By
RAJAMOULI GUNDA,
Bachelor of Engineering Osmania University Hyderabad, India 1966

Master of Science
Oklahoma State University Stillwater, Oklahoma 1969

Submitted to the Faculty of the Graduate college of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY

May, 1971

Thesis Approved:

ACKNOWLEDGMENT

I would like to express my appreciation for the help given by the following people:

Professor Kar1 N. Reid, my major adviser and chairman of the thesis committee, who provided invaluable encouragement, counse1, criticism and guidance throughout my graduate program.

Professors Henry R. Sebesta, James E. Bose and Charles M. Bacon, other members of the committee, who provided so much of their time in encouraging me throughout the preparation of the thesis. Their suggestions, cooperation and criticism were very helpful.

I would like to acknowledge the financial support received from the School of Mechanical Engineering as a graduate research assistant and from the Center for Systems Science (under NSF Grant GU-3160).

I wish to thank Bob Woods, Scott Babcock and Chris Smith for their encouragement.

Finally I want to thank my brother-in-law who supported me in many respects since my childhood; my father-in-law who encouraged me for graduate studies abroad; my mother for her blessings; my wife, Sujatha, and daughter, Madhavi, whose patience and affection were of great help.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
System Identification 1
Review of Literature 2
Scope of Thesis 7
Outline of Identification Technique 8
Summary of Results 10
II。 THE MODIFIED DIFFERENTIAL APPROXIMATION TECHNIQUE 12
The Problem 12
Basic Assumptions 13
The Model 16
Test Conditions 18
First-Order Systems 18
Second-Order Systems 21
Performance Index 23
Model Coefficients 27
III. APPLICATIONS OF THE TECHNIQUE 28
Necessary Steps in Identification 28
Model Simulation 31
Model Analysis 32
Examples 34
IV. COMPARISON WITH OTHER TECHNIQUES 52
V. CONCLUSIONS AND RECOMMENDATIONS 54
Conclusions 54
Recommendations 55
SELECTED BIBLIOGRAPHY 56
APPENDIX A - IDENTIFICATION SUBROUTINES 59
APPENDIX B - CONVERSION SUBROUTINES 65
APPENDIX C - SUBROUTINES USED IN THE EXAMPLES 70

LIST OF FIGURES

Figure Page1. General Procedure of an IdentificationTechnique3
2. A General Nonlinear First-Order SystemWith One or Two Inputs 14
3. A General Nonlinear Second-Order SystemWith One Input • • 15
4. Responses of a First-Order System to a TypicalTest Input (Step) With the Two ExtremeInitial Conditions20
5. Responses of a Second-Order System to TypicalTest Inputs (Steps) With Various InitialConditions Along the Locus22
6. Identification Procedure Adopted in the Computer Programs SYSID1 and SYSID229
7. Arbitrary Input (u_{1}) and the Response (x_{1}) of the System and the Model (Example 1) 。 . . .37
8. Arbitrary Inputs $\left(u_{1}\right.$ and $\left.u_{2}\right)$ and the Response$\left(x_{1}\right)$ of the System and the Model (Example 2).39
9. Arbitrary Input (u_{1}) and the Response (x_{1}) of the System and the Model (Example 3) 42
10. Arbitrary Input $\left(u_{1}\right)$ and the Response (x_{2}) ofthe System and the Model (Example 3) • . . .43
11. Actual and Measured Responses $\left(x_{1}\right.$ and $\left.\dot{x}_{1}\right)$ ofthe System When NSR $=0.4($ Example 4$)$. . . . 45
12. Arbitrary Input $\left(u_{1}\right)$ and the Response (x_{1}) of the System and the Model (Example 4) 46
13. A Plot of Mean Squared Error (MSE) Versus Noise to Signal Ratio (NSR) 47

Figure
Page
14. Responses of the System and the Model for the Two Initial Capacitor Voltages (Example 5). . 49
15. Responses of the System and the Model for the Two Initial Tank Pressures (Example 6) . . .50
16. A Qualitative Comparison of the Identification Techniques Which are Applicable to Nonlinear Systems • 53
$\mathrm{N}_{\mathrm{c}} \quad$ Number of model coefficients
Ng equations (associated with the state vector) equations (associated with the input vector)

Standard deviation of the random variable R_{i}
Computational effort without decomposition
Computational effort with decomposition
Vector of Functions $\left(f_{1}\right.$ and $\left.f_{2}\right)$
Number of pairs of initial conditions
Performance index
Constant of proportionality
Number of coefficients determined at a time is considered to determine K_{C} coefficients

Number of subperformance indices (PSSE) divided

Modified sum of squared errors divided

Coefficient matrix of the linearized differential Coefficient matrix of the linearized differential

A set of model coefficients (usually an array)

Number of grid divisions in the X-U hyperspace which

Number of levels into which the k-th input is

Number of levels into which the i-th state is

Number of grid divisions in the total X-U hyperspace

NSR	Noise to signal ratio (0 to 1)
$p t$	Tank pressure (Example 6)
$\mathrm{P}_{\mathbf{x}} \mathbf{i}$	Degree of the polynomial in $\mathrm{x}_{\mathbf{i}}$
Pui	Degree of the polynomial in u_{i}
PSSE	Partial sum of squared errors
R	Vector of three random variables
s	Laplace transform operator
S	Vector of transformed (averaged) state variables
SSE	Sum of squared errors
t_{0}	Initial time
t_{f}	Final time
t_{s}	Settling time of the system
U	Vector of inputs (u_{1} and u_{2})
${ }^{20 m} U_{\text {max }}$	Vector of maximum limits of the inputs (u_{1} and u_{2})
$\mathrm{U}_{\mathrm{min}}$	Vector of minimum limits of the inputs (u_{1} and u_{2})
U_{op}	Vector of values of the inputs (u_{1} and $\left.u_{2}\right)$ at the
	operating point
$\mathrm{U}_{\text {step }}$	Vector of values of the steps in the inputs
v_{c}	Capacitor voltage
X	Vector of state variables (x_{1} and x_{2})
$X_{\text {max }}$	Vector of maximum limits of the states (x_{1} and x_{2})
$\mathrm{X}_{\mathrm{min}}$	Vector of minimum limits of the states (x_{1} and x_{2})
X_{op}	Values of the states at the operating point
$\mathrm{X}_{\mathbf{S S}}$	Values of the steady-state vector
Z	Vector of transformed (averaged) input variables
$\partial F / \partial U$	Partial derivative of F with respect to U
$\partial F / \partial \mathrm{X}$	Partial derivative of F with respect to X

CHAPTER I

INTRODUCTION

If a mathematical model which describes the inputoutput relation of a physical system is known, off-1ine tests can be conducted efficiently and economically on the model without disturbing the system. For example, an optimum input, which causes the system to produce a desired output, can be determined by perturbing the input to the mathematical model and observing the output. Such a model can be found by considering the fundamental physical phenomena governing the system. This procedure becomes difficult for complex systems. A system model can also be found by using one of many available identification techniques. However, most identification techniques utilize large computational effort and/or some a priori knowledge about the system. The technique presented in this thesis does not require a priori knowledge. In addition, the computational requirements are reduced.

System Identification

System identification is the process of determining a suitable mathematical model for a system from experiments conducted on the system. An impulse or step response is
sufficient to identify a completely controllable linear sys tem. Such a simplified approach does not exist for nonlinear systems. The process of identifying noniinear systems consists of formulation of a system model with free parameters and determination of these model parameters by minimizing some performance index. Figure 1 illustrates the general procedure of an identification technique. The model responses to test inputs need not be simulated for all the techniques. In some techniques, the model parameters are determined uniquely.

Review of Literature

Identification techniques. which are applicable to nonlinear systems can be broadly divided into the following four classes; 1) Functional Power Series, 2) Pattern Recog nition, 3) State-Space(with known model form), and 4) StateSpace(with unknown model form). Only the relevant techniques are discussed below.

Functional power series and pattern recognition techniques are based on the fact that any system operates on an input over certain interval of time and produces an output. The identification problem is to find the present value of the output $y\left(t_{1}\right)$ as a function of the input $u(t)$ over an interval $t_{1}-t_{s} \leq t \leq t_{1}$, where t_{s} is the setting time.

Kwatny and Schen (19) represented nonlinear systems by functional power series models as follows:

$$
\begin{gathered}
y\left(t_{1}\right)=a_{0}+\sum_{i} a_{i} y_{i}\left(t_{1}\right)+\sum_{i, j} a_{i} j_{i}\left(t_{1}\right) y_{j}\left(t_{1}\right)+\ldots(1-1) \\
y_{i}\left(t_{1}\right)=\int_{0}^{\infty} h_{i}(t) u\left(t-t_{1}\right) d t
\end{gathered}
$$

where, $h_{i}(t) ; i=1,2, \ldots$ are some orthogonal functions.
In a technique by Arozullah (2) the unknown system is represented by a single-input,multi-output linear part followed by a multi-input, single-output, zero-memory nonlinear part. The linear part is formed by expanding the past history of the input in a Fourier series in terms of a set of orthonormal functions. The coefficients of this series are inputs to the nonlinear part the output of which is a multidimensional gating function and a piecewise multidimensional linear function of these coefficients.

If the past of the input is sampled at n instants and quantized into m levels, there will be m^{n} possible input patterns. One method of identification is to tabulate the output for all the input patterns. This method, called the table lookup method, requires prohibitively large computer memory. The memory requirements can be reduced by using pattern recognition techniques as discussed below.

Miller and Roy (21) proposed to measure certain feature of the input instead of the entire pattern. From n samples of the input pattern, only k samples are considered as a feature. The method reduces the memory requirement from m^{n} to $m^{k}(n)!/(n-k)!(k)!$. The memory requirement is further reduced at the expence of accuracy by a "mode learning machine" technique proposed by Roy and Schley (26).

As before, the past history of the input is sampled at n instants to form an n-dimensional pattern space. The output is quantized into p levels each of, which is called a category'. A category which can be obtained from j patterns is assumed to be obtained from only k 'prototype patterns' where, k is less than j. To determine the output $y\left(t_{1}\right)$, the input $u(t)$ is sampled at n instants over the interval $t_{1}-t_{s}$ $\leq t \leq t_{1}$ and the closest prototype pattern is selected. Most dynamic systems can be adequately described in state variable notation by a set of first-order ordinary differential equations of the form:

$$
\begin{equation*}
\dot{X}=F(X, U, P) \tag{1-3}
\end{equation*}
$$

where, X, U and P are the state, the input and the parameter vectors respectively. Identification techniques based on state-space approaches require a model with known forms of the differential equations. Usually an iterative method is required to find the model parameters. Two state-space techniques are discussed below。

A quasilinearization technique as presented by Bellman, Kalaba and Sridhar (5), Sage and Eisenberg (27) and Allison (1), can be used to determine the parameters in Equation (1-3) by minimizing a general error squared performance index. This is accomplished by solving a sequence of linear differential equations. If this sequence converges, the resulting parameters are optimume A major weakness of this technique is that the above sequence may diverge.

The differential approximation technique as presented by Sage (27), Be11man, Kalaba and Sridhar (5) and Bose (6) utilizes the fact that the correct parameters must minimize the following performance index:

$$
\begin{equation*}
P I=\int_{t_{0}}^{t_{f}}(\dot{X}-F(X, U, P))^{T}(\dot{X}-F(X, U, P)) d t \tag{1-4}
\end{equation*}
$$

where, the superscript T stands for the transpose of the vector. The advantage of this technique is that the model parameters can be found by solving a set of nonlinear algebraic simultaneous equations instead of repeatedly solving a set of differential equations.

The identification techniques discussed above require knowledge of the settling time and normal operating inputoutput records of the system. The input must be general enough to cause the system to respond over the entire $X-U$ hyperspace of interest. The data required for identification can be reduced by conducting a specific set of tests on the system.

The author (15) has proposed an alternate state-space identification technique for stationary deterministic systems. The functions $F(X, U, P)$ in Equation (1-3) are assumed to be polynomials. The system is subjected to various pulse inputs with various initial conditions on the system. The assumed model is also subjected to the same inputs. The polynomial coefficients are determined by matching the simulated model responses to the measured system responses in some sense. These coefficients are allowed to depend on the
pulse amplitude and the system initial condition. The application of this technique to single-input, first-order systems gave very satisfactory results.

In summary, the functional power series and pattern recognition techniques do not utilize a priori model form based on the physics of the system, but require considerable experimental data and computational effort. Also, these techniques are limited to single-input systems and do not allow determination of linearized differential equations which are valid in the vicinity of an operating point. In contrast, some of the state-space techniques which utilize an a priori system model require small computational effort. The modified differential approximation technique developed in this thesis assumes a generalized polynomial, tabular or mixed form of the model. The amount of test data and the computational effort required for identification are reduced considerably by conducting a specific set of tests on the system.

Scope of Thesis

The identification technique developed in this thesis is applicable to stationary nonlinear systems which can be described by lumped parameter models. The method is formulated and evaluated for first-order systems with one or two inputs and for second-order systems with one input. The effect of additive, zero-mean, Gaussian noise in the test inputs and in the measured system responses, on the results
of identification is investigated for single-input, firstorder systems. The technique is limited to zero-memory nonlinearities. The technique is applicable to multiple-input, higher-order systems, but no evaluation of doing so is presented. The application of the technique is illustrated through a number of example systems with known mathematical models and two real physical systems. The necessary computer tools are developed for identification of systems, for prediction of system response and for determination of linearized differential equations valid in the small about an operating point. The efforts required for identification and prediction of system response are determined.

Outline of Identification Technique

The identification problem is to specify the test conditions which are feasible in practice and to find a system model using the measured responses for the above test conditions. The modified differential approximation technique is summarized below.

Selection of the Model Form

The system is modeled by the following vector differential equation

$$
\begin{equation*}
\dot{X}=G(X, U, C) \tag{1-5}
\end{equation*}
$$

where, C is a set of N_{c} model coefficients. The vector function $F(X, U, C)$ can be assumed to be: 1) A vector of poly-
nomials in X and $U($ polynomial form), 2) A vector of tables of numbers in terms of X and $U($ tabular form), or 3) A vector of polynomials in X and tables of numbers in terms of U (mixed form). The coefficients of the polynomials and/or the numbers in the tables are called the model coefficients. Specification of Test Conditions

A specific set of tests must be conducted on the system to ensure that the system responds over the entire $X-U$ hyperspace of interest. With proper selection of the range of step inputs and various initial conditions on the system, the data required for identification is minimized.

Measurement and Processing of Data

The identification technique requires the system responses(states and first derivatives of the states) for all the test conditions. When only $X(s t a t e s)$ is available, \dot{X} can be obtained by numerical differentiation. The time responses X and \dot{X} must be sampled and stored. The sampling interval depends on the characteristics of the responses.

Determination of Model Coefficients

The model coefficients can be found by minimizing the following discrete performance index:

$$
\begin{align*}
& J= \sum_{k=1, N_{d}}(\dot{X}(k)-F(k))^{T}(\dot{X}(k)-F(k)) \tag{1-6}\\
& F(k)=F(X(k), U(k), C)
\end{align*}
$$

where, $X(k), \dot{X}(k)$ and $U(k)$ are the k-th stored values of X, \dot{X} and U respectively and. N_{d} is the total number of stored data points. The computational effort required to solve for the optimum model coefficients which minimize J can be reduced considerably by defining a modified performance index.

Full details of the above steps are presented in Chapter II. The necessary steps in identification and the applications of the technique to a number of examples are presented in Chapter III. A qualitative comparison of the modified differential approximation technique with other identification techniques and the conclusions are included in Chapters IV and V respectively. The necessary computer tools are presented in the appendices.

Summary of Results

The application of the modified differential approximation technique to a number of systems with known models and to real physical systems yielded model responses which were within 3% of the system responses.

The technique yields a model which is valid for the complete range of inputs and system initial conditions. The model may be used to compute the response to any arbitrary input(s) within the range of the test data. Also, the model allows determination of linearized differential equations valid in the small about any operating point. Of the three model forms, the mixed form(polynomial in X and tabular in U) requires the least computational effort for identifica-
tion, the tabular form is most efficient for the prediction of system response and the polynomial form gives the most accurate results requiring the minimum number of model coefficients.

The modified differential approximation technique is inherently a smoothing process and is found to be insensitive to additive, zero-mean, Gaussian noise in the test inputs and in the measured system responses (states and the first derivatives of the states).

CHAPTER II

THE MODIFIED DIFFERENTIAL APPROXIMATION TECHNIQUE

The development of the identification technique presented in this chapter is divided into the following phases:

1. The problem
2. Basic assumptions
3. The model
4. Test conditions
5. Performance index
6. Model coefficients.

The Problem

The problem of system identification considered in this thesis is:

1. To specify the test conditions for nonlinear firstorder systems with one or two inputs and for nonlinear second-order systems with one input. The test inputs should be feasible in practice.
2. To identify a mathematical model for the unknown system, best in a least squares sense, using the system responses for the above test conditions. The responses include both the state vector and the first derivatives of the state vector。

The identified model should allow prediction of the system responses to any arbitrary input(s) other than the test inputs, and the determination of the linearized differential equations of the model which are valid in the vicinity of an operating point. The identification technique should be insensitive to additive, zero-mean, Gaussian noise in the test inputs and in the measured system responses.

Basic Assumptions

The identification technique developed in this thesis assumes that the nonlinear systems to be identified can be adequately described by a set of nonlinear ordinary differential equations with constant coefficients.

Although the technique is applicable to multiple-input, higher-order systems, first-order systems with one or two inputs and second-order systems with one input are considered in detail. Figures 2 and 3 show the class of nonlinear systems to which this technique is applicable. The knowledge of the forms of the nonlinear functions $N_{u 1}, N_{u 2}, N_{f 1}$, $N_{f 2}, N_{b 1}$ and $N_{b 2}$ is not required for identification. It is assumed that these nonlinear functions can be approximated by polynomials.

When the output of each of the above zero-memory, nonlinear elements is either a monotonically increasing or monotonically decreasing function of its input, the system under consideration will not have multiple steady-state responses.

Figure 2. A General Nonlinear First-Order System With One or Two Inputs

Figure 3. A General Nonlinear Second-Order System With One Input

The Model

The system is modeled by the following vector differential equation:

$$
\begin{equation*}
\stackrel{8}{X}=F(X, U, C) \tag{2-1}
\end{equation*}
$$

where, X and U are the state and the input vectors, C is a set of N_{C} model coefficients. The function vector $F(X, U, C)$ can be: 1) A vector of polynomials in X and U (polynomial form), 2) A vector of tables of numbers in terms of X and U (tabular form), or 3) A vector of polynomials in X and tables of numbers in terms of U (mixed form).

The coefficients of the polynomials and/or the numbers in the tables are called the model coefficients. For convenience, these coefficients will be represented by multidimensional arrays. The nature of the model coefficients for the three forms is explained in detail below for a first-order, single-input system.

Consider the following model coefficient matrix:

```
c}\mp@subsup{c}{11}{
```



```
-
。
c
-
.
```

Let $p_{x_{1}}$ and $p_{u_{1}}$ be the degrees of the polynomials in x_{1} and u_{1}. Let m_{1} and n_{1} be the numbers of levels into which the input u_{1} and the state x_{1} are divided. For a polynomial form of the model the elements $c_{i j}$ of the above matrix will be the coefficients of the following differential equation:

$$
\begin{equation*}
\dot{x}_{1}=\sum_{i=1}^{p_{u_{1}}^{+1}} \sum_{j=1}^{p_{x 1}+1} c_{i j} u_{1}^{i-1} \mathbf{x}_{1}^{j-1} \tag{2-2}
\end{equation*}
$$

For a tabular form, the element $c_{i j}$ will be the actual value of \dot{x}_{1} at $x_{1}=x_{1 j}$ and $u_{1}=u_{1 i}$, where

$$
\begin{align*}
& \mathrm{x}_{1 j}=\mathrm{x}_{1 \min }+\left(\mathrm{x}_{1 \max }-\mathrm{x}_{1 \min }\right)(\mathrm{j}-1) /\left(\mathrm{n}_{1}-1\right) \tag{2-3}\\
& \mathrm{u}_{1 \mathrm{i}}=\mathrm{u}_{1 \min }+\left(\mathrm{u}_{1 \max }-\mathrm{u}_{1 \min }\right)(\mathrm{i}-1) /\left(\mathrm{m}_{1}-1\right) \tag{2-4}
\end{align*}
$$

For a mixed form, the elements $c_{i j}$ in the i-th row will be the coefficients of the differential equation

$$
\dot{x}_{1}=\sum_{j=1}^{p_{x}+1} c_{i j} x_{1}^{j-1}
$$

Note that the $p_{x}{ }^{+1}$ coefficients, $c_{i j}$, represent the system for a constant (step) input of $u_{1}=u_{1 i}$.

After the model coefficients are determined, the values of \dot{X} for known X and U can be obtained by evaluating the polynomials and/or by interpolating using the numbers in the tables.

Some identification techniques can use normal operating input-output records of the system. However, for those techniques which do not require the form of the model differential equation, the input must be general enough to cause the system to respond over the complete $X-U$ hyperspace of interest. This section describes a specific set of tests which cause the system to respond over the range of interest. In this latter case, the amount of test data and the computational effort required for identification can be reduced. As explained later in this chapter, the use of the specified test conditions permits decomposition of the performance index which results in further reduction in the computational effort.

There exist appropriate test conditions for any higherorder, multiple-input systems. However, the difficulty of performing these tests increases with the order of the system and with the number of the inputs. The test conditions are outlined below for first-order systems with one or two inputs and second-order systems with one input.

First-Order Systems

Consider the two extreme initial conditions on a sin-gle-input, first-order system as follows: 1) $\mathbf{x}_{1}(0)=x_{1 m i n}$ and 2) $x_{1}(0)=x_{1 \text { max }}$. If the total range in the input $u_{1}\left(u_{1 \text { min }}\right.$ to $u_{1 \text { max }}$) is divided into m_{1} levels, $2 m_{1}$ step response tests
will cause the system to respond over the complete $x_{1}-u_{1}$ plane of interest. These tests can be classified into m_{1} groups of two tests each. In each group the initial conditions on the system for the first and the second test are respectively $x_{1 m i n}$ and $x_{1 m a x}$. The amplitude of the step input in the $i-t h$ group is $u_{1 i}$ where, $u_{1 i}=u_{1 m i n}+\left(u_{1 \max }-\right.$ $\left.u_{1 \mathrm{~min}}\right)(\mathrm{i}-1) /\left(\mathrm{m}_{1}-1\right)$. Figure 4 shows the responses of the system for one of the m_{1} groups of tests. Note that when $u_{1}=u_{1 m i n} i n$ the first group, the system response for one initial condition $x_{1}(0)=x_{1 \text { max }}$ will cover the total range in x_{1} and vice versa in the last group.

For dual-input, first-order systems the total ranges in the two inputs u_{1} and u_{2} are respectively divided into m_{1} and m_{2} levels. The same two initial conditions on the system are considered. There will be $2 \mathrm{~m}_{1} \mathrm{~m}_{2}$ step response tests which will cause the system to respond over the region of interest in $x_{1}-u_{1}-u_{2}$ space. These tests can be classified into m_{2} groups each of which contains $2 m_{1}$ tests. Each group can be further classified into m_{1} subgroups of two tests each. These m_{1} subgroups are the same as the m_{1} groups for a single-input system as discussed above, except the second input u_{2} in the $j-t h$ group is a step of amplitude $u_{2 j}$, where $u_{2 j}=u_{2 m i n}+\left(u_{2 m a x}-u_{2 m i n}\right)(j-1) /\left(m_{2-1}\right)$. In order to perform each of the above tests, it is necessary to obtain the two step inputs $\left(u_{1 i}\right.$ and $\left.u_{2 j}\right)$ simultaneously. The test conditions can be generalized for a multipleinput, first-order system. If there are M inputs, there

will be $2 m_{1} m_{2} \ldots m_{k} \ldots m_{M}$ tests. Note that the total range in the k-th input is divided into m_{k} levels.

Second-Order Systems

Consider the following two step response tests and the initial conditions on the system: 1) $u_{1}=u_{1 \max }, x_{1}(0)=x_{1 m i n}$ and $x_{2}(0)=0$; and 2) $u_{1}=u_{1 \min }, x_{1}(0)=x_{1 \max }$ and $x_{2}(0)=0$. The curves $A B C$ and $C D A$ in Figure 5 are the portions of the $x_{1}-x_{2}$ plane responses of the system for the above two tests. The path ABCDA is defined as the "locus of initial conditions". This locus encompasses the total range in the $x_{1}-x_{2}$ plane which can be covered by the system responses to any allowable input. Note the above two tests are required to establish the test conditions for a second-order system.

The total range in the input u_{1} is divided into m_{1} levels as before. If I pairs of initial conditions are chosen along the locus of initial conditions, Im_{1} step response tests will cause the system to respond over the complete region of interest in the $x_{1}-x_{2}-u_{1}$ space. These tests can be classified into m_{1} groups. In the j-th group of I tests, the input is a step of amplitude u_{1} 。 . The initial conditions are the corresponding I pairs chosen along the locus. These I pairs need not be the same in number or value for each of the m_{1} groups. The curves emanating from the I points along the locus represent the system responses for one of the m_{1} groups of I tests. Note that in the first group when $u_{q}=u_{q m i n}$ the pairs of initial conditions may be

Figure 5. Responses of a Second-Order
System to Typical Test
Inputs (Steps) With Various
Initial Conditions Along
the Locus (ABCDA)
chosen only along the upper part of the locus (ABC). When $u_{1}=u_{1 m a x}$ in the last group the lower part may be used.

Generalization of the above result to an M-input, sec-ond-order system gives $\operatorname{Im}_{1} m_{2} \ldots m_{k} \ldots m_{M}$ tests, where the $k-t h$ input is divided into m_{k} levels. Note that a system with no inputs can be considered as a single-input system with $m_{1}=1$ and $u_{1}=0$ 。

Performance Index

The inputs and the time responses of the system for all the test conditions are sampled, stored and numbered from 1 through N_{d}. A sum of squared errors (SSE) is defined as

$$
\begin{gather*}
S S E=\sum_{k=1, N_{d}}(\dot{X}(k)-F(k))^{T}(\dot{X}(k)-F(k)) \tag{2-6}\\
F(k)=F(X(k), U(k), C) .
\end{gather*}
$$

The computational effort required to determine the model coefficients which minimize the above performance index is directly proportional to the number of data points. This effort can be reduced considerably by defining a modified sum of squared errors (MSSE) and finding the near optimal model coefficients. The entire $X-U$ hyperspace of interest is divided into a multidimensional grid. All the individual grids are numbered from 1 through N_{g}, where N_{g} is the number of grid divisions. New variables $S(i), \dot{S}(i)$ and $Z(i)$ are defined respectively as the average values of all the stored data points $X(j), \dot{X}(j)$ and $U(j), j=1, N$, which fall
in the $i-t h$ individual grid. The modified sum of squared errors is defined as,

$$
\begin{align*}
\operatorname{MSSE}= & \sum_{k=1, N_{g}}(\dot{S}(k)-F(k))^{T}(\dot{S}(k)-F(k)) \tag{2-7}\\
& F(k)=F(S(k), Z(k), C) .
\end{align*}
$$

Note that the computational effort is reduced by a factor of N_{g} / N_{d}. The coefficients which minimize the MSSE satisfy the necessary condition,

$$
\begin{equation*}
\frac{\partial(\text { MSSE })}{\partial C}=0 . \tag{2-8}
\end{equation*}
$$

When the vector function F is a vector of polynomials in X and U, the above equation contains N_{c} linear simultaneous algebraic equations in N_{c} unknown coefficients. The effort required to solve these equations is found to be approximately proportional to the square of the number of unknown coefficients. This effort can be reduced further by decomposing the MSSE into subperformance indices and determining fewer coefficients at a time. As discussed earlier in this chapter, the specified test conditions can be classified into groups and subgroups. A separate subperformance index may be defined for each group or subgroup.

The computational effort required to determine all the model coefficients is directly proportional to the following three factors: 1) The square of K_{c}, the number of the model coefficients determined at a time; 2) The number of individual grids, K_{g}, in the $X-U$ hyperspace considered to deter-
mine the above coefficients; and 3) The number of the subperformance indices, Kp, into which the MSSE is decomposed. Thus, the computational effort, E, can be computed as,

$$
\begin{equation*}
\mathrm{E}=\mathrm{K} \stackrel{2}{K_{\mathrm{c}} K_{\mathrm{g}} K_{\mathrm{p}}} \tag{2-9}
\end{equation*}
$$

where, K is a constant of proportionality.
The decomposition of the MSSE and consequent saving in the computational effort can be illustrated for a singleinput, first-order system。 Let $p_{x 1}$ and $p_{u l}$ be the degrees of the polynomials in x_{1} and u_{1}. Let the total ranges in x_{1} and u_{1} be divided into n_{1} and m_{1} levels respectively.

When the MSSE is directly minimized, a polynomial form of the model is obtained. All the model coefficients are determined at one time. The computational effort, E, required to minimize the $M S S E$ is computed from Equation (2-9).

$$
\begin{gathered}
K_{c}=N_{c}=\left(p_{x 1}+1\right)\left(p_{u 1}+1\right) \\
K_{g}=N_{g}=\left(n_{1}-1\right)\left(m_{1}-1\right) \\
K_{p}=1 \\
\therefore \quad E=K\left(\left(p_{x 1}+1\right)\left(p_{u 1}+1\right)\right)^{2}\left(n_{1}-1\right)\left(m_{1}-1\right)
\end{gathered}
$$

When the decomposed MSSE is minimized, a mixed form of the model (polynomial in x_{1} and tabular in u_{1}) is obtained. The MSSE is decomposed into m_{1} partial sums of squared errors (PSSE) as follows:

$$
\begin{aligned}
& \operatorname{MSSE}=\operatorname{PSSE}_{1}+\operatorname{PSSE}_{2}+\ldots+\operatorname{PSSE}_{\mathrm{m} 1} \\
& \operatorname{PSSE}_{\mathbf{i}}=\sum_{k=1},\left(\mathrm{n}_{1}-1\right)
\end{aligned}
$$

where, s_{1} is the averaged x_{1}. In the $i-t h$ group of tests, the amplitude of the step input is constant. Therefore, the function f is assumed to be a polynomial in x_{1} alone. The coefficients of the polynomial are subscripted to denote that this set of coefficients represent the system for one constant (step) input of $u_{1 i}$. The $i-t h$ row of the coefficients in the tabular form of the model is found when PSSE $_{i}$ is minimized using the system responses for the i-th group of tests.

The computational effort with decomposition, E_{d}, from Equation (2-9) is,

$$
\begin{gathered}
K_{c}=\left(p_{x 1}+1\right) \\
K_{g}=\left(n_{1}-1\right) \\
K_{p}=m_{1} \\
\therefore \quad E_{d}=K\left(p_{x 1}+1\right)^{2}\left(n_{1}-1\right) m_{q}
\end{gathered}
$$

Thus, the ratio of the computational efforts is,

$$
E / E_{d}=\left(p_{u 1}+1\right)^{2}\left(m_{1}-1\right) / m_{1}
$$

When $p_{u 1}=4$ and $m_{1}=10$, the ratio is $45 / 2$.
In summary, the advantages of determining the model coefficients by minimizing the decomposed MSSE are the fol-lowing: 1) The MSSE involves averaging which is a smoothing technique. Also, the determination of the model coefficients by minimizing the sum of squared errors is a smoothing technique. Because of these two smoothing processes the identification technique is insensitive to additive, zero-
mean noise in the measured system responses; 2) Determination of the model coefficients is considerably faster; and 3) Numerical round-off errors are minimized by determining fewer coefficients at a time.

Model Coefficients

The optimum model coefficients which minimize the undecomposed or the decomposed MSSE are uniquely determined by solving system(s) of linear simultaneous algebraic equations. Iterations, as required in other techniques are avoided. When the undecomposed MSSE is used, a polynomial form of the model is obtained. When the decomposed MSSE is used, a mixed form of the model (polynomial in X and tabular in U) is obtained. The model coefficients of one form can be generated from those of the other form. To obtain a tabular form from a polynomial form, the polynomials are evaluated at various points. To obtain a polynomial form from a tabular form, least squares fitting is used. The computer tools presented in Appendix A can be used to determine the coefficients of a mixed form of the model (polynomial in X and tabular in U). However, the coefficients of a polynomial form or a tabular form can be obtained using the conversion subroutine presented in Appendix B.

CHAPTER III

APPLICATIONS OF THE TECHNIQUE

In this chapter the applications of the identification technique are discussed and illustrated through examples.

Necessary Steps in Identification

The computer tools developed in this thesis are based on the minimization of the decomposed MSSE. The identified model form is polynomial in the state(s) and tabular in the input(s). Figure 6 illustrates the procedure followed with both identification programs, SYSID1 and SYSID2 (see Appendix A). Data from system responses for each group of the tests is read in, smoothed if necessary before differentiation, and processed (averaged over the grid divisions in the X-U hyperspace). Then, the model coefficients which minimize the decomposed MSSE are determined by solving system(s) of linear simultaneous algebraic equations. The necessary steps for the system identification are listed below.

1. Specify the region of interest in the $X-U$ hyperspace by defining the minimum and the maximum limits on the state(s) and on the input(s).
2. Specify the numbers of levels n_{1}, n_{2}, m_{1}, and m_{2} into which the total ranges in x_{1}, x_{2}, u_{1} and u_{2}

Figure 6. Identification Procedure Adopted in the Computer Subroutines SYSID1 and SYSID2
are divided respectively.
3. Determine the set of initial conditions. For first order systems, the two extreme initial conditions on the system are sufficient. For second-order systems obtain the locus of initial conditions and choose I pairs of initial conditions on the locus.
4. Conduct $2 \mathrm{~m}_{1} \mathrm{~m}_{2}$ tests for a first-order system and Im1 tests for a second-order system. For a singleinput system $m_{2}=1$. A system with no inputs can be considered as a single-input system with m1 $=1$ and $u_{1}=0$. Measure the system states and the first derivatives of the states for all tests. If the derivatives are not measurable, they must be obtained by differentiation.
5. Sample all the measured data and store in punched card form (FORMAT $3 X, 7 E 11.4$) A variable sampling interval may be used depending upon the frequency content of the measured data. However, when \dot{X} is not measurable, a constant interval is necessary for smoothing and differentiation.
6. Specify the degrees of the polynomials $p_{x 1}$ and $p_{x 2}$ •
7. Use SYSID1 for first-order systems and SYSID2 for second-order systems (see Appendix A)。 These subroutines give the mixed form of the model (polynomial in the state(s) and tabular in the input(s)).
8. Use CONVRT (see Appendix B) if a polynomial or a tabular form of the model is desired.

Based on the experience with a number of examples, the following numerical values are normally adequate for the variables used in the above steps: $m_{1}=m_{2}=n_{1}=n_{2}=11 ; p_{x 1}=p_{x 2}=$ $p_{u 1}=p_{u 2}=3$ or $4 ; I=20 ;$ and 100 samples should be used for each test. Subroutines XDOT1 (for first-order systems) and XDOT12 (for second-order systems) which are presented in Appendix A may be used to evaluate the derivatives of the states for predicting the system response. When a polynomial form or a tabular form is used the corresponding subroutines (XDOT1 or XDOT12) which are presented in Appendix B must be used.

Model Simulation

This section describes the use of the identified model in the prediction of system responses for arbitrary inputs and arbitrary initial conditions on the system. Ifthonsystem states at time t_{0}, and the inputs $U(t) ; t_{0} \leq t_{f} \leq t_{f}$, where t_{f} is the final time, are known; the system response $X(t)$ can be obtained by numerically integrating the model differential equations from to to t_{f}. A Runge-Kutta integration program may be used. The integration program requires the derivatives of the states for known values of the states and the inputs. These derivatives can be evaluated by using the subroutines XDOT1 or XDOT12 (see Appendices A and B).

The model responses simulated as above will not be identical to the actual system responses because of the following two sources of error: 1) Insufficient accuracy of the
identified mode1, and 2) The difference between the model states and the actual system states at the initial time. The numerical integration program can be assumed to be sufficiently accurate by properly selecting the integration scheme and the integration step size. For the class of nonlinear systems considered in this thesis, the error between the model response and the actual system response is found to converge to an allowable amount within the capability of the identified model.

The above result can be used to predict the response of a real process for any arbitrary input without the knowledge of the initial state of the process. The model can be simulated with zero initial conditions which introduce an initial error. The predicted system response 'will be meaningful only after one or two settling times when the error converges to an allowable amount.

Model Analysis

Another application of the model is to describe the system in the small about an operating point (usually a steady-state operating point). This is done by linearizing the model differential equations about the operating point. The steady-state response can also be found by setting $\dot{X}=0$. That is,

$$
\begin{equation*}
F\left(X_{\text {SS }}, U_{\text {step }}, C\right)=0 \tag{3-1}
\end{equation*}
$$

In the above equation $U_{s t e p}$ is a vector of step inputs and
X_{Ss} is a vector of steady-state responses of the system. The responses $X_{s s}$ can be found analytically, without actually integrating the model equations, by solving a set of nonlinear algebraic equations when the model form is polynomial and by inverse interpolation when the model form is tabular. The set of linearized differential equations valid in the vicinity of an operating point ($X_{o p}, U_{o p}$) can be obtained as follows:

$$
\begin{align*}
\delta \dot{X}= & A \delta X+B \delta U \tag{3-2}\\
A & =\partial F / \partial X \\
& B=\partial F / \partial U
\end{align*}
$$

where, the coefficient matrices A and B are obtained by evaluating the partial derivatives at the operating point. These evaluations are performed analytically when the model form is polynomial and numerically when the model form. is tabular.

The linearized equations can be used to investigate the stability of the model in the small about any operating point of interest. Also, these equations can be used to continuously find the optimal control for a closed-loop process. The results of optimal control theory, which are applicable to linear systems, can be used to generate the optimum control for a nonlinear system in a small neighborhood around an operating point in the $X-U$ hyperspace. The coefficient matrices A and B can be evaluated for each new operating point of the system.

Examples

A number of examples were worked to validate the identification technique. Six examples are presented in this section to illustrate the technique. In the first four examples the unknown system was simulated by numerically integrating known mathematical models. In the fourth example zero-mean Gaussian noise was superimposed on the inputs and the measured responses. Both the state and its derivative were assumed available。 In Examples 1,2 and 3 the derivatives of the states were obtained by numerical differentiation. Examples 5 and 6 were actual physical systems. In these examples the measured responses were smoothed before differentiation。

The results of identification were verified by comparing the responses of the system and of the identified model to the same but arbitrary input(s). The arbitrary inputs were sequences of pulses whose amplitude and width were independent random variables. Mean squared error (MSE), as defined below, was considered as a measure of closeness.

$$
\operatorname{MSE}=\left(1 / t_{f}\right) \int_{0}^{t_{f}}\left(x_{s}-x_{m}\right)^{2} d t
$$

Convergence of the model response was verified by starting the model and the system from different initial conditions. The computational times for identification (includes smoothing and differentiation where applicable) and for simulation of the system and the model for 500 Runge-Kutta integration steps are summarized for each example. An IBM

360 model 65 digital computer was used. The repeatability of the CPU time on this machine was within ± 0.5 seconds. To illustrate the choice of the three model forms, tabular, mixed and polynomial forms were used in the examples. For convenience, special programs were developed for each of the examples to generate the required test data and to identify the model. These programs are not included in this thesis. However, the necessary computer subroutines for identifying a mixed form of the model (polynomial in X and tabular in terms of U) are presented in Appendix A. If a model form which is polynomial both in X and in U or tabular in terms of both X and U is desired, a conversion subroutine is presented in Appendix B. In addition, the subroutines STEADY and LINRIZ used in the examples for model analysis are presented in the Appendix C.

Example 1

A single-input, first-order system was simulated by Equation (3-3). The system was modeled by Equation (3-4).

$$
\begin{align*}
& \dot{x}_{1 s}=\left(\operatorname{ABS}\left(u_{1}-x_{1 s}\right)\right)^{1.8} \operatorname{SIGN}\left(u_{1}-x_{1 s}\right) \tag{3-3}\\
& \dot{x}_{1 m}=f_{1}\left(x_{1 m,} u_{1}, c_{1}\right) \tag{3-4}
\end{align*}
$$

In the above equations $x_{1 s}$ and $x_{1 m}$ represent the system state and the model state. A tabular model form was used. The range in the input $\left(u_{1 m i n}=-1\right.$ and $\left.u_{1 m a x}=1\right)$ was divided into 11 levels $\left(m_{1}=11\right)$. The range of the state $\left(x_{1} \mathrm{~min}=-1\right.$ and $x_{1 \max }=1$) was divided into 11 levels $\left(n_{1}=11\right)$. To gener-
ate the numbers in the table, \dot{x}_{1} was assumed to be a fourth degree polynomial in $x_{1}\left(p_{x 1}=4\right)$.for each of the input levels. The third row of the table (when the input level $u_{13}=$ -0.6) has the following numbers: $0.227 \mathrm{E} \quad 010.185 \mathrm{E} 010.141$ E $010.101 \mathrm{E} 01 \quad 0.667 \mathrm{E} 00 \quad 0.395 \mathrm{E} 00 \quad 0.199 \mathrm{E} \quad 00 \quad 0.709 \mathrm{E}-01$ $-0.836 \mathrm{E}-02 \quad-0.694 \mathrm{E}-01 \quad-0.154 \mathrm{E} 00$.

The identification time was 1.12 seconds, the times required for the simulation of the system and the model were respectively 3.89 and 4.35 seconds. Figure 7 shows the arbitrary input and the responses of the system and the model when the initial conditions were 44.5% off. For a step input of 1.0 , the steady-state value x iss was found to be 0.973. The coefficient matrices of the linearized differential equation were found to be $A=\left[\begin{array}{lll}0.247 E & 01\end{array}\right]$ and $B=[0.286 \mathrm{E} 01]$ for operation in the vicinity of $x_{10 p}=1.0$ and $u_{10 p}=-1.0$ 。

Example 2

A dual-input, first-order system was simulated by Equation (3-5). This system was modeled by Equation (3-6). The

$$
\begin{align*}
& \dot{\mathbf{x}}_{1 \mathrm{~s}}=(\operatorname{ABS}(\mathrm{e}))^{1 \cdot 7} \operatorname{SIGN}(\mathrm{e}) \tag{3-5}\\
& \mathrm{e}=\mathrm{u}_{1}-\operatorname{SIN}\left(11 \mathrm{u}_{2} / 7\right)-2 \mathrm{x}_{1 \mathrm{~s}} \\
& \dot{x}_{1 \mathrm{~m}}=\mathrm{f}_{1}\left(\mathrm{x}_{1 \mathrm{~m}}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{c}_{1}\right) \tag{3-6}
\end{align*}
$$

ranges in the inputs $\left(u_{1 \min }=u_{2 m i n}=-1\right.$ and $\left.u_{1 \max }=u_{2 \max }=1\right)$ were divided into 11 levels each $\left(m_{1}=11\right.$ and $\left.m_{2}=11\right)$. The range in the state $\left(x_{1 m i n}=-1\right.$ and $\left.x_{1 m a x}=1\right)$ was divided into 11 levels $\left(n_{1}=11\right)$. A tabular form of the model was used. $p_{x 1}$ was 4.

The identified model coefficients are represented by a three dimensional array $c_{1}=c_{1}(11,11,11)$. The 11 numbers of this array for a pair of input levels $\left(u_{1}=-0.4\right.$ and $\left.u_{22}=-0.8\right)$ are the following: 0.481 EOP 0.371 E 010.262 E 010.167 E 01 $0.928 \mathrm{E} 00 \quad 0.408 \mathrm{E} 00 \quad 0.722 \mathrm{E}-01 \quad-0.172 \mathrm{E} 00-0.472 \mathrm{E} 00-0.103$ E01 -0.209E01.

The identification time was 12.59 seconds and the times required for the simulation of the system and the model were 7.85 and 8.27 seconds respectively. Figure 8 shows the arbitrary input and the responses of the system and the model when the initial conditions were 100% off. For a pair of step inputs, $u_{1 s t e p}=1.0$ and $u_{2 s t e p}=0.8$, the steady-state value x_{1} ss was analytically found to be $0.240 \mathrm{E}-01$. The coefficient matrices of the linearized differential equation were found to be $A=[0.568 \mathrm{E} 00]$ and $B=\left[\begin{array}{ll}0.111 \mathrm{E} 00 & 0.765 \mathrm{E}-01\end{array}\right]$ for operation in the vicinity of an operating point ($x_{1 o p}=$ 1.00, $u_{1 o p}=-1.00$ and $u_{20 p}=-0.63$).

Example 3

A single-input, second-order system was simulated by Equations $(3-7)$ and $(3-8)$. Bose (6) showed that under certain circumstances these equations represent an hydraulic spool type valve. This system was modeled by Equations (3-9) and (3-10) for identification. The range of the input $\left(u_{i m i n}=0\right.$ and $\left.u_{1 m a x}=1\right)$ was divided into 11 levels $\left(m_{1}=11\right)$ and the ranges of the states $\left(x_{1 \min }=-0.266, x_{1 m a x}=1.140\right.$, $x_{2 \min }=-0.493$ and $x_{2 \max }=0.906$) were divided into 11 levels

Figure 8. Arbitrary Inputs $\left(u_{1}\right.$ and $\left.u_{2}\right)$ and the Response $\left(x_{1}\right)$ of the system and the Model (Example 2)

$$
\begin{align*}
& \dot{x}_{1 s}=x_{2 s} \tag{3-7}\\
& \dot{x}_{2 s}=u_{1}-0.36 x_{2 s}-0.24 x_{1 s}-0.86122\left(x_{1 s}\right)^{3} \\
&-1.3174 x_{1 s} x_{2 s} \tag{3-8}\\
& \dot{x}_{1 m}=f_{1}\left(x_{1 m}, x_{2 m}, u_{1}, c_{1}\right) \tag{3-9}\\
& \dot{x}_{2 m}=f_{2}\left(x_{1 m}, x_{2 m}, u_{1}, c_{2}\right) \tag{3-10}
\end{align*}
$$

each $\left(n_{1}=11\right.$ and $\left.n_{2}=11\right)$. For each group of tests 20 pairs of initial conditions were chosen. Two responses of the system to step inputs of $u_{1}=u_{1}$ min and $u_{1}=u_{1 m a x}$ with zero initial conditions on the system, gave the minimum and maximum limits on the first state. These twolimitemperefherr 2nd state were found from the following two tests: 1) The input was a step of $u_{1}=u_{1} m i n$, and the initial conditions were $x_{1}(0)=x_{1}$ max and $x_{2}(0)=0$; and 2) The input was a step of $u_{1}=u_{1}$ max, and the initial conditions were $x_{1}(0)=x_{1 m i n}$ and $x_{2}(0)=0$. These latter two tests established the locus of initial conditions. A mixed form of the model, polynomial in x_{1} and x_{2} and tabular in u_{1}, was used with $p_{x_{1}}=p_{x_{2}}=3$. The coefficients (4×4 matrices for one input level) of the polynomials in x_{1} and x_{2} are given below for a specific input level of 0.9 (tenth level).

$$
\begin{aligned}
c_{1} & =\left[\begin{array}{rrrrr}
-0.944 \mathrm{E}-04 & 0.135 \mathrm{E}-04 & -0.518 \mathrm{E}-03 & 0.702 \mathrm{E}-03 \\
0.100 \mathrm{E} & 01 & -.552 \mathrm{E}-02 & 0.130 \mathrm{E}-01 & -0.723 \mathrm{E}-02 \\
-0.513 \mathrm{E}-05 & 0.138 \mathrm{E}-01 & -0.341 \mathrm{E}-01 & 0.196 \mathrm{E}-01 \\
-0.157 \mathrm{E}-03 & -.865 \mathrm{E}-02 & 0.219 \mathrm{E}-01 & -0.129 \mathrm{E}-01
\end{array}\right] \\
\mathrm{c}_{2} & =\left[\begin{array}{rrrrrr}
0.900 \mathrm{E} & 00 & -.246 \mathrm{E} & 00 & 0.270 \mathrm{E}-01 & -0.887 \mathrm{E} \\
0.00 \\
-0.363 \mathrm{E} & 00 & -.128 \mathrm{E} & 01 & -0.172 \mathrm{E} & 00 \\
0.112 \mathrm{E}-01 & -.161 \mathrm{E} & 00 & 0.128 \mathrm{E} & 00 \\
-0.752 \mathrm{E}-02 & 0.122 \mathrm{E} & 00 & -0.298 \mathrm{E} & 00 & -0.251 \mathrm{E} \\
0 & 0.146 \mathrm{E} & 00
\end{array}\right]
\end{aligned}
$$

The identification time was 14.47 seconds. The times required for the simulation of the system and the model for 500 Runge-Kutta integration steps were 6.27 and 9.82 seconds respectively. Figures 9 and 10 show the arbitrary input and the responses of the system and the model when the initial conditions were the same. Note that the correspondence was so close that it is difficult to distinguish between the two responses. For a step input of $u_{1 s t e p}=0.43$, the steadystate response was analytically found to be $x_{1 s s}=0.676 \mathrm{E} 00$ and $x_{2 s s}=-0.949 \mathrm{E}-05$. The coefficient matrices of the linearized differential equations were found to be,

$$
A=\left[\begin{array}{cccc}
-0.184 \mathrm{E}-03 & 0.100 \mathrm{E} & 01 \\
-0.338 \mathrm{E} & 00 & -0.864 \mathrm{E} & 00
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{c}
-0.178 \mathrm{E}-02 \\
0.100 \mathrm{E}
\end{array} 01\right]
$$

for operation in the sma11 about the point ($x_{10 p}=0.380$, $x_{2 o p}=-0.210$ and $u_{1 o p}=0.447$)。

Example 4

A single-input, first-order system was simulated by the following equations:

$$
\begin{gathered}
\dot{x}_{1 s}=\left(\operatorname{ABS}\left(u_{1}^{\prime}-x_{1 s}\right)\right)^{1.8} \operatorname{SIGN}\left(u_{1}^{\prime}-x_{1 s}\right) \\
u_{1}^{\prime}=u_{1}+R_{1} \\
x_{1 s}^{\prime}=x_{1 s}+R_{2} \\
\dot{x}_{1 s}^{\prime}=\dot{x}_{1 s}+R_{3}
\end{gathered}
$$

where, R_{1}, R_{2} and R_{3} were three independent Gaussian random variables with mean zero and standard deviations d_{1}, d_{2} and

Figure 9. Arbitrary Input (u_{1}) and the Response $\left(x_{1}\right)$ of the System and the Model
(Example 3)

Figure 10. Arbitrary Input (u_{1}) and the Response $\left(x_{2}\right)$ of the System and the Model (Example 3)
d_{3} as follows:

$$
\begin{aligned}
& d_{1}=1 / 3 \operatorname{NSR}\left(u_{1 \text { max }}-u_{1 \text { min }}\right) \\
& d_{2}=1 / 3 \operatorname{NSR}\left(x_{1 \text { max }}-x_{1 \text { min }}\right) \\
& d_{3}=1 / 3 \operatorname{NSR}\left(\dot{x}_{1 \text { max }}-x_{1 \text { min }}\right)
\end{aligned}
$$

In the above relations NSR is defined as the noise to signal ratio ($0 \leq N S R \leq 1$). Note that the input seen by the system was u_{1}^{\prime} and the system responses were $x_{1 s}$ and $\dot{x}_{1 s}$ 。 But only $u_{1}, x_{1 s}^{\prime}$ and \dot{x}_{1}^{\prime} were used for the identification purposes. Figure 11 shows the system responses to a typical test input with and without the measurement noise.

The system was modeled as,

$$
\begin{equation*}
\dot{x}_{1 \mathrm{~m}}=\mathrm{f}_{1}\left(\mathrm{x}_{1 \mathrm{~m}}, \mathrm{u}_{1}, \mathrm{c}_{1}\right) . \tag{3-12}
\end{equation*}
$$

The following data was used to simulate the system responses and to identify a polynomial form of the model: $u_{1 m i n}=-1$, $u_{1 \max }=1, x_{1 \min }=-1$ and $x_{1 \max }=1 ; m_{1}=9$ and $n_{1}=9 ;$ and $p_{x_{1}}=3$ and $p_{u i}=3$. The $4 x 4$ matrix of model coefficients was,

Figure 12 shows the arbitrary input and the responses of the system and the model to this input when $N S R=0.4$. The mean squared error (MSE) was 2.05E-04. The above identification problem was repeated for nine different values of NSR from 0 to 0.4. A plot of the mean squared error versus NSR is shown in Figure 13.

Figure 11. Actual and Measured Responses (x_{1} and \dot{x}_{1}) of the System (Example 4) When $N S R=0.4$

Figure 12. Arbitrary Input $\left(u_{1}\right)$ and the Response $\left(x_{1}\right)$ of the System and the Model (Example 4) When NSR $=0.4$

Example 5

A real physical system, which consisted of an electrical capacitor discharging through a diode (see inserts in Figure 14), was considered. The capacitor voltage, v_{c}, was recorded as a function of time for two initial conditions $\left(v_{1}=0.3\right.$ volts and $v_{2}=0.25$ volts). The data with the first initial condition was used for identification. The data with the second initial condition was used to verify the accuracy of identification. The system was modeled by the following equation,

$$
\begin{equation*}
\dot{v}_{c}=c_{1}(0)+c_{1}(1) v_{c}+c_{1}(2) v_{c}^{2}+c_{1}(3) v_{c}^{3}+c_{1}(4) v_{c}^{4} \tag{3-13}
\end{equation*}
$$

The total range in v_{c} was divided into 21 levels. The five coefficients were found to be: $c_{1}(0)=0.951 \mathrm{E}-04, c_{1}(1)=$ $-0.759 \mathrm{E}-01, c_{1}(2)=0.134 \mathrm{E} 01, c_{1}(3)=0.839 \mathrm{E} 01$ and $c_{1}(4)=$ 0.738 E 01 . Figure 14 shows the actual experimental responses and the identified responses for the two initial conditions. The identification time was 1.7 seconds.

Example 6

A real physical system, which consisted of a pressurized pneumatic tank discharging into atmosphere through an orifice with nonlinear resistance, was considered. The set up is shown in the inserts of Figure 15. The tank pressure, p_{t}, was recorded as a function of time for two initial conditions on the system $\left(p_{1}=25 \mathrm{psig}\right.$ and $\left.\mathrm{p}_{2}=15 \mathrm{psig}\right)$. The data with one initial pressure was used for identificatiop. The

Figure 15. Responses of the System and the Model for the Two Initial Tank Pressures (Example 6).
data with the other initial pressure was used to verify the accuracy of identification. The system was modeled as,

$$
\begin{equation*}
\dot{p}_{t}=c_{1}(0)+c_{1}(1) p_{t}+c_{1}(2) p_{t}^{2}+c_{1}(3) p_{t}^{3}+c_{1}(4) p_{t}^{4} \tag{3-14}
\end{equation*}
$$

The total range in p_{t} was divided into 21 levels. The coefficients of the above relation were found to be: $c_{1}(0)=$ $-0.202 \mathrm{E} 00, c_{1}(1)=-0.418 \mathrm{E} 00, c_{1}(2)=0.235 \mathrm{E}-01, c_{1}(3)=-0.102$ E-02 and $c_{1}(4)=0.127 E-04$. The actual system responses and the identified model responses for the two initial pressures are shown in Figure 15. The mean squared error was 0.0127 . The accuracy was within 4%.

Greater accuracy is not possible with a first-order system model. Intuition leads one to the conclusion that the system could be modeled more accurately by a secondorder system which accounts implicitly for the heat transfer effects in the process.

COMPARISON WITH OTHER TECHNIQUES

In comparing the modified differential approximation technique with other known techniques the following factors are considered:

1. A priori knowledge about the system model (form)
2. Computational requirements (storage and time)
3. Data required for identification
4. Method of determining the model coefficients
5. Applications of the identified model
6. Limitations of the technique.

It is difficult to make a meaningful quantitative comparison of various available identification techniques. There are more than several hundred techniques, each of which has its own advantages and disadvantages. Some are general purpose and some are special purpose techniques. However, the computational requirements depend not only on the identification technique, but also on the programming skill. A qualitative comparison of the identification techniques which are applicable to nonlinear systems is given in Figure 16. A cross mark (X) is placed if the technique has an undesirable factor.

	Functional Power Series Techniques	Pattern Recognition Techniques	Other State-Space Techniques	$\begin{aligned} & \text { Modified } \\ & \text { Differential } \\ & \text { Approximetion } \\ & \text { Technique } \end{aligned}$
A priori knowledge	Model form not required	Model form not required	Model Toce requirad	Model form not required
Date required	Normal operating syster responses	Normal operating syston responses	Normel operating system responses	Systerncesponse: for eprcilita tests
Computer storage	L	Largo ser	Reasonable	Sman 11
Computer tisen	Large		Reasonable	5 me 11
Accuracy	Poor	Poor	Reasonabl*	Ressonable
Applications		Simult	Simulation and analysis	Sisulation and analyzi:
Determining the coefricients of the model	Noniterative technique	Moniterative technique	Iterative ang requires sot-6ration of aitcorontsin equations	Moniterative and requires no integrations
Utility of the identified model	Used for any input within the test data	Used for any input within the test data	Not used for my arbitiary juput and init 12 conditions 1 n time $\mathrm{X}-\mathrm{U}$ hyparspace	Used for any arbitrary input and initial conditions in the X-U hyperspace of interest
Limitations	inwitud to sungleinput syeters	Linituad to k 的 10 input 5 sems	Applicable to multiple-input aystoms	Applicable to multiple-input systoms

Figure 16. A Qualitative Comparison of the Identification Techniques Which are Applicable to Nonlinear Systems
(A cross mark, X, has been placed over each of the undesirable factors.)

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The modified differential approximation technique is applicable to stationary nonlinear systems which can be described by lumped parameter models. The following are the principal features of the technique:

1. The technique does not require a priori knowledge about the form of the system mathematical model
2. It is found that a wide class of nonlinear systems can be adequately described by polynomial, tabular or mixed form of the model
3. Specified inputs allow decomposition of the MSSE which results in reduced computational effort
4. The model coefficients are determined uniquely without iterations
5. The identified model can be used to compute the reresponses to any arbitrary input(s)
6. The technique is insensitive to zero-mean noise in the test inputs and in the measured responses
7. The model allows determination of linearized differential equations valid in the vicinity of an operating point
8. Three different forms of the model can be found. The mixed form is the most efficient for identification. The tabular form is the most efficient for predicting the system response. The polynomial form gives the most accurate results with the minimum number of model coefficients

The primary drawback of the technique is that a specific set of tests must be conducted on the system. It can be concluded that for the class of systems considered the modified differential approximation technique is superior to other known techniques in identification time, accuracy and storage requirement.

Recommendations

Future work could be performed in the following areas to improve and extend the identification technique:

1. Simplification of the identified model equations
2. The use of normal operating input-output records of the system for identification purposes
3. The use of a priori knowledge, where available, to reduce the identification time
4. The use of orthogonal functions instead of polynomials to reduce numerical round-off errors
5. Investigation of on-line applications
6. Consideration of time delays and hysteresis in the systems to be identified.
(1) Allison, J. S. "On the Comparison of Two Methods of Off-Line Parameter Identification." Journal of Mathematical Analysis and Applications, (1967), pp. 229-237.
(2) Arozullah, M. "Characterization and Optimization of Nonlinear Systems." JACC 1969, pp. 81-90.
(3) Bacon, C. M. "Linear State-Space Model From Solution Specifications." Proceedings, Eighth Midwest Symposium on Circuit Theory, Colorado State University (June 1965).
(4) Bacon, C. M. "Parameter Optimization in Linear Systems - A State-Space Approach." Proceedings, Third Annual Allerton Conference on Circuit and System Theory, Monticello, Illinois(Oct. 1965).
(5) Bellman, R. E., Kalaba, R., and Sridhar, R. "Adaptive Control via Quasilinearization and Differential Approximation." IEEE Transactions on Automatic Control; Vol. AC-10, No. $2(1965)$, p. 199.
(6) Bose, J. E. "Design of Nonlinear Second-Order Dynamic Systems to Meet Arbitrary Performance Criteria." (Ph. D. Thesis, Oklahoma State University, 1966).
(7) Cox, H. "Estimation of State Variables via Dynamic Programing." JACC 1964, pp. 376-381.
(8) Cox, H. "On the Estimation of State Variables and Parameters for Noisy Dynamic Systems." IEEE Transactions, January 1964.
(9) Detcmendy, D. M., and Sridhar, R. "Sequential Estimation of States and Parameters in Noisy Nonlinear Dynamical Systems." Transactions of the ASME, June 1966, pp. 362-368.
(10) Diskind, To, and Esterson, G。L. "Parameter Evaluation by Complex Domain Analysis With Application to Chemical Kinetics." JACC 1969, pp. 770-781.
（11）Flake，R．H．＂Volterra Series Representation of Nonlinear Systems．＂Transactions of the ASME， Vol．82（Applications and Industry Part II）， January 1963，pp．178－189。
（12）Frank，P．，and McGhee，R．＂Determining Input－Output Relations of Nonlinear Systems by Inversions．＂ Transactions，IEEE，Vo1．CT－10，June 1963.
（13）Giese，C．，and McGhee，R．＂Estimation of Nonlinear System States and Parameters by Regression Methods．＂JACC 1965，pp．46－55．
（14）Gorman，D．，and Zaborszky，J．＂Functional Representa－ tion of Nonlinear Systems．Interpolation and Lagrange Expansion for Functionals．＂JACC 1965.
（15）Gunda，R．＂Identification of Nonlinear Systems．＂（A Research Proposal，Oklahoma State University）．
（16）Kirvatis，K。，and Fu，K。S．＂Identification of Nonlinear Systems by Stochastic Approximation。＂ JACC 1966，p． 255 ．
（17）Kohr，R．H．＂On the Identification of Linear and Nonlinear Systems．＂Simulation，March 1967.
（18）Kumar，K．S．P．，and Sridhar，R．＂On the Identifica－ tion of Linear Systems．＂JACC 1964，pp．361－65．
（19）Kwatny，H．G．，and Schen，D．W．C．＂Identification of Nonlinear Systems Using a Method of Stochastic Approximation．＂JACC 1967，pp。814－820．
（20）Meissenger，H．F．＂The Use of Parameter Influence Coefficients in Computer Analysis of Dynamical Systems．＂Proceedings，Western Joint Computer Conference， 1960, p． 181.
（21）Miller，R．Wo，and Roy，R．＂Nonlinear Process Identification Using Statistical Pattern Matrices．＂JACC 1964．p．349．
（22）Pazdera，J．So，and Pottinger，H．J．＂Linear System Identification via Liapunov Design Technique．＂ JACC 1969.
（23）Robert，D．R。，and Kerr，B．＂Statistical，Structural and Regression Methods in Linear Process Identification．＂
(24) Rose, R. E., and Lance, G. M. "An Approximate Design Method for Parameter Identification." JACC 1969.
(25) Rosenberg, A. E., and Schen, D. W. C. "Regression Analysis and Its Applications to the System Identification Problem." JACC 1963, pp. 446-51.
(26) Roy, R., and Schley, C. "Process Identification Using a Mode Learning Machine." JACC 1966, pp. 639-648.
(27) Sage, A. P., and Eisenberg, B. R. "Experiments in Nonlinear and Nonstationary System Identification via Quasilinearimation and Differential Approximation." JACC 1966, pp. 522-530.
(28) Sunahara, Y. "An Approximate Method of State Estimation for Nonlinear Dynamical Systems." JACC 1969, p. 162.
(29) Sastry, Vo A., Vetter, W. J., and Caston, R. "The Application of Identification Methods to an Industrial Process." JACC 1969, pp. 787-794.
(30) Smith, C. K. "Quasilinear and Steepest Descent Identification Methods With Hybrid Computers." (M. S. Thesis, Tennessee Technological University, August 1969)。
(31) Unruh, D. R. "Determination of Optimal Parameters for Dynamical Systems." (Ph. D. Thesis, Oklahoma State University, May 1970).
(32) Wells, C. H. "Application of Modern Estimation and Identification Techniques to Chemical Process." JACC 1969.
(33) IBM Application Program. "System/360 Scientific Subroutine Package (360A-CM-03X)." Version III Programmer's Manual.

APPENDIX A

IDENTIFICATION SUBROUTINES

In this appendix the computer subroutines (SYSID1 and SYSID2) which can be used for the identification of firstorder and second-order systems are presented. Two of the required external subroutines (included in this appendix) are: CURVFT and SURFIT for fitting curves and surfaces through arbitrary data points in a least squares sense. In addition to the above the following subroutines are required from the IBM Scientific Subroutine Package (SSP): SE13 for smoothing, DET3 tor differentiation and SIMQ for solving a set of simultaneous linear algebraic equations.

The subroutines SYSID1 and SYSID2 yield a standard form of the model which is tabular in terms of the inputs and polynomial in the states. This form is explained below for a single-input, first-order system. Although \dot{x}_{1} is a function of both x_{1} and u_{1}, the following relation is obtained:

$$
\dot{x}_{1}=c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2}+\ldots
$$

where, the coefficients of the polynomial depend on the input level. If there are m_{1} levels in the input, there will be m_{1} sets of the coefficients for the above polynomial. These m_{1} sets of coefficients are conveniently represented
and stored in a multidimensional table (in this case it is a matrix). After the coefficients are identified, the value of \dot{x}_{1} for any arbitrary values of x_{1} and u_{1} can be found by evaluating the polynomial at x_{1} twice using two proper rows of the coefficient matrix and interpolating in u_{1}.

Subroutines XDOT1 and XDOT12 presented in this appendix may be used to evaluate the derivatives of the states for numerical integration purposes. All of the subroutines presented in this appendix contain the necessary explanation.

SUBROUTINE SYSIDI

HIS PROGRAM I THO INPUTS. THE IDENTIFIED MODEL IS A POLYNCMIAL IN XI AND A TABLE IN UI AND U2. THE COEFFICIENTS OF THE PDIYNOMIAL ARE PRINTED/ SUBRDUTINE REQUIREMENT-SEI3, DET3, SIMQISSPI AND CURVFT the folloning data is required for identification
first data card has format $6 I 10$ and must contain
NINPUT - NUMBER OF INPUTSII OR 21
NGRDX1, NGRDOL AND NGRDU2 - NUMBERS OF LEVELS INTO WHICH XI, U1 AND U2 ARE DIVIDED RESPECTIVEIY IPUNCH - 1 IF PUNCHED OUTPUT IS DESIREDIO OTHERWISE NOTE THAT NOEGXI MUST BE LESS THAN NGRDXI.
USUALLY NDEGXI = 3 OR 4, NGRDXI \pm NGRDU1 $=$ NGRDU2 $=11$ SECOND DATA CARD HAS FORMAT GFIO.3 AND MUST CONTAIN XiMIN, XIMAX, UIMIN, UIMAX, UZMIN AND UZMAX - MINIMUM
AND MAXIMUM VALUES OF XI, UI AND UZ RESPECTIVELY
there must be ngrouz sets of test data after the first TWO DATA CAROS. IN THE I-TH DATA SET THE VALUE OF THE EACH DATA SET CDNTAINS NGRDUI SUBSETS. IN THE J-TH SUBSET THE AMPLITUDE OF THE STEP IN UI = UIMIN +
(UIMAX - UIMIN)*(J-1)/(NGRDUI-1).
Each subset of data must follow a data caro which has
NIC - AHOD, FIO. 4 AND CONTAINS
FOR SOME STEP INPUTS ONE INITIAL CONDITIONCNIC=2; BUT CAUSE THE SYSTEM TO RESPOND OVER THE TOTAL XI-RANGE. + NDATA - NUMBER DF SAMPLES IN EACH RESPONSEIABOUT 100 I
IDIFF - 1 IF THE DERIVATIVE OF XI HAS TO BE OBTAINED BY IDIFF - 1 IF THE DERIVATIVE Of XI HAS TO BE OBTAINED BY SMOTH - 1 IF SMDOTHING OF XI IS REOU TDELTA - THE SAMPLING INTERVAL ICONSTANT)
NOTE THAT IF IDIFF=O, ISMOTH AND TDELTA ARE NOT NEEDED.
THE SAMPLED RESPONSES IN EACH SUBSET MUST BE SUPPIIED IN PUNCHED CARD FORM IN FORMAT $3 X$, 7EII.4AS FOLLOWS: $\begin{array}{ll}\text { HE VALUES OF THE STATE XI } \\ \text { THE VALUES OF THE DERIVATIVE } & \text { for THE FIRST } \\ \text { INITIAL CONDItion }\end{array}$ OF XICONLY IF IDIFF $=0$ O ON THE SYSTEM Same as above for the second initial condition

DIMENSION XIS(100), X1DS(100), X1H(21), X1DW(21),N1W(21),C1M(10) formatilill
2 FORMATIIH)
FORMAT (8F10. 3
FORMAT (BIIO)
FORMAT(3X,7E11-4)
91 formation. the identified model is a polynomial in xi and a table
IN UITAND U2 '.'.10X, THE COEFFICIENTS OF THE POLYNOMIAL FOR'. 2. EACH STEP INPUTIPAIR OF STEP INPUTS) ARE: ', $/ 1$ MRITEI6.1)
READ 15,4) NINPUT, NDEGX1, NGRDX1, NGRDU1, NGRDU2, IPUNCH

READ(5,3) XIMIN, XIMAX,UIMIN,U1MAX, U2MIN, UZMAX
NGXIM1 $=$ NGRDX1 -1
oxi = (ximax - XImini/nexim
IFININPUT.EQ. 11 NGRDUZ $=1$
WRITE(6,91)
DO 300 IU2 $2=1$, NGRDU2
DO 200 IU1 $=1$, NGRDU1
READ $(5,6)$ NIC, NDATA, IDIFF, ISMOTH,TDELTA
DO 24 I=I, NGXIMI
$X 1 w(I)=0.0$
x10w(1) $=0.0$
24 NIW(I) $=0$
IIC=1,NIC
READ(5,5)(XIS(I),I=1,NDATA)
TFIDIFF.EQ.O1 GO TO 21
CALL SEL3(XIS, XIS,NDATA,IER)
22 CALL DET3(TOELTA, XIS, XIOS,NDATA, IER)
GO TO 23
(xiDS(II, $1=1$, NDATA)
23 DO $301=1$, NDATA
IXI
IFI
(XIS
(I) - XIMINI/DXI +1.0
IFIIXI-LT-1) IX1 $=1$
IFIIXIEGT-NGXIM1)IXI = NGXIM1

30 NIH(IX1) $=$ NIW(IXI) +1
100 CONTINUE
$k=0$
$00=40$
OO 40 I=1, NGX1M1
(FIU(II.EO.O) GO TO 40
$K=K+1$
DENOY $=$ N1HII
XIW(K) = XIHIIITOENOM
40
CDNTINE XIDH(II/DENOM
CONTINUE
CALL CURVFT(XIW, XIDW, K, NDEGXI,CIM
IFIIPUNCH.EQ.OS GO TO 200
WRITE 7,5$)(C)$
200 HRIEE $G, 5)(C 1 M(1)=I=1$,NOXIP1)
300 WRITE(6.2)
WRITES6.1
RETUR
END

SUBROUTINE CURVFT(X,Y,N,NDEGX,C)

SUBROUTINE XDOTI(X1, U1, U2, $\times 1$ DOT $)$
THIS SURROUTINE EVALUATES THE DERIVATIVE FUNCTION XIDOT THIS SUBROUTINE EVALUATES THE DERIVATIVE FUNCTION XIDOT
FOR ANY YALUES OF XI, UI AND U2, SPECIFIED THROUGH THE FOR ANY VALUES OF XI; Ul AND UZ, SPECIFIED THROUGH THE
ARGUMENTS OF THIS PROGRAM. NOTE THAT THE COEFFICIENTS CIM(5,11,11) AND NINPUT, XIMIN, XIMAX. NDEGX1, UIMIN, UIMAX, NGROUI, UZMIN, U2 MAX ANO NGRDUZ MUST BE READ IN MAIN PROGRAMCHRITTEN BY THE USERI AND TRANSFERRED TO this program through the common statement. the model CoEfficients hhich are identified by the program 'SYSIDI' MUST bE READ AS FOLLOWS: DO 10 IU $2=1$, NGRDUZ
OO 10 IUI $=1$ NGRDU1
10 READ(5,11(CIM(I,IU1,IU2),I=1,NDX(P1)
READ (5,1)(CIMII,IU1,IU2),I=1,NDXIP1)
OORMA
GHERE, U1 ६ U2 ARE DIVIDED INTO NGRDU1 \leftleftarrows NGRDU2 LEVELS AND NOXIPI-I=NDEGXI IS THE DEGREE OF POLYNOMIAL IN XI.
HHEN NINPUT, THE NUMBER OF INPUTS, IS IHEN U2 $=0$.
WHEN NINPUT, THE NUMBER OF INPUTS, IS 1 THEN U2 $=0.0$
COMMON/MNDTI/CIM(5,11,11), NINPUT, XIMIN, XIMAX,NDEGXI,UIMIN,UIMAX, NGRDUI, U2MIN, U2MAX, NGRDU2
IMENSION DIU1(2), DiU2(2)
DUI $=$ (UIMAX - UIMIN)/(NGRDUL-1)
IUI = UI -UIMIN)/DUI +1.0
IFITU1-LT-1) IU1 $=1$
IFIIU1.GE.NGRDU1) IU1 = NGRDU1 -
PERUI x (Ul - UIMIN - (IUI-1)*DUI $1 / D U 1$
IFININPUT.EQ.21 GO TO 10
$1 u 2=1$
60 TO 11
10 DUZ $=$ (UZMAX - U2MIN)/(NGRDUZ - 11
$I U 2=1 U 2-U 2 M I N 1 / D U 2+1.0$
IFIIUZ.LT.1) IUZ $=1$
IFIIUZ.GE:NGRDUZ) IU2 = NGRDUZ - 1
PERU2 $=$ (U2 - U2MIN- (IU2-1)*DUZ $1 /$ IUU2
$11 J=1 U 2-1$
$J=J+1$

$1=1+1$
DIUI(NU1) = CIM(J.I,NOX1P1)
DO 30 I $\times 1=1$, NDEGXI
 $\times 100 T=$ DlU1(1) + (DIU1(2) - DIU1(1))*PERU1 IFININPUT.EQ.2I GO TO 20
RETURN
20 D1U2(NUZ) $=$ X1DOT RETURN END

SUBROUTINE SYSIDZ

PIS PROGRAM IDENTIFIES A SINGLE-INPUT, SECOND-ORDER
SYSTEM. THE IOENTIFIED MODEL IS A POLYNOMIAL IN X I $\times 2$ and a table in ul. the coefficients of the polyNOMIAL ARE PRINTED/PUNCHEO FOR EACH STEP INPUT. SUBROUT INE REOUIREMENT-SE13., DET3, SIMOISSP) AND SURFIT
first data card has format gill and must contain
ndegxi and noegx - degrees of the polynomials in xi AND X2 RESPECTIVELY
NGRDX1 1 NGPDX2 AND NGRDU1 NUMERS OF LEVELS TNTO WHICH X1, X2 AND UI ARE DIVIDED RESPECTIVEIY PUNCH - NDEGX1=NOEGX2=3 AND NGRDX1=NGRDX2=NGRDUI=11 SECONO DATA CARD HAS FD OUTPUT IS DESIREDIO OTHERHISE IMIN, XIMAX, X2MIN, X2MAX, UIMIN AND UIMAX- MINIMU AND MAXIMUM VALUES OF $\times 1$; $\times 2$ AND UI RESPECTIVELY HERE MUST BE NGRDUI SETS OF TEST DATA AFTER THE FIRST
TWO DATA CARDS. IN THE T-TH DATA SET THE VALUE OF TH STEP IN UI = UIMIN + (UIMAX-UIMIN) *(I-1)/(NGRDUI-1). EACH DATA SET MUST FOLLOH A DATA CARD WHICH HAS FORMAT 4110 , F10.4 AND CONTAINS
NIC - NUMBER OF INITIAL CONDITIONSIABOUT 201 WHICH NEE NDT BE SAMESIN VALUE ε NUMBERI FOR ALL STEP INPUTS. BE CHOSEN ONLY ALONG THE LOWER HALF OF THE LOCUS OF initial conditions (vice versa for uimin).
NDATA - NUMBER OF SAMPLES IN EACH RESPCNSEIABOUT 1001 DIFF - 1 IF THE OERIVATIVES OF X1 AND X2 HAVE TO BE SMOTH - 1 IF SMODTHING IS REQUIREOIO OTHERWISEI TDELTA - THE SAMPLING INTERVALICONSTANT)
NOTE THAT IF IDIFF天O, ISMOTH AND TDELTA ARE NOT NEEDED. +
THE SAMPLED RESPONSES IN EACH DATA SET MUST BE SUPPLIED IN PUNCHED CARD FORM IN FORMAT 3X, TEII.4 AS FOLLOWS $\begin{array}{ll}\text { VALUES OF THE STATE } \times 1 & \text { FOR THE FIRST OF } \\ \text { VALUES OF THE STATE } \times 2 & \text { NIC INITIAL CONDITI }\end{array}$ VALUES OF THE DERIVATIVE OF X1 Values of the derivative of x2 I only If Idiff=ol Same as above for other initial conditions

DIMENSION X1S(100), X2S(1001, $\times 1051100), \times 205(100)$
DIMENSION X1W(11,11),X2W(11,11),X1DW(11,11),X2OW(11,111,NH(11,11) DIMENSION C1M(5,5),C2M(5,5),2×1(121),2×2\{121), $2 \times 10(121\}, 2 \times 20(121)$
2 FORMAT(IH)
FORMAT (BF10.3)
FORMAT (3X,7E11.
6 FORMAT (4110, F10.4)
91 FORMAT (1H1; 9x, ithe identified model is a polynomial in xi and xz IAND A TABLE IN UL', 1 , IOX, "THE COEFFICIENTS OF THE POLYNOMIAL FOR WRITE $(6,91)$
READ $(5,4)$ NDEGX1,NDEGX2,NGRDX1,NGROX2,NGRDU1, IPUNCH
READ (5,3) XIMIN, XIMAX, X2MIN, X2MAX,UIMIN,UIMAX

NOX2P1 $=$ NDEGX2 +
GXX1M1 $=$ NGRDX1 -1
HEX2M1 $=$ NGRDX2 -1

DO 200 IUl=1, NGRDU1
$20 \mathrm{I}=1$, NGXIM1
DO $20 \mathrm{~J}=1, \mathrm{NG} \times 2 \mathrm{M}$
$\times 1 W(1, J)=0.0$
x $10 \mathrm{~L}(\mathrm{I}, \mathrm{J})=0.0$
$\times 20 \mathrm{H}(\mathrm{I}, \mathrm{J})=0.0$
20 NWII, J) $=0$
READ $(5,6)$ NIC, NDATA, IDIFF, ISMOTH, TDELTA DEAD 30 IT 5) $=1$, NIC
READ(5,5)(x2S(1); $1=1$; NOATA $)$
IFIIDIFF.EQ. 01 GO TO 21
IFIISMDTH.EQ. 01
GO TO 22
IFIISMDTH.EQ. 01 GO TO 22
CALL SE13(x1S, X1S, NDATA, IER)
22 CALL DET3(TDELTA, $\times 15, \times 1 D S$, NDATA, IERI GO TO 23
21 READ(5,5)(x10S(1),1=1,NDATA)
23 READRS,5)(X2DSTA $1=1$,NDATA
23 OO 30 IE1,NDATA
$11=(x 1 S(I)-\times 1 m I N) / 0 \times 1+1.0$
$12=(x 2 S(I)-\times 2 M I N) / 0 \times 2+1.0$
IF(11.LT.1) I1 $=1$
FIT1.GT-NGXIM1) II = NGXIMI
IF(I2-LT.11 I2 = 1
x1w(I1,12) $=x 1 w(11,121+\times 15(1)$
$\times 2 w(11,12)=\times 2 w(11,12)+\times 25(1)$

$\times 2 \mathrm{DH}(11,12)=\times 2 \mathrm{DH}(11,12)+\times 20 \mathrm{~S}(1)$
30
$k=0$
0040 I1=1,NGX1M1
IF $\mathrm{NW}(12=1, \mathrm{NGX2M1}$
F
$K=K+1$
$D E N O M$
ENNOM $=$ NW (T1,12)
$2 \times 1(k)=\times 1 H(11,12) / D E N O H$
$2 \times 2(x)=\times 2 W(11,12) / 0 E N O M$
$2 \times 1 D(K)=X 1 D H(I 1,12) /$ IDENOM
$\begin{aligned} & 2 \times 20(K) \\ & \text { CONTINUE }\end{aligned}=\times 20 W(11,12) / 0 E N O M$
40
CALL SURF 1 T $2 \times 1,2 \times 2,2 \times 1 D_{0} K$, NDEG $\times 1$, NOEG $\left.\times 2, G 1 M\right)$ IF(IPUNCH.EQ.O) GO TO 50
WRITEIT,5)(CCIM(I,J),I=1,NDX1P1), JE1,NOX2P1)
50 WRITE(6,5)(1C1M(I,J), I=1,NDX1P1),J=1,NDX2P1) CALL SURFIT($2 \times 1,2 \times 2,2 \times 2 \mathrm{D}, \mathrm{K}$,NDEGX1, NDEGX2,C2M) IFIIPUNCH.EQ.0) GO TO 51
51 WRITE(6,5)(IC2MII,J), I=1,NOX1P1),J=1,NOX2P1)
200 WRITE(6.2)
RETUR
END

SUBROUTINE SURFIT(X,Y,Z,N, NDEGX, NDEGY,C)
 CALLING RE Quirements
x array dF values of first independent variable ARRAY OF VALUES OF SECOND INDEPENDENT VARIABLE MIMENSION OF X OR Y OR I IMXIMUM ON OFE ORY OR 2 Maximum oegree df the polynomial in $x ~$
Maximum degree of the polynomial in y RESUTING COEFFICIENT MATRIX FOR THE RELATION

NDEGX NDEGY

 ubprogram requirement SIMQ TO SOLVE LINEAR SIMULTANEOUS EQUATIONSISSPIDIMENSION X(1),Y(1),L(1),C(5,5), XKPNMI(11), YKPNM1(11), A(625), B(25) NXP1 $=$ NDEGX +1
NKT $2=$ NDEGX*2
NYT2 $=$ NDEGY*2
LENTHB = NXP $1 *$ NYPI
ENTHA $=$ LENTHB*LENTHB
(IB) $10=0.0$
10 bitbl $=0.0$
$11 \Delta(1 A)=0.0$
Do $100 \mathrm{~K}=1, \mathrm{~N}$
IFINXT2.EQ.OI GO TO 21
DO 20 IX=1, NXT2
$20 \operatorname{XKPNM1}(1 X+1)=$ XKPNMI $11 X \mid * X(K)$
IFINYT2.EQ.OI GO TO 31
DO 30 IYエ1;NYT2
31 YAPNMI
DO 100 IQ 0 I.NYP 1
DD 100 IP $=1$, NXP 1
IA $=$ IA
IA
IA
I LENTHE
DO $40 \mathrm{~J}=1, \mathrm{NYPI}$
IARG $=$ IARG + LENTH
40 A(IARG) $=A(I A R G)+X K P N M I(I P+I-1)$ \#YKPNMI(1Q+J-1)
$00 \mathrm{~B}(I A)=\mathrm{B}(1 \mathrm{~A})+\mathrm{Z}(\mathrm{K})$ \#XKPNMLIP $)$ \#YKPNA1(IQ
B(1) $=B(1 / / A(1)$
60 TO 52
51 CALL SIMQIA,B,LENTHB,OI
$52 \mathrm{IJ}=0$
50
50
50
50
$I=1, N Y P I$
NXP
iJ $=1 \mathrm{IJ}+1$
50 C(I.J) = B(IJ) RETURN

SUBRDUTINE XDOTI2(X1,X2,U1, XLDOT, $\times 200 T$)

HIS SUBROUTINE EVALUATES THE DERIVATIVE FUNC TIONS XIDOT and $x 200 T$ for any Values of $\times 1$, $\times 2$ and $U 1$, SPECIFIED HROUGH THE ARGUMENTS OF THE SUBROUTINE. NOTE THAT THE MODEL COEFFICIENTS CIMI5,5,111,C2M(5,5,11) AND UIMIN, AAIN PROGRAMIHRITTEN BY THE USER) ANO TRANSFERRED T this subroutine through the common statement. the MODEL COEFFICTENTS which are identified by the program SYSID2, MUST EE DO 10 K=1, NGRDU1
READ(5,11(1C2M(1,,$K), 1=1, N D \times 1 P 11, j=1, N D \times 2 P 1)$
1 FORMAT 3 3x,7E11.4)
WHERE, UI IS DIVIDED INTO NGRDU1 LEVELS AND
NDXIPI-1 NDEGXI AND NDX2Pl-1 OF THE POLYNOMIALS IN XI AND X2 RESPECTIVELY.
OF THE POLYNOMIALS IN XI AND X2 RESPECTIVELY.
COMMON/MNDT $12 /$ CIM($5,5,11), C 2 M(5,5,11)$, UIMIN,UIMAX,
1 NIMENSION XIDEGX1, NDEGX2, NGRDU1
DIMENSION X1DU(2), $\times 2$ OU($21, \times 1$ PNML 15$), \times 2$ PNM1 151
NDXIP1 $=$ NOEGX1 +1
NDX2P1 $=$ NDEGX2 +1
NGUIM1 $=$ NGRDU1 -1
DUL = UUIMAX - UIMINI/NGUIML
TUI = UL - UIMIN)/DU1

IFINDEGXI.EQ.01 60 TO 11

10×1 PNM1
11×2 PNM1 $1+1)=1.2$
1.0
X2PNM1(1) $=1.0$
IFINDEGX2.
F(NDEGX2.EQ=0) GO TO 21
20×2 PNM $1=1+1)=\times 2$ NDEGM $(1) * \times 2$
$21 \mathrm{DO} 30 \mathrm{NU}=1,2$
IUL $=1 U 1+1$
$\times 10 U(N U)=0.0$
$\times 1 D U(N U)=0.0$
$\times 2 O U(N U)=0.0$
DO $30 \mathrm{~J}=1$, NDX2P1
SUM1 $=0.0$
SUM2 $=0.0$
DO $40 \quad I=1$, NDXIP 1
SUM1 $=$ SUM1 + CIM(I,J,IUI)*XIPNM1(II

$\times 1 D U(N U)=\times 10 U(N U)+$ SUM1 $* \times 2$ PNHI (J)
30 X2DU(NU) $=\times 2 D U(N U)+$ SUM2*X2PNH1(J)
x1DOT $=\times 1 D U(1)+\{\times 1 D U(2)-\times I D U(1)) \neq P E R U 1$ X2DOT $=\times 2 D U(1)+(X 2 D U(2)-\times 2 D U(1))$ *PERU1
RETUR
END

APPENDIX B

CONVERSION SUBROUTINE

This appendix includes a conversion subroutine, CONVRT, which can be used to generate the coefficients of a model form which is tabular both in X and U or polynomial both in X and U. This subroutine requires the coefficients of the standard form of the model which are obtained by SYSID1 or SYSID2 in Appendix A. In addition, proper versions of the subroutines XDOT1 and XDOT12 which can use the model coefficients generated by CONVRT are also presented. A11 of these subroutines contain the necessary explanation.

SUBROUTINE CONVRTINORDER,NINPUT, MFORM,

THIS SUBROUTINE IS PREPARED FDR FIRST-DROER SYSTEMS ANO SECOND-ORDER SYSTEMS TO GENERATE THE COEFFICIENTS OF MODEL FORM WHICH IS COMPLETELY TABULAR OR COMPLETELY POLYNOMIAL IN THE STATES AND IN THE INPUTS. THE COEF--
FICIENTS OF THE MIXED FDRM OF THE MODEL WHICH ARE DBTA-+ INED BY THE SUBROUTINE SYSIDI OR SYSIDZ ARE READ IN BY + THIS PROGRAM AS INPUT DATA. THE GENERATED COEFFICIENTS+ ARE PRINTED IN THIS SUBROUTINE. HOWEVER, THESE WILL BE+ AVAILABLE IN THE USER HRITTEN MAIN PROGRAM THROUGH THE COMMON (BLOCKI STATEMENT IF PUNCHED OUTPUT IS DESIREO.
COEFFICIENTS CC2 ARE INDENTED FDR CONVENIENCE.

The explanation for the arguments is as follows: NORDER - 1 FOR FIRST-ORDER SYSTEMS
NINPUT - 1 FOR SINGLE-INPUT SYSTEMS
FOR DUAL-INPUT SYSTEM
NOTE: THE CASE WHERE NORDER \sim NINPUT=2 IS NOT CONS IDERED
NOTE THE QUANTITIES WHICH ARE TRANSFERRED FROM A MAIN PROGRAM (WRITTEN BY USER) THROUGH THE COMMON (BLOCK) TATEMENT. THE FOLL OWING IS THE EXPLANATION:
MODEL - THREE DIMENSIONAL ARRAYS
CC1 AND CC2 - THE COEFFIGIENTS OF THE DESIRED FORM XIMIN, X1MAX, X2MIN, X2MAX, UIMIN, U1MAX, U2MIN AND U2 MAX ARE THE MINIMUM ANO THE MAXIMUM LIMITS ON $x 1, \times 2$, U1 AND UZ RESPECTIVELY
NGRDX1, NGRDX2; NGRDUL AND NGRDUZ ARE THE NUMBERS OF LEVELS INTO WHICH X1, $\times 2$, UI AND U2 ARE DIVIDED THE , NDEGX1, NDEGU1 AND NDEGU2 ARE THE DEGREES OF THE POLYNOMIALS IN X1, X2, U1 AND U2 RESPECTIVELY
NOTE: WHEN A TABULAR FORM DF THE MODEL IS DESIRED,
noegul and noeguz need not be spectfied.
for a single input systen ngrduz $=1$ and ndeguz $=0$

subroutine reouirement.

CURVFT - FOR FITTING CURVES THROUGH DATA PDINTS IN A SIMO - LEAST SQUARES SENSE I SEE APPENOIX A): FOR SOLVING LINEAR ALGEBRAIC EOUATIO

COMMON/BLOCK/C1(11,11,11),C2(11,11,11),CC1(11,11,11),CC2111,11,11) *XIMIN, XIMAX,NGRDX1,NDEGX1,X2MIN,X2MAX,NGRDX2,NDEGX2, U1MIN, U1MAX, NGRDU1, NOEGU1, U2M 1 N, U2MAX, NGRDU2, NDEGU2 DIMENSION X1 $211, \times 2121), \mathrm{U1}(21), \mathrm{U}(21), \times 1 P N M 1(10), \times 2 P N M 1$
1

${ }_{1}^{01}$

FORMAT (1 H2
 FORMAT $\{1 \mathrm{H}$)

FDRMAT $(3 \mathrm{X}$, TE11. 4)

4 FORMATI $3 x, 11 E 11,4$)
6 FORMAT(IHI,2X, 'THE FOLLOWING COEFFICIENTS OF A MOOEL FORM, WHICH I is tabular in The inputis) ano polynamial in the state si, $, 0,3 x$,
2 'WERE REAO IN:'1//
Tformatilihl, 2X.ithe following are the coefficients of the desired f 1ORM: ', $1 / 1)$
WRITE(6,6)

NOXIP1 $=$ NDEGXI + IFINORDER.EO.2) GO 1022
IFININPUT.EQ.1) NGRDU2 $=1$
$\begin{array}{ll}\text { DO } 21 & K=1, \text { NGRDU2 } \\ \text { DO } 21 \\ \mathrm{~J}=1\end{array}$
DO 21 J=1, NGRDU1
21 WRITE($6,41 /(1) I I, J, K), I=1 ; N D X I P 1)$
60 TO 25
22 NDX2P1 $=$ NDEGX2 +1
OO 23 K=1, NGRDU
WRITE(6,2)
$\operatorname{READ}(5,3)$ ($(C 2(1, j, K), i=1, N D X I P 1), j=1$, NDX2P1) OO 23 L=1, NOX2PL
WRITE $(6,4)(C 1(I, L, K), I=1, N D X 1 P 1)$
WRITE(6,5$)(C 2(I, L, K), I=1, N D X P I)$
C-- 25
WRITE (6,7)
NGXIM1 $=$ NGRDXI -1
OXI = (XIMAX - XIMINI/MGXIMI
(f1
X1(1) $=$ XIMIN
$30 \begin{aligned} & 001(1+1 \div 1, N G X 1 M 1 \\ & \times 1(1+1)=\times 111)+0 \times 1\end{aligned}$
IF (NORDER.EQ.2: GO TO 61
$\begin{array}{lll}D O & 51 & K=1, N G R D U 2 \\ 00 & 51 & J=1, N G R D U 1\end{array}$

suml $=0.0$
DO 40 Li 1 , NOXIPI
$40 \operatorname{SUn} 1=\operatorname{sum} 1 * x_{1}(1)$
$50 \operatorname{cCl}(I, J, k)=\operatorname{SUM}$
CC1 (I,J.K) = SUM1 C1 (NOX1P1+1-L,J,K)
RETURN
$61 \begin{aligned} & \text { NOX2P1 }=\text { NOEGX2 } \\ & \text { NGX2m }=1 \\ & \text { NGROX2 }\end{aligned}$
$\mathrm{NGX2M}^{2}=$ NGROX2 ${ }^{2} 1$
$0 \times 2=(\times 2$ max
$\times 211)=\times 2$ MIN
DO $62 \mathrm{I}=1$, $\mathrm{NGX2M1}$
C- 62
x2(1+I) $=\times 2(1)+D \times 2$
Do 91 IU1=1, NGRDUI
WRITE 6,2$)$
$\begin{array}{cc}0091 & 1 \times 2=1 \text {, NGRDX2 } \\ \text { DO } 90 \text { IXI }\end{array}$
X1PNM1(1) $=100$
XIPNHI(1) E1.0
IFINDEGXI.EO.O) 60 TO 82
DO G1 I=1, NDEGX:

```
    91 XIPNMI(141) = XIPNHL(I)*xi(IXI)
    82 X2PNMII1) = 1.0
        IF(NDEGX2.EO.0),GO TO 8
    DO A3 1=1;NDEGXZ
    83 X2PNHI(1+1)= X2PNM1{1)*X2(1x2)
84 sim1x2 = 0.0
    Sum2x2 = 0.0
        DO B6 J=1;NDX2P1
        Sumix1=0.0
        SUH2\times1 = 0.0
        SUMIX1=SUMIX1 + C1(I,J,IU1)*X1PNM1(I)
    85 SUM2\times1 = SUM2X1 + C2(I,J,IUI)*XIPNMI(I)
        SUM1\times2=SUM1X2 + SUM1X1*X2PNH1(J)
    86
----
CC1(1x1,IX2,IU1)= Sum1x2
    WRITE(6,4)(CC1(1,I\times2,IU1),I=1,NGRDX1)
    91 HRITE(6,5)(CC2(1,1\times2,IU1),I=1,NGRDX1)
        RETURN
100 NGUIMI = NGRDU1 - 1
    NGUIM1 = NGRDU1 - 1
        DUI = (UIMAX - UIMINI/NGUIMI
        Ul(1) = UIMIN
    110 U1(1+1): =1,NGUIM1
110 Ul(I+1) * Ul(I) OUl (81
00140 IU2 \(=1\), NGRDUZ DO 140 IX1=1, NOXIP1
DO 120 NU1=1, NGRDU1
120 Y11NU1) \(=\) C1(IX1,NU1,NGRDU2 CALL CURVFTIU1, Y1, NGRDU1 , NDEGU1, COEF 1
130 WC1(IXI,1U1,NGROUZ) \(=\) COEFIIIUI
140 CONTINUE
IFININPUT.EO.2) GO TO 151 DO 150 IUI=1, NDUIPI DO 150 ( 5 )(WC11I,IU1,1), I=1,NDX1P1)
```



``` RETURN
151 NDU2P1 \(=\) MDEGU2 + DU2 \(=\) (U2MAX - U2MIN)/NGU2MI U211) = U2HIN
\(152 \begin{aligned} & \text { DO } 152 I=1 \text {, NGU2M1 } \\ & U 21+11) \\ & =U 2(1)+\text { DU2 }\end{aligned}\) DO \(180 \quad 1 U 1=1, N D U 1 P 1\)
\(D O \quad 180 \quad 1 \times 1=1, N D \times 1 P 1\) DO 160 NU2 \(=1\), NGRDUZ
160 Y 1 (NU2) \(=\) WC1 \(1 \times 1 \times 1\) IU1.,IU2) CALL CURVFTIU2, Y1, NGRDU2, NDEGU2, COEF1)
170 CC1ISXI,IU1,IU2) \(=\) COEFI(IUZI
```

180 CONTINUE
$00171 K=1$, NDU2P1
WRITE $(6,2)$
OD 171 J=1, NOU1P1
171 WRITE $(6,4)(C C 1(1, J, K), 1=1$, SOX1P1)
181 DO 200 1 $1 \times 2=1$, ND $\times 2$ PI
00200 IX1*1,NOX1P1
DO 190 NUI=1 NGRDUI
Y1 (NU1) $=$ CII $1 \times 1,1 \times 2$, NW1)
190 Y2(NU1) = C2(1×1,IX2,NU1)
CALL CURVFT (U1, Y1, NGRDU1, NOEGU1, COEF 1 00191 IU1 $=1$, NOUIPI
CCIIIX1,IX2,1U1) $=$ COEF1(1U1)
91 CC2 1×1,1×2,IU1) $=$ COEF211U11
200 CONTINU
RITE 201 K $=1$; NDUIPI
OO $201 \mathrm{~J}=1$, NOX2P1
201.

21 WRITE (6,S)ICC2II,J,K),I $=1$, NDXIPII RETUR
END

SUBROUTINE XDOTI(K1,U1,U2, XIDOT)

 THIS SUBROUTINE EVALUATES THE DERIVATIVE FUNCTION XIDOT FOR ANY VALUES OF XI, UI AND U2, SPECIFIED THROUGH THE
ARGUMENTS OF THIS PROGRAM. NOTE THE QUANTITIES HHICH ARE TRANSFERRED FROM A MAIN PROGRAM THROUGH THE COMMON (MNDTI) STATEMENT. THIS PROGRAM IS PREPARED FOR FIRST ORDER SYSTEMS. THE COEFFICIENTS CI OF THE MDDEL WHICH IS COMPLETELY TABULAR OR COMPLETELY POLYNOMIAL IN XI,
for the variables used in the common statement:
NINPUT - 1 FOR SINGLE-INPUT SYSTEM
MFORM - 2 FOR DUAL-INPUT SYSTEM
mFORM - O FOR TABULAR FDRM
XIMIN, XIMAX, UIMIN, UIMAX, UZMIN AND U2MAX ARE THE
HINI MUM AND THE MAXIMUM LIMITS AN XI
NGRDX1. NGRDUL ANO NGRDU2 - THE NUMBERS OF LEV ciL S
INTO WHICH XI; UI AND U2 ARE DIVIDED.
NDEGX1, NDEGU1 AND NDEGU2 - THE DEGREES OF THE POLY
NOMIALS IN XI, UI ANO U2 RESPECTIVELY.
INPUT SYSTEM, NGRDU2 $=1$ AND
If the coefficients ci are generated by the subroutine
CONVRT, THESE MAY BE READ IN AS FOLLOHS:
3 FORMAT (3X,7E11.4
Do $10 \mathrm{~K}=1$, NU2
$10 \operatorname{READ}(5,3)(C 1(1, J, K), i=1, N \times 1)$
WHERE, NX1 $=$ NGROX1, NUL $=$ NGRDU1 AND NU2 $=$ NGROUZ FOR A

COMMON/MNDT1/C1111, 11,111 , NINFUT, MFORM, XIMIN, XIMAX,NGRDX1, HOEGX1

XIPNMI(10), U1PNMI (10), U2 PNM1 (10)
IFIMFORM.EQ.1) GO TO 300
OXI $=$ (XIMAX - XIMINI/NGXIMI
NXI $=(X 1-X 1 M 1 N) / D \times 1$

$1=N X 1+1$
IFINGRDUI.NE. 11 GO TO 210
DTX1 $=$ C1(1,1,1)
OTX2 $=\mathrm{Cl}_{\text {Cl }}(1+1,1,1)$
O NGUIM1 $=$
OUL $=$ (UIMAX - UIMINI/NEUIMI
NUL = UUI - UIMIN)/DUI
IF(MU1.LT.O) MUI =
IF (NUL.GE.NGULM1) NUL = NGUIM1 - 1
PERUI = (UL - UIMIN - OUL*NULI/DUL
IFININPUT.EO.2) GO TO 220
orxull $=C 1+1, J, 1$
0 Txul2
OTXU21 = C1 $(1 ; 1+1+J+1)$
OTXU22 = C1 $11+1 . J+1.11$
220 TO TO 230
DUZ $=$ (UZMAX - U2MInt/mGUZMI
NU2 = (U2 - U2NINI/DU2
IFINUZ.LT.01 NUZ $=0$
IF NNU2. GE. HGU2N1) NU2 = NGU2H1 - 1
PERUZ
$\mathrm{K}=\mathrm{NUZ}+1$

OTXU12 = C1 $1, \cdots+1, K)+(C 1(I, J+1, K+1)-C 1(1, J+1, K)) * P E R U 2$

230 DTX1 $=$ DTXU11 + (DTXU12 - DTXU11) *PERU1
DTX2 * DTXU21 + (DTXU22- DTXU211*PERU1
RETURN
300
NDXIP1 $=$ MOEGX1
NDUIPI
1FININPUT-EQ.1) NOEGU2 $=0$
NDU2P1 $=$ NDEGU2 +
X1PNML (1) $=1.0$ co TO 311
IF (NDEGX1.EQ.0)

310 x 311 NMM1 $1+1$.
U1PNM1(1) $=1.0$
IF(NDEGU1.EQ.0)
DO 320 I=1,NDEGU1 121
320 U1PNH1(I +1) = UIPNMIII)*U1
321 U2PNH1(1) $=1.0$
1 F(NDEGU2.EO.0) GO TO 331
330 U2PNM1 (I +1$)=$ U2P
331×1 DOT $=0.0 \quad$ 2PAM1 (1) $* U 2$
DO. 360 IU2=1, NDU2PL
Sum $1 U 1=0,0$
SUm $141=0.0$
DO 350 IUl
DO 350 IU1=1, NDUIPI
SUm $1 \times 1=0.0$

350 SUMIUI = SUMIUI + SUMIXI*U1PIHIIIU1
360 XIDOT $=$ XIDOT + SUMLUI*UZPNMIIIUZI
RETUR
END

SUAROUTINE XOOT $12\{\times 1, \times 2, U 1, \times 100 T, \times 200 T 1$
this subroutine evaluates the:derivative functions xidot + AND X2DOT FOR ANY VALUES OF XI, X2 AND UL, SPECIFIED THROUGH THE ARGUMENTS OF THIS PROGRAM. NOTE THE QUANTITIES WHICH ARE TRANSFERRED THROUGH THE COMMON STATEMENT (MNDTI2) FROM A MAIN PROGRAM. THIS SUBROUTINE IS
PREPARED FDR SINGLE-INPUT, SECOND-ORDER SYSTEMS. THE PREPARED FOR SINGLE-INPUT, SECOND-ORDER SYSTEMS. tabular or completely polynomial in $\times 1$, xi and ul are USED. THE FOLLOWING IS THE EXPLANATION FOR THE VARIABLES USED IN THE COMMON STATEMENT:

mFORM - O FOR tabul ar form

NGRDX1, NGRDX2 AND NGRDU1 - THE NUMBERS OF LEVELS

NDEGX1, NOEGX2 ANO NOEGUI - THE DEGREES OF THE POLY NOHIALS IN XI, X2 AND UI RESPECTIVELY.
NOTE: FOR SYSTEM NITH NO INPUT, NGRD

NDEGU1 $=0$
THE DIMENSIONS OF THE COEFFICIENTS CI(NXI,NX2,NUII ANO C2(NX1,NX2,MU1) ARE AS FOLLOWS:
NX1 = NGRDX1, NX2 = NGPDX2 AND NU1 = NGRDU1 HHEN THE MODEL FORH IS TABULAR, AND FOR A POLYNOMIAL MODEL FO

COMMON/MNOT12/C1(11,11,11),C2111,11,11), X1MIN, X1MAX,NGRDX1, ${ }^{\text {NDEGX1 }}$,
1 MFORM,X2MIN,X2MAX, NGRDX2; NOEGX2,UIMIN,U1MAX,NGRDU1 ,NDEGU1
DIMENS ION X1PNMI (10), X2PNW 11101 , U1PNMI (10)
IFIMFORM.EO. 11 GO TO 300

DXI $=(X 1$ max $-\times 1$ ININ $) / N$
NXI $=(X 1-X I M I N 1 / D X I$

IF (NXI.GE GGXIM1) \quad NXI $=$ MGXIM1
PERXI = (X1 - X1MIN - NX1*DX1I/DXI
$1=\mathrm{NXI}+1$
$\mathrm{NGX2m1}$
+
NGR
NGX2M1 $=$ NGRDX2 -1
$\mathrm{DX2}=1 \times 2 \mathrm{NAX}-\times 2 \mathrm{MINI} / \mathrm{NGX2MI}$
IFINX2.LT.0) $N \times 2=0$

JFiNK2 + 1 (NGROU1.NE. 11 GO TO 210
$\times 10711=C 1(1, J, 1)$

$\times 10 T 21=C 1(1+1, J, 1)$
$\times 10 T 22=C 1(1+1, J+1,1)$
$\times 20 \mathrm{~T} 11=\mathrm{Cl}(1+1 \cdot \mathrm{~J}+1$.
$\times 20 \mathrm{~T} 11=\mathrm{C2}(1, \mathrm{~J} 1)$
$\times 20121=\mathrm{C} 2(1+1+\mathrm{J}, 11$
$\times 20822=C 2(1+1 ; J+1,1)$
GO TO 220

210 MGUIMI = MGRDUI - 1
DUI = IUIMAX - UIMIMI/NGUIMI
NUL E (UI - UIMIN)/OU1

$\mathrm{K}=\mathrm{NUL}+1$

$\times 20 T 12=(2(1, J+1, K)+(C 2(1, J+1, K+1)-C 2(1, J+1, K)) \neq P E R U 1$
 $\times 10 T 11=C 14, J, k)+\left(C 1\left(1, J_{0} x+1\right)-C_{1}\left(1, J_{i} k \mid\right)=P E R U 1\right.$
X10T12 $=C 1(1, j+1+K)+C 1(1, j+1, K+14-C 1(I, J+1, K) 1 * P E R U 1$

220
DT1111 = XLOT11 + (X1DT12- X XDT111\#PERX2
DT2x11= $\times 20 T 11+(\times 20 T 12-\times 20 T 11) * P E R \times 2$
DT2×12 $=\times 20 \mathrm{~T} 21+(\times 2 \mathrm{DT} 22-\times 2 D T 21$ I*PER $\times 2$
$\begin{aligned} & \text { X1DOT }=\text { DT1X11 }+(D T 1 \times 12-\text { DT1 } \\ &\times 200 T 11) * P E R X 1\end{aligned}$
X2DOT $=$ DT2X11 + (DT2X12 - DT2X11)*PERXI
300
$\begin{aligned} & \text { NOX1P1 }=\text { NDEGK1 } \\ & \text { NDX2P1 }\end{aligned}=$
NOX2P1 $=$ NOEGX2 +1
NDUIPI $=$ NDEGU1 +1

310×1 PNMLII $+11=\times 1$
IF (NDEGX2.EQ.0) GO TO 321

IO 330 I= i, NDEGU1
330 U1PNMLII $+11=$ UIPHM1III*UI
331. $\times 100 \mathrm{~N}=0.0$

DO $360 \quad 101=1$, NDUL $P 1$
Sum1 $360=0.0$
SUM2 $2=0.0$
SUM2X2 $=0.0$
SO 350 1×2=1, Nox2P1
$\operatorname{sum1x1}=0.0$
SUM $2 \times 1=0.0$
OO 340 I $\times 1=1$, moxiPI
SUM1X1 $=$ SUH1 $1 \times 1+C 141 \times 1,1 \times 2$, IU1 $1 * \times 1$ PNH1 (IXI)

RETU
END

APPENDIX C

SUBROUTINES USED IN THE EXAMPLES

Abstract

This appendix includes the computer subroutines which were used in Examples 1,2 and 3 for modal analysis. Each example used different versions of the subroutines STEADY and LINRIZ. These programs contain the necessary explanation. Note that the two subroutines used in Example 3 can be used with the coefficients for the standard torm of the model obtained by SYSID2 for second-order systems.

SUBROUTINE STEADVIUISTEP, XISSI

SUBROUTINE LINRIZIXIDP,UIOP, A, 81

SUBROUTINE STEADY(UISTEP,U2STEP,XISSI

```
        THIS SUBRDUTINE WAS USED IN EXAMPLE }2\mathrm{ FOR OETERMINING 
        THE STEADY-
    THIS SUBROUTINE IS PREPARED FDR DUAL-INPUT, FIRST-ORDER
    SYSTEMS. THE COEFFICIENTS CICNGRDXI,NGROU1,NGRDU2I
    THE USED.
note the guantities mhich are transferred from a main
PROGRAM THROUGH THE CGMMOM (BLOCK) STATEMENT.
```

COMMON/BLOCK/C $1111,11,111$, XIMIN, XI MAX, NGROXI, UIMIN, UI MAX, NGRDU1, ${ }^{1}$ DIMENSION XIDEF(21) U2MX, HGRDU2
NGXIM1 $=$ NGRDX1 -
DXI $=1 \times 1$ MAX $-\times 1$ MINJ/NGXIMI
NGUIM1 $=$ NGRDUI -1
DUI = UIMAX - UIMINI/NGUIMI

IF (IUI-LT.OI $101=0$
PERUI $=$ (UISTEP - UIMIN - DUI*IUII/DUI
$J=1 I_{\text {I }}+1$
IFINGROU2.NE. 11 GO TO 41
DO 30 IX1=1,NGRDX1
$(1(1 \times 1, J, 1)+(C 1(1 \times 1, j+1,1)-C 1(1 \times 1, J, 1)) \neq P E R U 1$
GO TO 10
NGU2M1
NGZ $=$ NGZMAXDU2 - 1
OUZ $=$ (U2MAX - U2MINI/NGU2ML
IUZ $=$ UU2STEP - U2MINI/NGU2M1
FiIU2.LT.OI IU2 $=0$
IFIIU2.GE.NGU2M1) IU2 = NGU2M1 - 1
PERU2 = NU2STEP - U2MIN - DU2*IU2I/DU2
$K=142+1$
DO 40 IXI $=1$, NGRDXI

10 IEF $=2$
DO 20 IXI=1,NGRDXI
PFX1Der(IX1).LE.0.08 GO TO 21
20 IEF $=1 \times 1$
21 IEF $=1 E F+1$
IFIIEFLLT. 21 IEF $=2$
PERXID $=$ ($0.0-\times 10 E F(I E F-1) 1 /$ (XIDEF(IEF) - XIDEF(IEF-1)
XISS = XIMIN + IIEF - 2I*DXI + DXI*PERXID
RETURN
END

SUBROUTINE LINRIZ(XIOP, ULOP, UZOP, A, B)

```
        THIS SUBROUTINE WAS USED IN EXAMPLE Z FOR DETERMINING
        EQUATION LINEARIIED ABOUT THE POINT (XIOP,UIOP,UZOP)
    THIS SUBROUTINE IS PREPARED FOR DUAL-INPUT, FIRST-DROER
        SYSTEMS. CIINGROX1, NGRDUI,NGRDU2I ARE THE COEFFICIENTS
        OF THE MODEL WHICH IS TABULAR IN X1, UI AND U2.
    NOTE THE QUANTITIES which are transferRED FRDm a maiN
        PROGRAM THROUGH THE COMMON (BLOCK) STATEMENT
COMMON/BLOCK/C1(11,11,111, XIMIN,X1MAX,NGROXI,UIMIN,UIMAX,NGRDUI.
UM2MIN,U2MAX,NGRDUZ
NGXIML = NGRDX1 -
OXI = (XIMAX - XIMIN)/NGXIMI
IX1 = (XIOP - XIMIN./DXI
IF(IXI-LT.0) IXI=O
IF(IXI.GE.NGXIM1)IXI = NGXIM1 - 1
PERX1 =1 1 + 1
NGUIMI = NGRDU1 - 1
OUL = (UIMAX - UIMIN)/NGUIMI
IUI = (UIOP - UIMINI/DUL
IFIIUL.LT.OT IUL=0
IFIIUI.GE.NGUIMISIUL = NGUIMI - I
J=IUL + 1.
NGU2M1 = NGRDU2 -
OU2 = (U2MAX - U2MIN)/NGU2M1
IUZ = (UZOP - U2MIN)/DUZ
IF(IU2.LT.O) IU2 = O
IF(IU2.GE.NGU2M1) IUZ = MGU2M1 -
PERUZ = IUZOP - U2MIN - IU2*DU2I/DU2
K=1U2 + 1
x1U111 = C1(I,J,k)+(C1(I,J,k+1)-C1(I,J,K))*PGRU2
X1U112=C1(1,J+1,K)+(C1(I,N+1,K+1)-C1{I,J+1,K1)*PERU2
X1U122 =C1(I+1,J+1,K)+(CI(I+1,J+1,k+1)-C1(I+1,J+1,K))*PERU2
x10x11 = x1u111 + (x1u112 - x1U111)*PERU1
x10x12 = X1UL21 +(x1U122 - x1U121)*PERU1
A = \x10x12-x10x11)/0X1
U1U211 = Cl(I,J,K) + (C1(I+1,J,K) - Cl(I,J,K))*PERX1
```



```
U1U222 = C1II,N+1,K+1) + C1(1+1,J+1, K+1)-C1(1,J+1,K+1) *PERXI
X1DU11=U1U211+(U1U212-U1U211)*PERU2
X1OU12 = U1U221 + (U1U22 - U1U221)&PERU2
B(1)=(x10U12 - x10N11)/DU1
x10U21 = U1U211 + (U1U221 - U1U211)*PERU
x1DU22 = U1U212 + {U1U222 - U1U212I*PERU1
8(2) = (X10U22 - X10U21)/DU2
RETURN
END
```


SUBROUTINE STEADY(UISTEP, X1SS,X2SS,NIT)

this sueroutine was used in example 3 for determining the STEADY-STAJE VALUES XISS AND X2SS FOR A STEP INPUT OF STEADY-STATE VALUES XISS AND X2SS FOR A STEP INPUT OF
UISTEP. XISS AND XZSS ARE FOUND BY SOLVING A SET OF THO NONLINEAR ALGEBRAIC EQUATIONS BY NEWTON RAPSON technioue. Nit is the number of iterations labour 20i.t
this subroutine is prepared for single-infut second-ardert SYSTEMS. THE COEFFICIENTS CI CNDXIPI, NOX2P1, NGRDUI I AND C2(NOXIPI,NDX2PI, NGRDU1) OF THE MIXED MODEL FORM, HHICH
IS TABULAR IN UI AND PQL YNOMIAL IN XI AND X2, ARE USED.t
note the ouantities which are transferred frbm a main PRDGRAM THRDUGH THE COMMON (BLOCK) STATEMENT. IF THE COEFFICIENTS C1 AND C2 WERE FOUND BY USING SYSID2 ISEE IN The main program (written br the useri:
3 FORNAT($3 x, 7 E 11: 4)$
OO 10 IUI=1,NGRDU1 $10 \operatorname{READ}(5,3)(1 C 2(1, J, 1 U 1), I=1$, NDX1P1), J=1;NDX2P1)

WHERE, NOXIPL $=$ ONE PLUS THE DEGREE OF THE POLYNOMIAL IN X1, NDX2PI = ONE PLUS THE DEGREE OF THE POLYNDMIAL IN X2 AND NGRDUL IS THE NUMBER OF LEVELS INTO WHICH

COMMON/BLOCK/C1 $(5,5,11), C 2(5,5,11)$, NDEGX1, NDEGX2,
DIMENSIDM SC1 (5,5),SC $2(5,5)$, IP
NDX1P1 $=$ NDEGX1 +1
NDX2P1 $=$ NDEGX2 +
NGUIMI = NGRDUI - 1
OUI $=$ (UIMAX - UIMIN)/NGUIM
IUI
IFIIUICLTOI IUI $=0$
IFIIUI.GEENGUIMII IUL = NGUIML -1
PERUI = UISTEP - UIMIN- OUIFIUIJIDUI
tul $=$ IUl +1

SC1(I,J) $=C 1(I, J, I U 1)+(C 1(I, J, I U 1+1)-C 1(1, J, I U 1)) * P E R U 1$
$S C 2(I, J\}=C 2(I, J, I U 1)+(C 2(I, J, I U 1+1)-C 2(I, J, I U 1)$
\qquad
$\begin{aligned} & x 15 s \\ & \times 255=0.0 \\ & 0.0\end{aligned}$
00200 IT=1,NIT
X1GESS $=$ X1SS
X2GESS $=x 25 S$

XIPNMI(1) = 1.0
IFINDEGXI.EQ.01 so TO 11

OO $101=1$, NDEGX
10 XIPNMI(ITI) = XIPNMI(1)*XIGESS
11 X2PNH111) = 1.0
IFSNDEGX2.EQ.OO GO TO 21
OO 20 I 1 . NDEGX2

$21 \mathrm{FL}=0.0$
F2 20,0
$0030 \quad j=1, ~ N D \times 2 P 1$
DO $30 \quad 1=1$, NDXIP1

- EVALUATE $A=$ OFI/DXIPNMI(I)*X2PNMI(J)
$A=0.0$
$B=0.0$
$B=0.0$
$C=0.0$
$C=0.0$
$D=0.0$
IFINDEGXI - EQ.OS 60 TO 41
00
00
00
00
$I=2, N D O X 1 P I$
EIM1 $\quad 1=2$ NDOXI

41 IFINDEGX2.EO.O) GO TO 51

EJMI $\mathrm{J}=\mathrm{J}=\mathrm{NDX}$

51 DELTA $=A * D-B * C$
SUB1 $=10 * F 1-B * F 21 / D E L T A$
SUB2 $=\{A * F 2-$ C*F1\}/DELTA
$\times 1$ SS $=\times 1 G E S S-$ SUB1
$\times 25 S=\times 2 G E S S-S U B 2$
200 CONTINUE
RETURA
END

SUEROUTIME LINRILIXIOP, X2OP,UIOP,A,BI

THIS SUBROUTINE WAS USEO IN EXAMPLE 3 for determining THE COEFFICIENT MATRICES A ANO B OF THE DIFFERENTIAL EQUATIONS LINEARIZED ABOUT THE POINT (XIOP, X2OP, UIOP). IN
THIS CASEA IS 2×2 ANO B IS 2×1.
This subrdutine is prepared for single-input second-order SYSTEMS. THE COEFFICIENTS CIINDX1PI;NDX2P1, NGRDUII AND* SYSTEMS, THE COEFFICIENTS CINN
C2INDXIP 1 , NDX 2 PI NGRDII OF THE MIXED MODEL FORM. WHICH
IS TABULAR IN UI AND POL YNOMIAL IN XI AND X2, ARE USED. IS TABULAR IN UI AND POL YNOMIAL IN XI AND $X 2$, ARE USED. NOTE THE OUANTITIES WHICH ARE TRANSFERRED FROM A MAIN PROGRAM THROUGH THE COMHON (BLOCK) STATEMENT If If THE
COEFFICIENTS C1 AND C2 WERE FOUND BY USING SYSID2 ISEE APPENDIX AI, THE FOLLOWING READ STATEMENTS MAY BE USED in the main program (hrittem by the useria

3 FORMAT(3x, 7E11,4)
READ (S, 3)((C1(I, J,IU1),I=1,NDX1P1), J=1, NDX2P1) 10 REAO(5,3)(IC2(I, J, IU1), I=1,NDX1P1), J=1, NOX2P1) where, noxipl $=$ ONE PLUS The degree of the palymomial IN X1, NDX2PI = ONE PLUS THE DEGREE OF THE POLYNOMIAL IN X2 AND NGRDUL IS T
THE INPUT IS DIVIDED.

COMMON/BLOCK/C1 $15,5,111, C 215,5,111$, NDEGX1, NDEGX2,
 DIMENSION $A(2,2), 8(2)$
NOXIPI = NOECX1 +
MDX2P1 $=$ NDEGX2 +
DUL $=$ (UIMAX - UIMIN)/NGUIMI
IUI = UUIOP - UIMINI/DU1
IFIIUI.LT. 01 IUI =
 PERUL = (UIOP - UIMIN - IU1*DU1)IOU1 $1 U 1=101+1$

XIPAM1 (1) $=1.0$
IFENDEGX1.EQ.0) 00 TO 11
$010 \mathrm{I}=1$, NDEGX1
10×1 PMinl $11+1)=$ XIPNHIII $1=\times 10 \mathrm{P}$
IF (NDECX2.EQ.01 CO TO 21
0020 I= 1 + NDEEX2
20×2 PNHI $(1)+1)=\times 2$ PMH1 $(1) * \times 20 \mathrm{P}$
21 U1 $=$ UIMIM + (INI-1) \#DU1 - DUL
OO 30 MUI-1,2
$U 1=U 1+O U 1$
X2DTUICNUI) $=0.0$
x18T0(mul) $=0.0$
$\times 207 U(M 11)=0.0$
$\times 2074(\mathrm{MLI} 1=0.0$
$0036=1$, स $6 \times 2 \times 1$
SUML $=0.0$
OO $35 I=1, \operatorname{MDXIPI}$
35

30 CONTINUE
B(1) $=$ (x10TU(2) $-\times 10 T U\{111 / D U 1$

$x_{1 \text { mmile }}=1.0$
F(NDEGX1.EQ.0) co TO 51
50 i=1, MOEGXI
50×1 PWM1KI+1I $=$ XIPNMIIII*xIO
51 X2FMMI(1) $=1.0$
O $60 \quad[=1$ EQ.01 GO 7061
DO 60 I=1, MDEGX2
60
$\begin{array}{rl}61 & A(1,1) \\ A(2.1) & =0.0 \\ & =0.0\end{array}$
IF (MOEGX1.EQ.0) CO TO 71
DO 70. $j=1, ~ M O \times 2 P 1$
DO $70 \mathrm{I}=2, \mathrm{MDX}$
$\mathrm{EIMI}=\mathrm{I}-1$
A(1,1) $=$ Al 2
70 A(2;1) $=A(2,1)$ EIM1*SC2(1;J)*X1P*M1(1-1)*X2PWM1 (S)
$71 A(1,2)=0.0$
$A(2,2)=0.0$
FIMOEGX2.EQ.0) RETURN

EJM1 $=\mathrm{J}-1$

RETURM
END

```
Z
VITA
Rajamouli Gunda
Candidate for the Degree of
Doctor of Philosophy
```

Thesis: IDENTIFICATION OF NONLINEAR DYNAMICAL SYSTEMS BY A MODIFIED DIFFERENTIAL APPROXIMATION TECHNIQUE

Major Field: Engineering

Biographical:
Personal Data: Born in Warangal, India, October 10 , 1941, the son of Mr. and Mrs. Venkataiah Gunda.

Education: Graduated from A. V. V. High School, Warangal, India, March 1961; received Bachelor of Engineering degree from Osmania University, India in March 1966; received the Master of Science degree from Oklahoma State University, Stillwater, Oklahoma in May, 1969; completed the requirements for the Doctor of Philosophy degree in May, 1971.

Professional Experience: Employed by Regional Engineering College, Warangal, India, as an associate lecturer from July 1966 to August 1967; employed by Oklahoma State University as a graduate research assistant from February 1968 to present.

Professional Organizations: American Society of Mechanical Engineers, Phi Kappa Phi.

