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CHAPTER I 

INTRODUCTION 

Wave propagation is fundamental to many branches of Physics but a 

detailed knowledge of the field near an object which is reflecting or 

diffracting the waves is difficult to attain. The best and.most.connnon 

approach is to calculate the field near such an object by Fresnel

Kirchhoff theory, but this approach usually incorporates some approxima

tions which are not valid within a few wavelengths of the object. In 

this work, we have photographed the wavefront structure in front of and 

behind a 30 cm by 30 cm board in an acoustic field. We have calculated 

what the wave front structure should be by Fresnel-Kirchoff theory and 

compared the two. And it, should be noted that such wave front patterns 

have never been calculated before. 

The Fresnel-Kirchhoff diffraction theory should apply quite well to 

the study of, acoustic .waves, In fact,. it should be more applicable to 

the study of sound than to the study of light. The Fresnel-Kirchhoff 

theory is a ~calar wave theory, and sound is a scalar wave phenomenon. 

Light must be explained vectorally. 

Several methods, in addition to the Fresnel-Kirchhoff theory, ar~ 

available for the solution of diffraction fields about objects, These 

are, generally, direct so+utions to Poisson's equation subject to the 

appropriate boundary conditions. At times, Poisson's equation can. be 

solved.in a closed form with the appr0priate transformations• But most 
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physical situations are too complex for·this to·oe dorie,and numerical 

analysis techniques must be.used. A large variety of,meth.<;>ds for solv-

ing differential equations numerically exist (4). Two of the most com .... 

manly used techniques for the numerical solution of Poisson's equation 

are .. the method of f;init:e differ~nces and the method of moments (2,10). 

In the method of finite differences, the differential equation is 

reduced to a series of simple algebraic equations which are subject to 

the given boundary equations. from these.equations,.the f:j.eld at points 

throughout the region is evaluated. 

The method of moments is a11 operator technique·of solut:ion. A 

series solut:ion I:et f is established. The ci. 's are evaluated through nn n 

the use of inner products and. inverse.operators. 

History of the Fresnel-Kirchhoff Diffraction Theory. 

The Fresnel--Kirchhoff diffraction theory and its origins were 

initially developed.in the field of optics. But, as all.ready mentioned, 

the theory. is very applicable to the study of ,sound, In '1690 Huygens 

published his Traite de la Lumiere. It was in this treatise that he 

expounded upon the idea which has since become known·as.Huygens' Princi-

ple (1). According to this principle, 

11 ••• every point of a wave...,front may be, considered as a 
centre of a secondary disturbance which gives.rise to spheri
cal wavelets, and the wave-front at any later instantmay be 
regarded as the envelope, of these wavelets'' (7) •. 

· But Huygens had to make certain ad hoc assumptions in order to make 

his principle work~ He had to assume that;: the.secondary envelope di-

rected, back toward the source had no effect. Also, . he had to assume 

that the wavelets had no effect except where they touched the envelope. 

With this wave theory Huygens was able to explain the laws of reflection 
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and refraction. 

In 1818, Fresp,el published a paper on diffracti1:m. In this paper 

Fresriel replaced Huygens' isolated spherical waves with periodic trains 

of spherical waves and.employed the principle of interference. This re ... 

finement.of .Huygens' basic idea is known as the Huygens-Fresnel princi-

ple. With this refinement diffraction phenomena could finally be ex-

plained. But even this was not based upon. a firm math.ematical founda-

tion. Kirchhoff was finally able to put the.Huygens-Fresnel theory upon 

a solid mathematical basis. He showed that the theory could be derived 

from Greens.theorem. This derivation is examined.in the following 

chapter. 

Evaluation of the Fresnel-Kirchhoff ,Integrals 

The Fresnel-Kirchhoff integral is of the.form 

(J . J.kt(XiJt) 
Uf P):::: J. ff (-XJJ) e clad!-' (1-1) 

In general this equation cannot be solved exactly. Hence techniques of 

calculating approximate solutions. must be use.d. One technique which ii; 

found in most elementary textbooks on optics involves.substitution of· 

g(x~y) and f(x,y) by approximately equivalent functions which allow the 

integral (1-1) to be integrated in a closed form. For e:icample, see 

Jep,kins and White's Optics (12). But this type of so.lution is. usable 

only. for very simplified problems. 

Generally, .with an integral of the form of (1-1), one must resort 

to numerical techniques. One possibility wotil4 be to expand Simpson' i; 

rule to two dimensions. , Monte Carlo techniques can also be used to solve . 

multiple integrals. ·This latter technique is a.statistical method of 

integrating. One obtains a random sample of points·lying in the surface 
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of integration~ With thi~ random sample one.obtains an estimate to the 

true value of the ;integral. The larger .the sample size; the more accu-. 

rate.the estimate will become (4). 

Another method of evaluating a multiple integral i~ to generate a 

series expansion for the integrand and integrate·. term by. term. One 

technique of series sol't;ltion is known as the method. of asymptotic.ex-

paµsions (24). This method was original,ly deyeloped for integrals of 

one var:l.able of the form of.Equation (1-2). 

. h . "". R f~) 
I~ =- j I (?<) e d x 

et 

The major contributions to this integral are .those points for which the 

phase kx is stationary. These points are .. known as "c·ritical points." 

An asymptotic. solution to (1-:-2) can be found by expanding a power series 

about th~se points and integrating the fir:s.t few terms •. The result is a 

· i 1 i · f k-l/m k-2/m h · · i · series nvo v ~g terms o ·. , , etc •• were mis .an nteger. 

A formal and ·rigorous, appl:J.cation of asymptotic expansions t;o one 

dimensional integrals has been developed by A. 'Erdelyi (6). Jones and 

Kline (13) have.extended Erdelyi's treatment ·of :single integrals to the 

treatment of m'l,lltiple integrals. 

Van Kampen (2~, 26, Z7) has developed an asymptotic technique,for 

integral$ of the form of .. (1-1) by applying a. two-dimensional analogue of 

the ,method of stat:i,onary·phase. Certain objections have been raised 

against.his methodology, but, in practice, his results work very well 

(28). Van,Kampen's.meth0d·of solution of Kirchhoff's integral, i.e~, 

Equation (1-1), is t;he one used in this paper. 

Van·Kampen's.technique of solution is fully exam.ined·and applied to 

the Kirchh9ff integral in the seconc;i chapter.: Series solutions of the 

Kirchhoff integral for diffraction behind a 30 cm by. 30 Clll square and 
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for reflection above a 30 cm by 30 cm square are obtained. In the third 

chapter these series solutions are used to calculate lines.of constant· 

phase (wave-fronts) for diffraction and reflection. A computerized 

search routine was developed to map the wa.ve--fronts. Chapter IV con-. 

tains information on the experimental mapping of acoustip wave-fronts. 

The method of experimentally mapping wave-fronts. is explained. And· 

"pictures" of the wave .. fronts for the cases of diffraction and reflec

tion about a square plane are.examined. The fifth (and concluding) 

chapter· compares the theoretically calculated wave-fronts w:i,th the e~

perimentally determined wave-fronts. 



CHAPTER II 

THEORY 

Kirchhoff's Difft'action Integral. 

The Fresnel-Kirchhoff diffraction integral is developed. in many 

advanced texts upon optics or wave theory. But as this whole paper is 

based upon this type of integral, it is deemed appropriate to present a 

development of it. 

As was previously mentioned in the .last chapter, the Fresnel-

Kirchhoff theory is based upon a· certain integral theorem. This is 

Green's· theorem. Stated without proof it is as follows: · Let U (P) and. 

G(P) be any two complex-valued functions of position, and let S be a 

closed surface surrounding a volume V. If U, G, and their first and 

second partial derivatives are single valued and continuous within ~nd 

on S, then, we have 

Jjj(lnl'u-1.d')1) dv- =-f{(,Jt~ -u ~)Jo-
v ~ 

(:..-1) 

where a/an signifies a·partial derivative in the outward normal direc-

tion at each point on .S (1, 3, 7). It should be noted that ,in this 

paper U and G represent pres.sures created by two different point sources. 

Kii:chhoff' s integral is developed by applying Green 1 s theorem to 

the geometry in Figure 1. Figure 1 consists of a closed surface con-. 

sisting of two parts, 4 and E', and an enclosed volume V. The inner· 

surface E' is a diminishingly small spherical shell used to keep the 
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Figure 1. Geometry for Development of Kirchhoff, 
Integral 
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point P, at which the field is to be found, out of the volume V. 

As the volume V contains no sourc~s, both G and U satisfy Poisson!s 

equation. That is, 

Applying Equations (2-2) to Equation (2-1), one obtain~ the result that 

the left hand side of (2-1) is identically equal to. zero. Hence, 

Assuming that G is a unit~amplitude acoustic wave expanding spherically 

about.the point P, it takes on the following form 

)J = e;~± 
4 

(~- ~) 

where s denotes the distance from the point P to a general point (x,y,z) 

on the surface ~. Since s = 0 is a singularity for the function G, the 

point P must be excluded from the domain of integration. 

Substituting (2-4) into (2-3) gives 

:::. 0 (:<. ... 5) 

Fqr integration over E', the small spherical shell with radius e 

about point P, the normal derivative a/an becomes -a/as. Hence, the 

integral over E' becomes 

P.Tr )'1" 

ff ( (2- 7) 
0 0 
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The final result for the integral over E' approaches 47T U(P), Hence, 

Equation (2-5) becomes. 

(:<. - ~) 

The above equation is known as the Fresnel-Kirchhoff diffractiqn inte-

gral, U is the pressur~ of some sound source which lies outside the 

volume V (note Figure 1). The·sound pressure which one wants tp deter-

mine at the point P within the closed surface is represented by U(P), 

And the distance s is the distance between the point P and poip.ts on the 

surface E~ The physical signifi.cance of. (2-8) is perhaps more readily 

understood in the following statement: If one.knows the functional de-

pendence of pressure U from some sound source upon any arbitrary closed 

surface, he can then calculate the pressure U(P) at any point P within 

the surface by means of the integral (2-8). 

TheKirchhoff Integral for the Case of Reflection 

Stone (23) mentions the fact that the Kirchhoff integral can be 

applied to reflection from plane surfaces, Thus if one wants to see. 

what the total field looks like, he must add the result from the Kirch-

hoff integral and a conttibution directly from the source, · It seems 

reasona'f?le that this can be.done.merely by referral to the principle of 

superposition~ But this idea can.be explicitly proved in a manner quite 

analogous to that of the proof of· the Fresnel-Kirchhoff diffraction in-. 

tegral. 

A.ikr 
e· Consider a point source at point Q within the vol\,llile V in 

r 

Figure 2~ The surface J1 is a reflecting surface, The· field U is to be 
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p 

figure 2. Geometry for Development of Kirchhoff's Integral 
for Reflection 

10 
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'· 
found at the point P. Note that the volume V excludes both points·P and 

Q as they are surrounded by spherical she;l.ls with diminishinglysmall 

radii e: and o, respectively. The points P and Q must be excluded from 

the enclosed volume in order that Green's theorem can be.satisfied. 

Green's theorem states that 

(a_ - 9) 

But as there are·no sources in the volume V, the left hand member 

of (2-9) is identi.cally zero. Therefore, 

JJr~ 5* - u ~)dcr === o 
iks e Letting G .. · -- , Equation (2-10) becomes 

s 

For integration over rand r, ~n becomes ~s • As a result; 

.J!j ..(~€ ~ :: e C' _ ( .i k _ ~) 
~n c. 

.4~ E' 

(fJ - I 0) 

(~-11) 

From Equations (2.,..11) and (2-12), one £irids that the integral over 

I: is 

(~ - J3) 

which becomes 

The resulting integration gives an answer of 
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And, as E shrinks to zero, the integral ·over ~ approachee -4TI U(P) in 

the limit~ Hence, Equation (2-11) can be replaced by 

Next, the summation over the surface r needs to be examined. f is 

the surf ace of a small sphere of radius o centered at Q and exCluding Q 

from the volume V. An acoustic point .source is located at Q, Hence, on 

r it can be seen that 

(:i -16) 

Substituting Equations (2-16) into the integral over r, i.e., 

Equation (2-11), one obtains 

(" - J 7) 

where w is the solid angle~ As the sphere of radius o shrinks to the 

point Q, the integral approaches a value 

'·/'TT A e 1 k 17, 

./t.. 

wnere r is the.distance.from point p to point Q. 

Thus, the general exp,ression (2~15) for the field U(P) becomes. 

, ( i k4 l ~ 4- A e / kJL 
2/(P)=;j;,.j)('U5;,(Sc-)-e4 ~~)do-+ .l"t.. - (~-1'1) 
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The above. equation.is a general expressiOn for the field U at ·point P 

inside an arbitrary, homogeneous volume with one point source. The 

first tenn in Equation (2-19) is for r~.flection from the arbitrary re-

fleeting surface. The second term is a point source contribution •. 

Therefore, the total field due to reflection from a surface is .a super-

position of a component due to a F:i::'esnel.,,Kirchhoff integral and a com-

ponent due to the point source which lies in the field~ 

Application of the Fresnel-Kirchhoff Diffraction 

Integral to a Plane Surface 

In Figure 3 a point source exists at P , and one.wants to observe 
0 

the field at P due to diffraction about' the screen B. The closed surface 

cons;i.sts of three regions: A, B, and C. B is the screen or plane surface 

about. which the :wave .. is diffracted. C is part of a spherical shell of 

radius R. A is that part of an infinite plane surface which does not 

includ~ the diffractioI). screeI). B. It should be pointed out 'that ·the 

surface A and.Care arbitrarily chosen~ 

When R beco:mes sufficiently large, the values of the acoustic field 

U and -of· the normal derivative of the acoustic field ~~· become very 

small. Hence, one should be able to neglect the contribution of the 

surface C to the total integral. The sunnnation over C can also be forced 

to zero by a much more.accurate strat:egum. One can definitely state. 

that the acoustic radiation field came int() existence at some particular 

time t in the past.. And, as one moves away from the source, one cap · 

find a region in which the field does.not exist yet. Thus, the radius 

R can be. chosen large enough such that the .surfa.oe C lies outside the 

region .in which the point source radiation field exists. 
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Figure 3. Geometry for Diffraction About a Screen 
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Kirchhoff made two postula'l!ee about the surfaces A and B: 

assumed that U and 

assumed that U and 

on A: 

on B: 

where 

au the same as if no screen existed. an were. 

au That is, rn were zero. 

21. = 2((.i) 

~= 0 
-;> n 

au~ )k~ ~~ 
~==A,;_ -(1 k-~)Co-j,(nJ1t) 

15 

On A he 

On B he 

(:i. -.i /) 

These two approximat;Lons are known as the Kirchhoff bc;:>undary conditi.ons. 

With the use c;:>f the Kirchhoff boundary conditions, Equation (2-19) be-

(~ -.2 ~) 

if one assumes rands are large compared to' the wavelength. 

Considering a screen 30 cm by 30 cm in size in Figure 4, Equation 

( . A 
VfP) == 1) $7T 

Physically it ·seems reasonable that only the .values of .~ and r; near the 

diffraction screen give any significant contribution to. the. above in-

tegral. !11 this region ~ and r; .are much smaller than b. . Hence, · 
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(~,,,O) x 

Figure 4. Diffraction About a Square Screen 
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If one allows the following substitutions to be made in (2-23b), 

it is of the form 

Th;i.s type of integral can be solved a1:1ymptotically by a technique de-

veloped by Van·Kampen (25, 26, 27) and Van Der Corput (24). 

Appl'.ication of the Fresnel-Kirchhoff Integral for 

the Case of Reflection From a Plane Surface 

Equation (2-19) is the general form of ·Kirchhoff's integral for the 

case of reflection. The next task is to apply this equation to the 

specific case of reflection from a 30 cm by 30 cm square reflector~ 

Figure 5 indicates the geometry of the situation. S is th.e point where 

the source is located. Pis the point at.which the field is to be cal-

culated~ The 30 cm by.30 cm square is symmetrically located ,about the 

origin ·in the z = 0 plane. 

One has to be quite c~reful in determining the direction of the 
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x 

(~.~' O) 

y 

•. 
Figure 5. Reflection From a Finite' Plane. 
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normal. Equation (2-19) was. derived by assuming the nonnal' directi<;>n 

is out.of the object space and into the image space. In terms of object 

and image spaces, this normal is indicated.in Figure 6. But this makes 

for a rather unique situation physically. In Figure 4 the normal. asso-

+ 
ciated with ris in the negaUve z direction; the nonnal associated with 

+ 
s is in the positive z direction. 

There is a ccmttibution to the integral in (2-19) only over the 

surface of the plane as. there is no reflection from any 0th.er part of 

the arbitrarily chosen closed surface. I.e., U ·and au 
an are· zero e!Xcept 

on the surface of the reflection plane itself. On the reflection plane, 

And expression (2-19) becomes (i.e., the value of the field at the 

point P): 

.lk(4+n..) 

'21 lPJ = ;,r Jf A ~)1, ~· ~( 1{ +};)~( i ~ + ~ ~e~drd1 

From Figure 6 one can see that the normal derivatives take on the 

following values 

";;>A,. Co-1.cA)1) -C> >1 

9ft ~ c. R).it.) 
{Q- ~ 6) -- = 

O> i't 



x 

(°f,'l, O) 

z 

S(O,O,b) 

Figure 6, Separation of Object Space and Image Space for·Reflec
tion From a Finite Plane 

20 
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It should be noted that cos(n,s} is an obtuse angle.and is therefore, 

inherently negative. From (2-26) 

(:i -:2. 7) 

offers a very small contribution to the integration over, the surface of 

the plane~ But if r ands become quite i;mall, neglecting this term can· 

introduce considerable error. In other words if either the acoustic 

source or the point at which. one .wants to find the pressure lies close 

to the reflecting surface, neglect,ing (2-27) can introduce significant 

error. Hence, in order to neglect (2-27) r and s should be several 

wavelengths long. By applying (2-26) and (2-27) ·to (2-25) one obtains 

the generally seen form of the Fresnel-Kirchhoff integral. That is, 

A' RA ) k < ..o..+1?.) ...., 
Z/.(P) = 17; J j "ML e [ ~ c~t) - ~ t ;,~ n..)] d Fd 7 

~· kd 
+ A e 

r:I 
The preceding expression can be clarified by referring to Figure 4 and 

Figure 5. 

{~ .. '30) 

But ~ and r; are always much less than b; and, for all practical 

purposes, 
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Substituting the above values into the Fresnel Kirchhoff integral 

(2-28), one obtains 

• L JiI ; R (h +~ l'f->ti·+(?-Jt>a..+ i! "'~[ 
U (P) ::: - "' ~ 'f ~ I 

.,'n" b . {-f-:>()'J.. + {~-Jl)a + rA I 

. ~d 
A e~ + d 

By allowing the s1,1.bstitutions 

one has an integral of the form 

This is the type of integral Van Kampen evaluated in his paper by the 

technique of asymptotic expansions~ 

An Asymptotic Treatment of the Fresnel~Kirehhoff Integral 

In 1948 Van der Corput. (24).devised a technique by which an inte-

gral of the form 

could be evaluated asymptotically. This technique is'known as the. 

method of critical points or the method of stationary phase a-isP). It· 

sho1,1.ld be noted that a, b, g (x), and f (x) are independent of w. Wh~n w 
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is rel,a.tively large, the integral (2-34) has a rapidiy oscillating part 

anq a slowly changing amplitude part~ Due to the rapidly oscillating 

phase aspect of the integrand~ the contributions to, the integral of most, 

points x in the interval [a,b] are cancelled. The only points which 

significantly contribut~ to the integral (2-3.4) are those points at 

which the phase ia stationary and the end points of the interval of in..., 

tegration, The phase is stationary at'poi,nts which satisfy.the follow-

ing expression: 

(~ - '3 5') 

In 1949 Van Kampen (25) extended this method of stationary phase 

to double integrals of the form.of (2-33). Van Kampen found that, on 

ikf account,of the rapidity of fluctµation of the exponential term kge , 

the value of the Fresnel-Kirchhoff integral depends substantially upon 

the behavior of the integrand near a limited number of critical points. 

These critical points are of three kinds: internal points of the domain 

of integration at which the function f(~,n) is stationary; i.e., where 

CJ (:J-3t) 

boundary points of the domain'of,integration at which the fqnction 
+ 

f(~ 1 n) is stationary, i.e., where 

(~ - '3 7) 

s denoting thE! derivative along the boundary .cu:t;'Ve of the region of 

integration; 'corner points or.boundary points w:here two analytic cu:t;'Ves 

join, Le., point~ of discontinu\t;y qr si:p.sular points lying upon the 

boundary of the region of integratioµ. 
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MSP Solution to the Kirchhoff Integral 

for Diffraction About a Square Plan~ 

For the case of diffraction about a 30 cm by 30 cm square plane, 

the Fresnel...;.Kirchhoff .integral to be .evaluated has the form of Equation 

(2-23b), i.e., 

Jj i4k 
U (P) = J;'!T b 

The above expression is to be integrated over all space excluding the 

diffracting screen itself. As was mentioned earl:ier, the above integral 

is of the form 

(p-'a !?) 

Van Kampen' s· technique of solution can be applied to the expressicm 

(2-38) to solve for the field behind a diffracting plane. 

Contribution of Critical Points of the First Kind 

By applying the condition ,(2-36) to .the rapidly oscillating func-. 

tion (2-40) the points of stationary phase within the interior of the 

region of integration can be.obtained. These are found to be 

(~ - ~I) 



25 

for all x and y such. that I xi > 15 and I YI > 15 where 6c,y ,:i;) is the 

coordinate of the point in space at which one is trying to find the 

acousd.c,intensity and phase. 

To find the value of the contribution UM(P) of a critical point of . 

the fi.rst kind to the integral (2-38), the functions f (~ 1 1';} and g(f;,t;) 

must be expanded in powers of .f; and r; about the critical point (after 

the origin of F; and r; has been moved to the critical point), 

where a10 = a01 • 
af af 

a11 = 0 since ~ • ~ = . O. 

The integrand of (2-38) can be written as 

1_ )/ff L .iketoo .ih('1~o'f~+Clof(?") 
~1 e : R e e (boo + b1 o i 

+ b01 1 + • • ; )• {I +.,; ~ ( tl-:, 0 l + • · •) + . 11 } 

If one expands the product of the two ser.ies and then integrates term 

by term over all space (-m tom), the following integral results: 

Only very small values of JF;I and lr;I make any significant contribution 

to. the above integral. Hence, the integral (2-44) is a very good.approx-

imation to the contribution of a critical.point of thefirst kind to the 

Fresnel~Kirchhoff integral (2-23b). 

The expression (2-44) can be integrated by the definite integrals 
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found in Apperidix'A. The result of the integration is found to be 

It can be noted that as the wave number k increases without bound 

(the wavelength approaches zero), the first term of (2-45) does not 

vanish. This term is due to geometrical optics. All the other terms 

are due.to diffraction effects. 

By evaluating the partial derivad.ves'for the two functions f(~,z;) 

and g (~, z;) at the critical points·(~, z;) • (x,y), the expression (2~45) 

becomes 

UM(P) = .,_-+•'I / 3--t' ] 
elf~ 

(:i.- ~6) 

It must be remembered that a critic~! point of the.first kind exists if 

and 9nly if lxl > 15 and IYI > 15. Thus (2-46) contributes to the 

Fresnel-Kirchhoff integral only if the x and y coordinates of the point 

at which one is ti;ying to calculate the field lies outsi.de the boundaries 

of the diffracting screen. 

Contribution of Critical. Points of the Second Kind 

By applying the condition (2-37) to the rapidly oscillating function 

(2-40), the points of stationary phase lying along the edge of the sur-

face of integration can be obtained. The boundary curves to be examined 

are: 

1=:1:15 

~=±IS 

l~l <IS 

171 <IS 
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The critical point associ~ted with the boundary n "" 15 is found 

to be 

for all x such that Ix I < 15 and for all y. 

The critical point associated with the boundary n • - 15 is found 

to be 

(~ 1) = ( ';() -J 5) 

for. all x such that lxl < 15 and for all y. 

The critical point .associated 'with the boundary ; • 15 is 

(s) 1) = (1 ~J) 
for all y such that I y I < 15 and for all x. 

( ':). -"19) 

And the critical point of the second kind associated with the 

boundary ~ = - 15 is 

(!<- ~J) 

for all .y such that !YI < 15 and for all x, Again, as in the preceding 

section, the reader. must. remember that the ,coordina.tes x .and y are two 

of the position coordinates associq.ted. with the point (x,y ,z) at which 

one wants to find the acoustic field, 

In order to find the contribution UN(P) of a critical point of the 

second kind N, the origin of ; and n must be shifted to N and then f 

and g inust be expanded in-powers of ; and n. The resulting power.series 

have the form of 

The next task is to exainine ~ach critical point of the second kind 
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individually. The first one to be con~idered is (E;,n) • (x,15) on the 

boundary n 111 .15. From the definition of the critical. point of ·the 

seco-p.d kind, it can be noted that a10 ... a11 = 0. As ·a result, 

./kf L ./ kt.?o" A°k(t'tf)I? +i:?2o~~)(b .b -r:+ ···)• 
~; e == r< e e oo 4- , o ~ 

{1 +ik('orc?~+tr3t;'S3 +···)+···J (~-.S'3) 

The surface over.which the above function is integrated is the 

half plane for which E; goes from. -oo to + 00 and n goes from 0 ·to oo. 

Stated in terms of ari integral, 

( ~ 'kf 
UN {P) = J J k~ e ~ d r ti~ 

0 -Q') 

The definite integrals necessary to evaluate the·above can be found in 

Appendix A. The. series resulting from the ·integration is 

t{ N (P) = e ---- b -~ _ 3 o 
"JJ i h floo~iT )~ ). e'T1.Jo/ { I b h 

k/'lao} tlo1 oo ./~Clot ~i~ t:la() 

Eval\lating the partial derivatives for f(E;,n) and g(~,n) at the critical· 

point E; = x, n = 15 and· subs ti tu ting them into (2 .... 54} gives the follow-

ing series. 

(:;,- ss) 

'. 
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where R • /(15 - y) 2 + z 2 ~ 
The series (2-56) is not valid for 14 < y < 16 as the series will 

then increase without bound. A series which is valid in the boundary 

edge region will be determined later. 

The next critical point to be considered is ~ = x, n = ... 15. In 

h d ikf . tis case the integran kge is integrated over the,limits - 00 < 

and - 00 ~ n ~ O. The resulting series is 

\ 
Evaluating the necessary partial derivatives.at·the critical point ~=x, 

n = - 15, one obtains the series.contribution 

) k ( b + R) k. '71,4 { 
'2J. N (?) = e [¥) :/. e b - ( I t- ~R\ 

R . 'l'rf (/~+,.) ') 

(:2 - ~7) 

. ) 2 2 where.R = 'V (15 + z) + Z 

For the critical point of the second kind ~ '"' 15, n = y the inte

grand kgeikf can be expanded as below after moving the origin to.the 

critical point. It can be npted that a01 and a11 are zero due to the 

nature of the critical point. 

'" ) k f i~ i k. (( n; e / k ( tf 1 o r + '1"" ? ~) ( 
~~ e = I'<. e boo +b,o 'f+ ~. ->· 

{ I + j ~ ( tl :2 0 'f ~ ' . ·) + I •• s (::;. - S'i) 
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To obtain the contribution of this critical point to the Fresnel-Kirch-

hoff integral, the surface of integration is the half plane ·E; = 0 to 

E; • 00 and n • - "° to n • + oo. That · is ; 

The integration of (2-59) gives 
I 

'2/N(p):;e -- .Ae boo /~""~rt J~ I ~{ 
k t1o2.. q, o 

(2 -G0 

Evaluating the necessary partial derivatives' at the critical point 

E; = 15, n = y and substituting these into (2-60) gives the 'series con-, 

tribution of the critical point to the integral. 

i k ( 1:,.,. R) ~ 11~ { 
'Zt"'(PJ==e 'ftr!l)~e .., -(1+~) l-k ~'!rb(l£-';;f') 

where R = ;../ (15 - x) 2 + z2: 

c~-61) 

The series (2-61) is not.valid for 14 < x < 16 as UN(:e) will increase 

without bound as x approaches the boundary edge 15. 

The integrand of the remaining critical point ~ = - 15, n = y can 

also be expanded as in (2-:-58) since a01 = a11 = O. In. this case the 

Kirchhoff integral has• the limts. 
Q;) 0 ./ ~ .(. 

UN (P) ~Jl ~.f e bt11 (~ - 6 2) 

The resulting series in terms of partial derivatives is 
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(2 - (3) 

When the partial derivatives are evaluated at the critical point 

about which the series is expanded, (2-63) becomes 

ik floo 4 % [ UN {P) = e /If- \ -" e "S' _ ( 1 -+ ~) 
l k tto, )~n b( 1s+x) 

+ ). [- .!1.- _ Z£ + ~ l R+:iZ) + •• ·] 
~ "I R L/ Fr- (I ~ 1-xJa. 

where R = ~ (15 + x) 2 + zz. 
One can observe that. (2-64) is not valid for~ 16 < x < - 14 as in .this 

region it, is possible for the series UN(P) to increase wit~out. bound as x · 

approaches the boundary ed!Je - 15~ 

Each of the .f~nir series contributions for t~ critical points of· 

the second kind presented above has a region fo.r which it cannot be 

used as th.e series goes. to infinity within .this· range. These regions of 

singulari,ty involve the boundary edges'of .t;he 30 cm by 30 cm diffraction 

plane itself. · That is, when the (x,y,z) coordinates of the point at 

which one.wishes·to calculate the field approach within one unit;of being 

directly above a boundary edge, the series. expansion associated .with the 

critical point ·on that ·bolµldary cannot; be used~ 

The next task is to develop the series which are valid when one 

wishes to c~lculate .the phase perpendicularly above. a boundary edge. But 

as the phase is going tc;> .. be cal,culated only along the eta coordinate in 
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the i; .. 0 plane, the only singularity expansions which need to be.made 

are those at the boundaries n • 15 ancf'n • - 15. 

af 
Noting that if. and several other partial derivatives with ~e.,. 

ikf . spect to i; are zero, the integrand kge of the Fresnel-Kirchhoff in-

tegral can be expanded in.the following power series expansion a~out 

the critical point i; = x, n = 15 or i; .. x, n • - 15 (after the origin 

of i; and n hae been moved to the critical point in question) •. 

By applying the same limits of integration to the integrand (2-65) as 

were used for the nonsingular expansions about .. the critical points (x,15) 

and (x,-15) 1 one obtains the following series (Appendix A and Appendix 

B list the definite integrals which are necessary to evaluate the two 

integrals). 

The series contribution UN(P) due to the critical point 

i; = x, n = 15 is 
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ho3 tl"~ + Cl21 b00 t?c1 + '3 Oo3boeflo1 

Ji, Ci/a. ~ tla o tlo2 ~ tl ::J.. 

ha. 1 q 01 _ 3..bo3 .?ct 

e ~ t2~ 0 tt ()t g k CllJAa 

"" · U~ (P) + UN (l>}, 
1 2 

The reader should note that (2-66) and (2-67) are valid only with-

in one unit·of .the boundary n • 15. That is, they coordinate of the 

point P(x,y,z) at which one wishes to calculate the phase must lie within 

the interval (-16, - 14). 

The series contribution UN(P) due to the critical point ~ ~ x, 

n = - 15 is the negative of (2-66) and (2-67) due to the fact that one 

of the limits of in tegrat:i,on ha.s bee:n changed, · Also, this series is 

valid only.within one unit of the boundary in question.,;...notably, n =-15. 

Contribution of Critical Points of dw ~ Kind 

Critical points of the third kind are those points along the 

boundary at which the function f(~,n) is discontinuous. For the 30 cm 

by 30 cm square plane surface, these are the four corner points (15,15), 

(15,-15), (-15,-15), and (-15,15), 
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.. 
Each of these four corner points gives a set'ies contribution to the· 

Kirchhoff integral. As with the two :preceding kinds. of critical points, 

the functions f (,,n) and g(~,n) are expanded into power.series. 

f(f, ?)= tloo +'1,fJ 'f+ t:l417 + '• • 
j ~ 1J = .b~ 6 + b1 ~ r= + !()1 ~ + • • • 

The 

Integration of (2-68) over'the appropriate limits for each of the four 

critical points of the third kind will give the series contri.bution of 

these points to the Kirchhoff integral. 

B~ remembering that.the Kirchhoff.integral is integrated over'all 

~and n, excluding.those points·lying within the boundaries of the.di£.-

fract;.ion screen and by referring.to Figure.7, one can easily detel;'Illine 

the limit;.s of integration on the. integrand (2-6.8) for the four critical 

points. 

Th,e surface of integration for the contribution of the·cr;i.tic~l 

point 0.5 ,15) is the area including all of the first, second, and fourth 

quadrants.of two space (these are the quac;lrants associated with the 

origin lying at ·the critical point.itself). One· integrates over the 

first, second; and third quadrants for the critical point (~15;15). For 

the critical point (-15,"'.'15), the areas to be integrated over.are the 

second,. thil;'d, and· fol,lrth quadrants 1 And far the last :critical point 

(15,-15) one, integrates over ·the first, third and fo.urth. quadra:p.ts. 

The definite integrals n~eded t6 perform the above integrations are 

listed in Appendix A. And after performing the integration, one obtains 
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' (-15 ,15) (15,15) 

(0 ,O) 

J 

(-15,-15) (15 ,-15) 

Figure 7. The cD.if fraction Screen 
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the series contributions. to the Fresnel ... Kirchhoff •integral. 

For the critical point of the third kind·(l5,15) the series con .... 

tribution UL(P) of the point is 

i k. ( b-i- R) { • ~ / ( r. U (P): e -~ ( R+Z:1 + ~ 3 + Y'R 
L (1$-)()f 1~;))~J1bh 

where R = ~ (15 - x) + (15 - y) + Z •. 

The series contribution for the critical point (-15,15) is 

(()-70) 

where R = ~ (15 + x) 2 + (15 - y) 2 + z2 • 

The contribution u1 (P) for the critical point of the third kind 

("'.'"15 ,-15) is 

ti, {p):: + % 

( ~ - 71) 

where R = /(15 + x) 2 + (15 + y) 2 ·+ z2• 

And the contribution u1 (P) of the fourth critical point (15,-15) is 
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(:;-1:;) 

.I 2 z 2 where R = "I (15 - x) + (15 + z) + Z • 

But if one examines the four preceding series contributions, he 

can see that;. they are not valid if the point P(x,y,z) at which one 

wishes to find the phase.lies within one unit of being directly .above 

a boundary edge. 

Hence new se.ri.es expansions will have to be. made which will give 

valid results across the boundary edges of·the diffraction screen. 

Since the only points at which. the acoustic field is going to be examined 

is in the plane, ~ = O, it is possible.to keep the number of new ex-

pansions down to four (otherwise, one would need three different ex-

pansions for each critical point: one expansion as the critical point 

itself is approached, a second as one of the straight ,line boundaries 

intersecting the critical point is approached, and a third as the other 

adjoining straight line boundary is approached). In order to be able 

to calculate the phase of the acoustic.field above then~ - 15 boundary 

edge of the diffraction screen in the ~ = 0 plane, a special series for 

each of the critical points (-15,-15) and (...,15,15) is needed. And ·to 

be able to cal,culate the field at a point P(x,y,z) above .then= 15 

boundary of the screen, special series are needed for the critical 

points (15,-15) and (15,15). 

The series expansion (of the integrand of the Fresnel-cKirchhoff 
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integral) . needed· to f i'nd '.the contributions, of the critical points of 

the third kind in tne boundary edge regions is 

,_ .iAt L .lktlooe..t'kt1,01ei~(qtn?+troa? 2 )(J:i b T 
re.~ e =Re oo + 10 

+ b., ? f .. •) • f I + l k ( t? • o F a.i. "'" 'f 'I + t12 o -/ + • • ·) + .. J (~ -n) 

The same··umits of integration apply over'(2-73) for each.of the criti-. 

cal, points as: applied over (2-6:8) •. The results of tqe integrations 

give tl:te following series (which are valid only within one.unit ,of a 

boundary edge) , 

Thecontdbµtion u1 (P) of the critical point of the third kind 

(-15,-15) in the boundary region n • ~ 15 to the Fresnel~Kirchhoff in-

tegral is 

tJJ. (P) = 
.2. 

_ boo t11a. 
2 I\ tf1ot102 

Q,, .ba1> + ):,6 0 (/II. t:/.01 

)q,Q,o ~~ '110 t:loa 

bJI ti()( 

:2 ~ t:'1o ~ oa 
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- Cl11 boa '1/01 + l:.oo (/1:l. ti o; 
~ t110 t/02. ~t/10 tl~, 

h ;,..• Tri/ 4 d U (P} U (P) + U (P} h d f were ~ • e - 4> an 1 ·. m 1 1 • T e e inite 
1 2 

integrals used in arriving at (2...:.74) and (2-75) are listed in Appendix· 

A and Appendix·B. 

The contribution u1 (P) of the critical point of the third kind 

(15,-15) in the boundary region n = - 15 to the Fresnel~Kirchhoff in-

tegral is 

2(L (P) = 
2 

boo tl12 t:l;, 
..y ~o t?;-2 

(2-71) 



where ~- = e~i/ 4 and UL(P) • UL (P) 
1 

+ UL (P). 
2 
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The contribution UL(P) of the critical point of the third kind 

(-15,15) in the boundary region n = 15 to the Kirchhoff integral is the 

negative of (2-74) and (2-75). But naturally, it must be remembered 

that the partial derivatives will take on different.values. 

And the contribution UL(P) of the critical point of the third kind 

(15,15.) in the boundary region n ., 15 iS the negative of (2.,..76) and 

(2-77). Again one must remember that the partial derivatives take on 

different values in the.two cases. 

By adding the. contributions of the various. critical points UM(P), 

UN(P), and u1 (P) one obtains a solution to the Fresnel-Kirchhoff inte

gral for diffraction about a 30 cm by 30 cm plane •. And from this solu-

tion, the phase at various points in space can be calculated. 

MSP Solution to .the Kirchhoff Integral for 

Re.flection About a Square Plane 

For the case of reflection from a square 30 cm by 30 cm plane the 

solution via the Kirchhoff theory· takes the form· (2-32). I.e., 

_-.-/A k J,~1,$ ) ~( b #(r-xl1<1-J;)4'+e>2) 
21. {?) - b e . ( I 

L/'J/ -IS'-IS' V t'f-Jr/-+(?-;;f-+ r 21 + 

./~4 + A..;;.e __ 
d 

For the above expression, the origin of the coordinate system lies in 

the center of the reflection plane. 

the situation. The non-integral term 

Figure 4 indicates the geometry of 

A eikd 
d is the point source con-
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tribution to the field.at the position (x,y 1 z). 

The integral part· of .(2-32) is of ·the form 

~ fL!(Y, ?)e~'HbJd.il. 
if one allows the following substitutions. · 

And it can be seen that·the integrands of the Fresne1~Kirchhoff 

integral for both'diffraction arid reflection are identical. Hence, the 

same critical points exist. The only differences in the two integrals. 

are the limits of integration. · For the case of reflection the surface 

of integration is the30 cm by30 cm screen. For the Ci;lse of diffrac-

tioq. the surface o~ integration is all two space excluding the 30 cm 

by 30 cm screen. 

The contributi,on of the .critical. points· of the first kind E;; = x, 

n = y for the case of reflection iS identical. to th~t of diffraction. 

I.e.,, 

ikf The·region of integration for the expression kge about.the 

critical point of ,the second kind E;; = x, n = 15 is the square.plane it-

s~lf. But, since only points near.the critical point·itself give any 

significant .contributions. to the. Fr~snel-Kirchhoff int~gral,. the limits 



of integration can be, for all practical purposes, changed to the 

following: - m ~ ~ + m and - m ~ n ~ O. That is, 

1.{N (P) 

This approximation must be employed in the development of the series 

contributions. of all the critical points· in the case o.f reflection. 

The general series resulting from tlie integration (2-81) i$ 

(2-8.2) 

Evaluating the partial derivatives at the critical point ~ = x, 

n = 15 gives the following contribution of the point to the Kirchhoff 

integral. 

.J 2 2 where R = ~ (15 - y, + Z • 

[ ( l+i/11) 

~(R+zt))i·· ·] 
(JS-..,>f 

The series (2-82) and (2-83) are the negative of the series de.,-
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rived for diffi;"action about .. a plane. Also, it should be noted that in 

the integral (2-81), the coordinate n is integrated from n = - 00 to 0, 

In the integral (2-54) for the case of diffraction n is integrated from 
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0 to 00 • 

By following the techniques outlined in the above and in the 

section .on diffraction, the remaining se"Fies contributions of the var-. 

ious critical points can be develpped. Perfonning the necessary calcu

J,ations, one finds ·that the series contributions of ·the various critical 

points for the case.of reflection are the negative of those for the case 

of diffraction about a 30 cm by 30 cm plane. Consequently the reader 

can obtain the value of the Fresnel-Kirchhoff integral for reflection 

by taking the negative of the series for diffraction about.the square 

plane. And in summary, the material presented in this chapter allows 

one to obtain values of the acoustic field bothfor diffraction behind 

a plane and for reflection above a plane. 



CHAPTER III 

THEORETICAL MAPPING OF CONSTANT PHASE SURFACES 

The Computer Technique of .Mapping 

The evaluation of the Fresne~~Kirchhoff integrals by the method of 

asymptotic expansions gives the amplitude and phase only at one particu

lar point at.a time. Hence, the integrals have to be evaluated at a 

lattice of points. And, then, those points in the lat~ice which have 

nearly the same phase will constitute the loci of the wave-fronts (a 

wave-front is a surface of constant phase)• 

The calculation of the wave-fronts is a three dimensional problem. 

But, in practice, it is possible to keep the lattice to two dimensions 

if one chooses lattice planes which are symmetrically located with re

spect to the diffracting and reflec~ing surfaces. 

The major problem in the calculation of the wave-fronts is the lo

cating of .those points in the .two dimensional lattice which are the 

constant phase poin1:s for a particular wave""".front ~ A computerized cyclic 

search technique is used. Consider the lattice in Figure 8. A point 

(y,z) is picked in th~ lattice. It is the first point of. the constant 

phase curve being mapped. Then, compare the phase of this point (y,z) 

with the four nearest neighbor points (y + a,z), (y,z +a), (y - a,z), 

and. (y, z - a). The "a" is the lattice spacing. The nearest.neighbor 

point with phase nearest that of the originally chosen point becomes 

the second point of the constant phase curve (wave-:front). Then, the 
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(y,z + a) --

(y - a, zl (y, + 

(y,z) 

(y,z·- a) 

Figure 8. Lattice for Selection of Constant Phase 
Points 
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phases of the nearest neighbors of this second point (excluding the 

point known to lie upon the constant phase curve) are compared with the 

ph~se of the first point upon the curve. The nearest neighbor point· 

with phase neares.t that of the originally chosen point (point Ill) becomes 

the third point upon the· constant phase curve. With a continuation of 

this technique, a two dimensional slice of a wave-front. can be mapped. 

Of course, one must be very careful with the boundary conditions which 

must be placed into the computer program to perform this operation. 

The computer program which does the above is listed in Appendix c. 

The acoustic field (and hence, the phase) is calculated via the asympto

tic solutions developed in the previous chapte~ in a subroutine which 

must accompany this search program. This subroutine is called PHASE(Y,Z). 

Any time this statement occurs in the main program, the value of the 

phase at th~ point (y,z) is calculated. 

The points constitl,lting the wave.,..fronts for diffraction and reflec

tion about a 30 cm by 30 cm square plane were calculated on an. IBM 360 

computer and punched onto cards. These.cards were fed into an IBM 1620 

computer and plotted on a Calcomp plotter which. was linked with the com

puter. The resulting graphs of the wave-fronts are presented below. 

Figure 9 and Figure 10 indicate the theoretical wave-front patterns 

for the case of diffraction .when the speaker is 150 cm (approximately 87 

wavelengths for 20,000 hertz sound) from the diffracting surface. It 

should be noted tha~ the.wave.,.fronts depicted in these graphs are not' 

one wavelength apart. In fact the various wave-fronts.do not even have 

the same value of phase. The wave...,fronts shown in Figure 9 are approx:i.

mately 5 cm apart (which is several wavelengths) so as to give a good 

overall view of the wave-front pattern near the surface of the square. 
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And in Figure 10 the lines of constant phase are rough,ly 25 cm apart so 

as to give one a general view of the wave-front patterns to a c,onsider.,. 

able distance from the surface of the square. Furthermore~ the rest of. 

the figures depicting wave-front patterns witltin this chapter ·are pre ... 

sented in the.same manner·as Figure 9 and Figure.10. Referring to ·the 

coordinate system it\ the two figures, the position of the speaker.is 

x •. O, y • .0 1 z • - 150 and th,e square is located from y ·• .... 15 ·to 

y = 15. Near the surface of the square plane 1 .the wave-fronts bend 

toward and a~tually touch the surface. The acoustic field appears to 

be behaving as. if t'tle bou~daries y • -. 15 and y • + 15 were acoustic 

line sources, As one'goes·farther away from the.30 cm by·30 cm dif.., 

fraction plane (in the positive z direction), the wave.,..fronts no longer 

come down and touch its surface. And as one goes ·even fa+ther away, the 

wave-.fronts. are bent even less and less. And at very large distances, . 

the wave..-fronts start approximating spherical wave-.fronts ~ 

Figure 11 and.Figure 12 indicate the theoretic~l wave-front pat ... 

terns for the case of diffraction when the speake.r is 250 cm (approxi

mately 145 wavelengths for 20,000 hertz sound) from the diffracting 30 

cm by 30 cm square plane. The exact· location of'. the speaker is x = 0, 

y"" o. z • - 250. And, as before, the location of the.square is 

y = - 15 toy=+ 15. The· statements which were made for Figure 2 an~ 

Figure 3 also hold for these two figures. 

A comparison of the diffraction patt.erns for the speaker distances 

l,.50 cm and 250 cm indicates that;: in the region behind the square (y • - 15 

toy= +.15) the wave-front~ have essentially identical shapes. But 

outside the.bout;ldary edges of the square (y < ·- 15, y > 15), the wave

fronts. associated·with the speaker distance.150 cm are more.curved. 
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This last result one.would naturally expect as the speaker is 100 cm 

closer to the area being examined. 
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Figure 13 and Figure 14 indicate that the theoret.ical wave-front 

patterns for the case of reflection when the speaker is 150 cm (approxi• 

mately 87 wavelengths for 20,000 hertz sound) above the 3o cm by30 c~ 

square. In both pictures, the reflecting square is located from 

y • .,.. 15 to y .. + 15, and the position of the speaker is at x • O, 

y • O, z·• 150. Just above the surface of the square, the wave..-fronts 

are very flat-..:.essentially-plane. Although there are.some.variations 

above the edges y = - 15 and y.• + 15. And as one proceeds away from 

the surface of the plane in the positive z direction, the areas of the 

wave-fronts perpendicularly above the reflecting square.still remain 

very flat. 

Figure 15 and Figure 16 indi·cate the theoretical wave-.front pat ... 

terns for the case of reflection when the speaker is 250 cm (approx::t:-· 

mately 145 wavelengths for 20,000 hertz sound) above the ~O cm by 30 cm 

square. The location of the square is from y • - 15 to y = + 15, and 

the position of the speaker is x = O, y == O, z = 250. The same general 

statements which were made. for the wave-fronts in Figure 13 and Figure 

14 are also true for these two figures. 

A comparison .of the wave-fronts in the region above the.square 

(y • - 15 to y = + 15) shows very little difference. But the wave

fronts for the larger speaker distance do seem to be.slightly flatter. 

The major difference between the two sets of wave...,fronts is to be found 

in the.regions of space lying outside the boundaries of the square re

flector, i.e., for y < - 15 and y > 15. When the speaker .or acoustic 

S0\,1rce .is only 150 cm above the square reflector,· the wave-fronts ai,-e 
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much more curved th.an.when the speaker is 250 cm above the reflector. 

Again, this seems to be·a naturally logical occurrence. As one ap ... · 

proaches a source, the wave ... fronts. will definitely be11;ome, .more curved. 
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CHAPTER IV 

EXPERIMENTAL,APPARATUS AND RESULTS 

Technique.of mapping wave..,.fronts of electromagnetic and acoustic. 

waves have existed for several years. These were initiated by Harley 

Iams (11) and his colleagues of RCA laboratories in the late. forties. 

By using a dipole receiver and current sensitive paper he was.able to 

map wave ... fronts of centimeter waves around various'types of radio wave 

antennas. Basically this was done by mixing a reference signal and the 

dipole receiver , signal together and feeding . the sum of .the two to a 

stylus in contact with current sensitivepaper. If the two signals were 

in phase, the sunnned signal would be a maximum and the currentsensit;ive 

paper would be considerably darkened. On the other hand, if the two 

signals were out of phase, the sull1Illedsignal would be very small and 

the current sensitive paper would be affected very little. And, as the 

dipole probe was moved .throughout the region under investigation, the 

result was a series of light and dark lines on the paper representing 

the wave..,.fronts (i.e., a series of points of constant phase). 

This method of mapping wave~fronts does have one·distinct·disad

vantage, The stylus is physically attached to the dipole probe and, 

hence, the conducting paper (and its associated conducting backing plate) 

has to be placed within the region of space which is being mapped, As a 

result, only a very small region of space can be examined. Fµrthermore, 

the resolution of th.e wave-fronts by this method is not ·too good~ 
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A much better method of mapping wave-fronts using photography has 

since been developed.(16). In this method the stylus and current sensi

tive paper of lam's device are replaced with a camera and a small light. 

bulb. When the.probe signal and the reference signal are.in phase, the 

bulb.will glow brightly. When they are out of phase. very little light' 

will be emitted by the bulb. If the room in.which the experiment.is 

being conducted is darkened and the shutter to a camera is.opened, a 

"photograph" of the wave-fronts can be taken. 

The above mentioned photographic technique was the one u~ed by the 

author in experimentally plotting the wave..,..front$ of acoustic waves. 

But ipstead of the small dipole probe and a radiating antenna used in 

plotting wave..,..fronts of microwaves, a speaker ·.and a .microphone were 

used. A block diagram of th,e experimental set"'!"llp can be.seen in Figure 

17. An audio oscillator drives the speaker. A microphone picked up the 

generated sound wave. The microphone.and reference (audio oscillator) 

signals were added together electronically in a summing circuit,(labeled 

"mixer"). The resultant signal was fed to a small light'bulb. And, as 

was previously mentioned, if the reference and microphone signals were 

in phase, i.e.,- if the sound wave at the ·point being probed was in 

phase with ,the audio oscillator, the bulb glowed brightly. If the 

acoustic field at a point in space and the reference signal were out· of 

phase, the bulb glowed weakly or not at all. 

For some of the "photographs" of wave..,..fronts the simple.electronic 

summing circuit.was replaced by a phasemeter. Instead.of adding the two 

signals, the device c0mpared the two signals. If the microphone.signal 

and the reference signal were in phase, the phasemeter would give an 

output signal of constant voltage. If the microphone and reference. 
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signal were out of phase,. th.ere was ·no output signal. As the lamp was 

connected to the phasemeter output, the lamp was· either., lighted or not. 

lighted. 

There was.one major difference between the use of the simple sum'"" 

ming circuit and the phasemeter. While the phasemeter gives only phase 

inform.;ltion in the wave-front plots, the summing circuit gives both 

phase and amplitud~ information in, the "photograph" of the wave-fronts .• 

The microphone signal amplitud,e depended upon the location of the micro-

phone in space. Theamplitud~ variation of this signal was re~ained 

when it was summed.with the reference.signal, Consequently, the summed 

output to the bulb contained a variable maximum output. In other words 

the acoustic field at two different points in space which had the same 

phase could have quite different output from the summing circuit. Hence 

the brightness of the bulb depended both upon the amplitude and phai;e of 

the microphone signal, i.e. , the amplitude and phase of the acoustic 

field. 

The mech.anical part of the scanning appat;atus consisted of a mova-

ble cart upon a horizontal track. When the cart moved to the end of the 

track, a switch was tripped. Tripping this switol\ allows two things to 

occur. The horizontal track itself dt'opped a small distance. And the 

cart .started moving in the opposite direction,. i.e., away from the e~d. 

of the.track. The switch reversed the direction of the motor which 

drove the cart, and. it activated a solenoid. which, by means of a gravity 
·. 

driven gear assembly, allowed the track to fall a small distance, The 

microphone and small l~mp were attached to the motor-driven cart. '.l;'hus 

a two dimensional. slice of space .could be·.scanned and the wave-front13 

"photographed~" 
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The above'apparatus was'used'to map wave front,pat:terns for both 

r~flection and diffraction about.a 30 cm by 30 cm plane. The physical 

geometry for obtaining these wave-front pictures is indicated in Figure 

16. The microphone probe exten4ed to the middle'of the 30 cm by 30 cm 

square p;J.ane so as, to sample the acoustic field along a cen.ter. line. of 

the plane. By appropriately placing a reversing switch upon the cart 

track, the microphone probe.could be brought'very close to the.surface 

of the square plane, ·· The speaker was placed at two convenient dis-

tances from the surf ace of the plane: .. 150 cm and 250 cm. 

The frequency used in developing the acoustic field was 20,000 

hertz. One reason for choosing this·partic1;1lar frequency was that the 

Al tee Lansing microphone used as the probe would .. not r~spond at. higher 

frequencies~ · A!so, at the lower frequencies (in the neighborhood of 

10,000 hertz) natural noises in the building tended.to pa~s·through 

the ampli.fier and filter ·of Figure 18. As a result the wave-front 

pictures would have been distorted. 

Figure 19 a?J,d ·Figure, 20 are the. diffractipn patterns behind the 30 ·· 

cm by 30 cm square plane with the speaker distance ~rom the plane set at 

150 cm (approximately 87 wavelengths) and 250 cm (approximately 145 

wavelengths) respectively~ One can note, in the top and bottom parts of 

the two:..pictures (the region which essentially obeys geometrical optics) . . 

that. the wave-fronts have different cu.rvatures, Furthermore. the wav~~ 

fronts in the,picture in which the speaker"distance.is 250 cm are curved, 

less than in the picture in'which the speaker distance is 150 cm. This 

is to be expected as the.wave~fronts of a source become more flat if 

the distance from the sol,lrce is increased, 

In the diffracting region to the. right of the square in both pie-
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tures (the speaker is located,to·the left), the wave-frontis curve in 

toward the surface of the square. But as one, go.es. further from the 

diffraction screen itself one finally reaches a region in which the 

wave.-fronts dip down toward the surface of the square and then go back 

away~ And in between these two regions there.lies a ri;ttherextensive 

area in which one ,cannot' distinctly determine if the wave.i;,fronts, bend 

down to the surface of th,e square or turn down' and then sweep back away 

from the surface. 

There is one further connnent which should be added about the dif

fraction patterns. There. is a possibility of a considerable a~ount. of 

transmission of sound through ,the diffraction screen. as it was made of 

fiberboard. This possibility was che.cked, And it was found· that the 

amount of sound·. transmitte4 through the fiberboard square. could not, be 

detected·above the natural noise level of the microphone; Consequently, 

there was.very little possibility of the wave ... front patterns being dis

torted by transmission through the square. 

Figure 21 and Figure 22 are the wave-.front patterns for the case 

of reflectio~ in fr~mt of a 30 cm by 30 cm square plane with the speaker 

located to the right at the distance.of 150 cm (approximately 87 wave

lengths) and· 250 cm (approximately 145 wavelengths) respectively. For 

Figure 21 the wave.,.front'pattern approaches within two.and one fourth 

wavelengths of the square• And for Figure 22, the wave-.front pattern 

approaches within two and one fourth wavelengths of the surface of the 

square. One.can easily see .the distance of the speaker from the re

flection plane is greater for Figure 22 than for Figure 21 as th.e. curva- .. 

ture of the wave-fronts is much less in Figure 22 than in Figure 21. 

The interesting thing about th,e reflection wave.,.front'patterns is 
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that in the region to the right of the square reflector, i.e., in the 

region above the reflection surface,. the wave~fronts become very flat. 

In fact near the surface of the reflector, the wave-fronts are almost 

plane. But as one proceeds in the <lirection of the speaker (to the 

right) the wave~fronts become slightly curved. And in the picture 

where the speaker distance is 150 cm the wave-fronts perpendicularly 

above the reflection surface the wave-fronts start curving slightly 

more.rapidly than in the picture where the speaker distance is 250 cm 

as one.proceeds toward the speaker. This result is as one would logi~ 

cally expect. 

!'1't 



C.HAPTERV 

CONCLUSION 

The pictures and graphs of wave-fronts.for diffraction behind a 

square s cree-q. look very much the , same. In the graphs ._near the surface 

of. the square the· wave"'."fronts bend toward and. touch the.· surface. In 

the experimentally taken pict4res the wave.-front;:s have been mapped .to 

wiihin.approximatel,.y two wavelengths of the.surface of the square. And 

the wave.-front pa~te~s near the surface look the.same.as the theoreti

cally calculated ·ones. In the theoretical wave-front pic~utes at larger 

distances, the wave-frc;mts bend down toward the surface ani;i then sweep 

back away. ·. And at even larger dist~mces, the diffracted wave..,.fronts be

gin to approximate a spherical wave. The· same.type.of phenomenon occurs 

in. the experimental wave-front pictures~ And, as a result 1 the Frei;mel

K:i,rchhoff theory does ·predict the nature of .. wave.,.fronts for diffraction 

behind a.square plane to within at least two wavelengths of the .dif

fracting-sµrface. 

The. pictures and .,graphs of -wave-:-fronts for the case of reflection 

in front.of a 30 cm by 30 cm pla:Qe reflector also look quite similar. 

In·the theoretical,. graphs of the wave.-fronts, the wave-fronts are ver;y 

flat ,near.the surface of the square reflector. In fact the wave'"".'fronts 

remain very flat even at large distances from the .reflecting surface • 

. The same tyPe of occurrence is to be found in the pictures of the wave

fronts mapped.in the laboratory~ Again the experimental.mappings.of the 
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wave...,fronts approach .to within two wavelengths 'of.the reflecting surface. 

Hence, one can definitely say that the Fresneli-:Kirc;hhoff theo;ey.does 

indeed correctly predict the geheral .. stru<fture of the wave-front. pat.

terns due to reUection from a 30 cm by 30 cm plane.surface to within 

at least two wavelengths of the surface. 

There are two things in regard to this research which might be in .. 

teresting to examine in the future, Due to the size of the microphone. 

probe there wai:;; a limit tq the resolution of.the wave.-fron'!:s. Tbe pres .. 

sure bf a finite area of space instead of a point was always.examined, 

If one could decrease the size of the probe relative .to the wavelength, 

much better resolution should occur, This should eliminate some of the .. 

haziness whicn occurs in the experimental wave .. front picture. Also, 

with a decreased probe· size, one·should be able to.obtain wave .. front 

patterns much closer to the diffracting and reflecting surf aces than 

was done in this work, 
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APFENDIX·A 

IN'.J;EGRAL.S NEEDED· FOR NON-BOUNDARY REGION EXP ANS IONS 

= 0 (h odd) 

- ht/ 

= r(1f) (k Jal) T f>t+i (n even) 

E=e 
"'11'.i/~ 



APPENDIX B 

INTEGRALS NEED~D FOR BOUNDARY REGION EXPANSIONS 

I"" 'TT~ I ~= e - r( t1ZP) 



APPENDIX C 

WAVE FRONT PLOTTING PROGRAM 

DIMENSION YDISP(4l,ZDISP<4l,NAVOIDl4l 
DELT=0.4 
Z=20.0 
Y=-14.0 
YD! SP ( 1 I =DELT 
YDISP<2l=O.O-DELT 
YDISP(3l=O.O 
YDISP!4l=Oo0 
ZDISP!ll=O.O 
ZDISP!21=0.0 
ZDISP<31=DELT 
ZDISP(41=0.0-DELT 
NAVOID<l1=2 
NAVOID<2l=l 
NAVOI,D!3l=4 
NAVOID!41=3 
I=l 
PSTRT=PHASE!Y,ZI 
JAVOID=2 
WR I TE < 6, 3 I 
WRITE (6,41 r,y,z,psTRT,JAVOID 
DO 2 1=2.100 
PBEST=l.OE+60 
DO 1 J=l,4 
IF<J.EQ.JAVOIDI GO TO 1 
IF!J.EQ.2l GO TO 1 
TEST=PHASE(Y+YDISP(J),Z+ZDISP(Jll 
ANGLEl=ABS(TEST-PSTRTl 
IF!ANGLEl-3.14159) l0,10,5 

5 ANGLE1=2o0*3ol4159-ANGLE1 
10 ANGLE2=ABS<PBEST-PSTRTl 

IF!ANGLE2-3.14159l 20,20,15 
15 ANGLE2=ABS<2.0*3.14159-ANGLE2J 
20 IF<ANGLE1.GE.ANGLE2l GO TO l 

PBEST=TEST 
JBEST=J 

1 CONTINUE 
Y=Y+YDISP<JBESTl 
Z=Z+ZDISP<JBESTl 
P=PBEST . 
JAVOID=NAVOID!JBESTl 

2 WRITE (6,4) r,y,z,p,JAVOID 
3 FORMAT (1 1,y3,•N0 1 .T,ll, 1 Y•,T20, 1 Z1 .T26, 1 PHASE 1 , 

1T38, 1 AVOID 1 /) 

4 FORMAT ( 1 •,I4,2(2XF8.4)t2XlPE12.4,2XI2l 
CALL EXIT 
END 
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