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CHAPTER I 

INTRODUCTION 

1.1. Statement of the Problem. The basic concept which provided 

the inspiration for the research reported here is the concept of dis­

tributed redundancy. It is felt that this type of redundancy is 

achieved by devices in which each individual component participates in 

many ( or all) functions, and all" functions are produced by many ( or 

all) components. If a component fails in a device so structured 9 no 

single function is totally lost~ rather• all (or many) functions are 

incrementally degradedo This concept of redundancy has been considered 

in the majority of the developments used in the solution of the problem 

under investigation. 

The baaic problem can be divided into two major areas with the 

results of one being the justification for the effort spent on the other. 

The first problem area involves disting.uishing between the areas of 

applicability of decision-makers possessing distributed redundancy 

characteristics and the areas of applicability of conventional redundant 

decision .. make:ris. The results of this problem define a second problem 

which.is involved with investigating a particular approach for enlarging 

the areas of applicability of decision-makers with distributed 

redundancy. 

As a result of these two problem areas, the following chapters and 

appendices fall into one of two categories. Chapter II is devoted 

1 



exclusively to the comparison ·of the two decision-maker types. The 

remaining problem area is the topic for Chapters III and IV and the 

appendices. 

2 

The overall decision-making system model consists of the decision­

maker itself and a set of n binary, sensor channels. These sensor chan­

nels measure traits of a physical phenomenon and convey this information 

to the decision-maker in an unreliable manner. It is assumed for sim­

plicity that the channels are statistically independent and identical. 

For a given decision problem 9 the decision-maker is designed so that a 

risk function is minimized as the decision-maker makes either of two 

possible decisions. The entire system is binary. 

The decision-maker which is considered to be conventional has cer­

tain basic characteristics which distinguish it from the decision-maker 

which 9 hopefully, models distributed redundancy. The conventional 

decision-maker makes binary decisions based on binary information as 

received through n inputs. Corresponding to each of these n inputs is 

at least one unreliable switching element. Each of these switching 

elements is interconnected with other switching elements and whether it 

is open or closed simply determines which of two possible inputs is fed 

into the interconnection. Thus, the designing of the decision-maker to 

make certain decisions is done by properly interconnecting the input 

switching elements and, possibly, other secondary elements. Of course, 

the interconnection may fail also; and it is therefore modeled by an 

unreliable channel. In the comparison which followst it is assumed that 

the interconnection channel is significantly more reliable than that of 

the decision-maker with distributed redundancy. This is a fairly con­

servative assumption. 
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Another characteristic of the conventional network of switching 

elements is that it can implement any Boolean function with a relatively 

small variation in complexity. This is not the case for the type of 

decision-maker considered in Chapters III and IV. 

The manner in which redundancy is incorporated in networks of 

switching elements is to use parallel and series .combinations· of r.edun-

dant inputs. Basically• parallel combinations are used to prevent mis-

fires and series combinations to prevent false alarms. Both of these 

failures must be taken into consideration in most decision systems. 

Consider, for example, the problem of fusing of nuclear weapons. It is 
I 

obvious that failures to detonate and unwanted detonations are both 

failures that are of utmost importance. Examples such as this provide 

the reason for the forms of redundancy considered here. It should be 

emphasized that specific redundancy implementations are not in general 

c.onsidered in the comparison of Chapter II; rather, consideration is 

given to the overall or basic characteristics of decision-makers which 

can incorporate the types of redundancy being evaluatedo 

The unconventional decision-maker with di.stributed redundancy also 

is modeled in such a way that its inherent characteristics are exhibited 

to a certain degree. The most important characteristic is the lack of 

switching elements corresponding to each input to the decision-maker. 

As a result of this characteristic, the interconnection of the inputs 

must be more complex and is thus less reliable. Furthermore, this com-

plexity is dependent upon specific problems. Some problems require a 

considerably less complicated interconnection of decision-maker inputs 

than for other problems. The more complicated ones provide some of the 

justification for the work presented in Chapters III and IV. 
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The form taken by the redundancy in decision-makers which are in­

tended to possess distributed redundancy is considerably different from 

that of networks of switching elements. Of course, the repetition of 

input channels provides overall system redundancy. However• one of the 

most significant features of distributed redundancy is that it can be 

achieved through overdesign but without a blind repetition of components. 

The particular type of decision-maker proposed in Chapters III and IV 

possesses this feature to a certain degree as shown by Example 4.7.2. 

In this particular example it is necessary to use a relatively complex 

decision-maker. But, by a slight amount of overdesign in the nonredun­

dant decision-maker 9 reliability of the desired level can be achieved 

far more easily than if the nonredundant realization had been minimal. 

This is a unique characteristic of distributed redundancy. A little 

overdesign buys a lot in terms of reliability. 

The actual decision-maker which. is proposed to model distributed 

redundancy consists of a network of threshold logic units (TLU 9s). A 

TLU is a device which presents a linear, weighted sum of its inputs to 

a threshold detector. The threshold detector produces a binary output 

depending upon the level of the weigpted sum relative to a threshold 

level. Such a device is shown in Figure 1.1.1. 

There are several reasons for the attention that TLU's have re­

cently received. The reason which is relevant here is that the TLU is 

thought to possess distributed redundancy. 

Rather than single TLU I s, networks of TLU 1.s are used primarily here 

because of the limitations of the use of single TLU's. The primary 

limitation lies in the fact that a single TLU cannot implement all 

Boolean functions. This is discussed in more detail in Chapter III. 



The specific network configuration used is a two-layer network as shown 

in Figure 1.1.2. This configuration is sufficient to realize all 

Boolean fun ct ions. 

Yi2-------1 

f(y!) 

--- 1 

y~ = (y.1,Y·2••••,Y. ) 
1 1 1 in 

Figure 1.1.1. Threshold Logic Unit 

First 
Layer Layer 

f(y!) 
•----- 1 

Figure 1.1.2. A Two ... Layer TLU Network 

5 
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As mentioned previously, a certain amount of overdesign in decision-

makers of this type is significant to the amount of redundancy which is 

necessary to achieve a certain degree of reliability. The addition of 

redundancy to two ... layer TLU networks is the specific topic for Chapters 

III and IV and the appendices. The problem reduces to synthesizing a set 

of y redundant TLU's to add to a set of v TLU's in the first layer as 

shown in Figure 1.1.3. These TLU's are synthesized so that single erro~ 

correction is achieved for errors between the first and second layers. 

y! 
1 

f(y1> ,----

Figure 1.1.3. TLU Network With Redundancy 



It is important to note that the justification for adding redun-

dancy to the first layer rather than the second is that the reliability 

of any device is no greater than that of any of its series stageso For 

example• if the final layer is triplicated and a vote is taken on the 

three outputs, the reliability of the resulting system is no better 

than that of the device which performs the voting. 

The technique developed here for adding redundancy to TLU networks 

is based strictly upon the system of linear inequalities for which the 

weights of the second layer TLU m + must be a solutiono This system 
\) 1 

of linear inequalities• along with .certain realizability requirements• 

is the foundation for the approach takeno 

In summary, the first of the two problem areas here consists of 

comparing the two decision-maker types and finding the areas of appli-

cability of eacho The basic philosophy behind this comparison is that 

the decision-makers should be compared on the basis of their funda-

mental characteristics rather than on the characteristics of specific 

implementations of each. 

The second problem area involves an investigation of the problem 

of redundancy in two-layer TLU networks. This investigation is justi-

fied by the conclusions of the first problem areao 

1.2 Previous Work in the Areao The majority of the work done in 

the areas investigated here has been in the area of threshold logic and 

in redundant networks of computing elements. The theory of threshold 

logic and linear inequalities is of primary interest here because of 

the particular theoretical redundancy approach taken. Some of the con-

tributions which are related to the theory used are those of Paull and 
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McCluskey (19) 9 Gabelman (7)• Chow (3), Hopcroft and Mattson (13)• and 

Highleyman (12). In these papers the necessary and sufficient condi­

tion• upon which the redundancy technique is based• is mentioned either 

directly or indirectly. However, only Hopcroft and Mattson (13) have 

applied the theory with any similarity to the application here. To 

this author's knowledge there has been no direct application of the 

theory presented in these papers to the problem of introducing redun­

dancy in TLU networks. 

8 

There are several redundancy techniques which have been applied to 

TLU networks. Perhaps the technique which has the greatest similarity 

to the technique used here is due to Bargainer and Coates (5). However, 

their technique is restricted in the sense that the second layer TLU 

has its design specified and thus restricts the freedom of choosing 

redundant TLU's which are best suited to the task. 

Other techniques by Pierce (20, 21, 22), Jenson (14) 9 and Knox­

Seith (16), use adaption and additional layers of TLU 9 s or other 

elements. These approaches still do not take into consideration the 

basic problem in linear inequalities as is done here. 

Wilcox and Mann (25) have edited a collection of papers on redun­

dancy which contains some work similar to that mentioned above. 

1.3 Method of Solution. The solution to the problems consists 

mainly of establishing a model of the system and in investigating fhis 

model. This is true for the problem concerning the areas of appli­

cability of decision-makers with distributed redundancy and for the 

problem of introducing redundancy in TLU networks. 

For the problem of the areas of applicability of decision-makers, 
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the first step is to develop system models which demonstrate the desired 

characteristics of each decision-maker. Then• based on these models 1 

risk functions are derived from a knowledge of the system parameters 

and a cost function. It turns out that only one general risk function 

is necessary and that this function can be altered to apply to either 

of the two decision-maker types by simply changing the form in which 

some of the parameters appear in the function. 

In order to evaluate these risk functions. it is necessary to spec­

ify desired decision-maker outputs corresponding to each combination of 

inputs to the sensors for the system. As a result, two types of prob­

lems are considered which are representative of the extremes of the 

complexity of decision problems which can occur. 

Corresponding to each of these two types of problems, the two risk 

functions can be evaluated as functions of the significant parameters in 

each of the decision-makers. This evaluation is used to compare the 

two decision-makers and to determine the areas of applicability on the 

basis of the number of input channels• the type of problem, the 

switching-element parameters, and the parameters associated with the 

assumed model for the interconnection of the decision-maker inputs. 

Very briefly, this comparison reveals that the area of applicabilu 

ity of TLU decision-makers requires that networks of TLU's be used 

rather than a single TLU. This adds to the complexity of the TLU 

decision-maker and implies that it is necessary to consider ways to 

introduce redundancy in TLU networks in order to maintain any advantage 

that they may possess. 

The problem of introducing redundancy in TLU networks is approached 

by first developing the mathematical model of the desired portion of the 
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networko This model as developed in Chapter III takes into considera­

tion the possibility of failures in both the original TLU's in the non­

redundant realization and in the redundant TLU's. Given the mathema­

tical model• which consists of a system of linear inequalities, a basic 

theorem in the theory of linear inequalities is applied to the model. 

The result is an additional set of linear inequalities which place con­

straints on a vector which specifies the design of a redundant TLU. 

If it is not possible to satisfy the inequality constraints with a 

single TLU 9 then the theory must be extended to obtain the constraints 

on more than one vector (thust more than one TLU is added). In Chapter 

IV this extension is considered, and an iterative approach is suggested 

for selecting the redundant TLU's. 

The entire development of the redundancy synthesis algorithm is 

done with the least complicated types of failures as possible. Due to 

the flexibility of the algorithm, it is possible to extend the allowable 

types of failures to more complicated situations. This extension occur­

ring in Section 4.7 also permits the use of certain examples which 

better illustrate the utility of th~ synthesis algorithm. 

The appendices contain detailed developments and computer programs 

which are not appropriate for including as a chapter. Appendix A pre­

sents the basic theory of linear inequalities which is applied here. A 

technique is developed for computing a set of vectors which are used in 

the inequality constraints mentioned above. Since the use of this tech­

nique is quite laborious, a computer program has been written to perform 

the necessary calculations. A flow-chart and a listing of this program 

are presented. 

Appendix B presents the development of a ~echnique for computing 
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the vectors used in the inequality constraints in a manner which greatly 

simplifies the use of the program in Appendix A. It is shown that cer-

tain redundant input data can be eliminated and that the appropriate 

compensation can be made on the output data. 

In Appendix Ca very special case of the technique developed in 

Appendix A is considered. This special case arises in a computer pro-

gram in Appendix D. 

Appendix Dis a presentation of two computer programs which perform 

searches for vectors which specify the design of the redundant TLU's. 

These programs differ slightly in the criteria used in the searches. 

1.4 Suggestions to the Reader. The manner of reading this report 

depends upon the reader's area of interest. If the reader is only 

interested in the areas of applicability of distributed redundancy, then 

Chapter II should receive the greatest attention with only brief atten-

tion being given to the remainder of the work presented. If the redun-

dancy technique is to be considered, then Chapter III, Appendix A, and 

Chapter IV should be read in that order. The remaining appendices can 

be read as it becomes necessary. 

In the notation used here a lowercase letter with an upper bar as 

-with zi represents a row vector whose components are zil' z12 , •••• Zin 

where n is the number of elements in the vector. 

• h • • . ...T write sue a vector as a column, it is written z .• 
i 

If it is necessary to 

A matrix is repre-

sented by an uppercase letter with a lower bar as in fl• The transpose 

T of fl is given by fl. A set of elements is denoted by the capital letter 

S with appropriate subscripts or superscripts for identification. Other 

less general notation is introduced as it becomes necessary. 



CHAPTER II 

A COMPARISON OF TWO TYPES OF BINARY 

DECISION-MAKERS 

2.1 Introduction. This chapter is devoted to a comparison of 

decision-makers which contain switching elements on each input to 

decision-makers such as threshold logic unit networks. The latter do 

not contain switching elements on each input but have a more complicated 

interconnection of these inputs. Therefore, the comparison is based on 

the relative merits of these differences in the two types of decision­

makers and on the corresponding variations in risk functions as the 

number, n, of input channels is varied. 

The comparison is made in two distinct situations with regard to 

the nature of the basic decision problem. These two situations are 

explained in Section 2.2 along with a general description of the deci­

sion making system. 

Section 2.3 presents the models of the two separate decision-maker 

systems upon which the risk functions used for the comparison are based. 

A general risk function R is developed in such a way that it can be 

applied to either of the two systems by simply making appropriate sub­

stitutions into R. Also presented are the conditions for optimality of 

R. 

One of the two decision-making problems considered here is actu­

ally a special case of the other; therefore• in Section 2.4 the risk 

12 



function R9 developed in Section 2a3• is restricted to apply to this 

particular problem. The resulting conditions for optimality are pre­

sented along with an example. The example considers a connnonly used 

relay contact or switching element network and shows that it is sub­

optimal except under certain specific conditions. 

Using the restricted risk function developed in Section 2.4, the 

appropriate substitutions are made in Section 2.5 so that the risk 

functions for the two decision~maker types can be compared. Under the 

conditions of the particular decision-making problem of Section 2.4 9 

the two risk functions are compared for large and small values of n 

separately. For small values of n, families of curves of risk as a 

function of n can be drawn to allow a determination of where the 

trade-offs exi,st between the two decision-maker types. For large n 

the risk :functions tend to converge allowing the comparison of the 

decision-makers to be made without the aid of curves as in the case 

for small n. 

Finally 1 in Section 2.6 the general risk function developed in 

Section 2.3 is adapted to each of the two decision-maker types; and a 

more general decision~making problem than that of Sections 2.4 and 2.5 

is considered. This section establishes more distinct advantages of 

threshold logic decision-makers and at the same time reiterates a need 

for improving their reliability. 

13 

Thus this chapter establishes the areas of applicability of the 

two types of decision-makers and sets the stage for a detailed investi­

gation of a technique for improving the reliability of threshold logic 

network decision-makers. This investigation is the topic for the re­

maining chapters. 



14 

2 o 2 The Binary Decision Problem•, It is assumed that the decision-

makers discussed here are intended to make binary decisions based on 

binary information as received through n statistically independent 

sensor channels as shown in Figure 2.2.1. The observed vector zi has 

binary components (+l or -1) zil, zi.2 , ••. 9 zin• each of which repre­

sents some trait of the physical phenomenon. It is convenient to think 

of each of the vertices of the resulting n-cube as a state of nature. 

The task for the decision-maker is then to correctly classify the 

states, which can occur, into one of two categories and to do this in 

an optimum fashion. The criterion of optimality depends upon the 

agreement of the desired, fd(zi), and actual, fa(zi), Boolean functions 

associated, respectively• with the classification of the ith state of 

nature and with the output of the decision-maker. 

Observed 
Phenomenon 

Sensor Channel 1 

Sensor Channel 2 

• 

Sensor Channel n 
y. 
in 

Decision­
Maker 

Figure 2.2.1.. Model of the Decision-Maker 

Decision 



At any given time any z. which can occur belongs to a set 
J. 

or 

sf- = {z. ! fd = -1} 
d J. 

depending upon whether the desired classification fd is +1 or -1 9 re­

spectively. Those states of nature which cannot occur belong to a set 

of "don't cares" 

sd = {z. 
J. 

I z. 
1 

never occurs } 

Corresponding to a particular value of fa, a vector zi can occur with 

probability 

[z. + 
z. e: sf J J. J. d 

15 

{: p [z. I fa = +1] = (2o2ol) 
s+ J. if f z. 

J. fd 

or 

{: 
[z. t - e: s; J z. 

1 J. d 
p [z. I fd = -1] = (2.2.2) 

J. if t s;d z. 
J. 

where 

m+ 

l p [z, I + 
Z• e: sf J = l 

i=l 
1 1 d 

and 

-m 

l p [z. I z, e: 8- J = l O 

i=l 
J. 1 fd 
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+ The integers m and m are the numbers of elements 

specti vely o 

The use of the word "classification" stems from the fact that the 

decision problem is viewed as a pattern classification problemo The 

states of nature are actually patterns in an n-dimensional pattern 

spaceo The same is true of the vectors Yi on the outputs of the sensor 

channels o 

There are two specific cases considered here with regard to the 

' + - d location of patterns in the sets Sfd' Sfd 9 and S • The first case 

called the "almost empty pattern set" is essentially a representation 

of a decision-maker and sensor system which has n redundant sensors. 

All n sensors are designed to measure the same trait of the physical 

phenomenon. In this case there are only two states of nature which can 

occur; therefore, 

s; = {z } = {(l, 1, 0009 l)} 
d zn 

and all other ii I s are in sd. However;, all 2n allowable vectors y i can 

occur since it is assumed here that the sensor channels are imperfect. 

The decision-maker must be designed to classify the yi 1 s such that an 

optimality criterion is satisfied. 

An example of this case is a set of four sensors which are designed 

to detect the occurrence of one of the two possible states of nature 

and a set of four relay contacts interconnected so that a decision is 

made according to some specified decision law. The sensors might be 

radars, and the contacts could be arranged in the classic "quad" shown 



in Figure 2. 2. 2. A detailed analysis of this particular example is 

presented in Section 2o4o 

Figure 2.2.2. The "Quad" Switching Network 

The second case considered here is the "full pattern set" case 

where all 2n allowable states of nature can occur. It is assumed that 

17 

the classification of the states of nature is a majority rule situation; 

that is 9 n is odd and those zi's with (n + 1)/2 or more "+l" components 

are in the set s;d while those with (n + 1)/2 or more 11 -111 components 

are in the set $fd• 

2.3 The.General System·Models. The comparison which is-made here 

is between the risk function Rs associated with a decisiop-maker which 

has a switching element associated with each input channel and the risk 

function R-r for a decision-maker without switching elements on each in­

put. Figures 2.3.l and 2.3.2 show the detailed decision-maker system 

models from which Rs and RT are derived. Notice that in both figures 

there is no uncertainty involved in the classification of nature or in 

the decision-make~'s designed classification. The first classification 
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is known for a given problem• while the latter is selected or designed 

so that a risk function is minimized. The latter classification, the 

decision•maker's designed classification, classifies each of the vectors 

x'i into one of the sets 

or 

sf- = {x. I fCx. > = -1} 
1 1 

where f(xi) is equal to fa(zi) when no failures, occur in the decision­

maker interconnection channel. The Boolean function fa(zi) is the func­

tion appearing at the output of the decision-maker interconnection 

channelo 

In a practical 

, T 
Figure 2.3.1 or a, 

0 

situation the parameters 
T T T 

B01 a 1 , and B1 in Figure 

a~, s!, a~, and B~ in 

2.3.2 may be difficult to 

determine. This model for the decision-maker interconnection channel is 

intended to simulate failures which cause all x,•s to produce the same 
1 

output. For example, if the decision-maker is a relay contact network 9 

any given set of contact positions (xi es; or xi es;) might produce a 

zero output as the result of an open circuit on the output of the net-

work. Similarly, one output might always be present because of a short 

circuit. This model does not take into consideration all types of fail-

ures; however, a model more general in terms of types of failures would 

be highly dependent upon the specific problem at hand. For example, the 

channel parameters could be dependent upon the particular vector xi or 

the number of input channels. 

The risk function for the comparison is developed in general so 



that it can be applied to either the system in Figure 2.3.l or Figure 

2.3.2. This risk function is based on a loss function 

L [fa = +l • f d = -1] = Cf (false alarm) 

L [fa= -l, fd = +l] = Cm (misfire) 

L [otherwise]= 0 o 
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Although it is not assumed to be true here, this loss function could be 

a function of the state of nature zi. In other words, it could cost 

more to incorrectly classify certain vectors than for others. 

The risk R (Rs or~), which is the expected value of the loss, is 

Writing the joint probabilities above as 

and 

P [fa= -l, fd = +l] = P [fa= -1 I fd = +l] P [fd = +l] 9 

and defining 

p = p [fd = +l] 

and 

Q = p [fd = •l] • 

then R is given by 

(2.3.1) 
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where 

P+Q=l, 

Notice that it is assumed that those zi's in sd cannot occur. The con­

ditional probabilities in Equation 2.3.-l can be written in terms of the 

decision-maker interconnection channel parameters as 

2n 
p [f = +1 I fd = -1] = Cl.1 I p [x. e s+ I fa = -1] + a j=l J f 

2n 

60 r p [x. E.'. s - I fd -l] (2.3.2) = • j=l J f 

and 

2n 

p [f = ... 1 I fd = +l] = a.o l p ex. &: sf I fd = +l] + a j=l J 

2n 

61 l p [xj 
+ I. fd +l] (2.3.3) £ sf = 0 

j=l 

In orde-r to simplify the risk expression define 

2n 
A = l p [x. £ s; I fd = -l] • 0 j=l J 

2n 

1 P [x. e s; I fd = -1J , 
j=l J 

2n 

Al = j!l p [xj E.'. s; I fd = +l] • 

and 
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2n 

r P ex.es; I fd = +1J 
j=l J 

where 

A0 + B0 = 1 

and 

Notice that Equations 2o3o2 and 2o3o3 simplify to 

and 

which can be visualized from Figure 2o3o3• The risk is simplified to 

or to 

The parameters which vary, depending upon which of the two 

decision-makers is used, are B0 , B1 , a09 and a 1 • The optimization of 

either decision-maker is done with respect to parameters contained with-

in B0 and B 1 • Equations 2.3.4 and 2.3.5 can be written 

2n 2n 
B = I I p ex". € s+ 1 xj J p cx"j I 'z. J P cz. I fd = -1] 

0 j=l i=l J f J. J. 



or as 

where 

and 

2n 2n 

B1 = l L P [xJ. & s; [ xj] P [xJ. I zi] P [zi I fd = l] 
j=l i=l 

o: 
J 

B = 
0 

Bl = 

and 

2n 

r o+ 
j=l j 

+ 
0. are 

J 

_r_ 
Z,&Sf 

J. d 

-l+ p ex. I zi J p cz'i 
Z,&Sf J 

J. d 

defined by 

( = P [x. e s -f x. J 
J J J 

+ 
0. = 

J 

+ 
P [xj e sf x.J 

J 

I Z, & s+ J 
J. fd 
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and where P [zi I fd = -1] and P [zi I ~d = +l] are given by Equations 

2o2ol and 2.2.2. The events xj & s; and xj es; are deterministic since 

they are the specific events which the decision-maker is designed to 

perform. Therefore, o~ and o- are either O or l where o~ + o- = l. 
J j J j 

Figure 2o3o3o Simplified System Model 

f =+l a 

f =-l a . 



25 

Combining Equations 2a3b6 through 2.3.10, the general risk function 

is given by 

[ 2n 
I "i. s;di} • R = QCf (a1 + l) :i!l 

+ _l_ ex". z.] F [z". a - 0 p 
0 . J 1 1 J z.esf 

1 d 

i 2n 
< sti} + Pcm (a1 + l) j~l 

o"' _l+ p ex". I z'. J P cz'. -a - z. 
0 j J 1 1 J. z.esf 

J. d 

QCf (1 - a 0 ) + PCm (l - a1) • 

Let 

K = QCf (al + a - l) • 
0 0 

K1 = PCm ( al + a - l) ' 0 

and 

then 

2n 

R = l {o: Ko _ l - p ex'. I ziJ P cz". z. es; J + 
J J 1 1 j=l z.esf d 

1 d 

( 2 0 ::3 .11) 

o: K1 _l+ p ex. z.] p cz'. Z, e s+ J} + K2 • 
J J J. J. J. fa 

z.esf 
J. d 

This is the general risk function for both of the assumed channel 

models and for the assumed loss function. In order to minimize R, 
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0 - l - 0~ is given by = 
j J 

l if /j) 3 < 0 

o: = 0 if ij) > 0 
J 

3 

arbitrary if K~j) o. j 1, 2, n = = ••• ' 2 ' 

where 

ij) = K _l_ p ex. z.] p c"z. z. e sf ] -3 0 J l. l. l. 
Z,£Sf d 

l. d 

K1 _l+ ex'. z.J c"z. s+ J z.£Sf p p z, £ 
l. d J l. l. l. fd 

2.4 Development of the Risk Function for the Almost Empty Pattern 

Set Case. In Section 2.2 an example is cited of a system which has an 

almost empty pattern set. In this section this particular type of 

system is more fully described, and its optimality is considered. The 

mathematics is kept general so that the systems in either Figure 2.2ol 

or Figure 2.2.2 can be used. 

In order to simplify the algebra, it is assumed that each of the 

sensor and switch channels in Figure 2.2.1 and each of the sensor chan-

nels in Figure 2.2.2 can be represented by a composite channel as in 

Figure 2.4.l. The channel parameters are given by 

P1 = p [xik = +l zik = +l] • 

ql = p [xik = -1 zik = +l] • 

Po = p [xik = -1 I zik = -1] • 
and 



where Kik and Zik are components of xi and zi, respectively. It is 

assumed that the channels are identical and statistically independent. 

and 

Figure 2.4.1. The ith Composite Channel 

Referring to Equations 2.2.1 and 2.2.2, it is assumed that 

z. e: s + ] = 4 = 1 
1 fd m 

P c'z. I z. e: s-f J 
1 1 d 

l 
= ;= = l 

where m+ = l and m- = l for the almost empty pattern set ca&eo . As. 

pointed out in Section 2.2 

+ sf = {z n} = {(l, l, •••• l)} 
d 2 

and 

27 
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Using the fact that there are only two states of nature and using 

Equations 2.4.l and 2,4.2• Equation 2.3.ll can be simplified to 

In order to evaluate the probabilities P [xj I zi]. i = 1. 2 ••••• 

2n, an investigation must be made of the channels shown in Figure 2.4.l. 

Recalling that then channels are identical and statistically independ-

ent, the probability of the occurrence of the jth vector xj• given that 

z 1 = (-l, -1, •••• -l) is sent, is 

where Hij is the Hamming distance between xj and zi. Similarly, 

Since H 
2nj 

thus 

R = 

Using o: = 
J 

P ex. I z J 
J 2n 

n-H n· H n• 
= P1 2 J q/ J 

1 - o:, R can be written as 
J 

• 
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Corres.ponding to each . value of H lj = 0, 1, ••• , n there are (H n. ) values 
lJ . 

of j. If the values oj fpr these values of j are added to produce a 

term k - o < k- · < f. n ) , and if like terms in Equation 2. 4. 5 are 
· H1j' - H1j - ~lj 

collected then 

or 

• 

-The integer ki is thl\! number of vectors xj having i components equal to 

-1 and which are placed in the ,set Sf by the decis_ion-maker. In other 

words k. is the number of vectors xJ, within a Hamming distance i of 
l. 

zl = (-1, -1 •••• , -1) ,and which are placed in the. set sf by the deci-

sion-mak.er. 

The ?Ptimum values of ~i are given by 

where 

k. = 
l. 

(1) if K~i) < 0 

0 if K~i) > O 

arbitrary if K~i) = o, i = 1, 2, ••• , n, 

i n-i 
= Klplql 

n-i i 
- KoPo qo. • 

(2.4.7) 

The fo1·1owing example illustrates the optimality of a c.ommon decision 
' 

maker. 

Example 2.4.l. Letting n 4 the common, redundant, relay contact 
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network in Figure 2.2.2 results. For convenience it is shown again in 

Figure 2.4.2 with labeling which corresponds to.that in Figure 2.3.1. 

xjl xj2 

••---------~--~~ 

input o---• output 

Xj3 Xj4 
·••------~~~ •~--

Figure 2.4.2. The "Quad" Switching Circuit. 

The component xjk of xj = (xjl' xj 2, xj 3, xj 4 ) isl if the kth switch is 

closed ·and O if it is open. The actual classification fa(xj) of a vec­

tor "j isl if a path exists from the input of the quad to the output. 

Table 2.4.l lists the components of the vectors xj and the corresponding 

designed classifications f(xj)• The important information in this table 

is the classification of the sets of (1) vectors with i components equal 

to one. Table 2.4.2 presents this condensed information. Notice that 

for i = 2; some of the vectors with two compoilents equal to l are in Sf 

• + . and some are in Sf. However, Equation 2.4.7 does not correspond to this 

distribution except in the case for K~2 ) = O; that is, the quad is not 

optimum except when 

Substituting in the original parameters, the condition for optimality of 

a quad is 



.31 

TABLE 2.4.l 

CLASSIFICATION OF VECTORS BY A QUAD 

j xjl xj2 Xj3 X•4 . J f(xj) 

l -1 -1 -1 -1 -1 

2 -1 -1 -1 l -1 

3 -1 -1 1 -1 -1 

4 -1 -1 l l 1 

5 -1 1 -1 -1 -i 

6 -1 l -1 l -1 

7 -1 1 l -1 -1 

8 -l 1 l l l 

9 l -1 -1 ..;l -1 

10 l -1 -1 1 -1 

'11 l -1 l -1 -1 

12 l -1 1 l l 

13 1 l -1 -1 1 

14 l 1 -1 l 1 

15 1 l l -1 l 

16 l l l l 'l 
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TABLE 2~4.2 

CLASSIFICATION OF SETS OF VECTORS BY A QUAD 

Number of l Components Location of Vectors - j Xj - l, .... ii 16 

- + 
i sf sf 

0 l --"!!'-

l 2, 3, s, 9' 

2 6, 7, J.O' ll 4, 13 

3 a, 12. 14, 15 

4 16 

If the quad is drawn as in Figure 2.4.3 1 a similar situation 

arises. This configuration is also suboptimal except under.the condi= 

tions of Equation 2.4.9. The only.difference is in the location of the 

vectors xj for i = 2. In this case Sf contains two vectors for which 

+ •. 
i = 2 and Sf conta.ins four. 

·---o 

Figure 2. 4. 3. Alternate Quad Configuration 



33 

2~5 Comparison of Rs to Rx for an Almpst Empty Pattern Seto In 

the previous section the conditions for optimality of decision-makers, 

either with or without switching .elements on each input, is derived for 

the almost empty pattern set case. In order for a designer . to decide 

which type of decision-maker to use, he needs a comparison based on the 

significant parameters associated wfth the risk functions Rs and Rr 

corresponding to the two types of decision-makers. The significant par-

ameters in Rs are assumed to be Pro• qro• 

while those of Rr T . T T T are a0 , S0, a1 , and s1 • The remaining · parameters P, 

Q, Pso' qso• Psl• q8 1, Cm, Cf, and n in Rare assumed to be the same for 

either Rs or RTo 

From Figure 2.s.1 the probabilities p~, q~, Pi, and qi in Rs given 

by Equation 2.4.6 can be written as 

s 
Po = PsoPro + qsoqrl 

s 
qo = Psoqro + qs0Pr1 

s (2.s.1) 
P1 = Ps1Pri. + qslqro 

s 
ql = pslqrl + qslpro 

where the superscripts correspond· to the subscript on Rs• Similarly 

from Figure 2.5.2 the corresponding parameters in Rr are 

T 
Po = Pso 

T 
pl = Psl 

q~ 
T 

(2.5.2) 
= qso ql = qsl 



l 

zik 

'-1 

Psl Prl 
l l l 

Yjk X•k J ' 

-l -l -1 

Figure 2.s.1. The ith Composite Channel for Decision­
Maker With Switching Elements .. 

l 

i = 1, 2n 

j = 1, 2,· 
o o a;_ t 

k = 1, 2, 0 0 0 f 

-1 

Figure 2.s.2. The ith Composite Channel for Decision-. 
Maker Without Switching Elements 

the two risk functions can now be written. Rs is given by 

- ~<PsoProi-qsqqrl l n"i <Psoqro+qsoPrl ,1 J } 

where the optimum ki is 

(~) if K~i) < 0 

k~ = 0 if K(i) > 0 
1 s 

arbitrary if 
(i) o, i l, 2, Ks = = • • •' n • 
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2n 

n 



where 

. Ci) s i n-i 
Ks = K1C.Ps1Pr1+Q.s1Q.ro> <Ps1Q.r1+qs1Pro> + 

S ·n-i i 
• ,Ko<Ps0Pro+qsoqr1> <Psoqro+qs0Pr1> 

s s s 
K = QCf(a1 +a -1), 

0 · 0 

and 

·R.r is given by 

~ { T T i n-i KT rl-i i } KT T: 
RT= .L ki[Klpslqsl - ~Pso qso] + o + K2 

1=0 

where the optimum value of ki is 

(~) if K~i) < 0 

k: = 0 if 41 > > 0 
1 

arbitrary if K~i) = 0 

where 

and 
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' 

(2.5.4) 
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It turns out that Equations 2.5.3 and 2.5.4 converge rapidly with n 

to functions which are independent for some range of values of the sen-

sor and switching element channel parameters. Because of this behavior 

the comparison of the decision-makers is broken into two ·parts as indi-

cated by the two regions in Figure 2.5.3. The risk Ras given by 

Equation 2.4.6 with ki optimum and with the following constant parameters 

is plotted with n as the independent variable: 

Po = 0.995 p = · 0.5 

qo = 0.005 Q = 0.5 

P1 = 0.995 cm = 10.0 

ql = 0.005 cf = 1.0 

As shown in the figure the values of n are divided into two regions; 

the first part of this comparison is concerned with Region I while the 

second part is restricted to Region II. 

For values of n in Region I a comparison between Rs and R,. is made 

by making the assumption that .the decision-maker interconnection channel 

d • R ' f h ' S S d .S .S corre~pon 1ng to S 1S per ect; tat 1S 9 qQ =al= 1 an , ~O: ~l = 0 in 

Figure 2.3.1. Therefore the parameter Pro= Prl forms a family of 

curves for Rs as a functlon of n while a~= ai_forms a family for RT as 

a function of n. These curves are shown in Figure 2.5.4 for the follow-

ing constant parameter values: 

Pso = 0.99 p = 0.5 

qso = 0.01 Q = 0.5 

Psl = 0 0 99· cm :!: 10.0 

qsl = 0.01 cf = 1.0 
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I::::.. a = 1.000 

0.01s 

0.010 

o.oos 

0.00001--~--L~~...L.~==-,/!i-~~--~-b-~~6-~--' 
l 2 3 4 5 7 

Number of Input Channels (n) 

.Figure 2~5.3. Variation of R w.r.t. n for the 
Almost Empty Pattern Set Case 
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For a decision-maker system with these parc;imeter values, Figure 2.5.4 

can be used to determine when either of the two decision-maker types is , 

justified in terms of the risk involved. For example, if n = 4 and if a 

relay contact network is available for which Pro = Prl = o. 97, then 

T T a0 = a1 must be greater than 0.999. This means that a lower bound is 

set for the interconnection channel parameters for a decision-maker of 

the type shown in Figure 2. 3. 2 to be better than a relay contact network 

modeled in Figure 2.3.l. 

An important observation from Figure 2.5.4 is that Rs approaches 

zero more rapidly as Pro increases. On the other hand the parameter a; 
merely changes the asymptote for RT as n increases. Thus the conver-

gence demonstrated by Figure 2.5.3 is demonstrated further in Figure 
<" 

2.5.4. 

A more careful examination of the risks Rs and RT for the particu-

lar case of n = 3 is presentE;d in Figure 2.5.5. The same constant para-

. meter values used for Figure 2.5.4 are used here. These curves are 

representative of the risk variations for other values of n; however, 

the variations with Pro and a~ become greater as n increases as shown in 

Figure 2.5.4. 

If n is restricted to Region II of Figure 2.5.3, some approxima-

tions can be made for values of Pso' Psl• Pro• and Prl close to one and 

for PCm and QCf approximately equal. The second part of this comparison 

is concerned with 1 this case, where the effects of variations in the 

decision maker interconnection channel parameters are more clearly dem-

onstrated. 

Consider the general risk R from Equation 2.4.6 which is 
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n 
R = l 

i=O 

- i n-i 
ki[Klplql 0 

This function can be simplified by an examination of the binomial 

distribution 
n 

n 
F(~) 

2 
= f 

where 

n 
f( x;n 11q) = }: 

i=O 

f(x;n,q)dx 

( n)·. ~-i i.rc . ) i p q u x-1 

is its density and o(x-i) is the delta function. Notice that 

n 
2 

F(~) = l 
i=O 

( n) n-i i 
i p q 

The expected value and variance for this density are 

and 

·E[x] = nq 

2 
Er(x-nq) ] = npq , 
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respective.ly. Papoulis, (18} s.tates on page 163 that the following 

inequalities are true: 

E2[1' - X x !_ a] !. E[ (a - X) 2 I x ~ a] (2.5.6) 

E[a - XI x ~ a]F(a) > a - E[X] (2.5.7) 

E[(a - x) 2 I x < a]F(a) < E[(X - nq) 2] + (a - E[X]) 2• (2.5.8) 

The constant "a" is in general arbitrary. Letting a= n/2 and 
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substituting in the mean and variance shown above, it can be shown that 

F(n) > 
2 npq + (~ - nq)2 

2 

by properly mani.pulating Inequalities 2.5.6, 2.5.7, and 2.5.8. As n 

approaches infinity the result is 

cl - q) 2 
lim F(n-) > lim· 2 . l 

c.!. - q>2 
= • 2 .E.9.. + n-+co n-+co n 2 

However, since F(a) .:_ 1 for all values of the variable "a", the binomial 

distribution in Equation 2.5.5 for large n is 

lim F(n) = l . 2 n-+m 

From an examination of the binomial distribution tables by Weintraub (24 ). 

ft can be seen thatthis convergence is-very rapid for small q. For 

example, 'for q = 0.01 and n = 6, F(t> differs from l by o: .. 00.00195536 

while n = 12 yields a difference of approximately 9.0 x:10-10 • 

The result of this convergence is that the summations 

·and 

.· n 1 
2 - . . 

,\' '(n)1.r1-i . 
•. f..' f; P.iqi 

' 1:=0. ' .. 

approach zero as n gets:large for small values of q0 and q1• 'Therefore, 

using the·definitiori of the optimum ki and including in the summations 
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in R the terms above which approximately sum to zero, R can be written 

as 

This equati.on simplifies to 

Therefore, with the appropriate approximations, the risks are 

and 

for large values of n. If the interconnection channels are assumed to 

be symmetric for both types of decision-makers, the risks simplify to 

(2.5.9) 

and 

(2.5.10) 

S S S T T T where a = a.0 = a1 and a = a.0 = a1• A significant observation here is 

that as the number of redundant channels increases for either type of 

decision-maker the risk R (Rs or Rr) approaches zero. 

Certain conclusions can be drawn from the comparison of the two 

d / 

types of decision-makers which are used in a system with an almost empty 
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pattern aeto These conclusions are drawn with the thought in mind that 

a decision.:.-maker which has no switching elements on each input (Figure' 

2o3o2) has a more complicated interconnection channel than a decision-

maker wi.thout these switching elements (Figure 2o3.l). This means that 

T T S S · a.0 and a.1 are smaller than a.1 and a0 and that in the comparison of the 

two types of decision-makers this difference may be offset by ·the pre-

sence of input switching elements·and by variations in rt; 

As shown by Figure 2.5.4 and Equations 2.5.5 and 2.s.s. the value 

of n determines the method of evaluation. For small n in Region I the 

choice of decision-makers can be made by a comparison of the risks Rs 

and RT as in Figure 2. 5. 4. · For n in Region II, Equations 2. 5. 9 and 

2. 5 .10 indicate that a decision-maker with input switching elements, 

(relay network.) is superior to the other type of decision maker (thres-

hold logic unit network). 

2 o.6- Compa~ison of·· R5 to RT for a Full Pattern Set. · The case of a 

full pattern set does not permit the simplifications in the risk func- -

tion, given by Equation 2.3.11, that were permitted in Sections. 2.4 and 

2.5 for·the almost empty pattern set case. The case considered in this 

section permits all 2n zi's to occur in such a way that the states per­

form a majority rule. It is assumed that n is odd and that the zi's 

with (n+l)/2 or more "+l" components are in the set s;d while those with 

(n+l)/2 or more n-111 components are in the set Sfci• It is also assumed 

that the probabilities given in Equations 2.2.l and 2.2.2 are 

and 
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This means that, for any value of odd n, a consistent classification of 

the 2n states of nature exists; therefore Rs and Rr can be evaluated for 

various values of n. 

Besides n, the sensor and switch channel parameters and the deci-

sion-maker interconnection channel parameters are important. The intent 

here is to show where the trade-c;,ff comes with respect ton when in-

creased decision-maker interconnection channel complexity Clower values 

of a~ and ai in Rr) is contrasted with the reliability of switching 

elements on all n inputs (the inclusion of Pro• qro• Prl• and qrl• in 

The risks Rs and Rr are given by Equation 2.3.11 with the appropri-

ate changes in parameters. For Rs these changes result in 

n 
n P[x,k I z,k] + 

k=l J J. 

where 

P[xjk l I· l] 
s 

= + zik = + = P1 = Ps1Pri1 ·+ qslq,ro 

P[xj1c = - l zik = + l] = s 
ql = Pslqrl + qslPro 

P[xjk· = - l I zik = - l] s = po = Psopro + qsoqrl 

P[xjk = l l, ·zik = ... l] = qs·= Psoq~o :f" 'qs~Pr1 O· 

as inEquations·2.S.l. Simi:larly 
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where 

T 
pl = psl 

T q ·.=· q 1 · l s, 

T 
Po = Pso 

T 
qo = qso 

as in Equations 2~5~2o Using the risks Rs and RT, a comparison similar 

to the one in Section 206 can be madeo 

eonsider the particular case where.a~ B~ = o, 

Pro = Pr'.l 9 and where o: ::i l ~ o~ is optimum for both Rs and ~. 
J J 

Using 

the following parameter values 

Pso = 0.;99 p = o.s 

qso = 0.01 Q = 0~5 

Ps1·:= 0.99 cm = 10.0 

qsl = 0.01 Cf = 1.0 

the family of c·urves shown in Figure 2.6.l results. 

These curve's illustrate the conclusions which can b-e drawn regard­

ing :the trade.;,6'ffs. between the two types of decision-makers considered 

here. 
. T 

For the larger values of Pro and a.0 the c\lrves for Rs· tend to 

become steeper than the lines fo~ Rt· as n in'c~eases. It is this feature 

which indicates that it becomes more critical that Pro be larger than a~ 
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for large values of n. This means .. that• for a full pattern set, a deci-

sion-maker with switching elements on every i'nput can be improved upon 

by using a decision-maker such as a threshold logic unit network which· 

has a more complicated interconnection channel (a.~< a.~). The improve­

ment- of this interconnection channel is the fundamental topicof 'the 

investigation whose results are presented in the remaining chapters and 

appendiceso 

bne- p·eculiarity of the curves for Rs shown in ·Figure 20601 is the 

abrupt break in the curveso __ These-breaks are caused by the reclassifi­

cation of certain patterns xi to permit minimization of R8• · ·rn other 

words 9 as ·Pro decreases, there results an increase in the probability 

that certain vectors zi in one classification will be transformed into 

vectors xi in the other classificationo Therefore the decision-maker 

must reclassify the latter as dictated by the loss function. Notice 

that this reclassification can cause the patterns in sld and Sfd to be 

+ : ' - . considerably.different from those in Sf and Sf respectively~ Recall 

that the sets s;d and sfd are the classifications of nature ands; and 

Sf are the decision=maker's designed classification. 

In summary the full pattern set case is a situation where a decrease 

in reliability· of input swi tchi~g elements just,i.fies the use of a deci:-

sion=maker such as a threshold logic network. The reason that this 

situation occurs with a full pattern set and not with the almost empty 

+ pattern set is that in the former some of the patterns in Sfd are within 

very small Hamming distances of patterns in Sfd; thus it is more likely 

in this case that a state of nature in one classification will appear to 

the decision-maker to be in the opposite classification. However, it is 

this possible reclassification that forces the use of more ;.,ersatile 



networks of threshold logic units rather than single threshold logic 

unitso The versatility of these units ·is considered indirectly in 

Chapter IIL 
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2o7 Conclusiono The conclusions drawn from the investigation pre­

sented in this. chapter are the justification for the work presented in 

the remaining chapters. The most important conclusion is that, if the 

interconnection channel of a threshold logic network can be made reason­

ably reliable t then these networks are better in terms of risk for the 

full pat~ern set case than decision-makers with switching elements on 

every input. Therefore for the full pattern set case the key problem in 

reducing risk is to improve the reliability of threshold logic decision-

makers. 

It is shown in Section 2.5 that, for the almost empty pattern set 

case, the area of applicability of threshold logic decision-makers is 

limited to small numbers, n, of input channels. Even if n is small 

the decision-maker interconnection channel parameters must be roughly 

two orders of magnitude better than the channel parameters of switching 

elements for decision-makers such as relay contact networks. This is 

evidenced by the curves in Figure 2.5.4. 

In general it can be said that, for the almost empty pattern set 

case, the best decision- maker is a conventional network of switching 

elements. For the full pattern set case threshold logic networks are 

sufficiently versatile and are superior in terms of risk than networks 

of switching elements. The versatility of threshold logic networks as 

opposed to single threshold logic units is required by the qomplexity 

of the decision problems that can arise with a full pattern ,set and 
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unreliable sensors. Chapter III ex.plains the reas.on for the difference 

in versatility between networks of threshold logic units and single 

units. 



CHAPTER III 

THRESHOLD LOGIC DECISION-MAKERS 

3ol Introduction. In the previous chapter the general area of 

applicability of threshold logic unit (TLU) decision-makers is definedo 

In this chapter the primary goal is to develop a mathematical model to 

aid in a scheme for improving the reliability of TLU decis-ion-makers and 

thus increasing their applicability. 

Section 3.2 is devoted to a presentation of the fundamentals of 

threshold logic and to pointing out more specifically some of the prop-

erties of TLU'so An explanatio.n, is presented of the role in decision 

making of single TLU' s as opposed to networks of TLU' So The jus.tifica­

tion for the research on TLU network reliability is also discussed~ 

A general discussion of TLU networks is presented in Section ·30 3 

alopg with the particular network considered in the remainder of the 

work presented hereo Fi.gure 3;305 illustrates this network and some of 

the notation usedo Sections 3.4 and 3.5 present the mathematical model 

which is used in Chapter IV"to introduce redundancy in a TLU network. 

3.2 Thresho.J.d Logic Units. A TLU is a devj,ce which produces a 

linear weighted sum of n inputs and subjects this sum to a threshold 

detector as shown in Figure 3.2.l. A vector y' = (y1 , y2 , .o., yri) in 

the pattern space will produce function values f(y') as follows: 

51 
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l if w' • y' > - wn+l 

f(y') = (3.2.l) 

-l if w' • y' < - wn+l • 

The vector w' = (w1, w2, ••• , wn) consists of the first n weights of· the 

TLU. It is convenient to use an augmented vector y = (yl' y2 , ••• , Yn, 

1) rather than y' as above,; Similarly iet w= (w1, w2, •••, wn+l). The 

vectors y and w are called "augmented pattern vector" and "weight vector" 

respectively while y' is called "pattern ve~tor." It is assumed that 

the components of y' are binary; that is~ Yk· = -1 or yk = 1 fo~ 

k = 1, 2, ' 
• • •' n. Also it is assumed that the TLU is designed such that 

w' · y' = - wn+l never occurs so that the system ·of strict inequalities 

in Equation 3.2.l can be used to generate ·a mathematical model. 

Y2 w2 
I 

• • =F- f(y') • • 
• 

Yn wn 

Figure 3.2.l. Threshold Logic Unit . 
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Basically the task of a TLU is to dichotomize two sets of pattern 

vectors 

+ {y' ! f(y") l} sf = = 

and 

- {y' l f(y') = -l} sf = • 

In order to better visualize this dichotomization the. geometric repre-
,. 

sentatiori of Equation 3.2.l is appropriate. Consider a two-dimensi.onal 

pattern space as shown in Figure 3.2.2. 

XY' I 
-1 y' 0 l 2 

I + {y~} I sf = 
~ 

s; = {y' 
l ' Y3, yq 

4 

Figure 3. 2. 2. Two-Dimensional Patten1 Space, 

The equality 
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describes a hyperplabe (in this case a line) passing through the space 

such that it i.s a -cltstance of fwn+l It I lw' l I from the origino The nota­

tion [ lw' I l means the magnitude of the vector w• and lwn+ll means the 

magnitude of the scalar wn+lo· In this· particular example the pattern 

vectors ins; are on one side of the line and those in Sf are on the 

othero Notice that the vector w' points in the positive_ directi.on with 

respect to the hyperplaneo 

The situation discussed above can be extended ton dimensions; and, 

if there exists a ve.ctor w' such that Equation 3a2o2 describes a hyper-

plane where 

w O y > 0 

and 

• 
+ then the two sets of patterns Sf and Sf are said to be "linearly sepa= 

rable11 (LS) o Obviousl'y linear separability is a necessary and sufficient 

condition for the existence of a vector w such that Inequalities 3~2o3 

are trueo 

Given that a set of pattern vectors is LS, the vector w can be 

found in several waysa The more rigorous techniques involve the solu-

tion of a system of linear inequalities,,.constructed from the pattern 

+ vectors in the sets Sf and Sf- and from Wo FoI' each pattern vector, Yi, 

one inequality results; if yiE,Sf, the corresponding inequality is mul ... 

tiplied through by minus one so that all the inequalities in the system 
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~re "greater thano" If there are m+ vectors. in s; and m in s; then the 

system can be written 

yll Y12 0 0 0 yln l 0. 

Y21 Y22 ••• yf~ 1 w:l 0 

• 0. 0 0 0 •• 0 0 0 0 0 •• w2 0 •• 

y + Ym+2 • • • Ytn+n 1 • > 0 
ml 

0 

-y -y 0 •• -y -l 0 
(m++l)l (m++l)2 (m++l)n wn+ 

•• 0 • • • • •• a 4 0 O O 0 0 •• 

-yml -ym2 0 0 0 -ymn -l 0 

where m -· + and the vectors ordered such that Yi, -, m + m Y·' are Y2, 0 0 0 t 1. 

y u are in S +f and y '+ , y' ••• , yrn' are in Sf-. This system can be m+ m +l m++2' 

solved by linear programming, by relaxation techniques, or by techniques 

presented by Coates and Lewis (4),. Dertouzos (6), Ho (ll), Kaszerman 

(15), or Stokes (23) to 'mention a few. 

Some other methods of finding a vector w rely upon the learni.ng 

machine properties of TLU's. Nilsson (17) discusses learning machines 

quite extensively and presents training procedures (solution techniques) 

with convergence proofs for finding w. 
Threshold logic units possess some interesting properties that· have 

helped to arouse interest in them. As pointed out by Brain (l) the 

simulation ···techniques used for neural elements have certain properties 

which are possessed by TLU's; thus the TLU.is thought of by some as a 

· neural element mqdel. Even thdugh the ada:ptability and other elect:dca·l 

··properties of TLU 1s· are \ise·d for brain simulations, the bI'ain's redun­

dancy properties are not considered in the·simulations. 
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Consider the. concept of distributed redundancy introduced in Section 

2060 Obviously each input weight of a TLU has an effect on every output 

when the input compone.nts. are +l or -lo In order to insure that the 

failure of one of the input weights (say an open circuit which changes 

the weight to zero) does not produce an overall failure, the TLU must be 

designed to correctly ,classify the· resulting. patterns as seen at the 

input to the summing deviceo The synthesis technique presented in 

Chapter IV can be extended to apply in this situation; however, this 

extension is not presented hereo 

Another important property of a TLU is the simplicity with which it 

can be implemented. Corresponding to the switching elements on each 

input of a network of switching elements, the elements on each input · of 

a TLU can be simpie resistors with the entire weighting and summing 

portion being constructed as .a Kirchoff adder shown in Figure 3o2o3o In 

Chapter II the decision maker to which the network with input switching 

elements is compared is assumed to have perfect input elementso The 

relative simplicity of the input elements (resistors in ·the example 

shown in Figure 3o2o3) for the TLU decision-maker does not appreciably 

invalidate the comparison. 

Perhaps the most serious limitation of TLU decision-makers -is their 

lack of versatility. A single TLU is capable of dichotomizing only sets 

of pattern vectors which are LSo Consider for example the nonlinearly 

separable (NLS.) pattern set shown in Figure 3.2.4. In this. case it is 

not possible to pass a line through the pattern space such that the sets 

+ -Sf and Sf are separated, therefore a single TLU cannot dichotomize the 

patterns . 
, 

There are certain decision problems which are LSo The almost empty 



Y1 

Y2 

• 

Yn 

+l 

W2 
f(y•} 

wn 

wn+l --

Figure 3.2.3. TLU Implementation_ 

OY' 3 

-1 

XYi 

+l 

-1 

+l 

OY2 
s+ 
f 

sf 

= {y2, y'} 
3 

= {y' y'} 
1' 4 

Figure 3.2.4. Nonlinearly Separable Pattern Set, 

pattern set case is an outstanding example. In this case the optimum 

decision-maker classification is essentially a majority rule type of 

decision as shown by the optimum value of ki in Equation 2.4.7. A 

pattern classification which_ i~ a maj,or:ity rule is a Vf?I'Y simple LS 
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problem~ thus allowing the use of a single TLUo However, it is pointed 

out in Chapter II that for an almost empty pattern set case a conven­

t ional switching element network is better in terms of risk unless highly 

reliable TLU's can be designedo 

TLU decision-makers are not applicable unless more complex decision 

problems occuro The full pattern set case is shown in Chapter II to 

justify the use of TLU decision-makerso However, a full pattern set 

problem cannot be depended upon to result irt a LS decision-maker's opti­

mum classification o For this reason a single TLU cannot in general be 

used in those situations which justify TLU decision-makers. Therefore 

networks of TLU ' s must be used and the improvement of their reliability 

is a valid problemo 

3o3 Networks of Threshold Logic Unitso In general TLU networks 

can be arranged in a variety of ways; however, so little is known about 

their synthesis that the configurations are limited. One synthesis pro­

cedure developed by Hopcroft and Mattson (13) is based on fundamental 

mathematical principles and is very promising provided that the amount 

of computation required can be reducedo This procedure provided the idea 

behind the redundancy synthesis procedure presented in Chapter IV. 

There are other techniques suggested in Nilsson (17) which are 

intuitive and mor,e easily understood than that of Hopcraft and Mattsono 

Basically Nilsson vs procedures amount to transforming NLS patterns in 

one space into another space (image space) so that the patterns in the 

latter are LSo Figure 3o3.l shows a representation of such a situationo 

The " firs t layer TLU' s are synthesized so that the patterns presented 

to TLU mv+l are LSo The total network is called a "two-layered machineo" 
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The problem with this confiiguration (or with any other besides a single 

TLU) is that there. are no known, convergent training procedureso How-

ever, there is a training procedure which has been successful and is 

used to synthesize a two-layered machine called a "committee machinea" 

The reader is referred to page 97 of Nilsson (17) for a very concise 

explanation of this procedure. 

" 

y! 
l. 

y! . l. Q 

~ 

v 
NLS 

Pattern 
Space 

I 

First 
Layer 

LS 
Image 
Space 

1----...f(y!) 
l. 

Figure 3.3.1. Two-Layer TLU Network 

There is another synthesis procedure which works quite well for 

pattern spaces which can be visualized. With this method parallel.. 

hyperplanes are passed through the pattern space such that the regi.ons 
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(cells) between the hyperplanes contain patterns belonging exclusively 

+ -to either Sf or Sf• Nilsson (17) shows on page 108 that this is a 

sufficient condition for linear separability of the image space. An 

example of this procedure is given in Chapter IV. 

Since the primary concern here is with redundancy, the synthesis of 

nonredundant TLU networks is not pursued further. It is assumed here 

that a two-layered TLU network can be found and that, once it is found, 

the problerr. is to introduce redundancy into the network. 

3.4 Mathematical Model of Two-Layer TLU Networks. Given the TLU 

shown in Figure 3.2.5 9 the system of linear inequalities to be solved by 

the weight vector w of TLU mv+l can be written using the output vectors 

ai whose components are the outputs ail' ai2 , ••• , aiv of the first 

layer TLU's. Corresponding to the ith pattern vector Yl there is an 

image vector a!. Since the TLU network is .assumed to be designed such 
1 

that the NLS sets s; and Sf are transformed into the LS sets 

s+ = {a! I g(al) = l; a! produced by y'. g 1 1 i' 
- + 
yie:Sf; i = 1, 2, 0 0 0 t m+} 

and 

s = {a! 
g 1 

g(a!) : -1 i a! produced by YI ' 
1 1 i' 

yie:s;; i = m++l, m++2, •••• m} , 

then there exists a weight vector w such that 

w • a! > - w 
1 v+l 

and 

- + if a!e:S 
l. g 



w • al < - wv+l if a11:.s; • 

Letting 

~=Ca! 
J. J. 

and 

?? = -ca! 
J. J. • ·•. t a, ' J.\I 

l) if a!c.S­
J. g 

the system of linear inequalities can be written as 

where 

....P 
l al all al2 ••• alv 

....P l a2 a2l a22 ••• 8 2v 

• • • • f • I ••• • •• • •• • •• 

~ 
....P 

= am+ am+l am+2 ••• a l m+v 

...p 
-l a -a -a ••• -a 

(m++l) Cm++1)1 (m++l)2 (m++l)v 

I 

••• • • • • • • • •• • • • . ... 
....P 

'' .... -1 
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(3.4.1) 

(3.4.2) 

am -aml -am2 ·amv 
mx(v+l) 

w = (wl, w2• • • • • "'v• wv+1> • 
and 

o= (O, 0 1 ..... 0) 



The rows of the matrix~ are not necessarily unique. Consider, 

for example, the parallel hyperplane synthesis technique discussed in 

Section 3.3. All of the patterns y! in a particular cell between two 
1 
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hyperplanes are mapped into the same point in the image space. There­

fore, corresponding to each of these y!'s there is one vector a., in the 
1 1 

image space. The matrix~ is the basis for· the generation of addi-

tional matrices which simulate failures among the first iayer TLU's. 

3.5 Redundancy for Fallible 1 Two-Layer 1 TLU Net~orks. Th~~t'ypes 

of failures which are permitted are restricted here :to two types. One 

of the two types of failu:res, "typeµ= -111 or "typeµ= +l", occurs 

when some input to a weight w. of TLU m 1 is equal toµ for all 
1 v+ 

-, pattern vectors y .• 
1 

An altet'Ilate error simulation technique, which is not used here, is 

to let the output of some first layer TLU vary from l to -1 or -1 to 

l depending upon whether the correct state for a particular y. isl or 
· 1 

-1 respectively. This method of failure simulation is not satisfactory 

because a particular first layer TLU would still have to v~ry its output 

corresponding to different patterns y!. In effect the output of this 
1 

TLU w·ould be negated while the TLU continued to function properly. 

The result of a type l or type -1 failure is to increase the 

complexity of the system of linear inequalities which the weights w. of 
1 

TLU mv+l must solve. Assume that TLU m1 experiences a type l failure, 

then the vectors 

(1, ai2' ai3' ooo; aiv' 1), i = 1, 2, ••• , m 

must be classified int'o the same catagories as the failure-free vectors 



(ail' ai2' •••• aiv' 1), i = l, 2, •••, m 

if no overall failures are permitted. Thus, a type 1 failure in a 

specific TLU has added m rows to~· If an arbitrary failure typeµ 

(µ equal to -1 or l) is possible in any of the v first layer TLU's and 
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if no overall failures are permitted, then the system of linear inequal-

ities to be solved by w is 

-T -T 
Aw > 0 
-0 

(3.5.1) 

where A0 is given in Equation 3.5.2. As in~,~ may contain repeated 

rows . These repetitions will be used to provide some simplification in 

the synthesis algorithm in Chapter IV. 

It is assumed that Equation 3.4.l has a solution; however, it is 

obvious that Equation 3.5.l may not have a solution. The basic idea 

used here is to force Equation 3.5.1 to have a solution and was pre-

sented by Hopcroft and Mattson (13). The idea is to add columns to~ 

and this idea is developed further in Appendix A. The technique amounts 

to adding additional TLU's in the first layer of the network and there-

by increasing the dimension of the image space. One of the most signif-

icant differences between the work presented here and that done by 

Hopcroft and Mattson is that the additional (or redundant) TLU's are 

fallible themselves. 

(R) 
Let the binary outputs of the redundant TLU's, mk , k > v + 2, be 

0 0 0 t m, where y is the 

number of redundant TLU's. For the kth redundant TLU, n{R), a vector 



A = 
-0 

••• 

0 0 0 0 0 0 a o o 

••• 

-a . 
(m++1)1 

-a· 
(m++1)2 

O O."O -a 

0 0 0 • • • 0 O 0 

••• 

a ·, 
m+v 

(m++1)v 

••• 

1 

0 0 ti 

1 

-1 

••• 

-aml -am2 ••• -amv -l 
--------------------------------~-----·--µ 

•• 0 0 0 0 

µ 

-a .. 
(m++l)2 

0 0 0 GO 0 

••• 

• 0 • 

•• 0 

• •• 

• • • 

• 0 0 

a.+ m V 

0 :o 0 

l 

••• 

1 

-i 

••• 

--~ -a ••• ~a -1 m2 · mv .. . 
----------~~-----------------·----~----~~ • • • 

• 
. 0 

0 

---------------------~--~---~---~~--~----

0 •• 

-a . 
(m++1)1 

••• 

• • • 

-a 
(m++1)2 

• o a 

0 •• 

• •• 

•• 0 

O O .o 

• • • 

o.·o o 

µ l 

• •• 0 •• 

····l 

-µ -1 

• •• a o o 

-µ -1 m(v+l)x(v+l) 

(3.5.2) 
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(3.5.3) 

is used to describe them outputs of the TLU corresponding to them 

inputs Yl• Notice that this vector differs from ai and Yl since its 

components correspond to different inputs to m~R) occuring at different 

times rather than components of a pattern or image space vector occuring 

at the same time. Letting y = l the system of linear inequalities which 

where 

for a typeµ failure. 

[A 
-1 

~ 

I 
I 

. I 

µ 

•µ 

-p 

. -µ. 

no failure 

failure in m1 

failure in m2 

faiiure i 1n m(R) 
\) 

(3.5.5) 

+ The first m. ·. components of c1 are the same as 

those of cl while the last m are the negative of those in ci· The 

-1 . 
vector c1 is defined by the verticle partition on the right of 

I -1 T 
[Ai l (cl) ]. 

; 

In general the weight vector wy = (w1, w2, ••• , w~+y+l) must solve 



where A' is given by Equation 3.So7. The matrix A' is the mathematical -y -y 

model for single, typeµ failures in any of the v + y first layer TLU's 

shown in Figure 3.5.l. The matrix~Y is defined by 

y! 
1 

y! 
1 

• 

y! 
1 

~ failures in ml ••• mv 
---------- (R) 

~· 
failures in ml 

A = -----------Y 0 
0 

0 

---------- • (R) 
A· failures in m 
~ y 

m(v+y+l)x(v+l) 

Figure 3.5.l. TLU Network With Redundancy. 

f(y!) 
l. 
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l 000 I 000 000 l 000 : 

-A----~-------------------------_. -0 I -T I -T I' I -T ' . c1 c2 • • • cy failure in mv -------------------------------- ---- -

A -p 

µ· 

µ 

-µ 

-µ 

'o o o /f ' failure in 
y 

r/R) 
l 

(3.5.7) 

--------v------------------------ -
0 • 
• 0 

O O O O 0 

-~--------------------~--------- -

I 
I 
r 
I 

-T 
c2 

I 
I 

y 

¥ 
0 0 0 failure 

(R) 
µ my 

-µ 

-µ 

in 

v+l 
columns! columns m(v+y+l)x(v+y+l). 

In this model both type -1 and type l failures are not permitted to 

occur simultaneously implying only single failures of one type are 

corrected; however, this can be done by extending A~. An example is 

presented in Section 4.7 which illustrates this extension of the theory 

developed here. 

The development of a method of selection of the ck's is the major 

problem solved in Chapter IV. This selection must be made on the basis 

of the restrictions imposed by the requirement that Equation 3. 5. 6 must 
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have a solution and by the requirement that ck be realizable by a TLU. 

The first restric~ion is imposed with the aid of the theory developed in 

Appendices A and B while the last restriction is imposed on a trial and 

error basis as shown in the synthesis algorithmo 

3.6 'Conclusiono The sections of this chapter present material 

which is needed before the synthesis algorithm of Chapter IV can be 

understood. The basic notation and mathematical model of two-layer TLU 

decision-makers is presented after a brief discussion of the reasons for 

using TLU networks for decision making. This chapter in. effect is a 

link between Chapters II and IV. 
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CHAPTER IV 

DEVELOPMENT OF THE REDUNDANCY SYNTHESIS ALGORITHM 

4 .• l Introduction. The problem solved in this chapter is formula-

ted in Chapter III. As stated there the problem is to develop a tech-

nique for the selection of vectors CJ( such that there exists a wy 

satisfying 

and such that ~, k = 1, 2, •••. , y, are realizable as the output vectors 
(R) (R) 

of y redundant TLU' s, m1 , m2 , ••• , 
(R) 

my In Appendix A a technique 

is developed and a computer program is presented finding a sets, of 

extremal vectors 'i'k, k = l, 2, ooo, s, which form a system of linear 

inequalities, 

'1 
'2 
·• -T > -T 
0 e < 0 ' • 0 

's 
that a general vector e must solve in order for a system 

to have a solution w1 when 

69 
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has no solution. Extremal vectors are defined in Section A.2. The 

symbol·~ means that either> or< holds, but not both, for every inequal-

ity in the system.,. That is, either 

or 

0 

• 

<1>1 

<1>2 

0 

• 
0 

<l>s 

-T -T a > o 

...T ...T 
a < 0 

but not both. The symbols> or< for vectors mean component by com-

ponent. In this chapter this technique is used to derive a similar set 

of "inequality constraints" to apply to the vectors in the vertical par-

titions on the right of the matrix A{., Since these vector partitions 

contain the vectors ~l' c2 , ••• , cy, and since the latter must corres­

pond as discussed in Section 4. 2 to vectors ci, c2 ,· ••• , cy which are 

realizable with TLU's; the pa:rtitions must be restricted by "realiza-

bility constraints." A partial application of the realizability con-

straints is performed by a matrix transformation in Section '4.4 

resulting in a 'simplified set of inequality constraints. A suitable Ci 

must satisfy these simplified corist0raints alo~g with the realiz'abili ty 



of the corres·ponding ci.. In order to find a suitable ci in a given 

situation• those c-, 's satisfying the simplified constraints must be 
1 . 

successively tested for realizability by using the LS test provided by 
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the technique of-Appendix A. A discussion of TLU realizability of a c1 
is given in Section 4.2. A digital computer program has been written by 

the author to perform the search for a c! with the IBM 7040 computer at 
1 

"Oklahoma State University. This program is presented in Section D.2 and 

in an altered form in Section D.3. 

In the event that more than one redundant Ttu must be used (y > 1), 

a problem arises of maintaining single, type·µ error correction with 

imperfect redundant TLU's. This problem is approached by a general syn­

thesis algorithm which is developed by first developing the constraints 

on cl' then on c2 given c1 , and then on cy given cy-l' cy_2, ••• , c1• 

Using the notation developed in this process, the general synthesis 

algorithm is presented in Section 4.6. A running example is used to 

clarify each major st~p in the development contained in the following 

sections. 

4.-2 'TLU' Realizaj)ility of ·~ c10 The selection of a suitable Ci 

precedes by first finding a ci which satisfies a set of inequality con­

straints and then testing the corresponding cl to see if it is realiza-

bie with a TLU. The definition of c! is given by Equation 3.5.3 where 
1 

it is stated that the components cii• c2i, •••• c~i of ci are the 

outputs of TLU mf R) for the· inputs ft• y2, ••• , y~. Basically the com­

ponents of cl serve to assign to each yk• k = l, 21 •••• m membership 

in a set 
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or 

In order to test for realizability of c! the technique of Appendix 
1 

A can be used in the capacity of a linear separability test. This test 

is performed by using a matrix !ci whose rows are the vectors [y'I 
-1 -·+ - -or -[y! 1 l] depending upon whether y!eSc or y!eS respectively. 

1 I 1 1 C, 

there are no extremal vectors for the set of solutions to 

T -T -T 
y <I> = 0 -<:i • T>o 

'I' - ' 

I 
I l] 
I 

If 

+ then S and S are LS and c! ls realizable. This test is discussed in 
C C 1 

general in App en di x A. 

4.3. Derivation and·Partitioning of the Matrices of Extremal 

Vectors. One of the fundamental ideas behind the synthesis algorithm is 

that it is successively assumed that: first, one redundant TLU is 

sufficient (y = l); then, if y, l that y = 2; and then if y, 2, that 

y = 3; etc. Therefore at a particular point in the procedure and with 

an assumed value of y the matrix.!_~ is altered by selecting c1 , c2, 

000 9 cy so that, hopefully, there exists a vector wy satisfying 

In selecting ci'1 , c2 , oooe cy it is necessary to use vectors cf>~ which 

are extremal vectors for the set of solutions to 

The set of solutions forms a convex polyhedral cone as discussed in 



Appendix A,; and the vectors ,: are said to arise because of positive 

linear dependencies (PLD's) among the columns of~~ corresponding to 

nonze~o elements of the ~'s. These extremal vectors form a set Sl and 

are the transpose._ of the columns in a matrix 

[(-Y)T (-'V)T I c~:y )T] 
<I>:,; = <1>1 • '2 1 0 0 0 ' "' ( ) -, sy m v+y+l xsy 

where sy is the number of elements in the sets!. It should be noted 

that the sets; is not necessarily unique. The matrix t is used in 
-'Y 

Section 4.4 to produce simplified systems of linear inequalities to 

apply to c1 , c2 , ••• , cY° 

The elements of S~ can be computed from A:Y using the technique of 

Appendix A; however, these elements can pe found far more easily by 

* first finding the elements of a reduced set S<I> and generating t:Y from 

the reduced matrix~ by the extremal set extension technique of 

* . Appendix B. The set S<I> is a set of extremal vectors for the solµtions 

1 to 

and its elements are the transpos~d colunms in•*. 
-0 

formed from' 

The ma'trix·A°" is 
·:; -0 

by first removing the redundant rows in~ to form;: and then removing 
ft I 

the redundant rows remaining in~ from~ to form~~ Thus, 
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-0 
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The matrices A. defined in Section 3.5 contain no rows which are not in 
-l. 

* A because A. is constructed from A by adding v sets of the m rows from 
-0 -l. -0 . 

~ to ~· This fact permits the appJ.,ic~tion of the extremal set exten­

sion technique to generate t .• 
-l. 

* The partitioning oft and t., i = o, l, ooo, y, is aided by the 
-0 -1 

* fact that there are no PLD's among the rows of~ or !p• To show this 

absenc,e of PLD's consider the matrix fu, defined by Equation 3.4.20 The 

rows of this matrix are obtained from the LS, image space, pattern vec-

tors for the TLUmv+lin Figure 3.2.5. These vecitors are LS because it is 

assumed that the TLU network correctly classifies the pattern space 

vectors provided that no failures occur. ·· As a result of this linear 

separability, the system 

has a solution, thus the system 

* 

*-T -T 
!pW > 0 

has a solution where~ is obtained from !pas described above. Since 

these solutions exist, Gordon's Theorem (see Appendix A) states that 

there exist no solutions r to 

-
' > 0 

Therefore, there are no extremal vectors for the set of solutions and 

* T there are no PLD's among the columns of (!p) • In Appendix Bit is 



* shown that, since there are no PLD'a among the rows of~· there are 

none among the rows of !p or among the rows of any matrix derived from 

* ~ by repeating its rows. 

* Corresponding t~ every PLD among the rows of A or A., 
-0 -l. 

i = o, 1, 
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0 0 0 9 
* y 9 there is an extremal vector element ins, 

i 
ors,, i = o, l, 0 0 0 I 

y 9 respectively. However, there can be no PLD's between rows 

* !i• i = o, l, •••• y, if these rows occur only in~ or~· 

* 

* of~ or 

On the 

other hand, there can be PLD's among -rows of !p or~ and rows that do 

not occur in~ or~· Thus it can be seen that there are two types of 

extremal vectors for the solutions to 

or 

f>o, i=o,1, •••• 1 .' ·-
One type of extremal vector has nonzero components corresponding.to the 

. . . . . * 
rows creating a PLD exclusively among the rows of~ or~· The other 

type has.nonzero components corresponding to the rows creating a PLD 

* * among the rows of both~ or AJ: and~ or-~ respectively. As shown 

above there can be no extremal vectors whose comppnents correspond to 

·* rows from~ or !p exclusively. 
·.. . * 

Thus the matrix ,!o can be written in 

the form 

[ * I J • *- .!p 1 .2_ ·. Corresponding 
t - ----Im--;-- __ .., __ -.;, 
-o * I • tR1 I .!R2 . Corresponding 

I 

* to~ 

* to~ 

* where O and tn contain the extremal vectors·of the first type above and 
- "'""'2 

~ and ~l contain those of the second type. The columns of~ are the 



* elements in S+o 

As mentioned previously, the matrices ti, i = o, 1 9 oo, y, can be 

* 
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obtained from !c, by the extremal se;t extension techniq:ue of Appe11d,ix,Bo 

Consider the matrix t and the manner in .. which it can be obtained from 
-0 

* * . 
.!c,o According to the technique in Appendix B, if a vector ins, corres-

. * 
ponds to a PLD among some of the rows of~ and if one of these rows is 

repeated in~· thens; contains two vectors similar to the one in s:o 

One of these vectors in s 0 contains nonzero elements corresponding to 
cj, 

the position of one of the repeated rows and to the positions of the 

remaining rows of the PLDo The other vector ins; contains nonzero ele­

ments in the same positions as the former vector except that a nonzero 

element occurs in the position corresponding to the repeated row not 

considered by the formero By applying this procedure repeatedly, for 

every combination of repeated rows in~· the matrix !c, can be written 

as 

= r=-~--!--~-~~~~~~sponding to~ L !R,1 l .!R_2 J corresponding to ~ 0 

Consider A. which is constructed from A1 by adding i sets of them 
-'l. .-0 

rows of~ to !o as in 

~ ···---
~ A 

.. -0 -- ----
A. = ~ = ~ -.i. ··----~ 

0 • 0 0 
0 • --~--¥· 
~ -~ 



The matrix t. can be written from t by inspection as 
-,.. -0 

.!p I .2. I .2. I .2. I ooo I 2, 
- - 1- - 1 - +- _,_ -t- - + - -

.!&11 ~I .!R.11 .!&1 I o•o I .!&1 
- -1- -r- - f->- -t,- ..J_ - -

!1= .2. ! 1.!c,I! 1•001! 
_ _J_ 1-" -I--T-+--
0. r .2. 1.Q. 1.!p 1•001.Q.. 

-+~---1---i- -+--
:., o. o r o o o I o o. o 1 •. ·: o I o o o 1 .. o o 

-; + --+--- i"~-r-t- --
o 10 1.2. 10 1•001,!p 

1 I I I 

Example 4o3olo Consider the nonredundant two-layer TLU network 

shown in Figure 4o3ol and the corresponding pattern-to-image-space 
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transformation shown in Figure 4.3.2. The pattern space vectors given 

by 

y• = (1, 1) 
l 

y' = (-1, -1) 
2 

Y' = (-1, l) 
3 

y• = (l, -1) 
4 

produce corresponding image space vectors 

-,. 
al = (l, l) 

-,, 
a2 = (-1, -l) 

a' = (-1, l) 3 

a' ·= (-1, l) 4 

The latter can be used to form the matrix 

-l -1 . l 
.. [l l l] 

~ = l -1. -1 .. 
l -1 -l .. 



?8 

"' from which the matrices ~ , t ,, and t:1. are generated using the techniques 
-0 -0 -

of Appendices A and B. 

y! 
l. 

y! 
l. 

Figure 4.3.l. Nonredundant TLU Network for 
Example 4.3.L 

Xa' ,2 
-1 

Pattern Image 
Space .Space 

Figure 4.3.2. Pattern-to-Image-Space Transformation 
for Example 4.3.l. 
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For a.type +l failure in the first two columns (v=2 in this example) 

the matrix A is written as 
-0 

A 
-0 = 

l l l 

-l -l l 

l -1 -l 

... l .. 1 -1 ____________ .., __ 
l l ··- l 

l -i i· 

-l -l -l 
.•. 

-l -l - - -1-

------~----·.,.--
l l l~ 

-1 l l 

l -l -l 

l .... ·-1 ··-1-· 

l 

2 

3 

4 

5 

& 

7 

a 

9 

10 

ll 

12 
• 

The matrix A has repeated columns, therefore the labor involved in 
-0 . . 

finding elements of S~ can be reduced ~y finding those of s: from!! 

and generating S~ from s:o 
l l l l 

-l -l l 2 

* [~j l -l -r- 3 
A = = 

__ c:ia-_________ 

..,, 
l -l l 6 

-l -l -l 7 

-l l l 10 
• 

* Using the computer to perform the technique of Appendix A, the set s1 

* contains the columns oft as in 
-0 
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l 0 l 

0 a 2 

• ·o r 3 
4' = -0 

0 0 6 

1 0 7 

0 1 10 • 

• The generation of the matrix t from t is facilitated by a "transition 
-0 -0 

chart" which tabulates the location of rows in A which are identical to 
-0 

• specified rows of A. The transition chart is shown in Figure 4.3.3. 
-0 

Rows in ~ 

1 2 3 4 5 6 7 8 9, 10 11 12 
1 X X X 

2 X 

-IC .:i:? 
3 X X X X 

~ ..... 
ti) 6 X 
~ 

~ 
7 X X 

10 X 

Figure 4.3.3. Transition Chart for A 
-0 

* To generate !o notice that t indicates that there is a PLD between 
-0 

• rows 1 and 7 and another between rows 3 and 10 of A 0 From the transi-
-0 

tion chart it can be seen that row 1 is identical to rows 5 and 9; row 7 

is identical to row 8; row 3 is identical to rows 4, 11, and 12; and row 

10 is identical to no other row. The result is that S~ contains ten 



elements shown in 

l l 0 0 I 0 • 0 0 0, l 

0 0 0 I 0 0 2 

0 0 l 0 I 0 3 

• 0 l l • 0 • 4 . __ ;.. __________ ....... , ........................ ________ 
0. 0 .11 l. 0. 0 5 

0 0 I 0 0 6 

t = l • 0 I l 0 l 0 0 7 
-0 

l 0 0 I 1 l 0 a 
0 0 I ·- .0 l_ l 0 9 

0 0 l l I 0 l l 10 

0 0 I 0 0 l 0 11 

0 0 .. I 0 0 0 l 12 

where• is used rather than O for clarification. The matrix .!,1 is 

easily generated as shown by Equation 4.3.lo 

l l 0 

0 

0 l 

0 

I 
I 
I 

0 

I 
I 
I 

1 l I 

0 

l 

2 

3 

4 

------:---:-----i-i---i·--:-------:---:·r·:-----------:-- s 
0 l .!_ • I · 0 0 ···.6 

l 11 0 l O 11 0 0 

l 0 I 1. 1 o .1. l 0 a 
0 " I i 1 -·~ I ... ·g 

l I O ,O l l I 0 l l 10 

0 .. I . 1 I • . 11 

0 0 o I o 1 I . 0 -- 12 

--------------=-i·----------------~-----1-i---i---:·--:-- 13 

0 0 
I . 
I 
I 

0 0 

l 

l 

As stated in Section 4ol, if there exists a-vector w1 such that --

14 

15 

16 

81 
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-A I 

-T -0 I -T """l' -T 
A:i_w1 = I e 

"'1 
> 0 

' - - - , l 
A I :.:.p I 

I 
I 

then it is necessary for el to satisfy 

T -T > -T 
t 1 e1 < o (4.3.2) 

where e1 contains the components of a redundant TLU output vector ci. 

4.4 Inequality Constraints on c1 for y = l. Assuming that one 

redundant TLU is sufficient to correct for single, type 'I.I errors in the 

first layer of a TLU network, the vector e 1 -must satisfy Inequality 

4.3.2 and certain realizability constraints. 

Consider the matrix ~i in Equation 3.5.5 written in more detail as 
...J> -(') . 

shown in Equation 4.4.l where a. is defined in Section 3.4 and a.J is 
1 1 

the same as a! except that the jth element is replaced by lJ if i !. m+ 

and by -'I.I if + i > m • The last column of A' forces certain elements of 
-1 

el to be the same since el= (c1, ••• ,c ,c , ••• ,c , ••• ,c , ••• ,c ,'I.I,•••• 
m l m l m 

l.1,- l.le•••, - lJ). In effect the realizability constraints are partially 

applied by this restriction. There is a simple linear transformation 

from 

to el; that is, 

where 

'I.I] T 
-11 



A9 = [A 
-1 -1 

= [!i, ! !I, 
lV+lJm 

columns 

••• 

0 
0 .. 

I 
!p: ~], 

i m 
: columns 

C rn ----.. ~------------
00000000000}000004 

·---:;cv,-m~-------
a1·· I cl 

I 
I 

0 0 
• 0 

~"> I 0 

~ C . + m •---=~••=e- -~----. ...p 
~l µ 

• 0 

• 0 

0 

...p 
~in+ 

µ 

....P 
a( + ) m +l 

-µ 

, I 
• • • 

-P 
a -µ 
m 
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l Q 0 0 0 a 0 

0 l 0 0 0 0 

!p = 0 0 0 0 0 

0 0 0 0 0 0 l 

0 0 0 0 0 
(m+l)xm • 

and 
+ -m columns m columns 

0 0 0 0 0 0 I:: 0 0 0 

T = 0 0 0 0 -µ I 
0 0 0 0 0 0 0 0 0 

I 
l l 0 0 0 l -1 -l 0 0 0 -1 

(m+l)xmo 

Refe:rring to Inequality 4o3o2 in Example 4.3ol the followi-ng simp-

lifications can be made: 

or 

Defining 

the inequality constraints, as modified by the above realizability con­

straints on el. simplify to 

- I > -
[cl I lll.Q.11 < o 

where lJ = l in the exampleo A given c1 satisfying the above inequality 
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has no assurance of being realizable by a TLU. A computer search must 

be performed to test those c1 •s satisfying the above inequality to see 

if one of them corresponds to a realizable ci· This search is performed 

by the program of Section D.3. 

The terminology introduced here is consistent with the general case 

of y > l o The last y columns of A' are similarly related to the vectors -y 

c2 , c3 , •••• cy• Let the transpose of these columns be defined as 

k = l, 2, ••• , Y, 

where the µ's occur in the positions as shown in the (v+l+k)th column of 

A' in Equation 3.5.7. 
-y 

- -1 For example, e1 used above is equal to c1 • 

general 

~ = [c 
y y 

where 

T = [!n -Yk ~ 
0 0 0 

µ]T 
""'yk 

T 
-µ 

0 0 0 !,p] 0 

In 

The partition containing T corresponds to the location of the µ 1 s in -µ 

~ . This notation becomes of considerable value when y is large because 
y 

the extension from J* to J. reduces to a direct extension of the smaller 
-0 -.1. 

matrix 

D = T J = [Tn 
-00 -00 -0 ._. 

0 0 0 

to Dlk for i = l, 2, •••• y and k = l, 2, ••• , i. 

In general ~k is given by 



or by 

D •. k =- T ' k t. t -1 ~ -l. 

1 2 3 4 I k+2 
I 

0 0 0 !p !p !p • • • I 
!µ I ~k = [Ip !p 

!p I£. I£. I£. 1··· I£. 1 

- ------1-----1-----1--:--1----1·---- -
~ !R !R !R •.• .!R 2 _____ :_1 ___ ~_1 ___ ~_1 ___ :_1 ____ 1 ___ : __ 

o I£ I !p I o I··· I£. 3 

. - ------y-----1-----y-----y----y----- -
£ £. £. !p • . . £. 4 

------+-----+-----+---~-+----+---·-
0 0 0 0 •• ••• 000 OOG 

- ------+-----+-----+-----+----+----- -
0 0 0 0 ••• ~n i+2 t 

I - I - I ... I I~ 

1 2 3 I k+2 
I 

I i+2 
I 

... 

R:l. 
0 0 0 I R 

: -µ 
I 
1 RJ.] • 
1-

... 

I i+2 

I !p] ~ 
I 
I 

The partitions are numbered correspondingly for clarification. The 
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matrix ~l is produced by any vertical partition of~ which contains .!Rl 

and a !p which is not in the horizontal partition corresponding to!µ• 

The case thus excluded is written as!µ• The matrix~ is produced by 

the verticle partition containing .!R.2• For purposes of simplification 

let 

• • • R 
-;.t 

• 0 • ~] 

where~ is constructed from 



by removing all redundant columns. Also define £_'11 as the matrix con-

structed from £.ii by removing all of its redundant columns. D" is YY 

defined in Section 4.5 for y = 2 and in Section 4.6 for y > l. 
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Example 4.4.l. In Example 4.3.l the inequality constraints of 

-1 
Inequality 4.3,2 on a1 = c1 for a particular~ are derived. Using the 

notation of this section the size of the matrices in Inequality 4.3.2 

can be reduced . Inequality 4.3.2 is 

and reduces to 

as in Inequality 4.4.2, where 

l l 0 0 l l l 

0 0 l l 0 0 0 

D:l.l = l 0 l 0 l 0 l 

0 l 0 l 0 l 0 

0 0 0 0 0 0 0 

There are several redundant columns in 

when £11 is used in Inequality 4.4.3. 

l 

0 

0 

l 

0 

D 
-11 

R:2 

0 0 

l l 

l 0 

0 l 

0 0 

R ] 
-µ 

0 

0 

l 

0 

l 

above which 

Therefore, when 

(4.4.3) 

0 0 0 

0 l l 

0 0 0 

l 0 0 

l -1 -1 

serve no purpose 

searching for a 

realizable c1 which satisfies the inequality, D 
-11 

can be reduced to D" 
-11 

by removing all redundant columns. 
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l l 0 0 0 0 0 

0 0 l l 0 0 l 

D" = l 0 l 0 l 0 0 
-11 

0 l 0 l 0 l 0 

0 0 0 0 l l -1 

Then cl must satisfy 

[cl l]D'' > 
-11 < 

0 (4.4.4) 

a~d ci must be realizable with a TLU in order for one redundant TLU to 

correct for all single 9 type µ 9 first layer errors. It turns out that 

no such c1 exists in this case as can be determined by the computer pro­

gram of Section D.3. 

If no suitable c1 exists which satisfies Inequality 4.4.4 9 then the 

"best" c1 must be selected and a search must be made for a c 2 which 

satisfies a new set of inequality constraints. The selection of "best" 

c1 and the development of the constraints on c 2 is the topic of the next 

section. 

4.5 Inequality Constraints on c2 given c1 • Recalling the basic 

reason for c1 • it can be seen that a c1 is desired such that every 11 , 

which is a nonnegative, linear combination of extremal vectors ,t, 
k = 1 9 2 9 ••• , s1 , must result in 

-1 
In other words, c1 should satisfy 
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for all \• This inequality reduces to 

[cl 
-T .,. 0 !' µ]£_11 >. • > 0 

or to 

[cl µJD' 
-T .,. 0 !' > 0 >. 

' ' -11 
(4.5.1) 

where!' is the vector whose elements are the nonnegative scalers above. 

Since the elements of Di1 correspond to the extremal vect6~s in ti, 

Inequality 4.5.l is satisfied when 

(4.5.2) 

-1 
If there exists no realizable c1 such that Inequality 4.5.2 is satisfied 

-2 then a c1 must be selected which is "best" according to some criterion, 

and a search must be made to see if there exists a suitable c; which 

completes the task 

Assuming that 

-2 started by c1• 

--2 -2 
y = 2, c1 and c 2 must be such that for every nonnega-

tive 9 linear combination of ~'s, 

S2 

~ 2 -:-'2 
>.k ~ o, = >.k4>k ' 

k=l 

-2 -2 satisfy cl and c2 

-2 -2 0 cl cl 

CI•k<+!l] ~ l>T= , Ak ~ O, (4.5.3) 
-2 -2 =l 0 c2 C2 



-2 2 
where ~k&S~. This inequality reduces to 

or to 

I 
- I 

_:~!-~-~~~~~- AT¢ OT' 
- I 

[c2 I µ]D22 
I 

-T ¢ 0 
' 

r > o 
' 

r > o 

where 'I is conformable. The first inequality in this system of two 

inequalities is 
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µ][~ R 
-;.t 

R1 ] "tf ¢ 0 , r > o t (4.5.4) 

and is equivalent to 

µ][~ R ] AT = [c1 -;.t l 
JD ' ,T "' 0 ' > -0 µ -11 Al r t Al - t 

which is the same as Inequality 4.5.l. Since there exists no c1 such 

that Inequality 4.5.l is satisfied, there exists none such that 

Inequality 4.5.4 is satisfied. 

In order to reduce the task which c2 is expected to perform, c1 

must be selected judiciously. Obviously the selection of c1 has an 

effect on the system of linear inequalities which c 2 must satisfy. 

Before defining the "best" c some notation must be introduced. Let 
l' 

the matrix 
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A:21 = 

be defined as the matrix whose rows are extremal vectors for the set of 

solutions r to 

-It is also necessary to point out that the vector c1 is trivial if it is 

(1, 1, 1 
I 

-1. -1, -1 µ) cl = 0 0 0 f I 0 0 0 9 

I 
m+ I rn I 

elements I elements 

or 

I 
c1 = (-1 9 :-1, ••• , -1 J 1, 1, ••• , 1 µ) 

corresponding to 

or 

(-1, =l, 000~ -1 µ) 0 

The addition of a redundant TLU with this output vector amounts to 

nothing more than adding another constant input to the second layer TLU 

m 1• v+ 

Definition 2.s.1. The best c1 is that nontrivial c1 , corresponding 
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to a realizable ci, for which the matrix AQl results in the least number 

of unique columns in the matrix 

T 
~2 !21° 

Notice that a column which is equal to a positive multiple of another 

column is not unique because it applies the same inequality constraint 

as the other column. The computer program of Section D.2 computes c1 

from input data consisting of the input patterns Yi, y2, ..• , y~, the 

value ofµ, and the matrices n21 and D22. 
Given a best c1 , the vector c 2 must satisfy 

. f h . I AT where the unique columns o t e matrix o22 _21 are computed by the pro-

gram of Section D.2 while searching for the best c1 • Call the matrix 

~ 2 the matrix whose columns are these unique columns, then c 2 must 

satisfy 

[C 11 µJD" > o 
2 I ~2 < 

The computer program in Section D.3 can be used to search for c 2 and 

determine whether or not one exists. If one does exist, then y = 2 as 

assumed. 

Example 4.5.1. Continuing the running example in Examples 4. 3.1 

and 4. 4. 1 the problem at this point is to find the best c1 and a c2• 

Since there exists no c1 such that Inequality 4.4.3 is satisfied, a 

realizable c1 is selected such that the matrix n;2 A;1 has the least 

number of unique columns. Using 
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t'c1 l]D' l 
-21 = 0 t !'¢0, X'>o 

or 

l l 0 0 0 0 0 0 l l 0 0 

0 0 l l 0 0 l l 0 0 l l 

[cl l] l 0 l 0 l 0 0 0 l 0 l 0 tr =o 

0 l 0 1 0 l 0 0 0 l 0 l 

0 0 0 0 l l -l -l 0 0 0 0 {4o5o5) 

!'¢0 ,X'!,o, 

the computer search routine of Section D.2 calculates 

cl = (1, -1. -1. -1) 

for the realizable c1 which is best according to Definition 4o5olo 

For the given value of cl, Equation 4.5.5 results in 

Tl l 0 0 0 0 0 0 0 0 0 0 o .... 

><2 0 l 0 0 0 0 0 0 0 0 0 0 

><3 0 0 0 0 1 0 0 0 0 0 0 o··· 
A2l = = 

>.4 0 0 0 0 0 1 0 0 0 0 a 0 

X's 0 0 0 0 0 0 0 0 l 0 0 0 

J:'6 0 0 0 0 0 0 0 0 0 l 0 0 

through the use of the technique of Appendix A. If y is actually equal 

to two, then c2 must satisfy 

tcz V T 
l]D22 ~l 

>-
< 0 (4.5.6) 

or 
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l 1 l l 0 0 

0 0 0 0 0 0 

[c2 l] l 0 l 0 l 0 >-
< 0 

0 l 0 .l 0 l 

0 0 0 0 l l 

Replacing 022 
AT II 

-21 by 022• the computer search routine of Section 0.3 

searches for a realizable c2 such that 

1 l 0 0 

0 0 0 0 

[c~ l] 1 0 1 0 > 0 (4.5.7) < 

0 1 0 l 

0 0 1 l 

This search results in 

c2 = (1, -1, l, l) 

which satisfies Inequality 4.5.7. Therefore 'Y = 2 and c1 and c2 are as 

given above for single, type 1 errors in the first layer of a TLU net-

work which produces~ given in Example 4.2.1. Notice that the actual 

output vectors for the redundant TLU 1s mfR) and m;R) are given by 

and 

c"1 = c1, -1, -1, -1> • 
2 

The result of this procedure is that the matrix ~2 written as in 



95 

Equation 4.5.B, forms a consistent system of linear inequalities 

This consistency is verified with the technique of Appendix. A by showing 

that there are no extremal vectors for the set of solutions to 

'A ' )T ,,/I' -- -0 T ..t -0 T -0 
-2 'I' ''1'1" • 'I'> ' 

where c1 and c2 are given. The resulting redundant TLU network is shown 

in Figure 4.5.l. 

y! 
1. 

y! 
J. 

y~ 
J. 

y! 
J. 

f(y!) 
1. 

Figure 4.5.l. Redundant TLU Network for Example 4.5.l 
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If no realizable c2 exists such that Equation 4.5.7 has no solu­

tions. then y must be greater than two. The procedures of the previous 

two sections can be generalized to investigate all values of yin a sys-

tematic manner. 

A1 = [A 
'"'""2 '"'""2 

(c(2)T 
l 

l l 

-l -l 

l I l 
I 

l 

1 I -1 -1 
I 

l -l -1 I -1 
I 

l 

I 
l -l -1 I -1 I l 

--------------J----1----
l l l ', l l 

I 
l -1 l I -1 I -l 

I : 
-1 -1 -1 I -1 I 1 

I I 
-1 -1 -1 I -1 I l 

I 
--------------,----~----1 l 1 1 I 1 

-1 l 

I 
1 -1 I 1 

I 
l -1 -1 -1 I 1 

I I 
1 -1 -1 I -1 

1 
1 

--------------,----,----1 1 1 I 1 1 

-l -1 
I 

l I l -1 
I 

l -l -1 I -l I l 

I I 
1 -1 -1 I -1 I 1 

--------------4---------l l 

-1 -l 

l l I l 
I 

1 -1 I 1 
I 

1 -1 -1 -1 I -1 
I 

l -1 -l -l ! -1 

(4.5.8) 

4.6 Inequality Constraints on c1 given cy-l.a.....Sy-z• •••• c1 • For 

y > 2 the procedure of Section 4.5 becomes more complicated. The 
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notation used there is extended to the general case here and additional 

notation is introduced. Keep in mind that the value of y is an assumed 

value; and, if the algorithm does not find y vectors ci which correct 

single typeµ failures, then the algorithm must be repeated with a 

larger value of y. 

In general the matrix A. has as its s . rows the extremal vectors 
"""'Yl. yi 

"k for the solutions to 

[cl 
I 

µ]D~l 0 I 
I -----~--------

[c2 
I 

µ]Dh 0 I 

I t1' r !. o, --------------- = 1 o, A 
• 0 . 

i 1, 2, y-1. --------------- = 0 0 0 t 

cc". I µ]D'. 0 I l. I -yi 

Using the matrix A., the problem here is to extend Definition 4.5.1 to -yi • 

aid in the selection of ci' 2 ~ i ~ Y-1 1 such that the task remaining 

for ci+l is reduced. If it happened to be possible for the algorithm to 

terminate on ci+l' then ci+l would have to satisfy 

for every w which is a solution to 

cc. 
l. 

T -T 
µ]D~iA~(i-l)w = 0 , w # 0 1 w > 0 

In order to explain this, consider every positive linear combination 

,.rr = AT wrr 
--y(i-1) 

of extremal vectors for the solutions r to 



- I [C I µJD'.· 
1 I -Yl 

[ - I ] , 
c2 i 1.1 D:y2 .... -------dit·--·-·---------______________ , ______ _ 
- I 

[c. 1 I µ]D'c· 1) 
J.- I -y J.-

for which the best ci permits the equation 
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i T = o, r ¢ o, r .!. o, 

[c. 
l. 

]Dv AT -T = 0 
1.1 -yi-y(y-l)w ' w ¢ o, (4.6.1) 

to be true. Then ci+l must satisfy the inequality 

T -T > 
µ]Dv(. l)A (".· l)w < 0 -y i+ -y 1.-

for every w satisfying Equation 4.6.1. The wVs satisfying Equation 

40601 form a convex polyhedral cone; therefore, each can be expressed as 

a positive 9 linear combination of extremal vectors w1 , w2 , ••• , w .• 
Syl. 

Furthermore 9 if the matrix Q. contains as its rows these extremal vec­
-Yl. 

tors 9 then it is sufficient for c. 1 to satisfy 
1.+ 

I 
[ - I 

ci+l 1 

It is v~ry significant that the matrix 

[ - I ]VAT c. ,1 µ D .•• 
l. -yi-yi 

contains only one row. This permits extremal vectors for the solutions 

w to Equation 40601 to be found very simply as shown in Appendix C. 

This is incorporated in the program of Section D.2, which computes ci 

based on the definitions below. 

Obviously 9 if y > i, then the algorithm does not terminate with c .• 
l. 

Therefore some criterion must be established such that the task performed 



by ci• 2 < i !. y-l, reduces the task expected of ci+l• 

Definition 4.6.l. The best ci, 2 < i !. y-1, is a realizable, 

nontrivial ci for which the matrix 

D' AT r? 
"""y(i+l)"""r{i-1)--Yi 
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has the least number of unique columns. Similarly Definition 4.5.l can 

be extended for y > 2 to the following. 

Definition 4.6.2. The best c1 is a realizable, nontrivial c1 for 

which the matrix 

T 
D' A 42-yl 

has the least number of unique columns. 

Notice that in Definitions 4.5.l, 4.6.l, and 4.6.2, no claim of 

optimality is made. These definitions are made on an intuitive basis. 

A geometrical description of these definitions and the rest of the 

algorithm is given in Section 4.8. 

Based on the above definitions and the theory of Appendices A and 

I -
C9 the computer program of Section D.2 computes the best c1 • For 

2 !. i !. y-1 the input data for this program consists of the input 

tt t -, -, -g. 
pa em vec ors Y1 9 Y2 9 •••, Ym• the value of µ 9 and the matrices 

D:Yi~(i-1) and E,y{i+l)!~(i-1) • 

and cy must be realizable. The search for Cy can be simplified by 

defining E.;y to be the matrix formed by removing the redundant columns 
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e AT 
from £.y.y-'Y(Y=l)• As in the. case for y = 2 in Section 14:.s, the computer 

program of Section D.3 can be used to search for a cy which satisfies 

Inequality 4.6.3. If there exists such a c2, then the assumed value of 

y is correct; if not, then the algorithm must be repeated with a larger 

value of Y• 

The flow-chart in Figure 4.6.l illustrates the algorithm and its 

use is illustrated by Example 4.7.l. · 

' ' ' 

4.7 Extension of the Theory to Consider.Both Failure Typ!!S 

Simultaneously. The theory developed here and in Chapter II is flexible 

to the extent that the consideration of the occurrence of both type -1 

ahd type +l failures is permitted. This extension can be performed by 

adding extra rows to·A! and by making the corresponding alterations in 
'""J.. 

t*, t 9 D!k 9 and c .. There is no change in the application of the 
=O -0 -J. J. 

algorithm illustrated in Figure 4.6.l after the above alterations are 

made. 

Notice that in Equation 3.5.7 the partition containing !y is 

~ m rows,. 
_.-..c,i1 .. cm'o:f cc=c~-=--

A = ~ vm rows 
-'Y __ Cllli ___ 

--·-CID--=••·c:r••• 

~ m rows 
, ... ar•·•--• ---------• 0 ym rows Q • 

0 • ------ ---mc:m,=-c,-

~ m :rows·· 

The most significant alteration in A:y is in the partition~· !R. con­

sists of v sets of m rows as shown in Equation 3.5.2 and the alteration 

in~ amounts to adding v additional sets of m rows as in 



COMPUTER 
PROGRAM 
LOCATION 

ASSUME Y 

-----eA 
SECTION 

0.2 
SELECT C1 3 Q'yzf!i, HAS LEAST NUMBER OF UNIQUE COLS. 

SECTION 
. · A.8 COMPUTE Ay 1 FROM [c, : µ.] Q'y, 1_T = O 

SECTION 
0.2 SELECT C2 3 Q~ 3 l);y1 D°h HAS LEAST NUMBER OF UNIQUE COLS. 

SECTION 
A.8 

COMPUTE /J.y2 FROM 

[t-rHtJ,. 0' 

• • 9 • • 
SECTION I T T 

0.2 SELECT Cy_1 3 Qyy.h,y1y_ 21 Dr<Y-il HAS LEAST NUMBER OF UNIQUE COLS. 

COMPUTE Ar<r-,l FROM 

SECTION [_[~~~~.t .. _q'.(I_. ---J-T _ T 
A.B : . A= 0 

[cr-1: fL]!J1Y(Y-l 

SECTION 
0.3 

STOP 

YES 

COMP TE 011 FROM D1 Ar U -YY . -YY -Y<Y-ll 

DOES 3 Cy 3 

[Cy:µ.] Q'yr ~ o NO 

Figure 4a6oJ,o Flow-Chart for Synthesis Algorithm 

101 



102 

~ = [~-] 

where~ is the same as~ except thatµ is replaced by -µo The remain­

ing alteration in~ is the addition of y partitions !pas in 

!:.p m rows 

--=---Aa 
~ 

2vm rows 
-----c=i 

Aa = !:.p -Y ----o:i,,:m 
g ym,,-rows 
0 --=~-..... 
~ ..... __ ., ___ 
!p --

--.:ID-tip,,;1;11 

0 --ym rows 0 
0 -----=-~ 
~ 

0 

In order to consider both failure types in the redundant TLU's, the 

altered form of the matrix ~ must ___ be written as shown in Equation 4 o 7. l. 

The partitioning shown means that the matrix ta, which is the altered 
-y 

form of !y 9 has the same form as \J but that the matrices ~ in the 

diagonal partitions (except the upper left partition) occur 2y times 

rather than Yo Also the altered partitions ~:land ~ 2 contain twice as 

many rows and, possibly, more columns. The matrices t~ for i > 0 are of 
-1. 

no importance in the mechanics of the algorithm; however 9 the resulting 

altered matrices D~k are of importance. 
-J. 

Da can be obtained from ta by the transformation matrix 
"4'k -"{ . 

Ta = [1n I '!'r. 0 0 0 •· ·I '!'r. 
-y k 'i?" I -s;- I 2 Vm I -i;-

1 
cols! cols 

000-.1, -~ l !.. 
'2~ I-----.,. 

cols 

I 
!p I 0 0 0 !p] 



ao 
A = -"( 

1 -T,-T[ 1-T !p c1 c2 ooo · c m rows 
,__,..,_.-,_,elfflldOllrial/S~dld_.=6,.-~----lJJll'et'•-l.__ 

(ooo (ooq [ ooa iooo 
--~m--•••~••••~••••••d•----

1 -T, -T 1 ,·-T a. c1 c2 ••o cy 
t--A -~~~--~~---•-~••••••-•-
~ I c'f I ~ l . o • I ~ 2vm rows 

_r;sll'_=t ___ .., ___ ..,_. __ ,,.. __________ _ 

(ooo looo { ooo looo 
---~--,-:.ir--,-::.ir-·1-··--·,-::q:--

cl c 2 .· • • • cy 
----~--=~-~---~•-----------

1 µ I I I 
• : I I 
µ 

-T I l ---T 
A =µ c2 0 O 0 '\ -p I I I • 0 

• 
[ ... µ I I 

-----~--•••~-•••e~••--•-•-~ 

I-µ I 
0 

I 0 l l 0 

-µ 

I l -T I -T 
~ µ c2 O O 0 Cy 

0 
0 

µ l 
__ ._, _ _. • .,_..,_. ... .., .. a=i.,••••411111-,·••e--

g l: l: l: l: 
,;t;,,='~Cl:la::lt#r_c/3 _ _,ad~<!m'd/6~i:JifzfCll:!idl!l-d:l!l@"f6/To!:S~--

I µ 
'o 
0 
0 

µ 

•.• • -µ 

I • • 
O· 

l-µ 
-----------------~-~-~-~---

0 •• 

g 
I . ,-µ 

I µ 
0 

8 

m rows 

m rows 

m rows 

m rows 
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(4o7ol) 

µ (2v+2y+l)x(v+y+l) 



where the partition 

[T I -T] 
-µ I -µ 
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occurs in the columns corresponding to the elementsµ in the (v+l+l)st 
a9 

column of !y. 

The only other alteration is in [ci ! µ]. Since the matrix !.;k 
contains both T and -T, µ must be set equal to one; that is 

-µ -µ 

must be used exclusively in the algorithm. 

a a' 
The altered matrix D can be simplified to Dk by removing the 

-yk -y 

redundant columns in the first (2v+l)m columns. The result is 

0 0 0 0 0 0 
0 

The use of this extension and of the general algorithm in Figure 

4.6.l is illustrated by the following examples. 

Example 4.7.1. This example is an extension of the running example 

appearing previously in Examples 4.3.l, 4.4.1, and 4.5.1. There it is 

assumed that only type +l failures can occur. This assumption is con-

sistent with all of the theory with the exception of that developed in 

this section. Here it is assumed that either single, type -l failures 

or single 9 type +l failures can occur but not both simultaneously. 

Since some of the matrices in this case become too large to conveniently 

present, the detail of the running example is not presented here. 

The matrix~ in Example 4.3.l is extended to~ as shown in 

Equation 4.7.2. By removing redundant rows,~ simplifies to~* in 
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Equation 4.7.3. Using the computer program of Appendix A a set of 

extremal vectors for the solutions~ to 

a* 
turn out to be the vectors shown in the columns of ,!o in Equation 4.7.4. 

l l l l 

-1 -1 l 2 

l -1 -1 3 no failures 

l -1 -1 4 

----------------l l _l 5 

l -1 l 6 +l failure in m2 

-1 -1 -1 7 

-1 -1 --1 -a 
----~-------=--~ l l l 9 

-1 l l 10 +l fail tire in m2 

-fl}-Aa = = l -1 -1 11 
=-() 

l -1 -1 12 (4.7.2) 
--QD·-------,=-~---

-1 l _1 13 

-1 -1 l 14 -1 failure in m1 

l -1 -i 15 

l =l -1 16 
--•--••111:1•e•O••-·-

l -1 l 17 

-1 -l l 18 -l failure in m2 

l l -1 19 

l l -1 20 
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l i ' l l 

* -1 -1 l 2 

a* -[-~rl l -1 -1 3 (4.7.3) A = = -0 ___ dlf __ ........... ~'*'--
l -1 l 6 

-1 -1 -1 7 

-1 l l 10 

- -1- - . 1-- -l 19 

l_ 0 0 I 0 l 
I 

0 l 0 I 0 2 I 
I 

0 0 l I 0 3 
I 

a* --~----;·---~--r~~-: 
6 (4.7.4) t 

-0 I 
I 

l 0 0 I l 7 
I 

0 0 l I l 10 
I 
I 

0 l 0 I -l 19 

. a 
Although it is too large to present here the matrix t can be 

-0 
a* 

written from t using a transition chart and the extremal set exte.nsion 
-0 

. . a . a' . . technique of Appendix B. Then from !o the matrix ,£11 in Equation 4.7.5 

can be written using the transformation matrix Ta. For values of 
-11 

a 9 a' 
y >1 9 £.yi can be constructed from ,E.11 by simply adding 2(y-l) partitions 

whose columns are shown in Ra given by Equation 4.7.6 and by shifting 
-1 . 

the partition R to the proper location • 
. -µ 

From this point on, the problem is continued by applying the 

algorithm of Figure 4.6.l. After successively performing the steps for 
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y = 1 9 2~ and 3 the procedure terminates on y = 4o This iteration begins 

by constructing 

av 
[Ra a a a a a a Ra] 

.E.i+1 
= R R RI"' R R R -p "j.l -1 -1 -1 -1 -1 -1 

and 

av a a a a a a a a 
~2 = [~ !.1 R:l. R R:l. R:l. R:l. R:l.] 0 -µ 

This data along with the pattern vectors Yi, Y2, Y3, y4 is used as the 

input to the program in Section D.2 to compute 

~ = (l, -1~ -1, -1) l 0 

av a I a 
D = [~ I R ] 
-11 I-µ 

l l 0 0 0 0 l l 0 l l 2 2 2 

0 0 l l 2 2 2 l 2 l l 0 0 0 

l 0 l 0 2 l l l 0 0 2 2 l 0 

av 
D = 0 l 0 l 0 l 0 l 2 2 0 0 l 2 
-11 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(4o'7o5) 

0 0 0 0 0 0 l l 0 0 0 0 0 0 l l 

0 0 0 0 l l 0 0 0 0 0 0 l l 0 0 

l 0 l 0 0 0 0 0 l 0 1 0 0 0 0 0 

0 1 0 l 0 0 0 0 0 l 0 l 0 0 0 0 

l l l l -1 -1 -1 -1 -1 -1 -1 -1 l l l l 

l l 0 0 0 0 l l 

0 0 l l l l 0 0 

Ra= l 0 l 0 
-1 

l 0 l 0 (4o7o6) 

0 l 0 l 0 l 0 l 

0 0 0 0 0 0 0 0 
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Using this value of c1 the matrix A~1 is constructed from the set 

of extremal vectors for the solutions 'X"to 

- I a' Since the matrix [c1 I 1]~1 has only one row, ~l can be found by 

inspection using the theory of Appendix B rather than using the program 

in Appendix Ao 

In order to compute c2 the matrices 

a' :·T 
~2 ! . . . .,.1 

and 

a' T 

~3 ~l 

are cdnstructed and entered as data in the program of Section D.2. The 

result is 

c2 = (l,,-11 1 1 l) • 

According _to the algorithm the next step is to construct ~ 2 from 

the extremal vectors for the solutions Tto 

rto, X' > 0 0 

These extremal vectors are found by removing.all redundant columns from 
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finding the extremal vectors for the simplified system with the program 

of Appendix A, and generating the rows of ~ 2 by the extremal set exten­

sion technique of Appendix B. 

The vector 

c3 = (1, -1, -1, -1) 

a 9 a' 
is found with the program of Section D.2 from .E.i,.3 and .E.i,.4• The output 

of this computer run includes the set of constraints that c4 must 

satisfy. The resulting system of inequalities is 

1 l 

0 0 

[c4 l] l 0 > ctr 
< 

0 l 

0 0 

and is obviously satisfied by several vectors. If the system of inequal-

ities is more comple'.K than in this example the program of Section D.3 

could be used to find 

--C4 = (=1, 1, -1, -1) 

In summary, both type +land type -1 failures can be corrected in 

the problem presented in Example 4.3.l by adding four redundant TLUus 

with output vectors 

CV = (1, ~1, l, 1) 
1 

c9 = (1, -19 -1, -1) 
2 

cg = (1, -1, l, 1) 
3 

cg 
4 = (-1, 1, l, l) 
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In this example the correction of single type -l or type +l failures 

requires the addition of four redundant TLU's while the nonredundant 

network shown in Figure 4.3.l contains only two first layer TLU's. The 

following example illustrates that the amount of redundancy required in 

Example 4.7.l is not always necessary. It shows that a certain amount 

of overdesign in the nonredundant TLU network can result in a consider-

able savings in the amount of redundancy required to achieve single 

error correction of both type +land -1 failures. 

Example 4.7.2. Consider the two-layer TLU network shown in Figure 

4.7.l and the corresponding pattern-to-image-space transformation shown 

in Figures 4.7.2 and 4.7.3. 

y! 
l. 

y! 
l. 

Figure 4.7.l. Nonredundant TLU Network for 
Example 4.7.2. 



lll 

Figure 4.7.2. Pattem Space for Example 4.7.2 

-, 
------------&103 . 

Figure 4.7.3. Image Space for Example 4o7o2 
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From the image space patterns the matrix !p can be written as 

-l -1 -l l l 

-1 -1 -1 l 2 

~ = l -1 -l -1 3 

-l 1 -1 -l 4 

-1 -l l -l 5 

a* a 
The matrix~ as obtained from ~ is shown '-in Equation 4. 7. 7. The num-

a* a 
bering of the rows of A corresponds to their location in A which is 

-0 -0 

not shown because of its size. 

-l -1 -l l l 

l -1 .;;.1 -1 3 

-l l -1 -l 4 from~ 

=l -l 1 -l 5 

a* - -----ad-m111'dCIIIICDCID.m--~--·iii. 
A = l -l -l l 6 (4.7.7) 
-0 

-l -1 ... 1 -1 a 

.. 1 l ... 1 l 11 

.. 1 -l l r= 16 a 
from~ 

l l -l -1 24 

l -l l -l 25 

-l l l -1 30 

Using the program of Appendix A, the resulting matrix •a* is as shown in 
-0 

Equation 4.7.s. It is significant that •a*·indicates that there are no 
-0 

PLD 9s involving any of the rows 1 1 3, 41 and 5 from !r,• This is a 
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0 0 0 l 

0 0 0 3 

0 0 0 4 

0 0 0 5 -------------
0 0 l 6 , 

a* 
(4.7.8) t = 0 0 0 8 

-0 

0 l 0 11 

l 0 o-· 16 

l 0 0 24 

0 l 0 25 

0 0 l 30 

direct result of the fact that the image space patterns ai and a2 are a 

Hamming distance of two from the patteills a3, a4, and a5 in Figure 4.7.3. 

The importance of this is that the submatrices ~ in ta are identically ----:,;- -y 
a' 

zero. As a result, the matrices D ., i = 1, 2, ••• , y, do not change 
-Yl. 

with either y or i. Th . Da e matrices . , 
-y1 i = 1, 2, 0 0 0 t y, are given by 

Da. = [Ra i Ra I Ra 0 0 0 Ra 0 0 0 Ra] 
I 

-y1 -1 I -.2 I -1 -,.i -1 

l l 0 0 l l 0 0 l l 0 0 

0 0 l l 0 O · l l .o 0 l l 

0 l 0 l 0 l 0 l 0 0 0 0 

a 
D .- 0 l 0 l 0 0 0 0 0 0 l 0 l 0 
41 

0 0 0 0 l 0 l 0 l 0 l 0 

0 0 0 0 0 0 0 0 0 0 0 0 
all 

Ra Ra other 
-1 -2 partitions 

for ally and i. This matrix reduces to 



l l a 0 l 0 

0 a l l 0 l 

a' 
D = a l 0 l a 0 
-Yi 

1 0 l 0 0 0 

0 0 0 0 l l 

0 a 0 0 0 0 

For this example y = 2 and the vector cl is computed by using 

and the matrices 
a' a' pattern space vectors 0(21 and £22 as input to the 

gram in Section D.2. 

or 

The result is 

c1 = (-1, -1, 1, -1, -1) 

c' = c-1, -1, -1. 1, 1> 
l 

and the unique constraints on c2 result in the inequalities 

l 0 

0 1 

[c2 l] l 1 · > 0 < 

a 0 

0 0 

0 0 
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the 

pro-

which must be satisfied by c2• Obviously there are several values of 

-1 
[c2 : l ] which satisfy this system of inequalities. The computer pro-

gram of Section D.3 could be used to find c2 , but it can be found by 

inspection in this simple case. One realizable choice is 



for which 

c2 = {-1, -1, -1, -1, l) 

'ct= ,~1, -1 , 1, 1, -1) 
2 

means that TLU m3 is repeated. ci means that TLU m1 is repeated. 
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The result of this example is that, for three first-layer TLU's in 

the nonredundant network, two redundant TLU's are sufficient to provide 

single error correction of both type +land type -1 failures. It is 

significant that the pattern space is incompletely specified; that is, 

of the 23 = 8 possible patterns only five are considered. This is, in a 

sense, redundancy. 

4.8 A Geometrical Description of the Synthesis Algorithm. The 

redundancy synthesis algorithm presented here has not been shown to con-

verge by a formal proof. However, examples have shown that it does con-

verge for the specific problems tried. In order to give the reader a 

better understanding of the mechanics of the algorithm, a geometrical 

discussion is given here. 

Assume that for some y the algorithm is at the point of selecting 

the best cio The previous vectors c1 , c 2, ••• , ci-l result in solutions 

r to the system 

(4 . 8.l) 

[- I ]D' 
ci-1 I µ -y(i-1) 

which means that .the desired error correction has not been achieved. 
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The solutions T to Equation 4.8.l can be visualized for the case of 

y = 3 in the space shown in Figure 4.8.l. The two hyperplanes shown are 

generated by the solutions T to 

(4.8.2) 

and 

(4.8.3) 

Notice that the restriction of I> 0 and T; 0 restrict the solutions to 

the positive orthant and away from the origi~. The solutions to Equa-

tions 4.8.2 and 4.8.3 are contained in the intersection of the two 

hyperplanes and in the portion of the space botmded by I~ 0 and TI o. 
The resulting convex polyhedral cone (a half-line) is spanned by the 

single extremal vector shown in the figure. 

Extremal--r-~~~--,.~~o::..__.. 
Vector, 

Convex Polyhedral 
Cone (half-line) 

Figure 4.8.l. Intersection of Hyperplanes in E~ 
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In general the extremal vectors for the cone thus formed are rows 

in the matrix 

-4ci-1> = • • . 

The desired result of the algorithm is to find a cy such that the hyper­

plane defined by the vector 

does not intersect the convex polyhedral cone described by the extremal 

vectors in A • However, for ci, i < y, such a hyperplane does not 
-y(y-1) 

exist. Therefore, how should ci be selected? 

The criterion proposed here for selecting ci• i < y, is based on 

Definition 4.6.l. This is an intuitive approach and its optimality 

remains to be shown. In order to understand this criterion, consider 

the hyperplane in T-space defined by the vector 

cc". I µJo•. 
1 I """"(1 

Since it is assumed that i < y, this hyperplane intersects the cone 

described by Equation 4.8.l. As a result, certain positive linear com-

binations of the extremal vectors in Ac· result in 
-Y 1-l) 

[c. µ ]D' . l = 0 
1 I """"(1 

(4.8.4) 

where 
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-T T -T ';;¢ A = A (. )oo 0 • Q) > 0 
-y l.-1 

Obviously the set of Q)' s satisfying 

[c. µ]D'. T -T 
0 w ;t o Ac· )w = • l. -Yi -"( 1-l 

w > 0 , 

can be spanned by a finite set of extremal vectors ook. Corresponding to 

each such extremal vector a half-space (not necessarily unique) in the 

- I space of [ci+l I µ] vectors is defined by the inequality 

Actually two half-spaces are defined by this inequality due to the 

> symbol <o The important point here is that, if the positive linear com-

binations AT "'tf of the vectors in AT(· l) which are solutions to 
-Y(i-l} -Y 1-

Equation 40804 are not to be solutions I' to 

- I ..:r - I ]D t AT -T 
[ci+l i µ]D~(i+l)A = [ci+l 1 µ --Y(i+l}~(i-l)w = O • 

-~hen the vector [ci+l ! µ] must be in the intersection of all the half­

spaces defined by the vectors 

D' AT w~ 
"""'Y(i+l) """'Y(i-1) k 

as in Inequality 408060 If i + l < y, then no such ci+l exists; how­

ever, the concept of the intersection of these half-spaces forms the 

basis for Definition 406.l. 

The matrix n. is the matrix whose rows are the extremal vectors w 
-'Yl. k 

for the set of solutions; to Equation 408.S. The system of inequalities 
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defines the empty or nonempty intersection of half-spaces which restricts 

the vectors [ci+l ! µ]. The fundamental idea behind Definition 4.6.l is 

that this intersection should be of as few as possible unique half-spaces. 

Thus, the best solution region is bounded by as few hyperplanes as pos-

sible and the choice of ci can effect this number. The result is that 

c. is chosen such that the matrix 
l. 

D' AT nT 
--y(i+l)--y(i-1) yi 

has as few as possible unique columns and such that c! is realizable. 
l. 

This definition of the best c. is best in the sense that the number of 
l. 

unique inequality constraints on ci+l is minimized. 

It should be pointed out that some other set of constraints and the 

resulting intersection of half-spaces might be better when the realiza­

bility of c! 1 is considered. The geometrical constraints imposed by 
l.+ 

realizability is still an open question. It appears that a better cri-

terion could be found by considering the location of the intersection of 

the half-spaces relative to the location of the c. 's corresponding to 
l. 

realizable (cl)'s. 

4.9 Conclusion. This chapter consists of a step-by-step develop-

ment of an algorithm for selecting the output vectors of redundant TLU's 

in the first layer of a two-layer network. In this algorithm an attempt 

has been made to utilize the fundamental mathematical ideas presented in 

Appendices A and B. As a result of this use of mathematics the criter-

ion for the selection of TLU's is based on an intuitive, geometrical 

view of the problem rather than a blind application of redundancy. The 

question of whether this approach actually pays off in terms of less 
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redundancy than for approaches such as simple triplication is approached 

by examples and is by no means rigorous. It is felt that, regardless of 

the practical value of this approach, the presentation of the task to be 

performed in introducing redundancy by the removal of PLD's is of value. 

It can be seen that the task is not as simple as in the problem of net-

work synthesis by removal of PLD's as presented by Hopcroft and Mattson 

(13). The fact that the redundant TLU's are allowed to fail is the 

source of the difficulty. 

Contained in this chapter is the development of the constraints on 

a TLU output vector c. given c . 1 , c . 2 , ••• , c1 • These constraints are 
1 1- 1-

the starting place for any iterative technique for selection of the ci's. 

Obviously, one approach is to try all combinations of a set of vectors 

c1 , c2 , ••• , cy, but the limitations here are obvious. Therefore, an 

iterative technique is needed, which implies that a criterion is needed 

for selection of ci given that it cannot satisfy the constraints genera­

ted by c1 , c2 , •••• ci_1 • The ,resulting criterion which is proposed is 

presented in Sections 4.5 and 4.6 and discussed in Section 4.8. 

The entire development of the algorithm is centered around correct-

ing only one type of single, first-layer error. The reason for this is 

to allow a simple presentation while leaving open the possibility of 

considering failures for which a failed TLU has its output held at any 

valueµ. Obviously, in order to compare the redundancy, thus induced, 

to conventional redundancy, the occurrence of both +land -1 failures 

must be considered. The theory is flexible to the extent that this ex-

tension is permitted without excessive complication. This extension of 

the theory is the topic for Section 4.7. 

After synthesizing some redundant networks, it appears that there 
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is a relationship between the minimality of the nonredundant network 

realization and the number of redundant TLU's. In other words, it 

appears that a minimal, nonredundant realization requires more redundant 

TLU's per TLU in the nonredundant network than for a subminimal realiza­

tion. The lack of theory concerning minimal realizations prevents a 

more precise statement of the results in this situation. The examples 

shown here indicate that this approach is little or no better than trip­

lication for minimal realizations as in Example 4.7.l. For subminimal 

realizations the situation is different. 

Example 4.7.2, for which the nonredundant realization is submini­

mal9 illustrates a different situation. In this example three signifi­

cant factors permit the use of less redundancy per nonredundant network 

TLU than in Example 4.7.l. First, the pattern space is incompletely 

specified; second, three first layer TLU's were used rather than the 

minimum of two; and third, the pattern space hyperplanes are located so 

that the image space patterns in opposite classifications are a Hamming 

distance of two away from each other. 

Regardless of the minimality of a nonredundant realizationi the 

theory presented here should help to determine the feasibility of intro­

ducing redundancy in TLU networks from a purely mathematical point of 

view. It is quite possible that some major simplifications can be made 

in the algorithm presented here. The algorithm, as it is, is quite 

cumbersome and only small examples cart be considered. Its value may fall 

into one of two catagories. It may be the starting point for a more 

efficient algorithm or it may indicate that a completely different 

approach is more feasible. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

Sol Summaz::x.o The problem considered here can be broken into two 

general areaso The first area involves a comparison of two types of 

decision-makers and the second area involves the development of an 

algorithm to make reliability improvements in a particular implementation 

of one of the decision-maker typeso 

The investigation of the first problem area is based on two binary, 

decision-making system models which possess the desired characteristics 

of each decison-maker type o One model represents a decision-maker in 

which unreliable, binary information is fed into a set of n inputs, each 

of which leads directly to at least one switching elemento These switch­

ing elements are modeled with binary channelso The interconnection of 

these input channels is then represented by another binary channelo The 

other decision-maker model is essentially the same except that the inputs 

do not lead to individual switching elements and the interconnection 

channel is assumed to be more complicatedo 

The two decision-maker types are compared on the basis of risk 

functionso These risk functions are evaluated as functions of the input 

switching element channel parameters, the number of input channels, the 

interconnection channel parameters, and the type of decision problemo 

This comparison indicates the validity of the problem of redundancy 

in threshold logic decision-makerso In particular, if threshold logic 

122 
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is used to implement one of the two decision-maker types, then the com­

parison indicates that networks of threshold logic units (TLU's) must be 

used rather than single TLU's. 

Beginning in Chapter III a development is presented for introducing 

redundancy in two-layer networks of TLU's. The basis of this develop­

ment is a mathematical model of the network. This model is a system of 

linear inequalities and takes into consideration the possibility of 

failures of TLU's in the first layer of the network. The development 

proceedes at first on the assumption that a failure consists of a TLU 

output being hung at one particular valueµ. Thus the redundancy must 

correct for single, "typeµ" errors. In Section 4.7 the theory is ex­

tended to consider both typeµ and-µ failures. 

The manner of selecting the redundant TLU's consists of finding a 

vector ci which satsifies a set of linear inequality constraints and 

which determines the design of the TLU. The constraints on this vector 

are found from an application of the theory of linear inequalities. It 

is necessary in most situations to add more than one redundant TLU; 

therefore, an iterative technique is needed for computing a set of y 

vectors c1 , c 29 ••• , cy using the constraints mentioned above. 

Chapter IV contains the development of the iterative technique and 

illustrates, by examples, the resulting redundancy synthesis algorithm. 

These examples also illustrate to a limited degree the feasibility and 

utility of the algorithm. Due to the time required in applying the 

algorithmg three computer programs were written to aid in the computa­

tions. These programs are presented in Appendices A and D. 

5.2 Conclusions. The most important conclusion which can be drawn 
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from the comparison appearing in Chapter II involves the particular task 

to which decision-makers with distributed redundancy are applicable. If 

the interconnection channel of such a decision-maker can be made reason­

ably reliable, then it is better (in terms of risk for decision problems 

like the full pattern set case) than a decision-maker with switching 

elements on every input. This implies that any decision-maker implemen­

tation, which possesses the characteristics attributed to distributed 

redundancy, is most applicable to decision problems in which all combin­

ations of input patterns are reasonably ' likely to occur. This condition 

becomes stronger as the number of input channels increases. 

On the other hand, the comparison shows that, if only a few of the 

possibl~ input patterns are likely to occur, then conventional networks 

of switching elements are better in terms of risk. For this particular 

problem type it is possible to use a single TLU (which possesses cer­

tain distributed redundancy characteristics) to perform the decision 

making; however, its interconnection of inputs must have unreasonably 

high reliability in order to justify its use. 

The type of decision problem, for which distributed redundancy is 

applicable, is such that a single TLU cannot perform all of the decision 

tasks which can arise. Therefore, networks of TLU 1 s must be considered 

and ways found for improving their reliability. 

The technique suggested here for improving reliability in two-layer 

TLU networks is centered on correction of errors occurrring in the first 

layer. There is no need to be concerned with compensating for second 

layer failures because the resulting reliability can be no greater than 

that of the device which compensates for second layer failures. 

Perhaps the most fundamental trait of the error-correction scheme 



125 

proposed here is that it adds redundancy in such a way that it insures 

the existence of an error-correcting second layer. Other approaches 

(such as Coates and Bargainer (5)) correct for errors through extending 

an existing second layer design by repeating some of the existing non-

redundant~ first layer TLU's . 

The development of the synthesis algorithm demonstrates the possi-

bility of iteratively selecting redundant TLU's. The vector c., charac-
1. 

terizing the ith redundant TLU, can be computed from a knowledge of the 

previous vectors c1 , c2 , ••• , ci-l and the inequality constraints which 

apply to c1• Thus, the inequality constraints on ci do not have to be 

computed as if it were the first redundant TLU added. As a result of 

this iterative approach, a more direct tie between the c. ' s exists and 
l. 

it is easier to visualize the effects of one on the other . 

The redundancy synthesis algorithm has some rather severe limita-

tions with the most significant being the size of the matrices of con-

straint vectors used to evaluate the ci's. The size of these matrices 

prevent consideration of examples very much larger than those shown in 

Chapter IV. 

The examples in Section 4.7 point out some interesting characteris-

tics although no definite conclusions can be made from them. In Example 

4.7.1 the nonredundant realization has a minimum number of first layer 

TLU ' s. The result is that correction of single, type +l or -1 errors 

can be corrected only by adding four redundant TLU's to the two nonre-

dundant first layer TLU's. In Example 4.7.2 not all of the pattern vec-

tors are allowed to occur and the nonredundant realization is subminimal . 

The desired error- correction is achieved by adding only two redundant 

TLU ' s to the three nonredundant, first layer TLU's . These results 



126 

indicate that a certain amount of over design in Example 4o7o2 has per-

mitted the use of less redundancy than is required in the minimal, non-

redundant realization of Example 4.7.1. 

In summary, the area of applicability for distributed redundancy is 

with decision problems for which it is likely that any set of the pos-

sible binary inputs to the decision-maker can occuro For decision prob-

lems that cause it to be unlikely that the decision-maker will receive 

any patterns except a very small portion of those possible, conventional 

networks of switching elements are besto If it is feasible to use TLU 

network decision-makers, it appears that a strictly mathematical redun-

dancy synthesis approach is most likely to pay off if a certain amount 

of over design is used in the nonredundant realizationo If the redun-

dancy synthesis algorithm developed here is used, the decision-maker 

must be small in terms of the number of patterns into the first layer 

and the number of first layer TLU 9 so 

5o3 Recommendations for Further Study. The following is a list of 

suggestions of topics for further study. 

lo A better model is needed for the interconnection of decision-

maker inputso For example, the parameters of the model should be func-

tions of the inputs to the decision- maker. 

2o It is very likely that a considerable amount of simplification 

can be done on the synthesis algorithm developed hereo The matrices D'. 
-y1 

contain many redundant columns in most examples and all of these columns 

may not be neededo 

3o Referring to Section 4.8, a need exists for finding a criterion 

for finding c. 9 s such that consideration is given to the relationship 
1 



between the realizable vectors ci and the intersection of half-spaces 

which bound the solution regions for the c, 0 so 
1 
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4. The effect of variations in TLU parameters could be considered 

in the selection criterion for the c. 0 so 
1 

5. A study is needed to determine the feasibility (in terms of 

increasing reliability) of multiple error correction for TLU networks in 

particular. 

6. The synthesis of a redundant TLU network could be approached 

from strictly a Hamming distance point of view. 

7. The synthesis of a redundant TLU network could be considered in 

the synthesis of the nonredundant network instead of "adding on" redun-

dant TLU 0so 
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APPENDIX A 

DEVELOPMENT OF THE APPLIED THEORY OF LINEAR INEQUALITIES 

A.l Introductiono The intent here is to develop a technique for 

computing a set S~ of vectors which can be used to form a system of 

linear inequality constraints that a vector i must satisfy in order for 

the system 

-TJ-T -T [~ e wl > 0 (A.1.1) 

to have a solution w1 when the system 

(A.1.2) 

does not necessarily have a solutiono The matrix A consists of an m x n 

array of real numbers where m > n. The resulting technique can also be 

used to test for the existence of a solution w to a system of the form 

-T -T Aw > 0 0 (A.1.3) 

A.2 Gordon°s Theorem. The basis for the synthesis algorithm in 

Chapter IV and the technique dev~loped here is a theorem due to Gordon 

(10) in 1873. This theorem is discussed and proved by Good (9). 

Theorem A.2.1. There exists a solution wto 

(A.2.1) 
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if and only if there exists no solution l' to 

T -T -T - - - -
A • = 0 9 • # 0 , • ! 0 o (Ao2o2) 

The interpretation of this theorem is that there can be no positive 

linear dependencies (PLD's) among the rows of A. The "removal" of these 

dependencies is the desired result of the technique presented here. 

Hopcroft and Mattson (13) have used the same technique in the synthesis 

of TLU networks. 

In order to remove the PLD's a column 'if is added to A such that, 

for every l' satisfying Equation A.2.2 1 i satisfies 

- -T > -T e. < 0 (A.2.3) 

The symbol~ means that either> or <.holds but not both. It is possible 

that there exists no 0 such that Inequality A.2.3 is satisfied. If this 

situation occurs, more than one column can be added to!; however, the 

selection of the columns is complicated. The redundancy synthesis 

algorithm of Chapter IV considers the case while the development here is 

restricted to the derivation of constraints on a single additional 

column. 

A significant point in the removal of PLDis is that the set 

. ' 
forms a convex polyhedral cone with the vector Oremoved. According to 

a theorem by Minkowski presented on page 30 of Goldman and Tucker (8) 

every member of a convex polyhedral cone can be expressed as a nonnega-

tive 9 linear combination of extremal vectors for the coneo Minkowski 9 s 

theorem is stated formally in Section Ao3o 
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Definition Ao2olo An extremal vector of a convex polyhedral cone 

-is a vector +k of the cone which cannot be written as a positive, linear 

combination of two other vectors in the cone unless the two vectors are 

constant multiples of Tk. 

In the situation at hand the cone, containing the elements of SA' 

can be spanned by the elements of a set s, = {'i°l t •29 o • °' +s} • that is, 

every 'i' in SA can be expressed as 

s - l • = r,;k .k • r,;k .!. 0 t 

k=l 

where +k is an element of s,~ sis the number of elements ins,, and r,;k 

is a real numbero Therefore the system of linear inequalities formed by 

the elements of s, is the system 

•1 
•2 

> ...T 0 
..,;;.T 

0 e < 0 0 

• 

Ts 

The reason for the restriction imposed by~ can be explained as 

- - --T followso ·· ·If there exist two +k 9 s 1 say +k and +k , such that e +k < 0 
l 2 l 

> 0 9 then there exists s9rne 'i°' = r,;k1 'ki + r,;k2 +k2 such that 

The computation of a sets, procedes by first finding a basis 

of solutions to 

AT -x• :r -T = 0 (A.2.4) 
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where d = m - rank (A). Since every solution·x can be expressed as a 

linear combination 

d 
X : l bi.Xi t ., xic~X t (A.2.5) 

i=l '' ' 

the restriction of x .!. Oplaces restrictions on the real numbers bi' 

i = 1 9 2 1 •••• d. The b's, b = (bl' b2, •••, bd), for which 

a a o t 

is satisfied, form a convex polyhedral cone as defined on page 19 of 

Goldman and Tucker (8). Using an extremal set 

of the vectors in this cone, the corresponding sets, can be determined. 

The integers is the number of extremal vectors in the seto 

A basis Sx can be found easily by straightforward techniques of 

matrix theory as shown on page 59 of Browne (2) or by a sweepout proce-

dure. The problem of finding an e~~:e~al.se': Sb is not quite as simple 

but it can be done using the theory of convex polyhedral cones. The 

fact that a knowledge of Sx and Sb permits the determination of S~ i.s 

shown in the following section. It should be pointed out that a set Sb 

ors, is not unique. 

A.3 Verification that Sx and Sb Lead to SA. As previously defined 

the set SA is 

T-T - - - - -A , = 0, , # 0, , .!. O} (A.3.l) 

and is the desired set of nonnegative, nontrivial solutions to Equation 
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Ao2o2 for which Inequality Ao2o3 must be satisfied in order for a column 

e1' to perform the desired tasko A more useful specification of the ele-

ments of SA is a specification in terms of a nonnegative, linear combin­

ation of extremal vectors for the coneo The intent in this section is 

to show that the specification of a set 

fi' I -l ~ 
s 

S' = = t b= r l;kbk ' z;k .!. 0 t bk&8r, ' A k=l 

X,&S 
1 X t i" ;i! o} 

results in SA being identical to SA; the?'efore the elements tk ins, are 

given by 

- -T 
'k = 2Q>k t k = 1 t 2 t •• 0 • s 0 

Let the matrix ! consist of the m, , d~dimensional rows v of X, then 

the set of b's in Equation A.3.2 which satisfy 

0 0 0 

form the .. set 

-T]-T xd b = 

* sv = {-b 

known as the polar of the set 

0 
0 
0 

V ·. m 

- -0:r} Vb> (A.3.4) 

A theorem by Minkowski as presented on page 30 of Goldman and Tucker (8) 
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~·, 
states that Sv is equal to the convex cone hull of the set Sbo The con~ 

vex cone hull of Sb is defined as 

Minkowskigs theorem is: 

Theorem Ao3olo Given a finite set Sv of vectors in the space of 

v 0 s there exists a finite set Sb of vectors in the space of b 0s such that 

* < Sv = Sbo 

This thoerem means that every member of the convex polyhedral cone 
.,. 

s; can be expressed as a nonnegative, linear combination of a finite set 

Sb of vectorso Thus every b, which satisfies 

can be expressed in terms of a nonnegative, linear combination as in 

Equation Ao3o5o As a result, the set of T9 s. 9 such that 

~=xi>'f >o 

is satisfied, can be specified as in SA in Equation Ao3o2o The follow­

ing theorem is intended to more clearly show that SA is identical to SA o 

Theorem Ao3o2o If the sets SA and Si,. are defined as in Equations 

Ao3ol and Ao3o2 respectively, then SA= SAo 

Proofg Consider the implication that if resA then <j)eSAo If <j)eSA' 
d 

then 1 = l b.x, 9 x.eS 9 for some set of b1.'s, i = 1 9 2, 000 1 do The 
, l 1 1 1 X 
1= 

constraint of SA that i.:, 0 implies that, every b, which satisfies 
s 

xr;T .!. o,, can be expressed as b = l z;kbk, z;k !. 0, bk eSb 9 by Theorem 
k=l 



A.3.1. Finally, since icsA implies i ¢ o, all the constraints on the 

elements of SA are satisfied. 
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Conside:r the implication that if cj,£SA then f£SA. This implication 

is proved by contradiction. Assume that there exists a 'i°£SA such that 
d 

,~sA. If cj,~SA then three cases arise; either i # l bi x1, , x. £S , for 
d i=l l. X 

any set of b, 9s, i = 19 2 ••••• d; i = .I bixi but T !. O; or T = o. 
l. .. i=l 

Each of these cases contradict some constraint on the elements of SA. 

The problem remaining is to demonstrate a valid technique for 

finding the elements of a set Sb. 

A.4 Determination of Si, from sx. The discussion here is based 

heavily on the work done by Goldman and Tucker (8) beginning on page 19. 

The theory presented there is fairly general, but the application of the 

theory here permits some very convenient shortcuts. 

It should be intuitively clear that an extremal set Sb is related 

* in some way to some sort of boundaries of the cone Sv. A major concep-

tual difficulty in the theory surrounding the extremal vectors lies in 

the fact that these boundaries are, in general, contained in multidi-

mensional linear subspaces and are not easily visualized. In order to 

develop the technique for finding a set Sb' some concepts must be intro­

duced. 

* Consider the convex cone Sv defined by Equation A.3.4 or by 

and the empty or nonempty subset SH of the subscripts of the vectors Vqi 

that is, SH= {q1 , q2 , ••• , qt} where t <mis arbitrary. Based on 

these definitions a "face" Sp of the convex cones* is the subset of s* H V V 
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whose members satisfy both 

(A.4.1) 

and 

(A.4.2) 

The set of b9s satisfying Inequality A.4.1 is an open set SLH while the 

set satisfying Equation A.4.2 is a linear subspace SrH• The face SrH is 

the intersection of the corresponding sets. The subspace Sr has a 
H 

dimension given by 

where dis the number of components of each vector vq and rH is the rank 

of the matrix composed of the vectors vq for q,sH. The fact that SrH 

has dimension dH means that the set of equations defined by Equation 

A.4.2 has a solution space of dimension dH. The face SrH is also said· 

to have dimension dH. 

Notice that the minimum value of dH for a given value of dis 

determined by the maximum value of rH which is the rank r of the matrix 

!• If rH = r then the minimum value of dH (call it ~in) is dmin=d-r. 

Corresponding to the minimum value of~ there is a unique face SrH as 

determined by the homogeneous system of equations 

where SH is empty since Inequality A.4.1 is not involved in defining the 

face. The reason that some nonempty set SH will not produce a face of 

the same dimension, when there are r·linearly independent vectors vq for 
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q~SH 9 is that every vector vq, q&SH' can be expressed as a linear combin­

ation of the vectors vq, q~SHo Therefore a vector bin Sr8 cannot satis­

fy Inequality Ao4ol if it satisfies Equation Ao4o2o The resulting fact 

that there exists only one face of dimension ~in is very important when 

coupled with the following theorem and corollary from Goldman and 

Tucker (S)o 

* Theorem Ao4olo S is either just its unique d. -face or the con~ v min 

vex hull of this dm~ -face and the (d . , + i)-dimensional faces~· .n min 

It is very significant that in the particular problem considered 

here the -rank of y_ is identically d which means that dmin = o o The ra.rik 

of y_ is d because y_ consists of d !. m linearly independent columns of 

dimension m from X which is a matrix of basis vectorso As a result of 

dmin being zero the '1inin-dimensional face Sr0 (0 means the set s8 is 

empty) is the zero dimensional space or vertex of the cone; furthermore 

the (d + _!)-dimensional 'faces are o{le dimensional half-lines calleg ,·· :"~ 

" * -. . "edges of Sv radiating from the vertex. A corollary to Theorem A.4.l 

Corollary Ao4olo * , -If the rank of Vis d then Sv is either just O or 

- * the convex hull of O and the edges of Svo 

The task of finding the elements of a set Sb is now reduced to com­

puting edges of s*o Goldman and Tucker (8) describe the procedure for 
V 

computing these edgeso The procedure is simple but quite lengthy since 

it involves performing a test on all possible combinations of rH = d - l 

linearly independent rows from them rows of v. There are (d~l) rows to 

be tested for linear independenceo Given a set of d - l linearly 
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independent rows from J,,,9 these rows are used to form a system of d - l 

equations ind unknownso Since these rows are linearly independent a 

one dimensional solution space exists and a basis vector bk can be com­

puted by conventional matrix theory techniqueso If the basis vector bk 

of the solution space satisfies Vb~~ o, then z;bk, z; > 0 9 is an edge 

and bk is an element of Sbo If bk satisfies V~ !_ o, then z;(-bk) is an 

edge and =bk is an element of Sbo If all possible combinations of d -

rows of V are selected and if the above operations are performed, this 

procedure will yield a set Sbo Obviously if Sb is empty, then the only 

solution -T -to Vb > 0 is b= o. 

l 

Ao5 Determination of S4> from Sx and Sb. Since SA and SA are equal, 

every l in SA can be expressed as a linear sum 

-as in s;.o Thus every 4> 

i= 

or 

where 

in SA is given by 

s 
-T l z;kfbk i bk£.Sb ' z;k 

k=l 

s 
; = l z;kq,k' z;k ~ O ' 

k=l 

> 0 9 

k = 1, 2, 0009 s 0 

A desired extremal set of the vectors in the convex polyhedral cone of 

SA is given by 



0 0 0 9 
-T} 

~s 
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0 

Ao6 The Inequality Constraints on 0o From Theorem Ao2ol (Gordon's 

Theorem) it can be seen that in order for 

-T]-T -T [!_ e w1 > o 

to have a solution wl when 

-T > rl'o A:lw 
- 0 

has no solution, e must satisfy 

-;l 
- f > 4i < 2 

• • • 

1 s 

-T 
0 

A.7 Computer Program Flow-Chart for Computing s, or for LS Testing. 

The following flow-chart is for a computer program which computes a set 

s, from the matrix! in Inequalities A.l.l~ A.l.2 9 or A.l.3. If it 

turns out thats, is empty for some!_, the patterns corresponding to the 

rows of A are LS; thus a test for linear separability of patterns is an 

alternate use of this program. 

In this chart the diamond-shaped ~ymbolsignifies a decision step. 

If the answer to the question is "yes," the logic flow is out the right 

or left side. If the answer is "no/' the logic flow is out the bottom 

of the symbolo All input or output statements ar~ explain~d in the 
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listing in Section A.a. 

A0 8 Computer Program Listing for Co!!J?uting S4> or for LS Testing. 

Based on the flow-chart in Figure A.7.l the following computer program 

in FORTRAN IV language can be used to compute the elements of S4> or for 

LS testing. COMMENT statements are inserted in the listing in locations 

which correspond roughly to the inp11t to ~locks in the flow-cha~. _'.fhe 

variables in the program (except in the COMMENT statements) do not 

necessarily correspond to the notation in.the pI"evious sections of this. 

Appendix. 

The running characteristics of this. program are highly dependent 

upon specific problems. For example, the running time cannot be accu-

rately predicted because some problems may permit certain phases to be 

skipped more frequently than in other problems. In general it can be 

said that the greatest limitation of this program is the size of the 

number ( 1 m k(A)) where mis the number of rows in A. The reason for m= =ran 
• c::li=: 

this limitation is that the basic iteration in the program must be per-
" 

formed this number of times. Also as m gets large the length of time 

required for each iteration increases. Each iteration involves sweeping 

out a submatrix of size [m-l-rank(A)]x[m-rank(A)] if the submatrix is of - -
maximum rank. If it is not of maximum rank, the particular iteration is 

shortened in time. 



START 

READ INPUT 
DATA 

SET INITIAL 
CONDITIONS FOR 
SWEEPOUT ROUTINE 

COMPUTE Y.. 
FROM !!l 

WRITE Y.. 

SET INITIAL 
CONDITIONS FOR 
EDGE EVALUATOR 

SELECT .· A SET 
OF ROWS TO 

DELETE FROM Y.. . 

FORM THE 
SUBMATRI X 

OF Y.. 

SWEE POUT THE 
SUB MATRIX 

OF 't 

COMPUTE THE 
TRIAL EDGE bk 

HAS THE EDGE 
· bk BEEN 

COl\v1PUTED BEFORE 

HAVE ALdm~·I) 
SUBMATRICES OF 1---___, 
Y.. BEEN SELECTE.D 

WRITE ACCORDIN 
TO FORMAT 215 

COMPUTE 
¢k= y_ b~FOR 

. ALL EDGES 

WRITE ALL 
cj,k 'S . 

STOP 

Figure A.7.1 0 Flow-Chart for Computing S~ and LS Testing 
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C 
C 
C 

C 
C 
C 
C 
C 

100. 

101 
C 

C 
1000 
1001 

1002 
1004 
1006 

1007 

1008 

1005 

1009 

1003 

1012 

1021 
1011 

1013 

1014 
1017 

1015 

1016 
JOlO 

THIS PROGRAM COMPUTES A SET OF EXTREMAL VECTORS FOR A CONVEX 
POLYHEDRAL CONE OR TESTS FOR LINEAR SEPARABILITY OF THE CORRES­
PONDING PATTERN VECTORS. 
DI MENS I ON A I 5, 14 l , I NDPA I 14 lt I DPA I 5 l, AA I 14 I 
DIMENSION Pl9,101,V114,101,PP(l01,Bll01,BASISl2S,101,Zll41 
LOGICAL BNCl15), BNR1151 
I.OGICAL ZERO, POS, POSl, AN 
,{EAD INPUT DATA 
THE FIRST CARD CONTAINS NUMBER OF ROWS AND COLUMNS IN MATRIX A 
ACCORDING TO FORMAT 1000 
THE NEXT M*N CARDS CONTAIN THE ELEMENTS OF MATRIX Ao ENTER ONE 

· ELEMENT PER CARD BY ROWS ACCORDING TO FORMAT lOlo 
READ 15,100) IROW,ICOL 
FORMAT12I51 
READ (5,1011 I IA(I,Jltl=l,IROWltJ=l,ICOLI 
FORMATIFlOoOl 
SET INITIAL CONDITIONS FOR SWEEPOUT ROUTINE 
M = I COL 
IDPAl = 0 
INDPAl = 0 
IROWl = IROW - 1 
L = 1 
JJ = 1 
COMPUTE MATRIX V FROM MATRIX A TRANSPOSE 
IT= 0 
IT= IT+ 1 
IF(AIL,JJ)l 1003,1002,1003 
IF(IT - IROW + L - ll 1004,1005,lOOS 
DO 1006 J = l,ICOL 
AAIJl = AIL,Jl 
DO 1007 Ll = L,IROWl 
DO 1007 J = 1,ItOL 
AILl,Jl = Alll + 1,Jl 
DO 1008 J = 1,ICOL 
AIIROW,Jl = AA(Jl 
GO TO 1001 
INDPAl = INDPAl + 1 
INDPAIINDPAll = JJ 
IFIJJ - ICOLl 1009,1010,1010 
JJ = JJ + 1 
GO TO 1000 
IDPAl = IDPAl + 1 
IDPAIIDPAll = JJ 
DO 1011 Ll = 1,IROW 
!Fill - LI 1012,1011,1012 
(ONST = Alll,JJ)/AIL,JJI 
vO 1021 J = JJ,ICOL 
AILl,Jl = AILl,J) ~ CONST*A<L,JI 
CONTINUE 
DIV= AIL,JJI 
DO 1013 J = JJ,lCOL 
AIL,Jl = AIL,J)/DIV 
IFI.L - IROWl 1014,lOlS,lOlS 
IFIJJ - ICOLl 1017,1010,1010 
JJ = JJ + 1 
L = L + 1 
GO TO 1000 
JJ = JJ + 1 
DO 1016 J = ~J,ICOL 
INDPAl = INDPAl + 1 
INDPAIINDPAll = J 
DO 1018 Il = 1,IDPAl 
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I = l DPA I I 11 
DO 1018 Jl = 1,INDPAl 
J = INDPA(Jll 

1018 V<l,Jll = -A(ll,Jl 
DO 102~ Jl = ·1,INDPAl 
J'= INDPA<Jll . 
DO 1022 Jll = l,INDPAl 
IF I Jl 1 - jl) 1019 tl020, 1019 

1020 VIJ,Jll) = leO 
GO TO 1022 

1019 V(J,Jlll = OeO 
1022 CONTINUE 
C WRITE MATRIX V 

WRITE .(6,66001 
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6600 FORMAT(lH ,49HTHE MATRIX V, WHOSE COLUMNS ARE BASIS VECTORS FOR/56 
lH THE SOLUTIONS TO AITRANSPOSEl*XITRAN~POSE) = O, FOLLOWS/) 

DO 1023 I= l,ICOL. 
1023 WRITE 16,2201 IV(I,Jl,J = 1,INDPAll 
220 ~ORMATilH ,912X,El2e511. 
C SET INITIAL CONDITIONS FOR EDGE EVALUATOR 

WRITE 16,6601) 1 

6601 FORMATl1Hl,23HTHE UNIQUE EDGES FOLLOW/I 
N = INDPAl 
ISET = 0 
IA= 0 
IB = 0 
Nl = N - 1 
N2 = N - 2 
MFAC = 1 
DO 1 Ml= 1,M 

1 MFAC =· MFAC*Ml 
·NlFAC = l 
DO 2 Nll = 1,1-U 

2 NlFAC = NlFAC*Nll 
MNFAC = 1 
'1N = M - Nl 
.:io 3 MNl = l,MN 

3 MNFAC = MNFAC*MNl 
IR= MFAC/INlfAC*MNFACI 
NOBNO = M 
NOBTK = N - l 
MMl = NOBNO + 1 
IA= 0 
DO 2000 I= 2,MMl 
BNClll = .FALSE. 

2000 BNRIIl = .FALSE. 
BNC(ll = .FALSE. 
BNR ( 1 l = •TRUE• 

C SELECT A SET OF ROWS TO DELETE FROM MATRIX V 
4 CONTINUE 
2001 ICT = 0 

IA = IA + l 
DO 2002 I~ 2,MMl 
BNRlll = BNC(lleAND.BNRl·l-11 
B_NC I I l = ( I •NOT• BNC I I l l •AND• BNR ( 1-11 I• OR• IBNC I I l •AND• ( •NOT• BNR I I-1 

ll 11 
IFIBNR<III GO TO 2002 

2003 TCT = !CT + 1 . 
<.iO TO 2004 

2002 CONTINUE 
GO TO 55 

2004 IFIICT - NOBTKI 2006,2006,2001 



2006 
·2013 

2009 

;·ooa 

2010 
C 
9 

11 

36 . 
10 
C 
C 

13 
14 

16 
17 
34 

19 

35 

18 

20 

22 

15 

25 

33 
24 

32 

26 

27 

57 
60 
23 
C 

IFII - MMll 2013,2001,2001 
IBNl =I+ 1 
DO 2008 IBN = IBNl,MMl 
IFIBNCIIBNII GO T0.2009 
GO TO 2008 
ICT = ICT + l 
IFIICT - NOBTKl 2008,2008,2001 
CONTINUE 
'F(ICT - NOBTKl 2001,2010,2001 
CONTINUE 
FORM THE SUBMATRIX OF MATRIX V 
L = 0 
DO 10 K = 1,M 
IFIBNCIK + lll GO TO 11· 
GO TO 10 
L = L + 1 
DO 36 J = 1,N 
PIL,JI = V(K,Jl 
CONTINUE 
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SWEEPOUT THE SUBMATRIX OF MATRIX V AND TEST TO SEE IF SUBMATRIX IS 
OF MAXIMUM RANK 
ISET"' ISET + 1 
II Dl = 0 
JJ = 1 
L = l 
IT= 0 
IT= IT+ 1 
.IFIPIL,JJ~I 15,16,15 
IFIIT - Nl + L - 11 17,18,18 
DO 34 J = 1,N 
Pp(Jl = PIL,Jl 
uO 19 Ll = L,N2 
DO 19 J = 1,N 
P(Ll,Jl =Pill+ 1,Jl 
DO 35 J = 1,N 
PINl,Jl = PPIJI 
GO TO 14 
IID1 = IID1 + 1 
IFIIID1 - 11 20,20,50 
IID = JJ 
IFIJJ - NI 22,23,23 
JJ = JJ + 1 
GO TO 13 
DO 24 Ll = 1 ,N 1 
Ifill - LI 25,24,25 
CONST= PILl,JJI/PIL,JJI 
DO 33 J = JJ,N 
n1Ll,Jl = PILl,JI - CONST*PIL,JI 
CONTINUE 
DIV= PIL,JJ) 
DO 32 J = JJ,N 
PIL,J,I = PIL,JI/DIV 
IFIJJ - NJ 26,23,23 
JJ = JJ + 1 
IFIJJ - NI 27,57,57 
L = L + 1 
GO TO 13 
IFIIID1 - 11 60,2i,27 
I ID = N 
IIDL = IID - 1 
COMPUTE THE TRIAL ~OGE BIKI 
IF(IIDLI 62,61,62 



62 DO 28 J = 1,IIDL 
28 BIJI = -PIJ,IIDI 
61 BIIIDI = loO . 

TFIIID - NI 29,31,31 
29 IIDU = IID + 1 

DO 30 J = IIDU,N 
30 BIJI = o.o 
31 IP= 1 
C TEST TO SEE 1F BIKI IS AN EDGE 

ZERO= oTRUEo 
DO 39 Ll = ltM 
F = OeO 
DO 38 J = 1,N 

38 F = F + VILl,Jl*BIJI 
IFIFI 40,39,41 

40 POS = .FALSE. 
GO TO 42 

41 POS = oTRUEo 
42 IF(IP - 11 44,44,43 
,.4 POSl = POS 

•p = 2 
ZERO= .;FALSE. 
GO TO 39 

43 AN= POSeANDoPOSl 
IFIANl GO TO 39 
GO TO 50 

39 CONTINUE 
46 IFIZEROI GO TO 50 

IFIPOSll GO TO 49 
48 DO 58 J = 1,N 
58 BIJI = -B(JI 
C TEST TO SEE IF BIKI HAS BEEN COMPUTED BEFORE 
49 IFIIBI 71,70,71 
71 DO 72 IBl = 1,IB 

DO 73 J = 1,N 
TEST= BASISIIBl,JI - BIJI 
IFITESTI 72,73,72 

73 CONTINUE 
GO TO 50 

72 CONTINUE 
70 I B = I B + 1 

DO 74 J = 1,N 
74 ~ASISIIB,JI ~ B(JI 
C ..JRITE BIKI 

WRITE (6,2101 IB,ISET 
210 FORMATl1H0~9HEDGE NO. ,I3,20H FROM SUBMATRIX NO. ,I5,8H FOLLOWS/I 

WRITE 16,211i (BASISIIB,Jl,J = 1,NI 
211 FORMATllH ,912X,El2o5ll 
C HAVE ALL. SUBMATRICES OF MATRIX V BEEN SELECTED 
50 IF(ISET - IRI 4,55,55 
55 WRITE 16,2141 IB . 
214 FORMATl1Hl,4HTHE ,I3~24H~XTREMAL VECTORS FOLLOW/I 
C HAVE ANY EDGES BEEN FOUND 

IF! !Bl 80,81,80 
C WRITE THAT PATTERNS ARE LINEARLY SEPARABLE 
81 WRITE 16,2151 
215 "FORMAT(lH ,35HTHE PATTERNS ARE LINEARLY SEPARABLE! 

GO TO 82 
l COMPUTE AND WRITE THE EXTREMAL VECTORS 
&O ~o 75 181 = 1,IB 

~O 76 I= l,M 
ZIIl=OoO 
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DO 76 J = l,N 
76 ZIil = ZIil + VII1Jl*BASISIIBl1Jl 

WRITE 16,2121 IB1 
212 FORMATl1H0,32HTHE EL~MENTS OF EXTREMAL VECTOR ,I317H FOLLOW/) 

WRITE 16,213) (ZIil, I= 1,MI 
213 FORMATllH ,912X,El2.51l 
75 CONTINUE 
82 STOP 

END 
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APPENDIX B 

THE EXTREMAL SET EXTENSION TECHNIQUE 

B.l Introduction. Consider an m ~ n matrix 

al 

a2 

A' = • • • 
am 

and an extremal set 

of vectors with m components 

for the set of all solutions f 9· to 

+'· > 0 ' - i' -, o . (B.l.l) 

The prime notation on A0 is not related to that on A! in Chapters III 
-1 

and IV. The problem here is to determine the effect of adding a row 

am+l to A0 resulting in 

11+8 



A = 0 

• 
0 

where am+l is equal to some row in A~_. Without loss of generality it 

can be assumed that am+l = am. The resulting effect is that an extrem­

al set 

of extremal vectors for the set of all solutions i to 

(B.1.2) 

consists of s vectors 

plus r vectors of the form 

The integer r is the number of nonzero components tkm in the mth posi­

tions of the vectors~. k = 1, 2, •••• s. 

B.2 The Argument for the Validity of the Technique. The approach 

to this problem is to show that every solution to Equation B.l.2 can be 

expressed in terms of a nonnegative, linear combination of the elements 



ins,. Rewriting Equation B.l.2 as 

-T = 0 t •• > o, i = 
l. -

it can be seen that since am= am+l it simplifies to 
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1 9 2, ••• , m+l 9 

(B.2.1) 

+ 0 0 0 l, 2, ••• , m+l. 
(B.2.2) 

Equation -B.2.2 is identical to Equation .. ,B.l.l except that different 

notation is used; therefore, every solution ra, 

+' l •1 

ct> 9 
2 4>2 

<i' ?·= • • • 
4> 9 
m <l>m +<l>m+l 

• 

can be expressed as 

4>1 <l>kl 

4>2 <l>ic2 
s 

Q = l ~ 
Q °k ::. 0 (B.2.3) • 0 t • • k=l • 

<l>m +<l>m+l <l>km 

From the last element in the vector given by Equation B.2.3 it can be 

seen that for every element 4>~ of a vector i' the solutions for 4>m and 

<l>m+l form a one parameter family; that is, ct>m and <l>m+l in 

s 
l 

k=l 
OI.' 4> t k km (B.2.4) 
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can be written as 

s 

'm l ak,km -1 
k=l 

= + s (B.2.5) 
4>m+l o. l 

·' 
where 

s 
O!,B!, }:· a'4>' ,v-a 

k=l k km 
(B.2.6) 

The reason for Inequality B.2.6 is that 4>m and 'm+l in Equation B.2.4 

must be nonnegative. 

By introducing the real numbers a1 ,; .~2 , ••• , Bs, a can be more con­

veniently written as 

o < B < a.' 4>' , 't k - k - K km 

thus permitting Equation B.2.5 to be written in the form 

(B.2.7) 

(B.2.8) 

0 

Since the desired result is a sets, of extremal vectors for the solu~ 

tions i to Equation B.2.1 9 Equ~ions B.2.3 and B.2.8 can be combined to 

. give 

4>1 
cf, t 
kl 0 

4>2 4>~2 0 

-T s 
g l a' • + Bk (B.2.9) 4> = = • • k • k=l ' . 0 4>m-l 4>k(m-l) 

4>m. 4>km -1 

4>m+l 0 l 

• 
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Notice that each vector term in the summation is actually an infinite 

number of vectors because Bk is arbitrary within the bounds expressed in 

Equation B.2.7. As a result, each of the families of vectors (terms in 

the summation) can be written as 

cl>kl 0 cl>kl cl>kl 

cl>k2 0 cl>k2 cl>k2 
a,U 0 + Bk 

0 = a" 0 + Ill (B.2.10) 0 0 • ak k 0 0 k ·-··-o 

cl>k(m-l) 0 cl>k(m-l) cl>k(m-1) 

cl>km -l cl>km 0 

0 l 0 cl>km 

where 

a" + a'" = 11 9 > 0 k k k - t 
ll!' > 0 

K - t 
Ill > Q 

'ic- (B.2.ll) 

This change is permitted because of the upper and lower bounds placed on 

~· Substituting Equation B.2.10 back into Equation B.2.9 the result is 

,;l cl>kl 

s cl>k2 s cl>k2 
-T 

l ~ 0 l a" (B.2.12) cl> = + 0 
0 0 

k=l 0 k=l k 0 

cl>k(m-l) cl>k(m-l) 

cl>km 0 

0 cl>km 

There are two points which need to be discussed before continuing. 

First 9 the relationship between~. ak, and akin Equation B.2.ll is not 

a restrictive constraint on their values when they are used in Equation 
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Bo2ol2o The reason for this is that it is sufficient .to know that there 

exists ~ nonnegative, linear combination of vectors which equals a 

given vector i. Second, if 'km= 0 9 then 

'kl .kl 

(j,k2 41k2 
0 = .. 
0 0 
0 0 

(j,k(m-l) (j,k(m-l) 

(j,km 0 

0 (j,km ; 

therefore, only one of the vectors for which~4>km = 0 needs to be includ­

ed in a set S(j, of extremal vectors in Equation Bo2ol2. If there are r 

vectors in S~ for which (j,km; 0 9 then there ares+ r vectors in S(j,. 

B.3 The Extension Technique. Based on the previous development it 

is possible to write any solution i to Equation B.l.2 as 

where 

and 

··a· > O 
k - • 

'i"k = ''il 9 •i2• 0009 •lcm-1)' o, •im>, 
·+! ;o 

im 

k = s+l~ ••• , s+r. 
(B.,3.2) 

In Equation Bo3o2 a vector (j,k is generated for each value of i for which 

(j, ! t- O. Therefore the extremal set · · 
im 



can be formed from the set S~ by the procedure indicated by Equations 

Ba3ol and B.3.2o 

* 
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B.4 The Effect of Repetition of the Rows of~· In Chapter IV it 

. . * 9 • • * is stated that 1f ~ has no PLD s then any matrix obtained from~ by 

repeating its rows contains no PLD's. · It is shown here without loss 

of generality that, if a matrix 

A = 

is obtained from 

A' = 

-,, a 
·'·" 2 

0 

• 0 

~m+l 

(B.4.l) , 

(B.4.2) 

by repeating the row am as am+l' then A ,contains no PLD's if A.a contains 

none. This is actually a trivial implication. 

Theorem Bo4.l. If the matrix A9 in Equation B.4.l has no PLD's 

between its rows, then the matrix A has 11.0 PLD 9 s where 



and where am+l = a o m 

A= E-~-j 

Proof: (By contradiction) Assume that the addition of the row 

am+l to A' implies that there exists a vector 

•• > o • r ~ o, 
1-

such that 

-T -T -T + a + + a + = o o mm m+l m+l 

Then 

+ 000 ,. > 0 • 
l. -
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since am= am+lo This implies that there exists a PLO among the rows of 

!_9 which contradicts the hypothesis. 



APPENDIX C 

EXTREMAL SET FOR AN mxl MATRIX 

Col Introductiono In the computer program of Section Do2 it is 

necessary to compute extremal vectors for the solutions to 

or to 

- T -T -[c• µ]D'.A .,. l)w = 0 , w 1 0, w > 0 , 
1 -Yi-y i-

i = 2, 3, 0009 y-1 

Each of the matrices 

and 

[c. 
1 

T 

µ]D' 
-yl 

µ]D'.A (" l) 9 i = 2, 3, aoo, y-1 , -yi-Y 1-

have only one row which makes this calculation easy. The purpose of 

this appendix is to present and verify the method for finding the PLD's 

or extremal vectors for a general l x m matrix. 

For the purposes here the l x m matrix 

is investigated by applying the theory developed in Appendix A in the 
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same manner that it is applied in the computer program of Appendix Ao 

This should also help in the understanding of the theory in Appendix A. 

The notation used there is used here also. 

C.2 Derivation of X. The matrix X whose columns are basis vectors 

for the solutions x to 

T -T -T 
A x = 0 

can be found by a sweepout routine. For the case here of only one row 

the routine is trivialo Nevertheless, if a1 is assumed to be nonzero, X 

is given by 

- a2 -~ 0 0 0 

_al al 

l 0 0 0 0 

X = 
0 l 0 0 0 

0 0 0 0 0 0 0 O 0 

0 0 Q O 0 

Recall that every·x, such that 

is satisfied9 can be written as 

where 

T -T A X 

-T 
X : Xb 

am 
al 

0 
(C.2.1) 

0 

0 0 0 

l mx(m-1) 0 

As in Appendix A the set Sb of extremal vectors for the solutions b to 
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Xb:J.' > o 

can now be found. 

C.3 Derivation of Sb" The matrix V whose rows vq' q = 1, 2, ••• , 

m0 are the rows of Xis used in the procedure for finding a set Sb as 

indicated in Appendix Ao These rows are 

and 

v. = (Oj 0 9 •••, O, 1, O, ••• , 0) , i = 2, •••, m, 
1 

where the element 1 is in the (i-l)st position of v., i = 2, ••• , m. 
l. 

Define the matrix V.k as the submatrix of V from which the rows v. 
-J J 

and vk are removed. If a vector b1 satisfies 

and 

-T -T 
vdk b1 = o 

then b1 is an element of Sb. If b 2 satisfies 

V b qo = Orr' 
-jk i 

and 

then =bi is an element of Sb. The intent here is to determine how many 
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unique elements are in Sb for a given vector vl. The problem is broken 

into two cases 9 one where v1 is a row of V *k -J 
and one where vl is not a 

row of v.k. 
-J 

Case I: Consider the selection of a set of rows from V not includ-

ing vl and one other row vi, 2 !, i !, m. The matrix V1 • is of the form 
- .... 1 

1 0 •• 0 0 0 0 0 •• 

0 1 0 0 0 0 0 0 ••• 

0 •• O O 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 

V • = 
-11 

0 0 0 0 0 1 0 0 ••• 

0 0 •• 0 0 0 1 0 0 0 

0 •• •• 0 • • • · o o a • • 0 0 •• 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

Obviously a basis of all solutions to 

is 

co, o, •••• o, 1, o, ••• , 0) 
ith 

column 

and the only way for b1 to satisfy 

is for 

t ~) > a 

0 

0 

0 0 0 

0 

0 

• 0. 

1 (m-2)x(m-l). 

(C.3.1) 

(C.3.2) 



160 

to be true. There are s-1 distinct vectors which can be generated and 

tested in this manner and each of these vectors corresponds to a con-

straint like that in Inequality C.3.2. Therefore for Case I the number 

of PLD's contributed is equal to the number of pairs (a1 , ai)• i = 2, 3, 

••oe m, of components which are of opposite sign plus the number of 

components ai, i = 2, 3, ooo, m, which are zero. It turns out that a 

zero component ai, i = 2 9 3, ••• , m, produces an extremal vector in Sb 

whether Case I or Case II is being considered; furthermore, a particular 

zero component produces the same basis vector for both cases. 

Case Ilg Consider the selection of a set of m - 2 rows from Vin-

eluding vl but not including two other rows vj and vk for 2 !. j !. m, 

2 !. k .!. m, and j ¢ k. The matrix ;k is of the form shown in Equation 

Co3o3o 

ooo -

l 0 '0 0. 0 0 0 

0 l 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 

V = 
-jk 

0 0 0 O 0 l 0 0 

0 0 0 0 0 0 0 l 

0 0 0 • 0 • 0 0 0 0 D 0 0 0 0 0 •• 

0 0 0 0 0 0 0 0 

0 0 0 •• 0 0 0 

O O 0 0 0 0 0 0 0 0 0 0 •• 0 O O 0 

0 0 0 0 0 0 0 0 

000 -

••• 

0 •• 

• 0 • 

• 0 • 

0 •• 

0 0 0 

0 0 0 

• • • 

•• 0 

0 0 0 

ak-1 ak ak+l ------- 0 •• 

al al al 

0 0 0 

0 0 0 

0 0 0 0 0 0 0 •• 

0 0 0 

0 0 0 

0 0 0 •• 0 0 0 O 

l 0 0 

0 0 l 

0 0 0 0 0 0 0 0 0 

0 0 0 

0 0 0 0 

O O 0 0 

• • 0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 D 0 0 O 

•• 0 0 

• 0 • 0 

0 0 0 0 0 0 

0 0 0 l 

(m-2)x(m-l) 
(C.3.3) 



From this equation it can be seen that if bis a solution to 

~ -::ll' v.kb = o -J 

then the jth and kth components of b must satis£y· 

• 
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All other components must be zero. Assume for the present that ai ~ o, 

then 

b, 
l. 

= 

ak --a,. 
l:. 

l 
I;' 

for every scalar i;, will permit writting a basis vector 

(O, 0 9 •••• 0 1 

Notice that 

ak 
- a,' o, ••• , o, l, o, •••• 0) • 

l. ' 

ith 
position 

kth 
position 

but that, in order for bk to satisfy 

v'Fff > a1'. ·. -k _ ... ' 

the inequality 

·( ak) - - > 0 a. - . 
. l. 

(C.3.4) 

(C.3.5) 

must be true. If this inequality is true then bk is an element of Sb. 
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If ak = O then bk is an element of Sb, but it has already been considered 

in Case Io 

If it is assumed that ak; 0 rather than a, 
1 

; o, then 

bk 
a• 

= (0, 0, ••• , o, l, 09 0009 o, - 1 o, •••• 0) (C.3.6) -, 
ak 

is an element of Sb if 

0 :~) > 0 

is true. This is the same constraint on the pair (ai• ak) as is imposed 

by Inequality C.3.5 1 however the basis vectors given by Equation C.3.4 

and C.3.6 are not the same if the magnitudes of ai and ak are not equalo 

Thus one selection of m - 2 rows may produce two different basis vectors; 

however the two vectors are related by a constant. Therefore, regardless 

of how the trial basis bk is computed, the pair (ai, ak) must satisfy 

Inequality C.3.5 in order for bk to be an element of Sb. Notice that, 

if ai = O for the bk given by Equation C.3.6, the resulting basis has 

already been considered in Case I. 

Therefore for Case II an element of 5b, which is not considered by 

Case I 9 is generated by every pair (ai, ak) 9 2 < i !. m, 2 !_k !. m, i; k, 

where ai and ak are of opposite sign. 

The net result of Case I and Case II is that a unique element of Sb 

is generated for every pair (ai, ak) where ai and ak are of opposite 

sign and for every element ai = o. This means that the total number of 

elements in Sb can be determined. It can be shown that no two elements 

in Sb produce the same element in S<f,. 

C.4 Uniqueness of the Elements in S<f, for an m x l Matrix. The 
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elements in Sb from Case I above produce elements of s, of the form 

0 

-T Xb.e. l jth position 4> R. = = 
l - l 

(C.4.l) 

0 

where ~ is given by Equation C.2.l and b by Equation C.3.l. For Case 
- ;.fl.1 

II the elements of S4> are given by 

0 
0 
0 

0 

0 

0 
0 

0 

ith position 

l kth position 

0 

2 ~ k ~ m, 

2 .!_ i ~ m, 

(C.4.2) 
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where b12 is given by Equation Co3o4o Since no two vectors b11 in Sb 

have their elements 11 111 in the same position, no two vectors rR-1 given 

by Equation Co 4o l are equalo Similarly, no two vectors <I> 12 are equal 
. ~T . 

because every b.e,2 in Sb corresponds to a different pair (ai, ak)o 

Notice that, since ak ¢ 0 in Equation Co4o2, l.e,1 ¢ <1> 12 0 Therefore 

elements i 1 in s<I> are unique and can be easily determinedo Correspond-

ing to every pair (a. , 
l. ak) of opposite sign, an element i.e. in S<I> results. 

This element will have all zero components except for a 11+111 component 

in positions i and k. Also, every zero element ai produces an element 

~JI. in S<I> having all zero components except for a "+l" in the ith 

positiono 



APPENDIX D 

COMPUTER PROGRfiMS TO SEARCH FOR THE REDUNDANT TLU 

Dol Introductiono Contained in this appendix are two computer 

programs in FORTRAN IV language which can be used to search for the 

vectors c1 , c2 , oooj cy• These programs are basically the same with the 

difference being in the criteria used to select a vector cio The pro-

gram presented in Section Do 2 searches for the vectors cl' c2, o o °' cy-1' 

while the one in Section Do3 searches for Cyo In Section D.4 the time 

and memory limitations of these programs are discussedo 

In the flow=charts for these programs the diamond shaped symbols 

signify decision stepso If the answer to the question asked or implied 

is "yes," the logic flow is out the right or left side of the symbol. 

If the answer is "no," the flow is out the bottomo The oval shaped 

symbols signify input or output steps and are explained by COMMENT or 

FORMAT statements in the listingso Contained within the ovals for data 

inputs are numbers which correspond to the "location in sequence" shown 

in Tables Do2.l and D.3.1 which describe the sequencing of the input 

data. In order to make the programs self~explanatory, COMMENT state-

ments are inserted in the listings in locations which correspond roughly 

to the inputs to blocks in the flow-chartso 

In both of these programs the test for realizability is performed 

according to the theory of Appendix A. In Section 4.2 the realizability 
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requirements on ci are discussed and notation is introduced which is 

used in the flow-charts and the COMMENT statements in the listings. It 

should be pointed out that the notation in the listing (except in COMMENT 

statements) does not necessarily correspond to the notation used in the 

remainder of the work presented here. 

D.2 The Program to Search for c~~y-l• The synthesis 

-algorithm in Chapter IV requires that each vector ci, i < y, be selected 

such that the number of unique constraints on ci+l is minimized. This 

section contains the flow=chart and listing for a digital computer pro-

gram which searches for such a vector. Definition 4.6.l and Definition 

4.6.2 provide the criteria for the selection of c., 2 < i < y, and c1 
1 -

for y > l respectively. 

Table D.2.1 describes the sequencing of the input data and gives 

the FORMAT. The flow-chart is in Figure D.2.l and the listing follows. 



Location 
in 

Se_g_uence 

l 

2 

3 

4 

TABLE D.2.1 

DESCRIPTION OF INPUT DATA FOR THE PROGRAM TO SEARCH FOR c1 9 c2,•00 11 Cy-l 

Number-of 
Cards 

1 

NOPAT 

IS 

IS 

Description of Contents 

Dimension of the pattern space, the number of 
pattern space vectors, the number of pattern 
space vectors with a +l network output, the 
number of columns for the matrices in the 
third and fourth READ statements, the value 
ofµ. 

The augmented pattern space vectors. (one 
vector per card). 

Case I: 

Case II: 

Case I: 

Case II: 

Searching for ct• The columns of 
the matrix D~1 _one column per card). 

Searching for ci, 2 ~ i < f• The 
columns of the matrix D9 .A c· l) -yi-y l.-
(one column per card). 

Searching for ct• The columns of 
the matrix D~2 _one column per card). 

Searching for c1. The columns of the 
m. atrix D¥(i+l)A~(i-l) (one column 
per card). 

Fortran Variables 

ID 9 NOPAT 11 NOPOS 9 

IS 11 XMU 

A(I 11 J) 

D(I,J) 

DD(I 11 J) 

Format 

415 9 FS.O 

43F3.0 

43F3.0 

43F3.0 

I-' a, 
--.l 
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START 

READ I, 2 

SET INITIAL 
CONDITIONS FOR 

C IS Nil SWEE POUT COMPUTE. Ye RE.ALIZABLE. RITE 
ACCORDING TO 
FORMAT 7 802 . 

SWEEPOUT THE FORM Y. 
MATRIX 'f.. OF 

INPUT PATTERNS 

SET INITIAL 
CONDITIONS FOR 
SEARCH ROUTINE 

COMPUTE THE 
READ 3, 4 

TRIAL EDGE bk 

STORE 
. SET INITIAL .CONSTRAINTS 

AND VECTOR CONDITIONS FOR c SEARCH ROUTINE 
SELECT A SET 

OF ROWS TO 
DELETE FROM Y.. 

SELECT A 
FORM THE TRIAL VECTOR 

SUBMATRIX OF c y_ 

SWEEPOUT THE 
SUBMATRIX OF WRITE 

y_ ACCORDING TO 
FORMAT 

7804, 7805 
582 581 

STOP 
COMPUTE NUMBER 

OF UNIQUE 
CONSTRAINTS 

COMPUTE TH!; 
TRIAL EDGE bk 



C 
C 

·C 

100 

100 

6000 
C 

C 
1000 
1001 

. 1002 
1004 
1006 

1007 

1008 

1005 

1009 

1003 

1012 

1021 
1011 

1013 

1014 
1017 

1015 

1016 
C 

THIS PROGRAM SEARCHES FOR A REDUNDANT TLU OUTPUT VECTOR 
ACCORDING TO DEFINITION 4.6.l OR 4•6•2• 
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DIMENSION A15,8l,AAl8l,AAAl5,8l,INDPAl81,IDPAl5l,tl9l,CLl9l,VC8,5l 
1 , P I 4 , 5 l , PP I 5 l , B ( 5 l , 0 I 12 0, 9 l , DD I 12 0 , 9 l , IP I 12 0 I , I N I 12 0 I , C N C 5 0 , 9 I , PA I 
1Rl91,CNLl50,9l ,CTRIVl91 

LOGICAL ZERO,POS,POS1,AN,BNCl9l,BNRC91,BC(91,BRC9l 
READ INPUT DATA FOR SEQUENCE LOCATIONS 1,2,3 
READ15,100l ID,NOPAT,NOPOS,IS,NORPT,XMU 
~oRMAT 15I5,F5.0l 
~EADC5,100l ID,NOPAT,NOPOS,IS,XMU 
FORMAT 14I5,F5,0l 
IDP 1 = ID + 1 
ICOL = NOPAT 
I ROW = I DP 1 
DO 6000 J = l,ICOL 
READ(5,10l)IAII,Jl,I = 1,IROW) 
SET INITIAL CONDITIONS FOR 0 SWEEPOUT OF MATRIX Y 
IDPAl =·o 
INDPAl .= 0 
IROWl = IROW - 1 
L = 1 
JJ = 1 
SWEEPOUT MATRIX Y 
IT= 0 
IT = IT + 1 
IFIACL,JJ).) 1003,1002,1003 
IFIIT - IROW + L - ll 1004,1-005,1005 
DO 1006 J = 1,ICOL 
AACJI = AIL,JI 
DO 1007 Ll = L,IROWl 
~O 1007 J = l,ICOL 
~ILl,JI ~ AILl + 1,J> 
DO 1008 J = 1,ICOL 
AIIROW,Jl = AACJ) 
GO TO 1001 
INDPAl = INDPAl + 1 
INDPAIINDPAll = JJ 
IF(JJ - !COLI 1009,1010,1010 
JJ = JJ + 1 
GO TO 1000 
IDPAl = IDPAl + 1 
IDPA!IDPAl) = JJ 
DO 1011 Ll = 1,1ROW 
IF(Ll - LI 1012,1011,i012 
CONST= AILl,JJ)/AIL,JJl 
DO 1021 J = JJ,ICOL 
A(Ll,Jl = AILl,Jl - CONST*AtL,JI 
r:ONTINUE 
JIV = AIL,JJI 
DO 1013 J = JJ,ICOL 
AIL,Jl = AIL,Jl/DIV 
IF(L - IROWI 1014,1015~1015 
IFCJJ - ICOLl 1017,1010,1010 
JJ = JJ + 1 
L = L + 1 
GO TO 1000 
JJ. = JJ + l . 
DO 1016 J = JJ,ICOL 
INDPAl = INDPAl + 1 
INDPAIINDPAll = J 
SET INITIAL CONDITIONS 
N = .INDPAl 



M = ICOL 
IATOT = 2 
DO 37 K = 2,M 

37 IATOT = 2*IATOT 
Nl = N - 1 
'12 = N - 2 
1•lFAC = 1 
DO 1 Ml= 1,M 

1 MFAC = MFAC*Ml 
NlFAC = l 
IF<Nll 300,300,!0l 

301 DO 2 Nll = l,Nl 
2 NlFAC = NlFAC*Nll 
300 MNFAC = 1 

MN= M - Nl 
DO 3 MN l :: 1 ,MN 

3 MNFAC = MNFAC*MNl 
IR= MFAC/(NlFAC*MNFACI 
NOBNO = M 
NOBTK = N - l 
MMl = NOBNO + l 
NPATPl = NOPAT + 1 
C<NPATPll = XMU 

C READ INPUT DATA FOR SEQUENCE LOCATIONS 3,4 
DO 6001 I = 1,IS 

6001 READ(5,10ll(D<I,Jl,J = 1,NPATPll 
DO 5 9 0 I = l , IS 

590 ~EAD15,1011 (DDII,Jl,J = 1,NPATPll 
101 rORMAT(43F3.0I 
C SET INITIAL CONDITIONS 

NPOSPl = NOPOS + 1 
DO 403 I= l,NOPOS 

403 CTRIV(II = +l.O 
DO 404 I = NPOSPl,NOPAT 

404 CTRIVIII =- -1.0 
. CTRIV(NPATPll = XMU 

WRITE (6,78001 
7800 FORMAT (5X,9HITERATION,10X,6HRESULT/l 

S = IS 
IF(S - 4ol 900,900,901 

900 FL= S 
GO TO 902 

901 FL= (S/2o0l**2 
~·02 DO 7000 I = 2, NPATPl 

".C(Il .FALSE. 
7000 JR( I l .FALSE. 

BC(ll = .FALSE. 
BR ( 1 I = •TRUE• 
ITT= 0 

C COMPUTE VECTOR C AND TEST TO SEE IF ALL HAVE BEEN TRIED 
7001 ITT= ITT+ l 

IFIITT - ll 7003,7003,304 
304 DO 7002 I = 2,NPATPl 

BRIii = BCCJ).AND.BRII - 11 
BC ( I l = ( I •NOT• AC ( I I I •AND• BR ( I -1 I I .OR• !BC I I I• AND. ( •NOT• BR I I -1 l l I 
JFIBR!Ill GO TO 7002 
GO TO 7003 

7002 CONTINUE 
GO TO 7004 

7003 DO 7005 I = 2,NPATPl 
IF(BC(I)I GO TO 7007 
GO TO 7006 
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7006 C<I - ll = ~1.0 
GO TO 7005 

7007 C(I - ll = 1.0 
7005 CONTINUE 

DO 402 I= l,NOPAT 
IF(C(ll - CTRIV<Ill 400,402,400 

402 CONTINUE 
GO TO 700i 

400 DO 6005 I= 1,NOPAT 
IF(C(Il + CTRIV(Ill 401,6005,401 

6005 CONTINUE 
GO TO 7001 

C COMPUTE THE NUMBER OF UNIQUE CONSTRAINTS ON THE VECTOR CII+ll FOR 
C THE GIVEN VALUE OF C(II AND SEE IF IT IS A DECREASE 
401 IIN = 0 

'(F = 0 
! IP = 0 
DO 7008 I = l,IS 
ALPHA= OoO 
DO 7009 J = 1,NPATPl 

7009 ALPHA= ALPHA+ CIJl*DII,J) 
IFIALPHAl 7010,7011,7012 

7010 IIN = IIN + 1 . 
INIIINl = I 
IFIIIPl 500,500,501 

501 DO 502 L = l,IIP 
IIIP = !Pill 
DO 503 J = l,NPATPl 

503 PAIR(Jl = DDIII.IP,Jl + DDlllJ) 
IF(KFl 505,505,504' 

504 DO 506 ICN = 1,KF 
DO 507 J = l,NPATPl 
'FICNIICN,Jl - PAIRIJll 4000,507,4000 

507 CONTINUE 
GO TO 502 

4000 IRTST = 0 
DO 4001 J = 1,NPATPl 
IF(PAIR(Jll 4002,4003,4002 

4003 IF(CNIICN,Jll 506,4001,506 
4002 RTEST = ICNIICN,JII/PAIR(J) 

IFIRTESTI 4004,506,4004 
4004 IFIIRTSTI 4005,4005,4006 
4005 IRTST = 1 

RTSTR = RTEST 
GO TO 4001 

4006 IFIRTSTR - RTESTl 506,4001,.506 
4001 CONTINUE 

GO TO 502 
506 CONTINUE 
505 KF = KF + l 

DO 508 J = l,NPATPl 
508 CNIKF,Jl = PAIRIJl 
502 CONTINUE 

GO TO 500 
7012 tIP = IIP + 1 

IPIIIPI = I 
IFIIINl 500,500,510 

510 DO 511 L = l,IIN 
IIIN = !Nill 
DO 512 J = l,NPATPl 

512 PAIR(JI = DDIIIIN,Jl + DD<I,JJ 
IFtKFI 514,514,513 
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513 DO 515 ICN = 1,KF 
DO 516 J = 1,NPATPl 
IF(CN(ICN,JJ - PAIRIJJJ 4010,516,4010 

516 CONTINUE . 
GO TO 511 

4010 'RTST = 0 
UO 4011 J = 1,NPATPl 
IF(PAIR(JIJ 4012,4013,4012 

4013 IF(CN(ICN,JII 515,4011;515 
4012 RTEST = ICNIICN,Jll/PAIRIJ) 

IFIRTEST) 4014,515,4014 
4014 IFIIRTST> 4015,4015,4016 
4015 IRTST = l 

RTSTR = RTEST 
GO TO 4011 

4016 IF(RTSTR - RTESTI 515,4011,515 
4011 CONT I NUE 

GO TO 511 
515 CONTINUE 
514 KF = KF + 1 

DO 517 J = l,NPATPl 
517 CN(KF~J> = PAIR(JI 
511 CONT I NUE 

GO TO 500 
7011 IF(KF> 521,521,520 
520 DO 522 ICN = 1,KF 

DO 523 J = 1,NPATPl 
TF(CN(ICN,JJ - DDII,JJ) 4020,523,4020 

523 (ONTINUE 
GO TO 500 

4020 IRTST = 0 
DO 4021 J = l,NPATPl 
IFIDD<I,Jll 4022,4023,4022 

4023 IFICN(ICN,Jll 522,4021,522 
4022 RTEST = (CN(ICN,Jll/DD(I,J) 

IF(RTESTI 4024,522,4024 
4024 IF(IRTSTI 4025,4025,4026 
4025 I RTST = 1 

RTSTR = RTEST 
GO TO 4021 

4026 IF(RTSTR - RTESTI 522,4021,522 
4021 CONTINUE 

GO TO 500 
!' 22 CONT I NUE 
521 ~F = KF ~ l 

JO 524 J = 1,NPATPl 
524 CN(KF,JI = DD<I,JI 
500 XKF = KF 

IF(XKF - FLI 7008,7030,7030 
7008 CONTINUE 
C NEGATE CERTAIN ROWS AND COLUMNS OF SWEPTOUT FORM OF MATRIX Y AND 
C FORM MATRIX V 

DO 2000 1·= 2,MMl 
BNC(ll = .FALSE. 

2000 BNRII> = .FALSE. 
BNC(ll = .FALSE. 
BNR I 11 = •TRUE• 
GO TO 7031 

7030 CONTINUE 
GO TO 7001 

7031 DO 7014 I = 1,NOPOS 
DO 70i4 J = l,IDPl 
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7014 

7015 

7017 
7018 
7016 
1010 

1018 

1020 

1019 
1022 
C 

302 

303 
C 
C 
4 
2001 

2003 

2002 

2004 
2006 
2013 . 

2009 

2008 

2010 
C 
9 

11 

36 
10 

-AAIJ,ll = Clll*AIJ,11 
JO 7015 I = NPOSPl,NOPAT 
DO 7015 J = lrIDPl 
AAAIJ,Il = -Clll*AIJ,I) 
DO 7016 II= 1,IDPAl 
I = I DPA I I I l 
IFIAAA(II,Ill 7017,7016,7016 
DO 7018 J = 1,NOPAT 
AAAllI,JI = -AAAIII,JI 
CONTINUE 
DO 1018 11 = 1, I DP Al 
I = IDPA(Ill 
DO 1018 Jl = 1,INDPAl 
J = INDPA(Jl I 
VII,Jll = -AAA(Il,Jl 
DO i022 Jl = 1,INDPAl 
J = INDPA(Jll 
~O 1022 Jll = 1,INDPAl 
[F(Jll - Jll 1019,1020,1019 
V<J,Jlll = 1.0 . 
GO TO 1022 
VIJ,Jlll = o.o 
CONTINUE 
COMPUTE TRIAL EDG~ FOR TRIVIAL M*l MATRIX V 
IF(Nll 302,302,303 
ISET = l 
Bill = l.O 
GO TO 31. 
ISET = 0 
BEGIN TEST TO SEE IF THERE EXISTS AN EbGE 
SELECT A SET OF ROWS TO DELETE FROM MATRIX V 
CONTINUE. 
ICT = 0 
DO 2002 I= 2,MMl 
BNRIIl = BNCIII.AND.BNRII-11 
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BNCIIl = ((.NOT~BNCIIll•AND.BN~<I-lll•OR•<BNC(I)eANOel~NOTeBNR(l-1 
111 I 

IF<BNR<III GO TO 2002 
ICT =JCT+ 1 
r;o TO 2004 
~ONTINUE 
GO TO 7019 
IF<ICT - NOBTKl 2006,2006,2001 
IF<I - MMll 2013,2001,2001 
I BN 1 = I . + 1 
DO 2008 (BN = IBNl,MMl 
IF(BNC<IBNll.GO TO 2009 
GO TO 2008 
ICT = ICT + 1 

. IFIICT - NOBTK) 2008,2008,2001 
CONTINUE. 
IFIICT - NOBTKl 2001,2010,2001 
CONTINUE 
FORM THE SUBMATRIX OF MATRIX V 
L = 0 
DO 10 K = 1,M 
"'F(BNC!K + 111 GO TO 11· 
GO TO 10 
L = L + 1 
DO 36 J = 1,N 
PIL~JI = V(K,Jl 
CONTINUE 



C SWEEPOUT THE SUBMATRIX OF MATRIX V.AND TESi TO SEE IF IT JS OF 
C MAXIMUM RANK 

ISET = !SET + 1 
1101 = 0 
JJ::: 1 
L = 1 

13 IT = 0 
14 IT= IT+ l 

IFCPCL,JJII 15,16,15 
16 IFCIT - Nl + L - 11 17,18,18 
17 DO 34 J = 1,N 
34 PPCJI = PCL,JI 

no 19 Ll = L,N2 
iJO 19 J = l,N 

19 PILl,Jl =Pill+ 1,JI 
DO 35 J = hN · 

35 PINl,jl = PP(J) 
GO TO 14 

18 IIDl = IIDl ~ l 
IFlllDl - 11 20,20,50 

20 IID = JJ 
IFCJJ - NI 22,23,23 

22 JJ = JJ + l 
GO TO 13 

15 DO 24 Ll = l,Nl 
Ifill - LI 25,24,25 

25 CONST= P(Ll,JJI/Pl(,JJl 
DO 33 J = JJ,N 

23 Plll,JI = P(Ll,Jl - CONST*PCL,JI 
24 l".ONTINUE 

vlV = P<L,JJI 
DO 32 J = JJ,N 

32 P(L,JI = PlltJI/DIV 
IF(JJ - NI 26,23,23 

26 JJ = JJ + 1 
IF(JJ - NI 27,57,57 

27 L = L + l 
GO TO 13 

57 IF(IIDl - 11 60,27,27 
60 I IO = N 
23 IIDL = IID - l 
C COMPUTE THE TRIA~ EDGE B(KI 

IFIIIDLI 62,61,62 
62 DO 28 .J = 1,IIDL 
28 B(JI = -p(J,IIDI 
61 B(IIDI = 1.0 

IFIIID - NI 29,31,31 
29 IIDU = 110 + 1 

DO 30 J = IIDU,N 
30 B(JI = OeO 
C TEST TO SEE IF B(KI IS AN EDGE 
31 TPCNT = 1 

LERO= eTRUEe 
DO 39 Ll = l ,M 
F = OeO 
DO 38 J = 1,N 

38 F = F + V(Ll,Jl*B(JI 
!FIFI 40,39,41 

40 POS = .FALSE. 
GO TO 42 

41 . POS = eTRUE. 
42 IF(IPCNT - 11 44,44,43 
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44 

43 

39 
46 
C 

7802 

(. 

50 
C 
C 
7019 

7020 

570 

7803 
C 

C 
C 
7004 
7804 

7805 

582 

580 
581 

POSl = POS 
IPCNT = 2 
ZERO= eFALSEe 
GO TO 39 
AN= POSeANDePOSl 
IFIANI GO TO 39 
GO TO 50 
CONTINUE 
IFIZEROl GO TO 50 
WRITE THAT VECTOR C IS NOT REALIZABLE 
WRITE 16,78021 ITT,KF 

175 

FORMAT (7X,13,14X,I3,50H CONSTRAINTS IS A DECREASE BUT C IS NOT RE 
lALI ZABLE l 

GO TO 7001 
IIAVE ALL SUBMATRICES OF MATRIX V BEEN SELECTED 
IF(ISET - IRl 4;7019,7019 
STORE THE SMALLER NUMBER 6~ CONSTRAINTS, THE VECTOR C, AND THE 
COEFFICIENTS OF THE CONSTRAINTS 
FL = XK.F 
KFL = KF 
DO 7020 I= l,NPATPl 
CLIIl = Clll 
DO 570 I= l,KF 
DO 570 J = 1,NPATPl 
CNLII,Jl = CNII,Jl 
WRITE (6,78031 ITT,KF 
FORMAT 17X,I3,14X,I3,32H CONSTRAINTS WITH A REALIZABLE Cl 
IS THE NUMBER OF CONSTRAINTS ZERO 
IFIKFl 7001,7004,7001 . . 
WRITE THE MINIMUM NUMBER OF CONSTRAINTS, THE VECTOR C, AND THE 
MINIMAL SET OF CONSTRAINT COEFFICIENTS 
WRITE 16,78041 KFL 

. FO~MATl1H0,37HTHE SMALLEST NUMBER OF CONSTRAINTS IS,I5,20H AND THE 
1 VECTOR C IS/l 

WRITE 16,78051 ICLIIl,I = 1,NPATPll 
FORMAT 120(2X,F4elll 
"IRITE16,582l 
f0RMATl1Hl,43HTHE FOLLOWING ROWS CONTAIN THE COEFFICIENTS/52H OFT 

lHE INEQUALITY CONSTRAINTS FOR .THE NEXT VECTOR C//1 
DO 580 I: l,KFL 
WRITEl6,5BlllCNLII,Jl,J = ltNPATPl) 
FORMATllH ,912X,El2e5ll. 
STOP 
END 
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D.3 The Program to Search for co . ¥ 
The synthesis algorithm in 

Chapter IV requires .that, for an assumed value of y, a vector cy corres­

ponding to a realizable c' be found such that y 

u]D" . ~y 
> 
< 0 

is satisfied. The appendix contains the flow-chart and listing for a 

digital computer program to perform a search for a cy satisfying the 

above requirement or to determine the nonexistence of orte. Table D.3.1 

describes the input data and its sequencing. The flow-chart is in 

Figure D.3.l and the listing follows. 



Locat1on -- Number of 
in 

Se_quence 

l 

2 

3 

Cards 

l 

NOPAT 

IS 

TABLE Do3ol 

DESCRIPTION OF INPUT DATA FOR THE PROGRAM TO SEARCH FOR Cy 

Description of Contents 

Dimension of the pattern space, the number of 
pattern space vectors, the number of pattern 
space vectors with a +l network output, the 
number of columns for the matrix in the third 
READ statement, the value of µo 

The augmented pattern space vectorso (one 
vector per ca..rd). 

The columns of the matrix D" (one column per 
card). -yy 

Fortran Variables 

ID, NOPAT, NOPOS 
IS, XMU 

A(I,J) 

D(I,J) 

Format 

41Si rs.a 

43F3.0 

43F3.0 

..... 
-.,l 
-.,l 



START 

READ I, 2 

SET INITIAL 
CONDITIONS FOR 

SWEE POUT 

SWEEPOUT THE 
MATRIX Y OF 

INPUT PATTERNS 

SET INITIAL 
CONDITIONS FOR 

SEARCH ROUTINE 

READ 3 

SET INITIAL 
CONDITIONS FOR 
SEARCH ROUTINE 

SELECT A 
TRIAL VECTOR c 

COMPUTE Ye 

FORM Y 

SELECT A SET OF 
ROWS TO. DELETE 

FROM y .· 

FORM THE 
SUBMATRIX OF 

y_ 

SWEE POUT THE 
SUBMATRIX OF 

Y.. ' 

COMPUTE THE 
TRIAL EDGE bk 

HAVE ALL 
SUBMATRICES 
OF "i. BEEN 
SELECTED. 

WRITE C 

NO C EX-ISTS 
WRITE ACCORDING 
JO FORMATI 600 

STOP 

Figure Do3olo Flow-Chart for the Program to Search for cy 
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C 
C 

C 

100 

6000· 
C 

1000 
C 
1001 

1002 
1004 
1006 

1007 

1008 

1005 

1009 

1003 

1012 

1021 
1011 

1013 

1014 
1017 

1015 

1016 
C 

THIS PROGRAM SEARCHES FOR A REDUNDANT TLU OUTPUT VECTOR FOR 
WHICH THE SYNTHESIS ALGORITHM TERMINATES. 
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DIMENSION A14,81,AAl81,AAAl4,81,INDPAl8l,IDPAl4ltCl9)~CL19l,Vl8,4l 
l,P13,4l,PPl41,Bl41,0162,91,DDl62t91,IPl62l,INl62ltCNl10,9l,PAIRI~) 
l,CNL110,91,CTRIVl91 ' 

LOGICAL ZERO,POS,POS1,AN,BNCl9!,BNRl9J,BCl91,BRl91 
~EAD INPUT DATA FOR SEQUENCE LOCATIONS 1,2,3 . 
~EADl5,l-OO! ID,NOPAT,NOPOS,IS,NORPT,XMU 
FORMAT 15I5;F5.0I 
I DP,l = ID + 1 . 
!COL"' NOPAT 

. IROW = IDPl 
DO 6000 J = l,ICOL 
READ15,10lllAII,Jl,I = l,IROWJ 
SET INITIAL CONDITIONS FOR SWEEPOUT OF MATRIX Y 
IDPAl = 0 
INDPAl = 0 
IROWl = IROW - 1 
L = 1 
JJ = l 
IT= 0 
SWEEPOUT MATRIX Y 
IT== IT+ 1 
'FIACL,JJll 1003,1002,1003 
iFIIT - IROW + L - 11 1004,1005,1005 
DO 1006 J = l,ICOL 
AAIJI = AIL,JI 
DO 1007 Ll = L,IROWl 
DO 1007 J = l,ICOL 
AILl,Jl = AILl + 1,Jl 
DO 1008 J = l,ICOL 
AIIROW,Jl = AAIJ) 
GO TO 1001 
INDPAl = INDPAl + 1 
INDPAIINDPAll = JJ 
IFIJJ - JCOLI 1009,1010,1010 
JJ = JJ + l 
GO TO 1000 
IDPAl = IDPAl + 1 
IDPA( IDPAl I = JJ 
DO 1011 Ll = 1,IROW 
IFILl - LI 1012,1011,1012 
CONST= ACLl,JJJ/ACL,JJI 
DO 1021 J = JJ,ICOL 
A(Ll,JI = ACLl,JI - CONST*AIL,Jl 
CONTINUE 
vIV = ACL,JJI 
DO 1013 J = JJ,ICOL 
ACL,Jl = ACL,Jl/DIV 
IF(L - IROWI 1014,1015,1015 
IF(JJ - ICOLl 1017,1010,1010 
JJ = JJ + 1 
L = L + 1 
GO TO 1000 
JJ = JJ + 1 
DO 1016 J = JJ,ICOL 
INDPAl = INDPAl + 1 
INDPAIINDPAll = J 
SET INITIAL CONDITIONS 
N = INDPAl 
M = ICOL 
IATOT = 2 



DO 37 K = 2,M 
37 IATOT = 2*IATOT 

Nl = N - 1 
N2 = N - 2 
MFAC = 1 
DO 1 Ml= 1,M 

1 ~FAC = MFAC*Ml 
,HFAC = 1. 
IFINll 300,300,301 

301 DO 2 Nll = 1,Nl 
2 NlFAC = NlFAC*Nll 
300 MNFAC = 1 

MN = M - Nl . 
DO 3 MN 1 = 1 ,MN 

3 MNFAC = MNFAC*MNl 
IR= MFAC/INlFAC*MNFACl 
NOBNO = M 
NOBTK = N - l 
MMl = NOBNO +. 1 
NPATPl = NOPAT + 1 
CCNPATPll = XMU 

C READ INPUT DATA FOR SEQUENCE LOCATION 3 
DO 6001 I= ltIS 

6001 ~EAD15,l0l)ID(I,Jl,J = 1,NPATPll 
00 590 I= 1,IS 

590 READ15,10ll IDDII,Jl,J = 1,NPATPll 
101 FORMAT(43F3e0l 
C SET INITIAL CONDITIONS 

NPOSPl = NOPOS + 1 
DO 403 I = 1,NOPOS:. 

403 CTRIVIIl = +l.o 
DO 404 I = NPOSPl,NOPAT 

404 CTRIVIII = -1•0 
CTRIVINPATPll = XMU 
WRITE 16,78001 

7800 FORMAT 15X,9HITERATION,10X,6HRESULT/l 
S = IS 
IFIS - 4el 900,900,901 

900 FL= S 
GO TO 902 

901 FL= IS/2e0l**2 
902 DO 7000 I= 2,NPATPl 

BC(ll = .FALSE. 
7000 BRIil = eFALSE. 

BC(ll = .FALSE. 
F\R(ll = .TRUE. 
I TT = 0 

C COMPUTE VECTOR C AND TEST TO SEE IF ALL HAVE BEEN TRIED 
7001 ITT= ITT+ 1 

IF(ITT - ll 7003,7003,304 
304 DO 7002 I= 2,NPATPl . 

BRIil = BCllleAND.BRII - ll 
BC I I I= C i •NOT• BC ( I l l • ANO.BR I 1-1 l I eOR. CBC I I l eAND• ( eNOT .BR I 1-U l I 
IF(BRIIII GO TO 7002 
GO TO 7003 

7002 CONTINUE 
GO TO 7004 

7003 DO 7005 I= 2,NPATPl 
IFIBC(lll GO TO 7007 
GO TO 7006 

7006 CCI - 11 = -1.0 
GO TO 7005 
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7007 
7005 

402 

400 

6005 

C 
401 

7009 

7010 

7011 

7012 
7013 

7006 
C 
C 

2000 

7030 

7031 

7014 

7015 

7017 
7016 
7016 
1010 

1016 

1020 

1019 
1022 

CII - 11 = leO 
CONTINUE 
DO 402 I = 1,NOPAT 
IFCC!Il - CTRIVIIII 400,402,400 
CONTINUE 
GO TO 7001 
DO 6005 I= 1,NOPAT 
IFICIII + CTRIVIIll 401,6005,401 
".ONTINUE 
GO TO 7001 
TEST TO SEE IF THE VECTOR C SATISFIES THE INEQUALITY 
IN= 0 
IZ = 0 
IP= 0 
DO 7006 I= 1,IS 
ALPHA= O,.O 
DO 7009 J = 1,NPATPl 
ALPHA= ALPHA+ CIJl*DII,J) 
IFIALPHAI 7010,7030,7012 
IN = IN +l 
GO TO 7013 
IZ :;: IZ + 1 
GO TO 7013 
IP = iP + 1 
KF = IP*IN + IZ 
IFIKFI 7006,7006,7030 · 
CONTINUE 
NEGATE CERTAIN ROWS AND COLUMNS OF SWEPTOUT FORM OF MATRIX Y AND 
FORM MATRIX V 
DO 2000 I= 2,MMl 
RNCIII = eFALSEe 
JNRIII = .FALSE. 
BNC(ll = .FALSE. 
BNR 11 l = • TRUE. 
GO TO 7031 
CONTINUE 
GO TO 7001 
DO 7014 I= l,NOPOS 
DO 7014 J = l,IDPl 
AAA I J, I l = CI I l *A I J, I l 
DO 7015 I= NPOSPl,NOPAT 
DO 7015 J = 1,IDPl 
AAA I J, I l = -CI I l *A I J, I l 
DO 7016 II = 1,IDPAl 
I= IDPA(III 
IFCAAA(II,Ill 7017,7016,7016 
DO 7016 J = 1,NOPAT 
".AAIII,Jl = -AAAIII,Jl 
CONTINUE 
DO 1016 Il = 1,IDPAl 
I = I DPA I I 11 
DO 1016 Jl = 1,INDPAl 
J = INDPAIJll 
VII,Jll = -AAA(Il,Jl 
DO 1022 Jl = 1,INDPAl 
J = INDPA(Jl l 
DO 1022 Jll = 1,INDPAl 
IFIJll - Jll 1019,1020,1019 
VCJ,Jlll = 1.0 
GO TO 1022 
VIJ,Jlll = OeO 
CONTINUE 
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C COMPUTE TRIAL EDGE FOR TRIVIAL M*l MATRIX V 
IF(Nll 302,302,303 

302 ISET = 1 
ij(l) = 1.0 
uO TO 31 

303 ISET = 0 
C BEGIN TEST TO SEE IF THERE EX[STS AN EDGE 
C SELECT A· SET OF. ROWS TO DELETE FROM MA.TR IX V 
4 CONTINUE 
2001 ICT = 0 

DO 2002 I = 2,MMl 
BNR(Il = BNCIIleANO.BNRII-11 
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BNCIII = ·lleNOTeBNCIIlleANOeBNRII-llleORelBNClll•ANOeleNOTeBNRll-1 
11 l l 

IFIBNR(lll GO TO 2002 
2003 ICT = ICT + 1 

GO TO 2004 
2002 CONTINUE 

GO TO 7019 
~004 IF(ICT - NOBTKI 2006,2006,2001 
2006 'FIi - MMll 2013,2001,2001 
2013 IBNl =I+ 1 

D~ 2008 IBN = IBNl,MMl 
IFIBNC(IBNII GO TO 2009 
GO TO 2008 

200~ JCT= ICT + 1 
IFIICT - NOBTKl 2008,2008,2001 

2008 CONTINUE 
IFCICT - NOBTKl 2001,2010,2001 

2010 CONTINUE 
C FORM THE SUBMATRIX OF MATRIX V 
9 L = 0 

DO 10 K = 1,M 
IFIBNCIK + 11) GO TO 11 
GO TO 10 

11 L=L+l 
DO 36 J = 1,N 

36 PIL,Jl = VIK,JI 
10 CONTINUE 
C SWEEPOUT THE SUBMATRIX OF MATRIX V AND TEST. TO SEE IF JT JS OF 
C MAXIMUM RANK 

ISET = ISET + 1 
TIDl = 0 
JJ = 1 
L = 1 

13 IT = 0 
14 IT= IT+ 1 

IFIPIL,JJII 15,16,15 
16 IFIIT - Nl + L - 11 17,18,18 
17 DO 34 J = ltN 
34 PPIJI = PIL,Jl 

DO 19 Ll = L,N2 
DO 19 J = 1,N 

19. P(Ll,JI =Pill+ 1,Jl 
DO ·35 J = l,N 

35 PINl,JI = PPIJl 
GO TO \4 

18 1101 = 1101 + 1 
IFIIIDl - 11 20,20,50 

20 'ID= JJ 
iFljJ - NI 22,23,23 

22 JJ = JJ + 1 



15 

25 

3~ 
24 

32 

26 

27 

57 
60 
23 
C 

62 
28 
61. 

. 29 

30 
C 
.31 

38 

40 

41 
42 
44 

43 . 

39 
46 

C 
50 
C 
7019 
7804 

7805 
7004 
6001 

6000 

GO TO 13 
DO 24 Ll = 1,Nl 
IFILl - LI 25,24,25. 
CONST= PCLl,JJ)/PIL,JJ) 
DO 33 J = JJ,N . 
PILl,J) = P(Ll,JI ~ CONST*PIL~JI 
CONTINUE 
DIV= PIL,JJI 
00·32 J = JJ,N 
PIL,JI ~ PIL,Jl/DIV 
IFCJJ - NI 26,23,2J 
JJ = JJ + 1 . 
IFIJJ - NI 27,57,57 
L = L + 1 
GO TO 13 
TFCIID1 - 11 60,27~27 
I ID = N 
IIDL = IID --1 
COMPUTE THE TRIAL EDGE BIKI 
IFIIIDLI 62,61,62 
D0.28 J = 1,IIDL 
B I J I = "".P I J , I ID I 
BIIIDI = leO 
IFIIID - NI 29,31,31. 
I I DU = I ID + l . 
D030 J = JIDU,N 
BIJI = 0,0 
TEST TO SEE IF BIKI IS AN EDGE 
IPCNT = l 
ZERO= eTRUEe 
DO 39 Ll = l •M 
F = 0,0 
"O 38 J = 1,N 
F = f + VILl,Jl*BIJI 
IFCFI 40,39,41 

.POS = eFALSE• 
GO TO 42 
POS = ,TRUE• 
IFCIPCNT - 11 44,44,43 
POSi = POS 
IPCNT = 2 
ZERO= .FALSE. 
GO·TO 39 
AN= POS,AND,POSl 
I F C AN I GO TO 3 9 
GO TO 50 
CONTINUE 
IFIZEROI GO TO 50 
GO TO 7001 
HAVE ALL SUBMATRICES OF MATRIX V BEEN SELECTED 
IFCISET - JRI 4,7019,7019 ' 
WRITE THE VECTOR C 
WRITE 16,7a041 .. 
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FORMAT!iH0,57HTHE ASSUMED VALUE OF GAMMA IS CORRECT AND THE VECTOR 
l C IS/I. 

wRITE 16,78051 ICL(lltl = 1,NPATPll 
. GO TO 6000 

FORMAT (2012~tf4elll 
WRITE 16,60011 
FORMATl1H0,41HTHERE EXISTS NO VECTOR C AND THE ASSUMED /28H VALUE 

lOF GAMMA IS INCORRECT! 
STOP 
END 
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Do4 Limitin~ Factors for Time and Memoryo The running character­

istics of these prQgrams are highly dependent upon specific problems. 

However, certain limitations can be pointed out. Perhaps the greatest 

limitation is caused by the number of components in the vector cy• In 

the program this number is called NPATPl which is equal to NOPAT+l where 

NOPAT is the number of augmented, input pattern space vectors Yio Each 

time th~t a vector ci is selected and satisfies the inequality 

c'c. µJn 11 > o , 
l. YY < 

it must be tested for realizability. In this test the vectors y. (or 
l. 

=y.) form a matrix which must be tested for PLD's. From an examination 
l. 

of the theory of Appendix A it can be seen that, for a realizable cy, a 

major operation in the test must be performed 

( 
NOPAT . ) 

NOPAT-ID-1 

times where ID is the dimension of the pattern space and ID+l is the 

size of each vector yi. If cy is not realizable, all of these opera­

tions will not be performed. Nevertheless, the size of NOPAT determines 

to a large degree the running time. 

Another limitation is that the number NOPAT must be greater than 

ID+l. This restriction is basic to the theory as developed in Appendix 

The major portion of the data storage for these programs is for the 

matrices read in the sequence locations 3 and 4. For the program in 

Section D.2 9 an increase in y by one causes the number of columns in D~i 

and ~(i+l) to increase by the number of columns in R:l.. Similarly for 
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the altered forms of these matrices appearing in Section 4o7 the number 

is increased by twice the number of columns in R~. The change in the 

size of n;;y is more difficult to determine; however 9 there should be no 

significant problems with storage here since D" contains only the 
-yy 

unique columns of ~A(y-l) o 



VITA 

John Lo Youngblood 

Candidate for the Degree of 

Doctor of Philosophy 

Thesisi A STUDY OF THE APPLICABILITY AND SYNTHESIS OF REDUNDANT, 
THRESHOLD LOGIC DECISION-MAKERS 

Major Field: Electrical Engineering 

Biographical: 

Personal Data: Born on March 14, 1941 and reared at Cayuga. Texas, 
the son of Jo Douglas and Hessie Bo Youngblood. 

Educationi Attended Cayuga Public School through May, 1957 and 
graduated from R. L. Paschal High School in Fort Worth, 
Texas in 1959; received the Bachelor of Science degree in 
Electrical Engineering from Arlington State College in May, 
1963; received the Master of Science degree in Electrical 
Engineering from Oklahoma State University in May, 1965; 
completed requirements for the Doctor of Philosophy degree in 
May, 19670 

Professional Experience: Employed by the Fort Worth Division of 
General Dynamics Corporation during the summer of 19630 
Employed by the School of Electrical Engineering at Oklahoma 
State University as a graduate research assistant from 
September, 1965 through September, 1966. Employed by the 
Fort Worth Division of General Dynamics Corporation since 
October, 1966 o 


	Thesis-1967D-Y78s
	SEPARATOR0001

