(x),
\end{aligned}
$$

which implies $p(x)=0$, for all $x \in E_{n^{2}}^{+}$.
Note that if $p, q \in P_{n}$ and $p(x)=q(x)$ for all $x \in$ int $E_{n 2}^{+}$, then $p(x)=q(x)$ for all $x \in E_{n_{2}}^{+}$. This follows from the continuity of p and q.

If p is a nonnegative, superadditive and n-homogeneous function on $\mathrm{E}_{\mathrm{n} 2}^{+}$and p is continuous at one nonzero point of $\mathrm{E}_{\mathrm{n} 2}^{+}$, then p is continuous at 0 .

Proposition 1.10: Suppose $\mathrm{p}: \mathrm{E}_{\mathrm{n} 2}^{+} \rightarrow \mathrm{E}_{1}^{+}$is superadditive and $p(\alpha x)=\alpha^{n} p(x)$, for all $\alpha \geq 0$ and $x \in E_{n}^{+}$. If p is continuous at any $x \in E_{n^{2}}^{+}$, where $x \neq 0$, then p is continuous at 0 .

Proof: Let $\varepsilon>0$. If p is continuous at $x \neq 0$, then there exists $\delta>0$ such that $h \varepsilon E_{n^{2}}^{+}$and $\|h\|=\|(x+h)-x\|<\delta$ implies $|p(x+h)-p(x)|<\&$. It follows from Comment 1.1 that

$$
\begin{aligned}
|p(h)-p(0)| & =|p(h)|=|p(x+h-x)| \\
& \leq|p(x+h)-p(x)|<\varepsilon .
\end{aligned}
$$

Hence, p is continuous at 0 .

CHAPTER II
n-CONVEX SETS

The n-Convex Hull

For any set S, let $n(S)$ be the intersection of all n-convex sets containing S. Then $n(S)$ is called the n-convex hull of S. If conv(S) denotes the intersection of all convex sets containing the set S, then it is known that

$$
\operatorname{conv}(S)=\left\{\sum_{1}^{k} \alpha_{i} x_{i}: x_{i} \in S, \alpha_{i} \geq 0, \sum_{1}^{k} \alpha_{i}=1, k \quad \text { an integer }\right\}
$$

[9]. In this section a similar characterization will be developed for n(S). Consider the following:

Proposition 2.1: Let G be a collection of n-convex sets. Then

$$
\begin{aligned}
& \text { a. if }\left\{\mathrm{A}_{\lambda}: \lambda \varepsilon \Omega\right\} \subset \mathbb{C} \text {, then }{ }_{\lambda} A_{\lambda} \varepsilon \mathbb{Q}, \\
& \text { b. if } A, B \in \mathbb{C}, \text { then } A+B \in \mathbb{Q}, \\
& \text { c. if } A \varepsilon \mathbb{Q} \text { and } \sigma \text { is real, then } \sigma A \varepsilon \mathbb{C} .
\end{aligned}
$$

The proofs are simple and straightforward. This proposition means that the collection of $n-c, n v e x$ sets is closed under arbitrary intersections, finite vector sums and under scalar multiplication.

Thus, the n-convex hull of a set S is n-convex, in fact, the smallest n-convex set containing S. The following theorem gives a characterization of $n(S)$.

Theorem 2.1: For any set S ,

$$
n(S)=\left\{\sum_{1}^{k} \alpha_{i} x_{i}: x_{i} \varepsilon S, \alpha_{i} \geq 0, \sum_{1}^{k} \alpha_{i}^{n}=1\right\}
$$

where k is an integer and the X_{i} are not necessarily distinct.

Proof: Let

$$
B(S)=\left\{\sum_{1}^{k} \alpha_{i} x_{i}: x_{i} \varepsilon s, \alpha_{i} \geq 0, \sum_{1}^{k} \alpha_{i}^{n}=1\right\},
$$

where k is an integer and the x_{i} are not necessarily distinct. Let $\mathbf{x} \varepsilon \mathrm{S}$. Then $\mathrm{x}=1 \cdot \mathrm{x} \varepsilon \mathrm{B}(\mathrm{S})$, implies that $\mathrm{S} \subset \mathrm{B}(\mathrm{S})$. Now show that $B(S)$ is n-convex. Let $x, y \in B(S)$. Then

$$
x=\sum_{1}^{k} \alpha_{i} x_{i} \text { and } y=\sum_{1}^{\ell} \beta_{i} y_{i}
$$

where $\alpha_{i} \geq 0, \beta_{i} \geq 0$ and

$$
\sum_{1}^{k} \alpha_{i}^{n}=\sum_{1}^{\ell} \beta_{i}^{n}=1
$$

Let $\gamma \geq 0$ and $\sigma \geq 0$ such that $\gamma^{n}+\sigma^{n}=1$. Now

$$
\sigma x+\gamma y=\sigma \sum_{1}^{k} \alpha_{i} x_{i}+\gamma \sum_{i}^{\ell} \beta_{i} y_{i}=\sum_{1}^{k} \sigma \alpha_{i} x_{i}+\sum_{1}^{\ell} \gamma \beta_{i} y_{i},
$$

where $x_{i}, y_{i} \in S, \sigma \alpha_{i} \geq 0$ and $\gamma \beta_{i} \geq 0$. Also,

$$
\sum_{1}^{k}\left(\sigma \alpha_{i}\right)^{n}+\sum_{1}^{\ell}\left(\gamma \beta_{i}\right)^{n}=\sigma^{n} \sum_{1}^{k} \alpha_{i}^{n}+\gamma^{n} \sum_{1}^{\ell} \beta_{i}^{n}=\sigma^{n}+\gamma^{n}=1
$$

implies that $\sigma x+\gamma y \in B(S)$. Hence, $B(S)$ is n-convex and contains
S. Therefore, $n(S) \subset B(S)$.

Now show $B(S) \subset n(S)$ by inducting on k. Suppose $x \in B(S)$
such that $x=\alpha y$, then $\alpha=1$ and $y \varepsilon S$. Hence, $x \in S \subset n(S)$.
Suppose that for each $x \in B(S)$ such that

$$
x=\sum_{1}^{k-1} \alpha_{i} x_{i}
$$

where $x_{i} \varepsilon S, \alpha_{i}>0$,

$$
\sum_{1}^{k-1} \alpha_{i}^{n}=1
$$

then $\mathrm{x} \varepsilon \mathrm{n}(\mathrm{S})$. Let

$$
x=\sum_{1}^{k} \alpha_{i} x_{i}
$$

where $x_{i} \in S, \alpha_{i}>0$ and

$$
\sum_{1}^{k} \alpha_{i}^{n}=1
$$

Since

$$
\sum_{1}^{k} \alpha_{i}^{n}=1
$$

then

$$
\alpha_{k}=\sqrt[n]{1-\sum_{1}^{k-1} \alpha_{i}^{n}}
$$

Hence,
$x=\sum_{1}^{k-1} \alpha_{i} x_{i}+\alpha_{k} x=\sqrt[n]{\sum_{1}^{k-1} \alpha_{j}^{n}} \sum_{1}^{k-1}\left(\frac{\alpha_{i}}{n \sqrt{\sum_{1}^{k-1} \alpha_{j}^{n}}}\right) x_{i}+\left(\sqrt[n]{1-\sum_{1}^{k-1} \alpha_{i}^{n}}\right) x_{m}$.
Since

$$
\sum_{1}^{k-1}\left(\frac{\alpha_{i}}{n \sqrt{\sum_{1}^{k-1} \alpha_{j}^{n}}}\right)^{n}=\sum_{1}^{k-1}\left(\frac{\alpha_{i}^{n}}{\sum_{1}^{k-1} \alpha_{j}^{n}}\right)=\frac{\sum_{1}^{k-1} \alpha_{i}^{n}}{\sum_{1}^{k-1} \alpha_{j}^{n}}=1,
$$

then

$$
\sum_{1}^{k-1}\left(\frac{\alpha_{i}}{n \sqrt{\sum_{1}^{k-1} \alpha_{j}^{n}}}\right) x_{i} \varepsilon n(s)
$$

Let

$$
y=\sum_{1}^{k-1}\left(\frac{\alpha_{i}}{n / \sum_{1}^{k-1} a_{j}^{n}}\right) x_{i}
$$

Then

$$
x=\left(\sqrt[n]{\sum_{1}^{k-1} \alpha_{j}^{n}}\right) y+\left(\sqrt[n]{1-\sum_{1}^{k-1} \alpha_{i}^{n}}\right) x_{m} .
$$

Since $n(S)$ is n-convex and

$$
\left(\sqrt[n]{\sum_{1}^{k-1} \alpha_{j}^{n}}\right)^{n}+\left(\sqrt[n]{1-\sum_{1}^{k-1} \alpha_{i}^{n}}\right)^{n}=\sum_{1}^{n-1} \alpha_{j}^{n}+1-\sum_{1}^{k-1} \alpha_{i}^{m}=1,
$$

then $x \in \mathfrak{n}(S)$. Hence, $B(S) \subset \mathfrak{n}(S)$ which implies $n(S)=B(S)$.
Notice that $B(S)=n(S)=n(n(S))=B(B(S))$. The following theorem shows that $B(S)$ is inverse starlike from the origin, that is, $\mathrm{x} \in \mathrm{B}(\mathrm{S})$ implies $\lambda \mathrm{x} \varepsilon \mathrm{B}(\mathrm{S})$ for all $\lambda \geq 1$.

Theorem 2.2: If $x=\lambda y$ where $\lambda \geq 1$ and $y \in B(S)$, then $x \in B(S)$.

Proof: Consider

$$
k \cdot \frac{1}{n_{\sqrt{k}}}=k^{\frac{n-1}{n}},
$$

where k is a positive integer. There exists a k such that

$$
\mathrm{k}^{\frac{\mathrm{n}-1}{\mathrm{n}}} \geq \lambda
$$

Also,

$$
\mathrm{k}\left(\frac{1}{\mathrm{n}_{\sqrt{k}}}\right)^{\mathrm{n}}=1
$$

Therefore,

$$
k^{\frac{n-1}{n}} y \in B(S) \quad \text { and } \quad k^{\frac{n-1}{n}} y \geq \lambda y
$$

Hence,

$$
y \leq \lambda y \leq k^{\frac{n-1}{n}} y
$$

Let $\alpha \geq 0$ and $\beta \geq 0$ such that $\alpha^{n}+\beta^{n}=1$. Then

$$
\alpha y+\beta k^{\frac{n-1}{n}} y \varepsilon B(S) \text {, i.e., } \quad\left(n \sqrt{1-\beta^{n}}+\beta k^{\frac{n-1}{n}}\right) y \varepsilon B(S) .
$$

It remains to be shown that there exists a real number β such that

$$
\lambda=\sqrt[n]{1-\beta^{n}}+\beta k^{\frac{n-1}{n}}
$$

For $\beta \in[0,1]$, let

$$
f(\beta)=\sqrt[n]{1-\beta^{n}}+\beta k^{\frac{n-1}{n}}
$$

Notice that f is continuous on $[0,1]$,

$$
f(0)=1 \text { and } f(1)=k^{\frac{n-1}{n}}
$$

Since

$$
1 \leq \lambda \leq k^{\frac{n-1}{n}},
$$

then there exists a $\beta \in[0,1]$ such that $f(\beta)=\lambda$. Hence,

$$
x=\lambda y \in B(S)
$$

Now for any set S, let

$$
B^{\prime}(S)=\left\{\sum_{1}^{k} \alpha_{i} x_{i}: x_{1} \in S, \alpha_{1} \geq 0, \sum_{1}^{k} \alpha_{i}^{n} \geq 1\right\}
$$

where k is an integer and the x_{1} are distinct.
It is easy to see that $B(S) \subset B^{\prime}(S)$. For example, if

$$
x=\alpha_{1} x_{1}+\alpha_{2} x_{1}+\alpha_{3} x_{3} \varepsilon B(S)
$$

then $\alpha_{1}^{n}+\alpha_{2}^{n}+\alpha_{3}^{n}=1$. However, $\quad x=\left(\alpha_{1}+\alpha_{2}\right) x_{1}+\alpha_{3} x_{3}$, where $\left(\alpha_{1}+\alpha_{2}\right)^{n}+\alpha_{3}^{n} \geq 1$. Hence, $x \in B^{\prime}(S)$. The following proposition shows these sets are in fact equal.

$$
\text { Proposition 2.2: } B(S)=B^{\prime}(S) \text {. }
$$

Proof: Let $x \in B^{\prime}(S)$. Then

$$
x=\sum_{1}^{k} \alpha_{i} x_{i},
$$

where $x_{1} \in S, \quad \alpha_{1} \geq 0$ and

$$
\sum_{1}^{k} \alpha_{i}^{n} \geq 1
$$

Let

$$
\alpha=\left(\sum_{i}^{k} \alpha_{i}^{n}\right)^{\frac{1}{n}}
$$

Then

$$
\sum_{i}^{k}\left(\frac{\alpha_{i}}{\alpha}\right)^{n}=1
$$

implies that $\frac{1}{\alpha} \times \varepsilon B(S)$. Since $\alpha \geq 1$, Theorem 2.2 implies that $x=\alpha \frac{1}{\alpha} x \quad \varepsilon B(S)$.

Proposition 2.2 and Theorem 2.1 together give another characterization of $\mathrm{n}(\mathrm{S})$.

Theorem 2.3: For any set S,

$$
n(S)=\left\{\sum_{1}^{k} \alpha_{i} x_{i}: x_{i} \in S, \alpha_{i} \geq 0, \sum_{1}^{k} \alpha_{i}^{n} \geq 1\right\},
$$

where k is an integer and the x_{i} are distinct.

Actually, the following characterization of $n(S)$ will prove to be the most useful.

Theorem 2.4: For any set S,

$$
n(S)=\left\{\lambda \sum_{1}^{k} \alpha_{i} x_{i}: \lambda \geq 1, x_{i} \in S, \alpha_{i} \geq 0, \sum_{1}^{k} \alpha_{i}^{n}=1\right\}
$$

where k is an integer and the x_{i} are distinct.

Proof: Let

$$
A=\left\{\lambda \sum_{1}^{k} \alpha_{i} x_{i}: \lambda \geq 1, x_{i} \varepsilon s, \alpha_{i} \geq 0, \sum_{1}^{k} \alpha_{i}^{n}=1\right\}
$$

where k is an integer and the x_{i} are distinct. Clearly, $A \subset n(S)$. Let $y \varepsilon n(S)$. Then

$$
y=\sum_{1}^{m} \alpha_{i} x_{i},
$$

where $\alpha_{i} \geq 0$,

$$
\sum_{i}^{m} \alpha_{i}^{n} \geq 1
$$

and $x_{i} \in S$. Let

$$
\lambda=\sqrt[n]{\sum_{1}^{m} \alpha_{i}^{n}},
$$

then

$$
\mathrm{y}=\lambda \sum_{1}^{\mathrm{m}}\left(\frac{\alpha_{i}}{\lambda}\right) \mathrm{x}_{\mathrm{i}} \quad \text { and } \sum_{1}^{\mathrm{m}}\left(\frac{\alpha_{i}}{\lambda}\right)^{\mathrm{n}}=1
$$

Therefore, $y \in A$ and $n(S)=A$.

Theorem 2.2 implies that an n-convex set is inverse starlike from 0 . The following example shows that the converse is not true.

Example 2.1: Let S be the shaded area in Figure 6. S is inverse starlike from 0 .

Figure 6.

Let $\alpha=\frac{1}{2}$ and $\beta=\frac{\sqrt{3}}{2}$. Then $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=\frac{1}{2}(1,0)+\frac{\sqrt{3}}{2}(0,1) \varepsilon 2(S)$.
Since $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \notin S, S$ is not 2 -convex.
Examples of 2-Convex Sets

In this section, several examples of the 2 -convex hull of sets of two points in the plane are given.

Example 2.2: In E_{2} let $S=\left\{\left(0, y_{1}\right),(1,0)\right\}$, where $y_{1}>0$. Find $2(\mathrm{~S})$.

Solution: Let $\alpha \geq 0$ and $\beta \geq 0$ such that $\alpha^{2}+\beta^{2}=1$. Then

$$
\left(\beta, \alpha y_{1}\right)=\alpha\left(0, y_{1}\right)+\beta(1,0) \varepsilon 2(\mathrm{~S}) .
$$

Let $x=\beta$ and $y=\alpha y_{1}$, Then

$$
\alpha=\frac{\mathrm{y}}{\mathrm{y}_{1}}
$$

and

$$
x=\beta=\sqrt{1-\alpha^{2}}=\sqrt{1-\left(\frac{y}{y_{1}}\right)^{2}}=\frac{\sqrt{y_{1}^{2}-y^{2}}}{y_{1}}
$$

Hence, $\quad x y_{1}=\sqrt{y_{1}^{2}-y^{2}}$ implies $\quad x^{2} y_{1}^{2}=y_{1}^{2}-y^{2}$. Thus,

$$
x^{2}+\frac{y^{2}}{y_{1}^{2}}=1
$$

where $x \geq 0, y \geq 0$ and $y_{1}>0$. When $y_{1}=1$, then Theorem 2.4 implies 2(S) is the region indicated in Figure 7(a). Likewise, if $y_{1}>1$, then $2(\mathrm{~s})$ is the region indicated in Figure 7(b). Finaliy, if $y_{1}<1$, then $2(S)$ is the region indicated in Figure 7(c).

Example 2.3: In E_{2} let $S=\left\{\left(x_{1}, y_{1}\right),(1,0)\right\}$, where $x_{1}>0$ and $y_{1}>0$. Find $2(\mathrm{~S})$.

Solution: Let $\alpha \geq 0$ and $\beta \geq 0$ such that $\alpha^{2}+\beta^{2}=1$. Then

$$
\left(\alpha \mathrm{x}_{1}+\beta, \alpha \mathrm{y}_{1}\right)=\alpha\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\beta(1,0) \varepsilon 2(\mathrm{~s}) .
$$

Let $x=\alpha x_{1}+\beta$ and $y=\alpha y_{1}$. Thus, x and y are nonnegative. Substituting,

$$
x=x_{1} \frac{y}{y_{1}}+\sqrt{1-\frac{y^{2}}{y_{1}^{2}}}=x_{1} \frac{y}{y_{1}}+\frac{\sqrt{y_{1}^{2}-y^{2}}}{y_{1}}
$$

Hence,

(a)

(b)

(c)

Figure 7.

$$
\begin{gathered}
x y_{1}-x_{1} y=\sqrt{y_{1}^{2}-y^{2}}, \\
y_{1}^{2} x^{2}-2 x_{1} y_{1} x y+x_{1}^{2} y^{2}=y_{1}^{2}-y^{2}, \\
y_{1}^{2} x^{2}-2 x_{1} y_{1} x y+\left(x_{1}^{2}+1\right) y^{2}=y_{1}^{2} .
\end{gathered}
$$

This can be shown to be the following ellipse

$$
\begin{aligned}
& \left(y_{1}^{2} \cos ^{2} \phi-2 x_{1} y_{1} \sin \phi \cos \phi+\left(x_{1}^{2}+1\right) \sin ^{2} \phi\right) x^{1^{2}} \\
& \quad+\left(y_{1}^{2} \sin ^{2} \phi+2 x_{1} y_{1} \sin \phi \cos \phi+\left(x_{1}^{2}+1\right) \cos ^{2} \phi\right) y^{1^{2}}=y_{1}^{2}
\end{aligned}
$$

by making the following change of variables

$$
\begin{aligned}
& x=x^{\prime} \cos \phi-y^{\prime} \sin \phi, \\
& y=x^{\prime} \sin \phi+y^{\prime} \cos \phi,
\end{aligned}
$$

where $0 \leq \phi \leq \frac{\pi}{2}$ such that

$$
\cot 2 \phi=\frac{x_{1}^{2}-y_{1}^{2}+1}{2 x_{1} y_{1}} .
$$

Notice that the coefficients of $x^{1^{2}}$ and $y^{1^{2}}$ are positive.
Let γ be the angle between the vectors $\left(x_{1}, y_{1}\right)$ and $(1,0)$ (cf. Figure 8), then

$$
\cot \gamma=\frac{x_{1}}{y_{1}} .
$$

Therefore,

Figure 8.

$$
\cot 2 \gamma=\frac{\cot ^{2} \gamma-1}{2 \cot \gamma}=\frac{\left(\frac{x_{1}}{y_{1}}\right)^{2}-1}{2 \frac{x_{1}}{y_{1}}}=\frac{x_{1}^{2}-y_{1}^{2}}{y_{1}^{2}} \cdot \frac{y_{1}}{2 x_{1}}=\frac{x_{1}^{2}-y_{1}^{2}}{2 x_{1} y_{1}}
$$

Hence,

$$
\cot 2 \phi=\frac{\mathrm{x}_{1}^{2}-\mathrm{y}_{1}^{2}}{2 \mathrm{x}_{1} \mathrm{y}_{1}}+\frac{1}{2 \mathrm{x}_{1} \mathrm{y}_{1}}=\cot 2 \gamma+\frac{1}{2 \mathrm{x}_{1} \mathrm{y}_{1}}>\cot 2 \gamma .
$$

Also, $\gamma, \phi \in\left[0, \frac{\pi}{2}\right]$, implies that $2 \gamma>2 \phi$. Hence, $\gamma>\phi$.

Let

$$
r=\sqrt{\left(x_{1}^{2}+1-y_{1}^{2}\right)^{2}+\left(2 x_{1} y_{1}\right)^{2}}
$$

If $\mathrm{y}_{1}^{2} \leq \mathrm{x}_{1}^{2}+1$, then $\cot 2 \phi \geq 0$. Hence, $0 \leq 2 \phi \leq \frac{\pi}{2}$ implies $\cos 2 \phi \geq 0$ and $\sin 2 \phi \geq 0$. Therefore,

$$
\cos 2 \phi=\frac{\mathrm{x}_{1}^{2}+1-\mathrm{y}_{1}^{2}}{\mathrm{r}}
$$

and

$$
\sin 2 \phi=\frac{2 \mathrm{x}_{1} \mathrm{y}_{1}}{\mathrm{r}} .
$$

If $y_{1}^{2}>\mathrm{x}_{1}^{2}+1$, then $\cot 2 \phi<0$. Hence, $\frac{\pi}{2} \leq 2 \phi \leq \pi$ implies $\sin 2 \phi \geq 0$ and $\cos 2 \phi \leq 0$. Hence,

$$
\sin 2 \phi=\frac{2 x_{1} y_{1}}{\mathrm{r}} \text { and } \cos 2 \phi=\frac{\mathrm{x}_{1}^{2}+1-\mathrm{y}_{1}^{2}}{\mathrm{r}} \text {. }
$$

In either case $2 x_{1} y_{1}=r \sin 2 \phi$ and $x_{1}^{2}+1-y_{1}^{2}=r \cos 2 \phi$. Calculating the difference of the $y^{1^{2}}$ and $x^{1^{2}}$ coefficients gives

$$
\begin{aligned}
y_{1}^{2} \sin ^{2} \phi & +2 x_{1} y_{1} \sin \phi \cos \phi+\left(x_{1}^{2}+1\right) \cos ^{2} \phi-\left(y_{1}^{2} \cos ^{2} \phi-2 x_{1} y_{1} \sin \phi \cos \phi\right. \\
& \left.+\left(x_{1}^{2}+1\right) \sin ^{2} \phi\right) \\
& =-y_{1}^{2}\left(\cos ^{2} \phi-\sin ^{2} \phi\right)+\left(x_{1}^{2}+1\right)\left(\cos ^{2} \phi-\sin ^{2} \phi\right)+2 x_{1} y_{1} \sin 2 \phi \\
& =\left(x_{1}^{2}+1-y_{1}^{2}\right) \cos 2 \phi+2 x_{1} y_{1} \sin 2 \phi \\
& =r \cos ^{2} 2 \phi+r \sin ^{2} 2 \phi=r>0 .
\end{aligned}
$$

The coefficient of $y^{1^{2}}$ is greater than the coefficient of $x^{1^{2}}$. This implies the major axis of the ellipse is the x '-axis. Therefore, using Theorem 2.4, it follows that $2(S)$ is the indicated region in Figure 9.

The next example considers the case of two vectors with an obtuse angle between them.

Example 2.3: In E_{2} let $S=\left\{\left(x_{1}, y_{1}\right),(1,0)\right\}$ where $x_{1}<0$ and $y_{1}>0$. Find $2(\mathrm{~S})$.

Solution: Let $\alpha \geq 0$ and $\beta \geq 0$ such that $\alpha^{2}+\beta^{2}=1$. Then $\left(\alpha x_{1}+\beta, \alpha y_{1}\right) \varepsilon B(S)$. Let $x=\alpha x_{1}+\beta$ and $y=\beta y_{1}$. As in the previous example

$$
y_{1}^{2} x^{2}-2 x_{1} y_{1} x y+\left(x_{1}^{2}+1\right) y^{2}=y_{1}^{2}
$$

Now let $0 \leq \phi \leq \frac{\pi}{2}$ such that

$$
\cot 2 \phi=\frac{\mathrm{x}_{1}^{2}+1-\mathrm{y}_{1}^{2}}{2 \mathrm{x}_{1} \mathrm{y}_{1}}
$$

Making the change of variables

$$
\begin{aligned}
& x=x^{\prime} \cos \phi-y^{\prime} \sin \phi, \\
& y=x^{\prime} \sin \phi+y^{\prime} \cos \phi,
\end{aligned}
$$

then as before

$$
\begin{aligned}
& \left(y_{1}^{2} \cos ^{2} \phi-2 x_{1} y_{1} \sin \phi \cos \phi+\left(x_{1}^{2}+1\right) \sin ^{2} \phi\right) x^{1^{2}}+\left(y_{1}^{2} \sin ^{2} \phi\right. \\
& \left.\quad+2 x_{1} y_{1} \sin \phi \cos \phi+\left(x_{1}^{2}+1\right) \cos ^{2} \phi\right) y^{1^{2}}=y_{1}^{2} .
\end{aligned}
$$

Figure 9.

If γ is the angle between $\left(x_{1}, y_{1}\right)$ and $(1,0)$, then

$$
\cot \gamma=\frac{x_{1}}{y_{1}}
$$

implies that

$$
\cot 2 \gamma=\frac{x_{1}^{2}-y_{1}^{2}}{2 x_{1} y_{1}}
$$

Since $x_{1}<0$, then

$$
\cot 2 \phi=\cot 2 \gamma+\frac{1}{2 x_{1} y_{1}}<\cot 2 \gamma .
$$

Also, $\pi \leq 2 \gamma \leq 2 \pi$. Hence, $\pi<2 \gamma<\pi+2 \phi$, which gives

$$
\frac{\pi}{2}<\gamma<\frac{\pi}{2}+\phi
$$

(cf. Figure 10).
Again let

$$
r=\sqrt{\left(x_{1}^{2}+1-y_{1}^{2}\right)^{2}+\left(2 x_{1} y_{1}\right)^{2}}
$$

Recall that

$$
\cot 2 \phi=\frac{\mathrm{x}_{1}^{2}+1-\mathrm{y}_{1}^{2}}{2 \mathrm{x}_{1} \mathrm{y}_{1}}
$$

and $2 x_{1} y_{1}<0$. Suppose $y_{1}^{2} \geq x_{1}^{2}+1$. Then cot $2 \phi \geq 0$, implies that $0 \leq 2 \phi \leq \frac{\pi}{2}$. Hence, $\sin 2 \phi \geq 0$ and $\cos 2 \phi \geq 0$. Therefore,

Figure 10.

$$
\sin 2 \phi=-\frac{2 x_{1} y_{1}}{r} \text { and } \cos 2 \phi=-\frac{x_{1}^{2}+1-y_{1}^{2}}{r}
$$

If $y_{1}^{2}<\mathrm{x}_{1}^{2}+1$, then $\cot 2 \phi<0$. Hence, $\frac{\pi}{2}<2 \phi<\pi$, implies that $\sin 2 \phi \geq 0$ and $\cos 2 \phi \leq 0$. Therefore,

$$
\sin 2 \phi=-\frac{2 x_{1} y_{1}}{r} \text { and } \cos 2 \phi=-\frac{x_{1}^{2}+1-y_{1}^{2}}{r}
$$

In either case, $2 x_{1} y_{1}=-r \sin 2 \phi$ and $x_{1}^{2}+1-y_{1}^{2}=-r \cos 2 \phi$. Therefore, the difference of the $y^{1^{2}}$ coefficient and the x^{1}. coefficient is

$$
\begin{aligned}
y_{1}^{2} \sin ^{2} \phi & +2 x_{1} y_{1} \sin \phi \cos \phi+\left(x_{1}^{2}+1\right) \cos ^{2} \phi-\left(y_{1}^{2} \cos ^{2} \phi-2 x_{1} y_{1} \sin \phi \cos \phi\right. \\
& +\left(x_{1}^{2}+1\right) \sin ^{2} \phi
\end{aligned}
$$

$$
\begin{aligned}
& =\left(x_{1}^{2}+1-y_{1}^{2}\right) \cos 2 \phi+2 x_{1} y_{1} \sin 2 \phi=-r \cos ^{2} 2 \phi-r \sin ^{2} 2 \phi \\
& =-r<0 .
\end{aligned}
$$

Thus, the major axis of the ellipse is the y^{\prime}-axis. Again using Theorem 2.4, it follows that $2(S)$ is the indicated region in Figure 11.

It remains to consider the cases of the two points on a line through the origin. In the following example the two points are on opposite sides of the origin.

Example 2.4: In E_{2} let $S=\left\{(1,0),\left(x_{1}, 0\right)\right\}$ where $x_{1}<0$. Find $n(S)$.

Solution: Let $\alpha \geq 0$ and $\beta \geq 0$ such that $\alpha^{n}+\beta^{n}=1$. Then $0 \leq \alpha \leq 1$ and $0 \leq \beta \leq 1$. Also,

$$
\left(\alpha+\beta x_{1}, 0\right)=\alpha(1,0)+\beta\left(x_{1}, 0\right) \varepsilon n(S) .
$$

Let

$$
f(\lambda)=\lambda+\sqrt[n]{1-\lambda^{n}} x_{1},
$$

where $\lambda \varepsilon[0,1]$. Then f is continuous, $f(0)=x_{1}$ and $f(1)=1$. Let $a \in\left(x_{1}, 1\right)$, then by the Intermediate Value Theorem there exists $\lambda \varepsilon(0,1)$ such that $f(\lambda)=$ a. Therefore,

$$
\left\{(a, 0): a \in\left[x_{1}, 1\right]\right\} \subset n(S) .
$$

Since Theorem 2.4 implies $n(S)$ is inverse starlike from the origin, then $n(S)$ is the x-axis (cf. Figure 12).

Figure 11.

Figure 12.

Example 2.5: In E_{2} let $S=\{(0,0),(1,0)\}$. Find $n(S)$.

Solution: Let $\alpha \geq 0$ and $\beta \geq 0$ such that $\alpha^{n}+\beta^{n}=1$. Then $(\beta, 0)=\alpha(0,0)+\beta(1,0) \varepsilon n(S)$, where $0 \leq \beta \leq 1$. As in Example 2.4, $n(S)=\{(\beta, 0): \beta \geq 0\}$ (cf. Figure 13).

Figure 13.

Additional Properties

This section contains several additional properties of n-convex sets and the n-convex hull of a set. The first proposition characterizes the n-convex hull of the union of two n-convex sets.

Proposition 2.3: Let C and K be two nonempty n-convex sets, then

$$
n(C U K)=\bigcup\{n-\operatorname{cr}[x, y]: x \varepsilon C \text { and } y \varepsilon K\} .
$$

Proof: Clearly $\bigcup\{n-\operatorname{cr}[x, y]: x \in C$ and $y \varepsilon K\}$ is contained in $n(C \cup k)$. Let $z \varepsilon n(C \cup k)$. By Theorem 2.1,

$$
z=\sum \alpha_{i} x_{i}+\sum \beta_{i} y_{i},
$$

where $\alpha_{i} \geq 0, \beta_{i} \geq 0$,

$$
\sum \alpha_{i}^{n}+\sum \beta_{i}^{n}=1
$$

$x_{i} \in C$ and $y_{i} \varepsilon K$. If $\alpha_{i}=0$ for all i, then $z \varepsilon K$. Hence, for any $v \in C, z \in \mathfrak{n}-\mathrm{cr}[v, z]$. Therefore, suppose not all $\alpha_{i}=0$. Likewise, assume not all $\beta_{i}=0$. Let

$$
\alpha=\sqrt[n]{\sum \alpha_{i}^{n}} \text { and } \beta=\sqrt[n]{\sum \beta_{i}^{n}}
$$

Then

$$
z=\alpha \sum\left(\frac{\alpha_{i}}{\alpha}\right) x_{i}+\beta \sum\left(\frac{\beta_{i}}{\beta}\right) y_{i} .
$$

Since

$$
\frac{\alpha_{1}}{\alpha} \geq 0 \quad \text { and } \quad \sum\left(\frac{\alpha_{1}}{\alpha}\right)^{n}=1,
$$

then

$$
x=\sum\left(\frac{a_{1}}{\alpha}\right) x_{1} \varepsilon c
$$

Likewise,

$$
y=\sum\left(\frac{\beta_{i}}{\beta}\right) y_{i} \varepsilon K .
$$

Also, $\alpha^{n}+\beta^{n}=1$ implies $z \varepsilon n-\operatorname{cr}[x, y]$ and the proof is complete.

Note this analogous to the result that the convex hull of the union of two convex is the union of the line segments whose endpoints are such that one is in one of the sets and the other endpoint is in the other set.

In the next proposition the n-convex hull of a convex set is shown to be convex.

Proposition 2.4: If C is a convex set, then

$$
\mathrm{n}(\mathrm{C})=\{\alpha \mathbf{x}: \alpha \geq 1, \mathrm{x} \in \mathrm{C}\},
$$

which is a convex set.

Proof: First it will be shown that $\{\alpha x: \alpha \geq 1, x \in C\}$ is convex. Let $\alpha x, \beta y \in\{\alpha x: \alpha \geq 1, x \in C\}$ and $\lambda \varepsilon[0,1]$. Let

$$
\sigma=\frac{\lambda \alpha}{\lambda \alpha+\beta(1-\lambda)}: \quad \text { and } \quad \gamma=\lambda \alpha+\beta(1-\lambda)
$$

Then $0 \leq \sigma \leq 1$ and $\gamma \geq 1$. Hence, $\sigma x+(1-\sigma) y \varepsilon C$ and $\gamma(\sigma x+(1-\sigma) y) \varepsilon\{\alpha x: \alpha \geq 1, \mathbf{x} \varepsilon C\}$. Since

$$
1-\sigma=\frac{\lambda \alpha+\beta(1-\lambda)-\lambda \alpha}{\lambda \alpha+\beta(1-\lambda)}=\frac{\beta(1-\lambda)}{\lambda \alpha+\beta(1-\lambda)}
$$

then

$$
\gamma(\sigma x+(1-\sigma) y)=\gamma \sigma x+\gamma(1-\sigma) y=\lambda \alpha x+(1-\lambda) \beta y,
$$

which implies that $\{\alpha x: \alpha \geq 1, x \in C\}$ is convex.
By Theorem 2.4 $\{\alpha \mathrm{x}: \alpha \geq 1, \mathrm{x} \varepsilon \mathrm{C}\}(\mathrm{n}(\mathrm{C})$. By induction on m inclusion in the other direction will be shown. Suppose $m=1$, then $y=\alpha x \varepsilon B(C)=n(C)$. Thus, $\alpha=1$ and $x \varepsilon C$, which implies that $y \in\{\alpha x: \alpha \geq 1, x \in C\}$. Assume the induction hypothesis, that is, for every $y \in B(C)$ such that

$$
y=\sum^{m-1} \alpha_{i} x_{i}
$$

where $\alpha_{i}>0$,

$$
\sum_{i}^{m-1} \alpha_{i}^{n}=1
$$

and $x_{i} \in C$ then $y \in\{\alpha x: \alpha \geq 1, x \in C\}$. Let

$$
y=\sum^{m} \alpha_{i} x_{i},
$$

where $\alpha_{i}>0$,

$$
\sum^{m} \alpha_{i}^{n}=1
$$

and $X_{i} \varepsilon C$ Let

$$
\alpha=\sqrt[n]{\sum^{m-1} \alpha_{i}^{n}}
$$

then

$$
y=\alpha \sum^{m-1}\left(\frac{\alpha_{i}}{\alpha}\right) x_{i}+(1-\alpha) \frac{\alpha_{m}}{1-\alpha} x_{m}
$$

Since

$$
\sum^{m-1}\left(\frac{\alpha_{i}}{\alpha}\right)^{n}=1
$$

then

$$
\sum^{m-1}\left(\frac{\alpha_{i}}{\alpha}\right) x_{1} \varepsilon\{\alpha x: \alpha \geq 1, x \in \mathcal{C}\} .
$$

Also, $0<\alpha<1$ implies $0 \leq \alpha^{\mathrm{n}} \leq \alpha$. Hence, $1-\alpha^{\mathrm{n}} \geq 1-\alpha>0$ which implies that

$$
\frac{1}{1-\alpha^{n}} \leq \frac{1}{1-\alpha} .
$$

Therefore,

$$
\frac{\alpha_{m}}{1-\alpha} \geq \frac{\alpha_{m}}{1-\alpha^{n}}=\frac{\alpha_{m}}{\sum_{m}^{m} \alpha_{i}^{n}-\sum \alpha_{i}^{n-1}}=\frac{\alpha_{m}}{\alpha_{m}^{n}}=\left(\alpha_{m}\right)^{1-n} \geq 1
$$

As a result,

$$
\frac{\alpha_{m}}{1-\alpha} x_{m} \varepsilon\{\alpha x: \alpha \geq 1, x \in C\} .
$$

Then $\mathrm{y} \varepsilon\{\alpha \mathrm{x}: \alpha \geq 1, \mathrm{x} \varepsilon \mathrm{C}\}$ which implies $\mathrm{n}(\mathrm{C})=\{\alpha \mathrm{x}: \alpha \geq 1, \mathrm{x} \varepsilon \mathrm{C}\}$.

Figure 14 illustrates the converse is not true. That is, C a set in the xy-plane is not convex but 2(C) is convex. Recall that 2(C) is inverse starlike from the origin. The examples of the last section show that $2(C)$ is as indicated.

Figure 14.

Next the convex hull of an n-convex set is shown to be n-convex.

Proposition 2.5: If K is a n-convex set, then conv(K) is n-convex.

Proof: The conv(K) will be n-convex if and only if

$$
\mathrm{n}(\operatorname{conv}(\mathrm{~K}))=\operatorname{conv}(\mathrm{K}) .
$$

Clearly, conv(K) $\subset \mathfrak{n}(\operatorname{conv}(K))$. Let $x \in n(\operatorname{conv}(K))$. By Proposition 2.4, there exists $a \varepsilon \operatorname{conv}(K)$ and $\alpha \geq 1$ such that $x=\alpha a$. Since
a $\varepsilon \operatorname{conv}(K)$,

$$
a=\sum \alpha_{i} a_{i},
$$

where $a_{i} \varepsilon K, \quad a_{i} \geq 0$ and

$$
\sum \alpha_{i}=1
$$

Therefore,

$$
x=\alpha a=\alpha \sum \alpha_{i} a_{i}=\sum \alpha_{i}\left(\alpha a_{i}\right)
$$

Since K is n-convex, Theorem 2.2 implies $\alpha a_{i} \in K$. Hence, $x \in \operatorname{conv}(K)$ and $\operatorname{conv}(K)=n(\operatorname{conv}(K))$.

Propositions 2.4 and 2.5 imply the following:

Proposition 2.6: For any set $K, n(\operatorname{conv}(K))=\operatorname{conv}(n(K))$.

Proof: Proposition 2.4 implies $\operatorname{conv}(n(D))=n(D)$ when D is convex. Clearly, $K C \operatorname{conv}(K)$. Hence, $n(K) C n(\operatorname{conv}(K))$. Thus, $\operatorname{conv}(\mathrm{n}(\mathrm{K}))(\operatorname{conv}(\mathrm{n}(\operatorname{conv}(\mathrm{K}))=\mathrm{n}(\operatorname{conv}(\mathrm{K}))$
by the above statement.
Also, Proposition 2.5 implies $n(\operatorname{conv}(D))=\operatorname{conv}(D)$ when D is n-convex. Now $K \subset n(K)$ and $\operatorname{conv}(K) C \operatorname{conv}(n(K))$. Hence,

$$
\mathrm{n}(\operatorname{conv}(\mathrm{~K}))(\mathrm{n}(\operatorname{conv}(\mathrm{n}(\mathrm{~K})))=\operatorname{conv}(\mathrm{n}(\mathrm{~K}))
$$

Therefore, $n(\operatorname{conv}(K))=\operatorname{conv}(n(K))$.

It was noticed earlier that an n-convex set is inverse starlike from the origin. Example 2.1 showed that the converse was not true. However, if a set S is inverse starlike from the origin and convex, then Proposition 2.4 implies the set S is n-convex. Clearly, the converse of this statement is not true. The next two results are similar to a couple of results obtained by Allen (cf. [1], pp. 16-17).

Comment 2.1: If K is n-convex, then $K+K \subset K$.

Proof: If $x+y \varepsilon K+K$, then

$$
x+y=\left(\frac{1}{2}\right)^{-\frac{1}{n}}\left(\left(\frac{1}{2}\right)^{\frac{1}{n}} x+\left(\frac{1}{2}\right)^{\frac{1}{n}} y\right)
$$

Since

$$
\left(\left(\frac{1}{2}\right)^{\frac{1}{n}}\right)^{n}+\left(\left(\frac{1}{2}\right)^{\frac{1}{n}}\right)^{n}=\frac{1}{2}+\frac{1}{2}=1
$$

then

$$
\left(\frac{1}{2}\right)^{\frac{1}{n}} x+\left(\frac{1}{2}\right)^{\frac{1}{n}} y \varepsilon K
$$

Also,

$$
\left(\frac{1}{2}\right)^{-\frac{1}{n}}>1
$$

Hence, $\mathrm{x}+\mathrm{y} \varepsilon \mathrm{K}$.

Proposition 2.7: Let $0 \in K$. Then K is a convex cone whose vertex is 0 if and only if K is n-convex.

Proof: Suppose K is a convex cone whose vertex is 0 . Since K is convex, $n(K)=\{\alpha x: x \in K, \alpha \geq 1\}=K$. Hence, K is n-convex.

Now suppose K is n-convex. By the previous comment, $K+K \subset K$. Let $\alpha>0$ and $\mathbf{x}: \varepsilon \mathrm{K}$. If $\alpha \geq 1$, then $\alpha \mathbf{x} \in \mathrm{K}$. Suppose $0<\alpha<1$, then $0<\alpha^{n}<1$. Let $\beta^{n}=1-\alpha^{n}$. Then $\alpha x=\alpha x+\beta \cdot 0 \varepsilon k$. Hence, $\alpha \mathrm{K} \subset \mathrm{K}$ and K is a convex cone with vertex 0 .

A Separation Theorem

Let S be a subset of a linear space L. The core of S, denoted by $\operatorname{Cr}(S)$ is the set of all $\mathrm{x} \varepsilon \mathrm{S}$, such that for all $\mathrm{y} \varepsilon \mathrm{L}, \mathrm{y} \neq \mathrm{x}$, there exists $z \varepsilon$ intv $x y$ such that $x z \subset S$.

A standard separation theorem is as follows: If A and B are two convex subsets of a linear space L, where $\operatorname{Cr}(B) \neq \emptyset, A \neq \emptyset$ and $A \cap \operatorname{Cr}(B)=\emptyset$, then there exists a hyperplane which separates A and B [10]. This section contains a similar result for n-convex sets. Consider first the following lemma.

Lemma 2.1: Let K and C be two n-convex sets in a linear space L such that $K \cap C=\emptyset$, then $\operatorname{conv}(K) \cap \operatorname{conv}(C)=\emptyset$.

$$
\text { Proof: Suppose } x \varepsilon \operatorname{conv}(K) \cap \operatorname{conv}(C) \text {. Then }
$$

$$
x=\sum \alpha_{i} x_{i},
$$

where $\alpha_{i} \geq 0, x_{i} \varepsilon K$ and

$$
\sum \alpha_{i}=1
$$

Also,

$$
x=\sum \beta_{i} y_{i},
$$

where $\beta_{i} \geq 0, y_{i} \varepsilon C$ and

$$
\sum \beta_{i}=1
$$

Suppose $\alpha_{\ell}>0$ and $\beta_{m}>0$, then there exists $\sigma \geq 1$ such that $\sigma \alpha_{\ell} \geq 1$ and $\sigma \beta_{m} \geq 1$. Therefore,

$$
\sigma x=\sum\left(\sigma \alpha_{i}\right) x_{i},
$$

where $\sigma \alpha_{i} \geq 0, \quad x_{i} \in K$ and

$$
\sum\left(\sigma \alpha_{1}\right)^{n} \geq 1
$$

Also,

$$
\sigma \mathbf{x}=\sum\left(\sigma \beta_{i}\right) y_{i},
$$

where $\sigma \beta_{i} \geq 0, y_{i} \varepsilon C$ and

$$
\sum\left(\sigma \beta_{i}\right)^{n} \geq 1
$$

This implies $\sigma x \in K \cap C$, a contradiction. Hence,

$$
\operatorname{conv}(K) \cap \operatorname{conv}(C)=\emptyset
$$

With the aid of Lemma 2.1 , the following separation theorem is possible.

Theorem 2.5: Let K and C be two n-convex sets in linear space L such that $\operatorname{Cr}(C) \neq \emptyset, K \neq \emptyset$ and $K \cap C=\emptyset$, then there exists a hyperplane that separates K and C.

Proof. Since $\operatorname{Cr}(C) \subset C \subset \operatorname{conv}(C)$, then $\operatorname{cr}(\operatorname{conv}(C)) \neq \emptyset$. Also, $K \neq \emptyset$ implies $\operatorname{conv}(K) \neq \emptyset$. Further, $K \cap C \neq \emptyset$ implies that $\operatorname{conv}(K) \cap \operatorname{conv}(C)=\emptyset$; hence, $\operatorname{conv}(K) \cap \operatorname{Cr}(\operatorname{conv}(C))=\emptyset$. Therefore, there exists a hyperplane that separates conv(K) and conv(C); hence, K and C.
$\therefore \quad$ Complementary n-Convex Sets

Let C and D be subsets of a linear space L. Then C and D are complementary if and only if $L=C \cup D$ and $C \cap D=\emptyset$.

In this section two disjoint n-convex subsets of a linear space L are shown to be contained in two complementary n-convex subsets of L. The following lemma is similar to Proposition 1.5.

Lemma 2.2: Suppose x, y, z are three distinct points of a linear space L. If $u \varepsilon n(\{x, y\})$ and $v \varepsilon n(\{y, z\})$, then

$$
\mathrm{n}(\{\mathrm{u}, \mathrm{z}\}) \cap \mathrm{n}(\{\mathrm{x}, \mathrm{v}\}) \neq \emptyset .
$$

Proof: Since $u \in n(\{x, y\})$, then $u=\lambda(\alpha x+\beta y)$, where $\lambda \geq 1$, $\alpha \geq 0, \beta \geq 0$ and $\alpha^{n}+\beta^{n}=1$. Also, $v \varepsilon n(\{y, z\})$ implies that $\mathrm{v}=\omega(\sigma \mathrm{z}+\gamma \mathrm{y})$, where $\omega \geq 1, \quad \sigma \geq 0, \gamma \geq 0$ and $\sigma^{\mathrm{n}}+\gamma^{\mathrm{n}}=1$. If $\beta=0$, then $u=\lambda \alpha x=\lambda(\alpha x+\beta v) \varepsilon n(\{x, v\})$ and

$$
\mathrm{n}(\{\mathrm{u}, \mathrm{z}\}) \cap \mathrm{n}(\{\mathrm{x}, \mathrm{v}\}) \neq \emptyset .
$$

Suppose $\beta>0$. Then

$$
\sqrt[n]{\gamma^{n} \alpha^{n}+\beta^{n}}>0 .
$$

Let

$$
\theta=\frac{\beta}{\sqrt[n]{\gamma^{n} \alpha^{n}+\beta^{n}}} \text { and } \phi=\frac{\sigma \beta}{\sqrt[n]{\gamma^{n} \alpha^{n}+\beta^{n}}} \text {. }
$$

Then $\theta \geq 0$ and $\phi \geq 0$. As in Proposition 1.5

$$
\begin{aligned}
& \sqrt[n]{1-\theta^{n}}=\frac{\gamma \alpha}{\sqrt[n]{\gamma^{n} \alpha^{n}+\beta^{n}}} \geq 0, \\
& \sqrt[n]{1-\phi^{n}}=\frac{\gamma}{\sqrt[n]{\gamma^{n} \alpha^{n}+\beta^{n}}} \geq 0,
\end{aligned}
$$

and

$$
\sqrt[n]{1-\phi^{n}}(\alpha x+\beta y)+\phi z=\theta(\sigma z+\gamma y)+\sqrt[n]{1-\theta^{n}} x .
$$

Let

$$
t=\sqrt[n]{1-\phi^{n}}(\alpha x+\beta y)+\phi z=\theta(\sigma z+\gamma y)+\sqrt[n]{1-\theta^{n}} x .
$$

Let $\xi=\max \left\{2 \omega^{2}, 2 \lambda^{2}\right\}$. Consider

$$
\xi t=\sqrt[n]{1-\phi^{n}} \xi(\alpha x+\beta y)+\phi \xi z
$$

Since $\xi>\lambda^{2} \geq 1$, there eixsts $\xi^{\prime} \geq 1$ such that $\xi=\xi^{\prime} \lambda^{2}$. Hence,

$$
\xi t=\sqrt[n]{1-\phi^{n}} \xi^{\prime} \lambda^{2}(\alpha x+\beta y)+\phi \xi z=\left(\sqrt[n]{1-\phi^{n}} \xi^{\prime} \lambda\right) u+\phi \xi z
$$

where

$$
\sqrt[n]{1-\phi^{n}} \xi^{\prime} \lambda \geq 0
$$

$\phi \xi \geq 0$ and

$$
\left(\sqrt[n]{1-\phi^{n}} \xi^{\prime} \lambda\right)^{n}+(\phi \xi)^{n}=\left(1-\phi^{n}\right) \xi^{n^{n}} \lambda^{n}+\phi^{n} \xi^{n} \geq\left(1-\phi^{n}\right)+\phi^{n}=1
$$

Hence, $\xi t \varepsilon n(\{u, z\})$. Likewise, $\xi t \varepsilon n(\{x, v\})$. Therefore,

$$
n(\{u, z\}) \cap n(\{x, v\}) \neq \emptyset .
$$

The proof of the next lemma is similar to that of Proposition 2.3. The basic difference is that a single point is not an n-convex set.

Lemma 2.3: If K is a n-convex subset of a linear space L and $x \in L$, then

$$
n(K \cup\{x\})=\left\{\alpha x+\beta y: \alpha \geq 0, \beta \geq 0, \alpha^{n}+\beta^{n} \geq 1, y \varepsilon K\right\}
$$

Proof: Clearly,

$$
\left\{\alpha x+\beta y: \alpha \geq 0, \beta \geq 0, \alpha^{n}+\beta^{n} \geq 1, y \varepsilon K\right\} \subset n(K \cup\{x\})
$$

Let $z \varepsilon n(K \cup\{x\})$. By Theorem 2.3

$$
z=\sum_{1}^{m} \alpha_{i} x_{i}+\alpha x
$$

where $\alpha_{i} \geq 0, \alpha \geq 0$,

$$
\sum_{1}^{m} \alpha_{i}^{n}+\alpha^{n} \geq 1
$$

and $x_{i} \varepsilon K$. The result clearly holds if all the $\alpha_{i}=0$. Suppose not all the $\alpha_{i}=0$. Let

$$
\lambda=\sqrt[n]{\sum_{i}^{m} \alpha_{i}^{n}}
$$

Then

$$
z=\lambda \sum_{i}^{m}\left(\frac{\alpha_{i}}{\lambda}\right) x_{i}+\alpha x .
$$

As in Proposition 2.3,

$$
\sum_{i}^{m}\left(\frac{a_{i}}{\lambda}\right) x_{i} \varepsilon K
$$

Since $\quad \lambda^{\mathrm{n}}+\alpha^{\mathrm{n}} \geq 1, \quad z \varepsilon\left\{\alpha \mathrm{x}+\beta \mathrm{y}: \alpha \geq 0, \beta \geq 0, \alpha^{\mathrm{n}}+\beta^{\mathrm{n}} \geq 1, \mathrm{y} \varepsilon \mathrm{K}\right\}$.

The following result is analogous to a result for convex sets found in Valentine [10]. With the use of the two previous lemmas, the proposition is proved as in Valentine.

Proposition 2.8: If A and B are disjoint n-convex sets in a linear space L, then there exists complementary n-convex sets C and D of L such that $A \subset C$ and $B \subset D$.

Proof: Let $\Re=\left\{\left(A_{i}, B_{i}\right): A_{i}\right.$ and B_{i} are n-convex, $A \subset A_{i}$,
$B \subset B_{i}$ and $\left.A_{i} \cap B_{i}=\emptyset\right\}$. Partially order \Re by $\left(A_{i}, B_{i}\right)<\left(A_{j}, B_{j}\right)$
if and only if $A_{i} \subset A_{j}$ and $B_{i} \subset B_{j} \cdot$ Now let

$$
\Re^{\prime}=\left\{\left(A_{\sigma}, B_{\sigma}\right): \sigma \varepsilon \Omega\right\}
$$

be a linearly ordered subset of \mathfrak{R}. Consider $\left(\cup_{A_{\sigma}}, \cup_{\sigma}\right)$, where $\sigma \in \Omega$. Clearly, for every $\left(A_{\alpha}, B_{\alpha}\right) \in \Re^{\prime}, \quad\left(A_{\alpha}, B_{\alpha}\right)<\left(\bigcup_{\sigma}, \bigcup B_{\sigma}\right)$. Also, $A \subset \bigcup A_{\sigma}$ and $B \subset \bigcup B_{\sigma}$. Consider $\bigcup_{A_{\sigma}}$. Let $x, y \varepsilon \bigcup_{\sigma}$. Since \Re^{\prime} is linearly ordered, there exists an $\sigma^{\prime} \varepsilon \Omega$ such that $x, y \varepsilon A_{\sigma}{ }^{\prime}$ Hence, $\alpha x+\beta y \in A_{\sigma}, \subset \bigcup A_{\sigma}$, for $\alpha \geq 0, \beta \geq 0$ and $\alpha^{n}+\beta^{n}=1$. Therefore, $\bigcup A_{\sigma}$ is n-convex. Likewise, $\cup B_{\sigma}$ is n-convex. Suppose $x \in\left[\bigcup_{A_{\sigma}}\right] \cap\left[\bigcup_{B_{\sigma}}\right]$. Then there exists $\alpha, \beta \in \Omega$ such that $x \in A_{\alpha}$ and $x \in B_{\beta}$. Without loss of generality, assume $\left(A_{\alpha}, B_{\alpha}\right)<\left(A_{\beta}, B_{\beta}\right)$. Then $x \in A_{\beta} \cap B_{\beta}$, a contradiction. Hence, $\left[\bigcup_{;} A_{\sigma}\right] \cap\left[\bigcup_{\sigma}\right]=\emptyset$, implies that $\left(\cup_{A_{\sigma}}, \bigcup_{B_{\sigma}}\right) \in \mathfrak{R}$. Therefore, every linearly ordered subset \Re^{\prime} of \Re has an upper bound in \Re. As a result, there exists a maximal element (C, D) in \Re. Since (C, D) $\in \Re$, then $A \subset C$, $B \subset D$, both C and D are n-convex and $C \cap D=\emptyset$. It remains to be shown that $C \cup D=L$.

Suppose $x \in L \backslash(C \cup D)$. Consider the n-convex sets $n(C \cup\{x\})$ and $n(D \cup\{x\})$. Notice that $A \subset C \bigcup\{x\}$ and $B \subset D \cup\{x\}$. Consider $(n(C \cup\{x\}), D)$. Since (C, D) is maximal in \Re, then $(n(C \cup\{x\}), D) \notin \mathfrak{R} . \quad$ This means $n(C \cup\{x\}) \cap D \neq \emptyset$. Therefore, there exists a $\mathrm{d}_{1} \varepsilon \mathrm{n}(\mathrm{C} \cup\{\mathrm{x}\}) \cap \mathrm{D}$. Likewise, there exists a $c_{1} \varepsilon n(D \cup\{x\}) \cap c$. By the last lemma $d_{1}=\alpha c+\beta x$, where $c \varepsilon C$, $\alpha \geq 0, \beta \geq 0$ and $\alpha^{n}+\beta^{n} \geq 1$. Also, $c_{1}=\sigma d+\gamma x$, where $d \varepsilon D$, $\sigma \geq 0, \gamma \geq 0$ and $\sigma^{n}+\gamma^{n} \geq 1$. Since $x \notin C \cup D$, then $x \neq c$ and $\mathrm{x} \neq \mathrm{d}$. Also, $\mathrm{C} \cap \mathrm{D}=\emptyset$ implies $\mathrm{c} \neq \mathrm{d}$. Therefore, $\mathrm{x}, \mathrm{c}, \mathrm{d}$ are three distinct points of $L, d_{1} \varepsilon n(\{x, c\})$ and $c_{1} \varepsilon n(\{x, d\})$. By Lemma 2.2, $n\left(\left\{d_{1}, d\right\}\right) \cap n\left(\left\{c_{1}, c\right\}\right) \neq \emptyset$. However, $n\left(\left\{d_{1}, d\right\}\right) \subset D$ and
$\mathfrak{n}\left(\left\{c_{1}, c\right\}\right) \subset C$. This implies that $c \bigcap D \neq \emptyset$, a contradiction. Hence, $L=C \cup D$.

The following proposition shows that the complementary n-convex sets in Proposition 2.8 are actually complementary convex sets.

Proposition 2.9: If C and D are nonempty complementary n-convex subsets of a linear space L, then both C and D are convex.

Proof: Consider C. If $C=\{0\}$, then for any $x \varepsilon L, x \neq 0$, both x and $-x$ belong to D. However, as in Example 2.4, this implies $0 \varepsilon D$, a contradiction. If $\lambda \geq 1$, then $\lambda v \varepsilon C$. Suppose $0<\lambda<1$. If $\lambda v \notin C$, then $\lambda v \varepsilon D$. Hence, $v=\frac{1}{\lambda}(\lambda v) \varepsilon D, a$ contradiction. Therefore, $\lambda v \varepsilon, C$ for all $\lambda>0$.

Now let $x, y \in C$ and $\alpha \in[0,1]$. Let $z=\alpha x+(1-\alpha) y$. Since $\alpha^{\mathrm{n}}+(1-\alpha)^{\mathrm{n}}>0$, then

$$
z=\sqrt[n]{\alpha^{n}+(1-\alpha)^{n}}\left(\frac{\alpha}{\sqrt[n]{\alpha^{n}+(1-\alpha)^{n}}} x+\frac{1-\alpha}{\sqrt[n]{\alpha^{n}+(1-\alpha)^{n}}} y\right)
$$

Now

$$
\frac{\alpha}{\sqrt[n]{\alpha^{n}+(1-\alpha)^{n}}} x+\frac{1-\alpha}{\sqrt[n]{\alpha^{n}+(1-\alpha)^{n}}} \text { y } \varepsilon c \text {. }
$$

Hence, $z \& C$ and C is convex. Likewise, D is convex.

APPLICATIONS OF n-CONVEX SETS

$$
\begin{aligned}
& \text { For every } x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \varepsilon E_{4}^{+}, \text {define } \\
& \\
& \qquad p(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}
\end{aligned}
$$

Then $p \in P_{2}$, the nonnegative, continuous, 2-homogeneous, superadditive functions defined on E_{4}^{+}. Let $f_{i}(x)=x_{i}^{2}$, where $i=1,2,3,4$. Suppose there exists $\alpha \geq 0$ such that $f_{1}=\alpha p$. Then

$$
1=f_{1}((1,0,0,0))=\alpha p((1,0,0,0))=\alpha
$$

and

$$
1=f_{1}((1,1,0,0))=\alpha p(1,1,0,0)=2 \alpha
$$

which is a contradiction. Therefore, there does not exists $\alpha \geq 0$ such that $f_{1}=\alpha p$. Likewise, there does not exists $\alpha \geq 0$ such that $f_{i}=\alpha p$ for any i. Hence, p is not an extremal element of the convex cone P_{2}.

Also, notice that

$$
p\left(e_{1}\right)=p\left(e_{2}\right)=p\left(e_{3}\right)=p\left(e_{4}\right)=1
$$

where e_{k} is that vector having all zero coordinates except the k-th coordinate which is 1.

If $p \varepsilon P_{n}$, let

$$
[p: \alpha]=\{x: p(x)=\alpha\}
$$

Note that $[p: \alpha]$ would be a hyperplane if p were a linear functional. It would be desirable to know more about $[p: \alpha]$. For example, the n-convex hull of $[p: \alpha]$ is given in the following proposition.

Proposition 3.1: If $p \in P_{n}$, then $n([p: 1])=\operatorname{Lev}_{1} p$.

Proof: Clearly $n([p: 1]) \subset \operatorname{Lev}_{1} p$. Let $x \in \operatorname{Lev}_{1} p$. Then by Theorem 2.2,

$$
x=\sqrt[n]{p(x)} \frac{x}{\sqrt[n]{\sqrt{p(x)}}} \varepsilon n([p: 1]) .
$$

Hence, $n([p: 1])=\operatorname{Lev}_{1} p$.
Now for the function $p(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$,

$$
\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\} \subset[p: 1] .
$$

Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \varepsilon \operatorname{Lev}_{1} p$. Notice

$$
x=\sum_{1}^{4} x_{i} e_{i}
$$

Also,

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=p(x) \geq 1
$$

Hence, $x \in 2\left(\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}\right)$. Therefore, $\operatorname{Lev}_{1} p=2\left(\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}\right)$, a finite subset of [p:1]. The following question arises: Is there
any relation between the fact that $\operatorname{Lev}_{1} p$ is the n-hull of a finite subset of $[p: 1]$ and the fact that p is not an extremal element of the cone P_{n} ?

The following concept will be needed.

Definition 3.1: If A is a subset of a linear space L, the conical hull of A, denoted by coni(A), is the intersection of all convex cones containing A.

The conical hull of A may be characterized as

$$
\operatorname{coni}(A)=\left\{\sum_{1}^{m} \lambda_{i} x_{i}: x_{i} \varepsilon A, \lambda_{i}>0\right\}
$$

[7]. This characterization is used in the following:

Theorem 3.1: If $p \in \rho_{n}$ such that $p \neq 0$ and

$$
S=\left\{a_{1}, \ldots, a_{m}\right\} C[p: 1]
$$

such that $n(S)=\operatorname{Lev}_{1} p$, then for every $x \in E_{n^{2}}^{+}$such that $x \neq 0$, $p(x)>0$.

$$
\begin{aligned}
& \text { Proof: Let } x \in \mathbb{E}_{n^{2}}^{+} \text {such that } x \neq 0 \text {. Suppose } p(x)=0 \text {. Let } \\
& A=\left\{\lambda \sum_{1}^{m} \alpha_{i} a_{i}: \alpha_{i} \geq 0, \sum \alpha_{i}^{n}=1, \lambda>0\right\} \cup\{0\} .
\end{aligned}
$$

Notice that $n(S) \subset A . C l e a r l y, A \subset$ coni(S) $\cup\{0\}$. Let

$$
y \varepsilon \operatorname{coni}(S) \bigcup\{0\}
$$

If $\mathrm{y}=0$, then $\mathrm{y} \varepsilon \mathrm{A}$. Suppose $\mathrm{y} \neq 0$, then

$$
y=\sum_{i}^{m} \alpha_{i} a_{i}
$$

where $\alpha_{i} \geq 0$. Notice that not all of the α_{i} are zero. If

$$
\sum_{1}^{m} \alpha_{1}^{n}=1
$$

then $y \in A$. Suppose

$$
\sum_{1}^{m} \alpha_{1}^{\mathrm{n}} \neq 1
$$

Clearly,

$$
\sum_{1}^{m} \alpha_{i}^{n} \neq 0
$$

Let

$$
\alpha=\sqrt[n]{\sum_{i}^{m} \alpha_{i}^{n}}
$$

Then

$$
y=\alpha \sum_{1}^{m}\left(\frac{\alpha_{1}}{\alpha}\right) a_{i} \text { and } \sum_{1}^{m}\left(\frac{\alpha_{i}}{\alpha}\right)^{n}=1
$$

Hence, $y \in A$. Therefore, $A=\operatorname{conf}(S) \bigcup\{0\}$. Now let $y \varepsilon A \backslash\{0\}$. Then

$$
y=\lambda \sum_{1}^{m} \alpha_{i} a_{i}
$$

$\lambda>0, \quad \alpha_{i} \geq 0$,

$$
\sum_{1}^{m} \alpha_{i}^{n}=1
$$

Again notice that not all the α_{i} are zero. Thus,

$$
\begin{aligned}
p(y) & =p\left(\lambda \sum_{1}^{m} \alpha_{i} a_{i}\right)=\lambda^{n} p\left(\sum_{1}^{m} \alpha_{i} a_{i}\right) \geq \lambda^{n} \sum_{1}^{m} \alpha_{i}^{n} p\left(a_{i}\right) \\
& =\lambda^{n} \sum_{1}^{m} \alpha_{i}^{n}=\lambda^{n}>0 .
\end{aligned}
$$

Hence, $y \neq x$ since $p(x)=0$. The set A is a closed set since S is finite and hence there exists an open neighborhood N of x such that $N \cap A=\emptyset$. Let $z \varepsilon N \cap$ int $E_{\mathrm{n}^{+}}^{+}$. Since $\mathrm{p} \neq 0, \mathrm{p}(\mathrm{z})>0$. Hence,

$$
p\left(\frac{z}{\sqrt[n]{p(z)}}\right)=1
$$

which implies that

$$
\frac{z}{\mathrm{n}_{\sqrt{p(z)}}} \varepsilon \operatorname{Lev}_{1} \mathrm{p}=\mathrm{n}(\mathrm{~S}) \subset \mathrm{A} .
$$

Therefore, $z \varepsilon A$. This is a contradiction. Hence, $p(x)>0$.

The next theorem shows that each positive axis of $\mathrm{E}_{\mathrm{n}^{2}}^{+}$contains an element of the set S of Theorem 3.1.

Theorem 3.2: Let $p \in p_{n}$ such that $p \neq 0$. Suppose there exists a set

$$
S=\left\{a_{1}, \ldots, a_{m}: a_{i}=\left(a_{i 1}, \ldots, a_{i n 2}\right)\right\} \subset[p: 1]
$$

such that $n(S)=\operatorname{Lev}_{1} p$. Then for every i $\varepsilon\left\{1, \ldots, n^{2}\right\}$

$$
\operatorname{Ray}\left(e_{i}\right) \cap s \neq \emptyset,
$$

where $\operatorname{Ray}\left(e_{1}\right)=\left\{\alpha e_{1}: \alpha \geq 0\right\}$.

Proof: First notice $0 \notin S$ since $S \subset[p: 1]$. Suppose there exists k such that Ray $\left(e_{k}\right) \cap S=\varnothing$. Let $x \varepsilon$ Ray $\left(e_{k}\right)$ such that $x \neq 0$. By the previous theorem $p(x)>0$. Hence,

$$
\frac{x}{\sqrt[n]{p(x)}} \varepsilon[p: 1]
$$

Thus, without loss of generality assume $p(x)=1$. Since $\mathrm{x} \varepsilon \operatorname{Lev}_{1} \mathrm{p}=\mathrm{n}(\mathrm{S})$,

$$
x=\sum_{1}^{m} \alpha_{i} a_{i}
$$

where $\alpha_{i} \geq 0$, not all the $\alpha_{i}=0$ and

$$
\sum_{i}^{m} \alpha_{i}^{n}=1
$$

Therefore,
$x=\sum_{1}^{m} \alpha_{i} a_{i}=\sum_{1}^{m} \alpha_{i}\left(a_{i l}, \ldots, a_{i n}{ }^{2}\right)=\left(\sum_{1}^{m} \alpha_{i} a_{i l}, \ldots, \sum_{1}^{m} \alpha_{i}{ }_{i n}{ }^{2}\right)$.

Also, $\mathbf{x} \varepsilon \operatorname{Ray}\left(e_{k}\right) \backslash\{0\}$ implies there exists $\lambda>0$ such that $\mathbf{x}=\lambda e_{k}$. Hence,

$$
\sum_{1}^{m} \alpha_{i} a_{i 1}=0, \ldots, \sum_{1}^{m} \alpha_{i} a_{i k}=\lambda, \ldots, \sum_{1}^{m} \alpha_{i}{ }_{i n 2}=0
$$

Since $\lambda>0$, there exists $j \varepsilon\left\{1, \ldots, n^{2}\right\}$ such that $a_{j k}>0$ and $\alpha_{j}>0$. Consider

$$
\begin{gathered}
\alpha_{1: 11}+\cdots+\alpha_{j} a_{j 1}+\cdots+\alpha_{m} a_{m 1}=0 \\
\vdots \\
\alpha_{1} a_{1 k}+\cdots+\alpha_{j} a_{j k}+\cdots+\alpha_{m} a_{m k}= \\
\vdots \\
\alpha_{1} a_{1 l}+\cdots+\alpha_{j} a_{j l}+\cdots+\alpha_{m} a_{m l}= \\
\vdots \\
\alpha_{1}{ }_{1 n}+\cdots+\alpha_{m}+\cdots{ }_{1 n}=
\end{gathered}
$$

Notice there exists $l \neq k$ such that $a_{j l}>0$, since otherwise $a_{j}=\left(a_{j l}, \ldots, a_{j k}, \ldots, a_{j n}\right)=\left(0, \ldots, a_{j k}, \ldots, 0\right)=a_{j k} e_{k} \varepsilon \operatorname{Ray}\left(e_{k}\right)$. Hence, $\alpha_{j} a_{j \ell}>0$. This implies that

$$
\sum_{i}^{m} \alpha_{i} a_{i l} \neq 0
$$

a contradiction. Therefore, Ray (e_{k}) $\cap \mathrm{S} \neq \emptyset$ for every $k \in\left\{1, \ldots, n^{2}\right\}$.

Notice that S contains at least n^{2} elements since the sets Ray (e_{i}) have only the origin as a common point and S does not meet the origin.

The next theorem attempts to answer the question raised at the first part of this chapter.

Theorem 3.3: Let $p \in p_{n}$ such that $p \neq 0$. If there exists a set $s=\left\{a_{1}, \ldots, a_{n 2}\right\} \subset[p: 1]$ such that $n(S)=\operatorname{Lev}_{1} p$, then p is not an extremal element of P_{n}.

Proof: By the previous theorem, it can be assumed with loss of generality that $a_{i}=\left(0, \ldots, a_{i 1}, \ldots 0\right)=a_{i 1} e_{i}$, where $a_{i 1}>0$. Let $x \in E_{n^{2}}^{+} \backslash\{0\}$. Then by Theorem $3.1 p(x)>0$. Since

$$
\frac{x}{n_{\sqrt{p(x)}}} \varepsilon \operatorname{Lev}_{1} p=n(S),
$$

it follows from Theorem 2.4 that

$$
\frac{x}{n_{\sqrt{p(x)}}}=\lambda \sum_{1}^{n^{2}} \alpha_{i} a_{i}
$$

where $\lambda \geq 1, \quad \alpha_{i} \geq 0$ and

$$
\sum_{1}^{n^{2}} \alpha_{i}^{n}=1
$$

Now

$$
\begin{aligned}
1 & =p\left(\frac{x}{n_{\sqrt{p(x)}}}\right)=p\left(\lambda \sum_{1}^{n^{2}} \alpha_{i} a_{i}\right) \geq \lambda^{n} \sum_{1}^{n^{2}} \alpha_{i}^{n} p\left(a_{i}\right)=\lambda^{n} \sum_{1}^{n^{2}} \alpha_{i}^{n} \\
& =\lambda^{n} \geq 1
\end{aligned}
$$

Therefore, $\lambda^{n}=1$ which implies $\lambda=1$. Hence,

$$
x=\sqrt[n]{p(x)} \sum_{1}^{n^{2}} \alpha_{i} a_{i}
$$

Also, suppose

$$
\mathrm{x}=\mathrm{n}_{\sqrt{\mathrm{p}(\mathrm{x})}} \sum_{1}^{\mathrm{n}^{2}} \alpha_{i}^{\prime} a_{i} .
$$

That is, suppose the representation is not unique, Clearly,

$$
\sum_{1}^{n^{2}} \alpha_{i} a_{i}=\sum_{1}^{n^{2}} \alpha_{i}^{\prime} a_{i} .
$$

Therefore,

$$
\begin{aligned}
0 & =\sum_{1}^{n^{2}}\left(\alpha_{i}-\alpha_{i}^{\prime}\right) a_{i}=\sum_{1}^{n^{2}}\left(\alpha_{i}-\alpha_{i}^{\prime}\right) a_{i 1} e_{i} \\
& =\left(\left(\alpha_{1}-\alpha_{1}^{\prime}\right) a_{11}, \ldots,\left(\alpha_{n 2}-\alpha_{n 2}^{\prime}\right) a_{n 2 n 2}\right)
\end{aligned}
$$

Thus, for all i, $\left(\alpha_{i}-\alpha_{f}^{\prime}\right) a_{i i}=0$ and $a_{i i}>0$, which implies that
$\alpha_{i}=\alpha_{i}^{\prime}$. Hence, the representation for

$$
x=\sqrt[n]{p(x)} \sum_{1}^{n^{2}} \alpha_{i} a_{i}
$$

is unique. To illustrate the relationship between the α_{i} and x, denote

$$
x=n_{\sqrt{p(x)}} \sum_{1}^{n^{2}} \alpha_{i(x)} a_{i}
$$

In order to show that p is not an extremal element of P_{n}, it will be necessary to write p as a sum of elements in $p \in P_{n}$ which are not proportional to p .

Now for every $1 \varepsilon\left\{1, \ldots, n^{2}\right\}$ define $f_{i}: E_{n^{2}}^{+}+E_{1}^{+}$as follows:

$$
f_{i}(x)=\left\{\begin{array}{cc}
\alpha_{1(x)}^{n} p(x), & x \neq 0 \\
0, & x=0
\end{array}\right.
$$

If $x=0$, then

$$
p(x)=\sum_{1}^{n^{2}} f_{i}(x)
$$

If $x \in E_{n 2}^{+} \backslash\{0\}$, then

$$
p(x)=p(x) \sum_{1}^{n^{2}} \alpha_{i(x)}^{n}=\sum_{1}^{n^{2}} \alpha_{i(x)}^{n} p(x)=\sum_{1}^{n^{2}} f_{i}(x) .
$$

In either case,

$$
p=\sum f_{i} .
$$

It remains to be shown that each f_{i} belongs to P_{n}. First show n-homogenity. Let $\alpha \geq 0$ and $x \in E_{n^{2}}^{+}$. If $x=0$, then $\alpha x=0$. Hence, $f_{i}(\alpha x)=0=\alpha^{n} f_{i}(x)$. Suppose $x \neq 0$. If $\alpha=0$, then $\alpha x=0$. Thus, $f_{i}(\alpha x)=0=\alpha^{n} f_{i}(x)$. Suppose $x \neq 0$ and $\alpha>0$. Then

$$
x=\sqrt[n]{p(x)} \sum_{1}^{n^{2}} \alpha_{i(x)} a_{i}
$$

This implies that

$$
\begin{aligned}
& \alpha x=\alpha\left(\sqrt[n]{p(x)} \sum_{1}^{n^{2}} \alpha_{i(x)} a_{i}\right)=\sqrt[n]{\alpha}{ }^{n} p(x) \\
& \sum_{1}^{n^{2}} \alpha_{i(x)} a_{i} \\
&=\sqrt[n]{p(\alpha x)} \sum_{1}^{n^{2}} \alpha_{i(x)} a_{i} .
\end{aligned}
$$

Therefore, $\alpha_{i(\alpha x)}=\alpha_{i(x)}$. Hence, for each i

$$
f_{i}(\alpha x)=\alpha_{i(x)}^{n} p(\alpha x)=\alpha^{n}\left(\alpha_{i(x)}^{n} p(x)\right)=\alpha^{n} f_{i}(x)
$$

Thus, for all $\alpha \geq 0$ and $x \in E_{n^{2}}^{+}, \quad f_{i}(\alpha x)=\alpha^{n_{i}}(x)$.
Now show superadditivity. Let $x, y \in E_{n^{+}}^{+}$. If $x=0$ and $y=0$, then $x+y=0$. As a result, $f_{i}(x+y)=0=f_{i}(x)+f_{i}(y)$. Suppose $x=0$ and $y \neq 0$, then $f_{i}(y)=\alpha_{i(y)}^{n} p(y)$. Also, $x+y=y$. Hence,
$f_{i}(x+y)=f_{i}(y)=f_{i}(y)+f_{i}(x)$. Now suppose both $x \neq 0$ and $y \neq 0$. Then

$$
x=\sqrt[n]{p(x)} \sum_{1}^{n^{2}} \alpha_{i(x)} a_{i} \text { and } y=\sqrt[n]{p(y)} \sum_{1}^{n^{2}} \alpha_{i(y)} a_{i}
$$

Hence,

$$
x+y=\sqrt[n]{p(x+y)} \sum_{1}^{n}\left(\sqrt[n]{\frac{p(x)}{p(x+y)}} \alpha_{i(x)}+\sqrt[n]{\frac{p(y)}{p(x+y)}} \alpha_{i(y)}\right) a_{i}
$$

Then

$$
\begin{aligned}
f_{i}(x+y) & =\left(\sqrt[n]{\frac{p(x)}{p(x+y)}} \alpha_{i(x)}+\sqrt[n]{\frac{p(y)}{p(x+y)}} \alpha_{i(y)}\right)^{n} p(x+y) \\
& \geq\left[\left(\sqrt[n]{\frac{p(x)}{p(x+y)}} \alpha_{i(x)}\right)^{n}+\left(\sqrt[n]{\frac{p(y)}{p(x+y)}} \alpha_{i(y)}\right)^{n}\right] p(x+y) \\
& =\left[\frac{p(x)}{p(x+y)} \alpha_{i(x)}^{n}+\frac{p(y)}{p(x+y)} \alpha_{i(y)}^{n}\right] p(x+y) \\
& =\alpha_{i(x)}^{n} p(x)+\alpha_{i(y)}^{n} p(y)=f_{i}(x)+f_{i}(y) .
\end{aligned}
$$

Therefore, $f_{i}(x+y) \geq f_{i}(x)+f_{i}(y)$ for all $x, y \in E_{n 2}^{+}$.
To show $f_{i} \varepsilon P_{n}$, it only remains to be shown that f_{i} is continuous. In fact from Proposition 1.10, it is sufficient to show that f_{i} is continuous for each $x \neq 0$. Suppose $x \in E_{n^{2}}^{+}$such that $x \neq 0$. Let $\left\{x_{k}\right\} \subset E_{n^{2}}^{+}$such that $x_{k} \rightarrow x$. Without loss of generality, assume $x_{k} \neq 0$ for each k. Then

$$
x=\sqrt[n]{p(x)} \sum_{1}^{n^{2}} \alpha_{i(x)} a_{i} \text { and } x_{k}=n \sqrt[n]{p\left(x_{k}\right)} \sum_{1}^{n^{2}} \alpha_{i\left(x_{k}\right)} a_{i}
$$

Also,

$$
\frac{x_{k}}{n_{\sqrt{p\left(x_{k}\right)}}}+\frac{x}{n_{\sqrt{p(x)}}},
$$

which implies that

$$
\sum_{1}^{n^{2}} \alpha_{i\left(x_{k}\right)} a_{i} \rightarrow \sum_{1}^{n^{2}} \alpha_{i(x)} a_{i}
$$

However,
$\left(\left(\alpha_{1\left(x_{k}\right)}-\alpha_{1(x)}\right) a_{11}, \ldots,\left(\alpha_{n^{2}\left(x_{k}\right)}-\alpha_{n_{2}(x)}\right) a_{n_{2} 2}\right)$

$$
\begin{aligned}
& =\sum_{1}^{n^{2}}\left(\alpha_{i\left(x_{k}\right)}-\alpha_{i(x)}\right) a_{i} \\
& =\sum_{1}^{n^{2}} \alpha_{i\left(x_{k}\right)} a_{i}-\sum_{1}^{n^{2}} \alpha_{i(x)} a_{i} \rightarrow 0 .
\end{aligned}
$$

Therefore, for each i, $\left(\alpha_{i\left(x_{k}\right)}-\alpha_{i(x)}\right) a_{i i} \rightarrow 0$, which implies that $\alpha_{i\left(x_{k}\right)} \rightarrow \alpha_{i(x)}$. As a result,

$$
f_{i}\left(x_{k}\right)=\alpha_{i\left(x_{k}\right)}^{n} p\left(x_{k}\right) \rightarrow \alpha_{i(x)}^{n} p(x)=f_{i}(x) .
$$

Hence, f_{i} is continuous. Thus, each $f_{i} \in P_{n}$.

Lastly, show the f_{i} are not proportional to p. Suppose
$f_{i}=\sigma p, \quad \sigma \geq 0$. Since $p\left(a_{i}\right)=1$ and

$$
a_{i}=\sqrt[n]{p\left(a_{i}\right)} \frac{a_{i}}{\sqrt[n]{p\left(a_{i}\right)}},
$$

then

$$
\alpha_{i\left(a_{i}\right)}=\frac{1}{n_{\sqrt{p\left(a_{i}\right)}}} .
$$

Hence,

$$
\sigma=\sigma p\left(a_{i}\right)=f_{i}\left(a_{i}\right)=\left(\frac{1}{\sqrt[{n_{\sqrt{p\left(a_{i}\right)}}}]{n} p\left(a_{i}\right)=1 ~ . ~}\right.
$$

Now consider a_{j} for some $j \neq i$. Since $p\left(a_{j}\right)=1$ and

$$
a_{j}=n_{\sqrt{p\left(a_{j}\right)}} \frac{a_{j}}{n_{\sqrt{p\left(a_{j}\right)}}},
$$

then $\alpha_{i\left(a_{j}\right)}=0$. Thus,

$$
\sigma=\sigma p\left(a_{j}\right)=f_{i}\left(a_{j}\right)=0 p\left(a_{j}\right)=0,
$$

a contradiction. Therefore, there does not exist a real number $\sigma \geq 0$ such that $f_{i}=\sigma p$. Hence, p is not an extremal element of p_{n}.

The technique used in this proof provided the motivation from which arose Theorem 4.2 in the next chapter. Theorem 3.3 answers the question raised at the first of this chapter for a finite set S that
contains exactly n^{2} elements of $[p: 1]$ and has the property that $n(S)=\operatorname{Lev}_{1} p$. The question is still open if S contains more than n^{2} elements.

In trying to determine whether or not $p \in P_{n}$ is an extremal element of P_{n}, it is important to determine how f and g are related to p when $p=f+g$. One immediate question is the following: If $p=f+g$, then how are the sets $\operatorname{Lev}_{1} p, \operatorname{Lev}_{1} f$ and $\operatorname{Lev}_{1} g$ related? The following proposition is an attempt to shed some light on this question. First consider the following lemma:

Lemma 3.1: Let K be a n-convex set. If $0<\alpha \leq 1$, then $\mathrm{K} \subset \alpha \mathrm{K}$.

Proof: Let $x \in K$, then $x=\frac{1}{\alpha}(\alpha x)$. Since αK is n-convex and $\frac{1}{\alpha} \geq 1$, then $x \in \alpha K$. Hence, $K \subset \alpha K$.

Proposition 3.2: Let p, f and g be nonzero elements of P_{n}. If $p=f+g$, then

$$
\mathrm{n}\left(\operatorname{Lev}_{1} \mathrm{f} \cup \operatorname{Lev}_{1} \mathrm{~g}\right) \subset \operatorname{Lev}_{1} \mathrm{p} \subset \frac{1}{2} \mathrm{n}\left(\operatorname{Lev}_{1} \mathrm{f} \cup \operatorname{Lev}_{1} \mathrm{~g}\right)
$$

Proof: If $x \in \operatorname{Lev}_{1} f$, then $p(x)=f(x)+g(x) \geq 1$, which implies that $x \in \operatorname{Lev}_{1} p$. Hence, $\operatorname{Lev}_{1} f\left(\operatorname{Lev}_{1} p\right.$, Likewise, $\operatorname{Lev}_{1} \mathrm{~g} \subset \operatorname{Lev}_{1} \mathrm{p} . \quad$ Therefore, $\operatorname{Lev}_{1} \mathrm{f} \cup \operatorname{Lev}_{1} \mathrm{~g} \subset \operatorname{Lev}_{1} \mathrm{p}$, and hence $\mathrm{n}\left(\operatorname{Lev}_{1} \mathrm{f} \cup \operatorname{Lev}_{1} \mathrm{~g}\right) \subset \operatorname{Lev}_{1} \mathrm{p}$.

Now let $x \in \operatorname{Lev}_{1} p$. If $f(x) \geq 1$ or $g(x) \geq 1$, then

$$
x \varepsilon n\left(\operatorname{Lev}_{1} f \bigcup \operatorname{Lev}_{1} g\right) \subset \frac{1}{2} n\left(\operatorname{Lev}_{1} f \cup \operatorname{Lev}_{1} g\right)
$$

by Lemma 3.1. Suppose $f(x)<1$ and $g(x)<1$. If $f(x)=0$, then $1 \leq p(x)=f(x)+g(x)=g(x)$, a contradiction. Hence, $0<f(x)<1$. Likewise, $0<g(x)<1$. Then

$$
x=\frac{1}{2}\left[\sqrt[n]{\sqrt{f(x)}} \frac{x}{n_{\sqrt{f(x)}}}+n_{\sqrt{g(x)}} \frac{x}{n_{\sqrt{g(x)}}}\right]
$$

where

$$
\frac{x}{\mathrm{n}_{\sqrt{f(x)}}} \in \operatorname{Lev}_{1} f \quad \text { and } \quad \frac{x}{\mathrm{n}_{\sqrt{g(x)}}} \varepsilon \operatorname{Lev}_{1} g
$$

Also,

$$
\left(n_{\sqrt{f(x)}}\right)^{n}+\left(n_{\sqrt{g(x)}}\right)^{n}=f(x)+g(x)=p(x) \geq 1
$$

Therefore, $\quad x \varepsilon \frac{1}{2} n\left(\operatorname{Lev}_{1} f \cup \operatorname{Lev}_{1} g\right)$.

The following are three basic properties of the sets $\operatorname{Lev}_{1} p$ and [p:1].

Proposition 3.3: If $p, q \in P_{n}$, then $p \geq q$ if and only if $\operatorname{Lev}_{1} q \subset \operatorname{Lev}_{1} \mathrm{p}$.

Proof: Suppose $p \geq q$. Let $x \in \operatorname{Lev}_{1} q$, then $p(x) \geq q(x) \geq 1$.
Then $x \in \operatorname{Lev}_{1} p$, which implies that $\operatorname{Lev}_{1} q \subset \operatorname{Lev}_{1} p$.
Now suppose $\operatorname{Lev}_{1} q \cdot\left(\operatorname{Lev}_{1} p\right.$. Let $x \in E_{n^{2}}^{+}$Clearly, if $q(x)=0$ then $p(x) \geq q(x)$. Therefore, suppose $q(x)>0$. Then

$$
\frac{x}{\sqrt[n]{q(x)}} \varepsilon \operatorname{Lev}_{1} q
$$

Hence,

$$
\frac{p(x)}{q(x)}=p\left(\frac{x}{n \sqrt{q(x)}}\right) \geq 1
$$

since $\operatorname{Lev}_{1} q \subset \operatorname{Lev}_{1} p$. This implies that $p \geq q$.

Proposition 3.4: If $\alpha>0$, then

$$
\operatorname{Lev}_{\lambda} \alpha p=\operatorname{Lev}_{\frac{\lambda}{\alpha}} p \quad \text { and } \quad \alpha \operatorname{Lev}_{\lambda} p=\operatorname{Lev}_{\alpha_{\lambda}} n_{\lambda} p .
$$

Proof: Let $x \in \operatorname{Lev}_{\lambda} \alpha p$. Then $\alpha p(x) \geq \lambda$, which implies that $p(x) \geq \frac{\lambda}{\alpha}$. Hence,

$$
x \in \operatorname{Lev}_{\frac{\lambda}{\alpha}} p .
$$

Let

$$
x \in \operatorname{Lev}_{\frac{\lambda}{\alpha}} p
$$

Then $p(x) \geq \frac{\lambda}{\alpha}$, which implies that $\alpha p(x) \geq \lambda$. Therefore, $x \in \operatorname{Lev}_{\lambda} \alpha p$ and

$$
\operatorname{Lev}_{\lambda} \alpha p=\operatorname{Lev}_{\frac{\lambda}{\alpha}} p .
$$

Next let $\alpha x \varepsilon \alpha \operatorname{Lev}_{\lambda} p$. Then $p(\alpha x)=\alpha^{n} p(x) \geq \alpha^{n} \lambda$, and hence $\alpha \mathrm{x} \in \operatorname{Lev}{ }_{\alpha^{n} \lambda^{\prime}} \mathrm{p}$. Now let $\mathrm{x} \in \operatorname{Lev}_{\alpha^{n} \lambda^{\prime}} \mathrm{p}$. Then $\mathrm{p}(\mathrm{x}) \geq \alpha^{\mathrm{n}} \lambda$. Hence,

$$
\frac{1}{\alpha^{n}} \mathrm{p}(\mathrm{x}) \geq \lambda
$$

Thus, $p\left(\frac{1}{\alpha} x\right) \geq \lambda$, which implies that $\frac{1}{\alpha} x \in \operatorname{Lev}_{\lambda} p$. Therefore,
$\mathbf{x} \varepsilon \alpha \operatorname{Liev}_{\lambda} p \quad$ and $\quad \alpha \operatorname{Lev}_{\lambda} p=\operatorname{Lev}_{\alpha} n_{\lambda} p$.

$$
\begin{gathered}
\text { Proposition 3.5: If } p \varepsilon P_{n} \text { and } \alpha \geq 0, \text { then } \\
\alpha[p ; 1]=\left[p: \alpha^{n}\right] .
\end{gathered}
$$

Proof: The proof is similar to the preceding proof.

CHAPTER IV

EXTREMAL ELEMENTS OF P_{n}

The first theorem gives some of the extremal elements of P_{n}. It is conjectured that this set includes all of the extremal elements of P_{n}. The following lemmas will be needed.

Lemma 4.1: Let $p, q \in P_{n}$. Define

$$
p \wedge q(x)=\min \{p(x), q(x)\}
$$

Then $p \wedge q \in P_{n}$.

Proof: First notice that $p \wedge q$ is n-homogeneous, that is,

$$
\begin{aligned}
p \wedge q(\alpha x) & =\min \{p(\alpha x), q(\alpha x)\}=\min \left\{\alpha^{n} p(x), \alpha^{n} q(x)\right\} \\
& =\alpha^{n} \min \{p(x), q(x)\}=\alpha^{n} p \wedge q(x)
\end{aligned}
$$

Also,

$$
\begin{aligned}
p \wedge q(x+y) & =\min \{p(x+y), q(x+y)\} \\
& \geq \min \{p(x)+p(y), q(x)+q(y)\} \\
& \geq \min \{p(x), q(x)\}+\min \{p(y), q(y)\} \\
& =p \wedge q(x)+p \wedge q(y)
\end{aligned}
$$

Finally, $p \wedge q$ is continuous since

$$
p \wedge q=\frac{1}{2}(p+q-|p-q|)
$$

[3]. Therefore, $p \wedge q \varepsilon p_{n}$.

$$
\begin{gathered}
\text { For all } k=1, \ldots, n^{2}, \text { let } p_{k}(x)=x_{k}^{n} \text {, where } \\
x=\left(x_{1}, \ldots, x_{n^{2}}\right) \varepsilon E_{n^{2}}^{+} .
\end{gathered}
$$

Then $P_{k} \in P_{n}$. With this in mind, consider the following:
Lemma 4.2: Let $a=\left(a_{1}, \ldots, a_{n^{2}}\right) \varepsilon E_{n^{2}}^{+} \backslash\{0\}$. Define p_{a} as
follows:

$$
p_{a}(x)=\sup \left\{\lambda^{n}: x \geq \lambda a, \lambda \geq 0\right\}
$$

Then $p_{a} \varepsilon P_{n}$.

Proof: Without loss of generality, assume the nonzero coordinates of a are $a_{1}, \ldots, a_{k}, k \leq n^{2}$. Let

$$
p(x)=\left(\begin{array}{ccc}
\frac{1}{a_{1}^{n}} p_{1} \wedge & \ldots & \wedge \frac{1}{a_{k}^{n}} p_{k}
\end{array}\right)(x) .
$$

Lemma 4.1 implies $p \varepsilon P_{n}$. Now for x given suppose

$$
\mathrm{p}(\mathrm{x})=\frac{1}{\mathrm{a}_{\ell}^{\mathrm{n}}} \mathrm{x}_{\ell}^{\mathrm{n}},
$$

$1 \leq \ell \leq k$. Then for every i $\varepsilon\{1, \ldots, k\}$

$$
\frac{1}{a_{i}^{n}} x_{i}^{n} \geq \frac{1}{a_{l}^{n}} x_{l}^{n} .
$$

Therefore,

$$
x_{i}^{n} \geq \frac{a_{i}^{n}}{a_{\ell}^{n}} x_{l}^{n}
$$

This implies

$$
x_{i} \geq \frac{a_{i}}{a_{\ell}} x_{\ell}=\frac{x_{l}}{a_{\ell}} a_{i},
$$

with equality when $i=\ell$. If $i \in\left\{1, \ldots, n^{2}\right\} \backslash\{1, \ldots, k\}$ then $a_{i}=0$ in which case

$$
x_{i} \geq \frac{x_{\ell}}{a_{\ell}} a_{i} .
$$

Thus,

$$
x \geq \frac{x_{l}}{a_{\ell}} a .
$$

Notice that there does not exist

$$
\lambda>\frac{x_{\ell}}{a_{\ell}}
$$

such that $\mathrm{x} \geq \lambda \mathrm{a}$, since otherwise

$$
\mathrm{x}_{\ell} \geq \lambda \mathrm{a}_{\ell}>\frac{\mathrm{x}_{\ell}}{\mathrm{a}_{\ell}} \mathrm{a}_{\ell}=\mathrm{x}_{\ell} .
$$

Hence,

$$
p_{a}(x)=p(x)=\left(\begin{array}{lll}
\frac{1}{a_{1}^{n}} p_{1} \wedge & \cdots & \wedge \frac{1}{a_{k}^{n}} p_{k} \tag{4-1}
\end{array}\right)(x)
$$

for every $x \in E_{n^{2}}^{+}$, which implies that $P_{a} \varepsilon P_{n}$.
Notice that if a_{i} is a nonzero coordinate of a and

$$
x=\left(x_{1}, \ldots, x_{n 2}\right) \varepsilon E_{n 2}^{+}
$$

such that $x_{1}=0$, then $x \geq \lambda$ implies $\lambda=0$. Thus, $p_{a}(x)=0$.
A1so, if $a=e_{k}$, then $p_{a}=p_{k}$.
In general, if $p \in P_{n}$, the set $[p: 1]$ is difficult to characterize. However, a characterization is possible when $p=p_{a}$ for some $a \neq 0$.

To do this, let $a=\left(a_{1}, \ldots, a_{n 2}\right) \varepsilon E_{n^{2}}^{+}, a \neq 0$. For every i $\varepsilon\left\{1, \ldots, n^{2}\right\}$, define

$$
R\left(a_{i}\right)=\left\{\left(x_{1}, \ldots, x_{i-1}, a_{i}, x_{i+1}, \ldots, x_{n 2}\right): x_{j} \geq a_{j} \text { for } j \neq i\right\}
$$

Lemma 4.3: If a $\varepsilon \mathrm{E}_{\mathrm{n}^{2}}^{+} \backslash\{0\}$, then

$$
\left[p_{a}: 1\right]=\bigcup_{1}^{n^{2}} R\left(a_{i}\right) .
$$

Proof: Let $y \in R\left(a_{i}\right)$. Clearly, $y \geq a$. Notice there does not exist $\lambda>1$ such that $y \geq \lambda a$, for otherwise $a_{i} \geq \lambda a_{i}>a_{i}$. Hence, by definition $p_{a}(y)=1$. This implies that

$$
\bigcup_{1}^{n^{2}} R\left(a_{i}\right) \subset\left[p_{a}: 1\right] .
$$

Now suppose $y \in\left[p_{a}: 1\right]$. Considering equation (4-1), there exists $k \in\left\{1, \ldots, n^{2}\right\}$ such that $a_{k}>0$ and

$$
\frac{y_{k}^{n}}{a_{k}^{n}}=1
$$

This implies $y_{k}^{n}=a_{k}^{n}$, which in turn implies $y_{k}=a_{k}$. For all other i $\varepsilon\left\{1, \ldots, n^{2}\right\}$ such that $a_{i}>0$,

$$
\frac{y_{i}^{n}}{a_{i}^{n}} \geq 1 .
$$

Hence, $y_{i}^{n} \geq a_{i}^{n}$ which implies $y_{i} \geq a_{i}$. If $i \varepsilon\left\{1, \ldots, n^{2}\right\}$ such that $a_{i}=0$, then $y_{i} \geq a_{i}$. Therefore, $y \in R\left(a_{k}\right)$. Hence,

$$
\left[p_{a}: 1\right]=\bigcup_{1}^{n^{2}} R\left(a_{i}\right) .
$$

Using this result, it is possible to show that $P_{a}=p_{b}$ if and only if $a=b$.

Comment 4.1: $\mathrm{p}_{\mathrm{a}}=\mathrm{p}_{\mathrm{b}}$ if and only if $\mathrm{a}=\mathrm{b}$.

Proof: Clearly, $a=b$ implies $p_{a}=p_{b}$. Suppose $p_{a}=p_{b}$.
Then

$$
\bigcup_{1}^{n^{2}} R\left(a_{i}\right)=\left[p_{a}: 1\right]=\left[p_{b}: 1\right]=\bigcup_{1}^{n^{2}} R\left(b_{i}\right) .
$$

If $a \neq b$, then, without loss of generality, there exists k such
that $a_{k}>b_{k}$. Let $x \in R\left(b_{k}\right)$. Then $x_{k}=b_{k}<a_{k}$. Hence, $x \notin R\left(a_{k}\right)$. Therefore, $x \in R\left(a_{i}\right)$ for some $i \neq k$. Then $x_{k} \geq a_{k}>x_{k}$, a contradiction. Hence, $\mathrm{a}=\mathrm{b}$.

Next p_{a} is shown to be an extremal element of P_{n}.

Theorem 4.1: The function p_{a} is an extremal of P_{n}.
Proof: Suppose $p_{a}=f+g$, Let $y \in R\left(a_{i}\right)$, where i $\varepsilon\left\{1, \ldots, n^{2}\right\}$, then

$$
p_{a}(a)=p_{a}(y)=f(y)+g(y) \geq f(a)+g(a)=p_{a}(a) .
$$

This implies $f(y)=f(a)$ and $g(y)=g(a)$, since $f(y) \geq f(a)$ and $g(y) \geq g(a)$. Also, $p_{a}(a)=f(a)+g(a)$ implies $p_{a}(a) \geq f(a)$ and $p_{a}(a) \geq g(a)$. Therefore, there exists $\alpha \geq 0$ and $\beta \geq 0$ such that $\alpha p_{a}(a)=f(a)$ and $B p_{a}(a)=g(a)$.

Again, without loss of generality, suppose the nonzero coordinates of a are a_{1}, \ldots, a_{k}. Let $x \in E_{n^{2}}^{+}$such that $x_{1}>0, \ldots, x_{k}>0$. Then for every $i \varepsilon\{1, \ldots, k\}$ there exists $\lambda_{i}>0$ such that $a_{i}=\lambda_{i} x_{i}$. Let $\lambda=\max \left\{\lambda_{i}: i \varepsilon\{1, \ldots, k\}\right\}$. Notice there exists a $j \varepsilon\{1, \ldots, k\}$ such that $\lambda=\lambda_{j}$. Hence, $\lambda x_{i} \geq a_{i}$ with equality when $i=j$. Clearly, if $i \varepsilon\left\{1, \ldots, n^{2}\right\} \backslash\{1, \ldots, k\}$, then $\lambda x_{i} \geq a_{i}$. Therefore, $\lambda x \in R\left(a_{j}\right)$. Let $y=\lambda x$. Then $x=\frac{1}{\lambda} y$, where $y \in R\left(a_{j}\right)$. Therefore,

$$
\begin{aligned}
f(x) & =f\left(\frac{1}{\lambda} y\right)=\frac{1}{\lambda^{n}} f(y) \\
& =\frac{1}{\lambda^{n}} f(a)=\frac{1}{\lambda^{n}} \alpha p_{a}(a)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\lambda^{n}} \alpha p_{a}(y)=\alpha p_{a}\left(\frac{1}{\lambda} y\right) \\
& =\alpha p_{a}(x)
\end{aligned}
$$

Clearly, if $x \in{\underset{E}{n}}^{+}$such that $x_{i}=0$ for some $i \in\{1, \ldots, k\}$, then $0=p_{a}(x)$. This implies $f(x)=0$, which in turn implies that $f(x)=\alpha p_{a}(x)$. In either case $f(x)=\alpha p_{a}(x)$. Hence, $f=\alpha p_{a}$. Likewise, $g=\beta p_{a}$. Therefore, p_{a} is an extremal element of p_{n}.

Another property of the functions p_{a} is of interest.

Proposition 4.1: The function p_{a} is minimal in the set of all elements of P_{n} which agree with p at a.

Proof: Let $g \varepsilon P_{n}$ such that $g(a)=1=p_{a}(a)$. Without loss of generality, assume the nonzero coofdinates of. a are a_{1}, \ldots, a_{k}. Let $x \in E_{n^{2}}^{+}$If $x_{1}>0, \ldots, x_{k}>0$, then, as in the previous theorem, there exists $1 \varepsilon\{1, \ldots, k\}$ such that $x=\alpha y$, where $y \in R\left(a_{i}\right)$. Hence,

$$
\begin{aligned}
g(x) & =g(\alpha y)=\alpha^{n} g(y) \geq \alpha^{n} g(a)=\alpha^{n} p_{a}(a) \\
& =\alpha^{n} p_{a}(y)=p_{a}(\alpha y)=p_{a}(x)
\end{aligned}
$$

If there exists $j \varepsilon\{1, \ldots, k\}$ such that $X_{j}=0$, then $p_{a}(x)=0$. Hence, $g(x) \geq p_{a}(x)$. Therefore, for all $x \in \frac{E^{+}}{n^{2}}$, $g(x) \geq p_{a}(x)$.

For these functions p_{a} the sets $\left[p_{a}: 1\right]$ have the following properties.

Proposition 4.2: If $\alpha>0$, then

$$
\alpha\left[p_{a}: 1\right]=\left[p_{a}: \alpha^{n}\right]=\left[p_{\alpha a}: 1\right]
$$

Proof: The first equality follows from Proposition 3.4 and holds in general. It remains to be shown that $\left[p_{a}: \alpha^{n}\right]=\left[p_{\alpha a}: 1\right]$. Let $x \in\left[p_{a}: \alpha^{n}\right]$. Then $p_{a}(x)=\sup \left\{\lambda^{n}: x \geq \lambda_{a}\right\}=\alpha^{n}$. As in the proof of Lemma 4.2, if $p_{a}(x)=\alpha^{n}$, then $x \geq \alpha a$ and there exists $i \varepsilon\left\{1, \ldots, n^{2}\right\}$ such that $: x_{i}=\alpha a_{i}$. Consider $p_{\alpha a}(x)$. Since $x \geq \alpha a$, then $p_{\alpha a}(x) \geq 1$. If $p_{\alpha a}(x)=\lambda^{n}>1$, then $x \geq \lambda(\alpha a)>\alpha a$, a contradiction since $x_{i}=\alpha a_{i}$. Hence, $p_{\alpha a}(x)=1$ which implies that $x \in\left[p_{\alpha a}: 1\right]$. Therefore, $\left[p_{a}: \alpha^{n}\right] \subset\left[p_{\alpha a}: 1\right]$.

Now suppose $x \in\left[p_{\alpha a}: 1\right]$, then $p_{\alpha a}(x)=1$. This implies $x \geq \alpha a$ and there exists $i \varepsilon\left\{1, \ldots, n^{2}\right\}$ such that $x_{i}=\alpha a_{i}$. Consider $p_{a}(x)$. Since $x \geq \alpha a, p_{a}(x) \geq \alpha^{n}$. Suppose $p_{a}(x)=\lambda^{n}>\alpha^{n}$, then $x \geq \lambda a>\alpha a, a$ contradiction. Hence, $p_{a}(x)=\alpha^{n}$ which implies that $x \varepsilon\left[p_{a}: \alpha^{n}\right]$. Therefore, $\left[p_{\alpha a}: 1\right] \subset\left[p_{a}: \alpha^{n}\right]$.

Recall that s_{n} is the set of linear combinations of products of n functions of P_{n}^{\prime}. For a $\varepsilon E_{n^{2}}^{+} \backslash\{0\}$, let $q_{a}(x)=\sup \{\lambda: x \geq \lambda a\}$. Then, as in the case for P_{n}, q_{a} is an extremal element of P_{n}. Also, $p_{a}(x)=\left[q_{a}(x)\right]^{n}$, which implies that $p_{a} \varepsilon \delta_{n}$. Since δ_{n} is a subcone of P_{n}, then p_{a} is an extremal element of s_{n}. It is conjectured that $\left\{p_{a}: a \in E_{n^{2}}^{+} \backslash\{0\}\right\}$ represents all the extremal elements of s_{n}.

Lemma 4.4: If

$$
p(x)=\overbrace{\|_{1}}^{n} A_{i}(x)
$$

where $A_{i} \varepsilon P_{n}^{\prime}$, is an extremal element of g_{n}, then each A_{i} is an extremal element of P_{n}^{\prime}.

Proof: Suppose there exists a $k=1, \ldots, n^{2}$ such that A_{k} is not extrema in P_{n}^{\prime}. Then there exists $f, g \varepsilon \rho_{n}^{\prime}$ such that $A_{k}=f+g$ and neither f or g is proportional to A_{k}. Hence,

$$
\begin{aligned}
p(x) & =\overbrace{\prod_{1}}^{n} A_{1}(x)=A_{1}(x) \cdots(f(x)+g(x)) \cdots A_{n}(x) \\
& =A_{1}(x) \cdots f(x) \cdots A_{n}(x)+A_{1}(x) \cdots g(x) \cdots A_{n}(x)
\end{aligned}
$$

Since p is extremal in g_{n}, there exists $\alpha \geq 0$ and $\beta \geq 0$ such that
$A_{1}(x) \cdots f(x) \cdots A_{n}(x)=\alpha p(x)$ and $A_{1}(x) \cdots g(x) \cdots A_{n}(x)=\beta p(x)$.

Let $x \in$ int $E_{n^{\prime}}^{+}$. Then $p(x)>0$. Also, as in Proposition 1.3, each $A_{i}(x)>0, f(x)>0$ and $g(x)>0$. Therefore,

$$
\alpha A_{1}(x) \cdots A_{k}(x) \cdots A_{n}(x)=\alpha p(x)=A_{1}(x) \cdots f(x) \cdots A_{n}(x),
$$

which implies that $\alpha A_{k}(x)=f(x)$, for all $x \in$ int $E_{n_{2}}^{+}$. It follows, as in Comment 1.3, that $\alpha A_{k}(x)=f(x)$ for all $x \in E_{n 2}^{+}$This is a contradiction. Therefore, A_{k} is extremal in P_{n}^{\prime} for each k.

In any convex cone, if the sum of two nonzero elements is an extremal element, then the two elements are proportional. Hence, the only possible extremal elements of g_{n} are those elements of the form

$$
\begin{equation*}
p(x)=\overbrace{1}^{n_{1}^{2}} A_{i}^{\ell(i)}(x), \tag{4-2}
\end{equation*}
$$

where $\ell(i)$ is a nonnegative integer and

$$
\sum_{1}^{n^{2}} \ell(i)=n .
$$

Notice that $\ell(i)>0$ for at most n values of $i=1, \ldots, n^{2}$. Moreover, Lemma 4.4 implies the $A_{i}(x)$ must be extremal elements of p_{n}^{\prime}. The Lemma 4.4 and these comments give conditions that are necessary when p is an extremal element in g_{n}. These conditions are not sufflcient as will be seen in Proposition 4.3.

Attention will now be given to considering the extremal elements of P_{n}.

Theorem 4.2: Let p be defined as in (4-2). Let k be the number of $i=1, \ldots, n^{2}$ for which $\ell(i)>0$. If $k>1$, then p is not an extremal element of P_{n}.

Proof: Without loss of generality, assume

$$
p(x)=\overbrace{1}^{k} A_{i}^{\ell(i)}(x)
$$

where $\ell(i)$ is a positive integer,

$$
\sum_{1}^{k} \ell(i)=n
$$

and the A_{i} are distinct (pairwise nonproportional) extremal elements in P_{n}^{\prime} : Define

$$
f_{i}(x)=\left\{\begin{array}{cl}
\frac{A_{i}(x)}{A_{1}(x)+\cdots+A_{k}(x)} & p(x), \\
A_{1}(x)+\cdots+A_{k}(x)>0 \\
0 & , \\
& A_{1}(x)+\cdots+A_{k}(x)=0
\end{array}\right.
$$

If $A_{1}(x)+\cdots+A_{k}(x)=0$, then $A_{i}(x)=0$, for $i=1, \ldots, k$. Hence,

$$
p(x)=0=\sum_{1}^{k} f_{i}(x) .
$$

If $A_{1}(x)+\cdots+A_{k}(x)>0$, then

$$
p(x)=\sum_{1}^{k} f_{i}(x)
$$

In either case

$$
p(x)=\sum_{1}^{k} f_{i}(x) .
$$

It will now be shown that $f_{i} \in P_{n}$, for each i.
n-Homogenity: Let $\alpha \geq 0$ and $x \in E_{n^{2}}^{+}$. If $\alpha=0$, then $\alpha x=0$.
Hence, $A_{1}(\alpha x)=\ldots=A_{k}(\alpha x)=0$. Therefore, $f_{i}(\alpha x)=0=\alpha^{n} f_{i}(x)$.

Suppose $\alpha>0$. If $0=A_{1}(\alpha x)+\cdots+A_{k}(\alpha x)=\alpha\left(A_{1}(x)+\cdots+A_{k}(x)\right)$, then $A_{1}(x)+\cdots+A_{k}(x)=0$. Hence, $f_{i}(\alpha x)=\alpha^{n} f_{i}(x)$. Suppose $\alpha>0$ and $\alpha\left(A_{1}(x)+\cdots+A_{k}(x)\right)=A_{1}(\alpha x)+\cdots+A_{k}(\alpha x)>0$, then $A_{1}(x)+\cdots+A_{k}(x)>0$. Therefore,

$$
\begin{aligned}
f_{i}(\alpha x) & =\frac{A_{i}(\alpha x)}{A_{1}(\alpha x)+\cdots+A_{k}(\alpha x)} p(\alpha x) \\
& =\alpha^{n} \frac{A_{i}(x)}{A_{1}(x)+\cdots+A_{k}(x)} p(x)=\alpha^{n} f_{i}(x) .
\end{aligned}
$$

So for all $\alpha \geq 0$ and $x \in E_{n^{2}}^{+}, \quad f_{i}(\alpha x)=\alpha^{n} f_{i}(x)$.
Superadditivity: Let $x, y \in E_{\mathrm{n}^{2}}^{+}$.

$$
\begin{aligned}
& \text { Case I: If } A_{1}(x+y)+\cdots+A_{k}(x+y)=0, \text { then } \\
& 0=A_{1}(x+y)+\cdots+A_{k}(x+y) \\
& \geq A_{1}(x)+\cdots+A_{k}(x)+A_{1}(y)+\cdots+A_{k}(y) \geq 0,
\end{aligned}
$$

which implies $A_{1}(x)+\cdots+A_{k}(x)=0$ and $A_{1}(y)+\cdots+A_{k}(y)=0$. Therefore, $f_{i}(x+y)=0=f_{i}(x)+f_{i}(y)$.

Case II: Suppose $A_{1}(x+y)+\cdots+A_{k}(x+y)>0$, $A_{1}(x)+\cdots+A_{k}(x)=0$ and $A_{1}(y)+\cdots+A_{k}(y)=0$. Clearly, $f_{i}(x+y) \geq f_{i}(x)+f_{i}(y)$.

Case III: Suppose $A_{1}(x+y)+\cdots+A_{k}(x+y)>0$, $A_{1}(x)+\cdots+A_{k}(x)>0$ and $A_{1}(y)+\cdots+A_{k}(y)=0$. Then

$$
f_{i}(x+y)=\frac{A_{i}(x+y)}{A_{1}(x+y)+\cdots+A_{k}(x+y)} p(x+y),
$$

$$
f_{i}(x)=\frac{A_{i}(x)}{A_{1}(x)+\cdots+A_{k}(x)} p(x)
$$

and $f_{i}(y)=0$. It must be shown that

$$
\frac{A_{i}(x+y)}{A_{1}(x+y)+\cdots+A_{k}(x+y)} p(x+y) \geq \frac{A_{i}(x)}{A_{1}(x)+\cdots+A_{k}(x)} p(x) .
$$

This is true if and only if

$$
\begin{align*}
& {\left[A_{1}(x)+\cdots+A_{k}(x)\right] A_{i}(x+y) \overbrace{1}^{k} A_{j}^{\ell(j)}(x+y)} \\
& \geq\left[A_{1}(x+y)+\cdots+A_{k}(x+y)\right] A_{i}(x) \overbrace{1}^{k} A_{j}^{\ell(j)}(x) . \tag{4-3}
\end{align*}
$$

Consider a term on the right side of this last inequality. Without loss of generality, consider

$$
A_{k}(x+y) A_{i}(x) \overbrace{\left.1\right|_{1} ^{k}}^{A_{j}^{\ell(j)}(x)}
$$

Now consider the term

$$
A_{k}(x) A_{i}(x+y) \overbrace{1}^{k} A_{j}^{\ell(j)}(x+y)
$$

on the left side of the inequality. Now

$$
\begin{aligned}
A_{k}(x) A_{i}(x+y) & \overbrace{1}^{k} A_{j}^{\ell(j)}(x+y) \\
& =A_{k}(x) A_{i}(x+y) A_{1}^{\ell(1)}(x+y) \cdots A_{k}^{\ell(k)-1}(x+y) A_{k}(x+y) \\
& =A_{k}(x+y) A_{i}(x+y) A_{1}^{\ell(1)}(x+y) \cdots A_{k}^{\ell(k)-1}(x+y) A_{k}(x) \\
& \geq A_{k}(x+y) A_{i}(x) \overbrace{1}^{k} A_{j}^{\ell(j)}(x),
\end{aligned}
$$

which implies that (4-3) is true. Therefore, $f_{i}(x+y) \geq f_{i}(x)+f_{i}(y)$. Case IV: Suppose $A_{1}(x+y)+\cdots+A_{k}(x+y)>0$, $A_{1}(x)+\cdots+A_{k}(x)>0$ and $A_{1}(y)+\cdots+A_{k}(y)>0$. Then

$$
\begin{aligned}
f_{i}(x+y) & =\frac{A_{i}(x+y)}{A_{1}(x+y)+\cdots+A_{k}(x+y)} p(x+y), \\
f_{i}(x) & =\frac{A_{i}(x)}{A_{1}(x)+\cdots+A_{k}(x)} p(x)
\end{aligned}
$$

and

$$
f_{i}(y)=\frac{A_{i}(y)}{A_{1}(y)+\cdots+A_{k}(y)} p(y) .
$$

It must be shown that

$$
\begin{aligned}
& \frac{A_{i}(x+y)}{A_{1}(x+y)+\cdots+A_{k}(x+y)} \overbrace{1}^{k} A_{j}^{\ell(j)}(x+y) \\
& \geq \frac{A_{i}(x)}{A_{1}(x)+\cdots+A_{k}(x)} \overbrace{1}^{k} A_{j}^{\ell(j)}(x)+\frac{A_{i}(y)}{A_{1}(y)+\cdots+A_{k}(y)} \overbrace{1}^{k} A_{j}^{\ell(j)}(y) .
\end{aligned}
$$

This will be true if and only if

$$
\begin{aligned}
& A_{i}(x+y)\left[A_{1}(x)+\cdots+A_{k}(x)\right]\left[A_{1}(y)+\cdots+A_{k}(y)\right] \overbrace{1}^{k} A_{j}^{\ell(j)}(x+y) \\
& \geq A_{i}(x)\left[A_{1}(y)+\cdots+A_{k}(y)\right]\left[A_{1}(x+y)+\cdots+A_{k}(x+y)\right] \overbrace{\left.\right|_{1}} A_{j}^{\ell(j)}(x) \\
& \quad+A_{1}(y)\left[A_{1}(x)+\cdots+A_{k}(x)\right]\left[A_{1}(x+y)+\cdots+A_{k}(x+y)\right] \overbrace{\left.\right|_{1} ^{k}}^{A_{j}^{\ell(j)}(y) .}
\end{aligned}
$$

Since

$$
\begin{aligned}
& A_{i}(x+y)\left[A_{1}(x)+\cdots+A_{k}(x)\right]\left[\dot{A}_{1}(y)+\cdots+A_{k}(y)\right] \overbrace{1}^{k} A_{j}^{\ell(j)}(x+y) \\
& \quad \geq A_{i}(x)\left[A_{1}(x)+\cdots+A_{k}(x)\right]\left[A_{1}(y)+\cdots+A_{k}(y)\right] \overbrace{1}^{k} A_{j}^{\ell(j)}(x+y) \\
& \quad+A_{i}(y)\left[A_{1}(x)+\cdots+A_{k}(x)\right]\left[A_{1}(y)+\cdots+A_{k}(y)\right] \overbrace{\|_{1}^{k}}^{A_{j}^{\ell(j)}(x+y),}
\end{aligned}
$$

it is sufficient to show

$$
\begin{align*}
& A_{i}(x)\left[A_{1}(x)+\cdots+A_{k}(x)\right]\left[A_{1}(y)+\cdots+A_{k}(y)\right] \prod_{1}^{k} A_{j}^{\ell(j)}(x+y) \\
& \geq A_{i}(x)\left[A_{1}(y)+\cdots+A_{k}(y)\right]\left[A_{1}(x+y)+\cdots+A_{k}(x+y)\right] \overbrace{1}^{k} A_{j}^{l(j)}(x) \tag{4-4}
\end{align*}
$$

and

$$
\begin{align*}
& A_{i}(y)\left[A_{1}(x)+\cdots+A_{k}(x)\right]\left[A_{1}(y)+\cdots+A_{k}(y)\right] \overbrace{1}^{k} A_{j}^{\ell(j)}(x+y) \\
& \geq A_{i}(y)\left[A_{1}(x)+\cdots+A_{k}(x)\right]\left[A_{1}(x+y)+\cdots+A_{k}(x+y)\right] \overbrace{1}^{k} A_{j}^{\ell(j)}(y) . \tag{4-5}
\end{align*}
$$

Consider (4-4). Clearly, (4-4) holds when $A_{i}(x)=0$. Suppose $A_{i}(x)>0$, then (4-4) holds if and only if

$$
\begin{aligned}
{\left[A_{1}(x)+\cdots+A_{k}(x)\right] } & \overbrace{1}^{k} A_{j}^{\ell(j)}(x+y) \\
& \geq\left[A_{1}(x+y)+\cdots+A_{k}(x+y)\right] \overbrace{1}^{k} A_{j}^{\ell(j)}(x) .(4-6)
\end{aligned}
$$

Consider a term on the right side of (4-6). In fact, without loss of generality, consider

$$
A_{k}(x+y) \overbrace{\left.\right|_{1}}^{k} A_{j}^{\ell(j)}(x) .
$$

Consider the term

$$
A_{k}(x) \overbrace{1}^{k} A_{j}^{\ell(j)}(x+y)
$$

on the left side of (4-6). Since

$$
\begin{aligned}
A_{k}(x) \overbrace{1}^{k} A_{j}^{\ell(j)}(x+y) & =A_{k}(x) A_{1}^{\ell(1)}(x+y) \cdots A_{k}^{\ell(k)-1}(x+y) A_{k}(x+y) \\
& =A_{k}(x+y) A_{1}^{\ell(1)}(x+y) \cdots A_{k}^{\ell(k)-1}(x+y) A_{k}(x) \\
& \geq A_{k}(x+y) \overbrace{1}^{k} A_{j}^{\ell(j)}(x),
\end{aligned}
$$

inequality (4-6) is true, which implies (4-4) holds. Likewise, (4-5) holds. Therefore, each f_{i} is superadditive.

Continuity of f_{i} : Let $x \in E_{n^{2}}^{+}$and $\left\{y_{j}\right\} \subset E_{n^{+}}^{+}$such that $y_{j} \rightarrow x$. Suppose $A_{1}(x)+\cdots+A_{k}(x)>0$, then without loss of generality, it may be assumed that $A_{1}\left(y_{j}\right)+\cdots+A_{k}\left(y_{j}\right)>0$ for each j. In this case

$$
f_{i}\left(y_{j}\right)=\frac{A_{i}\left(y_{j}\right)}{A_{1}\left(y_{j}\right)+\cdots+A_{k}\left(y_{j}\right)} p\left(y_{j}\right) \rightarrow \frac{A(x)}{A_{1}(x)+\cdots+A_{k}(x)} p(x)=f_{i}(x) .
$$

Now suppose $A_{1}(x)+\cdots+A_{k}(x)=0$, then $p(x)=f_{i}(x)=0$. If there exists $m \in\{1, \ldots, k\}$ such that $A_{m}\left(y_{j}\right)=0$, then $f_{i}\left(y_{j}\right)=0=f_{i}(x)$. Suppose $A_{m}\left(y_{j}\right)>0$, for $m=1, \ldots, k$. Let

$$
\begin{aligned}
f_{i}\left(y_{j}\right) & =\frac{A_{i}\left(y_{j}\right)}{A_{1}\left(y_{j}\right)+\cdots+A_{k}\left(y_{j}\right)} \overbrace{1}^{k} A_{m}^{\ell(m)}\left(y_{j}\right) \\
& =\left(\frac{1}{A_{1}^{\ell(1)-1}\left(y_{j}\right) \cdots A_{i}^{\ell(i)+1}\left(y_{j}\right) \cdots A_{k}^{\ell(k)}\left(y_{j}\right)}\right.
\end{aligned}
$$

$$
\begin{align*}
& +\frac{1}{A_{1}^{\ell(1)}\left(y_{j}\right) \cdots A_{i}^{\ell(1)}\left(y_{j}\right) \cdots A_{k}^{\ell(k)}\left(y_{j}\right)} \\
& \left.+\frac{1}{A_{1}^{\ell(1)}\left(y_{j}\right) \cdots A_{i}^{l(1)+1}\left(y_{j}\right) \cdots A_{k}^{\ell(k)-1}\left(y_{j}\right)}\right)^{-1} . \tag{4-7}
\end{align*}
$$

As $y_{j} \rightarrow x, A_{m}\left(y_{j}\right) \rightarrow A_{m}(x)=0$, for each m. If there is a subsequence of $\left\{y_{j}\right\}$ such that each $A_{m}\left(y_{j}\right)>0$, then (4-7) implies that $f_{i}\left(y_{j}\right) \rightarrow 0$ as the subsequence approaches x. Therefore, given $\varepsilon>0$, there exists an integer N such that $j \geq N$ implies that

$$
\left|f_{i}(x)-f_{i}\left(y_{j}\right)\right|<\varepsilon,
$$

i.e., f is continuous. Hence, each $f_{i} \in \rho_{n}$.

It remains to be shown that the functions f_{i} form a nonproportional decomposition of p. Suppose $f_{i}(x)=\alpha p(x)$, for all $x \in E_{n}^{+}$. Let $x \in E_{n^{2}}^{+}$. There exists a sequence $\left\{y_{j}\right\} \subset$ int $E_{n 2}^{+}$such that $y_{j} \rightarrow x$. Since $y_{j} \varepsilon$ int $E_{n 2}^{+}, A_{1}\left(y_{j}\right)>0, \ldots, A_{k}\left(y_{j}\right)>0$ and $p\left(y_{j}\right)>0$. Hence,

$$
\alpha p\left(y_{j}\right)=f_{i}\left(y_{j}\right)=\frac{A_{i}\left(y_{j}\right)}{A_{1}\left(y_{j}\right)+\cdots+A_{k}\left(y_{j}\right)} p\left(y_{j}\right)
$$

which implies that

$$
\alpha=\frac{A_{i}\left(y_{j}\right)}{A_{1}\left(y_{j}\right)+\cdots+A_{k}\left(y_{j}\right)} .
$$

or

$$
A_{i}\left(y_{j}\right)=\alpha\left(A_{1}\left(y_{j}\right)+\cdots+A_{k}\left(y_{j}\right)\right) .
$$

Also,
$A_{i}\left(y_{j}\right) \rightarrow A_{i}(x)$ and $\alpha\left(A_{1}\left(y_{j}\right)+\cdots+A_{k}\left(y_{j}\right)\right) \rightarrow \alpha\left(A_{1}(x)+\cdots+A_{k}(x)\right)$.

Hence,

$$
A_{i}(x)=\alpha\left(A_{1}(x)+\cdots+A_{k}(x)\right)
$$

Since $A_{1}, \ldots, A_{i}, \ldots, A_{k}$ are pairwise nonproportional extremal elements in P_{n}^{\prime}, this is a contradiction. Therefore, there does not exist $\alpha \geq 0$ such that $f_{i}=\alpha p$. Hence, the decomposition is nonproportional, which implies that p is not an extremal element of P_{n}.

Two questions immediately arise. First, is $f_{i} \varepsilon g_{n}$? Secondly, is every extremal element of P_{n}^{\prime} of the form q_{a}, where a $\varepsilon E_{n^{2}} \backslash\{0\}$? If both answers are affirmative, then every extremal element of g_{n} is of the form P_{a}, where a $\varepsilon E_{n^{+}}^{+} \backslash\{0\}$. It is entirely possible that the functions f_{i} do not belong to S_{n}.

The following is an example of a subcone of P_{n} that has as extremal elements some functions that are not extremal in P_{n}.

Example 4.1: Let Q_{n} be the set of all $p: E_{n^{2}}^{+} \rightarrow E_{1}^{+}$such that

$$
p(x)=\sum_{i 1, \ldots, i n=1}^{n^{2}} \alpha_{i 1, \ldots, i n} x_{i 1} \cdots x_{i n},
$$

where $i 1 \leq \cdots \leq i n, \quad \alpha_{i 1}, \ldots, i n \geq 0 \quad$ and $x=\left(x_{1}, \ldots, x_{n}\right)$. Thus, Q_{n} is the set of nonnegative, superadditive n-forms, Clearly, Q_{n} is a subcone of $\mathscr{S}_{\mathrm{n}} \subset \mathrm{p}_{\mathrm{n}}$. Therefore, the functions $\mathrm{p}_{1}, \ldots, p_{\mathrm{n}} 2$ are extremal elements of Q. However, these are not all of the extremal
elements of Q_{n}. In fact, the extremal elements of Q_{n} are the positive scalar multiples of functions of the form

$$
\mathrm{p}(\mathrm{x})=\mathrm{x}_{\mathrm{k} 1} \cdots \mathrm{x}_{\mathrm{kn}},
$$

where $k_{j} \in\left\{1, \ldots, n^{2}\right\}$, for $j=1, \ldots, n$, and $k 1 \leq \cdots \leq k n$.

Proof: Let p be a function of the above form. Suppose $p=f+g$, where $f, g \in Q_{n}$. Suppose

$$
f(x)=\sum_{i 1, \ldots, i n=1}^{n^{2}} \alpha_{i 1, \ldots, i n} x_{i 1} \cdots x_{i n}
$$

and

$$
g(x)=\sum_{i 1, \ldots, i n=1}^{n^{2}} \beta_{i 1, \ldots, i n} x_{i 1} \cdots x_{i n},
$$

where il $\leq \cdots \leq i n$. Then

$$
\begin{aligned}
x_{k 1} \cdots x_{k n} & =f(x)+g(x) \\
& =\sum \alpha_{i 1}, \ldots, i n x_{i 1} \cdots x_{i n}+\sum \beta_{i 1, \ldots, i n} x_{i 1} \cdots x_{i n} \\
& =\sum\left(\alpha_{i 1, \ldots, i n}+\beta_{i 1}, \ldots, i n\right) x_{i 1} \cdots x_{i n},
\end{aligned}
$$

which implies that

$$
\alpha_{i 1, \ldots, i n}+\beta_{i 1, \ldots, i n}= \begin{cases}1, & i 1=k 1, \ldots, i n=k n \\ 0, & \text { elsewhere }\end{cases}
$$

Therefore,

$$
\begin{aligned}
f(x) & =\sum \alpha_{i 1, \ldots, i n} x_{i 1} \cdots x_{i n} \\
& =\alpha_{k 1, \ldots, k n} x_{k 1} \cdots x_{k n}=\alpha_{k 1, \ldots, k n} p(x)
\end{aligned}
$$

and

$$
\begin{aligned}
g(x) & =\sum \beta_{i 1, \ldots, i n} x_{i 1} \cdots x_{i n} \\
& =\beta_{k 1, \ldots, k n} x_{k 1} \cdots x_{k n}=\beta_{k 1, \ldots, k n} p(x) .
\end{aligned}
$$

Hence, p is an extremal element of Q_{n}.

$$
\begin{gather*}
\text { Now for every } x=\left(x_{1}, \ldots, x_{n^{2}}\right) \& E_{n^{2}}^{+} \text {define } p(x) \text { as } \\
p(x)=x_{1}^{\ell(1)} \ldots x_{n^{2}}^{\ell\left(n^{2}\right)} \tag{4-7}
\end{gather*}
$$

where $\ell(i)$ is a nonnegative integer and

$$
\sum_{1}^{n^{2}} \ell(i)=n .
$$

Notice that $\ell(i)>0$ for at most n values of $i=1, \ldots, n$. Clearly, $p \in Q_{n}$. In fact, the preceding example shows that p is an extremal element of Q_{n}. If k is the number of $i \varepsilon\left\{1, \ldots, n^{2}\right\}$ for which $\ell(i)>0$ and $k>1$, Theorem 4.2 says that p is not an extremal element of P_{n}. The following proposition shows that it is possible that p is not an extremal element of δ_{n}.

Proposition 4.3: Let p be defined as in (4-7). If $k=2$, then p is not an extremal element of δ_{n}.

Proof: Without loss of generality, assume

$$
\mathrm{p}(\mathrm{x})=\mathrm{x}_{1}^{\ell(1)} \mathrm{x}_{2}^{\ell(2)},
$$

where $\ell(1)>0$ and $\ell(2)>0$. As seen in the proof of Theorem 4.2,

$$
p(x)=\sum_{1}^{2} f_{i}(x)
$$

where

$$
f_{i}(x)=\left\{\begin{array}{c}
\frac{x_{i}}{x_{1}+x_{2}} \cdot x_{1}^{\ell(1)} x_{2}^{\ell(2)}, x_{1}+x_{2}>0 \\
0
\end{array}, x_{1}+x_{2}=0\right.
$$

Consider $f_{1}(x)$. Notice

$$
f_{1}(x)=\left\{\begin{array}{cl}
\frac{x_{1} x_{2}}{x_{1}+x_{2}} x_{1}^{\ell(1)} x_{2}^{\ell(2)-1}, & x_{1}+x_{2}>0, \\
0 & , x_{1}+x_{2}=0
\end{array}\right.
$$

Let

$$
g(x)=\left\{\begin{array}{cc}
\frac{x_{1} x_{2}}{x_{1}+x_{2}}, & x_{1}+x_{2}>0 \\
0, & x_{1}+x_{2}=0
\end{array}\right.
$$

Then $f_{1}(x)=g(x) x_{1}^{\ell(1)} X_{2}^{\ell(2)-1}$. Since the objective is to show that $f_{i} \varepsilon g_{n}$, it remains to be shown that $g \varepsilon P_{n}^{\prime}$. As in Theorem 4.2, g is continuous and homogeneous of degree 1 . It remains to prove the superadditivity.

Let $x, y \in E_{n^{2}}^{+}$. Suppose $x_{1}+x_{2}=0$ and $y_{1}+y_{2}=0$, then $x_{1}+y_{1}+x_{2}+y_{2}=0$. Hence, $g(x+y)=0=g(x)+g(y)$. Suppose $y_{1}+y_{2}>0$, then $x_{1}+y_{1}+x_{2}+y_{2}=y_{1}+y_{2}>0$. Hence,

$$
g(x+y)=\frac{\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)}{x_{1}+y_{1}+x_{2}+y_{2}}=\frac{y_{1} y_{2}}{y_{1}+y_{2}}=g(y)+g(x)
$$

Finally, suppose $x_{1}+x_{2}>0$ and $y_{1}+y_{2}>0$. In this case it must be shown that

$$
\frac{\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)}{x_{1}+y_{1}+x_{2}+y_{2}} \geq \frac{x_{1} x_{2}}{x_{1}+x_{2}}+\frac{y_{1} y_{2}}{y_{1}+y_{2}}
$$

which is equivalent to proving

$$
\begin{aligned}
\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{1}+x_{2}\right)\left(y_{1}\right. & \left.+y_{2}\right)-\left[x_{1} x_{2}\left(y_{1}+y_{2}\right)\left(x_{1}+y_{1}+x_{2}+y_{2}\right)\right. \\
& \left.+y_{1} y_{2}\left(x_{1}+x_{2}\right)\left(x_{1}+y_{1}+x_{2}+y_{2}\right)\right] \geq 0
\end{aligned}
$$

By direct calculation

$$
\begin{aligned}
&\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{1}+x_{2}\right)\left(y_{1}+\right.\left.y_{2}\right) \\
&- {\left[x_{1} x_{2}\left(y_{1}+y_{2}\right)\left(x_{1}+y_{1}+x_{2}+y_{2}\right)\right.} \\
&\left.+y_{1} y_{2}\left(x_{1}+x_{2}\right)\left(x_{1}+y_{1}+x_{2}+y_{2}\right)\right] \\
&=\left(x_{1} x_{2}+x_{1} y_{2}+\right.\left.x_{2} y_{1}+y_{1} y_{2}\right)\left(x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}+x_{2} y_{2}\right) \\
&-\left[\left(x_{1} x_{2} y_{1}+x_{1} x_{2} y_{2}\right)\left(x_{1}+y_{1}+x_{2}+y_{2}\right)\right. \\
&\left.+\left(x_{1} y_{1} y_{2}+x_{2} y_{1} y_{2}\right)\left(x_{1}+y_{1}+x_{2}+y_{2}\right)\right] \\
&=x_{1}^{2} x_{2} y_{1}+x_{1}^{2} x_{2} y_{2}+x_{1} x_{2}^{2} y_{1}+x_{1} x_{2}^{2} y_{2}+x_{1}^{2} y_{1} y_{2}+x_{1}^{2} y_{2}^{2} \\
&+x_{1} x_{2} y_{1} y_{2}+x_{1} x_{2} y_{2}^{2}+x_{1} x_{2} y_{1}^{2}+x_{1} x_{2} y_{1} y_{2} \\
&+x_{2}^{2} y_{1}^{2}+x_{2}^{2} y_{1} y_{2}+x_{1} y_{1}^{2} y_{2}+x_{1} y_{1} y_{2}^{2} \\
&+x_{2} y_{1}^{2} y_{2}+x_{2} y_{1} y_{2}^{2}-\left[x_{1}^{2} x_{2} y_{1}+x_{1} x_{2} y_{1}^{2}\right. \\
&=+x_{1} x_{2}^{2} y_{1}+x_{1} x_{2} y_{1} y_{2}+x_{1}^{2} x_{2} y_{2}+x_{1} x_{2} y_{1} y_{2} \\
&=\left(x_{1} y_{2}-x_{2} y_{1}\right)
\end{aligned} \quad \begin{aligned}
\geq 0
\end{aligned}
$$

Hence, g is superadditive and $f_{1} \in \mathcal{S}_{\mathrm{n}}$. Likewise, $\mathrm{f}_{2} \in \mathcal{S}_{\mathrm{n}}$. Hence, p is not an extremal element of \mathcal{S}_{n}.

CHAPTER V

THE INFIMUM OF A P_{n} FUNCTION

The supremum of $f(x)$ where f is a convex function defined on a convex set has been studied by many persons. For example, Rockafellar (cf. [7], pp. 342-349). The discussion here will consider the infimum $p(x)$, for $p \in P_{n}$, where x is restricted on an n-convex set. Recall that if $z \varepsilon n-c r(x, y)$, then $n-c r(x, z)$ is not always contained in $n-c r(x, y)$ (cf. Example 1.2).

The first two results are analogous to results involving the supremum of a convex function over a convex set.

Proposition 5.1: If C is a nonempty subset of $E_{n^{+}}^{+}$and $p \varepsilon P_{n}$, then $\inf \{p(x): x \in C\}=\inf \{p(x): x \varepsilon n(C)\}$.

Proof: Since $C(\mathrm{n}(\mathrm{C})$, then

$$
\inf \{p(x): x \in n(C)\} \leq \inf \{p(x): x \in C\}
$$

Let $x \in n(C)$. Then

$$
x=\lambda \sum_{1}^{k} \alpha_{i} x_{i},
$$

where $\lambda \geq 1, \quad \alpha_{i} \geq 0$,

$$
\sum_{1}^{k} \alpha_{i}^{n}=1
$$

and $x_{i} \in C$. Hence,

$$
\begin{aligned}
p(x) & =p\left(\lambda \sum_{1}^{k} \alpha_{i} x_{i}\right) \geq \lambda^{n} \sum_{1}^{k} \alpha_{i}^{n} p\left(x_{i}\right) \geq \sum_{1}^{k} \alpha_{i}^{n} p\left(x_{i}\right) \\
& \geq \inf \{p(x): x \in c\} \sum_{1}^{k} \alpha_{i}^{n}=\inf \{p(x): x \in C\} .
\end{aligned}
$$

Therefore, $\inf \{p(x): x \in n(C)\} \geq \inf \{p(x): x \in C\}$. This implies that $\inf \{p(x): x \in C\}=\inf \{p(x): x \in n(C)\}$.

If C, in Proposition 5.1, is compact, then there exists $x \in C \subset K$ such that $p(x)=\inf \{p(y): y \in n(C)\}$. The following proposition is analogous to the maximum principle of harmonic functions.

Proposition 5.2: Let $p \varepsilon P_{n}$ and K be a n-convex subset of $\mathrm{E}_{\mathrm{n} 2}^{+}$. If there exists $\mathrm{z} \varepsilon$ rel int (K) such that

$$
p(z)=\inf \{p(x): x \varepsilon K\}
$$

then p is zero over. K.

Proof: Let x be any other point of K. Let

$$
f(\beta)=\beta z-n \sqrt{\beta^{n}-1} x,
$$

where $\beta \geq 1$. Then f is continuous and $f(1)=z$. Since $z \varepsilon$ rel int (K), there exists $\gamma>1$ such that $f(\gamma) \varepsilon$ rel int (K).

Let

$$
y=f(\gamma)=\gamma z-\sqrt[n]{\gamma^{n}-1} x .
$$

Then

$$
\begin{gathered}
\gamma z=y+\sqrt[n]{\gamma^{n}-1} x \\
z=\frac{1}{\gamma} y+\frac{n \sqrt{\gamma^{n}-1}}{\gamma} x=\frac{1}{\gamma} y+\sqrt[n]{\frac{\gamma^{n}-1}{\gamma^{n}}} x=\frac{1}{\gamma} y+\sqrt[n]{1-\left(\frac{1}{\gamma}\right)^{n}} x .
\end{gathered}
$$

Let $\alpha=\frac{1}{\gamma}$, then $\alpha \in(0,1)$ and

$$
z=\alpha y+\sqrt[n]{1-\alpha^{n}} x
$$

Also,

$$
p(z) \geq \alpha^{n} p(y)+\left(1-\alpha^{n}\right) p(x) \geq \alpha^{n} p(z)+\left(1-\alpha^{n}\right) p(z)=p(z)
$$

Hence, $p(x) \notin p(z)$, which implies that $p(x)=p(z)$. Now $z \varepsilon K$ implies thạt $2 z \in K$. Therefore,

$$
2^{n} p(z)=p(2 z)=p(z),
$$

which implies that $p(z)=0$.

The following proposition is used several times in the remainder of this chapter.

Proposition 5.3: Let $p \in P_{n}$. If there exists $z \in n-c r(x, y)$ such that $: p(z)=\inf \{p(w): w \in n-c r[x, y]\}$, then $p(x)=p(z)=p(y)$.

Proof: Since $z \in n-\operatorname{cr}(x, y)$, then $z=\alpha x+\beta y$, where $\alpha>0$, $\beta>0$ and $\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}=1$. Hence,

$$
p(z) \geq \alpha^{n} p(x)+\beta^{n} p(y) \geq \alpha^{n} p(z)+\beta^{n} p(z)=p(z) .
$$

Thus, $p(z) \nmid p(x)$ and $p(z) \nmid p(y)$, which implies that

$$
p(x)=p(z)=p(y) .
$$

In the results to follow n-extreme points are used to characterize those points of certain sets for which the infimum of a function $\mathrm{p} \in \mathrm{P}_{\mathrm{n}}$ is obtained.

Proposition 5.4: If $K=n(C)$, where C is a convex subset of $\mathrm{E}_{\mathrm{n} 2}^{+}, \mathrm{p} \in \mathrm{P}_{\mathrm{n}}$ and there exists $\mathrm{z} \in \mathrm{K}$ such that

$$
p(z)=\inf \{p(x): x \in K\},
$$

then z is a n-extreme point of K and $z \varepsilon C$.

Proof: First notice that z ع C, since otherwise by Proposition 2.4, $z=\alpha x$ where $\alpha>1$ and $x \varepsilon C$. Hence,

$$
p(z)=\alpha^{n} p(x)>p(x) \geq p(z),
$$

a contradiction. Suppose z is not an n-extreme point of K. Then there exists $x, y \varepsilon K$ such that $z=\alpha x+\beta y$, where $\alpha>0, \beta>0$ and $\alpha^{n}+\beta^{n}=1$. By Proposition 5.3, $p(x)=p(z)=p(y)$. As above, $\mathrm{x}, \mathrm{y} \in \mathrm{C}$. Since $\alpha+\beta>1$,

$$
z=(\alpha+\beta)\left(\frac{\alpha}{\alpha+\beta} x+\frac{\beta}{\alpha+\beta} y\right)>\frac{\alpha}{\alpha+\beta} x+\frac{\beta}{\alpha+\beta} y
$$

The set C is convex implies that

$$
\frac{\alpha}{\alpha+\beta} x+\frac{\beta}{\alpha+\beta} y \varepsilon C .
$$

Hence,

$$
p(z)>p\left(\frac{\alpha}{\alpha+\beta} x+\frac{\beta}{\alpha+\beta} y\right),
$$

a contradiction. Therefore, z is an n-extreme point of K.

In the following the set K is allowed to be more general but p is restricted to belonging to δ_{n}.

Theorem 5.1: If K is a n-convex subset of int $E_{n 2}^{+} p \varepsilon \delta_{n}$ and there exists $z \varepsilon K$ such that $p(z)=\inf \{p(v): v \varepsilon K\}>0$, then z is a n-extreme point of K.

Proof: Suppose z is not a n-extreme point of, K. Then there exists $x, y \in K$ such that $z=\alpha x+\beta y$, where $\alpha>0, \beta>0$ and $\alpha^{n}+\beta^{n}=1$. Since $p \varepsilon g_{n}$, let

$$
p(x)=\sum_{j=1}^{m}\left(\prod_{i=1}^{n} A_{j i}(x)\right)
$$

As in Proposition 1.7, $x \in$ int $E_{n 2}^{+}$implies that $A_{j i}(x)>0$, for each i and j. Likewise, $A_{j i}(y)>0$ for each i and j. By Proposition $5.3 \mathrm{p}(\mathrm{x})=\mathrm{p}(\mathrm{z})=\mathrm{p}(\mathrm{y})$. Hence,

$$
\begin{aligned}
p(y)=p(z) & =\sum_{1}^{m}(\overbrace{1}^{n} A_{j i}(\alpha x+\beta y)) \\
& \geq \sum_{1}^{m}(\overbrace{\mid}^{n}\left(\alpha A_{j i}(x)+\beta A_{j i}(y)\right)) \\
& \geq \sum_{1}^{m}(\overbrace{1}^{n} \alpha A_{j i}(x)+\overbrace{1}^{n} \beta A_{j i}(y)) \\
& =\sum_{1}^{m}(\overbrace{1}^{n} \alpha A_{j i}(x))+\sum_{1}^{m}(\overbrace{1}^{n} \beta A_{j i}(y)) \\
& =\alpha^{n} \sum_{1}^{m}(\overbrace{1}^{n} A_{j i}(x))_{1}^{n} \sum_{1}^{m}(\overbrace{1}^{n} A_{j i}(y)) \\
& =\alpha_{p}^{n}(x)+\beta_{p(y)}^{n}=\left(\alpha^{n}+\beta^{n}\right) p(y)=p(y) .
\end{aligned}
$$

This implies that

$$
\overbrace{1}^{n}\left(\alpha A_{j i}(x)+\beta A_{j i}(y)\right)=\overbrace{\prod_{1}}^{n} \alpha A_{j i}(x)+\overbrace{\prod_{1}}^{n} \beta A_{j i}(y)
$$

for each j, a contradiction, since $: \alpha>0, \beta>0, A_{j i}(x)>0$ and $A_{j i}(y)>0$. Therefore, z is a n-extreme point of k.

The following example shows that if the condition $K \subset$ int $\mathrm{E}_{\mathrm{n} 2}^{+}$is removed, then the theorem is no longer true.

Example 5.1: For $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \varepsilon E_{4}^{+}$, let

$$
p(x)=x_{1} x_{2}+x_{3} x_{4} .
$$

Let $K=2(\{(2,3,0,0),(0,0,2,3)\})$. Notice that

$$
p((2,3,0,0))=p((0,0,2,3))=6 .
$$

Let

$$
z=\frac{1}{2}(2,3,0,0)+\frac{\sqrt{3}}{2}(0,0,2,3)=\left(1, \frac{3}{2}, \sqrt{3}, \frac{3 \sqrt{3}}{2}\right) .
$$

Then $z \varepsilon K$. Also, $p(z)=\frac{3}{2}+\frac{9}{2}=6$. If. $x \in K$, then

$$
\mathbf{x}=\alpha(2,3,0,0)+\beta(0,0,2,3),
$$

where $\alpha \geq 0, \beta \geq 0$ and $\alpha^{2}+\beta^{2} \geq 1$. Hence,

$$
p(x) \geq \alpha^{2} p((2,3,0,0))+\beta^{2} p((0,0,2,3)) \geq 6 .
$$

Hence, $p(z)=\inf \{p(x): x \in K\}$ and z is not a 2 -extreme point of K.

It should be noted, however, that in Theorem 5.1 the condition that $K \subset$ int $E_{\mathrm{n}^{2}}^{+}$is stronger than necessary. Hence, it should be possible to obtain results analogous to those of Theorem 5.1 for more general n-convex sets K.

The analogous question for $p \varepsilon P_{n}$ and $K \subset$ int $E_{n 2}^{+}$is more difficult to answer. Considering Example 2.3, it would perhaps seem likely that if: $z \varepsilon n-c r(x, y)$ where $x, y \in K$, then either $z>x$ or $z>y$. This would imply that $p(z)>p(x)$ or $p(z)>p(y)$, which in turn would imply that the $\inf \{p(x): x \varepsilon K\}$ is obtained at an n-extreme point of K if it is obtained at all. However, it is not true that $x, y \in K \subset$ int $E_{n^{2}}^{+}$implies that $z>x$ or $z>y$, for all $\mathrm{z} \varepsilon \mathrm{n}-\mathrm{cr}(\mathrm{x}, \mathrm{y})$. For example, consider $2-\operatorname{cr}(\{(4,1)(1,4)\})$. Let $\alpha=\frac{10}{17}$. Then

$$
\sqrt{1-\alpha^{2}}=\sqrt{1-\frac{100}{289}}=\frac{\sqrt{189}}{17} .
$$

Therefore,

$$
\begin{aligned}
\left(\frac{40+\sqrt{189}}{17},\right. & \left.\frac{10+4 \sqrt{189}}{17}\right) \\
& =\alpha(4,1)+\sqrt{1-\alpha^{2}}(1,4) \varepsilon 2-\operatorname{cr}(\{(4,1),(1,4)\})
\end{aligned}
$$

However,

$$
\frac{40+\sqrt{189}}{17}<\frac{40+20}{17}<4 .
$$

It can be shown, for $p \varepsilon P_{n}$ and K an n-convex subset of int $\mathrm{E}_{\mathrm{n}^{2}}^{+}$, that if there exists $\mathrm{z} \varepsilon \mathrm{K}$ such that

$$
p(z)=\inf \{p(x): x \in K\},
$$

then either z is an n-extreme point of K or there exists

$$
x=\left(x_{1}, \ldots, x_{2}\right) \text { and } y=\left(y_{1}, \ldots y_{2}\right)
$$

such that

$$
z=\alpha x+\sqrt[n]{1-\alpha^{n}} y,
$$

where

$$
0<\min \left\{\frac{2 x_{i} y_{i}}{x_{i}^{2}+y_{i}^{2}}: x_{i} \geq y_{i}\right\} \leq \alpha \leq \max \left\{\frac{y_{i}^{2}-x_{i}^{2}}{y_{i}+x_{i}^{2}}: x_{i}<y_{i}\right\}<1 .
$$

The basic purpose of this research has been to study the functions that belong to P_{n} and to study n-convex sets. It was found that the product of n monotone concave gauges was a function in P_{n}. In fact, the collection g_{n} of all linear combinations of such products is a subcone of P_{n}.

The sets $\operatorname{Lev}{ }_{\alpha} p$, where $p \in P_{n}$ and $\alpha \geq 0$ are n-convex. Also, for any set S the n-convex hull of S is given by

$$
\mathfrak{n}(S)=\left\{\lambda \sum_{1}^{\mathrm{k}} \alpha_{i} x_{i}: \lambda \geq 1, x_{i} \in S, \alpha_{i} \geq 0, \sum_{1}^{k} \alpha_{i}^{n}=1\right\}
$$

In particular, $n(S)$ is inverse starlike from the origin. Several examples of the 2 -convex hull of points in the plane were given. The n-convex hull of a convex set C was shown to be $\{\alpha x: \alpha \geq 1, x \in C\}$. Moreover, if K and C are two n-convex sets, where $\operatorname{Cr}(C) \neq \emptyset$, $K \neq \emptyset$ and $K \cap C=\emptyset$, then there exists a hyperplane that separates K and C. Also, if K and C are disjoint n-convex sets in a linear space L, then there exists complementary n-convex sets A and B of L such that $K \subset A$ and $C \subset B$. Moreover, A and B are convex sets. Further, if x, y, z are three distinct points of alinear
space, $u \varepsilon n-\operatorname{cr}(x, y), v \varepsilon n-c r(y, z)$, then

$$
(n-c r[z, u]) \cap(n-c r[x, v]) \neq \emptyset
$$

In fact, the point of intersection is not always unique.
If $p \varepsilon \rho_{n}$ such that $p \neq 0$ and $S=\left\{a_{1}, \ldots, a_{m}\right\} C[p: 1]$ such that $n(S)=\operatorname{Lev}_{1} p$, then it was shown that for all $x \varepsilon E_{n_{2}}^{+}$, where $x \neq 0$, then $p(x)>0$. In particular, there exists a point of S on each positive axis. Moreover, if $m=n^{2}$, then p is not an extremal element of P_{n}.

For each a $\varepsilon E_{n^{+}}^{+} \backslash\{0\}$, the functions P_{a}, where

$$
\mathrm{p}_{\mathrm{a}}(\mathrm{x})=\sup \left\{\lambda^{\mathrm{n}}: \mathrm{x} \geq \lambda \mathrm{a}\right\}
$$

are all extremal elements of P_{n}. Since δ_{n} is a subcone of P_{n} and since each $p_{a}(x)=\left[q_{a}(x)\right]^{n}$, where $q_{a}(x)=\sup \{\lambda: x \geq \lambda a\} \varepsilon p_{n}^{\prime}$, then each p_{a} function is an extremal element of g_{n} (cf (3), Figure 15). Notice that the functions that belong to (4) of Figure 15 are the functions p_{k}, where $k=1, \ldots, n^{2}$. Also, if

$$
p(x)=\overbrace{1}^{n} A_{i}(x)
$$

where $A_{i} \in P D_{n}$, is an extremal element of S_{n}, then each A_{i} is an extremal element in PI_{n}. One problem for further study would be to determine what are the extremal elements of p_{n}. Are they just those functions q_{a}, where a $\varepsilon E_{n^{2}}^{+} \backslash\{0\}$? If so, then (2) and (5) in Figure 15 are empty. Does there exist an extremal element A, which is not a q_{a} function, in p_{n}^{\prime} such that $p(x)=[A(x)]^{n}$ is an extremal element

Figure 15.
of P_{n} (cf (2), Figure 15)? Moreover, does there exist an extremal element A, again not a q_{a} function, in P_{n}^{\prime} such that $p(x)=[A(x)]^{n}$ is an extremal element of δ_{n} but not P_{n} (cf (5), Figure 15)? It was shown that if

$$
p(x)=\sum_{1}^{n^{2}} A_{i}^{\ell(i)}(x),
$$

where $\ell(i)$ is a nonnegative integer and

$$
\sum_{1}^{n^{2}} \ell(i)=n,
$$

belongs to δ_{n} and if k is the number of $i=1, \ldots, n^{2}$ for which $\ell(i)>0$, then $k>1$ implies that p is not an extremal element of β_{n}. Some immediate problems for further study would be: Determine what functions, if any, belong to $\mathrm{P}_{\mathrm{n}} \mathrm{g}_{\mathrm{n}}$ (cf. (1), Figure 15). In particular, do the functions f_{i} in Theorem 4.2 belong to S_{n} ? Notice that together Proposition 4.3 and Example 4.1 give examples of functions that belong to (6) of Figure 15. Is it possible to find a topology for P_{n} in which the closure of S_{n} would be P_{n} ?

Proposition 4.3 implies the functions p that belong to (9), if any, in Figure 15 are of the form

$$
\mathrm{p}(\mathrm{x})=\mathrm{x}_{1}^{\ell(1)} \cdots \mathrm{x}_{\mathrm{n}^{\ell}}^{\ell\left(\mathrm{n}^{2}\right)},
$$

where $\ell(i)$ is a nonnegative integer,

$$
\sum_{1}^{n^{2}} \ell(1)=n
$$

and there exists at least three $i=1, \ldots, n^{2}$ for which $\ell(i)>0$. Also, the functions in (7) of Figure 15 are those $p \in Q_{n}$ that can be expressed as the sum of two or more functions that also belong to Q_{n}. The functions in (8) of Figure 15 are for the most part unknown.

It was found that for $p \in P_{n}$ and K a n-convex subset of $E_{n 2}^{+}$, the existence of $z \varepsilon$ rel int K such that $p(z)=\inf \{p(x): x \varepsilon K\}$ implies p is zero over K. Further, if $K=n(C)$, where C is a convex subset of $E_{n^{2}}^{+}, p \in P_{n}$ and there exists $z \varepsilon K$ such that $p(z)=\inf \{p(x): x \varepsilon K\}$, then z is a n-extreme point of K and $z \varepsilon C$. Also, if K is a n-convex subset of int $E_{n^{2}}^{+}, p \varepsilon g_{n}$ and there exists $z \varepsilon K$ such that $p(z)=\operatorname{lnf}\{p(v): v \varepsilon K\}>0$, then z is a n-extreme point of K.

Numerous questions arise which would be of interest for further research. For example, if $p \varepsilon P_{n}$ and K is a n-convex subset of $\mathrm{E}_{\mathrm{n}^{2}}^{+}$, then does there exist a n-extreme point of K at which p assumes its minimum value over K ? If not, what modifications are necessary for the result to hold? Perhaps K might be chosen to be the n-convex hull of a compact set. Is it possible to prove a KreinMilman type theorem for n-convex sets and n-extreme points? Another possibility would be to assume the functions in P_{n} are differentiable and study the cone P_{n}. A further study of n-convex sets analogous to that for convex sets might prove profitable. Also, a further study of the topological properties of n-convex sets might prove interesting. Certainly, results analogous to Helly's Theorem and Blaschke's Theorem
for convex sets would be of interest. Finally, let p be a superadditive, nonnegative, homogeneous function of degree n defined on some subset of $E_{n_{2}}^{+}$, find an extension of p to all of $E_{n 2}^{+}$. For example, let $J_{n^{2}}^{+} C E_{n 2}^{+}$where $J_{n^{2}}^{+}=\left\{\left(x_{1}, \ldots, x_{n 2}\right): x_{i}\right.$ is an integer\}. If $\mathrm{p}: \mathrm{J}_{\mathrm{n}^{2}}^{+} \rightarrow \mathrm{E}_{1}^{+}$such that $\mathrm{p}(\mathrm{x}+\mathrm{y}) \geq \mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})$ and $\mathrm{p}(\alpha \mathrm{x})=\alpha^{\mathrm{n}} \mathrm{p}(\mathrm{x})$ for every nonnegative integer α, extend p to an element of P_{n}.

1. Allen, J.E. "Starlike Sets, Inverse Starlike Sets, and a Generalization of Convexity." Doctoral Thesis, Oklahoma State University, (1963).
2. Choquet, Gustave. Lectures in Analysis Volume II: Representation Theory. W.A. Benjamin, Inc., New York, (1969).
3. Kelley, John L. General Topology. D. Van Nostrand Company, Inc., Toronto, (1955).
4. Landsberg, M. "Lineare topologische Raüme, die nicht lokalkonvex sind." Math. Zeitschr., 65, pp. 104-112, (1956).
5. Marcus, Marvin and Minc, Henry K. A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Inc.; Boston, (1964).
6. McMillan, R. D. "The Permanent Function." Doctoral Thesis, Oklahoma State University, (1969).
7. Rockafellar, R. Tyrrell. Convex Analysis. Princeton University Press, Princeton, (1970).
8. . "Monotone Processes of Convex and Concave Type." Memoirs of the American Mathematical Society, 77, (1967).
9. Valentine, Frederick A. Convex Sets. McGraw-Hill Book Company, Nèw York, (1964).
10. Van der Waerden; B.L. "Aufgabe 45." Jahresbericht der Deutsche Mathematiker - Vereiningung, 35, p. 117, (1926).

VITA

Melvyn William Jeter

Candidate for the Degree of
Doctor of Philosophy

Thesis: SUPERADDITIVE n-HOMOGENEOUS FUNCTIONS AND n-CONVEX SETS
Major Field: Mathematics
Biographical:
Personal Data: Born in Clovis, New Mexico, March 19, 1942, the son of William L. and Bonnie E. Jeter.

Education: Attended grade school in Clovis, New Mexico and high school in Wichita Falls, Texas, and was graduated from Wichita Falls Senior High School in 1960; received the Bachelor of Science degree from Midwestern University, Wichita Falls, Texas, with a major in mathematics, in May, 1964; received the Master of Science degree in mathematics from North Texas State University, Denton, Texas, in August, 1966; attended Texas A \& M University, College Station, Texas, in the summer of 1967; completed requirements for the Doctor of Philosophy degree in mathematics from Oklahoma State University in July, 1971.

Professional Experience: Mathematics Instructor, W. F. George High School, Iowa Park, Texas, 1964-1965; Graduate Assistant in the Department of Mathematics, North Texas State University, Denton, Texas, 1965-1966; Instructor in the Department of Mathematics, Southeastern Louisiana College, Hammond, Louisiana, 1966-1968; Graduate Assistant in the Department of Mathematics and Statistics, Oklahoma State University, 19681971.

Professional Organizations: American Mathematical Society; Mathematical Association of America.

