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PREFACE

This dlssertatlon deals with a certain class of nonllinear program-
ming problems known as convex programming problems. The purpose of
this paper is to provide an introduction to the theory of convex pro-
gramming. Mathematical programming in general has risen to a place of
importaﬁce in the last two decades, beginning with iinear programming
in the late 1940's and early 1950's and continuing today with nonlinear
programming. Much interest and activity has been devoted to nonlinear
programming in recent years but because of the very diverse nature of
the toplc, almost all energy has been directed toward the creation of
algorlthme for the solution of particular types of prob}ems. This is
particular:ly true also in convex programming.

Not readily available in the literature 1s g source which gives
the theoretical foundation for convex programming in a complete and
conclee form and specifically formulates the discusslon in terms of
convex programming. For example, Rockafellar [20] develops the theory
of vectors of recession for a convex set and a convex function but
does not single out or emphasize that theory which is applicable to
convex programming; rather he formulates hié results in terms of when
a convex function attains its minimum on a convex set, In the section
he devotes to convex programming, almost the entire text is in terms
of Kuhn-Tucker vectors which contributes nothing to the fundamental

theory of convex programming. Karlin [12] talks about concave program-

ming where the objJective functlons are concave and the gosal is to
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maximize a concave function:over the set of feaslble solutions. Kuhn
and Tucker [15] also fbrmulate thelr discussion in terms of concave
programming and limit themselves to convex programs over E:, the non-
negative orthant of En. In [16], Kunzi and Krelle characterize an
optimal solution for a convex program in terms of the lagranglan func-
tion assoclated with the convex program but only for a convex program
over E;. No mentlon is made of the more general fesult that appears

in Chapter III of this result. Therefore, it is the express purpose of
thils paper to fill thls gap in the fundamental theory of convex pro-
gramming.

The desired audlence for this paper 1s any person, invoived in
mathematical programming or not, who has an adequate backgroﬁnd in the
undergraduate mathematlcs courses of linear algebra, elementary
topology and analysis (particularly, advanced calculuse), and calculus
of several variables. The reader should be famllar with such concepts
as n-dlmensional Fucllidean space En, the inner-product property of this
space, basls, subspace, and such topclogical properties of sets as
open, closed, bounded, and compact. The only notatlion that might be
unfamilar is the symbol A \ B which means the set of all points in A
which are not in B. Also, 1f x and y are vectors in En, then x-y
represents the lnner-product of x and y-

Chapter I is concerned with the baslic definitions of a convex set
and a convex functlon and with the development of the concept of a
vector of recession for a convex set and a convex function. In
Chapter II, the ideas formulated in Chapter I are used to discuss the
feasibility and solvability of convex programs. Also, the relationship

of feasible and optimal solutions 1s investigated. The characteriza-
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tion of optimal solutions for convex programs is the goal of Chapter
IITI. The results in this chapter characterize an optimal solution for
a convex program in terms of the Lagranglan function assoclated with
the convex program. This characterization is first given for an arbl-
trary convex program, and then for differentiable convex programs, and
finally for convex programs over the nonnegative orthant E; of En.

The last chapter, Chapter IV, presents a discussion of three algo-
rithms that have been developed for the solution of particular convex
progréms. jhe Method of Feasible Directions has had ;elatively good
success in solving certaln convex programs through the use of computers
according to Dorn [2]. The Cutting Plane Method is more theoretical
than applicable bﬁﬁ is one of the more well -known convex programming
algdrithms. The récently developed Segquential Unconstrained Minimil-
zation Technique has been very successful in solvling convex programs
by means of computer.

. Finally, all functions discussed in this paper are consldered
continuous on thelr domains of definition. If no domﬁin of definition
is speclified, then the function is consldered contlnuous on En.

The author would like to take this opportunity to express hils
gratitude to Professor E. K. Mclachlan, whose guldance and direction
were lnstrumental in the completion of his graduate program, and to
Professors Forrest D. Whitfield, Robert T. Alciatore, and W. Ware

Marsden for thelr assistance while serving on hie committee.
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CHAPTER I
SOME PROPERTIES OF CONVEX SETS AND CONVEX FUNCTIONS
Introduction

Historically, sclentists and economists have been interested in
optimization problems which seek to maximize or minimize a numerical
functlon of a number of varlables. Optimlzation problems occurred
primarily in the physical sclences and geometry, and the classical op-
timization techniques, such as Aifferentlal calculus of varlations,
were developed to deal with them. However, a new class of optimiza-
tion problems has received considerable atﬁention in the last two dec-
ades, which involve the optimum allocatlon of limited resources.

These are mathematical programming problems which seek to determine
values for a specified set of variables which optimize (maximize or
minimize) a numerical function of the variables, called the obJjective
function, subject to various constraint relations,; called the con-
straint functions, which are also numerical functions of the variables.
A solution to such a mathematical programming problem ls a program of
action, or a strategy, which is optimal with respect to the limposed
limitations given in terms of the constraint functions.

When the obJjective function and each of the constraint functions

are linear functions, the problem is a linear programming problem.

This type of problem received a great surge of activity and interest

in the late 1940's and early 1950's. However, not all mathematical



programming problems that arise are linear. If one or more of the con-
straint functions, or the objective function, is a nonlinear function,

then the problem is called a nonlinear programming problem. Much

effort has been devoted recently to the solution of nonlinear programs,
but because of the great difficulty of optimizing nonlinear functions
in general, emphasis has turned toward the solutlons of particular
types of nonlinear programming problems. One type of nonlinear pro-
gramming problem vhich has recelved much attention in the last decade
is the convex programming problem which is discussed in this paper.

A set C in n-dilmensional Fucllidean Space En is a convex set 1f

and only i1f for any real number A ¢ [0,1] and any two points x and y in
C, Ax + (1 - A)y is in C. Hence a convex set has the property that it
always contains the line segment Jolning any two of its polnts. A

function f defined on a nonempty convex set C 1s a convex function 1if

and only if for every real number A € [0,1] and every two points x and

y in C,
f(ax + (1 - A)y) < Af(x) + (1 - A)f(y).

The functlion f 1s strictly convex 1f strict inequallty holds 1n the
above expression when \ e [0,1] ahd X 1s unegual to y. Examples of a
convex and & nonconvex set are in Figure 1(a) and 1(b), respectively;
examples of a convex, strlctly convex, and nonconvex function are
found in Figure l(c), 1(d), and 1(e), respectively.

A convex program, denoted by (P), 1s comprised of three specific

parts: a convex set C 1n En which 1s its domaln; a convex function F

defined on C called the objective funetion for (P); and a finlte set

of convex functlons {fi: i=1, .. . ,m}, each defined on C, called
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the constraint functions for (P). Given any convex program, the convex

programming problem is to minimize the objective functlon F over those
polnts in the domain C which satlafy the constraint relations given by
fi(x) <0QOfori=1, .. . ,m. A more conclse statement of the convex

programming problem is the followling:
min{F(x): x € S} where S = {x € C: fi(x) <0,1=1, ... ,n}.

Any point in the set S 1s called a feasible solution for (P) and S is

called the set of feasible solutions. The convex program (P) is

feasible 1f & 18 a nonempty set, and 1s solvable 1f the obJective
function F attains its minimum in S. That is, (P) is solvable if
there exists a point z € S such that F(z) < F(x) for all x ¢ S. A
feasible solution z at which F attains its minimum in S is called an

optimal solution for (P) and F(z) is called the optimal vaiue for (P).

As an illustration, consider the convex program (P) with domain
EE’ objective function P(x,y) = (x - 2)2 + {y - 1)2 + 3, and constraint
functions fl(x,y) = x2 -, fz(x,y) = x2 +y -2, and f3(x,y) = =Y.
The set of feasible solutions S for (P) and the graph of the objective
function F over S are shown in Figure 2. Notice that the convex pro-
gram (P) seeks to find that point (x,y) in the set of feasible solu-
tions S such that the square of the distance from (2,1) to (x,y) is
equal to or less than the square of the distance from (2,1) to any
other point in 8. Such a point (x,y) then minimizes the objective
function F over 8. It turns out that the optimal solution for (P) is
the point (1,1) in S. This can be seen intuitively in Figure 3 which
shows that (1,1) is the point in S which is "nearest” to (2,1). The

1

next two examples illustrate convex programs based on “real-world"
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data.

Example 1.1. (Chemical Equilibrium). Consider a mixture of m chemical
elements. Assume that it has been predetermined that the m different

types of atoms can combine chemically to produce n compounds. Define

xJ = the number of moles of compound J present in the mixture at
equilibrium,
n
Xq = the total number of moles in the mixture where X, = :E: xJ,
J=1
aiJ = the number of atoms of element i In a molecule of compound J,
bi = the number of atomic weights of element 1 in the mixture.

The mass balance relationships that must hold for the m elements are

n
z ainJ = bi, 1= l, e« o o« ,m, (lol-l)
=

and

X 2 O, J= l’ o o e ,n- (l..l.2)

Determination of the composition of the mixture at equilibrium is

equlvalent to determination of the values of x., J =1, . . « ,n, that

J
satisfy (1.1.1) and (1.1.2) and also minimize the total free energy of

the mixture. The total free énergy of the mixture is given by
: n
Y xle, + In(xy/x)] (1.1.3)
J:l ,

where;cJ = AJ + 1ln P, AJ is the Gibbs free energy function for the Jth
compound, and P 1s the total pressure in atmospheres.
Thus the convex programming problem is to find (xl, .« e a ,xn)

which minimizes the convex objective function (1.1.3) subject to the



constraint relations (1.1.1) and (1.1.2).

Example 1.2. (Weapons Assignment). Consider the problem of assigning
p types of weapons to q dlfferent targets such that weapons cost 1s
minimized and at least a speclfied expected damage value 1s inflicted

on varlous targets. Deflne

xij = the number of weapons of type 1 assigned to target J,
i1=1, ...,p and J=1, « « « ,Q,
aiJ = the probabllity that target J wlll be undamaged by an attack
uslng one unit of weapon 1,
dJ = the minimum expected damage to target J,
ey = the cost per unlt of weapon of type i.’

The expected damage to target J by the over-all assignment of weapons

of all types 1s

P %,
J
1 - ’ (aiJ) .
1=1

Hence constrelnt relations for expected damage to the varlous targets

are

p
X
1
1 - l ﬂ(aia) J > a5, J=1, «..,a, (1.21)
1=1

b ZO, i'—’-’l,ooo,pandJ:l,uo.,Qo (1.2.2)

1J

The total cost of the assignment of x, , weapons to the varlous targets

1]
1s

:E: ¢y j}: Xyy0 (1.2.3)



Thus the convex programming problem is to find xiJ's which minimize
the convex objective function (1.2.3) subJect to the constraint

relations (1.2.1) and (1.2.2).

A convex program is not necessarily feasible, but even if it is,
Teasibllity does not imply solvability. Certainly if the set of fea-
eible solutions for a convex program (P) is a nonempty closed and
bounded set, then the continulty of the objective function implies that
(P) is solvable. This implication follows from the fact that & contin-
uous function defined on a compact set attains its minimum there.
However, 1f the set of feasible solutions is nonempty and closed but
not bounded, then the continulty of the obJective function is not
enough to insure that (P) is solvable. If the set of feasible solu-
tions is not bounded, then (P) can be solvable or not solvable as

shown by the next two examples.

-X -X

Example 1.3. Let C = R, P(x) = e, and fl(x) = e - l. Then the set
S = {x € Rt x 2 0} 1s a nonempty closed convex set which is unbounded;
that 1s, there exists no real number M such that ||x|| < M for all x e S.
Now inf{F(x): x € 8} = 0, but for every x e S 1t 1s true that F(x) > O.

Consequently, the convex program defined by C, F, and f, as glven above

1
has set of feaslble solutlons S but is not solvable.

Example l.4. Let C =R, F(x) = (x - 5)2 + 1, and fl(x) = e*_1. Then
S 18 the same as 1n Example l.l and inf{F(x): X € S} = 1. The convex

program defined by C, F, and f, 1n this example alsc has set of fea-

1
sible solutions S but it is solvable since F(5) =1 and 5 e S.

By comparing these two examples, 1t becomes apparent that both the



10

feasibllity and solvability of an arbltrary convex program depend
entlrely on the convex set and the convex functions which define it.
Although the convex program in Example 1.3 is not solvable, by merely
replacing the obJectlve function a new convex program is created, as
shown in Example l.4t, which is solvable even though the set of feasible
solutions is an unbounded set. Therefore any discussion of convex
programs and their related convex programming problems is to a very
large extent a dlscussion of those properties of convex sets and convex
functions which directly influence the feasibility and solvability of
convex programs. The remalinder of this chapter is devoted to develop-
ing these propertles, first of convex sets and then of convex functions.
The maln goal is to characterize the relationship between unbounded
closed convex sets and convex functions defined on them which insures
that a convex function defined on an unbounded closed convex set

attains its minimum there.
Some Propertles of Convex Sets

The obJective of this section is to characterize unboundedness in
convex sets8. The first lemma establishes a slimple but fundamental

property of an arbltrary collectlon of convex sets.

Lemma 1.5. Let {Ci: i e I} be a collection of convex sets where I is

an arbltrary index set. Then.ﬂ{Ci: i € I} is a convex set.

Proof: 1If the intersection of the sets is empty, then the conclusion
follows trivially. Hence assume the Intersection is nonempty and let x
and y be in the intersection. Let A ¢ [0,1] be arbitrary and consider

z =M + (1 - A)y. Since x and y are in Ci for each 1 ¢ T and each Ci
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is convex, it follows that z ¢ Ci for each 1 ¢ I. Therefore z is in the
intersection of all the convex sets which implies that ﬂ{Ci: ie I} is

a convex set.

Recalling the unbounded convex set in Example 1.3, it seems that a
characterization of unboundedness for S is that for any x in S and any
u >0 and any A = 0, the point x + Au 1s also in S. The convexity of
S then implies that the line segment Joining x to x + Au is contained
in S. Notice that this property can be expressed by saying that for
any x in S, there exlists a nonnegative vector u such that the closed
ray {x + Au: A > O} is contained in S. Thié concept 18 made more pre-

cise in the next definition.

Definition 1.6. Let C be a convex set. Then a vector u is called a

vector of recession for C 1f and only if there exists an Xq e C such
that {x, + Auz A 2 0} is contained in C. The set of vectors of

recession for C is denoted by A(C).

It should be pointed out that for any nonempty set C, A(C) is
never empty since u = 0 1s trivially a vector of recession for every

set. Throughout the remainder of this paper, any vector 2£ recession

mentioned in the discussion is considered a nontrivial vector unless

specifically stated otherwise. A useful characterlzatlion of vectors of

recession for a closed convex set is given by the next theorem.

Theorem 1.7. Let C be a nonempty closed convex set. Then u ¢ A(C) if
and only 1f there exists & sequence of the form Alxl, Azxz, o o e

where x; € C and hi 1 0 and Aixi converges to u.

Proof: Let u € A(C). Then there exists an x e C such that the set
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{x + Auz A 2 0} 1s contained in C. In particular, let A = 1/k and
X, =X + ku, for k=1, 2, « « « ,. Then Ak 1 O as k becomes infinite
and x, € C for each k. In addition, as k becomes infinite, MKy
converges to u which i1s the desired conclusion.

Now assume there exists a sequence {xkxk} in C such that A o,

k ¢

X is in C for each k, and X converges to a vector u. Let r > 0 be

Kk
an arbitrary but fixed real number. Then for all A S l/r, it follows
that 0 < rxk < 1. Let p be an arbltrary point in C. For each k, xk is
in C so the point (1 - rxk)p + TA, X, € C by the convexity of C. Since

C 1s a closed set, the limit of (1 - rkk)p + r)\kxk as k becomes infinite
which is p + ru is in C. Since r > 0 is arbltrary, 1t follows that

{p + ru: r 2 0} 1s contained in C. By Definition 1.6, u € A(C).

An interesting result concerning vectors of recession is an lmme-
dlate consequence of the second part of the proof of Theorem l.7.
Notice that p was an arbltrary point in C, yet {p + ru: r > 0} was
contained In C. Does this mean that 1f € 1s a nonempty closed convex
set, then u ¢ A(C) implies that {x + ru: r = 0} ¢ C for every x in C?

The answer to this questlon 1s, yes, as shown by the next corollary.

Corollary l.8. Let C be a nonempty closed convex set. If u e A(C),

then {x + Au: A = O} is contained in C for every x in C,

Proof: Let u € A(C). Then for some X, € c, {xo + Au: A 2 0} = C.

Hence x.. + u, x
0 770

e = 1/k and X =Xy +ka fork=1,2, .. .,. Then )\ x converges

+2u, . « « , 18 & sequence of points in C. Let

to u as k becomes infinite and it follows from the proof of Theorem 1.7

that for any x € G, {x + Au: ) 2 O} is contained in C.
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Some examples of convex sets and thelr assoclated sets of vectors
of recesslon might help to clarify this concept of unboundedness. The

sets discussed are illustrated in Figure k.

Example 1.9. Let C, = {(x,y): x>0, y 2 1/x}. ThenC

closed convex set and A(Cl) = {(x,y): x> 0, y = 0}.

1 is a nonempty

Example 1.10. Let 02 = {(x,y): Y = xe}. Then C, is also a nonempty

2
closed convex set and A(Ca) = {(x,y): x =0, y 2 0}.

Example 1.1ll. Let C5 = {(x,y): x2 + y2 < 1}. In this case, C3 is a

nonempty closed bounded convex set and hence A(C5) = {0}.

Example 1.12. Let C, = {(x,¥): x >0, y >0} u {(0,0)}. Then C, is a

nonempty convex set and A(Ch) = {(x,¥): x20, y2 0} = A(Cl).

These examples show that there is a distinct relationshlp between
nonempty convex sets and thelr sets of vectors of recesslon. Notice
that C, # C, vet A(Cl) = A(Ch). It jcurns out that if C is a nonempty
convex set, then A(C) is also & nonéhpty convex set (it is in fact a
convex cone) and 1f C is closed, then A(C) is also closed. The next
theorem makes these assertlions precise and appropriate proofs can be

found in Rockafellar ,[20], Section 8 .

% -

Theorem l.l3. Let C be axnonempty closed convex set. Then A(C) is a

closed set with the following properties:

(a). 1if u, and u, are in A(C), then U, + U,

(b). if u is in A(C) and r = 0, then ru is in A(C).

is in A(C).

In particular, A(C) 1s a convex set.

Now consider the collectlon of convex sets {Ci: 1 € I} where I is



1k

(2)

A(Ce)

Figure k4.
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an arbltrary index set. Lemma 1.5 says that n{ci: 1 €I} is a convex
set. The questlon then arises as to the relationship between the
vectors of recession for the sets Ci and the vectors of recession for
the convex set which 1s their intersection. The followlng theorem pro-

vides an answer for this question.

Theorem 1.1k. Let {Ci: i1 € I} be an arbitrary collection of closed

convex sets such that n{Ci: i € I} is a nonempty set. Then
A(n{ci: 1eI})-= n{A(ci): 1 e I}.

Proof: Let z ¢ n{Ci: 1e€eI}. Ifuce A(n{Ci:‘i € I}), then the set
{z + 2 A20) n[Ci:i € I}. Consequently, u € A(Ci) for each 1 € I
and it follows that u € ﬂ{A(Ci): ie I},

Now let u ¢ n{A(ci): 1 eI}. If z en{C;: i eI}, then the set

{z + A A 2 0} is contained in C, for each 1 ¢ I and it follows that

i
u € A(C,) for each 1 € I. Thus u ¢ A(N{C,: 1 € I}) and the desired

conclusion 1s immedlate.

This discusslon of vectors of recession ls motivated by a desire
to characterize unboundedness in convex sets in a simple and easy to
work with manner. Theorem 1.15 below, and Corollary 1.16 which follows

it, provide thls desired characterization.

Theorem 1.15. Let C be a nonempty closed convex set. Then C is

bounded if and only if A(C) = {0}.

Proof: Suppose that C i1s bounded. Then there exists a real number M

such that ”x” < M for every x € C. Let X, € C and consider the set

X4 + C. It follows directly that Xy + C 1s a nonempty closed convex
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set. In addition, -x. + C 1s bounded, for if 2z € -x. + C, then there

0 0

exlsts an x € C such that z = Xy t+ Xe Consequently, evaluating the
norm of z, it follows that ||z = ||-x, + x|| < || X, + [|XI| < ”xO” + M.

The fact that %Al + M 1s a fixed real number and that z 1is arbitrary

ol

in *xo + C implies that -x0 + C 1s bounded. Assume that u is a vector

of recession for C. Then for Xq € c, [xo + Au: A 2 0} is contained in

C so -x, + {xo +Aus A 20} = {Au: A 20} e Xy + C. Since lu]| > o,
there exists a ), >0 such that onuu = AOHu“ > "xOH + M. But \ju s
in Xy + C and thus the boundedness of Xy + C 1s contradicted. Hence
A(c) = {0}.

Now suppose that A(C) = {0} and assume that C is unbounded. Then
there exists a sequence of vectors x,, X, Xgy + + « 5 such that ”ka
approaches infinity as k becomes infinite. Let ), = l/“ka. Then
A tOand [\ x}e{xekE: |xll =1} = B. Since B is a compact set,
there exlsts some y in B such that Akxk converges to y. By Theorem 1.7,
it follows that y € A(C). But y € B implies that y is a nontrivial
vector which contradicts the assumption that A(C) = {0}. Hence C is

bounded.

The contrapositive of Theorem l1.15 is a more intultive statement
of the condltlons which imply that a convex set i1s unbounded. It is

glven here as a corollary to the above theorem.

Corollary 1.16. Let C be a nonempty closed convex set. Then C is un-

bounded if and only if A(C) # {0}.

Another toplc with respect to convex sets which has an important
influence on the structure of convex programs 1ls conditions which imply

that an arbitrary collection of convex sets has a nonempty intersec-
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tion. The results which follow are used in Chapter II to establish
conditions which insure that a feasible convex program 1s also solvable.
The basic result concerning the intersection of an arbitrary col-
lection of convex sets 1s known as Helley's Theorem and it is presented
here without proof. The interested reader can find several proofs in

Valentine [23], Part IV.

Theorem 1.17. (Helley's Theorem). Let {Ci: 1 € I} be a collection of

nonempty closed bounded convex sets in En where I 1s an arbitrary index
set. If every subcollection consisting of n + 1 sets has a nonempty

intersection, then the entire collection has a nonempty Intersection.,

If only a finite number of convex sets are involved, then the re-
quirement that the sets be closed and bounded is not necessary to
achleve the same conclusion. This result 1s stated separately as a
corollary. A proof can be found in Valentine [23], p. 70, or

Rockafellar [20], p. 196.

Corollary 1.18. (Finite Helley's Theorem). Let {Ci: 1 ¢ I} be a finite

collection of convex sets in En' If every subcollection of n + 1 sets
has a nonempty Intersection, then the entire collection has a nonempty

intersection.

Unfortunately, 1f a collection of convex sets is not finite and if,
in addition, all of the sets in the collection are not bounded, then
Helley's Theorem provides no Information as to whether the collection

has a nonempty lntersection. The next example illustrates this problem.

Example 1.19. In order to construct a collection of nonempty closed
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convex sets that 1llustrates the above remarks, conslder the following
situation. For each real number r, let Cr = [r,»). Each Cr is a
closed convex set in El and every two sets in the collectiqn

{Cr: r € R} have a nonempty intersection. However, ﬂ{Cr: r € R} is

empty.

Notice that the sets in Example 1.19 have vectors of recession in
common. For any u > O and any real number r € R, {x +u: A 2 0} is
contalned in Cr for every x ¢ Cr' It 1s this very property that keeps
the collection {Cr: r € R} from hgving a nonempty intersection. It
turns out that 1f boundedness 1s replaced in the hypothesis for
Helley's Theorem by the requirement that the sets in the collection
have no vectors of recession in common, then the conclusion of Helley's
Theorem remains valid. Thls vectors of recession version of Helley's
Theorem, with a somewhat difficult proof, can be found in Rockafellar
[20], p. 191. Because of the importance of this vectors of recession
version to Chapter II of this paper, a direct proof 1s developed here.

The next lemma 18 essential for this proof.

Lemma 1.20. Let {Ci: 1 € I} be a collection of nonempty closed convex
sets In En where I 1s an arbitrary in@ex set. If every subcollection
of n + 1 sets has a nonempty intersection and some finite subcollection
has a bounded intersection, then the entire collection has a nonempty

intersection.

Proof: Let {Cl, o . ey Ck} be the finite subcollection which has a
bounded intersection. Since it 1s contained 1n the original collection,
this finite collectlion of convex sets has the property that every sub-

collection of n + 1 sets from it has a nonempty intersection so by
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Corollary 1.18, it follows that K = ﬂ{Ci: 1=1, ..., k} is nonempty.

For each 1 ¢ I, let D, = Ci n Cl n...nN Cy = Cy N K. Now the finite

i
collection of sets {Ci’ Cis oo vy Ck} hes the property that every
subcollection of n + 1 sets from 1t has a nonempty intersection so by
Corollary 1.18, 1t follows that D, # f for each 1 ¢ I. Now consider
the following arbitrary collection of n + 1 sets from {Di: i e I}, say
{D. 9 o o o 4, D }. Then

h ]

Di nt...ND

]

(¢

A nK)n...n(ci N K)
1 n+l 1

n+l

(c, n...nNnc JN K
il in+l

C noctnc ﬂC nt..nc.
il :Ln+l 1l k

Now {Ci s b e sy Ci , Cl’ . oey Ck} is a finite collection of sets
1l n+l
wlth the property that every subcollectlon of n + 1 sets from 1t has a

nonempty intersection. Hence by Corollary 1018,

C ﬂ...ﬂc ncnaconc =D noooﬂD %¢o
il in+l 1 1 in+L

Thus {Di: 1 e I} 1s a collectlon of nonempty closed bounded convex sets
with the property that every subcollection of n + 1 sets has a nonempty
intersection. By Theorem 1.17, it follows that ﬂ{Di: ie€I}) hasa

nonempty 1lntersection. But

n{o,:

X 1e1}=n{cin K: 1 € I} =N{C,: 1e;}nx,

and the desired conclusion follows.
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Certainly the sets in the collection which satisfies the hypothesis
of Lemma 1.20 have no vector of recession in common. For 1if they did,
then such a vector of recession would also be a vector of recession for
the set Cl N e« N Ck which would contradict the hypothesis that this
set 1s bounded.

Asgsuming that the sets in the collection in Lemma 1.20 have no
vectors of recession in common, it follows that ﬂ{A(Ci): 1'e I} = {0}.
If B={x e E: [x]| =1}, then B is a nonempty closed bounded set in

E . For each 1 € I, let B, = BN A(Ci). Since C, is closed, A(Ci) is

i
closed for each 1 € I by Theorem l.13; hence B, 1s a closed bounded

i

set for each 1 e¢ I. Thus n{Bi: ieI}=3Bn [ﬂ{A(Ci): ieI}]is an
empty set. Since {Bi: i e I} is a collection of closed sets in the
compact set B with the property that n{Bi: i ¢ I} is empty, there
exists a finite subcollection {Eﬁ, Byy « + + , B} such that
By n BN .. .n B, = f. A proof of this assertion can be found in
Gemignani [8], p. 148 . Hence BN A(Cl) Neoan A(Ck) is empty and
it follows that A(Cl) N...,n A(Ck) = {0}. Since Cy Neooh Cye
is nonempty by the hypothesis of Lemma 1.20, it follows from Theorems
1.14 and 1.15 that the set C1 N oo o Ck is & bounded set.

The remarks of the last two paragraphs have proven the following

lemma.,

Lemma 1.21. Let {Ci: ie I} be a collection of'nonempty closed convex
sets in En where I 1s an arbitrary index set. Assume that every sub-
collection of n + 1 sets has a nonempty intersection. Then the Ci

have no vectors of recession in common if and only if some finite sub-

collection has s bounded intersection.
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The above lemma can now be combined with Lemma 1.20 to give the

following important theorem.

Theorem 1.22. Let {Ci: i € I} be a collection of nonempty closed
convex sets in En where I 1s an arbitrary index set. Assume that every
subcollection of n + 1 sets has a nonempty intersection and that the
sets in {Ci: 1 € I} have no vectors of recession in common. Then the

entire collection has a nonempty intersection.

It turns out that the hypothesis of Theorem 1.22 can be relaxed
even more and the conclusion will remaln valid. If all the sets in a
collection of closed convex sets have particular vectors of receésion
in common, then it is true that they will have a nonempty intersection.

The next example i1llustrates this situation.

Example 1.23. Forn=1,2, 3, . . . , consider the sets of the form

C, = {(x,¥): 0 < y=1/n}. These sets form a collection of nonempty
closed convex sets in E2 and any two of them have a nonempty inter-
section. Since A(Cn) = {(x,y): y = 0} for each positive integer n,

these sets have vectors of recession in common, yet the entire collec-

tion has a nonempty intersection.

The vectors of recession common to all the sets in Example 1.23
have the property that both u = (x,0) and -u = (-x,0), x #£ 0, are
vectors of recession for the entire colliection. Vectors of recession

wlth this particular property are defined below.

Definition 1.24. Let C be a nonempty convex set. Then u is a vector

of linear recession for C if and oniy if there exists an X, € C such
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that the line {x, + Au: A € R} is contained in C.

From previous results and the above definition, it follows that 1f
u is a vector of linear recession for a nonempty closed convex set C,
then the line {x + \u: A € R} is contained in C for every x in C. Also,
if C is a nonempty clbsed convex set, then u 1s a vector of linear
recession for C if and only if u € A(C) and -u ¢ A(C). 1In fact, closed
convex sets in En which possess vectors of linear recession always
contain translates of some k-dimensional subspace of En where

l < k < n. This result is made precise by the next theorem.

Theorem 1.25. Let C be a nonempty closed convex sef In En. If M is

the subspace of En spanned by the vectors of linear recession for c,

then x + M C for every x € C.

Proof: Let M be the subspace described in the hypothesis. It 1s
desirable to get a basis for M where the vectors of the basis are
vectors of linear fecession for C. This can be done in the following
manner. Let Uy be a vector of linear recession for C. Then {ul} is
8 linearly independent subset of M which 1s either a basis for M or
not. If it is; then {ul} is fhe desired basis. 1If hot, then there
exists another vector u, which is a vector of lineérrecession for C
such that {ul, u2} is a linearly independent subset gf M which is
elther a basis for M or not. In general, if {ul,huae.. .« oy uJ} is a
set of vectors of iinear recession for C which 1s also a linearly
independent subset of M that 1s not a basis for M; then there exists

a vector u3+l which is a vector of linear recession fér C such that
{ul, IR uJ, u3+1] is a linearly independent subset of M. In this
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manner, a basis {ul, Uy o o o uk}, where 1 < k < n since En is a

2’

finite dimensional space, can be found for M such that each uy is a

vector of linear recession for C. Let z = Alul + o 0 e+ Akuk

arbltrary point in M. If Ay 2 0, then kiui is in A(C) by Theorem 1l.13.

be an

If 3y <O, then rewrite Ayu, as (-Ai)(-ui). Since -\; >0 and -u, is
in A(C), it follows that Ay = (-)\i)(-ui) € A(C) by Theorem 1.13.
Consequently, i1t follows by Theorem 1.13 that z € A(C). Therefore,
x+2z=x+(l)z € C for all x € C. Since z is arbitrary in M, it

follows that x + Me= C for all x ¢ C.

Using Theorem l1.25, the hypothesis of Theorem l.22 can be modified
to require that the vectors of recession common to the sets {Ci: ieI}
be vectors of linear recession and the conclusion of Theorem 1.22 will

8till be valid. This result is formulated in the next theorem.

Theorem 1.26. Let {Ci: 1 € I} be a collection of nonempty closed

convex sets in En vhere I is an arbltrary index set. Assume that every
subcollection of n + 1 sets has a honempty intersection and that the
only vectors of recession common to all the sets {Ci: i e I} are
vectors of linear recession. Then the entire collection has a nonempty

intersection.

Proof: ILet M be the subspace of En spanned by the vectors of linear
recession common to all the sets {Ci: 1e I} and let M* be the
orthogonal complement to M in En. Then M* is a closed subspace and
the direct sum of M and M* is E . For each i ¢ I, let D, = Ci n M*.
Then the following are true:

(a). D, # P for all 1 ¢ I: For any z € C;, there exists a p e M
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¥*
and a g € M such that z =p + q. Now z + MC C, by Theorem 1.25 s0

i

P+q+M=q+McC Since 0 € M, it follows that q € Ci' Hence

i.
D =C, N M # p for all 1 € I.

(b). Di is a closed convex set: This follows from the fact that

*
Ci and M both have these properties.

(c). The Di have no vectors of recession in common: Assume u 1is

& vector of recession common to all the Di' Then u € A(Ci) for all

¥*
ie€elIandueMM and hence u is a vector of recesslon common to all the

*
C However, u € M implies that u ¢ M and thus u is not a vector of

i.
linear recession common to all the Ci’ which 18 a contradiction.
(d). Every n + 1 subcollection of the Di have a point in common:
Let {Dl, o« v ey Dn+l} be an arbltrary subcollection of n + 1 sets.
*
Then DN ...NnD . = (cl NeooN Cn+l) N M . By hypothesis,
c;N...nc . £ psoif ze C;N...ng .., thenz + M1is

contained in C; N . . . NCc .. By part (a) above, it follows that

n+l

*
qe Cl N e oo C.. N M wherez =p + q. Therefore,

1

L] [ ] L] n -
Dl n Dn+ is nonempty

1
Hence the sets 1n the collection {Di: 1 e I} satisfy the
hypothesis of Theorem 1.22 and it follows that N{D,: i € I} £ P

Consequently, N{C,: 1 e I} # P

Thls concludes the essentlal properties of convex sets needed in
a dlscussion of convex programs. Unbounded convex sets are charac-
terized in terms of vectors of recession and Theorems 1.17, 1.18, 1.20,
1.22, and 1.26 give important information concerning the intersection
of an arbltrary or finite collection of certain convex sets. Further
development of vectors of recession can be found in Rockafellar [20].

As illustrated by Examples 1.3 and l.4, a convex function defined
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on an unbounded convex set does not necessarlly attain its minimum
there. Therefore the solvabllity of a convex program must depend in
some way on certain properties of the objectlve function. The next
section on convex functions shows that the concept of vector of
recession for a convex functlon 1s very important, and the results
developed for convex functions are used with those for convex sets to

prove the lmportant theorems in Chapter II on solvability.
Some Propertles of Convex Functlons

The obJective of thls section 1s to relate the concept of vector
of recession to convex functlons. This concept 1ls fundamental in
discussing the solvabllity of a convex program.

Assoclated with any convex functlon defined on a convex set C in

En are two dlstinct convex sets, one in En and one in En+ The first

1.
type of convex set, called a level set, 1s defined below.

Definltion 1.27. Let f be a convex function defined on a convex set

C in En' If @ is any real number, then the level set of f with respect

to @, denoted by lewxf, 1s defined as follows:
lev f = {x € C: f(x) < a}.

Notice that the nonempty level sets of f form a collectlon of sets
{levaf: @ € R} such that lev f < leva if and only if @ < B. Any
collection of sets having this property 1s sald to be nested. This
property 1s important in later theorems on the minimization of a

convex function f over a convex set C. Two significant properties of

level sets are glven in the next lemma.
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Lemms 1.28. If f is a convex function defined on a nonempty closed

convex et C in En, then every level set of f is & closed convex set.

Proof: If levdf 1s empty, then it 1s trivially & closed convex set,
Hence asgsume that levaf 18 nonempty and let x and y be in lewzf and
A € [0,1]. Then

fhx+ (1 -AMy)safx)+ @ -M(y) <+ (L -2 )x=q,

50 levdf is convex. If {xi} 1s a seguence in_lewzf that converges to
x in C, then the continuity of f implies that f(xi) converges to f(x).
Since f(xi) < a for all i, it must be true that f(x) < @. Hence x is

in levdf and thus levd; 1s closed.

The other convex set assoclated with a convex function 1s the set

of all points in En+ which lie on or above the graph of f over C.

1
This set 18 called the epigraph of f and ls denoted by epl f. The next

definition makes this concept precise.

Definltlon 1.29. Let f be a convex function defined on the convex set

C in En. Then
epl £ = {(x,r) € E,:x€Cr= £(x)}.

Analogous to Lemma 1.28, epl f 1s & closed convex set 1f C is
closed in En. Examples of epigraphs are given in Figure 5.

From Definition 1.29 and the 1llustrations in Flgure 5, 1t 1is
apparent that the set of vectors of recession for any epigraph in En+l
contains nontrivial vectors. For example, any vector in En+l of the

form (O,r), r >0, 18 a vector of recession for every epigraph.

However, only particular nontrivial vectors in A(epl f) are of interest,
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241
(x) = (x ~5) +
F (b)

Figure 5.
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and these are vectors of the form (u,0) where u ¢ E and u >0. If
such a vector u is in A(epi £), then it follows by Corollary 1.8 that
{(x,r) + A(u,0): » 20} = {(x + Au, r): A = O} is contained in epi f
for some (x,r) € epl f. By Definition 1.28, it then must be true that
f(x + Au) € r for all A =2 O. This discussion motivates the follewing

definition.

Definitlion 1.30. Let f be a convex functlon defined on the convex set

C in En. Then u € En is a vector of recession for f if and only 1f
(u,0) is in A(epi f). The vectors of recession for f are denoted by

A(T).

It 1s also true that every vector of recesslon for f is a vector
of recession for C, for if (u,0) € A(f), then {(xo + U, r): A 2 0}
contained in epi f for some (xo,r) ¢ epl f implies that the set
{xo + Au: A 2 0} is contained in C and hence u ¢ A(C). It should be
noted that fhe converge of the above statement 1s not true,
(cf. Pigure 5(b).). This observation is important in Chapter II.

The question now arises as to what is the relationshlp between
A(f) and A(leﬁzf) where lev f is & nonempty level set of f. Since
every nonempty level set of f 1s a convex subset of the domain C for f,
it 1s true that A(lewzf) e A(C) for every nonempty level set lewdf.

The next theorem shows that a much stronger relationship exists
between the vectors of recesslon for f and those of 1ts nonempty level

sets than between A(C) and A(f).

Theorem l.31. Let f be a convex function defined on the closed convex

set Cin E . Let L = {levdf: 0 e A} be the collection of all nonempty
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level sets of f+ If O and P are arbitrarily chosen in A, then
A(levdf) = A(f) = A(levbf).

Proof: Let u € A(lewaf). Then f(x + \u) < & for all A 2 O and for all
x e lev f. Por any x € leﬁxf, (x,@) € epi £ 8o {(x + Au, &): A 2 0} 1is
contained in epli f. Consequently, u € A(epl f) and by Definition 1,30,
u ¢ A(f).

Now pick u € A(f). Then for some x € levbf, {(x + au, B): A 2 0}
is contained in epi f so f(x + Au) € B for all A 2 O and for all x in
leva. Hence A(f) < A(leva).

Thus A(levaf) c A(f) e A(leva). By reversing the roles of ¢ and
B in the above proofs, it follows that A(1eva) c A(f) © A(levaf) and

the desired conclusion is immediate.

Theorem 1.3]1 says that if C 1s a closed convex set, then all the
nonempty level sets of f have exactly the same vectors of recession and
these vectors of recession are exactly those of f. Hence, 1if
A(f) = {0}, then all the nonempty level sets of f are bounded sets.
Since C is closed, all the nonempty level sets of f are then compact
convex sets. 1In addition, 1If one of the nonempty level sets of f 1is a
bounded set, then f has no vectors of recession and every nonempty
level set of f is bounded.

Suppose now that a vector of recession for some nonempty level set
of £ 1s in fact a vector of linear recession for that level set., As
discussed previously, this particular vector 1ls also a vector of
recession for f. However, there exlst special vectors of recession for

T which are always vectors of lineasr recession for the nonempty level

sets of f and conversely.
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Definition 1.32. Let I be a convex function defined on a convex set C

in En. Then u is a vector of constant recession for f if and only if
there exists an x, € C such that {(xO + Au, f(xo)): A20)cepirf

and {(:l:O + A(-u), f(xo)): A2 0} cepif.

The following theorem glves two lmportant results concerning

vectors of constant recession for a convex function.

Theorem l.33. Let f be a convex function defined on & closed convex

set C in En' Then

(a). u is a vector of constant recession for f if and only if
u € A(f) and -u e A(f).

(b). u is a vector of constant recession for f 1f and only if
there exists an x, € C such that f is constant on the line

0
{xo + ru: r e R}.

Proof: The assertion in (a) is a direct and immediate consequence of
Definition 1.30 and Corollary 1l.8.

Now to prove (b). Assume that u is & vector of constant recession
for f. Then there exists a polnt X, € C such that
[(xo + ru, £(x,)): r 2 0} € epi T and {(xo + r(-u), f(xo)): r 2 0} is
contained in epl f. Suppose there exists an r # O such that
f(xO +ru) < f(xo). Without loss of generality, take r > O. Now
-u € A(f) implies that f(xO + r(-u)) < f(xo). Also, it follows that

X = (1/2)(xo + ru) + (l/2)(xo + r(-u)), so by the convexity of f,

]

£(xy) = 2((1/2)(x, + ru) + (1/2)(xy + x(-u)))

< (1/2)f(xO + ru) + (l/2)f(xO + r(-u))

A

f(xo).
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This contradiction then implies that f(xo + ru) 2 f(xo)»for all r ¢ R.
But u a vector of constant recession for f implies that f(xo + ru) is
equal to or less than f(xo) for all r ¢ R. Hence it follows that
f(xo + ru) = f(xo) for all r ¢ R and thus f is constant on the line
{xy+ruire R}.

If there exists an X, € C such that f is constant on the line

{xo + ru: r € R} for some nonempty vector u ¢ En, then 1t follows that

u must be a vector of constant recession for f by definition.

If the domain of the convex function 18 a closed convex set in En’
say C, then a distinct relationship exists between vectors of constant
recession for £ and vectors of linear recession for C. Por if u 1s a
vector of constant recession for f, then {(x + ru, f(x)): r ¢ R} is
contained in epl £ for every x € C, so it must be true that the set
{x +ra: r e R} € C and hence u is a vector of linear recession for C.

This result 1s stated precisely in the next lemma.

Lemms, 1.34%. Let f be a convex function defined on a closed convex set
C in En' If u 1s a vector of constant recession for f, then u is a

vector of linear recession for C.

The converse of Lemma 1.34 is not true as is seen by considering
the convex function given by f(x) = x° defined on the real line R.
Every nonzero vector in R 1s a vector on linear recession for R but f
has no vectors of recession.

The next example 1llustrates a convek function defined on a
closed convex set such that the function has a vector of constant

recession.
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Example 1.35. Let C = {(x,y): -1 < x < 1}. Then C is a nonempty

closed convex set in E2 and any nonzero vector of the form (O,r) is a
vector of linear recession for C. Let f(x,y) = x be a convex
function defined on C. Then f 1s constant on every line of the form
L = {(x,y): x = k} vhere k is a real number in the closed interval
[-1,1]. Clearly the vector (O,r), r # 0, is a vector of constant

recession for f. PFigure 6 illustrates this example.

Notice in Example 1.35 that even though f has a vector of
recession, it still attains its minimum on C. 1In Chapter II, it is
shown that a convex function defined on & closed convex set attalns 1ts
minimum there if the only vectors of recession for the function are
vectors of constant recession.

By Theorem l1.31, every vector of constant recession for f is a
vector of linear recession for everyrnonémpty level set of f, and

conversely. This property 1s stated in the next theorem.

Theorem 1.36. Let f be a convex function defined on the closed convex

set C in En. Then u 1s a vector of constant recession for f if and
only if u is a vector of linear recession for some nonempty level set

of f.

Proof: If u is a vector of constant recession for f, then
f(x + ru) = f(x) for all x ¢ C and all r ¢ R. Let x, € C be arbitrary
and let f(xo) = 0. ‘Then {xo +ru: r e R} © lev f and hence u is a
vector of linear recession for 1ewzf which 1s a nonempty set.

If u 18 a vector of linear recession for some nonempty level set

of £, say lev f, then {x + ru: r € R} € lev,f for every x in lev f.
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In particular, for an arbitrary x, in lewzf, i1t follows that

0
[(xo +ru, @); r 20} c epl £ and {(xo +r{(-u), @): r 2 0} < epi f.
Hence u € A(f) and -u € A(f) and by Theorem 1.33(a), u is a vector of

constant recesslon for f.

Additionsl information on convex sets and convex functlons can be
found in Penchel [3], Rockafellar [20], and Valentine [23]. PFurther
properties of level sets can be found in the first two of thease
references and extensive information can be found in the second one
concernling vectors of recession for convex sets and functions.

In Chapter II, the information developed in this chapter will be

used to discuss the feasibility and solvabllity of convex programs.



CHAPTER II
FEASIBILITY AND SOLVABILITY OF A CONVEX PROGRAM

In this chapter, the results of Chapter I are used to formulate
theorems concerning the feasibllity and solvaebility of a convex program
(P). The question of feasibility is discussed first with the main
theorem based on the finite version of Helley's Theorem (Corollaryl.lBL
Next, the major theorems in Chapter I concerningythe intersection of
certaln colleétions of convex sets are used to eéiablish theorems on

[

the solvahility of a convex program (P).
Feasibility of a Convex Program

If (P) is a convex program with domain C, objective function F,
and constraint functions {fl, o s vy fm}, then 1t follows by Lemms
1.28 that {x e C: fi(x) < 0} is a convex set for each i =1, . . . , m.

Since the set of feasible solutions for (P) can be expressed as
S ={xeC: fl(x) <0}nNn...Nn{xecC: fm(x) < 0},

it follows by Lemms 1.5 that S is a convex set. If the domain C of
(P) is a closed set, then each of the sets lev,f, = {x ecC: fi(x) < 0}
is closed for 1 =1, . . . , m. Hence, when the domain C of (P) is
closed, the set of feasible solutions S for (P) is a closed convex set.

In addition, if the set 5 is nonempty and the constralnt functions have

no vectors of receesion in common, then Theorem l.l4 implies that

35
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A(S) = A(levof N...n levo:f‘m)

1l

= A(levofl) NN A(Levyr )

= {0}.

Consequently, the set of feaslible solutions under these assumptions is
a bounded set by Theorem 1.15.

Considering the above remarks on the set of feasible solutions for
a convex program (P), 1t is apparent that asking when the set S 1s non-
empty 1s equlivalent to asking when a finlte collectlon of convex sets
in En has a nonempty intersection. Certainly, 1if levofi 1s empty for
one of the constraint functions for (P), then S is trivially empty,
end (P) is not feasible. Therefore, the only interesting situation
occurs when levofi is nonempty for each of the constralnt functions for
(P). The most appropriate result to use in thls case 1s the finite
version of Melley's Theorem which is Corollary l.18. Since the domain
C of (P) is in E , Corollary 1.15 says that (P) is femsible if every
subcollection of n + 1 sets from the collection {levf,: 1 =1,..., m}
has a nonempty intersection. This discussion 1s stated preclsely in

the next theorem.

Theorem 2.1. Let (P) be a convex program with domain C in E . Let
{fl, . s ey fm] be the set of constraint functions for (P). If every

subcollection of n + 1 sets from the collection {levof i=1,.. .,m}

4
has a nonempty intersection, then (P) is feasible,

Proof: The hypothesls of the theorem implies by means of Corollary l.J8

that levof

1N e« Nlevf =8¢ p. Hence (P) is feasible.
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Solvabllity of a Convex Program

A convex program (P) is solvable if the objective function F at-
tains 1ts minimum over the set of feasible solutions S for (P). Since
previous discussion showed that the set of feasible solutions for a
convex program 1s a convex set, the questlion of determining when a
convex program 1s solvable 1s the same as determining when a convex
function attains its minimum over a convex set.

If the set of feasible solutions S for (P) is a closed bounded
set, then (P) i8 solvable since all functions conslidered in this paper
are continuous on their domains of definition. In particular, F is
continuocus on its domain C so 1t 1s continuous on the closed bounded
set S which 1s a subset of C. Some basic results concerning the

solvability of a convex program are glven by the next theorem.

Theorem 2.2. Let (P) be a feasible convex program whose domain C is a
closed set. Let [fl, « e, fm} be the set of constraint functions
for (P). Assume that one of the following is true.

(a). C is a bounded set, or

(b). The set of constraint functions have no vectors of recession
in common, or

(¢c). lev.f, is a bounded set for some 1 =1, + « . , m.

o'i

Then (P) is a solvable convex program.

Proof: 'The set C 18 closed which impllies that the set of feasible
solutions S is closed. If (a) is true, then S is also a bounded set
and hence compact. Thus the objective function attains its infimum
over S because of its continuity.

Assume that (b) is true. Since S is nonempty by hypothesis, 1t



follows that A(S) = {0} as dlscussed above. Hence S is bounded by
Theorem 1.15 and the proof of (a) implies that (P) is solvable.

Assume that (c) i1s true. Then the fact that S is contained in
lev,f,, for each i, implies that S is bounded. Again, the proof of (a)

0
implies that (P) is solvable.

The main property in Theorem 2.2 which implies the solvabllity of
(P) is the closed and bounded property of the set of feasible solutions
S. However, not all sets of feaslble solutions to a convex program
(P) are bounded as was seen in Example 1.3, so it 1s desirable to con-
struct hypotheses which imply that a convex program (P) 1s solvable
but which does not rely on the compactness of the set of feasible
solutions. The following theorem is one of the two maln results pre-
sented in this chapter regarding the solvability of a convex program

(P). Its proof depends entirely on results developed in Chapter I.

Theorem 2.3. Let (P) be a feasible convex program whose domain C is a
closed set. ' Assume that the objective function P of (P) and the set
of feasible solutions S for (P) have no vectors of recession in common.

Then (P) is a solvable convex program.

Proof: Since (P) is feasible and C is closed, the set of feasible
solutions S for (P) 1s a nonempty closed convex set in E Consider
the collection of all nonempty level sets of P over S, denocted by
{leWaF: o e A}, where lev,F = {x e St P(x) < a}. Since S is a non-
empty closed convex set, each of these nonempty level sets is a élosed
convex set by Lemma 1.28. In fact, each of them 1s bounded. To prove

this assertion, assume that one of the nonempty level sets of F over S

is unbounded (hence they all are by Theorem 1.31). By Corollary l.l6,
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there exlsts a nontrivial vector u e En such that u 1s a vector of re-
cession for all the nonempty level sets of P over S, and consequently
1s a vector of recession for S since every nonempty level set of F
over S is contalned in 8. But u 1s also a vector of recession for F by
Theorem 1.51, and hence u is a vector of recession common to the set of
feasible solutions S and the objJective function ¥, which contradicts the
hypothesis. Consequently, {le%xF: Qe A} 1s a collection of nonempty
closed bounded convex sets 1n En with the property that every subcol-
lection of n + 1 sets has a nonempty intersection (since the level
sets are nested). It then follows from Helley's Theorem, Theorem 1.1l7,
that ﬂ{lewzF: @ € A} is a nonempty set.

Now let x, € ﬂ{leWzF: o € A}. Certainly X, € S, 80 1t follows
that B < F(xo) where B = inf{F(x): x € 8}. Assume that P < F(xo).
Then there exists an ¢ > 0 such that B + ¢ < F(xo). Since B is the

infimum of P over S, it must be true that lev-+eF is a nonempty level

B
set of P over S, and hence levB+eF is in [leWzF: o ¢ A}. Thus X, 18 in
levB+eF, and it follows that F(xo) < B + @, which is a contradiction.

Therefore, F(xo) < B and it follows that F(xo) =B = inf{P(x): x e S}.

Hence (P) is solvable.

@

If F or S or both have no vectors of recession, then the
hypothesis of Theorem 2.3 is trivially satisfied and (P) would be
solvable. Notice that if any of the three assumptions in the hypoth-
esis of Theorem 2.2 are true, then the set of feasible solutions § for
(P) has no vectors of recession and hence is solvable by Theorem 2.3.
Kowever, Theorem 2.3 does not require that S be bounded in order that

(P) be solvable; only that for every x € 8, F(x + Au) be an

increasing function of )\ for arbitrarily large ) whenever u is a vector
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of recession for S. If the objJective function F has & vector of
recession u, then (P) is solvable aonly if u £ A(S).

As mentioned previously, the vectors of recession for the set of
feasible solutions S for a convex program (P) are exactly those vectors
of recession common to all of the constraint functions, provided (P) is
feasible. This property allows the formulation of the following

corollary to Theorem 2.3.

Corollary 2.4. Let (P) be a feasible convex program whose domain C is

closed. Assume that the objective function F of (P) and the conatraint
functions [fl, « v oo, fm} of (P) have no vectors of recession in

common. Then (P) is a solvable convex program.

Proof: By hypothesis, S 1s nonempty; hence it follows that

A(S) = A(levofl) Neoaon A(levofm) by Theorem l.l4, since it is true
that S = levofi nN...nNn levofm. Therefore, any vector of receesion
for S 1s a vector of recession common to all of the constraint func-
tions. Assume that the obJective function F and S have a vector of
recession in common. It now follows that the objective function F
and all of the constralnt functions have a vector of recession in
common which contradlcts thé hypéthesis of fhe theorem. Hence the
obJective function F and the set.of feasible solutions S have no

vectors of recession in common, and it follows from Theorem 2.3 that

(P) 1s a solvable convex program.

Consider again Examples 1.3 and l.4 of Chapter I. The convex
program iliustrated in Example 1.3 is not'qolvable. The reason is

that the obJective functlion and the set of feasible solutions have
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common vectors of recession; that 1s, A(S) N A(F) # {0} (cf. Flgure
5(a) for epl F). However, in Example 1.4, the convex program is solv-
able. Thls 1s due to the fact that the obJective functlion has no vec-
tors of recession and hence Theorem 2.3 is applicable.

Theorem 1.22 shows that under certain assumptions, a collection of
nonempty closed convex sets in En which have no vectors of recesslon in
common has & nonempty intersection. Theorem 1.26 shows that under the
same assumptlons, the requirement that the sets in the collection have
no vectors of recesslion in common can be replaced by the alternate re-
quirement that the sets have only vectors of linear recession in common
and the collection will still have a nonempty intersectlon. Observing
the method of proof in Theorem 2.3 and recalling Theorem 1.26, it ig
apparent that the nonempty level sets of the objective function F over
the set of feasible solutions S for (P) can be allowed to have vectors
of linear recession in common and the conclusion of Theorem 2.3 would

st1ll be valid. The following theorem is & result of this discusgion.

Theorem 2.5. Let (P) be & feasible convex program whose domain € is a
closed set. Assume that the objective function F of (P) has only vec-
tors of constant recession with respect to the set of feasible solu-

tions S for (P). Then (P) is a solvable convex program.

Proof: Consider the collection of all nonempty level sets of F over
the set of feasible solutions S for (P), denoted by {leWxF: o e A}
where each leWxF is defined as in the proof of Theorem 2.3. By the
argument given 1n the proof of Theorem 2.3, every set in this collec-
tion 18 & nonempty cloged convex set. Now every vector of recession

for F 18 a vector of constant recession so by Theorems 1.34 and 1.31,
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every vector of recession for F 1s a vector of linear recession for
leWzF for every @ € A. Since the nonempty level sets of F over S are
nested, 1t follows that every subcollectlon of n + 1 sets from
{leWzF: xe A} has a nonempty Intersection. Assume that the nonempty
closed convex level sets of F over 5 have a vector of recesslon in com-
mon which 1s not & vector of linear recession. Then 1t follows by
Theorem 1.3l and the contrapositive of Theorem 1.34% that F has a vector
of recession which is not a vector of constant recession. This contra-
dicts the hypothesls of the theorem. Hence {lewzF: € A} 1s a collec-
tlion of nonempty closed convex sets 1n En with the properties that the
only vectors of recession common to all the sets are vectors of linear
recession and every subcollectlon of n + 1 sets has a nonempty lnter-
section. By Theorem 1.26, it follows that N{lev F: @ € A} is & non-
empty set.

Now let B = inf{F(x): x € S} and let X, € ﬂ{lewzF: o € A}. Again

x. 1s in S and by the argument given in the proof of Theorem 2.3, 1t

(¢}
follows that F(xo) = B. Consequently, (P) is a solvable convex

prograi.

Notice that the hypothegls of Theorem 2.5 does not requlire that
every vector of recession for the set of feaslible solutions S be a
vector of constant recesslon for P; 1t only regulres that every vec-
tor of recesslion for P be & vector of constant recession for F, and
hence & vector of linear recession for S. From thls discusslon, 1t 1s

possible to write the following corollary to Theorem 2.5.

Corollary 2.6. Let (P) be a feasible convex program whose domain C is

a closed set. Assume that the obJectlive function F of (P) and the
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constraint functions {fl, « e ey fm} have only vectors of constant

recession in common. Then (P) is a solvable convex program.

Proof: The vectors of recession of the set of feasible solutions S for
(P) are exactly those vectors of recession common to all of the con-
straint functions for (P). Assume now that the objective function F
has a vector of recession with respect to S which 1s not a vector of
constant recession for F. Let u be such a vector of recession for F.
Then u is a vector of recession for every nonempty level set of P over
S and hence is a vector of recession for S. Thus by previous discus-
sion, u is a vector of recession common to all of the constraint func-
tions and it follows that the obJective function and the constraint
functions have a vector of recession in common which is not.a vector
of constant recesslon. This contradicts the hypothesis of the theorem.
Therefore, the obJective function has only vectors of constant reces-
sion with respect to the set of feaslble solutlions S for (P), and it

follows from Theorem 2.5 that (P) is a solvable convex program.

If the only vectors of recession for the nonempty level sets of
the obJective function P over the set of feasible solutions S are
vectors of linear recession, then it follows from Theorem 1.36 that
the only vectors of recegsion for P with respect to S are vectors of
constant recession., Theorem 2.5 then implies that (P) is a solvable

convex program. This result is stated formelly as the next corollary.

Corollary 2.7. Let (P) be a feasible convex program whose domain C is

a closed set. Let F be the objective function of (P) and S the set of

feasible solutions for (P). Assume that for some real number i,
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{x e S: F(x) < a} is a nonempty set whose only vectors of recession are

vectors of linear recession. Then (P) is a solvable convex program.

In light of Theorem 2.5, the question arises as to whether the
vectors of recession common to a convex function and its convex domain
must be vectors of constant recession for the function in order that
the function attaln its infimum over its convex domain, where the

domain is a closed set. A reasonable conjecture 1s the following:

Conjecture: Let I be a convex function defined on a closed convex set
C and let u be a vector of recession common to f and C. Assume that
f(x + ru) is a constant function of r > 0, for all x € C. Then f

attains 1ts infimum over C.
This conjecture 18 false as shown by the following example.

Example 2.5. Let C = {(x,y): x >0, y = 1/x}, and f(x,y) = x, where
C 1s the domain of f. Then the only vectors of recession common to f
and C are vectors of the form u = (0,y) where y > 0. If z ¢ C, then
f(z + ru) 1s a constant function of r > O, yet f does not attain its

infimum over C.

Suppose now that (P) is a solvable convex program and X, is an
optimal solution for (P). Then {x e S: F(x) < F(xo)} is a nonempty
level set of F which is convex, and is closed if the domain C of (P) is
closed. For an arbltrary convex program (P), let EEE;E denote the
optimal value of (P), and EEE_E denote the set of all optimal solutions
for (P). Then for (P), inf P = F(xo) and Min F = {x ¢ 8: F(x) < F(xO)L
In the arbitrary case, it may be that Min F is empty. However, if (P)

is solvable, then all of the nonempty level sets of F over S contaln
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Min P. Example 2.9 and Plgure 7 illustrate this sltuation.

Example 2.9. Let C = E,, F(x,y) = X 4 y2, fl(x,y) = -x, and

fe(x,y) = -y. Then 8 = {(x,y): x>0, y=2 0}, inf F = 0, and

Min F = {(0,0)}. The collection of nonempty level sets of F over S can
be denoted by {leWzF: a > 0} and Flgure 7 illustrates how this collec-

tion of closed convex sets contain Min F.
Relationship of Solutions

It turns out that in the situation where (P) 1; e solvable convex
program whose domaln ls closed, 1t 1s possible to usé;the nested prop-
erty.of the collection of nonempty level sets of the QbJective function
F contalning Min P to obtain a feasible solution as close, in the norm
of En, to the convex set Min F as desired. The followlng theorem

states this property precisely.

Theorem 2.10. Let (P) be a feasible convex program whose domain C ies

& closed convex set. Assume that the objective function F of (P) and
the set of feasible solutions 8 for (P) have no vectors of recession
in common. Then for every € > O, there exists a & > O such that for
every feasible solution x satisfying F(x) < inf F +‘8, there exists

an optimal solution z such that ||z - x|| < e.

Proof: Theorem 2.3 implies that (P) is solvable and it follows from
the proof of Theorem 2.3 that every nonempty level set of F over S 1s
B compact convex set. Let € > O be arbitrary but fixed and let
B={xe E: <l <1}. Consider the open set M + eB, where M = Min F,
and note that M is contained in M + eB. If S & M + ¢B, then the con-

clusion is trivially true. Therefore, assume that S 1s not contained
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(2,0)

(1,0)

(0,0)

Figure 7.
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in M + €B and consider the nonempty closed set S\ (M + €B). For each
5 >0, let Ty = (s\ (M+eB))N lev F where & = inf F + &. Since

leWxF is a compact set for each & > O, each T, is a compact set. 1In

3}
addition, if 81 < 82, then al = inf F + 81 <inf F + 82 = a2, 80
lev, F< lev_ F and it follows that T, & T. . Assume that T, 1s non-
ai aé 81 82 o)

empty for each & > Q. Then the sets {TB: 5 > O} form a collection of
nested nonempty compact sets and it must be true that ﬂ{TB: 5 > 0}
is a nonempty set since the collectlon has the finlte intersection

property. Let x, € D{TB: & > 0}. Then x. ¢ lev F for every & >0, 80

0]

it follows that x, € Min P. But x, must also be in S \ (M + eB) and

this contradicts the fact that (Min F) N (S \ (M + €B)) is an empty

set. Consequently, there exists a 8., > O such that, for &

0 = inf F+80,

0]

T. =(5\ (M+eB))Nlev, F=p; that is, T, 1s an empty set. Since
B o’ )
0 0 0
lev, F € S but lev, F& (S\ (M + eB)), and it is true that
0 0
S=(s\ (M+eB))U (SN (M+ eB)), it follows that lev, F & (M + €B).

0
Hence, for this arbitrary € > O, 80 is a ® which glves the conclusion

of the theorenm.

The goal now is to rewrite Theorem 2.10 replacing the requirement
that the objective function and the set of feaslble solutions have no
vectors of recession in common by the slternate requirement that the
only vectors of recession for the set of femsible solutlons are vectors
of constant recession for the obJjective function. The next lemma 1s

essential to the procf of this alternate form of Theorem 2.10.

Lemma 2.11. Let f be a convex functlion deflned on a closed convex set

C in En with the property that the only vectors of recession common to
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f and C are vectors of constant recession for f. If M is the subspace
in En spanned by the vectors of constant recession for f, then the
following statements are true.

(a). If M* is the orthogonal complement of M in E , then for any
xandy in E , (x + M) N (y + M*) 1s a single point. |

(b). If Xq is an arbitrary point in C, then for every z € x, + M,

0
it is true that f(z) = f(xo).

Proof: To prove (a), note that there exists unique m, m, € M and
unique mf, m* € M* such that for any x, y in E L X = m1 + m* and

= m2 + mg. Hence

x+ M =m + m{ + M =.mf + M

and

Y+ M¥=m

* * = %
h + mE + M m, + M¥*,

Since 0 is in M and in M¥, it follows that mf € m{ + M, and

m, € m, + M*. Consequently,

(x + M) N (y + M¥) = (mf +M)N (m2 + M¥*),

and hence m, + m¥ € (x+M)N (y + M¥), Ifz e (x+ M) N (y+ M*),

then z = mf +m,meM, and z = m, + m*, m* ¢ M¥,” Since z can be ex-

pressed unigquely as the sum of & point in M and a point in M¥, it

follows that m{ = m¥%, and m, = m. Thus z = m, + mf and the conclusion

of (a) is immediate. ‘
To prove (b), note first that M has a basis {ul, .o, uk},

1l < k < n, vhere each u, is a vector of constant recession for f., The

i
existence of this basis is guaranteed by the argument given in the
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proof of Theorem 1.25. By Theorem 1.34, each u, 1s a vector of linear

i

recession for C, so if Xq is in C, it follows by Theorem 1.25 that
Xy + M is contained in C. Since each uy 1s a vector of constant reces-
sion for f, it is true that f(xO + rui) = f(xo) for all r € R and for

each u,, 1 <1 <k. If zex

4 o? M, then there exists an m € M such
that z = Xy + M. Sincem ¢ M, let m = iy + ¢ o o+ QU vwhere each
uy is In the basis for M given above and ai € R. Then

z=xo+alul+‘ 3 a+akuk

(l/k)(xO + rlul) Foeoe .+ (1/k)(xO + rkuk),

vhere r, = k(ai) for 1 < 1 < k. By the convexity of f, it follows that

£(z) < (l/k)f(xo + rlul) oo e o+ (l/k)f(xo + rkuk) = f(xo)

(cf. Rockafellar [20], p. 25, Theorem 4.3 ). Assume that f£(z) < f(xo).
Then consider Zl = xo - aiul - s o o = akuk. It follows that zl is in .

X, + M and that (1/2)(z + zl) = x,. Again by the convexity of f,

f(xo) = £((1/2)z + (l/2)z1) < (1/2)f(z) + (l/2)f(zl) < f(xo).

This contradiction then implies that f(z) = f(xo). Since z was an

arbitrary point in x. + M, it follows that (b) is true.

0]

The alternate theorem to Theorem 2.10 dlscussed above can now be

stated in the following manner.

Theorem 2,12. Let (P) be a solvable convex program whose domain C is a

closed set. Assume that the only vectors of recession for the set of
feasible solutione S for (P) are vectors of constant recession for the

objective function F of (P). Then for every € > O, there exists a
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& > 0 such that for every feaslble solution x satlsfylng
F(x) < inf F + &, there exists an optimal solution z such that

e - x| < e

Proof: Let M + €B be the same set defined in the proof of Theorem 2.10.
Then Min F& M + ¢B as seen earller., If S is contained in M + €B, then
the conclusion follows trivially. Consequently, assume that the set
S\ (M + eB) is nonempty. In addition, let N be the subspace spanned
by the vectors of recession common to P and S, which are vectors of
constant recession for F and vectors of linear recession for S. Let

N* be the orthogonal complement of N in E . If z € 8\ (M + €B), then
consider the set T = (S\ (M + €B)) N (z + N*¥). Since z € z + N¥, T

is nonempty. Also, T 1s bounded, for if it were unbounded, then S and
N* would have a vector of recession in common which would contradlct
the hypothesis of the theorem. Finally, T 1s a closed set belng the
intersectlion of two closed sets. Since T 1s a nonempty compact set
contained in S and F 1s a contlnuous function defined on Te= S, 1t is
true that there exists a point u € T such that P(u) = inf{F(x): x € T}.
Now suppose there exists t € S \ (M + eB) such that F(t) < F(u). By
Lemma 2.11(a), there exists a unique point w € (z + N¥) N (t + N).
Since t + N S5 by Theorem 1.25, it follows that w € S. Suppose now
that (t + N) N (M + €B) # P, and let y be a point in this intersection.

Then there exists an x. ¢ Min P such that ||y - xOH <e Letvey+N.

0
Then there exlsts an m, € N such that v = y + mo. Now Xy + mo € Min F
since x, + N Min F (¢cf. Theoreéms 1.25 and 1.34+). It then follows

that v € (M + €B) since
i

v = (xy + mll = (& + mg) - (xg + m)ll = lly - x| <e
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Since y + N= t + N, it follows that t + N is contained in M + €B and
hence t € M + €B, which is a contradiction. Conseguently,

(t + §) N (M + eB) is empty and it follows that w ¢ M + €B. Thus

w ¢ T and therefore F(u) < F(w). But w € t + N, and N is the subspace
spanned by the vectors of constant recession for ¥, so by Lemma 2.ll(bL
F(w) = P(t) < F(u). This contradiction then implies that F(u) < P(x)
for every x € 3\ (M + €B).

If F(u) = inf F, then u must be in Min F which 1s a contradiction.
Hence F(u) > inf F. Let 8, = (1/2)[F(u) - inf F]. For @ = inf F + 8y
lev F is contained in (M + €B) since lev F & 8,
lev F N [S\ (M+e€B)] =p, and S =[S\ (M+eB)JU[SN (M+ eB)].

Therefore, 50 is a & which gives the conclusion of the theorem.

Theorems 2,10 and 2.12 imply that under certain hypotheses, it 1s
possible to construct a sequence of points in the set of feasible solu=-
tions S which converges to an optimal solutlion. The next corollary

gives Information concerning this sequence of feasible polnts.

Corollary 2.1%3. Let (P) be a solvable convex program whose domain C is

a closed set. Let F be the objective function of (P) and S the set of
feasible solutions for (P), If [xi] is & sequence in S which converges

to an optimal solution for (P), then {F(xi)} converges to inf F.

Proof: The conclusion of the corollary follows dlrectly from the

continuity of the obJectlve function.

In review, Theorem 2.1 provides the maln result in this chapter
on the feasibility of a convex program (P) while Theorems 2.3 and 2.5

are the main theorems concerning solvability. In addition, Theorems
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2.10 and 2.12 establish the theoretical basis for the practical solu-
tion of convex programs,

Additional information on the feasibility and solvability of convex
programs can be found in Bracken [1], Mangasarilan [18], and

Rockafellar [20].



CHAPTER III
CHARACTERIZATION OF AN OPTIMAL SOLUTION

The objJective of this chapter is to present necessary and suffl-
cient conditicns for an arbitrary feasible solution for a convex pro-
gram (P) to be an optimal solution. The main result concerns the situ-
ation where the objJective function and the constraint functions for an
arbitrary convex program (P) are assumed continuous on the domain C of
(P) but not necessarily differentiable there. A second result estab-
lishes necessary and sufficlent conditlons for an arbitrary feasible
solution for (P) to be an optimal solution under the assumption of
differentiablility foar the objectlive function and the constraint func-

tions for (P) over the domain C of (P).
Separation Theorem

Before discussing the msin theorems of this chapter, & few con-
cepts necessary to thelr proofs need to be discussed; The first of
these 18 the idea of a hyperplane in En. A hyperplang in En is a set
whiqh results from the translation of a maximal proper subspace of En.
In EE, maximal proper subspaces are lines through thgﬂorigin so 1t fol-
lows that hyperplanes in E2 are lines; in E3’ maximai proper subspaces

are planes through the origin so hyperplanes in E, are planes. The

3
characterization of a hyperplane given in the definition is obviously

impractical to work with so a more useful one is desirable. It turns

53
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out that a much more convenient characterization of hyperplanes in En
can be given In terms of the lnner-product property of thls space. The
next theorem establlshes this characterization and a proof for it can

be found in Rockafellar [20], p. 5, Theorem 1.3.

Theorem 3.1. Let H be & hyperplane in En. Then there exists a nonzero

vector u in En and a real number P € R such that H = {x € En: x*u = B}.

The concept of hyperplane and its characterization in terms of the
inner-product of En can now be used to state a very lmportant result
in the theorey of convex sets needed ln the proof of the main theorem

in this chapter. This theorem, known as the Separation Theorem for

convex sets, 1ls stated as follows:

Theorem %.2. (Separation Theorem). Let Cl and 02 be two convex sets in
En such that the interior of Cl, int Cl’ is nonempty and
(int Cl) n C, = $. Then there existe a hyperplane H = {x € B! Xou = o}

in En such that z.u < @ for all z € C, and z*u 2 @ for all z € Ca.

1

A proof for this theorem can be found in Luenberger [17], p. 133,
Theorem 3, or Rockafellar [20}, p. 97, Theorem 11.3, or Valentine [23],
. 24, Theorem 2.7. Figure 8(a) is an example of twa.convex sets in E2
which can he separated by a hyperplane H while Figure 6(b) is an example
of two convex sets in Ee which cannot be separated by a hyperplane.
Notice‘that in Figure B(b) the hypothesis of the Separation Theorem 1s

not satisfied since (int Cl) N C. 1is a nonempty set.

2

Lagranglan Function

A second concept that needs tobe discussed 1s that of the
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Lagrangian function assoclated with a convex program (P). If (P) is a
convex program with obJective function F, constraint functions
{fl, e e, fm], and domain C, then the Lagrangian function L for (P)

1s defined as

L(xs;u) = P(x) + u, f (x) + « v « + umfm(x),

lfl
where u = (ul, ey um) is in the nonnegative orthant of E so that

E' = {u = (ul, “eey, um) €eE:uw 20,1=1, ..., m},

m i

then 1t follows that the domain of L 1s the set C x E;. One important

property of the function L 1s the following:

Lemma 3.3. Let u, in E; be arbitrary but fixed. Then L(x;uo) is a

convex functlon of x on the convex set C in En.

Proof: Let x and y be 1n C and let @ be a real number such that

0 <@ <1. Then for u, = (uOl, . . e, uOm), and B = 1 - Q,

m
L(ox + Bysuy) = Flox + By) + zuoaf;](“x + By)
3=1
m
< aF(x) + BF(y) + Zluojtafj(x) » B2, (3)]
J::

oL(x3u,) + BL(y;uo)-

A point (x*;u*) in C x E; is a saddle-point for the Lagrangian

function L if and only 1f L(x*;u) < L(x¥*u%*) < L{x;u%*) for all x € C
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and for &gll u € E;. Therefore, 1if (x*;u*) is a saddle-point for L,
then for a fixed x¥%, L(x*;u) attains a maximum with respect to u at
u¥*, and for a fixed u¥*, L(x;u*) attains a minimum with respect to x at

x*, Consequently, (x*;u*) 1gs a saddle-point for L if and only if

sup{L(x*;u): u € E;} = L(x*;u*) = inf{L(x;u*): x ¢ C}.

Main Theorem

Using the concepts discussed previously, the main theorem on the

characterization of an optimal solution for a convex program (P) can

be written as follows:

Theorem 3.4t. Let (P) be a convex program with domain C in En’
objective function F, and constraint functions {fl, .« o e, fm}.
Assume that the set {x € C: fi(x) <0,1=1, « + ., m} is nonempty.
Then x¥* in C is an optimal solution for (P) if and only if there exists
a u¥ in E; such that L(x*u) < L{x*u*) < L(x;u*) for all x € C and

for all u e E;.

Proof: Assume there exlsts an x* ¢ C and a ﬁ* e E; such that
L(x*;u) < L(x*;u*) < L(x;u*) for all x € C and for all u e E;. Then
for all u € E;,
m m
FGex) ¢ ) wr (x%) < Fx®) + Zugfj(x*). (3.4.1)
3=1 J=1

From (3.4.1), 1t follows that for all u e E,
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m
EZ(uj - ug)fj(x*) < O. (3.4.2)
=1

For each J, consi%?r the vectpr (uf, ¢« soey u3 +w;’*' o oy ug) in E;.
Substitution of eﬁéh of these vectors into (3.4.2) fér u gives the
result that fJ(x*) <Ofor 3j=1, « « « , ms Consequently, x* is a
feasible solution for (P).

Now u¥ = 0 for each J, and fj(x*) < O for each J implies that

m

z ugfj(x*) < O. (3.4.3)
J=1

Since the vector (0, « « . , 0) € E;, 1t follows from (3.4.2) that
m
J=1

Therefore, from (3.4.3) and (3.k.4),
m

:g: u;fj(x*) = Q. ‘ (3.%.5)

=

Cx
—

~ Suppose that for some J, 1 € J < m, 1t is true that u*fj(x*) <0. It

J
follows that

m
Z utt (x¥) < 0, (3.4.6)
31

and this contradicts (3.4.5). Thus for each J =1, « » . , m,
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ugfj(x*) = Q. ' (3.4.7)

Using (3.4.5), the inequality L(x%*;u*) < L(x;u*) can be rewritten as

m

F(xx) < F(x) + wse, (), (3.4.8)
J=1

for all x € C. Consider now only those points 1In the set of feasible
solutions S for (P). For each x € S, fJ(x) < Q, for J =1, « + o , m

Combining this with the fact that u¥* =2 0, for each J, it follows that

J
ugfj(x) < O for each j and for all x € S. Hence,
m
ZZ ung(x) < 0, (3.4.9)
J=1

for all x € S. Therefore, it follows from (3.4.8) that P(x*) < F(x)
for all x € S. Thus x* is an optimal solution for (P).

To complete the proof of the theorem, assume now that x¥ in S is
an optimal solution for (P). It must be shown that there exists a

u* in E; such that (x*;u*) is a saddle-point for L. Deflne
K, = {(to, « o ,tm) € B 4%ty 2 P(x), ty 2 fi(x), for some x € C},

K, = {(6gs « « » ,tm) €B 4 by < F(x*), ty <0, i=1,... ,m} e
Since (F(x*), fl(x*), eoo s £ (x¥)) e K,, 1t follovs that K| #p.

Note also that Ké is nonempty since it 1s unbounded. Suppose that

K, N K, # #. Then there exists a vector z in C such that
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(). F(z) < ty < F(x*)

(). fi(z) <t <0, fori=1,...,nmn

From (b), it follows that z € S. Thus by (a), x* is not optimal and
this contradicts the hypothesis. Therefore, Ki n Ké = f. Since Ké is
an open set, the interior of Ké is exactly Ké so 1t is true that

(1nt K;) N K = p. In addition, K, and K, are convex sets in E . 80
these two sets satlisfy the hypothesis of Thecrem 3%.2. Hence, there
exlsts a hyperplene H = {x € Bt 0% = B}, where & € E,.qond © £ o,
such that a-yl 2B = a.ya for all yl € Ki and all y2 e Ké. If

a = (a N am), then o, # O for at least one 1. Assume that

1)

@, < 0. Then for arbitrary (to, . e 0 tm) € K and

(so, e e ey sm) € K,

o (b, - 8,) + Za (6, -5, 2 0. (3.4.10)
J=1
J%i
Since K, 1s unbounded, for any (to, e oe tm) € K, it 1s possible

to choose 8, < 0 so large in absolute value that

i

@, (t -8 ) + :E:a (t - sJ) < 0. (3.4.11)
J=1

I
But (3.4.11) contradicts (3.4.10) so it follows that @y 2 O for each 1
and for at least one1 =0, 1, . + . , m & >0 (since @ # 0).
Let (F(x), fl(x), e ey fm(x)) be in K for some x € C and

consider the vector (F(x*), 0, . . . , 0) in cl(Ké), the closure of K.



61

Then there exlsts a sequence {wn} in Ké such that {wn} converges to
(P(x*), 0, « « « , O)s Since e« < B for each n, 1t follows by the

continuity of the inner-product that for all x € C,

aoF(x) + alfl(x) F e e e+ amfm(x) 2B 2 aOF(x*). (3.4.12)

If 0y = 0, then for all x € C, (3.4.12) vecomes

alfl(x) + aéfe(x) + 00 e+ ahfm(x) 2z 0. (3.4.13)

However, by the hypothesis of the theorem, there exists a z € C such
that fJ(z) < 0 for all j. Since aJ > 0 for at least one J, 1t follows

that

alfl(z) + a2f2(z) oo oe oo+ amfm(z) < 0. (3.4.14)

Obviously, (3.4.14) contradicts (3.4.13) so it must be true that

@, > 0. Consequently, each term in (3.4.12) can be divided by @,

resulting in

(04 04
F(x) + —;fl(x) Fue o+ 2 (x) 2 F(x¥), (3.4.15)
% %

for all x € C. Letting ug = ag/ao for 3 =1, « « « , m (3.4.15) can

be rewritten as

L{x;u*) = P(x) + uffl(x) oo oo os + ugfm(x) 2 F(xx*), (3.4.16)

for all x € C. If the point selected in C is x*¥, then (3.4.16) implies

that



m

z u?‘fj(x*) 2 0.
J=1
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(3.4.17)

But x* € S implies that fJ(x*) < 0 for all j. Since ug 2 0 for all J,

1t follows that
m
* *¥) < 0,
2“3 5 (%)

J=1

Thus (3.4.17) and (3.4.18) imply that

m
E; ung(x*) = 0.
J:l .

It follows directly from (3.4.19) that

m
L(x*;u*) = F(x*) + Z ugfj(x*) = F(x*).
J=1 '

Certainly for all u = (u ., u ) in E;, 1t 18 true that

l, -] .

m
Z quJ(x*) < 0,
J=1

so 1t follows that for all u € E;,

m
P(x*) = P(x*) + :E: quJ(x*) = L(x*u).
J=1

(3.4.18)

(3.4.19)

(3.4.20)

(3.%.21)

(3.&.22)
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Combining the results given in (3.4.16), (3.4.20), and (3.4.22), it

follows that
L(x*u) < L(x*u¥*) < L(x;u*),
for all x € C and for all u € E;, which is the desired conclusion.

A careful examination of the proof of Theorem 3.4 shows that it is
possible to characterlize the vector u¥* in E; in a manner which allows
Theorem 3.4 to be written in an equivalent form. Using (3.4.5) and
(3.4.7) from the proof of Theorem 3.4, the following corollary gives

this equivalent form.

Corollary 3.5. Let (P) be a convex program with domain C in En’

objective function F, and constraint functions {fl, e o sy fm}.
Assume that the set {x ¢ C: fi(x) <0,1=1 ..., m} is nonempty.
Then x* in C is an optimal solution for (P) if and only if there exists

a u¥ in E; with the properties that

(a). F(x*) = inf{L(x;u*): x ¢ C},

"

(v). ugfj(x*) = 0, for J

l, . L] L] ) m,

(C)o fJ(x*) < 0, for J = l, « o o , M.

Proof: Assume that x* is an optimal solution for (P). Then by Theorem
3.4, there exists a u* e E; such that L(x*;u) < L{x*;u*) < L(x;u*) for

all x € C and for all u € E;. Condition (b) follows from (3.4.7), and

condition (c) is a direct consequence of the optimality of x*.

Condition (b) now implies that

F(x*) < L(x;u*)
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for all x € C. Since x* is in C, it follows that condition (a) is
true.

To complete the proof, assume now that there exists an x* in C and
a u* in E; such that (a), (b), and (c) are true. From (a) and (b), it

follows that
L(x*3u#*) = F(x*) < L(x;u*) (3.5.1)

for all x € C, Let u = (ul, . o oe um) be in E;. Then u, > 0, for

J
all J, so it follows that quJ(x*) < 0 for all j by condition (c).

Certainly, 1t 1s true that

m

:E: quJ(x*) <0
J=1

for all u e E;. Therefore,

m
L(x*u) = F(x*) + :E: quJ(x*) < F(x*) = L(x*;u*), (3.5.2)
J=1
Combining (3.5.1) and (3.5.2), it follows that (x*;u%) is a saddle-

point for L. Hence, x* is an optimal solution for (P) by Theorem 3.k,

Note that Corollary 3.5 says that if x* i1s an optimal solutlion
for (P), then there exlsts a vector u¥ in E; such that the optimél
value for (P) is equal to the infimum of L(x;u%*) over the domaiﬁ C of
(P). Suppose that such a vector u* ¢ E; is known for a convex program
(P). Then instead of first determining the set of feasible solutions
S for (P) and then minimizing the objective function P over S, it

hopefully would be possible to determine the minimum set for L(x;u*)
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over C and then dlscard thogse vectors which did not satisfy certain
constralnts with the resulting set belng exactly Min P. The next

definition and theorem establlish this procedure preclsely.

Definition 3.6. Let (P) be a convex program with domain C in En' Then

a8 vector u¥ in E; is & solution vector for (P) if and only if
Inf{L(x;u*): x € C} = inf F.

Using Definition 3.6, the above discussion can be formulated into

the following theorem.
Theorem 3.7. Let (P) be a solvable convex program with domain C in En'
If u* in E; is a solution vector for (P), then

Min F=8NMNT,

where S is the set of feasible solutions for (P),

M

{x € C: ugfj(x) =0, J=1, « .., m}, and

il

T = {z € C: L(z;u*) < L(x;u*), for all x e C}.

Proof: Let t € Min F. Then F(t) = inf{L(x;u*): x € C} since u* is a

solution vector for (P). Therefore, since t ¢ C,

m
F(t) < F(t) + Z u:’j"fj(t),
J=1
and it follows that
m
z ugfj(t) 2 0. (3.7.1)

J=1
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But t belng an optimal solution Implies that t € S so it must be true

that,

m

z ugf‘j(t) < 0. (3.7.2)
J=1
Now (3.7.1) and (3.7.2) imply that ung(t) =0for J=1, « « « , M 8O
1t follows that t € M. Then (3.7.1) and (3.7.2) also imply that
L(t;u*) = F(t) = inf F < L(x;u*) for all x ¢ C, so t ¢ T. Therefore,
Min F 1s contalned in SN MN T,
To show the inclusion in the other direction, let t € SN MN T.

Then t € C and
L(t;u*) = inf{L(x;u*): x € C} = Inf F (3.7.3)

since u* is & solution vector. Since t 1s in M,

Therefore, (3.7.3) can be rewritten as
L(t;u*) = P(t) = inf F.

Since t is a feasible solution for (P), it must be true that t is also
an optimal solution for (P) and hence t € Min F. The proof of the

theorem 1s now complete.

As an illustation of the concepte presented in Theorem 3.k,

conslder the followlng example.
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Example 3.8, Let C = E, F(x) = e, and £(x) = e*- 1. From Example

1.3, it follows that S = {x € E,: x = O} and that the convex program

1
80 defined 1s not solvable. This assertion can be verified by
Theorem 3.4. Suppose that x¥* in S is optimal for this convex program
(P). Then by Theorem 3,4, there exists a u¥* in EI such that

L(x*u) < L(x*;u%*) < L(x;u*) for all x in E From the proof of

1°
Theorem 3.4, it follows that u*f(x*) = u*(e"‘*- 1) = 0. If x*=0,
then it 1s not optimal:. If x¥ > 0, then u* must be 0, and it follows
that for any x > x*, L(x;u¥*) = F(x) < F(x*) = L(x*;u%*) which contra-
dicts the optimality of x¥*. Hence (P) cannot be solvable, which is

clearly true.
Differentiable Convex Programs

Up to this point, there has been no explicit requirement that the
objective function and the constraint functions for (P) be differenti-
able wilth respect to an appropriate open subset of En’ Of course, even
if they are, Theorem 3.4, Corollary 5.5, and Theorem 3.7 are still
valid. However, in the case where these functlons are differentiable,
these above results, particularly Corollary 3.5, can be modified to
make use of this differentlabllity property in stating the hypotheses.
The goal now 1s to assume differentiability for the aforementioned
functions and present the modified form of Corollary 3.5.

Before turning to this modified theorem, it is necessary to dis-
cuss an 1lmportant property of differentiable convex functions. This
property 1s given by the next theorem, a proof for which can be found
in Fleming [7], p. 53, Proposition 9a, or Mangasarian [18], p. bk,

Theorem 3.
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Theorem 3.9. Let f be differentiable on an open convex get C in En.

Then f 1s convex on C if and only if

£(x) - £(y) 2 (x - y)-[grada £(y)]
for every x and y in C.

Here, grad f(y) represents the gradlent vector of f at y and it
is an n-dimensional vector whogse components are the partial derivatives
fi of f evaluated at y. Appropriate definltions and results concerning
the differential calculus for real valued functions of several veri-
ables can be found in Fleming [7], Chapter 2.

The terms defined here are used with respect to the lLagranglan
function L for a convex program (P). The partial derivative of L with

respect to the 1-th variable x, of the vector x ¢ C is denoted by Li;

i
the partiai derivative of L with respect to the J-th variable uJ of
the vector u € E; is denoted by LJ' Also, in order to conform to the

fact that a differentiable function is defined on an open set, all
convex programs (P) whose objective function and constraint functions
are differentiable are assumed to have an open convex set for thelr
domain. These preparatory remarks now allow the following theorem to

be stated.

Theorem %,10. Let (P) be s convex program with domain C an open set in

En’ obJective function F, and constralnt functions {fl, « o oay fm}.
Assume that {x ¢ C: fJ(x) <0,3=1l, « + » , m} i8 nonempty and that
F and each f, are differentiable on C. Then x* in C is an optimal

J
solution for (P) if and only if there exists a u¥ in E; such that
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l’ . . L ] m’

!

(a). LJ(x*;u*) <0, J

(b)' u's'LJ(x*;u*) = O,. J = l, [ ) m.’

]

(c)- Li(x*;u*) = 0, 1 l, [ e

Proof: Assume that x* 1s an optimal solution for (P). Then it follows

from Theorem 3.4 that for all x in C and for all u in E,
L(x*;u) < L(x*u*) < L(x;u*). (3.10.1)

Since x* is optimal, LJ(x*;u*) = fJ(x*) < 0 for all J, so (a) is
satisfied.
By (3.k.7), ung(x*) = u; LJ(x*;u*) =0, for J=1, « « « , m 80
(b) 1s satisfied.
Asgume now that for some 1 =1, « « « , n, Li(x*;u*) < 0. Then
by the definition of partial derivative (cf. Fleming (7], p. 37),
L((x* ... ,x;+t, . o . ,x;);u*) - L{x*;u*)

L, (x*;u*) = lim 1
£=0 t

< 0.

Since C 1s an open set, there exists a t, > O such that the vector

0
(xf, s e e XPHE, o e e ,x;) is in C and

L((x{, o oo sxBtG, .. ,xg);u*) - L(x¥*;u%) <o

%o
Therefore, the numerator is negative and hence it must be true that
L((xf, SRR S STV IR ,x;);u*) < L(x*;u%*), a contradiction of
(3.10.1). Consequently, Li(x*ju*) 20fori=121, ..., D0

Assume now that for some 1 =1, . « « , n, it i8 true that



TO

Li(x*;u*) > 0. Then there exists a t. > O such that the point

o)

(x{, SRR S EIYIIE ,xz) is in C and

L( (Xf, * e ,Xi"-‘to, o s o ’x::);u*) - L(x*;u*)
> 0.

..to

Agalin the numerator must be negative and it follows that
‘L((xf, IR ,x;);u*) < L(x*;u*), which again contradicts
(3.10.1). Therefore, Li(x*;u*) <Ofori=1, ... ,n. It follows
from this inequality and the one above that Li(x*;u*) = 0 for
i=1,...,n80 (c) is satisfied.
For the proof in the other dlrection, assume that there exlsis
a vector x* in C and a vector u¥ in E; such that (a), (b), and (c)
are true. Since u¥* is fixed, it follows from Lemma 3.3 that L(x;u*)

is a convex function of x on the convex set C. Since x¥* is in C,

Theorem 3.9 implies that for a8ll x e C,

L(x;u%*) - L(x*u*) » (x - x*)-[grade(x*;u*)], (3.10.2)

where grade(x*;u*) represents the gradlent wlth respect to the vector
x of the function L(x;u*) evaluated at x¥. Since the i-th component
of gradkL(x*;u*) is Li(x*;u*), it follows from (c) that grade(x*;u*)

is equal to zero. Consequently, (3.10.2) implies that
L(x*;u*) < L(x;u¥*) (3.10.3)

for all x € C.
From (a), LJ(x*;u*) = fJ(x*) <0, for J=1, « « « ,m80 X*is a

feasible solution for (P).
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From (c), 1t follows that

m m

* *: %) = * *) = 0. .10.
:E: u) LJ(x su¥*) :E: u] fJ(x ) =0 (3.10.%)
J=1 J=1

f (x*) < 0 for

Observing that for any u = (u 5

+
TR ,um) €E,u

J = l, L] . . ,m SO it fOllO'WS th&t

m m

z uy £,(x%) < 0 = z wr £ (x%). (3.10.5)
J=1 J=1

By (3.10.4), L(x*;u*) = F(x*). Thus it follows from (3.10.5) that

m
Lix*u) = F(x*) + Z uy £,(x%) s Flxx) = Lxkur) (3.10.6)
3=1

_for all u e E;. Combining (3.10.3) and (3.10.6), it 1s apparent that
L(x*u) < L(x+;u*) < L(x;u*) (3.10.7)

for all x € C and for all u e E;. Thus for x* ¢ C, there exists a u¥
in E; such that (3.10.7) 18 true; it then follows that x¥* is an optimal

solution for (P) by Theorem 3.k4.

Recall from the calculus of several varlables that the gradlent of
a differentiable function evaluated at a polnt x¥ represents a vector
which gives the directlion from x¥ 1n which the function 1s increasing
the maximum amount. In convex programming, for a point in the domaln
C of (P), 1t is of interest to know the direction from this point in

which the obJective function 1s decreasing. In the differentlable case,
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for any point x* in the domain C of (P), it follows that -grad F(x*)
gives the dlrection from x* in which the objective function F 1s de-
creasing the maximum amount. With this 1n mind, notice that

Theorem 3.10 implies that x* in C is optimal for (P) if and only if

there exists a u¥ in E; such that x* is feasible, u*fJ(x*) = O for all

J
J, and

-grad F(x*) = uf[grad fl(x*)] oo .0 .+ u;[grad fm(x*)].

The next two examples 1llustrate these concepts given by Theorem 3.10.

Example 3.11. Let C = E,, F(x,y) = x° +1, fl(x,y) =x -1, and

fz(x,y) = -x - 1. Then 1t follows that the set of feasible solutions

1s 8 = {(x,y) € E;: -1 < x < 1} and the convex program so defined is

X
solvable. In fact, Min F = {(x,y) € Byt x = 0}. For any optimal solu-
tion x* = (0,y) for (P), fl(x*) = fa(x*) = <1. Since qui(x*) must be
zero for 1 = 1, 2, it follows that uf = ug = 0. Noting that

grad F(x,y) = (2x,0), it is immediate that grad F(x*) = (0,0). Hence,

-grad F(x*) = (0,0) = uf[grad fl(x*)] + ug[grad fa(x*)]

since u* = (0,0). Therefore, if x* is optimal for (P), then there
exlsts a u* in E;, namely u* = (0,0), such that u;fi(x*) = 0 for
i=1, 2, and -grad F(x*) = uf[grad fl(x*)] + ug[grad f2(x*)]. Note

= + * *
also that for all u = (ul, u2) €E, u (x*) + uzfz(x ) £ 0. So it

15
follows that for any x* in Min F, there exists a u* = (0,0) in E; such

that L{x*;u) < L{x*u*) ¢ L(x;u¥*) for all x € E, and for all u € E;.

Example 3.12. Let C = Ep, F(x,y) = X .y +2, £,06,¥) = x -7,
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fz(x,y) =y -1, and f3(x,y) = X Then the convex program so defined
has S = {(x,y) € By Ogxs1l, xSyg 1} as its set of feasible solu-
tions and the optimal solution is x* = (0,1). Also, grad F(x,y) is
given by (2x,-1), grad fl(x,y) = (1,-1), grad fz(x,y) = (0,1), and
grad f3(x,y) = (-1,0). Since x* = (0,1), fl(x*) = -1, 80 u¥ = O since
it must be true that u;fi(x*) =0 for 1 = 1,2,3, Since

fz(x*) = fﬁ(x*) = 0, 1t 1s possible for u} and ug to be nonzero. Now
-grad F(x*) = (0,1). If u* = (0, 1, 0), then u;fi(x*) = 0 for

1=12,3% and
b
-grad F(x*) = zg: u;[grad fi(x*)]. (3.12.1)
i=1

This verifies that x* = (0,1) is an optimal solution for (P) by
Theorem 3.10. Figure 9 illustrates this example by graphically
depicting (3.12.1). It also shows (0,0) and (1,1) in S cannot be
optimal since -grad F(x,y) cannot be written as a positive linear
combination gﬂéthe gradient vectors for the constraint functions at

these polnts.
Convex Programs Over E;

In & lot of practical problems involving convex programming, it 1s
desirable to minimize the objJectlve functlion F over 6nly those fea-
sible solutions which lie 1in the nonnegative orthant E; of the space
E. If (P) is a convex program with constraint functions
{f;, « + +, f,} and it 1s Qesired to minimize F over those feasible

+ + +
solutions 1in En’ let 8 =8N En’ and notlce that if fm+i(x) = =Xy for
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1
| grad F(1,1)

|
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Figure 9.
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i=1, ... ,n, then

+
En = ﬂ{levofm+i. i = l, ¢« e o ,n}o

Consequently,

S+ = {levof J = l, e ¢ o ,m} N {lev t 1= l, « o 0 ,n}-

J: Ofm+i

Thus, if (P) is consldered to have constraint functions

{fl, e e, T

where fm+i(x) = -x, for 1 =1, . . . ,n, then it follows that the set
of feasible solutions for (P) under thils augmented set of constraint
functions 1s exactly S+; that 1s, exactly those feaslble solutions for}
(P) under the original set of constraint functions which also lie in
E;. Hence, 1f it is desired to minimize the obJective function F of a
convex program (P) over the restricted set of feasible solutions S
rather than S, 1t is merely necessary t0 augment the set of constraint

functions for (P) with the n convex functions {f 1=1, ... ,n}

m+l’
where fm+i(x) = -X;. Wlth this augmented set of constraint functions,
the set of feasible solutions for (P) is exactly s*. For an augmented
convex program (P) (meaning that the constraint functions for (P) have
been asugmented in the manner discussed in the above remarks), the fol-

lowing corollary glves necessary and sufflclent condltions for a polnt

x* in the domain C of (P) to be an optimal solution for (P)

Corollary 3.13. Let (P) be an augmented convex program with domain C

an open set in En’ objective function F, and augmented constraint
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functions {fl, SRRV SV SN EENR AT fm+n} where £ (x) = %,

for 1 =1, « + « ,n., Assume that P and each fJ, J=21, ... ,m, are

m+i

differentiable over C and that {x e C: fJ(x) <0, 3J=1, « « « , m+n}
is nonempty. Then x* in C is an optimal solution for (P) if and only

if there exlsts a u¥ in E such that
m+n
(a). LJ(x*;u*) <0, J=1, . . . ,mtn,

(b)- u;‘LJ(x*;u*) = O, J = l, * e » ,m+n,

(C). Li(x*;u*) = O, 1= l, o o o ,n-

Proof: The proof follows directly from Theorem 3,10 when the original
set of constraint functions {fl, . e ,fm} are replaced by the aug-

mented set of constralnt functions {fl, « oo ,f, T

mn m+l, . . . ,fm }.

+n
Notice that LJ(x*;u*) = fa(x*) <0, for =1, « « « ,m+l, forces x¥

to be in sT.

Another method is availsble for finding an optimal solution for
(P) over S when the domain of (P) contains E;. Assume that the domain
C of (P) contains E; and it 1s desired to find an optimal solution x¥
of (P) over 8*. 8ince E; is a convex set in C, and 87 = 8N E;, it

follows that
st = {x e C: £(x) <0, 3=1, ..., m}nN E
can be replaced by the equlvalent representation

S+"—‘{X€E;: fJ(X)SO,J’-'-"l, .« o .,M]o
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From thils latter representation of S+, it is apparent that if the do-
main of (P) is restricted to E;, then the same set of feasible solu-
tions st results, and an optimal solution x* for (P) over S+ when the
domain of (P) is C is also an optimal solution for (P) over s* when the
domaein of (P) is E;. Since E; is a convex set, Theorem 3,4 allows the

next theorem to be formulated.

Theorem 3.14. Let (P) be a convex program with domain E; in En, ob~

Jective function F, and constraint functions {fl, . ey fm]. Assume
that {x ¢ E : £,(x) <0, =1, . . . ,u} is nonempty. Then x* in E
is an optimal solution for (P) if and only if there exists a u* in E;
such that L{x*ju) < L(x*;u*) < L(x;u¥*) for all x € E; and for all

+
uek.
m

Now let the objective function F and each constralnt function
fJ, J=1, . . . ,m, be differentiable for a convex program (P) whose
domain C is an open set in En which contains E;, and suppose that the
problem is to find an optimal solution x* for (P) over s*. Although
E; is not an open set in E_ (1t is in fact a closed set), it is still
possible to formulate necessary and sufficlent condlitions for an

element x¥ in E; to be an optimal solution for (P) over S'. The next

theorem expresses these conditions.

Theorem 3.15. Let (P) be a convex program whose domain C is an open

set in En which contains E;. Assume that the objective function F and

each constraint function f,, J =1, . . . , m, are differentiable over

J,
C and the {x € E;: fJ(x) <0, 3=1, « « + ,m} 1s nonempty. Then x*

in E; 1s an optimal solution for (P) over S' if and only if there
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exlsts a u¥* in E; such that
(a)o Li(x*;u*) 2 O, i = 1, ¢ * s n,

(b)n xr Li(x*;u*) = O, 1= l, LI Y n,

(e). LJ(x*;u*) <0, J=1, « v «,m,

(d)o ug- LJ(X*;U.*) = O, J = l, ¢ o e M.

Proof: Assume that x* in E; is an optimal solution for (P) over S+.

Then Theorem 3.14 implies that there exists a u¥* in E; such that

L(x*;u) € L(x*;u*) < L(x;u%) (3.15.1)

for all x € E; and for all u € E;. Then (3.4.7) in the proof of
Theorem 3.4 implies that (d) is true and the optimality of x* implies
that x* is feasible and hence LJ(x*;u*) = fJ(x*) < 0, for

J=1, « « « ,m, 80 (c) 18 true.

Suppose that (&) or (b) is not true. Then elther

l, + ¢ ¢« , n, Or

(1). xf = 0 and Li(x*;u*) < 0 for some 1

(2). x¥* >0 and L, (x*;u*) £ 0 for some 1
1 1

i

l,.-.,n.

is valid. Assume that (1) 1s true. Then just as in the proof of

Theorem 3.10, there exists a to > 0 such that

L((xf, SRERIPE S L PR ,x;);u*)_- L(x*;u*)

which implies that L((xf, JRERIPE S L AP ,xz);u*) < L(x*;u%).
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+
Since x* 2> 0, (xf, coeeHxER G, . ,xg) ¢ E and this contradicts
(3.15.1). Assume now that (2) is true. If Li(x*;u*) < 0, then the
previous argument again leads to a contradlection. IT Li(x*;u*) >0,

let to > 0 be chosen such that 0 < to < x;, and

L((x*, ¢ o ’x*-t 9 e e . ,x*);u*) - L(x*;u*)
1 i 0 n <o.

..to

Bince x¥-t; >0, (x¥, . . . ,x¥-t,

L((xf, O .. ,xg);u*) < L(x*;u*) which is a contradiction.

e xE) e E; and it follows that
Bty s
Since (1) and (2) both lead to contradictions, it follows that (a)
and (b) are true.

To complete the proof, now let x* be in E; and assume that there
exists a vector u¥* in E; such that (a) through (d) are true. By (c),
x* is a feasible solution for (P) so the fact that x¥* e E; implies
that x* € §'. For a fixed vector u* in E;, L(x;u*) is a convex func-
tion of x over E; by Lemma 3.3, so it follows from Theorem 3.5 that

for all x € E,

L(x;u*) = L(x*u*) + (x - x*)-[grade(x*;u*)], (3.15.2)

or eguivalently,

L(x;u*) = L(x*;u¥*) + x-[grade(x*;u*)] - x*-[grade(x*;u*)].

From (b), x*-[grade(x*;u*)] = 0. Since x e E;, x = 0 and so from (a)
it follows that xv[grade(x*;u*)] > 0. Consequently, it follows that

for all x € E;,

L(x*;u*) < L(x;u*). (3.15.3)
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For any u = (ul, . oo, um) in E;, u, 2 0 for each j. Combining this

J
with (c), 1t follows that uJLJ(x*;u*) = quJ(x*) < 0 for each J.

Hence for all u e E;,

m
ZE: quJ(x*) < 0. (3.15.4)
3=1
Now by (d),
m m
L{x*;u*) = F(x*) + 22 ugfj(x*) = F(x%) + 2; ujLJ(x*;u*)

J=1 J=1

= F(x*). (3.15.5)

Combining (3.15.%) and (3.15.5), it follows that

m
Lix*u) = P(x*) + z w £ (x%) § F(x¥) = Lxkur) (3.15.6)
3=l '

k4

for all u € E;. Tt then follows immediately from (3.15.3) and (3.15.6)

that for all x 1n E; and for all u € E;,
L(x*;u) < L{x*u*) < L(x;u*).

Theorem 3.14% then implies that x* in E; is an optimal solution for (P)

+
over S .

Thls chapter discussed the characterlzation of an optimal solution
for a convex program (P) in terms of the Lagranglan function formed
from the objective and constraint functions for (P). It turned out

that under certain condltlons, the problem of minimizing the obJective
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function of (P) over the set of feasible solutions S could be replaced
by the equivalent problem of minimizing the Lagranglan function for
(P) with respect to the variable x over the domain C of (P). Theorems
3.& and 3.10 and Corollary 3.5 are the most general results, while
Corollary 3.l13 and Theorems 3.l4% and 3.15 cover speclal cases.

Theorem 3.15 18 an equivalent form of the famous Kuhn-Tucker Theorem
(cf. Kuhn and Tucker [15]) which is considered the cornerstone for the
theorey of convex programming.

Additional information concerning this topic can be found in
Hadley [10], Chapter 2, Karlin [12], Chapter 7, Kuhn and Tucker [15],
Kunzi and Krelle [16], Chapter 3, Mangasarian (18], Chapters 5,7,10,11,
or Rockafellar [20], Section 28.

Although the goal of the first three chapters was to present an
introduction to the theory of convex programming, it is reasonable to
expect that such theory is not always convenient or practical to use
in solving real life problems. Hence the obJective of Chapter IV is
to briefly dlscuss some algorithms developed for solving convex

programs .



CHAPTER IV
THREE ALGORITHMS FOR CONVEX PROGRAMS

The obJective of this chapter is to discuss three algorithms which
have been developed to solve particular types of convex programs. By
means of an lterative process, each of these algorithms generate a
sequence of feaslible solutions which converge to an optimal solution.
Since no single algorithm exists which will solve every type of convex
program, each algorithm imposes certaln requirements upon the convex
program (P) in order that it will work. The three algorithms consider-
ed here all require that the convex program (P) be solvable and that
the objJective function be continuous on the domein of (P).

The first algorithm considered is an application of the Method of
Feasible Directions developed by Zoutendijk [24]. Although this method
can be used to solve convex programs whose constralnt functions are
nonlinear, the form of the algorithm glven here 1s applicable to a
convex program whose constralnt functions are linear.

The Cutting Plane Method for solving convex programs 1s the second
algorithm discussed here. This method can be used to solve convex pro-
grams whose obJectlive function is linear and whose set of feasible so-
lutions is a particular compact convex set. The lterative process of
the Cutting Plane Method generates a sequence (generally infinite) of
linear programs, the solutions for which form a sequence of feasible

solutions for (P) which converge to an optimal solution for (P). Addi-

B2
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tionael information on the Cutting Piane Method can be found in Kelley
[131].

The last method consldered is the Sequential Unconstrained Minimi-
zation Technique developed by Fiacco agd McCormick [5]. According to
Bracken [1], this method has had great success in solving many types of
nonlinear programs including certain convex programs. This method
generates a sequence of feasible solutions for (P) which converge to an

optimal solution.
The Method of Feaslble Directions

Suppose that (P) is a convex program with domain En’ objective
function F which is differentiable over En’ and set of feasible solu-

tions given by

n
jg: 8 4%, 2b;, 1=1,...,mn (%.1)
=

xJZO, J=1l, ¢« s« « , N (k.2)

Notice that for each i, 1 € 1 < m, fi given by the expression

fi(x) = B X - e s 'ai;in + b, 1s convex, and for each J, 1 < J <n,

fm+J(x) = X, defines a convex function fm+J° Then the set of feasible

solutions S for (P) is given by

S=1{xe¢ E : fi(x) <0,1=1, « « « , mtn}.

Thus (4.1) and (4.2) conform to the standard form for the set of feasi-

ble solutions for (P).



Now let x* = (xf, xX,

satisfies (4.1) and (4.2).

find a vector (direction) s¥ = (sf, 8%, « « o, s;), where

8l

ey xg) be a femsible solution which

The Method of Peasible Directions seeks to

-1 < sg's 1 for each J, and a real number r > O such that the point

X¥% = x% + rg¥ 1s a feasible solution for (P) and F(x**) < P(x*).

Agsume first that x* satlsfies the following

n

* = = " o e
22 ainJ bi’ 1=11,
31
n

* = e e
z a.inJ >bi’ 1 = k41,
J:

- and

x:;.:O’ J:'-l,-oo

»
N
Vv

L

e
i

”P+l, . e

conditlons:

It then follows that if r 1s sufficiently smaell, and if

n

zaijsgzo’ i=l,co¢
‘J=

8.520, le,...

,k)

> Py

(4.3)

(b.1)

(4.5)

(4.6)

(&.7)

(4+.8)

then x*¥ = x* + rg¥* satisfles (4.1) and (4.2) and hence is a feasible

solution.

For those s* which satisfy (4.7) and (4.8), it is desired to de-

termine that particular vector along which the objective function F

attains 1ts maximum decrease from the value F(x*). Recall that this
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maximum decremse occurs along the vector -grad F(x*) if grad F(x*) # 0.
A verification of this remark can be found in Fleming [7]1, p. B6. For

x* fixed, consider the following linear function:
[grad F(x*)]-[s%*]. (4.9)

In order to obtain the largest decrease in the objectlive function F
from the value F(x*), it is necessary to minimize the linear functlon
given in (4.9) over the set of vectors " which satisfy (4.7) and
(+.8). Notice that this is a linear programming problem (cf. Hadley
[11], Chapter 3, for additional information concerning linear program-
ming). The vector s* which minimizes (4.9) over g is called & feasi-
ble direction and the point x*¥ = x¥ + rs¥* gives a smaller value of
F(x) for the r that 1s chosen sufficiently small.

If the solution s* to the above linear program is the zero vector,
then x* is the solution to the problem of minimizing P(x) over the set
of vectors satisfying (4.1) and (4.2).

If s%* % 0, then the parameter r 1s chosen in the following manner.

(a). Let

Il n Il

- * * * < .
s 2 ainJ)/ 8, 5% if 8, 8 <0, ktl<i<m

™ ;
3=1 J=1 J=1

-xg/sg, if sg <0, ptl<J<n,

It follows dlrectly that if r < r,, then x* + rs¥* satisfies (4.l1) and
(k.2).

(b). Note that P(x¥ + rs*) is a function of the single variable
r, and that this function 1s a decreasing function of r for sufficlent-

ly small r. To find the minimum value of F(x¥* + rs*) with respect to
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r, the followlng expression is solved for r:

a F(x* + re*) = [grad F(x* + rs*)].[s*] = 0. (4.10)

dr

Let r, be the solution to (4.10), 1f it exists. For O<r < r

F(x* + rs*) as a function of r is a decreasing function.

2’

(¢). The optimum choice of the parameter r is then

¥ = N . .
r Min [ s T, ] (%.11)
The new feasible solution 1s then

X*¥ = x* 4 r¥g¥, (4.12)

This process is then iterated until either (1), s* is exactly zero, or
(2), the decrease in the objective function is negligibly small. In
his book (cf. [24]), Zoutendijk has shown that this process converges
to an optimal solution. Hence, this algorithm can be outllned as
follows;

Step 1. Select an arblitrary feasible solution x¥,

Step 2. For this x%*, determine a feasible dlrection s¥*.

Step 3. If s* = 0, then x¥ 1s optimal.

Step 4. If s* f 0, determine a feasible parameter r¥,

Step 5. Conslder the new feasible solution x¥* = x* 4+ r¥s¥,

Step 6. Repeat Step 1 through Step 5.

The following simple example 1ls worked by thls method in order to

1llustrate the procedure.

Example 4.1. Let (P) be a convex program such that C = E,»
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F(x,y) = xX° -y + 2, £(6y) =x -y, f,(x,y) =¥y -1, f3(x,y) = X,
and fh(x,y) = -y. Then S = {(x,y): 0<x<1, x<y=<1} and from
Example 3.12, the point (0,1) is optimal. Note that

grad F(x,y) = (2x,-1). Let X = (1/2,1/2) be the initial feasible
point arﬁitrarily chosen. Notlice that the constraints for this problem

are:

(1). x -y < 0 implies that -x + y 2 O,
(2)s y -1 < O implies that -y 2 -1,

(3) x<0, -y<Oimplies that x> 0, y = O.
The solution proceeds as follows:

Step 1. Since x, = (1/2,1/2) satisfies constraint (1) with strict
equality, it follows from (4.7) and (4.8) that s = (sl, 52) mst

satisfy the constraints

(a). -8y + 8,

(b). -1< 8, < 1,

(e). A< s, < 1.

Step 2. Minimize [grad F((l/2,l/2))]-[(sl, 8,)] = 8, -8,

subject to the constraints (a) through (c) above. The solution to this

linear programming problem is s, = (<1, 1) = (sl, sz). Hence 5 15 &

feasible dlrection for xo.

Step 3. Now 0(x) - 1(y) = -1 is constraint (2) for the problem

and 0(51) - 1(52) = -1 <0. Hemcer, = (-1 - (-1/2)}/1 = 1/2.

Step 4. Setting [grad F(xO + rso)]°[so] =2r -2 = 0, it follows

2
solution is x; = (1/2, 1/2) + (1/2)(-1, 1) = (0, 1). Since s, # 0,

that r, = 1. Therefore, r¥ = Min (rl, r2) = 1/2 and the new feasible



the procedure must be repeated for the feasible solutlion X, .
Step 5. Since x, satisfies constraint (2) with strict equality,

and the first coordinate of xl

directions for Xy is glven by the constraints:

1s zero, the set of possible feasible

(a)u -82 2 O, (C)- "l S sl S l’

(b)c Bl 2 O, (d)o "l S 8 S lo

2

Step 6. Minimize [grad F((O,l))]'[(sl, 52)] = -8, subject to (a)

2
through (d) above. The solution of this linear program is

(sl, 52) = (0, 0). Thus it follows that x. is an optimal solution

1

for (P) since there exists no nontrivial feasible direction for X, .

The Cutting Plane Method

The Cutting Plane Method can be used for solving convex programs
where the objective function is linear and the single constraint
function for the proéram is convex and not linear.

To simplify the statement and proof of this method, consider the
e Let

G be a convex function defined by G(x) on a nonempty compact convex

following characterization of a nonvertical hyperplane in En+

set C in En such that there exists a nonvertical hyperplane of

support

ot t t ot
H, = {(xl, o e e ’xn+l) €E i8% +..taX +a X =D }

to epl G at the point (t, G(t)) at every point t € C. Since Ht is non-
t

vertical, it must be true that &, # 0. Therefore, it follows that

for each (xl, . e e ,xn) € C,
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t t t Tt
X1 = (l/an+l)[-alxl -+ .ax +D ]

t, t t
such that (xl, e e 5, X , %X .)e€eH. If 'ai/an+l= @ for 1 <1< n,

n’ “n+l t i
t, t t .
and b /an+l= p~, then define

X = H(x;t) = alx .. .4 azxn + Bt (%.13)

n+l 171

for each (xl, . e, xn) e C. Then it follows that the point

(xl, C e X H(x;t)) is in H . DNotice that H defined by H(x;t) 1is

a function whose domain is En and whose graph in En+
t t
H, . In addition, gradxH(x;t) = (ai, o ooy an)

point (t,G(t)) is in the hyperplane H . Thus

1 1s the hyperplane

. Also, note that the

t t t
G(t) = altl oo e o+ antn +B (&.14)

80 that

gt - G(t) - (aitl + o oe ot aztn). (4.15)

From (4.13) and (4.15), it follows that an alternate expression for H, is

Pat(xg - b))+ e e =(x - G(8)) =0}

where t = (tl, .« .o ,tn). Consequently, it follows that

£) = x . =af te,
H(x;t) = X .= ai(xl - tl) + o0 e o+ an(xn : tn) + G(t).

+1

The Cutting Plane Method can now be summarized by the following
theorem. Notlce that the convex program discussed has the n-dimension-
al convex compact polyhedral set C in En as 1lts domain, the linear

function F(x) = cex as its objective function, and the continuous
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convex function G as 1ts only constralnt function.

Theorem. (Cutting Plane Method). Let G be a continuous convex function
defined on the n-dimensional convex compact polyhedral set C in En such
that at every point t in C, there exlsts a nonvertlcal hyperplane of

t

support H, = lx € E_ : x-a® = %} to epl G at (t,6(t)). Assume that

1
there exists a finite constant K such that for each hyperplane H%,
iGay, « « - , &, 0)] <K for all t in C. Let F(x) = cex be & linear
objective function such that |jc|| > 0 is finite and let

S = {x € C: G(x) < 0} with S nonempty. If t, € C, 1is such that

F(tk) = inf {F(x): x € ck], k=0,1, « ¢« »,
where CO = C and

Cp = Cpq n {x: H(x;tk_l) < 0},

then the sequence [tk} converges to a point z € S such that
F(z) = inf {F(x): x € 8}. (4.16)

Before turnipg to the proof proper, consider Figure 10 which de-
{
picts the above described procedure for k¥ = 0, 1, 2, 3. First, to is

determined which minimizes F over C.. Then the hyperplane H% deter-

0 0
mines the set Cl. Then tl minimizes ¥ over Cl and the hyperplane H%
‘1
determines 02. Similarly, t2, H% » and C3 are determined. The pro-
2

cedure then continues in this manner.

Proof: Since C is an n-dimensional convex compact polyhedral set, C

can be wrltten as the intersection of a finite number of closed half
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Figure 10.
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spaces and hence is closed. Since G is continuous, S 1s compact so
there exists a point z € S such that (4.16) is true.
Now let t be an arbitrary point in C \ 5. A hyperplane of support

to epi G at (t,G(t)) can be written as

H = {(x;2) € E ., :%x€C,z= H(x;t) = G(t) + at'(x -t), ot = 0}

(If G 1s differentiable, then H, 1s Just the tangent plane to epl G).
Since epi G i1s a convex set, 1t follows that H(x;t) < G(x) for all x in
C. If xe¢ S, then G(x) < 0 and thus H(x;t) < O for all x in S. Since

t is not in S, H(t;t) > 0. Consider the trace of the hyperplane Ht in

E; that 1s, the set {x ¢ En: H(x;t) = 0}. The above discussion then
implies that t and S are separated by the trace of Ht in En'

Now let C = CO and let to be the point in CO which minimizes F(x)

over CO. Since C_ 1s compact and F is continuous, such a point exists.

o)

(assume that to is in CO \ S for otherwilse to is a solution to the

problem). Let

C, = CO N {x: H(x;to) < 0}.

1

Then S 1s contained in C, so C, 1s not empty. Also, Cl is compact so

1 1
there exists a tl in Cl which minimizes F(x) over Cl' Note that
cl contained in C, implies that F(tl) 2 F(to), and that H(to;to) >0

implies that t, £ C,- In genmeral, for k >1, let

Cr =Cpy N {x: H(x;tk_l) < 0},

and let t, be the point which minimizes F(x) over C, so that

k k

F(tk) = inf {F(x): x ¢ ck}. Since § © C, © C, ,, for all k, it follows
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that F(z) 2 F(tk) 2 F(tk l) where z satisfies (4.16). Consider the
sequence {tk}generated by the above method. Due to the fact that {tk]
1s contained in C and C is compact, there exists a point p € C and a

subsequence {tk } of {tk} such that {tk } converges to p. A proof of
1 i

this assertion can be found in Taylor [22], p. 72, Theorem 2.4-H. Now
{F(tki)}, being a monotone nondecreasing sequence which 1s bounded
above, converges to some value B. Then the continuity of F implies that
F(p)

F(p)

B where B < F(z). If p ¢ S, then F(p) =2 F(z) and 1t follows that

F(z). Hence p would be an optimal solution for the problem of
minimizing F(x) over S. It remains to be shown that p must be in S.

To show that p is in S, note that if t, minimizes F(x) over C

k k’
then tk € CJ’ J=0,1, « » « , k -1, s0 it must be true that
. - t, - _
H(tk,td) = G(tJ) +Q (tk tJ), 0< Jj<k -1, (&.17)

If tk € S for some k, then tk

for all k. Furthermore, G(tk ) converges to G(p) 2 0. If p € S, then
1

G(p) = 0. Hence assume that G(p) > 0. Then for r = (1/2)G(p) >0,

is a solution. Thus assume G(tk) >0

it 1s true from the continuity of G that for sufficlently large ti,

. (&.18)

t
O0<r<a(t, )sa’-(t, -t )=<Kt -t ]|
ky ky T ky ky © ky

However, since {tk } is & convergent sequence, 1t is a Cauchy sequence

and this means that |jt, -t Il can be made arbitrarily small for kJ
J 1

and ki sufficiently large and this contradicts (4.18). Hence G(p) =0
and thus p is in S, and by the above remarks, p is optimal and

satisfies (4.16).
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Notice that for any k, C. 18 a convex compact polyhedral set and

k

the minimization of F(x) over C, 1s a linear program. Hence each t

k

is a solution to a linear program associated wlth Ck and F and it

follows that the Cutting Plane Method generates a sequence of linear

k

programs whose solutions form a sequence which contalns a subseguence
that converges to the optimal solution of the convex program whose

obJective function is F and whose set of feasible solutlons is S.

Example 4.2. To illustrate the computational procedure for the Cutting
Plane Method, consider the following problem: Minimize F(x,y) =x -y
over the set S = {(x,y) ¢ E,: G(x,y) = 2 + hye - 1< 0}. To begin,
notice that S is contained in the 2-dimensional convex compact poly-
hedral set C = {(x,y) € By -lxxs1, -l<yx< 1}. The procedure is

‘then as follows:
Step 1. Solve the linear program:
Minimize F(x,y) over C.

Then to = (-1,1). Since G is differentiable, H% is Just the tangent
0

plane to epl G at (to,G(to)) and H(x;to) = -2X + By ~ 6. Therefore,

C, =C n {(x,y): -2x + By -6 < 0}.

Step 2. Solve the linear progream:

Minimize F(x,y) subject to

(&) 1< x<1, (b). -L<y<1l, (c). -2x + by - 6 < 0.
Then t, = (-1,1/2) and H(x:tl) = 2x + by 3.

Step 3. Solve the linear program:
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Minimize F(x,y) subject to

(a)s -1<x<1, (¢)e 2x+8y -6<0,

(b). -l<sy=<1, (a). 2x+4y -3<o0,

Then t, = (-1,1/4) and this procedure is continued until tk is in S or
1s sufflclently close to S. A criterion for termination of the process
would be to require that G(tk) is smaller than some pre-assigned
tolerance. Further detallis on the Gutting Plane Method can be found

in Kelley [13].
Sequential Unconstrained Minimization Technlgue

The Sequential Unconstrained Minimization Technique makes use of
a penalty function formed from the objective and constraint functions
of a convex program (P) to create a sequence of unconstrained minimiza-
tion problems the solutions of which converge to an éptimal solution
for (P). This method, verified by Flacco and McCormick [6], can be
applied to a convex program when certain hypothesis are satisfied
by the objective function and the constraint functibns for (P). In
what follows, the constraint functions for (P) are referred to as
concave functions. Recall that a function f 1s concave if and only if
-f 1s convex. The Sequential Unconstrained Minimization Technique

can be formulated in the followlng theoren.

Theorem. (Sequential Unconstrained Minimization Technique). Let (P) be
a convex program with domain En’ obJective functlon F, and constralnt
functions {-fl, o e ey -fm}, m > 1, Assume that the following condi-

tions are valid:
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(1). The set S*={x e E : fi(x) >0,1=1, + . . ,m} # 0.

(2). The functions F, f

17 0 0 fm are twlce continuously

differentiable.

(3). For every integer p, {x € S: F(x) < p} 1s a bounded set

where 8 = {x € E: fi(x) 20,1=1, . . . ,m}.

(+). The function defined by

m

P(x;r) = F(x) + T ) 1/%, (x)
3=1

1s strictly convex 1n S* for each » > O.

Then, given {rk} a 8trictly monotone decreasing sequence of reals such

that {r converges to zZero as k becomes infinite, the following conclu-

i)

slons are true:

(). The function P(x;rk) 1s minimized over % at a unique x, 1n

S* where grade(xk;rk) = 0, and

(v). ii: P(xk;rk) = inf {F(x): x € 8} = Vo = iig F(xk).

“

Proof: Let x* be a point in S*. For any k, let P(x*;rk) = M. Now the
set S is the set of feasible solutlions for (P) and (3) of the hypoth-
esls implles that the objective function F and S have no vectors of
recession in common; hence (P) is solvable and there exists a real
number v, such L is the optimal value for (P). Next, for the given

k, form the sets R = {x € 8: F(x) sMjand for 1 =1, . . . ,m,

Ry = {xeE: rk/fi(x) <M- vo}. Let R = ﬂ{Ri: i=1, ... ,m}.

The first task is to show that R is nonempty. Since x¥ ¢ S¥, 1t
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follows that fi(x*) > 0 for all i and hence l/fi(x*) > 0 for all 1.

Since for each k, r, > 0, rk[l/fl(x*) oo o0 .+ 1/fm(x*)] > 0. Thus

k

F(x*) < P(x*) + rk[l/fl(x*) o0 e e+ 1/fm(x*)] = P(x*;rk) =M,

BO x¥* € Ro- Now let J be an arbitrary index, 1 <« J = m. Notice from

the above equality that

rk/fJ(x*) =M - [F(x*) + :E:rk/fi(x*)] (4.19)
1#3

and, since v, < F(x*), that

0

vo< [FP(x*) + Zrk/fi(xf)].
1#3

Hence

vy > ~[F(x*) + :E:rk/fi(x*)]- (k.20)
143

Adding M to both sides of (4.20), and comparing the resulting inequal-

ity to (4.19), 1t follows immediately that

) (4.21)

rk/fJ(x*) <M - v,

Since J was arbitrary, (4.21) holds for i =1, . . . ,m. Hence x* is

in Ri for each i, and thus x* € R. Therefore, R is nonempty.

Notlce that if x € R, then x ¢ RO and hence 1s in 8. But x 1s in

Ri for each 1 =1, « « « ,m, and by the construction of Ri’ it must be

true that fi(x) >0 for each 1. Otherwise, rk/fi(x) ie undefined which
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implies that x is not in R. Thus R 1s contained in S¥%,

Also, R. and each Ri are closed sets by the continuity of F and

0

f,, respectively. In addition, R, is bounded by (3) of the hypothesis.

0
Consequently, R is a nonempty compact set in En'

Since P(x;rk) is defined over R for each r,, it is also continuous
there by virtue of (1) and (2). The fact that R 1s compact implies
that there exists an x_ € R such that P(xk;rk) = inf{P(x;rk): x € R},
and the hypothesis that P(x;rk) is strictly convex over S¥* 1impllies that

P(x;rk) is strictly convex over R. Hence x, 1s unique; that is, the

k
minimum set of P(x;rk) over R is a singleton set {xk} (a proof of the
assertion that a strictly convex functlion has only one minimum on a
convex set where it is bounded below can be found in Kowalik [1L],

p. 1¥1, Theorem 7). In fact, for each r P(x;rk) attains its minimum

k’
over S¥* at xk, and since S¥* is open, 1t must be true that

gra.de(x;rk) = 0. To see that P(x;rk) also attains its minimum over S*

at Xy note first that R © 5% implies that

inf{P(x;rk): x e 8%} < inf{P(x;rk): x € R}. (k.22)

Now assume that there exists a z € S* \ R such that

P(z;r,) < inf{P(x;r ): x € R} s M.

Then 1t follows that P(z;rk) < P(x*;rk) = M, and since
m
vy < P(z;rk) = F(z) + Zrk/fa(z) < M, (%.23)
J=1

it follows that F(z) < M. Consequently, z € R, For any J, 1< 3j<m,
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it follows from (4.23) that

rk/fJ(z) =M - [F(z) + jgzrk/fi(z)] (4.24)
143
and
vy > -[F(z) + Zrk/fi(z)]. (%.25)
1£3

Combining (4.24) and (4.25), 1t follows directly that for each j,

rk/fJ(z) <M - Vo

Therefore, z € Ri for each 1 and hence z ¢ R, which 18 a contradiction.

Thus

inf{P(x;rk): x € R} < inf{P(x;rk): x € S*}. (4.26)

Consequently, the above assertion then follows from (4.22) and (%.26),
which proves (a).

Before proving (b), note that if k > k*, then T STy ®

nd
P(xiTy) = Flr,) + v (/5 (%) + o o o+ l/fm(xk*)]
< F(xk*) + rk*[l/fl(xk*) R l/fm(xk*)]

= P(xk*;rk*). ()4"27)

Therefore, let € > 0 be arbltrary and let z ¢ S¥ such that

F(z) < o

for k > k¥,

+ ¢f2. Select k* such that r ey < [minifi(z)]e/Em. Then
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Vo S inf {P(x;rk): X € 5%} = P(xk;rk),
and since x, , € S*, P(xk;rk) < P(xk*;rk). By (4.27), it follows that

k*

P(xk*;rk) < P(xk*;rk*), and since z € S¥%,

P(xk*;rk*) < P(z;rk*) = F(z) + rk*[l/fl(z) Foe v oe + l/fm(z)]

< vy + e/2 + ([minifi(z)]e/Em)[l/fl(z) oo oe o ¥ l/fm(z)]

<v, + .
0 €

Therefore, for k > k¥, v_ < P(xk;rk) <v_. .+ €. Thus Lim P(xk;rk) =V

0 Jeeo

0 0’

All that needs to be shown now for (b) to be true is that
Lim F(xk) = v, Note that for k > k*, 1t is true that
K~

Vo < P(xk;rk) = F(xk) + rk[l/fl(xk) Foeoe o+ l/fm(xk)] <vyt+e

Subtracting v, from all entries in the above expression, it follows

0
that

0 < [F(xk) - vo] + rk[l/fl(xk) e e .+ l/fm(xk)] < e,

*
Since}rk[l/fl(xk)‘+_. .o+ l/fm(xk)] >0 for all k } k*, it must be

true that

0 < [F(xk) - vo] <eg

for all k > k*., Hence Lim F(xk) = v, which is the desired conclusion.

koo

Therefore, (b) is true.
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In 1light of this theorem, the steps describing the computational
algorithm for the Sequential Unconstrained Minimization Technique can
be listed as follows:

Step 1. Select a point x* in the interior of the set of feasible
solutions.

Step 2. Select the initial value of r.

Step 3. Determine the minimum of P(x;rk) for the current value of

r, over the interlor of the set of feasible solutions.

k

Step 4. Terminate computations if some final convergence crite-
rion is satisfied. Fiacco and McCormick [4] suggest that one possible
convergence criterion is to terminate computations when

rk[l/fl(xk) + oo oo o+ l/fm(xk)] < e for some predetermined small number

€ > 0. If such convergence criterion is not satisfied, then go to Step

5e

Step 5. Select r ., = rk/c where ¢ > 1.

Step 6. Continue procedure from Step 3.

To illustrate the application of this method, consider the follow-
ing example.

Example 4.3. Let (P) be a convex program with domain E,- Let

P(x,y) = (1/3)(x + 1)7 + (1/3)(y + 1)°, £,(x,y) = x - 1, and

f2(x,y) =y -1l. Then S = {(x,y): x 21, y 21} and for any r, >0,

k

P(xsry) = (x + 1)%/3 + (y + 1)°/3 + 1 /(x - 1) + 1, /(y - 1).

Setting grade(x;rk) = 0 and solving for Xy in terms of r it follows

k,

thet x, = ((ri/2+ 1)1/2, (ri/2+ 1)1/2). As k becomes infinite, r,

converges to zZero and X converges to an optimal solution for (P).
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Therefore, 1t follows that

Lim x = (1,1)
rk*o

where (1,1) is an optimal solution for (P), and

Lin F(x ) = Lin [(ri/2+ 12, 1133 + Lim [(ri/2+ 122, 1133

rk*o rkﬂo rk*o
= 16/3

vhere 16/3 is the optimal value of (P).

In general, algorithms for the computational solutlion of a convex
program (P) generate a sequence of feasible solutions for (P) which
converge to an optimel solution. Except in partlicular cases, such as
the program in Exaﬁple 4.1 solved by the Method of FeasiblekDirections,
the iterative procedure 1s infinite so that some convergence criteria
must be used to termlnate the computations after a finlte number of
iterations. According to Fiacco [6] and Bracken [1], the Sequential
Unconstrained Minimization TechniQue has easily been adapted to
computer use for the solution of convex programs with nonlinear obJjec-
tive function and llnear or nonlinear constraint functions. Much addi-
tional information on this method can be found in the recent book by
Piacco and McCormick [6]. Kelley [13], p. 708, states that the Cutting
Plane Method for solving convex programs 1is> not always feasible even
using computers, since no dependable convergence criterion exlsts for a
large class of convex programs .

More information on algorithms can be found, in addition to those

references above, in Kowalik [14] and Kunzi [16].
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