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NOMENCLATURE

Coefficient matrix of the linearized differential
equations (associated with the state vector)
Coefficient matrix of the linearized differential
equations (associated with the input vector)

A set of model coefficients (usually an array)
Standard deviation of the random variable Rj;
Computational effort without decomposition
Computational effort with decomposition

Vector of Functions (fy and fyp)

Number of pairs of initial conditions

Performance index

Constant of proportionality

Number of coefficients determined at a time
Number of grid divisions in the X-U hyperspace which
is considered to determine K. coefficients

Number of subperformance indices (PSSE)

Number of levels into which the k-th input is
divided

Modified sum of squared errors

Number of levels into which the i-th state is
divided

Number of model coefficients

Number of grid divisions in the total X-U hyperspace

i



NSR

Pt

SSE

™Uma x

min

Noise to signal ratio (0 to 1)

Tank pressure (Example 6)

Degree of the polynomial in xj; Cy

Degree of the polynomial in uj o,

Partial sum of squared errors

Vector of three random variables

Laplace transform operator

Vector of transformed (averaged) state variables
Sum of squared errors

Initial time

Final time

Settling time of the system

Vector of inputs (uy and up)

Vector of mgﬁ?%ﬁm limits of the inputs (u1 and uy)
Vector of minimum limits of the inputs (u1 and u2)
Vector of values of the inputs (u; and up) at the
operating point

Vector of values of the steps in the inputs
Capacitor voltage

Vector of state variables (x; and x5)

Vector of maximum limits of the states (xl and xp)
Vector of minimum limits of the states (x; and x5)
Values of the states at the operating point

Values of the steady-state vector

Vector of transformed (averaged) input variables
Partial derivative of F with respect to U

Partial derivative of F with respect to X



CHAPTER I
INTRODUCTION

If a mathematical model which describes the input-
output relation of a physical system is known, off-line
tests can be conducted efficiently and economically on the
model without disturbing. the. system. For example, an opti-
mum input, which causes the system to produce a desired
output, can be determined by perturbing the input to the
mathematical model and observing the output. Such a model
can be found by considering the fundamental physical phe-
ﬁomena governing the system. This procedure becomes diffi-
cult for complex systems. A system model can also be found
by using ene of many available identification techniques.
However, most identification techniques utilize large compu-
tational effort and/or some a priori knowledge about the
system. The technique presented in this thesis does not
require a priori knowledge. In addition, the computational

requirements are reduced.
System Identification

System identification is the process of determining a
suitable mathematical model for a.system from experiments

conducted on the system. An. impulse. or step response is



sufficient to identify a completely controllable linear sys-
tem. Such a simplified approach does not exist for nonline-
ar systems. The process of identifying nonlinear systems
consists of formulation of a system model with free parame-
ters and determination of these model parameters by minimi-
zing some performance index. Figure 1 illustrates the
general procedure of an. identification technique. The model
responses to test inputs need not be simulated for all the
techniques. In some techniques, the. model parameters are

determined uniquely.
Review of Literature

Identification techniques. which. are applicable to non-
linear systems can be broadly divided into the following
four classes; 1) Functional Power Series, 2) Pattern Recog-

nition, 3) State-Space(with known model form), and 4) State-

e %Pmm«mmwmmmm*wwwwxx
Space(with unknown model form). Only the relevant tech-
niques are discussed below.

Functional power series and pattern recognition tech-
niques are based on the fact that any system operates on an
input over certain interval of time and produces an output.
The identification problem is to find the present value of
the output y(tl) as a function of the input u(t) over an

interval tl-tsfitfst where ts is the settling time.

1 ’
Kwatny and Schen (19) represented nonlinear systems by

functional power series models as follows:
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y(ty) = agt 2 ajyi(ty)* 3 oaggyilty)y tg)+.. (1-1)
i i,

yi(ty) = /hi,(t)u(t-tl) dt (1-2)
4
where, hj(t); i=1,2,.. are some orthogonal functiens.

In a technique by Arozullah (2) the unknown system is
represented by a single-input,multi-oeutput linear part fol-
lowed by a multi-input, single-output, zéro-memory nonlinear
part. The linear part is formed by expanding the past his-
tory of the input in a Fourier series in terms of a set of
orthonormal functioens. The coefficients of this series are
inputs to the nonlinear part the output of which is a multi-
dimensional gating function and a piecewise multidimensional
linear function of these coefficients.

If the past of the input is sampled at n instants and
quantized into m levels, there will be mn possible input
patterns. One method of identification is to tabulate the
output for all the input patterns. This method, called the
table lookup method, requires prohibitively large cowputer
memory . The memory requirements can be reduced by using
pattern recognition techniques as discussed below.

Miller and Roy (21) proposed to measure certain feature
of the input instead of the entire pattern. From n samples
of the input pattern, only k samples are considered as a
feature. The method reduces the memory requirement from mn
to mk(n)!/(n-k)!(k)!. The memory requirement is further
reduced at the expence of accuracy by a "mode learning

machine" technique proposed by Roy and Schley (26).



As before, the past history of the input is sampled at n in-
stants to form an n-dimensional pattern space. The output
is quantized into p levels each of which is called a 'cate-
gory'. A category which. can be obtained from j patterns is
assumed to be obtained from only k 'prototype patterns'
where, k is less than j. To determine the output y(tl), the
input u(t) is sampled at n instants over the interval tl'ts
f;tfgtl and the closest prototype pattern is selected.

Most dynamic systems can be adequately described in
state variable notation by a set of first-order ordinary

differential equations of the form:

where, X, U and P are the state, the input and the parameter
vectors respectively. Identification techniques based on
state-space approaches require a model with known forms of
the differential equations. Usually an iterative method 1is
required to find the model parameters. Two state-space
techniques are discussed below.

A quasilinearization technique as presented by Bellman,
Kalaba and Sridhar (5), Sage and Eisenberg (27) and Allison
(1), can be used to determine the parameters in Equation
(1-3) by minimizing a general error squared performance in-
dex. This is accomplished by solving a sequence of linear
differential equations. If this sequence converges, the re-
sulting parameters are optimum. A wajor weakness of this

technique is that the above sequence may diverge.



The differential approximation technique as presented
by Sage (27), Bellman, Kalaba and. Sridhar (5) and Bose (6)
utilizes the fact that the correct parameters must minimize

the following performance index:

tf o, .
PT = [ (X_F(X.U.P)) (X-F(X.U.P)) dt (1-4)

to
where, the superscript T stands for the transpoese.of the

vector. The advantage of this technique is that the model
parameters can be found by solving a set of nonlinear alge-
braic simultaneous equations instead of repeatedly solving
a set of differential equations.

The identification techniques discussed above require
knowledge of the settling time and normal operating input-

OEEBEP_rgcords of the system. The input must be general
enough to cause the system to respond over the entire X-U
hyperspace of interest. The data required for identifica-
tion can be reduced by conducting a specific set of tests
on the system.

The author (15) has proposed an alternate state-space
identification technique for stationary deterministic sys-

tems. The functions F(X,U,P) in Equation (1-3) are assumed

to be polynomials. The system is subjected to various pulse

inputs with various initial conditions on the system. The
assumed model is also subjected to the same inputs. The
polynomial coefficients are determined by matching the simu-
lated model responses to the measured system responses in

some sense., These coefficients are allowed to depend on the



pulse amplitude and the system initial condition. The ap-
plication of this technique to single-input, first-order
systems gave very satisfactory results.

In sumﬁary, the functional power series and pattern
recognition techniques do not utilize a priori model form
based on the physics of the system, but require considerable
experimental data and computational effort. Also, these
techniques are limited to single-input systems and do not

allow determination of linearized differential equations
whlch are valid in the vicinity of an operating point. In
contrast, some of the state-space tecﬁnlqueéwghi;h utilize
an a priori system model require small cowputational effort.
The modified differential approximation technique developed
in this thesis assumes a generalized polynomial, tabular or
mixed form of the model. The amount of test data and the
computational effort required for identification are reduced

considerably by conducting a specific set of tests on the

system.
Scope of Thesis

The identification technique developed in this thesis
is applicable to stationary nonlinear systems which can be
described by lumped parameter modéls. The method is for-
mulated and evaluated for first-order systems with ome or

two inputs and for _second-~order systems w1th _one 1nput. The

T e o orra i,

effect of additive, zero-mean, Gaussian noise in the test

inputs and in the measured system responses, on the results



of identification is investigated for single-input, first-
order systems. The technique is limited to zero-memory non-
linearities. The technique is applicable te multiple-input,
higher~erder systems, but no evaluation of doing so is pre-
sented. The application of the technique is illustrated
through a number of example systems with known mathematical
models and two real physical systems. The necessary com-
puter tools are developed for identification of systems, for
prediction of system response and for determination of line-
arized differential equations valid in the small about an

operating point. The efforts required for identification

and prediction of system response are determined.
Outline of TIdentification Technique

The identification problem is to specify the test con-
ditions which are feasible in practice and to find a system
model using the measured responses for the above test con-
ditions. The modified differential approximation technique

is summarigzed below.

Selection of the Model Form

The system is modeled by the following vector differ-

ential equation
X = F{X,U,C) (1-5)

where, C is a set of NC model coefficients. The vector

function F(X,U,C) can be assumed to be: 1) A vector of poly-



nomials in X and U(polynomial form), 2) A vector of tables
of numbers in terws of X and U(tabular form), or 3) A vector
of polynoemials in X and tables of numbers in terms of U
(mixed form). The coefficients of the polynomials and/or
the numbers in the tables are called the model coefficients.

N

Specification of Test Conditions

A specific set of tests must be conducted on the system
to ensure that the system responds over the entire X-U hy-
perspace of interest. With proper selection of the range of
step inputs and various initial conditions on the system,

the data required for identification is minimized.

Measurement and Processing of Data

The identification technique requires the system re-
sponses(states and first derivatives of the states) for all

the test conditions. When only X(states) is available, X

can be obtained by numerical differentiation. The time re-

Pt s

R i

sponses X and X must be sampled and stored. The sampling

interval depends on the characteristics of the responses.

Determination of Model Coefficients

The model coefficients can be found by minimizing the
following discrete performance index:
T L2
J = S (X(k)-F(k)) (X(k)-F(k)) (1-6)
k=1’Nd

F(k) = F(X(k),U(k),C)
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where, X(k), X(k).and U(k) are the. k-th stored values of X,
X and U respectively and Ny is the total number of stored
data points. The computational effort required to solve for
the optimum model coefficients which minimize J can be re-
duced considerably by defining a modified performance index.
Full details of the above steps are presented in Chap-
ter II. The necessary steps in identification and the ap-
plications of the technique to a number of examples are pre-
sented in Chapter III. A qualitative comparison of the
modified differential approximation technique with other
identification techniques and.the conclusions are included

in Chapters IV and V respectively. The necessary computer

tools are presented in the appendices.
Summary of Results

The application of the modified differential approxima-
tion technique to a number of systems with known models and
to real physical systems yielded. model. responses which were
within 3% of the system responses.

The technique yields a model which is valid for the
complete range of inputs and system initial conditions. The
model may be used to compute the response to any arbitrary
input(s) within the range of the test data. Also, the model
allows determination of linearized differential equations
valid in the small about any operating point. Of the three
model forms, the mixed form(polynomial in X and tabular in

U) requires the least computational effort for identifica-
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tion, the tabular form is most efficient for the prediction
of system response and the polynomial form gives the most
accurate results requiring the minimum number of model
coefficients.

The modified differential approximation technique is
inherently a smoothing process and is found to be insensi-
tive to additive, zero-mean, Gaussian noise in the test
inputs and in the measured system responses(states and the

first derivatives of the states).



CHAPTER I

THE MODIFIED DIFFERENTIAL APPROXIMATION TECHNIQUE

The development of the identification technique pre-
sented in this chapter is divided into the following phases:

1. The problem

2. Basic assumptions

3. The model

L. Test conditions

5. Performance index

6., Model coefficients.

The Problem

The problem of*system identification considered in this

thesis is:

1. To specify the test conditions for nonlinear first-
order systems with one or two inputs and for non-
linear second-order systems with one input. The
test inputs should be feasible in practice.

2. To identify a mathematical model for the unknown
system, best in a least squares sense, using the
system responses for the above test conditions.

The responses include both .the state vector and

the first derivatives of the state vector.
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The identified model should allow prediction of the
system responses to any arbitrary input(s) other than the
test inputs, and the determination of the linearized differ-
ential equations of the model which are valid in the vicini-
ty of an operating point. The identification technique
should be insensitive to additive, zero-mean, Gaussian noise

in the test inputs and in the measured system responses.
Basic Assumptions

The identification technique developed in this thesis
assumes that the nonlinear systems to be identified can be
adequately described by a set of nonlinear ordinary differ-
ential equations with constant coefficients.

Although the technique is applicable to multiple-input,
higher-order systems, first:-order systems with one or two
inputs and second-order systems with one input are consid-
ered in detail. Figures 2 and 3 show the class of nonlinear
systems to which this technique is applicable. The knowl-
edge of the forms of the nonlinear functions Nur’ Nu2’ Nfl’
Nf2’ Nb1 and sz is not required for identification. It is
assumed that these nonlinear functions can be approximated
by polynomials. )

When the output of each of the above zero-memory, non-
linear elements is either a monotonically increasing or mo-
notonically decreasing function of its input, the system

under consideration will not have multiple steady-state

responses.
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The Model

The system is modeled by the following vector differ-

ential equation:
[
X = F(X,U,C) (2-1)

where, X and U are the state and the input vectors, C is a
set of No model coefficients. The functiaon vector F(X,U,C)
can be: 1) A vector of polynomials in X and U (polynomial
form), 2) A vector of tables of numbers in terms of X and U
(tabular form), or 3) A vector of polynomials in X and
tables of numbers in terms of U (mixed form).

The coefficients of the polynomials and/or the numbers
in the tables are called the model coefficients. For con-
venience, these coefficients will be represented by multi-
dimensional arrays. The nature of the model coefficients
for the three forms is explained in detail below for a
first-order, single-input system.

Consider the following model coefficient matrix:

011 012 o v e Clj.eoo..

C21 022'..0. Czj.....




17

let Pyx1 aund py;y be the degrees of the polynomials in x; and
uy . Let m; and ny be the numbers of levels into which the
input u; and the state x; are divided. For a polynomial

form of the model the elements Cj j of the above matrix will

be the coefficients of the following differential equation:

P

+ +
ul 1 pxl 1
Xy = 2

i=

i-1 j-1
2: ;44 xf. (2-2)
1 J=1

For a tabular form, the element Cij will be the actual value

of il at x1=x1j and Uy=uy 4, where

‘1'?‘

le = xlmin + (xlmax—xlmln)(J—l)/(nl-l) (2‘—3)

Ugi3 = UYygmin * (ulmax'uimin)(1'1)/(m1'1)‘ (2-4)
For a mixed form, the elements c:: in the i-th row will be

1]

the coefficients of the differential equation
Pyy™1

il = E: c--xfjl (2-5)

Note that the px1+1 coefficients, Cij’

represent the system
for a constant (step) input of u;=uy;.

After the model coefficients are determined, the values
of X for known X and U can be obtained by evaluating the

polynomials and/or by interpolating using the numbers in

the tables.
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Test Conditions

Some identification techniques can use normal operating
input-output records of the system. .  However, for those
techniques which do not require the form of the model dif-
ferential equation, the input must be general enough to
cause the system to respond over the complete X-U hyperspace
of interest. This section describes a specific set of tests
which cause the system to respond over the range of inter-
est. In this latter case, the amount of test data and the
computational effort required for identification can be re-
duced. As explained later in this chapter, the use of the
specified test conditions permits decomposition of the per-
formance index which results in further reduction in the
computational effort.

There exist appropriate test conditions for any higher-
order, multiple-input systems. However, the difficulty of
performing these tests increases with the order of the sys-
tem and with the number of the inputs. The test conditions
are outlined below for first-order systems with one or two

inputs and second-order systems with one input.

First-Order Systems

Consider the two extreme initial conditions on a sin-
gle-input, first-order system as follows: 1) x1(0)=x1min and
2) x1(0)=x1max. If the total range in the input u, (ulmin

to ulmax) is divided into my levels, 2m1 step response tests
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will cause the system to respond over the complete x;-uj
plane of interest. These tests can be classified into my
groups of twq tests each. In each group the initial condi-
tions on the system for the first and the second test are
respectively xipipy and X{max* The amplitude of the step

input in the i-th group is uyj where, ujpj + |

Uimin Yimax™~

ulmin)(i-!)/(ml-l). Figure 4 shows the responses of the
system for one of the m; groups of tests. Note that when

u in the first group, the system response for one

1" Yimin

initial condition x,(0)=x, . will cover the total range in

x, and vice versa in the last group.

1

For dual-input, first-order systems the total ranges in

the two inputs uy and u, are respectively divided into m

2

and m, levels. The same two initial conditions on the sys-

1

tem are considered. There will be 2m1m2 step response tests
which will cause the system to respond over the region of
interest in Xy~uy~-uy space. These tests can be classified
into my groups each of which contains 2m1 tests. Each group
can be further classified into m, subgroups of two tests
each. These my subgroups are the same as the m; groups for
a single-input system as discussed above, except the second
input us, in the j-th group is a step of amplitude Uz j» where
Upj = Ugpin + (u2max‘u2min)(j"1)/(m2'1)° In order to per-
form each of the above tests, it is necessary to obtain the
two step inputs (uli and u2j) simultaneously.

The test conditions can be generalized for a multiple-

input, first-order system. If there are M inputs, there
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will be 2mimp...mg...my tests. Note that the total range in

the k-th input is divided into mg levels.

Second~Order Systems

Consider the following two step response tests and the
initial conditions on the system: 1) ui=uimax,» X1(0)=X1min
and x2(0)=0; and 2) uy=uypins, ¥X1(0)=Xyyax and x2(0)=0. The
curves ABC and CDA in Figure 5 are the portions of the x;-x»
plane responses of the system for the above two tests. The
path ARCDA is defined as the "locus of initial conditioens".
This locus encompasses the total range in the xj-xp plane
which can be covered by the system responses to any allowa-
ble input. Note the above two tests are required to estab-
lish the test conditions for a second-order system.

The total range in the input uj is divided into mj; lev-
els as before. If I pairs of initial conditions are chosen
along the locus of initial conditions, Im; step response
tests will cause the system to respond over the complete re-
gion of interest in the x;-xp-u; space. These tests can be
classified into m; groups. In the j-th group of I tests,
the input is a step of amplitude ug je The initial condi-
tions are the corresponding I pairs chosen along the locus.
These I pairs need not be the same in number or value for
each of the m; groups. The curves emanating from the T
points along the locus represent the system responses for
one of the mjy groups of I tests. Note that in the first

group when uj=ujpin, the pairs of initial conditions may be
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chosen only along the upper part of the locus (ABC). When
Ul=Uypax 1in the last group the lower part may be used.
Generalization of the above result to an M—iqput, sec-
ond-order system gives Imymp..myp..my tests, where the k-th
input is divided inte my levels. Note that a system with
no inputs can be considered as a single-input system with

m1=1 and u1=00
Performance Index

The inputs and the time responses of the system for all
the test conditions are sampled, stored and numbered from 1

through Ng. A sum of squared errors (SSE) is defined as

T

SSE = S (X(k)-F(k)) (X(k)-F(k)) (2-6)

k=1,Ng

The computational effort required to determine the model
coefficients which minimize the above performance index 1is
directly proportienal to the number of data points. This
effort can be reduced considerably by defining a modified
sum of squared errors (MSSE) and finding the near optimal
model coefficients. The entire X-U hyperspéce of interest
is divided into a multidimensional grid. All the individ-
ual grids are numbered from 1 throeugh Ny, where Ng is the
number of grid divisions. New variables S(i), é(i) and Z(i)
are defined respectively as the average values of all the

stored data points X(j), X(j) and U(j), j=1,N , which fall
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in the i-th individual grid. The modified sum of squared

errors is defined as,
MSSE = 3 (S(k)-F(k)) (5(k)-F(k)) (2-7)
F(k) = F(s(k),zZ(k),C).

Note that the computational effort is reduced by a factor of
Ng/Nd. The coefficients which minimize the MSSE satisfy

the necessary condition,

SN (2-8)
When the vector function F is a veéﬁo;?of polynomials in X
and U, the above equation contains Nc linear simultaneous
algebraic equations in N, unknown coefficients. The effort
regquired to solve these equations is found toe be approxi-
mately proportional te the square of the number of unknown
coefficients. This effort can be reduced further by decom-
posing the MSSE into subperfermance indices and determining
fewer coefficients at a time. As discussed earlier in this
chapter, the specified test conditions can be classified
into groups and subgroups. A separate subperformance index
may be defined for each group or subgroup.

The computational effort required to determine all the
model coefficients is directly proportional to the following
three factors: 1) The square of K., the number of the model
coefficients determined at a time; 2) The number of individ-

ual grids, Kg, in the X-U hyperspace considered to deter-



25

mine the above coefficients; and 3) The number of the sub-
performance indices, Kp, into which the MSSE is decomposed.

Thus, the computational effort, E, can be computed as,

E = K KiKngq (2-9)
where, K is a constant of proportionality.

The decomposition of the MSSE and consequent saving in
the computational effort can be illustrated for a single-
input, first-order system. Let Px1 and Pui be the degrees
of the polynomials in Xy and Uy . Let the total ranges in X4
and uy be divided into n; and my levels respectively.

When the MSSE is directly minimiged, a poelynomial form
of the model is obtained. All the model coefficients are
determined at one time. The computational effort, E, re-

gquired to minimize the MSSE is computed from Equation (2-9).

Ko = No = (pyg+1)(pyg+1)
K, =N, = (n;=1)(my-1)
Kp = 1
. 2
Je B = K({pygy+1){pyg+1)) (ng=1) (my-1)
When the decomposed MSSE is minimized, a mixed form of
the model (polynomial in x; and tabular in ujy) is obtained.

The MSSE is decomposed into m; partial sums of squared er-

rors (PSSE) as follows:

MSSE = PSSEy + PSSEp +...+ PSSEp;

PSSE; = > (él—f(slsci))z
k=1,(n,-1)
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where, s; is the averaged xy. In the i-th group of tests,
the amplitude of the step input is constant. Therefore, the
function f is assumed to be a polynomial in x; alone. The
coefficients of the polynomial are subscripted to denofe
that this set of coefficients represent the system for one
constant (step) input of uj;. The i-th row of the coeffi-
cients in the tabular form of the model is found when PSSE;
is minimized using the system responses for the i-th group
of tests.

The computational effort with decomposition, Eg, from

Equation (2-9) is,

Ke = (px!"'l)
Kg = (ﬂl—l)
Kp = m1

2
.o Egq = K(px1+1) (nl—l)mi
Thus, the ratio of the computational efforts is,
2 {
E/Ed = (pu1+1) (ml—l)/mlo

When p,q; = 4.and my = 10, the ratio is 45/2,

In summary, the advantages of determining the model
coefficients by minimizing the decomposed MSSE are the fol-
lowing: 1) The MSSE involves averaging which is a smoothing
technique. Also, the determination of the model coeffi-
cients by minimizing the sum of squared errors is a smooth-
ing technique. Because of these two smoothing processes the

identification technique is insensitive to additive, zero-
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mean noise in the measured system responses; 2) Determina-
tion of the model coefficients is considerably faster; and
3) Numerical round-off errors are minimized by determining

fewer coefficients at a time.

Model Coefficients

The optimum model coefficients which minimize the unde-
composed or the decomposed MSSE are uniquely deterwmined by
solving system(s) of linear simultaneous algebraic equa-
tions. Iterations, as required in other techniques are
avoided. When the undecomposed MSSE is used, a polynomial
form of the model is obtained, When the decomposed MSSE is
used, a mixed form of the model (polynomial in X and tabular
in U) is obtained. The model coefficients of one form can
be generated from those of the other form. To obtain a
tabular form from a polynomial form, the polynoemials are
evaluated at various points. To obtain a polynomial form
from a tabular form, least squares fitting is used.

The computer tools presented in Appendix A can be used
to determine the coefficients of a mixed form of the model
(polynomial in X and tabular in U). However, the coeffi-
cients of a polynowmial form or a tabular form can be ob-
tained using the conversion subroutine presented in Appen-

dix B.



CHAPTER II1

APPLICATIONS OF THE TECHNIQUE

In this chapter the applications of the identification

technique are discussed and illustrated through examples.

Necessary Steps in Identification

The computer tools developed in this thesis are based
on the minimization of the decomposed MSSE. The identified
model form is polynomial in the state(s) and tabular in the
input(s). TFigure 6 illustrates the procedure followed with
both identification programs, SYSID! and SYSID2 (see Appen-
dix A). Data from system responses for each group of the
tests is read in, smoothed if necessary before differentia-
tien, and processed (averaged over the grid divisions in the
X-U hyperspace). Then, the model coefficients which mini-
mize the decomposed MSSE are determined by solving system(s)
of linear simultaneous algebraic equations. The necessary
steps for the system identification are listed below.

1. Specify the region of interest in the X-U hyper-
space by defining the minimum and the maximum
limits on the state(s) and on the input(s).

2. Specify the numbers of levels ni, np, my, and mp

into which the total ranges in Xy, Xp, Uy and up

nQ
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are divided respectively.

Determine the set of initial conditions. For first
order systems, the two extreme initial conditions
on the system are sufficient. For second-order
systems obtain the locus of ‘initial conditions and
choose I pairs of initial conditions on the locus.
Conduct 2mimp tests for a first-order system and
Imy tests for a second-order system. For a single-
input system mp = 1. A system with no inputs can
be considered as a single-~input system with mi; = 1
and u; = 0. Measure the system states and the
first derivatives of the states for all tests. If
the derivatives are not measurable, they must be
obtained by differentiation.

Sample all the measured data and store in punched
card form (FORMAT 3X, 7Et1.4). A variable sampling
interval may be used depending upen the frequency
content of the measured data. However, when X is
not measurable, a constant interval is necessary
for smoothing and differentiation.

Specify the degrees of the polynomials py; and pyo.
Use SYSID! for first-order systems and SYSID2 for
second-order systems (see Appendix A). These sub-
routines give the mixed form of the model (polyno-
mial in the state(s) and tabular. in the input(s)).
Use CONVRT (see Appendix B) if a polynomial or a

tabular form of the model is desired.
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Based on the experience with a number of examples, the
following numerical values are normally adequate for the
variables used in the above steps: my=mp=ny;=np=11; Px1=Px2~
Pui=Pu2=3 or 4; TI=20; and 100 samples should be used for
each test. Subroutines XDOT1 (for first-order systems) and
XDOT12 (for second-order systems) which are presented in
Appendix A may be used to evaluate the derivatives of the
states for predicting the system response. When a polyno-
mial form or a tabular form is used the corresponding sub-
routines (XDOT! or XDOT12) which are presented in Appendix B

must be used.
Model Simulation

This section describes the use of the identified model
in the prediction of system responses for arbitrary inputs
and arbitrary initial conditions on the system. I¥- Ehe.sys-
tem states at time tg, and the inputs U(t); tgLt<ty, where
tf is the final time, are known; the system response X(t)
can be obtained by numerically integrating the model differ-
ential equations from tg to tf. A Runge-Kutta integration
program may be used. The integration program requires the
derivatives of the states for known values of the states and
the inputs. These derivatives can be evaluated by using the
subroutines XDOT1 or XDOT!2 (see Appendices A and B).

The model responses simulated as above will not be
identical to the actual system responses because of the fol-

lowing two sources of error: 1) Insufficient accuracy of the
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identified model, and 2) The difference between the model
states and the actual system states at the initial time.
The numerical integration program can be assumed to be suf-
ficiently accurate by properiy se1ecting the integration
scheme and the integration stepbsize. For the class of non-
linear systems considered in this thesis, the error between
the model response and the actual system response is found
to converge to an allowable amount within the capability of
the identified model.

The above result can be used to predict the response of
a real process for any arbitrary input withGUt the knowledge
of the initial state of the process. The @6de1 can be simu-
lated with zero initial conditions which introduce an ini-
tial error. The predicted system response‘ﬁill be mean}ng-
ful only after one or two settling times when the error

converges to an allowable amount.
Model Analysis

Another application of the model is to describe the
system in the small about an operating point (usually a
steady-state operating point). This is done by linearizing
the model differential equations about the operating point.
The steady-state response can also be found by setting i=0.

That is,

F(Xg5sUstep:C) = 0. (3-1)

ss’?

In the above equation U is a vector of step inputs and

step
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Xgs is a vector of steady-state responses of the system.

The responses Xgg can be found analytically, without actual-
ly integrating the model equations, by solving a set of non-
linear algebraic equations when the model form is polynomial
and by inverse interpolation when the model form is tabular.
The set of linearized differential equations valid in the
vicinity of an operating point (Xop, Uop) can be obtained

as follows:

§X = A &X + B &U (3-2)
A = JF/[d3X
B = OF/dU

where, the coefficient matrices A and B are obtained by
evaluating the partial derivatives at the operating point.
These evaluations are performed analytically when the model
form is polynomial and numerically when the model form is
tabular.

The linearized equations can be used to investigate the
stability of the model in the small about any operating
point of interest. Also, these equations can be used to
continuously find the optimal control for a closed-looep
process. The results of optimal control theory, which are
applicable to linear systems, can be used to generate the
optimum control for a nonlinear system in a small neighbor-
hood around an operating point in the X-U hyperspace. The
coefficient matrices A and B can be evaluated for each new

operating point of the system.
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Examples

A number of examples were worked to validate the iden-
tification technique. Six examples are presented in this
section to illustrate the technique. In the first four ex-
amples the unknown system was simulated by numerically inte-
grating known mathematical models. In the fourth example
zero-mean Gaussian noise was superimposed on the inputs and
the measured responses. Both the state and its derivative
were assumed available. In Examples 1, 2 and 3 the deriva-
tives of the states were obtained by numerical differentia-
tion. Examples 5 and 6 were actual physical systems. In
these examples the measured responses were smoothed before
differentiation.

The results of identification were verified by cowmpar-
ing the responses of the system and of the identified model
to the same but arbitrary input(s). The arbitrary inputs
were sequences of pulses whose amplitude and width were in-
dependent random variables. Mean squared error (MSE), as
defined below, was considered as a measure of closeness.

te 2
MSE = (1/tr) f (xs-xm) dt
0
Convergence of the model response was verified by starting
the model and the system from different initial conditions.

The computational times for identification (includes
smoothing and differentiation where applicable) and for
simulation of the system and the model for 500 Runge-Kutta

integration steps are summarized for each example. An IBM
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360 model 65 digital computer was used. The repeatability
of the CPU time on this machine was within + 0.5 seconds.
To illustrate the choice of the three model forws,

tabular, mixed and polynomial forwms were used in the exam-
ples. For convenience, special programs were developed for
each of the examples to generate the required test data and
to identify the model. These programs are not included in
this thesis. However, the necessary computer subroutines
for identifying a mixed form of the model (polynomial in X
and tabular in terms of U) are presented in Appendix A. If
a model form which is polynomial both in X and in U or tabu-
lar in terms of both X and U is desired, a conversion sub-
routine is presented in Appendix B. In addition, the sub-
routines STEADY and LINRIZ used in the examples for model

analysis are presented in the Appendix C.

Example 1

A single-input, first-order system was simulated by

Equation (3-3). The system was modeled by Equation (3-4).

°© 108
X1s = (ABS(uy-xy5)) SIGN(uj-x3g4) (3-3)
;lm = fl(xlmgujscl) (3"“‘)

In the above equations xyg and X;, represent the system
state and the model state. A tabular model form was used.
The range in the input (ujpin=-1 and ujpax=1!) was divided
into 11 levels (my=11). The range of the state (xjpin=-1

and Xypmax=1) was divided into 11 levels (nj=11). To gener-
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ate the numbers in the table, il was assumed to be a fourth
degree polynomial in x4 (px1=u)wfor each of the input lev-

els. The third row of the table (when the input level ug3=
-0.6) has the following numbers: 0.,227E 01 0.185E 01 0.141
E 01 0.101E O1 0.667E 00 O0.,395E 00 O0.199E 00 0.709E-01
-0.836E-02 -0.694E-01 -0.154E 00.

The identification time was 1.12 seconds, the times re-
quired for the simulation of the system and the model were
respectively 3.89 and 4.35 seconds. Figure 7 shows the ar-
bitrary input and the responses of the system and the model
when the initial conditions were 44.5% off. TFor a step in-
put of 1.0, the steady-state value xygg was found to be
0.973. The coefficient matrices of the linearized differ-
ential equation were found to be A=L0.247E Oﬂ and B=@.286E0ﬂ

for operation in the vicinity of x10p=1.0 and u10p=-1.0°

Example 2

A dual-input, first-order system was simulated by Equa-

tion (3-5). This system was modeled by Equation (3-6). The

. 1.7

x1g = (ABS(e)) SIGN(e) (3-5)
e = UI’SIN(11U2/7)—2xlS

ilm = f1{xymrup,uz,cy) (3-6)

ranges in the inputs (Ujgin =-1 and Ujp.y =1) were

“Uomin “Uomax

divided into 11 levels each (m1=11 and m2=11)n The range in
the state (xypin=-1 and Xyp,4~1) was divided into 11 levels

(ny=11). A tabular form of the model was used. py; was 4.
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The identified model coefficients are represented by a three
dimensional array cy=cy;(11,11,11). The 11 numbers of this
array for a pair of input levels (uyy=-0.4 and uz,=-0.8)

are the following: 0.481E01 0.371E01 0.262E01 0.167E01
0.928E00 0.408E00 0.722E-01 -0.172E00 -0.472E00 -0.103
E01 -0.209EO01.

The identification time was 12.59 seconds and the times
required for the simulation of the system and the model were
7.85 and 8.27 seconds respectively. Figure 8 shows the ar-
bitrary input and the responses of the system and the model
when the initial conditions were 100% off. For a pair of
step inputs, ulstep:1'0 and u25tep=0'8’ the steady-state
value X344 was analytically found to be 0.240E-01. The co-
efficient matrices of the linearized differential equation
were found to be A=[0.568E00] and B=[0.111E00 0.765E-01]
for operation in the vicinity of an operating point (xlop:

1.00, ujop=-1.00 and uzop=-0.63).

Example 3

A single-input, second-order system was simulated by
Equations (3-7) and (3-8). Bose (6) showed that under cer-
tain circumstances these equations represent an hydraulic
spool type valve. This system was modeled by Equations
(3-9) and (3-10) for identification . The range of the in-
put (Uuypin=0 and uyp,x=1) was divided into 11 levels (my=11)

and the ranges of the states (xyp;,=-0.266, =1.1k4o0,

Ximax

Xomin=-0.493 and xpp,4x=0.906) were divided into 11 levels
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X1s T X*2s (3-7)

: 3
XZS = U1—0o36xzs—0.24X15-0o86122(xls) SRRy

"'19317L"X1SXZS (3-8)
Xim = £1(XymXameugscy) (3-9)
Xom = Fp(XqpsXppmsuy,cp) (3-10)

each (ny=11 and ny=11). For each group of tests 20 pairs

of initial conditions were chosen. Two responses of the
system to step inputs of U1=Uypin and uy=uyp.y, with zero
initial conditions on the system, gave the minimum and wmaxi-
mum limits on the first state. These tw%ﬁiimi%§$%€¥flﬁéw*'
2nd state were found from the following two tests: 1) The
input was a step of uy=uypjps, and the initial conditions
were Xy(0)=Xypax and x2(0)=0; and 2) The input was a step

of U;=Uypaxs and the initial conditions were xl(o)lemin and
x2(0)=0. These latter two tests established the locus of
initial conditions. A mixed form of the model, polynomial
in xy and xp and tabular in u;, was used with py{=py2=3.

The coefficients (4 x 4 wmatrices for one input level) of the
polynomials in x; and x, are given below for a specific
input level of 0.9 (tenth level).

[-0.944E-04 0.135E-04 -0.518E-03 0.702E-03]
0.100E 01 -.552E-02 0.130E-01 -0.723E-02

-0.513E-05 0.138E-01 -0.341E-01 O0.196E-01
-0.157E-03 ~-.865E-02 0.219E-01 -0.129E-01

Cl =

i 0.900E 00 -.246E 00 0.270E-01 -0.887E 00]

. _ -0.363E U0 -,128E 01 -0.172E 00 0.128E 00
2 0.112E-01 -.161E 00 O.4L7E 00 -0.251E 00
-0.752E-02 0.122E 00 -0.298E 00 O0.146F OOJ




by

The identification time was 14.47 seconds. The times
required for the simulation of the system and the model for
500 Runge-Kutta integration steps were 6.27 and 9.82 seconds
respectively. Figures 9 and 10 show the arbitrary input and
the responses of the system and the model when the initial
conditions were the same. Note that the correspondence was
so close that it is difficult to distinguish between the two
responses. For a step input of uistep:0°u3’ the steady-
state response was analytically found to be x;,4,50.676E 00
and x255=-0.9b9E—05. The coefficient matrices of the lin-
earized differential equations were found to be,

[-0.184E-03 0.100E 01 -0.178E-02

A = and B =

~-0.338E 00 -0.864E 00 0.100E 01

for operation in the small about the point (x10p=0.380,

X20p2—0-210 and u10p=0.L&LL7) o

Example 4

A single-input, first-order system was simulated by the

following equations:

. 1.8
X1 = (8BS(u}-x;4)) SIGN(uj-x44) (3-11)

where, Ri’ Ry and R3 were three independent Gaussian random

variables with mean rero and standard deviations dl’ d2 and



L2

1.0

-y
3
&
o)
By

E

0.5 -
>~
g /
H j
:
<

0.0 4 4 4 4 L o +

0 2 L
TIME (sec)
1.2
1 System Response
2 Model Response

-y

®
®
>
-
n

0.0 1

i
_0. N & " " 4 . >
30 2. 4
TIME (sec)

Figure 9. Arbitrary Input (UI) and the Response
(x1) of the System and the Model
(Example 3)



1,0

i
3
=
[
=
(]
b 0.5 /
3
e J ) 4
:
g -

0.0 + . + +

0 2 L
TIME (sec)
0.9
1 System Response
2 Model Response
1
2

N \

"

= .

e ’ :
n

-0.6 + v * + + + + +

0 ' 2 : L

TIME (sec)

Figure 10. Arbitrary Input (u,) and the Response
(xp) of the System and the Medel

(Example 3)

L3



Ly

d3 as follows:

dy = 1/3 NSR (Uymax-Yymin)
dz = 1/3 NSR (X{max=X1min)
d3 = 1/3 NSR (Xymax-Xtmin)

In the above relations NSR is defined as the noise to signal
ratio (0 £ NSR < {). Note that the input seen by the system
was ui and the system responses were xigs and ilso But only
u, xis and ;is were used for the identification purposes.

Figure 11 shows the system responses to a typical test input

with and without the measurement noise.

The system was modeled as,
Xim = £1(Xygmsug.cq)- (3-12)

The following data was used to simulate the system responses
and to identify a polynomial form of the model: ujpin=-1,
Uimax=1s Xtmin=-1 and F max=1; m=9 and ny1=9; and px1=3 and
rui=3. The b x 4 matrix of model coefficients was,
0.242E-01 -0.489E 00 -0.255E-01 -0.456E 00
0.458E 00 -0.175E 00 O0.158E 01 O0.162E 00

-0.660E-01 ~0.149E 01 0.592E-01 0.801E 00
0.550E 00 0.327E 00 -0.973E 00 -0.272E 00

c1

Figure 12 shows the arbitrary input and the responses of the
system and the model to this input when NSR=0.4. The mean
squared error (MSE) was 2.05E-04. The above identification
problem was repeated for nine different values of NSR from

0 to 0.4. A plot of the mean squared error versus NSR is

shown in Figure 13.
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Example 5

A real physical system, which consisted of an electri-
cal capacitor discharging through a diode (see inserts in
Figure 14), was considered. The capacitor voltage, v, was
recorded as a function of time for two initial conditions
(v;=0.3 volts and v,=0.25 volts). The data with the first
initial condition was used for identification. The data
with the second initial condition was used to verify the
accuracy of identification. The system was modeled by the

following equation,

. 2 L
v, = cl(o)+c1(1)vc+c1(2)vc+c1(3)v2+c1(u)vc (3-13)

The total range in v, was divided into 21 levels. The five
coefficients were found to be: cl(O)=0.951E—0h, ci(1)=
-0.759E-01, 01(2)=0.13hE 01, ¢;(3)=0.839E01 and cy (&)=
0.738E 01. Figure 14 shows the actual experimental re-
sponses and the identified responses for the two initial

conditions. The identification time was 1.7 seconds.

Example 6

A real physical system, which consisted of a pressur-
ized pneumatic tank discharging into atmosphere through an
orifice with nonlinear resistance, was considered. The set
up is shown in the inserts of Figure 15. The tank pressure,
Pt» was recorded as a function of time for two initial con-
ditions on the system (p1=25 psig and pp=15 psig). The data

with one initial pressure was used for identificatiop. The
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data with the other initial pressure was used to verify the

accuracy of identification. The system was modeled as,
. 2 3 L
Pt = 01(0)‘*'01(1)pt+cl(2)pt+cl(3)pt+cl(u)pt (3—-1“)

The total range in p¢ was divided into 2! levels. The coef-
ficients of the above relation were found to be: 01(0)=
-0.202E 00, cy(1)=-0.418E 00, c;(2)=0,235E-01, cy(3)=-0.102
E-02 and cl(b)=0.127E-0§, The actual system responses and
the identified model responses for the two initial pressures
are shown in Figure 15. The mean squared error was 0.0127.
The accuracy was within 4%.

Greater accuracy is not poessible with a first-order
system model. Intuition leads one to the conclusion that
the system could be modeled more accurately by a second-
order system which accounts implicitly for the heat transfer

effects in the process.



CHAPTER 1V
COMPARISON WITH OTHER TECHNIQUES

In comparing the modified differential approximation
technique with other known techniques the following factors
are considered:

1. A priori knowledge about the system model (form)

2. Computational requirements (storage and time)

3. Data required for identification

4, Method of determining the model coefficients

5. Applications of the identified medel

6. Limitations of the technique.

It is difficult to make a meaningful quantitative com-
parison of various available identificatien techniques.
There are more than several hundred techniques, each of
which has its own advantages and disadvantages. Some are
general purpose and some are special purpose techniques.
However, the computational requirements depend not only on
the identification technique, but also on the programming
skill. A qualitative comparison of the identification tech-
niques which are applicable to nonlinear systems is given
in Figure 16. A cross mark (X) is placed if the technique

has an undesirable factor.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The modified differential approximation technique is

applicable to stationary nonlinear systems which can be de-

scribed by lumped parameter models. The following are the

principal features of the technique:

1.

The technique does not require a priori knowledge
about the form of the system mathematical model

It is found that a wide class of nonlinear systems
can be adequately described by polynomial, tabular
or mixed form of the model

Specified inputs allow decomposition of the MSSE
which results in reduced computational effort

The model coefficients are determined uniquely
without iterations

The identified model can be used to compute the re-
responses to any arbitrary input(s)

The technique is insensitive to zero-mean noise in
the test inputs and in the measured responses

The model allows determination of linearized dif-
ferential equations valid in the vicinity of an

operating point
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Three different forms of the model can be found.
The mixed form is the most efficient for identifi-
cation. The tabular form is the most efficient for
predicting the system response. The polynomial
form gives the most accurate results with the wmini-

mum number of model coefficients

The primary drawback of the technique is that a specif-

ic set of tests must be conducted oen the system. It can be

concluded that for the class of systems considered the modi-

fied differential approximation technique is superior to

other known techniques in identification time, accuracy and

storage requirement.

Recommendations

Future work could be performed in the following areas

to improve and extend the identification technique:

1.

2.

Simplification of the identified model equations
The use of normal eperating input-output records
of the system for identification purposes

The use of a priori knowledge, where available, to
reduce the identification time

The use of orthogonal functions instead of polyno-
mials to reduce numerical round-off errors
Investigation of on-line applications
Consideration of time delays and hysteresis in the

systems to be identified.
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APPENDIX A

IDENTIFICATION SUBROUTINES

In this appendix the computer subroutines (SYSID1 and
SYSID2) which can be used for the identification of first-
order and second-order systems are presented. Two of the
required external subroutines (included in this appendix)
are: CURVFT and SURFIT for fitting curves and surfaces
through arbitrary data points in a least squares sense. 1In
addition to the above the following subroutines are required
from the IBM Scientific Subroutine Package (SSP): SE13 for
smoothing, DET3 tor differentiation and SIMQ for solving a
set of simultaneous linear algebraic equations.

The subroutines SYSID! and SYSID2 yield a standard form

of the model which is tabular in terms of the inputs and
polynomial in the states. This form is explained below for
a single-input, first-order system. Although il is a func-

tion of both and uy the following relation is obtained:

o 2
Xl = c0+clx1+02x1+,a.

where, the coefficients of the polynomial depend en the in-
put level. TIf there are m; levels in the input, there will
be my sets of the coefficients for the above polynomial.

These m; sets of coefficients are conveniently represented

Lqe)
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and stored in a multidimensional table (in this case it 1is
a matrix). After the coefficients are identified, the value
of il for any arbitrary values of x; and ujy; can be found by
evaluating the polynomial at xy twice using two proper rows
of the coefficient matrix and interpolating in uy .
Subroutines XDOT1 and XDOT12 presented in this appendix
may be used to evaluate the derivatives of the states for
numerical integratioen purposes. All of the subroutines pre-

sented in this appendix contain the necessary explanation.
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SUBROUTINE SYSID1

LR e e R el S Rl e e s e i S s S e S S S s S I s i L 2l

AND A

NGRDX1

ARE

X1MIN,
AND

NIC ~

NDATA

OF X1{

LK B B B I B0 B0 I B BE N B B B I IR AR 2K I A BRI R T B A NE N BRI K S I NN R AR AR A J

FORMAT(1H1)
FORMAT(1H )}
FORMAT (BF10.3)
FORMAT (8110}

TWO INPUTS.

TWO DATA CAROS.

IDIFF -

TABLE IN Ul AND U2. THE COEFFICIENTS OF THE

POLYNOMT AL ARE PRINTED/PUNCHED FOR EACH STEP INPUT(OR
PAIR OF STEP INPUTS),
SUBROUT INE REQUIREMENT-SEL3, DET3, SIMQ{SSP) AND CURVFT
THE FOLLOWING DATA IS REQUIRED FOR EDENTIFICATION

FIRST DATA CARD HAS FORMAT 6110 AND MUST CONTAIN
NINPUT = NUMBER OF INPUTS(1 OR 2}
NDEGX1 ~ DEGREE OF THE POLYNGMIAL IN X1

+ NGRDUL AND NGRDU2 - NUMBERS OF LEVELS INTO

WHICH X1, Ul AND U2 ARE DIVIDED RESPECTYIVELY
IPUNCH = 1 IF PUNCHED OUTPUT 1S DESIRED(O OTHERWISE)
NOTE THAT NDEGX1 MUST BE LESS THAN NGRDX1l.

USUALLY NDEGXI.- = 3 OR 4,

ADEQUATE. NGRDU2 = 1 FOR SINGLE-INPUT SYSTEMS.

SECOND DATA CARD HAS FORMAT 6F10.3 AND MUST CONTAIN

X1MAX, ULMIN, ULMAX, UZMIN AND UZMAX ~ MINIMUM
MAXIMUM VALUES OF X1, Ul AND U2 RESPECTIVELY

THERE MUST BE NGROU2 SETS OF TEST DATA AFTER THE FIRST
IN THE I-TH DATA SET THE VALUE OF THE
STEP IN U2 = U2MIN + {UZMAX-U2MIN}*(I-1)/{NGROUZ2-1]).
EACH DATA SET CDNTAINS NGRDUL SUBSETS. IN THE J-TH
SUBSET THE AMPLITUDE OF THE STEP IN Ul = ULMIN +

(UIMAX =~ ULMINI®*{J~1)/{NGRDUL-1).
EACH SUBSET OF DATA MUST FOLLOW A DATA CARO WHICH HAS
FORMAT 4110, F10.4 AND CONTAINS

NGRDX1 = NGRDUl = NGRDU2 = 11

THIS PROGRAM IDENTIFIES A FIRST-ORDER SYSTEM WITH ONE OR 4
THE IDENTIFIED MODEL 1S A POLYNCMIAL IN X1+

NUMBER OF INITLAL CONDITIONS. USUALLY NIC=2, BUT+

- NUMBER OF SAMPLES IN EACH RESPONSE(ABOUT 100}

I FOR THE FIRST

ONLY IF IDIFF = 0} | ON THE SYSTEM

SAME AS ABOVE FOR THE SECOND INITIAL CONDITION
L N N e R g R N S S T

DIMENS ION XlS(lOOi'XlDS(lOO)leH(le'KlDH(ZlD'NlH(ZID'C1M(10)

FORMAT{3X,TE1ll.4)
FORMAT(4110,F10.4)
FORMAT(IOX,* THE IDENTIFIED MODEL IS A POLYNOMIAL IN X1 AND A TABLE

1 IN ULTAND U2)."*

s/ 910X, *THE COEFFICIENTS OF THE POLYNOMIAL FOR®,

2' EACH STEP INPUT(PAIR OF STEP INPUTS) ARE:",//)

WRITE{6,1)

READ(S5+4) NINPUT,NDEGX1 yNGRDX1¢NGROUL +NGRDU2+ IPUNCH

FOR SOME STEP INPUTS ONE INITIAL CONDITION(NIC=1) MAV+
CAUSE THE SYSTEM TO RESPOND OVER THE TOTAL X1-RANGE. +

+

1 IF THE DERIVATIVE OF X1 HAS TO BE OBTAINED BYQ
DIFFERENTIATING X1 AND O OTHERWISE
ISMOTH ~ 1 IF SMOOTHING OF X1 IS REQUIRED{OTHERWISE 0).0
TDELTA - THE SAMPLING INTERVAL{CONSTANT)
NOTE THAT IF IDIFF=0, ISMOTH AND TDELTA ARE NOT NEEDED.+
THE SAMPLED RESPONSES IN EACH SUBSET MUST BE SUPPLIED
IN PUNCHED CARD FORM IN FORMAT 3X, TEll.4 AS FOLLOWS:
THE VALUES OF THE STATE X1
THE VALUES OF THE DERIVATIVE | INITIAL CONDITION

TR PP
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24

22

21
23

30
100

40

200
300

READ(S +3) X1IMINyXLMAXULMIN,ULMAXy UZMIN,UZMAX
NGX1M1 = NGRDX1 = 1

NDX1P1 = NDEGX1l + 1

DX1 = (XLMAX - X1MIN)/NGX1Ml
IF{NINPUT.EQ.1} NGRDUZ = 1}
WRITE(6491)

DO 300 fu2=1,NGRDU2

DO 200 IUl=1,NGRDU1

READ{S+6) NIC,NDATA,IDIFF, ISMOTH,TDELTA
DO 24 I=1,NGX1M1

X1W(E) = 0.0

X10W{I) = 0.0

N1W(I)} = O

DO 100 IIC=1,NIC

READ(S,5) {X1S(1}+I=]1,NDATA)
IF(IDIFF.EQ.0} GO TO 21
IF(ISMOTH.EQ.0) GO TO 22

CALL SEI3(X1SyX1SyNDATA,IER}
CALL DET3{TDELTA,X1SsX1DS4NDATA, IER)
60 TO 23
READ{S¢5) (X1DS( 1)y I=1,NDATA)

DO 30 I=1,NDATA

IX1 = (X1S{I) = XLMIN)/DX1l + 1.0
IFCIXLLT.1Y IXD = 1
IF(IX1.GT.NGX1M1) IX1l = NGX1M1
XIW(IX1) = XIW(IX1) + X1S(I)
X1OWCIX1} = X1DW(IX1) + X1DSUI)
NIWCIX1) = NIW(IXL) ¢ 1

CONT INUE

K =0

DO 40 I=1,NGX1M1

IF(N1KW(I).EQ.0) GO TO &0

K=K+ 1

DENOM = N1W(1)

X1W{K} = X1W{I)/DENOM

X1DW{K) = X1DW{I)/DENOM

CONTINUE

CALL CURVFT{X1MsX1DWyKsNDEGX1oCLN)}
IF(IPUNCH,EQ.0) GO TO 200
WRITE(74S){CLM{L}+I=1,NDX1P1)
WRITE(645H(CIM{ 1)y 1=1,NDX1P1}
WRITE(642)

WRITE(6,1)

RETURN

END

19



SUBROUTINE CURVFT{X¢YsN,NOEGX,C}

Cremmm
c L L R RN R R RS
C + SUBROUT INE CURVFT = LEAST SQUARES CURVE FITTING
C +
C + CALL ING REQUIREMENTS
[ +
C + X ARRAY OF VALUES OF INDEPENDENT VARIABLE
C + A\ ARRAY OF VALUES OF DEPENDENT VAR!ABLE
C + N DIMENSION OF X OR Y .
c + NDEGX MAXIMUM DEGREE OF POLYNOMIAL IN X
[ + [
C +*
C +
C + SUBPROGRAM REQUIREMENT
C + SImMQ TO SOLVE LINEAR SIMULTANEQOUS EQUATIONS (SSP}
C L R R R R S S R R R s
[ Tro—
DIMENSION X{1),Y(1},CC1}.,XKPNM1(21),A(121}
Cmmmm
NXPl = NDEGX + 1
NXT2 = NDEGX*2
LENTHA = NXP1*¥NXP1
Coommm
DO 10 IC=1,NXP1l
10 C{IC) = 0.0
DO 11 1A=1,LENTHA
11 A({IA) = 0.0
Cm——m—
D0 100 K=14N
XKPNM1{1l) = 1.0
IF{NXT2.EQ.0} GO TD 21
DO 20 IX=1,NXT2
20 XKPNMI{IX+1l} = XKPNMI{IX)*X{K}
Cmmmm

21 DO 100 IP=1,NXP1
IARG = [P - NXPl
DO 30 I=1,NXP1
[ARG = [ARG + NXPl
30 AfIARG) = A{TARG) + XKPNML{IP+I-1)
100 C{IP} = C(IP} + YUK)*XKPNML{IP}
[T —
IFINXP1l.GT.1) GO TG 41
Ct1y = Ct1I7AL1)
RETURN
41 CALL SIMQ(A,C.NXP1,0)
[ —
RETURN
END

RESULTING COEFFICIENT VECTOR FOR A FUNCTIONAL
RELATION DF THE FORM Y = SUM{ C(I)*(X*¥([-1))

aFaXaXsXalaXsEsNaNeNaNaNaNaNaNaXaNalal

SUBROUTINE XDOT1(X1,Ul,U2,X1D0T)

o
!
t
1
[}

L R e e e L e s e e s e
+ THIS SUBROUTINE EVALUATES THE DERIVATIVE FUNCTION X1D0T
+ FOR ANY VALUES OF Xls Ul AND U2y SPECIFIED THROUGH THE
+ ARGUMENTS OF THIS PROGRAM., NOTE THAT THE COEFFICIENTS
+ ClM{Ss114113 AND NINPUT, X1MINy X1MAXe NDEGX1ls ULMIN,
+ ULMAXs NGRDULy U2MIN, U2MAX AND NGRDU2 MUST BE READ IN
+ A MAIN PROGRAM(WRITTEN BY THE USER} AND TRANSFERRED TO
+ THIS PROGRAM THROUGH THE COMMON STATEMENT, THE MODEL
+ COEFFICIENTS WHICH ARE IDENTIFIED 8Y THE PROGRAM

+ *SYSID1* MUST BE READ AS FOLLOWS:

+ DO 10 IU2=1,NGRDU2

+ DO 10 IUl=1,NGRDUL

+ 10 READ(S5,13(C1IM{I4IULyIU2},1=1,NDX1P1}

+ 1 FORMAT(3X,TEll.4)

+ WHERE, Ul & U2 ARE DIVIDED INTO NGRDU1l & NGRDU2 LEVELS
+ AND NDX1P1-1=NDEGX1 IS THE DEGREE OF POLYNOMIAL IN X1,
+ WHEN NINPUT, THE NUMBER OF INPUTS, IS 1 THEN U2 = 0.0
L N s

LK I L R 2 2R 25 2K R IF 0 IR 2 2R N 4

COMMON/MNDT1/C1M{55 114113 ¢ NINPUToX1MINg X1MAXyNDEGX 1 yULMINs UL MAXy
1

NGROU1 ,U2MIN, U2MA Xs NGRDU2
DIMENSICN Dluli2},D1U2(2)
NDX1P1 = NDEGX1 + 1
DUl = (ULMAX — UIMIN)Z(NGRDUl~1}
IUl = (Ul - ULMIN)/DULl + 1.0
IF(IVUl.LT.1) IULl = ]
IF{IUl1.GE.NGRDUL1} IUl = NGRDU1l = 1
PERUL = (Ul - ULMIN - {IUl-1}*DU1l}/DUL
IF{NINPUT.EQ.2) GO TO 10
IV =1
GO TO 11 ,
DU2 = (U2MAX — U2MIN}ZINGRDU2 - 1)
TU2 = (U2 - UZMINI/DU2 + 1.0
IF(IV2.LT.1) TU2 = 1
IF{IU2.GE.NGRDU2) IU2 = NGRDU2 - 1
PERU2 = (U2 - U2MIN - (IU2-1)#*DU2}/DU2
J=1U2~-1
DO 20 NU2=1,2
J=J +1
I =1qUl -1
DO 30 NUl=l,2
I =1+1
D1ULINULl) = C1M{J, I,NDX1P1)
DO 30 IX1=1,NDEGX1
D1UL{NUl) = DLULCNULlI#X1 + CLlM(J,I,NDX1P1-1X1])
X100T = DlUl(1l) + (DlUl(2) - DIVUL1(1))*PERVL
IFI(NINPUT.EQ.2) GO TO 20
RETURN
D1U2(NUy2) = X1DOT
X1D00T = DlU2(1) + (Dlu2(2) - D1U2(1))*PERV2
RETURN
END

29
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SUBROUTINE SYSID2

L T L e R e e R e Rl R R e T R R e e g e A

+
+
*
+
*
+
+
+
+*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

THIS PROGRAM IDENRTIFIES A SINGLE-INPUT, SECOND-ORDER +
SYSTEM. THE IDENTIFIED MODEL IS A POLYNOMIAL IN X1 AND+
X2 AND A TABLE IN Ul. THE COEFFICIENTS OF THE POLY~
NOMIAL ARE PRINTED/PUNCHEQ FOR EACH STEP INPUT.

SUBROUTINE REQUIREMENT-SEL13, DET3, SIMQ{SSP) AND SURFIT

THE FOLLOWING OATA IS REQUIRED FOR IDENITIFICATION

FIRST DATA CARD HAS FORMAT 6110 AND MUST CONTAIN
NDEGX1 AND NDEGX2 — DEGREES OF THE POLYNOMIALS IN X1
AND X2 RESPECTIVELY
NGRDX1s NGRDX2 AND NGRDUL - NUMBERS OF LEVELS INTO
WHECH X1s. X2 AND Ul ARE DIVIDED RESPECTIVELY
CUSUALLY NDEGX1=NOEGX2=3 AND NGRDX1=NGROX2=NGRDUl=11)
IPUNCH - 1 TF PUNCHED OUTPUT IS DESIRED(O OTHERWISE}
SECOND DATA CARD HAS FORMAT 6F10.3 AND MUST CONTAIN
XIMIN, X1MAX, XZ2MINs X2MAX, ULMIN AND ULMAX -~ MINIMUM
AND MAXTMUM VALUES OF Xle. X2 AND Ul RESPECTIVELY
THERE MUST BE NGRDUL SETS OF TEST DATA AFTER THE FIRST
TWwO DATA CARDS. 'IN THE I-TH DATA SET THE VALUE OF THE
STEP IN Ul = ULMIN + (ULMAX-ULIMIN)}*(I-1)/(NGRDULl-11}.
EACH DATA SET MUST FOLLOW A DATA CARD WHICH HAS
FORMAT 4110+ F10.4 AND CONTAINS
NIC - NUMBER OF INITIAL CONDITIONS(ABOUT 20) WHECH NEED
NDT BE SAME(IN VALUE & NUMBER} FOR ALL STEP INPUTS.
WHEN THE INPUT IS ULMAX, THE INITIAL CONDITIONS MAY
BE CHOSEN ONLY ALONG THE LOWER HALF OF THE LOCUS OF
INITIAL CONDITIONS(VICE VERSA FOR ULMIN}.
NDATA -~ NUMBER OF SAMPLES IN EACH RESPONSE(ABOUT 100}
IDIFF - 1 IF THE OERTVATIVES OF X1 AND X2 HAVE TO BE
OBTAINED BY DIFFERENTIATING X1 AND X2(0 OTHERWISE)
ISMOTH -~ 1 IF SMOOTHING IS REQUIREO(O OTHERWISE)
TDELTA = THE SAMPLING INTERVAL{CONSTANT)
NOTE THAT IF IDIFF=0, ISMOTH AND TDELTA ARE NOT NEEDED.+
THE SAMPLED RESPONSES IN EACH DATA SET MUST BE SUPPLIED +
IN PUNCHED CARD FORM IN FORMAT 3X, TEll.4 AS FOLLOWS: +
VALUES OF THE STATE X1 | FOR THE FIRST OF THE +
VALUES OF THE STATE X2 f NIC INITIAL CONDITIONS+
VALUES OF THE DERIVATIVE OF X1 | (DERIVATIVE VALUES +
VALUES OF THE DERIVATIVE OF X2 | ONLY IF IDIFF=0) +
SAME AS ABOVE FOR OTHER INITIAL CONDITIONS +

D R A Y IR AR A AR R N N R R I R IR IR

FEEFPF A4 4P F 44444274414 E 444 H LT R4 P23 444 33144 L P T HE 4444

DIMENSION X15(100),X2S(1003,X1DS{100),X2DS(100)

DIMENSION X1W(11,11}¢X26¢11¢11%,X1DW(LLs10)yX2DW{11¢11)yNu{11,11)
DIMENSION C1M(545)sC2M{5,5),2ZX1(121),2X2(121),2ZX1D{121),2ZX20(121)
FORMAT (1H )

FORMAT(B8F10.3)

FORMAT(B8110)

FORMAT (3X,TELl. 4}

FORMAT[4]10,F10.4)

FORMAT (1H1l, 9X,'THE IDENTIFIED MODEL IS A POLYNOMIAL IN X1 AND X2

1AND A TASBLE IN ULl'4/ +10X,*THE COEFFICIENTS OFf THE POLYNOMIAL FOR
2EACH OF THE STEP INPUTS ARE:',//)

WRITE(6,91)

READ{5+4) NDEGX]1 yNDEGX2 ¢ NGRDX1sNGRDX2,NGRDUL ¢+ EPUNCH
READ(S5¢3) XIMINyXL1MAX+X2MINy X2MAX o ULHIN,UL MAX
NDX1P1 = NDEGX1 + L

20

22

21
23

30

40

50

51
200

NDX2P1 = NDEGX2 + 1

NGX1M]1 = NGRDX1 - 1

NGX2M1 = NGROX2 - 1

DX1 = (X1MAX = XLMIN)/NGX1M1

DX2 = (X2MAX ~ X2MINI/NGX2M]

DO 200 I1Ul=1,NGRDUL

DO 20 I=1,NGX1M]1

DO 20 J=1,NGX2M1

X1W(I.J} = 0.0

X2W{I,J} = 0.0

X1DW{I,J) = 0.0

X2DW(I+Jd) = 0.0

NW{l,J) =0

READ{596) NICsNDATA.IDIFF,ISMOTH, TDELTA

DO 30 IIC=1,NIC

READ{5,+5)(X1StT1)+I=1,NOATA}
READ(5+51(X25¢1),I=1,NDATA}~

TFUIDIFFL.EQ.0) GO TO 21

IF{ISMDTH.EQ.0) GO TO 22

CALL SEL13{X1S,X1SyNDATA,IER}

CALL SEL3(X2S+X2S+NDATALIER}

CALL DET3{TDELTAyX1SyXLDS,NDATA,1ER}

CALL DET3(TDELTA.X2S,X2DSy» NDATA,IER)

GO 7O 23

READ(5,53(X1DS{ f) 121 ,NDATA}
READ{(5.,5} (X2DS( 1}, I=]14NDATA}

00 30 I=1,NDATA

I1 = (X1SCI} = X1MIN}/DX1l + 1.0

12 = (X25(1) — X2MIN)}/DX2 + 1.0

IF(Il1.LTe1) 11 =1

TF(T1.GT.NGX1M1} Il = NGX1Ml

IF(I2.LTal) 12 = ]

IF(I2.GT.NGX2M1) [2 = NGX2M1

X1W(Il,12) = X1W{Il,12) + X1S(I}

X2W(I1412) = X2W(I1le12) & X2S(I}

XIDWCI1,12) = X1DW(I1l,12) + X2DS{I}
X2DW{Ile 12} = X2DW(I1,12) + X2DS(I}
NW{Il,12} = NW(Il,I2) ¢ 1

K =0

DO 40 Il=1,NGX1M1

DO 40 I2=1,NGX2M1

TFINW(TI1l,12).EQ.0} GO TO 40

K=K +1

DENOM = NW(ll,12)

ZX1(K) = X1W{I1l,12)/DENOM

IX2(K) = X2W{I1,12)/0ENOM

IX1D(K} = X1DW{T1,12}/DENOM

IX2D(K}Y = X2DW{I1l,12)/0ENDM

CONT INUE

CALL SURFIT(ZX19ZX2+ZX1DsK¢NDEGX1yNDEGX2,C1M)
IF(IPUNCH.EQ.0) GO TO 50

WRITE{T+5) ({C1M(T9J)y I=14NDX1PL) +J=1,NDX2P])
WRITE(6¢5){ (CIMUT4J) o I=1s NDX1P1)} 4 J>1,NDX2PL)
CALL SURFIT(ZX1,ZX2+ZX2D¢KsNDEGX1yNDEGX2,C2M}
TF(IPUNCH.EQ.0) GO TD 51

WRITE(T+S) ((C2MUT4JYy I=14NDX1PL1) ¢J=]1,NDX2P1)
WRITE(6+5)1{C2MIT+3) . I=14NOX1P1}»JI=1,NDX2P1)
WRITE(642)

RETURN

END
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11

20
21

30
31

40
100

51
52

50

SUBROUTINE SURFIT{X,Y+ZyNyNDEGXsNDEGY,C)

R e e R T S ey e S S S R e e S ad et

+ SUBROUTINE SURFIT - LEAST SQUARES SURFACE FITTING

* CALLING REQUIREMENTS

+ X ARRAY DF VALUES OF FIRST INDEPENDENT VARIABLE
+ Y ARRAY OF VALUES OF SECOND INDEPENDENT VARIABLE
+ z ARRAY OF VALUES OF DEPENDENT VARIABLE

+ N DIMENSION OF X OR Y OR Z

+ NDEGX MAXIMUM DEGREE DF THE POLYNOMIAL IN X

+ NDEGY MAXIMUM DEGREE OF THE POLYNOMIAL IN Y

* C RESUWTING COEFFICIENT MATRIX FOR THE RELATION
+ 1 = SUM( SUM{ CUI,J)*(Xex({]-1))xl{Y**{J-1)})

+ 1 ’

+ SUBPROGRAM REQUIREMENT

+ SIMQ TO SOLVE LINEAR SIMULTANEOUS EQUATIONS{(SSP}
R

+
+
+
+
+
+
+
+*
+
+
+
+
+
+

DIMENSION X{1)oY(1),2Z(1)4C{5,5), XKPNML(11},YKPNML1{11},AL625),B(25)

NXPYL = NDEGX + 1

NYP1 = NDEGY + 1

NXT2 = NDEGX*2

NYT2 = NDEGY*2

LENTHB = NXP1*NYP1

LENTHA = LENTHB*LENTHB

DO 10 IB=1l,LENTHB !

B(18) = 0.0

D0 11 IA=1,LENTHA

A{1A) = 0.0

DO 100 K=1,N

XKPNM1{1} =1.0

IFINXT2,EQ.0) GO TO 21

DO 20 IX=1,NXT2

XKPNML (IX+1} = XKPNMLIIX)*X{K)
YKPNM1(1l) = 1.0

IFINYT2,EQ.0) GO YO 31

DO 30 1Y=1,NYT2

YKPNML{IY+]1) = YKPNML(IY)*Y(K}
18 =0

DO 100 IQ=1.NYP1

0D 100 IP=1,NXP1

IA = 1A + 1

TARG = TA ~ LENTHB

DO 40 J=1,NYP1

DO 40 1=1,NXP1l

IARG = IARG + LENTHB

AUTARG) = ACTARG) + XKPNML(IP+I-1)®YKPNM1{1Q+J-1)
B(IA) = B{IA} + ZUKI*XKPNML{IP}*YKPNMLI{(TQ}
IF(LENTHB.GT.1} 60 TO 51

B(l) = B(1}/A(1}

60 TO 52

CALL SIMQ(A,ByLENTHB,0}

14 =0

DO 50 J=1,NYP1

D0 S0 I=1,NXPl

18 = 13 + 1
Cil,J} = B(IJ)
RETURN

END

[aXaXsKsKaNa NN e ool Na e e e Na N o Xalyl
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SUBROUTINE XDOT12{X1sX2,Ul,X1DOT,X200T)

R
THIS SUBROUTINE EVALUATES THE DERIVATIVE FUNCTIONS X1D0T +

AND X2DOT FOR ANY VALUES OF X1, X2 AND Ul, SPECIFIED

+

THROUGH THE ARGUMENTS OF THE SUBROUTINE. NOTE THAT THE+

MODEL COEFFICIENTS CIM(S5,5,11),C2M(5,5,11) AND ULMIN,
U1MAX, NDEGXls NDEGX2, AND NGRDU] MUST BE READ IN A
MAIN PROGRAMIWRITTEN BY THE USER) AND TRANSFERRED TO

THIS SUBROUTINE THROUGH THE COMMON STATEMENT. THE

MODEL COEFFICIENTS WHICH ARE IDENTIFIED BY THE PROGRAM

*SYSID2* MUST BE READ AS FOLLOWS:

DO 10 K=1,NGRDU1
READ(S»11((CIN(T4J4K}sI=1yNDX1P1),J=1,NDX2P1)
READ{541) ((C2M(T,J,K}¢I=]1,NDX1P1},3=14NDX2P1)
FORMAT(3X47Ell.4)

WHERE, Ul IS DIVIDED INTO NGRDULl LEVELS AND

NDX1P1l-1 = NDEGX1 AND NDX2Pl-1 = NDEGX2 ARE THE DEGREES

OF THE POLYNOMIALS IN X1 AND X2 RESPECTIVELY.

+
+
+
+
+
+
+
+*
+
+
+
+
+
+
+*
+
+

10 'X

11

20
21

40

30

1

COMMON/MNDT12/C1M(545+11),C2M(5,5,11),UIMIN,ULMAX,
NDEGX 1, NDEGX2+NGRDUL

DIMENSION X1DU(2},X2DUL2),X1PNML1{S),X2PNML{S)

NDX1P1 = NDEGX1 + 1

NDX2P1 = NDEGX2 + 1

NGULIM1 = NGRDUL =~ 1

DUl = (ULMAX - ULMIN}/NGULM1

Ul = (Ul - UIMIN)/DUL

IF(IUL.LT.O0) IULl = O

IF(IU1.GE.NGULML) IUl = NGMIULl - 1

PERUL = (Ul - UIMIN - TU1*DUL1}/DUL

X1PNM1(1) = 1.0

IF{NDEGX1.EQ.0) GO TO 11

D0 10 I=1,NDEGX1

1PNML(T1+1) = X1PNM1{1}#*X1

X2PNM1(1} = 1.0 .

IF (NDEGX2.EQ.0) GO TO 21

DO 20 I=1,NDEGX2

X2PNM1¢T1+1}) = X2PNM1(I)#*X2

DO 30 NU=1,2

IUl = Ul + 1

X1DU{NU} = 0.0

X2DUINU} = 0.0

DO 30 J=1,NDX2P1

SUM]1 = 0.0

SUM2 = 0.0 -

DO 40 I=1,NDX1P1

SUML1 = SUML + CIM(I,J,FUL)*X1PNMI{])

SUM2 = SUM2 + C2MIT1,J,IU1)*X1PNMLI(I)

X1DU(NU} = X1DUINU)} + SUMI*X2PNM1({J)

X2DU{NU} = X2DU(NU) + SUM2*X2PNM1(J)

X1D0T = X1DU(L) + (X1DUC2) -~ XIDU(1}}*PERU]

X200T = X2DU{1} + (X2DU{2)} - X2DU(1))*PERUL

RETURN

END

*

+
+
+
+
+*
+
+
+
+
+*
+

0000094000004400*00000440000004040#000QQQQQQ*#QQQQ004##000040*000
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APPENDIX B

CONVERSION SUBROUTINE

This appendix includes a conversion subroutine, CONVRT,
which can be used to generate the coefficients of a model
form which is tabular both in X and U or polynomial both in
X and U, This subroutine requires the coefficients ot the
standard form of the model which are obtained by SYSID! or
SYSID2 in Appendix A. In addition, proper versions of the
subroutines XDOT! and XDOT12 which can use the model coef-
ficients generated by CONVRT are also presented. All of

these subroutines contain the necessary explanation.
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SUBROUTINE CONVRT(NORDER.NINPUT.HFORH)

: 000000000000000000000ﬂ000’0000000‘0-’000‘00000000000‘00000000 L2222 22
*

+
+
+
-
+
+
+
+
+*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

00000’0000‘0000000000“00000000000000000000000000000000#00“00004

. +
TH1S SUBROUTINE IS PREPARED FOR FIRST-ORDER SYSTEMS AND +
SECOND-ORDER SYSTEMS TO GENERATE THE COEFFICIENTS OF A +
MODEL FORM WHICH IS COMPLETELY TABULAR OR COMPLETELY +
POLYNOMIAL IN THE STATES AND-IN THE INPUTS. THE COEF~ +
FICIENTS OF THE MIXED FORM OF THE MODEL WHICH ARE O8TA-+
INED BY THE SUBROUTINE SYSID1l OR SYSID2 ARE READ IN 8Y +
THIS PROGRAM AS INPUT DATA.. THE GENERATED COEFFICIENTS+
ARE PRINTED IN THIS SUBROUTINE. HOWEVER, THESE wWILL BE+
AVATLABLE .IN THE USER WRITTEN MAIN PROGRAM THROUGH THE +
COMMON (BLOCK} STATEMENT IF PUNCHED OUTPUT IS DESIRED. +
COEFFICIENTS CC2 ARE INDENTED FOR CONVENIENCE.

THE EXPLANATION FOR THE ARGUMENTS IS AS FOLLOWS:
NORDER ~ 1 FOR FIRST-ORDER SYSTEMS
2 FOR SECOND-ORDER SYSTEMS
NINPUT = 1 FOR S INGLE- INPUT SYSTEMS
2 FOR DUAL~-INPUT SYSTEM
NDTE' THE CASE WHERE NORDER=NINPUT=2 [S NOT CONSIDERED

NOTE THE QUANTITIES WHICH ARE TRANSFERRED FROM A MAIN
PROGRAM {WRITTEN BY USER) THROUGH THE COMMON (BLOCK)
STATEMENT. THE FOLLOWING IS THE EXPLANATJON:

Cl1 AND C2 ~ THE COEFFICIENTS QF THE MIXED FORM OF THE
MODEL - THREE DIMENS IONAL ARRAYS
CC1 AND CC2 - THE COEFFICIENTS OF THE DESIRED FORM
OF THE MODEL (TABULAR OR POLYNOMIAL)
X1MIN: X1MAX g X2MINy X2MAX s ULMINs ULMAX , U2MTN AND U2MAX
ARE THE MINIMUM AND THE MAXIMUM LIMITS ON X1, X2,
Ul AND U2 RESPECTIVELY
NGRDX1s NGRDX2+ NGRDUI AND NGRDUZ ARE THE NUMBERS OF
LEVELS INTD WHICH X1, X2, Ul AND U2 ARE CIVIDED
NDEGX1es NDEGX1, NDEGU1 AND NDEGU2 ARE THE OEGREES OF
THE POLYNOMIALS IN X1y X2y Ul AND U2 RESPECTIVELY
NOTE: WHEN A TABULAR FORM OF THE MODEL IS OESIRED,
NDEGUL AND NDEGU2 NEED NOT BE SPECIFIED.

LI A R I A A

FOR A SINGLE INPUT SYSTEM NGRDU2 = 1 AND NDEGU2 = O
SUBROUT INE REQUIREMENT

CURVFT - FOR FITTING CURVES THROUGH DATA POINTS IN A
LEAST SQUARES SENSE { SEE APPENDIX A).

SINQ - FOR SOLVING LINEAR ALGEBRAIC EQUATIONS ( FROM
IBM SCIENTIFIC SUBROUTINE PACKAGE).

CUHHDNIBLOCKICIIll.llqll)vCZ(lloll.lll'CCl(llrll'llivCCZIIl'llqll)

¢X1MIN,X1MAX ¢ NGRDX1+NDEGX] s X2MIN ¢ X2MAX yNGRDX2 +NDEGX 2y
ULMIN,UIMAXsNGRDUL, NDEGUL + U2MIN yU2MAX ¢ NGRDU2 » NDEGU2

2 .
DINENSION X1U2114X202105U2021)9U2021 0 X1PNMLI10) +X2PNML{10),
1

Crmwae

WC1(5¢5¢11)yY1(214,Y2(21),COEFLL10)COEF2(10)

1 FORMAT(1H1)
2 FORMAT{1H.) i
3 FORMAT(3X,7Ell.4}

L0 I BC IR R I IR K R R IR R IR AR N LR R

4 FORMAT(3X,11E11 .4}
5 FORMAT(8X,11Ell.%}

6 FORMAT(1H1 42X, *THE FOLLOWING COEFFICIENTS OF A MODEL FORM, WHICH |
1S TABULAR IN THE INPUT{S) AND POLYNOMIAL IN THE STATEU!S),*¢/¢3X,

2 'WERE READ IN 2',//)

7 FORMAT{1H1,2X+*THE FOLLOWING ARE THE COEFFICIENTS OF THE DESIRED F

10RM: ', /7))
WRITE(6+6)
[ f—
NDX1P1 = NDEGX1 + 1
TF(NORDER.EQ.2) GO TQO 22
IF(NINPUT.EQ.1) NGRDU2 = 1
D0 21 K=]1,NGRDU2
DO 21 J=1,NGRDU1
READ(5¢3) (Cl(I+JeK),yI=1,NOX1P1}
21 HRITE(thl(Cl(levK!.l'l.NDXlPl)
GO TO 25
22 NDX2P1 = NDEGX2 + 1
00 23 K=]1,NGRDU1
WRITE(642)
READ(5¢3) ((CLUT1+J34K)I=1yNDX1PLl},J=1,NDX2P1])
READ(5+3) ((CZ(l'JvKlvl=quDXlPl)oJ'l'NDXZPl)
D0 23 L=1,NDX2P1 -
HRITE(éoh)(Cl(l.L'K)'ISI'NDXlPl)
23 WRITE(645)(C2(TyLeK),I=]1,NDXIPL)
[ B
25 WRITE(6,T)
NGX1M1 = NGRDX1 ~ 1
DX1 = (XIMAX = X1MIN}/NGXLM1
[F{MFORM.EQ.1) 6O TO 100
[ L.
X1¢1l) = XIMIN
00 30 I=1,NGX1M1
30 X1(I+1) = X1(I) + DXl
IF{NORDER.EQ.2} GO TO 61

DO 51 K=],NGRDU2
00 51 J=1,NGRDUL
DO 50 I=1,NGRDX1
SUMl = 0.0
DO 40 L=1,NDX1P1

40 SUML = SUML#X1(I) + CLINDX1P1+1-LyJyK)

50 CCLl(IsJeK) = SUM]

.81 HBlIEI&.LIlCCL(l-J;KI-l-l;NGRDXl)
RETURN

Covmem

61 NDX2P1.= NOEGX2 + 1
NGX2M1 = NGRDX2 - 1
DX2 = (X2MAX - X2MIN)/NGX2M1
X2(1) = X2MIN
DO 62 I=1,NGX2M1

62 X2(I+1) = x2(1) + DX2

[T

DO 91 IUl=1,NGRDUL
WRITE(642)
00 91 IXZ=1,NGRDX2
DO 90 IX1=1,NGRDX}
X1PNM1{(1) = 1.0
1F (NDEGX1.EQ.0) GO TO 82
DO 81 I=1,NDEGX1

99



81 X1PNMI(T¢1) = XIPNML{I)#X1(IX1)
" 82 X2PNMI(1) = 1.0
1F (NDEGX2.€0Q.0) GO TO 84
DO 83 I=14NDEGX2
B3 X2PNMI(1+1) = X2PNML{1)*X2(1X2)
[y -
84 SUMLX2 = 0.0
SUM2X2 = 0.0
DO 86 J=1,NDX2P1
SUMLIX1 = 0.0
SUM2X1 = 0,0
DO 85 Ix1,NDX1P1 .
SUMIX]1 = SUMIXL + CL{I,Jy IULI*X1PNM1(I)
85 SUM2X1 = SUM2X1 * C2{1,J,1UL}*X1PNM1(1)
SUMLX2 = SUMIX2 + SUMIX1%X2PNM1{J)
B6 SUM2X2 = SUM2X2 + SUM2X1%X2PNM1{(J)
c-_--_
CCL{IX1,IX2,TUL) = SUMLX2
90 CC2(IX14IX2,IUL) = SUM2X2
WRITE(6+4) {CCLET,1X241UL}o1I=],NGRDX])
91 WRITE(6+5)(CC2(141X2+TUL)»1=14NGRDXL}
RETURN .

100 NGULM1l = NGRDULl - 1
NOULP1l = NDEGUL + 1
DUl = (ULMAX = ULMIN}/NGULIM]
Ulil) = ULMIN
DO 110 1=1,NGUIM]
110 Ul(f+1) = UL(I} ¢ DUL
1F (NORDER.EQ.2} GO TO 181
Comema
D0 140 1U2=]1,NGRDU2
00 140 IX1=1,NDX1Pl
DO 12C NU1=1,NGRDUL
120 Y1{NU1l) = CLl{IX1,NUL,NGRDU2}
CALL CURVFT(UL,Y1+NGRDUL +NDEGU1,COEF1)
00 13C IUl=1,NDULP1
130 WC1E1X1,I1UL,NGRDU2) = COEFL1{IVUI}
140 CONTINUE
IF(NINPUT,.EQ.2) GO TO 151
Cmmmwma
00 150 1Ul=1,NDULP1
WRITE(6+4) (WCLET,1ULy1)sI=1,NDX1PL}
DO 150 IX1=1,NDX1P1l
150 CCl{IX1,1Uly1) = WCLIIX1,IVU1,1}
RETURN
c--_-_
151 NDU2P1 = NDEGU2 + 1
NGU2M1 = NGRDU2 - 1
DU2 = (U2MAX - U2MIN)/NGU2M]
U2(1) = U2RIN
D0 152 I=1,NGU2M1
152 U2(1+1) = Y2(1) + DU2
00 180 IUl=1,NDULP1
DO 180 IX1=1,NDX1Pl
DO 160 NU2=1,NGRDU2
160 Y1(NU2) = WC1{IX1,1Ul,IU2}
CALL CURVFT{UZ,Y1,NGRDU2+NDEGU2,COEF1)
0D 170 u2=1,NDU2P1
170 CCL{IX1,1ULl,1U2) = COEFLLIU2)

180

171

[ —

181

190

191
200

CONTINUE

DO 171 K=} ,NDU2P1

WRITE( 6,2}

0D 171 J=1,NOULPL .
WRITE(6,4) (CCLUT+JeK} 1214 NOXLPL)

DO~ 200 IX2=1,NDX2P1

DO 200 IX1=1,NDX1P1

DD 190 NUl=1,NGRDU1 )

Y1(NU1) = CL{IXLl,IX2,NUl}

Y2(NU1) = C2{1X1,IX2,NU1)

CALL CURVFT({Ul,Y1,NGRDU1,NDEGUL1,COEF1)
CALL CURVFT{ULl,Y2+NGRDULl,NDEGU1,CDEF2)
DO 191 1U1=1,NDULP1 .
CCLUIX1e1X241UL) = COEFLUIULY
CC2UIX1+IX241IUL) = COEF2{1VL)

CONTINUE

© DO 201 K=1,NDULlP1

201

WRITE(6,2)

DO 201 J=1,NDX2P1
WRITE(6+4) (CCLIT2 39K} o I=1,NDX1PL}
WRITE(6+5)(CC2(1+JeK) 4121 4NDXIPL)
RETURN

END

49



. SUBROUTINE XDGT1(X1,Ul,U2,X1D3T}

OO0 OOOOODOONONOOOAON

[akaXalaXaXaNaNaRaRaXal

L S T R T R gy e T s e g R e g
+ THIS SUBROUTINE EVALUATES THE DERIVATIVE FUNCTION X100T
+ FOR ANY VALUES OF X1, Ul AND U2, SPECIFIED THROUGH THE
+ ARGUMENTS QF THIS PROGRAM. NOTE THE QUANTIT1ES WHICH
+ ARE TRANSFERRED FROM A MAIN PROGRAM THROUGH THE COMMON
+ (MNDT1) STATEMENT., THIS PROGRAM IS PREPARED FOR FIRST
+ ORDER SYSTEMS. THE COEFFICIENTS Cl OF THE MODEL WHICH
+ IS COMPLETELY TABULAR OR COMPLETELY POLYNOMIAL IN X1,
+ Ul AND U2 ARE USED. THE FOLLOWING IS THE EXPLANATION
+ FOR THE VARIABLES USED IN THE COMMON STATEMENT:
+ NINPUT - 1 FOR SINGLE-INPUT SYSTEM

+ 2 FOR DUAL-INPUT SYSTEM

+ MFORM - 0 FOR TABULAR FORM

+ 1 FOR POLYNOMIAL FORM

+ X1MINy X1MAX, ULMIN, ULMAX, U2MIN AND U2MAX ARE THE
+ MINIMUM AND THE MAXIMUM LIMITS ON X1, Ul ANO U2.

+ NGRDX1ly NGRDUL AND NGRDU2 - THE NUMBERS OF LEVELS

+ - INTO WHICH X1, Ul AND U2 ARE DIVIDED.

+ NDEGXly NDEGUL AND NDEGU2 - THE DEGREES OF THE POLY-
+ NOMIALS IN X1, Ul AND U2 RESPECTIVELY.

+ NOTE: FOR A SENGLE-INPUT SYSTEM, NGROUZ2 = 1 AND

+ NOEGU2 = O

+ IF THE COEFFICIENTS C1 ARE GENERATED BY THE SUBROUTINE

+ CONVRT, THESE MAY BE READ IN AS FOLLOWS:

+

+

+

+

+

+

+

+

+

+

3 FORMAT{3X,7E11.4)
DO 10 K=1l,NU2
00 10 J=1,NUl
10 READ(5¢31(CL(1sJsKDIeI=1,NX1}

WHEREs NX1 = NGRDOX1l, NUl = NGRDUl AND NU2 = NGRDU2 FOR A
TABULAR FORM AND NX1 = NDEGX1l + le NUl = NDEGUL + 1
AND NU2 = NDEGU2 + 1 FOR A 'POLYNOMIAL FORM.
R R L R e 2t

COMMON/MNDTL/C1 0115114113 ¢ NINFUTMFORMoX1MIN,X]1MAX ¢NGRDX]1yNOEGX1,
1

ULMIN,ULMAXyNGRDUL, NDEGUL+U2MEIN,U2MAX, NGRDU2 4 NDEGU2
OIMENSION X1PNM1(10),ULPNHML(10),U2PNML(10)
IF{MFORM.EQ.1) GO TO 300
NGX1M1 = NGROX1 - 1
DX1 = (XLMAX - X1MIN}/NGX1M] N
NX1 = (X1 - X1MIN}/DX1
IF(NX1.LT.C) NX1 =0
IF(NX1.GE.NGX1M1) NX1 = NGXIM] - 1
PERX1 = (X1 - X1MIN - NX1#*DX1)/DX1
I = NX]1 ¢+ 1 -
IF(NGRDUL.NE.1} GO TO 210
DTX1 = Cl(Ielel)
DTX2 = Cl{I+ls1,1)

GO TO 240

210

NGUIM]1 = NGROUL - 1

OUl = (ULMAX = ULMIN}/NGUINM]

NULl = (Ul - ULRIN)/DUL
IF(NU1.LT.0} NULl = O
IF(NU1.GE.NGULM1} NUl = NGU1MI - 1
PERUL = (Ul.~ ULNMIN = DU1*NU11/DUL
J = NUL + 1

IF(NINPUT.EQ.2} GD T0 220 -

LR IR B L IR I 25 2K B B B IR S BE 0 B0 IR R 2 B IR 2R 2 IR B 3 K T I I B R

220

230
240
300

310
311

320
321

0oTxul .

DTXULL =-Cl4IsJdyl}
DTXUL2 = Cl{IsJ+1,1)

= Cl(1%l.+J,1)
DTXU22 = Cl{I+lsd¢l,1)
60 TO 230 .
NGU2M1 = NGRDU2 - 1

‘DU2 = (UZMAX. ~ UZMIN)/NGU2ML *

NU2 = (U2 - U2MIN}/DU2
IFINU2.LT.0) NU2 = O
IF(NU2.GE.NGU2M1} NU2 = NGU2M]l - 1
PERU2 = (U2 - U2MIN - DU2#NU2}/DU2
K = NU2 + 1

DTXULL = CL(IeJdeK) + (CLUEyJ9K+l) - Clll.J.Kl)‘PERUZ

DTXUL2 = Cl{1sJ+14K) + (CLEI4J+1,K+1) - CL(L¢J41,K))*PERU2
DTXU21 = CLiI+ledoK) + (CLUI#14JsK+1) - CLUE+1,J,K)D*PERU2 ‘
DTXU22 = CLUI+1,J¢1sK) + (CLUI41eJ¢]l,Ke1)} - Cl(l#l-J*l.K))‘PERUZ
DTX1 = DTXUL1l + (DTXUl2 -.DTXUll)*PERUL

DTX2 = DTXUZ2]1 + (DTXU22-- DTXU211+PERUL

X1D0T = DTX1 + (DTX2 - DTX1)*PERXL

RETURN

NOX1P1 .= NOEGX1 + 1

NDU1P1l = NDEGULl + 1

LF(NINPUT.EQ.1} NDEGU2 = O

NDU2P1 = NDEGUZ + 1

X1PNML(1) = 1.0 - -

IF(NDEGX1.EQ.0) GO TO 311

DO 310 I=1.NDEGX1

X1PNML(I+1) = XLPNML{I)=*X1

U1PNM1(1) = 1.0

IF(NDEGU1.EQ.0) GO TO 321

DG 320 I=1,NDEGUl -

ULPNM1({I+1) = ULPNML{I)»ul

U2PNM1 (1} = 1.0

IF(NDEGU2.EQ.0) GO TO 331

- DO 330 I=]1,NDEGU2

330
331

340

350
360

U2PNM1(I+¢1) = U2PNML(]I)#%U2
X1P0T = 0.0

-D0. 360 [U2=]1,NDU2P1

SUM1UL .= 0.0

DD 350 IUl=1,NDU1P1

SUMLIX1l = 0.0

00 340 IXI.I'NDXIPI

SUMIX1 = SUMIX] + Cl‘lxlclUlleZl‘XlPlﬂl(lel
SUMIUL = SUMIUL + SUMLXL1*U]IPNM1(IUL):

X1D0T .= X1DOT + SUﬂlUl‘UZPNﬂl(IUZl

RETURN

- END
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SWRQUT[NE XOOTIZ‘XI-XZ:U[pXJ.DOT'XZDOTl 210 NGULM] = NGRDUL - 1
DUl = (ULIMAX -~ ULMIM)/NGULM1

NUl = {U]l - UIMIN)/DUL -

(2]
|
]
]
l

700000000000000#*000000’0400000000’000‘000000000000000000’000090000

+ + IF(NUL.LT.O0} NUl = O

+ TNIS S_UBROUTINE EVALUATES THE DER IVATIVE FUNCT1ONS X].DOT + IFINUL.GE.NGULM1) NUL = NGULl - 1

+ AND X200T FOR ANY VALUES OF X1, X2 AND Ul, SPECIFIED + PERUL = {Ul - ULMIN - DUltNuulDUl

+ THROUGH THE ARGUMENTS OF TH1S PROGRAM. NOTE THE QUAN- + K = NUl + 1

+ "TITLES WHICH ARE TRANSFERRED THROUGH THE COMMON STATE- + X2DT11l = C2{TsJdeK) ¢+ (C2(I1¢J,K*+1) ~ CZ(ch'KH‘PERUl

- # MENT (MNDT12) FROM A MAIN PROGRAM. THIS SUBROUTINE IS + X20T12 = C2(I15J¢1,K) + (C2(ToJ¢1,K+1) = C2(1,J+1,K}I*PERUL

+ PREPARED FOR SINGLE~INPUT, SECOND-ORDER SYSTEMS., THE + X20T721 = C2614Llyd9K) + (C2(T+1eJyK+1} ~ C20141,J,K))I*PERU]

+* COEFFICIENTS OF THE MODEL FORM WHICH IS COMPLETELY + -X20T22- = C2(1414J+41 oK) + {C2(1+1,J¢],Ke1) - C2{141,J+]1,K))*PERU]L
+ TABULAR OR COMPLETELY POLYNOMIAL IN X1, XI AND Ul ARE + S-X1IDT1] = Cl{EeJeK) .+ (ClilgdeK4l) « CLCI1,J,;K})*PERU]L

+ USED. THE FOLLOWING IS THE EXPLANATION FOR THE VARI- + X1DT12 = CL{I o-J41eK) + (CLEL10J¢1oKel) . CLET 341 ,K) P*PERUL .

3 ABLES USED IN THE COMMON STATEMENT: + LX1DT21-.= CLUL4LyJoK). ¢ (CL{IS1,dsK+])) = CLU141,J,K))I*PERUL

* + LX10T22.% ClEE+)oJ41oKL ¢ (CLA1+10d41,Ke1) ~ Cul*h.lﬂ.ml'PERUl.
+* .MFORM - 0 FOR TABULAR FORM + -220 DT1X11 = X10T11 + (X1DT12 - X1DT11)*PERX2

+* - 1 FOR POLYNOMIAL FORM + - DT1IX12 =.X10T21 +.(X1DT22 - X1DT21)*PERXZ2.

+ NGRDX1y NGRDX2 AND NGROUl - THE NUMBERS OF LEVELS - + - DT2X11 .= X20T11l +.(X20T12 =~ X2DT11l)*PERX2

+ INTO WHICH X1, X2 AND Ul ARE DIVIDED. + DT2X12 .= X2DT21 .+.{X2DT22 ~. X2DT21 npeuxz

+ NDEGX1s NDEGX2 AND NDEGU1 - THE DEGREES OF THE POLY- . X1DOT = DT1X1l ¢ (DT1X12.- DT1X11)*PERX]L

+ NOMIALS IN X1, X2 AND Ul RESPECTIVELY. + X2D0OT = DT2X11l .+ (DT2X12 - DTZXIH‘PE&XI

+ NOTE: FOR A SYSTEM WITH NO INPUT, NGROUL = 1 AND * . RETURN -

+ NOEGUL = © + 300 NOX1P1l = NDEGX1 + 1

+ . + NDX2P1 = NOEGX2 + 1 : .
+ THE DIMENSEIONS OF THE COEFFICIENTS Cl{NX1,NX2,NUl) AND + NDU1P1 = NDEGULl + 1 : -

+ C2({NX1yNX2/NUL} ARE AS FOLLOWSS * - XIPNM1(1) = 1.0

+ NX1 = NGRDX1, NX2 = NGRDX2 AND NU1l = NGRDU1 WHEN THE + IF(NDEGX1.EQ.0) 60 TO 311

+ MODEL FORM IS .TABULARy AND FOR A POLYNOMLAL HODEL FORM + DO 310 I=1,NDEGX1

+ NX1 = NDEGX1+l, NX2 = NDEGX2+1 AND NUl = NDEGUl+1. + 310 X1PNM1{l+1) = XleIHll*Xl

+ 7 * 311 X2PNM1{(1} = 1,0 .

PRI T RSS2 P2 R TR 2 R R X T S R I P S L e R I S L S I R A S S R RS L el oLl o ]F(NDEGXZ £Q.,0) GO TO 321

2 XslaXalakakalakaKakaXakadakeXslaXals sl NaNaa N alaNa oty

COMMON/MNOT12/C1411911911)9C2121411e¢11)¢X1MIN¢ X1MAX ¢NGRDX1 yNDEGX1y
1 MFORMy X 2MIN ¢ X2MAX ¢ NGRDX2¢ NOEGX2 y ULMIN UL MAX s NGROUL ¢ NDEGUL -
DIMENS ION X1PNML(10}, X2PNM1(10},ULPNM1(10}

IF{MFORM,EQ.1) GO TO 300

DO 320 I=1,NDEGX2
320 X2PNM1{l¢1l) = X2PNM1(I)=*X2
321 ULPNM1{1) = 1.0
IF (NDEGU1.EQ.0) GO TO 331
DC 330 I=1,NDEGUL

NGX1M1 = NGROX1 - 1

OX1 = (X1MAX - X1M1IN)/NGX1M1

330 ULPNMLIIT+1) = UlPNHl(ll‘Ul

331 x100T = Q.0

NXL = (X1 - X1MIN)/DX1 X200T = 0.0

- IFI(NX1.LT.0) NX1 = .0 D0 360 1Ul=1.NDULP]

IFINX1.GE.NGX1M1) MX1 = NGX1ML SUM1X2 = 0.0

PERX1 = (X1 - XIMIN - NXI‘DXHIDXI SUM2X2 = 0.0

1 = NX1 ¢ 1 DO 350 IX2=1,NOX2P1

NGX2M1 = NGRDX2 - 1 SUM1IX1 = 0.0

DX2 = (X2MAX - X2MIN)/NGX2M1 SuM2x1 = 0.0

NX2 = (X2 -~ X2MIN)/DX2 DO 340 IX1=1,NDX1P1 .
IF{NX2.LT.0) NX2 = 0 SUMIX1.= SUMIX] + C1UIX1,1X2, TULI*X1PNML (IX1)

IF(NX2.GE<NGX2M1) NX2 = NGX2Ml - 1 340 SUM2X1 = SUM2X1 + C2{IX1l¢IX2,IUL1)*X1PNNL(IX]1)
PERXZ = (X2 - X2MIN - DX2*NX2)/DX2 SUMIX2 = SUMLX2 ¢ SUMLX1*X2PNM1{IX2)
Jd = NX2 + 1 350 SUM2X2 = SUM2X2 + SUM2XL*X2PNM1{1X2}

IFINGRDULNE.1} GO T0 210-
X10T11 = Cltl.del) -
X1DT12 = Cl{1.,J+1.1)
X10T21 = Cl{lI+l,ds1)
X10T22 = Clli¢loJ¢l,l)
X20T11 = C2({1+Jds1)
X2DT12 = C2{l¢4¢ls1)
X20T21 = C2(1¢l+sdv1?

- X20%22 = C2(1+41+J341.1)

GO TO 220 .

X100T. = X1DOT + SUMIX2*ULPNM1(IUL)
360 %2007 = X200T + SUM2X2¢U1PNM1{]IUL)

RETURN
END

69.



APPENDIX C

SUBROUTINES USED IN THE EXAMPLES

This appendix includes the computer subroutines which
were used in Exawples 1}, 2 and 3 for modal analysis. Each
example used different versions of the subroutines STEADY
and LINRIZ. These programs contain the necessary explana-
tion. Note that the two subroutines used in Example 3 can
be used with the coefficients for the standard torm of the

model obtained by SYSID2 ftor second-order systems.
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SUBROUTINE STEADY({ULSTEP,X1SS)

PR TR R R AR I LS N R A S R S R SR e 2 TR S R L R A 2 T 2l s
: *.

+ .

+ THIS SUBROUTINE WAS USED [N EXAMPLE 1 FOR DETERMINING +
+ THE STEADY-STATE VALUE X1SS FOR A STEP INPUT ULSTEP. +
+ +
. THIS SUBROUTINE IS PREPARED FOR SINGLE-INPUT, FIRST-CRDER+
+ SYSTEMS. THE COEFFICIENTS C1(NGRDX1,NGRDUL} OF THE +
+ MODEL FORM WHICH IS TABULAR BOTH IN X1 AND Ul ARE USED.+
+ +
+ NOTE THE QUANTITIES WHICH ARE TRANSFERRED FROM A MAIN +
* PROGRAM THROUGH THE CUMMON (BLOCK) STATEMENT. +
+* +
FHEEPE PR LL 4324400002200 0 4420340024230 0 220 H A4 244 444200040000

COMMON/BLOCK/CL{21+21)¢X1MINy X1MAX+NGRDX1,UIMINsULMAX,NGRDUL
OIMENSION X1DEF(21)

Coveoe

NGX1M1 = NGROX] =~ 1
OX1 = (X1MAX = XIMIN}/NGX1M1

Comman

NGU1M: = NGRDUL -~ 1

0Ul = {UIMAX -~ ULMIN)/NGUIM1

1Ul = (ULSTEP = UIMINS/DUL
IF(IUL1.LT.0} IULl=0

IF{IUl1 .GE.NGUIM1} Ul = NGUIN] - 1
PERUL = (ULSTEP = UIMIN - DUl'lUl)lDUl
UL = 1Ul +1

Cormame

D0 10 IX1=1,NGRDX1

10 X1DEF(IX1} = Cl(le-lUll + (Clllxl.lUIOU-Cl(le'lUl)l‘PERUl

[,

1EF = 2
DO 20 IX1=1,NGROX1
IF(X1DEF( IX1).LELO0.00 GO TO 2]

20 1EF = IX1

Crmmon

21 1EF = IEF + 1

IFUIEF.LT.2) JEF = 2
PERX1D = (0.0 ~ X1DEF{IEF~1)1/(X1DEF(IEF} « X1DEF(IEF~1))
X1SS = XIMIN + (1EF - 2)sDX] + DX]1®PERX1D

Comwen

RETURN
END

Covove

o
]
]
]
[}
1
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SUBROUTINE LINRIZ(X10P¢ULOP,A,8) -

LR Y R R T R TR R R Y Ty e s e L T s I TV 2 2
) : .
THIS SUBRDUTINE WAS USED IN EXAMPLE | FOR DETERNINING o

THE COEFFICIENT MATRICES A ANO B {IN THIS CASE SCALARS)e

OF THE LINEARIZED DIFFERENTIAL EQUATION FOR OPERATION 0

+
+
+
+ ‘IN. THE SHALL ABOUT THE POINT (X10P,UIOP).

+ 0
+ THIS SUBROUT[NE 1S PREPARED FOR Sllﬂ.E*lW'. Fxnsr—nne»
+ SYSTEMS. THE COEFFICIENTS ClINGRDX1,NGRDV1) OF THE *
+ MODEL FORM-WHICH IS TABULAR BOTH 1IN X1 ANO UL ARE USED.e
+
+
.
+
+

-
NOTE THE QUANTITIES WHICH ARE TRANSFERRED FRON A NAIN .
PROGRAM THROUGH THE COMMON (BLOCK) STATEMENT. *

.

L R T T R R Ry S S RN T e Y2y T2 Y )

CO'NHDN/BLOCKICI (21421} -XlNlN'le'MllnulllinUlMl'm

[ —— L . . -

‘NGX1M} = NGRDX1 -~ }

DX1 = (XLMAX = XIMIN)/NGX1M1

IX] = {X10P - X1IMIN}/OX1 - -,
IF(IX1.LT.0) IX1 = O S
IF{IX1.GE.NGXIMLE) IX] = NGXIMl = 1

PERX1 = (X10P ~ X1MIN - DXl‘lellDll

IX1 = IX1 ¢+ 1

Comeme

NGUIME = NGROUL - 1

DUl = (ULMAX. - UlNlNl/NGUlNl

1Vl = (UIDP - ULIMIN}/DUL
IF(IUl.LT.0F ULl = O
TF(IU1.GENGUINML}Y JUL » 'BUINI. -1
PERUL = (ULDP - Ulll“ - JUleDUl})/DUL

Ul = JUlL + 1

Y r—

X10X1 = C1{IX1l,IUL) ¢ lCl(le.lUl’H’Clllllolulll‘mul '
X1DX2 = Cl{IX141,JUl} ¢ (Clllllﬁllel'U-Cl(lll*l,llllllml
A = (X1DX2 - X1DX1)}/DX1

[

Commmm

X10Ul = ClUIX1,1Ul) -+ lCilleOIvlUl)-CHlll'lul)l‘PaIl
X10U2 = CLUIXLaQUL+1) ¢ (CLEIX14LoTUL+LI=CLlUIX]1eIULSLDDOPERKL
8 = (X1DU2 - X10U1l%¥/DUL -

- RETURN
END

[ W4
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SUBROUTINE STEADY(ULSTEP,U2STEP,X15S)

R T e e g e g el S SR sdad

THIS SUBRDUTINE WAS USED IN EXAMPLE 2 FOR DETERMINING
THE STEADY-STATE- X1SS FOR A PAJR OF STEP INPUTS ULSTEP
AND U2STEP.

+

+

+

+

+ THIS SUBROUTINE IS PREPARED FOR DUAL-INPUT, FIRST-ORDER
+ SYSTEMS., THE COEFFICIENTS G1{NGRDX1:NGROUl,NGRDU2} OF
+ THE MODEL FORM , WHICH IS TABULAR IN X1, Ul AND U2

+ ARE USED. :

. .

+
+
+

NOTE THE QUANTITIES WHICH ARE TRANSFERRED FROM A MAIN
PROGRAM THROUGH THE COMMON (BLOCK) STATEMENT.

tet et e e et

FHEFFFE PP 4 P02 41 PP FF F 34T FE PP PP TP F L 422 H T 4224 40

COMMON/BLOCK/CL{11911¢11) ¢ XIMINy X1 MAX,NGRDX14UIMIN,UIMAX,NGRDUL,
U2MINyU2MAXy NGRDU2

DIMENSION X1DEF(21)

NGX1M]1 = NGRDX1 ~ 1

DX1 = {X1MAX ~ X1IMINJ/NGX1M1

NGU1M1 = NGRDUl -1

DUl = (ULMAX - UIMIN}/NGULIM1

IUl = (ULSTEP ~ ULMIN)/DUL

IF(IUL.LT.0} IULl = O

IF(JUL.GE.NGULML1) [Ul = NGUIM]1 - 1

PERUL = (ULSTEP - ULMIN - DUl*IUl1}/DUl

J = JUL + 1

IF{NGRDU2.NE.19 GO TO 41

DO 30 IX1=1,NGRDX1

X1DEF{IX1) = CLCOIX1leJosl) + (CL{IX1eJ41s1)}) = CLUIX14Js1})%*PERUL

G0 T0 10

NGU2M1 = NGRDU2 -~ 1

DU2 = (U2MAX — U2MIN)/NGU2ML

DU2 = {U2MAX - U2MIN}/NGU2M1

1U2 = (U2STEP - UZ2MIN}/DU2

IFCIU2.LT.0) U2 = O

IF{IU2.GE.NGU2M1) TU2 = NGU2M1l - 1

PERU2 = (U2STEP - U2MIN - Du2+*lu2}/DU2

K = U2 +1

DO 40 IX1=1,NGRDX1

- X1DUI1 = CLEIX19JdoK) + (CLEIXLedyK41l} = CLOIXLleJoK)I®PERU2

40
10

20
21

X10U12 = CLOIX19J%Ll oK) ¢ (CL{IX1yJ¢leKel) = CLUIXLeJ+1sK))*PERU2
X1DEF(IX1) = X10Ull + (X1D0Ul2 - X1DUll)*PERU1L

IEF = 2

DO 20 IX1=1,NGRDX1
IF(X1DEF{IX1).LE.0.0} GO TO 21

TEF = IX1 : .
{EF = [EF + 1

IFUIEF.LT.2) IEF = 2

PERX1D = (0.0 - X1DEF{IEF-1)}/(X1DEF(IEF) - X1DEF(IEF-1})}
X1SS = X1IMIN + (IEF - 2)8DX]1 + DX1#PERX1D

RETURN

END

[aXsXaXaKeNaNaXaRaNalaelalel

SUBROUTINE LINRIZ{X10P,UL0P,U20P,4A,8)

T A R R R T A R IR Y T A Y

THIS SUBROUTINE WAS USED IN EXAMPLE 2 FOR DETERMINING
THE COEFFICIENT MATRICES A AND B OF THE DIFFERENTIAL
EQUATION LINEARIZED ABOUT THE POINT (X10P,U10P,U20P).
NOTE A IS A SCALAR AND B IS A TWO COMPONENT VECTOR.

SYSTEMS. C1{NGROX1,NGRDU1l,NGRDU2) ARE THE COEFFICIENTS

OF THE MODEL WHICH IS TABULAR IN X1y Ul AND U2.

NOTE THE QUANTITIES WHICH ARE TRANSFERRED FROM A MAIN

+

+

+

+

+

+ THIS SUBROUTEINE IS PREPARED FOR DUAL-INPUT. FIRST-DRDER
+

+

+

+

+ PROGRAM THROUGH THE COMMON (BLOCK) STATEMENT.

+

R ARSI R el e L e R R el l g e Rl el i el st isdsld

COHHON/BLDCKICI(II'll'lll'XlNlN,XlHAX.NGRDXlyUlHlN'UlNAX.NGRDUt'
1 .

U2MIN,U2MAXs NGRDU2Z
DIHENSION B(2}
NGX1M1 = NGRDX1 -~ 1
DX1 = (X1IMAX = X1MIN}/NGXLIM1

IX1 = .(X10P - X1MIN}/DX1 ) ) -

IF(IX1iT.01 IX1 = D

IF{IX1oGE.NGX1M1} IX1l = NGXIM1l ~ 1

PERX1 = (X10P - X1MIN - DX1#IX1)/DX1

I = Ix1 +1

NGULIN1 = NGRDUL - 1

DULl = {ULMAX ~ ULMIN}/NGUlM1

fUul = (U10P - ULMIN}/DUL -

IF{IVl.LT.0}) IUL = O -

IF{IU1.GE.NGULIM1) [UL = NGUIML -~ 1

PERU1 = {ULCP - ULMIN - IU1sDULl)/DUL

J=JUul +1

NGU2M1 = NGRDUZ - 1

DU2 = (U2MAX = U2MIN)/NGU2M1

1U2 = (U20P - U2NIN)/DU2

IF(IU2.LT.0) TU2 = O

IF(IU2.GE.NGU2M1) TU2 = NGU2M1 - 1

PERU2 = (U20P — U2MIN - TU2%DU21/DU2

K =:JU2 + 1

X1UL1l = Cl(I,JeK} + (Cl(lanKOll = Cl{I+J+K))I*PERU2
X1UL12 = CLl(Y43+1sK} + (CLAIsJ+1yK+1l) =~ ClUI,J¢1,K})}*PERU2
X1UL21 = Cl{I#+#13JeK) + (CLl(I41yJ¢K+1l) ~ Cl{I+1eJsK})SPERUZ
X1UL122 = CL(I+LlpJ+1,K} ¢ (CLO142,J41,K+1} = CLUI+1,J+1,K})SPERU2
X1DX11 = X1Ulll + (X1Ull2 - X1Ulll)}*PERUL

X1DX12 = X1U121 + (X1Ul22 - X1Ul21}#PERU1

A = (X1DX12 -~ X1DXx11}/0X1

UlU211 = Cl(T,JeK} + (CLII415JsK) = ClUE9JsK)}I*PERX]
UlU212 = Cl{l,JpK+1} &+ (CL(J41leJsK+1l) = CLl(IeJsK+1))SPERX]
UlU221 = Cl{IsJ#1¢K) + {(CLiI#41,3¢19K)} ~ CLETsJ+1¢K)I*PERX]
UlU222 .= ClUT4J%1,K+1) ¢ (CL(I+1ly34]l9Kel) '~ Cl(le’l.KOID)#PERXl
X10U11 =. Ulu2ll + {UlU212 = UlU211)sPRRU2

X10U12 = UlU221 + (UlU222 = UlU221)%PERU2

B{1} = (X1DUl2 - X1DU11)/DU1

X10U21 = ULU211l + (ULlU221 - ULlU211)sPERUL

X1DU22 = VUlU212 + (UlUL222 - UlU212)*PERUL

8(2) = (X1DU22 - X10U21}/0U2

RKRETURN

END

+
+
+
+
+
+
+

0
+
+

44
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SUBROUTINE STEADY(ULISTEPeX155+X255¢NIT)

PR R R R T e RS e 2 e e s e Rl el e e R el

+
+
+
+
+
+
+
+
+
+
+
*
+
L d
+
+
+
+
+
L d
+
L d
L d
+
L d
+
L d
+
+

: *
THIS SUBROUTINE WAS USED IN EXAMPLE 3 FOR DETERMINING THE+
STEADY-STATE VALUES X1SS AND X2$SS FOR A STEP INPUY OF ¢
ULSTEP. X1SS AND X25S ARE FOUND BY SOLVING A SET GF *
TWO NONLINEAR ALGEBRAIC EQUATIONS 8V NEWTON RAPSON +
TECHNIQUE. NIT 1S THE NUMBER OF ITERATIONS (ABOUT 20}.+

*

THIS SUBROUTINE IS PREPARED FOR SINGLE-EINPUY SECOND-ORDER+
SYSTEMS. THE COEFFICIENTS C1(NDXLP1,NDX2P14NGRDU1l} AND+
C2(NDX1P1,NDX2P1,NGRDU1)} GF THE NIXED MODEL FORM, WHICH+
IS TABULAR IN Ul AND POLVNOMIAL IN X1 AND X2, ARE USED.+

NOTE THE QUANTITIES WHICH ARE TRANSFERRED FROM A MAIN
PROGRAM THROUGH THE COMMON (BLOCK) STATEMENT. IF THE
COEFFICIENTS C1 AND C2 WERE FOUND BY USING SYSID2 (SEE
APPENDIX A)y THE FOLLOWING READ STATEMENTS MAY BE USEO
IN THE MAIN PROGRAM (WRITTEN BY THE USER):

3 FORMAT(3X,7Ell.%}

D0 10 IUl=l,NGRDU1

READ(S5¢3) ({CL{1sJs IUL) 4 I=14NDX1PL1}J=1,NDX2P1)
10 READES,3)((C2( 1o JyIUL),I=1¢NDX1P1)+J=]1,NDX2P]1}

WHERE, NDX1Pl = ONE PLUS THE DEGREE OF THE POLVNOMIAL
IN X1, NDX2P1 = ONE PLUS THE DEGREE OF THE POLYNOMIAL
IN X2 AND NGRDUL IS THE NUMBER OF LEVELS INTQ WHICH
THE INPUT IS DIVIDED.

PRI R 2L I R S S Rl 2Rl el el e R il e s g e el Al il e e g a st ad

CUHMONISLOCKICI(5'5'11)'CZ(5'5vll).NDEGX1'NDEGXZ-

ULNIN,ULMAX,NGRDUL

1
DIMENS IDN SCl(5'5)pSCZ(S'S)-XlPNHl(S)'XZPNHl(5I

[ ——

[ J——

———

E ———

NDX1P1 = NDEGX1+¢ 1

NDX2P1 = NDEGX2 + 1

NGUIM1 = NGRDULl - 1

DUI = (ULMAX -~ ULMIN)/NGULM]

TUl = (ULISTEP - ULIMIN}/DUL
IF(IUL.LT.0} Ul = O
IF(IUL.GE.NGUINL) IUl = NGUIMl - 1
PERUL = (ULSTEP - ULMIN- DUl‘lUl)lDUl
Ul = (Ul + 1

D0 100 J=1,NDX2P1 .

00 100 I=1,NDX1P1

SCL{T4J) = CLTsJsIUL) & (CLUI4JoIUL4L} = C1{IoJsIUL)ISPERVL
100 SC2UleJdim C2(I+JoIUL) + (C2(LeJsIUL+L) = C2(1yJ, IUL) I*PERUL

X1SS = 0.0
X255 = 0.0

D0 200 IT=1,NIT
XLGESS = X1SS
X2GESS = X2SS

X1PNML(L) = 1.0
IFI{NDEGX1.EQ.0) GO TO 11

AR EREEEEEAREEEE R RN RS

DO 10 I=1,NDEGX1
10 XIPNML(I+1% = X1PNM1{1)¢X1GESS
11 X2PNM1(1) = 1.0
IF(NDEGX2.EQ.0) GO TO 21
DO 20 I=1,NDEGX2
20 X2PNM1(1+1) = X2PNM1{I)®X2GESS
C——-== EVALUATE F1{X1¢X2) AND F2(X1,X2}
21 F1 = 0.0
F2 = 0.0
D0 30 J=1,NDX2P1
DO 30 .I=1,NDX1P1 - ,
F1 = F1 + SCL{I¢JI®X1PNML(])®X2PNM1(J)
30 F2 = F2 ¢ SC2(1,J)®X1PNML(I)*X2PNN1(J)
C—-=<- EVALUATE A = DFI/DKL, B.= DF1/DX2, C = DF2/0XLs D = DF2/DX2
A= 0.0
B e 0.0
C = 0.0
D= 0.0
IF(NDEGX1.EQ.0) GO TO &1
DO 40 J=1,NDX2P1
DO 40 I=2,NDX1P1
EINL = [ - |
A= A+ EINI®SCL(LeJI$X1PNML(I-1)%X2PNML{J)
40 C = C ¢ EIMI®#SC2(I,J)®XIPNNL{I~1)*X2PNML1{J)
41 IFINDEGX2.EQ.0) GO TO 51
DO 50 I=1,NDX1P1
DO 50 J=2.NDX2P1
EML =4 -1
B = B + EJNLSSCILI,J18X1PNNLETISX2PNML{d~1)
50 D = D ¢ EJMLESC2UE, J)4XIPNNLIE)OX2ZPNNL LI-1)
5L DELTA = A®D - BeC .
SUBL = (D*F1 ~ B®F2)/DELTA
SUB2 = (A®F2 - C*FL)}/DELTA
X1SS = X1GESS ~ SUBI
X25S = X2GESS - SUBZ
. 200 CONTINUE
RETURN
END

£l



SUBROUTINE LINRIZIX10P,X20P,U10PA,8) a1BTUINMIY = 0.0
- : X20TU(MU1} = 0.0

(o)
!
]
]
]

[ P T R T A N R YRR R S S e s g2 2 DD 36 J=l NDX2P)
[4 + + SuMl = 0.0
c . THIS SUBROUTINE WAS USED IN EXAMPLE 3 FOR ODETERMINING THE+ SUM2 = 0.0
4 + COEFFICIENT MATRICES A AND B8 OF THE DIFFERENTIAL €QUA- + DO 35 I=1,NDX1P}
c . TIONS LINEARIZED ABOUT THE POINT {X10P,X20P,Ul0P). N ¢ SUML = SUMY + CLUI4JyNULISXIPNNLIIT) -
C . THIS CASE A IS 2 X 2 AND B8 IS 2 X 1. + 35 SUM2 = SUM2 + C21T4JoNULISX1IPNNLITY .
c . . X10TU(NUL) = X10TUTNUL) -+ SUNL®X2PNNLLJS)
C + THIS SUBRDUTINE IS PREPARED FOR SINGLE-INPUT SECCND-ORDER+ 36 X2DTULNUL} = X2DTUINUL) + SUM2*X2PNM1(J)
[ + SYSTEMS. THE COEFFICIENTS C1(NDX1P1lsNDX2P1,NGRDUL) AND+ 30 CONTINUE
C * C2{NDX1P1,NDX2P1 NGRDU1) OF THE MIXED MODEL FORMs WHICHe B{1) = (X1DTU(2} - X1DTU{1)3/DUl .
C . IS TABULAR IN Ul AND POLYNOMIAL IN X1 AND X2, ARE USED.+ Bl2) = (X20TU(2) - X2DTU{l))/DUL
c . + Cmm
C + NOTE THE QUANTITIES WHICH ARE TRANSFERRED FROM A MAIN * 00 40 J=1,NDX2P1
C . PROGRAM THROUGH THE COMMON (BLOCK) STATEMENY., IF THE + DO 40 I=1,NDX1Pl .
c + COEFF1CIENTS C1 AND C2 WERE FOUND BY USING SYSID2 (SEE + SC1{Lsd) = CLUI4Js1UL) ¢ (CLUTeJoIULI#L) ~ CLlU1,d41U1))*PERUL
[ . APPENDIX A), THE FOLLOWING READ STATEMENTS MAY BE USED + 40 SC20I4J) = C2{I43+1UL1) -+ (C2MT1,0s1IUL#1) - C2(1,J,IU1D®PERU]L
Cc + “IN THE MAIN PROGRAM (WRITTENM BY THE USER): + Comm——
[ . + X1PNM1(1) = 1.0
c . 3 FORMAT{3X, TE1l.%) + I1F(NDEGX1.£EQ.0) GO TO 51
[ + DO 10 IUl=1,NGRDU1 + DO S0 1=1,NDEGX1
c * READ(S93) ({CLl{T9JvJUL) o I=14NDX1PL) »J=1,NDX2P1)} + SO X1PNMLLI+1) = X1PNML(I)*X10P
c . 10 READ(5+3)((C2(19JsIUL) yIm14NDX1PLl) ¢ J=1,NOX2P1)} + 51 X2PNM1(1) = 1,0
[ . + IF(NDEGX2.€Q.01 GO TO 61
4 * WHERE. NDX1P1l = ONE PLUS THE DEGREE OF THE POLYNOMIAL + DO 60 I=1,NDEGX2
[4 * IN X1, NDX2P1 = (ONE PLUS THE DEGREE OF THE POLYNONMIAL + 60 X2PNML(I+1) = X2PMML{I)*X20PF
[ . IN X2 AND NGRDUL1 IS THE NUMBER OF LEVELS INTO WHICH + C
[ + THE INPUT IS DIVIDED. + 61 All,1) = 0.0
c 3 - + Al2:1) = 0.0
c 500000000000000000000“0000!00000000000“00&“0000000“#0000000000 ~ IF (NDEGX1.EQ.0) GO TO 71
Cmmmme ) ) ) DO 70.J=1,N0X2P1
COMMON/BLOCK/C1(5+5011)+C2(5+5+11)9NDEGX14NDEGX2,y : . . DO 70 I1=2,NDX1P1
1 ULMIN, Ul MAX,NGRDU1 EIMl. = I - 1
DIMENSION XlPan(Sl.XZPNHl(S).SCl(S.Sl.SCZ(S-SD'XII)'I’U(ZMXZDTU(Z) : Allsl) = Af{lsl) ¢ EINI'SCHl.J)lleMI(I—IIOXZMl(Jl
DIMENSION A{2,2),8(2} . T0 A(2+1) = Al(241) ¢ EIH‘I‘SCZ(I.JIOXIMI(I-H'KZMNJ!
Cowmmm 71 Alls2) = 0.0
NOX1P1 = NDEGX1 + 1 . Al2+2) = 0.0
NDX2P1 = NDEGX2 + 1 . - .o . IF(MDEGX2.EQ.0) RETURN
NGUIM]1 = NGRDUL - 1 - - ° DO 80 I=1,NOX1P1
DUl = {(ULMAX ~ UIMIN)/NGULIN1 . - DD 80 J=2,NOX2P1
IUL = (U10P - ULNINI/DUL : EdMl = J -1
1F(1U1.LT.0) ULl = O Alle2) = All1,2) ¢ EJNI'SCN!.J"XIM“Il‘XZMl(J-U
IFC(IVUL.GE«NGUIML) .JUl = NGUIML - 1 B0 A{2,2) = Al242) ¢ E.mnsczuunxlmuntxzmm—u
PERUL = {(U10P - UIMIN ~ JUl®DUl)/DUL B S
Ul = Ul + 1 ’ ' ‘RETURN

Commem - END

X1PNML(1) = 1.0 - .
IF (NDEGX1.EQ.0) GO TO 11
DO 10 I=1,NDEGX1

10 X1PNM1(]+1) = X1PNML{1)*X10P

11 X2PNM1{1) = 1.0 .
IF(NDEGX2.EQ.0) GO TD 21
D0. 20 I=1.NDEGX2 -

20 X2PNM1(I+1} = XZml(ll‘XZﬂP

21 Ul = UININ + (IU1-1)%DUl - DUl
N 00 30 NUlel,2
Ul = Ul « DUL
X20TUL(NU1) = 0.0
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