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CHAPTER I
INTRODUCTION

1,1 Statement of the Problem, The basic dbncept which provided

the inspiration for the research reported here is the concept of dis-
tributed redundancy., It is felt that this type of redundancy is
achieved by devices in which each individual component participates in
many (or all) functioms, and all functions are produced by many (or
all) components, If a component fails in a device so structured, no
single function is totally lost; rather, all (or many) functions are
incrementally degraded. This concept of redundancy has been considered
in the majority of the developments used in the solution of the problem
under investigation,

The basic problem can be divided into two major areas with the
results of one being the justification for the effort spent on the other.
The first problem area involves distinguishing between the areas of
applicability of decision-makers possessing distributed redundancy
characteristics and the areas of applicability of conventional redundant
decisiénwmakers, The results of this problem define a second problem
which is involved with investigating a particular approach for enlarging
the areas of applicability of decision-makers with distributed
redundancy.

As a result of these two problem areas, the following chapters and

appendices fall into one of two categories, Chapter II is devoted



exclusively to the comparison of the two decision-maker types., The
‘remaining problem area is the topic for Chapters III and IV and the
appendices.

The overall decision-making system model consists of the decision=~
maker itself and a set of n binary, sensor channels, These sensor chan-
nels measure traits of a physical phenomenon and convey this information
to the decision-maker in an unreliable manner, It is assumed for sim-
plicity that the channels are statistically independent and identical.
For a given decision problem, the decision-maker is designed so that a
risk function is minimized as the decision-maker makes either of two
possible decisions. The entire system is binary,

The decision-maker which is considered to be conventional has cer-
tain basic characteristics which distinguish it from the decision<maker
which, hopefully, models distributed redundancy, The conventional
decision-maker makes binary decisions based on binary information as
received through n inputs, Corresponding to each of these n inputs is
at least one unreliable switching element, Each of these switching
elements is interconnected with other switching elements and whether it
is open or closed simply determines which of two possible inputs is fed
into the interconnection, Thus, the designing of the decision-maker to
make certain decisions 1s done by properly interconnecting the input
switching elements and, possibly, other secondary elements; Of course,
the interconnection may fail alsoj and it is therefore modeled by an
unreliable channel, In the comparison which follows, it is assumed that
the interconnection channel is significantly more reliable than that of
the decision~maker with distributed redundancy., This is a fairly con-

servative assumption,



Another characteristic of the conventional network of switching
elements is that it can implement any Boolean function with a relatively
small variation in complexity, This is not the case for the type of
decision-maker considered in Chapters III and IV,

‘'The manner in which redundancy is incorporated in networks of
switching elements is to use parailel and series combinatiens df redun-
dant inputs, Basically, parallel combinations are used to prevent mis=
fires and series combinations to prevent false alarms, Both of these
failures must be taken into consideration in most decision systems,
Consider, for example, the problem of fusing of nuclear weapons, It is
.obvious that failures to detonate and uﬁwanted detonations are both
failures that are of utmost importance, Examples such as this provide
the reason for the forms of redundancy considered here. It should be
emphasized that specific redundancy implementations are not in general
considered in the comparison of Chapter II; rather, consideration is
given to the overall or basic characteristics of decision~makers which
can incorporate the types of redundancy being evaluated,

The unconventional decision-maker with distributed redundancy also
is modeled in such a way that its inherent characteristics are exhibited
to a certain degree, The most important characteristic is the lack of
switching elements corresponding to each input to the decision-maker,
As a result of this characteristic, tﬁe interconnection of the inputs
must be more complex and is thus less reliable, Furthermore, this com~
plexity is dependent upon specific problems, Some problems require a
considerably less complicated interconnection of decision-maker inputs
than for other problems, The more complicated ones provide some of the

justification for the work presented in Chapters III and IV,



The form taken by the redundancy'in decision-makers which are in-
tended to possess distributed redundancy is considerably different from
that of networks of switching elements, Of course, the repetition of
input channels provides overall system redundancy, However, one of the
most significant features of distributed redundancy is that it can be
achieved through overdesign but without a blind repetition of components.,
The particular type of decision-maker proposed in Chapters III and 1V
possesses this feature to a certain degree as shown by Example 4.7,2,
In this particular example it is necessary to use a relatively complex
decision-maker, But, by a slight amount of overdesign in the nonredun-
dant decision-maker, reliability of the desired level can be achieved
far more easily than if the nonredundant realization had been minimal.
This is a unique characteristic of distributed redundancy. A little
overdesign buys a lot in terms of reliability.

The actual decision-maker which. is proposed to model distributed
redundancy consists of a network of threshold logic units (TLU's), A
TLU is a device which presents a linear, weighted sum of its inputs to
a threshold detector., The threshold detector produces a binary output
depending upon the level of the weighted sum relative to a threshold
level, Such a device is shown in Figure 1,1.1.

There are several reasons for the attention that TLU's have re-
cently received, The reason which is relevant here is that the TLU is
thought to possess distributed redundancy.

Rather than single TLU's, networks of TLU's are used primarily here
because of the limitations of the use of single TLU's. The primary
limitation lies in the fact that a single TLU cannot implement all

Boolean functions, This is discussed in more detail in Chapter III,



The specific network configuration used is a two-~layer network as shown
in Figure 1l.1.2, This configuration is sufficient to realize all

Boolean functions,

Yi1 w1
|
- . 1 f —ag
. . (y3)
|
Yin Wi
= (yil’yiﬂ'o oo ’yin)
+1
Wn+l
Figure 1l,1.1, Threshold Logic Unit
v}
y!
1 £(3})
" Second
. Layer
Vi

Figure 1,1,2, A Two~Layer TLU Network



As mentioned previously, a certain amount of overdesign in decision-
makers of this type is significant to the amount of redundancy which is
necessary to achieve a certain degree of reliability., The addition of
redundancy to two-layer TLU networks is the specific topic for Chapters
III and 1V and the appendices, The problem reduces to synthesizing a set
of y redundant TLU's to add to a set of v TLU's in the first layer as
shown in Figure 1,1.3, These TLU's are synthesized so that single error-

correction is achieved for errors between the first and second layers,

]
Yi
0
Y3
f(?})
o———————Y——
o
i
c;o
i

Figure 1.1,3, TLU Network With Redundancy



It is important to note that the justification for adding redun-
dancy to the first layer rather than the second is that the reliagbility
of any device is no greater than that of any of its series stages. For
example, if the final layer is triplicated and a vote is taken on the
three outputs, the reliability of the resulting system is no better
than that of the device which performs the voting.

The technique developed here for adding redundancy to TLU networks
is based strictly upon the system of linear inequalities for which the
weights of the second layer TLU moe must be a solution, This system
of linear inequalities, along with certain realizability requirements,
is the foundation for the approach taken.,

In summary, the first of the two problem areas here consists of
comparing the two decision-maker types and finding the areas of appli-
cability of each., The basic philoséphy behind this comparison is that
the decision-makers should be compared on the basis of their funda-
mental characteristics rather than on the characteristics of specific
implementations of each,

The second problem area involves an investigation of the problem
of redundancy in two-layer TLU networks, This investigation is justi-

fied by the conclusions of the first problem area,

1,2 Previous Work in the Area. The majority of the work done in

the areas investigated here has been in the area of threshold logic and
in redundant networks of computing elements., The theory of threshold
logic and linear inequaiities is of primary interest here because of
the particular theoretical redundancy approach taken, Some of the con-

tributions which are related to the theory used are those of Paull and



McCluskey (19), Gabelman (7), Chow (3), Hopcroft and Mattsom (13), and
Highleyman (12), In these papers the necessary and sufficient condi-
tion, upon which the redundancy technique is based, is mentioned either
directly or indirectly. However, only Hopcroft and Mattson (13) have
applied the theory with any similarity to the application here, To
this author’s knowledge there has been no direct application of the
theory presented in these papers to the problem of introducing redun-
dancy in TLU networks,

There are several redundancy techniques which have been applied to
TLU networks., Perhaps the technique which has the greatest similarity
to the technique used here is due to Bargainer and Coates (5), However,
their technique is restricted in the sense that the second layer TLU
has its design specified and thus restricts the freedom of choosing
redundant TLU's which are best suited to the task,

Other techniques by Pierce (20, 21, 22), Jenson (1l4), and Knox=
Seith (16), use adaption and additional layers of TLU's or other
elements. These approaches still do not take into consideration the
basic problem in linear inequalities as is done here,

Wilcox and Mann (25) have edited a collection of papers on redun-

dancy which contains some work similar to that mentioned above,

1,3 Method of Solution, The solution to the problems consists

mainly of establishing a model of the system‘and in investigating fbis
model, This is true for the problem concerning the areas of appli=-
cability of decision~makers with distributed redundancy and for the
problem of introducing redundancy in TLU networks,

For the problem of the areas of applicability of decision-makers,



the first step is to develop system models which demonstrate the desired
characteristics of each decision-maker, Then, based on these models,
risk functions are derived from a knowledge of the system parameters

and a cost function. It turns out that only one general risk function
is necessary and that this function can be altered to apply to either
of the two decision-maker types by simply changing the form in which
some of the parameters appear in the function,

In order to evaluate these risk functions, it is necessary to spec-
ify desired decision-maker outputs corresponding to each combination of
inputs to the sensors for the system, As a result, two types of prob-
lems are considered which are representative of the extremes of the
complexity of decision problems which can occur,

Corresponding to each of these two types of problems, the two risk
functions can be evaluated as functions of the significant parameters in
each of the decision-makers., This evaluation is used to compare the
two decision-makers and to determine the areas of applicability on the
basis of the number of input channels, the type of procblem, the
switching-element parameters, and the parameters associated with the
assumed model for the interconnection of the decision-maker inputs.,

Very briefly, this comparison reveals that the area of applicabile
ity of TLU decision-makers requires that networks of TLU's be used
rather than a single TLU, This adds to the complexity of the TLU
decision-maker and implies that it is necessary to consider ways to
introduce redundancy in TLU networks in order to maintain any advantage
that they may possess,

The problem of introducing redundancy in TLU networks is approached

by first developing the mathematical model of the desired portion of the
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network, This model as developed in Chapter III takes into considera-
tion the possibility of failures in both the original TLU's in the non-
redundant realization and in the redundant TLU's, Given the mathema~-
tical model, which consists of a system of linear inequalities, a basic
theorem in the theory of linear inequalities is applied to the model.
The result is an additional set of linear inequalities which place con-
straints on a vector which specifies the design of a redundant TLU,

If it is not possible to satisfy the inequality constraints with a
single TLU, then the theory must be extended to obtain the constraints
on more than one vector (thus, more than one TLU is added)., In Chapter
IV this extension is considered, and an iterative approach is suggested
for selecting the redundant TLU's,

The entire development of the redundancy synthesis algorithm is
done with the least complicated types of failures as possible. Due to
the flexibility of the algorithm, it is possible to extend the allowable
types of failures to more complicated situations, This extension occur-
ring in Section 4,7 also permits the use of certain examples which
better illustrate the utility of the synthesis algorithm,

The appendices contain detailed developments and computer programs
which are not appropriate for including as a chapter, Appendix A pre=~
sents the basic theory of linear inequalities which is applied here. A
technique is developed for computing a set of vectors which are used in
the inequality constraints mentioned above, Since the use of this tech-
nigue is quite laborious, a computer program has been written to perform
the necessary calculations. A flow-chart and a listing of this program
are presented,

Appendix B presents the development of a technique for computing
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the vectors used in the inequality constraints in a manner which greatly
simplifies the use of the program in Appendix A, It is shown that cer=-
tain redundant input data can be eliminated and that the appropriate
compensation can be made on the output data.

In Appendix C a very special case of the technique developed in
Appendix A is considered, This special case arises in a computer pro-
gram in Appendix D,

Appendix D is a presentation of two computer programs which perform
searches for vectors which specify the design of the redundant TLU's.

These programs differ slightly in the criteria used in the searches,

l.4 Suggestions to the Reader, The manner of reading this report

depends upon the reader's area of interest. If the reader is only
interested in the areas of applicability of distributed redundancy, then
Chapter II should receive the greatest attention with only brief atten-
tion being given to the remainder of the work presented. If the redun-
dancy technique is to be considered, then Chapter III, Appendix A, and
Chapter IV should be read in that order, The remaining appendices can
be read as it becomes necessary.,

In the notation used here a lowercase letter with an upper bar as
with z; represents a row vector whose components are Zi19 Z3p9 900 Zin
where n is the number of elements in the vector, If it is necessary to

L - L3 - J
write such a vector as a column, it is written zi,

sented by an uppercase letter with a lower bar as in A, The transpose

A matrix is repre-

of A is given by é?. A set of elements is denoted by the capital letter
S with appropriate subscripts or superscripts for identification., Other

less general notation is introduced as it becomes necessary.,



CHAPTER Il

A COMPARISON OF TWO TYPES OF BINARY

DECISION~MAKERS

2.1 Introduction., This chapter is devoted to a comparison of

decision-makers which contain switching elements on each input to
decisiopumakers such as threshold logic unit networks, The latter do
not contain switching elements on each input but have a more complicated
interconnection of these inputs. Therefore, the comparison is based on
the relative merits of these differences in the two types of decision-
makers and on the corresponding variationé‘in risk functions as the
number, n, of input channels is varied.

The comparison is made in two distinct situations with regard to
the nature of the basic decision problem, These two situations are
explained in Section 2,2 along with a general description of the-deci-
sion making system,

Section 2,3 presents the models of the two separate decision-maker
systems upon which the risk functions used for the comparison are based,
A general risk function R is developed in such a way that it can be
applied to either of the two systems by simply making appropriate sub-
stitutions iﬁto R. Also presented are the conditions for optimality of
R

One of the two decision-making problems considered here is actu=-

ally a special case of the other; therefore, in Section 2.4 the risk

12
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function R; developed in Section 2.3, is restricted to apply to this

particular problem, The resulting conditions for optimality are pre-
sented along with an example, The example considers a commonly used

relay contact or switching element network and shows that it is sub-

optimal except under certain specific conditions,

Using the restricted risk function developed in Section 2,4, the
appropriate substitutions are made in Section 2,5 so that the risk
functions for the two decision-maker types can be compared, Under the
conditions of the particular decision-making problem of Section 2.4,
the two risk functions are compared for large and small values of n
separately, For small values of n, families of curves of risk as a
function of n can be drawn to allow a determination of where the
trade~offs exist between the two decision-maker types. For large n
the risk functions tend to converge allowing the comparison of the
decision-makers to be made without the aid of curves as in the case
for small n,

Finally, in Section 2,6 the general risk function developed in
Section 2,3 is adapted to each of the two decision-maker types; and a
more general decision-making problem than that of Sections 2.4 and 2,5
is considered., This section establishes more distinct advantages of
threshold logic decision-makers and at the same time reiterates a need
for improving their reliability.

Thus this chaptér establishes the areas of applicability of the
two types of decision-makers and sets the stage for a detailed investi-
gation of a technique for improving the reliability of threshold logic
network decision-makers, This investigation is the topic for the re-

maining chapters,
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2,2 The Binary Decision Problem, It is assumed that the decision=-

makers discussed here are intended to make binary decisions based on
binary information as received through n statistically independent
sensor channels as shown in Figure 2,2,1., The observed vector E} has
binary components (+1 or -1) z;,, Zio9 covs Ziny each of which repre-
sents some trait of the physical phenomenon., It is convenient to think
éf each of the vertices of the resulting n—cube.as a state of nature,
The task for the decision-maker is then to correctly classify the
states, which can occur, into one of two categories and to do this in
an optimum fashion, The criterion of optimality depends upon the
agreeméﬁt of the desired, fd(;})’ and actual, fa(EE), Boolean functions

associated, respectively, with the classification of the ith state of

nature and with the output of the decision-maker.

Z;7 O— Sensor Channel 1 |
Yi1
Z:0 O— Sensor Channel 2 —e— Decision- Decision
4 V.. Maker -
i2 1
Observed . : -
, f . ) =
Phenomenon : . a(yl) .1
z: . O— :) Sensor Channel n 9
7 y'j'.n
zi = (Zil,Zi2§ooo,Zin),

Figure 2,2.1l. Model of the Decision-Maker



At any given time any E}

or

s
£q

which can occur belongs to a set

= {z, | £, = +1}

1]

{zi | £4 = -1}

15

depending upon whether the desired classification £ is +1 or -1, re-

spectively, Those states of nature which cannot occur belong to a set

of "don't cares"

Corresponding to a particular

probability
P [zi [ fd =
or
P [zi | £q4 7
where
ot
) P
i=1
and
o
) P
i=1

never occurs} .

value of f3, a vector z. can occur with

1

~ +
P [z z, € Sg 1
I £y
+1] = _ +
0 if =z, ¢ Sf
i d
Pz, | z, € 5.1
i fd
-1] = _
0 if z; ¢ St
ey + -
L 3 | z € Sfd] =1
Lz, | z; eiSfd] =1,

(2.2,1)

(2,2,2)
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The integers m' and m are the numbers of elements in S;d and S;d, re-
spectively.

The use of the word "classification'" stems from the fact that thé
decision problem is viewed as a pattern classification problem, The
states of nature are actually patterns in an n-dimensional pattern
spaces The same 1is true of the vectors §E on the outputs of the sensor
channels,

There are two specific cases considered here with regard to the
location of patterns in the sets S;d’ S;d, and sd, The first case
called the "almost empty pattern set" is essentially a repre;entation
of a decision-maker and sensor system which has n redundant sensors,
All n sensors are designed to measure the same trait of the physical
phenomenon, In this case there are only two states of nature which can

occur; therefore,

+ ——
Sfd = {Zzn} = {(l’ l, soo g l)} ?
S;d = {-Z‘].} = {("'l’ "‘l’ csoy "l)} ’
and all other E}'s are in Sde However, all 2" allowable vectors ;} can

occur since it is assumed here that the sensor channels :are imperfect,
The decision-maker must be designed to classify the §E“s such that an
optimality criterion is satisfied.,

An example of this case is a set of four sensors which are designed
té det;cf the occurrence of one of the two possible states of nature
and a set of four relay contacts interconnected so that a decision is

made according to some specified decision law, The sensors might be

radars, and the contacts could be arranged in the classic '"quad" shown
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in Figure 2,2,2, A detalled analysis of this particular example is

presented in Section 2.4,

—-———————a//do————————c//do————————

3

Figure 2,2.2, The "Quad" Switching Network

The second case considered here is the "full pattern set' case
where all 2% allowable stateé of nature can occur, It is assumed that
the classification of the states of nature is a majority rule situation;
that is, n is odd and those Eh'svwith (é + 15/2 or more "+1'" components

are in the set S;d while those with (n + 1)/2 or more "-1" components

are in the set S;do

2,3 The General System Models. The comparison which is made here

is between the risk function Ry associated with a decision-maker which
has a switching element associated with each input channel and the risk
function Ry for a decision-maker without switching elements on each in=-
put., Figures 2,3,1 and 2.3,2 show the detailed decision-maker system

models from which R, and R, are derived, Notice that in both figures

S

there is no uncertainty involved in the classification of nature or in

the decision~maker's designed classification, The first classification



———
Zin Yin X:n Des%g?ed . Interconnectlon
Classification Channel
-1 Pso -1 -1 Pro -1
/ J
. — vl \. — v / (g < _J
Classification Sensor : Switch
of Nature Channels ' \\_ Channels
Y
Decision~Maker

Figure 2,3,1, Model of Decision-Maker System With Input Switching Elements

8T
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N
Designed Interconnection
Classification Channel

P
-1 sl -1
~ J
\ J N
- ~N - N \(
Classification of Sensor Channels Decision~Maker
Nature

Figure 2,3,2,

Model of Decision-Maker System Without Input Switching Elements
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is known for a given problem, while the latter is selected or designed
so that a risk function is minimized, The latter classification, the
decision~maker's designed classification, classifies each of the vectors

et

into one of the sets

i
+ .o =y -
sg = {x; | £(x,) = +1}
or
s¢ = (% | £(x,) = -1}

where f(§}) is equal to fa(E}) when no failures occur ig the decision~
maker interconnection channel, The Boolean function fa(;}) is‘the func-
tion appearing at the output of the decision~maker interconnection
channel,

In a practical situation the parameters ai, Bi, a?, and B? in

Figure 2.3.1 or azg BZQ az, and B? in Figure 2,3,2 may be difficult to
determine, This model for the decision=-maker interconnection channel is
intended to simulate failures which cause all §}'s to produce the same
output, For example, if the decision-maker is a relay contact network,
any given set of contact positions (§} € S; or E& € S;) might produce a
zero output as the result of an open circuit on the output of the net=-
work, Similarly, one output might always be present because of a short
circuit, This model does not take into consideration all types of fail-
ures; however, a model more general in terms of types of failures would
be highly dependent upon the specific problem at hand, For example, the
channel parameters could be dependent upon the particular vector 3} or

the number of input channels,

The risk function for the comparison is developed in general so
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that it can be applied to either the system in Figure 2,3.1 or Figure

2,3,2, This risk function i1s based on a loss function

LLf =+1, f = «1] = C_. (false alarm)

a d f

[

Coy (misfire)

L [fa = -1, f£3=+1]

{3
o

L [otherwise]

¢

Although it is not assumed to be true here, this loss function could be
a function of the state of nature E}o In other words, it could cost
more to incorrectly classify certaln vectors than for others.,

The risk R (Rg or RT)' which is the expected value of the loss, is
R=E [L] = Cg P [fa = +1 , fd = «1] + Cm P [fa = -1, fd = +1] ,

Writing the joint probabilities above as

H
i}
i
it
4
[
—

P[f =41, f, =-1] =P [f

N 4 g = 1| £42 =11 P [£y

and

1}
t
u

P[f_ =~1,f,=+11=P[f =-1]|f

a +1] P [fd

+1]
and defining

P=z=P[f, = +1]
and

Q=P [fg=-11,

then R is given by

R=QCg P [f,=+1] fg=-11+PC P[f =-1]fy=+1] (2,3,1)
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where
P+Q=1.,

Notice that it is assumed that those E;'s in gd cannot occur, The con-
ditional probabilities in Equation 2.3,1 can be written in terms of the

decision~maker interconnection channel parameters as

on
- — ~ + —
PLf, =+l ] fg=-11=0q ] P [x; € 8¢ | £4 = =11 +
j=1
2n
P X € - £ = - ¢ Do
Bs .21 [xj s | 4=, (2,3,2)
J—
and
2n
PLf =-1]| f;=+1] = o ‘Z T | £4 = +11 +
j=1
oh
— +
B, _E PIxges. | £fy=+11, (2.3,3)
j=1
In order to simplify the risk expression define
on
A = .2 Plx,es_ | f;=-11,
1=l
2n
+ .
B, = .Z P [xj € Sg [ £,= =11, (2,3,4)
=1
on
A = J PIX esh | £, =411,
A d

and



2n
Bp= ) PI 58
J=1
where
Ao + BO
and
A+ B

Notice that Equations 2,3,2 and 2,.3,3
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(2,3,5)

H

t

simplify to

P [fa = 41 fd = «l] = a;By + ByA,
and
PLf, = -1 | £, = +11 = agBy + B4
which can be visualized from Figure 2,3.3, The risk is simplified to

R = QCf (alBo + BOAO) +
or to
- 1) +

R = QC, B, (ap + o

QCg (1 = ag) + PC_

The parameters which vary, depend

decision-makers is used, are B,, B, ags and aj.

PC_ (agBy + BA))

PCm Bl (al + ao“‘ l) +

(l - 041) 9 (20306)

4

ing upon which of the two

The optimization of

either decision-maker is done with respect to parameters contained with=-

in B_ and B, Equations 2.3,% and 2,3

2 of
B.= ) § PIX,est|[%IpP
°© 421 i=1 3 f0 )

»5 can be written

=

EB?j | 2;1P [z, | £4 = -1]
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20 om
B, = .Z ,Z P [xj € S [ xj] P [xj | z;1 P Lzg | £4 = 1]
j=1 1i=1
or as
21’1
+ o — o— — -
By= 1 6, ). P [x | 2,1 P [z | 25 €871 (2.3,7)
j=1 J z.eS d
17fy
on
+ - | = - = +
B, = ) 6., ) P[x, | 2,1P [z; | 2, ¢ S ] (2:3,8)
1 -
i=1 J Z.est J * * * fq
1 fd
- +
where Gj and Gj are defined by
§. =P [x: 5. | %1 (2.3.9)
] J J
and
+ - + | -
§.=P[x. €8 X.] 2,3,10
; [xs € 5; | ( )

J

d

2.2.1 and 2,2.2, The events ;% € S; and §5 € S; are deterministic since

and where P [E; | £, = ~1] and P [E& [ fd = +1] are given by Equations

they are the specific events which the decision-~maker is designed to

perform, Therefore, 6; and 6; are either 0 or 1 where 6; + 6; = 1,

;j ES;

Figure 2,3.3, Simplified System Model
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Combining Equations 2.3.,6 through 2,3,10, the general risk function

is given by

=]

2
+ — — -t -
R=QC (o) + o - 1)) s, _ L _ P[xj[zi]P[zilz e s 10+
j=1 J z.eS¢ d
1 %a
on
PC (o, +a =-1J ) & ¥  PIx |Z1PI[Z |z est1)+
" ° 551 3 Z.esf 3ot 1 fq
T Ta

ch(l-ao)+PCm(l_G)°

Let
Ko = QCf (al ta - 1),
and
K, = QCp (1 - ) # PC_ (1~ ap) ;
then
on
+ - - — -
R-‘Z {ajxo L P[xj[zi]P[zilz €S 1+
j=1 z.,€S d
: 1 fd
(2,3,11)
§7 K ) PIx. | 2.1P [Z: | Z, € 55,1} + K
j ol =L 3 i 1 i fq 2 °
ZiSSf

This is the general risk function for both of the assumed channel

models and for the assumed loss function, In order to minimize R,
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a1~ 8 given by
3 3
1 if ng) <0

83 = o if k{3 > o

arbitrary if ng) ® 0 »3y.25 suwy g ’
where
¥ aw, If- iR, (B0 P18, R e 8y -
zissf
d
Kyl
zieSfd P [xj | Zi] P[ 3 l z; € e ] [

2,4 Development of the Risk Function for the Almost Empty Pattern

Set Case, In Section 2,2 an example is cited of a system which has an
almost empty pattern set. In this section this particular type of
system is more fully described, and its optimality is considered. The
mathematics is kept general so that the systems in either Figure 2.,2.1
or Figure 2,2,2 can be used.

In order to simplify the algebra, it is assumed that each of the
sensor and switch channels in Figure 2,2,1 and each of the sensor chan-
nels in Figure 2,2.2 can be represented by a composite channel as in

Figure 2,4,1, The channel parameters are given by

P, =P [xik = +1 | 24 = +1] ,
qy = P [xgy = -1 25 = +11,
Fo & [xik z =1 | Zg = =11 ,

and
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9, = P Ixg = 1]z = -1]

where Xey and zZ4, are components of §} and Zsy respectively, It is

k

assumed that the channels are identical and statistically independent.,

Figure 2.4,1. The ith Composite‘Cﬂannel

Referring to Equations 2.2.1 and 2.2,2, it is assumed that

+ 1

Piz; | z; ¢ sgJ =F =1 (2.4.1)

and
P[‘zl;es—]=—%—=l (2,4.2)
i 3 fd s o To

where m" = 1 and m~ = 1 for the almost empty pattern set case, - As

pointed out in Section 2.2

+ ]
Sg. = {z

RER AN LR (CHE NPT d

and

Sfd = {-Z‘l} = {(""l’ "l, so0y "l)} o



28

Using the fact that there are only two states of nature and using
Equations 2,4,1 and 2.4,2, Equation 2,3,11 can be simplified to

R= Y 46

j1<P|:'|zl]+es; KlP[-.l R SR
all j b

In order to evaluate the probabilities P E§5 | E;], 131y 2, 600y
2n, an investigation must be made of the channels shown in Figure 2,4,1,
Recalling that the n channels are identical and statistically independ-
ent, the probability of the occurrence of the jth vector ;3' given that
= (=1, =1, ssey =1) is sent, is

n-H H
P E‘} | z,1 = - 13 q°1j (2.4.3)

where H,, is the Hamming distance between E} and E}. Similarly,

ij

n-H n: H n

j [ z ] = p, 27) q12 3 % (2.4.4)

Since Hz“j =n - Hlj'
H]. -n“'H
O T ] 13
i [xj l zzn] i .

thus

n"'H * H . H . n-H .

+ 1j 13 ™ 13 15
R= J [& Kp gL wil e Ty e Ry
all j i 5 ¥ J
Using 6; =1 ag, R can be written as
z - Hij n-Hp4 n-Hi4 Hlj} I n-Hy§ Hij
R = §, LK,p q - K % + Kp q + K .
5 I A e S P S

(2.4,5)
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n
Corresponding to each,value of Hlj =0, 1, 2004 n there are (Hlj> values
of j. If the values Gj for these values of j are added to produce a
- - 'n
d if like terms iIn Equation 2.4.5
term kHlj’ 0 :»kHlj :=<élj) s, and if like terms in Equati are

collected then

n . in-i n-i i O fn) n-ii
R = Z ki[Kip1a1 - Kgpo 4ol * Kg Z i/ Po 4o t Ko
i=0 i=0
or
. n - i n—i n-fi i
R = z ki[Klplql b ‘KOpO qo] + KO + K2 o (‘2‘;'4.,6)
120

The integer k; is the number of vectors ;5 having i components equal to

1 and which are placed in the :set S; by the decision-maker, In other

words k; is the number of vectors %3 within a Hamming distance i of

z, = (=15 =1y oeoy =1) and which are placed in the set Sg by the deci-
sion-maker,

The optimum values of kz are given by

’K?) if Kﬁi) <0

i
k. = | 0 if Kil) > 0 (2.4.7)
i
. Lo (1) .
arbitrary if K4 =0, 1 =1y 2, svcy Ny
where
(i) in-i n-i i
Ky =Xp1q;3 - Kepg G0 -

The following example illustrates the optimality of a common decision

maker.

Example 2.4.1, Letting n = 4 the common, redundant, relay contact
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network in Figure 2.2.2 results. For convenience it is shown again in

Figure 2.4,2 with labeling which corresponds to that in Figure 2.3.1.

%51 %52
e =//1
input o—m0| ‘ ————O output
Xin x4
33 4
.———0/4: /e

Figure 2.4,2, The "Quad" Switching Circuit.

-

The component xjk of ;5 = (les X509 X539 xju) is 1 if the kth switch is

closed ‘and O if it is open., The actual classification fa(;é) of a vec~
tor Ea is 1 if a path exists from the input of the quad to the output.
Table 2,4,1 lists the components of the vectors ;5 and the corresponding
designed classifications f(;%), The important information in this table
is the classification of the sets of (g)_vectors with i components equalv
to one, Table 2.4,2 presents this condensed information., Notice that
for i = 2, some of the vectors with two compoﬁents equal to 1 are in S;
and some are in S;o However, Equation 2.4,7 does not correspond to this

(2)
3

distribution except in the case for K = 03 that is, the quad is not

optimum except when

2 2

K 22 = K
1P1%1 ¥ foPop ¢

Substituting in the original parameters, the condition for optimality of

a quad is



TABLE 2.4.1

CLASSIFICATION OF VECTORS BY A QUAD

.31

3 %51 %52 %53 %5 £0y)
1 -1 -1 -1 -1 -1
2 -1 -1 -1 1 -1
3 -1 -1 1 -1 -1
" -1 -1 1 1 1
5 -1 1 -1 =1 -1
6 -1 1 -1 1 -1
7 -1 1 1 -1 -1
8 -1 1 1 1 1
9 1 -1 -1 =1 -1
10 1 -1 -1 1 -1
1 1 -1 1 -1 -1
12 1 -1 1 1 1
13 1 1 -1 -1 1
14 1 1 -1 1 1
15 1 1 1 -1 1
16 1 1 1 1 1
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TABLE 2,4,2

CLASSIFICATION OF SETS OF VECTORS BY A QUAD

Number of 1 Components Location of Vectors ;5 J =1y ceey 16
. - +
* . . Sf _— ‘ o Sf
0 1 ———
1 2, 3, 5, 9 ———
2 6, 7, 10, 11 4, 13
3 - 8, 12, 14, 15
4 —— 16
\/PCm P14y = \/QCf Polo ¢ (2.4.8)

If the quad is drawn as in Figure 2.4.,3, a similar situation
arises, This configuration is also suboptimal except under the condi-=
tions of Equation 2.4.9. The dnlyLdifference is in the location of the
vectors ;} for 1 = 2, In this case S; contains two vectors for which

+ .
i1 = 2 and Sf contains four.

e o

Figure 2.4,3. Alternate Quad Configuration
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2.5 Comparison of Re to Rn for an Almost Empty Pattern Set. In

the previous section the conditions for optimality of decision-makers,
either with or without switching elements on each input, is derived for
the almost empty pattern set case. In order for a designer to decide
which type of decision-maker to use, he needs a comparison based on the
significant parameters associated with the risk functions Rg and Ry
corresponding to the two types of decision-makers. The significant par-

ameters in Rg are assumed to be Prgs Apos Prls Qrls ug, BE, u?, and Bi

while those of Ry are ug, Bi, a{, and B{. The remaining parameters P,
Qs Pgos 9so* Psls 9s1s Cms Cgs @nd m in R are assumed to be the same for
either Rg or Ry,
4 P e Sl L B S . 2
From Figure 2.5.1 the probabilities pg,, Qgs P1s @nd q; in Rg given

by Equation 2.4.,6 can be written as

Po ® PsoPro t Q5091

9 * Pgolro * Q50Pp1
s (2:5:1)
Py, = PoqP + q9.4,9

1 slfrl sliro
9 " Paile T 9P

ro

where the superscripts correspond to the subscript on Rg, Similarly

from Figure 2.5.2 the corresponding parameters in Ry are

Tiva Z s
PO - pso Pl = Pal

T T _ (2.9:2)
9 © 9o %Ny @
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Figure 2.5.1. The ith Composite Channel for Decision-
‘ Maker With Switching Elements.

i=1, 2n
: . n
] =1, 2, souy 2
k=1, 2, s0ae 1
Figure 2.5.2. The ith Composite Channel for Decision-.
Maker Without Switching Elements
The two risk functions can now be written. Rg is given by
. ? s_ 8 » i n-i
Rg = 320 k3 (K1 (Pg1Pr1%ds19r0) (Ps19r1tdsiPro) *
i=
(2,5.3)

S : n=i i S s
= Ko(PgoProtdsodr1) (PsoQro*dsoPr1) 1 p + Ko * Ky

where the optimum k? is

(‘i’) if K;i)< 0

k$ =4 0irkP) >0
s
s e (1) .
arbitrary if K, ° = 0, i = 1, 2, «ocy N,



. T,
where the optimum value of ki is

(?) if Kéi) <0

0

i
T s (1)
= >
ki 0 if KT 0
arbitrary if Kél) =
where
(i) 71 n-i T n-i1i
Kp = Klpslqsl = Kopgo Qg0
T T T
K, = QCf(al+ao-l),
T _ T T
K] = PC (ajta ~1),
and
T _ T, T

where
(i) 8 i n-i
Kg = Ki(pPg1Pr1*9s19r0) (Ps19r1t9s1Pro) +
g ‘n-i i
- KolPsoProtdsodrl)  (PsoldrotdsoPri) o
S s s
Ko = QCf(alfao-l),
S s s
Kl = PCm(al+ao-l),
and
S S S
K2 = QCf(l-ao) + PCm(l-al) o
'RT is given by
R = % WTrkfpd gpod _(Tommid g | T T
T e 1Ps19s1 7 ®oPso so o 2
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(2.5.4)
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It turns out that Equations 2.5.3 and 2.5.4 converge rapidly with n
to functions which are independent for some range of values of the sen=-
sor and switching element channel parameters. Because of this behavior
the comparison of the decision-makers is broken into two parts as indi-
cated by the two regions in Figure 2.5.3. The risk R as given by
Equation 2.4.6 with k; optimum and with the following constant parameters

is plotted with n as the independent variable:

Po = 0,995 P = 0,5
q, = 0.005 Q= Db
P, = 0,995 Cp = 10,0
q; = 0.005 Ce = 1.0 .

As shown in the figure the values of n are divided into two regions;
the first part of this comparison is concerned with Region I while the
second part is restricted to Region II,

For values of n in Region I a comparison between Rg and Ry is made
by making the assumption that the decision-maker interconnection channel
corresponding to Rg is perfect; that is, éi = éi = 1 and §i = éi = 0 in
Figure 2,3.1. Therefore the parameter p,, = p,; forms a family of
curves for Rg as a function of n while ag = a{ forms a family for Ry as

a function of n. These curves are shown in Figure 2.5.4 for the follow-

ing constant parameter values:

Pas * 0,99 Pz 0.5
Qg = 0.01 Q= 0.5
Pgy = 0.99 Cp = 10.0
Qg1 = 0.01 Ce = 1.0
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Number of Input Channels (n)

Figure 2.5.3.

Variation of R w.r.t. n for the

Almost Empty Pattern Set Case
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For a decision-maker system with these parameter values, Figure 2.5.4
can be used to determine when either of the two decision-maker types is
justified in terms of the risk involved. For example, if n ? 4 and if a
relay contact network is available for which pn, = pp) = 0.97, then

az = a{ must be greater than 0.999. This means that a lower bound is
set for the interconnection channel parameters for a decision-maker of
the type shown in Figure 2.3.2 to be better than arelay contact network
modeled in Figure 2.3.1.

An important observation from Figure 2.5.4 is that Rg approaches
zero more rapidly as Pro increases. On the other hand the parameter ag
merely changes the asymptote for Rr as n increases, Thus the conver-
gence demonstrated by Figure 2.5.3 is demonstrated further in Figure
2.5.4,

A more careful examination of the risks Rg and Rp for the particu-
lar case of n = 3 is presented in Figure 2,5.5. The same constant para-
meter values used for Figure 2,5.4 are used here., These curves are
representative of the risk variations for other values of n; however,
the variations with Porss and'uz become greater as n increases as shown in
Figure 2.5.4.

If n is restricted to Region II of Figure 2.5.,3, some approxima-
tions can be made for values of pgyy Pg)s Ppos and Py; close to one and
for PC, and QCg approximately equal, The second part of this comparison
is concerned with'this case, where the effects of variations in the
decision maker interconnection channel parameters are more clearly dem-

onstrated,

Consider the general risk R from Equation 2.4.6 which is
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Toy

RISK (Rs AND Rt)

_.Rs

=—=R
 n=3

Pra for Rg

al for Ry
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Figure 2.5.5. Risk Curves for an Almost Empty Pattern Set With n=

3.
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n - i n-1 n-i i
R = Z ki[Kip1ay = KoPo Qod + Ko + Ky
i=0

This function can be simplified by an examination of the binomial

distribution
n
n 2
F(z) = J f(x3n,q)dx
O
where
o n. n-i1i
f(x3n,q) = 2 (p” g 8(x-1)
i=0

is its density and 8(x-1) is the delta function. Notice that

n
2 ..

Fep = L (D gt (2.5.5)
i=0

The expected value and variance for this density are
‘E[x] = nq
and
2
Ef(x-nq) ] = npq ,

respectively, Papoulis (18) states on page 163 that the following

inequalities are true:
E°[3 - X | x < al <El(a - x)? | x < a] (2,5.6)
Ela - X | x < alF(a) > a - E[X] (2.5.7)
El(a - 02 | x < alF(a) < E[(X - n)2] + (a - ELXDZ.  (2.5.8)

The constant "a" is in general arbitrary. Letting a = n/2 and
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substituting in the mean and variance shown above, it can be shown that

2
(& - nq)
F(%J z 2 2
npq + (%-- nqg)

by properly manipulating Inequalities 2.5.6, 2.5.7, and 2.5.8. As n

approaches infinity the result is

lim F(%) > 1lim S = .
n->eo 2 T poe ;Lq"' (%"‘ Q)z

However, since F(a) < 1 for all valués of the variable "a", the binomial
distribution in Equation 2,5.5 for large n is

lim F(3) =1 .

n-w
From an examination of the binomial distribution tables by Weintraub (24)
it can be seen that this convergence is very rapid for sf;xall'q° For
example, for g = 0,01 and n = 6,:F(§0 differs from 1 by 0:0000195536
while n = 12 yields a difference of approximately 8.0 xﬁlO—loa

The result of this conﬁergence is that the summations

n . .

T i

o “o

i=D

and

E!

- 1
v (Myin-i
izb- (i)?lql

approach zero as n gets ‘large for smdll values of g, and qqe ‘Therefore,

using the definition of the optimum k; and including in the summations
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in R the terms above which approximately sum to zero, R can be written

as
n o . n .
o . in-1 n n-i 1
R = (ayta,-1) iZO (0)PCppya; - iZo (i)QCfpo 9

f ch(al+qo-1).+ L e(1-a ) + Pém(l—al) o
This equation simplifie; to
R = QCf(l-ao) + PCm(l-al) °
Therefore, with the appropriate approximations, the risks are
S . S
Rg = QCe(l-ay) + PC(1l-a7)

and

) T T
Ry QCf(l-ao) + PCm(l-al)

for large values of n. If the interconnection channels are assumed to

be symmetric for both types of decision-makers, the risks simplify to

Rg = (1-a°)(QC,; + PC_) (2,5.9)
and

Rp = (1-wotT)(Qcf + PC_) (2,5.10)
where as z ai = ai and o = az = aio A significant observation here is

that as the number of redundant channels increases for either type of
decision-maker the risk R (Rg or Ry) approaches zero.
Certain conclusions can be drawn from the comparison of the two

types of decision-makers which are used in a system with an almost empty
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pattern set., These conclusions are drawn with the thought in mind that
a decision-méker which has no switching elements on each input (Figure
2.3.2) has a more complicéted interconnection channel than a decision~-

maker without these switching elements (Figure 2.3,1). This means that
“2 and a{ are smaller than ai and ag'and that in the comparison of the
two types of decision~makeré this difference may be offset by the pre-

sence of inpu£ switching elements and by variations in n:

As shown by Figure 2.5.4 and Equations 2.5.5 and 2.5.6, the value
of n determines the method of evaluation. For small n in Region I the
choice of decision-makers can be made by a comparison of the risks Rg
and Ry as in Figure 2.5.4. For n in Region II, Equations 2.5.9 and
2.5.,10 indicate that a decision-maker with input switching elements

(relay network) is superior to the other type of decision maker (thres-

hold logic unit network}.

2,6 Compagisbn of Rg to Ry for a Full Pattern Set. The case of a

full pattern set does not permit the simplifications in the risk func-~
tion, given by Equation 2.3.11, that were permitted in Sections 2.4 and
2.5 for the almost empty pattern set case. The case considered in this
section permits all 2" E&'s to occur in such a way that the states per-
form a majority rule, It is assumed that n is odd and that the Ei's
with (n+l1)/2 or more "+1" components are in the set S;d while those with
(n+1)/2 or more "-1" components are in the set S;ao It is also assumed

that the probabilities given in Equations 2.2.1 and 2.2.2 are

1
2n-l

— C— +
Plz, | zieSfd] =

and
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1
2n—l

e

Plz, | zieSfd] =

This means that, for any value of odd n, a consistent classification of
the 2" states of nature exists; therefore Rg and RT can be evaluated for
various values of n.

Besides n, the sensor and switch channel parameters and the deci-
sion=maker interconnection channel paraﬁete;s are important. Tﬁe intent
here is to show where the trade-off comes with respect to n when in-

creased decision-maker interconnection channel complexity (lower values

T

T
of Oy and al

in RT) is contrasted with the reliability of switching
elements on all n inputs (the inclusion of p,.s Qngs Ppys and Qp1s in
Rg). | |

The risks Rg and Ry are given by Equation 2.3.11 with the appropri-

ate changes in parameters. For Rg these changes result in

2 2" l+ S 2 | n
Re = oo §.K m Plx. { Z..] +
§~om - L - K ,
2= 30 z3eSy, k=1 kb Tk
-8 n S
+ o P[x. . + K
5t E‘Zs* ny TR | 250 2
b |
where
Plxsp = + 1 | =+ 1] =0p° =
S I = P17 PsaPry * 95190
Plxge = = 1 | zgy = # 1] - qQ} = p 4., * 4
ik ik 1 s13*bl s1Pro
Plxy = - 1] z5 =-11=p>=p p +a_q
k ik o ‘so'ro = “so‘rl
P[X- = 1 l"Z = - l] = S‘= y + " :
Ik ik 9o * Pso%ro " 9soPri

as in Equations 2.5.1. Similarly
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9 2 T z n
Rp = <= } J)6.K \ 7 Plx.. | z,,1+
T n : 0 - b - jk ik
2% sz J =
j=1 iasfd k=1
n
"T’ S . T
t 8K —-zsf k’_‘l_P[xjk 'z d 1%
i€°fg ;
where
Py = Pgy
9 7 %1
T.-
R Po ¥ Psgo
T _.
9 * 950

as in Equatidns 2.5%2, Using the risks Rs and Rp, a comparison similar
to the one in Section 2.6 can be made.

. . S _ S _ S _ .S _
Consider the particular case where o/ = o; = 1, 85 = B; = 0,

- S .
Ppo = Ppls and where Gj =1~ 5j is optimum for both RS-and Rp. Using

the following parameter values

0.99 P = 0.5

Pso *

Qg = 0001 Q= 0,5
Pgy = 099 c, = 10,0
Qg = 0.01 Ceg= 1.0

the family of curves shown in Figure 2.6.1 results.
These curves illustrate the concyusiOns which can be drawn regard-

ing ‘the trade-offs between the two types of decision-makers considered

T

here, For the'largef values of p, andlao the curves for Rg tend to

become steeper than the lines for RT as n increases, It is this feature

which indicates that it becomes more critical that Ppo be larger than az
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for large values of n, This means. that, for a full pattern set, a deci-
sion-maker with switching eléments on every input can be improved upon.
by using a decision=-maker such as a threshold logic unit network which
has a more complicated interconnection channel (ag < ag)° The improve-
ment of this interconnection channel is the fundamental topic of the
investigation whose results are ﬁresented in the reméining chapters and
appendices.

One peéculiarity of the curves for Rg shown in Figure 2,6.1 is the
abrupt break in the curves. These breaks are caused by the reclassifi-
cation of certain patterns ;1 to permit minimization of Rg., 'In other
words, as py, decreases, there results an increase in the probability
that certain vectors E} in one classification will be transformed into
vectors ;} in the other'élassificationo Therefore the decision-maker
must reclassify the latter as dictated by the loss function., Notice
that this reclassification can cause the patterns in S}d and S;d to be
considerably different from those in S; éﬁd S; respectively. Recall
that the éets S;d and S;a are the classifications of nature and S; and
S; are the decision-maker's designed classification.

In summary the full pattern set case is a situation where a decrease
in reliability of input switching elements justifies the use of a deci=-
sion=maker such as a threshold logic network. The reason that this
situation occurs‘with a full pattern set and not with the almost empty
pattern set is that in the former some of the patterms in S;d are within
very small Hamming distances of patterns in S;d; thus it is more likely
in this case that a state of nature in one classification will appear to

the decision-maker to be in the opposite classification. However, it is

this possible reclassification that forces the use of more versatile
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networks of threshold logic units rather than single threshold logic
units. The versatility of these units is considéred indirectly in

Chapter III,

2,7 Conclusion. The conclusions drawn from the investigation pre-

sented in this chapter are the justification for the work presented in
the remaining chapters. The most important conclusion is that, if the
interconnection channel of a threshold logic network can be made reason-
ably reliable, then these networks are better in terms of risk for the
full pattern set case than decision-makers with switching elements on
every input. Therefore for the full pattern set case the key problem in
reducing risk is to improve the reliability of threshold logic decision-
makers .

It is shown in Section 2.5 that, for the almost empty pattern set
case, the area of applicability of threshold logic decision-makers is
limited to small numbers, n, of input channels. Even if n is small
the decision-maker interconnection channel parameters must be roughly
two orders of magnitude better than the channel parameters of switching
elements for decision-makers such as relay contact networks. This is
evidenced by the curves in Figure 2.5.4,

In general it can be said that, for the almost empty pattern set
case, the best decision-maker is a conventional network of switching
elements, For the full pattern set case threshold logic networks are
sufficiently versatile and are superior in terms of risk than networks
of switching elements. The versatility of threshold logic networks as
opposed to single threshold logic units is required by the complexity

of the decision problems that can arise with a full pattern set and
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unreliable sensors, Chapter III explains the reason for the difference
in versatility between networks of threshold logic units and single

uni'tSo



CHAPTER III

THRESHOLD LOGIC DECISION-MAKERS

3.1 Introduction. In the previous chapter the general area of

applicability of threshold logic unit (TLU) decision-makers is defined.
In this chapter the primary goal is to develop a mathematical model to
aid in a scheme for improving the reliability of TLU decision-makers and
thus increasing their applicability.

Section 3.2 is devoted to a presentation of the fundamentals of
threshold logic and to pointing out more specifically some of the prop-
erties of TLU's. An explanation. is presented of the role in decision
making of single TLU's as opposed to networks of TLU's, The justifica-
tion for the research on TLU network reliability is also discussed.

A general discussion of TLU networks is presented in Section 3.3
along with the particular network considered in the remainder of the
work presented here, Figure 3.3,5 illustrates this network and some of
the notation used. Sections 3.4 and 3.5 present the mathematical model

which is used in Chapter IV to introduce redundancy in a TLU network,

3,2 Threshold Logic Units. A TLU is a device which produces a

linear weighted sum of n inputs and subjects this sum to a threshold
detector as shown in Figure 3.2.1. A vector y' = (yl, Yos coos Yn) in

the pattern space will produce function values f(y') as follows:

51
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lifwhr eyt > ¥os1
£(y*) = (3.2.1)

2 = ST _
lifw ¥y cswoy .

The vector w' = (ul, Woy seey wn) consists of the first n weights of the
TLU. It is convenient to use an augmented vector y = (Y19 Yo voes Yno

1) rather than y' as above. Similarly let w = (W Wop veey W The

n+l)'
vectors y and W are called "augmented pattern vector" and "weight vector"
respectively while y' is called "pattern vector." It is assumed that

the compohents of y' are binary; that is, Y ® =1 ory, =1 for

k =1y 2, eoey N Also it is assumed that the TLU is designed such that

w' e y' = - W 41 never occurs so that the system of strict inequalities

in Equation 3.2.1 can be used to generate a mathematical model.

2
i
: : i . Al SRR
: Rl
Yy ————a—{ Wy

e~ Wn+l

Figure 3.2.1. Threshold Logic Unit
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Basically the task of a TLU is to dichotomize two sets of pattern

vectors

+ - -

sc = {y* | £G*) = 1}
and

sp = ¥+ | £(3") = -1}

In order to better visualize this dichotomization the geometric repre-
sentation of Equation 3.2.1 is appropriate. Consider a two-dimensional

pattern space as shown in Figure 3.2.2,

2
<7y I
/
/
-1 /,/,+l
} } yl
/Q_\
/ w
/
/
/ PR
/ ¢ = D)
sz = ¥} . ¥ vil

Figure 3.2.2., Two-Dimensional Pattern Space.

The equality
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Wwtoe ytm - w (3,2,2)

n+l

describes a hyperplaie (in this case a line) passing through the space
such that it is a»déstance of lwn+l[/[laﬁli from the origin. The nota-
tion ||W'|| means the magnitude of the vector w' and lwn+ll means the
magnitude of the scalar Wne1e In this particular example the pattern
vectors in S; are on one side of the line and those in S; are on the .
other, Notice that the vector w' points in the positive direction with
respect to the hyperplane,

The situation discussed above can be extended to n dimensions; and,
if there exists a vector w' such that Equation 3.2.2 describes a hyper-

plane where
- e = ot
wey>0 if y'eSg (3.2,3)

and

£ o (3,2.3)

Wwey<0 if y'eS

then the two sets of patterns S; and Sf are said to be "linearly sepa-
rable““(LS)o Obviously linear separability is a necessary and sufficient
condition for the existence of a vector w such that Ipequalities 3.2.3
are true,

Given that a set of pattern vectors is LS, the vector w can be
found in several ways. The more rigorous techniques involve the solu-
tion of a system of linear inequalities,constructed from the pattern
vectors in the sets S; and S;vand from w. For each pattern vector, ;},
one inequality results; if §iqs;, the corresponding inequality is mul-

tiplied through by minus one so that. all the inequalities in the system
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i ot -, -
are "greater than.," If there are n' vectors in S and m in Sc then the

system can be written

Y11 Y12 cee Yip 1] 0
yZl y22 00 y2n ) l wl 0
o9 e Q00 aeo [ I - WQ o Q@
oo 1 ° > 0
ym+l ym+2 ym+n .
=y + =y + o6 -y -1 0
(m"+1)1 (m"+1)2 (m*+1)n
» ) u—wn+34—d
"Y1 “Ymo e “Ymn -1 ‘JLJ

where m = m+ + m and the vectors ;}_gre ordered such that ;1, ;;, soos
§;+ are in S; and ;;++l' §;++2,‘aai, ;; are in 8;0 This system ;an be
solved by linear programming, by relaxation techniques, or by techniques
presented by Coates and Lewis (4), Dertouzos (6), Ho (11), Kaszerman
(15), or Stokes (23) to mention a few.,

Some other methods of finding a vector W rely upon the learning
machine properties of TLU's. Nilsson (17) discusses learning machines
quite extensively and presents trainihg procedures (solution techniques)
with convergence proofé for finding w,

Threshold logic units passess soﬁe interesting properties ‘that have
helped to arouse interest in them. As pointed out by Brain (1) the
simulation techniques used for neural elements have certain properties
which are possessed by TLU's; thus the TLU is thought of by some as a
Zneural element madel. Even though the adaptability and other electrical
‘properties of TLU's are ‘used for brain simulations, the brain's redin-

dancy properties are not considered in the simulations.
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Consider the concept of distributed redundancy introduced in Section
2.6, Obviously each input weight of a TLU has an effect on every output
when the input components are +1 or -1. In order to insure that the
failure of one of the input weights (say an open circuit which changes
the weight to zero) does not produce an overall failure, the TLU must be
designed to correctly classify the resulting patterns as seen at the
input to the summing device. The synthesis technique presented in
Chapter IV can be extended to apply in this situationj however, this
extension is not presented here,

Another important property of a TLU is the simplicity with which it
can be implemented. Corresponding to the switching elements on each
input of a network of switching elements, the elements on each input of
a TLU can be simple resistors with the entire weighting and summing
portion being constructed as a Kirchoff adder shown in Figure 3.2.3. In
Chapter II the decision maker to which the network with input switching
elements is compared is assumed to have perfect input elements., The
relative simplicity of the input elements (resistors in the example
shown in Figure 3.2.3) for the TLU decision-maker doces not appreciably
invalidate the comparison,

Perhaps the most serious limitation of TLU decision-makers is their
lack of versatility. A single TLU is capable of dichotomizing only sets
of pattern vectors which are LS. Consider for example the nonlinearly
separable (NLS) pattern set shown in Figure 3.2.4. In this case it is

not possible to pass a line through the pattern space such that the sets

+
Sf and Sf

are separated, therefore a single TLU cannot dichotomize the
Pattems °

There are certain decision problems which are LS. The almost empty
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Figure 3.2,3. TLU Implementation.
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Figure 3.2.4., Nonlinearly Separable Pattern Set.

pattern set case is an outstanding example. In this case the optimum
decision-maker classification is essentially a majority rule type of
decision as shown by the optimum value of k; in Equation 2.4.7. A

pa%tern classification which is a majority rule is a very simple LS
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problem, thus allowing the use of a single TLU. However, it is pointed
out in Chapter II that for an almost empty pattern set case a conven-
tional switching element network is better in terms of risk unless highly
reliable TLU's can be designed.

TLU decision-makers are not applicable unless more complex decision
problems occur. The full pattern set case is shown in Chapter II to
justify the use of TLU decision-makers. However, a full pattern set
problem cannot be depended upon to result in a LS decision-maker's opti-
mum classification. For this reason a single TLU cannot in general be
used in those situations which justify TLU decision~makers. Therefore
networks of TLU's must be used and the improvement of their reliability

is a valid problem,

3.3 Networks of Threshold Logic Units. In general TLU networks

can be arranged in a variety of waysj however, so little is known about
their synthesis that the configurations are limited. One synthesis pro-
cedure developed by Hopcroft and Mattson (13) is based on fundamental
mathematical principles and is very promising provided that the amount
of computation required can be reduced. This procedure provided the idea
behind the redundancy synthesis procedure presented in Chapter IV,

There are other techniques suggested in Nilsson (17) which are
intuitive and more easily understood than that of Hopcraft and Mattson.
Basically Nilsson's procedures amount to transforming NLS patterns in
one space into another space (image space) so that the patterns in the
latter are LS. Figure 3.3.1 shows a representation of such a situation.
The v first layer TLU's are synthesized so that the patterns presented

to TLU m,,, are LS. The total network is called a "two-layered machine."
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The problem with this confiiguration (or with any other besides a single
TLU) is that there are no known, convergent training procedures. How=-
ever, there is a training précédure which has been successful and is
used to synthesize a two-layered machine called a "committee machine,"
The reader is referred to page 97 of Nilsson (17) for a very concise

explanation of this procedure.

9
Vi
Yl _
)
f(yi)
: Second
. Layer
g
Vi
[\ J N J
Y A"
NLS LS
Pattern Image
Space Space

Figure 3.3.1, Two=Layer TLU Network

There is another synthesis procedure which works quite well for
pattern spaces which can be visualized. With this method parallel

hyperplanes are passed through the pattern space such that the regions
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(cells) between the hyperplanes contain patterns belonging exclusively
to either S; or S;. Nilsson (17) shows on page 108 that this is a
sufficient condition for linear separability of the image space. An
example of this procedure is given in Chapter IV,

Since the primary concern here is with redundancy, the synthesis of
nonredundant TLU networks is not pursued further. It is assumed here
that a two-layered TLU network can be found and that, once it is found,

the problem is to introduce redundancy into the network.

3.4 Mathematical Model of Two-Layer TLU Networks. Given the TLU

shown in Figure 3.2.5, the system of linear inequalities to be solved by

the weight vector w of TLU m can be written using the output vectors

v+l

3} whose components are the outputs 851y 80 ceey 8y of the first
layer TLU's, Corresponding to the ith pattern vector ;} there is an
image vector E}. Since the TLU network is assumed to be designed such

that the NLS sets S; and S; are transformed into the LS sets

S; = {31 I g(sl) = 13 E} produced by §};
;158;; W W R
and
5 - ] al = =] =3 g I
S, {ai [ g(a}) 1; a} produced by y!;

yiesg; is= m++l, m++2. veog M}
then there exists a weight vector w such that
Weal>=w if ates’
i v+l i"g

and
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Letting

- ! - i =y ot
(a} 1 1) (ail’ Bio0 eses B3 1) if aigsg

b
it

and

u

.-p - -—' f = o 4 —' -
ai (ai : l) (ail' aiz’ cees gy aiv’ l) lrf aiesg M

the system of linear inequalities can be written as

T _ =T
\4

> L +
ép 0 (3.4,1)
where
R l"
a a1 29 cee Ay, _
= 1
-
A = LI ] . ']
A, am+ am+l am+2 a4 1 (3.4.2)
EP a a -a
(m*+1) (mt+1)1 (m*+1)2 (m¥+1)v
! .
3 cod Y R X ¢ e 'K see
EP a a T -a 1
._m —) - - } [ ] - --
— ml m2 mv mx({v+l)
; = (wl. w2g‘ veny W\’, W\’+l) 9
and

-6. = (0, 0, ”o'o" 0) . 4
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The rows of the matrix éP are not necessarily unique. Consider,
for example, the parallel hyperplane synthesis technique discussed in
Section 3.3, All of the patternms ?} in a particular cell between two
hyperplanes are mapped into the same point in the image space. There-
fore, corresponding to each of these ;}'s there is one vector E}, in the
image space. The matrix Ap is the basis for the generation of addi-

tional matrices which simulate failures among the first layer TLU's.

3.5 Redundancy for Fallible, Two-Layer, TLU Networks. The.types

of failures which are permitted are restricted here ‘to two types. One
of the two types of failures, "type u = -1" or "type u = +1", occurs

when some input to a weight w, of TLU m is equal to u for all

v+l
pattern vectors ;1.

An alternate error simulation technique, which is not used here, is
to let the output of some first layer TLU vary from 1 to -1 or -1 to
1 depending upon whether the correct state for a particular §£ is 1 or
-1 respectively. This method of failure simulation is not satisfactory
because a particular first layer TLU would still have to vary its output
corresponding to different patterns ;}. In effect the outpuf‘of this
TLU would be negated while the TLU continued to function properly.

The result of a type 1 or type -1 failure is to incréase the
complexity of the system of linear inequalities which the weights w; of
TLU m,,, must solve. Assume that TLU m. experiences a type 1 failure,

1

then the vectors
(l’ ai2| aia' 009y ai\)’ l)’ i = l. 2' coog m

must be classified into the same catagories as the failure-free vectors
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(a.

ll' aiz. CECR | as

l\” l). i=l’ 2, 2009 M

if no overall failures are permitted. Thus, a type 1 failure in a

specific TLU has added m rows to éP’

If an arbitrary failure type u
(u equal to =1 or 1) is possible in any of the v first layer TLU's and
if no overall failures are permitted, then the system of linear inequal-

ities to be solved by w is
Aw >0 (30501)

where A, is given in Equation 3.5.2. As in éP’ A may contain repeated
rows, These repetitions will be used to provide some simplification in
the synthesis algorithm in Chapter IV,

It is assumed that Equation 3.4.1 has a solutionj; however, it is
obvious that Equation 3.5.1 may not have a solution. The basic idea
used here is to force Equation 3.5.1 to have a solution and was pre-
sented by Hopcroft and Mattson (13). The idea is to add columns to A,
and this idea is developed further in Appendix A, The technique amounts
to adding additional TLU's in the first layer of the network and there-
by increasing the dimension of the image space. One of the most signif-
icant differences between the work presented here and that done by
Hopecroft and Mattson is that the additional (or redundant) TLU's are
fallible themselves.

Let the binary outputs of the redundant TLU's, m

R
i ), K> va 2, be

represented by Cil’ ciz, oiaary ci?, i=1l, 2, 000y my where y is the

number of redundant TLU's. For the kth redundant TLU, mﬁR), a vector
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“1 = (Cfys s cons Sly) (3.5.3)

is used to describe the m outputs of the TLU corresponding to the m

inputs §}° Notice that this vector differs from E} and ;} since its

components correspond to different inputs to miR)

occuring at different
times rather than components of a pattern or image space vector occuring

at the same time., Letting } = 1 the system of linear inequalities which

£

w, = (wl, Wos sooy wv+2) must solve is
[ﬁl i (ci)]wl >0 (3.5.4)
where
| _$—-
N no failure
-__L_-_--‘l ........ -
-JI‘

cy failure in m
cemdaep cod occZadan
4

Q
o
<

¢y failure in m

SRR S, bommazadoe

A=A | (T y'y= " (3.5.5)

" H
éP I : failure»in miR)
"l ! -u
t o
-W

.. . + — ' ,
for a type u failure., The first m  components of ¢, are the same as

those of 31 while the last m are the negatiVe of those in 310 The

vector cl is defined by the verticle partition on the right of

1
(A, | @

In general the weight vector W, = (Wys Woy ooy w§+y+l) must solve
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Al > (3.5.6)
Sy 7 0
where é& is given by Equation 3.5.7. The matrix é; is the mathematical
model for single, type p failures in any of the v + y first layer TLU's

shown in Figure 3.5.1l. The matrixﬁY is defined by

- ) .
éo failures in ml soe M,
"""" o . . (R)
_ Ap failures in m,
A = |ercommaans
- g
mmmetemees Cas . (R)
éP | failures in my

T m(viy+l)x(v+l)

f(§})

Figure 3.5.1. TLU Network With Redundancy.
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I.Ooo | a 00 l 00 l°°° E
"Bésac'“ZE ----- :E"f‘"“”’“'"":f'""
la e e |G et
| ow | | | |
| ¢ | | |
TR R Il |
éP cg woo c$ |failure in
I T R s
| | | (3.5.7)
| I TR | |
--------- ?D--d-ﬂ‘_-ﬁ_-‘-ﬂﬂhﬂﬂﬁﬂ“-ﬂl-
B
| | | |
A, | Ei l Eg | oeee | : fai%;ge in
I l | o ow ] ™
| | | | -u
| | -l I
] | | bo=u
v+l ‘ ' _
columnsl columns m{v+y+l)x(v+y+l),

In this model both type =1 and type 1 failures are not permitted to

occur simultaneously implying only single failures of one type are

corrected; however, this can be done by extending Al.

Y

An example is

presented in Section 4.7 which illustrates this extension of the theory

developed here,

The development of a method of selection of the Ek's ié the major

problem solved in Chap{er IV. This selection must be made on the basis

of the restrictions imposed by the requirement that Equation 3.5,6 must
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have a solution and by the requirement that ci be realizable by a TLU.
The first restriction is imposed with the aid of the theory developed in
Appendices A and B while the last restriction is imposed on a trial and

error basis as shown in the synthesis algorithm,

3.6 Conclusion, The sections of this chapter present material

which 1s needed before the synthesis algorithm of Chapter IV can be
understood. The basic notation and mathematical model of two-layer TLU
decision-makers is presented after a brief discussion of the reasons for
using TLU networks for decision making. This chapter in effect is a

link between Chapters II and IV,



CHAPTER IV
DEVELOPMENT OF THE REDUNDANCY SYNTHESIS ALGORITHM

4,1 Introduction. The problem solved in this chapter is formula-

ted in Chapter III, As stated there the problem is to develop a tech-
nique for the selection of vectors Zk such that there exists a ;§

satisfying

=T ~
Al >
—NWY 0]

and such that Zﬁ, k=1, 2, co0y Y, are realizable as the output vectors

. (R (R) (R) . .
of ¥ redundant TLU's, mjy "5 My "y ooo, My o In Appendix A a technique
is developed and a computer program is presented finding a set S¢ of

extremal vectors E%, k=1, 2, :004 8, which form a system of linear

inequalities,

= =

A

4

B A
2

that a general vector ® must solve in order for a system

=TT _ =T
(A} B >0

to have a solution ;1 when

69
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AuY > BT
-0

has no solution., Extremal vectors are defined in Section A.2. The
symbol 2 means that either > or < holds, but mot both, for every inequal-
ity in the system. That is, either

— ]
¢

peal
[ [l

=
»

or

R ’j*l
<l
oh"

o] coo

S
e conmt)

but not both. The symbpls > or < for vectors mean component by‘com-
ponent. In this chapter this technique is used to derivera.similar set
of "inequality constraints" to apply to the vectors in the vertical par-
titions on the right of the matrix é&,a Since these vector partitions

contain the vectors Zl, E;, sooy E}, and since the latter must corres-

pond as discussed in Section 4.2 to vectors E}, E},'ooo, E} which are

realizabie with TLU's; the partitions must be restricted by “reaiiza—
bility constraints," A partial application of the realizability cén-
straints is performed by a matrix transfqrmation in Section u.u
resulting in a simplified set of inequality constraints. A suitabie c;

must satisfy these simplified constraints along with the realizability
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of the~correSponding E}o In order tdzfind a suitable E} in a given
situation, those Z}'s satisfying the simplified constraints must be
successively tested for realizability by using the LS test provided by
the technique of Appendix A, A discussion of TLU realizability of a E}
is given in Section 4.2, A digital computer program has been written by
the author to perform the search for a E} with the IBM 70ud computer at
“Oklahoma State University. This program is presented in Section D.2 and
in an altered form in Section D.3.

In the event that more than one redundanf TLU must be used (y > 1),
a problem arises of maintaining single, type M error correction with
imperfect redundant TLU's. -This‘pfoblem is approached by a general syn-
thesis algorithm which is developed by first developing the constraints
on Ei, then on E; given El, and then on E} given E;-l’ E}_z, ooy Elo
Using the notation developed in this process, the general synthesis
algorithm is presented in Section 4.6, A running example is used to

clarify each major step in the development contained in the following

sections.

1

4,2 ‘TLU’Reélizabflitj éf‘é Eg, The selection of a suitable c:
procedes by first finding a E} which satisfies a set of inequality con-
straints and then testing the corresponding E} to see if it is réaliza-
ble with a TLU., The definition of E} is given by Equation 3.5.3 where

it is stated that the components cii, céi s oooy cl: of E} are the

mi
outputs of TLU m§R) for the'inputs ;};-;}, poosy ;;o Basically the com=
ponents of Z} serve to assign to each ;ﬁ, k=1, 2, s060y m membership
in a set

+=_' 2t =
Sci {yk | ey =¥ 1}
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or

R S
SCi {yk l Crs 1} .
In order to test for realizability of E} the technique of Appendix
A can be used in the capéci%y of a linear separability test. This test
is performed by using a matrix Xci whose rows are the vectors [;} E 1]
- . =t =y .
or —[yi i 1] depending upon whether y;esc or yiesc respectively. If

there are no extremal vectors for the set of solutions to

T I T - e - =
Xciﬁb =0 , ¢6#0, $>0,

+ - -
then Sc and Sc are LS and ci is realizable. This test is discussed in

general in Appendix A,

4,3 Derivation ana\PartitiohinE of the Matrices of Extremal

‘Vectors., One of the fundamental ideas behind the synthesis algorithﬁ is
that it is successively assumed that: first, one redundant TLU is
sufficient (y = 1) then, if v # lbthat Y = 23 and then if y # 2, that

vy = 33 etc., Therefore at a particular point in the procedure and with
an assumed value of y the matrix_é& is altered by selecting Ei, T

voop E; so that, hopefully, there exists a vector 5; satisfying

In selecting Ei, Eé, sooy E; it is necessary to use vectors Ez which

are extremal vectors for the set of solutions to

Al =5, 2T, -7 .

The set of solutions forms a convex polyhedral cone as discussed in
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Appendix A4 and the vectors E: are said to arise because of positive

linear dependencies (PLD's) among the columns of é? corresponding to

XY

nonzero elements of the EZ'S. These extremal vectors form a set S’ and

¢

are the transpose of the columns in a matrix

_r-YT -Y.T foeY T
iy = [(¢l) ) (¢2 L (¢sy) ]m(v+y+l)st

where sY is the number of elements in the set Sl. It should be noted

that the set S! is not necessarily unique., The matrix gw is used in

¢

Section 4,4 to produce simplified systems of linear inequalities to

apply to C1s Coy coey Cyo

The elements of Sl can be computed from éq using the technique of

Appendix Aj howevér, these elements can be found far more easily by
first finding the elements of a reduced sgﬁ S: and generating gw from
the reduced matrix _?;: by the extremal set extension technigque of
Appendix B, The set S: is a set of extremal vectors for the solutions

E'to

()" % =0, $#0, $>0,

*

' . L% e .
and its elements are the transposéd ¢olumns in go° The matrix éo is

formed froﬁ

_ éé . m tows
= o o o e o st o
e A vm Pows

by first removing the redundant rows in

%b

%

%,
to form égjand then removing
to form ﬁk; Thus,

the redundant rows remaining in éo from éR



T

%
x |4

AT = -Tacdaaa
=0 : A*
2R

The matrices éi defined in Section 3.5 contain no rows which are not in
%
éﬂ because éi is constructed from éo by adding v sets of the m rows from

Ap to éo° This fact permits the app;icatiop of the extremal set exten-
sion technique to generate gia

The partitioning of 2: and Ei’ i=0,1, 500y Yy is aided by the
fact that there are no PLD's among the rows of é: or éP’ To show this
absence of PLD's consider the matrix Ap defined by Equation 3.4.2:;- The

rows of this matrix are obtained from the LS, image space, pattern vec-

1

assumed that the TLU network correctly classifies the pattern space

tors for the 'I’LU_m\’+ in Figure 3.2.5. These vectors are LS because it is
vectors provided that no failures occur. - As a result of this linear

separability, the system

4 .
has a solution where A, is obtained from A, as described above. Since

these solutions exist, Gordon's Theorem (see Appendix A) states that

there exist no solutions ¢ to
(A)° 9 =0, $#0, 30 ,

Therefore, there are no extremal vectors for the set of solutions and

%
‘there are no PLD's among the columns of (A )T° In Appendix B it is
=P
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ogo

shown that, since there are no PLD's among the rows of é;, there are

none among the rows of or among the rows of any matrix derived from

Ay
*

ép by repeating its rows,
%

Corresponding to every PLD among the rows of éo or éi’ 0, 1,

[ N
L]

s R i . -
soop Yy there ls an extremal vector element in S¢ or S¢, 1 =0, 1, cooy

%
Y, respectively, However, there can be no PLD's between rows of A or
%
éi’ i=0, 1, cooy vy if these rows occur only in Ap or éPo On the
%
other hand, there can be PLD's among rows of ép or é? and rows that do

not occur in és or Ao Thus it can be seen that there are two types of

extremal vectors for the solutions to

(f\_;)TE.T‘:_OgrQ ?‘#Fo ??_F

or
‘T =i T _ =T TR T
(A)° () =0, ¢ #0, ¢ 20, 1=0,1y 000y ¥ 0"
=i -
One type of extremal vector has nonzero components corresponding to the
, } . .
rows creating a PLD exclusively among the rows of éR or A_, The other
type has nonzero components corresponding to the rows creating a PLD

% % :
or A, and A, or A, respectively, As shown

among the rows of both éP Ap Ap Ay

above there can be no extremal vectors whose components correspond to

* i . . ) * . T e
rows from é? or é¥ exclusively. Thus the matrix 20 can be wrltten in
the form

2 . ®

% ¢ | 9. Corresponding to é?
= cms o st s o i s ek g com 0 e acy i o

=0 * &

°R1 \ ERZ Corresponding to Ap

* : .
where 0 and 3R2 contain the extremal vectors of the first type above and

% % . ®*
9. and iRl contain those of the second type. The columns of 20 are the
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%
elements in.S¢a
As mentioned previously, the matrices Ei’ i=0,1, «o5 Y, can be
%
obtained from Eo by the extremal set extension technique of Appendix B.

Consider the matrix go and the manner in which it can be obtained from

L %

2.0 Accofding to the technique in Appendix B, if a vector in S¢ corres-
ponds to a PLD amohg some of the rows of éi and if one of these”rows is
repeated in éo’ thén S; contains twg véctors similar to the one in S:o
One of thése vectors in S: contains nonzero elements corresponding to
the position of one of the repeated rows and to the positions of the
remaining rows of the PLD, The other vector in S: contains nonzero ele-
ments in the same positions as the former vector except that a nonzero
element occurs in the position corresponding to the repeated row not
considered by the former., By applying this procedure repeatedly, for
pae]

every combination of repeated rows in éo’ the matrix ®_ can be written

as

) 2p [ 0 |corresponding to é?
- o, | @ corresponding to A, .
-Rl -‘=Rz =R
Consider éi which is constructed from éb by adding i sets of the m
rows of é? to éo as in
[2]
e
S B




The matrix 2i can be written,from.go by inspection as

8 1o 18 .ol
—F ===
Op 1 Bz | Bp | eecl &
Ryl 3Ry 2Ry 2R
i el St
0 , 8 |0 (...]0
- | =P ! = ] -
— = A=—7—-+-
0 !0 | & ..c]0
— l —._J ~P | _—
FEA o Do P
A R -
l { -
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(4,3,1)

Example 4.3,1l. Consider the nonredundant two-layer TLU network

shown in Figure 4.3.1 and the corresponding pattern-to-image-space

transformation shown in Figure 4.3,2, The pattern space vectors given

by

<
(Y

<
N =

v

Tt
Yy

produce corresponding image space

(1, -1)

vectors

(1, 1)
(-1, -1)

(-1, 1)

(-1, 1) .

The latter can be used to form the matrix

A
=p

1l
=1
1l
1l

1 1
-1 1
-1 -1

-1 =1



‘ %
from which the matrices ¢ , ¢ , and ¢
-0? =0 -1

are generated using the techniques

of Appendices A and B,

Figure 4,3.1. Nonredundant TLU Network for
Example 4,3.1.

) Yi2 : 352
— i = —t = 1 ]
()y:v3 + +1 X yl Oas’au +1 _ >ql
m
3
'\\\\\\ +1
= 841
xyy o -ly nf¥, o
Pattern Image
Space Space

Figure 4,3,2, Pattern~to-Image-Space Transformation
for Example 4.3.1.
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For a.type +1 failure in the first two columns (v=2 in this example)

the matrix éo is written as

-1 -1 1] 2
1 -1 -113
1 <1 =114

1 1115

R R
-1 oei e
T

-1 1 1|10

1o-1 a1 |u

1.1 -1 12

The matrix éo has repeated columns, therefore the labor involved in

R

""
finding elements of Sg can be reduced by finding those of §; from éo

o
and generating Sg from S;o

1 1 1711

-1 -1 1]2
s -

N 1 -1 =173
éb T jm=gpe T o o oo o a0 et o e o]

Ap 1 -1 1168

=1 =1 =11|7

-1 1 1|10

hand L]

%
Using the computer to perform the technique of Appendix A, the set Sy

H3

contains the columns of 30 as in
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3 i
e o] 2
% 0 1] 3
9P =
e 5 ‘ol
R Y
e T A

%*
The generation of the matrix 29 from 20 is facilitated by a "transition
chart" which tabulates the location of rows in éo which are identical to

%
specified rows of éoo The transition chart is shown in Figure 4.3.3.

Rows in ﬁo
T TN YO ALY S TR A T BN (N . R I
1[X X X
2 X
L
<f 3 % X . G
(]
e}
% 6 X
& X X
10 X

Figure 4.,3.3, Transition Chart for éo

To generate 20 notice that 2: indicates that there is a PLD between
rows 1 and 7 and ancther between rows 3 and 10 of é:. From the transi=-
tion chart it can be seen that row 1 is identical to rows 5 and 93 row 7
is identical to row 8; row 3 is identical to rows 4, 11, and 12; and row

10 is identical to no other row. The result is that Sg contains ten
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where ° is used rather than 0 for clarification.
easily generated as shown by Equation 4,.3.1.
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° ° ° ° ‘ ' ° ° ° 1 ‘ ° l
T LA
! I
| l
2 | 2 |
L | |

As stated in Section 4,1, if there exists a-vector

¢
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]

o
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o
°
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]

]

e

]

e
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o

o
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o

o
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The matrix‘g is

-4

[}

o

o

;i such that

e
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- -
T —0 ! =T | =T =T
1 -
B R o
it
then it is necessary for 3; to satisfy
T4>_T
8,9 20 (4.3,2)

where 3; contains the components of a redundant TLU output vector E}.

4,4 Inegualitx Constraints on E} for y = 1. Assuming that one

redundant TLU is sufficient to correct for single, type u errors in the

first layer of a TLU network, the vector 31

4,3.2 and certain realizability constraints.

must satisfy Inequality

Consider the matrix é& in Equation 3.5.5 written in more detail as
- s J - ] L] _(j) -
shown in Equation 4.4,1 where a; is defined in Section 3.4 and a;”" is

the same as Ei except that the jth element is replaced by u if i :_m+

and by =-u if i > m+, The last column of éi forces certain elements of
Ei to be the same since E; = (cl,...,cm.cl....,cm,...,cl,...,cm,u,...,
Hp=Hsoooe=U)s In effect the realizability constraints are partially
applied by this restriction. There is a simple linear transformation

from
[El Iyl = (Cl' Cos soos Cro u)

L]
|

to E&; that is,

where



T.. = [T, | T, ! eee ! T ! T. ]
=1 R I
columns ! columns
— P
Z 1]
- |
R
m _.a-{.-_fl‘.‘_-
‘""‘%’(IT o
1 l 1
=(1) l
) i)
: |
(1)
o e
= !E_T = 0000.0.0000 o0 QoG gC
A =0y 18 ool a:ci ......
2 1
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2 l 2
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(4.b4,1)
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._U-l
|}
°
°
°
°
°
°

0 0 < ¢ < 0 l

0o 0 . - o 0 0]
(m+l)xm ,

and
m columns m columns

0 0 < < L o

roe ° ° °

°

ét—i

 (m+1)xm,
Referring to Inequality 4.3.2 in Example 4.3.1 the following simp-

lifications can be made:

1

AV
o

or

Defining -

Dp I Yy

the inequality constraints, as modified by the above realizability con-

straints on 31, simplify to

[“E’l E u]Rll : B. - ,(""o""o2)

where p = 1 in the example. A given Ei satisfying the above inequality
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has no assurance of being realizable by a TLU, A computer search must
be performed to test those El's satisfying the above inequality to see

if one of them corresponds to a realizable 31.

This search is performed
by the program of Section D,.3,
The terminology introduced here is consistent with the general case

of Yy > 1. The last y columns of 5& are similarly related to the vectors

EE,'Eé, o'0niy E}, Let the transpose of these columns be defined as

Ek = (c c c Cc_ oM He=H -U,C c c c )
Y l.eoo. m,uao. l'oaa. m' gcoogMy geecoyg 9 l,eoc‘ m.ﬂou, l.naa, q

AR R SRR

where the p's occur in the positions as shown in the (v+1l+k)th column of

54 in Equation 3.,5,7. For example, 6  used above is equal to E%. In

1
general
Ek = [e ! plT
) § Y k
where
. b osaard | | R |
INk i EEP | : I I X : I ! ' IP] E

The partition containing Iu corresponds to the location of the u's in

Eto This notation becomes of considerable value when y is large because
< % ; i

the extension from 20 to 21 reduces to a direct extension of the smaller

matrix

= -~ |
Reae wop =s Zp : Ip H : Tpl

to Eik for is= l' 2' coog Y and k = l, 2’ coog io

In general Eik is given by
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Eik i Iik - !
3 1 2 Lo’ (! k2 | | 142
| | | | i I |
e i &es | 1 | e Syl 2
Eik'tzplzp| }3P13P|1Pt :hi | Zed
| | I |
&% |0 |2 |9 Jeee|Q {1
I T — - -
3 To To oty iy TER .
Sty SR R SR EEe
» S e N e il
T T Y W s R
° o Sl i ol
0 T0 ! qu ! To M
0 M VDL o i +,:§ AT g
T T ¥ T
R S
— — s - e ee 4 .
& l | I P53 - iy e
or by
1 | 2 | 3 | | k¥2 i i+2
o s il 6] '| e
Do DRSSt Barh Ry 1By el Bl

The partitions are numbered correspondingly for clarification. The
matrix Bi is produced by any vertical partition of 21 which contains ERl
and a 9, which is not in the horizontal partition corresponding to 2“.
The case thus excluded is written as Eﬂ' The matrix R, is produced by
the verticle partition containing 2R2° For purposes of simplification

let
D! = [R l R l swos | R R]
=ik -P | =1 | TR | -l

where EP is constructed from
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by removing all redundant columns. Also define D!. as the matrix con-

=11

structed from Eil by removing all of its redundant columns., D?Y is

defined in Section 4.5 for y = 2 and in Section 4,6 for y > 1,

Example 4.4.1, In Example 4.3.1 the inequality constraints of
Inequality 4.3.2 on 3; = Ei for a particular A, are derived, Using the
notation of this section the size of the matrices in Inequality 4.3.2

can be reduced. Inequality 4.3.2 is

4327
and reduces to
[El! 1]21123 (4,4,3)
as in Inequality 4.4.2, where
D, =T.. & =[R | R, | R]
=11 =11 =l -l | =2 | =y

=11 =

0, 8 00 0.0 §LE Thisl =1l

e

There are several redundant columns in Eil above which serve no purpose

when 2&1 is used in Inequality 4.4,3. Therefore, when searching for a
realizable El which satisfies the inequality, 211 can be reduced to 2;1

by removing all redundant columns,
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0| e T TR R

Then ¢, must satisfy

== -
fey | 1107, e 0 (4.4,4)

and E} must be realizable with a TLU in order for one redundant TLU to
correct for all single, type u, first layer errors, It turns out that
no such El exists in this case as can be determined by the computer pro-
gram of Section D.3,

If no suitable Ei exists which satisfies Inequality 4.4.4, then the
"best" El must be selected and a search must be made for a Eb which
satisfies a new set of inequality constraints. The selection of "best"

Ei and the development of the constraints on E} is the topic of the next

section.

4,5 Inequality Constraints on E;_Egven C,. Recalling the basic

reason for Ei, it can be seen that a Ei is desired such that every 31,
which is a nonnegative, linear combination of extremal vectors ;i,

k =1y 2, sedy 8.9 must result in

—_] =]
)

cl(¢ ¥ £0 .

In other words, Ei should satisfy
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1
-, =i
°11 R | F O 20,

for all lko This inequality reduces to

— ] — —
Le, | "]211 R0 o TROBIET

or to

- =T e
fe; | wlDj, A #0, 220, (4.5,1)

where % is the vector whose elements are the nonnegative scalors above.

Since the elements of P-il correspond to the extremal vectors in 2_1,

Inequality 4.5,1 is satisfied when

-] | . > o=
Cl h - [Cl i u]-D-ll < 0 o (u05§2)

If there exists no realizable Ei such that Inequality 4.5.2 is satisfied

then a EQ must be selected which is "best" according to some criterion,

T
and a search must be made to see if there exists a suitable Eg which
completes the task started by Eie

-2 -2
Assuming that y = 2, ey and ¢, must be such that for every nonnega-

tive, linear combination of Ei's,

s
2
32 =] Xﬁﬁ s M 20,
k=1
¢, and c, satisfy
(3%)7- DA DT | # SR 20 (NEE)
=2 -2 k=1 0
29 €2
— e — ——— ||——
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2
where Eias . This inequality reduces to

|

|
[c, | ulD s
-.:l-.;--_:g:":- 'i"r # ET o K B
Ce, ! ulD,,

or to

where A is conformable. The first inequality in this system of two

inequalities is

(e, | WR, | R RIN #0, X2T , (4.5.4)
and is equivalent to
- | o _ = . o — —
Loy | WR W RAX) =1e; | wlD). 4 #0 4,3 20,

which is the same as Inequality 4.5.1. Since there exists no Ei such
that Inequality 4.5.1 is satisfied, there exists none such that
Inequality 4.5.4 is satisfied.

In order to reduce the task which E& is expected to perform, Ei
must be selected judiciously. Obviously the selection of El has an
effect on the system of linear inequalities which EE must satisfy.

Before defining the '"best" Ei, some notation must be introduced. Let

the matrix
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— -
A
A
i)t
X

s21

[ e

be defined as the matrix whose rows:are extremal vectors for the set of

solutions A to

| =T — - e
[cli”]%l}‘ 0, X#0, x>0 .

It is also necessary to point out that the vector El is trivial if it is

o= | I
Cl = (l' l, CICN Y l : ‘"l. "l_’ 0ocog -l : ]J)
m+ l m
elements ] elements

or

- l |
= (“’lg f"l’ coog “‘l i l, l‘. coog l I u)

0

corresponding to

o l
ci =z (1, 1y 0oos 1 | u)

or

- |
Ci = (“l’ “l, ao"og -1 I| u) o

The addition of a redundant TLU with this output vector amounts to
nothing more than adding another constant input to the second layer TLU

m
v+l°

Definition 2.5.1. The best El is that nontrivial Zl, corresponding
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to a realizable E}, for which the matrix A, results in the least number

of unique columns in the matrix

T
]
Do Apye

Notice that a column which is equal to a positive multiple of another
column is not unique because it applies the same inequality constraint
as the other column. The computer program of Section D.2 computes El
from input data consisting of the input patterns ;1. ;}, voes ;;, the
value of p, and the matrices Eél and 2520

Given a best Ei. the vector E& must satisfy

< ol
| rias
Loy | wlRgy Ay <O

T
' -
ng ﬂQl are computed by the pro

gram of Section D.2 while searching for the best El. Call the matrix

where the unique columns of the matrix

252 the matrix whose columns are these unique columns, then E} must
satisfy

— | " > -
[c2 } u3222 i TN

The computer program in Section D.3 can be used to search for c, and
determine whether or not one exists, If one does exist, then y = 2 as
assumed.

Example 4,5.1, Continuing the running example in Examples 4.3.1

and 4.4,1 the problem at this point is to find the best Ei and a c,.

2
Since there exists no Ei such that Inequality 4.4.3 is satisfied, a
realizable El is selected such that the matrix 252 ﬁ;l has the least

number of unique columns. Using
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—
of
[
[
| -
(=)
>4
"
(@]
L]
>|
W
=]
L]
>|
jv
of

or

L

0 1l 0 1l 0 1 0 0 0 1l 0 1
LP 0 0 0 1 l -1 =1 0 0 0 q_ (4,5,5)
X#0,%12>0,

the computer search routine of Section D.2 calculates

El = (1, -1, =1, =1)

for the realizable 31 which is best according to Definition 4.5.1.

For the given value of Zl, Equation 4.5.5 results in

Y = l )
x| 1 0 0 0j0 0 0 0 i o 0 o 0]
%, o 1 0 0 : o 0 o olo o o o
|
X, o o o ol1 o o o jo o o o
A = = !
=21 %, 0O 0 0 0 : O 1 0 0 { O 0 0 0
g 0 0 0 0 : 0O 0 0 0 } 1 0 0 o0
Y Lo o o olo o o ofo 1 o o

Lme.
through the use of the technique of Appendix A, If y is actually equal

to two, then ¢, must satisfy

- T 5= ‘
e, | 1105, Ay 20 (4,5,6)

or
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AV
ol

. T . .
Replacing 252 £2l by 2:2'2, the computer search routine of Section D.3

searches for a realizable Eé such that

oj
-]

(4.5.7)

AV

This séarch results in

Z} = (1, -1, 1, 1)

which satisfies Inequality 4.5.7., Therefore Y = 2 and El and Z& are as
given above for single, type 1 errors in the first layer of a TLU net-

work which produces A_ given in Example 4.2.1., Notice that the actual

=p
output vectors for the redundant TLU's miR) gR)

and m are given by

E} = (1, =1, 1, 1)

and

E; = (1, =1, =1, =1) .

The result of this procedure is that the matrix éé written as in
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Equation 4.5.8, forms a consistent system of linear inequalities

=T =T
By > 0,

This consistency is verified with the technique of Appendix A by showing

that there are no extremal vectors for the set of solutions to
T =T = - = _ =
AN 9 =7, 340, 327,

where Zl and Z; are given. The resulting redundant TLU network is shown

in Figure 4.5.1.

-
Yi
—
Ys
—,
f(yi)
-
Yi
y

Figure 4.5.1. Redundant TLU Network for Example 4.,5.1



If no realizable <,

tions, then y must be greater than two,
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exists such that Equation 4.5,7 has no solu-

The procedures of the previous

two sections can be generalized to investigate all values of y in a sys-

tematic manner.

e st a1 { g e
|
TR TR ! : -1 | -1
|
1 <1 =1leroa
| I
i -1 =1 | =1 | 1
n X Lo N
SEOE RO ] 1
R ! -1 | -1
[ |
-1 -1 -1 -1 1
|
|
T T, § : -1 1
S s i
R TR L SRS : 1
| —<2.T | ,=2.T '
I = | I = - - |
QQ [éQ | (cl) | (c2) ] 1 1 = : 1 I 1
R R I | : i
' |
1 -<e) el [sl | L
- L K | J - -
9 |
e W Rt vl
| I
-1 =1 1 1 1 1 -1
DI [ : w3 I 1
|
1 =1 =1 |=1 } 1
- ----:l‘ - - -
R ; 1 : 1
I 1 1
|
v =1 - <1 i =3 : w1
[ 1 -1 -1 }-1 }-1]

4,6 Inequality Constraints on EL
¥

y > 2 the procedure of Section 4.5 becomes more complicated.

(4.5.8)

given °7—1' < wpd200) cl“ For

The
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notation used there is extended to the general case here and additional
notation is introduced. Keep in mind that the value of y is an assumed

value; and, if the algorithm does not find y vectors c.

i which correct

single type u failures, then the algorithm must be repeated with a

larger value of y.

In general the matrix éTi has as its syi rows the extremal vectors

i% for the solutions to

1
- |
L 21 UJD'z 0 s
ol £ (5 B X#0,1%>7,
——-n:-—-l?o--——--—- 5 i = l’ 2' e00g Y-lo
1

Using the matrix ﬂqi’ the problem here is to extend Definition 4.5.1 to
aid in the selection of E;, 2 <i < y=-1, such that the task remaining
for E&+l is reduced. If it happened to be possible for the algorithm to

terminate on ¢, ., then c would have to satisfy

i+l i+l
| T -T >
I:‘::J.H. | ulp, (1+l)—ﬂ(i YK :
for every w which is a solution to
! =
[ci : u]D yid Y(i l) 0, w#0, w>0 .

In order to explain this, consider every positive linear combination

s g R
=y(i-1)

of extremal vectors for the solutions A to
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= | @
[, | ulny ¥=0,%T#7,%>0,
--—-u‘ﬂﬂlmmu‘d‘ -------
Dl
L i=1 | u:I'*-‘Y(i-l) ot

for which the best E} permits the equation

[, | wlp’ AT = [, | wlp!.A =0, 9#0, >0, (4.6.1)

T
i Py i yi=y(y- l)
to be true. Then Z}+l must satisfy the inéquality

T -T >

s |
Cejpr i ¥4y (3-1)® < ©

for every w satisfying Equation 4,6,1., The w's satisfying Equation
4,6,1 form a convex polyhedral cone; therefore, each can be expressed as
a positive, linear combination of extremal vectors wl, w2, ooo; Zgyio

~ Furthermore, if the matrix gﬁi contains as its rows these extremal vec-

tors, then it is sufficient for E}+l to satisfy
— ! T T >
e iq 0o & 4,6,
[c1+l' u]u—=y(1+l)=-'y(1-l)—"vl < (, 6.2)

It is very significant that the matrix

[y | 9
[ci i u]=-=Yl—Yl

contains only one row., This permits extremal vectors for the solution;
® to Equation 4.6.1 to be found very simply as shown in Appendixﬂc;‘
This is incorporated in the program of Section D.2, which computes Z}
based on the definitions below.

Obviously, if y > i, then the algorithm does not terminate with Zio

Therefore some criterion must be established such that the task performed
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by Z}, 2 < i < y-1, reduces the task expected of Z}+le

Definition 4.6.1. The best Z}, 2 <i < y-1, is a realizable,
nontrivial Z} for which the matrix

D' AT ol
Y417y (3-1)7Yd

has the least number of unique columns. Similarly Definition 4.5,1 can

be extended for y > 2 to the following.

Definition 4.,6.2. The best :l is a realizable, nontrivial :1 for

which the matrix

D? AT
ety Qe=yl

has the least number of unique colummns.,

Notice that in Definitions 4.5.1, 4.6.1, and 4.6.2, no claim of
optimality is made, These definitions are made on an intuitive basis.
A geometrical description of these definitions and the rest of the
algorithm is given in Section 4.8,

Based on the above definitions and the theory of Appendices A and

3

C, the computer program of Section D.2 computes the best E;o For

2 < i < y=1 the input data for this program consists of the input
pattern vectors ;19 ;}9 0oog ;E, the value of p, and the matrices

o 4T . T
Dyily(i-1) @9 Dy(ivn)ly(i-1)e

Given ¢

y-1° cy=2’ ooy Cp3 cY must satisfy

- T 5 =
] D' A 20 (4,603
[cY l u]dy‘y_ay(yml) < ( )

and 21 must be realizable. The search for ¢y can be simplified by

defining Q;Y to be the matrix formed by removing the redundant columns
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from D! ~As in the case for y = 2 in Section 4,5, the compﬁter

T

A o
=y=y(y=1)
program of Section D,3 can be used to search for a E} which satisfies
Inequality 4.6.3, If there exists such a Z;, then the assumed value of
Y is correct; if not, then the algorithm must be repeated with a larger
value of v,

The flow-chart in Figure 4,6.1 illustrates the algorithm and its

use is illustrated by Example 4.7.1.

4,7 Extension of the Theory to Consider Both Failure Types

Simultaneously. Tbé theory developed here and in Chapter II is flexible

to the extent that the consideration of the occurrence of both type =1
and type +1 failures is permitted. This extension can be performed by
adding extra rows to=£& and by making the corresponding alterations in

. v = 3 3 . o

205 209 gikg and Cse There is no change in the application of the
algorithm illustrated in Figure 4.6.1 after the above alterations are
made,

Notice that in Equation 3.5.7 the partition containing Q« is

™~ A_ "] m rows.
=P
o s e 7Y 3 S D e e
A = vm rows
éP m rows
- S ke
: H Y rows
@ Q .
- ) G A A A D e D R D - 3
m rows o
o= e

The most significant alteration in é* is ‘in the partition Ay, QR con=-

sists of v sets of m rows as shown in Equation 3.5.2 and the alteration

in Ap amounts to adding v additional sets of m rows as in



COMPUTER

PROGRAM
LOCATION

SECTION
D2

SECTION
A8 .

SECTION
D.2

" SECTION

A8

ASSUME 7Y

———A

SELECT C, 3 Dy, A], HAS LEAST NUMBER OF UNIQUE COLS.

COMPUTE Ay, FROM [G,ip]Dy, V=0

SELECT C; 3 D)3 AL, OF, HAS LEAST NUMBER OF UNIQUE COLS.

]

COMPUTE Ay, FROM

SECTION
D.2

SELECT Cy- 3 DyyAy(y-2) Q(y.,) HAS LEAST NUMBER OF UNIQUE COLS.

SECTION
A8

SECTION
D.3

COMPUTE Ay(y.,, FROM
_[E—:_';_’fJ:P_KL__, 7.5
[ Ha

COMPUTE Dy, FROM Q’,,A}(y_., '

YES

STOP

Figure 4.6.1.

~ DOES 3 Cy 3

e
Dy, 20

i
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GO TO A

INCREASE
)’ |

NO

Flow-Chart for Synthesis Algorithm
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.
a- o
AR T} &

where éR is the same as éR except that p is replaced by -p., The remain-

ing alteration in éﬁ is the addition of y partitions éP as in

m YOWS

a -
éR 2vm rows

0 s 8 o dap (2 S O B Cm o

¢ ..l ym rows

- 4e3 22 oy

g 1 -ym rows

In order to consider both failupe'types in the redundant TLU's, the
altered form of the matrix é& must,bé Qrittéﬁ as shown in Equation 4.7.1,
The partitioning shown means that thé matrix 3:, which is the altered
form of 3«” has the same form as 2*’ but' that the matrices EP in the
diagonal partitions (except the uppef left partition) occur 2y times
rather than y. Also the altered partitions g;l and 9;2 contain twice as
many rows and, possibly, more coluﬁnso The hatrices 22 for iv> 0 are of
no importance in the mechanics of the algorithm; howevers the resulting

. a . ’
altered matrices Dik are of importance.

D2 can be obtained from ° by the transformation matrix
a ! | N I | I | u
T = [T }T poceeq T IT ‘ ooo,!_ T . T I"T Yo i eoe 1 T]
O TTE R e = L
cols| cols !
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m rows
2vm rows
m rows
m rows (4.7.1)

m YOwWs
m Irows

_J2vt2y+1)x(vty+l)
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where the partition

|
1 =T
]

L

occurs in the columns corresponding to the elements p in the (v+l+l)st
a?

column of éq o

. S . R

The only other alteration is in [ci E 1), Since the matrix TYk

contains both Eﬁ and -Ev, 1 must be set equal to one; that is
= |
ey | 1]

must be used exclusively in the algorithm,
: at
The altered matrix Dak can be simplified to ka by removing the

redundant columns in the first (2v+l)m columns. The result is

The use of this extension and of the general algorithm in Figure

4,6,1 is illustrated by the following examples.

Example 4,7,1. This example is an extension of the running example
appearing previously in Examples 4.3,1, 4.4.1, and 4.5.1. There it is
éssumed that only type +1 failures can occur., This assumption is con=-
sistent with all of the theory with the exception of that developed in
this section., Here it is assumed that either single, type -1 failures
or single, type +1 failures can occur but not both simultaneously,

Since some of the matrices in this case become too large to conveniently
present, the detail of the running example is not presented here,

The matrix éo in Example 4,3.1 is extended to éz as shown in

%
Equation 4,7.2. By removing redundant rows, ég simplifies to éz in
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Equation 4,7.3. Using the computer program of Appendix A a set of

extremal vectors for the solutions Euto

L .., - -— = R —
(£‘)T¢T=OT,¢#O’¢10’

a:'l.

turn out to be the vectors shown in the columns of &  in Equation 4.7.4.

— 1 1 17] 1

-1 =1 1 2
1 -1 =1 3 no failures
1 =1 -1l L
1l 1 1 5
1 -1 1 6 +1 failure in m,
=1 -1 =1 7
=1 =1 =1 8
1l 1l 1 9
-1 1 1 10 +1 failure in m,
: A
a =P
A% = edeclimada = 1 =1 -1 |1
=0 a :
éﬁ .
1 -1 =1 12 (4.7.2)

=1 1 1 |13
=1 =1 1 | 1w =1 failure in m

1 =1 ;l 15

1 -1 -1 | 16

1 =1 1 17

=1l =1 1 18 =1 failure in m
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101 1 1
. -1 -1 1 2
. A [
ki 3
A% = - _,,Exea - = 1 =1 -1 3 (4,7.3)
=0 oo _ '
AR oD e nmnwe&'dm’eaaauuwwnn-r—mm
1 -1 1 6
-1 =1 =1 7
-1 1 1 |10
11 -1 ] 19
~1 0 0 : 077 1
o 1 0 } 0 2
|
0 0 1 1o 3
” > o P D G G S A D S 9 D D S S e
'S o 0 0 r 17 s (4,7.4)
B 1
1 0 0 |1 7
|
0 0 1 { 1 10
|
o 1 0 p1 |19

a
Although it is too large to present here the matrix 20 can be

.
. ar . e .
written from ¢ using a transition chart and the extremal set extension
=0

J

a .
technique of Appendix B. Then from 20 the matrix 2? in Equation 4.,7.5

11
can be written using the transformation matrix Z:lo For values of

vy >1, 2;; can be constructed from Q:; by simply adding 2(Y~15 p;rtitions
whose columns are shown in 5: given by Equation 4.,7.6 and by shifting
the partition EM to the proper locationo

From this point on, the problem is continued by applying the

algorithm of Figure 4,6,1. After successively performing the steps for
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Yy = 1, 2, and 3 the procedure terminates on y = 4, This iteration begins

by constructing

a al "a a a

l .
‘[R:R:R‘R‘*‘IR!R: R
=41 ==P|°'u|-ll-l:—ll—l|=-ll-l
| ! |
| |
and | l I
| | I
| | [ I
Da" _ [Ra I Ra : Ra | Ra [ Ra ) Ra I Ra : Ra]
~=-4+2'=—P:=-1|—=1:—u:-=1|'—1:=—l|-l °
1

This data along with the pattern vectors ;1, ;}, ;%, ;Z is used as the

input to the program in Section D.2 to compute

cl = (1, -1, =1, =1) .
a' - [Ra Ra]
=11 =P | =

(4,7.6)

o]

i
EO o - O I—‘g
o +H O O ¥
o +H O bk O
o O K K O
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Using this value of ¢, the matrix AQl is constructed from the set

of extremal vectors for the solutions A to

— a’ - — — -
LA Y=o, T#O, T2T .

. e | at v
Since the matrix [cl ! 11241 has on;y one row, A#l can be found by
inspection using the theory of Appendix B rather than using the program
in Appendix A.

In order to compute Z} the matrices

and

are constructed and entered as data in the program of Section D.2., The

result is

02 = (l’.’l’ l’ l) o

According to the algorithm the next step is to comstruct qu from

the extremal vectors for the solutions X to

oo at =T - - _ _
Lo, X =T, X#T, T20 .
. i a|
L i 131D
2 | =l D

These extremal vectors are found by removing all redundant columns from

- al
Cey 1 11D,

msuanannﬂn_nga

— ] a
[c2 | %]242
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finding the extremal vectors for the simplified system with the program
of Appendix A, and generating the rows of qu by the extremal set exten-
sion technique of Appendix B.

The vector

cg = (1, -1, -1, -1)

a' a

is found with the program of Section D.2 from D, . and D The output

1
=43 —44°

of this computer run includes the set of constraints that EL must

satisfy. The resulting system of inequalities is

o

- -
o o

[, 1111 o2 (M
o 1

and is obviously satisfied by several vectors, If the system of inequal-
ities is more complex tham in this example the program of Section D.3

could be used to find
oy = (=1, 1, =1, -1) .

In summary, both type +1 and type =1 failures can be corrected in
the problem presented in Example 4.3.1 by adding four redundant TLU's

with output vectors

0
n

(1, -1, 1, 1)

(1, -1, -1, -1)

0
H]

[¢]
u

(1, -1, 1, 1)

(-1, 1, 1, 1) .

[¢]
]
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In this example the correction of single type =1 or type +1 failures
requires the addition of four redundant TLU's while the nonredundant
network shown in Figure 4.3.1 contains only two first layer TLU's., The
following example illustrates that the amount of redundancy required in
Example 4,7.1 is not always necessary, It shows that a certain amount
of overdesign in the nonredundant TLU network can result in a consider-
able savings in the amount of redundancy required to achieve single

error correction of both type +1 and -1 failures,

Example 4,7.2, Consider the two-layer TLU network shown in Figure
4.7.1 and the corresponding pattern-to-image-space transformation shown

in Figures 4,7.2 and 4.7.3.

Figure 4.7.1. Nonredundant TLU Network for
Example 4,7.2.
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v/

— Ya
W,
Y3
- Wm
Y5 W,
G Yio
Yiu

- -
Vi , Ya

Figure 4.7.2, Pattern Space for Example 4,7.2

-

Figure 4.7.,3. Image Space for Example 4,7,2



From the image space patterns the matrix

'L:P

%

a
The matrix éo as obtained from

not shown because of its size.

a %
=0

Using the program of Appendix A, the resulting matrix 20

-

%
bering of the rows of éo corresponds to their

-1

1

=1

=1

Aa
=0

-1

éP can be written as

n:ra-uawauuadsdamaa&‘nu‘éa

1l
=1
=1

Cel

-1
=1

1

%

is-shown-in Equation 4,7,.7.

112

The num~

R . a . .
location in A~ which is
-0

‘4 from A

A

11
16 from
24
25

30

ofs

«

(4.7.7)

is as shown in

o . an. . ..
Equation 4,7.8, It is significant that 20 indicates that there are no

PLD's involving any of the rows 1, 3, 4, and 5 from épo

This is a
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(4.7.8)

4%y
*
n
o
o
o
@

0 Ll <=0 il

T840 0| 16

2 s AR 2y

o) SRl | 0 25

g, 0l 2.4 30

direct result of the fact that the image space patterns E} and E; are a

Hamming distance of two from the patterns 3}, al, and 3; in Figure 4,7.3,

The importance of this is that the submatrices [

- a - -
% in 2w are ldentically

a'
zero, As a result, the matrices Ewi’ i=1, 2, ss04 Yy do not change

with either y or i. The matrices B:i’ i=1,2, 009 Y, are given by

a a |

(I8 R T e
D - R IR R 1 6oa R | ®oa R
iy 1 8 BT | £
TR L Tl TR I DI T ML O e, B B
oAt S Sl PR TR TR - SR AN e (L

|
|
|
e B R W Sy g -
|
|
|

D .=| O 1 0 P 0 0 0 0 0 S Lalal ) Loy 0
= o
0 0 0 0 1 0 1 0 L0 o E
0 0 0 0 0 0 0 0 0 0 0 0
b e
e & all
R R other
1 A partitions

for all y and i. This matrix reduces to



_! =)
V1]

e
n
o
=
o
=
o
o

For this example y = 2 and the vector Ei is computed by using the
' t
pattern space vectors and the matrices 2;1 and 232 as input to the pro-

gram in Section D.2. The result is

El 8 (=l =1, 1, =1, =1)
or
31 3 (=1, =1, =1, 1, 1)

and the unique constraints on Eé result in the inequalities

i 4n
6.4 %

w5 5 B e o
0o 0
o o

which must be satisfied by '5:'2. Obviously there are several values of
[EE E 1] which satisfy this system of inequalities. The computer pro-
gram of Section D.3 could be used to find EE. but it can be found by

inspection in this simple case. One realizable choice is
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= ("'l’ -l' -l. -l. l)
for which

E; = (_l’ -l. l. 1' -l)

means that TLU m, is repgatedn E} means that TLU my is repeated.

The result of this example is that, for three first-layer TLU's in
the nonredundant network, two redundant TLU's are sufficient to provide
single error correction of both type +1 and type -1 failures, It is
significant that the pattern space is incompletely specified; that is,
of the 2° = 8 possible patterns only five are considered, This is, in a

sense, redundancy.

4,8 A Geometrical Description of the Synthesis Algorithm. The

redundancy synthesis algorithm presented here has not been shown to con=-
verge by a formal proof. However, examples have shown that it does con-
verge for the specific problems tried. In order to give the reader a
better understanding of the mechanics of the algorithm, a geometrical
discussion is given here.

Assume that for some y the algorithm is at the point of selecting

the best E}, The previous vectors El, E}, caoy E:_ result in solutions

i-1
% to the system
I | p—
B
[e, ! “3242
8 ':TT='6‘T, AED, X2Ty  (8,8:1)
_begon | wiicg gy o

which means that the desired error correction has not been achieved.
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The solutions X to Equation 4.8.1 can be visualized for the case of
Yy = 3 in the space shown in Figure 4.,8.1. The two hyperplanes shown are

generated by the solutions A to

[cl : u]‘D'él A P 0 (na8a2)
and
(6. | uipt . Xwe . (4,8,3)
2 - _62 eVa

Notice that the restriction of 3':_0 and X'f 0 restrict the solutions to
the positive orthant and away from the origin., The solutions to Equa-
tions 4.8.2 and 4.8.3 are contained in the intersection of the two
hyperplanes and in the portion of the space bounded by X > 0 and X £ 0.,
The resulting convex polyhedral cone (a half-line) is spanned by the

single extremal vector shown in the figure.

Vector

Extremal ,.f- e

Convex Polyhedral
Cone (half-line)

Figure 4,8.1, Intersection of Hyperplanes in Eq
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In general the extremal vectors for the cone thus formed are rows

in the matrix

= 2>

>

A iadn ™

:Hl coe

Sy(i-1)

The desired result of the algorithm is to find a E; such that the hyper-

plane defined by the vector

-
|
Cey | wlDyy

does not intersect the convex polyhedral cone described by the extremal

vectors in A . However, for c., i < y, such a hyperplane does not
=y(y=1) *

exist, Therefore, how should E} be selected?

The criterion proposed here for selecting E}, i < y, is based on
Definition 4.6.1. This is an intuitive approach and its optimality
remains to be shown. In order to understand this criterion, consider
the hyperplane in A-space defined by the vector

— | '
[ci ; u]Eﬁi

L]

Since it is assumed that i < y, this hyperplane intersects the cone

described by Equation 4.,8.1. As a result, certain positive linear com-

binations of the extremal vectors in A ., result in
=v(i-1)
sl e
Ce; | u]E-ri A 0 (4.8.4)

where



118

R R . A T
A= ﬂy(i—l)m y W#FO0, w>0 ,

Obviously the set of w's satisfying

e AT _q X T g S
(g | WIDj, A 4y =0, w#0, w20, (4.8.5)

can be spanned by a finite set of extremal vectors EL. Corresponding to
each such extremal vector a half-space (not necessarily unique) in the

space of [E;+l E u] vectors is defined by the inequality

>
Y l -'r(1+1)-°r(1..1) iy CHelel)

Actually two half-spaces are defined by this inequality due to the

symbol 20 The important point here is that, if the positive linear com-

T
binations A _T of the vectors in A Y (i-1) which are solutions to

2v(i-1°

Equation 4,8.4 are not to be solutions X to

- | - - DY AT =T _
Cogar | IR caanyr = [o5y ! u1-‘r(:.-rl)-'f(:.—l) ahodke.
then the vector [E;+l i p] must be in the intersection of all the half-
spaces defined by the vectors
g -
D' A w
=v(i+l) =v(i-1) k
as in Inequality 4.8.6. If i + 1 < y, then no such E;+l exists; how-

ever, the concept of the intersection of these half-spaces forms the
basis for Definition 4.6.1,
The matrix 24 is the matrix whose rows are the extremal vectors

for the set of solutions w to Equation 4,8.5, The system of inequalities

T > =

|
' u]DY(1+1)AY(1—1)-1'1 X

(<.

i+l |
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defines the empty or nonempty intersection of half-spaces which restricts

the vectors [Ei 1 E p). The fundamental idea behind Definition 4,6,1 is

+
that this intersection should be of as few as possible unique half-spaces.
Thus, the best solution region is bounded by as few hyperplanes as pos-

sible and the choice of EE can effect this number. The result is that

E} is chosen such that the matrix

DY ctatrhycion) e

has as few as possible unique columns and such that E} is realizable,
This definition of the best E& is best in the sense that the number of
unique inequality constraints on E;+l is minimized.,

It should be pointed out that some other set of constraints and the
resulting intersection of half-spaces might be better when the realiza-
bility of E}+l is considered. The geometrical constraints imposed by
realizability is still an open question. It appears that a better cri-
terion could be found by considering the location of the intersection of

the half-spaces relative to the location of the i's corresponding to

realizable (E})'s.

4,9 Conclusion., This chapter consists of a step=by-step develop-

ment of an algorithm for selecting the output vectors of redundant TLU's
in the first layer of a two-layer network. In this algorithm an attempt
has been made to utilize the fundamental mathematical ideas presented in
Appendices A and B. As a result of this use of mathematics the criter-
ion for the selection of TLU's is based on an intuitive, geometrical

view of the problem rather than a blind application of redundancy. The

question of whether this approach actually pays off in terms of less
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redundancy than for approaches such as simple triplication is approached
by examples and is by no means rigorous. It is felt that, regardless of
the practical value of this approach, the presentation of the task to be
performed in introducing redundancy by the removal of PLD's is of value.
It can be seen that the task is not as simple as in the problem of net-
work synthesis by removal of PLD's as presented by Hopcroft and Mattson
(13). The fact that the redundant TLU's are allowed to fail is the
source of the difficulty.

Contained in this chapter is the development of the constraints on
a TLU output vector E& given E;-l’ E;_2, 555 Ei. These constraints are
the starting place for any iterative technique for selection of the E&'s.
Obviously, one approach is to try all combinations of a set of vectors
El, E;, sooy E}, but the limitations here are obvious., Therefore, an
iterative technique is needed, which implies that a criterion is needed
for selection of E} given that it cannot satisfy the constraints genera-
ted by El, EE, cooy E}_l. The resulting criterion which is proposed is
presented in Sections 4.5 and 4.6 and discussed in Section 4.8,

The entire development of the algorithm is centered around correct-
ing only one type of single, first-layer error. The reason for this is
to allow a simple presentation while leaving open the possibility of
considering failures for which a failed TLU has its output held at any
value u. Obviously, in order to compare the redundancy, thus induced,
to conventional redundancy, the occurrence of both +1 and =1 failures
must be considered. The theory is flexible to the extent that this ex-
tension is permitted without excessive complication. This extension of

the theory is the topic for Section 4.7,

After synthesizing some redundant networks, it appears that there
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is a relationship between the minimality of the nonredundant network
realization and the number of redundant TLU's., In other words, it
appears that a minimal, nonredundant realization requires more redundant
TLU's per TLU in the nonredundant network than for a subminimal realiza-
tion. The lack of theory concerning minimal realizations prevents a
more precise statement of the results in this situation. The examples
shown here indicate that this approach is little or no better than trip-
lication for minimal realizations as in Example 4.7.1. For subminimal
realizations the situation is different.

Example 4,7.2, for which the nonredundant realization is submini-
mal, illustrates a different situation. In this example three signifi-
cant factors permii the use of less redundancy per nonredundant network
TLU than in Example 4.,7.1l, First, the pattern space is incompletely
specified; second, three first layer TLU's were used rather than the
minimum of two; and third, the pattern space hyperplanes are located so
that the image space patterns in opposite classifications are a Hamming
distance of two away from each other.

Regardless of the minimality of a nonredundant realization, the
theory presented here should help to determine the feasibility of intro-
ducing redundancy in TLU networks from a purely mathematical point of
view, It is quite possible that some major simplifications can be made
in the algorithm presented here. The algorithm, as it is, is quite
cumbersome and only small examples can be considered. Its value may fall
into one of two catagories. It may be the starting point for a more
efficient algorithm or it may indicate that a completely different

approach is more feasible.,



CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 Summary. The problem considered here can be broken into two

general areas. The first area involves a comparison of two types of
decision-makers and the second area involves the development of an
algorithm to make reliability improvements in a particular implementation
of one of the decision-maker types.

The investigation of the first problem area is based on two binary,
decision-making system models which possess the desired characteristics
of each decison-=maker type. One model represents a decision-maker in
which unreliable, binary information is fed into a set of n inputs, each
of which leads directly to at least one switching element., These switch-
ing elements are modeled with binary channels., The interconnection of
these input channels is then represented by another binary channel. The
other decision-maker model is essentially the same except that the inputs
do not lead to individual switching elements and the interconnection
channel is assumed to be more complicated.

The two decision-maker types are compared on the basis of risk
functions. These risk functions are evaluated as functions of the inmput
switching element channel parameters, the number of input channels, the
interconnection channel parameters, and the type of decision problem,

This comparison indicates the validity of the problem of redundancy

in threshold logic decision-makers., In particular, if threshold logic
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is used to implement one of the two decision~maker types, then the com-
parison indicates that networks of threshold logic units (TLU's) must be
used rather than single TLU's.

Beginning in Chapter III a development is presented for introducing
redundancy in two-layer networks of TLU's., The basis of this develop-
ment is a mathematical model of the network. This model is a system of
linear inequalities and takes into consideration the possibility of
failures of TLU's in the first layer of the network. The development
proceedes at first on the assumption that a failure consists of a TLU
output being hung at one particular value u. Thus the redundancy must
correct for single, "type u" errors, In Section 4.7 the theory is ex-
tended to consider both type p and -u failures.,

The manner of selecting the redundant TLU's consists of finding a
vector 3& which satsifies a set of linear inequality constraints and
which determines the design of the TLU, The constraints on this vector
are found from an application of the theory of linear inequalities. It
is necessary in most situations to add more than one redundant TLU;
therefore, an iterative technique is needed for computing a set of ¥y
vectors Ei, E&. cooy E} using the constraints mentioned above.

Chapter IV contains the development of the iterative technique and
illustrates, by examples, the resulting redundancy synthesis algorithm.
These examples also illustrate to a limited degree the feasibility and
utility of the algorithm. Due to the time required in applying the
algorithm, three computer programs were written to aid in the computa-

tions. These programs are presented in Appendices A and D,

5,2 Conclusions. The most important conclusion which can be drawn
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from the comparison appearing in Chapter II involves the particular task
to which decision-makers with distributed redundancy are applicable. If
the interconnection channel of such a decision-maker can be made reason-
ably reliable, then it is better (in terms of risk for decision problems
like the full pattern set case) than a decision-maker with switching
elements on every input. This implies that any decision-maker implemen-
tation, which possesses the characteristics attributed to distributed
redundancy, is most applicable to decision problems in which all combin-
ations of input patterns are reasonably likély to occur, This condition
becomes stronger as the number of input channels increases.

On the other hand, the comparison shows that, if only a few of the
possible input patterns are likely to occur, then conventional networks
of switching elements are better in terms of risk. For this particular
problem type it is possible to use a single TLU (which possesses cer-
tain distributed redundancy characteristics) to perform the decision
making; however, its interconnection of inputs must have unreasonably
high reliability in order to justify its use,

The type of decision problem, for which distributed redundancy is
applicable, is such that a single TLU cannot perform all of the decision
tasks which can arise. Therefore, networks of TLU's must be considered
and ways found for improving their reliability.

The technique suggested here for improving reliability in two-~layer
TLU networks is centered on correction of errors occurrring in the first
layer. There is no need to be concerned with compensating for second
layer failures because the resulting reliability can be no greater than
that of the device which compensates for second layer failures.

Perhaps the most fundamental trait of the error-correction scheme
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proposed here is that it adds redundancy in such a way that it insures
the existence of an error-correcting second layer. Other approaches
(such as Coates and Bargainer (5)) correct for errors through extending
an existing second layer design by repeating some of the existing non-
redundant, first layer TLU's.

The development of the synthesis algorithm demonstrates the possi-
bility of iteratively selecting redundant TLU's, The vector E}, charac=-
terizing the ith redundant TLU, can be computed from a knowledge of the
previous vectors Ei, Eb. ceoy E;-l and the inequality constraints which
apply to Elo Thus, the inequality constraints on E} do not have to be
computed as if it were the first redundant TLU added., As a result of
this iterative approach, a more direct tie between the Ek's exists and
it is easier to visualize the effects of one on the other,

The redundancy synthesis algorithm has some rather severe limita-
tions with the most significant being the size of the matrices of con-
straint vectors used to evaluate the E}'s. The size of these matrices
prevent consideration of examples very much larger than those shown in
Chapter IV,

The examples in Section 4.7 point out some interesting characteris-
tics although no definite conclusions can be made from them. In Example
4,7,1 the nonredundant realization has a minimum number of first layer
TLU's. The result is that correction of single, type +1 or =1 errors
can be corrected only by adding four redundant TLU's to the two nonre-
dundant first layer TLU's. In Example 4,7.2 not all of the pattern vec-
tors are allowed to occur and the nonredundant realization is subminimal.
The desired error-correction is achieved by adding only two redundant

TLU's to the three nonredundant, first layer TLU's. These results
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indicate that a certain amount of over design in Example ue?oé has per=-
mitted the use of less redundancy than is required in the minimal, non-
redundant realization of Example 4.7.1.

In summary, the area of applicability for distributed redundancy is
with decision problems for which it is likely that any set of the pos-
sible binary inputs to the decision-maker can occur, For decision prob-
lems that cause it to be unlikely that the decision-maker will receive
any patterns except a very small portion of those possible, conventional
networks of switching elements are best, If it is feasible to use TLU
network decision-makers, it appears that a strictly mathematical redun-
dancy synthesis approach is most likely to pay off if a certain amount
of over design is used in the nonredundant realization, If the redun=-
dancy synthesis algorithm developed here is used, the decision-maker
must be small in terms of the number of patterns into the first layer

and the number of first layer TLU's,

5.3 Recommendations for Further Study. The following is a list of

suggestions of topics for further study.

1. A better model is needed for the interconnection of decision=
maker inputs. For example, the parameters of the model should be func-
tions of the inputs to the decision-maker.

2, It is very likely that a considerable amount of simplification
can be done on the synthesis algorithm developed here. The matrices E;i
contain many redundant columns in most examples and all of these columns
may not be needed.

3, Referring to Section 4.8, a need exists for finding a criterion

for finding E}‘s such that consideration is given to the relationship
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between the realizable vectors Z} and the intersection of half-spaces
which bound the solution regions for the Z}“so

4, The effect of variations in TLU parameters could be considered
in the selection criterion for the Z}"so

5. A study is needed to determine the feasibility (in terms of
increasing‘reliability) of multiple error correction for TLU networks in
particular,

6, The synthesis of a redundant TLU network could be approached
from strictly a Hamming distance point of view,

7. The synthesis of a redundant TLU network could be considered in
the synthesis of the nonredundant network instead of "adding on" redun~

dant TLU's,
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APPENDIX A
DEVELOPMENT OF THE APPLIED THEORY OF LINEAR INEQUALITIES

A.l Introduction, The intent here is to develop a technique for

computing a set S¢ of vectors which can be used to form a system of

linear inequality constraints that a vector 6 must satisfy in order for

the system

T, S, T
(A 4 GT]wT > 0T

1 (A.1.1)

to have a solution ;1 when the system

T =T
Avy > 0 (A.1.2)

does not necessarily have a solution, The matrix A consists of anm x n
array of real numbers where m > n, The resulting technique can also be

used to test for the existence of a solution w to a system of the form

o] o]
Aw >0 (A, 1.3)

A.2 Gordon's Theorem, The basis for the synthesis algorithm in

Chapter IV and the technique developed here is a theorem due to Gordon

(10) in 1873, This theorem is discussed and proved by Good (9),
Theorem A,2.1. There exists a solution W to

Aw. > 0 ; (A.2.1)
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if and only if there exists no solution ¢ to
A% =0 , §#0, $20 . - (A.2,2)

The interpretation of this theorem is that there can be no positive
linear dependencies (PLD’s) among thé rows of A, The "removal" of fhese
dependencies is the desired result of the t;chnique presented heréo
Hopcroft and Mattsén (13) have used the same technique in the synthesis
of TLU networks,

In order to remove the PLD's a column Eq is added to A such that,

for every ¢ satisfying Equation A.2.2, © satisfies

TR . (A.2.3)

The symbol': means that either > or < holds but not beth. It is possible
that there exists no 6 such that Inéquélity A.2.3 is satisfiedol'If this
situation occurs, more than one colﬁmn can be added to Aj hOWevér, the
selection of the columns is complicated. The redundancy synthesis
algorithm of Chapter IV considers the case while the development here is
restricted to the derivation of constraints on a single additional
column,

A significant point in the removal of PLD's is that the set
s, =0 |A ¢ =0, §#£0, §20}

forms a convex polyhedral cone with thé vector 0 removed. Accofding to
a theorem by Minko&ski presented 6n page 30 of Goldman and Tucker (8)

every member of a convex polyhedfal cone can be expressed as a nonnega-
tive, linear combinatioﬁ of extremal vectors for the cone, Minkowski's

theorem is stated formally in Section A.3.
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Definition A.2.1. An extremal vector of a convex polyhedral cone
is a vector EL of the cone which cannot be written as a positive, linear
combination of two other vectors in the cone unless the two vectors are

constant multiples of ELo

In the situation at hand the cone, containing the elements of SA’
can be spanned by the elements of a set S¢ = {El, E}s coay E;}, that is,

every ¢ in S, can be expressed as

A
- § -
¢ = &, 9 s 5 20,
k=1 k "k k
where EL is an element of S¢; s is the number of elements in S¢, and (4%

is a real number. Therefore the system of linear inequalities formed by

the elements of S, is the system

¢
—
*
¢2 .
: |9 27 .
¢S

The reason for the restriction imposed by : can be explained as

follows. -If there exist two ¢, ‘s, say ¢, and ¢, , such that 3=E$ <0
: X kl k2 kl
=i2 > 0, then there exists sqme P = ;kl ELI + ;k2 EL2 such that

33T = o,

andfﬁ

The computation of a set S¢ procedes by first finding a basis

Sx ,= {xl, 29 cooag xd}
of solutions to
=T e
ATX =0 (A.2.4)
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where d = m = rank (A). Since every solution X can be expressed as a

linear combination

b° ES 9 (A0205)

X = i%i s RiEoy

LUl marfoT

i=1
the restriction of ;hzbﬁ’places restrictions on the real numbers bi’

i=1, 2, cooy do The B’s, b = (bl, boy cocy bd)' for which

I — we] =T ol ]
[xl, Koy coos xd]b =Xb >0
is satisfied, form a convex polyhedral cone as defined on page 19 of

Goldman and Tucker (8). Using an extremal set

of the vectors in this cone, the corresponding set S¢ can be determined,
The integer s is the number of extremal vectors in the set.

A basis Sx can be found easily by straightforward fechniques of
matrix theory as shown on page 59 qf Browne (2) or by a sweepout proce-

dure, The problem of finding an extremal set S, is not quite as simple

b
but it can be done using the theory of convex polyhedral cones. The
fact that a knowledge of Sx and Sb permits the determination of S¢ is

shown in the following section. It should be pointed out that a set Sy

or S¢ is not unique,

A,3 Verification that Si.and S, Lead to S,. As previously defined

the set SA is

sA={?l§T¢=’o',3¢'o",E';} (A.3,1)

and is the desired set of nonnegative, nontrivial solutiomns to Equation



134

A,2,2 for which Inequality A.2.3 must be satisfied in order for a column
BT to perform the desired task. A more useful specification of the ele-
ments of SA is a specification in terms of a nonnegative, linear combin-

ation of extremal vectors for the cone, rThe intent in this section is

to show that the specification of a set

-, =T ~T 4 —
s;\={¢l¢ =x , b= } b , g, 20, bes, ,
k=1
;iesx 9 ? # .6-} (A9302)
results in SA being identical to SA; therefore the elements EL in S¢ are
given by
- =T o
8 =X s k=12, cony s

Let the matrix V consist of the m, d-dimensional rows Vv of X, then

the set of b's in Equation A.3.2 which satisfy

V1
72 |
KB = (% % eee mI o= |3 | B =VE >0 (A.3.3)
& 1 "2 d o - =
Vo
form the set
% - o oT
s, = 5 ' vb >0 } (A.3.4)

known as the polar of the set

Sv= {:;l’ =v-2’ cbog ;m} o

A theorem by Minkowski as presented oﬁ page 30 of Goldman and Tucker (8)



135

%
states that § is equal to the convex cone hull of the set Sp. The con-

vex cone hull of Sb is defined as

< P i
s = |b= } Lb. s L, 20, bes

N (A.3.5)
b k=1 kb

Minkowski’s theorem is:

Theorem A.3,1., Given a finite set §, of vectors in the space of

Vv's there exists a finite set §), of vectors in the space of b's such that

a'e_s<
v  °p°

This thoerem means that every member of the convex polyhedral cone

%

Sv can be expressed as a nonnegative, linear combination of a finite set

S, of vectors. Thus every b, which satisfies

XET =T > "O-=T ,

can be expressed in terms of a nonnegative, linear combination as in

Equation A.3.5. As a result, the set of ¢'s, such that

=T ésT

>0

is satisfied, can be specified as in SA in Equation A.3,2, The follow-

9
0

ing theorem is intended to more clearly show that SA is identical to SA

Theorem A.3.2. If the sets §, and SA are defined as in Equations

A.3,1 and A.3.2 respectively, then Sp = SAo,

Proof: Consider the implication.thét if EESA then EESAa If $eS

d ‘ :
then ¢ = 02 b:x: 5 xieS
i=1 — -
constraint of S, that ¢ > 0 implies that every b, which satisfies

s
5T > 0, can be expressed as b = } 5B, Ty 1:0’_Ekesb5 by Theorem
k=1

A?®

%9 for some set of bi's, i=1,2, s0oy do The

I
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A.3,1, Finally, since EESA implies ¢ # 0, all the constraints on the
elements of SA are satisfied,
Consider the implication that if EESA then EESAO This implication

is proved by contradiction., Assume that there exists a EESA such that

: . d
318Ac If E}SA then three cases arise; eéther o # iElbi;;, ;iesx, for
any set of bi's, 1=1, 2, co0y dj % = .z bi:} but $':,5} or ¢ = 0,

i=1
Each of these cases contradict some constraint on the elements of SAQ

The problem remaining is to demonstrate a valid technique for

finding the elements of a set Sbo

A.4% Determination of S, from S . The discussion here is based

e ® 9

heavily on the work done by Goldman and Tucker (8) beginning on page 19,
The theory presented there is fairly general, but the application of the
theory here permits some very convenient shortcuts.

It should be intuitively clear that an extremal set Sb is related
in some way to some sort of boundaries of the cone Sjo A major concep=
tual difficulty in the theory surrounding the extremal vectors lies in
the fact that these boundaries are, in general, contained in multidi-
mensional linear subspaces and are not easily visualized., In order to
develop the technique for finding a set Sb’ some concepts must be intro-
duced,

3,

Consider the convex cone S; defined by Equation A.3.4 or by

s” = {5 | 7,57

=T
>0
v 1 }

:0,7?1'3;0, o“,?fm >

2

and the empty or nonempty subset SH of the subscripts of the vectors 3&;

that is, S, = {ql, Qys coos qt} where t < m is arbitrary. Based on

0,

&%

¢ _o.s %,
these definitions a "face" SFH of the convex cone Sv is the subset of Sv
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whose members satisfy both

- T
v >0, qeSy (A.t,1)
and
TE =0, aqis (A.4,2)
q ? H o oo

The set of b's satisfying Inequality A.4.1 is an open set SLH while the
set satisfying Equation A.4,2 is a linear subspace SFHO The face SFH is
the intersection of the corresponding sets. The subspace SFH has a

dimension given by

where d is the number of components of each vector Va and ry is the rank

of the matrix composed of the vectors Vé for q4:SHe The fact that'SrH
has dimension dy means that the set of equations defined by Equation
A.4,2 has a solution space of dimension dg. The face SFH is also said
to have dimension dy.

Notice that the minimum value of dH for a given value of 4 is
determined by the maximum value of ry which is the rank r of the matrix
Vo If ry = r then the minimum value of dy (call it dmin) is dmin=d=ro

Corresponding to the minimum value of dH there is a unique face SFH as

determined by the homogeneous system of equations

VB! = o7

where Sy is empty since Inequality A.4.1 is not involved in defining the
face, The reason that some nonempty set SH will not produce a face of

the same dimension, when there are r linearly independent vectors Vq for
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q{:SH9 is that every vector 3a9 quH, can be expressed as a linear combin=-
ation of the vectors 359 qJ:SHo Therefore a vector b in SFH cannot satis-
fy Inequality A.4,1 if it satisfies Equation A.4.,2., The resulting fact
that there exists only one face of dimension d_;, is very important when
coupled with the following theorem and corollary from Goldman and

Tucker (8).

P

w®
Theorem A.4,1, Sv is either just its unique dminmface or the con=

vex hull of this d_. ~face and the (d_. '+ l)=dimensional faces,
min min

It is very significant that in the particular problem considered
here the rank of V is identically d which means that dmin = 0, The rank
of V is d because V consists of d < m linearly independent columns of
dimension m from X which is a matrix of basis vectors., As a result of
d;pn Deing zero the d . -dimensional face SFO (0 means the set Sy is
empty) is the zero dimensional space or vertex of the cone; furthermore
the (d +(l)=dimehsional\faces are one dimensional half-lines called = - -

& .
"edges" of Sv radiating from the vertex. A corollary to Theorem A, 4.1

is:

o . c—
Corollary A.4.1, If the rank of V is d then S; is either just 0 or

cmn 3
the convex hull of 0 and the edges Qf S;o

The task ofAfinding the elements of a set Sb is now reduced to com-=
puting edges of,Sin Goldman and Tucker (8) describe the procedure for
computing these edges. The procedure is simple but quite lengthy since
it involves performing a test on all possible combinations of rp=d4d-1
linearly independent rows from the m rows of V. There are (dTl) rows to

be tested for linear independence, Given a set of d = 1 linearly
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independent rows from V, these rows are used to form a system of d - 1
equations in d unknowns. Since these rows are linearly independent a

one dimensional solution space exists and a basis vector Sivcan be com=-
puted by conventional matrix theory technigues, If the basis vector Sk
T
k

of the solution space satisfies Vb

1,3; then cgk, ¢z > 0, is an edge
and EL is an element of Sbc If Sk satisfies X?i :_B; then C('SL) is an
edge and =EL is an element of Sb° If all possible combinations of d - 1
rows of V are selected and if the above operatiocns are performed, this

procedure will yield a set Sbu Obviously if Sb is empty, then the only

solution to XFE :,B'is b =0,

A.5 Determination of S¢ from S_ and Sbo Since S, and SA are equal,

]

every ¢ in SA can be expressed as a linear sum

.
¢ = Xb ’b=kzlckbk’bkesb’ckio’

as in S'. Thus every ¢ in Sy is given by
- S =T e
¢ = e Ckak s bkeSb ’ Ck >0,

or
where

A desired extremal set of the vectors in the convex polyhedral cone of

Sp is given by
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¢ {Xb B‘g’ cee xb } o

A.6 The Inequality Constraints on 6, From Theorem A.2.1 (Gordon's

Theorem) it can be seen that in order for

o -
SRR TS

to have a solution ;1 when

A ;¢ > ET
-] o
has no solution, ® must satisfy

R

¢l

- | T 5 T
¢, 6 <
bs

s i

where Tkes k = lg 25 coog Soe

¢9

A.7 Computer Program Flow-Chart for Computing SI or for LS 'I‘cas‘ciﬂé0

The following flow-chart is for a computer program which computes a set
S¢ from the matrix A in Inequalities A.l.1l, A.1.2, or A.l.3. If it
turns out that S¢ is empty for some A, the patterns corresponding to the
rows of A are LS; thus a test for linear separablllty of patterns is an
alternate use of thls program. * “

In this chart the diamond-shaped'5§ﬁbbl;signifies a decisiontétepo
If the answer to the question is "yes," the logic flow is out the right

or left side, If the answer is "no,” the logic flow is out the bottom

of the Symbolo All input or 6utput statements are explainéd in the



141

listing in Section A.8.

A,8 Computer Program Listing for Computing Sl or for LS Testing.
Based on the flow=chart in Figure A.7.1 the following computer brogram
in FORTRAN IV language can be used to compute the elements of S¢ or for
LS testing, COMMENT statements are inserted in the listing in lpcations
which correspond roughly to the input to blocks in the flow=-chart. The
variables in the program (except in theichMBNT statements) do ﬁ;f”:
necessarily correspond to the notation in. the previous sectionsvof this.
Appendix,

The running characteristics of this program are highly dependent
upon specific probiemso For example, fhe running time cannot be. accu-
rately predicted because some probieﬁs‘méy permit certain phasesbto be
skipped more freqﬁently than in other problems. In . general it can be -
said that the gfeatest limitation of this program is the size of the
number (mel=:ank(é)) where m is the»number of rows in A, The reésoh for
this limitation is'that the basic iteration in the progrém must be per-
formed this number of times. Also as m gété large the length of time |
required:fof each iteration increases, Each iteration involves sweeping
out a submatrix ofvsize [mwlarank(é)]x[marank(é)] if the submatrix is of

maximum rank. If it is not of maximum rank, the particular iteration is

shortened in time.
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1016
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THIS PROGRAM COMPUTES A SET OF EXTREMAL VECTORS FOR A CONVEX‘
POLYHEDRAL CONE OR TESTS FOR LINEAR SEPARABILITY OF THE CORRES=~

PONDING PATTERN VECTORS,.
DIMENSION A(5914)sINDPA({14)+sIDPA(S)sAA(14)

DIMENSION P(9910)3aV(14510)sPP(10)sB(10)5BASIS(25+10)92(14)

LOGICAL BNC(15)s BNR{15)
1LOGICAL ZEROs POSs POSls AN
READ INPUT DATA

THE FIRST CARD CONTAINS NUMBER OF ROWS AND COLUMNS IN MATRIX A

ACCORDING TO FORMAT 100

THE NEXT M#N CARDS CONTAIN THE ELEMENTS OF MATRIX Ae.
"ELEMENT PER CARD BY ROWS ACCORDING TO FORMAT 101e

READ (5+100) IROWsICOL i
FORMAT(215)

READ (55101) ({A(I»J)sI=1+IROW)sJ=1,1COL)
FORMAT(F1040)

SET INITIAL CONDITIONS FOR SWEEPOUT ROUTINE
M = ICOL )

IDPAl = O

INDPAL1l = 0

IROW1 = IROW - 1

L =1

JJ =1

COMPUTE MATRIX V FROM MATRIX A TRANSPOSE

IT =0

IT = IT + 1

IF(A(LyJJ)) 1003+1002,1003

IF(IT - IROW + L = 1) 1004+1005+1005

DO 1006 J = 1,ICOL

AA(J) = A(LsJ) : ‘

DO 1007 L1 = L,IROW1

DO 1007 J = 1,IcOL
A(L1,J) = A(LL + 14J)
DO 1008 J = 1,1COL
ACIROWsJ) = AA(J)

GO TO 1001 :

INDPA1 = INDPAl1l + 1
INDPA(INDPALl) = JJ

IF(JJ - ICOL) 1009+1010+1010
JJ = JJ + 1

GO TO 1000
[DPA1 = IDPAl + 1
IDPA(IDPAL) = JJ

DO 1011 L1 = 1sIROW

IF(L1 - L) 1012,1011,1012
CONST = A(L1sJU)/A(LyJI)

V0 1021 J = JJHICOL

A(L1yJ) = A(L1lsJ) =~ CONSTH*A(LsJ)
CONTINUE

DIV = A(LsJJ)

DO 1013 J = JJL»ICOL

A(LsJ) = A(LsJ)/DlV

IF(L — IROW) 1014,1015451015
IF(JJ - ICOL) 1017+101051010
JJ = J4d+ 1

L=1L+1

GO TO 1000

Jd = JJd + 1

DO 1016 J = JJslCOL

INDPA1l = INDPAl + 1
INDPA(INDPALl) = J

DO 1018 I1 = 1,IDPAl

ENTER ONE



1018

1020
1019
1022

6600

1023
220

6601

2000

2001

2003
2002

2004

I = IDPA(I1}.

DO 1018 J1 = 1,yINDPAl

J = INDPA(J1)}

VIIsJl) = —A(114J)

DO 1022 J1 = 1,INDPAl

J'= INDPA(J1)

DO 1022 J11 = 1sINDPA]
IF(J11 - J1) 1019,1020,1019
V(JsJ1l) = 140

GO TOo 1022

V(JeJll) = 0.0

CONTINUE h
WRITE MATRIX V

WRITE (646600}

luy

FORMAT(1H »49HTHE MATRIX Vs WHOSE COLUMNS ARE BASIS VECTORS FOR/56

1H THE SOLUTIONS TO A(TRANSPOSE)*X(TRANSPOSE) = Os FOLLOWS/)
DO 1023 I = 1,1COL :
WRITE (6+220) (V(IsJ)sJ = 1sINDPAL)

FORMAT(1H s9(2X5E1245))

SET INITIAL CONDITIONS FOR EDGE EVALUATOR

WRITE (636601) !

FORMAT (1H1523HTHE UNIQUE EDGES FOLLOW/)

N = INDPAl ' T

ISET = 0

1A

—
[os]
oo

N -

1
1 = 1,M
" MFACH#M1
‘NIFAC = 1
DO 2 N11 = 1Nl
N1FAC N1FAC#N11
MNFAC 1
'IN = M - N1
w0 3 MN1 = 1sMN
MNFAC = MNFAC®#MN1
IR = MFAC/(N1FAC*MNFAC)
NOBNO = M
NOBTK = N - 1
MM1 = NOBNO + 1

t T HZ2Z2001

non

IA =0

DO 2000 I = 2sMMI1

BNC(I) = +FALSE.

BNR(I) = oFALSE.

BNC(1) = «FALSEe

BNR(1) = #TRUE

SELECT A SET OF ROWS TO DELETE FROM MATRIX V
CONTINUE

ICT =0

IA = JA + 1
DO 2002 I = 2»MM1

BNR(I) = BNC(I)<ANDsBNR{I-1) '
BNC(I) = ((aNOT4BNC(I))sAND«BNR(I~1))4ORs(BNC(I)sANDs(«NOT+BNR(I-1
1)) 1

IF(BNR(I)) GO TO 2002

TCT = ICT + 1

GO0 TO 2004

CONTINUE

GO TO 55

IFCICT - NOBTK) 2006200652001
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2006 IF{l - MM1) 2013,2001,+2001
2013 IBN1 =1 + 1

DO 2008 IBN = IBN1sMM1

~IF(BNC{IBN)) GO TO.2009

GO TO 2008
2009 ICT = ICT + 1

IF(ICT ~ NOBTK) 2008+2008,2001
<008 CONTINUE

TF(ICT = NOBTK) 2001,2010+2001
2010 <CONTINUE
C FORM THE SUBMATRIX OF MATRIX V
9 L =20

DO 10 K .= 1M

IF(BNC(K + 1)) GO TO 11-

. GO TO 10
11 L =L +1
DO 36 J = 14N
36 . P(LeJd}) = VI(KelJ)
10 CONTINUE -
C SWEEPOUT THE SUBMATRIX OF MATRIX V AND TEST TO SEE IF SUBMATRIX IS
C OF MAXIMUM RANK
ISET = ISET + 1
I1ID1 = 0
JJ =1
L =1
13 IT =0
14 IT = IT + 1
. TF(P(LsJJ)) 15416915 _
16 IF(IT = N1 + L = 1) 17,418,418
17 DO 34 J = 14N
34 PP(J) = P(LsJ)
VO 19 L1 = LsN2
DO 19 J = 14N
19 P(L1sJ) = P(LLl + 1,J)
DO 35 J = 1N
35 P(NLlsJ) = PP(J}
GO TO 14
18 1Ip1 = IID1 + 1
IF(IID1l = 1) 2020450
20 11D = JJ
IF(JJ = N) 22423423
22 JJd = JJ + 1
GO TO 13
15 DO 24 L1 = 1sN1
IF(L1 - L) 25524425
25 CONST = P(L1sJJ)}/P(LyJJ}
DO 33 J = JJsN
33 "(L1sJd) = P(L1sJ) ~ CONSTH*P(LsJ)}
24 CONTINUE '

DIV = P(LsJJ)
DO 32 J = JJsN

32 P{LsJ)} = P(LsJ)/DIV
IF(JJ = N) 26923423
26 Jd = JJ + 1
IF(JJ = N)Y 2745757
27 L =1L+1 .
GO TO 13
57 IF(IID]1 = 1) 602727
60 IID = N .
23 11pL = IID - 1
C COMPUTE THE TRIAL EDGE B(K)

IF(IIDL)Y 62961462



62
28
61
29

30

38 -

40
41

42
‘4

43

39

46

48

49
71

73

72
70

215

DO 28 J =

Bt
B(IID

)

-P
=1

1,11DL

Jy11ID)
.0

TF(IID - N) 29+431,31

[1DU

IID

DO 30 J =

B(J)
1P =

1

0.0

+ 1
1IDUsN

TEST TO SEE IF B(K) IS AN EDGE
¢ TRUE «

ZERO

DO 39 L1 =
F = 060

DO 38 J =
F = F 4+ VIL1+sJ)%¥B(J)

IF(F)
POS =
GO TO
POS =

4043

1M

14N

9441

«FALSE.

42
«TRU

IF(IP - 1)

Posl
p =
ZERO

n N

POsS

+FA

GO TO 39
POSeAND.POS1 -

AN =
IF (AN

)

GO

GO TO 50
CONTINUE
IF(ZERO) G
IF(POS]1) G
DO 58 J =
=-B(J)

TEST TO SEE IF B(K}) HAS BEEN COMPUTED BEFORE

B(J)

IF(IB

)

71

DO 72 IB1
DO 73 J =

TEST

BAS

IF(TEST) 7
CONTINUE
GO TO 50
CONTINUE
IB + 1

IB =

DO 74 J =
BASIS(IBsJ) = B(J)
WRITE B(K)

WRITE

(642

Ee
INNY YRR

LSEe.

TO 39

0 TO 50
0 TO 49
14N

70,71

= 1918B

14N

ISUIBlyJ) = B(J)
2373472

14N

10) IBISET

FORMAT (1HO»9HEDGE NOe 13,204 FROM SUBMATRIX NO. #1558H FOLLOWS/)

WRITE

(692

FORMAT (1H
HAVE ALL: SUBMATRICES OF MATRIX V BEEN SELECTED

WRITE

IFCISET -

(692

11) (BASIS(IBsJd)sd = 1, N)
+9(2XsE12e51))

IR) 4455455
14) 1B

FORMAT (1H1s4HTHE »13524H EXTREMAL VECTORS FOLLOW/)
HAVE ANY EDGES BEEN FOUND

IFCIB

)

80,

81+80"

WRITE THAT PATTERNS ARE LINEARLY SEPARABLE

WRITE

(692

FORMAT{1H

GO TO 82
COMPUTE AND WRITE THE EXTREMAL VECTORS
O 75 IB1
VO 76 1 =

Z(1)

0.0

15)
»35HTHE PATTERNS ARE LINEARLY SEPARABLE)

= ls1B
1sM

lu6



DO 76 J = 1N

Z(I) = 2(1) + V(I+sJ)*BASIS(IBlsJ)

WRITE (6+212) 1Bl

FORMAT(1HO+32HTHE ELEMENTS OF EXTREMAL VECTOR #1337H FOLLOW/)
WRITE (65213) (Z(I)s I = 1sM)

FORMAT(1H +9(2XsE1245))

CONTINUE

STOP

END
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APPENDIX B

THE EXTREMAL SET EXTENSION TECHNIQUE

B.1l Introduction. Consider an m X n matrix

[+1]
I

ml coo

and an extremal set

Sy = (8], 934 00y 03)

of vectors with m components
D = 9 U #
¢ (¢k19 ¢k2, CRCRIY ¢km)

for the set of all solutions $W to

@)@ =7

9 ?W _>--o- ? T' # 0 ° (Bolal)

The prime notation on A’ is not related to that on é& in Chapters III
and IV. The problem here is to determine the effect of adding a row

== U 3 k3
a4 to A’ resulting in

48
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oy

>

]
[1]] cco T
| oee @]

o |

m+1

where Z;+l is equal to some row in A'. Without loss of gemerality it

can be assumed that §;+l = Zga The resulting effect is that an extrem-

al set

S¢ = {?l’ ?Qa vooy ¢s+r}

of extremal vectors for the set of all solutions ¢ to

AT =%, §27, Tro, (B.1,2)

consists of s vectors
Tk:(¢}'<lg ¢}V<29 coogp ¢}V<m’ 0) 9 k=lg 2, sooyg S

plus r vectors of the form

K K1 ), k = stl, .00y St

] . 0 1)
k(m=-1) ¢k(m+1)

The integer r is the number of nonzero components ¢im in the mth posi-

tions of the vectors El, kK =1, 25 000y So

B,2 The Argument for the Validity of the Technique. The approach

to this problem is to show that every solution to Equation B.1l.2 can be

expressed in terms of a nonnegative, linear combination of the elements
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in S¢° Rewriting Equation B.1l.2 as

al¢l + a2¢2 tec e tad ta b, =0, ¢ 20,1 =1y 2, soay Ml
: (B.2,1)

it can be seen that since Z% = 3£+1 it simplifies to

~T T T T ,

al¢l + a2¢2 4+ ° o o 4 am(¢m + ¢m+l) = 0 » ¢i : 09 1 = l’ 2’ 000y TE12°2)

Equation B.2.2 is identical to Equation B.l.l except that different

notation is used; therefore, every solution ¢°,

]
¢l ¢l
)
4’2 ¢2
G = | s g
']
¢ ¢m+¢m+l
bcamc — o w—— ’
can be expressed as
= = e
' ¢l ¢klj
¢ )
2 % k2
© = av g % J > 0 o (Bo203)
k=1 K | ° 03‘
¢
¢m+¢m+l ¢km
% cnmnd o Y o

From the last element in the vector given by Equation B.2.3 it can be
seen that for every element ¢; of a vector ¢' the solutions for ¢, and

¢

qe] 1OFM @ one parameter family; that is, ¢p and ¢p,; in

s
¢m + ¢m+l = Z ai ¢£ (B.2,4)
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can be written as

S
% } ale! -1
m k=1 k "km
= + B8 (B.2,5)
¢m+l 0 1
where
s
[ Q]
082 kzl & e 2 VB - (B.2.6)

The reason for Inequality B.2.6 is that O and ¢ in Equation B.2.4

m+l
must be nonnegative.
By introducing the real numbers B1s Bys cooy By B can be more con-
veniently written as
s ,
B= ] B, 0<B <oatdl , Wk (B.2.7)
k=1

thus permitting Equation B.2.5 to be written in the form

b s ¢ﬁm -1
= ¥ o + 8, (B.2.8)
¢m+l k=1 0
1 .

Since the desired result is a set S¢ of extremal vectors for the solu-

tions ¢ to Equation B.2.l, Equations B.2.3 and B.2.8 can be combined to

give

(41| S 07

$2 s $ko 0

mT 4 o "
o = 1 = ] Q| re ) |y (B.2.9)

k=1 :

dm-1 Ok (m=1) 0

¢m. ¢]v<m -]

dmtl 0 1

i e L — e .

. J ¢
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Notice that each vector term in the summation is actually an infinite
number of vectors because By is arbitrary within the bounds expressed in
Equation B,2.7. As a result, each of the families of vectors (terms in

the summation) can be written as

1 0 1 k1
9 19 %
2 0 2 %2
g 0 ° - n o Ht ]
al s * B A | B R B (B.2.10)
9 0 ¢9 ¢9
k{m=1) k(m=1) k(m=1)
8 - ' .
km 1 ¢km 0
¥
0 | 1l 0 ¢km
where ?
al'<'+a‘}'c'=a}'i_>_0, 0.]'<'_>_0, a'l?_>_0 o (B.2.11)

This change is permitted because of the upper and lower bounds placed on

Bko Substituting Equation B,2.10 back into Equation B.2.9 the result is

-, — -
%
] )
< e s tea
T o=y @ |3 IR (B.2.12)
k=1 ° k=1 °
1 9
k(m=1) k(m=1)
¢
¢km 0

There are two points which need to be discussed before continuing.

First, the relationship between dﬁs aﬂ, and dﬁ in Equation B.2,11 is not

a restrictive constraint on their values when they are used in Equation
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B.2.12, The reason for this is that it is sufficient to know that there
exists some nonnegative, linear combination of vectors which equals a

given vector ¢. Second, if ¢ﬂm = 0, then

-bﬁl _T ‘-'il
k2 b2
ﬁ(m=l) ¢i(m-l)
km 0
0 d Lo, ds

therefore, only one of the vectors for which ¢} = 0 needs to be includ-
ed in a set S¢ of extremal vectors in Equation B.2,12, If there are r

vectors in S! for which ¢ﬁm # 0, then there are s + r vectors in S

¢ ¢°

B,3 The Extension Technique, Baseéd on the previous development it

is possible to write any solution ¢ to Equation B,1.2 as

s+r e

=T =T

= ) o , a >0,
k=1 k'k k

where
O = (O s Bloe coos dro 1ys Ss 00 5 k=1, cooy 55 (Bo3.1)

and

S = (1.5 01,5 coos B¢ _1vs Oy 0f )y k = Stl, coo, S+r.
k i1® "i2 i(m=1)° im? (B.3.2)
. 7
¢im #0
In Equation B.3.2 a vector ?L is generated for each value of i for which

¢%m # 0, Therefore the extremal set:
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S¢ = {¢l’ ¢2» cecy ¢s+r}

can be formed from the set S! by the procedure indicated by Equations

¢
Bosol and B03020 ‘ '

3
B.4 The Effect of Repetition of the Rows of éPo In Chapter IV it

&

. ) 4
is stated that if AP has no PLD's then any matrix obtained from éP by
repeating its rows contains no PLD's, It is shown here without loss

of generality that, if a matrix

1

i = § . (Bouol) ‘

a
“m+l

is obtained from

(B.4.2)

by repeating the row 3; as ;;+l’ then A .contains no PLD's if A' contains

none. This is actually a trivial implication.

Theorem B.4,1, If the matrix éj in Eduation B.4.1 has no PLD's

between its rows, then the matrix A has no PLD’s where



and where a = a
mtl ~ °m°

Proof: (By contradiction) Assume that the addition of the row

a+ to A' implies that there exists a vector
¢ = (¢ls ¢2’ cooy ¢m+l) ’ ¢ilo y $F0,
such that
=T =T =T T =T
+ 000 o + = °
al¢l a2¢2 ¥ am¢m am+l¢m+l
Then
=T =T T =T -
al¢l + a2¢2 + + am(¢m + ¢m+l) =0 , ¢; >0, $#0,
since 3; = E%+lo This implies that there exists a PLD émong_the rows of

A' which contradicts the hypothesis,
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APPENDIX C

EXTREMAL SET FOR AN mxl MATRIX

C.1 Introduction., In the computer program of Section D.2 it is

necessary to compute extremal vectors for the solutions to

[:l iu]ﬁll;;fr:o, X#40, x>0,

or to

— T =T
a l v -
[cl | u]DYiAY(i=l)w

Each of the matrices

I ¢
e, 1 wlD 1
and
o= l P . = -
[Ci ; u]DYiAY(i-l) ] 1 2’ 3’ co0o g Y l [

have only one row which makes this calculation easy., The purpose of
this appendix is to present and verify the method for finding the PLD's
or extremal vectors for a general 1 x m matrix,

For the purposes here the 1 x m matrix

T
A = (als 355 8gs ooos am)

is investigated by appl&ing the theory developed in Appendix A in the
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same manner that it is applied in the computer program of Appendix A,
This should also help in the understanding of the theory in Appendix A.

The notation used there is used here also.

C.,2 Derivation of X The matrix zhwhose columns are basis vectors

for the solutions x to

y Q. S
SE T

can be found by a sweepout routine. For the case here of only one row

the routine is trivial, Nevertheless, if a, is assumed to be nonzero, X

1
is given by

22 _2 ... .Z%n]
a a) a
1 0 000 0

X= (Co2,1)

0 1 6o 0

_ 0 0 “oo 1 __mx(m-l) o

Recall that every’;} such that

e
[l
o

is satisfied, can be written as

X5

xj
i

where
S’ = (bl’ b29 0009 bm""l) °

As in Appendix A the set S, of extremal vectors for the solutions b to



158

can now be found,

C.3_Derivation of S, . The matrix V whose rows q* 8 ° 1, 25 coey

m, are the rows of X is used in the procedure for finding a set S, as

indicated in Appendix A. These rows are

and
T?i = (05 0y 000y Oy Ly Oy w00y 0) 5 1 =2, coa, m,

where the element 1 is in the (i-1l)st position of’V&, 122y 000y Mo

Define the matrix V. as the submatrix of V from which the rows v.

jk 3
and ;k are removed, If a vector Bk satisfies
o] a=]'
Vs Pg = O
and
B
Y.,bzi,OT ’

then 3; is an element of S, If E& satisfies

b
=T _ =T
Vi By = 0
and
o] o=
Vb0

then =Ek is an element of Sy The intent here is to determine how many
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unique elements are in S, for a given vector v, The problem is broken
into two cases, one where v, is a row of ij and one where vy is not a

row of Xﬁko

Case I: Consider the selection of a set of rows from V not includ-

o

ing vy and one other row ;l, 2 <i<m The matrix Y&i is of the form

o090 000 000 000 Q00 900 - L

0 0 @0 e 0 0 0 @00 1 (m“‘2)X(m“l)o

b . —

T T
V., =
~=1i by 0
is
FR’ = (0, 09 000 g 09 l’ 09 eoey 0) (Cogal)
ith
column
and the only way for E} to satisfy
¥y 2T

is for

Q ia) >0 (c.3.2)
%1



to be true,

160

There are s-1 distinct vectors which can be generated and

tested in this manner and each of these vectors corresponds to a con=

straint like that in Inequality C.3,2.

Therefore for Case I the number

of PLD's contributed is equal to the number of pairs (al, ai), i=2, 3,

ooeg M, of components which are of opposite sign plus the number of

components a;, i=2, 3, cooy my which are zero.
zero component
whether Case I

zero component

Case II:

cluding , but

2 <k <m, and

C.3.3,

It turns out that a

as i=2,3, ¢ooy My produces an extremal vector in Sh

or Case II is being considered; furthermore, a particular

produces the same basis vector for both cases,

Consider the selection of a set of m - 2 rows from !_in-

not

J# ke

1000

000

oQo0

000

000

¢ oo

00

The matrix Xﬁ

EES R |
S|
0 0
0 0
1 0
0 0
Y Y
0 0
Y Y

a

i+l ... o k-1

a)

0

000

k4l voe -

2

000

including two other rows.;s and v. for 2 <j<m,

is of the form shown in Equation

%m |
alw

0 -

000

1

(m=2)x(m-1)

(C.3,3)
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From this equation it can be seen that if b is a solution to
=T _ =T
!ﬁkh‘ =0
then the jth and kth components of b must satisfy-

[ 3ai ay .
\<"’ al) bi + (- al) bk - 0 o

All other components must be zero. Assume for the present that a; # 0,

then
.
b, -k
a3
= ;'
bk 1l

for every scalar [, will permit writting a basis vector

ca a
b = (09 09 cocy 0, = 'a‘l:(‘, 0, coagyg 0’ l, 0, Y 0) Q (Coaau)
1, .

k

ith kth
position position

Notice that
v, b =0
but that, in order for Bi to satisf§
=T, 5

v, 20,

the inequality

y a.

(., ,.1&) > 0 (C.3.5)
a. c— .

. 1

must be true. If this inequality is true then SL is an element of Spo
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If a = 0 then E; is an element of Sb;but it has already been considered
in Case I,

If it is assumed that ag # O rather than a; # 0, then

a.
k:(o, Oy o000y Og 1y Oy 060y Oy = ==y Oy cooy O) (C.3.6)
3

o'}

is an element of Sb if

a.
Q-_£>>0
ak -

is true, This is the same constraint on the pair (ai, ak) as is imposed
by Inequality C.3.5, however the basis vectors given by Equation C.3.4
and C.3.6 are not the same if the magnitudes of a; and a) are not equal.
Thus one selection of m - 2 rows may produce two different basis vectors;
however the two vectors are related by a constant. Therefore, regardless
of how the trial basis Ek is computed, the pair (ai, ak) must satisfy
Inequality C.3.5 in order for E% to be 'an element of Sbo Notice that,
if a; = 0 for the EL given by Equation C.3.6, the resulting basis has
already been considered in Case I,

Therefore for Case II an element of S, which is not considered by
Case I, is generated by every pair (ai, ak)9 2<i<m2<k<mi#k,

where a;°L and a, are of opposite sign,

k
The net result of Case I and Case II is that a unique element of Sb
is generated for every pair (ai, ak) where a; and a, are of opposite

sign and for every element a; = 0, This means that the total number of

elements in Sb can be determined. It can be shown that no two elements

in Sy, produce the same element in S¢o

C.4 Uniqueness of the Elements in §, for an m x 1 Matrix, The
Y
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elements in Sb from Case I above produce elements of S¢ of the form

jth position (Col4,1)

’al¢°o2ijims

where X is given by Equation C.2.1 and Ekl by Equation C.3.1l. For Case

II the elements of S, are given by

$

ith position

(Cau°2)

kth position

o 8 £ 0, a; # 0,

N
iA
=
ia
3
-

N
iA
He
A
‘.'—:I
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where 312 is given by Equation C.3.4, Since no two vectors Eil in Sb
have their elements "1" in the same position, no two vectors E&l given
by Equation C.4.1 are equal, Similarl&, no two vectors E&z are.equal
because eQery SE2 in Sb corresponds to a different pair (ai, ak)°

Notice that, since ay # 0 in Equatién‘C°4¢2,‘Ell # $k2° Therefsre
elements E} in S¢ are unique and can bé éaéily determined. Correqund—
ing to every pair (ai, ak) of opposite éign, an element E} in S¢ results,
This element will have all zero components except for a "+1" component
in positions i and k., Also, every zero element a; produces an element
3} in S¢ having all zero components except for a "+1" in the ith

position,



APPENDIX D

COMPUTER PROGRAMS TO SEARCH FOR THE REDUNDANT TLU

OUTPUT VECTORS C;,Cy 0 “,E’,;

D.1 Introduction., Contained in this appendix are two computer

programs in FORTRAN IV language which can be used to search for the
vectors Zl, E}, 000y E;q These programs are basically the same with the
difference being in the criteria used to select a vector Z}a The pro-
gram presented in Section D,2 searches for the vectors El, Eb, coay E;~l’
whi}e the one in Section D,3 searches for E;a In Section D.4 the time

. and memory limitations of these programs are discussed.,

In the flow-charts for these programs the diamond shaped symbols
signify decision steps. If the answer to the question asked or implied
is "yes," the logic flow is out the right or left side of the symbol,

If the answer is "no," the flow is out the bottom. The oval shaped
symbols signify input or output steps and afe explained by COMMENT or
FORMAT statements in the listings. Contained within the ovals for data
inputs are numbers which correspond to the "location in sequence'" shown
in Tables D.2.1 and D.3.1 which describe the sequencing of the input
data. In orderbto make the programs self-explanatory, COMMENT state-~
ments are inserted in the listings in locations which correspond roughly
to the inputs to blocks in the flow=-charts,

In both of these programs the test for realizability is performed

according to the theory of Appendix A, In Section 4,2 the realizability
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requirements on 2} are discussed and notation is introduced which is

used in the flow-charts and the COMMENT statements in the listings, It
should be pointed out that the notation in the listing (except in COMMENT
. statements) does not necessarily correspond to the notation used in thé

remainder of the work presented here,

D,2 The Program to Search for Ei, Z;, cosg Cop® The synthesis
-~ !

algorithm in Chapter IV requires that each vector E}, i < y, be selected
such that the number of unique constraints on Z}+l is minimized. This
section contains the flow=chart and listing for a digital computer pro=-
gram which searches for such a vector. ‘Definition 4.6,1 and Defiﬁition
4,6,2 provide the ériteria for the seléction of E}, 2 <1<y, ana Ei
for y > 1 respectively.,

Table D.2.1 describes the sequencing of the input data and gives

the FORMAT, The flow-chart is in Figure D.2.1 and the listing follows.



TABLE D.2.1

DESCRIPTION OF INPUT DATA FOR THE PROGRAM TO SEARCH FOR cl,cz,eeo,cY 1

Location Number of

in Cards Description of Contents Fortran Variables Format
Sequence
1l 1 Dimension of the pattern space, the number of ID, NOPAT, NOPOS, 415, F5.0
' pattern space vectors, the number of pattern IS, XMU

space vectors with a +1 network output, the

number of columns for the matrices in the

third and fourth READ statements, the value
_of uo

2 NOPAT The augmented pattern space vectors. (one A(I,J) 43F3,.0
vector per card). :

3 IS Case I: Searching for c,., The columns of D(I,J) 43F3,0
' the matrix D‘l %one column per card).
Case II: Searching for c 2 <1i<y, The
columns of the matrlx D A
—(i-1)
(one column per card)c

4y Is Case I: Searching for c. The columns of DD(I,J) 43r3.0
the matrix D' ipne column per card).
Case 1I: Searching for ¢n. The columns of the
matrix DJ (i+1) Y(l,l) (one column
per card X .

L9T



READ i, 2

SET INITIAL
CONDITIONS FOR
SWEEPOUT

|

SWEEPOUT THE
MATRIX Y OF
INPUT PATTERNS

l

SET INITIAL
CONDITIONS FOR
SEARCH ROUTINE

168

IS THE
NUMBER A
DECREASE

READ 3, 4

" SET INITIAL
CONDITIONS FOR
SEARCH ROUTINE

| compUTE Y, |

1
| FORM;/“‘ | -

DOES V
—HAVE MORE THAN
ONE COLUMN

2

COMPUTE THE |
TRIAL EDGE by

I

|

HAVE ALL
SUBMATRICES
OF V BEEN
SELECTED

STORE
.CONSTRAINTS

SELECT A
TRIAL VECTOR

C

HAVE ALL
VECTORS C BEEN
SELECTED

COMPUTE NUMBER
OF UNIQUE
CONSTRAINTS

CT A SET
ROWS TO
TE FROM

FORM THE
SUBMA'\I;RIX OF

] .
SWEEPQUT THE
SUBMAT\i/?IX OF

S
D

E

EL
OF
ELE

I

/;slh

SUBMATRIX OF
MAX{MUM RANK

\]/

COMPUTE THE
TRIAL EDGE by

I

Y/

AND VECTOR

: C
IS THE

NUMBER OF
CONSTRAINTS

ST
ZE

Figure D.2.1. Flow=Chart for the Program to Search for El,zk,oao,

v=1
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C THIS PROGRAM SEARCHES FOR A REDUNDANT TLU OUTPUT VECTOR
C ACCORDING TO DEFINITION 4¢6el1 OR 446424
DIMENSION A(598)sAA(B)sAAA(5+8) s INDPA(B)IsIDPA(5)+C(9)sCL(D)sVI8s5)
1sP(4+5)9PP(5)+B(5)sD(120, 9)000(120 91+ IP(120)+IN(120)sCN(50+9)sPALl
1R(9)+sCNL(50+9) sCTRIVI(9)
LOGICAL ZERO»»POSsPOS1 sANBNC(9) +sBNR(9)+BC(9) 4yBR(D)
C READ INPUT DATA FOR SEQUENCE LOCATIONS 14243
© READ(54+100) IDsNOPATsNOPOS»ISsNORPT yXMU
100 TORMAT (5154F5.0)
READ(5+100) IDsNOPAT sNOPQOS»ISsXMU
100 FORMAT (415+F540)

IDP1 = ID + 1
ICOL = NOPAT
IROW = IDP1

DO 6000 J = 1lsICOL
6000 READ(5,101)(A(I+J)»I = 1,IROW)

C SET INITIAL CONDITIONS FOR SWEEPOUT OF MATRIX Y
IDPAl = O
INDPAl = O
IROW1 = IROW - 1
L= 1
JJ =1
C SWEEPOUT MATRIX Y

10600 IT = 0

1001 IT = IT + 1
IF(A(LsJJ)) 1003,1002+1003

1002 IF(IT - IROW + L = 1) 1004,100551005

1004 DO 1006 J = 1sICOL

1006 AA(J) = AlLsJ) '
DO 1007 L1 = LsIROW]

PO 1007 J = 1s1COL
1007 A(LLlyJ) = A(LL + 1,J)
DO 1008 J = 1sICOL
1008 A(IROW,J) = AA(J)
GO TO 1001

1005 INDPAl = INDPAl + 1
" 'INDPA(INDPAl) = JJ
IF(JJ - ICOL) 100951010,51010
1009 JJ = JJ + 1 '

GO TO 1000
1003 IDPAl1l = IDPAl + 1
IDPA(IDPAL) = JJ

DO 1011 L1 = 1,IROW
IF(L1 - L) 1012,1011,1012
1012 CONST = A(LLsJJV/A(L,JJ)
DO 1021 J = JJsICOL
1021 A(L1sJ) = A(L1sJ) - CONST*A(LsJ)
1011 rONTINUE
JIV = AlLsJJ)
DO 1013 J = JJylIcCoL
1013 A(LsJ) = AlLsJ)/DIV
IF(L - IROW) 1014101541015
1014 IF(JJ - ICOL) 1017,1010,1010
1017 JJ = JJ + 1 -
L=tL+1
: GO TO 1000
1015 JJ.= JJ + 1
DO 1016 J = JJsICOL’
INDPAL = INDPALl + 1
1016 INDPA(INDPAl)} = J
C SET INITIAL CONDITIONS
N = INDPAl



37

301

300 -

6001

590
101

403

404

7800

900

901
£02

7000

7001

304

7002

7003

BR(1) = »TRUE.
) 0

M = ICOL

IATOT = 2

DO 37 K = 2¢M
IATOT = 2%1ATOT
N1l = N
M2 = N -
MFAC = 1
DO 1 M1 = 1M
MFAC = MFAC*M1
N1FAC = 1

IF(N1: 30043004301

1
2

DO 2 N11 = 1Nl

N1FAC = NI1FAC#N11

MNFAC = 1

MN = M - N1

DO 3 MN1 = 1sMN

MNFAC = MNFAC*MNI1

IR = MFAC/(N1FAC*MNFAC)Y

NOBNO = M

NOBTK = N - 1

MM1 = NOBNO + 1

NPATP1 = NOPAT + 1

C(NPATP1) = XMU ‘
READ INPUT DATA FOR SEQUENCE LOCATIONS 3.4
DO 6001 1 = 1»15 ’
READ(54101)(D(I1sJ)sd = 1sNPATP1)

DO 590 I = 1s1S

READ(55101) (DD(IsJ)sJd = 1,NPATPI)
FORMAT (43F 3.0}

SET INITIAL CONDITIONS

~NPOSP1 = NOPOS + 1

DO 403 I = 1sNOPOS
CTRIV(I) = +1.0

DO 404 I = NPOSP1lsNOPAT
CTRIV(I) = ~-1.0

.CTRIV(NPATP1} = XMU

WRITE (6+7800)

FORMAT (5Xs9HITERATIONs10Xs6HRESULT/)
S = IS

IF(S ~ 44) 9009900,901

FL = S

GO TO 902

FL = (S/2.0)%%2

DO 7000 I = 2,NPATP1

ncen «FALSE .
SROI) sFALSE.
BC() sFALSE»

COMPUTE VECTOR C AND TEST TO SEE IF ALL HAVE BEEN TRIED
ITT = ITT + 1

IFCITT = 1) 7003570034304

DO 7002 I = 2sNPATP1

BR(I) = BC(I)eANDBR(I - 1)

BCUI)=((eNOTeBC(I))sANDeBR{I=1))eORe(BC(I)eANDe{sNOT.BR(I-1})}

IF(BR(I)) GO TO 7002
GO TO 7003

CONTINUE

GO TO 7004

DO 7005 1 = 2,NPATP1
IF(BC(I)) GO TO 7007
GO TO 7006

.
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7006

7007
7005

402
400

6005

401

7009

7010

501

503

504
507
4000

4003
4002
4004
4005

4006

4001

506
505

508
502
7012

510

512

171

ClI. - 1) = =140
GO TO 7005

CtlI - 1) = 1.0
CONTINUE

DO 402 I = 1sNOPAT

IF(C(I) = CTRIV(I)) 400+402+400

CONTINUE

GO TO 7001

DO 6005 I = 1yNOPAT

IF(C(I) + CTRIV(I)) 401960059401

CONTINUE .

GO TO 7001

COMPUTE THE NUMBER OF UNIQUE CONSTRAINTS ON THE VECTOR C(I+1) FOR
THE GIVEN VALUE OF C(I) AND SEE IF IT IS A DECREASE

1IN = 0
KF = 0
(1P =0

DO 7008 I = 19I5

ALPHA = 040

DO 7009 J = 1sNPATPI

ALPHA = ALPHA + C(J)*¥D(I,yJ)
IF(ALPHA) 7010,7011,7012

IIN = TIN + 1 '

INCIIN) = 1

IF(IIP) 5004500,501

DO 502 L = 1s11P

11IP = IP(L) :

DO 503 J = 1sNPATP1

PAIR(J) = DD(ILIPs+J) + DD(I»J)
IF(KF) 5054505,504"

DO 506 ICN = 1,4KF

DO 507 J = 1sNPATP1 ’
TFICN(ICNsJ) = PAIR(J)) 400055074000
CONTINUE

GO TO 502

IRTST = O

DO 4001 J = 1sNPATP1
IF(PAIR(J)) 4002+4003,+4002
IF(CNCICNsJ)) 50654001506
RTEST = (CN(ICNs»J))I/PAIR(D)
IF(RTEST) 400450654004
IF(IRTST) 4005+4005,4006

IRTST =1

RTSTR = RTEST

GO TO 4001

IF(RTSTR - RTEST) 506+4001+506
CONTINUE

GO TO 502

CONTINUE

. KF = KF + 1

DO 508 J

CN(KFsJ)

CONTINUE

GO TO 500
TiIp = 1IP + 1

iP(IIP) = 1

IF(IIN) 50055004510

DO 511 L = 1sIIN

ITIN = IN(L)

DO 512 J = 1»NPATP1

PAIR(J) = DD(IIINsJ) + DD(IsJ)
IF(KF) 514,5144+513

1sNPATP1
PAIR(J)



513

516

4010
4013
4012
4014
4015
4016

4011

515
514

517
511

7011
520

523

4020
4023
4022
4024

4025

4026
4021

524
500

7008

2000

7030

7031

DO 515 ICN .= 1.KF
DO 516 J = 1sNPATP1
IFICN(ICNsJ) = PAIR(J)) 4010451694010

"CONTINUE

GO TO 511

TRTST = 0

V0 4011 J = 1,NPATP]
IF(PAIR(J)) 4012,401344012
IF(CN(ICNsJ)) 515540114515 .
RTEST = (CN{ICN»J})/PAIR(J)
IF(RTEST) 4014551544014
IF(IRTST) 4015,5401554016

IRTST = 1
RTSTR = RTEST
GO TO 4011

IF(RTSTR = RTEST) 515540114515
CONTINUE

GO TO 511

CONTINUE

KF = KF + 1

DO 517 J
CNIKF )
CONTINUE
GO TO 500
IF(KF) 521,521,520

DO 522 ICN = 1,KF

DO 523 J = 1,NPATP1

TF(CNIICNsJ) = DD(1sJ)) 4020452344020
CONTINUE :
GO TO 500

IRTST = 0

DO 4021 J = 1sNPATP1

IF(DD(1+J)) 4022,4023,4022
IF(CN(ICN»J) ) 522540214522

RTEST = (CN(ICN»J))/DD(1sJ)

IF(RTEST) 4024+5224024

IF(IRTST) 4025+4025+4026

IRTST = 1

RTSTR = RTEST

GO TO 4021

IF(RTSTR — RTEST) 522440214522
CONTINUE

GO TO 500

CONTINUE

“F = KF + 1

J0 524 J
CN(KFsd)
XKF = KF
IF(XKF - FL) 70085»7030,7030
CONTINUE :

1sNPATP1
PAIR(J)

n M

1sNPATP1
DD(IsJ)

NEGATE CERTAIN ROWS AND COLUMNS OF SWEPTOUT FORM OF MATRIX Y AND

FORM MATRIX V
DO 2000 I = 2sMM1

BNC(I) = oFALSE.
BNR(I) = 4FALSE.
BNC(1) = «FALSEs
BNR(1) = oTRUE.

GO TO 7031

CONTINUE

GO TO 7001 ,

DO 7014 1 = 1sNOPOS

0o

DO 7014 J 1+10P1
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7014

7015

7017
7018
7016
1010

1018

1020

1019
1022

302
303

2001

2003
2002
2004

2006
2013

2009
2008

2010

11

36
10

AAA(JINI) = CLII*A(J,1)

VO 7015 I = NPOSP1sNOPAT

DO 7015 J = 14IDP1

AAALUST) = ~CUI)*A(J,])

DO 7016 II = 1,IDPAl

I = IDPALIID)

IFCAAALTIT41)) 7017+70164+7016
DO 7018 J = 14NOPAT
AAA(TIT»J) = =AAA(II,0)
CONTINUE

DO 1018 I1 = 1,1IDPAl

I = IDPA(I1)

DO 1018 J1 = 1sINDPAl
J = INDPA(J1)

VIIsJ1) = =AAA(IL1s))
DO 1022 J1 = 1,INDPAl
J = INDPA(J1)

MO 1022 J11 = 1,INDPAl
IF(J11 = J1) 1019+1020,1019
VIiJsJ1l) = le0

GO TO 1022

VIJsJ1l) = 0.0
CONTINUE

COMPUTE TRIAL EDGE FOR TRIVIAL M#1 MATRIX V

IF(N1) 302,302,303

ISET = 1
B(l) = 1.0
GO TO 31.
ISET = O

BEGIN TEST TO SEE IF THERE EXISTS AN EDGE
SELECT A SET OF ROWS TO DELETE FROM MATRIX V

CONTINUE
ICT =0

DO 2002 I = 2sMM1
BNR(I) = BNC(I)eAND«BNR(I-1)
BNC(I) = (
1)))

IF(BNR(I)) GO TO 2002

ICT = ICT + 1

GO TO 2004

CONTINUE

GO TO 7019

IF(ICT - NOBTK) 2006,200652001
IF(I - MM1) 2013,200142001
IBNl = 1 + 1

DO 2008 IBN = IBN1yMM1
IF(BNC(IBN)) GO TO 2009

GO TO 2008

ICT = ICT + 1

IF(ICT - NOBTK) 2008,2008,2001
CONTINUE" A
IF(ICT = NOBTK) 2001,2010,2001
CONTINUE

FORM THE SUBMATRIX OF MATRIX V

L =0

DO 10 K = 1M

TF(BNC(K + 1)) GO TO 11 .
G0 TO 10

L =L+ 1

DO 36 J = 1N

PlLsJ) = V(KsJ)

CONTINUE
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13
14

16

17
34

19

35

18
20
22
15
25
23
24
32
26
27
57

23

62
61
29
30

31

38
40

41
42

SWEEPOUT THE SUBMATRIX OF MATRIX V. AND TEST TO SEE IF IT IS OF

MAXIMUM RANK

ISET = ISET + 1 ‘
11Dl = O

JJ =1

L =1

IT =0

IT =17 + 1
IF(P(LsJJI)) 154516915
IF(IT = N1 + L- = 1) 17418418
DO 34 J = 1N

PP(J) = P(LsJ)

NO 19 L1 = LeN2

DO 19 J = 1N

PIL1sJ) = P(LL + 19J)
DO 35 J = 1sN-
P(N1sJ) = PP(J)

GO TO 14

1101 = 1ID1 + 1

IF(IID1 = 1) 20520550

11D = JJ .

IF(JJ = N) 22923423

JJ = UJ+ 1

GO TO 13

DO 24 L1 = 1Nl

IF(LLl = L) 25924425

CONST = P(L12JJ)/P(Lsdd) -

DO 33 J = JJUsN :
P(L1sJ) = P(L1sJ) =~ CONSTXP(LsJ)
CONTINUE S

VIV = P(LyJJ)

DO 32 J = JJsN

P{Ls»J) = P(LsJ)/DIV"
IF(JJ = N) 26+23,23
JJ = JJ + 1

IF(JJ = N) 27457457
L=1L+1

GO TO 13 .
IF(IIDL = 1) 60927427
11D = N

IIDL = IID - 1
COMPUTE THE TRIAL EDGE B(K)
IF(IIDL) 62161962

DO 28 J = 1s11IDL
B(JY = =P(Js11D)
B(IID) = 1e0 '
IFCIID — N) 29531431
11pu = 11D + 1

DO 30 J = IIDUsN

B(J) = 0.0 :
TEST TO SEE IF B(K) IS AN EDGE
TPCNT =1

LERO = «TRUES
DO 39 L1 = 1M
F = 0.0

DO 38 J = 1N

F = F + VI(L1sJ)#B(J)

IF(F) 40939941

POS = +FALSES

GO TO 42

POS = «TRUE .
IF(IPCNT = 1) 44444443
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44

43

39
46

7802

50

7019

7020

570

7803
C

C
C
7004
7804

7805

582

580
581
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POS1 = POS
IPCNT = 2
ZERO = +FALSE.
GO TO 39

AN = POS+AND.POS1

IF(AN) GO TO 39

GO TO 50

CONTINUE

IF(ZERO) GO TO 50

WRITE THAT VECTOR C IS NOT REALIZABLE

WRITE (6+7802) ITTsKF

FORMAT (7XsI13+414Xs13,450H CONSTRAINTS IS A DECREASE BUT C IS NOT RE
1ALIZABLE)

GO TO 7001

HAVE ALL SUBMATRICES OF MATRIX VvV BEEN SELECTED

IF(ISET - IR) 4,7019,7019

STORE THE SMALLER NUMBER OF CONSTRAINTS, THE VECTOR Cs AND THE
COEFFICIENTS OF THE CONSTRAINTS

FL = XKF

KFL = KF

DO 7020 I = 1sNPATP1
CL(I) = C(I)

DO 570 I = 1sKF

DO 570 J = 14NPATP1
CNL{IsJ) = CN(I,4J)

WRITE (657803) ITTKF

FORMAT (7XsI3514Xs13432H CONSTRAINTS WITH A REALIZABLE <)

IS THE NUMBER OF CONSTRAINTS ZERO

IF(KF) 70015700457001

WRITE THE MINIMUM NUMBER OF CONSTRAINTS. THE VECTOR Cs» AND THE
MINIMAL SET OF CONSTRAINT COEFFICIENTS

WRITE (6,7804) KFL

FORMAT (1HOs37HTHE SMALLEST NUMBER OF CONSTRAINTS [Ss15420H AND THE
1 VECTOR C 15/}

WRITE (6+7805) (CL(I)sI = 1sNPATPI1)

FORMAT (20(2XsF4el))

YRITE(63+582)

FORMAT(1H1 943HTHE FOLLOWING ROWS CONTAIN THE COEFFICIENTS/52H OF T
1HE INEQUALITY CONSTRAINTS FOR .THE NEXT VECTOR C//)

DO 580 I = 1sKFL

WRITE(6:581) (CNL(IsJ)sJ = 1sNPATP1)

FORMAT (1H +9({2XsE1245)) ’

STOP

END
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D.3 The Program to Search for c.. The synthesis algorithm in
g ]
Chapter IV requires that, for an assumed value of Yy, a vector E; corres-

ponding to a realizable 21 be found such that

G} vy 10

is satisfied. The appendix contains the flow-chart and listing for a
digital computer program to perform a search for a Z; satisfying the
above requirement or to determine the nonexistence of one., Table D,3,1

describes the input data and its sequencing. The flow=-chart is in

Figure D.3.1 and the listing follows.



TABLE D.3,.1

DESCRIPTION OF INPUT DATA FOR THE PROGRAM TO SEARCH FOR c.

Y
Location  Number of
in Cards Description of Contents Fortran Variables Format
Sequence
1 1 Dimension of the pattern space, the number of ID, NOPAT, NOPOS 415, F5.0
pattern space vectors, the number of pattern IS, XMU
space vectors with a +1 network output, the
number of columns for the matrix in the third
READ statement, the value of .
2 NOPAT . The augmented pattern space vectors. (one A(I,J) 43F3.0
vector per card).
3 Is The columns of the matrix E;Y (one column per D(I,J) 43F3.0

card).

LLT



START

READ 1, 2

N DO ANY

SET INITIAL
CONDITIONS FOR

SWEEPOUT

SWEEPOUT THE
MATRIX Y OF

INPUT PATTERNS|

SET INITIAL
CONDITIONS FOR
SEARCH ROUTINE

. COLUMN

READ 3

SET INITIAL
CONDITIONS FOR
SEARCH ROUTINE

SELECT A
TRIAL _VECTOR
¢

HAVE ALL VECTORS

€ BEEN SELECTED

PLD'S EXIST

COMPUTE Y,

FORM V |

BOES V. HAVE
MORE THAN ONE }—

COMPUTE THE
TRIAL EDGE by

SELECT A SET OF
ROWS TO DELETE
FROM V . |

|

FORM THE
SUBMATRIX OF

SWEEPOUT THE
SUBMATRIX OF

IS THE
SUBMATRIX OF
AXIMUM RAN

COMPUTE THE |
TRIAL EDGE b,

NO C EXISTS
WRITE ACCORDING
JO FORMATT 600
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STOP

Figure D.3.1,

Flow=Chart for the Program to Search for

C

Y



100

6000-

1000
1001
1002
1004
1006
1007
1008

1005

1009

1003

1012
1021
1011
1013
1014
1017

1015

1016
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THIS PROGRAM SEARCHES FOR A REDUNDANT TLU OUTPUT.VECTOR FOR

WHICH THE SYNTHESIS ALGORITHM TERMINATES.

DIMENSION A(438)sAA(8)sAAA(4+8) s INDPA(B)sIDPA(4)YsC(9)sCL(9)2VI(8s4)
l,P(394)’PP(4)95(4)00(6299)9DD(62.9)’IP(62)’IN(62)oCN(10’9)’PAIR(9)
19CNL(10+9)»CTRIVI(9)

LOGICAL ZEROoPOS’POSl’AN’BNC(9)’BNR(9)’BC(9)’BR(9)

READ INPUT DATA FOR SEQUENCE LOCATIONS 14243

READ(5,100) IDsNOPATsNOPOS,s 1S sNORPT ¢ XMU

FORMAT (5154F5.0)

ID + 1

1COL = NOPAT

10P1

DO 6000 J = 1sICOL
READ(5+101)(A(IsJ)}s] = 19IROW)

SET INITIAL CONDITIONS FOR SWEEPOUT OF MATRIX Y
IDPA1l = 0

INDPAL1l = O

IROWl = IROW = 1

L =1

JJ 1

IT 0

SWEEPOUT MATRIX Y

IT = IT + 1

TFLA(LsJJ)) 1003+9100251003

fF(IT - IROW + L - 1) 1004410051005
DO 1006 J = 1,I1COL : :
AA(J) = A(LyJ)

DO 1007 L1 =-L,yIROWL

DO 1007 J = 1,1COL
AlLlsJ) = A(LL + 1,yJ) : '
DO 1008 J = 1lslICOL’ ' '
A(IROWsJ) = AA(I)

. GO TO 1001

INDPA1l = INDPAl + 1
INDPA(INDPAL) = JJ

CIF(Jy - ICOL) 1009101051010

JJd = JJ +'1

GO TO 1000

IDPA1 = IDPAl + 1
IDPA(IDPAL) = JJ

DO 1011 L1 = 1,IROW

IF(L1 - L) 1012,1011,1012
CONST = A(L1sJJ)I/ALLJI)

DO 1021 J = JJsICOL

A{LlsJ) = A{LL1sJ) ~ CONST*A(L,sJ)
CONTINUE

VIV = Al(L,JJ)

DO 1013 J = JJsICOL

AlLsJ) = A(L#J)/DlV

IF(L -~ IROW) 1014+1015,1015
IF(JJ - ICOL} 1017510101010
JJ = JJ + 1

L =L + 1

GO TO 1000

JJd = JJ + 1

DO 1016 J = JJsICOL

INDPA1 = INDPAl + 1
INDPA(INDPAl) = J

SET INITIAL CONDITIONS

N = INDPAl

M = ICOL

IATOT = 2



37

301

300

6001

590
101

403

404

7800

900

901
902

7000

7001

304

7002

7003

7006
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2+M

DO 37 K =

IATOT = 2*IATOT
Nl = N=-1

N2 = N - 2

MFAC = 1

DO 1 M1l = 1M

MFAC = MFAC*M1

N1FAC = 1

IF(N1) 30043005301

DO 2 N1l = 1sN1

N1FAC = N1FAC#N11

MNFAC = 1

MN = M - N1~

DO 3 MN1 = 1sMN

MNFAC = MNFAC*MN1

IR = MFAC/(NlFAC*MNFAC)

NOBNO = M

NOBTK = N - 1

MM1 = NOBNO + 1

NPATP1 = NOPAT + 1

C(NPATPLl) = XMU

READ INPUT DATA FOR SEQUENCE LOCATION 3
DO 6001 I = 1lsIs °
NEAD(55101)(D(IsJ)sd = 1sNPATPL}
DO 590 I = 1418 :
READ(55101) (DD(I:J)yJ = 1,NPATP1)
FORMAT (43F340)

" SET INITIAL CONDITIONS

NPOSP1 = NOPOS + 1

DO 403 I = 1,NOPOS’
CTRIV(I) = +1.0

DO 404 I = NPOSP1sNOPAT
CTRIV(I) = ~-1.0

CTRIV(NPATPL) = XxXMU

WRITE (6+7800)

FORMAT (5Xs9HITERATION»10Xs6HRESULT/)
S = IS

IF(S = 4¢) 900+9005901

FL = § :

GO TO 902

FL = (5/2,0)%%2

DO 7000 I = 2sNPATP1

BC(I) = #FALSE.
BR(I) = oFALSE.
BC(1l) = «FALSE.
RR(1) = +«TRUEs
iTT =0

COMPUTE VECTOR C AND TEST TO SEE IF ALL HAVE BEEN TRIED
ITT = ITT + 1

IF(ITT = 1) 7003470035304

DO 7002 I = 2sNPATP1

BR(I) = BC(I)eANDBR(I = 1)
BCIIN=((«NOT«BC(I))aANDBR(I~ 1)).0R.(BC(I).AND.(-NOT BR(I-1)))
IF(BR(I)) GO TO 7002

GO TO 7003

CONT INUE

GO TO 7004

DO 7005 I = 2sNPATP1

IF(BC(I)) GO TO. 7007

GO TO 7006

C(I - 1) = -140

GO TO 7005



7007
7005

402
400

6005

401

7009
7010
7011

7012
7013

7008

2000

7030
7031

7014

7015

7017
7018
7016
1010

1018

1020

1019
1022

C(I - 1) = 1.0

CONTINUE

DO 402 I = 1sNOPAT

IF(CtI) = CTRIV(I)) 40054024400

CONTINUE

GO TO 7001

DO 6005 I = 1sNOPAT

IF(C(I) + CTRIV{I)) 401560055401

“ONTINUE

GO TO 7001 . .
TEST TO SEE IF THE VECTOR C SATISFIES THE INEQUALITY
IN = 0

1z =0
IP =0

DO 7008 1 = 1,Is
ALPHA = 0.0

DO 7009 J = 13NPATP1

ALPHA = ALPHA + C(U)*D(]J)
IF (ALPHA) 7010+7030+7012

IN = IN +1

GO TO 7013

1Z = 12 + 1

GO TO 7013

IP = IP + 1

KF = IP*IN + 12

IF(KF) 7008700857030
CONTINUE

NEGATE CERTAIN ROWS AND COLUMNS OF SWEPTOUT FORM OF MATRIX Y AND

FORM MATRIX V
DO 2000 I = 2yMM1

ANC(I) = +FALSE.

JNR(I) = oFALSE.

BNCI(1) = LFALSE.

BNR(1) = +TRUE.

GO TO 7031

CONTINUE

GO TO 7001

DO 7014 I = 1sNOPOS

DO 7014 J = 1,1DP1
AAA(UY]I) = CLIV*A(JUs])
DO 7015 I = NPOSP1sNOPAT
DO 7015 J = 1,1DP1
AAA(U»T) = =CLI)Y*A(J,L 1)
DO 7016 Il = 1,1DPAl

I = IDPA(II)
IF(AAA(TIIs1)) 701747016497016
DO 7018 J = 1sNOPAT
CAA(TT o) = ~AAA(TTSJ)
CONTINUE

DO 1018 I1 = 1,IDPAl

I = IDPA(I])

DO 1018 J1 = 1,INDPA1
J = INDPA(JL)

VIIsJ1) = =AAA(11sJ)
DO 1022 J1 = 1,INDPAl
J = INDPA(J])

DO 1022 J11 = 1,INDPAl
IF(J11 - J1l) 1019»102041019
V(JsJll) = 1le0

GO TO 1022

VIJsJll) = 0.0
CONTINUE
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302

303

2001

2003
2002
004

2006
2013

2009
2008

2010

11

36
10

19
35
18
20

22

COMPUTE TRIAL EDGE FOR TRIVIAL M*1 MATRIX V

IF(N1) 30243024303

ISET =1
R(1l) = 1.0
g0 TO 31
I1SET = 0

BEGIN TEST TO SEE IF THERE EXISTS AN EDGE
SELECT A SET OF ROWS TO DELETE FROM MATRIX V

CONTINUE

ICT = 0

DO 2002 1 = 2yMM1

BNR(I) = BNC(I)sANDeBNR(I-1)
BNC(I) = -((
1))

IF(BNR(I)) GO TO 2002

ICT = ICT + 1

GO TO 2004

CONTINUE

GO TO 7019

IF(ICT = NOBTK) 2006+2006+2001
TF(I - MM1) 2013,2001,2001
“IBN1 = 1 + 1

DO, 2008 IBN = IBN1sMM1
IF(BNC(IBN)) GO TO 2009

GO TO 2008

ICT = ICT + 1

IF(ICT - NOBTK) 2008,2008,2001
CONTINUE

IF(ICT - NOBTK) 20014+2010,2001
CONTINUE -

FORM THE SUBMATRIX OF MATRIX V
L =0

DO 10 K = 1M

IF(BNC(K + 1)) GO TO 11

GO TO 10

L =1L+ 1

DO 36 J = 1N

P{LsJ) = V(KsJ}

CONTINUE

SWEEPOUT THE SUBMATRIX OF MATRIX V AND TEST TO SEE IF IT IS OF

MAXIMUM RANK
ISET = ISET + 1
TID1 = O )

JJ =1

L =1 )
IT =0 ‘
IT = IT + 1

IF(P(LyJJ)) 154516515

IF(IT = N1 # L = 1) 17,18,18
DO 34 J = 14N

PP(J) = P(LsJ) ,
DO 19 L1 = LsN2 ‘

DO 19 J = 1N

P(L1sJ) = P(L1 + 1+J)
DO 35 J = 1N

P(N1l,J) = PP(J)

GO TO 14

1ID1 = IID1 + 1
IF(IID1 ~ 1) 20,20+50
TID = JJ .
IF(JJ = N) 22523,23
JJ = ud+ 1
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15
25
33
24
32
26
27
57
23
62
28
61

29
30

31

38
40
‘41

42
44

43

39
46
50

7019
7804

7805
7004
6001

6000
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GO T0 13

DO 24 L1 = 1yN1

IF(LY = L) 25924425
CONST = P(L1sJJ)/P(LyJJ)

DO 33 J = JJsN
P{L1yJ) = P(L1sJ) =~ CONST*P(L»J)
CONTINUE - ’

DIV = P(LyJI)

DO 32 J = JJsN

P(LsJ) = P(L#JI/DIV
IF(JJ = N) 26923423
JJ = JdJd + 1

IF(JJ = N) 27957457

L =L +1

GO TO 13

YF(IID1l - 1) 60427427
[ID = N

IIDL = 11D -1
COMPUTE THE TRIAL EDGE B(K)
IF(IIDL) 62561462

DO 28 J = 1,11DL .
B(J) = =P(Jy11D)
B(IID) = l.0

IF(IID = N) 29,31,31
1IDU = 1ID + 1

DO 30 J = IIDUsN

B(J) = 040
TEST TO SEE IF B(K) IS AN EDGE
IPCNT =1

2ERO = «TRUES

DO 39 L1 = 1M

F = 040 :

NO 38 J = 1N

F = F + V(L1yJ)®*B(J)
IF(F) 40939441

POS = +FALSE

GO 7O 42

POS = «TRUE.

IFC(IPCNT = 1) 44944443

POsS1 = POS
IPCNT. = 2

2ERO = oFALSE.
GO TO 39

AN = POS+AND.POS1

IF(AN) GO TO 39

GO TO 50

CONTINUE

IF(ZERO) GO TO 50

GO TO 7001

HAVE ALL SUBMATRICES OF MATRIX V BEEN SELECTED
IF(ISET = IR) 457019457019

WRITE THE VECTOR C

WRITE (6+7804)

FORMAT (1HO»57HTHE ASSUMED VALUE OF GAMMA IS CORRECT AND THE VECTOR
1 C Is/)

WRITE (657805) (CL(I)sI = 14NPATP1)

"GO TO 6000

FORMAT (20(2XsF4.l))

WRITE {6+6001)

FORMAT (1HO y41HTHERE EXISTS NO VECTOR C AND THE ASSUMED /28H VALUE
10F GAMMA IS INCORRECT) )

STOP

END
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D,4 Limiting Factors for Time and Memory. The running character-

istics of these programs are highly dependent upon specific problems.,
However, certain limitations can be pointed out., Perhaps the greatest
limitation is caused by the number of components in the vector E}o In
the program this number is called NPATP1 which is equal to NOPAT+1l where

NOPAT is the number of augmented, input pattern space vectors ;ko Each

time that a vector :} is selected and satisfies the inequality

[Ci : u]DYY < 0 9

it must be tested for realizability., In this test the vectors ;& (or
=§}) form a matrix which must be tested for PLD's, From an examination

of the theory of Appendix A it can -be seen that, for a realizable Cys @

major operation in the test must be performed

NOPAT ..

NOPAT-ID-1

times where ID is the dimension of the pattern space and ID+1 is the
size of each vector ;}o If E} is not realizable, all of these opera-

tions will not be performed. Nevertheiess, the size of NOPAT deterﬁinés
to a large degree the running time,

Another limitation is that the.number NdPAT must be greatef than
ID+1l., This restriétion is basic to the theofy as developed in Aﬁpendix
N : . . _

The major portion of the data sforége”fgr these programs iévfor.fhe
matrices read in the sequence locations 3 and 4. For the program in
‘Section D.2, an increase in y by one causes the number of columns in Qii

and D' | to increase by the number of columns in R.. Similarly for
=y(i+l) . -]
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the altered forms of these matrices appearing in Section 4,7 the number

. . a .
is increased by twice the number of columns in §¢° The change in the

size of 2§Y is more difficult to determine; however, there should be no

significant problems with storage here since E;Y contains only the
T

unique columns of D' A o
1 =yy=y(y=1)



VITA
John L. Youngblood
Candidate for the Degree of

Doctor of Philoscphy

Thesiss A STUDY OF THE APPLICABILITY AND SYNTHESIS OF REDUNDANT,
THRESHOLD LOGIC DECISION=-MAKERS

Major Field: Electrical Engineering
Biographicals

Personal Data: Born on March 14, 1941 and reared at Cayuga, Texas,
the son of J. Douglas and Hessie B, Youngblood,

Education: Attended Cayuga Public School through May, 1957 and
graduated from R, L. Paschal High School in Fort Worth,
Texas in 1959; received the Bachelor of Science degree in
Electrical Engineering from Arlington State College in May,
19633 received the Master of Science degree in Electrical
Engineering from Oklahoma State University in May, 1965;
completed requirements for the Doctor of Philosophy degree in
May, 1967,

Professional Experiences Employed by the Fort Worth Division of
General Dynamics Corporation during the summer of 1963,
Employed by the School of Electrical Engineering at Oklahoma
State University as a graduateé research assistant from
September, 1965 through September, 1966, Employed by the
Fort Worth Division of General Dynamics Corporation since
October, 1966,



	Thesis-1967D-Y78s
	SEPARATOR0001

