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CHAPTER I 

INTRODUCTION 

There are a number of practical problems where a sequence of deci-

sions are to be made as to which action is to be taken on some known 

system and where the outcomes of previous actions on that system are 

uncertain. In many such problems it is possible, between decisions, to 

obtain, in one of several alternative ways, some information which re-

duces the uncertainty as to the outcomes of previous actions. In prob-

lems of this type, it is usually desired to make the decisions and ob-

tain information in some optimal way. 

Stochastic control problems provide an abundance of examples of 

the ty~e indicated briefly above. For instance, suppose there is a 

control system whose dynamics are specified by the first order linear 

difference equation, 

j=l,2, ... ,n 

Xj represents the unobservable state of the system at time j and dj 

represents the control, or decision, at time j. x0 is not known, but 

is a random variable with known distribution. For each j, the control 

is to be some real number. Between the time j and the time j+l, infor-

mation as to the value of the state Xj may be obtained in one of two 

ways which are denoted a. and e .. 
J J a. 

The choice a. has associated with it 
J 

a cost C(aj) and results in an observation of a random variable I J, 

1 
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Similarly, the choice Sj has associated with it a cost C(Sj) and results 
s. 

in an observation of a random variable I J. The sequence of events, as 

they occur, is indicated by the tree diagram shown in Figure 1. Notice 

that x's represent places where the decision maker makes a choice and 

o's represent places where chance determines an outcome. 

First Chance 
Determines 

First Choice 
of Way to 
Obtain Information 

Information 
Obtained 

Chance 
Determines 
x 

n 

Figure 1. Tree Diagram of the Stochastic Control Example 

The desired state of the system is specified for each time, 

j = 1,2, ••• ,n, and the problem is to choose the decisions and ways of 

obtaining information so as to minimize the expectation of the sum of 

the mean square errors and costs of obtaining information. This prob-

lem will be solved in a later chapter. 

This investigation is centered around the class, or type, of 

sequential decision theory problem which was roughly described in the 

first paragraph of this chapter. In the next chapter a precise formu-

lation of the class of problems investigated is given. The formulation 

is followed by a discussion of a general method of solution. Also 

given in Chapter II are some theorems which may be used in some cases 
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to greatly reduce the computational effort required in obtaining a 

solution to a particular problem. In generalized form, the class of 

problems considered contain, as special cases, a number of practical 

applications. Applications to control, weapon analysis, and systems 

engineering problems are used, in Chapters III, IV, and V to illustrate 

the results obtained in Chapter II. 

There are a number of statistical decision theory problems solved 

in the literature which are similar, in one respect or another, to the 

class of problems considered here. See for example DeGroot (1970), 

Blackwell and Girshick (1954), and Raiffa and Schlaifer (1961). The 

distinguishing characteristic of the class of problems being considered 

here is the sequence of decisions resulting in at least partially unob­

servable outcomes combined with a choice of ways to obtain information 

between decisions. 



CHAPTER II 

FORMULATION, SOLUTION, AND SOME SIMPLIFYING THEOREMS 

Formulation 

The class of problems to be investigated are finite stage, discrete 

time, sequential decision theory problems. For each integer 

j = 1,2, •.. ,n a decision, d., will be made and these decisions will be 
J 

made in order of increasing subscript. For each j, the decision d. 
J 

must be selected from a given set, Aj. Once d. is chosen and some cor­
J 

responding action is taken, a randomized outcome, x., occurs. The 
J 

values which x. may take will be denoted by the set QX . For j = 1,2, 
J j 

.•. ,n, the ordered collections of the first j decisions and the first 

j outcomes are denoted by d. and x. respectively. That is, 
-J -J 

d. = (d1 ,d2 , ... ,d.) and x. = (x1 ,x2 , ... ,x.). At the time for the 
J J J J 

(j+l)th decision, d. is known, but even though the collection of out­
-J 

comes, x., has occurred, it is in general not known except possibly in 
-J 

an approximate sense. 

Between the time of the outcome, xj, j = 1,2, ... ,n-l and the time 

for the decision, dj+l' information may be sought as to the true value 

of x. by selecting an experiment, k .. For each j, the experiment k. 
-J J J 

must be selected from a given set w .. The cost associated with this 
J 

experimentation is C(k.) where C is a given nonnegative cost function. 
J 

As a result of the particular choice k. e:w., a sample of the random 
k. J J k. 

variable(s), I J, is obtained. The particular sample outcome, i J is 

4 
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contained in a set denoted nk. For each j = 1,2, ••. ,n-l, *j, the null 
j 

experiment or the experiment resulting in an observation of a degenerate 

* 
random variable, I j' is an element of wj. Further, for each 

j = 1,2, •.• ,n-l, C(*j) = 0. 

The following two probability density functions are given or 

derivable from information given in the particular problem: 

and 

~-11 f k (i ~ ,~) ¥ ~-l € w1 x w2 x • • • x wn-l = ~-l 
I-n-ljD X 

-n'-n d € A and -n -n 

x € nx x nx 
-n 1 2 

x ••• x nx = 
n 

where 

~ = (k1 ,k2 , ••• ,kj), j = 1,2, ••• ,n-l 

!.j kl k2 kj 
I = (I , I , ••• , I ) , j = 1, 2 , ••• , n-1, and 

x has been used to indicate the cartesian product. 

The symbol nk will be used to indicate~ x ~ x •.• x nk, 
-j 1 2 j 

j = 1,2, ••• ,n-1. 

At this point a comment should be made in regard to notation. For 

the sake of efficiency, when there appears to be no sacrifice of clarity 

and when arguments are to be taken as lower case versions of the indi-

cated variables, all or part of the arguments of probability density 

functions will be omitted. For example, fX In <I> might be written for 
-n-n 

fx In <~I~>. 
-n-n ~ 

Marginal conditional density functions for !_j and I may be 
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derived from the given density functions. As a characteristic of the 

general class of problems being considered it is assumed that the con-

ditional density of outcomes, Xj, is independent of decisions which 

have not occurred at the time X. occurs. Also, the conditional density 
k J 

of observations, I-j, is independent of decisions and outcomes which 

have not occurred at the time of the observation. Stated in equation 

form, 

12_j<p2_n 

and 

There is given a set of utility functions, v1 (.!.1 ,~1), v2 (.!.2 ,d2), 

••• ,V (x ,d ), which represent the decision makers preferences in the 
n -n -n 

sense that he would like to choose d and k 1 in such a way as to max--n -n-

imize the expectation of 

n 

l 
j=l 

n-1 
l C(kj) 

j=l 

When it proves expedient, the following notation is used: 

and 

n 
V(.!.a,,2n_) to indicate j~l Vj(xj,dj) 

n-1 
C(k _1) to indicate l C(kj) 

-n . 1 J= 
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The problem is to determine the sequential rules for the decisions and 

experiment choices so as to maximize the expectation of V - C. 

General Solution 

The solution to the problem which has been formulated may be ob-

tained by the method of backward induction (DeGroot, 1970). This method 

consists of working backward from the nth decision, establishing optimal 

rules for each decision and experiment choice in terms of what is known 

at the time that decision or experiment choice is to be made. 

Accordingly, the conditional expectation of V - C is computed for 
k 

each condition d €A , k 1€w 1 and i-n-l€U. • The required expecta-
-n -n -n- -n- --!\i-1 

tion is given by: 

where by Bayes' formula, 

f <I> f k <I) 
x in I-n-l IX n -n-n 

f <I) -n'-n 
= k 

ln f <I) x In r-n-l f k <I) dx 
-n -n' x -n x In I-n-l IX n -n -n-n -n'-n 

the 

The next step is to determine, by 
k 

~ -n-1 optimal rule, d (d 1 ,k 1 ,i ), 
n -n- -n-

differentiation or other means, 

th for the n decision, which as 

indicated, is a function of the state of knowledge at the time the nth 
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decision must be made. This optimal rule must maximize the conditional 

k 1 ~-1 
expectation of V - C given d , k 1 , and I-n- = i as computed 

-n -n-

above. Notice it has been assumed that such a rule exists. Actually, 
k 

there is no guarantee at this point that for d k and i -n-1 some 1 , 1 -n- -n-

there are not two or more values of d which yield the same maximum; 
n 

however, in such cases an arbitrary choice would be made among the 

Further, it is possible that for some d 1 , k 1 , -n- -n-alternate decisions. 
k 

and i-n-l there is no d EA which maximizes the conditional expectation 
n n 

of V - C. In other words, it may be that for any d €A there exists a 
n n 

d'eA such that the expectation with d is less than the expectation n n n 

with d'. In such a situation, ~ would be chosen such that the expec-
n n 

"' tation with d is sufficiently close to the supremum of the expectation 
n 

over all d €A • Since such difficulties seem to be of little practical 
n n 

difficulty, we will henceforth tacitly assume that they do not exist 

and that optimal rules do exist and can be found. 

"' Next, substitution of the optimal rule, d , into 
k n k 

expectation of V - C given d , k 1 and I-n-l = i-n-l 
-n -n- k 

mum expectation of V - C given d 1 , k 1 , and I-n-l 
-n- -n-

maximum expectation can be written 

= 
n-1 

I ln 
j=l x 

~j 

v. <2.· ,~) f < I) k 
J J J -n-1 

x. In 1 ,r 
-:J -n-

the conditional 

yields the maxi­
k 

= i-n-l This 
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The next step is to determine the optimum rule for the (n-l)th 

~ ~-2 
k 1 (d 1 ,k 2,i ), which maximizes the condi-n- --n- --n-experiment choice, 

tional expectation of the maximum expectation of V - C given d 1 , k 1 , 
k k k k --n- --n-

and I--n-l = i--n-l given d 1 , k 2 , and I--n-2 = i--n-2 The required 
--n- --n-

expectation is given by: 

where 

f k< I) k 
I n-l 1 D I--n-2 

= fn f k<I) k f(J) k dx 1. 
x n-1

1 
--n-2 I --n-2 --n-

--n-1' --n-1 I D 1 ,I ,X l X l D 1,I --n- --n- --n- --n-

~ 
Substitution of the rule, k 1 , into the above expectation yields the n-

~-2 .~-2 maximum expectation of V - C given d 1 , k 2 , and I = 1 This --n- --n-

maximum expectation can be written 

V (x ,d )f(i) k n --n --n 
x ID I--n-l 
--n --n' 

dx]dikn-l - C(k ~ 1_ n-1~ 

n-2 
- l C(kj) 

j=l 

n-2 
- l C(kj) 

j=l 
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Continuing in this fashion, the complete set of optimal decision 

and experiment rules can be obtained. The listing given below indicates 

the variables or the state of knowledge the successive rules are depen-

dent upon. 

~l 

.!5:.1 
~2 <E.1 '.!5:.1 'i ) 

'V .!5:.1 
k2 <E.2 ,.!5:_1 'i ) 

k2 
~3<E.2,.!5:_2,i-) 

k 
'V --n-2 
k l(d l'k 2'i ) n- -n- -n-

k 
"' -n-1 
d (d l'k l'i ) n -n- -n-

It should be emphasized that the decision rules must be retained 

to be used in any realization of the random decision process. 

As a side product of the solution procedure, the maximum expecta-

tion of V - C is obtained. This expectation can be written 



~ j k j] k 
max n-1 n-2 
d n V(.!n ,~) f (I) k d.!n di - C(kn_1) di 

n ~ X ID I--n-1 
--n --n' 

+ k n £ kc ) k max~ I 
n-2 kn-2 I n-2JD I-n-3 

--n-2, 

~ax tn V n-1 (~-l '~-1) f ( I) k d~-1 
n-1 ~-1 x Jn ,I-n-2 

--n-1 -n-1 

fk(j) k 
I n-llD I-n-2 

-n-1' 

11 
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Both of the above forms for the maximum expectation of V - C will 

be used in the remainder of this investigation. The first form is re-

ferred to as the condensed form. The second form is more natural to 

use in some applications and will be called the expanded form. 

The sequence of events, as they occur, is indicated by the tree 

diagram shown in Figure 2. 

Figure 2. Tree Diagram of the General Formulation 

It is not difficult to see that the solution of some seemingly 

simple problems fitting the formulation at the beginning of this chapter 

can be very complicated. For this reason, much of the work which fol-

lows is directed toward reducing solution computational effort. 

Experiments Without Cost 

In many problems the cost associated with experimentation is zero, 

Stated more precisely, for every j = 1,2, ••. ,n-1, C(k,) = 0 for every 
J 

kj e:wj, In this case, the following two questions are important in that 
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they may lead to considerable simplification of the solution process. 

(1) For each j = 1,2, ... ,n-l such that w. contains at least two 
J 

elements, is it possible to eliminate from consideration the null ex-

periment, *j? 

(2) Is it possible to find a reasonably simple experiment charac-

terization so that if for some j = 1,2, ... ,n-l, there exists an experi­

ment, k~Ew. with this characterization, then the optimal jth experiment 
J J 

rule is kj? 

Under a restriction on the density function, 

f k 
I-n-ll D X 

-n'-n 

the answer to both questions is yes. In regard to the second question, 

there is a characterization which is, in some ways, analogous to the 

statistic characterization known as a sufficient statistic (Hogg and 

Craig, 1966). The "yes" answers to the above questions are formalized 

with two corresponding theorems which provide in many problems, a great 

amount of computational simplification. The theorems are stated below 

and established in the Appendix. For examples of their application, 

the reader should refer to Chapter III and IV. 

Theorem 1 

Suppose that 

f k 
I-n-l JD X 

-n'-n 

= f k 

I 1 1x -1 

f k 

I 2 jx -2 

f k 
I n-llx 

-n-1 

Then for each j = 1,2, ... ,n-1 such that w. ru {*j} is not empty, denote 
J 



wj = wj ~ {*j}. For each j = 1,2, .•• ,n-l such that wj = {*j}, denote 

wj = wj" 

The maximum expectation of V using wi,w2,···,w~-l as the sets of 

experiments is the same as the maximum expectation of V using 

Theorem 2 

Suppose that 

f k 
I-n-l!D X 

-n'-n 

= f k 

I llX 
-1 

f k 
I 21x 

-2 

and that for some j = 1,2, .•. ,n-l, there exists 

every kjewj, kj ; kj, there exists a function, 

following properties: 

k k' 
(1) zk (i j , i j) > 0 

j 

f k 
I n-llx 

-n-1 

a kj'ew. such that for 
k J k~ 

zk (i j,i J) with the 
j 

(2) f k ~I) 
I Jlx 

-j 

k k' 
=Jn zk (i j,i j)f k'(') 

k' 
di j 

a&k~ j j 
J r Ix. -J 

k k' k' 
(4) O < fn zk (i j,i j)di j < oo 

k' j 
j 

Th . 1 .th i 1 . k~ k' e optima J exper ment rue is j = j" 
k k' 

Notice that if the conditional density function of I j given I j 

14 

and ~ can be obtained and that density function does not depend on X, 
.J -J 

and satisfies property 4 of Theorem 2 then that density function may be 
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used as the function zk required in Theorem 2. The fact that the 
j 

density must not depend on Xj suggests that the concept involved in 

Theorem 2 is analogous to the concept of a sufficient statistic. In 

fact, the concept involved in Theorem 2 has been referred to as a suf-

ficient experiment (Blackwell, 1953; DeGroot, 1970). 

Information Measure 

A measure of the conditional information in an experiment, 

kj-l€Wj-l' will now be defined. Theorems 1 and 2 are then interpreted 

relative to the measure. 

Let Uj(f(!) k ) denote the maximum expectation of V given 
x In I~-l 
--n --n' 

kj-1 ~-1 
dj-l' ~j-l' and I = i • A suitable definition of the conditional 

i~formati~n, I, in an experiment kj_1Ewj-l given dj-l' ~j-2 , and 

I-j-2 = i~-2 is given by the following equation, 

k. 2 I -J-
I(kj-1 dj-l 'i ) 

.kj-1 
= fn f k<I> k [u/f(I> k )-uj(f(j) k )]di • 

kj-1 I j-1, D 'I-j-2 ID ~-1 I -j-2 -j -l X , I X D , I --n --n --n --n 
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From the definition it is seen that the conditional information in 

the null experiment, *j-l' is zero. The conclusion of Theorem 1 is ob­

tained because, under the hypothesis, the conditional information in an 

experiment, as defined above, is never negative. Reference to the proof 

of Theorem 1 will reveal that this is so. Thus, Theorem 1 may be inter-

preted as a statement that, under the hypothesis, the conditional infor-

mation in an experiment is never negative. 

If there is an experiment kj_1Ewj-l which satisfies Th~orem 2, then 

regardless of what the state of knowledge dj-l' kj_2 , and i-j-2 may be, 

the conclusion of Theorem 2 may be interpreted as saying that kj_1 has 

at least as much information as any other experiment in wj-l" It could 

be said that kj_1 is a uniformly most informative experiment in wj-l" 

Suppose in a particular problem that the hypothesis of Theorem 2 

is satisfied and that for some j = 1,2, ••. ,n-l the set of experiments 

wj is the set {aj,ej,*j} 

2 2 Then if a 2 > a1 , 

f a~wlxj) 
I JIX 
~ 

f e<vlxj) 
I jlX 
~ 

1 = 
lzTiar 

1 = 
&~-

_ l (w-xj) 
2 

2 2 
al 

e 

_ l (v-xj) 
2 

2 2 
02 

e 



2 _ .!. (v-w) 
2 2 2 

cr2-crl 
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serves as the function called for in Theorem 2 that establishes that aj 

is a uniformly most informative or sufficient experiment in wj. 

Experiments With Cost 

In the more general case when experiments are not without cost, 

methods which, in some cases, simplify the solution procedure can again 

be found although the simplifications are not usually as thorough as in 

the cost free case. In the work to follow, use will be made of a pos-
kj 

sibly hypothetical experiment, k., which results in a sample of I 
J 

where 

kj 
I = X 

-j 

In other words, k. is an experiment which may or may not actually be an 
J 

element of wj and which results in exact knowledge as to the outcome 

of !j· Also, the notation 

k n n-1 k 1 
Ero!x< I vj (~j &j) - l C(kj) Id ,(1'- ) 

j=p+l j=p+l -p 

will be used to indicate the maximum expectation of 

k 
using the experiment k and given d , k 1 , and I-p-l 

p -p -p-

k 
. -1"1-1 = ]. I:" 



By reference to the expanded form of solution, it is easily seen 

that for an experiment, k ew , to be a candidate for the 
p p 

experiment, the cost C(k ) must satisfy the inequality, 
p 

th optimal p 

*P ~ n~1 I ;,-1 
- Emax( l Vj (xj ,dj) - l C(kj) d ,i ) 

j=p+l j=p+l -p 

The right side of this inequality is a bound on the amount that 

could be spent for an experiment, k ew , when the experiment yields 
p p 

information about X but the information has errors. Unfortunately, 
-p 

this bound provides little help in applications since obtaining the 

bound amounts to solving the problem by conventional means. 

18 

Two more theorems are now stated which give, in some cases, useful 

bounds on the maximum amount which can be spent on experimentation. 

The second theorem, Theorem 4, is a generalization of the concept dis-

cussed by Howard (1965) in relation to a particular systems engineering 

problem and reverifies the intuitive idea that the maximum amount which 

can be spent on experimentation can be no greater than the difference 

between the maximum expectation when an exact observation of xj is 

available as a cost free experiment and the maximum expectation when 

the null experiment is used. It :Ls shown in an example in Chapter V 

that the specific result obtained by Howard (1965) is a special case 

of the general idea expressed in Theorem 4. 



Theorem 3 

Suppose that 

f k 
1-n-1 1n x 

-n'-n 

f k 
I n-llx 

-n-1 

19 

and that for some p = 1,2, •.• ,n-l, there exists a k', which may or may 
p 

not be contained in w , such that for every k Ew , k 1 k' and k 1 * , 
p k k' p p p p p p 

there exists a function, zk (i P,i P), with the following properties: 
p 

k k' 
(1) zk (i P,i p) > 0 

p 

k k' 
(2) =la zk (i P,1 P)f k'<I> 

k' p p I p I X -p 

k k' k 
(3) la zk (i P,i p)di p 1 

k p p 

k k' k' 
(4) 0 < 1 zk 

(" p . p)di p < 00 

ak, 
1 ,1 

p p 

Then the following inequality holds 

k' n n-1 
C(~ ) < E p ( 'i' V. (xj, d.) - \ p-max l J--J l j=p+l j=p+l 

k' 
di p 

* n n-1 k 
- E p ( 'i' V.(x.,dj) - \ C(kj) I-pd ,i-p-l) 

max j--pl+l J -J - l j=p+l 

~ th k 1 
h k · th ti 1 L t · d k and r-P-w ere is e op ma p exper:men given , 1 , p -p -p-

k 
.--p-1 

= 1 

If in a particular example each experiment k £w , k :/: * is of p p p p' 



the form 

k 
IP=x +w +v 

-p ~p -p 

20 

where~ 
p 

and V are random vectors, then the experiment k' defined by -p p 

k' 
IP=x +v 

-p -p 

could be used in Theorem 3. In this example, V might represent an un­-p 

avoidable measurement error associated with each experiment in w • 
p 

Theorem 4 

Suppose that 

f k 
I-n-llD X 

-n'-n 

= f k 

I llx 
-1 

f k 

I 2 1x -2 

and for some p = 1,2, ••• ,n-l, the inequality 

o < In 
x -p 

holds for every k ew , k ~ * . p p p p 

Then the following inequality holds 

< co 

f k 
I n-llx 

-n-1 

k n n-1 k 
C(~ ) < E P ( l vj (x. :•~) - l C(kj) I-Pd ,i-p-l) 

p - max j=p+l -.J J j=p+l 

* n n-1 k 
- E P < l vj <~j ,dj) - l c(kj) I-Pd ,i-p-l) 

max j=p+l j=p+l 

th k 1 
where ~ is the optimal p experiment given d , k 1 , and I-p-

.-pk -1 = 1 p -p -p-
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Theorem 4 gives a bound on the maximum allowable expenditure for 

th k 1 k 1 
the p experiment given d , k 1 , and 1-p- = i-p- The bound is ob-

-p -p-

tained by computing the difference between the maximum expectation when 

an exact observation of x is obtained, free of cost, as a result of 
-p 

the pth experiment and the maximum expectation when the null experiment 

th is used as the p experiment. Since this bound represents the value 

of complete elimination of uncertainty as to the value of X , it will -p 

be referred to as the conditional cost of uncertainty given d , k 1 , 
k 1 -p -p-

and r-P-



CHAPTER III 

APPLICATION TO CONTROL 

The purpose of this and the next two chapters is three fold. 

First, to emphasize the application of the problem formulation to prac-

tical problems. Second, to illustrate the general method of solution 

in some specific problems. Finally to demonstrate how Theorems 1 

through 4 can be used to ease the computational burden in obtaining the 

solution to some specific problems. In this chapter the same basic 

control problem will be used in several examples to illustrate differ-

ent points. 

Example 1 

Suppose there is a control system whose dynamics are specified by 

the first order linear difference equation 

x. 
J 

j 1,2, ... ,n 

Xj represents the state of the system at time j and dj represents the 

decision at time j. The initial state of the system, x0 , is a normal 

random variable with zero mean and unit variance. For each j, A,= R, 
J 

the set of real numbers. 

For each j, the set of experiments, w., consists of two elements, 
J 

Choice of the experiment a. results in a sample of the ran­
J 

aj 
dom variable, I , where 

22 
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Wj is a normal, zero mean, unit variance measurement noise. Also, 

Wj and Wk are independent if j ; k and x0 and Wj are independent, 

j = 1,2, .•• ,n-l. Choice of the null experi~ent, *j' results in a 

sample of the degenerate random variable, I j' where 

It should be pointed out that in the problem formulation, the null 

experiment, *j' could equivalently have been described as an experiment 

where nothing is observed. The general method of solution was, however, 

more easily formulated with the null experiment described as the obser­

* 
vation of a degenerate random variable. In the present example, i j' 

is the number that will be observed if the null experiment is chosen. 

The experiment aj has a cost 

utility functions are given to be 

where yj is the desired state of the system at time j. 

The decision and experiment rules and the maximum expectation of 

V - C will be found for n = 3. 

~2 
The conditional expectation of v3 given .!!_3, k2 , and I 

be written, 

.k2 
= l. can 



The required density is found by Bayes' rule to be 

k2 
f k (x2 1d2,i-) = 

I -2 x2 D2,I 

1 --e 

hJ 
3 

1 --e 

hJ 2 

1 --e 

~ 

1 --e 
rz; 

2(1/3) 

c2 -
a.l 

(d1+d2);(i +d2 

2(1/2) 

c2 - ~2 a. 
(dl+df+i 

2(1/2) 

24 

~2 

if !.2 = (a.1,*2) 

if !.2 = <*1, a.2) 

The decision rule for d3 is next obtained by computing the condi­

k2 .!.2 
tional expectation of v3 given d3 , k 2 , and I = 1 and then differ-

entiating and setting equal to zero. The result is: 



25 

ex. ex. 
(dl+d2) + i 2 + (i l+d2) 

Y3 - 3 

ex. 

(dl+d2) + (i l+d2) 

k2 
y - if ~2 = (cx.1,*2) 3 2 

~/~2,k2 ,i ) = 

(dl+d2) + 
. cx.2 
l. 

y - if ~2 = <\ ,cx.2) 3 2 

Substitution of the rule ~3 into the conditional expectation of v3 
k2 .k2 

given d3 , k2 , and 
k2 

d2 , k2 , and I = 

I = i yields the maximum expectation of v3 given 

.k2 
l. 

1 
' if k2 (cx.l ,cx.2 ) -3 = 

1 
' if k2 (a1,*2) = :x~Q V3 (x3 ,d3)f (I) k d!!_j 

2 = 
3 x3 x In ,1-2 

-3 -3 
1 

-2 ' if ~2 = <*1,cx.2) 

- 1 l."f k = <*1,*2) ' -2 

Notice that in this special case the maximum expectation of v3 
k2 k2 

given d2 , ~2 , and I = i depends only upon the choice of k2 • 



Next, by simple comparison, the experiment rule for k2 is found. 

The result is 

Substitution of the rule ~2 into the conditional expectation of 

!.2 !.2 
the maximum expectation of v3 (?!_3 ,d3) - C(k2) given d2 , !_2 , I = i 

!.1 kl 
given ~2 , k1 , and I = i yields the maximum expectation of 

kl .kl 
given ~2 , k1 , and I = 1 

I max J 
f k< ) k d n 

I 21D I 1 3 X3 
-2' 

= 

1 
2 

3 
-4 

if kl ' = al 

' if kl * 1 

The next step is to obtain the decision rule for d2 • 

maximum expectation of 

does not depend on d2 , the decision rule for d2 can be found by maxi-
k k 

mizing the conditional expectation of v2 given ~2 , k1 , and I-l = i-l 

After using Bayes' rule to find the needed density function, the rule 

26 

can be found by differentiating and setting equal to zero. The result 

is 



kl 
~2(dl,kl,i ) = 

Substitution of the rule 

a. 
dl + i 1 

y - ' if kl = a.1 2 2 

Y2 - dl if kl = * ' 1 

~2 yields the maximum expectation of 
kl !.1 

given i 1 , k1 , and I = i 

3 
- 1 4 ' if kl = *i 
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Again, by simple comparison, the experiment rule for k1 is found. 

The result is 

The maximum expectation of v2 (?!_2 ,d2)+V3(x3 ,d3)-C(k2)-C(k3) given d1 is 

"' found by substitution of the rule Kl to be -1. Since this maximum ex-

pectation does not involve d1 , the decision rule for d1 can be found by 

maximizing the expectation of v1 (x1 ,d1) given ii· The decision rule is 

The maximum expectation of V - C is finally found to be -2. 



A summary of the decision and experiment rules is given below: 

~l = Y1 

~ = al 1 

+ 
al 

Y1 i 
~2 = y -2 2 

'V 

* k2 = 2 

~ = 
3 Y3 - Yz 

The fact that d3 is determined before the decision process starts is 

due to the fact that no new information is obtained after the experi-

28 

ment k1 is performed, no new uncertainty is introduced after the experi­

ment k1 is performed, and d2 is chosen so as to use the information 

from experiment k1 • 

Example 2 

In this example, the decision and experiment rules and the maximum 

expectation of V - C will be found for the control problem of Example 1 

with the change, C(aj) = O, j = 1,2, ••• ,n-l. The solution will be ob­

tained for arbitrary n. 

'V 'V 
By Theorem 1, the optimal experiment rules are k1=a1 ,k2=a2 , •.• , 

'V 
k =a 
n-1 n-1 • 

~-1 The expectation of V given d , k 1 , and I 
n -n -n-

.~-1 = 1 can be 

written 



29 

Jn V (x ,d )f(i) k dx 
~' n -n -n -n 
~ x ID I-n-l 

-n -n' 

= - (x l+d -y ) 2f (I) k dx 1 n- n n n-
1 

-n-1 
xn-1 12.n-1' 1 

'V 
With ~-l = ~-l = ~-l' the required density function is found 

using Bayes' rule. 

I -~n-1 
n-1 a a a n-1 ~ 2 

-I~_d_.+_i~n--1-+_<_i_n_-_2_+_d~1-)_+_._ .• _+_<_i_1_+~L~d-=-.) · 1 J n- · 2 J= J= 
n 

1 
=--e 2(1/n) 

fzJ 
n 

The decision rule for d is found by computing the conditional ex­
n a a 

pectation of V given d , a 1 , and I-n-l = i-n-l, differentiating with 
n -n -n-

respect to d and setting equal to zero. The result is 
n 

~-1 d (d 1 ,a 1 ,i ) 
n -n- -n-

n-1 a n-1 a n-2 
a 

l d, + i + (i + dn-1) + ... + (i 1 
'=l J 

= y -n n 

n-1 
+ l d.) 

'=2 J 

Substitution of the rule d into the expectation of V given d , 
n n -n 

~-1 .~-1 
~-l' and I = i yields the maximum expectation of Vn given 

~-1 d 1 , a 1 , and I 
-n- -n-

a 
.-n-1 

= 1 
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max[ J d - n (xn-1 + dn -
n X 1 n-

1 
n 

The conditional expectation of the maximum expectation of V given 
n 

--na -1 a 1 --na -2 a 2 
d d I .--n- ' d d I i.--n- ' -n-l' ~-l' an = i given -n-l' ~-2 , an = is 

also - l/n. This result is not a function of d 1 and the decision n-

rule for d 1 is determined by maximizing the expectation of V 1 given 
n- n-a a -n-2 .-n-2 d 1 , a 2 , and I = i with respect to d 1 • Continuing this -n- -n- n-

line of reasoning, it is easy to conclude that for any p = 1,2, .•. ,n, 

the decision rule for d will depend only upon maximizing the expecta-
p a a 

tion of V given d , a 1 , and I--p-l = i--p-l with respect to d . 
p ~ ~- p 

Using Bayes' rule to find the pertinent density function, the 

general expression for~, p = 1,2, •.• ,n, can be found. 
p 

~p y 1 , if p = 1 

a 
'\i ~-1 
d (d 1 ,a 1 ,i ) 

p ~- ~-

p-1 a a a 
l d. + . p-1 + (i p-2 + d 1) + + (i 1 i ... 

j=l J p-
y -p p 

p-1 
+ l d.) 

'=2 J 

if p = 2,3, ... ,n. 

The maximum expectation of V using the optimum decision and exper-

. 1 . 1 1 1 1 1 iment rues is - n - n-l - n-2 - ... - 2 - . If the null experiment, 

*.,were used for each j = 1,2, ... ,n-l, the maximum expectation of V 
J 

would be -n. 

n-1 +--. 
n 

Th . . . fV' 1+2+3+ e improvement in expectation o is 2 3 4 

Recall from Example 1 that when n 3 and C(a.) = 
J 

1 4' the maximum 
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expectation of V - C was -2. In the present example, when n = 3 the 

i . f v v c . 11 h' h . h 2 max mum expectation o = - is - ~ w 1c is greater t an - . 

1 
However, were the two experiments a1 and a2 to cost 4 each, the expec-

tation of V - t would be -2 I which is less than -2. 

Example 3 

In this example, the following changes are to be made in the prob-

lem formulation of Example 1. 

The initial state of the system, x0 , has the density function, 

For each j 

, otherwise 
.. '---

1,2, ... ,n-l, the set of experiments, w., contains 
J 

three elements, * k' and k" j' j' j' 

k' 
I j = 

k" 
I j 

where 

Wjl and wj 2 are independent and have the density function 



ojl 

fw(w) = 
jl 

C(k.) = 0 
J 

0 , otherwise 

¥ k.e:w. and ¥ j 1,2, ••. ,n-l 
J J 

Since Wjl and wj 2 are independent, the joint density function of 

and oj2 given x. = xj is 
J 

- ( w-x . ) - ( v-x . ) 
e J e J , w,v > x. 

- J 

f 0 0 lx(w,vlx.) 
jl' j2 j J 

0 , otherwise 

Using the theory of order statistics, it is possible to find the 
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k" k' k' 
conditional density of I j given I j = i j and X. = x .• The result is 

J J 

By Theorem 

The conditional 

k'.' k ~ 
- (i J . J) e -i ' 

< 00 

0 , otherwise 

1, *.may be discarded from consideration for each j. 
J k'.' k ~ k ~ 

density of I J given I J = i J and X. = x. may be used 
J J 

as the function zk'.' in Theorem 2 to establish that -n~ _1 = k' -n-1' 
J 

Given a numerical value for n, the optimal decision rules for this 

example can be found using the same procedure as in Examples 1 and 2. 

For n = 2, the pertinent details of the solution are given below: 



max 
d2 

(d -1 In 
!2 

v 2 <!.2 '~2) f ( I ) k I d!.2 
I -1 

k' 
d'.2 <~1,ki ,i-1) 

X2 Q.2 'I 

y -2 

k' 
(i 1 - 1) 

e 

"' k' kl <~1) = 
1 

d'.l = y - 1 
1 

Example 4 

k' 
. 1 
l. 

e 

k' 
. 1 
l. 

k' 
k' (i 1 + dl) 

i 1)2 e 
- 1 k' dl 2 . 1 

(e i - e ) 

dl 
(dl - 1) - e 

dl 
- e 

In this example, the control problem of Example 1 is again con-

sidered, but with the following changes. 

The initial state of the system, x0 , has the density function, 

0 , otherwise 
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For each j = 1,2, ••• ,n-l, there are three observations available: 



o. 3 = x. + w. 3 J J J 

where wjl' wj2' and wj3 are independent random variables having the 

density function 

= fw(w) 
j2 

= fw(w) = 
j3 

0 , otherwise 

34 

Existing hardware dictates that for each j, the set of experiments, 

w., contains the three elements, * k~, and k" where 
J j' J j' 

k' k' k' 
l j = (11j,12j) = (min(Ojl'oj 2 ,oj 3), max(Ojl'oj 2 ,oj 3)) 

and 

k': 
l J = 

0.1 + 0.2 + 0.3 
J J J 

3 

The cost associated with k~ and k" is zero for every j = 1,2,, •• ,n-l. 
J j 

Let 

Using the theory 
k' 

and 13 j given Xj 

k~ 
13J = median(Ojl'oj 2 ,oj 3) 

k ~ k ~ 
J J of order statistics, the joint density of 11 , r 2 , 

x. can be found. The result is 
J 

3! ' x. - -21 < w < y < x < x. + ..!.2 
J - J 

0 , otherwise 
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k' k' 
From this result, the density of l j given l j 

3 1 

k~ 
= w, I J = x, 

2 
and 

xj = xj is found to be 

1 
x - w ' w .:5.. y .:5.. x 

f k' k' k' (yjw,x,x.) = 
~ j j J 

13 I 11 ,12 ,xj 
0 , otherwise 

k" k ~ 
The next goal is to find the density of l j given l J 

x .• 
J 

k'.' 
k" k" k' 

Prob(l j < i jll j = w, 
- 1 

k' 3i J -w-x 
l j x. = x ) I 1 

= x, = -dy 
2 J j x-w w 

k" 
By differentiating with respect to i j' the desired density func-

tion is obtained. 

k" k' k' 
f ( .jl.j.j) 

k 11 k I k I 1 1 1 , 1 2 'XJ, 
j j j 

l I 11 '12 ,Xj 

0 , otherwise 

By Theorem 1, *· may be discarded from consideration for each j. 
J k'.' k ~ k ~ 

The conditional density of l J given l J = i J and X. = x. may be used 
J J 

'V 
as the function zk'.' in Theorem 2 to establish that k 1 = k' • 

"11- "11-1 
J 
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Example 5 

The control problem first introduced in Example 1 will be used one 

last time to illustrate the application of Theorem 3. Consider the 

same problem stated in Example 1 except as noted below. 

For each j = 1,2, .•• ,n-l, the set of experiments, w., will consist 
J 

of the elements *.,a1 .,a2 .,cr3 ., •.•• As usual,*. denotes the null 
J ,J ,J ,J J 

experiment. The random variable observed as a result of performing the 

experiment a ., p = 1,2,3, ..• , j = 1,2, •.. ,n-1, can be described by 
p,J 

the equation 

a . 
I p,J = X. + W. + Z . 

J J p,J 

where W. is a normal, zero mean, unit variance random variable for each 
J 

2 j and Z . is a normal, zero mean, random variable with variance 
p,J 

a .• 
p ,J 

x0 , Wj, and zp,j are independent for each j and p. Also, Wj and Wk are 

independent for j f. k and Z . and Z k are independent for j f. k and 
p,J q, 

each p and q, Thus, for a given j, the experiments a ., p 
p ,J 

1,2, ... , 

have two sources of error, W. and Z .. There is no control over the 
J p ,J 

source of error, W., but by the choice of experiment the source of 
J 

error, Z ., can be controlled. A physical interpretation of the situ­
P,J 

ation might be that W. represents an inherent measurement error and 
J 

Z . represents a controllable experimental error. 
P,J 

In the discussion which follows, it will be assumed that if p 

2 2 Also, if 
2 2 then C(a .) < C(a .). Thus, a p,j < a q ,j • a > a 

q ,j ' p,j - p,J - q,J 

> q' 

if 

p > q, then C(cr .) >C(a .). C is unbounded for every j. That is, 
p ,J - q,J 

for any given j and any real number M, there exists an interger p such 

that C(cr .) > M. Also, for any positive number N and any j = 1,2, •.• , 
P,J 

2 n-1 there esists an integer q such that a . < N. These statements 
q,J 
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imply that by choice of experiment the variance of Z j can be made as 
p, 

small as desired, but in doing so the price will become arbitrarily 

large. 

Since there are an infinite number of experiments in each wj, di­

rect solution of the problem by backward induction would be very diffi-

cult. Theorem 3 can be used, however, to eliminate from consideration 

all but a finite number of experiments from each w .• The point of de­
J 

parture for solving the problem will then be an equivalent problem with 

only a finite number of experiments to consider for each j = 1,2, ••• , 

n-1. 

From Theorem 3 a bound for the maximum amount which could be spent 

st ~-2 ~-2 on the n-1 experiment given d 1 , k 2 , and I = i can be -n- -n-

written 

k k * k 
C(~n-l) < E n-l(V (x d )Jd i-n-2) - E n-l(V (x d) Id i-n-2) 

- max n -n'-n -n-1' max n -n'-n -n-1' 

Since V (x ,d) = -(x -y ) 2 = -(x 1+d -y ) 2 , an exact observation n -n -n n n n- n n 
st for the n-1 experiment will yield, with the correct decision, zero 

error between x and yn or V (x ,d ) = 0. Therefore, n n -n -n 

k 
.-n-2 for any d 1 , k 2 , and i • 

-n- -n-

Since the initial state and experiment errors are independent and 

normal, the probability density function for X 1 given d 1 , k 2 , and 
k k n- -n- -n-
-n-2 -n-2 

I = i will be normal with variance less than or equal to one. 
* k 

E n-l(V (x d ) Id i-n-2) is equal to the variance of X 1 given 
- max n -n '-n -n-1' n-



~-2 d 1 , k 2 , and I -n- -n-

tained, 

k .-n-2 
i Thus, the following inequality is ob-
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Since for some P, p > P implies that C(cr 1) > 1, the set of ex-
p,n-

periments, w 1 , can be replaced by the set of experiments, 
n-

wn-1 = {* l'crl l'cr2 l, ..• ,crp l}. n- ,n- ,n- ,n-

Using Theorem 3 once again, a bound for the maximum amount which 

ld b h 2nd . cou e spent on t e n- experiment 

.~-3 i can be written 

~-3 given d 2 , k 3 , and I -n- -n-

An exact observation for the n-2nd experiment will yield, with the 

correct decisions, zero error between x and y and between x 1 and n n n-

y with zero expenditure for the k-lst experiment. Therefore, 
n-1 

k k 
E n-2 (V ( d ) + V ( d ) ( I -n-3 
max n ~'-n n-1 ~-l'-n-1 - C kn-1) ~-2'i ) 0 

Since the initial state and experiment errors are independent and 

normal, the probability density function for X 1 given d 1 , k 3 , 
k k k k n- -n- -n-

k I-n-3 .-n-3 d I-n-l .-n-l ·11 b 1 . h . 
1 , = i , an = i wi e norma wit variance n-

less than or equal to one. Similarly, the probability density function 
k k 

f X . d k d I-n-3 i.-n-3 wi'll b 1 . h or 2 given 2 , 3 , an = e norma wit vari-
n- -n- -n-

ance less than or equal to one. 
'U 

Since C(kn-l) < 1, the following in-

equality is obtained, 
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Since for some Q, p > Q implies that C(o 2) > 3, the set of ex-
p ,n- -

periments, w 2 , can be replaced by the set of experiments, n-

wn-2 = {* 2' 0 1 2' 0 2 2' 000
'

0 Q 2}. n- ,n- ,n- ,n-

Continuing in the above fashion, the following bounds can be ob-

tained, 

+ n-~-1 J. 
C(~ ) ~ n-p l = 

p j=l 
n-p + (n-p-l)(n-p) 

2 

n-2 
C(~1 ) < n-1 + 2 

j=l 
j = n-l + (n-2)(n-l) 

2 

These bounds on the maximum amount which could be spent on experi-

mentation determine the corresponding finite sets of experiments, 

wn_3 ,wn_4 , ••• ,w1 • Solution of this equivalent problem may still be 

formidable, but the procedure is now clear. 

Suppose now that for each j, o2 j =..!.and C(o .) = p. Suppose 
p, p p,J 

also that n = 3. Using the results obtained above, C(~2 ) < 1, 

~ ' 
C(kl) ~ 3 , w2 = {*2, 0 1,2}, wl = {*1' 0 1,1' 0 2,1' 0 3,l}. 

Using Bayes' rule and the usual procedure of differentiating and 

setting equal to zero, the decision rule for d3 is obtained. 



~3 = 
y -

3 

y -3 

a 
(dl+d2) +ti 1,2 

1 + 1/2 

a a 
(d +d ) + .!. i l, 2 + 1 (i l,l+d2) 

1 2 2 t 
1 + 1/2 + 1/2 

a a 
(d +d ) + .!. i l, 2 + l (i 2 ' 1+d2) 

1 2 2 ~ y - ~~~~~_,__,__,__,_~ _ _,__,__,__,_~ 
3 1 + 1/2 + 2/3 
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if ~2 

~2 1·~2 i's Next, the maximum expectation of v3 given d2 , k2 , and I = 

found by substitution of the rule ~3 into the expectation of v3 given 

~2 ,k2 
d3 , k2 , and I = 1 The result is 



- 1 ' if ~2 <*1,*2) 

2 
' if k2 (crl,1'*2) 3 

3 
' if k2 (cr2 l '*2) 5 ' 

4 
' if ~2 (cr3,1'*2) 7 

:•x ~o v 3 <"-3 ,d3H <I> k d"-~ = 2 
' if ~2 <\ ,crl ,2) 3 !3 x In 1-2 3 -3 -3' 

1 
' if ~2 (crl l'crl 2) 2 ' ' 

6 
' if ~2 (cr2 l'crl 2) --13 ' ' 

4 
' if ~2 (cr3,l'crl,2) -9 = 

By simple comparison, the experiment rule for k2 is found. 

* 2 

The maximum expectation of v3 (!~3 ,!!_3 )-C(k2 ) is found by the usual pro-

cedure. 

41 
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- 1 ' if kl = *1 

2 
- 3 ' if kl = 

= 
3 

- 5 ' if kl = 02,1 

4 - 7 ' if kl = cr3,l 

The decision rule for d2 is also found by the usual procedure. 

Y2 - dl ' if kl = * 1 

cr 
dl 

+ 1 . 1,1 
-1 
2 

' if kl y - 1/2 = 0 1,1 2 1 + 

~2 = cr 
d + l i 2 ,1 

1 3 , if k1 = cr2 , 1 y - 1 + 2/3 2 

cr 
d +2. 3,1 

1 4 1 

' if kl y - 1 + 3/4 = 0 3,l 2 

Use of the rule ~2 yields the maximum expectation of v2(x2 ,d2)+ 
. kl .kl 

given ~l' k1 , and I = 1 



~axtkax~ f k(!) k 
2 2 ~2 I 21D I-1 

-2' 

= 
6 
5 ' if kl= 0 2,1 

8 
7 ' if kl = 03,1 

Th h . 1 f k . k~ - * us, t e experiment rue or 1 is 1 - 1 . The maximum expec-

tation of v2 + v3 - C given ~l is -2. The decision rule for dl is 

easily found to be 

~l = Y1 

The maximum expectation of V - C is -3. 
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CHAPTER IV 

APPLICATION TO WEAPON ANALYSIS 

With the exception of occasional reference to the theorems of 

Chapter II, this chapter is written so as to be self contained. This 

is done so that a reader who is interested only in the weapon analysis 

application of the general ideas which have been developed can read the 

present chapter independently of others. For the most part, the mater­

ial in this chapter is a direct application of the ideas developed in 

Chapter II; however, there is a small amount of new material which is 

encountered for the first time in this chapter and has application only 

to the particular problem being considered. Since part of the work in 

this chapter is based on the theoretical approach to target coverage 

problems developed by Snow (1966), an attempt has been made to use, in 

as much of the work as possible, notation identical with that used by 

Snow. The set of notation used in this chapter is therefore inconsis­

tent with the set of notation used in previous chapters; however, an 

attempt will be made to correlate the two sets at suitable spots within 

the text. 
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Introduction 

A method of analysis which maximizes the expected cumulative mili­

tary gain1 due to a sequence of a predetermined number of bombing 

strikes has been obtained. The analytical method is a result of formu-

lating the sequential bombing problem as a problem in sequential deci-

sion theory where the target damage function plays the role of the de-

cision theory utility function. The significance of the sequential 

analysis is that each strike decision is based on maximizing the ex-

pected military gain due to all the strikes and takes into account all 

previous decisions and all available information about previous and 

present target states. Since it is possible that there is more than 

one way of obtaining information between strikes and there are different 

military costs associated with these different ways, the analysis in-

eludes the optimal sequential selection of the way in which information 

is acquired. The analysis uses Bayesian decision theory and assumes 

known weapon delivery and information error statistics. 

The proposed method of analysis encompasses all three situations 

as described on page 1 of the proposal, "The Sequential Analysis of 

Cumulative Damage", No. ER70-R-2, July 1, 1969, i.e. the situations 

where there is 

(1) complete knowledge of the state of the target; 

(2) no knowledge of the state of the target other than what 

strikes have been ordered; and 

1The military gain is defined to be the target damage minus the 
military cost of obtaining information between bombing strikes. When 
there is no military cost associated with obtaining information, the 
military gain is just the target damage. 
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(3) information as to the state of the target but the information 

contains errors. 

In the special case where no information about the state of the 

target will be available during the sequence of strikes (Situation 2), 

the sequential analysis degenerates into a nonsequential analysis. The 

decisions are made so as to maximize the expected military gain due to 

all the strikes, but since no new information will be available during 

the sequence of strikes, all the strike decisions can be made before 

the sequence starts. 

Theorems 1 and 2 of Chapter II can be used to show, under reason-

ably general consitions, that when there is no military cost associated 

with obtaining information, the expected military gain in Situation 1 

is at least as large as that in Situations 2 and 3. Also, the expected 

military gain in Situation 3 is at least as large as that in Situation 

2. These conclusions agree with what we would expect intuitively. 

Formulation and Solution 

Suppose there is a military target with known reference location2 

In accordance with Snow's (1966) development, the target immediate mili-

tary value is denoted by W and is a function of the possible states of 

the target, 0,1,2, •••• 1 is the initial state of the target and 

W(l) = 1. 0 is the useless state and W(O) = O. The states m = 2,3, •.• 

are partial damage states and 0 < W(m) ..::_ 1 if m = 2,3, •••• It is 

assumed here that the state of the target can be changed only by use of 

2only the certain location problem is considered here. Extension 
of the analysis to the more general case where the target is uncertain 
can be easily accomplished if the required error probability distribu­
tion is known. 
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a weapon against the target, i.e. the enemy will not change the state of 

the target between strikes. The case when this is not a valid assump-

tion is considered later. Under this assumption it makes sense to sup-

pose that a finite number, M, of bombing strikes will be made on the 

target. 

In a general sense, the decisions as to how the M bombing strikes 

will be made involve a number of parameters. Examples are aircraft to 

be used, weapon, aircraft height, aircraft velocity, and desired ground 

zero (DGZ) for the weapon detonation. The point of view is taken here 

that all the pertinent parameters, with the exception of the desired 

ground zeros and weapons, are dictated by some conditions beyond the 

decision makers' control. Thus, each strike decision involves only the 

choice of DGZ and weapon for that strike. Denote the decision as to 

the DGZ for the jth strike by 

h f h . th "k t e weapon or t e J str1 e 

(i°.,y.). Also denote the decision as to 
J J 

by b .• It is assumed that there is a 
J 

well defined set of choices for (x.,y.) and b. for each j = 1,2, ••• ,M. 
J J J 

For j ~ M, the collection of decisions, ((x1 ,y1),b1 ;Cx2 ,y2),b2 ; .•. ; 

(i°. ,y.) ,b.) will be denoted by (x. ,y.) ,b .• 
J J J J J J 

w ((x.,y.),b.) denotes the probability that the jth bomb will 
m,n J J J 

transfer the target to state n given that the target was in state m 

just before the jth bomb was dropped, the bomb detonates at (xj,yj), 

and the bomb used was bj. For j ~ M, the collection of detonation 

points ((x1 ,y1);(x2 ,y2); ••• ;(xj,yj)) will be denoted by (xj,yj). The 

weapon delivery error statistics are assumed known in the form of the 

conditional probability density function, 
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Let; ((i°j,yj),b.) denote the probability that the jth bomb will 
m,n J 

transfer the target to state n given that the target was in state m 

just before the jth bomb was dropped, the DGZ is ('i.,y.), and the bomb 
J J 

used was bj. This probability is given by the equation 

= J w ((x.,y.),b.) f ((x.,y.)l(xj,y.),b.)d(x.,y.) 
m,n J J J I - - - J J J J J J (X. , Y.) (Xj , Y.) , Bj 

J J J 

where it is assumed that 

= f «x. ,yj> I ci. ,y .> ,'h.> 
1
-- - J JJ J (X. ,Yj) (X. ,Yj) ,B. 

J J J 

This assumption makes sense from a physical point of view since it 

seems unlikely that DGZs and weapon choices on strikes other than the 

jth could effect the statistics of the outcome of where the jth bomb 

falls given the jth DGZ and b .• 
J 

It is assumed that the state of the target is Markov. Let Z. be 
J 

the random variable which is the state of the target just after the jth 

strike. For j 2_ M, let~ denote (Z1 ,z2 , ••• ,Zj). Let 

f ___ (i,j, ••• ,qj(xM,yM),bM) denote the probability that the 
~I (~,YM) ,BM 

target state after the 1st strike is i, the target state after the 2nd 

th strike is j, ••• , the target state after the M strike is q given 

(~,yM)'bM. Using the Markov assumption, this probability is given by 
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Notice that this probability mass function should be identified 

with the probability density function, fX In , which was introduced in 
-n-n 

the general formulation of Chapter II. 

Between the j-lth and jth strikes, information may be obtained as 

to the past and present states of the target. The set of ways in which 

information can be obtained is assumed to be well defined for each 

j = 1,2, ••• ,M-l. The specific choice as to the way information will be 

obtained in denoted by the variable kj-l" Thus, k. 1 must belong to 
J-

the set of ways in which information can be obtained. As a result of 

this choice, information will be obtained in the form of an observation 

on the random variable(s), Ikj-l, at a military cost of C(k. 1). The 
J-

collection of ways in which information can be obtained might represent 

the ways in which an observation of the target area can be obtained. 

From an observation of the target area, an estimate of the state of the 

target could be obtained. The military cost associated with a particu-

lar way of observing the target area might represent an expected loss 

of aircraft, personnel, etc. 

ti on 

k, 
For j 2_ M-1, the notation I-:J will be used to indicate the collec-

k1 k2 k. 
(I ,I , ••• ,I J) and k. will be used to indicate the collection 

-:J 

(k1 ,k2 , ••• ,kj). The information error statistics are assumed known in 

the form of the probability mass function, 
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~-1 ~-1 - - -
which is the probability that I = i given (~,yM)'bM' the tar-

st nd get state after the 1 strike is i, the target state after the 2 

th strike is j, •.• , the target state after the M strike is q. Notice 

that this probability mass function should be identified with the prob-

ability density function, f k , which was introduced in the 
I-n-llD X 

-n'-n 

general formulation of Chapter II. Usually this probability mass func-

tion would not be expected to depend on the condition (i°M,yM),bM. 
k. 

For j < M-1, marginal mass functions for I-:J may be obtained from 

the known mass function. Physical reasoning leads to the assumption 
k. 

that the conditional density of observations I-:J is independent of tar-

get states which have not occurred at the time of the observation of 
kj 

I • 

The problem is to determine the sequential rules, 

~'V 'V ~ 
(x2 ,y2),b2 ,k2 , •.• ,kM-l'(~,yM),bM for the strike decisions and informa-

tion choices so as to maximize the expectation of the military gain, 

M-1 
1-W(ZM) - l C(k.) 

j=l J 

Note that the damage, 1-W(ZM), should be identified with the util­

ity function, V(x ,d ), which was introduced in the general formulation 
-n-n 

of Chapter II. 

The solution to the sequential bombing problem can be obtained 

using the method of backward induction. The procedure is to work back­

ward from the Mth strike decision, establishing optimal rules for each 

strike decision and information choice in terms of what is known at the 

time that decision or information choice is to be made. 
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Accordingly, the conditional expectation of the military gain 

and I~-1 i~-1 given (~,yM),bM' ~-l' is computed and then maximized 

with respect to the decision, (~,yM)'bM. The required expectation may 

be written 

M-1 
l [1-W(q)- l 

i,j, ••• ,q j=l 

where 

st is the probability that the target state after the 1 strike is i, the 

f h 2nd · k · · h ft th target state a ter t e str1 e is J, ••• , t e target state a er e 

h ~-1 ~-1 
Mt strike is q given (~,yM),~, ~-l' and I = i • This prob-

ability can be found, using Bayes' rule, from the known probability 

mass functions. 



52 

[j. ~ .. ,q 

The choice for the Mth strike decision, (~,yM)'bM' which maximizes 

the conditional expectation of the military gain given (~,yM),bM' 

and I.!4i-1 __ 1.!4i-1 Mth 'k !4i-l' defines the optimal str1 e decision rule, 

~ 
(~,yM)'bM. This rule is of course a function of (~_1 ,yM_1),bM-l' 

~-1 
!4i-l' and i Substitution of the rule into the expectation yields 

the maximum expectation of the military gain given (~_1 ,~_1),bM-l' 
k k 

!4i-l' and I~-l = i~-l 

The next step is to compute the conditional expectation of the 

maximum expectation of the military gain given (xM-l'YM-1) ,bM-1' ~-1' 
k .!4i-1 k k 

and I=-=M-l given (~-l,yM-1),bM-l' !4i-2' 
and I=-=M-2 . =-=M-2 d = 1 = 1 an 

then maximize with respect to the information choice, kM-l" The re­

quired expectation may be written 



- - - l [1-W(q) max ~ \ ( ,y ) ,b . ~ M M i,J, ••• ,q 

where 

k 
is the probability that I M-l = 

M-1 
- l 

j=l 
C(k.)] 

J 
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~-2 ~-2 
I = i This probability can be found from the equation, 

i,j. ~ .. ,p [ 

The choice for the M-lth way of obtaining information, kM-l' which 

maximizes the conditional expectation of the maximum expectation of the 
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!4i-1 = i given 

k 
(x.. y ) b ~-2 , and I==M-2 

.M-1' M-1 ' M-1' ---..·r 
-~-2 th 

1 defines the optimal M-1 

'\J 
information choice rule, ~-l· This rule is of course a function of 

- - - ~-2 
(~_1 ,yM_1),bM-l' !4i-2 ' and i Substitution of the rule into the 

expectation yields the maximum expectation of the military gain given 

- - - and I!4i-2 = i~-2 
(xM-l'YM-1),bM-l' ~-2' 

The next step is to maximize the maximum expectation of the mili-

- - - !4i-2 ~-2 
tary gain given (xM-l'YM_1),bM-l' ~-2 , and I = i with respect 

to the decision, (xM-l'YM_1),bM-l" 

optimal M-lth strike decision rule, 

This maximization determines the 
~ 
(~-l 'YM-1) ,bM-l 0 

Continuing to work backward in this fashion, the complete set of 

optimal strike decision and information choice rules may be obtained. 

As a side product of the solution procedure, the value for the maximum 

expected cumulative military gain is also obtained. The solution pro-

cedure is illustrated in the following example. 

Example 

Suppose there is a military target which has the possible states, 

0, 1, and 2. If the target is in state 2, its military value is ~· 

There will be two bombing strikes made on the target. The same two 

choices of weapon will be available for both strikes. The two choices 

will be denoteq by A and D. The transition probability mass function, 

w ((x.,y.),b.), and the weapon delivery error statistics are such 
m,n J J J 

that the transition probability mass function, w ((x. ,y.) ,b.), is the 
m,n J J J 

function expressed by the listing below: 
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w1,o<<i"j ,yj) ,bj) = 0 

w2 , 1 ((xj ,yj) ,bj) = 0 

w0 2 ((x. ,y.) ,b.) = 0 
' J J J 

w0 , 1 ((xj ,yj) ,bj) = 0 

wo,o«i"j ,yj) ,bj) = 1 

1 ' if b. =A 
J 

1 
if bj D, 1 

-2 -2 
< 2 4 ' = < x. + y, 

J J 

wl,1 ((i°j ,yj) ,bj) 

3 
if b. = D, 

-2 -2 
< 1 

4 ' xj + y. 
J J 

3 
if b. = D, 2 

-2 -2 
4 ' J 

< xj + yj 

1 ' if b. = D 
J 

1 
if b. = A, 

-2 -2 
4 ' x. + y. < 1 

J J J -

z:i2,2((xj ,yj) ,bj) = 

3 
if b. = A, 1 

-2 -2 
4 ' < xj + y. < 2 

J J -

1 if b. = A, 2 
-2 -2 

' J 
< xj + yj 
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0 ' if b. = A 
J 

3 
if bj D, 1 < 

-2 -2 
< 2 

' = x. + yj 4 J 

w1 , 2 ((xj ,yj) ,bj) = 
1 

if bj D, 
-2 -2 

< 1 4 ' = xj + Y• 
J 

1 
if bj D, 2 -2 -2 

4 ' = < x + yj j 

0 ' if bj = D 

3 if b. A, -2 -2 
4 ' = xj + y. < 1 

J J -

w2,o«xj ,yj) ,bj) = 
1 

if b. A, 1 -2 -2 
< 2 4 ' = < x. + yj 

J J 

0 if b. A, 2 -2 -2 
' = < x. + y. 

J J J 

The strike decision and information choice rules and the maximum 

expected military gain will be obtained in the following 4 situations. 

(1) The set of ways to obtain information contains the three ways 

a, S, and y and C(a) = C(S) = C(y) = O. 

(2) The set of ways to obtain information contains the one way a 

and C(a) = O. 

(3) The set of ways to obtain information contains the two ways a 

and S and C(a) = C(S) = O. 

(4) The set of ways to obtain information contains the three ways 



57 

i 
a, B, and y an& C(a) = O, C(B) = .04, C(y) = .09, where: 

0 , otherwise 

a and i is a known constant 

.8 ' if p = q 

.1 ' if p :f. q 

1 ' if p = q 

0 ,ifp#q 

Notice that since Ia = ia with a probability of one regardless of 

the target state z1 , a is a way of obtaining information which yields 

no information about z1 • a is equivalent to obtaining no information 

at all. B is a way of obtaining information which does yield informa-

tion about the state of the target, but the information may be in error. 

y is a way of obtaining information about the state of the target which 
;" 

is complete or exact. 
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Situation 3 

Since neither a or S have a cost associated with them, it may be 

argued heuristically that e is the optimal information choice, i.e. 

~l = s. Theorem 1 of Chapter II can be used to establish that this is 

the case. The present situation is the same as Situation 3 mentioned 

in the introduction of this chapter. 

The first step in obtaining the solution is to use Bayes' rule to 

obtain the probability mass function, 

f _ _ _ S(i,jl(x2 ,y2),b2 ,ie), compute the conditional expecta-
z21<x2,Y2),B2,r 

- - - e s tion of 1-W(Z2) given (x2 ,y2),b2 , e, and I = i , and by direct compari-
~ 

son determine the 2nd strike decision rule, (x2 ,y2),b2 • Substitution 

of the rule into the expectation then yields the maximum expectation of 

the damage given (x1 ,y1),b1 , $,and IS= is. The arithmetic has been 

carried out and the results are given in Table I. 

Next, the probability mass function, f S ___ (iel<i1 ,y1),b1), 
I l<x1 ,Y1),B1 

is obtained and used to compute the conditional expectation of the max-

- - - e e imum expectation of the damage given (x1 ,y1),b1 , S, and I = i , given 

"' Since k1 = S, this result is the maximum expectation of 

the damage given (x1 ,y1),b1 • The results are given in Table II. 

By comparison of the results in Table II, the first strike deci-

sion rule and the maximum expected damage can be obtained. 

~ 
(i°l'yl),bl 

-2 -2 
1 < x1 + yl ~ 2, D 

Max. Expected Damage 22.5 'V 
= 32 = .703 

Knowing what the 1st strike decision is provides some 



bl 

A 

II 

" 
II 

II 

II 

II 

II 

II 

D 

II 

II 

TABLE I 

SITUATION 3: SECOND STRIKE DECISION RULE AND MAXIMUM EXPECTED DAMAGE GIVEN (x1 ,y1),b1 , a, and Ia= ia 

Ia 
,_____..,, 

[1-W(j)]f _ _ _ a<i,jj(x2 ,y2),b2 ,ia) (xl'yl) <'X2,Y2>,b2 
_ max _ I 

(x2,y2),b2 i,j z2l<x2,Y2),B2,I 

-2 -2 
0 

-2 -2 3/8 1 < x + y < 2 1 < x + y < 2, D 
1 1 - 2 2 -

II 1 II II II 

" 2 II II II 

-2 -2 
xl + Y1 ::._ 1 0 II II II 

II 1 II II II 

" 2 II II II 

-2 -2 
2 < xl + Y1 0 " II II 

" 1 II " II 

II 2 II II II 

-2 -2 1 < x1 + y1 ::._ 2 0 
-2 -2 
x2 + Y2 ::... 1 ' A 21/32 

II 1 -· -2 -2 1 < x2 + y2 ::... 2, D [(3/8)(.8)+(3/2)(.1)]/[.3+.8] 

II 2 -2 -2 
x2 + Y2 ::... 1 ' A [(21/8)(.8)]/[2.4+.1] 

l.J1 
\0 



bl (xl,yl) re 

II -2 -2 
xl + Y1 2. 1 0 

II II 1 

II II 2 

II -2 -2 
2 < xl + Y1 0 

II II 1 

II II 2 

TABLE I (Continued) 

,,.,.--___./ 

(- ma) b L [1-W(j)]f - - - e(i,jl(x2,y2),b2,ie) (x2,y2),b2 
x2,y2 '2 i,j z21(X2,Y2),B2,I 

-2 -2 1 < x2 + y2 2_ 2, D 13/32 

II II [(9.8)(.8)+(1/2)(.1)]/[.1+2.4] 

-2 -2 
x2 + Y2 2. 1 ' A [(7/8)(.8)]/[.8+.3] 

-2 -2 1 < x2 + y2 2_ 2, D 13/32 

II II [(9.8)(.8)+(1/2)(.1)]/[.1+2.4] 

-2 -2 
x2 + Y2 2. 1 ' A [(7/8)(.8)]/[.8+.3] 

°' 0 



bl c~.'Y1> 

A 11 < Xi + y~ ~ 2 

" 
" 

-2 + -2 < 1 
~ Y1-

-2 -2 
2 < ~ + Y1 

D 11<~+y~~2 
-2 -2 
x1 +yl~1 " 

" 
-2 -2 

2 < x1 + yl 

TABLE II 

SITUATION 3: MAXIMUM EXPECXED DAMAGE GIVEN (~ ,y1) ,b'1 

k k 
max \" 11 - - - max \" r, 0 I - - - 1 k L f k (i <x1·Y1>,b1) (x - ) b L L!-W(j) f k (i,j <x2·Y2>•b2•i ) 

1 k 11 - - - 2•Y2 ' 2 i j - - - 1 i 1 I CXi 1Y1),B1 ' ,!2 IC~,Y2),B2 ,I 

3/8 

" 

" 
22.5/32 

14.5/32 

14.5/32 

CJ'\ 
...... 
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simplification for the 2nd strike decision rule. The strike decision 

and information choice rules are summarized below. 

;';' 
I:\. = s 

1 

-2 -2 
< 1 , A if IS 0 x2 + Yz = 

~ 

(x2,y2),b2 1 < 
-2 -2 

~ 2, D if IS 1 = x2 + Yz = 

-2 -2 1 , A if IS 2 x2 + Yz < = -

Situation 1 

In this situation, heuristic reasoning indicates that y is the 

optimal choice for k1 and Theorem 2 of Chapter II can be used to estab­

lish that this is the case. The present situation is the same as Situ-

ation 1 mentioned in the introduction of this chapter. 

The procedure for solution is the same as in Situation 3. The 

results for the present situation which correspond to the results given 

in Tables I and II for Situation 3 are given in Tables III and IV. 

By comparison of the results in Tab.le IV, the first strike deci-

sion rule and the maximum expected damage is obtained. 

~ 
(x1 ,y1),b1 = 1 < x1 +y1 ~2, D 

24 
Max. Expected Damage= 32 = .750 



bl 

A 

II 

II 

II 

II 

II 

II 

II 

II 

D 

II 

II 

TABLE III 

SITUATION 1: SECOND STRIKE DECISION RULE AND MAXIMUM EXPECTED DAMAGE GIVEN (xl,yl),bl' y, and Iy = iy 

,,,-___,./ 

(xl ,y 1) Iy <x2,y2),b2 
_ max _ l [1-W(j)]f ___ y(i,jl(x2 ,y2),b2 ,iy) 

(x2,y2),b2 i,j ! 2 1 (X2 ~ Y2) ,B2 ,I 

-2 -2 1 < x1 + y1 2_ 2 0 
-2 -2 1 < x2 + y2 2_ 2, D 3/8 

II 1 II II II 

II 2 II II II 

-2 -2 
xl + Y1 2. 1 0 II II II 

II 1 II II II 

II 2 II II II 

-2 -2 
2 < xl + Y1 0 II II II 

II 1 II II II 

II 2 II II II 

-2 -2 1 < x1 + y1 2. 2 0 
-2 -2 
x2 + Y2 2.. 1 ' A 21/32 

II 1 -2 -2 1 < x2 + y2 2_ 2, D 3/8 

II 2 -2 -2 
x2 + Y2 2. 1 ' A 21/24 

°' w 



bl (xl,yl) Iy 

II -2 -2 
xl + Y1 ..:_ 1 0 

II II 1 

" II 2 

II -2 -2 2 < x1 + y1 0 

II II 1 

II II 2 

TABLE III (Continued) 

~ _ max _ l [1-W(j)]f _ _ _ y(i,jj(x2 ,y2),b2 ,i'Y) (x2,y2),b2 
(x2,y2),b2 i,j ~21cx2,Y2),B2,I 

-2 -2 1 < x2 + y2 ..:_ 2, D 13/32 

" II 9/24 

-2 -2 
x2 + Y2 2. 1 , A 7/8 

-2 -2 1 < x2 + y2 ..::_ 2, D 13/32 

" II 9/24 

-2 -2 
x2 + Y2 ..::_ 1 ' A 7/8 

°' +:--



bl c~.'Y1> 

A 11 < ~ + y~ !. 21 

n I X2 + y2 < 1 
1 1-

" I 
-2 -2 

2 < ~ + yl I 

-2 -2 I D 11 < ~ + y1 !. 2 

n I -2 -2 x1 + y1 !. 1 I 

" I 
-2 -2· 2 < ~ + y1 I 

TABLE IV 

SITUATION 1: MAXIMUM EXPEC'IED DAMAGE GIVEN (~ ,y1) ,b1 

k k 
max \ 11 - - - max \ r; n I - - - 1 k L f k (i (xl,yl)'bl) Ci - ) b L J.-W(j~f k (i,j (x2•Y2)•b2,i ) 
1 k 11 - - - 2·Y2 • 2 i j I - - - 1 

i 1 I CXi,Y1),Bl. • !2 <Xi•Y2)•B2,I 

~---~. 

3/8 

" 

" 
24/32 

16/32 

16/32 

···-....,,. 

°' VI 
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The strike decision and information choice rules are summarized below. 

-2 -2 = 1 < x1 + y1 .::_ 2, D 

-2 -2 , A if rY 0 x2 + y2 .:_ 1 = 

~ 

(x2,y2),b2 1 < 
-2 -2 

< 2, D if rY 1 = x2 + Y2 = 

-2 -2 
< 1 , A if Iy 2 x2 + Y2 = 

Situation 2 

In this situation, since the only way of obtaining information is 

~ a, 1\.1 == ct. Formally, the solution proceeds in exactly the same way as 

in Situations 1 and 3; however, since Ia is a degenerate random variable, 

Thus, to obtain the solution all that is necessary is to obtain 

the expectation of the damage given (;{2 ,y2),b2 and then maximize with 

to (x2 ,y2),b2 and (x1 ,y1),b1 to obtain the strike decisions. Because 

the results will be needed in the solution of Situation 4, the maximi­

zation with respect to (x2 ,y2),b2 was carried out first and the 2nd 

strike decisions and the maximum expected damage given (x1 ,y1),b1 are 

tabulated in Table V. 

By comparison of the results in Table V, the first strike decision 
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A 

II 

II 

D 

II 

II 

TABLE V 

SITUATION 2: SECOND STRIKE DECISION RULE AND MAXIMUM EXPECTED DAMAGE GIVEN (x1 ,y1),b1 

,..--__,/ 

(xl,yl) (x2,y2),b2 
_ ~ax _ I [1-W(j)]f __ (i...zJl(x2 ,y2),b2) 

(x2 ,y2) ,b2 i · z2 I (X2' Y2) ,B2 ,J 

-2 -2 
1 < x1 + yl .::_ 2 

-2 -2 1 < x2 + y2 .::_ 2, D 3/8 

-2 -2 
xl + Y1 .::_ 1 II II II 

-2 -2 
2 < xl + Y1 II II II 

-2 -2 1 < x1 + y1 .::_ 2 -2 -2 
x2 + Y2 .::_ 1 ' A 21/32 

-2 -2 
xl + Y1 .::_ 1 

-2 -2 1 < x2 + y2 .::_ 2, D 13/32 

-2 -2 
2 < xl + Y1 

II II II 

°' "'-I 
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rule and the maximum expected damage is obtained. 

-2 -2 = 1 < x1 + yl 2_ 2, D 

21 'V 
Max. Expected Damage = 32 = .656 

The second strike decision rule is of course 

Notice that since there is no new information obtained between strikes, 

both strike decisions can be made before the sequence starts. 

The maximum expected damage in Situation 1 is greater than in 

Situation 2 and 3. Also, the maximum expected damage in Situation 3 is 

greater than in Situation 2. These results agree with what would be 

expected intuitively. 

Situation 4 

The solution to Situation 4 may be obtained by using the results 

obtained in Situations 1, 2, and 3. First observe that the 2nd strike 

decision rules tabulated in Tables I, III, 
kl 

decision rule given (x1 ,y1),b1 , k1 and I 

and V define the 2nd strike 
kl 

= i The information 

'\J 
choice rule, K1 , may be obtained by comparing the right most column of 

Tables II, IV, and V, taking into account the cost, C(k1), of the in­

formation in each table. The rule, the cost function C, and the re-

sults of Tables II, IV, and V can be used to obtain the maximum expec-

tation of the military gain given (x1 ,y1),b1 • The results are given in 

Table VI. 



bl <i1 .Y'1> ~ 

A 
-2 -2 

1 < ~ + y1 .!. 2 a 

" 
-2 -2 

· x1 +yl.!.1 " 

" 
-2 -2 

2 < xl + Y1 " 
D 

-2 -2 
1. < ~ + y 1 .!. 2 13 

" 
-2 -2 
x1 + y1 .!. 1 II 

II -2 -2 
2 < ~ + y1 " 

TABLE VI 

SITUATION 4: INFORMATION CHOICE RULE AND MAXIMUM EXPECTED MILITARY GAIN GIVEN (xl'yl) ,b1 

k k 
~ l f k (i 11Cxl'yl),b1) C ~) b l (!-W{j)-C{k15]£ k (i,jlCi2 ,y2>.'b2,i 1> 1 1 k 11 - - - ~·Y2 • 2 i j - - - 1 i 1 I (~ 0Y1),B1 ' !2 1C~ 0Y2),B2 ,I 

3/8 

" 
II 

.663 

.413 

II 

°' \0 
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By simple comparison of the results in Table VI, the first strike 

decision rule and the maximum expected military gain can be obtained. 

Knowledge of the first strike decision provides some simplification for 

the information choice and second strike decision rules. The strike 

decision and information choice rules and the maximum expected military 

gain are summarized below. 

-2 -2 
1 < x 1 + yl < 2, D 

-2 -2 
< 1 , A if IS 0 x2 + Y2 = 

r---..J 
(x2 ,y2) ,b2 1 < 

-2 -2 
.::. 2, D if IS 1 x2 + Y2 = 

-2 -2 
< 1 A if IS 2 x2 + Y2 ' 

Max. Expected Military Gain .663 

When there was no military cost associated with obtaining informa-

tion, exact information (Situation 1) proved to be better than informa-

tion with possible error (Situation 3). The present situation repre-

sents a case where the military cost associated with obtaining exact 

information makes obtaining information with possible error the better 

strategy. 
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Determination of M, the Number of Strikes 

In the preceding work it was assumed that the number of bombing 

strikes, M, was specified as part of the sequential bombing problem. 

Since there has been no cost associated with making a bombing strike, 

the strategist could merely choose M large enough so as to insure that 

the maximum expected military gain would be large enough. This is ob­

viously an impractical solution which ignores many limiting factors and 

defeats the idea of obtaining a satisfactory military gain with as few 

strikes as possible. Thus, a subjective decision as to the number of 

strikes may not be adequate and some systematic analytical means of 

choosing M is needed. 

There are at least two approaches to the problem. 

(1) The sequential bombing problem can be solved for each M = 1, 

2, ••• until the resulting maximum expected military gain is sufficiently 

close to 1. 

(2) Using an educated guess as to the optimal strike decision and 

experiment choice rules, obtain an approximate answer for the maximum 

expected military gain for each M = 1,2, •••• The process would be 

stopped and an exact solution obtained when a value of M was found such 

that the approximate maximum expected military gain was sufficiently 

close to 1. 

Both approaches depend on a subjective judgement as to how large 

"sufficiently close to l" is, but an expected military gain between .9 

and 1.0 would seem reasonable. Obtaining a fairly accurate approximate 

answer for the maximum expected military gain as suggested under (2) 

above is, in many cases, not as difficult as the reader might expect. 

A little thought about Situations 1, 2, and 3 of the previous example 
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and the optimal strike decision and information choice rules can be 

written down. Obtaining the approximate maximum expected military gain 

for a given M with the approximate rules specified is much less work 

than obtaining the maximum expected military gain by the optimal solu-

tion procedure. Thus, approach (1) would probably require much more 

computation time than approach (2), while approach (2) might result in 

a larger strike number than necessary if bad guesses were made as to 

the approximate strike decision and information choice rules. 

Target Modification Between Strikes 

In the preceding work it was assumed that the only way the state 

of the target could be changed was by using a weapon against the target. 

Under this assumption it was appropriate to suppose a finite number of 

strikes, M, would be made on the target and to use as the criteria for 
M-1 

success of the M strikes the military gain, 1-W(Z) - l C(k.). 
M . 1 J J= 

Suppose now that the state of the target may be changed between 

strikes and that w' is a probability mass function which is the prob­
m,n 

ability that the target will be transferred to state n given that the 

last strike left the target in state m. Under such conditions it may 

be appropriate to suppose that a very large number of strikes will be 

made on the target and to use as the criteria for success, the military 

gain per strike. The concept of an infinite sequence of strikes will 

be used to approximate the idea of a very large number of strikes. 

Under the assumptions which will be made, it can be assumed that 

the states of the target just before and just after a strike have a 

time stationary probability distribution. Let Z' denote the random 

variable which is the state of the target just before a strike and Z 
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denote the random variable which is the state of the target just after 

the strike. Suppose there is a well defined set of ways to obtain in-

formation, about the state Z', between strikes. The choice of way is 

denoted by k and results in the observation of a sample of the same 

random variable, Ik, between each strike at a military cost of C(k) per 

strike. The information error statistics are assumed known in the form 

of the probability mass function, 

dependent of strike decisions and 

f k(iklp), which is 
I I Z' 

target states other 

assumed to be in-

than the state of 

k 
the target, Z', which exists at the time the sample of I is obtained. 

Each strike decision is to be chosen from the same well defined 

set of choices. w ((~,y),b) denotes the probability mass function 
m,n 

which is the probability that the state of the target will be trans-

ferred to state n given that the target was in state m just before the 

strike and the strike decision (x,y),b was made. 

Suppose now that an information choice, k, has been made. It 

would be feasible to continually retain any fixed finite number of past 

k strike decisions and samples of I and to make the strike decision rule 

a function of the stored data. There are at least two good arguments 

for restricting the strike decision rule to be a function only of the 

most current sample of Ik. First of all, except in special cases the 

information content in other data tends to be small because of the ran-

dom changes in target state that occur after that data is obtained. 

Second, it is easy to solve for the time stationary state probability 

distributions which result from this restriction. For these reasons, 

the strike decision rule is restricted to be a function only of the 

most current sample of Ik. It is assumed that a sample of Ik is avail­

able at the time the 1st strike decision must be made and that this is 
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all that is known about the state of the target at that time. 

Let [(i°,y),b](ik) be a strike decision rule for the information 

choice, k. - -- - k w ([(x,y),b](i )) is the probability mass function which m,n 

is the probability that the state of the target will be transferred to 

state n given that the target was in state m just before the strike and 

the information ik was obtained. Let w" be the probability mass func­m,n 

tion which is the probability that the state of the target will be 

transferred to state n given that the target was in state m just before 

the strike. w" is given by the equation, m,n 

w" m,n = I 
.k 
i 

w m,n 

Let nll be the • h • j th 1 • II H matrix w ose i, e ement is wi .• 
,J 

Also, let n' be 

the t . h .. th element is I Then, the matrix \ = [y. . ] = ma rix w ose i,J wi .• ,J . i,J 

n"n' is the transition matrix for Z I• 
n n n 

If Let \ [yi,j] = [y. . ] • 
i,J 

for each i and j, y~ . > 0 for some n, Z' has a stationary distribution, 
i ,J 

fz 1 (p), which is independent of the starting state (Prabhu, 1965). In 

the work to follow, this is assumed to be the case. 

The stationary distribution, fz 1 (p), can be found by solving the 

system of equations, 

= \ f z 1 (1) 
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and 

Although this stationary distribution may not exist initially, it 

will be approached as the number of completed strikes increases. 

The expected military gain per strike can be found from the equa-

tion, 

Expected Military Gain Per Strike 

= l fz, (p) [ I [W(p) - W(q) - C(k) ]w" ] p,q 
p q 

Within the imposed constraint on the strike decision rule, the 

optimal strike decision and information choice rules and the maximum 

expected military gain per strike are found by maximizing the expected 

military gain per strike first with respect to the strike decision rule 

and then with respect to the information choice. Thus, 

Max. Expected Military Gain Per Strike 

The rules thus obtained may not be optimal initially, but as the 

number of completed strikes becomes large, they will obtain at least as 

large a military gain per strike as any of the possible rules. 

Example 

Suppose there is a target with three possible states, O, 1, and 2, 

Th 1 f h . 2 . 1 e va ue o t e target in state is z• The matrix Q' is 



Q' = 

1 
3 

1 
3 

1 
3 

1 
3 

1 
3 

1 
3 

1 
3 

1 
3 

1 
3 

There is only one way of obtaining information. The one way is 

76 

denoted a. The cost per strike, C(a), is zero. The information error 

statistics are expressed by the probability mass function, 

.8 ' if p q 

.1 ' if p :I q 

There is only one choice of weapon for each strike and the DGZ 

must be chosen in regions A or A'. w is the function, m,n 

w2 1 ((x,y)) = 0 
' 
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It. if (x,y)EA 

wl 1 ( (;{,y)) 
' 

= ~ 
I 1 

t· if (x,y)e.A' 

1 
if (x,y)EA 2 ' 

wl ,2 ( (x,y)) = 

3 
if (x,y)e.A' 4 ' 

1 
' if (x,y) EA 4 

w2 ,2 ((x,y)) = 

1 
' if (x,y)e.A' 

2 

~· if (x,y)e.A 

w2 0 ( (x,y)) = ~ 
' I 1 if (x,y)e.A' 

~' 

The 8 possible strike decision rules are listed below: 

( 
A if p = 1 

[(x,y)]l(p) = A if p = 2 

A if p = 0 

\_ 
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( 
IA ,ifp=l 

[ <x,y) J z (p) = -<.A if p = 2 
I ' 
; 

IA' 

C_' 
if p = 0 

r. if p = 1 

[ <x,y) J 3 (p) = ~A' if p = 2 I , 
'A ' if p = 0 

\_ 

( 

A ,ifp=l 

[<x,y)J4<P) = A' if p = 2 

A' ' if p = 0 

A I ' if p = 1 

if p = 2 

A ,ifp=O 

A' , if p = 1 

if p = 2 

A' , if p = 0 
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A' if p = 1 

[(x,y)] 7(p) = A' if p = 2 

A if p = 0 

A' if p = 1 

[(x,y)] 8(p) = A' if p = 2 

A' if p = 0 

The matrix Q" is first found for each possible strike decision 

rule and then used to compute the matrix\. The results are given 

below. 

1 0 0 1 0 0 

n" 0 
1 1 Q" 0 

1.9 2.1 
= -4- -4-1 2 2 2 

3 0 
1 2.9 

0 
1.1 

4 4 -4- -4-

1 0 0 1 0 0 

n" 0 
1.9 2.1 n" 0 

1.8 2.2 
= 4 -4- = -4- -4-3 4 

2.2 
0 

1.8 2.1 
0 

1.9 
-4- 4 -4- -4-
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1 0 0 1 0 0 

Q" 0 
1.2 2.8 Q" 0 

1.1 2.9 
= 4 -4- = -4-5 6 4 

2.9 
0 

1.1 2.8 0 
1.2 

-4- -4- -4- -4-

1 0 0 1 0 0 

Q" 0 
1.1 2.9 Q" 0 

1 3 
= = 

7 4 4 8 4 4 

2.1 
0 

1.9 1 
0 

1 
-4- -4- -

2 2 

1 1 1 
3 3 3 

'i "2 \3 "8 
1 1 1 

= 
3 3 3 

1 1 1 
3 3 3 

The stationary distribution, f 2 ,(p), is the same for each possible 

strike decision rule. 

1 f 2 ,(p) = 3, for p = O, 1, or 2 

Next, the expected military gain per strike or, in this example, 

the expected damage per strike is computed for each possible strike 

decision rule. 
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Rule 1: Expected Damage Per Strike 1 (2.) = -3 8 

Rule 2: Expected Damage Per Strike 1 (2.) = -3 8 

Rule 3: Expected Damage Per Strike 1 (4.3) = -3 8 

Rule 4: Expected Damage Per Strike 1 (4.3) = -3 8 

Rule 5: Expected Damage Per Strike 1 (5.7) = -3 8 

Rule 6: Expected Damage Per Strike 1 (5. 7) = -3 8 

Rule 7: Expected Damage Per Strike 1 (2.) = -3 8 

Rule 8: Expected Damage Per Strike 1 (2.) = -
3 8 

Thus, for the information choice, a, the decision rule should be 5 

. 1 5.7 "' or 6 and the expected damager per strike is 3 <-a-> = .237. Since a is 

the only way of obtaining information, the problem is completed. 



CHAPTER V 

APPLICATION TO SYSTEMS ENGINEERING 

This chapter consists of a consideration of a systems engineering 

problem which has been discussed by Howard (1965). 

A manufacturer is offered a fixed price contract to build and 

maintain a system of N devices for a period of T years. Every failure 

in the system during the T years must be replaced by the manufacturer 

at a cost of Z dollars. The system will cost J 0 dollars to establish, 

and the price of the contract is a. The manufacturer believes that the 

failures will be Poisson distributed with some rate x1 , but he is un-

sure about the value of x1 • The manufacturer does, however, obtain the 

probability density function for x1 , fX • The problem the manufacturer 
1 

is faced with is that of making the decision to accept or reject the 

contract and he would like to make that decision in such a way as to 

maximize his expected profit. 

By proper interpretation of this problem, it can be made to fit 

the general problem formulation of Chapter II. Results identical with 

those obtained by Howard will then be obtained using the techniques 

developed in Chapter II. 

Let x2 represent the manufacturer's profit. Also, let fx In = fx 
1 1 1 

{~1 }, a singleton set. In other words, f I depends on the 
Xl Dl 

decision, d1 , but there is only one choice for that decision. AZ is a 

set containing two elements, a2 and r 2 , where a2 is the decision to 

82 
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accept the contract and r 2 is the decision to reject the contract. As 

usual, w1 represents the collection of experiments which may be used to 

gain knowledge about x1 before making the decision, d2 • The cost as­

sociated with the particular experiment choice, k1 , is as usual denoted 

by C(k1). The process of transforming the problem into familiar nota­

tion is completed by letting v1 (x1 ,d1) = 0 and v2 (x2 ,d2) = x2 • 

The first step in obtaining the solution is to express the expecta­
k1 k 

tion of v2 given d2 , k1 , and I = i 1 in a form which is easier to 

work with. The expectation can be written, 

f <I) k dx1 

x1ln2,1 1 

kl 
where E(X2 1x1 ,d2 ,i ) denotes the expectation of the profit, x2 , given 

kl .kl 
the failure rate x1 = xl' d2' kl' and I 1 dl has been dropped 

from the expressions since in this example, the first decision is in-

effective and has no physical significance. 

Using the fact that the failures are Poisson distributed with 

rate x1 , it is easy to obtain the result, 

0 



Thus, it is easy to rewrite the expectation of v2 given d2 , k1 , 
kl kl 

and I = i in the form, 

k 
a - J 0 - ZNT E(x1li 1) , if d2 = a2 

0 

In the speical case where k1 = *1 , this result is the same as 

Howard's Equations 2 and 3. The decision rule for d~ is o~tained by 

maximizing the expectation of v2 given d2 , k1 , and I 1 = i 1 with 

respect to d2• The result is 

k 
a2, if a - Jo - ZNT E(Xlli 1) > 0 

~2 
k 

r2, if a - Jo - ZNT E(Xlli 1) < 0 

k 
where the choice ~2 = r 2 if a - J0 - ZNT E(x1 !i 1) = 0 was made arbi-

trarily. 

"' The experiment rule, k1 , is found by maximizing the expression, 

J. max I .kl .kl 
~ f k ( ) d E(V2 d2 ,1 )di - C(k1) 
-K. 2 1 I l 

with respect to k1 • 

Assuming the hypothesis of Theorem 4 is satisfied, the following 

"' upper bound on C(k1) is obtained, 

84 
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00 a-J 
J [ZNT x1 + J 0 - a] fx( )dx1 , if E(X1) 0 < ~~ 

a-J 1 ZNT 
0 

ZNT 

= 
a-J 0 
ZNT a-J 
I [a - J 0 - ZNT x1] fx( )dx1 , if E(X1) 0 > ~~ 
0 1 - ZNT 

a-J 
The bound obtained for E(X1) < ZNTO is the same as Howard's Equa-

tion 4 which he calls the value of clairvoyance. 

Suppose now that w1 = {11 ,21 ,31 , ••• ,p1 , ••• } where p1 , p = 1,2, ••• , 

represents placing p devices in operation, noting their times of fail-

ure, and averaging those times to obtain an estimate of x1 • The cost, 

C(p1), would depend on the particular problem, but usually would be a 

monotone, increasing, unbounded function of p. In this case, the bound 

~ 

for C(k1) would make it possible to eliminate from consideration all 

but a finite number of the experiments in w1 • 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Based on a desire to study a number of practical problems with the 

same basic characteristics, a generalized, finite stage, discrete time, 

sequential decision theory problem has been defined. The problem is 

characterized by a sequence of decisions resulting in unobservable out­

comes combined with a choice, between decisions, of experiments which 

may produce information about previous outcomes. The problem is be­

lieved by the author to be original. 

A general solution to the problem was given, but unfortunately the 

procedure involved is frequently formidable. This fact was the moti­

vating force behind efforts to find methods which would reduce the 

computational effort in a problem solution. Theorems 1 through 4 repre­

sent the results obtained in this direction. The examples in Chapters 

III, IV, and V illustrate applications of the general problem formula­

tion, the general solution procedure, and Theorems 1 through 4. 

Originally, the author thought that there might exist a reasonably 

simple measure of the information in an experiment which could be used 

as a shortcut to determine the optimal experiment rules and thus reduce 

the work involved in the solution procedure. Unfortunately, the only 

measure of information discovered which determines, in a general way 

whether one experiment is better than another is one like that defined 

in Chapter II. Evaluating that measure amounts to solving the problem 

86 
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directly and, therefore, affords no reduction in the work required. 

Theorems 1 and 2 are, in the case of cost free experiments, characteri­

zations of experiments with the least and most information of any of 

the available experiments respectively. The bounds in Theorems 3 and 4 

can be interpreted as the most information which can be contained in 

any of the available experiments. Although it has not been established 

rigorously, the implication is that any meaningful measure of informa­

tion must be defined relative to the particular problem at hand and is 

not absolute. 

In practice, the number of decisions in a problem may be quite 

large. The solution of such problems can be expected to require the 

aid of machine computation. Investigation of conditions under which a 

stationary solution is approached seems to be a reasonable avenue of 

approach to reduce computational effort when n is large and is a sug­

gestion for future investigation. 
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APPENDIX 

The purpose of this appendix is to establish Theorems 1 through 4 

of Chapter II. The following two Lemmas are developed for that purpose. 

Lemma 1 

Let Uj(f(I) k. ) denote the maximum expectation of V - C given 
x In I-J-l 
-n -n' 

k. 1 k. 1 
dj-l' ~-l' and I-:i- = i-J- Let dj, kj, dj+l' ••• , kn-l' dn be the 

decision and experiment choice rules for Uj(f(i) k. ) with kj-l 
x ID I-:i-l 
-n -n' 

* Define L.(f(I) k ) to be U.(f(I) k ) but with the j-1 • J . 1 J . 1 
x In I-:i- x In I-:i-
-n -n' -n -n' 

rules d.' k.' dj+l' ••• ' k l' d • Then the following two properties 
J J n- n 

hold: 

(1) L.(f(j) k * ) 
J x In I-j-2,I j-l 

-n -n' 

The The first property is true because of the way Lj is defined. 

second property is true because no set of rules can be better than the 

optimum set. 
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Suppose that 

f k 
I~-llD X 

~'~ 

Lemma 2 

= f k 

I llx 
-1 

f k 
I 21X 

-2 

f k 
I n-llx 

~-1 

k. 2 k. 2 
Then, given dj-l' ~-l' and {-:J- = i-:J- define 

) = f k k Uj(f(I) k ) 
r j-lln 1~-2 x In r-j-l 

--j-1' ~ ~' 

= I nx f kj( 11) f < I ) k . 2 d~ -1 
-1-1 r - Ix. x In 1-J-

.J -:J-l -j-1 --j-1' 

f k<I) f<i) 
r j-1 1x. x In 1~-2 

-J-1 ~ ~' 
u. 

J 

where Uj is as defined in Lemma 1. 
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k. 1 
Also, if kj-l and kj_1 are elements of wj-l and i J- is a sample 

k. 1 J-value of I , let dj' kj, dj+l' ••• , kn-l' dn denote the decision and 
k._l 

experiment choice rules for U.(f(I) k ) evaluated at i J 
J x ID I--j-2 kj-1 

and define L k (f k'(i) 
i j-l I j-lix. 

-:J-1 

~ ~' ,I 

) to be yj_1 (f k~(I) 
I J-llX 

=j-1 

) but with the 

rules dj, kj, dj+l' ••• , kn-l' dn. Then the following two properties 

hold: 
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The first property is true because of the way L k is defined. 
i j 

The second property is true because no set of rules can be better than 

the optimum set. 

Theorems 1 through 4 can now be established using Lemmas 1 and 2. 

Theorem 1 

Suppose wn-l ~ {*n-l} is not empty and let kn_1Ewn-l' kn-l f *n-l· 

The functional L of Lemma 1 can be written 
n 

where d is the decision rule of Lemma 1. Using properties 1 and 2 of 
n 

Lemma 1, 

J~ 
n-1 

f k<i) k 
I n-llD I-n-2 

-n-1' 



where a change in order of integration was made. Thus, for any 

k le:w 1' n- n-

* 
f *Cl) k Un(f(I) k * )di n-l 

I n-lln I-n-2 X In I-n-2,I n-1 
-n-1' -n-n' 

::.. f rl 
k n-1 

k 
Un(f(I) k )di n-l 

x ID I-n-l 

or, 

k e:w' max [J 
n-1 n-1 ~ n-1 

- max [J f (I) - k e:w k k 
n-1 n-1 ~ n-11 -n-2 n-1 I D 1 ,I -n-

verifying that w 1 may be replaced by w' 1 . 
n- n-

-n -n' 
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Next suppose wn_2 ~ {*n_2} is not empty and let kn_2e:wn_2 , kn_2 I 

* . n-2 The functional L 1 of Lemma 1 can be written 
n-

f 

J~ 
n-1 

fr;i V(x ,d 2 ,a 1 ,a) f k(I) 
X -n -n- n- n 1 

In- Ix 
-n -n-1 

A A k 1 
k <la 1 ,a )dx din­

n- n -n 
x ID I-n-2 
-n -n' 
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where d 1 , k 1 , and d are the decision and experiment choice rules 
n- n- n 

of Lemma 1. Using properties 1 and 2 of Lennna 1 it can be concluded 

that w 2 may be replaced by w' 2 . This line of reasoning may be re-n- n-

peated a finite number of times to obtain the desired conclusion of the 

theorem. 

Theorem 2 

Suppose that for some j there is an experiment k'.ew. which satis­
J J 

fies the conditions of the theorem. Given an experiment, k.ew., 
J J 

k. 
\(i J ,x.) = 

-:J k. 
J zk . ( i J , • ) d • 

Qk'. J 
J 

Let y,(f k(\) ) be the functional defined in Lennna 2. Notice from 
J . 

I JI~ 
k. k'. 

the definition of yj that since zk. (i J,i J) does not depend on .?!u' 
J 

f k <I) 
I j\X. 

-:J 
y. (f k <I)) 

J . 
I J \X. 

-:J 

1 

k. 
J zk. (i J , ·) d · 

Qk'. J 
J 



Now, 

k. 
Notice that \(i J,~) is the expectation off k' under the 

1 j Ix. density function, -:i 

k. k! 
zk.(i J,i J) 

J 

k, 
zk . ( i J , • ) d • 

J 

The functional L k , defined in Lennna 2, can be written 
i j 
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= J n_A 
--kj+l 

Jn V(x ,!.'~'+!'"'''~ )f k Cl~'+l''"~) 
~GX ""'"11 J J n . 1 J n 

""'"11 x In ,1-:i­
""11 ""11 

f k'<i) f k<I) 
rjlx rj+llx 

-j -j+l 

Using properties 1 and 2 of Lennna 2, 

k 
dx di n-l 

""11 



k k' 
zk. (i j ,i j) 

J k' 
f~, ------ L k (f k'(,))di j 

j k. ij rjlx. J zk. (i J , ·) d • -J 
Qk~ J 

J 

k. k. 
= L k (\(i J,x.)) = 

. -J 
i J 

y. (\(i J ,xj)) 
J -

where a change in order of integration was made. Thus, 

k. k~ 
( . J . J) 

zk. i 'i 

J 

k' 
y. < f k, < I ) ) di j 

J . 
I Jjx. 

-J 

k. 
di J 
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Since this result holds for any k.ew., k. # k~, the desired conclusion 
J J J J 

is obtained. 



Theorem 3 

Suppose there is an experiment k' which satisfies the conditions 
p 
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of the theorem. Given an experiment, k EW , k # k' and k # * , it p p p p p p 

can be established, by the same procedure used to argue Theorem 2, that 

the following inequality holds. 

or, 

k' 
~ f~, f k'<I) k up+l(f(I) k k,)di P + C(k') 

-"kP r Pin ,1-P-l x In ,1-P-1 ,1 P P 
-p -n -n 

Using the expanded form, this inequality may be rewritten, 

+ ~kp < I 
Lmax j=p+l 

n-1 
V.(x.,d.) - \' 
J-:J-J l 

k 
C(k.) Id ,i-p-l) 

J -p 

p-1 
- l C(k.) 

j=l J j=p+l 

+ p ( l V.(x.,d.) Ck' n 

max j=p+l J -J -J 

n-1 
l 

dx. 
-:J 

j=p+l 
C(k.)ld ,i~-l~ 

J -p J 
p-1 

- l 
j=l 

C(k.) 
J 



k n n-1 
E p ( \ V.(x.,d.) - \ 
max j --pl+l J -:J -J l j=p+l 

k' n 
< E p ( l V. (x. ,d.) -
- max . +l J -:J -J J=p 

k 
C(k.)id ,i-,>-l) - C(k) 

J ..,, p 

n-1 
l 

j=p+l 

Also, the same procedure used to argue Theorem 1 can be used to 

establish the following inequalities. 

and, 

and, 

* u +l(f(i) k *)dip 
P x In r--p-l r P 

-n-n' ' 

Using the expanded form, these inequalities may be rewritten, 

* n 
E p ( l V. (x. ,d.) -
max . +l J -:J -:J J=p 

k' n 

n-1 
l 

j=p+l 

< E p ( l V.(x.,d.) -
- max j=p+l J -:J -J 

n-1 
l 

j=p+l 
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Thus, 

* n 
E p ( \ V.(x.,d.) -
max j=~+l J -J -.J 

n-1 
l 

j=p+l 

k 
C(k.) Id ,(-p-l) 

J -p 

k n n-1 
< E p ( \ V.(xj,d.) - \ 
-max.l J--J l 

J=p+l j=p+l 

n-1 

k 
C(k.) la ,i-p-l) 

J -p 

k [k n 
- C(kp) J max E p ( l V. (x. ,!!..i) - l C(k.) Id ,i-p-l) 

k ew max . +l J J j=p+l J -p p p J=p 

and, 

~ n n-1 k 
E p ( l l C(k.) Id ,i-p-l) 

'U 
= V.(x.,d.) C(k ) 

max j=p+l J J -J J -p p j=p+l 

k' n 
< E p ( l V. (x. ,d.) -
- max j=p+l J -.J -J 

* n 
E p ( l V.(x.,d.) -

max j=p+l J -.J -.J 

n-1 
l 

j=p+l 

n-1 
l 

j=p+l 

k 
C(k.) la ,i-p-l) 

J -p 

k 
C(k.) Id ,i-p-l) 

J -p 

~ n n-1 k 
< E p ( l V. (x. ,~) - l C(k.) la ,i--p-l) 
- max j=p+l J -.J J j=p+l J --p 

The last two inequalities combined establish the desired result. 

Theorem 4 
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Theorem 4 is a corollary to Theorem 3. Let k serve as the exper-
k k p 

iment k' in Theorem 3 and let 
p 

k k 
( . p . p) zk 1 ,1 • 

p 

f k(i pli p) serve as the function 

r P Ix 
-p 
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