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CHAPTER I 

IN TRODUC TI ON 

Because of the large amount of published material concerning the 

· bacterial cell wall and the fact that this study was confined to a 

single bacterium, Micrococcus lysodeikticus, the following discussion 

will deal only with pertinent literature concerning Gram-positive 

bacteria. Reference to specific work .with Gram ... negative bacteria will 

be made however, when necessary for clarification and completeness. 

During studies spanning the years 1930 to 1941 Knaysi (1, 2), 

observed in stained preparations of Bacillus subtilis, two peripheral 

structures which appeared to have .a role in cell division. For these 

structures he coined the terms cell wall and cytoplasmic membrane. 

Later workers, employing the electron microscope, were able to show that 

the cell wall was a well-defined, rigid structure since it retained its 

form upon removal of the protoplasm from the cell (3). 

In 1951 Salton and Horne (4) physically ruptured Gram-positive 

·bacterial cells and isolated an insoluble material, which was shown by 

electron microscopic examination to retain the form of the·cells from 

which it hadbeen isolated. These authors concluded that they had 

isolated the cell wall. 

Later a somewhat different method for preparing cell wall material 

involving the use of the enzymes trypsin, ribonuclease, and pepsin was 

described by Cummins and Harris (5). Qualitative chemical examination 

1 



of acid hydrolysates of cell wall material isolated by either method 

revealed that the cell wall had a rather simple chemical composition 

2 

(5, 6). Walls obtained from most species contained only a few amino 

acids (glutamic acid, glycine, lysine or diaminopimelic acid, alanine, 

and aspartic acid), some in the D=configuration, one or two hexoses, and 

two hexosamines (7=10). The hexosamines usually present were N=acetyl­

g1ucosamine and N=acetylmuramic acid, the 3-0-alpha-carboxyethyl deri= 

vative of N-acetylglucosamine. Muramic acid has been crystallized by 

Strange and Dark (11) and synthesized by Kent (12). The polymer built 

from these molecules is the material which confers rigidity to the cell 

wall, and has been called mucopeptide or g lycopeptide. In some cases 

the cell wall consists of nothing but mucopeptide, however, in certain 

Gram-positive species the mucopeptide is .associated with a polymer of 

either polyribitol or polyglycerol phosphate and the amino acid alanine 

(13=15). These compounds have been designated as teichoic acids. Thus, 

the composition of the cell wall mucopeptide has been found to vary 

widely from one organism to another, although in some·instances. very 

similar composition have·been observed. 

At the present time the exact structure of the intact cell wall 

mucopeptide of!!• lysodeikticus has not been ascertained. Rather sound 

inferences concerning its structure have been made however, using data 

·· obtained from chemical characterization studies of compounds released 

from purified cell wall mucopeptide by lysozyme and the Fi and F2B 

enzymes produced (exocellµlarly) by Streptomyces. A second source of 

· useful information has been the excellent studies on the mechanism of 

cell wall mucopeptide synthesis using a cell-free enzyme system obtained 

from Staphlococcus aureus. 
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In 1922 Fleming (16) reported the discovery of lysozyme, an enzyme­

like material which, when added to a thick suspension of!!• lysodeikticus,. 

caused rapid lysis. Following the finding by Myer et al. (17) that muco= 

polysaccharide · served as the substrate for lysozyme, Salton (6, 18, 19) 

established its direct action on the isolated cell wall mucopeptide of 

!!• lysodeikticus and confirmed the mucocomplex as the cell wall substrate. 

Using lysozyme .and the Fi enz.ymes of Streptomyces it was determined that 

both enzymes were specific for a ,,6'(1J4) linkage which occured in a 

proposed ·amino sugar polymer of the cell wall (20, 21). Following· chem• 

ical characterization of the di- and tetra=saccharides thus obtained, 

the structure for the amino sugar polymer of the cell wall mucopeptide 

of!!• lysodeikticus as shown in Figure 1 has been proposed (20-22). 

More recently Bouille and co-workers (23) have obtained data which 

indicates that all glycosidic linkages within the .amino sugar backbone 

are/j(l~4). In addition Ghuysen, Salton, and Ingram (24-28) chem-

ically analysed the peptide moiety of the mucopeptide and proposed its 

structure and site of attachment to the amino sugar polymer (Figure 1). 

Additional information concerning mucopeptide structure·has been 

obtained from the studies of Strominger and co=workers (29-36) and 

others (37, 38) who have demonstrated the participation of a uridine 

·nucleotide, sRNA, and phospholipid membrane transport intermediates in 

cell wall synthesis of S. aureus (Figures 2, 3, and 4). The involvement 

of sRNA seems to.indicate that the mechanism for synthesis of the·penta­

glycine bridge· for cross=linking may be similar to normal protein syn­

thesis. The ramainder of the peptide:however,-is synthesized by another 

mechanism, perhaps specific for the cell wall, since Hancock and Park 

(39) and Whitney and Grula (40) have shown that cell wall mucopeptide 
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· Figure 1. Proposed Gell Wall Mucopeptide Structure in M. 1.ysodeikticus 
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Figure 2. Cell Wall Synthesis in So aureus 
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synthesis continues in the presence of actinomycin-D, puromycin, and 

D-chloramphenicol, all of which are known inhibitors of normal protein 

synthesis. 
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In contrast with the·e.arlier proposed structure for the·mucopeptide 

of~. lysodeikticus, (Figure 1), the latest information supports the 

structure as given in Figure 5 (41, 42). Some information which is 

being used to formulate possible sites of cross-linking has been pub­

lished by Petit and co-workers (41) and substantiated in this study. 

The molar ratio of the mucopeptide components is found to be as follows: 

N-acetylglucosamine, N-acetylmuramic acid, alanine, glutamic acid, gly­

cine, and lysine (1:1:2:1:1:1). The alanine attached to the muramic acid 

is the L-isomer while the terminal alanine is the D form. Twenty percent 

of the terminal alanine is bonded, via its carboxyl group, to the epsilon­

amino group of lysine, twenty percent is C-terminal, and the carboxyl of 

the remaining sixty percent cannot be detected in either a free or bonded 

state. The remainder of the lysine possess a free epsilon-amino group • 

. All of the glycine is C-terminal, being attached via its amino group to 

glutamic acid. 

In 1963 Perkins (10) isolated a glucose rich polymer from the muco­

peptide of ~- lysodeikticus which had associated with it an equal molar 

quantity of acetamidomannuronic acid. The mode of linkage between this 

polymer and the cell wall mucopeptide is not known, nor has any further 

report of this polymer been published. 

Autolysis and the optimum conditions for its occurancehave been 

studied in a variety of Gram-positive and Gram-negative organisms (43-52). 

Most findings thus far indicate that autolytic systems are most active 

near the end of the exponential phase of growth and are highly specific 
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Figure 5. Proposed Cell Wall Mucopeptide Structure in M. 1,ysodeikticus 
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(43, 44, 48, 49). Extracts of Streptococcus faecalis cultures in the 

exponential phase increased the rate of lysis of~· faecalis cells taken 

from the exponential phase of growth and of isolated cell walls from 

. such ,cells. Cells or isolated cell walls from stationary phase cultures,' 

however, were resistant to the same extracts. Autolysis has been ob­

served in several suspending media including phosphate, sodium acetate, 

and tris hydroxymethylaminomethane buffers and sodium chloride solu-

tion (49, 50). In,most studies, pH ranges near neutrality have, been 

employed, since.acid conditions appear to be inhibitory (49). The 

extract activities (enzymes) are nondialyzable, heat-labile, ,and do 

not appear to be a lysozyme. This latter point is borne-out by their 

failure to lyse !'!•lysodeikticus (50). Young (52) has shown. that the 

,autolytic enzyme from_!!. subtilis is an ~-acyl muramyl-L"!alanine,ami­

dase which solubilizes the.cell wall by hydrolyzing the amide bond be­

tween N-acetyL muramic acid and L-alanine. 

Most workers agree that these enzymes are involved in wall growth 

. and cell division (44, 46, 51). Perhaps the enzyme breaks existing 

bonds such that a piece of new.wall polymer can be inserted, thus.allow­

ing for the growth of the cell wall ( intercalary growth?.). 

An excellent review of autolysis has been recently published by 

.· Shockman (53). 

Cummins and Harris (5), having found that the cell wall composi­

tion of several bacteria was unchanged after growth on different complex 

media, proposed the use of ~acterial cell wall composition.as a taxono­

mic criterion. Sil)ce their published studies, several laboratories have 

reported nutritional modifications of the cell wall mucopeptide. 

When hydroxylysine is present in the growth.medium, it can be. in-



corporated into the cell wall mucopeptide by i• faecalis, Leuconostoc 

mesenteroides, ands. aureus (54-56). Ins. faecalis this uptake and - . -

incorporation.can be inhibited by the addition of lysine to the growth 

medium. Incorporation of hydroxylysine in·iD faecalis resulted in an 

increased resistance to autolysis, decreased penicillin susceptibility 

(when postexponentially·incorporated), and no change. in lysozyme sus­

ceptibility (57). Lark and Lark (58) have reported the incorporation 

of D-methionine into the cell wall mucopeptide of Alcaligenes faec.alis 

after growth in the presence of cl4-labeled o ... methionine. This modi-

11 

fication resulted in defective wall synthesis leading to spheroplasting 

of the cells. Snell, Radin, and Ikawa (59) have shown that i• faecalis, 

when grown in.the presence of D-alpha-aminobutyric acid, incorporates 

this compound into its cell wall in place of the naturally occurring 

component D-alanine. Rhuland and Hamilton (60) found t4at ~scherichia 

coli could replace the alpha, epsilon-diaminopimelic acid of its muco-

peptide with gamma-methyldiaminopimelic acid when the latter was present 

in.the growth medium with. lysine •. Also working with~· coli, Sundhara­

das and Gilvarg (61) showed the incorporation of beta-hydroxy-alpha, 

epsilon-diaminopimelic acid in place of alpha, epsilon-diaminopimelic 

acid, a natural. component of the cell wall layer. Here too, lysine was 

required for the .alteration., Whitney .and Grula (62) reported the in-

corporation of D-serine into the mucopeptide of ~ •. lysodeikticus _at the 

expense of glycine. The details of this alteration will be discussed in 

this study. 

The experiments reported in this thesis were undertaken to determine 

if the cell wallmucopeptide of~· lysodeikticus could be.qualitatively 

.and/or quantitatively modified by nutritional alteration of the growth 
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medium. If accomplished, the physiological effect(s) of such.modifica­

tions, and the mecqanism(s) by which.they occurred were to be investi­

gated. 



CHAPTER II 

MATERIALS AND METHODS 

Test Organism 

The organism used throughout this study was a stock culture of 

M. lysodeikticus, strain PU (Purdue University). Though not listed 

in the 7th edition of Bergey's Manual of Determinative Bacteriology, 

a rather complete characterization has been published by Grula (63). 

The orga~ism is a Gram-positive, non-motile coccus which is easily 

lysed by lysozyme. Optimum temperature for growth is 30 C, although 

growth.is obtained at 37 and 25 c. 

Stock cultures were maintained on nutrient agar slants with trans­

fers made daily. To insure purity· the culture was periodically streaked 

on nutrient agar plates and isolated colonies checked for characteristic 

pigment production and Gram reaction. 

Media 

The basal medium used throughout this study was that utilized by 

Grula, Luk, and Chu (64), and Grula (63) which was modified to contain 

. the following per 100 ml: biotin (50 ug), inosine (6 mg), L-glutamic 

acid (358 mg), L-phenylalanine (40 mg), L-tyrosine (30 mg), NH4CL (100 

mg), Na2HP04 (200 mg), MgS04•7HOH (2 mg), and FeS04(NH4)2S04•6HOH (0.25 

ug). The medium was adjusted to pH 7.6 to 7.8 using solid potassium 

13 
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· hydroxide and sterilized by autoclaving 12 minutes at 10 pounds pressure. 

The ferrous ammonium sulfate solution and solutions of desired test com­

pounds were sterilized separately either by filtration (mil1ipore) or 

autoclaving, (12 minutes at 10 pounds pressure) and added aseptically. 

Growth of Cells 

Cells used for inoculation purposes were grown for 22 to 24 hours 

on nutrient agar slants at 30 C, washed twice in 5.0 ml of 0.85% sterile 

saline solution, and resuspended in sterile saline to an optical density 

of 0.22 to 0.26 (Spectronic 20). One drop of the resulting cell suspen­

sion was used to inoculate 5.0 ml of medium. Five ml volumes of medium 

.were incubated in tubes (17 mm I.D.) while volumes of 25 ml or more were 

incubated in 250 ml Erlenmeyer side-arm flasks. · Because aeration:· is 

necessary for optimum growth cells were incubated at 30 C with shaking. 

Cells were harvested by centrifugation after the .appropriate· incubation 

period. 

Determination of Lysozyme Susceptibility 

Cells to be checked for their susceptibility to the action of 

lysozyme were harvested .by centrifugation, washed twice in 5.0 ml of 

0.85% saline solution, and resuspended in saline to an optical density 

of 0.6 to 0.8 (Spectronic 20). Two ml of the resulting cell suspension 

was mixed with two ml of lysozyme .solution (10 mg per 100 ml 0.85% 

saline) and the change in optical density observed for 150 seconds at 

540 mu using the Spectronic 20. In order to compare cells from various 

growth situations the percent lysis was calculated using the following 

·.equation: 
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Initial Optical Density - Optical Density at 150 Seconds,X 100 = % 
Initial Optical Density lysis 

Cell Fractionation Procedure 

All cell fractionations were made using the chemical procedure of 

Park and Hancock (65). 

Hydrolysis Procedures 

Complete hydrolysis of protein or cell wall was performed by placing 

0.5 ml of sample in an 8xl00 nun test tube. An equal volume of 12 N 

hydrochloric acid was added and the tube sealed in vacuo. Hydrolysis 

was allowed to proceed for 18 hours at 105 C. 

The hydrolytic technique of Ellwood, Keleman, and Baddiley (66) 

was used for detecting 0-ester linked amino acids. 

Release of amino sugars from cell wall was accomplished by hydrolysis 

in 4 N hydrochloric acid for 4 hours at 105 C in vacuo. 

Hydrolysis of the cell wall mucopeptide for the purpose of studying 

rates of release of amino acids and obtaining partial cell wall peptides 

was.carried out in 6 N hydrochloric acid for one to 10 hours at 55 c. 

The hydrolysates were taken to dryness twice under a stream of hot 

air and the residues dissolved in deionized water for subsequent analyses. 

Titration of Test Compounds 

All titrations were made by .adding various concentrations of the 

compounds under study to 5.0ml (final volume) of Qasal medium. Follow-

ing 40 hours of incubation optical density readings were taken.at 540 mu 
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using either the Spectronic 20 or the Coleman Junior Spectrophotometer. 

Concentrations which gave either a stimulation or an inhibition of growth 

were used in. subsequent experiments. 

Chromatography 

For amino acid analysis hydrolysates were spotted on 8x8 inch 

sheets of Whatman 1/:1 filter paper and developed (ascending) in the 

two-dimensional system of either Redfield (67) or Roberts et al. (68). 

After development, chromatograms from the Redfield system were auto­

claved at 121 C for 30 minutes to remove residual diethylamine. Amino 

acids were detected by spraying with a solution of 0.5% ninhydrin in 95% 

acetone·containing 5% deionized water (V/V). After spraying, the 

chromatograms were heated at 100 C for 5 minutes. Amino acids appear as 

blue, yellow,. or reddish"-brown spots on a white background. 

Hydrolysates used for the isolation of serine were band spotted on 

l.5x22. inch strips of Whatman 1/:1 chromatography paper and developed 

(descending) in n-butanol:pyridine:water (6:4:3) for 60 hours at 25 C. 

Hydrolysates for amino sugar analysis were·spotted on 8x8 inch 

sheets of Whatman 1/:1 filter paper and developed (ascending) in the two­

dimensional system of Redfield (67). After development, chromatograms 

were .autoclaved at 121 C for 30 minutes to remove residual diethylamin(i!. 

Amino sugars were detected using the spray technique of Partridge and 

Westall (69). 

The thin .. layer chromatographic technique of Morse and Horecker (70) 

was used to separate the l-dimethylaminophythalene-5-sulfonyl (DNS) amino 

acid derivatives. 
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Amino Acid.Quantitation 

Amino acids were quantitated according to the procedure of Giri, 

Radhakrishnan, .and Vaidyanathan (71). Standa!d curves were prepared 

for each .amino .acid after chromatography in each of the solvent systems. 

The standard curve was determined using a concentration of 10 to 200 

mumoles of amino acid per spot. 

Radioautography 

The presence or absence of radioactivity in various compounds was 

determined by exposing developed chromatograms to Blue Brand X-ray film 

for 21 days and developing in Diafine. This procedure permitted good 

detection of 100 counts per minute.as determined by .a Picker gas-flow 

automatic planchet counter operated windowless. 

Counting Procedure 

All samples were plated at infinite thinness on stainless steel 

planchets and counted using a Picker automatic gas-flow planchet counter 

operated windowless. A counting efficiency of approximately.40% can be 

obtained with this unit. All planchets were discarded after one use. 

Dry Weight Determination 

The relation between dry weight and absorbancy at 540 mu was deter­

mined for cells grown. in basal medium on both.a Coleman Junior and a 

Spectronic 20 Spectrophotometer. Cells which had grown for 25 hours 

were washed twice in 0.85% saline solution and once with deionized 

water. Serial dilutions were made in water from the resulting cell 
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suspension.and the absorbancy of each sample measured. Aliquots were 

placed into dried, pr~-weighed aluminum dishes and h~ated at 100.C in.a 

dry.air oven to a constant weight. Results were plotted as mg dry 

weight of cells versus absorqancy .at 540 mu for both instruments. 

Serine Isolation.and Configuration Studies 

Cells were grown.in the presence of 5xl0-4 MD-serine in,50 ml of 

l?asal medium for 40 hours, harvested, and fractionated. The trypsin 

digest, used as representative cellular protein, and the cell wall 

mucopeptide were subjected to amino acid hydrolysis and chromato­

graphed for serine. isolation. :.'For control purposes, a sample of cry­

stalline trypsin was.carried through the same hydrolytic and chromato­

graphic procedures. Areas containing serine were determined through 

the use of control strips spotted with known.amino acids. These.ar~as 

were removed and eluted with.deionized water for 40 hours at 4 c. The 

samples were taken to dryness under a stream of warm air, redissolved 

in deionized water, and checked for purity in the.chro~tographic 

system of Redfield (67). These samples were used for configuration.· 

studies. 

The D-amino acid oxidase (Worthington Biochemical Company, Free­

hold, New Jersey) preparation.consisted of 50 ml of a 1% solution in 

0.05 M pyrophosphate buffer (pH 8.5), dialysed against 1000 ml of the 

.above buffer at 4 C for 6 hours. The assay was performed by·mixing 

equal volumes (0.5 ml) of the enzyme preparation.and the.amino acid solu­

tion.and incubating for 16 hours at 37.C under toluene. 

The assay system for L-serine consisted of 0.22 ml amino acid solu­

tion (substrate), 0.30ml Tris-hydrochloric acid buffer (pH 7.8), 0,20 



19 

ml L-amino acid oxidase (Worthington Biochemical Company, Freehold, New 

Jersey, 0.5 mg per ml of 0.1 M potassium chloride), and 0.50 ml potassium 

chloride (0.1 M). The mixture was incubated at 37 C for 3 hours. 

All keto acid determinations were performed using the technique of 

Haid le and Knight (72). 

Serine isolated from cellular protein and cell wall mucopeptide was 

also assayed by Dr. Mary M. Grula using an unpublished technique. 

Uptake and Incorporation of D=Serine=3=cl4 

Cells were grown for 25 hours in 50 ml of basal medium. At that 

time 19.5 ml of cells were added to flasks containing various amino 

acids and 0.05 uC of D-serine=3=cl4. The final concentration of each 

amino acid was 5xl0=4 M. Incubation was continued for 30 minutes in a 

Dubnoff water bath shaker. After measuring absorbancy at 540 mu on a 

Coleman Junior Spectrophotometer the cells were washed two times in 

0.85% saline solution and fractionated. The radioactivity of the cell 

pools, protein, and cell walls was determined. Results are expressed 

as counts per minute per mg dry weight of cells fractionated. 

Labeled Sulfur Experiments 

Cells were grown for 25 hours in two 50 ml volumes of basal medium. 

At this time 0.2 ml of sodium sulfate (s35) was added to each, such that 

the final concentration was 0.2 uC per ml medium. To one flask·D~serine 

was added to a concentration of 5xlo-4 M. Incubation was continued for 

15 hours. After measuring the absorbancy at 540 mu on a Coleman Junior 

Spectrophotometer the cells were washed twice in 0.85% saline solution 

and fractionated. The protein fraction was subjected to acid hydrolysis 
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for amino .acids and chromatographed in the systems of Redfield (67) and 

Roberts et al. (68). Radioautography was employed to identify· labeled 

compounds. 

·Amino. Acid Labeling Experiments 

Cells were grown in 100 ml of basal medium for 40 hours in. the 

presence-of 10 uC of various c14-labeled amino acids. Following 

optical density readings at 540mu on a Coleman Junior Spectrophotomete;r 

the·cells were washed twice in 0.85% saline solution and fractionated. 

The protein and cell wall mucopeptide fractions were subjected to .acid 

hydrolysis for amino acids and analysed for radioactive compounds by 

radioautography. A sample of cell wall mucopeptide was also hydrolysed 

for amino sugars and analysed by radioautography. 

Induction Experiments 

The test system consisted of cells grown in basal medium in a 

Dubnoff water bath shaker. At an optical density of 0.5 (540mu, 

Spectronic 20), D-glucose was ad~ed to a final concentration of 0~2% • 

. After. 30 minutes either actinomycin-D (10. ug per ml medium), puro\:nycin 

(45 ug per ml medium), or D-chloramphenicol (100 ug per ml medium) was 

added. Following an additional 30 minute incubation D-serine-3-c14 

(0.1 uC per ml medium) or glycine-2-c14 (0.04 uC per ml medium) was 

added. Unlabeled D-serine or glycine was also added such that the final 

concentr.ation was .5xlo-4 M. After. one· hour, optical density readings 

were made (540 mu, Spectronic 20), the cells innnersed in an ice bath, 

washed in cold deionized water, and fractionated. The cell wall muco­

peptide·was hydrolysed, counted for radioactivity, and the labeled 



compounds identified by radioautography. The radioactivity of the 

protein fraction was also determined. Results are expressed as counts 

.. per minute per mg· dry weight of cells fractionated. 

Autolytic Studies 

Cells were grown in 50 ml basal medium for 25 hours giving an 

optical density of 0.30 on a Coleman Junior Spectrophotometer. Five 

·ml aliquots were washed twice in either phosphate buffer (lo-1, 10-2, 

l0-3, and 10-4 M, pH 7.0), 0.85% saline·solution,· or deionized water. 

After resuspension in the above solutions one-half of the samples were 

·heated at 100 C for 15 minutes. Incubation was then continued, with 

and without shaking, at 30 c. Periodic optical density readings were 

·· made on a Coleman Junior Spectrophotometer. After 24 hours samples 

were taken for crystal violet staining .and observation using the 

electron microscope. 

Cell Wall Turnover Studies 

Cells were grown in the presence of 10 uC of the desired isotope 
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·in 50ml basal medium to an optical density reading (Spectronic 20) of 

0.50. Cells were spun out, washed twice in 0.85% saline solution, re­

suspended in 50. ml basal medium, and re incubated for 4 hours. Following 

an optical density reading using a Spectronic 20, one-half of the cell 

suspension was harvested by centrifugation (27,000 X G·for 15 minutes) 

.and fractionated for cell wall mucopeptide. The remaining cells were 

washed in 0.85% saline solution, resuspended in 100.ml basal medium, 

.and reincubated. Following a several fold increase in mass an optical 

density reading (Spectronic 20) was taken and the cells fractionated for 
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cell wall, mucopep.tidee Specific activities are expressed as, cout>.ts per 

minute per mg dry weight of cell walls isolated or counts per minute per 

ug of cell wall amino acid. Changes in mass and specific activity .are 

represented by· 11 fold 11 increases or decreases. For example,.a two-fold 

increase. 

Formation of Dansyl Derivatives 

The technique of Gray.and Hartley (73) was used to form all dansyl 

derivative.s. 

Hydrazinolysis Procedure 

The procedure of Aka~ori, Ohno, and Narita (74).was. used throughout 

. this study. 

Electron Microscopy 

1Cells were grown, in, 5.0 ml basal medium for. 40 hourse Following 

growth, cells were prefixed directly in,the growth medium by,use of a 

final concentration. of 0.10% osmium tetroxide for 30 minutes at.25 c. 

After centrifugation, the.cells were f.ixed for.an,additio11al one hour 

in.2 ml of 1.0% osmium tetroxide in Veronal buffer (pH 6.1) under R-K 

conditions.at 25 C (75)o Cells were then,washed three times in·VeroI1,al 

buffer and postfixed in 0.5% uranyl,acetate,in Verotl,al buffer (pH3.5) 

for 24 hours.at 25 C (76). · The.cells were.again,washed three.times in 

Verotl,al buffer and embedded in,agar blocks. The agar blocks were de­

hydrated through,an ethyl.alcohol series (25 to 100%), treated with 

.three.c~anges of propylene oxide (lOminute treatments),.and placed in 

an equal mixture of propylene oxide.and complete Araldite·resin monomer 



for 2 hours. Another equal part of complete resin monomer was then 

,added, mixed,. and allowed to infiltrate overnight. Araldite (100%) 

was then placed on the blocks for 24 hours.at roam temperature. The 

Araldite monomer was prepared according to the method of Luft (77). 

Gelatin capsules (size 00) were filled with.fresh monomer, and the 
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· blocks were placed on.the surface and allowed to settle to the bottom 

af the capsules. The blocks were then polymerized for 72 hours at 62 c. 

Sections were cut on a Porter-Blum MT-2 microtome and transferred 

to uncoated 400-mesh,copper grids. They were then.stained 5 minutes 

with.2.0%.aqueaus uranyl acetate.and 15 minutes with 0.4% lead citrate, 

washed in distilled water, dried on.filter paper, and examined in.an 

RCA EMU. 3-G electron.microscope using 100 KV accelerating voltage (78). 

Cells and cell wall preparations were placed on 200-mesh copper 

grids, washed three times in.distilled water, and dried on filter paper. 

Specimens were s~adowed with.chromium at a 15 degree angle and observed 

using 100 KV of accelerating valtage. 



CHAPTER III 

RESULTS AND DISCUSSION 

Medium Alterations 

Shortly after the initiation of this investigation difficulty was 

encountered in obtaining reproducible growth responses by~. lysodeikticus 

in the defined medium as published by Grula, Luk, and Chu (64). Since a 

great portion of this study would involve nutritional modifications it 

seemed advisable to reassess the medium and make necessary alterations 

to maximize and stabilize the growth response. 

First, the effect of the.addition of various vitamins, alone and 

in.combinations, to the existing medium, which already contained biotin, 

was checked. The results of this study are presented in Table I. No 

vitamin, or combination thereof, significantly increased growth over 

that of the control situation. As a result no change was made in the 

vitamin content of the medium. 

Consideration was next given to the possibility that during steril­

ization by autoclaving toxic breakdown products of medium components 

were formed. To check this point two samples of medium were compounded; 

one was sterilized by autoclaving~ the other by filtratiop. The results 

are shown.in Table II. The method of sterilization has no effect on 

growth of the organism and sterilization by autoclaving was continued. 

Because of the frequent appearance of a white precipitate on the 

24 
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TABLE I 

VITAMIN ASSAY: GROWTH RESPONSE OF M. LYSODEIKTieUS 

Vitamin addition* Optical density at 
540 mu~b~ at 40 hours 

none (control) 0.225 

folic acid 0.223 

p-aminobenzoic acid (PABA) 0.230 

.calcium pantothenate 0.200 

pyridoxine-Hel 0.253 

riboflavin 0.170 

pyridoxal-5-P04 0.264 

pyridoxamine-di-Hel 0.188 

thiamine-Rel 0.161 

niacin 0.217 

folic acid+ PABA 0.215 

pyridoxine-Hel + riboflavin 0.135 

pyridoxal-5-P04 + thiamine-Rel 

~~Vitamin .concentration of 0.5 ug per ml of medium • 
.,,,.,,~eoleman Junior Spectrophotometer (tube size 10x85 mm I.D.). 
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TABLE II 

METHOD OF STERILIZATION: EFFECT ON GROWTH 
RESPONSE OF M. LYSODEIKTICUS 

Method of sterilization 

autoclave (12 minutes at 10 pounds pressure) 

filtration (millipore) 

*Coleman Junior Spectrophotometer. 

Optical density at 
540 mu* at 40 hours 

0.07 

0.04 
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walls of the incubation tubes the next factors taken.into .consideration 

were the.concentrations of tyrosine, sodium and potassium ions,.and the 

temperature of incubation. Prior to.this, potassium phosphate had been 

added to the medium for buffering, the pH of the medium had always been 

adjusted with.potassium hydroxide, .and incuQation.carried out at 37.C. 

Tyrosine had been.added at a concentration of one mg per ml of medium. 

The.alterations that were made.and results obtained are presented. in 

·Table III. The.greatest effect on.growth, of the three factors.checked, 

was the lowered incul?ation temperature. Also indicated, was the need 

for some ~alance between the sodium and potassium ions. Because the 

. increased level of tyrosine seemed to have no effect on growth, its 

concentration was reduced to 0.30 mg per ml of medium. The temperature 

of incut?ation was lowered to.30 C and the sodium phosphate was incor­

porated into.the medium. Following this series of experiments the 

growth medium as indicated in,the Materials and Methods section.was 

used. A typical growth curve. in this medium is given in Figure 6. 

~utritional Studies: Effects on Growth and 

Lysis by Lysozyme 

Micrococcus lysodeikticus is extremely. sensitive to lysis by the 

enzyme lysozyme, which,cleaves the,/.5'(1~4) linkage present in cell wall 

mucopeptide. This fact served as the basis for the assay used to detect 

nutritional modifications of the.cell wall. Since lysozyme causes 

hydrolysis of the mucopeptide.we felt that an alteration of this struc­

ture might be reflected in .a cl).ange in susceptibility of the organism to 

the enzyme. 

Growth of the organism in the presence of various compounds and the 



TABLE III 

EFFECT OF CHANGES OF VARIOUS MEDIUM COMPONENTS AND INCUBATION TEMPERATURE 
ON THE GROWTH RESPONSE OF M. LYSODEIKTICUS 

Tyrosine concentration Phosphate added Base for pH adjustment Incubation temperature Optical density at 
(mg per ml medium) Na2HP04 K2HP04 Na OH KOH · 37. C 30,c 540 mu* at 40 hours 

1.0 - + - + + - 0.065 
1.0 - + - + - + 0.670 
1.0 - + + - + - 0 .. 099 
1.0 - + + - . - + o. 710 
1.0 + - - + + - 0.072 
1.0 + - - + - + o. 712 
1.0 + - + - + - 0.076 
1.0 + - + - - + 0.413 

0.75 - + - + + - 0.071 
0.75 - + - + - + 0.660 
0.50 - + - + + - 0.076 
0.50 - + - + - + 0.610 
0.50 + - - + + - 0.076 
0.50 + - - + - + 0.620 
0.50 + - + - + - 0;059 
0.50 + - + - - + 0.445 
0.50 - + + - + - 0.043 
0.50 - + + - - + 0 .. 620 
0.20 - + - + + - 0.071 
0.20 - + - + - + 0.565 

*Coleman Junior Spectrophotometer. 

"' 00 
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assay of the cells thus obtained were performed as previously described. 

Representative data are given.in Table IV. As indicated, little or no 

change in lysozyme susceptibility was found, although several of the.com­

pounds markedly inhibited growth. 

Nutritional Studies: Qualitative and Quantitative Effects 

on the Amino Acids of the Mucopeptide 

Since the lysozyme assay would measure an alteration in the rate 

of enzymic cleavage of only one bond in the cell wall, it was surmised 

that a modification could be occurring which would go undetected. As.a 

result, experiments were initiated in which the amino acid portion of 

the mucopeptide of cells from various growth situations was qualita­

tively and quantitatively analysed. The results of these studies are 

presented in Table V. Of the amino acids tested only D-serine, which 

appears to be incorporated at the expense of glycine, produced a modifi­

cation. As shown.in Table IV this alteration does not change the lyso­

zyme susceptibility, indicating that the.amino acid composition of the 

peptide portion of the cell wall has little or no effect on the action 

of this enzyme. In addition, no morphological abnormalities such as 

protoplast or filament formation have been observed. The greatest 

variation in the cell wall caused by D-serine involves the amount of 

glycine, which is reduced to about one-half of no:tmaL Also, the amount 

of serine incorporated exceeds the amount required only to replace the 

missing glycine.and therefore,. the possibility exists that the dimensions 

of the wall peptide may have been incr~ased. 



TABLE IV 

EFFECT OF VARIOUS COMPOUNDS ON GROWTH AND LYSOZYME 
SUSCEPTIBILITY OF M. LYSODEIKTICUS 

Medium 
addition 

none 
adonitol 
D-mannitol 
D-sorbitol 
sodium formate 
D-mannose 
rhamnose 
sodium acetate 
sodium pyruvate 
glucose 
D-glucosamine 
N-acetylglucosamine 
raffinose 
D-.aspartic acid 
D-valine 
D-methionine 
D-serine 
beta-alanine 
D-alanine 
D-threonine 
D-malic acid 
D-histidine 
D-phenylalanine 
D-glutamic acid 
D-tryptophan 
N-acetyl-D-alanine 
DL-alanyl-DL-serine 

Concentration">'' 

3xlo-l 
3xlo-l 
3xlo-l 
7x10-l 
3xlo-l 
3xlo-l 
6xlO-l 
5x10-l 
3xlo-l 
5xlo-4 
2xlo-2 
8x10·2 
2x10· 3 
2xlo-3 
2xlo· 3 
5xio·4 
lxl0-1 

.2x10·3 
lxio·l 
2x10-3 
6xlo-3 
6xl0·3 
5xlo-3 
8xlo-3 
2xlo-3 
2xl0-3 

Optical density at 
540 mu** at 40 hours 

1.50 
1.00 
1. 20 
1.20 
1.10 
1.10 
0.90 
1.40 
1.50 
1.50 
0.49 
1.47 
1.50 
1.50 
1.30 
0.78 
0.58 
0.16 
1.49 
0.34 
1.22 
0.94 
1.02 
1.50 
0.82 
1.50 
1.50 

*Molar concentration in growth medium. 
,'r*Spectronic 20 Spectrophotometer. 
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Percent 
lysis 

87.5 
87.7 
89.3 
86.9 
86.4 

. 85.9 
85.6 

. 89. 7 
86.6 
9J..3 

· 88.0 
87.0 
89.0 

.89.0 
90.0 
80.0 
89.0 
89.0 
88.0 
90.0 
89.0 
91.0 
89.0 
87.0 
88.0 
89.0 

.86s0 



Medium 
addition* 

TABLE V 

AMINO ACID COMPOSITION OF THE CELL WALL MUCOPEPTIDE FROMM. LYSODEIKTICUS 
GROWN IN THE PRESENCE OF VARIOUS AMINO ACIDS 

Amino acid molar ratios** 

Alanine Glycine Glutamic Lysine Serine Threonine Histidine Valine Methionine Aspartic 
acid acid 

none 2.1 1.1 1.0 1.0 

D-serine 2.1 0.4 1.0 1.0 0.9 

L-serine 2.3 1.2 1.0 1.0 0.0 

D-threonine 2.0 1.1 1.0 1.0 - o.o 

D-histidine 2.1 1.2 1.0 1.0 - - o.o 

D-valine 2.1 1.1 1.0 1.0 - - - o.o 

D-methionine 1.9 1.1 1.0 1.0 .. - ... - o.o 

D-aspartic acid 2.0 1.2 1.0 1.0 - - - - - o.o 

*Amino acids added to concentration of Sxlo-4 M. 
**Glutamic acid taken as 1.0. Amino acids not listed were not present. 

w 
N 
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Compounds Reversing the Effects of D-Serine 

Attention was next given to compounds which might aid in reversing 

or preventing the growth inhibition and cell wall modification caused 

by D-serine. Tables VI and VII contain the results of these experi­

ments. Glycine and L-serine almost completely prevent the growth in­

hibition caused by D-serine. Addition of L-alanine results in some 

reversal, however, restoration af growth is better using D-alanine. The 

other.campaunds examined had little or no effect. Incorporation of 

serine inta the mucopeptide is decreased in the presence af D- ar L­

alanine, L-serine, and glycine. Where serine i~corporation is reduced 

by glycine or D-,alanine, glycine levels incr~ase to what may be.can­

sidered normal. In no case, however, is serine incorporation completely 

inhibited. 

Studies using D-serine-3-Cl4 (Table VIII) revealed that all faur 

amino acids which decrease incarporation of serine into cell wall (D­

and L-alanine, L-serine, and glycine) decrease the amount of label from 

D-serine in intracellular paols. Therefare at least part of the re­

versal of the effects of D-serine by these amino acids appears to be 

due to theJr competition with·D-serine at the cell entry level. 

Incorporated Serine: Configuration .and Site of Attachme.nt 

Having established the incorporation of serine, it next became of 

interest to attempt to determine the optical configuration .and site of 

attachment of the serine in the cell wall. 

Serine obtained from the mucopeptide of cells grown in.the presence 

of D-serine was reacted with L- and D-amino acid oxidase enzymes. The 
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TABLE VI 

EFFECT OF VARIOUS COMPOUNDS ON GROWTH INHIBITION 
BYD-SERINE IN M. LYSODEIKTICUS 

none 

Medium 
additions 

D- serine''dd: 

D-serine + D-alanine 

D-serine + L-alanine 

D-serine + glycine 

D-serine + pantoic acid 

D-serine + L-serine 

D-serine + CaCl2 

D-serine + beta-alanine 

D-serine + Na-pantothenate 

Concentration of 
reversing agents* 

5xlo-4 

5xl0-4 

5xlo-4 

5xlo-4 

5xl0-4 

2xl0-4 

2xl0-2 

2xl0-4 

*Molar concentration. in growth medium. 
**Coleman Junior Spectrophotometer at 540 mu. 

*~~5xl0-4 M concentration in all tubes. 

Optical density** 
at 40 hours 

0.22 

0.48 

0.55 

0.19 

0.57 

0.26 

0.29 

0.22 



TABLE VII 

AMINO ACID·COMPOSITION OF THE CELL WALL MUCOPEPTIDE 
FROMM. LYSODEIKTICUS GROWN IN.THE PRESENCE OF - -·~~~~~-

VARIOUS COMBINATIONS OF AMINO ACIDS 

Medium Amino acid molar ratios** 
additions* 

Alanine Glycine Serine Glutamic 
acid 

none 2.1 1.1 o.o 1.0 

D-serine .2.1 0.4 0.9 1.0 

D-serine + L-alanine 2.0 0.3 0.8 1..0 

D-serine + D-alanine 2.0 1.0 0.4 1.0 

D-serine + glycine .2.0 1.0 0.3 1.0 

D-serine + L-serine 1.9 o.s 0.6 1.0 

*All amino acids added to concentration of Sxl0-4 M. 
**Glutamic acid taken .as 1.0. 
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Lysine 

1.0 

1.0 

1.0 

1.0 

1.0 

1..0 



TABLE VIII 

EFFECT OF VARIOUS AMINO ACIDS UPON THE UPTAKE AND INCORPORATION OF LABEL FROM D-SERINE-3-cl4 

Medium Cell fraction (counts per minute per mg cells fractionated) 
additions 

% lo % 
Cell pools Inhibition Protein Inhibition Gell wall Inhibition 

D-serine-3-cl4 3917 - 625 - 363 

D-serine-3-cl4 + D-alanine 576 85 206 67 108 70 

D-serine-3-cl4 + L-alanine 1441 63 262 58 120 66 

D-serine-3-cl4 + L-serine 1567 60 81 94 158 56 

D-serine-3-cl4 + glycine 1919 51 136 78 177 51 

w 
CJ' 



results of these experiments are shown in Table IX. The incorporated 

serine appears to be the·D-isomer since treatment with D-amino acid 

oxidase results in the formation of keto acid whereas treatment with 

L-amino acid oxidase does not. Additional data obtained by Dr. Mary 
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M. Grula, using an unpublished enzyme technique, which is quite specific 

for the D-isomer, also support this finding. It should be pointed out 

however, that the sensitivity of the L=amino acid oxidase enzyme pre­

paration is not.good as indicated by the control in Table IX. Ther~­

fore, the possibility exists that .a small portion of the· serine in the· 

mucopeptide could be in the L ,configuration and go. undetected by this 

technique. 

Having a free hydroxyl group it seemed possible that serine·might 

be attaching· to·. the mucopeptide via an 0-ester linkage. No evidence 

for such bonding was found since·treatment with ammonium hydroxide 

caused no release of serine (66). 

Detection of free amino groups by formation of dansyl derivatives 

was undertaken to determine if serine might be attached through its 

amino group. The technique of Gray and Hartley (73) was employed in all 

determinations. The derivatives obtained from both normal and serine­

containing.cell walls were identified using thin-layer chromatography 

in three different solvent systems (70). The Rf values obtained are 

presented in Table X. In all three· solvent. systems the Rf value 

which most.closely matches the derivative obtained from our cell wall 

preparations is that of lysine. The·two values given for lysine are 

·those for the beta and epsilon amino groups, since lysine exists as a 

di-amino acid. A survey of the literature reveals that the dansyl 

derivative of the epsilon amino group generally gives the higher Rf 



TABLE IX 

EFFECT OF D- AND L .. AMINO ACID OXIDASE ENZYMES ON THE·. SERINE ISOLATED 
FROM THE,CELL WALL MUCOPEPTIDE OF M. LYSODEIKTICUS 

Substrate Optical density .at 540 mu* 
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L-oxidase D-oxidase 

none o.oo 

D-serine** o.oo 

D-alanine** o.oo 

L-serine** 0.04 

serine from .cell wall o.oo 

*Colell18n Junior Spectrophotometer. 
*~Concent.ration of amino acid was 500 ug. 

o.oo 

0.35 

0.50 

o.oo 

0.05 
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TABLE X 

THIN-LAYER CHROMATOGRAPHY OF AMINO ACID DANSYL DERIVATIVES: 
Rf VALUES IN VARIOUS SOLVENT SYSTEMS 

Source of 
derivative 

glutamic acid 

glycine 

lysine 

purchased dansyl-serine 

purchased dansyl-alanine 

serine. cell wall 

normal cell wall 

A 

0.10 

0.21 

0.24, 0.61 

0.07 

0.39 

0.64 

0.61 

Rf values 

Solvent'"" 
B 

0.23 

0.53 

0.79, 0.96 

0.09 

0.69 

0.96 

0.96 

*A - Benzene:pyridine:acetic acid (80:20:2). 
B - Chloroform:tert-amylalcohol:acetic acid (70:30:3). 
C - Chloroform:tert-amylalcohol:formic acid (70:30:1). 

C 

0.75 

0.80 

0.65, 0.91 

0.23 

0.82 

0.92 

0.91 
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value in most solvent systems (70, 73). This holds true for the solvent 

systems used here. These experiments thus indicated that serine, pre­

sent in the·mucopeptide, is bonded in such a way that its amino group is 

not free. 

Since serine is incorporated at the expense of glycine it became of 

interest to determine the status of its carboxyl group. If it is in­

corporated in place of glycine it should be attached to the alpha 

carboxyl of glutamic acid via its amino group and thus have its carboxyl 

group free and unattached (42). 

The determination of free carboxyl groups was performed using the 

technique of Akabori, Ohno, and Narita (74). Table XI shows the results 

of these determinations. Glycine and serine are the two major C-terminal 

amino .acids. These data indicate that serine is replacing glycine and is 

attached through its amino group while its carboxyl remains free. In 

addition, no C-terminal glutamic acid is found in either the normal or 

serine~containing cell wall. This would be expected if serine is truly 

replacing glycine, since Mirelman and Sharon (42) have shown that glycine 

is bonded via its amino group to the alpha carboxyl of glutamic acid. 

The overall significance of these findings will be considered in more 

detail when they are related to.cellular integrity as studied using the 

electron microscope. 

In order to obtain more direct evidence relative to the site of 

attachment of serine in the mucopeptide, incomplete hydrolysates of cell 

walls were analysed for serine-containing peptides. In addition, the 

rates. of release of cell wall amino acids by mild acid hydrolysis were 

also studied. It was believed that the rate of release·might give an 

indication as to the number of bonds which must be cleaved in order to 



TABLE ·XI 

HYD;R.AZINOLYSIS: C-TERMINAL AMINO ACIDS IN NORMAL AND 
SERINE CONTAINING CELL WALLS OFM. LYSODEIKTICUS 

41 

Source Percent of total amino acid as C-terminal 

Alanine Glutamic Lysine Glycine Serine 
acid 

normal cell wall 6.3 o.o 3.3 37.0 o.o 

serine cell wall 3.7 o.o 3.3 .59.0 75.0 
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release free serine from the mucopeptide. The rates of release of 

three cell wall amino acids are given in Table XII and Figures 7 and 8. 

Glycine, known to be linked to the mucopeptide by a single peptide bond, 

is released from both cell walls more quickly than alanine (42). This 

is to be expected since all evidence indicates that most of the alanine 

is linked by two bonds, and therefore would be more slowly released by 

acid hydrolysis (41, 42). Serine, on the other hand, is released rapid­

ly and almost completely in eight hours. The significance of this 

result when compared to the glycine release is not clear, but may in­

dicate a difference in bond strength or accessibility of the serine. 

Table XIII shows a comparison of the percent C-terminal amino 

acids (10 hours reaction time, see Materials and Methods section) and 

the percent of amino acids released after ten hours mild hydrolysis 

from both normal and serine-containing cell walls. Fairly good corre­

lation exists in almost all cases. These data further substantiate our 

hypothes,is that serine is C-terminal and replaces glycine in the cell 

wall, by bonding to the alpha carboxyl of glutamic acid via its amino 

group. 

No partial peptides containing serine have been obtained. A 

possible explanation could be the rapid and almost complete release of 

serine as shown in Table XII. 

Inducible Nature of Serine-Adding Enzyme(s): Effect of Inhibitors 

of Protein Synthesis on Protein and Cell 

Wall Mucopeptide Synthesis 

Incorporation of serine into the cell wall of~· lysodeikticus 

could be medi~ted by the glycine-adding enzyme or by an enzyme specific 



Time. in 
hours 

0 

.2 

4 

6 

10 

TABLE XII 

RELEASE· OF AMINO ACIDS FROM NORMAL AND SERINE 
CONTAINING·CELL:WALLS OF M. LYSODEIKTICUS 

Percent of total amino acid released 

Normal cell wall Serine cell wall 
Alanine Glycine Alanine Glycine 

o.o o.o o.o o.o 

2.1 4.3 2.4 9e4 

i2e9 9.8 3.6 . 21.1 

4e4 17.4 7.5 37.6 

8.0 25.1 9.0 47e0 

% per hour (avg.) 0.8 . 2.5 0.9 4.7 
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Serine 

OeO 

,20.0 

35.0 

.78.3 

78.3 

7.8 
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Source 

normal 
cell wall 

serine 
cell wall 

TABLE XIII 

PERCENT CELL WALL AMINO ACID RELEASE VERSUS 
PERCENT C-TERMINAL CELL WALL AMINO ACID 

'7o·C-terminal amino acid '7o amino acid release 

Alanine Glycine Serine Alanine Glycine 

6.3 . 37. 0 o.o 8.0 25.1 

3.7 .· 59.0 75.0 9.0 47.0 
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in 10 hours 

·:Serine 

o.o 

78.3 
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for serine, which .could be either constitutive or induced. 

One approach for obtaining data relative to the inducible nature 

of the serine-adding enzyme would involve incorporation of serine into 

the cell wall in the.absence of protein synthesis. Incorporation could 

be accepted as evidence for a constitutive enzyme (glycine- or serine­

adding), whereas lack of incorporation.could indicate the need for 

synthesis of aninduced enzyme for serine addition. 

Three known. inhibitors of protein synthesis, actinomycin-D, 

puromycin, and D-chloramphenicol (CAP) were selected for study. 

To determine if the three.antibiotics inhibited protein synthesis 

while allowing synthesis of mucopeptide in~· lysodeikticus, incorpora­

tion of glycine-2-Cl4 into protein.and mucopeptidewas examined inthe 

presence and absence of the.antibiotics. This amino acid was chosen 

because it is a normally occurring component of the cell wall and 

protein of this organism. Representative data are given inTable XIV. 

All antibiotics drastically inhibit the incorporation of glycine into 

protein. However, incorporation of glycine into mucopeptide is not 

inhibited; instE)ad a stimulation in the presence of all antibiotics 

occurs •. A possible explat:iation for the stimulation could be a sparing 

effect due to inhibition in protein synthesis. It is also possible that 

inhibition of protein synthesis does not allow formation. or activation 

of autolytic enzymes.which would normally remove amino acids from the 

mucopeptide (cell wall turnover). 

Having established tqat all of the antibiotics inhibit protein 

synthesis while allowing cell wall mucopeptide synthesis to continue, 

their effect on the incorporation of D-serine-3-cl4 was next determined. 

Data in Table XV reveal that incorporation of D-serine into both protein 



TABLE XIV 

EFFECT OF CHLORAMPHENICOL, ACTINOMYCIN-D, AND PUROMYCIN ON THE 
SYNTHESIS OF CELL WALL MUCOPEPTIDE AND PROTEIN IN 

M. LYSODEIKTICUS 

Medium Incorporation of cl4 from glycine-2-cl4 
addition 

48 

Cell wall % change Protein % change 
mucopeptide 

none 10996~'r 35484* 

D-chloramphenicol 14247 +29 2195 -93 

actinomycin-D 16158 +46 1452 -95 

puromycin 15412 +40 4690 -87 

~':Counts per minute per mg dry weight of eel ls fractionated. 



TABLE· XV 

EFFECT OF CHLORAMPHENICOL,.ACTINOMYCIN•D, AND PUROMYCIN ON THE 
INCORPORATION OF D-SERINE-3-cl4 INTO THE PROTEIN AND 

MUCOPEPTIDE FRACTIONS OF M. LYSODEIKTICUS 

Medium Incorporation o.f cl4 from D-serine-3-cl4 
addition 
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Cell wall % change Protein % change 
mucopeptide 

none 970* 1330* 

D-chloramphenicol 126 -87 168 · -87 

actinomycin-D 563 -41 168 . -87 

puromycin 222 -77 260 -80 

*Counts per minute per mg dry weight of cells fractionated. 



and mucopeptide is greatly inhibited, particularly in the presence of 

puromycin and CAP. 

Since lack of incorporation of D-serine into the cell wall in the 

presence of these antibiotics could have been due to inhibition in 

synthesis of an enzyme necessary for entry of the molecule into the 

cell, the cl4 ... content of the intracellular pools was determined after 

growth in tha presence of either D-serine-3-cl4 or glycine-2-cl4 and 

the.antibiotics. Table XVI reveals that the cell pools contain appre­

ciable amounts of label from D-serine-3-cl4, .and therefore, lack of 

incorporation into the mucopeptide is not due to inhibition in 

synthesis of a permease necessary for entry of the.amino acid into.the 

cells. 
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Because.all data are based on the counting of radioactivity in 

pure cell walls, it was possible that glycine and particularly D~serine 

were being metabolized and their carbon entering the cell wall as other 

compounds. Data inTable XVII reveal that the cell wall preparations 

were pure, in.that no contaminating amino acids were present and also 

that glycine and D-serine were incorporated essentially unc~anged. 

As a check on the reproducibility of the specific activity figures, 

obtained from our chemically isolated cell wall preparations, five.cell 

wall preparations were made from the same flask culture. The greatest 

deviation from an average specific activity of 10,996 was ±600 counts 

per minute. 

Isotope Studies: Labeling Patterns of Various Radioactive Compounds 

In order to gain a better insight into the metabolism and to obtain 

specific methods for isotopic labeling of various cellular components of 



TABLE XVI 

EFFECT OF ACTINOMYCIN-D, PUROMYCIN, AND D-CHLORAMPHENICOL ON THE 
INTRACELLULAR POOL CONTENT OF LABEL FROM D-SERINE-3-cl4 

AND GLYCINE-2-cl4 
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Inhibitor 
added 

D-Serine-3-cl4 Glycine-2-c14 

none 5700* 1658 

D-chloramphenicol 4111 3838 

actinomycin-D 5033 1203 

puromycin 7075 1772 

*Counts per minute per mg dry weight of cells frac.tionated. 



TABLE XVII 

CELL WALL AMINO ACID LABELING PATTERNS FROM D-SERINE~3-cl4 AND GLYCINE-2-cl4 IN THE PRESENCE 
AND ABSENCE OF PUROMYCIN, D•CHLORAMPHENICOL, AND ACTINOMYCIN-D 

Medium Cell wall amino acids detected 
additions with ninhydrin in 60 minute 

samples 

Alanine Glycine Glutarnic Lysine 
acid 

-

none + + + + 
glycine-2-cl4 + + ·+ + 
glycine-2-cl4 + 
D-chlorarnphenicol + + .+ + 
glycine-2-cl4 + 
purornycin + + + + 
glycine-2-cl4 + 
actinomycin-D + + + + 
D•serine-3-cl4 + + + + 
D-serine-3-cl4 + 
D-chlorarnphenicol + + + + 
D-serine-3-cl4 + 
purornycin + + + + 
D-serine-3-cl4 + 
actinornycin-D + + + + 

*Label determined by radioautography. 
**Very slight labeling observed. 

Serine 

+ 

Cell wall amino acids cl4 
labeled* in 60 minute 

samples 

.Alanine Glycine Glutamic Lysine Serine 
acid 

v.s.~'dr + 

+ 

V. S. + 

V. S. + 
+ 

V. S. 

v.s. 

v.s. 

\J1 
N 
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~· lysodeikticus, the labeling pattern of various radioactive compounds 

was determined for the protein and mucopeptide fractions. The results 

of these determinations are presented in Tables XVIII and XIX. 

Tyrosine and phenylalanine label primarily the pyruvate family of 

amino acids. It appears that the.aromatic ring of these compounds is 

split off giving rise to alanine which is converted to pyruvate, thus 

also giving rise to leucine and valine. Some randomization of both 

compounds seems to occur (probably via pyruvic acid) since a small 

amount of label is found in all amino acids. There is obviously no 

interconversion between tyrosine and phenylalanine, thus helping to 

explain the growth requirement for these two amino acids. Carbon from 

glutamic acid is completely randomized. D-Serine is metabolized very 

little, while L-serine is readily interconverted, particularly to amino 

acids other than those arising from Krebs cycle intermediates (glutamic 

and aspartic acid families). This is probably due to dilution by 

glutamic acid carbon since this amino acid was present in the growth 

medium. Glycine· gives rise to serine, bµt except for a trace of label 

from D-serine, serine is not metabolized to glycine. Since serine was 

labeled in the three position,.gly~ine would only be labeled.if there 

were extensive randomization of the hydroxymethyl group of serine. 

Carbon from threonine is poorly utilized except for the synthesis of 

glycine and isoleucine. No deviations from these patterns were obtained 

when the labeling patterns for synthesis of cell wall amino acids were 

studied (Table XIX). 

Effect of D-Serine on Sulfur Metabolism 

In an attempt to explain the growth inhibition caused by D-serine, 



TABLE XVIII 

LABELING PATTERNS OF VARIOUS RADIOACTIVE COMPOUNDS IN THE PROTEIN FRACTION OF M. LYSODEIKTICUS 

Amino acidir 

alanine 
aspartic acid 
arginine 
glutamic acid 
glycine 
histidine 
i soleucine + 
leucine 
lysine 
methionine 
phenylalanine 
serine 
threonine 
tyrosine 
valine 
pro line 

irTryptophan- and 
~·d'"Contains small 

- no label 
+ very slight 

++ light label 

Radioactive compound added 

L-Glutamic 
-u--cl4 

+++ 
++++ 
++ 
++++ 
++ 
++ 

++ 
++ 
+++ 

+++ 
++ 
+ 
+++ 
++++ 

.L-Tyrosine 
- -u-cl4 

++ 
+ 
+ 
+ 
+ 
+ 

++ 
+ 
++ 

+ 
+ 
++ 
++ 
+ 

L-Phenylalanine 
-u-cl4 

++ 
+ 
+ 
+ 
+ 
+ 

++ 
+ 
+ 
++ 
+ 
+ 

+ 
+ 

cysteine destroyed during hydrolysis. 
amount of labeled alanine. 

+++ moderate label 
label ++++ heavy label 

D-Serine 
-3-cl4ir* 

+ 

+ 
+ 

+ 

++ 

L-Serine 
-3-cl4 

++++ 

++ 
++ 

+++ 

+++ 

+ 

++++ 
+ 

++ 
+ 

Glycine 
-2-cl4 

++ 

++++ 

+ 

+++ 

+ 

DL-Threonine 
-z-cl4 

++ 

+++ 

++++ 

Vt 
.i::-



TABLE XIX 

LABELING PATTERNS OF VARIOUS RADIOACTIVE COMPOUNDS 
· IN THE MUCOPEPTIDE FRACTION OF M. LYSODEIKTICUS 

Medium 
addition 

L-glutamic-u-cl4 

L-tyrosine-u-cl4 

L-phenylalanine-u-cl4 

D-serine-3-Cl4,b'( 

L-serine-3-cl4 

glycine-2-cl4 

DL-threonine-2-cl4 

Alanine 

+I-

+I-

+ 

+ 

+I-

+ 

Labeled cell wall amino acids 

Glutamic 
acid 

. +I-

+ 

+ 

+I-

Lysine 

+I-

+ 

.+ 

+ 

Glycine 

+I-

+ 

+ 

+ 

+++ 
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. ++++-

*Serine present in.cell wall only when D-serine is added to medium. 
**Contains small amount of labeled alanine 

- no label 
. + light label 
+I- moderate label 

+++ heavy label 
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studies were made concerning the effect of D~serine on sulfur metabolism 

using Na2s3504. The results are shown in Table XX. The amount of label 

from Na2s3504 incorporated into the sulfur containing compounds of cell 

protein is reduced by approximately 50% when D-serine is present in the 

growth medium. D-Serine appears to inhibit the uptake of sulfate, since 

counts of washed, whole cells and intracellular pools from cells grown 

in the presence of D-serine and Na2s3504 also show a 50% reduction in 

the amount of radioactive sulfur present. The reduction in uptake of 

sulfate however, doesn't account for the inhibition in growth caused by 

D-serine since no growth inhibition is obtained when the normal sulfate 

level of the growth medium is reduced to 25% of normal. 

C~ll Wall Turnover Studies 

Studies were initiated to determine if existing cell wall muco­

peptide is broken down during growth and new cell wall mucopeptide in­

serted in its place. This could be termed cell wall turnover, analogous 

to the turnover known to occur in the protein of the cell. In addition, 

data were sought which would aid in determining if serine-containing 

walls were either more or less susceptible to autolytic digestion and 

subsequent replacement. 

The approach used was one in which a known amount of radioactive 

label was incorporated into a known mass of cell wall mucopeptide, re­

moval of the source of the label from the medium, allowing the cell wall 

mucopeptide mass to increase a known amount, and determination of the 

amount of label present in the cell wall mucopeptide after the increase 

in mass. Following the initial labeling, a specific activity for the 

mucopeptide could be determined or predicted. This figure could then be 



TABLE XX 

EFFECT OF D-SERINE ON THE METABOLISM OF SULFUR IN M. LYSODEIKTICUS 

Medium 
additions 

Labeled cellular compounds''• 

57 

Methionine 
sulfoxide 

Cysteine or 
homocysteine 

Methionine 

Na2s3504 619 539 1222 

Na2s35o4 + D-serine 251 255 547 

~'<'Compounds located using radioautography. Spots were eluted 
and the eluant counted using a Picker Gas-Flow Automatic 
Planchet Counter. Protein was adjusted to equal amounts in 
both systems prior to hydrolysis and chromatography. Numbers 
are given as counts per minute per spot. 
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compared to a similar figure obtained after the increase in mass of the 

cell wall. If no radioactivity was removed during the increase in.mass, 

the magnitude of the decrease in specific activity should be proportio~al 

to the magnitude of the increase in mass. However, if the magnitude of 

the decrease in specific activity is greater t~an the magnitude of the 

. increase. in mass, :a net loss of radioactivity had to occur; this was 

interpreted as indicating cell wall turnover. 

Experiments were run in,whichboththe specific activity of the 

cell wall mucopeptide and cell wall.amino acids was determined. Re­

presentative data are given in Tables XXI and XXII. As determined by 

this method it would appear that cell wall mucopeptide does.turn over 

at approximately equal rates in both normal.and serine.containing cell 

walls. Furthermore, the rate of turnover compares favorably with 

. accepted values for protein. turnover (79-81). 

Having obtained data which supported cell wall turnover it next 

became necessary.to.determine if this organism possessed enzyme(s) 

which ,.could cleave bonds in existing mucopeptide. Examination was made 

for an,autolytic enzyme system in growing:cells which, if found, would 

support cell wall turnover. Tables XXIII and XXIV contain results which 

,indicate that the organism contains an autolytic enzyme system which 

functions under standing,· but not shaking conditions, in 0.01 M phos­

phate .·buffer at pH 7. O. Failure to obtain lysis under shaking condi­

tions may indicate a r~quirement for.a low oxygen tension,and activation 

of enzymes similar to the.cathepsins, where reduced sulfhydryl groups 

are required for. activity· (82). In addition, electron microscopic exam­

ination. of the.cells before.and.after action of the autolytic enzyme(s) 

showed that gross damage to the structural integrity of the cells had 
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TABLE XXI 

CELL WALL TURNOVER DURING GROWTH OF M, LYSODEIKTICUS 

Source Mass'>'r Specific activity* Turnover % turnover 
of label increase decrease factor~'d( per hour 

(avg,) 

L-glutamic-u-cl4 3.00 5.60 1.86 5.3 

DL-glutamic-5-cl4 3.45 4.35 1.26 3.7 

glycine-z-cl4 3.20 3.90 1.22 3.6 

D-serine-3-cl4 5.60 6.50 1.16 3.5 

*Specific activity given as counts per minute per mg cell walls. 
Both increase in mass and decrease in specific activity are 
given as multiples of initial values. For example: a mass in­
crease of 3.00 is a three-fold increase in cell dry weight. 

''(,'<-Decrease in specific activity/Mass increase 
where: 1.0 no turnover 

>LO 
<1.0 

turnover 
incorporation of additional label 
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TABLE XXII 

CELL WALL AMINO ACID TURNOVER DURING GROWTH OF M. LYSODEIKTICUS 

Source Mass increase Cell wall amino Turnover % turnover 
of label of cell wall acids specific* factor** per hour 

amino acids* activity decrease (avg.) 

L-glutamic-u-cl4 6.8 10.6 1.56 4.0 

*Specific activity given as counts per minute per mg cell wall 
amino acids. Both increase in mass and decrease in specific 
activity are given as multiples of initial values. For example: 
a mass increase of 3..00 is a three-fold increase in cell dry 
weight. 

**Decrease in specific activity/Mass increase 
where: 1.0 = no turnover 

>1.0 = turnover 
<1.0 = incorporation of additional label 



TABLE XXIII 

AUTOLYSIS OF LOG-PHASE CELLS OF M. LYSODEIKTICUS 

Medium Shaking Standing Pre-heated Optical density at 540 mu* 

0 hours 24 hours 

phosphate buffer** + - .. 0.48 0.35 
phosphate buffer - + - 0.48 0.11 
phosphate buffer + - + 0.50 0.45 
phosphate buffer -: + + 0.48 0.46 
saline·solution + - - 0.19 b .16 
saline solution - + - 0.24 0.23 
saline solution + - + 0.22 0.21 
saline solution ~ + + 0.20 0.20 
water + - - 0.44 0.43 
water - + - 0.40 0.39 
water + - + 0.60 0.58 
water - + + 0.61 0.58 

*Spectronic 20 Spectrophotometer. 
**0.01 M, pH 7.0. 

% lysis 

27 
77 
30 

4 
15 

4 
4 
0 
2 
2 
3 
5 

°' I-' 



TABLE XXIV 

.AUTOLYSIS OF LOG-PHASE CELLS OF M. LYSODEIKTICUS 
IN.PHOSPHATE BUFFER* 

Molarity Optical density .at 540 mu''c* 

0 hours .24 hours 

lxl0-1 0.40 0.33 

lxl0"'2 0.40 0.10 

lxlo-3 0.40 0.12 

lxlo-4 0.40 0.13 

.*Incuqated under standing conditions at 30 c. 
'~*Spec tronic 20 Spectrophotometer. 

62 

. % lysis 

17 

75 

70 

67 
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occurred (Figures 9 and 10). 



Figure 9 . Whole Cells of M. lysodeikticus 
(magnification 45,000 X)-
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Figure 10. Autolysed Cells of M. lysodeikticus 
(magnification 45,000 X) 
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CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

Rather conclusive chemical data have been obtained concerning 

two major areas in Gram-positive bacterial cell wall research: (1) an 

organism in the proper growth situation can alter the composition of its 

cell wall mucopeptide; and (2) an organism can break down existing 

mucopeptide and replace it with new cell wall material (cell wall turn­

over). Though not directly shown, replacement of excised cell wall 

material had to occur because the resulting cells possess normal 

mucopeptide layers and are osmotically stable. 

The·amino acid D-serine, which does not normally occur in the cell 

wall mucopeptide of!!• lysodeikticus, can be incorporated (as the D­

isomer) into the mucopeptide when it is present in the growth medium. 

In addition to incorporation into wall material, this amino acid 

drastically inhibits both the rate, and final amount of growth obtained. 

Cells which have incorporated D-serine into their mucopeptide show no 

morphological abnormalities such as protoplast or filament formation 

or any change in staining properties and susceptibility to the action 

of lysozyme. This latter point would seem to indicate that the struc­

ture of the cell wall peptide has little or no effect on the action of 

this enzyme. Thus, one would anticipate that the attachment sites, 

necessary for proper steric register of the enzyme and substrate, exist 

primarily in the amino sugar backbone of the mucopeptide. 

66 
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When D-serine is incorporated into cell wall mucopeptide, amounts 

of the normally occurring amino acid glycine are reduced to about 40 

percent of normal, while the amount of serine incorporated is about 

equal to the amount of lysine and glutamic acid normally present. 

Therefore, the possibility exists that the dimensions of the mucopeptide 

may be larger. One could visualize that serine incorporation could lead 

to the formation of a cell wall which was less dense or more diffuse 

than the same structure in normal cells. Thin-slicing of normal and 

D-serine grown cells (Figures 11 and 12) indicate that this well may 

be the case. The mucopeptide from cells grown in.the presence of 

D-serine exhibits a more loose network of cell wall material, while the 

cell wall from normal cells is a much more compact appearing structure. 

Chemical data obtained from hydrazinolysis determinations reveal that 

4.3 percent of the amino acids in the normal cell wall are C-terminal 

while 8.0 percent in the serine-containing cell wall are C-terminal. 

This would indicate more free carboxyl groups in the serine-containing 

wall mainly due to the preponderance of C-terminal serine. However, the 

amount of C-terminal D-alanine in the serine-containing wall, which is 

one of the.amino acids involved in cross-linking in this organism, is 

reduced to about 50 percent of that present in the normal cell wall. 

This result does not necessarily indicate more cross-linking in the 

altered wall since some of the terminal D-alanine residues which would 

normally be C-terminal could have D-serine attached. In this condition 

they would not be detected as C-terminal and yet not be involved in 

cross-linking. An.additional factor which could help account for a less 

compact, yet stable serine-containing mucopeptide would be cross-linking 

in which ~erine served as the linking amino acid between the terminal 



Figure 11. Thin-Sect i on of Normal Cell of M. lysodeikticus 
(magnification 163,000 X) 
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Figure 12 . Th i n- Section of D-Serine-Containing Cell of M. 
lysodeikticus (magnification 123,000 X) 
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D-alanine and the epsilon amino group of lysine. In this position the 

distance between interlinking peptides could be greatly increased 

yielding a more diffuse, yet stable cell wall. One must keep in mind 

however, that any serine and alanine thus attached, would involve only 

a small fraction of the total, since the majority of the D-serine is 

attached in another position to be discussed presently. These 

hypotheses are brought forth to help correlate the chemical analyses 

with observations made using the electron microscope. 

Incorporation of D-serine into mucopeptide is decreased in the 

presence of four amino acids, D- or L-alanine, L-serine, or glycine; 

these amino acids inhibit, to varying degrees, the uptake of D-serine 

into the cell. Where D-serine incorporation is lowered by D-alanine 

or glycine, glycine levels increase to what may be considered normal. 

L-Alanine is not as effective as D-alanine or glycine. In no case is 

incorporation of D-serine completely inhibited. 
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Two of these amino acids, glycine and L-serine, also reverse the 

growth inhibition caused by D-serine. Addition of L-alanine to the 

D-serine-containing medium also results in some reversal of growth in­

hibition; however, restoration is better with D-alanine. Pantoic acid, 

which partially reverses growth inhibition caused by D-serine in a 

species of Erwinia does not reverse growth inhibition in this organism 

(83). 

Apparently, the wall modification caused by D-serine is only par­

tially responsible for the inhibition in growth caused by this amino 

acid. However, although growth is restored to very near normal by 

glycine, incorporation of D-serine is still approximately 30 percent 

that found in the absence of exogenous glycine. This amount of incor-
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poration should have a greater effect on growth than is apparent if 

D-serine incorporation were to be accepted as the only reason for growth 

inhibition •. A good correlation.also exists between the reversal of 

growth inhibition by these amino acids and the inhibition. in incorpora­

tion of label from D-serine into the protein fractiono L-Serine, which 

. is most effective in overcoming growth inhibition caused by D-serine, is 

also the most effective inhibitor of incorporation of label from D-serine 

into protein. This relationship also holds true for the other three 

.amino acids. These data indicate.that synthesis of fraudulent proteins 

may occur in the presence of D-serine since growth inhibition cannot be 

directly correlated with incorporation of D-serine into the cell wall of 

this organism. Further information to support this view comes from data 

showing that the three antibiotics inhibiting protein synthesis signifi­

cantly decrease incorporation of label from D-serine into protein. 

Also, labeled serine is present in.cell protein fractions from cells in­

cubated with D-serine-3-cl4, and labeling patterns of L- and D-serine 

are different in this organism. 

Addition of D-chloramphenicol, actinomycin-D, or puromycin to grow­

ing cells of~- lysodeikticus causes an inhibition in protein synthesis 

while mucopeptide synthesis continues. Also, during exposure to the 

.antibiotics the optical density of the cell suspensions increases 

slightlyQ This would be expected since growth or increase in cell mass 

is not completely stopped due to continued cell wall synthesis. In­

corporation of D-serine into the cell wall mucopeptide in the presence 

of these antibiotics is greatly reduced during a one hour incubation in­

dicating.a need for protein.synthesis in order for D-serine.addition to 

occur. In the.absence of these antibiotics low levels of D-serine.can 
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be detected, both isotopically and chemically, in,the mucopeptide after 

15 minutes of exposure. Therefore, we interpret our results to mean 

that the major incorporation of D-serine into the mucopeptide of this 

organism occurs because of enzyme induction by D-serine. The enzyme(s) 

thus induced are.quite specific for D-serine since cells induced to 

D-serine will not incorporate L-serine or D-threonine (the higher homo-· 

log of .D-serine). 

Actinomycin-D, which gave the least inhibition in D-serine, incor­

poration. into the cell wall (41'7o) was also tested at increased concen­

trations. When the antibiotic was present at 40 ug per ml of medium, 

inhibition in protein synthesis was increased to 98 percent and inhibi­

tion of D-serine incorporation.into mucopeptide was increased to 59 

percent. These data may indicate a concentration effect by this anti­

biotic on synthesis of RNA involved in protein fabrication. 

Pollock (84) reported that actinomycin-D manifests a difference, in 

affinity for genetic sites depending on the incidence of guanine resi­

dues. It is possible that the genetic site for synthesis of the D­

serine-adding enzyme is low in guanine and is therefore. less susceptible 

to actinomycin-D. 

It app~ars tl:iatcell wall turnover occurs in growing cultures of 

this organism. The rates of this turnover very closely approach the 

published rates for protein turnover which,have been studied in.a 

variety of bacteria (79-81). Supporting this finding are the data re­

lative to autolysis, which indicate that growing cells of~· lysodeiktic1,1s 

also possess enzyme(s) capable of breaking down existing cell wall muco-

. peptide leading to loss of all cellular integrity. Shockman.and co­

workers (48, 49) have shown that the autolytic system from growing cells 
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of S. faecalis is highly specific in that it will not lyse stationary 

phase cells or cell walls isolated from stationary phase cells. This 

would indicate that the mucopeptide of stationary phase cells is diff­

erent from that found in log-phase cells. If such differences are pre­

sent they have not been, or cannot be detected chemically. Perhaps the 

µifference lies in the fact that some log-phase cells have growing 

points for cell wall synthesis while statio~ary phase cells would not 

possess such.areas (85-90). In such.cases the.autolytic enzymes might 

function by breaking existing bonds so that a new piece of completed 

cell wall precusor can be inserted, thus allowing for lengthening of 

the cell wall polymer. Perhaps the growing points for new wall synthesis 

are initiated by the autolytic enzymes and correspond to the only.areas 

of wall that are susceptible to these enzymes. Such .areas may be)absent 

or modified in stationary phase cells. Mitchell and Moyle (42) have 

observed hemispherical wall fragments after the action of an autolytic 

enzyme on§.• aureus. On occasions during this study, similar structures 

have been observed·in autolysed preparations of !i• lysodeikticus. 

These same autolytic enzymes may have a role in intercalary cell. 

wall growth, however, the.absence of discrete growing points for new 

cell wall synthesis in this type of growth, may dictate a different 

enzyme system. 

Chemical data obtained employing the techniques of hydrazinolysis, 

amino acid dansyl derivative formation, and partial hydrolysis (rates of 

release of cell wall amino acids) support the hypothetical structure of 

the D-serine-containing cell wall mucopeptide presented in Figure 13. 

In this proposed st:ructure, D-serine is attached via its amino group to 

the alpha carboxyl of glutamic acid, thus occupying a position.in the 
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peptide chainequivalent to that occupied by glycine in the normal.cell 

wall •. Attached,in such a way serine.would be C.;.terminal and have·no 

free ,amino group available to form a dansyl derivative. Glutamic acid, 

which, has no reactive carboxyl or amino group in. the normal. cell wall 

due to its central position in the cell wall peptide (Figure 5), also is 

non-reactive in the serine-containing wall indicating that none of its 

rfunctional groups (carboxyl or amino) are free. Chemical data on lysine 

.are identical in both normal and serine-containing cell walls, where the 

only free group is the epsilon amino group. This would strongly indicate 

that lysine occupies a similar position in both structures and further 

elimit).ates the possibility for.attachment of serine to the epsilon amino 

group of this amino acid. No dansyl derivative for alanine was formed 

from either cell wall. Hydrazinolysis data revealed small amounts of 

C•terminal alanine in both walls, and in .addition, that there was 

approximately.43 percent less C-terminal alanine in.the serine-contain­

ing wall. This could. indicate that some serine might be linked to the 

termi~al D-alanine. If so, the.amount would be quite small,.approxi­

mately 8 percent of the total •. As pointed out in the Introduction of 

. this study, there is a paucity of C-terminal. alanine in the mucopeptide 

of this organism which cannot, as yet, be accounted for. Very likely 

the carboxyl of this amino acid is involved in·bonding, other than that 

to. the epsilon arti.ino group of lysine, which .adds stability. to the cell 

wall. 

The low percentages of C-terminal amino .acids obtained here is due 

to the fact that during hydrazinolysis as much,as 50 percent of the 

.amino acids are destroyed (27). If the percent C-terminal figures pre­

sented in this study.are corrected for the loss of amino .acids during 



hydrazinolysis, they,agree favorably with those obtained by other 

workers ( 27, 41.). 
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In further support of this proposed structure are the data concern­

ing the rates of release of various cell wall amino acids. In the normal 

cell wall, glycine, which is known to be.attached to the cell wall pep­

tide by.a single bond, is released quite rapidly during mild acid hydro­

lysis. Serine, which in the.modified wall.as proposed here is also 

attached by a single bond, is.also released very rapidly under the same 

conditions of hydrolysis. All other cell wall amino acids, being 

attached by at least two bonds, are released much more slow-lye It 

should be noted that the same amount·of glycine is released per unit 

time from both cell wall preparations. The .apparent difference in. the 

rates of release (Figures 7 .and 8) is due to the fact tq.at there is less 

glycine in the serine-containing wall. Therefore, when the.results are 

expressed as percent of cell wall amino acid released per unit time it 

appears that glycine is released more.quickly and completely from the 

.altered mucopeptide. 

The structure as proposed in this study (Figure 13) will account 

for approximately 75 to 80 percent of the D=serine incorporated into the 

mucopeptide.· .An.additional 20 to 25 percent is not released during mild 

acid hydrolysis (Figure 7) therefore indicating a site of attachment, 

other than that proposed. Since glycine is known to be attached to 

glutamic acid (Figure 5) and is C-terminal in the serine-containing 

wall, it must be .assumed that the small amount of glycine present in the 

altered cell wall is attached to glutamic acid. The combined molar 

ratios of glycine and serine (altered wall) amount to L3 molar pro·-' 

portions and this amount exceeds the molar proportion of glutamic acid 
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(talen.as 1.0). This type of calculation indicates that about 25 

percent of the serine must be.attached in.another positiop.. The 

location of this attachment is not known, however three possibilities 

can· be envisioned. 

(1) Approximately 8 percent of the serine.could be.attached to the 

terminal D-alanine as discussed previously. Such a linkage, 

though not accounting for all of the remaining serine, would 
'I 

help explain the paucity of C-terminal alanine in the altered 

cell wall. 

(2) If one-third of the D-serine, as bonded in Figure 13 (one-

fourth of the total), is actually attached and presented as 

a serine dipeptide (D-seryl-D-serine), it would not alter the 

.chemical data obtained with,respect to free carboxyl or amino 

groups. Results concerning the rate of release of serine 

could, however, be misleading. Since the rate of release 

curve (Figure 7) plateaus at about 78 percent serine released, 

this could indicate that one-fourth of the serine is released 

· as a dipep.tide. Quantitation of this peptide (without further 

hydrolysis to monomeric serine molecules) by color development 

using ninhydrin would measure the dipeptide as only one serine 

residue because the additional amino group is not free, but, 

rather, involved in peptide bonding. 

(3) D-Serine could be bonded into the backbone of the peptide 

chain wherein both the.amino and carboxyl groups would be tied 

up and unavailable for further reaction. In such.a position, 

rate of release during mild acid hydrolysis would be slower 

than for serine attached by a single bond. This type of 



positioning of serine could account for the plateau observed 

in Figure 7. 
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Cells which have D-serine incorporated into their mucopeptide are 

osmotically stable, indicating that the attachment of D-serine, as pro­

posed here, has little or no effect on cross-linking. Since D-serine is 

primarily C-terminal, its involvement in cross-linking would be limited 

to hydrogen bonding or salt linkages. 

An area which the.author feels warrants further investigation is 

more direct proof of structure of the D-serine-containing cell wall 

mucopeptide. This could be accomplished by isolation of a partial cell 

wall peptide containing glutamyl-serine or som~ other serine-containing 

peptide. Attempts during this study to isolate such peptides were 

unsuccessful due to inadequate separation of partial peptides released 

in the chromatographic systems employed. Three hands of ninhydrin 

positive material were discerntble in a region which migrated approxi­

mately one inch from the origin after 100 hours of continuous irrigation 

with solvent. An excessive amount of trailing made separation of these 

bands very difficult, thus giving rise to a large amount of cross .. con­

tamination which made identification of the composition of the three 

hands impossible. It is believed that a successful isolation could be 

achieved employing column chromatographic techniques or electrophoresis. 
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