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PREFACE 

This dissertation deals with a certain class of nonlinear program-

ming problems known as convex programming problems. The purpose of 

this paper is to provide an introduction to the theory of convex pro-

gramming. Mathematical prqgramming in general has risen to a place of 

importance in the last two decades, beginning with linear programming 

in the late l940's and early 1950's and continuing today with nonlinear 

programming. Much interest and activity has been devoted to nonlinear 

programming in recent yea.rs but because of the very diverse.nature of 

the topic, almost all energy has been directed toward the creation of 

algorithms for the solution of particular types of problems. This is 
I 

particular:ly. true also in convex programming. 

Not readily available in the literature is a source which gives 

the theoretical foundation for convex programming in a complete and 

concise form and specifically formulates the discussion in terms of 

convex programming. For example, Rockaf ellar [20] develops the theory 

of vectors of recession for a convex set and a convex !unction but 

does not single out or emphasize that theory which is applicable to 

convex programming; rather he formulates his results in terms of when 

a convex !unction attains its minimum on a convex set. In the section 

he devotes to convex programming, almost the entire text is in terms 

of Kuhn-Tucker vectors which contributes nothing to the tundamental 

theory of convex programming. Karlin [12) talks about concave program-

ming where the objective functions are concave and the goal is to 
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maximize a concave function over the set of feasible solutions. Kuhn 

and Tucker [15] also formulate their discussion in terms of concave 

+ programming and limit themselves to convex programs over E , the non
n 

negative orthant of E • In (16], Kunzi and Krelle characterize an 
n 

optimal solution for a convex program in terms of the Lagrangian func-

tion associated with the convex program but only for a convex program 

+ over E • No mention is made of the more general result that appears 
n 

in Chapter III of this result. Therefore, it is the express purpose of 

this paper to fill this gap in the fundamental theory of convex pro-

gramming. 

The desired audience for this paper is any person, involved in 

mathematical progranuning or not, who has an adequate background in the 

undergraduate mathematics courses of linear algebra, elementary 

topology and analysis (particularly, advanced calculus), and calculus 

of several variables. The reader should be familar with such concepts 

as n-dimensional Euclidean space E , the inner-product property of this 
n 

space, basis, subspace, and such topological properties of sets as 

open, closed, bounded, and compact. The only notation that might be 

unfamilar is the symbol A \ B which means the set of all points in A 

which are not in B. Also, if x and y are vectors in E , then x•y 
n 

represents the inner-product of x and y. 

Chapter I is concerned with the basic definitions of a convex set 

and a convex function and with the development of the concept of a 

vector of recession for a convex set and a convex function. In 

Chapter II, the ideas formulated in Chapter I are used to discuss the 

feasibility and solvability of convex programs. Also, the relationship 

of feasible and optimal solutions is investigated. The cha.racteriza-
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tion of optimal solutions for convex programs is the goal of Chapter 

III. The results in this chapter characterize an optimal solution for 

a convex program in terms of the Lagrangian function associated with 

the convex program. This characterization is first given for an arbi-

trary convex program, and then for differentiable convex programs, and 

finally for convex programs over the nonnegative orthant E+ of E • 
n n 

The last chapter, Chapter IV, presents a discussion of three algo-

rithms that have been developed for the solution of particular convex 

programs. The Method of Feasible Directions has had relatively good 

success in solving certain convex programs through the use of computers 

according to Dorn [2]. The Cutting Plane Method is more theoretical 

than applicable but is one of the more well-known convex programming 

algorithms. The recently developed Sequential Unconstrained Minimi-

zation Technique has been very successful in solving convex programs 

by means of computer. 

Finally, all functions discussed in this paper are considered 

continuous on their domains of definition. If no domain of definition 

is specified, then the function is considered continuous on E • 
n 

The author would like to take this opportunity to express his 

gratitude to Professor E. K. McLa.chlan, whose guidance and direction 

were instrumental in the completion of his graduate program, and to 

Professors Forrest D. Whitfield, Robert T· Alciatore, and w. Ware 

Marsden for their assistance while serving on his committee. 
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CHAPTER I 

SOME PROPERTIES OF CONVEX SETS AND CONVEX FUNCTIONS 

Introduction 

Historically, scientists and economists have been interested in 

optimization problems which seek to maximize or minimize a numerical 

function of a number of variables. Optimization problems occurred 

primarily in the physical sciences and geometry, and the classical op

timization techniques, such as differential calculus of variations, 

were developed to deal with them. However, a new class of optimiza

tion problems has received considerable attention in the last two dec

ades, which involve the optimum allocation of limited resources. 

These are mathematical programming problems which seek to determine 

values for a specified set of variables which optimize (maximize or 

minimize) a numerical function of the variables, called the obJective 

function, subJect to various constraint relations, called the con

straint functions, which are also numerical functions of the variables. 

A solution to such a mathematical programming problem is a program of 

action, or a strategy, which is optimal with respect to the imposed 

limitations given in terms of the constraint functions. 

When the obJective function and each of the constraint functions 

are linear functions, the problem is a linear programming problem. 

This type of problem received a great surge of activity and interest 

in the late 1940's and early 1950's. However, not all mathematical 
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programming problems that arise are linear. Ir one or more of the con-

straint functions, or the obJective function, is a nonlinear function, 

then the problem is called a nonlinear programming problem. Much 

effort has been devoted recently to the solution of nonlinear programs, 

but because of the great difficulty of optimizing nonlinear functions 

in general, emphasis has turned toward the solutions of particular 

types of nonlinear programming problems. One type of nonlinear pro-

gramming problem which has received much attention in the last decade 

is the convex programming problem which is discussed in this paper. 

A set C in n-dimensional Euclidean Space E is a convex set if n ~ 

and only if for any real number A e [O,l] and any two points x and y in 

C, AX + (1 - A)Y is in C. Hence a convex set has the property that it 

always contains the line segment Joining any two of its points. A 

function f defined on a nonempty convex set C is a convex function if 

and only if for every real number A E [O,l] and every two points x and 

y in c, 

f{Ax + (l - A)y) ~ Af(x) + (l - A)f(y). 

The function f is strictly convex if strict inequality holds in the 

above expression when h E [O,l] and x is unequal to y. Examples of a 

convex and a nonconvex set are in Figure l(a) and l(b), respectively; 

examples of a convex, strictly convex, and nonconvex function are 

found in Figure l(c), l(d), and l(e), respectively. 

A convex program, denoted by (P), is comprised of three specific 

parts: a convex set C in E which is its domain; 
n 

a convex :function F 

defined on C called the obJective function for (P); and a finite set 

of convex functions {f1: i = 1, ••• ,m}, each defined on C, called 
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the constraint functions for (P). Given any convex program, the convex 

programming problem is to minimize the objective function F over those 

points in the domain C which satisfy the constraint relations given by 

fi(x) ~ 0 for i = 1, ••• ,m. A more concise statement of the convex 

programming pro bl em is the :f'ollowing: 

min(F(x): x E SJ where S = {x c C: fi(x) ~ o, i = l, ••• ,m}. 

Any point in the set S is called a feasible solution for (P) and S is 

called the set of feasible solutiqns. The convex program (P) is --
feasible if S is a nonempty set, and is solvable if the objective 

function F attains its minimum in S. That is, (P) is solvable if 

there exists a point z E S such that F(z) ~ F(x) for all x c S. A 

feasible solution z at which F attains its minimum in S is called an 

optimal solution for (P) and F(z) is called the optimal value for (P). 

As an illustration, consider the convex program (P) with domain 

E2, objective !unction F(x,y) = (x - 2)2 + (y - 1)2 + 3, and constraint 

2 2 functions r1 (x,y) = x - y, r2(x,y) = x + y - 2, and r3(x,y) = -Y• 

The set of feasible solutions S for (P) and the graph of the objective 

function F over S are shown in Figure 2. Notice that the convex pro-

gram (P) seeks to find that point {x,y) in the set of feasible solu

tions S such that the square of the distance from (2,1) to (x,y) is 

equal to or less than the square of the distance from (2,1) to any 

other point in s. Such a point (x,y) then minimizes the objective 

runction F over s. It turns out that the optimal solution for (P) is 

the point (l,l) ins. This can be seen intuitively in Figure 3 which 

shows that (1,1) is the point in S which is "nearest" to (2,1). The 

next two examples illustrate convex programs based on Hreal-worldtt 
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data. 

Example l.l. (Chemical Equilibrium). Consider a mixture of m chemical 

elements. Assume that it has been predetermined that them different 

types of atoms can combine chemically to produce n compounds. Define 

x = the number of moles of compound J present in the mixture at 
j 

equilibrium, 

n 

x0 = the total number of moles in the mixture where x0 = l x J, 

J=l 

7 

aiJ = the number of atoms of element i in a molecule of compound J, 

bi = the number of atomic weights of element i in the mixture. 

The mass balance relationships that must hold for the m elements are 

and 

n 

L aiJxJ =bi' 
J=l 

i = 1, • • • ,m, (1.1.l) 

J = 1, • • • , n. (l.1.2) 

Determination of the composition of the mixture at equilibrium is 

equivalent to determination of the values of xJ, J = 1 1 ••• ,n, that 

satisfy (l.l.l) and (1.1.2) and also minimize the total free energy of 

the mixture. The total free energy of the mixture is given by 

n 

L xJ [cJ + ln(x/x0 )] 

J=l 

(l.1.3) 

where cJ = AJ + ln P, AJ is the Gibbs free energy function for the Jth 

compound, and Pis the total pressure in atmospheres. 

Thus the convex programming problem is to find (x1 , • • • ,x ) 
n 

which minimizes the convex objective function (1.1.3) subject to the 



constraint relations (1.1.1) and (1.1.2). 

Example 1.2. (Weapons Assignment). Consider the problem of assigning 

p types of weapons to q different targets such that weapons cost is 

minimized and at least a specified expected damage value is inflicted 

on various targets. Define 

xiJ = the number of weapons of type i assigned to target J, 

i = 1, • • • ,p and J = 1, • • • ,q, 

aiJ = the probability that target J will be undamaged by an attack 

using one unit of weapon i, 

dJ = the minimum expected damage to target J, 

ci = the cost per unit of weapon of type i. 

The expected damage to target J by the over-all assignment of weapons 

of all types is 

Hence constraint relations for expected damage to the various targets 

are 

(1.2.1) 

x1J ~ o, 1 = 1, • • • ,p and J = 1, • • • ,q. (1.2 .2) 

The ~otal cost of the assignment of xij weapons to the various targets 

is 

(i.2.3) 
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Thus the convex programming problem is to find xij's which minimize 

the convex objective :function (1.2.3) subject to the constraint 

relations (1.2.1) and (1.2.2). 

A convex program is not necessarily feasible, but even if it is, 

:feasibility does not imply solvability. Certainly i:f' the set o:f' fea ... 

sible solutions for a convex program (P) is a nonempty closed and 

bounded set, then the continuity of the objective function implies that 

(P) is solvable. This implication :follows from the fact that a contin-

uous function defined on a compact set attains its minimum there. 

However, if the set of feasible solutions is nonempty and closed but 

not bounded, then the continuity of the objective function is not 

enough to insure that (P) is solvable. If the set of feasible solu

tions is not bounded, then (P) can be solvable or not solvable as 

shown by the next two examples. 

Example 1.3. Let C = R, F(x) =. e-x, and f 1 (x) = e-x_ l. Then the set 

S = [x e R: x ~ OJ is a nonempty closed convex set which is unbounded; 

that is, there exists no real number M such that llxll ~ M for all x Et s. 

Now inf[F(x): x c SJ = 0 1 but for every x e S it is true that F(x) > o. 

Consequently, the convex program defined by c, F, and :r1 as given above 

has set of :feasible solutions S but is not solvable. 

Example 1.4. Let C = R, F(x) = (x - 5)2 + 1, and :r1 (x) = e-x_ l. Then 

S is the same as in Example 1.1 and inf{F(x): x E S} = l. The convex 

program defined by c, F, and f 1 in this example also has set of fea

sible solutions S but it is solvable since F(5) = l and 5 E s. 

By comparing these two examples, it becomes apparent that both the 
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feasibility and solvability of an arbitrary convex program depend 

entirely on the convex set and the convex :functions which define it • 

.Al.though the convex program in Example 1.3 is not solvable, by merely 

replacing the obJective function a new convex program is created, as 

shown in Example 1.4, which is solvable even though the set of feasible 

solutions is an unbounded set. Therefore any discussion of convex 

programs and their related convex programming problems is to a very 

large extent a discussion of those properties of convex sets and convex 

functions which directly influence the feasibility and solvability of 

convex programs. The remainder of this chapter is devoted to develop

ing these properties, first of convex sets and then of convex functions. 

The main goal is to characterize the relationship between unbounded 

closed convex sets and convex functions defined on them which insures 

that a convex function defin~d on an unbounded closed convex set 

attains its minimum there. 

Some Properties of Convex Sets 

The obJective of this sect::J.,on is to characterize unboundedness in 

convex sets. The first lemma establishes a simple but fundamental 

property of an arbitrary collection Oif convex sets. 

Lemma 1.5. Let (Ci: i a I} be a collection of convex sets where I is 

an arbitrary index set. Then. n[Ci: i c I) is a convex set. 

Proof: If the intersection of the sets is empty, then the conclusion 

follows trivially. Hence assume the intersection is nonempty and let x 

and y be in the intersection. Let A c [O,l] be arbitrary and consider 

z = Ax + (1 - ~)y. Since x and y are in Ci for each i c I and each Ci 
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is convex, it follows that z e Ci for each i ~ I. Therefore z is in the 

intersection of all the convex sets which implies that n(Ci: 1 £ I} is 

a convex set. 

Recalling the unbounded convex set in EXample 1.3, it seems that a 

characterization of unboundedness for S is that for any x in S and any 

u > O and any A ~ o, the point x + AU is also in S. The convexity of 

S then implies that the line segment joining x to x + AU is contained 

in S. Notice that this property can be expressed by saying that for 

any x in s, there exists a nonnegative vector u such that the closed 

ray (x + AU: A ~ O} is contained in S. This concept is made more pre-

cise in the next definition. 

Definition l.6. Let C be a convex set. Then a vector u is called a 

vector of recession for C if and only if there exists an x0 € C such 

that (x0 + Au: A ~ o} is contained in C. The set of vectors of 

recession for C is denoted by A(C). 

It should be pointed out that for any nonempty set C, A(C) is 

never empty since u = 0 is trivially a vector of recession for every 

set. Throughout the remainder of this paper 3 ~ vector of recession 

mentioned in the discussion is considered a nontrivial vector unless ---- - - -----
specifically stated otherwise. A useful characterization of vectors of 

recession for a closed convex set is given by the next theorem. 

Theorem 1.7. Let C be a nonempty closed convex set. Then u « A(C) if 

and only if there exists a sequence of the form A1x1 , A2x2, ••• , 

where xi ~ C and Ai i 0 and A1x1 converges to u. 

Proof: Let u 6 A(C). Then there exists an x c C such that the set 
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{x + AU: A ~ o} is contained in C. In particular, let Ak = l/k and 

~ = x + ku, fork= l, 2, ••• ,. Then Aki 0 ask becomes infinite 

and ~ c C for each k. In addition, as k becomes infinite, Ak~ 

converges to u which is the desired conclusion. 

Now assume there exists a sequence {Ak~} in C such that Ak i o, 

~ is in C ror each k, and AkXk converges to a vector u. Let r > 0 be 

an arbitrary but fixed real number. Then for all Ak ~ l/r, it follows 

that 0 ~ rAk ~ 1. Let p be an arbitrary point in C. For each k, xk is 

in C so the point (l - rAk)p + rAk~ 1 C by the convexity of C. Since 

C is a closed set, the limit of (1 - rAk)p + rAk~ as k becomes infinite 

which is p + ru is in C. Since r > O is arbitrary, it follows that 

{P + ru: r ~ O} is contained in c. By Definition 1.6, u c A(C). 

An interesting result concerning vectors of recession is an imme-

diate consequence of the second part of the proof of Theorem 1.7. 

Notice that p was an arbitrary point in c, yet {P + ru: r ~ OJ was 

contained in c. Does this mean that if C is a nonempty closed convex 

set, then u c A(C) implies that (x + ru: r ~ OJ c: C tor every x in C? 

The answer to this question is, yes, as shown by the next corollary. 

Corollary lo~. Let C be a nonempty closed convex ·set. If u c A(C), 

then {x + Au: l ~ o} is contained in C for every x in C. 

Proof: Let u c A(C). Then for some x0 c c, {x0 + iu: A ~ 0) c: c. 

Bence x0 + u, x0 + 2u, ••• , is a sequence of points in C. Let 

Ak = l/k and~= x0 + ku, fork= l, 2, ••• ,. Then Ak~ converges 

to u as k becomes infinite and it follows from the proof of Theorem l.7 

that for any x c c, {x + AU: A ~ o} is contained in C. 
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Some examples of convex sets and their associated sets of vectors 

of recession might help to clarify this concept of unboundedness. The 

sets discussed are illustrated in Figure 4. 

Example l.9. Let c1 = ((x,y): x > o, y ~ l/xJ. Then c1 is a nonempty 

closed convex set and A(C1 ) = ((x,y): x ~ o, y ~ o}. 

2 Example 1.10. Let c2 = ({x,y): y ~ x J. Then c2 is also a nonempty 

closed convex set and A(C2 ) = {{x,y): x = o, y ~OJ. 

2 2 Example l.11. Let c3 = f(x,y): x + y ~ lJ. In this case, c3 is a 

nonempty closed bounded conv~ set and hence A(c3) =(OJ. 

Example 1.12. Let c4 = {(x,y): x >O, y >OJ U {(O,O)}. Then c4 is a 

nonempty convex set and A(c4) = ( (x,y): x ;;o; o, y ~ OJ = A(c1 ). 

These examples show that there is a distinct ~elationship between 

nonempty convex sets and their sets of vectors of recession. Notice 

that c1 f c4 yet A(C1 ) = A(c4). It turns out that if C is a nonempty 
~ 

convex set, then A(C) is also a nonempty convex set (it is in fact a 

convex cone) and if C is closed, then A(C) is also closed. The next 

theorem makes these assertions precise and appropriate proofs can be 

found in Rockafellar,[201Section 8. 

"" Theorem l.13. Let C be a nonempty closed convex set. Then A(C) is a 

closed set with the following properties: 

(a). if u1 and u2 are in A(C), then u1 + u2 is in A(C). 

(b). if u is in A(C) and r ~ o, then ru is in A(C). 

In particular, A(C) is a convex set. 

Now consider the collection of convex sets (Ci: i E I} where I is 
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an arbitrary index set. Lemma 1.5 says that n(Ci: i E I} is a convex 

set. The question then arises as to the relationship between the 
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vectors of recession for the sets Ci and the vectors of recession for 

the convex set which is their intersection. The following theorem pro-

vides an answer for this question. 

Theorem 1.14. Let {Ci: i E I} be an arbitrary collection of closed 

convex sets such that n(c1: i E I} is a nonempty set. Then 

Proof: Let z E n(Ci: i E IJ. If u E A(n{Ci: i EI}), then the set 

(z +AU: A~ OJ c n[C1:i e I}• Consequently, u E A(Ci) for each i EI 

and it follows that u E n{A(Ci): i EI}. 

Now let u E n{A(Ci): i e IJ. If z E n(C1: i E IJ, then the set 

{z + Au: A ~ OJ is contained in Ci for each i E I and it follows that 

u E A(Ci) for each i c I. Thus u e A(n{Ci: i E IJ) and the desired 

conclusion is immediate. 

This discussion of vectors of recession is motivated by a desire 

to characterize unboundedness in convex sets in a simple and easy to 

work with manner. Theorem 1.15 below, and Corollary 1.16 which follows 

it, provide this desired characterization. 

Theorem 1.15. Let C be a nonempty closed convex set. Then C is 

bounded if and only if A(C) =(OJ. 

Proof: Suppose that C is bounded. Then there exists a real number M 

such that l]xq ~ M for every x E C. Let x0 e C and consider the set 

-x0 + c. It follows directly that -x0 + C is a nonempty closed convex 
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set. In addition, -x0 + C is bounded, for if z € -x0 + C, then there 

exists an x e C such that z = -x0 + x. Consequently, evaluating the 

norm of' z, it :rollows that 11z11 = lj-x0 + xjj ~ 11-x011 + 11xll ~ 11x0 11 + M. 

The :ract that 11x0 11 + M is a fixed real number and i(hat z is arbitrary 

in -x0 + C implies that -x0 + C is bounded. Assume that u is a vector 

of recession for C. Then for x0 E C, [x0 + Au: A ~ OJ is contained in 

C so -x0 + {x0 + AU: A ~ O} = (>-.u: A. ~ O} c: -x0 + C. Since l!ull > O, 

there exists a ;.,0 > O such that II ;.,0u'! = 1i.011ull > llx0 11 + M. But A. 0u is 

in -x0 + C and thus the boundedness of -x0 + C is contradicted. Hence 

A(C) = {OJ. 

Now suppose that A(C) = [ O} and assume that C is unbounded. Then 

there exists a sequence of vectors x1, x2, x3, ••• , such that ll"ltll 
approaches infinity ask becomes infinite. Let "-k = l/llxkll· Then 

"-k i 0 and (;.,kxk} c: (x e En: llxll = l} = B. Since B is a compact set, 

there exists some y in B such that Ak"k converges to y. By Theorem 1.7, 

it follows that y E A(C). But y e B implies that y is a nontrivial 

vector which contradicts the assumption that A(C) = (o}. Hence C is 

bounded. 

The contrapositive of Theorem 1.15 is a more intuitive statement 

of the conditions which imply that a convex set is unbounded. It is 

given here as a corollary to the above theorem. 

Corollary 1.16. Let C be a nonempty closed convex set. Then C is un-

bounded if and only if A(C) F (OJ. 

Another topic with respect to convex sets which has an important 

influence on the structure of convex programs is conditions which imply 

that an arbitrary collection of convex sets has a nonempty intersec-
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tion. The results which follow are used in Chapter II to establish 

conditions which insure that a feasible convex program is also solvable. 

The basic result concerning the intersection of an arbitrary col-

lection of convex sets is known as Helley's Theorem and it is presented 

here without proof. The interested reader can find several proofs in 

Valentine (23], Part IV. 

Theorem i.17. (Helley's Theorem). Let (Ci: i e I} be a collection of 

nonempty closed bounded convex sets in E where I is an arbitrary index 
n 

set. If every subcollection consisting of n + 1 sets has a nonempty 

intersection, then the entire collection has a nonempty intersection. 

If only a finite number of convex sets are involved, then the re-

quirement that the sets be closed and bounded is not necessary to 

achieve the same conclusion. This result is stated separately as a 

corollary. A proof can be found in Valentine (23], p. 70, or 

Rockafellar (20], p. 196. 

Corollary 1.18. (Finite Helley's Theorem). Let (Ci: i e I} be a finite 

collection of convex sets in E • If every subcollection of n + l sets 
n 

has a nonempty intersection, then the entire collection has a nonempty 

intersection. 

Unfortunately, if a collection of convex sets is not finite and if, 

in addition, all of the sets in the collection are not bounded, then 

Helley's Theorem provides no information as to whether the collection 

has a nonempty intersection. The next example illustrates this problem. 

Example 1.19. In order to construct a collection of nonempty closed 
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convex sets that illustrates the above remarks, consider the following 

situation. For each real number r, let C = [r,~). Fa.ch C is a 
r r 

closed convex set in E1 and every two sets in the collection 

[C : r e RJ have a nonempty intersection. However, n[c : r c R} is 
r r 

empty. 

Notice that the sets in Example 1.19 have vectors of recession in 

common. For any u > 0 and any real number r € R, (x + Au: A ~ O} is 

contained in C for every x € C • It is this very property that keeps 
r r 

the collection {C : r e R) from having a nonempty intersection. It 
r 

turns out that if boundedness is replaced in the hypothesis for 

Helley's Theorem by the requirement that the sets in the collection 

have no vectors of recession in common, then the conclusion of Helley's 

Theorem remains valid. This vectors of recession version of Helley's 

Theorem, with a somewhat difficult proof, can be found in Rockafellar 

[20), p. 191. Because of the importance of this vectors of recession 

version to Chapter II of this paper, a direct proof is developed here. 

The next lemma is essential for this proof. 

Lemma l.20. Let [Ci: i e: I} be a collection of nonempty closed convex 

sets in E where I is an arbitrary index set. If every subcollection 
n . 

of n + 1 sets has a nonempty intersection and some finite subcollection 

has a bounded intersection, then the entire collection has a nonempty 

intersection. 

Proof: Let (c1 , ••• , Ck} be the finite subcollection which has a 

bounded intersection. Since it is contained in the original collection, 

this finite collection of convex sets has the property that every sub-

collection of n + 1 sets from it has a nonempty intersection so by 
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Corollary 1.18, it follows that K = n(Ci: i = 1, ••• , k} is nonempty. 

For ea.ch i 4! I, let Di = Ci n c1 n ••. n Ck = Ci n K. Now the finite 

collection of sets (Ci, c1 , ••• , Ck} has the property that every 

subcollection of n + l sets from it has a nonempty intersection so by 

Corollary 1.18, it follows that Di I= ¢ for each i e I~ Now consider 

the following arbitrary collection of n + 1 sets from {Di: i « I}, say 

• • • ' Di ) • 
n+l 

Then 

Di n ••• n Di = (ci n K) n ••• n (ci n K) 
l n+l 1 n+l 

= (Ci n •• 
l 

. n ci ) n K 
n+l 

Now {Ci , ••• , Ci , c1 , .•• , CkJ is a finite collection of sets 
l n+l 

with the property that every subcollection of n + l sets from it has a 

nonempty intersection. :Hence by Corollary l.18, 

. n Di _ /= fl• 
n+.L 

Thus {Di: i c IJ is a collection of nonempty closed bounded convex sets 

with the property that every subcollection of n + l sets has a nonempty 

intersection. By Theorem 1.17, it follows that n(Di: i e: I J has a 

nonempty intersection. But 

and the desired conclusion follows. 
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Certainly the sets in the collection which satisfies the hypothesis 

of Lemma 1.20 have no vector of recession in common. For if they did, 

then such a vector of recession would also be a vector of recession for 

the set cl n ••• n ck which wou.ld contradict the hypothesis that this 

set is bounded. 

Assuming that the sets in the collection in Lemma 1.20 have no 

vectors of recession in common, it follows that n{A(Ci): iiE I}= [o}. 

If B = {x e: En: !lxlt = 1), then B is a nonempty closed bounded set in 

En· For each 1 E I, let Bi = B n A(Ci). Since Ci is closed, A(C1 ) is 

closed for each i E I by Theorem 1.13; hence Bi is a closed bounded 

set for each i EI. Thus n(B1: 1 E I) = B n [n{A(Ci): i EI)] is an 

empty set. Since [Bi: i e I) is a collection of closed sets in the 

compact set B with the property that n[Bi: i E I} is empty, there 

exists a finite subcollection (B1, B2, ••• , Bi.tJ such that 

B1 n B2 n . . • n Bi.t = ¢. A proof of this assertion can be found in 

Gemignani [b], p. 148 • Hence B n A(c1 ) n ••• n A(Ck) is empty and 

it follows that A(C1 ) n ••• n A(Ck) = {o}. Since c1 n ••• n Ck 

is nonempty by the hypothesis of Lemma 1.20, it follows from Theorems 

l.14 and 1.15 that the set cl n ••• n ck is a bounded set. 

The remarks of the last two paragraphs have proven the following 

lemma. 

Lemma 1.21. Let [Ci: i E I} be a collection of nonempty closed convex 

sets in E where I is an arbitrary index set. Assume that every sub
n 

collection of n + 1 sets has a nonempty intersection. Then the Ci 

have no vectors of recession in common if and only if some finite sub-

collection has a bounded intersection. 



21 

The above lemma can now be combined with Lemma 1.20 to give the 

following important theorem. 

Theorem 1.22. Let [Ci: i e I} be a collection of nonempty closed 

convex sets in E where I is an arbitrary index set. Assume that every 
n 

subcollection of n + 1 sets has a nonempty intersection and that the 

sets in [Ci: i E I} have no vectors of recession in common. Then the 

entire collection has a nonempty intersection. 

It turns out that the hypothesis of Theorem 1.22 can be relaxed 

even more and the conclusion will remain valid. If all the sets in a 

collection of closed convex sets have particular vectors of recession 

in common, then it is true that they will have a nonempty intersection. 

The next example illustrates this situation. 

Example 1.23. For n = 1, 2, 3, ••• , consider the sets of the form 

C = ((x,y): O ~ y ~ l/n}. These sets form a collection of nonempty 
n 

closed convex sets in E2 and any two of them have a nonempty inter

section. Since A(C ) = [(x,y): y =OJ for each positive integer n, 
n 

these sets have vectors of recession in common, yet the entire collec-

tion has a nonempty intersection. 

The vectors of recession common to all the sets in Example 1.23 

have the property that both u = (x,o) and -u = (-x,o), x f o, are 

vectors of recession for the entire collection. Vectors of recession 

with this particular property are defined below. 

Definition l.24. Let C be a nonempty convex set. Then u is a vector 

of linear recession for C if and onl,y if there exists an x0 € C such 
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that the line {x0 + AU: A c RJ is contained in c. 

From previous results and the above definition, it follows that if 

u is a vector of linear recession for a nonempty closed convex set c, 

then the line (x + Au: A E R) is contained in C for every x in c. Also, 

if C is a nonempty closed convex set, then u is a vector of linear 

recession for C if and only if u c A(C) and -u c A(C). In fact, closed 

convex sets in E which possess vectors of linear recession always 
n 

contain translates of some k-dimensional subspace of E where 
n 

1 ~ k ~ n. This result is made precise by the next theorem. 

Let C be a nonempty closed convex set in E • n If M is 

the subspace of E spanned by the vectors of linear recession for c, 
n 

then x + M c:: C for every x c C • 

Proof: Let M be the subspace described in the hypothesis. It is 

desirable to get a basis for M where ~he vectors of the basis are 
....... : 

vectors of linear recession for c. This can be done.in the f'ollowing 

manner. Let u1 be a vector of linear recession for C. 'fhen {u1} is 

a linearly independent subset of M which is either a basis for M or 

not. If it is, th'n {~) is the desired basis. If not, then there 

exists another vector ~ which is a vector of linear. recession for C 

such that {u1, u2} .is a linearly independent subset rf M which is 

either a basis for M or not. In general, if' {u1, u2·'· ••• , uJJ is a 
,"t . 

set of vectors of linear recession for C which is also a linearly 

independent subset of M that is not a basis for M, then there exists 

a vector uJ+l which is 

{u1, • • • 1 UJ' UJ+l} 

a vector of linear recession for C such that 

is a linearly independent subset of M. In this 
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manner, a bas~s (u1, u2, ••• , uk}' where 1 ~ k ~ n since En is a 

finite dimensional space, can be found for M such that each ui is a 

vector of linear recession for c. Let z = >i.1u1 + ••• + >i.kl\: be an 

arbitrary point in M. If >i. 1 ~ o, then >i_1ui is in A(C) by Theorem 1.13. 

If xi< o, then rewrite >i.iui as (->i.i)(-u1 ). Since -xi> O and -ui is 

in A(C), it follows that xiui = (->i.i)(-ui) c A(C) by Theorem 1.13. 

Consequently, it follows by Theorem 1.13 that z E A(C). Therefore, 

x + z = x + (l)z E C for all x c C. Since z is arbitrary in M, it 

follows that x + M«=: C for all x e c. 

Using Theorem 1.25, the hypothesis of Theorem 1.22 can be modified 

to require that the vectors of recession common to the sets (Ci: i EI} 

be vectors of linear recession and the conclusion of fheorem 1.22 will 

still be valid. This result is formulated in the next theorem. 

Theorem 1.26. Let (Ci: i c I} be a collection of nonempty closed 

convex sets in E where I is an arbitrary index set. Assume that every 
n 

subcollection of n + 1 sets has a nonempty intersection and that the 

only vectors of recession common to all the sets {Ci: i c IJ are 

vectors of linear recession. Then the entire collection has a nonempty 

intersection. 

Proof: Let M be the subspace of E spanned by the vectors of linear n 

* recession common to all the sets {Ci: i c I} and let M be the 

* orthogonal complement to M in E • Then M is a closed subspace and n 

* * the direct sum of Mand M is En. :For each i c I, let Di = Ci n M • 

Then the following are true: 

(a). Di F ~ for all 1 c I: For any z c Ci' there exists a p E M 
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* and a q c M such that z = p + q. Now z + Mc: Ci by Theorem l.25 so 

p + q + M = q +Mc:: Ci. Since 0 EM, it follows that q E Ci. Hence 

* Di = Ci n M I ¢ for all i E I. 

(b). Di is a closed convex set: This follows from the fact that 

* Ci and M both have these properties. 

(c). The Di have no vectors of recession in common: Assume u is 

a vector of recession common to all the Di. Then u c A(Ci) for all 

* i « I and u E M and hence u is a vector of recession common to all the 

* Ci. However, u c M implies that u ~Mand thus u is not a vector of 

linear recession common to all the Ci' which is a contradiction. 

(d). Every n + 1 subcollection of the Di have a point in common: 

Let {D1, ••• , Dn+l} be an arbitrary subcollection of n + 1 sets. 

* Then D1 n ••• n Dn+l = (c1 n ••• n Cn+l) n M • By hypothesis, 

cl n ••• n cn+l I ¢ so if z E cl n ••• n cn+l' then z + M is 

contained in cl n • n C 1 • By part (a) above, it follows that n+ 
* •• n C l n M where z = p + q. Therefore, n+ 

n D l is nonempty. n+ 

Hence the sets in the collection {Di: i c IJ satisfy the 

hypothesis Of Theorem 1.22 and it follows that n[Di: i c I} f ¢. 
Consequently, n(ci: i EI} f ¢. 

This concludes the essential properties of convex sets needed in 

a discussion of convex programs. Unbounded convex sets are charac-

terized in terms of vectors of recession and Theorems 1.17, 1.18, 1.20, 

1.22, and 1.26 give important information concerning the intersection 

of an arbitrary or finite collection of certain convex setso Purther 

development of vectors of recession can be found in Rockafellar [20]. 

As illustrated by Examples lo3 and 1.4, a convex function defined 
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on an unbounded convex set does not necessarily attain its minimum 

there. Therefore the solvability of a convex program must depend in 

some way on certain properties of the objective function. The next 

section on convex functions shows that the concept of vector of 

recession for a convex function is very important, and the results 

developed for convex functions are used with those for convex sets to 

prove the important theorems in Chapter II on solvability. 

Some Properties of Convex Functions 

The objective of this section is to relate the concept of vector 

of recession to convex functions. This concept is fundamental in 

discussing the solvability of a convex program. 

Associated with any convex function defined on a convex set C in 

E are two distinct convex sets, one in E and one in E 1 • The first n n n+ 

type of convex set, called a level set, is defined below. 

Definition 1.27. Let f be a convex function defined on a convex set 

C in E • If a is any real number, then the level set of f with respect 
n 

to a, denoted by leva1'1 is defined as follows: 

leva1' = {x ~ C: f(x) ~ aJ. 

Notice that the nonempty level sets of f form a collection of sets 

{level: a c R} such that levaf c:: levf3:f' if and only if a ~ f3. Any 

collection of sets having this property is said to be nested. This 

property is important in later theorems on the minimization of a 

convex function f over a convex set c. Two significant properties of 

level sets are given in the next lemma.. 



Lemma 1.28. If f is a convex function defined on a nonempty closed 

convex set C in E , then every level set of f is a closed convex set. 
n 

Proof: If leva1' is empty, then it is trivially a closed convex set. 

Hence assume that leva1' is nonempty and let x and y be in lev<:Xf and 

A E [O,l]. Then 

r(xx + (l - x)y) ~ xf(x) + (1 - A)f(y) ~ xa. + (l - x)a. =a, 
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so leva1' is convex. If {xiJ is a sequence in_ leva1' that converges to 

x inc, then the continuity off implies that f(xi) converges to f(x). 

Since f(xi) ~ a for all i, it must be true that f(x) ~ a. Hence x is 

in levaf and thus levaf is closed. 

The other convex set associated with a convex function is the set 

of all points in E 1 which lie on or above the graph of f over C. n+ 

This set is called the epigraph of f and is denoted by epi f. The next 

definition makes this concept precise. 

Definition 1.29. Let f be a convex function defined on the convex set 

C in E • Then n 

epi f = {(x,r) E En+l: x E c, r ~ f(x)}. 

Analogous to Lemma 1.28, epi f is a closed convex set if C is 

closed in E • Examples of epigraphs are given in Figure 5. 
n 

From Definition 1.29 and the illustrations in Figure 5, it is 

apparent that the set of vectors of recession for ~ny epigrapn in En+l 

contains nontrivial vectors. For example, any vector in En+l of the 

form (O,r), r > O, is a vector of recession for every epigraph. 

However, only particular nontrivial vectors in A(epi f) are of interest, 
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and these are vectors of the form {u,O) where u E E and u > o. It 
n 

such a vector u is in A(epi f), then it follows by Corollary l.~ that 

f(x,r) + A(u,o): A~ O} = ((x +Xu, r): A~ O} is contained in epi f 

for some (x,r) c epi f. By Definition 1.28, it then must be true that 

f (x + Xu) ~ r for all X ~ O. This discussion motivates the following 

definition. 

Definition 1.30. Let f be a convex :function defined on the convex set 

C in En· Then u E En is a vector of recession for f if and only if 

(u,O) is in A(epi f). The vectors of recession for f are denoted by 

A(f). 

It is also true that every vector of recession for f iB a vector 

of recession for c, for if (u,O) e A(f), then ((x0 + xu, r): A~ O} 

contained in epi f for some (x0,r) c epi f implies that the set 

{x0 + Xu: A ~ o} is contained in C and hence u « A(C). It should be 

noted that the converse of the above statement is not true, 

(cf. Figure 5(b).). This observation is important in Chapter II. 

The question now arises as to what is the relationship between 

A(f) and A(levcl) where level is a nonempty level set of f. Since 

every nonempty level set of f is a convex subset of the domain C for f, 

it is true that A(levaf) ~ A(C) for every nonempty level set levaf• 

The next theorem shows that a much stronger relationship exists 

between the vectors of recession for f and t4ose of its nonempty level 

sets than between A(C) and A(f). 

rheorem l.;1. Let f be a convex function defined on the c1osed convex 

set C in En. Let L = {levaf: a c A} be the collection of all nonempty 
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level sets of f. If a and 13 are arbitrarily chosen in A, then 

Proof: Let u e: A(levaf). Then f(x + >i.u) ~a for all >i, :.i:: O and .for all 

x e level'· For any x c levct', (x,cr) c epi f ~o {(x + >i.u, a): A~ OJ is 

contained in epi f. Consequently, u E A(epi f) and by Definition l.:;o, 

u c A(f). 

Now pick u € A(f). Then for some x e lev13f, {(x + >i.u, 13): >i, :.i:: o} 

is contained in epi f so f (x + Au) ~ 13 for all A ~ 0 and for all x in 

lev13f. Bence A(f) c: A(lev13f). 

Thus A(levaf) c: A(f) c: A(lev13f). By reversing the roles of a and 

13 in the above proofs, it follows that A(lev13:f') c: A(f) c: A(levcrf) and 

the desired conclusion is immediate. 

Theorem l.31 says that if C is a closed convex ~et, then all the 

nonempty level sets of f have exactly the same vectors of recession and 

these vectors of recession are exactly those of f. Hence, if 

A(f) = [o}, then all the nonempty level sets off are bounded sets. 

Since C is closed, all the nonempty level sets of f are then compact 

convex sets. In addition, if one of the nonempty level sets of f is a 

bounded set, then f has no vectors of recession and every nonempty 

level set of f is bounded. 

Suppose now that a vector of recession for some nonell\PtY level set 

of f is in fact a vector of linear recession for that level set. As 

discussed previously, this particular vector is also a vector of 

recession for f. However, there exist special vectors of recession for 

f which are always vectors of linear recession for the nonempty level 

sets of f and conversely. 
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Definition 1.32. Let f be a convex function defined on a convex set C 

in E • Then u is a vector of constant recession for f if and only if 
n 

there exists an x0 EC such that ((x0 +Au, f(x0 )): A~ O) c epi f 

and ((x0 + A(-u), f(x0 )): A~ o} c epi f. 

The following theorem gives two important results concerning 

vectors of constant recession for a convex function. 

Theorem l.33. Let f be a convex function defined on a closed convex 

set C in E • Then 
n 

(a). u is a vector of constant recession for f if and only if 

u € A(f) and -u € A(f). 

{b). u is a vector of constant recession for f if and only if 

there exists an x0 e C such that f is constant on the line 

(x0 + ru: r « R}. 

Proof: The assertion in {a) is a direct and immediate consequence of 

Definition 1.30 and Corollary 1.8. 

Now to prove {b). Assume that u is a vector of constant recession 

for f. Then there exists a point x0 E C such that 

[{x0 + ru, f{x0)): r ~ o) c:: epi f and [(x0 + r{-u), f{x0)): r ~ o) is 

contained in epi f. Suppose there exists an r F O such tnat 

f{x0 + ru) < f{x0). Without loss of generality, take r > o. Now 

-u E A(f) implies that f(x0 + r(-u)) ~ f(x0). Also, it follows that 

x0 = {l/2)(x0 + ru) + {l/2)(x0 + r(-u)), so by the convexity off, 

f{x0 ) = f({l/2)(x0 + ru) + (l/2)(x0 + r{-u))) 

~ (l/2)f(x0 + ru) + (l/2)f(x0 + r(-u)) 

< f{x0 ). 
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1'.b.is contradiction then implies that f(x0 + ru) 0t :f'(x0 ) for all r E R. 

But u a vector of constant recession for f implies that f(x0 + ru) is 

equ.al to or less than f (x0) for all r E R. Hence it follows that 

f(x0 + ru) = f(x0 ) for all r c R and thus f is constant on the line 

(x0 + ru: r « R). 

If there exists an x0 c C such that f is constant on the line 

{x0 + ru: r E R) for some nonempty vector u e En' then it follows that 

u must be a vector of constant recession for f by definition. 

If the domain of the convex function is a closed convex set in En' 

say c, then a distinct relationship exists between vectors of constant 

recession for f and vectors of linear recession for c. For if u is a 

vector of constant recession for f, then ((x + ru, f(x)): r c R} is 

contained in epi f for every x c c, so it must be true that the set 

{x + ru: r E R} c: C and hence u is a vector of linear recession for C. 

This result is stated precisely in the next lemma. 

Lemma l. 34-. Let f be a convex function defined on a closed convex set 

C in E • If u is a vector of constant recession for f, tnen u is a 
n 

vector of linear recession for c. 

The converse of Lemma 1.34 is not true as is seen by considering 

2 the convex function given by f(x) = x defined on the real line R. 

Every nonzero vector in R is a vector on linear recession for R but f 

has no vectors of recession. 

The next example illustrates a convex function defined on a 

closed convex set such that the function has a vector of constant 

recession. 



Example 1.35. Let C = [(x,y): -1 ~ x ~ l}. Then C is a nonempty 

closed convex set in E2 and any nonzero vector of tne form (O,r) is a 

vector of linear recession for C. Let f(x,y) = x be a convex 

function defined on c. Then f is constant on f!lfery line of the form 

~ = ((x,y): x = k} where k is a real number in the closed interval 

[-1,1). Clearly the vector (O,r), r r o, is a vector of constant 

recession for f. Figure 6 illustrates this example. 

Notice in Example 1.35 tha.t even though f has a vector of 

recession, it still attains its minimum on c. In Chapter II, it is 
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shown that a convex !unction defined on a closed convex set attains its 

minimum there if the only vectors of recession for the function are 

vectors of constant recession. 

By Theorem 1.31, f!lfery vector of constant recession for f is a 

vector of linear recession for every nonempty lf!lfel set of f, and 

conversely. This property is stated in the next theorem. 

Theorem 1.36. Let f be a convex function defined on the closed convex 

set C in E • Then u is a vector of constant recession for f if and 
n 

only if u is a vector of linear recession for some nonempty level set 

of f. 

Proof: If u is a vector of constant recession for f, then 

f(x + ru) = f(x) for all x e C and all r c R. Let x0 c C be arbitrary 

and let f(x0 ) = a. Then (x0 + ru: r c R} c:: lf!lfaf and hence u is a 

vector of linear recession for levaf which is a nonempty set. 

If u is a vector of linear recession for some nonempty lf!lfel set 

of f, say levcrr, then (x + ru: r c R} e.: leva1' for f!lfery x in lf!lfaf. 
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In particular, for an arbitrary x0 in levaf' it follows that 

{ (x0 + ru, a); r :?! O) c:: epi f and { (x0 + r(-u), a): r 2: o) c:: epi f. 

Hence u E A(f) and -u e A(f) and by Theorem l.))(a), u is a vector of 

constant recession for f. 

Additional information on convex sets and convex functions can be 

found in Fenchel [3], Rockafellar [20], and Valentine [2)]. Further 

properties of level sets can be found in the first two of these 

references and extensive information can be found in the second one 

concerning vectors of recession for convex sets and functions. 

In Chapter II, the information developed in this chapter will be 

used to discuss the feasibility and solvability of convex programs. 



CMAPrER II 

FEASIBILITY AND SOLVABlLITY OF A CONVEX PROORAM 

In this chapter, the results of Chapter I are used to formulate 

theorems concerning the feasibility and solvability or a convex program 

(P). The question of feasibility is discussed first with the main 

theorem based on the finite version of' Helley' s Theorem ( Gorollary 1.18). 

Next, the maJor theorems in Chapter I concerning the intersection of 

certain collections of convex sets are used to establish theorems on 

the solvaQ~lity of a convex program (P). 

Feasibility of a Convex Program 

If (P) is a convex program with domain c, obJective function F, 

and constraint functions {f1, ••• , fm}' then it follows by Lemma 

1.28 that (x EC: f 1(x) ~ 0) is a convex set for each i = 1, ••• , m. 

Since the set of feasible solutions for (P) can be expressed as 

S = (x E C: fl (x) ~ O} n ••• n (x E! C: fm(x) ~ O}, 

it follows by Lemma i.5 that S is a convex set. If the domain C of 

(P) is a closed set, then each of the sets lev0f 1 = {x EC: fi(x) ~ O} 

is closed for i = 1, • • • , m. Hence, when the domain C of (P) is 

closed, the set of feasible solutions S ~or (P) is a closed convex set. 

In addition, if the set S is nonempty and the constraint functions have 

no vectors of recession in common, then Theorem l.14 implies that 
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A(S) = A(lev0t 1 n ••• n lev0fm) 

= A(lev0f1 ) n ••• rl A(lev0:tm) 

= {O}. 

Consequently, the set of feasible solutions under these ~asumptions is 

a bounded set by Theorem i.15. 

Considering the above remarks on the set of feasible solutions for 

a convex program (P), it is apparent that asking when the set S is non-

empty is equivalent to asking when a finite collection of convex sets 

in En has a nonempty intersection. Certainly, if lev0ti is empty for 

one of the constraint functions for (P), then S is trivially empty, 

and (P) is not feasible. Therefore, the on].y interesting situation 

occurs when lev0fi is nonempty for each of the constraint functions for 

(P). The most appropri~te result to use in this case is the finite 

version Of Kelley's Theorem which is Corollary 1.18. since the domain 

C of (P) is in En' Corollary 1.18 says that (P) is feasible i~ every 

subcollection of n + l sets from the collection {lev0t 1: i = 1, ••• , m) 

has a nonempty intersection. This discussion is stated precisely in 

the next theorem. 

Theorem 2.1. Let {P) be a convex program with domain C in E • Let n 

{f1, ••• , fm) be the set of constraint functions for (P). It every 

subcollection of n + 1 sets from the collection {lev0fi: i = l, ••• ,m) 

has a nonempty intersection, then (P) is feasible. 

Proof: The hn;>othesis of the theorem 1111'.Pliea by means of' Corollary lJ.8 

that levOf'l n ••• n levofm = s F p. ~ence (P) is feasible. 
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Solvability of a Convex Program 

A convex program (P) is solvable if the objective function 1 at

tains its minimum over the set of feasible solutions S for (P). Since 

previous discussion showed that the set of feasible solutions for a 

convex program is a convex set, the question of determining when a 

convex program is solvable is the same as determining when a convex 

:f'unction attains its minimum over a convex set. 

If the set of feasible solutions S for (P) is a closed bounded 

set, then (P) is solvable since all functions considered in this paper 

are continuous on their domains of definition. In particular, F is 

continuous on its domain C so it is continuous on the closed bounded 

set S which is a subset of c. Some basic results concerning the 

solvability of a convex program are given by the next theorem. 

Theorem 2.2. Let (P) be a feasible convex program whose domain C is a 

closed set. Let (f1, ••• , f~} be the set of constraint functions 

for (P). Assume that one of the following is true. 

(a). C is a bounded set, or 

(b). The set of constraint functions have no vectors of recession 

in common, or 

(c). lev0fi is a bounded set for some 1 = l, ••• , m. 

Then (P) is a solvable convex program. 

Proof: The set C is closed which implies that the set of feasible 

solutions S is closed. If (a) is true, then S is also a bounded set 

and hence compact. Thus the objective function attains its in:f'imum 

over S because of its continuity. 

Assume that (b) is true. Since S is nonempty by hypothesis, it 



:follows that A(S) = (OJ as discussed above. Hence S is bounded by 

fbeorem 1.15 and the proof of {a) implies that (P) is solvable. 

Assume that (c) is true. Then the fact that S is contained in 

lev0:r1, for each i, implies that S is bounded. Again, the proof of {a) 

implies that (P) is solvable. 

The main property in Theorem 2.2 which implies the solvability of 

(P) is the closed and bounded property of the set of feasible solutions 

S. Bowever, not all sets of feasible solutions to a convex program 

{P) are bounded as was seen in Example 1.3, so it is desirable to con

struct hypotheses which imply that a convex program (P) is solvable 

but which does not rely on the compactness o:f' the set of feasible 

solutions. The following theo:rem is one of the two main results pre

sented in this chapter regarding the solvability of a convex program 

(P). Its proof depends entirely on results developed in Chapter I. 

Theorem. 2.3. Let (P) be a. feasible convex program whose domain C is a 

closed set. , Assume that the objective function F of (P) and the set 

of feasible solutions S for {P) have no vectors of reces•ion in common. 

Then (P) is a solvable convex program. 

Proot: Since (P) is feasible and C is closed, the set of feasible 

solutions S for (P) is a nonempty closed qonvex set in En· Consider 

the collection of all nonempty level sets of F over s, denoted by 

(level: a c A), where level' = (:x: c S: :r(x) ~ a}. Since S is a non

empty closed convex set, each of these nonempty level sets is a closed 

convex set by Lemma l.28. In fa.ct, each of them is bounded. To prove 

this assertion, assume that one of the nonempty level sets of F over S 

is unbounded (hence they all are by Theorem 1.31). By Corollary 1.16, 
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there exists a nontrivial vector u e E such that u is a vector of re
n 

cession for all the nonempty level sets of F over s, and consequently 

is a vector of recession for S since every nonempty level set of F 

over S is contained in s. But u is also a vector of recession for F by 

Theorem 1.31, and hence u is a vector of recession common to the set of 

feasible solutions S and the objective function F, which contradicts the 

hypothesis. Consequently, {level: a E A} is a collection of nonempty 

closed bounded convex sets in E with the property that every subcol-
n 

lection of n + l sets has a nonempty intersection (s~nQe the level 

sets are nested). It then follows from Kelley's Theorem, Theorem 1.17, 

that n(1evc:1: a e A} is a nonempty set. 

Now let x0 e n(levc:l: a c A). Certainly x0 I S, so it follows 

that f3 ~ F(x0) where f3 = inf{F(x): x c S}. Assume that f3 < F(x0). 

Then there exists an ~ > O such that f3 + e < F(x0). Since f3 is the 

infimum of F over s, it must be true that levf3+EF is a nonempty level 

set of F over S, and hence levf3+EF is in (level: a c A}. Thus x0 is in 

levf3+c'' and it follows that F(x0 ) ~ f3 + c, which is a contradiction. 

Therefore, F(x0) ~ f3 and it follows that F(x0 ) = f3 = inf(F(x): x ES}. 

Hence (P) is solvable. 

If F or S or both have no vectors of recession, then the 

hypothesis of Theorem 2.3 is trivially satisfied and (P) would be 

solvable. Notice that if any of the three assumptions in the hypoth-

esis of Theorem 2.2 are true, then the set of feasible solutions S for 

(P) has no vectors of recession and hence is solvable by Theorem 2.3. 

Xowever, Theorem 2.3 does not require that S be bounded in order that 

(P) be solvable; only that for every x E s, F{x + AU) be an 

increasing function of A for arbitrarily large A whenever u is a vector 
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of recession for s. If the objective function F ~s a vector of - ' 

recession u, then (P) is solvable only if u ft A(S). 

As mentioned previously, the vec1tors of rece,sion for the set of 

feasible solutions S for a convex program (P) are exactly those vectors 

of recession common to all of the constraint functions, provided (P) is 

feasible. This property allows the formulation of the following 

corollary to Theorem 2.3. 

Corollary 2.4. Let (P) be a feasible convex p;rogram whose domain C is 

closed. Assume that the objective function F of (P) and the constraint 

fUnctions f f1, • , • , :f' } o:f' (P) have no vectors of recession in m 

common. Then (P) is a solvable convex program. 

Proof: By hypothesis, S is nonempty; hence it follows that 

A(S) = A(lev0r1 ) n ••• n A(lev0fm) by Theorem l.14, since it is true 

that S = lev0f1 n ••• n lev0fm. Therefore, any vector of recession 

for S is a vector of recession common to all of the constraint func-

tions. Assume that the objective fUnction F and S have a vector of 

recession in common. It now follows that the objective function F 

and all of the constraint funct!ons have a vector of recessi~n in 

common which contradicts the hypothesis of the theorem. Hence the .. 

objective ·function F.and the set of feasible solutions S ~ave no 

vectors of recession in common, and it follows fro~ Theorem 2.3 that 

(P) is a solvable convex program. 

Consider again Examples i.3 and 1.4 of Chapter I. The convex 

program illustrated in Example 1.3 is not solvable. Tbe reason is 

that the objective fUnction and the set of feasible solutions have 

·. 
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common vectors of recession; that is, A(S) n A(F) f (OJ (cf. Figure 

5{a) for epi F). However, in Example l.4, the convex program is solv

able. This is due to the fact that the obJective function has no vec

tors of recession and hence Theorem 2.3 is applicable. 

Theorem 1.22 shows that under certain assumptions, a collection of 

nonempty closed convex sets in E0 which have no vectors of recession in 

common has a nonempty intersection. Theorem 1.26 shows that under the 

same assumptions, the ~equirement that the sets in the collection have 

no vectors of recession in common can be replaced by the alternate re

quirement that the sets have only vectors of linear recession in common 

and the collection will still have a nonempty intersection. Observing 

the method of proof in Theorem 2.3 and recalling Theorem 1.26, it is 

apparent that the nonempty level sets of the obJective function F over 

the set of feasible solutions S for (P) can be allowed to have vectors 

of linear recession in common and the conclusion of Theorem 2.3 would 

still be valid. The following theorem is a result of this discussion. 

Theorem 2.5. Let (P) be a feasible convex program whose domain C is a 

closed set. Assume that the obJective function F of (P) has onl,y vec

tors of constant recession with respect to the set of feasible solu

tions S for (P). Then (P) is a solvable convex program. 

Proof: Consider the collection of all nonempty level sets of F over 

the set of feasible solutions S for (P), denoted by (leva": a c A} 

where each leva" is defined as in the proof of Theorem 2.3. By the 

argument given in the proof of Theorem 2.3, every set in this collec

tion is a nonempty closed convex set. Now every vector of recession 

for F is a vector of constant recession so by Theorems 1.34 and 1.31, 



every vector of recession for F is a vector of linear recession for 

levaF for every a c A. Since the nonempty level sets of F over S are 

nested, it follows that every subcollection of n + 1 sets from 

(level: a c A} has a nonempty intersection. Assume that the nonempty 
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closed convex level sets of F over S have a vector of recession in com-

mon which is not a vector of linear recession. Then it follows by 

Theorem i.31 and the contrapositive of Theorem 1.:34 that F has a vector 

of recession which is not a vector of con8tant recession. This contra

dicts the hypothesis of the theorem. Hence {1evaF: a c A} is a collec,.. 

tion of nonempty closed convex sets in E with the properties that the n 

only vectors of recession common to all the sets are vectors of linear 

recession and every subcollection ot n + l sets has a nonempty inter-

section. By Theorem 1.26, it follows that n(levaF: a E A} is a non .. 

empty set. 

Now let f3 = inf[F(x): x c S} and let x0 c n{1evc:l: a C A}. Again 

x0 is in S and by the argument given in the proof of Theorem 2.3, it 

follows that F(x0) = '3· Consequently, (P) is a solvable convex 

program. 

Notice that the hypothesis of Theorem 2.5 does not require that 

every vector of recession for the set of feasible solutions S be a 

vector of constant recession for F; it only requires that every vec-

tor of recession for F be a vector of constant recession for F, and 

hence a vector of linear recession for s. From this discussion, it is 

possible to write the following corollary to Theorem 2.5. 

Corollary 2.6. Let (P) be a feasible convex program whose domain C is 

a closed set. Assume that the obJective function F of (P) and the 



constraint functions [f1, ••• , fm} have only vectors of constant 

recession in common. Then (P) is a solvable convex program. 

Proof: The vectors of recession of the set of feasible solutions S for 

(P) are exactly those vectors of recession common to all of the con

straint functions for (P). Assume now that the objective function F 

has a vector of recession with respect to S which is not a vector of 

constant recession for F. Let u be such a vector of recession for F. 

Then u is a vector of recession for every nonempty level set of F over 

S and hence is a vector of recession for s. Thus by previous discus

sion, u is a vector of recession common to all of the constraint func

tions and it follows that the objective function and the constraint 

functions have a vector of recession in common which is not a vector 

of constant recession. This contradicts the hypothesis of the theorem. 

Therefore, the objective function has only vectors of constant reces

sion with respect to the set of feasible solutions S for (P), and it 

follows from Theorem 2.5 that (P) is a solvable convex program. 

If the only vectors of recession for the nonempty level sets of 

the objective function F over the set of feasible solutions S are 

vectors of linear recession, then it follows from Theorem 1.36 that 

the only vectors of recession for F with respect to S are vectors of 

constant recession. Theorem 2.5 then implies that (P) is a solvable 

convex program. This result is stated forma.lly as the next corollary. 

Corollary 2o7• Let (P) be a feasible convex program whose domain C is 

a closed set. Let F be the objective function of (P) and S the set of 

feasible solutions for (P). Assume that for some real number a, 
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f x ' S: F(x) ~ a} is a nonempty set whose only vectors of recession are 

vectors of linear recession. Then (P) is a solvable convex program. 

In light of Theorem 2.5, the question arises as to whether the 

vectors of recession common to a convex function and its convex domain 

must be vectors of constant recession for the function in order that 

the function attain its infimum over its convex domain, where the 

domain is a closed set. A reasonable conjecture is the following: 

Conjecture: Let f be a convex function defined on a closed convex set 

C and let u be a vector of recession common to f and c. Assume that 

f(x + ru) is a constant function of r ~ o, for all x € c. Then f 

attains its infimum over c. 

This conjecture is false as shown by the following example, 

Example 2.b~ Let C = ((x,y): x > o, y ~ l/x}, and f(x,y) = x, where 

C is the domain of f. Then the only vectors of recession common to f 

and C are vectors of the form u = (O,y) where y > o. If z c C, then 

f(z + ru) is a constant function of r ~ o, yet f does not attain its 

infimum over c. 

Suppose now that (P) is a solvable convex progr~m and x0 is an 

optimal solution for (P). Then (x ~ S: F(x) ~ F(x0 )} is a nonempty 

level set of F which is convex, and is closed if the domain C of (P) is 

closed. For an arbitrary convex program (P), let inf F denote the 

optimal value of (P), and Min F denote the set of all optimal solutions 

for (P). Then for (P), inf F = F(x0) and Min F = {x E S: F(x) ~ F(x0 )}. 

In the arbitrary case, it may be that Min F is empty. However, if (P) 

is solvable, then all of the nonempty level sets of F over S contain 



Min F. Example 2.9 and Figure 7 illustrate this situation. 

2 2 Example 2.9. Let C = E2, P(x,y) = x + y, f1 (x,y) = -x, and 

f 2(x,y) = -Y· Then S = [(x,y): x ~ o, y ~ o}, inf F = o, and 

Min F = f(o,o)}. The collection of nonempty level sets of F over Scan 

be denoted by [levcif: a ~ o} and Pigure 7 illustrates how this collec

tion of closed convex sets contain Min F. 

Relationship of Solutions 

It turns out that in the situation where (P) is a solvable convex 

program whose domain is closed, it is possible to use.the nested prop-

erty of the collection of nonempty level sets ot the obJective function 
.- ~. . 

F containing Min J' to obtain a feasible solution as --~lose, in the norm 

of E , to the convex set Min F as desired. 
,n 

fhe tollowing theorem 

states this property precisely. . i' ~ 

Theorem 2.10. Let (P) be a feasible convex progra.m_whose domain C is 

a closed convex set. Assume that the obJective function F of (P) and 

the set of feasible solutions S for (P) have no vectors of recession 

in common. Then for every c > o, there exists a 8 > 0 such that :f'or 

every feasible solution x satisfying F(x) ~ inf 1 + 8, there exists 

an optimal solution z such that llz - xii < c. 

Proof: Theorem 2., implies that (P) is solvable and ~t follows from 

the proof of Theorem 2.3 that every nonempty level set of F over S is 

a ce>mpact convex set. Let c > 0 be arbitrary but fixed and let 

B = (x c En: l!xll < l}. Consider the open set M + cB, -where M = Min P, 

and note that M is contained in M + cB. If S c:: M + cB, then the con-

elusion is trivially true. 'f.b.erefore, assume that S is not contained 
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in M + eB and consider the nonempty closed set S \ (M + EB). For each 

o > 0 1 let T0 = (S \ (M + eB)) n level where ex= inf F + o. Since 

levcxF is a compact set for each o > o, each T0 is a compact set. In 

addition, if o1 < o2, then cx1 = inf F + o1 < inf F + o2 = cx2, so 

levcx F c: levcx F and it follows that T0 ~ T0 • Assume that T0 is non-
1 2 1 2 

empty for each o > o. Then the sets fT0: o > o} form a collection of 

nested nonempty compact sets and it must be true that n{T0: o > O} 

is a nonempty set since the collection has the finite intersection 

property. Let x0 e n{T0: o > O}. Then x0 E levCXF for every o > O, so 

it follows that x0 e Min F. But x0 must also be in S \ (M + l!tB) and 

this contradicts the fact that (Min F) n (s \ (M + eB)) is an empty 

set. Consequently, there exists a o0 >Osuch that, for cx0 =inf F+o0, 

T0 = (S \ (M + eB)) n levcx F = ¢; that is, T0 is an empty set. Since 
0 0 0 

levcx F c: S but levcx F ¢ (S \ (M + eB)), and it is true that 
0 0 

S = (S \ (M + EB)) U (Sn (M + eB)), it follows that levcx F c: (M + EB). 
0 

Hencej for this arbitrary e > Oj o0 is a o which gives the conclusion 

of the theorem. 

The goal now is to rewrite Theorem 2.10 replacing the requirement 

that the obJective function and the set of feasible solutions have no 

vectors of recession in common by the alternate requirement that the 

only vectors of recession for the set of feasible solutions are vectors 

of constant recession for the objective function. The next lemma is 

essential to the proof of this alternate form of Theorem 2.10. 

Lemma 2.11. Let f be a convex function defined on a closed convex set 

C in E with the property that the only vectors of recession common to 
n 
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f and C are vectors of constant recession for f. If M is the subspace 

in E spanned by the vectors of constant recession for f, then the 
n 

following statements are true. 

(a). If M* is the orthogonal complement of M in E , then for any 
I:l 

x and y in E , (x + M) n (y + M*) is a single point. 
n 

(b). If x0 is an arbitrary point in C, then for every z E x0 + M, 

it is true that f(z) = f(x0 ). 

Proof: To prove (a), note that there exists unique m1, m2 £ Mand 

unique mr, m~ E M* such that for any x, y in En, x = "1. + mr, and 

y = ~ + m~. Hence 

x+M=111_ +rar+M=mr+M 

and 

y + M* = ~ + m~ + M* = ~ + M*. 

Since 0 is in M and in M*, it follows that mr e mr + M, and 
'51 

m2 E m2 + M*. Consequently, 

(x + M) n (y + M*) = (mt + M) n (m2 + M*), 

and hence m2 + mr c (x + M) n (y + M*). If z c (~ + M) n (y + M*), 
j 

then z = mr + m, m e M, and z = m2 + m*, m* c M*.' Since z can be ex-

pressed uniquely as the sum of a point in M and a point in M*, it 

follows that mr = m*, and m2 = m. Thus z = m2 + mr and the conclusion 

of (a) is immediate. 

To prove (b), note first that M has a basis {u1, ••• , uk}, 

l ~ k ~ n, where each ui is a vector of constant recession for f. The 

existence of this basis is guaranteed by the argument given in the 



proof of Theorem 1.25. By Theorem 1.34, each u1 is a vector of linear 

recession for c, so if x0 is in C, it follows by Theorem 1.25 that 

x0 + M is contained in c. Since each ui is a vector of constant reces

sion for f, it is true that f(x0 + rui) = f(x0) for all r e Rand tor 

each ui, 1 ~ i ~ k. If z e x0 + M, then there exists an m e M sucb 

that z = x0 + m. Since me M, let m = a1u1 + ••• + akuk where each 

ui is in the basis for M given above and ai E ~. Then 

where ri = k(ai) for 1 ~ i ~ k. By the convexity off, it follows that 

(cf. Rockafellar [20~p. 25, Theorem 4.3 ). Assume tbat f(z) < f(x0). 

Then consider z1 = x0 - a1 u1 - ••• - akuk. It follows that z1 is in , 

x0 +Mand that (l/2)(z + z1 ) = x0• Again by the convexity off, 

This contradiction then implies that f(z) = f(x0). Since z was an 

arbitrary point in x0 + M, it follows that (b) is true. 

The alternate theorem to Theorem 2.10 discussed above can now be 

stated in the following manner. 

Theorem 2.12. Let (P) be a solvable convex program whose domain C is a 

closed set. Assume that the only vectors of recession for the set of 

feasible solutions S for (P) are vectors of constant recession for the 

obJective function F of (P). Then for every E > o, there exists a 
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o > O such that for every feasible solution x satisfying 

F(x) ~ inf F + o, there exists an optimal solution z such that 

l!z - xn < E· 

Proof: Let M + eB be the same set defined in the proof of Theorem 2 .10. 

Then Min F c:: M + EB as seen earlier. If S is contained in M + EB, then 

the conclusion follows trivially. Consequently, assume that the set 

S \ (M + e:B) is nonempty. In addition, let N be the subspace spanned 

by the vectors of recession common to F and s, which are vectors of 

constant recession for F and vectors of linear recession for s. Let 

N* be the orthogonal complement of N in En. If z E S \ (M + EB), then 

consider the set T = (S \ (M + E:B)) n (z + N*). Since z E z + N*, T 

is nonempty. Also, T is bounded, for if it were unbounded, then S and 

N* would have a vector of recession in common which would contradict 

the hypothesis of the theorem. Finally, T is a closed set being the 

intersection of two closed sets. Since T is a nonempty compact set 

contained in S and F is a continuous function defined on Tc:: S, it is 

true that there exists a point u e: T such that F(u) = inf{F(x): x ET} • 

. Now suppose there exists t E S \ (M + eB) such that F(t) < F(u). By 

Lemma 2.ll(a), there exists a uniqi.le point w e: (z + N*) r'l (t + N). 

Since t + N c:: S by Theorem 1.25, it follows that w e: s. Suppose now 

that (t + N) n (M + eB) ~ ¢, and let y be a point in this intersection. 

Then there exists an x0 e Min F such that !IY - x011 < e:. Let v c y + N. 

Then there exists an m0 E N such that v = y + m0• 

since x0 +Ne:: Min F (er. Theor~ms 1.25and1.;4). 

that v c (M + e:B) since 

Now x0 + m0 c Min F 

It then follows 
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Since y +_~ = t+ N, itfc;llows that t + N is contained in M + eB and 

hence t € M + eB, which is a contradiction. Consequently, 

(t + N) n (M + eB) is empty and it follows that w ~ M + e:B. Thus 

w E£ T and therefore F(u) ~ F(w). But w € t + N, and N is the subspace 

spanned by the vectors of constant recession for F, so by Lemma 2.ll(bh 

F(w) = F(t) < F(u). This contradiction then implies that F(u) ~ F(x) 
\ 

for every x e S \ (M + eB). 

If F(u) = inf F, then u must be in Min F which is a contradiction. 

llence F(u) > inf F. Let o0 = (1/2 )[F(u) - inf F]. For a = inf F + o0, 

level' is contained in (M + eB) since level' e s, 

levaF n [S \ (M + eB)] = p, ands = [S \ (M + eB)] U [Sn (M + eB)]. 

Therefore, o0 is a o which gives the conclusion of the theorem. 

Theorems 2.10 and 2.12 imply that under certain hypotheses, it is 

possible to construct a sequence of points in the set of feasible solu-

tions S which converges to an optimal solution. The next corollary 

gives information concerning this sequence of feasible points. 

Corollary 2.13. Let (P) be a solvable convex program whose do~in C is 

a closed set. Let F be the objective function of (P) and S the set of 

feasible solutions for {P), If [xi} is a sequence in S which converges 

to an optimal solution for (P), then (F(x1 )} converges to inf F. 

Proof: The conclusion of the corollary follows directly from the 

continuity of the objective function. 

In review, Theorem 2.1 provides the main result in this chapter 

on the feasibility of a convex program (P) while Theorems 2.3 and 2.5 

are the main theorems concerning solvability. In addition, Theorems 



2.10 and 2.12 establish the theoretical basis for the practical solu

tion of convex programs. 
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Additional information on the feasibility and solvability of convex 

programs can be found in Bracken (1), Mangasarian (18), and 

Rockafellar [20). 



CHA.PrER III 

CHARACTERIZATION OF AN OPrIMAL SOLUTION 

The obJective of this chapter is to present necessary and suffi-

cient conditions for an arbitrary feasible solution for a convex pro-

gram (P) to be an optimal solution. The main result concerns the situ-

ation where the obJective function and the constraint functions for an 

arbitrary convex program (P) are assumed continuous on the domain C of 

(P) but not necessarily differentiable there. A second result estab-

lishes necessary and sufficient conditions for an arbitrary feasible 

solution for (P) to be an optimal solution under the assumption of 

differentiability fer the objective function and the constraint func-

tions for (P) over the domain C of (P). 

Separation Theorem 

Before discussing the main theorems of this chapter, a few con-

cepts necessary to their proofs need to be discussed. The first of 

these is the idea of a hyperplane in E • A hyperplane in E is a set 
, n . . n 

which results from the translation of a maximal proper subspace of En. 

In E2, maximal proper subspaces are lines throl,lgh th~ origin so it fol

lows that hyperplanes in E2 are lines; in E3, maximal proper subspaces 

are planes through the origin so hyperplanes in E3 are planes. The 

characterization of a hyperplane given in the definition is obviously 

impractical to work with so a more useful one is desirable. It turns 
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out that a much more convenient characterization of hyperplanes in E n 

can be given in terms of the inner-product property of this space. The 

next theorem establishes this characterization and a proof for it can 

be found in Rockafellar [20], p. 5, Theorem 1.3. 

Theorem 3.1. Let H be a hyperplane in E • 
n 

Then there exists a nonzero 

vector u in E and a real number~ e R such that H = (x EE : x•u = ~). n n 

The concept of hyperplane and its characterization in terms of the 

inner-product of E can now be used to state a very important result 
n 

in the theorey of convex sets needed in the proof of the main theorem 

in this chapter. This theorem, known as the Separation Theorem for 

convex sets, is stated as follows: 

Theorem 3.2. (S~paration Theorem). Let c1 and c2 be two convex sets in 

En such that the interior of c1, int c1, is nonempty and 

(int c1 ) n C2 = ¢. Then there exists a hyperplane H = {x E En: x.u =a} 

in En such that z•u ~ a for all z e c1 and z•u ~a for all z E c2• 

A proof for this theorem can be found in Luenberger [17], p. 133, 

Theorem ;, or Rockafellar [20], p. 97, Theorem 11.3, or Valentine [23], 

p. 24, Theorem 2.7. Figure 8(a) is an example o:f'. twq,convex sets in E2 

which can be separated by a hyperplane H while Figure b(b) is an example 

of two convex sets in E2 which cannot be separated by a hyperplane. 

Notice that in Figure b(b) the hypothesis of the Separation Theorem is 

not sa:~isfied since (int c1 ) n c2 is a nonempty set. 

Lagrangian Function 

A second concept that needs to be discussed is that of the 
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(a) 

(b) 

Figure b. 



Lagrangian fu~ction associated with a convex program (P). lf (P) is a 

convex program with objective fUnction F, constraint functions 

tf1, ••. , fm1' and domain c, then the Lagrangian function L for (P) 

is defined as 

where u = (u1, . . • , u ) is in the ponnegative orthant of E so that m m 

u ~ o. If 

E+ = fu = (u1, ••• , u ) EE : ui ~ O, i = l, ••• , m}, m m m 

then it follows that the domain of Lis the set C x E+. One important 
m 

property of the function L is tne following: 

Lemma 3.3. Let u0 in E: be arbitrary but fixed. Then L(x;u0) is a 

convex function of x on the convex set C in E • 
n 

Proof: Let x and y be in C and let a be a real number such that 

o < a < 1. Then for u0 = ( u01 , , • • , u0m), and 13 = 1 - a, 

m 

L(ax + f3y;u0) = F(ax + f3y) + L u0jf /ax+ f3y) 

j=l 

m 

~ aF(x) + 13F(y) + I u0J[af .'J(x) + f3f J(y)] 

j=l 

A point (x*;u*) in C x E+ is a saddJ.e.point for the Lagrangian 
m 

function L if and only if L(x*;u) ~ L(x*;u*) ~ L(x;u*) for all x c C 
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and :f'or all u E E:. Therefore, i:f' (x*;u*) is a sadcUe-point :f'or L, 

then for a :f'ixed x*, L(x*;u) at-ta.ins a m,aximum with respect to u at 

u*, and :f'or a fixed u*, i(x;u*) attains a minimum with respect to x at 

x*. Consequently, (x*;u*) 11:1 a saddl.e.point for L if a,nd on;J.y if 

sup(L(x*;u): u c E:) = L(x*;u*) = inf(L(x;u*): x E C). 

Main Theorem 

Using the concepts discussed previously, tbe main theorem on the 
~ ~-

characterization of an optimal solution for ~ convex program (P) can -- --.-- -
be written as follows: 

Theorem 3.4. Let (P) be a convex program with domain C in E , 
~------·- n 
objective fun~tion F, and constratnt functions (f1, ••• , fm)• 

Assume that the set (x EC: fi(x) < o, 1=1, ••• , m) is nonempty. 

Then x* in C is an optimal solution tor (P) if and only if there exists 

a u* in E+ such that L(x*;u) ~ L(x*;u*) !:: L(x;u*) for all x E C and. m 
for all u c E+. m 

. + 
Proof: Assume there exists an x* c C and a u* E Em such that 

L(x*;u) :!:: L(x*;u*) ~ L(x;u*) for all x c C 41-nd for all u c ~+. Then m 
+ for all u c Em, 

F(x*) + 

m 

L uJfJ(x*) :!:: F(x*) + 
J:::l 

From (3.4.1), it follows that for all u E E;, 

m 

L ujf J(x*). 
J=l 



- u*)f (x*) l!C O. 
j J 

J'or each ,'J, consi~~r the vector (ur, ••• 1 uj \l, --~ ••• , u:) in E:. 
Substitution of each of these vectors into (3.4.2) for u gives the 

result that fJ(x*) ~ O for J = 1, ••• , 111.. Consequently, x* is a 

feasible solution for (P). 

, Now uj :2!:: O for each j 1 and f /x*) ~ O for each .j implies that 

m 

I u;tJ(x*) !C o. 
j=l 

Since the vector (O, ••• , -o) c E+, it follows :f'rom--(3.4.2} that m 

m 

L ujt .1 (x*) ~ o. 
j=l 

Therefore, from (3.4.3) and (~.4.4), 

m 

I ur /x*> = o. 
J=l 

(3.4.4) 

(;.4.5) 

Suppose that for some J, 1 ~ J ~ m, it is true that ujf j(x*) < o. It 

follows that 

. 

m 

L ujf J(x*) < o, 
j=l 

and this contradicts (3.4.5). Thus for each j = l, ••• , m, 

(3.4.6) 
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urr J (x*) = o. 

Using (3.4.5), the inequality L(x*;u*) ~ L(x;u*) can be rewritten as 

m 

F(x*) ~ F(x) + L ujtJ(x), 

J=l 

(3.4.8) 

for all x e c. Consider now only those points in the set of feasible 

solutions S for (P). For each x E S, f j(x) ~ o, for j = 1, ••• , m. 

Combining this with the fact that uj ~ o, for each j, it follows that 

ujt/x) ~ O for each j and for all x e s. Hence, 

m 

L u:;tj(x) ~ o, 
j=l 

for all x E S. Therefore, it follows from (3.4.8) that F(x*) ~ F(x) 

for all x c s. Thus x* is an optimal solution for (P). 

To complete the proof of the theorem, assume now that x* in S is 

an optimal solution for (P). It must be shown that there exists a 

u* in E+ such that (x*;u*) is a saddle-point for L. Define 
m 

Since (F(x*), f1 (x*), ••• , fm(x*)) E KJ_, it follows that KJ. I¢. 
Note also that ~ is nonempty since it is unbounded. Suppose that 

KJ_ n ~ I ¢. Then there exists a vector z in C such that 
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(a). F(z) ~ t 0 < F(x*) 

(b). :f'i(z) :s: ti< o, :f'or i = 1, ••• , m. 

From (b), it follows that z e s. Thus by (a), x* is not optimal and 

this contradicts the hypothesis. Therefore, KJ.. n ~ = p. Since ~ is 

an open set, the interior of ~ is exactly ~ so it is true that 

(int 12) n KJ.. = p. In addition, KJ.. and ~ are convex sets in Em+l so 

these two sets satisfy the hypothesis of Theorem 3.2. Hence, there 

exists a hyperplane H = (x E E 1 : a·x = 13}, where a E E 1and a F o, m+ m+ 

such that a•y1 ~ 13 ~ a.y2 for all y1 E 1S_ and all y2 E 12· If 

a = (a0, a1, ••• , am)' then ai r o for at least one i. Assume that 

ai < o. ':l'ben for arbitrary (t0, • • • , tm) e 1S_ and 

(s0, ••• , sm) c ~' 

m 

ai(ti - si) + Ia.'J(t.1 - s3) ~ o. 
j=l 
J#i 

(3.4.10) 

Since ~ is unbounded, for any (t0, ••• , tm) e 1S_, it is possible 

to choose si < O so large in absolute value that 

m 

ai(ti -si) + La/t.1 -s.'J)<o. 
J=l 
JFi 

But (3.4.ll) contradicts (3.4.10) so it follows that ai ~ O for each i 

and for at least one i = o:, 1, ••• , m, a1 > O (since a~ o). 

Let (F(x), t 1(x), ••• , fm(x)) be in JS. for some x c C and 

consider the vector (F(x*), o, ••• , 0) in ol(K2), the closure of ~· 
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Then there exists a sequence (w } in K_ such that f w } converges to n -~ n 

(F(x*), o, ••• , o). Since CX•wn ~ ~ for each n, it follows by the 

continuity of the inner-product that for all x e c, 

If a0 = o, then for all x e C, (3.4.12) becomes 

However, by the hypothesis of the theorem, there exists a z c C such 

that f J(z) < O for all J• Since aJ > 0 for at least one J, it follows 

that 

(3.4.14) 

Obviously, (3.4.14) contradicts (3.4.13) so it must be true that 

a0 > o. Consequently, each term in (3.4.12) can be divided by a0 

resulting in 

• • • (3.4.15) 

for all x c c. Letting uj = aJ/a0 for J = 1, ••• , m, (3.4.15) can 

be rewritten as 

L(x;u*) = F(x) + utr1(x) + ••• + u:1'm(x) ~ F(x*), (3.4 .16) 

for all x E C. If the point selected in C is x*, then (3.4.16) implies 

that 



62 

m 

L uj-f j(x*) ~ O. (3.4.17) 
j=l 

But x* E S implies that f j (x*) :!!:: 0 for all j. Sinee uj :Ii!: 0 for all j 1 

it follows that 

m 

L ujt'j(x*) ~ o. 
j=l 

Thus (3.4.17) and (3.4.18) imply that 

m 

L u:r/x*) = o. 
j=l 

It follows directly from (3.4.19) that 

m 

L(x*;u*) = F(x*) + I u:f'J(x*) = F(x*). 
j=l . 

Certainly for all u = (u1, • • • 1 u ) in E+, it is true that m m 

m 

L ujf j(x*) ~ o, 
j=l 

+ so it follows that for all u « E 1 m 

m 

F(x*) ::!! F(x*) + I u.lJ(x*) = L(x*;u). 

j=l 

(3.4.18) 

(3.4.19) 

(;.4.20) 

(3.4.21) 

(3.4.22) 



Combining the results given in (3.4.16), (3.4.20), and (3.4.22), it 

follows that 

L(x*;u) ~ L(x*;u*) ~ L(xiu*), 

+ for all x E C and for all u E E , which is the desired conclusion. m 
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A careful examination of the proof of Theorem 3.4 shows that it is 

possible to characterize the vector u* in E: in a manner which allows 

Theorem 3.4 to be written in an equivalent form. Using (3.4.5) and 

(3.4.7) from the proof of Theorem 3.4, the following corollary gives 

this equivalent form. 

Corollary 3.5. Let (P) be a convex program with domain C in E , 
n 

obJective function F, and constraint functions (f1, ••• , f }. 
m 

Assume that the set (x e C: fi(x) < o, i = l, ••• , m} is nonempty. 

Then x* in C is an optimal solution for (P) if and only if there exists 

+ a u* in Em with the properties that 

(a). F(x*) = inf(L(x;u*): x E CJ, 

(b). ujf j(x*) = o, for j = 1, ••• , m, 

(c). f /x*) ~ o, for j = l, • • • , m. 
I 4;,,. 

Proof: Assume that x* is an optimal solution for (P). ~hen by Theorem 

3.4, there exists a u* e E+ such that L(x*;u) s L(x*;u*) s L(x;u'*) for m 

all x E C and for all u E E+. Condition (b) follows from (:5.4.7), and 
m. 

condition (c) is a direct consequence of the optimality of x*. 

Condition (b) now implies that 

F(x*) s L(x;u*) 
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for all x E c. Since x* is in c, it follows that condition (a) is 

true. 

To complete the proof, assume now that there exists an x* in C and 

a u* in E: such that (a), (b), and (c) are true. From (a) and (b), it 

follows that 

L(x*;u*) = F(x*) ~ L(x;u*) 

for all x E c. Let u = (u1, ... , um) be in E:. Then uj ~ o, for 

all j, so it follows that uj:t'j(x*) ~ O for all j by condition (c). 

Certainly, it is true that 

m 

L ujfj(x*) ~ O 

j=l 

+ for all u E E • Therefore, m 

m 

L(x*;u) = F(x*) + L ujfj(x*) ~ F(x*) = L(x*;u*), 

j=l 

Combining (3.5.1) and (3.5.2), it follows that (x*;u*) is a saddl.e

point for L. Hence, x* is an optimal solution for (P) by Theorem 3.4. 

Note that Corollary 3.5 says that if x* is an optimal solution 

for (P), then there exists a vector u* in E+ such that the optimal . m 

value for (P) is equal to the infimum of L(x;u*) over the domain C of 

(P). 

(P) • 

+ Suppose that such a vector u* e E is known for a convex program 
m 

Then instead of first determining the set of feasible solutions 

S for (P) and then minimizing the objective function F over S, it 

hopefully would be possible to determine the minimum set for L(x;u*) 



over C and then discard those vectors which did not satisfy certain 

constraints with the resulting set being exactly Min F. The next 

definition and theorem establish this procedure precisely. 

Definition ;.6. Let (P) be a convex program with domain C in E • n 
a vector u* in E: is a solution vector for (P) if and only if 

inffL(x;u*): x E C} = inf F. 

Then 

Using Definition 3.6, the above discussion can be formulated into 

the following theorem. 

Theorem 3.7. Let (P) be a solvable convex program with domain C in E • 
n 

If u* in E; is a solution vector for (P), then 

Min F = s n Mn T, 

where S is the set of feasible solutions for (P), 

M = (x c C: ujtj(x) = O, j = 1, ••• , m}, and 

T = {z EC: L(z;u*) ~ L(x;u*), for all x c CJ. 

Proof: Let t E Min F. Then F(t) = inf(L(x;u*): x f; C} since u* is a 

solution vector for (P). Therefore, since t E C, 

and it follows that 

m 

F(t) ~ F(t) + I Ujf j(t), 

j=l 

m 

I ujtJ<t) ":i!: o. 
j=l 



But t being an optimal solution implies that t 6 S so it must be true 

that 

m 

I urJ(t) s: o. 
J=l 
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Now (3.7.1) and (3.7.2) i!llPlY that ujf J(t) = O for J = l, ••• , m so 

it follows that t c M. Then (3.7.1) and (3.7.2) also imply that 

L(t;u*) = F(t) = inf F ~ L(x;u*) for all x E c, so t e T. Th~refore, 

Min F is conta.ined in S n M n T. 

To show the inclusion in the other direction, let t ~Sn Mn T. 

Then t E C and 

L(t;u*) = inf{L(x;u*): x « C} = inf F 

since u* is a solution vector. Since t is in M, 

m 

L: urrJ<t> = o. 
J=l 

Therefore, (3.7.3) can be rewritten as 

L(t;u*) = F(t) = inf F. 

Since t is a feasible solution for (P), it must be true that t is also 

an optimal solution for (P) and hence t e: Min F. The proof of the 

theorem is now complete. 

As an illustation of the concepts presented in Theorem 3.4, 

consider the following example. 



Example 3.8. Let C = E1, F(x) = e-x, and f(x) ~ e-x_ l· From Example 

1.3, it follows that S = {x E E1 : x ~ O} and that the convex program 

so defined is not solvable. This assertion can be verified by 

Theorem 3.4. Suppose that x* in S is optimal for this convex program 

(P). Then by Theorem 3.4, there exists a u* in E~ such that 

L(x*;u) :!!:: L(x*;u*) ~ L(::x:;u*) for all x in E1• From the proof of 

Theorem 3.4, it follows that u*f(x*) = u*(e-x*_ l) = o. If x* = o, 

then it is not optimal. If x* > o, then u* must be o, and it follows 

that for any x >:it*, L(x;u*) = F(x) < F(x*) = L(x*ru*) which contra

dicts the optimality of x*. Hence (P) cannot be solvable, which is 

clearly true. 

Di:f'f erentiable Convex Programs 

Up to this point, there has been no explicit require~ent that the 

objective :function and the qonstraint functions for (P) be differenti-

able with respect to an appropriate open subset of E • Of course, even n 

if they are, Theorem 3.4, Corollary 3,5, and Theorem 3.7 are still 

valid. However, in the case where these functions are differentiable, 

these above results, particularly Corollary 3.5, can be modified to 

make use of this differentiability property in stating the hypotheses. 

The goal now is to assume differentiability for the aforementioned 

functions and present the modified form of Corollary 3.5. 

Before turning to this modified theorem, it is necessary to dis-

cuss an important property of differentiable convex :functions. This 

property is given by the next theorem, a proof for which can be found 

in Fleming [7], p. 53, Proposition 9a, or Mangasarian [18], p. ~' 

Theorem 3. 



Theorem 3.9. Let f be differentiable on an open convex set C in E • n 

Then f is convex on C if and only if 

f(x) - f(y) ~ (x - y)•[grad f(y)] 

for every x and y in C. 

Here, grad f(y) represents the gradient vector of f at y and it 
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is an n-dimensional vector whose components are the partial derivatives 

fi of f evaluated at y. Appropriate definitions and results concerning 

the differential calculus for real valued fUnctions of several vari-

ables can be found in Fleming [7], Chapter 2. 

The terms defined here are used with respect to the Lagrangian 

function L for a convex program (P). The partial derivative of L with 

respect to the i-th variable xi of the vector x E C is denoted by L1; 

the partial derivative of L with respect to the J-th variable uj of 

+ the vector u ~ Em is denoted by LJ· Also, in order to conform to the 

fact that a differentiable function is defined on an open set, all 

convex programs (P) whose objective :f'unction and constra~nt functions 

are differentiable are assumed to have an open convex set for their 

domain. These preparatory remarks now allow the following theorem to 

be stated. 

Theorem 3.10. Let (P) be a convex program with domain C an open set in 

E, objective function F, and constraint functions (f1, ••• , f J. n m 
Assume that (x EC: fJ(x) < o, J = 1, ••• , m} is nonempty and that 

F and each fJ are differentiable on C. Then x* in C is an optimal 

solution for (P) if and only if there exists a u* in E~ such that 
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(a)• L (x*;u*) ~ j o, j :::; 1, • • • ' m, 

(b ). u*L (x*;u*) 
j j 

= o, j = 1, • • • ' m, 

( c). Li (x*;u*) ::: o, i :::;: 1, • . . ' n • 

Proof: Assume that x* is an optimal solution for (P). Then it follows 

from Theorem 3.4 that for all x in C and for all u in E+, 
m 

L(x*;u) ~ L(x*;u*) ~ L(x;u*). (3.10.1) 

Since x* is optimal, Lj(x*;u*) = f j(x*) ~ 0 for all J, so (a) is 

satisfied. 

By (3.4.7), ujt'j(x*) = uj Lj(x*;u*) = O, for j = 1, ••• , m, so 

(b) is satisfied. 

Assume now that for some i = 1, ••• , n, Li(x*;u*) < o. Then 

by the definition of partial derivative (cf. Fleming [7], p. 37), 

L((xr, ••• ,xf+t, ••• ,x*);u*) - L(x*;u*) Li (x*;u*) = lim _____________ n _______ < o. 
t-.0 t 

Since C is an open set, there exists a t 0 > 0 such that the vector 

(xr, ••• ,xr+to, ••• ,x~) is in c and 

L( (xr, ••• ,xf+t0, ••• ,x~hu*) - L(x*;u*) 
------------------------< o. 

t 
0 

Therefore, the numerator is negative and hence it must be true that 

L((xr, ••• ,xf+t0, ••• ,x~);u*) < L(x*;u*), a contradiction of 

(3.10.1). Consequently, Li(x*;u*) ~ 0 for i = 1, ••• , n. 

Assume now that for some i = 1, ••• , n, it is true that 



Li(x*;u*) > o. Then there exists a t 0 > 0 such that the point 

. . • ,x*) is in C and 
n 

L((xi, ••• ,xf-t0, ••• ,x~);u*) - L(x*;u*) 
~~~----~~----------------~--------- >O. 

Again the numerator must be negative and it follows that 
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. L((xi, ••• ,xf-t0, ••• ,x~);u*) < L(x*;u*), which again contradicts 

(3.10.1). Therefore, Li(x*;u*) ~ 0 for i = 1, ••• ,n. It follows 

from this inequality and the one above that Li(x*;u*) = 0 for 

i = 1, ••• ,n so (c) is satisfied. 

For the proof in the other direction, assume that there exists 

a vector x* in C and a vector u* in E+ such that (a), (b), and (c) m 

are true. Since u* is fixed, it follows from Lemma 3.3 that L(x;u*) 

is a convex function of x on the convex set c. Since x* is in C, 

Theorem 3.9 implies that for all x e c, 

L(x;u*) - L(x*;u*) ~ (x - x*)•[grad L(x*;u*)], x (3.10.2) 

where grad L(x*;u*) represents the gradient with respect to the vector x 

x of the function L(x;u*) evaluated at x*. Since the 1-th component 

of grad L(x*;u*) is Li(x*;u*), it follows from (c) tbat grad L(x*;u*) x x 

is equal to zero. Consequently, (3.10.2) implies that 

L(x*;u*) ~ L(x;u*) 

for all x e c. 

From (a), LJ(x*;u*) = f J(x*) ~ O, for j = 1, ••• ,m so x* is a 

feasible solution for (P). 



From (c), it follows that 

m 

L uj Lj(x*;u*) = 
j=l 

m 

L uj f j(x*) = o. 
j=l 
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(3.10.4) 

Observing that for any u = (u1, ••• ,um) E E:, uj fj(x*) ~ O for 

J = 1, ••• ,m so it follows that 

m m 

L uj fJ(x*) ~ O = L uj fj(x*). 
J=l j=l 

By (3.10.4), L{x*;u*) = F{x*). Thus it follows from (3.10.5) that 

m 

L(x*;u) = F(x*) + I UJ r,,(x*) ~ F(x*) = L(x*;u*) 

J=l 

(3.10.6) 

. for all u c E:. Combining (3.lC).3) and {::s.10.6), it is apparent that 

L(x*;u) ~ L(x+;u*) ~ L(x;u*) 

+ for all x E C and for all u c E • Thus for x* E c, there exists a u* m 

in E+ such that (3.10.7) is true; it then follows that x* is an optimal m 

solution for (P) by Theorem 3.4. 

Recall from the calculus of several variables that the gradient of 

a differentiable function evaluated at a point x* represents a vector 

which gives the direction from x* in which the function i~ increasing 

the maximum amount. In convex programming, for a point in the domain 

C of (P), it is of interest to know the direction from this point in 

which the objective function is decreasing. In the differentiable case, 



72 

for any point x* in the domain C of (P), it follows that -grad F(x*) 

gives the direction from x* in which the objective function F is de-

creasing the maximum a.mount. With this in mind, notice that 

Theorem 3.10 implies that x* in C is optimal for (P) if and on;Ly if 

there exists au* in E: such that x* is feasible, ujf j(x*) = 0 for all 

j, and 

The next two examples illustrate these concepts given by Theorem 3.10. 

Example ,3.11. 2 Let C = E2, F(x,y) = x + l, f1 (x,y) = x - l, and 

f 2(x,y) = -x - l. Then it follows that the set of feasible solutions 

is S = ((x,y) E E2: -1 ~ x ~ l} and the convex program so defined is 

solvable. In fact, Min F = f (x,y) « E2: x = O}. For any optimal solu

tion x* = (O,y) for (P), f 1 (x*) = f 2 (x*) = -1. Since uffi(x*) must be 

zero for i = 1, 2, it follows that ur = u~ = O. Noting that 

grad F(x,y) = (2x,O), it is immediate that grad F(x*) = (o,o). Hence, 

since u* = (O,O)o Therefore, if x* is optimal for (P), then there 

exists au* in E~, namely u* = (o,o), such that uffi(x*) = O for 

i = 1, 2, and -grad F(x*) = uf[grad f1 (x*)] + u~[grad f 2(x*)]. Note 

also that for all u = (u1, u2 ) € E;, u1r1 (x*) + u2f 2 (x*) ~ O. So it 

follows that for any x* in Min F, there exists a u* = (o,o) in E; such 

that L(x*;u) ~ L(x*;u*) ~ L(x;u*) for all x e E2 and for all u c E;. 

Example ,3.12. 2 Let C = E2, F(x,y) = x - y + 2, f1 (x,y) = x - y, 
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f 2(x,y) = y - 1, and f 3(x,y) = -x. Then tbe convex program so defined 

has S = ((x,y) c E2: 0 ~ x ~ 1, x ~ y ~ l} as its set of feasible solu

tions and the optimal solution is x* = (O,l). Also, grad F(x,y) is 

given by (2x,-l), grad f1 (x,y) = (1,-1), grad f 2(x,y) = (O,l), and 

grad r3(x,y) = (-1,0). Since x* = (0,1), f1 (x*) = -1, sour= O since 

it must be true that uffi(x*) = 0 for i = 1,2,3. Since 

r2(x*) = f 3(x*) = o, it is possible for u~ and u3 to be nonzero. Now 

-grad F(x*) = (O,l). If u* = (O, 1, O), then uffi(x*) = 0 for 

i = 1,2,3, and 

3 
-grad F(x*) = L ur[grad f i (x*)]. 

i=l 

This verifies that x* = (0,1) is an optimal solution for (P) by 

(3.12.1) 

Theorem 3.10. Figure 9 illustrates this example by graphically 

depicting (3.12.1). It also shows (O,O) and (1,1) in S cannot be 

optimal since -grad F(x,y) cannot be written as a positive linear 

combination o~, the gradient vectors for the constraint functions at 

these points. 

+ Convex Programs Over En 

In a lot of practical problems involving convex programming, it is 

desirable to minimize the objective function F over only those fea

+ sible solutions which lie in the nonnegative orthant E0 of the space 

E • If (P) is a convex program with constraint functions 
n 

{f1, ••• , fm} and it is desired to minimize F over those feasible 

+ + + ( ) solutions in En' let S = S n E0 , and notice that if fm+i x = -xi for 



y 

1 
I 

I 
grad F(O,l) =grad r1 (0,1) 

·grad F(O,O) 

grad t 1 (o,o) 
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grad F(l,l) 
grad t 2(1,1) 

grad r1(1,l) 



i = l, ••• ,n, then 

Consequently, 

Thus, if (P) is considered to have constraint functions 

{fl' • • • , f .' f l' • • • , f } , m m+ m+n 

where fm+i(x) =-xi for i = 1, ••• ,n, then it follows that the set 

of feasible solutions for (P) under this augmented set of constraint 
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+ functions is exactly S ; that is, exactly those feasible solutions for 

(P) under the original set of constraint functions which also lie in 

E~. Hence, if it is desired to minimize the objective function F of a 

convex program (P) over the restricted set of feasible solutions s+ 

rather t~an s, it is merely necessary to augment the set of constraint 

functions for (P) with then convex functions {fm+i: i = l, ••• ,n} 

where fm+i(x) =-xi. With this augmented set of constraint functions, 

the set of feasible solutions for (P) is exactly s+. For an augmented 

convex program (P) (meaning that the constraint functions for (P) have 

been augmented in the manner discussed in the above remarks), the fol-

lowing corollary gives necessary and sufficient conditions for a point 

x* in the domain C of (P) to be an optimal solution for (P) 

Corollary 3.1;. Let (P) be an augmented convex program with domain C 

an open set in E , objective function F, and augmented constraint 
n 



functions [f1, • • • , f , f 1, ••• , f } where f i(x) = -xi m m+ ~+n m+ 

for i = 1, ••• ,n, Assume that F and each f j, j = 1, ••• ,m, are 

differentiable over C and that {x € C: f j(x) < o, j = 1, ••• , m+n} 

is nonempty. Then x* in C is an optimal solution for (P) if and only 

if there exists a u* in E+ such that · m+n 

(a)• LJ(x*;u*) ~ o, J = 1, . • • ,m+n, 

(b ). u*L (x*;u*) = o, 
j j 

j = l, • • • ,m+n, 

( c). Li (x*;u*) = o, i = l, • • • ,n • 
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Proof: The proof follows directly from Theorem 3.10 when the original 

set of constraint functions {r1, • 

mented set of constraint functions 

• • ,f } ~re replaced by the aug
m 

(fl' • • • ,fm' fm+l' • • • ,fm+n}. 

Notice that LJ(x*;u*) = f J(x*) ~ o, for j = 1, ••• ,m+l, forces x* 

to be in s+. 

Another method is available for finding an optimal solution for 

(P) overs+ when the domain of (P) contains E+. Assume that the domain n 

C of (P) contains E+ and it is desired to find an optimal solution x* 
n 

of (P) overs+. Since E+ is a convex set inc, ands+= Sn E+, it 
n n 

follows that 

S + = ( x E C: f j (x) ~ 0, J = 1, • • • , m} n E: 
can be replaced by the equivalent representation 
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+ From this latter representation of S , it is apparent that if the do-

main of (P) is restricted to E+, then the same set of feasible solu-
n 

tions s+ results, and an optimal solution x* for (P) over s+ when the 

domain of (P) is C is also an optimal solution for (P) over s+ when the 

domain of (P) is E+ Since E+ is a convex set, Theorem ;,4 allows the n• n 

next theorem to be formulated. 

Theorem 3.14. Let (P) be a convex program with domEJ,in E+ in E , ob-n n 

jective function F, and constraint functions {f1, ••• , tm}. Assum.e 

that [x e E+: fj(x) < o, j = 1, ••• ,m} is nonempty. Then x* in E+ n · n 

is an optimal solution for (P) if and only if there exists a u* in E+ 
m 

such that L(x*;u) ~ L(x*;u*) ~ L(x;u*) for all x E E+ and for all 
n 

+ u E E • 
m 

Now let the objective function F and each constraint function 

fj, j = 1, ••• ,m, be differentiable for a convex program (P) whose 

+ domain C is an open set in E which contains E , and suppose that the 
n n 

problem is to find an optimal solution x* for (P) overs+. Although 

E+ is not an open set in E (it is in fact a closed set), it is still n n 

possible to formulate necessary and sufficient conditions for an 

element x* in E+ to be an optimal solution for (P) overs+. The next 
n 

theorem expresses these conditions. 

Theorem 3.15. Let (P) be a convex program whose domain C is an open 

+ set in E which contains E • Assume that the objective function F and n n 

each constraint function f j, j = l, ••• , m, are differentiable over 

C and the (x e E~: fj(x) < O, j = l, ••• ,m} is nonempty. Then x* 

in E+ is an optimal solution for (P) over s+ if and only if there 
n 



+ exists a u* in Em such that 

{a). Li {x*;u*) ~ o, i = 1, ••• , n, 

{b). xf Li(x*;u*) = o, i = 1, ••• , n, 

{c). LJ{x*;u*) ~ o, J = 1, ••• 1 m, 

(d). u* L (x*;u*) = o, 
J j 

J = 1, • • • , m. 

Proof: Assume that x* in E+ is an optimal solution for (P) over s+. 
n 

Then Theorem 3.14 implies that there exists a u* in E+ such that m 

L(x*;u) ~ L(x*;u*) ~ L(x;u*) 

for all x ~ E+ and for all u « E+. Then (3.4.7) in the proof of n m 

Theorem 3.4 implies that (d) is true and the optimality of x* implies 

that x* is feasible and hence L/x*;u*) = fj(x*) ~ o, for 

j = 1, ••• ,m, so (c) is true. 

Suppose that (a) or (b) is not true. Then either 

(1). xr = 0 and L1(x*;u*) < 0 for some 1=1, ••• 1 n, or 

(2). xr > 0 and L1(x*;u*) f 0 for some i = 1, ••• , n. 

is valid. Assume that {l) is true. Then just as in the proof of 

Theorem 3.10, there exists a t 0 > O such that 

L((xr, ••• ,xr+t0, ••• ,x;);u*) - L(x*;u*) 
~~~.....-~~~~--~~~~~...-~~.....-...-...-- < o, 

to 

which implies that L((xf, ••• ,xt+t0, ••• ,x~);u*) < L(x*;u*). 
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Since x* ~ O, (xf, •• • ,xf+t0, • • • 

(3.15.1). Assume now that (2) is true. 

,x*) E E+ and this contradicts 
n n 

If Li(x*;u*) < o, then the 

previous argi;unent again leads to a contradiction. If Li(x*;u*) > o, 

let to > 0 be chosen such that 0 < to < xr, and 

L((xr, ••• ,xf-t0, ••• ,x~);u*) - L(x*;u*) 
~~~~~~~~~~~~~~~~~~~~-< o. 
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Since xf-t0 > o, (xf, ••• ,xf-t0, ••• ,x~) e E: and it follows that 

L((xf, ••• ,xt-t0, ••• ,x~);u*) < L(x*;u*) which is a contradiction. 

Since (l) and (2) both lead to contradictions, it follows that (a) 

and (b) are true. 

+ To complete the proof, now let x* be in E and assume that there 
n 

exists a vector u* in E+ such that (a) through (d) are true. By (c), 
m 

x* is a feasible solution for (P) so the fact that x* E E+ implies 
n 

that x* Es+. For a fixed vector u* in E+, L(x;u*) is a convex func
m 

+ tion of x over E by Lemma 3.3, so it follows from Theorem 3.b that 
n 

+ for all x E E , 
n 

L(x;u*) ~ L(x*;u*) + (x - x*)•[grad L(x*;u*)], x 

or equivalently, 

L(x;u*) ~ L(x*;u*) + x•[grad L(x*;u*)] - x*•[grad L(x*;u*)]. . x x 

From (b), x*•[grad L(x*;u*)] = o. Since x EE+, x ~ 0 and so from (a) x n 

it follows that x•[grad L(x*;u*)] ~ o. Consequently, it follows that x 
+ for all x E E , 
n 

L(x*;u*) ~ L(x;u*). 
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For any u = (u1, ••• , um) in E:, u.1 ~ O for each J. Combining this 

with (c), it follows that ujLJ(x*;u*) = ujfj(x*) ~ O for each j. 

+ Hence for all u E Em' 

Now by (d), 

L(x*;u*) = F(x*) + 

= F(x*). 

m 

L ujf J(x*) s o. 
j=l 

m 

"" u~ (x*) = F(x*) + L J J 
j=l 

Combining (3.15.4) and (3.15.5), it follows that 

m 

m 

~ u*L (x*;u*) L .1 .'.! 
j=l 

L(x*;u) = P(x*) + L ujf j(x*) ~ F(x*) = L(x*;u*) 
j=l 

for all u EE+. It then follows immediately from (3.15.3) and (3.15.6) 
m 

+ + that for all x in En and for all u E Em' 

L(x*;u) ~. L(x*;u*) ~ L{x;u*). 

Theorem 3.14 then implies tb.El.t x* in E+ is an optimal solution for (P) n 
+ over S • 

This chapter discussed the characterization of an optimal solution 

for a convex program {P) in terms of the Lagrangian function formed 

from the objective and constraint functions for (P). It turned out 

that under certain conditions, the problem of minimizing the objective 
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function of (P) over the set of feasible solutions S could be replaced ' 

by the equivalent problem of minimizing the Lagrangian function for 

(P) with respect to the variable x over the domain C of (P). Theorems 

3.4 and 3.10 and Corollary 3.5 are the most general results, while 

Corollary 3.13 and Theorems 3.14 and 3.15 cover special cases. 

Theorem 3.15 is an equivalent form of the famous Kuhn-Tucker Theorem 

(cf. Kuhn and Tucker [15]) which is considered the cornerstone for the 

theorey of convex programming. 

Additional information concerning this topic can be found in 

Hadley [10), Chapter 2, Karlin [12], Chapter 7, Kuhn and Tucker [15), 

Kunzi and Krelle (16], Chapter 3, Ma.ngasarian [18), Chapters 5,7,10,11, 

or Rockafellar (20), Section 28. 

Although the goal of the first three chapters was to present an 

introduction to the theory of convex programming, it is reasonable to 

expect that such theory is not always convenient or practical to use 

in solving real life problems. Hence the obJective of Chapter IV is 

to briefly discuss some algorithms developed for solving convex 

programs. 



CHAP.rER IV 

THREE AIGORITHMS FOR CONVEX PROORAMS 

The Objective of this chapter is to discuss three algorithms which 

have been developed to solve particular types of convex programs. By 

means of an iterative process, each of these algorithms generate a 

sequence of feasible solutions which converge to an optimal solution. 

Since no single algorithm exists which will solve every type of convex 

program, each algorithm imposes certain requirements upon the convex 

program (P) in order that it will work. The three algorithms consider

ed here all require that the convex program (P) be solvable and that 

the objective function be continuous on the domain of (P). 

The first algorithm considered is an application of the Method of 

Feasible Directions developed by ZoutendiJk [24]. Although this method 

can be used to solve convex programs whose constraint functions are 

nonlinear, the form of the algorithm given here is applicable to a 

convex program whose constraint functions are linear. 

The Cutting Plane Method for solving convex programs is the second 

algorithm discussed here. This method can be used to solve convex pro

grams whose objective function is linear and whose set of feasible so

lutions is a particular compact convex set. The iterative process of 

the Cutting Plane Method generates a sequence (generally infinite) of 

linear programs, the solutions for which form a sequence of feasible 

solutions for (P) which converge to an optimal solution for (P). Addi-

b2 
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tional information on the Cutting Plane Method can be found in Kelley 

[13]. 

The last method considered is the Sequential Unconstrained Minimi-

zation Technique developed by Fiacco and McCormick [5]. According to 

Bracken [l], this method has had great success in solving many types of 

nonlinear programs including certain convex programs. This method 

generates a sequence of feasible solutions for (P) which converge to an 

optimal solution. 

The Method of Feasible Directions 

Suppose that (P) is a convex program with domain E , objective 
n 

function F which is differentiable over E , and set of feasible solu
n 

tions given by 

i = 1, • • • , m. (4.1) 

x ~ o, 
J 

J = 1, • • • , n. (4.2) 

Notice that for each i, 1 ~ 1 ~ m, f i given by the expression 

fi(x) = -ai1x1 - ••• -ai~xn + b1 is convex, and for each J, 1 ~ j ~n, 

fm+J(x) = ~xJ defines a convex function fm+J• Then the set of feasible 

solutions S for (P) is given by 

Thus (4.1) and (4.2) conform to the standard form for the set of feasi

ble solutions for (P). 
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Now let x* = (xr, x~, ••• , x~) be a feasible solution which 

satisfies (4.1) and {4.2). The Method of Feasible Directions seeks to 

find a vector (direction) s* = (sr, s~, ••• , s~), where 

-1 ~ sj ~ 1 for each j, and a real number r > 0 such that the point 

x** = x* + rs* is a feasible solution for (P) and F(x**) < F(x*). 

Assume first that x* satisfies the following conditions: 

n 

I ai.1xj = b1 , i = 1, . • • , k, 

j=l 

n 

l aijxj >bi' i = k+l, • . • ' m, 
j=l 

and 

x* = o, 
j 

j = 1, . . • ' p, 

x* > O 
j ' 

j = p+l, • . • ' n • 

It then follows that if r is sufficiently small, and if 

n 

L a1jsj ~ o, 
J=l 

s* 2: o, 
J 

i = 1, • • • ' k, 

j = 1, • • • ' p, 

.. ' 

{4.:;) 

(4 .4) 

(4.5) 

(4.6) 

{4.8) 

then x** = x* + rs* satisfies (4.1) and (4.2) and hence is a feasible 

solution. 

For those s* which satisfy (4.7) and (4.5), it is desired to de-

termine that particular vector along which the objective function F 

attains its maximum decrease from the value F(x*). Recall that this 



maximum decrease occurs along the vector -grad F(x*) if grad F(x*) F o. 

A verification of this remark can be found in Fleming [7], p. ~6. For 

x* fixed, consider the following linear function: 

[grad F(x*)]•[s*]. 

In order to obtain the largest decrease in the objective function F 

from the value F(x*), it is necessary to minimize the linear function 

* given in (4.9) over the set of vectors S which satisfy (4.7) and 

(4.8). Notice that this is a linear programming problem (cf. Hadley 

[11], Chapter 3, for additional information concerning linear program-

ming). * The vector s* which minimizes (4.9) over S is called a feasi-

ble direction and the point x** = x* + rs* gives a smia.ller value of 

F(x) for the r that is chosen sufficiently small. 

If the solution s* to the above linear program is the zero vector, 

then x* is the solution to the problem of minimizing F(x) over the set 

of vectors satisfying (4.1) and (4.2). 

If s* # o, then the parameter r is chosen in the following manner. 

(a). Let 

r =Min . 1 

-xj/sj, if sj < o, p+l ~ J :'!: n. 

n 

L aiJsJ < o, k+l ~ i ~m. 
J=l 

It follows directly that if r ~ r1, then x* + rs* satisfies (4.1) and 

(4 .2). 

(b). Note that F(x* +rs*) is a function of the single variable 

r, and that this function is a decreasing function of r for sufficient-

ly small r. To find the minimum value of F(x* + rs*) with respect to 



r, the following expression is solved for r: 

5!... F(x* +rs*) = [grad F(x* + rs*)]•[s*] = o. 
dr 

Let r 2 be the solution to (4.10), if it exists. For 0 ~ r ~ r 2, 

F(x* + rs*) as a function of r is a decreasing function. 

(c). The optimum choice of the parameter r is then 

The new feasible solution is then 

x** = x* + r*s*. 

(4.10) 

(4.11) 

(4.12) 

This process is then iterated until either (1), s* is exactly zero, or 

(2), the decrease in the objective function is negligibly small. In 

his book (cf. (24]), Zoutendijk has shown that this process converges 

to an optimal solution. Hence, this algorithm can be outlined as 

follows; 

Step 1. Select an arbitrary feasible solution x*. 

Step 2. For this x*, determine a feasible direction s*. 

Step 3. If s* = o, then x* is optimal. 

Step 4. If s* ~ o, determine a feasible parameter r*. 

Step 5. Consider the new feasible solution x** = x* + r*s*. 

Step 6. Repeat Step l through Step 5. 

The following simple example is worked by this method in order to 

illustrate the ·procedure. 

Example 4.1. Let (P) be a convex program such that C = E2, 



F(x,y) = x2 - y + 2, f1 (x,y) = x - y, f 2(x,y) = y - 1, f 3(x,y) = -x, 

and f4(x,y) = -Y• Then S = ((x,y): 0 ~ x ~ 1, x ~ y ~ l] and from 

Example 3.12, the point (O,l) is optimal. Note that 
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grad F(x,y) = (2x,-l). Let x0 = (l/2,1/2) be the initial feasible 

point arbitrarily chosen. Notice that the constraints for this problem 

are: 

{ 1 ) • x - y :!::: 0 implies that -x + y ~ 0, 

(2). y - l ~ O implies that -Y ~ -1, 

(3). -x ~ o, -Y ~ 0 implies that x ~ 0 1 y ~ o. 

The solution proceeds as follows: 

Step l. Since x0 = (1/2,1/2) satisfies constraint (1) with strict 
.. 

equality, it follows from (4.7) and (4.8) that s = (s1, s2 ) must 

satisfy the constraints 

(a). -s1 + s2 ~ o, 

(b). -1 ~ s1 :!::: 1, 

(c). -1 ~ s2 ~ 1. 

Ste~ 2. :Minimize [grad F((l/2,l/2))]•[(s1, s2 )1 = s1 - s2 

subject to the constraints {a) through (c) above. The solution to this 

linear programming problem is s0 = (-1, 1) = (s1, s2 ). Hence s0 is a 

feasible direction for x0• 

Step 3. Now O(x) - l(y) ~ -1 is constraint (2) for the problem 

and O(s1 ) - l(s2 ) = -1 < o. Hence r1 = [-1 - (-l/2)1/-1 = 1/2. 

Step 4. Setting [grad F(x0 + rs0)]•[s0 ] = 2r - 2 = o, it follows 

that r 2 = 1. Therefore, r* = Min (r1, r 2 ) = 1/2 and the new feasible 

solution is x1 = (1/2, 1/2) + (1/2)(-1, 1) = (O, 1). Since s0 f O, 
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the procedure must be repeated for the feasible solution x1 • 

Step 5. Since x1 satisfies constraint (2) with strict equality, 

and the first coordinate of x1 .is zero, the set of possible feasible 

directions for x1 is given by the constraints: 

(a)• -s2 ~ o, ( c). -1 ~ sl ~ 1, 

(b). sl ;;o: o, (d). -1 ~ 82 ~ 1. 

Step 6. Minimize [grad F((O,l)))·[(s1 , s2 )] = -s2 subject to (a) 

through (d) above. The solution of this linear program is 

(s1, s2 ) = (o, o). Thus it follows that x1 is an optimal solution 

for (P) since there exists no nontrivial feasible direct~on for x1• 

The Cutting Plane Method 

The Cutting Plane Method can be used for solving convex programs 

where the objective function is linear and the single constraint 

function for the program is convex and not linear. 

To simplify the statement and proof of this method, consider the 

following characterization of a nonvertical hyperplane in En+l" Let 

G be a convex function defined by G(x) on a nonempty compact convei 

set C in E such that there exists a nonvertical hyperplane of 
n 

support 

) t t t t} ,x 1 e E 1 : a1x1 + • • • + a x + a 1x 1= b n+ n+ n n n+ n+ 

to epi G at the point (t, G(t)) at every point t e c. Since Ht is non

vertical, it must be true that at 1 # o. Therefore, it follows that n+ 



such that (x1 , • 

t t t and b /a 1= f3 , n+ 

- . . . 

• • , x , x 1 ) E Ht. n n+ 

then define 

If 

89 

(4 .13) 

for each (x1, ••• , xn) € c. Then it follows that the point 

(x1, •• , , xn' H(x;t)) is in Ht. Notice that H defined by H(x;t) is 

a function whose domain is E and whose graph in E 1 is the hyperplane 
n n+ 

Ht. In addition, gradxH(x;t) = (a{, ••• , a!)· Also, note that the 

poi~t (t,G(t)) is in the hyperplane Ht. Thus 

. . . (4.14) 

so that 

(4.15) 

From (4.13) and (4.15), it follows th:tt an alternate expression for Ht is 

where t = (t1 , . . . ,t ). Consequently, it follows that 
n 

. t t ) H(x,t) = x 1 = a1 (x1 - t 1 ) + ••• +a (x - t + G(t). n+ n n n 

The Cutting Plane Method can now be summarized by the following 

theorem. Notice that the convex program discussed has the n-dimension-

al convex compact polyhedral set C in E as its domain, the linear 
n 

function F(x) = c•x as its objective function, and the continuous 
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convex function G as its only constraint function. 

Theorem. (Cutting Plane Method). Let G be a continuous convex function 

defined on the n-d.imensional convex compact polyhedral set C in E such 
n 

that at every point t in C, there exists a nonvertical hyperplane of 

. t tj support Ht= lx e En+l: x•a = b to epi G at (t,G(t)). Assume that 

there exists a finite constant K such that for each hyperplane Ht' 

II (ai, • • • , a!, 0 )II s; K for all t in C. Let F(x) = c •x be a linear 

obJective function such that llcll > 0 is finite and let 

S = {x e C: G(x) ~ oJ with S nonempty. If tk e Ck is such that 

where c0 = C and 

then the sequence {tkJ converges to a point z « S such that 

F(z) =inf (F(x): x ES}. (4.16) 

Before turnir;ig to the proof proper, consider Figure 10 which de
i 

picts the above descrioed procedure for k = o, l, 2, 3. First, t 0 is 

determined which minimizes F over c0 • Then the hyperplane Ht deter-
0 

mines the set c1 • Then t 1 minimizes F over c1 and the hyperplane Ht 
1 

determines c2. Similarly, t 2, Ht , and c3 are determined. 
2 

cedure then continues in this manner. 

The pro-

Proof: Since C is an n-d.imensional convex compact polyhedral set, C 

can be written as the intersection of a finite number of closed half 
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spaces and hence is closed. Since G is continuous, S is compact so 

there exists a point z e S such that (4.16) is true. 

Now let t be an arbitrary point in C \ S. A hyperplane of support 

to epi G at (t,G(t)) can be written as 

Ht= ((x;z) e E 1: x e c, z = H(x;t) = G(t) + at·(x ~ t), at: o}. . n+ 

(If G is differentiable, then Ht is just the tangent plane to epi G). 

Since epi G is a convex set, it follows that H(x;t) ~ G(x) for all x in 

c. If x e s, then G(x) ~ O and thus H(x;t) ~ O for all x in s. Since 

t is not in s, H(t;t) > O. Consider the trace of the hyperplane Ht in 

E ; that is, the set (x e E : H(x;t) = O}. The above discussion then n n 

implies that t and S are separated by tqe trace of Ht in En. 

Now let C = c0 and let t 0 be the point in c0 which minimizes F(x) 

over c0• Since c0 is compact and F is continuous, such a point exists. 

(assume that t 0 is in c0 \ S for otherwise t 0 is a solution to the 

problem). Let 

Then s is contained in cl so cl is not empty. Also, cl is compact so 

there exists a t1 in c1 which minimizes F(x) over c1 • Note that 

c1 contained in c0 implies that F(t1 ) ~ F(t0), and that H(t0;t0) > O 

implies that t 0 t c1 • In general, fork> l, let 

and let tk be the point which minimizes F(x) over Ck so that 

F(tk) ? inf (F(x): x e Ck}. Since Sc Ck C Ck-l' for all k, it follows 
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that F(z) ~ F(tk) ~ F(tk-l) where z satisfies (4.16). Consider the 

sequence ( tk}generated by the above method. Due to the fact that ( tk} 

is contained in C and C is compact, there exists a point p € C and a 

subsequence (tk } of {tk} such that {tk } converges top. A proof of 
i i 

this ia.saertion can be found in T~ylor [22], p. 72, Theorem 2.4-H. Now 

(F(tk )}, being a monotone nondecreasing sequence which is bounded 
i 

above, converges to some value~. Then the continuity of F implies that 

F(p) = ~ where~ ~ F(z). If p E S, then F(p) ~ F(z) and it follows that 

F(p) = F(z). Hence p would be an optimal solution for the problem of 

minimizing F(x) over s. It remains to be shown that p must be in S. 

To show that p is in s, note that if tk minimizes F(x) over Ck' 

then tk e CJ' J = O, 1, ••• , k - 1, so it must be true that 

(4.17) 

If tk £ S for some k, then tk is a solution. Thus assume G(tk) > O 

for all k. Furthermore, G(tk ) converges to G(p) ~ o. If p e s, then 
i 

G(p) = o. Hence assume that G(p) > o. Then for r = (l/2)G(p) > O, 

it is true from the continuity of G that for sufficiently large ti, 

(4.15) 

However, since ( tk } is a convergent sequence, it is 8. Cauchy sequence 
i 

and this means that l!tk - tk 11 can be made arbitrarily small for kJ 
J 1 

and k1 sufficiently large and this contradicts (4.18). Hence G(p) = 0 

and thus p is in s, and by the above remarks, p is optimal and 

satisfies (4.16). 
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Notice that for any k, Ck is a convex compact polyhedral set and 

the minimization of F(x) over Ck is a linear program. Hence each tk 

is a solution to a linear program aesociated with Ck and F and it 

follows that the Cutting Plane Method generates a sequence of linear 

programs whose solutions form a sequence which contains a subsequence 

that converges to the optimal solution of the convex program whose 

objective function is F and whose set of feasible solutions is S. 

Example 4.2. To illustrate the computational procedure for the Cutting 

Plane Method, consider the following problem: Minimize F(x,y) = x - y 

2 2 
over the set S = ((x,y) ~ E2: G(x,y) = x + 4y - 1 ~OJ. To begin, 

notice that S is contained in the 2-dimensiona1 convex compact poly-

hedral set C = ({x,y) E E2: -1 ~ x ~ l, -l ~ y ~ l}. The procedure is 

then as follows: 

Step. 1. Solve the linear program: 

Minimize F(x,y) over c. 

Then t 0 = (-1,1). Since G is differentiable, Ht is Just the tangent 
0 

plane to epi G at (t0,G(t0 )) and H(x;t0 ) = -2x +by - 6. Therefore, 

c1 = c n ((x,y): -2x + 8y -6 ~ oJ. 

Step 2. Solve the linear program: 

Minimize F(x,y) subject to 

{a). -l ~ x :..,;; l, (b) • -1 ~ y ~ l, ( c) • ..2x + by ... 6 ~ 0. 

Then t 1 = (-1,l/2) and H(x:t1 ) = -2x + 4y -3· 

Step 3. Solve the linear program: 
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Minimize F(x,y) subject to 

(a). -1 :s: x :!:: l, (c). -2x + by - 6 ~ 0 1 

(b). -1 :!O: y :!O: l, {d). -2x + 4y - 3 ~ O, 

Then t 2 = (-1,1/4) and this procedure is continued until tk is in S or 

is sufficiently close to S. A criterion for termination of the process 

woul.d be to require that G(tk) is smaller than some pre-assigned 

tolerance. Further details on the Cutting Plane Method ean be found 

in Kelley [13]. 

Sequential Unconstrained Minimization Technique 

The Sequential Unconstrained Minimization Technique makes use of 

a penalty function formed from the objective and constraint functions 

of a convex program (P) to create a sequence of unconstrained minimiza-

tion problems the solutions of which converge to an optimal solution 

for (P). This methbd, verified by Fiacco and McCormick [6], can be 

applied to a convex program when certain hypothesis are satisfie:d 

by the objective functi6n and ttle constraint functibns for {P). In 

what follows, the constraint functions for (P) are referred to as 

concave functions. Recall that a function f is concave if and only if 

-f is convex. The Sequential Unconstrained Minimization Technique 

ca~ be formulated ip the following theorem. 

Theore'm. {Sequential Unconstrained ~nimization Technique). Let {P) be 

a convex program with domain E , objective function F, and constraint 
n 

functions {-f1, ••• , -fm}' m > l. Assume that the following condi-

tions a.re valid: 



(1). The set S* = (x e En: fi(x) > o, i = l, ••• ,m} i o. 

(2). The functions F, f1, ••• , fm are twice continuously 

ciiff erentiable. 

(3). For every integer p, fx e S: F(x) ~ p) is a bounded set 

where S = {x e En: fi(x) ~ o, i = 1, ••• ,m}. 

(4). The function defined by 

m 

P(x;r) = F(x) + r L l/fi (x) 

j=l 

is strictly convex in S* for each r > o. 

Then, given {rkJ a strictly monotone decreasing sequence of reals such 

that (rk) converges to zero as k becomes infinite, the following conclu

sions are true: 

(a). The function P(x;rk) is minimized over S* at a unique xk in 

S* where gradxP(xk;rk) = o, and 

Proof: Let x* be a point in S*. For any k, let P(x*;rk) = M. Now the 

set S is the set of feasible solutions for (P) and (3) of the hypoth-

esis implies that the objective f'unction F and S have no vectors of 

recession in common; hence (P) is solvable and there exists a real 

number v0 such v0 is the optimal value for (P). Next, for the given 

k, form the sets R0 = (x e S: F(x) ~ M} and for i = 1, • • • ,m, 

Ri = [x €En: rk/fi(x) ~ M - v0}. Let R = n[Ri: i = 1, ••• ,m}. 

The first task is to show that R is nonempty. Since x* e S*, it 



follows that fi(x*) > 0 for all i and hence l/fi(x*) > 0 for all i. 

Since for each k, rk > o, rk[l/f1 (x*) + ••• + l/fm(x*)] > o. Thus 

so x* e R0• Now let J be an arbitrary index, l ~ J ~ m. Notice from 

the above equality that 
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rJf/x*) = M - [F(x*) + Lri/fi(x*)] 

i-/J 

(4 .19) 

and, since v0 ~ F(x*), that 

Hence 

v0 < [F(x*) + Lrk/fi(x~)]. 
i/:J 

-v0 > -[F(x*) + L rk/fi (x*)]. 

i/=J 

(4 .20) 

Adding M to both sides of (4.20), and comparing the resulting inequal

ity to (4.19), it follows immediately that 

Since J was arbitrary, (4.21) holds for i = 1, ••• ,m. Hence x* is 

in Ri for each 1, and thus x* E R. Therefore, R is nonempty. 

Notice that if x e R, then x « R0 and hence is in s. But x is in 

R1 for each i = 1, ••• ,m, and by the construction of R1, it must be 

true that f 1(x) > 0 for each i. Otherwise, rk/f1(x) is undefined which 
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implies that x is not in R. Thus R is contained in S* • 

.Also, R0 and each Ri are closed sets by the continuity of F and 

fi' respectively. In addition, R0 is bounded by (3) of the hypothesis. 

Consequently, R is a nonempty compact set in E • 
n 

Since P(x;rk) is defined over R for each rk' it is also continuous 

there by virtue of (1) and (2). The fact that R is compact implies 

that there exists an~ e R such that P(~;rk) = inf(P(x;rk): x e R}, 

and the hypothesis that P(x;rk) is strictly convex over S* implies that 

P(x;rk) is strictly convex over R. Hence xk is unique; that is, the 

minimum set of P(x;rk) over R is a singleton set {~} (a proof of the 

assertion that a strictly convex functi?n has only one minimum on a 

convex set where it is bounded below can be found in Kowalik [14], 

p. 141, Theorem 7). In fact, for each rk' P(x;rk) attains its minimum 

over S* at ~' and since S* is open, it must be true that 

gradxP(x;rk) = o. To see that P(x;rk) also attains its minimum over S* 

at ~' note first that R c: S* implies that 

Now assume that there exists a z c S*\ R such that 

Then it follows that P{z;rk) < P(x*;rk) =.M, and since 

m 

v0 < P(z;rk) = F(z) + L rk/fJ(z) < M, 

J=l 

(4.22) 

it follows that F(z) < M. Consequently, z e R0• For any J, l s J s m, 



it follows from (4.23) that 

and 

r.,jfj(z) = M - [F(z) + Lr.,jfi(z)] 

1/.:J 

.... v0 > -[F(z) + Irk/f1 (z)]. 

i;j 
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(4 .24) 

(4.25) 

Combining (4.24) and (4.25), it follows directly that for each j, 

Therefore, z e Ri for each i and hence z E R~ which is a contradiction. 

Thus 

inf(P(x;rk): x e R} ~ inf(P(x;rk): x e S*}. (4 .26) 

Consequently, the above assertion then follows from (4.22) and (4.26), 

which proves (a). 

Before proving (b), note that if k > k*, then rk < rk* and 

{4.27) 

Therefore, let E > 0 be arbitrary and let z E S* such that 

F(z) < v0 + e/2. Select k* such that r~* < [min1f 1(z)]e/2m. Then 

for k > k*, 



All that needs to be shown now for (b) to be true is that 

Lim F("k) = v0 • Note that for k > k*, it is true th~t 
k....a> 

Subtracting v0 from all entries in the above expression, it follows 

that 

true that 
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for all k > k*. Hence Lim F('lt) = v0 which is the ,desired conclusion. 
' k-->eo ' 

Therefore, (b) is true. 
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In light of this theorem, the steps describing the computational 

algorithm for the Sequential Unconstrained Minimization Technique can 

be listed as follows: 

Step l. Select a point x* in the interior of the set of feasible 

solutions. 

Step 2. Select the initial value of r. 

Step 3. Determine the minimum of P(x;rk) for the current value of 

rk over the interior of the set of feasible solutions. 

Step 4. Terminate computations if some final convergence crite-

rion is satisfied. Fiacco and McCormick [4] suggest that one possible 

convergence criterion is to terminate computations when 

rk[l/f1 (~) + ••• + l/fm(~)] < E for some predetermined small number 

e > o. If such convergence criterion is not satisfied, then go to Step 

Step 5. Select rk+l = rk/c where c > l. 

Step 6. Continue procedure from S~ep 3. 

To illustrate the application of.this method, consider the follow-

ing example. 

Example 4.3. Let (P) be a convex program with domain E2 • Let 

F(x,y) = (l/3)(x + 1)3 + (l/3)(y + 1)3, f1 (x,y) = x - 1, and 

f 2(x,y) = y - l. Then S = {(x,y): x ~ 1, y ~ l} and for any rk > o, 

Setting gradxP(x;rk) = 0 and solving for xk in terms of rk' it follows 

1/2 1/2 1/2 1/2 that~= ((rk + 1) , (rk + l) ). As k becomes infinite, rk 

converges to zero and~ converges to an optimal solution for (P). 



Therefore, it follows that 

Lim ~ = (l,l) 
rk .... o 

where (1,1) is an optimal solution for (P), and 

= 16/3 

where 16/3 is the optimal value of (P). 
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In general, algorithms for the computational solution of a convex 

program (P) generate a sequence of feasible sol~tions for (P) which 

converge to an optimal solution. Except in particular cases, such as 

t~e program in Example 4.1 solved by the Method of Feasible Directions, 

the iterative procedure is infinite so that some convergence criteria 

must be used to terminate the computations after a finite number of 

iterations. According to Fiacco [6] and Bracken [l], the Sequential 

Unconstrained Minimization Technique has easily been adapted to 

computer use for the solution of convex programs with nonlinear obJec-

tive function and linear or nonlinear constraint functions. Much addi-

tional information on this method can be found in the recent book by 

Fiacco and McCormick (6). Kelley (13], p. 708, states that the Cutting 

Plane Method for solving convex programs is~not always feasible even 

using computers, since no dependable convergence criterion exists for a 

large class of convex programs. 

More information on algorithms can be found, in addition to those 

references above, in Kowalik [14] and Kunzi (16]. 
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