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CHAPTER I 

INTRODUCTION 

The study of the occurrence of numerous physical phenomena is 

currently being aided through the use of the technique of Monte Carlo 

simulation. In such problems, the basis for such a study is the devel­

opment of a probabilistic :rpodel describing the phenomena. The pres­

ent study is concerned with some of the probabilistic aspects of the 

Runway Cutter Program currently in use by the Oklahoma State Univer­

sity Field Office Computations Group at Eglin AFB, Florida, 

The Runway Cutter Program was initially provided by the Opera­

tions Evaluation Group of the Center for Naval Analysis, (Lakin, 1966), 

The current program used is a modification of the above, (Jackett, 

1970). 

A Description of the Runway Cutter Program 

The Runway Cutter Program uses simulation techniques to 

determine the number of passes necessary to cut the runway when 

various stick bombing methods are used. According to the present 

definition, a runway is considered to be cut when no longitudinal seg­

ment of the runway remains intact with width greater than a previously 

specified width. The cutting is usually done with a stick of weapons 

whose ideal impact points can be assumed to form a rectangular shaped 

pattern. 
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The size of the rectangular shaped pattern is dependent on a 

variety of input conditions. Some of these are: type of aircraft, air­

craft airspeed, dive angle, intervalometer setting, type and number of 

weapons, just to mention some of the conditions. The various patterns 

for the above conditions are filed on tape and are entered into the pro­

gram at the appropriate times. 

The program uses a coordinate system corresponding to the 

line of flight of the aircraft. These coordinates are called the range 

and deflection coordinates where range refers to the axis in the direG­

tion of the line of flight and deflection to the axis perpendicular to the 

range axis. This coordinate system is a rotation through the approach 

angle e, 0 :::_ e :::._ Tr /2 , of the coordinate system corresponding to the 

length and the width of the target with the origin at the center of the 

target. See Figure 1. 

Figure 1. Runway Cutter Program Coordinate System 
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The (x, y) coordinates of a point are given in terms of the (r, d) 

coordinates by the orthogonal transformation 

(;) = ( cos e 
-sine 

sine)(r). 
cose d 

( 1. 1) 

The aiming error of the center of the rectangular pattern con-

taining the weapons is assumed to follow a bivariate normal distribution. 

That is, if (r 0 , d 0 ) is the center of the pattern, then 

( 1. 2) 

where (AR' AD) are the coordinates of the aim point, and where CT AR 

and <TAD are the standard deviations of the aiming error in the range 

and deflection directions respectively. 

The weapons within a pattern have a displacement (6.R' 6.D) 

from the pattern center point (PCP). The displacements are deter-

mined relative to the previously stated input conditions. However, 

since some of the conditions influence the size of the pattern, the 

expansion or shrinkage of the pattern due to this influence is attained 

by using the scale factors (SR' SD). When the scale factors are used 1 

the particular weapons retain the same relative position with respect to 

the PCP ; however, the displacements will be changed. Consequently, 

the displacements will now be denoted by (6R, 6D) where 6R = SR6.R 

and 6D = SD6.D . Thus, if no ballistic errors were involved with the 

individual weapons, each weapon would impact at a point having the 

displacement ( 6R' 6D) from the PCP' s point of impact. 

The ballistic error of each weapon in the pattern is assumed to 

follow a bivariate normal distribution about its ideal impact point 
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within the pattern. This distribution is assumed to be the same for 

each weapon in the pattern. That is, if (r., d.) denote the coordinates 
1 1 

of the impact of the ith weapon in the pattern, then 

( CTBR 
' 0 ( 1. 3) 

where ( oR., 6IJ>: ), is the aimpoint of the ith weapon with respect to the 
1 • 1 

PCP, and where CT BR and CT BD are the standard deviations of the 

ballistic error in the range and deflection directions respectively. 

The program employs normally distributed random numbers 

from the above distributions (AR, AD' oR., 6D., CT AR' CT BR' CT AD' CT BD 
1 l . 

have specified values as determined from the input conclitions) to locate 

the impact points of a pattern on the target. These points are then 

transformed onto the runway coordinate system by equation ( 1. 1 ). The 

frater diameters of the impact points can either be fixed or can be 

randomly assigned according to a uniform distribution. Each crater 

is then tested to see if it is within the target hit zone. If so, that 

portion of the crater on the runway is projected onto two vectors 

representing the runway length and width. After each hit is thusly 

recorded, the contents of the width vector are examined to determine if 

the cut criterion is satisfied. If the criterion is satisfied, the cut is 

recorded and the program goes to another iteration. 

The program output includes the frequency distribution of the 

situations where cuts occur on the first pass, second pass, etc, The 

cumulative distribution of the above frequency distribution, the quartile 

probabilities of the frequency distribution and the average number of 

passes required to achieve a cut are also part of the output. 
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The objective of the Runway Cutter Program is to determine 

some of the characteristics of the distribution of passes necessary to 

cut a runway. Since large amounts of computer time are used in the 

generation of data for the distribution of passes, the determination of 

an analytic solution to the prediction problem would be valuable. Using 

the information in the description of the program given above, the 

probability of achieving a cut in a prescribed number of passes will be 

discussed. 

An integral part of the above discussion hinges on the single 

pass hit probabilities; that is, the probability of obtaining 0, 1, 2, ... , b 

hits in a single pass. These probabilities are dependent upon several 

factors, for example, the distribution of the pattern center point, the 

number of bombs per stick, the size of the pattern, the size of the 

runway, and the approach angle, to mention a few factors. Since the 

runway and pattern are rectangular in shape, the probability distribu­

tion of the proportion of the pattern covering the runway might prove to 

be useful in approximating the single pass hit probabilities. Due to 

computational difficulties involved when the distribution of the pattern 

center point is assumed to follow the normal distribution, several 

alternative distributions are proposed, evaluated, and compared with 

the program output. 

Statement of the Problem 

The purpose of this investigation is to obtain the probability 

distribution for the proportion of a rectangle covering another rectan­

gle. This distribution is obtained for several different 11aiming 11 

distributions, 
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Chapter II pertains to the discussion of the probability of cutting 

the runway in k passes. Chapters III and IV relate to the development 

of the probability distribution of rectangles which cover other rectan­

gles. An application of the results of Chapter IV to the probabilities 

discussed in Chapter II is presented in Chapter V. 



CHAPTER II 

PROBABILITY OF CUTTING A RUNWAY 

IN K PASSES 

The principal use of the output of the Runway Cutter Program is 

the determination of the number of aircraft passes required to inter­

dict a runway. One would like to know the number of aircraft bombing 

passes needed to render a target unusable, but this is impossible to 

know with certainty. However, a realistic approach to the problem 

indicates that one would be interested ·in determining the probability of 

rendering a runway unusable in a certain number of passes. 

The purpose of this chapter is to develop a general form for the 

probability of cutting a runway in a prescribed number of passes for 

any cut criterion. After the form is developed, it is illustrated with 

several examples. 

A General Form for the Probability of a 

Cut in k Passes 

When bombing a target many factors have an influence on the 

outcome. The output of the Runway Cutter Program is a function of 

these factors because they are used in the determination of the size of 

the pattern 'rectangle and the error distributions involved in dropping 

the weapons. The set of factors that will be considered in determining 

the probability of cutting the runway are: 

7 
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( 1) the cut criterion denoted by C , 

(2) the set of coordinates of the bomb impact points 

with respect to the range and deflection axes 

denoted by X, 

(3) the number of passes denoted by k, 

(4) the number of hits denoted by j , and 

(5) the assumed probability density used to drop the 

b bombs per pass denoted by ob. 

In some instances, certain of the above factors :may be related. 

For example, including one of the above factors may necessitate 

deletion of another. In particular, if one uses a cut criterion that 

considers only the number of hits, then the coordinates of the impact 

point are unimportant. In considering the probability of satisfying C 

for the first time on the kth pass, factors (1) and (3) are related in 

that C has not been satisfied on the previous passes. Since only those 

bombs which damage the target are of interest to us, let X 1 denote the 

set of impact points with respect to the range and deflection axes of 

those bombs damaging the target. 

Now let us incorporate the factors given above into a function 

that generically describes the probability of cutting the runway. Let 

f( · ; C, x', k, j , o) denote the probability sought. This function can 

be written as 

f( c , x' . k, oh). 

bk 
= 2: Pr{C is satisfied jj hits in k passes}Pr{j hits in k passes}, 

j= 1 
(2. 1) 
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since Pr{j hits in k passes} is a function of ob and since C can de­

pend on X'. Therefore, equation (2. 1) indicates a need for~determining 

Pr{j hits in k passes} which is a function of the single pass hit 

probabilities. This determination will be discussed later. 

Examples Using Formula (2. 1) 

Two examples now will be given to illustrate the usage of the 

above formula. Although the conditions will be simplified in order to 

facilitate easier manipulations, the simplified conditions will not 

represent a realistic situation. In these two examples, the .cut criter-

ion C is given as the maximum spacing between the projected impact 

points on the axis representing the runway width. * Let w represent 

the width which satisfies C. For these examples it will be assumed 

that only one bomb per pass is used and that all k bombs hit the target. 

Consequently, x' and x are the same sets; however, only the pro-

jected coordinates on the width axis are of interest in these examples. 

Example 2. 1. The probability density of the projected ordinates on 

the width axis is assumed to be the uniform distribution with density 

function 

f(y) = 1 
2w 

r 
-w < y < w r r 

= 0, otherwise 

where w represents the half-width of the runway. The actual deri­
r 

vation of the probability in this example is given in Appendix A. Thus, 



Pr{C is satisfied in k independent passes with one bomb per pass} 

* = Pr {C < w } 

= 1 -(k + 1) (1 -~)k 
. 1 · 2w 

r 

10 

. *)k :i.w 
- 2w ·' 

r 
(2. 2) 

where 

2w 2w 
r * r . i + 1 < w ~ ~ i = k, k- 1 ' •.. ' 2' 1 . 

The following example is given to illustrate a density function 

for which it is relatively easy to find the cumulative distribution for 

the given cut crHerion. 

Example 2. 2. The context of this example is the same as that of the 

previous one with the exceptions that the probability density function of 

the projected impact points on the width axis is different and the 

spacings involved vary slightly from the previous example. The density 

function is given by 

f(y) -X.y =Ae ,y>O,X.>0, 

= 0, otherwise . 

Note that ~n the following, the large case letters are used to denote 

random variables while the small case letters represent realizations 

of the random variables. 

Let Y 1, Y 2 , ... , Y k be independent random variables each 

dist:dbuted according to the above density function and let 
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xl,x2, ... ,xk be the order statistics of yl' y2' •.. ' yk 

density function of Y l1Y2 , ... , Y k is given by 

The joint 

k -A.y. 
1 

II (·A. e ) , y l' y 2 , ... , y k > 0 
i= 1 

= 0, otherwise 

The joint density function of x 1, x 2 , ... , Xk is g~ven by 

k -A.x. 
II (' e 1 ) 0 /\. , ~ Xi :f_ x 2 ~ . . . ~ Xk < co , 

i= 1 

"' 0 , otherwise 

Define the spacings S. as: 
1 

has a value of one, Thus, the joint density function of the 

S., i=l,2, .. .,k isgivenby 
1 

k - A. ( k+ 1 - i) s. 
=k! II [A.e 1 ) 

i= 1 

-A.(sl+s2+ ... +sk) 
e 

(2. 3) 

(2. 4) 

(2. 5) 

(2. 6) 

k -A.(k+l-i)s. 
= II [A.(k+l-i)e 1 ),0< s. <co, i=l,2,. .. ,k. 

k=l 1 

From (2. 6) it is seen that the S. are independent sinc;e their joint 
1 

density function can be factored into a product of marginal density 
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functions. Also, each S. is exponentially distributed with a parameter 
l 

of X.(k+l-i) . 

In order to determine the probability distribution of the maxi, 

mum spacing, let S = max{S 1, s2,. i., Sk} Then 

since 

* * Pr { S ~ w } = Pr { S 1 < w 

k * = II Pr { S. < w } 
i=l l -

= 

* Pr {S. < w } 
l -

~ [l-e-X.(k+l-i)w*], 

i= 1 

* I w - X. (k+ 1 .,. i) s. 
= X.(k+ 1 -i) e 1 d s. 

0 l 

= l-e-X.(k+l-i)w 
>:• 

(2. 7) 

Thus. the probability distribution of the maximum spacing is not diffi-

cult to determine for this example. However, the exponential distribu-

tion is not a realistic aiming or ballistic error distribution. Also the 

spacings as defined do not consider the spacing from the edge of the 

runway to the last impact point, wr - Xk . 

Application to the Runway Cutter Program 

As mentioned in Chapter I, the Runway Cutter Program pro-

jects those craters on the runway onto the width axis. In order to 

determine the probability of cutting the runway in k passes, one needs 

to know the probability distribution governing the projected hits on the 

width axis. 
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Let us assume that (r', d') are the true impact coordinates of 

a bomb in a stick. Then the independence of the aiming and ballistic 

errors implies that (r 1 , d') · has a bivariate normal distribution given 

by: 

0 ~ 2 2 .. 
CT AD +CTBD) 

(2, 8) 

For the transformation given in ( 1. 1), the distribution of the (x, y) 

coordinates of (r 1 , d') is given as 

(2. 9) 

where 

l.l.x = (AR+ 6R)cose +(AD+ 6D)sin0 • 

I.Ly = -(AR+ 6R)sin0 + (AD+ 6D)cos e , 

2 2 2 2 ( 2 2 ) . 20 (2. 10) CT = (CT AR+ CT BR)cos 0 + CT AD +CTBD sm x 

2 ( 2 2 ) . 20 2 2 2 
and CT = CT AR +CTBR sm + (CT AD + CT B D) cos e y 

sine cos e [o-~D + CT~D 2 2 
0- = 0- - o-BR) " xy AR 

Consequently, the density function of the impact points along the Y-axis 

is given as 

f(y) = 1 

.JZ; 0-
y 

[ 2] (y - µy) 
exp - 2 o-2 · , ~oo < y < oo . 

y 

(2. 11) 
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Normalization of the distribution in (2. 11) indicates that one can 

consider the projected impact points as coming from a N(O, 1) distri-

bution. Using this distribution and the assumptions of one bomb per 

pass and all k bombs hitting the runway, let us proceed with the 

determination of the probability of cutting the runway in k passes. 

Let Y 1, Y 2 , .. , , Yk be independent random variables, each 

with a density function given by 

f(y) = 1 

\[2rr 

2 
exp ( -y /2) , -c:.i < y < c:.i • 

Let x 1,x2 , ... ,Xk denote the order statistics of Y 1, Y2 , ... , Yk 

Then the joint density function of Y 1, Y 2 , ... , Y k is given as 

lk/2 exp (-1/2 ~ y~), -c:.i < y, < c:.i, 
(27T) i=l 1 1 

(2. 12) 

and that of X 1, x 2 , , .. , Xk is given as 

(2. 13) 

Define the spacings S. as S. = X. - X. 1 , i = 2 ,3, ... , k . Note that 
1 l 1 1- . 

the intervals (-c:.i, X 1) and (Xk' c:.i) are not considered as spacings. 

In order to determine the joint density function of the Si , let 

The Jacobian of this transformation has a value of 1, therefore, the 

joint density function of s 1, s2 , ... , Sk is given by 
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= g(s l's 1 + s2, • .. , s 1 + s2 + ' .. + sk) I JI 

{ 
2 

k! sl = k/ 2 exp (- -z) exp{_ 
(21T) \ 

1 , 

- IXl < s 1 < oo, 0 <Si< cxi, i=2,3, .•. ,k • (2. l4) 

However, since one is interested in the joint distribution of 

Si, i = 2, 3,.,., k 1 the s 1 variable needs to be integrated out of (2. 14). 

That is, 

(2. 15) 

Equation (2. 15) indicates the complication involved in evaluating 

such an integral, since no closed form exists for this integral. Even 

if it were possible to integrate (2. 15) successfully, the resulting joint 

density fonction h 1 (s 2 , s 3 , .• ,, sk) presents a similar problem in the 

determination of the density function for the maximum sp~cing. 

As a consequence of the preceding study, the derivation of the 

probability distribution the maximum spacing between impact points 

will be abandoned at this stage. Although this cut inter ion provides 

working solutions for the Runway Cutter Program, the foregoing dis-

cuss ion indicates the difficulty in using this criterion for making 



probability statements about the number of passes required to cut the 

runway. 

A Different Cut Criterion 

A pertinent question to be considered is '''.Are there any other 

feasible cut criterion for which it would be easier to determine the 

probability of a cut? 11 Consider the cut criterion of 11 t or more hits 

in k passes. 11 This criterion is easier to evaluate in that it does not 

depend on the location of the hits. 

If we adopt this as the cut criterion, the expansion of the 

function f( c :. X..' ;. k' ob) in (2. 1) reduces to 

bk 
L: Pr { j hits in k passes}, 

j=t 

since Pr {C is satisfied jj hits in k passes} is either 0 or 1, 

16 

depending on whether or not t or more hits have occurred. Thus, one 

only needs to be concerned about Pr { j hits in k passes} or essen-

tially the single pass hit probabilities. 

For this situation one will assume that a stick of b bombs is 

dropped on each pass. Let X. be a discrete random variable that 
1 

records the number of hits per pass. The X. are identically and 
1 

independently distributed with a probability distribution given by 

Pr{X.=j} = p., j =0,1,2,.,.,b. The p. arethe single pass hit 
1 J J 

probabilities. Let S re pre sent the partial sums of the X. , that is, 
n 1 

Then S gives 
n 

the total number of hits at the end of n passes. 
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The probability distribution of S can be determined from that 
n b 

of the X., According to Feller (1957), if one lets F(s) = L: p sm, 
l m=O . m 

/ s / < 1, be the probability generating function (p. g. £.) associated with 

X., then the p, g. £. of S , say G(s), is given by 
i n 

G(s) = [F(s)]n . (2. 16) 

i Thus, the probability, Pr { S = i} , is the coefficient of s in the 
n 

expansion of (2. 16). 

For the cut criterion of t or more hits in k passes, one is 

interested in the probability of satisfying the cut criterion for the first 

time in k passes. Let us define the event Ck as 

Ck= the event of obtaining t or more hits for the first time in k passes. 

The event Ck has a chance of occurring only if the number of hits 

recorded at the end of the first (k - 1) passes is between t - b and 

t - 1 ~ that is t - b :::_ Sk- l :::_ t - 1 . For Ck to occur, then the number 

of hits at the termination of the kth pass will be t, t + 1 , ... , t + b - 1 . 

Thus, 

Pr{Ck} = Pr{Ck/t-b:::_Sk-l:::_t-l}Pr{t-b < Sk-l < t-1}. (2,17) 

Since the event {t-b :::_ Sk-l :::_ t-1} is the union of the mutually 

ex cl us iv e events { S k _ 1 = i} , i = t - b , t - b + 1 , . . . , t - 1 , equation ( 2 . 1 7 ) 

can be written as 

b 
= .L: Pr{Ck/Sk-l = t-i} Pr{Sk-l = t-i}. 

l= 1 
(2' 18) 



Now the conditional event {Ckjsk-l = t-i} occurs if one obtains 

th 
i, i + 1 , ... , b hits on the k pass. Consequently, 

b 

18 

= ~ p. 
j=i J 

(2. 19) 

Therefore, 

b 
Pr{Ck} = i~l Pr{ckjsk-l = t-i} Pr{sk ... l = t-i} 

= 
b b 
:z ~ p. Pr {sk-l = t-n , 

i=l j=i J 

where Pr {Sk-l = t-i} is obtained from the expan:;;ion of (2, 16 ). 

(2, 20) 

E~ample 2, 3. Let us suppose that b = 3, k = 3, and t = 4, Then the 

p. g. f. of s 2 is given by 

G(s) 

If one evaluates the possible outcomes that satisfy the cut 

criterion of four or more hits for the first time in three passes, then 

a list of the possible outcomes and their associated probabilities are 

given in the following table. The numbers in parentheses l;'epresent 

the number of hi~s recorded in the first, second, and third passes, 

respectively. 



TABLE I 

POSSIBLE OUTCOMES SATISFYING THE CUT 
CRITERION AND THEIR ASSOCIATED 

PROBABILITIES 

t = 4, b = 3, k = 3 

4 Hits 5 Hits 6 Hits 

(0,1,3) (0, 2, 3) - PoP2P3 (0, 3, 3) 
2 

- PoP1P3 - PoP3 

(0, 2, 2) 
2 

(0,3,2) (3' 0' 3) 
2 

- PoP2 - PoP2P3 - PoP3 

(0,3,1) (1, 1, 3) 
2 

(1,2,3) - PoP1P3 - P1P3 - P1P2P3 

(1,0,3) (1,2,2) 
2 (2, 1, 3) - PoP1 P3 - P1 Pz - P1 P2P3 

(l,li2) 
2 (2, 0, 3) - P1?2 - PoP2P3 

(1,2,1) 
2 (2, 1,2) 

2 
- P1P2 - P 1 P2 

(2, 0, 2) 
2 (3,0,2) - PoP2 - PoP2P3 

(2, 1, 1) 2 
- P1P2 

(3,0,1) - PoP1 P3 
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Thus, the probability of obtaining 4 or more hits for the first time on 

the third pass is the sum of the probabilities i,.n Table I, namely, 

. 2 2 2 2 2 2 
4PoP1P3 + 3plp2 + PoP2 + 4poP2P3 + P1P2 + P1P2P3 

2 2 
+ P1P3 + 2p0p3 
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Using the results of (2. 20) and (2. 21), the probability 4 or more hits 

for the first time on the third pass is given by 

3 3 
L: L: p.Pr {S2 = 4-i} 

i= 1 j = i J 

From Example 2. 3, the preceding discussion, and the form of 

the probability of a cut in (2. 1), the single pass hit probabilities, that 

is, the p. , j = 0, 1, 2, ... , b , are seen to be quite important. 
J 

Thus, 

in order to make use of the cut criteria considered so far, one needs 

to determine these probabilities. The material set forth in Chapters 

III and IV will enable us to determine them. 



CHAPTER III 

DERIVATION OF THE PROPORTION OF 

PATTERN AREA ON THE RUNWAY 

The primary purpose of this chapter is to determine the regions 

that generate the various configurations of the pattern upon the runway. 

After some general notation and general assumptions pertaining to 

formulation of the problem are defined, the region of possible pattern 

center impact points is examined for sub-regions which generate the 

pattern configurations on the runway. 

In the following discussion, let R denote the runway rectangle 

with dimensions 2L by 2W , D the distribution rectangle with 
r r 

dimensions 2L · 
d 

b.y 2Wd, and p the pattern :rectangle with dimen-

sions 2L by 2W The length of each rectangle is assumed to be 
p p 

greater than its width, and it is assumed that Lr > Ld + LP • Let us 

assume that the centers of D and R are coincident such that D can 

be rotated about its center point through an angle 9 measured in the 

clockwise direction, 0 < e < rr/2 . In this discussion, e can also take 

on an '1optimum angle" value. The criterion for the optimum angle is 

discussed in Appendix B. The cases for 9 = o0 and 9 = rr/2 are 

considered in Appendix C. The coordinate system to be used is a rota .... 

tion, through 9 , of the usual ( I, '?I) coordinate system and is denoted 

as the ( ~. !R) coordinate system, See Figure 2. 

? 1 



r = (.,.cot8)d -W csc8 ~ 
r 

R 

.,_.. r = (-cot8)d+W csc8 
r 

Figure 2. (~, !R) Coordinate System 
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The rectangle P is p.ssumed to have the same orientation as 

D. It is also assumed that the center point of P (hereafter denoted 

by PCP) is always contained within D. According to Figure 2, the 

vertices of P are labeled 

Determination of the Sub-regions 

The configurations of P on R change from one form to another 

when the respective vertices of P meet the sides of R. The sides of 

R are denoted by the lines r = (-cot a )d ± w csc a . 
r 

The set of PCPs 

in D at which a given vertex of P meets a given side of R forms a 

straight line J. parallel tq the line given by r = (-cot 9 )d. Since the 

line J. intersects the perimeter of D in two places, one can consider 

the PCPs on the perimeter of D at which the configurations change. 

Thus, the method of determining the regions of D that generate the 

dUferent configurations of P on R consists of moving the PCP around 

the perimeter of D and noting the coprdinates of the PCP whenever 

the configurations change. The point (-Wd' -Ld) will be considered as 

the starting point as PCP moves in a clockwise direction around D • 

However, due to symmetry with respect to the origin; one needs only 

to consider the movement of the PCP from (-Wd' -Ld) to (Wd' Ld). 

Three possible situations can occur as the PCP proceeds along 

its designated path. They are: 

( 1) P forms its first configuration on R when the 

PCP moves along the line r = Ld , 

(2) P forms its first configuration on R when the 

PCP moves along the line d = -Wd , and 
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(3) P forms a configuration on R when the PCP 

is located at ( -Wd' -Ld) . 

Determination of Sub-regions in D 

for Situation ( 1) 

Let us examine situation ( 1) more closely. In this case, P 

fails to make contact with R as the PCP moves along d = -Wd . The 

first contact that P makes with R, and the subsequent configurations 

that P forms on R, occur when the PCP is located on the line 

r = Ld. Note, in situation ( 1), each of the four vertices of P meet 

both sides of R as the PCP moves along the line r = Ld. Accordingly, 

~here are eight PCP abscissas on r = Ld at which the configurations 

change. These abscissas can be determined in the following manner, 

Since P has the sahle orientation as D, the first contact 

occurs when the vertex v 1 meets the left side of R. Let (d 1, Ld) 

be the coordinates of the PCP when the vertex v 1 meets the left side 

of R which is given by the line r = (-cote)d-W csce. 
r 

Consequently, 

the coordinates of the point of contact are (d'+W ,Ld+L). Since 
p p 

this point is on the previously stated line, it can be determined that 

d' = -(Ld+L )tane - W sece - W . Thus 
p r p 

(-(Ld+L )tane - W sece - W ,Ld) are the PCP coordinates when 
p r p 

v 1 makes contact with the left side of R in situation ( 1 ). 

The remaining PCP abscissas on r = Ld at which the respec­

tive vertices of P meet the sides of R can be determined by the same 

method used above. A list of the abscissas is given as follows: 
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cl = -(Ld+Lp)tan 9 - w sec e -W C5 = -(Ld+LP)tane + w sec a +W r p r p 

c = -(Ld+Lp)tan 9 - W sec9 +W 
2 c6 = -(Ld-Lp)tane - W sec e +W r p r p 

C3 = -(Ld+L . )tan 9 + W sec 9 w c7 = -(Ld-L )tan 9 + W sec 9 -W . p r p p r p 

c 4 = -(Ld-Lp)tane - w sec e w r p CB = -(Ld-L )tan9 + W sec9 + W. p r p 

(3. 1) 

Let di, i = 1, 2, .•. , 8, be the corresponding abscissas on r = -Ld , 

where d. = -c., i = 1, 2, .•. , 8 . The subscripts do not denote the 
l l . 

order in which abscissas occ;ur. 

Since the PCP abscissas at which the configurations change 

are dependent upon which of the vertices of P meets the side of R, 

one needs to know what factors influence the order in which the ver-

ti<;;es of P meet the sides of R. Figure 3 given below illustrates the 

fact that as the PCP moves right on r = Ld from the point (c 1, Ld), 

the order in which the vertices rn.eet both sides of R 

depend,s on the relative magnitudes of L tan9, W sec9, and W . 
p r p 

Thus, the order of the PCP abscissas on r = Ld also depends on the 

relative magnitude of L tan 9 , W sec 9 , and W . 
p r p 

Consequently, a 

speci{Led ordering of the terms L tan9, W sec9, and W , deter-
p r p 

mines an arrangement of PCP absc;issas given in (3. 1). 



zw p 

ZL ta.n0 
p 

zw sec e 
r 

p 

Figure 3. 

v l 

R 

D 

Geornetrical Interpretation of ZL tan0 , 

ZW sec0 and ZW P 
r p 

Table 11 beloW gives the distances that the pCP rnust rnove 

along r r Ld frorn (c
1

• Ld) for the respective vertices of P to 

rneet the sides of R. The distances can be deterrnined by referrfog to 

Figure 3. 



TABLE II 

PCP DISTANCE FROM (c1, Ld) FOR A VERTEX 
OF P TO MEET A SIDE OF R 

Vertex of p Side of R Distance 

vl right side 2W sec 9 
r 

v2 left side 2L tan 9 
p 

v2 right side 2(L tane +W sec9) 
p r 

v3 left side 2(W + L tane) 
p p 

v3 right side 2 (W + L tan 9 + W sec 9) 
p p r 

v4 left side 2W 
p 

v4 right side 2(W+Wsec9) 
p r 
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Examples 3. 1, 3. 2, and 3. 3 will be used to illustrate the deter-

mination of the appropriate sub-regions of D that generate the config-

urations of P on R that arise in situations (1), (2), and (3), respec-

tively. For each of the examples, it will be assumed that 

W > W sec 9 > L tan 9. 
p r p 

Example 3. 1. Using Table II and assuming that W > W sece > L tan9, 
p r p 

one can determine the sequence in which the respective vertices of P 

meet the sides of R. For these conditions, the sequence can be 

determinedas {(v 1,left), (v2 ,right), (v 1,right), (v4 ,left), (v2 ,right), 
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(v3 , left), (v4 , right), (v3 , right)}. However, if W > W sec 0 + L tan 0, p r p 

then using Table II, one sees that vertex v 2 will meet the right side 

of R before vertex v 4 meets the left side of R. Thus, if 

W > W sec 0 + L tan 0 , (v4 , left) and (v2 , right) interchange po si-
p r p 

tions in the above sequence. 

The sequence of PCP abscissas on r = Ld at which the con­

figurations change is determined by noting the order of the elements rn 

~he above sequenc:;e and adding the appropriate distance determined 

from Table II to the abscissa c 1 . That is, the PCP ab.scissa when 

vertex v 2 meets the left side of R is determined by adding 

2Lptan e to c 1 , the PCP abscissa when vertex v 1 meets the right 

side of R is obtained by adding 2W sec e 
r 

to c 1 , etc. Thus, the 

sequence of PCP abscissas on r = Ld at which the configurations 

change is given by { c 1 , c 4 , c3' c 2 , c 7 , c 6 , c 5 , c 8}. If 

W > W sec e + L tan e , then c 2 and c 7 interchange positions rn the 
p r p 

above sequence. 

Table III below gives the sequence of configurations of P that 

develop on R as the PCP moves along r = Ld. The quantities in 

parentheses replace the given quantities when W > W sec e + L tan e . 
p r p 

Note, the set of configurations that P forms on R is restricted by the 

assumption that L > L + L 
r d p 



TABLE III 

CONFIGURATIONS OF P ON R WHEN THE PCP 
IS ON r=Ld AND W > W SECS> L TANe p r p 

<PCP< Configuration 

triangle 

trapezoid 

pentagon 

hexagon (parallelogram) 

pentagon 

trapezoid 

triangle 
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As the PCP moves from (-Wd' -Ld) to (Wd' -Ld) the corres -

ponding sequence of PCP abscissas on r = -Ld can be determined 

from the above sequence of abscissas by means of symmetry. This 

sequence is given by { d 8 , d 5 , d 6 , d 7 , d 2 , d 3 , d4 , d 1} with d 2 and d 7 

interchanging positions if W > W sec e + L tane. The appropriate 
p r p 

sub-regions of D generating the configurations are determined by 

connecting the respective abscissas on the lines r = Ld and r = -Ld 

by lines parallel to the line given by r = (-cote )d , see Figure 4. A 

tabular arrangement of the car responding sequence of abscissas at 

which the configurations change for other relationships between 

L tan e , W sec e and W will be given later in this chapter. p r p 
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Figure 4. Generating Sub-regions for Example 3.1 

Determination of Sub-regions in D 

for Situation (2) 

In this situation, P makes its first contact with R when the 

30 

PCP is on the line d = -Wd . Again, since P has the same orientation 

as D, the first contact occurs when the vertex v 1 meets the left side 

of R, Let (-Wd,r') be the coordinates of the PCP when v 1 meets 
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the left side of R. Accordingly, v 1 has coordinates (-Wd+Wp' r'+Lp) 

and is a point on the line r = (-cote)d - W csce. Thus, 
r 

and the PCP coordinates are 

given by (-Wd, (Wd - W )cote - W csc e - L ) . The remaining PCP p r p 

ordinates on d = -Wd at which the respective vertices of P meet the 

sides of R can be determined by the method used above. A list of all 

the possible ordinates which may arise is given as follows: 

al = (Wd-W )cote -W csce -L as = ( wd - w ) cot e + w cs c e + L 
p r p p r p 

a2 = (Wd-W )cote -W csce+L a6 = (Wd+W )cote -W csce +L 
p r p p r p 

a3 = (Wd-W )cote+w csce -L a7 = (Wd + W )cote+ W csc e - L 
p r p p r p 

a4 = (Wd+w )cote -W csc e - L a8 = (Wd+W)cote+Wcsce+L . p r p p r p 

(3. 2) 

Let bi, i = 1, 2, •.. , 8 , be the corresponding ordinates on d = Wd , 

determined by b.=-a., i=l,2, ... ,8. 
l 1 

When the PCP is located on the line d = -Wd , Figure 5 indi­

cates that the sequence in which the vertices of P meet the sides of R 

and the corresponding sequence of possible PCP ordinates are depen-

dent upon the magnitudes of L ' w c SC e ' and p r 
W cote. 

p 
Note that 

these terms are equal to cote times the similar terms given in 

situation ( 1 ). 



R 

Figure 5. Geometrical Interpretation of 2L , 
2W cote and 2W csc8 P 

p r 

The distances that the PCP must move along d = -Wd from 

(-Wd' a 1) for the respective vertices of P to meet the sides of R are 

given in Table IV. Note that the PCP may meet (-Wd, Ld) before it 

moves $ome ·of the distances given in the table. 
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TABLE IV 

DISTANCE FROM (-Wd, a 1) FOR THE PCP TO 
MOVE FOR A VERTEX OF P TO 

MEET A SIDE OF R 

Vertex of p Side of R Distance 

vl right side 2W csc e 
r 

v2 left side 2L 
p 

V2 right side 2(L +W csce) 
p r 

v3 left side 2(Wcote+L} 
p p 

v3 right side 2(Wcote+L +Wcsce) 
p p r 

V4 left side 2W cote 
p 

V4 r~ght side 2(W cote +W csce) p . r 

For situation (2) 1 P will miss R when the PCP is located at 
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Then, due to symmetry with respect to the origin, P will 

also miss R when the PCP is located at (Wd, Ld) . Consequently, as 

the PCP moves from (- Wd' -Ld) to (Wd' Ld) , each of the four 

vertices of P will meet both sides of R. Thus, for situation (2), the 

set of :possible P on R configurations will be the same set of config­

urations that arise in situation (1). This result occurs because of the 

relationship between 

and W cote. 
p 

L tane, W sece, and W and L , W csce, 
p r p p r 

In situation (2), when the PCP is located at (-Wd, Ld) , a 

configuration of P on R results. Now, if the PCP could continue 
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along d = -Wd , this configuration and succeeding configurations would 

terminate when the vertices of P meet appropriate sides of R as 

determined by the conditions on the relative sizes of L , W csc a, 
p r 

and W cote. H0wever, due to the nature of the problem, the PCP 
p 

must move from (-Wd' Ld) to (Wd, Ld) and cannot continue along 

d = -Wd . When the PCP moves from (-Wd, Ld) to (Wd' Ld), does 

the configuration of P on R terminate in the same manner as when 

the PCP continues along d = -Wd ? Since the configurations terminate 

when the vertices of P meet the sides of R, one could ask the above 

question in the following way. When the PCP moves from (-Wd, Ld) 

to {Wd, Ld) , do the vertices of P meet the sides of R in the same 

manner as when the PCP continues along d = -Wd ? The answer to 

this question is given in t~e following theorem. 

Theorem 3. 1. For a specified relationship between L tans , W sec e, . p r 

and W , the sequence in which the vertices of P meet the sides of R 
p 

is invariant to whether the PCP moves along 

(i) the line d = - wd , or 

(ii) the line r = Ld , or 

(iii) the line segments 1 1 = { (d, r): d = -Wd, -Ld < r ::5.. Ld} 

and 1 2 = {(d, r): -Wd < d ::5_ Wd, r = Ld} . 

Proof: The specified relationship between L tan 8 , W sec 8 , and 
p r 

W determines the sequence in which the vertices of P meet the sides 
p 

of R as the PCP moves along the line r = Ld . Since the product of 

cote and the terms in the above relationship produce the same rela-

tionship between L , W csc 8 , and 
p r 

results when the PCP moves along 

W cote , the same sequence 
p 

d = -Wd. 
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For the specified relationship between L tane, Wsec8, and 
p r 

W , the a. , i = 1, 2, ... , 8 , have a specific ordering. 
l 

Let us assume 
p 

that a j < L d < ak When the PCP is located at let the 

ordered distances in the positive r direction of each vertex of P from 

the appropriate side of R be denoted by 6 1, 62 , 63 , 64 . Let 

6 = Ld - aj . Then, the ordered distances in the positive r direction 

of the vertices from uhe appropriate sides of R when the PCP is at 

are given by 6 - 6, n= 1,2,3,4. 
n 

When the PCP is at 

(-Wd' Ld) , the distanGe in the positive d direction of each vertex from 

the appropriate side of R is given by (6 - 6)tan8, n= 1,2,3,4. 
n 

Thus, 

the distances (6 - 6)tan8 , n = 1, 2, 3, 4 , retain the same order as 
n 

6 1, 62 , 63 , 64 , Consequently, the sequence in which the vertices of P 

meet the sides of R is the same as those sequences for (i) and (ii) 

Example 3. 2. For the condition W > W sec 8 > L tan 8 , the sequence p r p 

of possible PCP ordinates along d = -Wd at which the configurations 

change is given as {a 1, a 2 , a 3 , a 4 , as, a 6 , a 7 , a 8 } . For illustrative 

purposes, let us assume that a 3 < Ld < a 4 . Since a 3 < Ld < a 4 , 

the configuration of P on R forms a pentagon when the PCP is 

located at (-Wd, Ld) . Theorem 3. 1 implies that the sequence in which 

the respective vertices meet the sides of R for this example is the 

same as in Example 3. 1. Since the PCP moves right along r - L - d 

after it meets (-Wd, Ld) , the sequence of PCPs at which the config­

uations change is now given by {a 1, a 2 , a 3 , c 2 , c 7 , c 6 , cs, c 8 } with c 2 

interchanging positions if W > W sec 8 + L tan 8 . 
p r p 

The 

corresponding sequence on the perimeter of D along the lines 
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d 2 and d 7 changing positions if W > L tan e + W sec e . 
p p r 

The sub-

regions in D generating the configurations for this example are found 

by connecting the respective PCPs in the two preceding sequences by 

lines parallel to the lines given by r = (-cot8)d. The sequences of 

PCP ordinates and abscissas at which the configurations change in 

situation (2) for the other relationships between 

and W are given later in tabular form. 
p 

L tane, Wsece 
p r 

Determination of Sub-regions in D 

for Situation (3) 

In order to determine the sub-regions for situation (3), one 

needs to know the configuration of P on R when the PCP is located 

at (-Wd, -Ld). When the PCP is located on the line d = -Wd , the 

configurations of P which develop on R are related to the 

ai, i = 1, 2, .•. , 8 . Recall that a 1 is the PCP ordinate on d = -Wd 

at which P first makes contact with R. Thus, in situation (3), 

The relative magnitude of the ai to -Ld indicates the 

configuration of P on R when the PCP is at (- Wd, -Ld) . 

Let us suppose, for example, that a. is the PCP ordinate at 
J 

which the triangular configuration terminates for some specified con-

dition on L tan e , W sec e, and W . If -Ld < aJ. , then 
P r P 

a 1 < -Ld < aj . Thu.s, the configuration of P on R is triangular when 

the PCP is at (-Wd, -Ld) Extensions to this relationship can be 

given for the other configurations. 

The knowledge of the relative magnitude of the ai to -Ld and 

Ld indicates the configurations of P on R when the PCP is located at 

(-Wd, -Ld) and (-Wd, Ld), respectively. Note that due to symmetry, 
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the configurations of P on R when the PCP is located at (-Wd' -Ld) 

and (Wd' Ld) are the same. 

Example 3. 3. From Examples 3, 1 and 3. 2, the sequences of possible 

PCP ordinates and abscissas are {a 1,a2,a3,a4 ,aS,a6,a7 ,aS} and 

{c 1, c 4 , c 3 , c 2 , c 7, c 6, cs, cs}. respectively. For the sake of illustration, 

let us assume that a 1 < -Ld < a 2 and a 4 < Ld < as . Thus, when 

the PCP is located at (- Wd' -Ld) , the configuration of P on R forms 

a triangle and when the PCP is located at (-Wd' Ld) , the resulting 

configuration is a hexagon,. Since a 1 < -Ld, a 1 cannot appear in a 

sequence of PCPs at which the configurations change for this example. 

Due to symmetry, neitfl.er can cS appear in such a sequence. Since 

-Ld < a 2 < a 3 < a 4 < Ld , the sequence of PCP change points for this 

example is given as {a2 , a 3 , a.4, c 7 , c 6 , cs} . The corresponding 

sequence on the liq.es r = -Ld and d = Wd is {d5 , d 6 , d 7, b4 , b3 , b2}. 

If WP> Wrsece + Lptane, then a 4 and c 7 are replaced by as and 

a 4 in the first sequence and d 7 and b4 are replaced by b4 and bS 

. in the second sequence. The appropriate sub-regions of D are then 

determined by connecting the successive elements in the two sequences 

by lines parallel to the line r = (-cote )d as the elements are 

arranged on the perimeter of D. The PCPs at which the configura-

tions change in situation (3) for other conditions on 

and W are given later. 
p 

L tane, W sece 
p r 

If values are as signed to the three sets of length and width para-

meters and e, then how does one determine which of the three situa-

tions occur? The answer to this question is given in the following 

theorem. 
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Theorem 3,2. ( 1) Situation ( 1 ) occurs if and only if Ld <al ' 

(2) Situation (2) occurs if and only if -Ld :::_al < Ld' 

(3) Situation (3) occurs if and only if al < -Ld. 

The proof of this theorem is obtained by recalling that a 1 is the PCP 

ordinate on d = -Wd at which P first makes contact with R and by 

recalling the physical interpretations of the three different situations. 

A Tabular Representation of the PCP 

Change Points 

The regions in D that generate the configurations of P on R 

depend on 9 , the angle of rotation, since the regions are determined 

from the relationships between L tana, Wseca and W. 
p r p 

In order 

to obtain the .sub-regions in D, the PCP abscissas and ordinates on 

the perimeter of D at 'Yhich the configurations change (or terminate) 

have been tabulated in Tables V - X. These tables are indexed by the 

different relationships between L tana, Wseca and W. 
p r p 

The 

appropriate sub-regions result when the points obtained from the table 

are connected by lines parallel to the line r = (-cot9)d . 

An explanation is now given on the usage andformat of Tables 

V - X. The configurations of P on R are labeled as the geometric 

figures in the top row of the table. If the relationship between 

L tan9 , W sec 9 , and W which indexes the table is such that the 
p r p 

largest term is greater than the sum of the smaller two terms, then 

note the following remarks. In such cases, the right hand column 

under the leftmost "Pentagon 11 heading is used instead of the left hand 

column under that heading. Also, in this case, the column headed by 

11 Parallelogram 11 in Tables V, VI, VII, and IX or the column headed 
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by 11 Rectangle" in Tables VIII and X are used. instead of the column 

headed by "Hexagon. " 

The leftmost column headed by "< -Ld' Ld ~" is used to deter­

mine the P on R configurations when the PCP is located at (-Wd' -Ld) 

and (- Wd, Ld) . The use of this column is dependent upon the ranking 

of the ai, -Ld, and Ld. The ranking of the ai and Ld determines 

· which row of the table to use. The ranking of -Ld and the ai deter­

mines which columns of the previously chosen row to use. If a config-

uration of P on R results when the PCP is located at (-Wd' -Ld), 

that is, a 1 < -Ld, the offset 11a 11 and 11 c 11 are used to indicate that the 

appropriate region generating that configuration is initiated at 

(-Wd, -Ld) or that a similar region terminates at (Wd, Ld). The "a" 

is used to denote -Ld in such cases and the 11 c 11 is used to denote 

Wd for notational convenience and consistency in Tables V - X. 

If specific values are as signed to the three sets of length and 

width parameters and 9 , the following set of instructions indicates how 

to use Tables V - X. 

Step 1. Evaluate and rank L tan 9 , W sec 9 , and W . 
p r p 

This 

indicates which table to use. Note if the largest term is greater than 

the sum of the smaller two terms. 

Step 2. Evaluate and rank the ai, -Ld, and Ld. The rela­

tionship of Ld to the ai determines which row of the table to use. 

The ranking of the ai and -Ld determines which columns of the row 

to use. If -Ld < a 1 , all of the appropriate columns are used, Since 

the relationship between the ai and -Ld determines the configuration 

of P on R when the PCP is located at (-Wd, -Ld) , use the column on 



the left headed by this configuration to initiate the sequence of PCP 

change points. The sequence of PCP change points terminates in 

the right hand column headed by that configuration. 
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Step 3. Once the appropriate row and columns have been 

determined, the upper elements in the row are the PCP change point 

ordinates and/or abscissas on the lines d = -Wd and r = Ld. The 

lower elements in the row are the PCP change point ordinates and/ or 

abscissas on the lines d = Wd and r = -Ld . 

Three examples illustrating the use of these instructions for 

Tables V - X follow Table X. 



TABLE V 

PCP CHANGE POINTS ON ':['HE PER.IMETgR. OF D 

Configuration of P on R (W > Wrsece > .L tan8) 

< -Ld,Ld ~ Triangle T~pezoid Pentagon Hexagon Parallelogram Pentagon Trapezoid Triangle 

a,a1 cl C4 C3 Cz C7 C7 Cz c6 CS cs 

as as d6 d7 dz dz .d7 ~ d4 dl 

al. az la al c4 C3 Cz C7 C7 Cz c6 CS c cs 

as-ds d6 d7 dz dz d7 ~ d4 ·bl 

az·~ I a al az a c3 Cz C7 C7 Cz c6 C CS c cs 

as as d6 d7 dz dz d7 ~ . bz. !>1 

a3, a4 (a3, as) I a al az a a3 a cz C7 c7 Cz c c6 C CS c cs 

as as d6 d7 dz d z d7 b3 bz . bl 

a4. as <•s· a4, I: a al az . a a3 a a.4 as a c 7 C a Cz C c c6 C CS c cs 

as d5: d . 6 a1 dz b4 bs b3 bz b 1 

as, a6 (a4, a6) I •1 .az ·a3 . a4 as as •4 c6 ·CS cs 
a a· s s -·. d6· bs b4 - b4 bs b3 b' z· bl 

a6,a7 I al az a3 a4 •s· as &4 a6 CS cs 
as as b6 bs b4 b4 bs b3. bz. bl 

a7,aS I· al a.z a3 a4 as a~ a.4 &6 &7 cs 

as b7 b6 b5 b4 b4 bs b3 t>z bl 
~ 
...... 



TABLE VI 

PCP CHANGE POINTS ON THE PERIMETER OF D 

Configuration of P on R (L tan e > Wrsec 0 > W ) 

<-Ld,Ld=::. Triangle Trapezoid Pentagon Hexagon Parallelogram Pentagon Trapezoid Triangle 

a,a1 cl cz C3 C4 C5 cs C4 c6 C7 CB 

dB d7 d6 ds d4 d4 ds d3 dz dl 

al,a4 I a al cz C3 C4 cs cs C4 c6 C7 c CB 

dB d7 d6 ds d4 d4 ds d3 dz bl 

a4,a3 I a al a4 a c3 C4 CS cs C4 c6 C c7 c CB 

dB d7 d6 ds d4 d4 ds d3 d4 bl 

a3' az (a3• a7) I a al a4 a a3 a c4 cs CS C4 c c6 C c 7 c CB 

dB d7 d6 ds d4 d4 ds b3 b4 bl 

az, a?" (a7, az) I a a 1 a4 a a3 a az a7 a cs c a c4 C c c6 C c7 C Cg 

ds d7 d6 d5 d4 bz, b7 b3 b4 bl 

a7' a6 (az, a6) I al a4 -a3 az a7 a7 az c6 C7 Cg 

dg d7 d6 b7 bz bz b7 b3 b4 bl 

a6,aS I al a4 a3 az a7 a7 az a6 C7 Cg 

dg d7 b6 b7 bz bz b7 b3 b4 bl 

aS,a8 I al a4 a3 az a7 a7 az a6 as Cg 

dB bs b6 b7 bz bz b7 b3 b4 bl 

*"' N 



TABLE VII 

PCP CHANGE POINTS ON THE PERIMETER OF D 

Configuration of P on R (W > L tane > Wrsec0) 

< -Ld,Ld ~ Triangle Trapezoid Pentagon Hexagon Parallelogram Pentagon Trapezoid Triangle 

a,a1 .Cl C3 C4 Cz C7 C7 Cz CS c6 Cg 

ds d6 ds d7 dz dz d7 d4 d3 di 

al' a3 I a al c3 c4 Cz c7 c7 Cz CS c6 . c cs 

ds_d6 ds d7 dz dz d7 d4 d3 bl 

a3,aZ I a al a3 a c4 Cz C7 C7 Cz C5 c c6 C c8 
ds d6 ds d7 dz dz d7 d4 b3 bl 

az· a4 (az· as> I a al a3 a az a Cz c7 C7 Cz C CS c c6 C Cg 

ds d6 ds d7 dz dz. d7 bz b3 bl 

a4' as (as, a4) I a al a3 a az a a4 as a c7 C a cz c C CS c c6 c cs 
.ds d6 ds d7 dz b4 bs bz b3 bl 

as· a7 (a4. a7) I al .a3 . az a4 as as a4 CS c6 cs 
ds d6 _; ds bs b4 b4 bs bz b3 bl 

a7,a6 I al a3 az a4 as as a4 a7 c6 Cg 

ds d6 b7 bs b4 b4 bs bz b3 bl 

a6,a8 I al a3 az a4 as as a4 a7 a6 cs 

ds b6 b7 bs b4 b4 bs bz b3 bl 
~ 
v.> 





... 
TABLE IX 

PcP CHANGE- POINTS ON THE PERIMETER OF D 

Configuration of P on R . (L 

< -Ld,Ld ~ Triangle Trapezoid Pentagon Hexagon Parallelogram Pentagon Trapezoid Triangle 

a,a1 cl c3 Cz c4 cs cs c4 c7 c6 cs 
dB d6 d7 ds d4 d4 ds dz d3 dl 

al' a3 I a al c3 Cz c4 cs CS C4 C7 c6 C c8 
dB d6 d7 ds d4 d4 ds dz. d3 bl 

a3,a4 I a al a3 a cz C4 C5 CS C4 C7 c c6 C Cg 

dg d6 d7 ds d4 d4 ds dz b3 bl 

a4. az (a4· a7) I a al a3 a a4 'a c4 cs cs C4 C c7 c c6 C Cg 

dB d6 d7 ds d4 d4 d5 b4 b3 bl 

az· a7 (a7· az) I a al a3 a a4 a az a7 a c5 c & c4 C C c7 c c6 c cs 

ds d6 d7 ds d4 bz b7 b4 b3 bl 

a7. as (az· as) I al a3 a4 az a7 a7 az C7 c6 Cg 

dg d6 d7 b7 b2 bz b7 b4 b3 bl 

as· a6 I al a3 a4 ai a7 a7 az as c6 cs 
dg d6 bs b7 bz bz b7 b4 b3 bl 

a6,a8 I al a3 a4 az a7 a7 az as a6 Cg 

dg b6 bs b7 bz bz. b7 b4 b3 bl 
~ 
Ul 



.. 
TABLE X 

PCP CHANGE POINTS ON THE PERIMETER OF D 

Configuration of P on R (W sec 0 > L tan 0 > W ) . ..r 

< -Ld,Ld ~ I Triangle Trapezoid Pentagon Hexagon Rectangle Pentagon Trapezoid Triangle· 

a,a1 I Cl Cz C4 c3 c6 c6 C3 cs c7 cs 
ds d7 ds d6 d3 ds d6 d4 dz dl 

al,a4 I a al cz c4 C3 c6 c6 C3 CS C7 c ca 

da d1 ds d6 d3 d3 d6 d4 dz bl 

a4,aZ I a al a4 a c4 C3 c6 c6 C3 cs C c7 c cs 

da d7 ds d6 d3 d3 d6 d4 b4 bl 

az, a3 (az, a6) I a al a4 a az a c3 c6 c6 C3 c cs C c7 c ca 

da d1 ds d6 d3 d3 d6 bz b4 bl 

a3' a6 (a6' a3) l a al a4 a az a a 3 a6 a c6 c a c3 c c cs C c7 c ca 

da d7 ds d6 d 3 b3 .b6 bz b4 bl 

a6' a7 (a3• a7) I al a4 az a3 a6 a6 a3 CS C7 cs 

da d1 ds b6 l-3 b3 b6 bz b4 bl 

a7,aS I al a4 az a3 a6 a6 a3 &7 C7 cs 

da d1 b7 b6 b3 b3 b6 bz b4 bl 

aS,a8 I al a4 az a3 a6 a6 a3 &7 as c:a 

dabs b7 b6 b3 b3 b6 bz b4 bl 
,.j:l.. 
CT' 
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Example 3.4. Let 8 = so 
' 

w 
r = 7S 1 , WP= 100 1 , Wd = 2S0 1 , LP= 2S0 I 1 

and Ld = SOO' . 

Step 1. L tan8 = 21.872S, W sec8 = 7S.2868, W = 100. 0. 
p r p 

Then W > W sec8 > L tan8 and W > W sec8 + L tan8. Thus, one 
p r p p r p 

uses Table V for this example. 

Step 2. When the ai, i = 1, 2, ... , 8 are evaluated, the follow-

ing values result: 

al = 603.9S as = 282S.OS 

a2 = 1103.9S a6 = 3389.9S 

a3 = 232S.OS a7 = 4611. OS 

a4 = 2889.9S a8 = Slll. OS 

The ranked values of the ai are given by a 1 , a 2 , a 3 , as, a 4 , a 6 , a 7 , a 8 . 

Since Ld < a 1 , the first row of Table V is the appropriate row 

to use. Also, since -Ld < a 1 , all the appropriate columns are used. 

Note that W > W sec 8 + L tan 8 . Accordingly, the second column 
p r p 

under the heading "Pentagon" is used instead of the first column and 

the "Parallelogram" column is used instead of the 11Hexagon" column. 

Since -Ld < a 1 , no "a 11 or "c 11 need to be considered. 

Step 3. The appropriate PCP abscissas on r = Ld and 

r = -Ld at which the configurations change are given as 

The appropriate sub-regions in D generating the configurations are 
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then determined by connecting the elements in the above parentheses 

by lines parallel to the line r = (-cots )d . 

0 
Example 3. S. Let S = 20 and suppose that Wr, WP, Wd, LP, and 

Ld assume the same values as in Example 3. 4. 

Step 1. L tanS = 90.992S, W secS = 79.SlS, W::: 100.0, 
p r p 

Then W > L tans> W secs, but W < L tans+ W secs. Thus, one p p r p p r 

uses Table VII for this example, 

Step 2. The values of the ai, i = 1, 2, ... , S , are as follows: 

al = - S7. 16 as = SS l. 41 

a2 = 442.S4 a6 = 992.34 

a3 = 3Sl. 91 a7 = 930.91 

a = 4 492.34 as = 1430.91 

The ranked values of the ai are given by al' a 3 , a 2 , a 4 , as, a 7 , a 6 , aS 

Sinc;e a4 < Ld <as, one uses the fifth row of Table VII. 

Again, since -Ld < a 1 , all appropriate columns are used and "a" 

and "c" are not considered. Because W < L tans + W sec S, one 
p p r 

uses the first column under the 11 Pentagon 11 heading and uses the 

"Hexagon" column instead of the 11 Parallelogram 11 column, 

Step 3. The sequence of ordinates and abscissas on the peri-

meter of D at which the configurations change is given by 

Connecting the points in parentheses by lines parallel to the line 
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r = (-cot 9 )d determines the appropriate sub-regions of D that gen-

erate the given configurations. 

Example 3. 6. Let 9=30°, W =100', W =lSO', Wd=200', L =600', 
r p p 

and L = 300 1 
d 

Step 1. L tane = 346,41, W sec9 = llS.47, and W =ISO. 0. 
p r p 

Thus, L tane > W > W sece and L tane> W + W sece. Conse-
P p r p p r 

quently, Table IX is the appropriate table to use. 

Step 2. The values of the ai, i=l,2, ... ,8 are as follows: 

al = -713.39S as = 886.60S 

a2 - 486.60S a6 = 1006.23S 

a3 = -313.39S a7 = 206.23S 

a4 = -193.765 a8 = 1406.23S 

The ranking of the ai is given as a 1, a 3 , a 4 , a 7 , a 2 , as, a 6 , a 8 . 

Since a 7 < Ld < a 2 , the fifth row of the table is the appropriate 

row to use. L tane > W + W sece implies that the second column 
p p r 

under the "Pentagon" heading is used and the "Parallelogram" column 

is used instead of the 11 Hexagon 11 column. 

In this example a 1 < a 3 < -Ld . This result indicates that 

when the PCP is located at (-Wd, -Ld) and (Wd, Ld) the P on R 

configuration forms a trapezoid. Accordingly, the appropriate columns 

to use in Table IX are headed by 11 Trapezoid, 11 11 Pentagon, 11 11 Parallel-

ogram, 11 11 Pentagon, 11 and 11Trapezoid. 11 In this case, 11 a 11 is used to 

indicate that the sub-region in D gene rating trapezoids originates at 
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is used to indicate that sub-region in the upper right hand corner of D 

which generates trapezoids terminates at (Wd' Ld) . 

Step 3. The seg_uence of abscissas and ordinates on the peri-

meter of D at which the configurations change or terminate is given as 

Again connecting the points in parentheses by lines parallel to the line 

r = (-cot8)d determines the sub-regions in D which generate the P 

on R configurations. 



CHAPTER IV 

THE PROBABILITY DISTRIBUTION OF THE 

PROPORTION OF PATTERN AREA 

ON THE RUNWAY 

The purpose of this chapter is to develop a representation for 

the cumulative distribution function (c. d. £.) of the proportion of the 

area of P on R to the total area of P. First the formulas for the 

areas of the various P on R configurations are developed when the 

PCP is located in the regions generating those configurations. The 

form for the desired c. d. £. is discussed for a general PCP probability 

density restricted to D . .The de sired c. d. £. is then attained in graph-

ical form for several specific PCP probability densities. 

In the discussion, the proportion of the area of P on R to the 

total area of P will be denoted by "A . " The range of values for A 
p p 

is 0 < A < 1 • The de sired c. d. £. will be denoted by p-

P(a) = Pr [A < a] , 0 < a < 1 . p - - -

Since the range of values of A changes for the various P on 
p 

R configurations, one needs to know the possible values of A for 
p 

these configurations. However, in order to obtain these values, it is 

necessary to know the areas of the configurations. Consequently, 

formulas for the area of the different P on R configurations relative 

to the center of P are needed. These formulas are developed in the 

following section of this chapter. 

i:; 1 
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Formulation of the Proportion of Area for 

P on R Configurations 

In order to develop the probability distribution of the proportion 

of area of P on R to the total area of P, one needs to obtain a repre-

sentation of the area for the various P on R configurations. For each 

of the P on R configurations in the following discussion, the PCP is 

located at {d, r), an arbitrary point in the sub-region of D generating 

that P on R configuration. A formula for the area of each of the P 

on R configurations is obtained by using (d, r) as the PCP. 

Let us suppose that the PCP is in a sub-region of D that gen-

erates a specific P on R configuration. When the PCP is located on 

a line parallel to the line given by r = (-cote )cl, the area of the P on 

R configuration remains constant. As such, the proportion of the area 

of the P on R configuration to the total area of P also remains con-

stant when the PCP remains on the stated line. Let a represent the 

desired proportion. Then by setting 4L W a 
p p 

equal to the formula 

for the area of the configuration, one can obtain the equation of a line 

in terms involving d and r. This line is parallel to the line whose 

equation is r = (-cote )d. When the PCP is located on the derived line, 

the proportion of the area of the P on R configuration to the total area 

of P is given by a. Hereafter, the derived Unes shall be referred to 

as "a lines. " 

Due to symmetry with respect to the origin, the following dis-

cussion considers only those generating sub-regions to the left of the 

line r = (-cotS)d. The illustrations given for each of the ccmfigura-

tions consider the point (d, r) as being in a sub-region of D generating 
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that configuration. However, the rectangle D is not illustrated for 

convenience purposes. 

Triangle: From Figure 6, one obtains the following representation for 

the area of a triangular P on R configuration: 

A(d, r) 

= -2
1 {(r+L )+(d+W )cotS+W cscS} {(d+W )+(r+L )tanS+W secs} 

p p r p p r 

( 4. 1) 

R 

r = ((r+L )(-tanS)-W secS, r+L ) 
p r p 

'>4--+--(d + W , r + L ) 
p p 

(d+W, (-cotS)(d+W )-W cscS) 
p p r 

Figure 6. T rtangular P on R Configuration· 

After some trigonometric substitutions are employed in (4. 1), one 

obtains the following result: 

A(d, r) = 
{(r+L )sine+ (d+W )cosS +W }2 

r 

2sin8cos8 
(4. 2) 

For a triangular P on R configuration, a ranges from zero to 

a' , where a 1 is the ratio of the maximum area of a triangular P on 
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R configuration to the total area of P. Then for 0 < a < a 1 , the a 

line is determined from 4L W a = A(d, r), where A(d, r) is given in 
p p 

(4. 2 ). The equation of the resulting a line is given by 

r = (-cot8)(d+W) - L - W csc8 + (a8L W cot8)l/Z. 
p p r p p 

(4. 3) 

In the remainder of this discussion, the range of a for a speci-

fie configuration is not considered. 

Rectangle: If the P on R configuration forms a rectangle, then the 

context of the problem implies that rectangle P is entirely contained 

with rectangle R. Consequently, a = 1. In such cases, any line 

within the sub-region of D generating rectangles that is parallel to the 

line r = (-cot8)d can serve as an a line. 

Trapezoid: When the P on R configuration forms a trapezoid, three 

possible trapezoids may occur. Figure 7 indicates their forms. 

/ 

R R 

(a) (b) 

Figure 7. Possible Trapezoidal P on R 
Configurations 

R. 

( c) 
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The area of the trapezoid illustrated in Figure 7(a) is given by 

A(d, r) = 2W{(r+L )+dcote+Wcsce}. 
p p r 

(4. 4) 

The resulting a line is given by 

r = ( -cote ) d - W c s c e + ( 2a - 1 ) L . 
r p 

(4. 5) 

The area of the trapezoid in Figure 7(b) is given by 

A(d, r) = 2L {(d+W) + rtane + W sece}, 
p p r 

(4. 6) 

with the resulting a line given by 

r = (-cote)d - W csce + (2a - l)W cote . 
r p 

(4. 7) 

The area of the trapezoidal P on R configuration in Figure 7(c) 

is more difficult to obtain than the area for the preceding trapezoids. 

For this case, one needs to obtain the lengths of the two parallel sides 

of the trapezoid. Combination of terms in the representations of the 

lengths of the two parallel sides, enables one to write the area in the 

following form: 

A(d, r) = 
2W {(r+L )sine+ (d+W )case} 

r 

sine cos e 

The a line for the trapezoid illustrated in Figure 7(c) is given by 

r = (-cote)(d+W) - L + 
p p 

2aL W case 
p p 

(4. 8) 

(4. 9) 

Parallelograms: The two forms of parallelograms resulting from P on 

R configurations are illustrated in Figure 8. 
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R R 

p 

(a) (b) 

Figure 8. Parallelogram Configurations of P on R 

The area of a parallelogram remains constant when the point (d, r) is 

located in the sub-regions that generate parallelograms. The area of 

the parallelograms given in Figure 8(a) and Figure 8(b) are given by 

A(d, r) = 

and 

A(d, r) = 

4W W csc9 
p r 

4L W sec9, 
p r 

(4. 10) 

(4. 11) 

respectively. Since the area of the parallelogram remains constant, 

the proportion a also remains constant. The a lines for parallelogram 

configurations correspond to any line that is parallel to the line 

r = (-cote )d and that is located within the region gene rating parallel-

ograms. 

Pentagon: Three different pentagon configurations of P on R can 

occur. They are illustrated in Figure 9. 
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R R 

p p 

Figure 9. Pentagon P on R Configurations 

The area of the pentagon in Figure 9 (a) is determined by sub-

tracting the area of the triangle exterior from the total area of P. 

The area of this pentagon is given as 

A(d, r) = 4L W 
p p 

{(d-W )cos8+(r-L )sin8+W }2 
r 

2sin 8 cos 8 
(4. 12) 

The resulting a line is given by 

1/2 
r = (-cotS)(d-W) -Wcsc8+L -(8(1-a)L Wcot8) . (4.13) 

p r p p p 

To determine the area of the pentagon in Figure 9(b), one sub-

tracts the area of P exterior to R from the total area of P. The 

area of the pentagon is given as 



A(d, r) = 4L W +2W {(r - L ) +d cote +W csce} 
p p p p r 

{(r+L )sine+(d+W )cose -W } 2 
r 

2sinecose 

{4W W cose - 1/2 [(r+L )sine+ (d -W )cose -W ] 2} 
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= r r 
sine cose 

(4. 14) 

The corresponding a line is determined as 

r = (-cote)(d-W) + W csce - L - [8W cote (W csce -aL )] l/2 . (4. 15) 
p r p p r p 

The area of the pentagon in Figure 9(c-) is determined in the 

same manner as the area of the preceding pentagon. This area is 

given by 

A(d, r) = 4 L W + 2L { (d - W ) + r tan e + W sec e} 
p p p p . r 

= 

{(r+L )sine+ (d+W )cose -W } 2 
r 

2sine cos e 

{4L W sine - l/2[(r-L )sine+(d+W )cose -W ] 2} r · r 

sine cos e 

The a line is determined as 

(4. 16) 

r = (-cote)(d+W) + W csce + L + [8L (W csce -aW cote)J 112 (4.17) 
p r p p r p 

Hexagon: The area of the hexagon illustrated in Figure 10 is deter-

mined by subtracting the area of the two triangular regions exterior 

to R from the total area of P. 
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R 

p 

Figure 10. Hexagon P on R Configuration· 

The area of the hexagon is determined as 

A{d, r) 
{[(r+L )sin9+(d+W )cos9-W.]2 +f(r-L )sinS+(d-W ).co.se+w ]2} 

p : . . iP . . r • p p r = 4L W 
p p 2sin9cos9 ' 

(4. 18) 

The equation of the resulting a line is given by 

. 2 1/2 
r= (.;cot9)d-{4L W(l-a)cot9-(L +Wc;ot9-Wcsc9)} .(4.19) 

. p p p p r 

When values are assigned to the set of length and width para-

meters and 9 , the following table, Table XI, is helpful in determining 

the general shape of the P on R configuration and consequently, which 

of the area and a line formulas to use. The table entries refer to the 

preceding figures in this chapter. 



Table 

TABLE XI 

SPECIFIC P ON R CONFIGURATIONS 
FOR TABLES V -X 
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Number Triangle Trapezoid Pentagon Hexagon Parallelogra m 

v Figure ( 6) Figure 7(b) Figure 9(c) Figure 10 Figure 8(b) 

VI Figure ( 6) Figure 7(a) Figure 9(b) Figure 10 Figure 8(a) 

VII Figure ( 6) Figure 7(c) Figure 9(c) Figure 10 Figure 8(b) 

VIII Figure ( 6) Figure 7(b) Figure 9(a) Figure 10 

IX Figure ( 6) Figure 7(c) Figure 9(b) Figure 10 Figure 8(a) 

x Figure (6) Figure 7(a) Figure 9(a) l Figure 10 

Rectangular P on R configurations occur for the situations 

where the entries in the parallelogram column are blanl,<.. 

The Probability Distribution P(a) = Pr [A < a] 
p-

In the following discussion let us denote the probability density 

function for the PCP by f(d, r). It will be assumed that f(d, r) is 

continuous and that f(d, r) equals zero for points· (d, r) exterior to 

the rectangle D. It will also be assumed that f(d, r) is symmetric. 

In order to obtain the desired c.d.£., P(a), one needs to 

integrate f(d, r) over the regions in D that produce values of A for 
p 

which A < a, Now, since the sub-regions in D that generate the P 
p 

on R configurations are symmetric with respect to the origin, the 

integration process needs only to be considered in sub-regions of D to 
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the left of the line r = (-cot 0 )d. Once this integral is obtained, twice 

its value gives the desired result. 

A formulation of the appropriate integral would be in the form 

d b 

P(a) = zf J f(d,r)dddt 

c a 

(4. 20) 

The limits of integration in (4. 20) are as follows: a= -Wd, c = -Ld , 

b is either an equation of an appropriate a line or the value Wd, 

depending on the situation; and, d is either the point at which the a 

line and the line d = -Wd intersect or the value Ld . 

In an evaluation of P(a) for a specific situation, it is neces-

sary to know the range of the values for A for the various P on R 
p 

configurations. Table XII given below gives the maximum value of 

A for each configuration listed in Tables V - X. Also, the table 
p 

entries give the a lines on which the PCP would be located to give the 

configuration that value. For the sake of notational convenience, the 

maximum A values and the corresponding a lines are listed below. 
p 

Note that the a lines are the lines at which the configurations change 

form, Let us now define the maximum A . values as 
p 

a., i = 1, 2, •.. , 8 , and the a lines as X.., i = 1, 2, .. ,, 8 
1 1 

given as follows: 

The a. are 
1 
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L tane (W cos e - L sine - W )2 

al = E a - E E r 
2Wp 

5 -
2Lp WP sine cos e 

w sece (L sine + W cos e - W )2 
r E E r 

a2 = 
WP 

a6 = 
4Lp WP sine cos e 

W cote (L sine -Wcose -W)2 

a3 = E a - E E r 
2Lp 

7 -
2Lp Wpsin e cos e 

w csce w2 
r r 

(4.21) a - a = 4 -
LP 8 2LpWpsinecose 

The }\.. are given as follows: 
l 

Al : r = (-cote)(d+W) - w csc e - L p r p 

A2: r = (-cote)(d+W) - W csce +L 
p r p 

A3: r = (-cote)(d+W) + W csce - L p r p 

A4: r = (-cote)(d -W) - W csce - L p r p 

A5: r = (-cote)(d+W) + W csce + L 
p r p 

A6: r = (-cote)(d -W) - W csce + L 
p r p 

A7: r = (-cote)(d -W) + W csce - L p r p 

}\.8 : r = (-cote)d. (4. 22) 

The lower row in the "pentagon" row in Table XII is used when the 

relationship between L tane, W sec e and W for Tables V - X is 
p r p 

such that the largest term is greater than the sum of the other two 

terms. 



Table V 

Miss 0 Al 

Triangle al A.2 

Trapezoid az-a ii A3 

az-a sl A4 

Pentagon 
az AS 

Hexagon 1-a 6 1~-s 

Parallelogram I a 2 AS 

Rectangle 
I 

TABLE XII 

MAXIMUM VALUES OF ~P- AND THE 
4SSOCIATED a LINES · 

Table VI Table VII Table VIII 

0 Al 0 Al 0 Al 

a3 A4 a8 A3 Cl' 1 Az 

a4 -a3 I A3 az-a 81 Az 1-al I A4 

a4-a71 Az az-asl A.4 l-2a6 I A3 

a4 A7 az A.5 1 A6 

1-a6 I A8 1-a6 I Ag 1 -a6 I A8 

'1'4 A7 a2 AS 

1 A.8 

Table IX 

0 .. A.l 

Cl 8 A.3 

a4-aBI A4 

a4 -a7J Az 

Cl.'4 A7 

1 -a6 I x.8 

a4 A.7 

Table X 

0 :>tl 

Cl3 A.4 

1-a 3 I Az 

1-Za.6 f A.3 

1 A.6 

1-a 6 I A.8 

1 >-g 

0--
1.JJ 
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Examples of P(a) 

P(a) is dependent upon f(d, r), the probability density function 

associated with the PCP. Several examples of P(a) will be given fo,r 

different density functions. The two families of PCP density functions 

that will be considered in the examples are given as 

f(d, r) = 

(4. 23) 

and 

f(d,r) 

= 0, elsewhere (4. 24) 

Although the bi variate normal probability density function would 

have been an app·ropriate PCP density function to use, the difficulty of 

the computation of P(a) for these examples prohibited its usage. Con-

sequently, the above density functions were developed as approxima-

tions to the bivariate normal probability density function. 

When h 1 = 0 in (4. 23) above, f(d, r) forms a triangular 

density function in the r direction. A bivariate uniform density 

1 
results when h 1 = h 2 = 4 L W . The three density functions to be 

d d 
used in the examples of P(a) are (4. 23) with 1 

hl = h2 = 4L W ; 
d d 

(4. 23) with h 2 = 2L lW 
d d 

; and (4,24). These PCP probability density 
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functions will be referred to as the uniform, triangular, and parabolic 

densities, respectively. 

In the following examples, the P on R configurations and the 

subsequent sub-regions of D which generate them are determined 

according to the methods de scribed in Chapter III. The value of the 

maximum A for each configuration is then determined as an aid in 
p 

the evaluation of P(a) . P(a) is calculated by evaluating (4. 20) for the 

given density functions and the values of a in the range of A for the 
p 

various configurations. 

Example 4. 1. In this example let 8 = 10° w = 100 1 w = 600 1 
1 r . ' d I 

WP= 100', Lr= 5000 1 , Ld = 1200', and LP= 400 1 • This case 

corresponds to situation (1) and Table VIII mentioned in Chapter III. 

When the three PCP density functions are integrated over the appro-

priate sub-regions of D for this example, the resulting form of P(a) 

is given by 

P(a) = (4. 25) 

where b is the abscissa of the point of intersection of an a line and 

the line r = Ld. The a lines used in this example are determined 

from Table XI and are given by equations (4. 3), (4. 7), (4. 13), and 

(4.19). The range of A for each of the resulting configurations is 
p 

determined from Table XII and are given as 

triangle: 0 < A <. 353 
- p-

trapezoid: . 353 < A < . 64 7 - p-

pentagon: . 647 < A < . 663 
- p-

hexagon:. 663 < A < . 831. p-

(4. 26) 



If L is changed to 800 1 , the resulting case corresponds to 
p 

situation ( 1) and Table VI. Consequently (4. 2 5) is used to evaluate 
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P(a). However, Table XI indicates that the a lines are now given by 

equations (4. 3), (4. 5), (4. 15), and (4. 19). Table XII indicates that 

the range of AP values for each configuration is given by 

triangle: 0 < A < . 354 
- p-

trapezoid: . 354 < A < . 365 
- p-

pentagon: .365 <A < .591 
- p-

hexagon: . 591 < A < . 655 . 
- p-

(4. 2 7) 

The graphs of the c. d. f., P(a), for these two c~ses are given 

in Figure 11. 

P(a) 

1.0 

.9 

.8 

.4 

.1 

,,,, 
/ 

;2 .3 .4 .5 
I I I I 

I 
I 

/ 
/ 

.6 
I 

L = 400': --­
p 

L =800 1:--­
p 

.7 .8 .9 
I I I 

Figure 11. P(a) forExample4.l 
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In the following examples, the values of the set of length and 

width parameters and 0 indicate that one is in situation (?) mentioned 

in Chapter III. For this situation let us define b as the ordinate of 

the point of intersection of an a line and the line d = -W . . d When the 

integral given in (4. 20) is integrated for this situation for the three 

given PCP probability density functions, the following formulas result: 

triangular PCP density: 

parabolic PCP density: (4. 28) 

These formulas are used to calculate P(a) as long as b < Ld. If 

b > Ld, then equation (4. 24) is used to evaluate P(a). 

0 
Example 4. 2. Let us assume that 0 = 10 , Wr = 100', WP= 100', 

w = 600 I L = 800 I 
d ' p 

and Ld = 2400'. This example corresponds to 

situation (2) and Table VI in Chapter III. The appropriate a lines. as 

indicated by Table XI are given by equation (4. 3), (4. 5), (4. 15) and 

(4. 19). The range of values of A are the same as those given in 
p 

Example 4. 1, equation (4. 27). For this example, the formulas in 

(4. 28) are used for 0 < a ~ . 244, with (4. 24) being used when 

. 244 < a < • 655. This procedure is used since . 244 is the value of 

AP when the PCP is located at (-Wd, Ld). The graph of P(£¥) for 

this example is given in Figure 12. 



P(a) 

1.0 

.9 

.8 

.7 

.6 

.5 

.4 

. 1 .2 .3 .4 .5 

Uniform: 

Triangular}. 
Parabolic · 

.6 .7 .8 
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.9 1.0 
I . . I • ~ Q' 

Figure 12!. P(a) for Example 4.2 

0 
Example 4. 3. Let us assume that 9 = 20 , W = 100 1 W = 100 1 - r , p , 

w :::: 600 I L = 400 I . d , p and Ld = 1200 1 • This example again corre s-

ponds to situation (2) and Table VI in Chapter III. Consequently the 

same formulas are used for a lines as were used in Example 4. 2. 

The range of values of A as indicated in Table XII are given by 
p 

triangle: 0 < A < . 343 
- p-

trapezoid: , 343 < A < . 388 
- p-

pentagon: . 388 < A < . 604 
- p-

hexagon: . 604 < A < . 667 p-

The formulas for calculating P(a) in (4. 28) are used for 

(4. 29) 

0 < a < . 306, with formula (4. 24) being used when . 306 < a < . 667, 
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since . 306 is the value of AP when the PCP is located at (-Wd' Ld). 

The graph of P(a) for· this example is given in Figure 13. 

P(a) 

1.0 

.9 

.8 

.7 

.6 

.5 

.4 

.1 .2 .3 .4 .5 

Uniform: 

Triangular}. 
Parabolic · 

.6 .7 .8 

Figure 13. P(a) for Example 4.3 

.9 1.p 
I ... a 

Example 4. 4. The conditions on the parameter values are the same as 

those in Example 4. 3, with the exception that L = 800 1 • 
p 

Again, this 

example corresponds to situation (2) and Table VI in Chapter III. 

According to Table IX, the formulas to be used for the a lines are 

given in equation (4. 3), (4. 5), (4. 15), and (4. 19). The range of values 

of A as determined from Table XII are given as: 
p 
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triangle: 0 :s_ a :s_ . 1 72 pentagon: . 194 :s_ a < . 365 

(4. 30) 
trapezoid: . 172 < a :s_ • 194 parallelogram: a = . 365 

When the PCP is located at (-Wd' Ld), the corresponding value of AP 

is given as A = . 339. Consequently, the formulas in (4. 28) are used 
p 

for 0 < a ~ • 339 and (4. 24) is used for . 339 :s_ a < . 365, The 

graph of P(a) for this example is given in Figure 14. Note the jump 

in P(a) in Figure 14 as a approaches the value of . 365. This jump 

occurs because the P on R configuration for this value of a is a 

parallelogram. As such, the area of the parallelogram remains con-' 

stant. Consequently, po other values of A are produced. Thus, the 
p 

integral given in (4. 20) is integrated over the portion of D to the left of 

the line r = (-cot0)d. Since r = (-cot0)d divides D into two sym-

metrical regions each with equal area and since the PCP densities 

used are symmetric with respect to the origin, the value of (4. 20) in 

this case is equal to one. 



P(a) 

1.0 

.9 

.8 

.7 

.6 

.5 

.4 

.3 

.2 

.1 .2 .3 .4 .5 

Uniform: 

Triangular : - - - - -

Parabolic : - · - · - • -

.6 .7 .8 .9 

Figure 14. P(a) for Example 4.4 

LO 

Example 4. 5. Let us assume that 8 = 20° W = 100' W = 100 1 
- ' r ' r ' 
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•a 

Wd = 600', Lr= 50__00', Ld = 2400' and LP= 800'. Again, this 

example corresponds to situation (2) and Table VI in Chapter III. The 

a lines and the ranges for the values of A are the same as those in 
p 

Example 4. 4., equation (4. 30). When the PCP is located at (Wd' -Ld), 

the corresponding value of A is given as A = . 212. The formulas 
p p 

of (4. 28) are used when 0 < a < . 212. For the cases when 

. 212 < a < . 365, the following formulas are used to calculate P(a): 
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uniform PCP density: . ' 

triangular PCP density: 

(4.31) 

parabolic PCP density: 

The graph of P(a) is given in Figure 15. Note the jump in P(a) in 

Figure 15. 



1.0 

.9 

.3 

P(a) 

, l .2 .3 

• 

I 
I 
~I 

.• 4 .5 

Uniform: 

Triangular : 

Parabolic : - · - · - • 

.6 .7 .8 .9 

Figure 15, P(a) for Example 4.5 

1.b 

The above example concludes Chapter IV. The next chapter 
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wUl give a method to determine the single pass hit probabilities from 

the graph of P(a). 



CHAPTER V 

A METHOD TO DETERMINE THE SINGLE 

PASS HIT PROBABILITIES 

The discussion in Chapter II indicated that the probability of 

satisfying any cut criterion is dependent upon the single pass hit prob-

abilities. The intent of this chapter is to present one method of qeter-

mining the single pass hit probabilities from the c. d. £. , P(a). 

It will be assumed that the rectangular pattern P contains b 

weapons. Since the b weapons in a stick are usually released sequen-

tially, it will be assumed that each weapon impact point is contained 

within a specific segment of P. That is, P can be considered as 

being divided into b sub-rectangles each with width 2W and length 
p 

2L /b. Accordingly, each weapon is assumed to impact within a 
p 

specific sub-rectangle of P according to its release time in the 

release sequence. Furthermore, it is assumed that the density of each 

weapon impact point is distributed uniformly within its specific rec-

tangle. 

Since each weapon falls within a sub-rectangle of P, the method 

of determining the single pass hit probabilities, p., i = 1, 2, ... , b , 
l 

assumes that one hit occurs when 100(1 /b)o/o of the area of P is 

located on R. In a similar fashion, it will be assumed that two hits 

occur when 100(2/b)o/o of the area of P is located on R, etc. How-

ever, according to this method, in most situations it is not possible 

'7 A 
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for all b weapons in a stick to impact on the target. This fact is 

illustrated by the examples in Chapter IV. 

The c. d. f., P(a), discussed in Chapter IV, determines the 

probability of obtaining at most a 100a% coverage of P on R, When 

a = 0, then P(O) is the probability of obtaining no coverage of P on 

R or equivalently, the probability of no hits occurring. Therefore, let 

us denote by p 0 , the probability of obtaining no hits in a single pass, 

which is determined by p 0 = P(O). 

Let H 0 be the event of obtaining no hits in one pass, H 1 , the 

event of obtaining exactly one hit in one pass, etc. Let H~ be the 
J 

event of obtaining at most j hits in one pass. Since the H. are 
l 

mutually exclusive events, the probability of the occurrence of H! is 
J 

the sum of the probabilities of the events H 0 , H 1 , ... , Hj . The 

method for determining the single pass. hit probabilities is given as 

follows: 

by a . 

Step 1. Determine the maximum value of A and denote this 
p 

such that P(a*) = 1 . 

Step 2. Now· determine the next .integer J> b a/' , where 

b is the number of weapons in the stick. Denote this integer as 

[ba>:']. Thus, [ba>:'] - 1 <be/'~ [ba >:<] • [ba*] indicates the maxi-

mum number of hits that can occur when dropping a stick of b weapons. 

:i:< 
Step 3. Divide a by This essentially divides the 

interval [O, a>.~] into [b a*] equal segments. Then calculate the 

end-points of the respective segments, namely, a>!</ [ba*] = a>;, 

* = a[ba>:'] - 1 
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Step 4. From the graph of P(a), determine the following: 

* * * P(O), P(a 1), ... , P(a[ba*]- 1), P(a ) , 

where P(O) 
~:~ 

is defined as the probability of no hits, P(a 1) is defined 

as the probability of zero or one hits, ... , P(a ) is defined as the 

probability of zero, or one, or two, . , . , or [b a>:<] hits. 

Step 5. Since P(a>;) is the probability of zero or one hit, 

* * determine the probability of exactly one hit by P(a 1) - P(O) = P(a 1) - p 0 . 

Denote this difference by p 1 , the probability of obtaining exactly one 

hit when dropping a stick of b weapons. The remaining 

p., i = 2, 3, ... , [ba>:<], are determined in a similar manner. That is, 
·1 

For j > [b a*], p. is defined to be zero. 
J 

The following table is an array of the single pass hit probabi-

lities for the examples given in Chapter IV. The 11 U 11 , 11 T 11 , "P" 

columns refer to the uniform, triangular, and parabolic PCP density 

functions used in Chapter IV. The entries in the table were obtained by 

the method given above. The table extends no further than p 11 since 

in the examples, a maximum of 11 hits were obtainable according to 

the stated method of determining the single pass hit probabilities. 



LP.= 400 
8 bombs 

Ld = 1200 

u T p u 

Po .55 • 55 . 55 • 43 

P1 • 13 • 13 • 13 . 14 

Pz • 06 • 06 • 06 • 05 

P3 . 04 . 04 • 04 . 05 

P4 • 04 .04 • 04 • 03 

P5 . 04 • 04 • 04 . 04 

p6 • 05 .• 05 • 05 • 03 

P7 • 09 • 09 • 09 . oz 

Pg o.o 0.0 o. 0 • 04 

P9 
;))3 

P10 • 05 

Pu • 09 

TABLE XIII 

SINGLE PASS HIT PROBABILITIES FOR THE 
EXAMPLES IN CHAPTER IV 

e = 10° 

LP= 800 
16 bombs 

LI\,= 400 
8 om.be 

Ld = 2400 Ld = 1200 

T p u T p u T p u 

• 43 • 43 .46 • 44 .44 .45 . 42 • 43 .28 

. 14 • 14 • 11 • 13 . 13 • 16 • 19 . 18 . 14 

• 05 . 05 . 05 • 05 .05 • 1 • 1 • 1 . • 07 

• 05 • 05 • 03 . 03 • 03 • 04 • 04 • 04 ~ 06 

. 03 • 03 • 04 • 04 . 04 . 07 • 07 • 07 . 08 

• 04 • 04 • 03 . 03 . 03 • 08 • 08 • 08 . 13 

• 03 .03 .03 • 03 • 03 • 1 . l . l .24 

. oz . oz . • 04 . 04 • 04 0.0 0. 0 o. 0 o. 0 . 

• 04 • 04 • 04 • 04 • 04 o.o 0.0 0.0 0.0 

. 03 • 03 • 04 • 04 • 04 0. 0 

• 05 • 05 • 03 • 03 • 03 0.0 

• 09 • 09 • 09 .• 09 • 09 0. 0 . 

e = 20° 

T 

• 22 

• 17 

• 09 

. 06 

• 08 

.14 

.24 

o. 0 

0.0 

, o. 0 

0.0 

0.0 

Lp = 800 
16 bombs 

Ld = 2400 

p u T p 

• 24 • 45 • 34 • 37 

. 16 • 13 • 14 . 13 

• 08 • 08 • 07 • 06 

• 06 • 05 • 07 • 06 

• 08 . 05 • 09 • 06 

• 14 . 10 . • 15 • 12 

• 24 • 16 • 14 .zo 

o. 0 o.o O;O o. 0 

0.0 0.0 0.0 o. 0 

o. 0 0.0 o.o 0.0 

0.0 0.0 0.0 0.0 

0.0 o. 0 o. 0 o. 0 

"'3 
"'3 



CHAPTER VI 

SUMMARY AND EXTENSIONS 

This investigation dealt with the derivation of the cumulative 

distribution function (c. d. f.), P(a) , for the percentage of coverape of 

a rectangular region upon another rectangular region. The c. d. f. was 

derived when the region of possible impact points was also considered 

to be rectangular. An application of P(a) was made to the determin­

ation of the single pass hit probabilities in the context .of the Runway 

Cutter Program. In Chapter I, a description of the input, output, and 

functions of the Runway Cutter Program were described. 

Chapter II was concerned with determining the probability of 

cutting the runway in k passes. This probability was expressed in 

terms of several factors influencing the probability of a cut. The 

single pass hit probabilities are a basic part of this function. Several 

examples of the probability of a cut were given for different cut 

criteria, one of which was solely dependent upon the single pass hit 

probabilities. 

In Chapter III, the basic work was done for obtaining the c. d. f., 

P(a) , for the percentage of pattern area on the runway. The region of 

possible impact points of the center of the pattern was examined for 

the different configurations that the pattern forms on the target. An 

extensive table which can be used to determine .the regions generating 

78 
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the configurations was developed. Several examples to illustrate the 

use of these tables were given. 

Chapter IV contains the actual development of P{a). Since 

P(a) is dependent upon the probability density associated with the 

pattern centroid, several examples were given illustrating P{a) for 

different pattern centroid probability densities. 

A method for obtaining the single pass hit probabilities from 

P{a) was presented in Chapter V. This method was illustrated by 

using the results of the examples in Chapter IV. 

A possible area of further study would be an analogous develop-

ment of the material in Chapters III and IV when other assumptions 

are placed on the set of length and width parameters. or particular 

interest would be the case where L < Ld + L . Since the angle of 
r p 

approach was considered fixed in this investigation, another area of 

possible study would be in the development of P{a) when the angle of 

approach is considered as a random variable. 

Other areas of possible investigation related to this problem 

include, a study of the P{a)'s for various length and width parameters 

in order to determine how these parameters affect P{a) and the 

single pass hit probabilities, a search for other methods of determ-

ining the single pass hit probabilities from P(a) , and obtaining P(a) 

by means of numerical integration processes when the pattern centroid 

density is assumed to be a bivariate normal density. 
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APPENDIX A 

PROBABILITY DISTRIBUTION OF THE 

LARGEST SUB-INTERVAL 

The problem to be considered is the determination of the proba-

bility distribution of the largest of (n + 1) intervals created by n 

random points in an interval not necessarily of unit length. The 

desired probability distribution for the case of the unit interval has 

been solved by various methods. See Darling (1952) and (1953), 

Fisher (1929), Flatto and Konheim (1962), Garwood (1940), Irwin (1955) 

and Mauldon ( 1951). Portions of the development below are analogous 

to Garwood's ( 1940) solution of the problem. 

Let us consider n points in the unit interval [O, I] following 

the uniform distribution. These n points generate (n + 1) intervals. 

Let E be the event that the length of the largest interval denoted by I, 

is > a . Then E is the event that the length of the largest interval, 

I, is < a. Also, E is equivalent to the event F, that no interval has 

length > a. Hence, F is the event that at least one interval is > a. 

Thus, one needs to determine the probability of the occurrence of the 

event F, Pr(F) . 

In order to determine Pr(F) , let us use the following theorem 

according to Feller (1957). 

Theorem A. 1, (Feller) Let P 1 N = probability of the occurrence of 
' 

at least one of the N events A 1, A 2 , ... , AN ; that is 

Rl 
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Then 

p 1, N = s 1 - s2 + s3 - s 4 + ... ± SN ' 

where 

~ Pr (A. n A. ) 
. <. 11 12 
11 lz 

~ Pr(A. n A. n A.), ... , SN= Pr(A 1 n A 2 n ... nAN) . 
. <. <. 1 lz 13 
11 lz 13 

The proof of this theorem can be obtained by the use of mathematical 

induction, 

Let 11 , lz, ... , ln+l denote the (n+ 1) intervals formed by 

dropping n points at random on the unit interval. Let A 1 be the 

event that the length of 11 is > a , AZ , the event that the length of 

lz is > a, ... , An+l , the event that the length of interval ln+l is 

> a. Thus, Pr(F) = Pr (A 1 U AZ U ... U An+l) . 

Let Pk denote the probability of the simultaneous occurrence 

of any k of the above (n + 1) events. That is, 

Pk= Pr (A. n A. n ... n A. ) . Let us assume that k of the events 
11 lz ik 

A 1, AZ' ... , An+ 1 have occur red. Since the resulting probability is 

multiplied by the factor ( n~ 1) , the combination of (n + 1) things 

taken k at a time, one can assume that the first k of the events 

A 1, AZ' ... , An+l have occurred. Thus, one is interested in determ­

ining the probability that the first k intervals each have length > a. 

Let us suppose that an amount a is cut off from each of these 

intervals, the shortened intervals transformed to the right until the 
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gaps are filled, and a length of ka added to the beginning of the first 

interval. By this process, any division of the unit interval such that 

the first k intervals each have length > a corresponds with one in 

which all the dividing points lie to the right of ka and vice versa. 

Because of this correspondence, the probabilities of the two types of 

division are equal. Since the probability of the latter situation is given 

n n 
by (1 - ka) , one has that Pk= (1 - ka) . Consequently, 

sk = (n~l) (1 - ka)n. 

In order to determine Pr(F) = probability of the occurrence of 

at least one of the events A 1, A 2 , ... , An+l , Theorem A. 1 implies that 

From the above discussion, S 1 = (n:l) (1 -a)n, s 2 = (n;l) (1 - 2a)n, etc. 

Thus, 

(A. 1) 

where j = [l/a], 0 <a .:s_ l. [ ] denotes the greatest-integer func-

1 1 
tion. That is, j+l < a .:s_ j , j = n, n-1, ... , 2, 1. Therefore, 

Pr (I .:s_a) = Pr (E) = 1 - Pr (F) 

= 1 _ ( n ~ 1) ( 1 _ a) n + ( n; l) (1 _ 2a) n _ . . . + ( _ 1 ) j ( n I 1) (1 _ j a) n (A. 2) 

where j = [l la], 0 < a .:s_ 1 . 

To extend the result of (A. 2) to the uniform density on any 

interval, let us assume that X 1, x 2 , ... , Xn are independently and 

identically distributed random variables with density function given as 



84 

f(x; µ., 0) 1 
= 20 , µ. - 0 < x < µ. + 0 , - °' < µ. < co , o < 0 < °' 

= 0, elsewhere (A. 3J 

Consider taking a random sample of size n from this distribution and 

determining the probability distribution of the interval having maximum 

length of the (n + 1) intervals formed. If one follows the same method 

used above, and assumes that the first k intervals have length > a, 

then these assumptions imply that the n points must fall in the interval 

[µ. - 0 + ka, µ. + 0] The probability that the n points fall in the interval 

[µ.-0 +ka,µ.+0] is 

This probability l;'e sults because the probability of a single point falling 

in that interval is equal to the length of the interval divided by the 

length of the interval [µ. -0, µ.+0]. The single point probability is then 

th 
raised to the n power because of the independence of xl, x2' ... 'xn. 

Therefore, 

Pr (largest interval S, a) 

= l -(n~l)(l _ 2~ )n +(n~l) (l - ~~ )n + ... + (-l)j(n;l) (l - *)n 
where J. = [29 ] ; 0 20 < Q! < . 

a 

j=n, n-1, ..• ,2, l. 

20 
That is j + 1 

20 < a < 
j 

(A. 4) 



APPENDIX B 

A CRITERION FOR AN OPTIMUM 

APPROACH ANGLE 

As mentioned in the text, the Runway Cutter Program considers 

approach angles in the range of 0 to rr/2. The nature of the program 

output indicates that there may be certain approach angles which gen-

erate higher hit probabilities. The appendix pertains to a criterion 

for the determination of an optimum approach angle for specific real-

istic conditions on the three sets of length and the width parameters. 

Let us assume the following conditions on the length and the 

width parameters: 

Wd> W +W , L > L + W . p r r p r 
(B. 1) 

The optimum angle criterion is defined as that angle of rotation of D 

about its center point that minimizes the area of the region of D gener-

ating a complete miss of P on R. 

For the case 0 = 0, the "miss area'' of D forms two rectan~ 

gular regions, each with dimensions given as by Wd - (W +W), p r 

The dimensions of the rectangular regions when 0 = rr/2 are 2Wd 

by Ld - (L + W). p r 



8~ 

If we consider rotating D in the clockwise direction from 0. to 

rr/2, three different miss regions result. The first region generating 

the "miss area" is trapezoidal in shape. Followed by a triangular 

shaped ''miss area," and finally another trapezoidal shaped "miss 

area. " The angles at which the above regions change from one shape 

to another are given respectively as 

(B. 2) 

(B. 3) 

See Figures 16 and 17. 
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Figure 16. e1 - Change Angle 



Figure 1 7. 82 - Change Angle 

For 0 .:::_ 8 < 8 1 , the trapezoidal ''miss area" has an area 

given by A 1 (8) = 2Ld (Wd - WP - Wrsec 8 - Lptan 8) . Since both sec 8 

and tan 8 are increasing functions of 8 as 8 increases from 0 to 

8 1 , A 1 (8) attains a minimum at 8 = 8 1 . For 8 2 < 8 .:::_ rr/2, the 
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trapezoidal 11mis s area 11 has an area given by 

A 2 (e) = 2Wd(Ld - LP -Wrcsce - Wpcote). Because csce and cote 

are decreasing functions of e as e increases from e 2 to rr/2, A 2 (e) 

attains a minimum at e 2 . The triangular region describing the 

11miss area 11 for el .:::. e .:::. e2 ' has an area given by 

A 3 (e) = [(Ld - LP)sine + (Wd -Wp)cose - Wr] 2 /sin(2e) 

The usual methods for determining the extrema of functions 

can be applied to A 3 (e), e1 .:::. e .:::. e2 . The first derivative of A 3 (e) 

can be factored into 

2[(Ld - L )sine+ (Wd - W )cos e - W ] 
p p r 

sin 2 (2e) 
(B. 4) 

times 

2· 
2 W c o s e + ( Ld - L ) sin e - ( Wd - W ) cos 8 - W . r p · p r 

(B. 5) 

The solution, e , obtained in equation (B. 4) is inappropriate 

since e is not in the interval· [e1,e2 ]. To solve (B. 5) fore necessi-

tates solving a quartic equation, for which it is unfeasible to write, an 

exact solution. However, since a rearrangement of terms in A3 (e1) 

and A3 (e2 ) indicates that A3 (e1) < 0 and A3 (e2 ) > 0 , we know that 

A 3 (e) attains a local minimum for some e in the interval [e1, e2 ] . 

The following procedure was used to obtain an approximation to 

within 1° for the value of e which minimizes A 3 (e) for e in the 

interval [e 1, e2 ] : 

(1) Specific values were assigned to the length and 

width parameters 

(2) For the values in (1), e 1 and e2 were determined 



(3) The values of A 3 (8) and equation (B. 5) were 

computed for values of e between e1 and e2 

in increments of 1° . 

The results of this procedure appear in Table XIV. 

* 

Ld 

2500 

2500 

1500 

1500 

2500 

2500 

1500 

1500 

TABLE XIV 

OPTIMUM APPROACH ANGLE FOR SPECIFIC 
CONDITIONS ON THE LENGTH AND 

WIDTH PARAMETERS>:< 

wd L w w 
p p r 

1000 1200 400 75 

1000 500 200 75 

600 1200 400 75 

600 500 200 75 

1000 1200 400 150 

1000 500 200 150 

600 1200 400 150 

600 500 200 150 

Parameter values are given in feet 
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opt. angle 

23° 

'20° 

26° 

19° 

20° 

19° 

110 

15° 



APPENDIX C 

DERIVATION OF P(a) FOR 0 = o0 AND 0 = rr/2 

This appendix deals with the derivation of P(a) for the angles 

of rotation 0 = 0° and 0 = rr/2, In this derivation, the set of condi-

tions on the length and width parameters for the three rectangles R, 

D, and P, will be made more restrictive than those in Chapter III, 

Determination of P(a) When 0 = o0 

Let us first consider 0 = 0°. As in Chapter III, let us assume 

that L > Ld + L . The assumptions on the width parameters of the 
r p 

three rectangles will be considered in the following cases: 

(i) w < w < wd , 
r p 

and (ii) w < w < wd p r 

Case (i). For this case let us consider the situations where 

w + w < wd and w + w > wd . If wd > w + w ' then p will miss r p r p p r 

R when the PCP is located in the region given by the set of points 

Rl = { (d, r): -Ld < r < Ld, -Wd < d < -(W +W ) or W +W < d < Wd} , - - - - p r p r- -

However, if Wd < W + W , then P cannot miss R, even when the 
p r 

PCP is located on the perimeter of D. 

The P on R configuration is rectangular for these ca~rns. If 

Wd > W + W , the minimum value for A is zero. Since W > W , 
p r p p r 



the maximum value of A occurs when the PCP is located in the 
p 

region given by 

R 2 :::: { ( d, r) : - Ld < r < Ld , - ( W ... W ) < d < W ,. W } 
- - p r- - p r 

When the PCP is located in this region, the value of A is given by 
p 

w 
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A (max) = 
p 

(2L ) (2W ) 
P r 

4L w 
p p 

r 
:::: w 

p 
(C. 1) 

lf AP= a 0 , then the PCP is located on the lines d = Wr + (l-2a0 )Wp 

or d = -Wr - ( l-2a0 )Wp to give a 100 a0 % coverage. Note that AP 

remains constant at W /W when the PCP is located in R 2 . 
r p 

The c. d. £. P(a) is obtained from the following integral: 

w 
r 

0 < a-0 <a = W • (C, 2) - - max 
p 

Note that f(d, r) is assumed to be symmetric with respect to the 

origin. Also note that P(a) will have a jump at a • 
max 

This jump 

results because AP attains its maximum when the PCP is in the 

region R 2 and because 

= Pr [A <a ] p- max 

If Wd < W + W , then P never misses R. Consequently, the 
p r 

minimum value of A is given by 
p 



A (min) = 
p 

W +W -Wd p r 
2W 

p 
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The same integral as in equation (C. 2) is used to determine P(a) with 

the exception that a0 is now restricted to a , < a0 < a 
min - - max 

Case (ii). When w < w < wd. the situation where p r 

Wd > W +W corresponds to the similar situation in case (i). That is, 
p r 

when the PCP is located in the region R 1 , P misses R. Similarly, 

if Wd < W + W , then P cannot miss R when the· PCP is located in 
p r 

D. 

The minimum value of A is given by zero or (W +W -Wd) /2W p p r p 

depending on whether Wd > W +W p r 
or Wd < W +W . · r r Since 

W < W , the maximum value of A is one which occurs when the 
p r p 

PCP is located in the region given by 

R = { ( d, r) ; - Ld < r < Ld , - (W - W ) < d < W - W } 3 - - r p- - r p 

If AP = a0 , then a 100a0 % P on R coverage is obtained when the 

PCP is located on the lines d = -W - ( l-2a )W or d = W + ( l-2aJW . r Op r O'p 

When Wd > W + W , the c. d. £. P(a) is obtained from the 
p r 

following integral 

1Ld(Wd 
P(a0 ) = 4 J__ f(d, r)d d d r 

o w +( l-2a0 )W 
r p 

(C. 3) 

If Wd < W + W , P(a) is obtained by the integral in equation (C. 3) 
p r 

with the exception that a is restricted to a. <a<l. min - P(a) will 

again have a jump due to AP attaining its maximum in the region R 3 . 



Determination of P(a) When 8 = rr/2 

For the angle of rotation 8 = rr /2, let us make the following 

assumptions on the set of length and width parameters: 

Ld > L > W such that Ld > L + W , and L > Wd + W . p r p r r p 

Since Ld > L + W , P will miss R when the PCP is located in the 
p r 

region given by 
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R 4 ={(d,r):-Wd<d<Wd'-Ld<r<-(L +W) or L +W <r<Ld}. - - - - p r p r- -

In this situation the maximum value of A is given by 
p 

(2W ) (2W ) w 
A (max) r p r 

= = p 4L W L 
p p p 

... 

For a lOOa0% coverage of p on R, the PCP must be located on the 

lines r=-Wr-(l-2a0 )Lp or r=~+(l-2a0)Lp. 

The c. d. f P(a) is obtained by integrating the following integral: 

w 
O<a <a =__...!' 

- 0 - max L 
p 

P(a) also has a jump when A attains its maximum value. 
p 

(C. 4) 
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