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CHAPTER 1
INTRODUCTION
Mixture Experiments

Experiments are often encountered in research work in which the
response depends upon the relative proportions of the components in a
mixture. If the responseAdepends only upon the proportions and not upon
the total amounts then the experiment is called almixture experiment.
The factors in such an experiment are the fractions of the cbmponents
in the mixture. The factors must therefore be non-negative and sum to
unity.

Gasoline blending experiments in which the response is octane rat-
ing aré‘examples of mixture experiments. In, such experiments a gaso-
line is produced by blendiﬁgrévnﬁmber of gasoline base stocks having
various octane ratings. The octane rating of the blend depends only
upon the relative proportions of the component base stocks.

A type of design which is commonly used with mixture experiments
is the simplex-lattice design describedlby Sheffe' (11).. With the use
of these designs the required computations for analysis are relatively
simple when a polynomial approximation to the response'is to be made.
The siméiexrlattice designs are indexed by two parameters: the number
of mixture components, ¢, and an integer, m, where m denotes that each
component can occur in a mixture in the proportions p:0, 1/m, 2/m, ...,

m/m. An experimental point for q components is denoted by (pl, Py>



coey pq), and the design points are all those for which the p; are 0,
1/m, 2/m, ..., m/m and gpi = 1.
i

A later development by Sheffe' (12) is the class of simplex-
centroid designs. When the number of components is q there are 29 -1
points in the design. These are the q pure components, the (g) mixtures
of two components in equal proportions, the (g) mixtures of three com-
ponents in equal proportions, cees and the mixture with all components
in the equal proportions of l/q. In this work Sheffe' also considered
experiments with both mixture and process variables as well as the prob-
lem of fractional designs.

Draper and Lawrence, (4) and (5), have derived designs for three
and four component mixtures which, in thé absence of random error, have
the property of minimizing tHe average bias incurred when a polynomial

of degree‘d1 < d, is assumed when the true model is a polynomial of

2
degree d2. The cases investigated were for (d1 =1, d2 = 2) and
(d1 = 2, d2 = 3). The situation where both bias and variance occur was

also considered and designs for this case were obtained by taking the
so-called all-bias designs and expanding them while retaining their

basic shape.
Optimal Designs

The work of Draper and Lawrenée (4), described above, is an ex-
ample of applying .a specific criterion of excellénce, namely average
bias, to the problem of choosipg an experimental design. Folks (6) has
made a rather extensive survey of such criteria which are applicable to
the general problem of choosing optimal designs. A review of the liter-

ature concerning response relationships and optimal designs in general



has been made by Gillett (7) and Gurley (9).
Statement of the Problem

In Chapter II a class of designs termed symmetric designs will be
defined for three component mixtures. This class includes as sub-
clgsses the simplex-lattice and simplex-centroid designs.

Also in Chapter II a one-to-one correspondence will be established
between certain subclasses of the class of N-point symmetric designs and
a factor space of dimension less than . N. These factors will be referred
to as design factors.

To aid in selecting an N-point symmetric design, a number of cri-
teria of excellence are defined in Chapter III and it is shown that
these criteria can be expressed as functions of the design factors.

-In Chapter IV the criterion of minimum generalized variance is
employed to find optimal or near optimal designs assuming either a first
or second order polynomial model. The results of a computer-aided
search in the factor space indicate- optimal designs. for each N to be.
of the same configuration as the simplex-lattice or simplex-centroid
designs. However, with N greater than the number of points in the cor-
responding simplex design, there resulted some variation in the optimum
allocation of replicates. Rules for the optimum allocation are given.

Chapter V deais with the selection of N-point symmetric designs
(for second order polynomial models) which are optimal with respect to
the average variance of the predictéd response over a specified region
of interest. Designs are found for'triangular regions of interest and
for regions of operability containing a region of interest.

Chapter VI discusses the effect on the average variance of assuming



a model with too many terms.
Chapter VII summarizes the work done and gives some ideas relating
to the extension of symmetric designs to the case of mixtures involving

more than three components.



CHAPTER II
SYMMETRIC DESIGNS FOR MIXTURES OF THREE COMPONENTS
Introductory Remarks

This discussion will be concerned with mixtures of three components
where the total content of the mixture is 1, and where the amount of
each component in the mixture is expressed as a positive fraction. Thus
the possible mixtures are restricted to a triangular region, R, of the
three~-dimensional space, (xl, Xy x3). This region R lies on the plane
x1+x2+x3=1 and is bounded by the planes X1=O, x2=0 and x3=0. In set

notation:

R={(xl, Xy x3) : xl+x2+x3=l, xiZO}.

Although R can be represented as an equilateral triangle in only

two dimensions, it is helpful at first to represent points of R in

terms of triangular coordinates. Thus, in Figure 1, the Xy axis is

=0 at’ the point ao=(0,%, %) and

=(1, 0, 0). The X, axis is along the 1ine from

along the line from ao to al, with xl

x1=1 at the point a

b0=(1§> o, %) to b

1

=(0, 1, 0) and the x, axis is along the line from

1 3

co=(%, %, 0) to C1=(O’ 0, 1). The component Xy is zero along the line

from b1 to ¢q, x2=0 along the line from a; to ¢y, and x

3=0 along the
line from a; to bl' The intersection of the three axes is the point

G, %, ), the centroid of the triangle.

In considering various possible sets of experimental points to be
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Figure 1. Illustration of Triangular

Coordinates
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Figure 2. Examples of Symmetrical Sets of
Points



run in R, those sets containing arrangements of the form shown in
Figure 2 have considerable intutive appeal, especially if the experi-
menter is equally interested in all components of mixtures over R.

Note that the points are arranged symmetrically with respect to all
three axes. Sets of points such as those in Figure 2 can be construct=
ed by choosing a single point, r=(xl, xz, x3), in R plus those addition-

and x.,. It

al points whose coordinates are some permutation of X5 Xy, 3

is clear that such sets will consist of one, three or six points depend-
ing on the number of distinct coordinate values. Thus, for sets 1l and
2 in Figure 2, each point has‘exactly two identical coordinate values.
In sets 3 and 4 all coordinate values are distinct for each point. If

X one would have the center point or centroid, ¢, : 1) for

3% 3% 3

1 %27%3

which there is only one distinct permutation.
Definition of Symmetry

The above are examples of symmetrical point sets which will be
called permutation sets. It will be helpful, however, to require the
point elements of a permutation set to be 6rdered. To define the or-
dering: it is necessary to first define the following subsets of R:

o (G DY

Rl = {(xl, Xy x3) : x2=x3¢xl}

=
A

R, = {(Xl, X, x3) : x1=x3%x2}

s
]

3 = LG %5, x9) 1 ox =xpfx,]
Rips™ [(xps x5, %5) 2 x < <x ]
Rygp= {(xps %y, %) 1 X <y, )
Ry1s™ {xps x5, %9) 2 xya <xy}

R231= {(xl, Xy x3) : x2<x3<xl}



Rypg™ {(xps %ps %9) ¢ xgax;<x,)
Ripp™ {(xps %55 %5) 0 xgexy<x 3,
where (xl, Xy x3) is in each case an element of R. Thus R is the

union of the above sets. In Figure 3, RO is the center point or cen-

troid; Rl is the set of points on the line aO to ajp, with the exception

of the center point; similarly R, is the set of points along the line

2

from bO to bl and R3 is the set from cg to cp- The subregions defined

by the remaining subsets are indicated in Figure 3.
Let
RI =RlxR2xR3= {(rl, s r3) : rleRl, rzeRz, r3€R3}
and

R x** xR

11 *123%R132 321°

Then RI consists of ordered sets of three points and RII consists of

ordered sets of six points.

Definition 2~1. A set P whose elements are triples, (xl, Xy x3),

from R is a permutation set if and enly if
(1) the elements of P are identical up to a permutation of
coordinate values, and

PeR or P=R_,

(2) either PgR 11° 0

I-’
Condition (2) in the above definition orders the elements of P
and insures that the elements are distinct.
In order to construct combinations of permutation sets it is desir-
able to define a set operation which will be called the adjunction of

ordered sets.

Definition 2-2. Let A=(a cens ak) and B=(bl’ eans bm) be

1’ 42
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Figure 3. Subregions of R
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ordered sets. .Define

\ A+B#:(al, cees Ap bl’ vy bm)
and BH+A= (bl’ cees bm, 815 eees ak)
Let Ai=(ali, cess anii),'i=1, ..., m, be a sequence of ordered

. i
sets, denoted by<<:Ai:>T and define

§A1=(all’ ey @) 15 eees 31, sess @ m).
i m

The noncommutative set operation, +, or 5, will be called the

adjunction operation for ordered sets.

Since permutation sets were defined to be ordered sets, the ad-
junction operation can be used for the summation of the sequences de-

fined below.

s k Lo .
Definition 2-3. Let <:Pi:>l be a finite sequence of permutation
sets with the following properties:

(1) the first u permutation sets of the sequence are

elements of R i.e., l=point sets,

0’

(2) the next t permutation sets are elements of R i.e.,

I’
3-point sets,

(3) the remaining s=k-u-~t permutation sets are elements of

R i,e., 6~point sets.

T’

Then the class of all sequences of permutation sets having prop-

erties (1), (2) and (3) with k, u, t and s fixed integers, will

be denoted by [u, t, s].

Let D be a set with N elements each of which is a triple,

(xl, Xys x3), from R. Then D can be considered an element of RN, where:

N_ .
R —{(rl, Tys cees rN)‘. rieR}.
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Such sets will be called N-point designs.

. e . N . . . .
Definition 2-4. A design DgR 1is a .symmetric design of N points
; ;
if and only if there exists a sequence of permutation sets

<:f¥>% from a class [u, t, s] such that N=u+3+6s and D=2Pi.
i

The class of all N-point symmetric designs is denoted by SN. : For
a given N there are, in general, several classes, [u, t, s], of se-
quences of permutation sets such that N=u+3t+6s. Corresponding to each
such class with given u, t, and s, there exists a subset of SN which
will be denoted by S[u, t, s]. Such subsets of SN are mutually dis-

N | . . . g . _ .
joint and §  isithe union of  all such subsets. .For example:

sb=sls, o, oJJs [3, 1, 0JuUs [0, 2, 0oJ\Us [0, 0, 1].

Thus for any DeSN, D is an element of exactly one subset,

Slu, t, s], of SN.

Definition of Design Factors

The remainder of this chapter will be devoted to showing the ex~
istence of, and defining a one-to-one mapping between the subclass,
S(u, t, s], of N-point symmetric designs and a.'"factor space," F, éf
dimension t+2§. This will be accomplished by means of the following

lemmas and theorem.

Lemma 2-5. Given integers u, t and s with N=u+3t+6s, there

exists a one-to-one mapping between slu, t, s] and [u, t, s],
N .

where S[u, t, s] €8, and where [u, t, s] is a class of

sequences of permutation sets.
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Proof of Lemma 2-5. Define o S[u, t, s] = [u, t, s] such that for

every DeS[u, t, s, QI(D)= <:Pi>% elu, t, s], where <?i>i is a se-

quence such that D=EPi. Thus, the definition of a symmetric design of
i

N points establishes p; as a one-to-one mapping.

Lemma 2-6. There exists a one-to-one mapping between [u, t, s]

t.s
and R1R123 where

t.s _ L . .
R1R123— {(pl, vees pt+s) : pieRl, i<t and pi€R123’ i>t}.
Proof of Lemma 2-6. Define @zzfu, t, t] - RtRizg such that for every

<Pi>11{ e[u, t, S:|

Wk
NCCTDIPILIC TP N

where piePu+i is the first element of the ordered set:

(i=1, 2, ..., t+s).

u+i

Now

Pu+ieRI = R_lszxR3 for i<t
and

Pu+i€RII = R123x..;xR321 for i>t.
Therefore

k, _- t,s

9 (CByD ) = (ps -oos Pryl) €RRyy,

and

r t_s
cpz(\_l.l, t, S]) CR1R123.

On the other hand, let

s

t
) eRiRy,3s

(Pl’ A | pt+S

then
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Pi€R1’ ist’

which implies that P; is an element, (xl, Xy x3), such that xl#x2=x3.
Thus, there exists a permutation sgt, say Pu+l€RI’ such that p; is its
first element. Similarly, pieR123 for i>t implies the existence of a

permutation set, P such that P; is its first element. There-

wri®RIr
. k
fore, there exists a <Pi>l elu, t, s] such that
K
(92(<Pi>1) - (Plx e ey pt+s)n
Hence: : ‘

t,s
which implies

= ptpS
0, ([u, £, s]) = RiR .

k k ' k
Let <Pi>l’ <P'i>lf elu,t,s] and <Pi>l = <P i>l .

Then, since these are ordered sequences of ordered sets, each element

of each set is identical. Thus, p, = pi, i=1, /.., t+s, and

k k . .
CPZ( <Pi>1) = @2(<P£>1). ’ Therefo?e, v, is a mapping.

Let
_ k
(pl’ e pt+s) - ®2(<Pi>l)
and
®! Pl ) = (P
Pro o eees Pyl 7% i1
be elements of RtRS such that

17123
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.

Pu+i = P1'1+i’ i=1, ..., t+s.

= . k
But P, =R, for igu for every <Pi>1 elu, t, s].

Therefore,
/ k_ 1 k
oy =<2
Thus, Py is an injective mapping and since it is also surjective it is

a one-to-one mapping.

Lemma 2-7. There exists a one-to-one mapping between RERTZS

and a (t+2s)-dimensional factor space, F.

Proof of Lemma 2-7. This lemma is clearly true since Rl is a one-

dimensional space and R is a two-dimensional space. Hence, the

123
identity transformation
t_s

i+ R/R - R

t.s
1Ri23 » ByRyp3 = F

or any other nonsingular transformation which maps P; into F1 for

i<t and P; into F123 for i>t will be a one-to-one transformation from
t.s _ _t_s
RiR123 T F = FiFip3.

It will, however, simplify some later computations to use the

particular transformation, P32 defined as follows:
£ P ) cRES
or every (Pi’ cees Pio) eRiRiog

93@rs s Pryd Ly e Ve Yy )s

(yl, t+s’ y2, t+s):l
where, for

pi = (Xl’ Xz: X3) €R1: i<t

i =%y 2x2 + Xq = 1‘-r3x2



and for p

Then

15

1]
x
+
X
+
N
X

i
—

1
Lo
X

L]
x

B R M UL PRV

=. 3 3. _lr. - (1-
.= x) + J;-xz i (1-3x)) - (1-3x,)]

1 2 1
=~ %, X, +&=x, ==~[(1-3x,) + (1-3x.)]
NI NP N PR NP ' &

F, = {y : =%<y<0 or O<y<l}

and

2 2
Flog = [0 39 £ 31305 yp> " yqs vy + 9y sjaﬂ-

The inverse transformations are such that

for p

and for P

Now the

= (Xl: Xza ,X3)’ i<t

= (2y,+1)/3
= (l-yi)/B

= (1-y,)/3

= (x4, Xy x3), i>t
=@-Joy; - [2y,)06
= (2 + ﬁyli - '/?YZi)/f’
=@+2]2y,)06

composition ¢ = P309P] is a one-to-one mapping; therefore,

the following theorem has been proved.

Theorem 2-8. There exists a one-to-one mapping, ¢, between the

subclass S[u, t, s] of N-point symmetric designs and a t+2s



ié

dimensional factor space, F. The mapping, ¢, is the compo-
sition of the mapping ©1> o and ®3 defined in Lemmas 2-5, 276

and 2-7. The factor space F = FtFS is as defined in Lemma

17123
2-7.
. . t,s
In Lemma 2-6 the mapping ¢, Was from S[u, t, s] onto R1R123.
. o s : t_s t_s
Clearly, one could define a similar mapping onto R1R132, R1R213, ey
or RER;ZI, or indeed onto a number of various products of the subsets
Rl’ R2, R3, R123, caey R321 of R. 1If, for instance, one defined

t_s

Py : S[u, t, S] — R1R321

then, the mapping, 93> in Lemma 2-7 would be

defined the same as before except for its range, which would be FEF?ZIQ

Thus, ¢, in effect, maps R, onto F, as previously defined, and maps

1

Rlz3 Ont0 Fipg0 Rygp onto Frgps

1

.., and R onto F The subsets

321 321°

. . . , 1
3123, coss R321 and their respective images under ¢ are graphically

depicted in Figure 4.



Figure 4. Corresponding Subregions of R .and F
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CHAPTER III
CRITERIA FOR THE SELECTION OF A SYMMETRIC DESIGN
Intraductory Remarks

In Chapter II a class of designs termed symmetric designs was de-
fined for the three component mixture problem. Given the possibility
of running N experimental points, one would like to choose from the

N . ; . . . .
class § a design (or designs) which is best in the sense of some cri-
terion. The criteria to be used in this thesis are defined in this
chapter, and formulas are developed for implementing the criteria in

searching for the best N-point symmetric design,
Models to be Used

In this chapter, it will be assumed that the response, y, is given
by one of the following models:
either
y(Eps Xps X3) = ag¥g t Xy Fapxy) e
oY
) = + . + + x, + 2 4 x2 +
y(xys %), X3) =X, tagx) FayXy TR Xy fagyX) Tag¥, Te

. 2
where Xy = ¥ + X, + X = 1, (xl, Xys x3) eR and ¢ ~ NID(0,g7 ).

It will be convenient to use the matrix notationm,

Y=Xoe +E

to denote the Nxl1 vector of responses,.¥Y, corresponding to the matrix,

18
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X, of design points.

In the case of the second order model, for example, one has:
' =

Y= Dy vy eees 3y
' = a

E [el, €91 ceus cNJ

o = [ao, al’ azs alzs alls 022]

and fl X X X, X x2 x2 |
11 *12 *11*12 *11 *12
) 2 2
X1 %22 *21%22 %21 *22
X = . .
2 2
o w2 fwitme *wn *me .

In terms of the above notation, the least squares and maximum

likelihood estimates of ¢ are given by

& = (X'x)'1 X'Y.

If u = (ul, u u3) is a point in R,

2,
let

2

2
! -
U M, u Uy, Ujly, U7, u2],

l’
then the estimated response at u s given by

¥ (w=U'4g .
Transformation of the Space R

Each criterion to be considered in this thesis will involve in
some manner, the matrix X'X. It was found that computations could be
simplified by workiﬁg in a transformed space with the matrix Z'Z ob-
tained by employing a transformation used by Draper and Lawrence (4).

The transformation effects a nonsingular linear transformation from the
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space R, or (xl, %y x3), to the space R', or (zl, Zgs 23).

The transformation is given by:

2\ /-1/2 2 o\ [«

1
- é;j; J; ZJ;'.

—-— — X

2 "6 6 6 2
z3 1 1 1 x3
and its inverse by
A
/}ﬁ_\ -1 3 1/3 z,
| x | 1 3 1/3
2 3 )
23 /
\ X3 0 3 1/3 25/ -

The above transformation takes the triangular region R into an

)

equilateral triangle in the plane z, = 1, with the centroid at (zl, z

3

= (0, 0). One vertex of the triangle lies on z; = 0 and the other

= 0, The length of each side of the

2

vertices are symmetrical about zq

tfiangle is unity. This triangular region will be referred to as R'.

For a design point from a one-point permutation set, that is,

3> 3> 3), one finds the corresponding point in R; to be

2] /ro -1/2 1/2 0 1/3
~
z = I 0 = _;‘Lg __£ ~2—3 1/3
2 6 6 6 :
2, 1 1 1 1 1/3/ .

Suppose (xl, Xgs x3) = (a, a, l-2a) is one of the design points,
then the points (a, 1-2a, a) and (1-2a, a, a) are also design points.
The correspondence between the coordinates of these points and those

under the transformation are given in Table I.



TABLE I

COORDINATES OF POINTS IN R AND THEIR CORRESPONDING TRANSFORMED VALUES IN R'
FOR THE CASE OF A THREE-POINT PERMUTATION SET

Coordinates in R B Chordinates in R'
Xl XZ X3 T zl ZZ 23
a a 1-2a « . 0 zl%klf3a) 1
a 1-2a a (1-3a) /2 "‘%-(lf&a) 1
f‘
1-2a a a o -(1-3a)/2 B %(1733) 1
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1f (xl, Xy x3) = (a, b, l-a-b) is a design point and a#b, a#l-a-b
and b#l-afb, then the five points obtained by permiting X5 %, and Xy
are also design points. The coordinates of all six points and the cor-
responding coordinates under the transformation are listed in Table II.

Working in the space (zl, Zy> z3), the second order polynomial

will be:

B - 2 2
y(zy5 295 29) = Bozg + Byz) ¥ Byzy + Byjzizy) +Byy2) + Bz, te

2
= t ~
where Z4 1, (zl, Zys z3) ¢R' and ¢~NID(0,g").

The least squares and maximum likelihood estimates of B are given

B = (z2'2) z'Y
; 1 - 2 2
and if u = (ul, Uy 1) ¢R' and U' = [1, Upy Uy, Uply, Up, u2]
then
¥ (u) = U'é
is the estimated response at u.
By inspection of the point coordinates in R!' given in Table I and

Table II, one can deduce that the matrix Z'Z for the second order model

has the form:




COORDINATES OF POINTS IN R AND THEIR CORRESPONDING TRANSFORMED VALUES IN R'

TABLE II

FOR THE CASE OF A SIX POINT PERMUTATION SET

Coordinates in R

Coordinates in R;:

X

2

1 2 3 “1 2
a b 1-a-b ¥ (b-a) J%(Z-Sa-Sb)
a l1-a-b b ¥(1~2a-b) “%(Sb-l)
b a l-a-b -%(b-a) ‘%(Z-Sa—Sb)
b l-a-b a %(1-a-2b) J%(Sa-l)
1-a-b a b ~-%(1-2a~-b) J%(Sb—l)
1-a-b b a -%(1-a-2b) Jg(Sa‘l)

€7
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where ~ N N
c .= \ z'2 = .
il /L %12
i=1 i=1
N N
- 3 _ \ 2
d —Z z12 Z %1 z12
i=1 i=1

Correspondence Between Z'Z and the Design Factor Space, F

It will be shown that Z'Z is a function of the design factors de-
fined in Theorem 2-8. Having done this it will be possible to move
between the subclass of N-point symmetric designs, S[u,t,s]c:SN, the
design factor space, F, and the class of matrices, {Z'Z}, as indicated

diagramatically by the arrows in Figure 5, below.

{z'z} Slu, t, s]csN

P

F
Figure 5. Diagram of Correspondence
Between {Z'Z}, F, and S{u, t, s]

Each arrow in Figure 5 represents a function with the domain of the
function being the set at the tail of the arrow and the range being the
set at the head of the arrow.

Now each permutation set of points in a symmetric design contrib-
utes either one, three or six terms to the sums ¢, d and f of Z'Z.

Using the values of z, and z, in Tables I and II, the respective ''sum-

~1 2

of-squares' contribution of a ong-point, three-point and six-point set
q P > P
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were computed in terms of the original coordinaté values. These are

listed in Table III, where, for convenience,

= 1-3a
for the three point set and
L 1-3a
W, = 1-3b
for the six point permutation set.
TABLE ITI

CONTRIBUTIONS OF k-POINT PERMUTATION SETS TO THE ELEMENTS

N, c, dAND f OF 2'Z

k N c d f
1 1 0 0 0
3 3 . \gws‘ ' w24
ﬂ 2.2 2 1,2, 2 2
6 | 6 (1/3)(w + w2 + w 1% ) ( v + w Wl) _108(W1 + W, + W, W,

Referring to the definition of the design factors in terms of the
original triangular coordinates on page 14 of Chapter II, one finds
that

y = 1-3a =w
for.the three-point case and

=\[% [(1-3a) - (1-3b)] =\;% oy,
v, =\/%'[(1~3a) + (1-3b)] A (wytwy)

for the six-point permutation set..
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Thus

_ 1
v T2 Oty
and
=5 Gy
and making these substitutions in Table II], one obtains the results

given in Table IV,

TABLE IV

CONTRIBUTIONS OF k-POINT PERMUTATION SETS IN TERMS OF THE DESIGN
FACTORS TO THE ELEMENTS N, ¢, d AND f OF 2'Z

k N c d f

1 1 0 0 0

3 3 v’ /2 %’_ﬁ y* /24

6 6 (v + 356 a - Dy, 4fe 2 + 3y5)% /32

From the above developments, one sees that the elements ¢, d and

f are functions of the design factors and hence, so is Z'Z.

An Induced Transformation of the Space of Independent

Variables in the Quadratic Model

Theorem 3-1. A nonsingular linear transformation from
(1, X1 x2) to (1, Zq5 22) induces a nonsingular linear
. 2 2
transformation from (1, X1s Xps X Xos Xp, x2) to (1, zys
zz; zlzz, zi, zg). If A is the matrix for the transformation

from (l,-xl, x2) to (1, zy z2) and B is the matrix for the

induced transformation, thenl B 1=| A ﬁ.



The fact that Xg = X + %, + X3 = 1 may be used to rewrite the

transformation matrix on page 20 as follows:

Z3 / 1 0 0 xo
zZ = 0 -1 1 X
]. 2 . 2 . 4 l
. 3 I ER Y
2 3 2 2 *2

Y]

from the space (x , x2) to the space (z3, z 22), where z3=xo=la

0* *1 1’

That 1is, ar + aj,%y + ajg¥, = 1 for all Xy and X, - Then all=l and

aj, =a;3 = 0.

Then for the second order polynomial model in the space of

(zl, Zy» 23), one can write

f 1 0 0
- i
Vz = Al A2 0 Vx
Bl B2 B3 s
where
2
! =
v 2 (z3, 215 2y 29293 Z75 22)
vt = 2

= (XO, xl’ XZ’ x1x2’ xl’ X2)

21 22 23.

32 33
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451931 351332 T 337859 351333 F 35313y,
2
B = =
°1 421 ’ ) 2851399 28,1823
a2 2a..a 2a_.a
31 31232 31933
and
399833 T 835854 459932 353833
B | 2 2
By = 23,5354 Y 53
2a._.a 2 z
32933 439 833

The above transformationon from X to-Z.is clearly linear, It is also

nonsingular as will be shown below. Consider the determinant:

1 0 0
A 0 A, O
= 2 - 2 -
A, A, 0= = ‘AZ; ‘B3|
B B 0 B
s 5 om 2 3 3
1 P B3 :

The above equalities are due to the fact that the rows of B2 are linear

combinations of the rows of A2.

Furthermore, the determinant’ A2 ]is nonzero by definition, and

for the determinant, | B, lone‘has:

_ 2 2 2 2 2 2
3| = (ayya35 + a3ya3,3) ajjags + 2ay,ay3a3,a,, + 2a,,a) 535,34,

2 a,.a a2 - (a,.a,, + a,.a )a2 a2 - ?a2 a,.a a2
22723732733 22733 327237723732 ©922723732°33

2

| B
~2a

3 2
(agga33)™ + (ay5833)" (ag5355) + 2(ayya33) (agpa,5)

2 _ 2 3 2
* 2(ay333) (3393937 = 2(aypa33) " (3353)3) = (8y5333)(@353,3)

3 C2
(a35253)" = 2(ayya34)"(ag,3, 4
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3 2 2 3
(ay5333) 3(ay,a33) (?32323) +3(a,,849)(a353,5)" - (ag,a,,)

3
(399333 = a3p393)
1, P

Therefore] B3 l # 0, and the theorem has been proved.

~

Minimum Generalized Variance of B

The least squares and maximum likelihood estimates of B are given
by
5 1oy~ 1
B =1(2'z2) " z'Y.
Also B is distributed as
2 -1
N[g, ¢” (z'2) 7] .

The generalized variance of the distribution of B is
2 -1 2 L
o | (2'2) “|=4"/]2'2].

Definition 3-2. Let Z. and Z, be the matrices of design points

1 2
for the designs D; apd D2 from the class SN. Then D, is better
than D2 in the sense of generaliggg variance if and only if
02/] z'.z. | < cz/llz' Z, | , or equivalently
171 272 12

2"z, | >| z',2, |-

*
Definition 3-3, Let D be a design from SN. If the general-

* *
ized variance for the design D 1is finite then D is optimum

with respect to generalized variance if and only if there exists
. . N . . . : .
‘no design in § which is better in the sense of generalized

variance.
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4
Now taking the determinant of the matrix Z'Z as given on page 22

one finds:

| 2'2 | = 4(2Nf - B (et - a2,

Folks (6) proved that the optimum generalized variance design (or
designs) is invariant under nonsingular linear transformations on the
space of independent variables., The argument is reproduced in this
context for completeness.

Let

Z = XB'

represent the transformation which takes each row vector of the design
matrix X into the corresponding row vector of Z.

Then

lz'z |=|BX'XB' |=|B|" x'x]«]B[:]BF» X'X | .

If B is the matrix of Theorem 3~1, then
|2z ]=[a - xx],

so that the optimum generalized variance design for the quadratic model
is invariant under transformations from (1, X{» x2) to (1, zqs z2)° In
particular for the transformation introduced on page 20 of this chapter,

one has:

J 8 _8l

z'z |= 7| XX [ =5 | X'x [

8
Minimum Average Variance of the Predicted Response

Let $(u) be the estimated response at the point u in a region of
interest I. The region of interest, I, will quite often correspond

exactly to the triangular region R or R'. Let p(u) be a density



31
function defined on I.

Definition 3-4. The average variance with respect to the

region of interest, I, for the design, D, with design matrix,

Z is given by

ng p(w) U'z'2) U du,
I

2 -
where g U'(Z2'Z) 1 U is the variance of 9(u).

Definition 3-5. Let Z1 and 22 be the matrices of design points

1 and D2 from SN. Then D1 is better than D

for the designs D 2

in the sense of average variance if and only if

f p(w) U'(z'lzl)'1 U du < I p(u) U’ (z'zzz)'l U du .
I I

Definition 3-6. Let Dw be a design from SN. If the average

("

* ., .. %
variance for the design D 1is finite then D is optimum with

respect to average variance if and only if there exists no

. . N . . . .
design in § which is better in the sense of average variance.

In this thesis it will be assumed that p(u) is a uniform density
over the region of interest and unless otherwise stated the region of
interest will be R', the triangular region in the space of (zl, Zys z3)o
With this region of interest one has:

2a- b 15'
4

p(ul, u2) = I I dul du2 =
-a =-b

bl

where a =‘"§ and b =(l[$(l~uzﬁf§).

For the second order polynomial model,



let
. 2 2
U (1, U, Uy, U Uy, U, u2) .

Then for a design D with matrix of design points Z one has

, 2% -1
— 1 1
\fi | I U' (2'2) " U du; du,
-a -b
4 2a b -1
- 1 ]
33- I f trace [UU' (Z2'Z) ]duldu2
=a =b

-1 2a b
trace [(2'2)' f I vy’ dulduz]
-a -b

Sl

trace [(Z'Z)-I‘M] ,

~32

where M, the matrix of design moments was found by Draper and Lawrence

(4) to be:

1 1
1 0 0 0 2 24
0 1 0 __‘[_é— 0 0
74 360
. . N P Y
24 360 360
M:
L o,
360 720
1 J3 1 1
2% O - 3%0 0 240 720
1 o J3 0 1 1
24 360 720 540

The matrix (Z'Z)“1 is listed in Table V.

Thus, in terms of the element c, d and f of Z'Z, the average




TABLE V

-1
ELEMENTS OF THE MATRIX (Z'Z) FOR THE SECOND ORDER MODEL

- 2 2
1 zl zz . zlzzv R . S zl zz
___ZEE 0 0 0 _;_:23%;_ _ ___ZQE_E_
2Nf-c 4(2Nf-c?) 4(2Nf-c™)
0 £ ,2 0 4 0 0
cf-d cf-d
0 0 £ > 0 ———*ZQE-' —-4;£9§t
cf-d 4(cf-d7) 4(cf-da").
0 d > 0 < 5 0 0
cf-d cf-d :
—2e— 0 —= 0 S — =
4(2Nf-c) ~ 4(cf-a") : 4 (2Nf-c7) 4(cf-d7) 4 (2Nf-c™) . 4(cf-d7)
-2c > 0 -2d 2' 0 N .é’ _ c - _ N > + c >
4(2Nf=c%) 4(cf-d%) 4(2Nf-c™)  4(cf-d7) 4(2Nf-c¢™)  4(cf-d7)

(X
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variance for the corresponding N-point symmetric design, D, is found to
be

720 - 30 c +N , 30£-4Jd3dtc .
360 (2Nf - c2) 360 (cf - d2)

As in the case of the generalized variance, Folks (6), showed the
average variance to be invariant under nonsingular linear transforma-
tions of the independent variables. Thus, by Theorem 3-1, the average
variance for the quadratic model is also invariant under the transfor-
mation from the space R to the space R'.

The argument for invariance of the average variance goes as
follows. Using the symbols defined in the proof of Theorem 3~1 let

Z = XB and Vz = V;B, then since B is nonsingular X = ZB L and Vy =

- :
VzB l. The average varignce in the X space is given by

o [ atov &V a
I

1

02 I q(z)V;B-l [B'~
II

ATS St B Tl V] J|dz

o [ q(z)V;(Z'Z)_lVJ 7] dz
Il

2 PSS |
o [r(2V (2'2) "V, dz ,
Il

where J is the Jacobian of the transformation.

The last expression is the average variance in the Z space.
Other Criteria

A criterion which has received some attention in the literature
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is that of the minimum characteristic root of the matrix Z'Z, say nmin'

3 . . * 3 . |
The object is to choose the design, D , (or designs) whic¢h maximizes

. * _ max
, That is: = )
nmln. ar s D_ Des N Tin
or equivaléntly: D7€ = g:gN max

. . . -1 .
where Amax is the maximum characteristic root of (Z'Z) ~, and in fact,

Mpax = 1/7

m min"® "

The appeal of this criterion is due, in part at least, to the f;ct
that it relates to the variance of linear combinations of the param-
eters in the model. However, Folks (6) has shown that this criterion
is not invariant under linear transformation, and it is due to this

that this criterion will not be used. The characteristic roots of

Z'Z and (Z'Z)m1 are, however, listed in Tables VI and VII.

TABLE VI

CHARACTERISTIC ROOTS OF Z'Z

My, = % [f+e - J(g-0)? + 4a%] = 5 [f4c + Jg+e)? - 4(ct-a?)]
m, =% [f+c - J(f-c)2 + 4d2] =% [f+c - JZf+c)2 - 4(cf-d2)]
M = % [AEW + JGEN 7 + 8] = 5 (404N + Jarm? - sanied]
M, = % (464N - Jae-0)? + 86%] = % [4f+N - Jae)? - 8(2NE-c?) ]
ng =% [264c +428-0)% + 8a%] = ¥ [2£+c ol - seer-dd]
(284 - J(28-0)° * 8a%] = % [26+c - J(2£+0)” - 8(ct-a")]

1 =3
fo))

) I

o

Another criterion suggested by Folks (6) is that of the minimum
average bias of $(u), where the bias is incurred when the true model
is a polynomial of higher degree than that which is assumed by the

experiménter. This criterion has been applied in the context of three
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TABLE VII

CHARACTERISTIC ROOTS OF (2'Z) -

_c+ f+ [(t—f)z + 4421

A
1 2(cf-d2)
i
=t f ~l[(c-f)2 + 4a%7?
2 2(cf-d%)
i
,oar N+ [em? + sy
3 4(2NE-c2)
2 2-%
, = AE+N- [E-N + 8c7]
4 4 (2= c2)
i
, =L 2f 4 [(c-26) + 8477
> 3(c£-a%)
i
, =&t 2f- [(c-26)% + 84%1®
6

4(cf-d%)

and four-component mixture problems by Draper and Lawrence, (4) and
(5). Although the class of designs considered by Draper and Lawrence
neither includes, nor is included in, the class of symmetric designs,
the two classes overlap to the extent that it is felt that further con-
sideration of the criterion is not warranted in this thesis.

Several other criteria have been suggested in the literature. It
is not the purpose of this work, however, to make a survey of these
criteria, but rather to employ soﬁe of those which have been suggested.
It is felt that either the criterion of minimum generalized vaiance or
of minimum average variance will appeal to the experimenter in most

instances and the following chapters will be devoted to employing these



criteria in the search for optimum N-point symmetric designs.
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CHAPTER 1V
OPTIMUM GENERALIZED VARIANCE DESIGNS

This chapter will be.concerned with the problem of selecting de-
signs from the class SN which are optimal in the sense of minimizing
the generalized variance of the és, The definition of optimal with
respect to this criterion is given by Definition 3~3. Also in Chapter
III it was seen that the criterion measure,[ 7'z [, is a.function of
the design factors. Consequently,] z'z [will be regarded as a response
over the space, F, of design factors rather than overﬁthe space, RN, of
design points. This will result in reducing the dimensimnality of the
search by two-thirds since a separate search can be made for each sub-
class, S{u, t, s], of SN. The corresponding factor space has dimension-
ality t+2s compared to 3t + 6s for the search in'#N.

If the optimal design or designs are found for each subclass of
SN, it will be easy to select from among these the optimal designs for
SN. This is the approach that will be taken.

The problem in the case of the first order polynomial model is rel-
atively simple and can be handled analytically. For the second order
model a computer-aided search will be conducted in the space F. As
mentioned above the dimension. of F for the subclass S{u, t, s] is t +
2s, However, the dimensionality of the search can be reduced even more

by virtue of Theorem 4-1, This theorem will allow the search in F to

be limited to those points in F which correspond to designs having

38
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three or more points on the boundary of R,

Theorem 4-1. If any symmetric design which is optimum with
respect to generalized variance is plotted as an arrangement
of points in R, then at least three points will lie on the

boundary of R.

Proof of Theorem 4-1. Let D be a design in SN. Then there exists in-

tegers u, t, and s such that D is an element of the subclass,
S{u, t, s], of sN,

Let B(R) be the subclass of all designs in S[u, t, s which have
some points on the boundary of R. Since these are symmetric désigns,
if-one point is on the boundary all points in the corresponding permu-
tation set will lie on the boundary. .Therefore, all designs in B(R)
have at least three points on the boundary of R.

Let F be the factor space corresponding to s(u, t, s] and let B(F)
be the subset of F which maps into B(R).

Now from Chapter III:

|2z |, = (@N£-c?) (eg-a%)”

where, in terms of the t + 2s design factors, c is a sum of terms of

the form

y2/2 or (yi + 3y§)/6,

d is a sum of terms of the form
— 2
J3Pnz  or F - D yyale

and f is a sum of terms of the form

y*/26  or (yf + 3y§)2/432., ]
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For convenience denote th + 2
e t s factors by Wis Wos aee, wt+25

and let 425 )
r= () Wi)2
1
and
§; = arc cos (wi/r)
so that
Wi = r cos ei’ i=1, ,.., t¥2s
Then
c =r"c' ’
d = r3d'
f = r4f'

where c¢', d' and f' are functions of g = (el, Bys +ves et+25) alone.

Then making these substitutions it is seen thatl 7'7 ID can be written
as
16
' i
\]zz|D—r f(g).
Since Z'Z is positive semidefinite, | Z'Z ID > 0, Also r =2 0 so
that f(g) =z 0. Therefore, considering g fixed, the partial derivative

below is nonnegative, i.e.,

If[ Z2'Z ID = 0 for all D in the subclass S[u, t, s], then by def-
inition there exists no optimum design in the subclass. Ifl z2'z ID > 0,

then r > 0 so that

3l z'z |,
ar‘ >0 .
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Therefore, let (rl, p) correspond to Dl and (r2, §) correspond to D2

with r, > ry- Then

2

2'z > | 2'z
[2'2]y > |22,

so that if (r 6) is a point in F then D, is better than D. and D

9 1 is

2’ 1

not optimal.
.Now the set of points (r, 8) in F with g fixed and r variable has
a maximum element, (rm, 8), which belongs to B(F), Furthermore, if Dm

corresponds to (rm, 9) and D corresponds to (r, g) with r <« r o then
lz'z|y, > [z'2],
m

and D_ belongs to B(R).

This completes the proof of Theorem 4-1.

As was stated previously, the above fheorem will be useful in. the
search for optimum designs when the second order model is assumed. A
similar theorem could be proved for first order models but this case is

easily handled in the manner given below.
First Order Model
For the linear model:

y = Bo B2y F B2y te

with matrix Z'Z has the form:

[
o
o]
o

Z'Z
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so that

|z'z | = Ne’

Thus to maximize l z'2 r for fixed N it is necessary to maximize

c. But

2
21

1 =

Z

N
c = EJ z2 =
1i
i=1

Thus ¢, as a measure of the '"spread" of the design points, indicates

i=1

that the optimum symmetric design is one in which the design points are
distributed evenly on the three corners of the triangular region R',
with any of the possible one or two remaining points being allocated to

the center.
An Example for the Case of the Second Order Model

To illustrate some of the procedures to be used with larger values
of N consider the search for optimum designs in S6° A separate search
will be conducted in each of the subclassés, s{6, 0, 0], s(3, 1, 0],
s(o, O, 1] and s(o, 2, 0]; then the best design or designs from among
those found in each case will be selected for the optimum in SN.

Clearly I z'z l = 0 for all designs in the subclasses S[6, 0, O]
and S[3, 1, 0], and hence no optimum designs exist in these subclasses.

Consider the subclass S8[0, 0, 1]. From Table IV one finds:

2

2)

1,2
c (y7 + 3y

¢}
il

1 2 2
d = ije(y2 yl) Y,

and
_1 .2 2,2 __1 2
£=732 Oy ¥35) =75 ¢



Thus

22|

for any design in S[0, 0, 17.
this subclass,

For the subclass S[0, 2, 0

I 2

c= 5 (yp vy

>£? 3 o3

d =75 &7 + )

N S 4

and ETm 0T YY)

h - l < < 1
where 2 < y1 <

d - l < 1
an 2 = y2 <

Substituting these values
one has:
1 22
! = e—
lz'z | = y1Y5
This formula is symmetric
need consider only those cases

Theorem 4~1, one need consider

which lie in B(F), that is, the

and

4(12- —l c2 - C2>¢T%YC3 - dz)2
2 2.1 3_ 22
4(c )G © d”)

Hence, there exist no optimum designs in

] one finds:

of ¢, d and f into the formula for | Z'Z |

(yg'- yi)z(yz - yl)2

in the factors Yy and y, 8o that one
for which y1<y2. ‘Furthermore, due to
only those points in the factor space

sets
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-0.5 0.0 0.5 1.0y,
‘ Figure 6. 106] Z'7 ] versusvy2 With y, = -0.5
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100,

1.0

0.5 |
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Figure 7. 10 | 2'Z | Versus y, With y, = 1.0
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The graph of | 2'Z| versus y, with y, = -% is given in Figure 6.
ihe height of the curve is exaggerated for Yy between,f%génd % in order
to show its shape. The graph of I 2'Z [ as é functibn.of yl with Yy = 1
is given in Figure 7, and again the height of the curve is exaggerated
for Yy between 0 and 1, From these two graphs it can be deduced that
the optimum 6-point design corresponds to éhe point (=%, 1) in the
factor space. The corresponding design plotted as an arrangement of
points in R is illustrated in Figure 8 below. This désign is Sheffe's

(11) 6-point design for the second order model.

[

Figure 8. Optimum 6-Point Design

Computer Usage and Results for the Second Order Model

The above developments fof the 6-point design were given in detail
to illustrate the use of the design factors in the search, For larger
values of N a computer program was written in the FORTRAN.IV language
for the IBM 7040 computer at OklahomavState University. This program
is listed in Appendix A. The program conducts a lattice search in the
subspace B(F) of the factor space, making use of any symmetries in the
factors to reduce the number of points to be investigated.,  The program

\

can be instructed to search a given subclass, S[u, t, s], at points on
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a grid of specified fineness, and to output the k best designs found.

For N up to and including N = 17 the above program was employed
with a grid of 0.1 increments in the design factors. .In terms of tri-
angular coordinates an increment of 0.1 in the design factors amounts
to a maximum increment of 6.7 percent in any one mixture component.
The 20 best designs were obtained as output in each case, For N up to
and including N = 9 a finer grid was employed which amounted to incre-
ments as small as 0.1 percent in some components. Use of the finer
grid did not result in the choice of any design other than those already
found.

Results of the above search indicate that the minimum generalized
variance design for each N has the same configuration as that for the
6-point design illustrated in Figure 8, except for some variation in
the number of réﬁlicated points at the center, midpoints and corners
of the triangular region. The following rules for allocation of the

points were deduced from the computer output.

Case 1: N divisible by 6. Allocate N/6 points to each

corner and to each midpoint. o

Case 2: N-1 (or N-2) divisible by 6. Allocate (N-1)/6

(or (N=2)/6) points to each corner and to each midpoint
and allocate the remaining one (or two) points to the

center.

Case 3: N divisible by 3 but not divisible by 6. There
are two optimum designs. Allocate (NF+ 3)/6 points to
each corner and (N-3)/6 points to each midpoint or vice

versa,
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‘Case 4: N-1 (or N-2) divisible by 3 but not divisible by 6.

Allocate (N+2)/6 (or (N+1)/6) points to: each corner and
(N-4)/6 (or (N-5)/6) points to each midpoint and allocate

the remaining one (or two) points to the center.

The above rules were verified for N up to 100 by assuming that for
N greater than 17 the optimum designs would have the same configuration
as that which was observed for smaller N, i.,e., the simplex-lattice or
simplex-centroid configuration. Then with this assumption the formula
for ] z'z | was simplified and investigated in the manner outlined
below.

From the results of the investigation for N < 17 it was found that

. . . N
optimum designs in S were elements of subclasses of the form:

slu, t, 0] ,

that is, no optimum designs were found having 6-point permutation sets.
Thus,

N=u+ 3t .

‘Let t = t, + t,, where t

1 2 1 is the number of 3-point permutation sets

(replicates) located on the midpoints of the triangular boundary of R,

and where t, is the number of 3-point sets (replicates) on the corners.

2
Then for
0 < 9 < 1
let
t, = ot
and
£, = (L - g)t .
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Since in F, =% corresponds to a 3-point permutation set on the mid-

points of the triangular region, and 1 corresponds to a. 3-point set on
the corners of R, the elements ¢, d and £ can then be written in terms
of the design factors as

c =% (£ -0 + £,

(£/2)(1-38/4).
I 3
d =75 (£, ( %) + t2(l) )

3

(t T3) (1-98/8)

and
1 4 4
= —= -k
= (t/24)(1-150/16)
Then making these substitutions in
| z'z | = (2Nf - (et - 5P
one has
3’ 2 2 - 2
|2'z | ==55 8 (1-)"(L6u + 3(9t-5u)8-27t8 )
9 :

Now in the case where there are no center points, i.e., u = 0, one has

4 6
|2z | = S o2a-9)’
2

which is symmetric about g = %.
Taking the partial derivative of | z2'z | with respect to g one
finds

5
z'z | _ 3t _ 9t-5u _
% 0,0 0(1-9) {54te(1-0) g5 - o]

+ (5 - o) [16u + 3(9t - 5u)g - 27t92]} >
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and with u = 0 this reduces to

alz'z| _ 3>

36 ,20 ©

2 (1-9)2(%-9)

which has, in the range of interest, a zero at g = %¥. Thus for u = 0,

= t, = %t,

N =3t and t 2

1
Now if N is divisible by 6 then t is divisible by 2 so that
tl = t2 is an integer. This corresponds to Case 1, above, and verifies
the rule given there if u = 0 is assumed.
With u = 0, Case 2 and Case 4 above are not possible with symmet=-
ric designs. For Case 3, where N is not divisible by 6, the solution

tl = t, = %t is not an integer. The integer values for t

9 = gt cor-

1
respond to § = 0, 1/t, 2/t, ..., 1, and of these, the two nearest

g =% are

t-1 _ (N/3) - 1 _N - 3

81 T 2c T 2n/3 2N
and
_ el _ (N/3) +1 _N+3
% T2t 2N/3 2N
so that either
_N N-3 _N-3
t; =3 E3x)
or
_N N+3 _N+3
t, 53 U 6 )

Both of these are valid solutions and each results in an optimal design
since it was shown above that ' z2'2 | is symmetric about g = %. This
verifies the rule given for Case 3 if u = 0 is assumed.

The optimum value for § could be found for arbitrary values of u

by solving
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z'zZ
08
for roots in the range: 0 < g < 1. The general solution would be of
little value however, since in general, it would not result in integer
solutions for t and £y Furthermore, for u # 0, the expression for
] 2'z | is not symmetric ;bout the root in question. On the other hand,
it was relatively simple to program the computer to calculate for each
N the value of l z'z I for all possible combinationé of u, t1 and t2.
Results of these computations showed no exceptions to the above rules
for N up to 100,
This completes the discussion on optimum generalized variance
designs. Designs which are optimum with respect to average variance

will be considered in the following chapter.



CHAPTER V
OPTIMUM AVERAGE VARIANCE DESIGNS

This chapter will be conéerned with the problem of choosing op-
timal designs from the class SN using as the criterion the average var-
iance of the predicted response.

Optimum designs for the first order model can be readily obtained
by the mechanisms already developed. The optimum designs for average
variance are exactly those obtained for the criteria of genéralized
variance, i.e,, those with all points, up to the largest multiple of
three, distributed evénly on the corners of the triangular region and
with the remaining points at the center. The rationale is essentially
that given by Draper and Lawrence (4) and will not be discussed further
here. Optimum designs from SN in the case of the second order model,
however, cannot be obtained from the above mentioned work of Draper and
Lawrence; therefore, the remainder of this chapter will be devoted to
this case.

‘ The criterion of average variance presupposes a region of interest
on which a density function is defined. As previously mentioned a uni-
form density will be assumed. Initially the region of interest will be
the entire triangular region, R (or R'). It will be shown how the re-
sults obtained for this case can be used whén the region of interest is
any triangular region in R. Consideration will then be given to cases

where the region of interest is a triangular subregion, T, of R, but
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where it is possible to run design-points in another subregion, Q, of
R, which contains T and which has the same cenfer point and orientation
in R as the region T. The region Q will be called the region of oper-
ability.

A computer program similar to the one used with the generalized
variance criterion was used in the search for optimum average variance
designs. This program, however, ingorporates some additional searéh

features based on developments in the following section.
Preliminary Developments

Let the region of interest be R and let AVb denote the average
variance of the N-point design, DeS[u, t, s]. Then from Chapter IIL,
page 34,

_ 720f - 30c + N . 30f - 4\[3d + ¢
360 (2Nf - %) 360 (cf - d°)

AVb»

where, in terms of the factors in F corresponding to D, c is a sum of

terms of the form

o=

1 ,2 2
y or ¢ (y] T3y
d is a sum of terms of the form

NE] y3 or L
12 46

2 2
{ -
(v, yl) Yo

and f is a. sum of terms of the form

2,2

1 2
26 Y or 33 0 )T -
Let the t+2s factors be denoted by wl, Wos ees Wl and let
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and
cos B, =w,/r
e1 1/
so that
=r c .
w os el
Let

6 = (815 «vs Bryng)

Then (r,g) is the polar coordinate representation of the point in F
corresponding to the design D.

Thus ¢, d and f can be expressed as:

- 2
c=rc
d = r3d'
f = r4f'

where c¢', d' and f' are functions of g alone.

Substituting the abpve into-the formula for AVD, one obtains

AV, = 720rg! - 30r2c' + N, 30r§f' - 43 34"+ o
D 360c* (2! - ') 360 £® (c'£' - a'D)
Letting p = % and combining terms of like power in p, the above

expression can be written in the form

- 4 3 2
AVD =Ap + A3p + A2p + A

4 0

where

N c'

A, = \ >
360 (2Nf' - ¢'7) 360 (c'f' - 4

4

2y
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A ’= -\[3
3 2
120 (c'f' - d'°)

. 1 X '
By = — >
12 (e'f' = a'") 12 (2Nf' = ¢'7)
and
1
AO=—-—-=—2—§—=—£ -
2Nf' ~ ¢!
Now taking the partial derivative of AVD with respect to p one
obtains

AV
——L - 4A 3 + 3A3p2

5o 4P + 2A

2 -

Setting the above equal to zero yields the roots:

pp =0
-3A, - [9A2 - 32A.A ]lf
0. = 3 3 274
2 84,
and
2 %
) 345 + [9A3 32A2A4] .
P3 8A '

4

Now considering AVD as a function of (r, @), with g fixed, one is
looking at a ray in F beginning at the origin (0, ¢), and projecting
through>some point in B(F), corresponding to a design with at least
three points on the boundary of R. The point at the origin with r = 0
(or p = ») corresponds to the design having all points concentrated at
the center of the region R. Thus the average variance approaches in-

finity as r approaches zero (or p approaches infinity) along the ray.

Therefore the largest positive root above, if such exists, represents
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a possible local minimum value of the average variance along the ray.
When such a root exists it will be denoted by p*, and the corresponding
value of r by r* = 1/p*. The corresponding point coordinates in terms
of the design factors are given by:

% ¥
w, = cOo 2.
1 s el

%

1f the point (Wi’ ces WLl

) is contained in F, it will be of
interest to calculate AVD*° This is easily determined if the original
design, D, corresponding to the point (r, 8), is an element of B(F),

since in this case (r*, §) is in F if and only if r* < r or p*=zp. The

manner in which these results were found useful is discussed below.
Computer Usage and Results For the Region of Interest, R

The developments in the above section suggest a method for begin-
ning the search for optimum designs in a subclass slu, t, s]. Namely,
calculate AVD for designs D, corresponding to a grid in B(F) and for
each D determine if there exists a D* corresponding to a point in F.

If so, calculate AV Note that D* is a design with no points on the

D**°
boundary of the region R.

The program used in searching for optimum generalized variance
designs searched a grid in B(F). This program was therefore modified
to perform the above suggested operations. The program listing is
given in Appendix B. The resulting program was instructed to output
the 20 best designs of the type D¥* as well as the 20 best designs cor-
responding to points in B(F).

For N from 6 to 20 the program above was used with a grid of in-

crements of 0.1 in the design factors.
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The best designs resulting from this search were all from sub-
classes of the type S[u, t, 0], that is, these designs contained no 6-
point permutation sets. Furthermore, these designs had all points on
the boundary of R with the exception of one 3-~point set in some cases.

The above search was followed by a sequential pattern search de-
scribed by Hookes and Jeeves (10). The computer program for the pattern
search is listed in Appendix C. Starting points in the case of each N
corresponded to the best design found by the grid search. The program
was instructed to continue the search until 1000 iterations had been
completed or until no improvement was achieved with increments of the
design factors as small as 0.001., The resulting designs differed very
little in average variance from those already found, the reduction
being in fractions of. one percent.  The resulting design points were
also in the same neighborhood as those already found, however, for each
N divisible by 3 the optimum design was found to have one permutation
set which was not on the boundary of R.

Different starting points for the pattern search were also tried
in several instances and convergence to approximately the same design
was achieved. It is recognized that the average variance viewed as a
response surface over F is multimodal and convergence to a local opti-
mum point is possible. The grid'search, with output of the 20 best
points (or designs) effectively ensures that a global qptimum or near
optimum design ﬁas been found however.

The best designs found by the above searches may be obtained from
Table VIII. In this table N is the number of points in the design and
AV is the average variance given as a fraction of 02. Coordinates of

a representative point are given for each distinct permutation set in
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AVERAGE VARIANCE DESIGNS IN R
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AV

N
* X1 X *3
6 .63305 1 0.000 0.000 1.000
1 0.498 0.498 0.004
7 .49950 1 0.333 0.333 0.333
1 0.000 0.000 1.000
1 0.500 0.500 0.000
8 44026 2 0.333 0.333 0.333
1 0.000 0.000 1.000
1 0.500 0.500 0.000
9 .36602 1 0.000 0.000 1.000
1 0.500 0.500 0.000
1 0.490 0.490 0.020
10 .32407 1 0.333 0.333 0,333
1 0.000 0.000 1.000
2 0.500 0.500 0.000
11 .29852 2 0.333 0.333 0.333
1 0.000 0.000 1.000
2 0.500 0.500 0.000
12 .27660 1 0.000 0.000 1.000
2 0.500 0.500 0.000
1 0.472 0.472 0.056
13 .25637 1 0.333 0.333 0.333
1 0.000 0.000 0.000
3 0.500 0.500 0.000
14 .24180 2 0.333 0.333 0.333
1 0.000 0.000 1.000
3 0.500 0.500 0.000
15 .22743 2 0.000 0.000 1.000
2 0.500 0.500 0.000
1 0.484 0.484 0.032
16 .20745 1 0,333 0.333 0.333
2 0.000 0.000 1.000
3 0.500 0.500 0.500



TABLE VIII (Continued)
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AV

1 2 3
17 .19326 2 0.333 0.333 0.333
2 0.000 0.000 1.000
3 .0.500 0.500 0.000
18 .18276 2 0.000 0.000 1.000
3 0.500 0.500 0,000
1 0.452 0,452 0.096
19 .17116 1 0.333 0.333 0.333
2 0.000 0.000 1.000
4 0.500 0.500 0.000
20 .16204 2 0.333 0.333 0.333
2 0.000 0.000 1.000
4 0.500 0.500 0,000
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the design. These are listed under the headings Xq» x2 and x3. The

remaining points of the set are found by taking all permutations of X5
X, and Xqe The number, r, preceding each set of coordinates indicates
that r such permutation sets occur in the design. Therefore, the points

obtained from the permutations of X, X and x, should be replicated r

2 3
times,
A sample output from the lattice or grid search program is given

in Appendix D. A sample of some of the ''near optimum'" designs obtained

by use of this program are given in Appendix E.
Triangular Subregions of Interest

Suppose the region of interest is a triangular subregion, T, of
R. Let the triangular coordinates of the corners of the region T be

c, and c,. And let C be a 3.x 3

represented by the 3 x 1 vectors c 2 3

1’
matrix defined by

Cc = [cl, Cys c3] .
Then R is transformed into T by

t =Cx

where x is a 3 x 1 vector of coordinates in R and t is the correspond-
ing vector of coordinates in T. If T is a nondegenerate triangle the
matrix C is nonsingular. Therefore, a symmetric design in T can be
defined as the image, under the above linear transformation, of a. sym-
metric design in R. Since products of nonsingular linear transforma-
tions are again nonsingular and linear and since the average variance
is invariant under such transformations, optimum designs for T can be
found by applying the abowe transformations to all the points found

from Table VIII for the optimum N-point designs in R.
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Regions of Interest Contained in Regions of Operability

Suppose the region of interest is a triangular subregion, T, of
R and that it is possible to operate in a larger subregion containing T.
If T does not intersect the boundary of R it will often be possible to
approximate the region of operability by drawing a larger triangle
about T having the same centroid, shape and orientation in R as T. If
it is assumed that the region of operability Q is such a triangular
region, then T can be transformed into R with the result that Q is
transformed into a proportionately larger triangle containing R. - Such
a transformation is linear and nonsingular so that the search can be
conducted in the transformed space. The previous computer programs can
be used by simply extending the limits of the design factor space, F,
by a proportion, g, relating to the relative size of the triangles T
and Q.

The parameter § is defined as

o = LQ/LI
where LQ is the distance from the centroid of Q to the midpoint of one
of its sides and LT.is the distance from the common centroid to the
midpoint of the corresponding side of T.

The lattice search program was used with § = 1.5, 2.0, 2.5, 3.0
and 4.0 for N up to 14. The results obtainéd with a grid of increments
of g/10 in the design factors are given in Table IX. No follow=-up
search was made with the pattern search program.

The designs obtained from Table IX can be transformed to the

original subregions T and Q in the same manner as described in the

preceding section., Namely, by use of the coordinates of the cormners of



the region T to build the transformation matrix C. It is important
that all N points be determined by permutations of the coordinates

given in Table IX before the transformation is applied.
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AVERAGE VARIANCE DESIGNS IN Q

TABLE IX
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AV

8 ] Xy X, x3

1.5 .55444 0.533 0.533 -0.066
-0.167 -0.167 1.334

2.0 .52384 0.600 0.600 -0.200
-0.333 -0.333 1.667

2.5 .50713 0.600 0.600 -0.200
«0.500 -0.500 2.000

3.0 L7945 0.633 0.633 -0.266
-0.667 -0.667 2.333

4.0 44997 0.773 0.773 -0.446
-1.000 -1.000 3.000

1.5 ,40984 0,333 0.333 0.333
0.583 0.583 -0.166

-0.167 ~0.167 1.334

2.0 .38681 0.333 0.333 0.333
0.600 0.600 -0.200

-0.333 -0.333 1.667

2.5 .36680 0.333 0.333 0.333
0.667 0,667 -0,333

«0.500 -0.500 2.000

3.0 .35565 0.333 0.333 0.333
0.733 0.733 -0.466

-0.667 . -0.667 2.333

4,0 .33674 0.333 0.333 0.333
0.733 0.733 -0.466

-1.000 -1.000 3.000

1.5 .32737 0.333 0.333 0.333
0.583 0.583 -0.166

-0.167 -0.167 1.334

2.0 .30411 0.333 0.333 0.333
0.667 0.667 -0.333

-0.333 -0.333 1.667
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TABLE IX (Continued)

N 8] AV T xl x2 x3
8 2.5 .29349 2 0.333 0.333 0.333
1 0.667 0.667 -0.333

1 -0.500 -0.500 2.000

8 3.0 .28026 2 0.333 0.333 0.333
1 0.733 0.733 «0.466

1 ~0.667 -0.667 2,333

8 4.0 .26643 2 0.333 0.333 0.333
1 0.867 0.867 -0.734

1 -1.000 =1.000 3.000

9 1.5 .28085 3 0.333 0.333 0.333
1 0.583 0.583 -0.166

1 -0.167 -0.167 1.334

9 2.0 ,25178 3 0.333 0.333 0.333
1 0.667 0.667 ~0.333

1 -0.333 -0.333 1.667

9 2.5 .23990 3 0.333 0.333 0.333
1 0.750 0.750 -0,500

1 -0.500 -0.500 2.000

9 3.0 .23359 3 0.333 0.333 0.333
1 0.833 0.833 ~0.666

1 -0.667 -0.667 2.333

9 4.0 .21953 3 0.333 0.333 0.333
1 0.867 0.867 -0.734

1 -1.000 -1.000 3.000

10 1.5 24634 1 0.333 0.333 0.333
1 0.483 0.483 0.034

1 0.583 0.583 -0.166

1 -0.167 -0.167 1.334

10 2,0 .21818 4 0.333 0.333 0.333
1 0.667 0.667 -0.333

1 -0.333 -0.333 1.667

10 2.5 .20443 4 0.333 0.333 0.333
1 0.750 0.750 -0.500

1 -0.500 -0.500 2.000
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TABLE IX (Continued)
N
2] ,AV r X1 XZ x3
10 3.0 .19707 4 0.333 0.333 0.333
1 0.833 0.833 -0.666
1 -0.667 -0.667 2.333
10 . 4.0 .18810 4 0.333 0.333 .0.333
1 0.867 0.867 -0.734
1 -1.000 -1.000 3.000
11 1.5 .21767 2 0.333 0.333 0.333
1 0.533 0.533 ~-0.066
1 0.583 0.583 -0.166
1 -0.167 =0.167 1.334
11 2.0 .19469 2 0.333 0,333 0.333
1 0.467 0.467 0.066
1 0.667 0.667 ~0.333
1 -0.333 -0.333 1.667
11 2.5 .17973 5 0.333 0.333 0.333
1 0.750 0.750 -0.500
1 -0.500 -0.500 2.000
11 3.0 .17164 5 0.333 0.333 0.333
1 0.833 0.833 -0.666
1 -0.667 -0.667 2.333
11 4.0 . 16342 5 0.333 0.333 0.333
1 1.000 1.000 -1.000
1 -1.000 -1.000 3.000
12 1.5 .19428 3 0.333 0.333 0.333
2 0.583 0.583 -0.166
1 -0.167 -0.167 1.344
12 2.0 .17480 3 0.333 0.333 0.333
1 0.533 0.533 -0.066
1 0.667 0.667 -0.333
1 -0.333 -0.333 1.667
12 .25 .16154 6 0.333 0.333 0.333
1 0.750 0.750 -0.500
1 -0.500 -0.500 2.000
12 3.0 .15291 6 0.333 0.333 0.333
1 0.833 0.833 -0.666
1 -0,667 -0.667 2.333
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TABLE IX (Continued)
N
8 AV r X X, Xg
12 4.0 .14415 6 0.333 0.333 0.333
1 1.000 1.000 -1.000
1 -1.000 -1.000 3.000
13 1.5 .17669 4 0.333 0.333 0.333
2 0.583 0.583 -0.166
1 -0.167 -0.167 1.334
13 2.0 .15778 4 0.333 0.333 0.333
1 0.600 0.600 -0.200
1 0.667 0.667 -0.333
1 -0.333 -0.333 1.667
13 2.5 14721 4 0.333 0.333 0.333
1 0,600 0.600 -0.200
1 0.750 0.750 -0.500
1 -0.500 -0.500 2.000
13 3.0 .13854 7 0.333 0.333 0.333
1 0.833 0.833 ~0.666
1 -0.667 -0.667 2.333
13 4.0 .12936 7 0.333 0.333 0.333
1 1.000 1.000 ~1.000
1 -1.000 -1.000 3.000
14 1.5 .16350 5 0.333 0.333 0.333
2 0.583 0.583 -0.166
1 -0.167 -0.167 1.334
14 2.0 .14352 5 0,333 0.333 0.333
2 0.667 0.667 -0.333
1 -0.333 -0.333 1.667
14 2.5 . 13446 5 0.333 0.333 0.333
1 0.667 0.667 -0.333
1 0.750 0.750 -0,500
1 -0.500 -0.500 2.000
14 3.0 L12717 8 0.333 0.333 0.333
1 0.833 0.833 -0.666
1 -0.667 -0.667 2.333
14 4.0 .11765 8 0.333 0.333 0.333
: 1 1,000 1.000 -1.000
1 -1.000 -1.000 3.000




CHAPTER VI

EFFECT ON THE AVERAGE VARIANCE OF INCLUDING TOO

MANY TERMS IN THE MODEL

Another aspect of the problem of choosing a symmetric design, or

any design for that matter, is the necessity of making a prior judgment

as to the appropriate model. Even when polynomial models are assumed,

there remains the problem of deciding on the degree or order of the

polynomial.
Suppose two models

correct model., Let the

by
71
and
)
where
B1
and
B, z'
B,/ ~ \z'
C
C

are under consideration, one of which is the

predicted responses .at the point u be denoted

— 1
U B
—_ ] - 1 -
UBy + Uo8,
= (2'.2 )'1 z' Y
121 1
-1
1] 1
z, z' 2, z' Y
, ¥ . 1 ]
z, z' 2, 2' Y
1
€12 Z'4¥
1
Ca2 Z',Y
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were obtained from the respective models

v
l

= ZlBl + e

and

Y lel + ZZB2 + e .

If the second model is correct but the first is chosen then the
error incurred involves both bias and variance. Draper and Lawrence,
(4) and (5), have considered this problem. On the other hand suppose
the first model above is correct, that is, 82 = 0, but that the second
is chosen, The error in this case can be measured in terms of average
variances as will be shown below.

Consider the squared difference:

2 Vo 4 D x 12
[u', By - B +U'B,]

By = B Uy By - By +B,UULE,

+28',U,0' (B, - By)

2 . R 5 _. A 1 ' S At 1
trace [(B - BBy - By)" UpU'y + B,B" 505U
. a - AR '
+2(8, - BB',U,U' ] .
Now it is desired to find the expected value of (?2 - 91)2, de-

noted by E(?2 - 91)2, over the population of ?23 and,§1s at the point

u. To accomplish this it is necessary to find:
E@ - BBy - B
a At
E@,E",)

and

ERy -~ B1)8'5 -
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Lemma 6-1. ;E E(B1 - Bl)(B1 - Bl)' =Cy - (z'lzl) 1.

Proof of Lemma 6-1. From the definitions given above one finds

3 -f = ' v ] -1 ' ]
By - By =lcpy2'y +cpp2ty - (2tyz) " 2]y
so that

~~ . A - . . -
E@y - By) = [€y2"12) +C,2',2, - 1] 8
and using the fact that

-1
= - 1 !
Cig = 7C11(2'12,)(2"y2))

one has
~ -A - . _ . . =1' )
E@y - By = [ (2"y2) - 2'y2,(2")2)) "2%,2) - 1] B
= [c,,C]1 - 1] B
11%11 1
=¢Bl
=¢. o
Therefore,
8 -~ R = 1 VoL ot =l 4
By - By = [Cpqp2'y +CpZpm(2'y2)) 2] e
so that
~ EG@ -.6 Y(B, - B.)' = [C..2'. +C.z'. - (z'.2,) tz'.] -
2 BB T PGB By 1121 T Cp2 7y 121 1

1 [ 1 -1, !
[eyy2'y +Cpp2'y - @'y2)) 72" ]

Expanding this expression and using the well known identies for in-
verses of partitioned matrices the above result is obtained.

__]; a At =
Lemma 6-2. 02 E(B,B 2) Cyy

Proof of Lemma 6=2. Now from the above definitions

A = ' '
By = [Cy2'y +Cpp2'y] Y
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so that
Y = i 1
E(B,) [0212 121 * CypZ 221] By
and using the fact that

-1
= ' 1
Cop = =Cyp (27,27)(2",24)

one finds
BB = [0y (2'52) = 252D B
- g.
Therefore
B, = [Cyy2') +Cpp2')] e
so that

1 1 = l v 9!
2 E@,B')) = [0512") + Cpp2'y]0[65 2" +0pp2'y 1

Expansion of this expression results in the stated conclusion.

_i, S . A Yal! =
Lemma 6-3. 02 E(s1 Bl)B 9 C12

Proof of Lemma 6-3. From the two lemmas above it is seen that

1 A - AN 1 v ' -1, .
2 E(Bl BI)B 2 [Cllz 1 + C12Z 2 (Z 121) Z 1] [21C12 + Z C22]
o

Expansion of this expression results in the stated conclusion.

The above lemmas result in the theorem stated below.
Theorem 6-4. If the appropriate model is
Y=ZBl+e

but the model

Y=128 +128, +e

is assumed, then the variances of the predicted responses
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at the point u, denoted respectively by Ozvl(u) and
2
o Vz(u) are such that

Ozvz(u) > ozyl(u) :

Proof of Theorem 6-4. From Lemmas 6-1, 6-2 and 6-3 one finds

S e 2.zt - '
5 E (y2 yl) trace (UlU 1 [Cll (2“1%1) 1+ U2U 2C22 + 20,0 lclz)

H

1] Tt 1 - 1
U, U [Cpq - (27429 Cll U
21 Co2 /1 Uz

i}

U

2

/
1 [} ] 1 ] -1
(U, U [Cyq Cpp|f Uy} (U0 ) [(2"2)) ~ 84T,
Cy1 €90 B ¢

vz(u) - vl(u).

. ~ A 2 .
+ Then since —% E (y2 - yl) is clearly nonnegative one has
o)

vz(u) > vl(u)

and the theorem is proved.

The corollary stated below follows immediately.

Corollary 6~5. For the assumptions in Theorem 6-4 the

average variances AV2 and AV1 corresponding to the two

models are such that:

AV2,> AV

1

over any specified region of interest and for any -

weighting density p(u).
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One might refer to an error of the type above, i.e., including
too many terms in the chosen model, as an error of the first kin&, and
to the opposite type of error, i.e., including too few terms in the
modél, as an error of the second kind. The corollary above points out
the existence of errors of the first kind, however, one would guess
that this type error would usually be far less serious than an error

of the second kind.



CHAPTER VII
SUMMARY AND EXTENSIONS

The class of experimental designs defined in this thesis are appro-
priate for use in three component mixture:experiménts. This class of
designs, called symmetric designs, includes as subclasses the simplex~
lattice and simplex~centroid designs defined by Sheffe'.

When a polynomial model of degree one or two is assumed and N ex-
perimental points are to be run, designs can be found from tables pre-
sented in this thesis whichvare optimal in the sense of one or the
other of two criteria. One criterion used is that of minimum general-
ized variance of the é's in the model. The other criterion designates
as optimal those designs for;which the average variance of the pre- |
dicted response is a minimum. In this case the average is taken over
a region in which the experimenter is assumed to have qual interest in
the response'at all points of the region;

For the case of generalized variance the optimum designs,for each
N were found to have the same configuration as the simplex designs
mentioned above. However, the number of replicates to be éssigned to
the points on the simplex vary with N. Rules for the allocation of
replicates are giveﬁ on page 43 of Chapter IV.

With the criterion of average variance, designs were obtained for
two cases relating to regions of‘interest aﬁd regions of operability.

In the first case it is assumed that the regions of interest and

S 72
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operability coincide and are some triangular subregion of the region.of
all possible mixtures. Optimum designs for such cases may be obtained
from Table VIII for N up to 20. 1In the second case it is assumed that
the region of interest is a triangular subregion contained in another
triangular subregion termed the region of operability. .Designs for
this case may be obtained from Table IX for N up to l4.

The principal idea behind the method of search for optimum designs
consists of regarding the criterion measure, i.e., generalized variance,
of(average variance, as a response over a factor space called the de-
sign factor space. Rather formal definitions of symmetric designs and
design factors are given in Chapter II where it is also shown that a
one-to-one correspondence exists between the class of symmetric design
and the design factor space.

In Chaptef III it is shown that the criterion measures are func=
tions of the design factors. Also in this chapter most of the mathe-
matical mechanisms needed for implementing the search are derived.

Compufer usage and results are presented for the case of optimum
generalized variance and average variance designs in Chapters IV and V
respectively.

A development relating to the effect of the choice of the model on

the average variance is presented in Chapter VI.
Extensions to More Than Three Components

By use of the concept of permutation sets it is evident how sym-
metric designs could be defined for mixtures of q components. The
number of different types of permhtation sets is given by the number

of nonnegative integer solutions to
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with

If a solution is denoted by the ordered set of integers

(X!x) ""’x)
1 2 q

then the permutation set corresponding to this solution has

q.
S

10 Xg e Xy
elements.

For q = 3, for example, there are three solutions to the above
equation: (0, 0, 3), (0, 1, 2) and (1, 1, 1). The corresponding types
of permutation sets have 1, 3 and 6 points respectively.

For q.= 4 there are the five solutions: (0, 0, 0, 4), (0, 0, 1,
3), (0, 0, 2, 2), (0, 1, 1, 2) and (1, 1, 1, 1) with the corresponding
permutation sets having 1, 4, 6, 12 and 24 points.

The concept of design factors can also be extended to the g-
component case. Let D be a symmetric design for q components, then D
is the adjunction of a number of permutation sets. Each such set can
be represented by a number of design factors. The number of design
factors required to define a given permutation set may be deduced as

follows. Let (xl, X .oy xq) be the solution to the above mentioned

23
equation which corresponds to the type permutation set in que;tion.
Let k be the number of nonzero integers in (xl,.xz, ...,,xq). Then the
number of design factors required to define the permutation set is

k- 1.

For example, with q = 3, the number of factors required to define



a 6-point set with corresponding solution (1, 1, 1) is 3 - 1 = 2 and

the number of factors for a l?point set with solution (0, 0, 3) is

With q = 4, the number of factors required to define a 12-point
set with solution, (0, 1, 1, 2), is 3 = 1 = 2.' And with q = 5, the
number of factors required to define a 10-point set corresponding to
the solution, (0, 0, 0, 1, 4), is 2 - 1 =1,

To pursue the searéh for optimum designs for gq-component mixtures
it would be ﬁecessary to find the functional relationship between the
criterion measure, e.g., average variance, and the design factors as
was done for the case of three components. The devélopments in

Chapters IV and V and the search programs would then have to be mod-

ified to incorporate these changes. Similarly such modifications would

be required if the three-component problem were extended to the case of

cubic or higher order models.
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LATTICE SEARCH PROGRAM FOR OPTIMUM GENFRALIZED

VARTANCE DESIGNS

1/GENERALIZED VWARIANCE OF SYMMETRIC DESIGNS

FOR MIXTURES -OF THREFE COMPONENTS

INPUT .
CARD 1 =~ ENTERED FOR EACH COMPUTER RUN
' D3 = SIZE INCREMENTS IN F1

D6 = SIZE TNCREMENTS IN F312
LOOK = NOe. OF DESIGNS TO QUTPUT
FORMAT(2F1040512)

CARD 2 - ONE FOR FACH PROBLEM
MG = NO. CENTER POINTS
NT = NO. 3-POINT SETS
NZ = NO, 6-POINT SETS

FORMAT (313)

78

DIMENSION K{20)sMAX(20)sNC(20)sC1(160)sD1(160)sF1(160)
DIMENSION Z22(2000)+,23(2000)5C2(2000)sD2(2000)sF2(2000)
DIMENSION ADET(408)+21(160)

DIMENSION A(40520)

SET UP CsD AND F ARRAYS
READ(55900) D3sD6,LOQOK
FORMAT(2F10,0512)
IF(D3.LT«0.01) D3=,01
IF(D64L.Te0s02) D6E=0,02
WRITE(6s850) D3sD6

FORMAT(4H1D3=sF6. 3,1X,3H06—,F6 3//)

R2=SQRT(2.)
R3=SQRT(3.)
R6=SQRT (6. )

NCNT1=2

NCNT2=1

LEAST=0

MOST=C

Cl(1)=045
D1(1)=R3/12,0
F1(1)=0404166667
21(1)=1.0

X=-0. 5—03
UlX=1,0-,001

X=X+D3

IF{X+GE.U1X) GO TO 700
NCNT2=NCNT2+1
C1(NCNT2)=X#%2/2.0
D1(NCNT2)=R3#X¥%3/12.0
FL1INCNT2)=X%#4/2440
Z1(NCNT2) =X

GO TO 800
WRITE(65801)NCNT2

FORMAT(7H0NCNT2—,IlO/QX,1HX,6X’7X91HC,14X,1HD,14X,lHF)

DO 802 J=1sNCNT2

WRITE(6,803) ZI(J),CI(J)’DI(J)’FI(J)



803

600

500

501
502
503
504

40
50

51

52

53
54

55
56

57

FORMAT(1X»sF10e295X33E15,.,8)
==140/R2-D6
B=—=140/R2+.0001

X=X+D6

IF{XeGTe040) X=0,0

Y=0.0-D6

X2=X%¥%#2

UyY=-3,0%#X

BB=UY~.ND01

Y=Y+D6

IF{YeCGTW4UY) Y=UY
MOST=MOST+1
C2(MOST)=(Y®#2+3,%X2)/6.0
D2(MOST)=(X2=Y*#2)%X /(44 #RE)
F2(MOST)=(C2(MOST) ) #%2/1240
22 (MOST)=X

Z3(MOST)=Y -
IF(XeLE«B) LEAST=LFAST+1
IF(Yal.TeBB) GO TO 500
IF(XelLTee0) GO TO 600

WRITE(65s501)LEASTSMOST

FORMAT(8HOLEAST =5110s5Xs6HMOST =»110/9Xs 1HX 99X s 1HY

16Xs7X3s1HC»14Xs1HD» 14X s 1HF )

DO 502 J=1sMOST
WRITE(62503)22(J)s23(J)sC2(J)sD2(J)sF2(J)
FORMAT(1X3s2F10e295X33F15.8)

WRITE(6+504) ‘

FORMAT(1H1)

SET UP PARAMETERS FOR THE GIVFN CLASS OF DESIGNS
READ(5550) NGsNT»NZ

FORMAT(313)

DO 51 IT1=1sLO0OK

ADET(11)=040

NDCNT=0

NVAR=NT+NZ : _
NFAC=NT+2%NZ , L
N=NG+3#NT+6%NZ -
XN=N

DO 52 J=1sNVAR
NC(J)=2 _
IF(NT.EQ.0) GO TO 54
DO 53 J=1sNT

MAX (J)=NCNT?
IF(NZ.EQ.0) GO TO 56
J1=NT+1

DO 55 J=J1sNVAR

MAX (J)=MOST
IF(NT.GT.Q) GO TO 57
MAX (1)=LEAST

GO TO 69

IFINZ.GT+0) GO TO 58
IFINT.LT«2) GO TO 58
MAX(1)=NCNT1

NC(2)=1

N
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100

105
110

115
120

130
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GO TO 60

J1=NT+1

NClJ1)=1

WRITE(6961) NGaNTsNZs(JsJ=1sNFAC)

FORMAT (43HO1/GENERALIZED VARIANCE 'OF DESIGNS FROM THE»
19H CLASS S(93135s1H)/4Xs9H1/GEN VAR, 19,9111)
ITERATIONS

I1=1

K{I)=0

K(I+1)y=K(I)

K(I)=K(I)+1

I=1+1 .
IF(I«GTeNVAR) GO TO 100
NN=NCI(T)

GO TO (1s2)s NN

I=1-1

IF({I+EQe0) GO TO 7
IF(NC(I)«EQs2) GO TO 6
IF(TI.LFNT) GO TO 6

MAX(TI)=LEAST

IF(K(1)eLEe2) MAX(1)=MOST
IF(K({T)aLTeMAX(I)Y) GO TO 2

GO TO 5

OUTPUT

DO 8 1I1=1sL0OOK

WRITE(6s9) ADETITT) s (A(ITsJ)sJ=1sNFACQC)
FORMAT(1XsE1548510F11.8)
WRITE(6s10)LO0OKsNDCNT
FORMAT(5HOBESTs1343H OF.110.8H DESIGNS/ /)
GO TO 40

CALCULATE 1/GENERALIZED VARIANCE
C=0.0

D=0.0

F=0.0 :

NDCNT= NDCNT+1

IFINT.EQeC) GO TO 110

DO 105 J=1sNT

L=K{(J)

C=C+C1(L)

D=D+D1(L)

F=F+F1(L)

IF(NZ<EQ.0) GO TO 120

J1=NT+1 : ’

DO 115 J=J1sNVAR

L=K{J)

C=C+C2(L)

D=D+D2(L)

F=F+F2(L)

DET=4eNX¥ (20 O XNHF—=CHED )% (CHF-D##D)##D
LL=1 '

DO 130 II1=1,L00K
IF(ADET(IT)4LTADETI(LL)) LL=1T
CONTINUE .
IF(DETeLE. ADET(LL)) GO TO 140



131
135

136
140

ADET(LL)=DET
IF(NT.FQ.0) GO TO 135
DO 131 I1I=1,NT
L=K(II)
A(LLSTI)=21(L)
IF(NZ+FQeD) GO TO 140
J1=NT+1

J2=NT-1

DO 136 I1I1=J1sNVAR
J2=J2+2

J3=J2+1

L=K(IT1)
AlLLsJ2)=22(L)
AlLLsJ3)=23(L)

GO TO 5

END
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LATTICE SEARCH PROGRAM FOR OPTIMUM AVERAGF
VARIANCE DESIGNS '

AVERAGE VARTANCE OF SYMETRIC DESIGNS
FOR MIXTURFES OF THREF COMPONENTS
INPUT
CARD 1 =~ ENTERED FOR FACH COMPUTER RUN
D3 SIZE INCREMENTS IN F1
D6 SIZFE INCREMENTS IN F312.
THETA RATIO OF o To R
LOOK NOe« OF DESIGNS OF EACH TYPE
(D AND D¥*¥) TO OUTPUT
FORMAT(3F1N.0,512)
CARD 2 - ONE FOR EACH PRORLEM
NG = NO. CENTER POINTS
NT = NO« 3=-POINT SETS
NZ NDo 6-POINT SETS
FORMAT(313) '
DIMENSION 22(200U0)23(2000),C2(2000)5sD2(2000)sF2(2000)
DIMENSION K(20)sMAX(20)sNC(20)sC1(160)sD1(160)sF1(160)
DIMENSION A(40+20)3ZF(20)sCOSIN(20) sAA(LD+20)sAVAR(4Q)
DIMENSION ADET(40),21(160)
SET UP CsD AND F ARRAYS
READ(55900) D3sD6sTHETALLOOK
FORMAT(3F10.0512)
IF(THETASLE«Oe) THETA=1,
IF(D3.LT«0s01) D3=,01
IF(D6.LTe0e0l2) D6=0,02
D3=D3#*#THETA
D6=D6*THETA
WRITE(6+850) D3sD6sTHFTA :
FORMAT(4HID3=9F6e331X3s3HNAE=3F6e391Xs6HTHETA=3F643//)
R2=SQRT(24)
R3=SQRT(3,)
R6=SQRT (64)
IF(LODK «GTe40) LOOK=40
NCNT1=2
NCNT2=1
LEAST=0
MOST=0
Cl(1)=THETA%%2/2.
DI1(1)=R3*THETA*%3/12.
F1(1)=THETA#®¥4 /24,
Z1(1)=THETA
X==0e5#THETA-D3
UIX=THETA-.001
X=X+D3 :
JF{XeGEWLULIX) GO TO 730
NCNT2=MCNT2+1
ClINCNT2)=X#%2 /20
D1I(NCNT2)=R3#X%##3/12.0
F1INCNT2)=X#%4/244,0

1
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ZYIINCNT2)=X
GO TO 800
700 WRITE(6s801)NCNT2 _
801 FORMAT(T7HONCNT2=9T10/9Xs1HX 96X s TXs1HCs14Xs1HDs 14X s1HF)
DO 802 J=1sNCNT2 :
802 WRITE(65803) Z1(J)sCH(J)Y«DI(J)sFI(I)
803 FORMAT(1XsF1Ca2s5X,2F15,8)
X==THFTA/R2-D6
R==THETA/R2+.,001
600 X=X+D6
IF(XeGTa0el) X=0a0
Y=000—D6
X2=X¥%*2
UY=—-3,0%X
BB=UY-.0001
500 Y=Y+D6
IF(Y«GTUY) Y=UY
MOST=NMOST+1
C2(MOST)=(Y*%#2+34%X2)/640
D2(MOST)=(X2=Y%#2 ) %X/ (44 #¥R6)
F2(MOST)=(C2(MOST Y1 #%#2/12.0
22(MOST) =Y
Z3(MOST)=X
IF(XeLEeR) LEAST=LEAST+1
IF(Y.LT.BB) GO TO 500
IF(X«eLTe0s0) GO TO 600
WRITE(6s501)LEAST sMOST :
501 FORMAT(BHCLEAST =911045Xs6HMOST =5110/9Xs1HX 49X s1HY
16X97Xs1HC 914Xy 1HD 14X 5 1HF)
DO 502 J=1sMOST
502 WRITF(6:503)122(J)973(J)sC2(J)sD2(J)sF2(J)
503 FORMAT(1Xs2F10e295X93F15,8)
WRITE(6+504) '
504 FORMAT(1H1)
SET UP PARAMETERS FOR THE. GIVEN CLASS OF DESIGNS
40 READ(54502) NGsNTsNZ
50 FORMAT(313)
DO 51 II=1,L00K
AVAR(I1)=99999999,
51 ADET(11)=99999999, .
NDCNT=0
MDCNT=0
NVAR=NT+NZ
NFAC=NT+2%NZ
N=NG+3%NT+6¥*NZ

XN=N
DO 52 J=1»NVAR
52 NC(J)=2

IF(NT<EQeD) GO TO 54
DO 53 J=1sNT

53 MAX{J)=NCNT2

54 IF(NZ.EQ.0) GO TQ 56
J1=NT+1 '
DQ 55 J=J1sNVAR
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MAX (J)=MOST
IF(NT.GT.C) GO TO 57
MAX (1)=LFAST
GO TO 60
IF(NZ.GT.0) GO TO 58

IF(NT.LT.2) GO TO 58

MAX(1)=NCNT1
NC(2)=1

GO TO 60
J1=NT+1
NC(J1)=1

WRITE(6961) NGsNTsNZs(JsJ=1sNFAC) )
AVERAGE VARTANCE OF DESIGMNS FROM THEs
19H CLASS S(931351IH)/4Xs9H AVG VAR»19+9111) '

FORMAT (43HO

ITERATIONS
I=1
K{I)=0
K(I+1)=K(I)
KIY=K{I1+1
I=1+1

CIF(I14GT.NVAR) GO TO 100

NN=NC(I)

GO TO (1s2)s NN
I=1-1

IF(I+EQeQ) GO TO 7

IF(NC(I)4EQe2) GO TO 6

IF(I«LLE«NT) GO TO 6
MAX(T)=LEAST

IF(K(1)eLEe2) MAX(I)=MOST
IF(K(T)eLTeMAX(I)) GO TO 2

GO TO 5
OUTPUT
DO 8 TI=1-L00K

WRITE(659) ADET(II)s(A(IIsJ)sJ=14NFAC)
FORMAT(1XsE1548510F11.8) '
WRITE(6510)LOOKsNDCNT
FORMAT(5HOBRESTsI1353H OF,110s8H DESIGNS//)

DO 11 II=1,L00K

WRITE(6s9) AVAR(II)s (AA(II
WRITE(6510) LOOKsMDCNT

GO TO 40

CALCULATF AVERAGE VARIANCE

C=06,0 R
D=0.0

. F=0.,0
NDCNT=NDCNT+1

" IF(NT.EQ.0Q) GO TO 110

DO 105 J=1»NT
L=K(J)
C=C+C1(L)
D=D+D1(L)
F=F+F1(L)

IF(NZ.EQ.0) GO TO 120

J1=NT+1

9J) s J=1sNFAC)
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140

141
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130

145
150

160

DO 115 J=J1,sNVAR

L=K(J)

C=C+C2(L)

D=D+D2(L)

F=F+F2 (L)

FMCS=2 4 #XN¥F=-C¥#%2

CFMD=C*F-D¥%2

FMCS=ABS(FMCS)

CFMD=ABS(CFMD)
IF(FMrS.LT«0.0CC01) GO TO 5
IF(CFMD.LT«0.,00001) GO TO 5
DET=(T720e#F=30e%*C+XN)/ (3604 *#FMCS)
DET=DET+ (30 %¥F—44#R3%D+C) /(360 ¢*CFMD)
IF(NT.FQ.C) GO TO 135 ’
DO 131 TT1=1,NT

L=K(TI1) -
ZF(I11)=71(L) _ ~
IF(NZ.EQe0) GO TO 140

J1=NT+1

J2=NT-1

DO 136 TI1=J1,NVAR

J2=J2+2

J3=J2+1

L=K(I1)

ZF(J2)y=72(L)

ZF(J3)=23(L)

SZF=0,

DO 141 IT=1,NFAC
SZF=SZF+ZF(11)%%2

SZF=SART(SZF)

DO 142 11=1,NFAC
COSIN(II)=ZF(I1)/S7F
G4=XN/(360¢%*FMCS)+C/ (3604 *CFMD)
G3=—R3%D/(120.%CFMD)
G2=F/(12%CFMD)~C/ (12 +#FMCS)
LL=1

DO 130 I1=1,L00K
IF(ADET(IT)eGTeADET(LL)) LL=TII
CONTINUE

IF(DFT«GESADET(LLY) GO TO 150
ADET(LL)=DET /

DO 145 T1=1,NFAC
A(LLsTIY)=ZF(TI1)
DSCMNT=9,%#G3%%#2-32 ,#G2¥G4
IF(DSCMNTeLE.O+) GO TO 5
DSCMNT=SQRT (DSCMNT) ‘

RHO= (-3 %G3+DSCMNT) /(B %G4)

‘TF(RHO.LE«.1ls) GO TO 5
-RSTAR=SZF/RHO

DO 160 IT=1sNFAC .
ZF{IT)=RSTAR¥COSINI(II)
C=0a ’

D=0

F=0.
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165

170

166
180

190

200

CIFINT.EQ.0) GO TO 17C

DO 165 T1=1,4NT

C=C+ZF(I11)#*x%2 -

D=D+ZF(11)%%3

F=F+ZF(11)%*%4 -

C=C/2. '

D=D¥R3/12

F=F /24 _

IF(NZ.EQ.0) GO TO 180

J1=NT+1

DO 166 I11=J1sNFACs2
C=CH(ZF(TT)¥X243,%¥ZF(1T14+1)1%%2) /6.
D=D+{(ZF (I1+1)#%¥2=2F (11 )#%2)%¥2F(11+1)/ (4 *%R6)
F= F+(ZF(II)**2+3.*7F(II+1)**2)**2/432.
FMCS=2 4 ¥ XN¥F-C¥##2

CFMD=C¥F-D##%2

MDCNT=MDCNT+1 ,
VAR=(T720¢#¥F=30¢*¥C+XN)/ (360+%FMCS)
VAR=VAR+(30e¥*F—4. *R3*D+C)/(360.*CFMD).'
LL=1 ¢
DO 190 I1= l,LOOK

IF(AVAR(IT)Y.GTo AVAR(LL)) LL=11
CONTINUE

IF(VAR.GE. AVAR(LL)) GO TO 5
AVAR(I.LY=VAR -

DO 200 1I=14,NFAC

AA(LLSIT)=2F(I1)

GO TO 5

END
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6

100

101

37
50

89

PATTERN SEARCH PROGRAM FOR OPTIMUM AVERAGF
VARTANCE DESIGNS

INPUT

CARD 1
NG = NO. CENTFR POINTS
NT = ND, 3-POINT SETS
NZ = NOe 6-POINT SETS
MCALC = MAX. NOe ITERATIONS
TOL = SMALLEST CHANGE IN FACTORS
THETA = RATIO OF Q@ TO R
FORMAT(3I3s1Xs1552F100)

CARD 2
D(I) = THF T+2S (NT+2NZ) STEP SIZES
FORMAT(RF10.0)

CARD 3

B(I) = THE T+2S (NT+2NZ) STARTING VALUES
FORMAT (5F1540)- .

DIMENSION B(2510)5T(10510)sD(10)sX(10)

R2=SQRT(2.0)

R3=SQRT(3.0)

R6=SQRT (640)

READ(552) NGsNTsNZsMCALCsTOL s THETA

FORMAT(31351Xs1552F1040) ' ;

K=NT+2#NZ S

NVAR=NT+NZ

READ(553) (D(I1)sI=1,K)

FORMAT(8F10,0)

IF(D(1)+EQe0.0)STOP

DO 4 1=2,K

IF(D(I)eFQe040)D(I)=D(1)

CONTINUE

READ(555) (B(151)5I=15sK)

FORMAT(5F15,0) S

WRITE(656)NGsNTsNZsMCALC» TOL s THETAS (I51=1,K)

FORMAT(43H1SEARCH FOR MIN AVG VAR DESIGN IN THE CLASS

13H S(937251H)/1Xs14HMAX NO TRIALS=sI110/1Xs SHSMALLEST,
210H INTERVAL=9F104R/1Xs6HTHETA=sF10e4/5XsTHAVG VAR 4X
310(I6+5X))

I[CALC=0

XU=THFTA -
XL==045%#THETA
YL=THETA*(-143)/R2
XN=NG+3%#NT+6*NZ
ESTABLISH PATTERN
DO 101 1I=1sK
T(1sI)=8B(1s1)
X{I)1=B(1,I)

CALL AVAR(NTSNZsNVARSICALCS>R2sR3sR69XUsXLsYLsXs VAR,
IMCALC s XN)

VARM=VAR

DO 110 I=1.K



C

33

102

34

103

109
110

111

112

500

501

35

53

502

36

503
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DO 109 J=1»s2

JJd=J+1

DO 1C2 L=1sK

IF{I.£EQ.1)GO TO 33

T(IsL)=T(I-1sL)

X(LY=T(IsL) . )
IF(LeFQoel) X(L)ST(TIoL)+(=1s0)##JJ*D(L)
CONTINUE

CALL AVAR(NT9NZ’NVAR9ICALCst9R39R69XU9XL’YLoX9VAR9
IMCALCsXN)

IF(ICALC. (T.MCALC)AGO TO0 1

IF(VARLCGF VARM)IGO TO 109

VARM=VAR

DO 103 L=1sK

T(IsL)=X(L)

GO TO 110

CONTINUE

CONTINUE

ICHK=0

DO 111 I=1,K

B(2sI)=T(KsI)

DIF=ARSI(B(1lsI)-B(2,1))
IF(DIFelLTe0e000C0002)YICHK=ICHK+1
CONTINUE ‘

IF(ICHK.LTsK)GO TO 500

DO 112 I=1sK

D(IN=D(1)/2.0

IF(D(IYeLTTOLIGO TO 1

CONTINUE

GO TO 100

PATTERN MOVES

DO 501 I=1sK

T(ls11=2.0%¥B(2s1)=-B(1,1)

XCI)=T(1s1)

CALL AVAR(NT;NZ;NVAR;I(ALC;RZ9R3’R69XU’XL9YLOX9VAR9
IMCALC s XN)

IF(ICALC.GTMCALC) GO TO 1

VAR1=VAR

DO 51C I=1sK

DO 509 J= 1!2

JJ=J+1

DO 5G2 L=1sK

IF(TeEQel) GO TO 53

T(IsLY=T(I=1sL)

X(L)=T(IsL)

IF(LeFQs TIX(LY=T(IsL)+(=T0 0)**JJ*D(L)
CONTINUFE

CALL AVAR(NT;NZ;NVAR9ICALC9R29R39R69XU9XL9YL,X9VAR9
IMCALCHXN)

IF(ICALC.GT.MCALC)Y GO TO 1
IF(VAR.GF«VAR1)GO TO 509

VAR1=VAR

DO 503 L=1sK

T(IsL)=X(L)



GO TO 510

509 CONTINUE

510 CONTINUE

) IF(VAR1+GT«VARM)GO TO 512
VARM=VAR1
DO 511 I=1,K

CBllsI)=B(251)

511 B(2s1)=T(KsI)
GO TO 500

512 DO 513 I=1sK
B(lsI)=B(2s1)
T(1sI)=B(1s1)
D(I)=D(1)/2.,0
IF(D(T)«LT«TOL)GO TO 1

513 CONTINUE
GO TC 50
END

SUBROUTINE AVAR(NTsNZ+sNVARSICALGCIRZsR3sRE s XUsXL sYL X
1VARsMCALC s XN)
DIMENSION X(10)
700 ICALC=ICALC+1 )
K=NT+2%¥NZ
IF(ICALCoeGT4MCALCYIGO TO 80
IF(NT.EQ.U) GO TO 705
DO 701 I=1sNT
IF(X{1)eGT«XU)GO TO 800
IF(X(1)eLTeXL) GO TO 800
701 CONTINUE :
705 IF(NZ.EQ.C) GO TO 710
J1=NT+1 '
J2=NT=1 :
DO 706 1=J1,NVAR
J2=J2+42
J3=J2+1
IF(X(J3)eLToYL)GO TO 800
IF(X(J3)eGTeCWe0) GO TO 80N
IF(X(J2)eLTe0a0) GO TO 8ND
YU==3.,0#X(J3)
IF(X(J2)eGTW4YUIGO . TO 800
706 CONMTINUE
710 CC=0.0
DD=0.0
FF=0.0
. IF(NT.EQ.OQ) GO TO 720
DO 715 I=1sNT
CC=CC+X(1)#¥%#2/2.0
DD=DD+R3I*X () **3/12,0
715 FF=FF+X(1)#%#4/24,0
720 IF(NZJEQ.D) GO TO 735
J1=NT+1
J2=NT~1



125
735

800
801

802

92

DO 725 I=J1sNVAR

J2=J2+2

J3=J2+1
CC=CCH{X(J2)#%243 0% X(J3)%¥%#2) /640
DD=DD+ (X (J3)##2-X(J2)1%#%*¥2)%X(J3) /(4. 0%R6)
FF=FF+(X(J2)%#2+30#X(J3)*%*2)%%#2/432.0
FMCS=2e O#XN*¥FF~CC¥*%2
IF(FMrS.LT«0,0000C01) GO TO 800
CFMD=rCC*FF~DD3#*2

IF(CFMDsLT«0.0000001)GO TO 800

VAR= (720 O¥FF=30,0%CC+XN)/ (3604 0#FMCS)
VARSVAR+ (30 ¢ QO¥FF =4 ,0%R3%NN+CC) /(360 0% CFMD)
GO TO 801

VAR=99999999,0 :

WRITE(6+s7)VARs (X(I)sI=1,sK)
FORMAT(1XsE1548510F1148)

RETURN

END
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SAMPLE OUTPUT FROM LATTICE SEARCH PROGRAM FOR

OPTIMUM AVERAGE VARIANCE DESIGNS

The output below was obtained from a search in the design factor
space, F = FiFBlZ’ corresponding to 12-point designs in the subclass
S[0, 2, 1]. The search was conducted on a grid of increments of 0.1 in
the design factors.

Output for each design consists of the average variance, AV, and

the corresponding point in F:
[y » ¥p» O30 v320 1

The first five points below are from B(F), that is from the region
of F corresponding to designs having some points on the boundary of R.
These five were the best of 5546 such points investigated, The last
five points correspond to designs with no points on the boundary of R.

These were the best of 53 such points found in the 5546 cases consider-

ed.

AV N 2 Y31 Y32
0.27663 1.000 -0.400 . 0.000 ~0.707
0.27685 1.000 -0.400 0.100 -0.707
0.27755 1.000 -0.400 0.200 -0.707
0.27778 1.000 ~0.,500 0.000 -0.707
0.27793 1.000 0,300 0.000 -0.707
0.85705 0.798 0.898 1.097  ~0.705
0.95025 1 0.885 0.885 1.180 -0.695
1.04110 0.778 0.778 0.972 © -0.687
1.09145 0.767 0.863 1.151 -0.678

1.13056 0,692 0.890 1.285 -0.699
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SOME "NEAR OPTIMUM" AVERAGE VARIANCE DESIGNS IN R

TABLE X

SELECTED FROM LATTICE PROGRAM OUTPUT

96

AV

1 2 3
6 0.68995 . 1 0,500 0.500 0.000
1 0.033 0.033 0.934

7 0.53116 1 0.333 0.333 0.333
1 0.500 0.500 0,000

1 0.033 0.033 0.934
8 0.46835 2 0.333 0,333 0.333
1 0.500 0.500 0.000
1 0.033 0,033 0.934

9 0.39679 1 0.000 0.00D 1.000
1 0.047 0.382 0.571
10 0.36273 1 0.333 0.333 0.333
1 0.000 0.000 1.000
1 0.047 0.382 0.571
11 0.34121 2 0.333 0,333 0.333
1 0.000 0.000 1.000
1 0.047 0.382 0.571
12 0.27997 1 0.000 0.000 1.000
1 0.500 0,500 0.000
1 0.047 0.429 0.524

13 0.26349 1 0,333 0.333 0.333
1 0.000 0.000 1.000

1 0.500 0.500 0.000
1 0.047 0.429 0.524
14 0.24804 2 1 0.333 0.333 0.333
1 0.000 0.000 1.000

1 0.467 0.467 0.066
1 0.000 0.406 0.594
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