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CHAPTER I 

INTRODUC'l'ION 

Mixture Experiments 

Experiments are often encountered in research work in which the 

response depends upon the relative proportions of the components in a 

mixture. If the ·response depends only upon the proportions and not upon 

the total amounts then the experiment is called a mixture experiment. 

The factors in s1,1ch an experiment are the fractions of the components 

in the mixture. The factors must therefore be non-negative and sum to 

unity. 

Gasoline blending experiments in which the response is octane rat· 

ing are exa!llples of mixture e~periments... In, sµc;h1 e;xpe;r;i.ments. a gaso-

line is produced by blending a number of gasoline base stocks having 

various octane ratings. The octane rating of the blend depends only 

upon the relative proportions of the component base stocks. 

A type of design which is commonly used with mixture experiments 
J 

is the simplex- lattice design described by Sheffe' (11) .... ,With the use 

of these designs the required computations for analysis are relativ~ly 

simple when a polynomial approximation to the response is to be made, 

The simplex-lattice designs are indexed by two parameters: the number 

of mixture components, q, and an integer, m, where m denotes that each 

component can occur in a mixture in the proportions p:O, 1/m, 2/m, ••• , 

m/m. An experimental point for q components is denoted by (p 1 , p2 , 
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g g O ' p ), and the de$ign points are all those for which the p. are 0, 
q 1 

1/m, 2/m, ••• , m/m and Ep. = 1. 
i 1 

A later development by Sheffe' (12) is the class of simplex-

centroid designs. When the number of components is q there are 2q - 1 

points in the design. These are the q pure components, the (i) mixtures 

of two components in equal proportions, the (5) mixtures of three com-

ponents in equal proportions, ... , and the mixture with all components 

in the equal proportions of 1/q. In this work Sheffe' also considered 

experiments with both mixture and process variables as well as the prob-

lem of fractional designs, 

Draper and Lawrence, (4) and (5), have derived designs for three 

and four component mixtures which, in the absence of random error, have 

the property of minimizing the average bias incurred when a polynomial 

of degree d1 < d2 is assumed when the true model is a polynomial of 

degree d2 . The cases investigated were for (d 1 = 1, d2 = 2) and 

(d 1 = 2, a2 = 3). The situation where both bias and variance occur was 

also considered and designs for this case were obtained by taking the 

so-called all-bias designs and expanding them while retaining their 

basic shape. 

Optimal Designs 

The work of Draper and Lawrence (4), described above, is an ex-

ample of applying .a specific criterion of excellence, namely average 

bias, to the problem of choosing an experimental design. Folks (6) has 

made a rather extensive survey of such criteria which are applicable to 

the general problem of choosing optimal designs. A review of the liter-

ature concerning response relationships and optimal designs in general 



has been made by Gillett (7) and Gurley (9). 

Statement of the Problem 

In Chapter II a class of designs termed symmetric designs will be 

defined for three component mixtures. Thi:s class includes as sub

classes the simplex-lattice and simplex-centroid designs. 

3 

Also in Chapter II a one~to•one correspondence will be established 

between certain subclasses of the class of N-point symmetric designs and 

a factor space of dimension less than N. These factors will be referred 

to as design factors. 

To aid in selecting an N-point symmetric design, a number of cri

teria of excellence are defined in Chapter III and it is shown that 

these criteria can be expressed as functions of the design factors . 

. In Chapter IV the criterion of minimum generalized variance is 

employed to find optimal or near optimal designs assuming either a first 

or second order polynomial model. The results of a computer-aided 

search in the factor space indicate, optimal designs, for each N to be 

of the same configuration as the simplex-lattice or simplex-centroid 

designs. However,. with N greater than the number of points in the cor

responding simplex design, there resulted some variation in the optimum 

allocation of replicates. Rules for the optimum allocation are given. 

Chapter V deals with the selection of N-point symmetric designs 

(for second order polynomial models) which are optimal with respect to 

the average variance of the predicted response over a specified region 

of interest. Designs are found for triangular regions of interest and 

for regions of operability containing a region of interest. 

Chapter VI discusses the effect on the average variance of assuming 



4 

a model with too many terms. 

Chapter VII summarizes the work done ~nd gives some ideas relating 

to the extension of symmetric designs to the case of mixtures involving 

more than three components. 



CHAPTER II 

SYMMETRIC·DESIGNS FOR MIXTURES OF THµE COMPONENTS 

Introductory Remarks 

This discussion will be concerned with mixtures of three components 

where the total content of the mixture is 1, and where the amount of 

each component in the mixture is expressed as a positive fraction. Thus 

the possible mixtures are restricted to a triangular region, R, of the 

three-dimensional space, (x1, x2 , x3). This region R lies on the plane 

notation: 

Although R can be represented as an equilateral triangle in only 

two dimensions, it is helpful at first to represent points of R in 

terms of triangular coordinates. Thus, in Figure 1, the xl axis is 

along the line from ao to al' with ~ =O 'at'. the point ao::;(0, \, \) and 
:1 l' 

x1=1 at the point a 1=(1, 0, O). The x2 axis is along the 'line from 

bo=<\, 0, \) to b1=(0, 1, O) and the :X:3 axis is along the line from 

co=(\, ~. O) to c 1=(0, 0, 1). The component xl is zero along the line 

from b1 to c1 , x =O 
2 

along the line from a 1 to c 1 , and x3=0 along the 

line from a 1 to b1 • The intersection of the three axes is the point 

(1, ~. ~), the centroid of the triangle. 

In considering various possible sets of experimental points to be 

5 



Figure 1. Illustration rif Triangular 
:Coordinates 

Set 1 Set 2 

Set 3 Set 4 

Fi$ure 2. Examples of Symmetrical Sets of 
Points 
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run in R, those sets containing arrangements of the form shown in 

Figure 2 have considerable intutive appeal, especially if the experi

menter is equally interested in all components of mixtures over R. 

7 

Note that the points are arranged symmetrically with respect to all 

three axes. Sets of points such as those in Figure 2 can be construct~ 

ed by choosing a single point, r=(x1, ~2 , x3), in R plus those addition

al points whose coordinates a~e some permutatton of x1, x2 , and x3 • It 

is clear that such sets will consist of one, three or six points depend

ing on the number of distinct coordinate values.· Thus, for sets 1 and 

2 in Figure 2, each point has exactly two identical coordinate values. 

In sets 3 and 4 all coordinate values are distinct for each point. If 

x1 =x2=x3 one woulp have the center point or centroid, (;, ~, 1)' i for 

which there is only one distinct permutation. 

Definition of Symmetry 

The above are examples of symmetrical point sets which will be 

called permutation sets. It wtll be helpful, however, to require the 

point elements of a permutation set to be ordered. To define the or-

dering· it is necessary to first· define the following subsets of R: 

Ro :::;: [ (~, ~, i)J 

Rl ::;: [ (xl' x2' x3) x2=x3,'x1J 

R2 = [ (xl' X2' x3) xl=::x3,'x2J 

R3 - [ (xl' Xz, x3) x1:::;x2fx3J 

Rl23= [(xl' x2' x3) Xl<OC2<X3} 

Rl32= ( (xl' Xz, X3) Xl<X3<X2} 

Rz13= ( {xl, X2' x3) Xz<X1<X3} 

R23l= ( (xl' X2' x3) Xz<X~<Xl} 



R312= [(xl' x2' x3) 

R321= ((xl' x2, x3) 

X3<Xl<X2} 

X,3<X2<x1J, 

8 

where (x1, x2 , x3) is in each case an element of R, Thus R is the · 

union of the above sets. In Figure 3, R0 is the center point or cen

troid; R1 is the set of points on the liQe a 0 to a 1, with the exception 

of the center point; similarly R2 is the set of points along the line 

from b0 to b1 and R~ is the set from c0 to c1 . The subregions defined 

by the remaiQing subsets are indicated in rigure 3. 

Let 

and 

Then~ consists of ordered sets of thref points and RII consists of 

ordered sets of six points. 

Definition 2~1. A set P whose elements are triples, (x1, x2 , x3), 

from R is a permutation .!il if and Ginly if 

(1) the elements of Pare identical up to a permutation of 

coordinate values, and 

(2) either PeRi;, PeRII, orP=R0 • 

Condition (2) in the above definition orders the elements of -P 

and insures that ·the elements are distinct;. 

In order to construct combinations of permutation sets it is desir-

able to define a set; operation which will be called the adjunction of 

ordered sets. 

Definition 2-2. Let A=(a 1, a2 , ••• , ak) and B={b1, ... , bm) be 



a . 
1 

;F'i,gure 3. Subregions of; R 

9 



ordered sets. Define 

A+B::1;, (al' ••• J ak, bl' .. , . ' b ) m 

and B+A= (bl, ... , b m' al' ... ' ak) 

Let A.=(a 1 ., , •• , a ... ),'ii=l, ••. , m, be a sequence of ordered 
1 1 n~i 

1 

sets, denoted by <Ai>~ and define 

Ei\.=(all' ••• , a 1' .•• ,al, ,.,, a ). 
1. 1 n. m nm 

1 m 
The noncommutative set operation,+, or t, will be called the 

ad junction operation .f2! ordered~· 

Since permutation set~ were defined to be ordered sets, the ad-

junction operation can be used for the summation of the sequences de= 

fined below. 

Definition 2-3. Let <pi>t be a finite sequence of permutation 

sets with the following properties: 

(1) the first u permutation sets of the sequence are 

elelllents of R0 , i.e., l=point sets, 

(2) the next t permutation sets are elements of ~'I' i.e., 

3-point sets, 

(3) tl;le remaining s=k-u-t permutation sets are elements of 

R11 , i.e., 6-point sets. 

Then the class of all seguences .2£ permutation~ having prop-

erties (1), (2) and (3) with k, u, t aqd s fixed integers, will 

be denoted by [u, t; s]. 

Let D be a set with N elements each of which is a triple, 

10 

N Then D can be considered an element of R, where: 



Such sets will be called N-point designs. 

Definition 2-4. N 
A design DeR is a symmetric design of!! points 

/ 
if-and only if there exists a sequence of permutation sets 

<:"'Pi:)~ from a class [u, t, s] such that N=u+3+6s and n=;Pi. 
1. 

11 

N The class of all N-point symmetric designs is denoted by S • , For 

a given N there are, in general, several classes, [u, t, s], of se-

quences of permutation sets such that N=u+3t+6s. Corresponding·to each 

such class with given u, t, ands, there exists a subset of SN which 

will be denoted by s[u, t, s]. 
N Such subsets of S are mutually dis-

joint and SN is:ithe union -ofr all such ·subsetlif; ,For example: 
' 

s6=s[6, 0, O]lJS [3, 1, oJljs [O, 2, O]l}S [O, o, 1]. 

Thus for any DeSN, Dis an element of e~actly one subset, 

N s[u, t, s], of S • 

Definition of Design Factors 

The remainder of this chapter will be devoted to ~howing the ex-

istence of, and defining a one-to-one mapping between the subclass, 

s[u, t, s], of N-point symmetric designs and a. ''factor space," F, of 

dimension t+2s. This will be accomplished by means of the following 

. lemmas and theorem. 

Lemma 2-5. Given integers u, t ands with N=u+3t+6s, there 

exists a one-to-one mapping between s[u, t, s] and [u, t, s], 

N where S[u, t, s] <:;:: S , and where [u, t, s] is a class of 

sequences of permutation sets. 



Proof of Lemma 2-5. Define ~1 : S[u, t, s] ~ [u, t, s] such that for 

every DeS[u, t, El],, cp1 (D)= (Pi)~ e[u, t, s], where (P1)~ is a se-

12 

qµen~e such that D=tpi. Thus, the definition of a symmetric design of 
i 

N points establishes ~las a one-to-one mapping. 

Lemma 2-6. There exists a one-to-one mapping between [u, t, s] 

t s and R1R123 where 

[ t s Proof of Lemma 2-6. Define ~2 : u, t, t] ~ R1R123 such that for every 

k 
(Pi)l e[u, t, s] 

.where p.eP +· is the first element of the ordered set: 
l. u l. 

Now 

and 

Therefore 

and 

P +. ( i =l, 2, ••• , t+s) . 
u l. 

On the other hand, let 

then 
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which implies that pi is an element, (xl' X21 x3), such that xl'lx2=.:x3. 

Thus, there exists a permutation set, say pu+le~, sucp. that pi is its 

first element. Similarly, pieR123 for i>t implies the existence of a 

permutation set, Pu+ieR11 , such that pi is its first element. There

fore, there exists a (Pi)~ e[u, t, s] such that 

Hence: 

which implies 

q,2 .([u, t, s]) 

Then, since these are ordered sequences of ordered sets, each element 

of each set is identical. 

Let 

and 

Thus, p. = p '., i :;:: 1, ; .. , t+s, and 
1 1 

Therefore, q,2 is a mapping. 

t s be elements of R1R123 such that 

I I 

• • ·' Pt+s) = (p:L' • • ·' Pt+s) • 

I 

Then pi=pi, i=l, ••• , t+s, which implies: 



Therefore, 

1' +· = Pu+' • , i=l, 
U 1 1 

.. ; , t+s. 

., >k < ')k <.l\ 1 ::=; pi 1 • 

14 

Thus, cp2 is an injective mapping and since it is also surjective it is 

a one-to-one mapping. 

Lemma 2-7. t s There exists a one-to-one mapping between R1R123 

and a (t+2s)-dimensional factor space, F. 

Proof of Lemma 2~7. This lemma is clearly true since R1 is a one

dimensional space and R123 is a two-dimensional space. Hence, the 

identity transformation 

. RtRs ts 
1 : 1 i23 ~ R1R123 = F 

or any other nonsingular transformation which maps p1 into F1 for 

i:;;;;t and pi into F123 for i>t will be a one-to-one transformation from 

t s t s 
R1R123 to F = F1Fl23" 

It will, how~ver, simplify some later computations to use the 

particular transformation, cp3, defined as follows: 

for every 

where, for 

(p. ' ••• ' 
1 

pi = (xl' 

Yi = ~1· .. 

t s 
Pt+s) eR1Rl23 

:x:2' x3) eR1, i:;;;;t 

2x2 + X3 = 1-.3x2 
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Yi = x + x2 + 2x3 = l•3x l .. 3 

1 = xl + x2 + x,3 

and for p. = (xl, x2, X3) eR123, i>t :i. 

3 
+ f x2 =fz [ (l-3xl) (1- 3x2) J Yu = - - xl -£ 

1 1 2 1 
Y2i= - r-2 x1 - ;=-x +rx =.=-[(1-3x) + (l-3x )] 

'12 .J2 2 .J2 3 .J2 1 2 

1 = 

Then 

and 

The inverse transformations are such that 

x2 = (l-y.)/3 
. 1. 

x3 = (1.-y. )/3 
. 1. 

and for pi = (xl, x2, X3), i>t 

xl = (2 - J2 Yu - J2 y2i)/6 

x2 = (2 + J2 Yu .. J2 y21 ) /6 

X3 = (2 + 2 J2 y2i)/6 

Now the composition w = cp3w2cp1 is a one-to-one mapping; therefore, 

the following theorem has been. proved .. 

Theorem 2-8. There exists a one•to-one mapping, cp, between the 

subclass s[u, t, s] of N-point symmetric designs and a t+2s 



dimensional factor space, F. 

sition of the mapping ~l' ~2 

and 2-7. The factor space F 

2-7. 

The mapping,~· is the compo-

and ~3 defined in Lemmas 2·5, 2-6 

t s = F1F123 is as defined in Lemma 

[ J t s In Lemma 2·6 the mapping ~2 was from Su, t, s onto R1R123 • 

Cl 1 ld d f . . "1 . RtRs RtRs ear y, one cou e 1.ne a s1.m1. ar mapping onto 1 132 , 1 213 , • ••, 

t s or R1R321 , or indeed onto a number of various products of the subsets 

Rl, R2, R3, Rl23' 

~2 : S[u, t, s] ~ 

···~ R321 of R. If, for instance, one defined 

t s R1R321 then, the mapping, ~3 , in Lemma 2-7 would be 

16 

t s defined the same as before except for its range, which would be F1F321 • 

Thus,~· in effect, maps R1 onto F1 as previously defined, and maps 

R123 onto F123 , R132 onto F132 , .•• , and R321 onto F321 . The subsets 

R123 , .•• , R321 and their respective images under~ are graphically 

depicted in Figure 4. 



J. Y2 
I 
I 
I 
I 

-~-----... 
'Y 1 

Figure 4. Corresponding Subregions of R,and F 
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CHAPTER III 

CRITERIA FOR THE SELECTION OF A SYMMET~IC DESIGN 

Introductory Remarks 

In Chapter II a class of designs termed symmetric designs was de-

fined for the three component mixture prob Lem. Given the po'ssibility 

of running N experimental points, one would like to choose from the 

class SN a design (or designs) which is best in the sense of some cri-

terion. The criteria to be used in this thesis are defined in this 

chap~er, and formulas are developed for implementing the criteria in 

searching for the best N-point symmetric design, 

Models to be U$ed 

In this chapter, it will be assumed that the response, y, is given 

by one of the following models: 

either 

or 

It will be convenient to use the matrix notation, 

Y = XQ' + E 

to denote the Nxl vector of responses_,.:.~, corresponding to the ma trill,'., 

18 
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X, of design points. 

In the case of the second order mode 1, for example, one has: 

Y' = [yl, Y2, yN] .... ' 
E' = [e 1' e2, eN] .. ~ ' 
QI I = Ca 0, Q'l, Q'2' Q'l2' Q'll' Q'22J 

and 1 2 2 
xll xl2 xllxl2 xll x12 

l 
2 '2 

x21 x22 ;x:21 x22 '.. ;K21 . x22 

x = 

1 

In terms of the above notation, the least squares and maximum 

likelihood estimates of a are given by 

0t = (X'X)-l X'Y. 

let 

then the estimated response at u llis given.by 

y (u) = U'a. 

Transformation of the Space R 

Each criterion to be considered in this thesis will involve in 

some manner, the matrix X'X. It was found that computations could be 

simplified by working in a transfoi;med space with the matrix Z'Z ob-

tained by employing a transformation used by Draper and Lawrence (4). 

The transformation effects a nonsingular linear transformation from the 
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space R, or (xl, x2, X3), to the space R', or (zl, z2, z3). 

The transformation is given by: 

zl -1/2 1/2 0 

~£ _ii 1h z2 = . 
6 6 6 x2 

Z3 1 1 1 x3 

and its inverse by 

xl -1 
_E 

1/3 zl 3 
c 

x2 = 1 ..:~ 1/3 . z2 3 

X3 0 2.h 1/3 Z3 3 

The above transformation takes the triangular region R into an 

equilateral triangle in the plani z3 = 1, with the centroid at (z1, z2) 

= (0, 0). One vertex of the triangle lies on z1 = 0 and the other 

vertices are symmetrical about z1 = 0, The length of each side of the 

triangle is unity. This triangular region will be referred to as R'. 

For a design point from a one-point permutation set, that is, 

(~, ~, ~), one finds the corresponding point in R; to be 

zl 0 .. 1/2 1/2 0 1/3 

:: 0 
_E J; 2£ 1/3 z2 = --- .,_....,.. 

6 6 6 

z1 1 1 1 1 1/3 

Suppose (xl, x2' x3) = (a, a, l-2a) is one of the design points, 

then the points (a, 1-.2a, a) and (1-2a, a, a) are also design points. 

The correspondence between the coordinates of these points and those 

under the transformation are given in Table I. 



TABLE I 

COORDINATES OF POINTS IN RAND THEIR CORRESPONDING TRANSFORMED VALUES IN R' 
FOR THE CASE OF A THREE-POINT PERMUTA~ION SET 

Coordinates in R 
xl x2 

a a 

a l-2a 

l-2a a 

x '' 
3 

l-2a 

a 

a 

Cbordinates in R' 

zl 

0 

(l-3a) /2 

_(l-3a)/2 

z2 

2J3(1-3a) 
6 

-.fic1- 3a) 
6 

-J](l-3a) 
6 

Z3 

1 

1 

1 

N 
t-' 
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If (x1, x2 , x3) = (a, b, 1-a-b) is a design point and alb, afl-a-b 

and bfl-a-b, then the five points obtained by per~uting x1, x2 and x3 

are also design points. The coorqinates of all six points and the cor-

responding coordinates under the transformation are listed in Table II. 

Working in the space (z1, z2, z1 ), the second order polynomial 

will be: 

The least squares and maximum likelihood estimates of~ are given 

by 

S = (Z' z)°,1 z' Y 

and if u = (u1, u2 , 1) eR' and U' 

then 

. y (u) = U'S 
is the estimated response at u. 

By inspection of the point coordinates in R1 given in Table I and 

Table II, one can deduce that the matrix Z'Z for the second order model 

has the form: 

N 0 0 0 c c 

0 c 0 -d 0 0 

0 0 c 0 -d d 
Z'Z = 

0 -d 0 f 0 0 

c 0 -d 0 3f f 

c 0 d 0 f 3£ 



xl 

a 

a 

b 

b 

1-a-b 

1-a-b 

TABLE II 

COORDINATES OF POINTS IN RAND THEIR CORRESPONDING TRANSFORMED VALUES IN R' 
FOR THE CASE OF A SIX POINT PERMUTATION SET 

Coordinates in R Coordinates in Rj 

X2 x3 zl z2 

b 1-a-b \(b-a) Ji(2-3a-3b) 
6 

1-a-b b \(l-2a-b) Ji(3b- l) 
6 

a 1-a-b -\(b-a) Ji(2-3a-3b) 
6 

1-a-b a Hl-a-2b) Ji(3a- l) 
6 

a b -H1-2a-b) Ji(3b- l) 
6 

b a -\(l-a-2b) Ji(3a- l) 
6 

z3 

1 

1 

1 

1 

1 

1 

N 
u.) 
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where R' 

N N 

c .= l 2 = 11 2 
zil zi2 

i=l i=l 

N N 

d =1 
3 = -I 2 

zi2 xil zi2 
i=l i=l 

N N N 

f =I 
2 2 

= (1/3)1 4 = (1/3)1 4 
zil zi2 zil zi2 

i=l i=l i=l 

Correspondence Between Z'Z and the Design Factor Space, F 

It will be shown that Z'Z is a function of the design factors de-

fined in Theorem 2-8. Having done this it will be possible to move 

N between the subclass of N-point symmetric designs, S[u,t,s]c.S , the 

design factor space, F, and the class of matrices, (Z'Z}, as indicated 

diagramatically by the arrows in Figure 5, below. 

Figure 5. Diagram of Correspondence 
Between (Z'Z}, F, and s[u, t, s] 

Each arrow in Figure 5 represents a function with the domain of the 

function being the set at the tail of the arrow and the range being the 

set at the head of the arrow. 

Now each permutation set of points in a symmetric design contrib-

utes either one, three or six terms to the sums c, d and f of Z'Z. 

Using the values of z1 and z2 in Tables I and II, the respective "sum-

of-squares" contribution of a on~-point, three-point and six-point set 
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were computed in terms of the original coordi.nat.e values •. These are 

listed in Table III, where, for convenience, 

for the three paint set and 

w = l-3a 

w1 = l-3a 

w2 = l-3b 

for the six point permutation set. 

TABLE Ill 

CONTRIBUTIONS OF k-POINT PERMUTATION SETS TO THE ELEMENTS 

N' c ' d AND ·. f OF: z I z 

k N c d f 

1 1 0 0 0 

3 3 ~2 Ji 3 
12 w w4 /24 

6 ... )( 2 (1/J w1 
2 

+ w2 + wlw2) 
Ji 2 2 
12 (wlw 

2 
+ wlwl) 

1 2 
108 (wl 

2 
+ w2 + wlw2) 

Referring to the definition of the design factors in terms of the 

original triangular coordinates on page 14 of Chapter II, one finds 

that 

y l-3a = w 

for the three-point case and 

for the six-po:i,.nt permutation set. 

2 



Thus 

and 

and making these substitutions in Table III, one obtains the results 

given in Table IV. 

k 

1 

3 

TABLE IV 

CONTRIBUTIONS OF k-POINT PERMUTATION SETS IN TERMS OF THE DESIGN 
FACTORS TO THE ELEMENTS N, c, d AND f OF Z'Z 

N c d f 

1 0 0 0 

3 l12 ,J33 
12 y y4 /24 
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6 6 
2 2 <i - y2)y I 4J6 

2 
3y~//432 (yl + 3y2)/6 (yl + 2 1 2 

From the above developments, one sees that the elements c, d and 

fare functions of the design factors and hence, so is z'z. 

An Induced Transformation of the Space of Independent 

Variables in the Quadratic Model 

Theorem 3-1. A nonsingular linear transformation from 

(1, x1, x2) to (1, z 1 , z2) induces a nonsingular linear 

2 2 transformation from (1, x1, x2 , x1x2 , x1, x2) to (1, z1 , 

2 2 z2 , z1z2 , z1 , z2). lf A is the matrix for the transformation 

from (1, x1, x2) to (1, z1 , z2) and B.is the matrix for the 

induced transformation, then I BI= I Ar. 



The fact that x0 = x1 + x2 + x3 = 1 may be used to rewrite the 

transformation matrix on page 20 as follows; 

Z3 1 0 0 XO 

zl = 0 -\ \ :l{l 
J; E J3 

z2 .. - _ __,.. 

x2 3 2 2 

Now consider an arbitrary nonsingular transformation: 

Z3 
I 
{ all al2 a13 XO 

zl = ; a21 a22 8 23 xl 

\ 8 31 z2 a32 a33 x2 

from the space (xo, xl' x2) to the space (z3, zl, z2), where z,3=xo=l. 

That is, all+ al2xl + al3x2 = 1 for all x1 and x2. Then a 11 =l and 

al2 = al3 = o. 

Then for the second order polynomial model in the space of 

(zl' z2' Z3), one c.an write 

I 1 0 0 

v = Al A2 0 v 
z x 

Bl B2 B3 

where 

V' (z3' 
2 2 = zl' z2' zlz2' zl' z2) z 

V' (xo, 
2 2 = xl' x2, xlx2' xl' x2) x 

27 
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a2laJ1 a21aJ2 + aJ1822 a21 aJJ + c!Jl a2J 

~1 
2 

B2 2a21a22 2a2la23 = 8 21 = 

2 
aJl 2aJlaJ2 2aJlaJJ 

and 

a22aJJ + aJ2a2J a22a32 a23aJJ 

B3 = 2a22a2J 
2 2 

a22 a23 

2aJ2aJ3 
2 2 

a32 a3J 

The above transformation from X to·Z.is clearly linear, It is also 

nonsingular as will be shown below. Consider the determinant: 

1 0 0 

A2 0 A2 0 

= I A2 I . Al A2 0 = = I BJ I 
B2 BJ 0 B3 

Bl B2 BJ 

The above equalities are due to the fact that the rows of B2 are linear 

combinations of t.he rows of A2 • 

Furthermore, the determinant I A2 I is nonzero by definition, and 

for the determinant,. j B3 I one has_: 

I I ( ) 2 2 2 2 2 +2 2 2 
BJ = a22a3J + aJ28 2J 8 228 33 + 8 228 2J8 J28 J3 8 228 23~J28 33 

2 2 2 2 2 2 
-Za228 238 32aJ3 - (8 228 33 + 8 328 23) 8 238 J2 - 28228 2Ja32a33 

3 2 2 
(a228 JJ) + (a22a33) (a32a23) + Z(a22a3J)(aJ2a23) = 

2 2 2 
+ 2 (a22a33) (a328 2J) - 2 (a22aJJ) (a32a23) - (a22a33) (a328 23) 

3 : 2 
- .(8 328 23) - 2 (8 228 33) (8 328 23) 



= 

= 

(a228 33)l - l(a228 33) 2(a328 23) + l(a228 33)(a328 23)2 

3 
(a228 33 - 8 328 23) 

Therefore I B3 I "f 0, and the theorem has been proved. 

Minimum Generalized Variance of f3 

29 

The least squares and maximum likelihood estimates of Sare given 

by 

S = (Z'Z)-l Z'Y. 

Also Sis distributed as 

[ 2 I >""1] NS, cr (Z z . 

The generalized variance of the dist~ibution of Sis 

2 I ( , )-1 , _ 2/ j : , · I cr z z 1 - a z z . 

Definition 3-2. Let z1 and ~2 be the mattices of design points 

for the designs Dl ajld D2 from the class SN. Then n1 is better 

than Dz in the sense of generalized variance if and only if 

2 . 
< cr I I Z' 2z2 I , or equivalently 

Definition 3-3, Let D* be a design from SN. If the general-

* * ized variance for the design D is finite then D is oRtimum 

_with respect ,!2 generalized variance if and only if there exists 

no design in SN which is better in the sense of generalized 

variance. 
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I 

Now taking the determinant of the matrix Z'Z as given on page 22 

one finds: 

Z'Z J = 4(2Nf - c2) (cf .. a2) 2 • 

Folks (6) proved that the optimum generalized variance design (or 

designs) is invariant under nonsingular linear transformations on the 

space of independent variables. The argument is reproduced in this 

context for completeness. 

Let 

Z.= XB' 

represent the transformation which takes each row vector of the design 

matrix X into the corresponding row vector of z. 

Then 

I z I z I = I BX I XB I I = I B I • I x I x I • I B I = I B F . I x I x I . 

If Bis the matrix of Theorem 3~1, then 

I z I z I = I A 18 • I x Ix I ' 

so that the optimum generalized variance design for the quad~atic model 

is invariant under transformations from (1, x1 , x2 ) to (1, z1 , z2). In 

particular for the transformation introduced on page 20 of this chapter, 

one has: 

I Z'Z I:;: (~) 8 
J X'X I= 2:! I X'X ! • 

Minimum Average Variance of the Predicted Response 

Let y(u) be the estimated response at the point u in a region of 

interest I. rhe region of interest, I, ~ill quite often correspond 

exactly to the triangular region R or R'. Let p(u) be a density 



function defined on I. 

Definition 3-4. The average variance with respect to the 

region of interest, I, for the design, D, with design matrix, 

Z is given by 

cr2J p(u) U'(Z'Z)·l U du, 

I 

where cr2U'(Z'Z)-l U is the variance of.~(u). 

Definition 3-5. Let z1 and z2 be the matrices of design points 

N 
for the designs D1 and D2 from S. Then D1 is better than D2 

in the sense of average variance if and only_if 

J p(u) U'(z 1 1z1)-l U du< J p(u) U' CZ I Z )- l ij d 2 2 u • 

I I 

Definition 3-6. * N Let D be a design from S If the average 

* * variance fqr the design D is finite then D is optimum~ 

respect to average variance if and only if there exists no 

design in SN which is better in the sense of average variance. 

In this thesis it will be assumed that p(u) is a uniform density 

over the region of interest and unless otherwise stated the region of 
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interest will be R', the triangalar region in the space of (z1, z2 , z3). 

With this region of interest one has: 

2a b J; 
= j J dui du2 = 4 . , 
•a -b 

where a = Ii and b =(l/3)(1-u2/..)3). 

For the second order polynomial model, 



let 

Then for a design D with matrix of design points Zone has 

2a b 
; j SU' (Z'Z)-l U du1 du2 

-a -b 

4 2a b _ 1 
= J3" J f trace [UU' (Z 'Z) ]du1 du2 

~a -b 

= trace [(Z'Z)- 1.M] , 

where M, the matrix of design moments was J_9und by Draper and Lawrence 
.... ~::·-

(4) to be: 

1 0 0 0 
1 -1 

24 24 

0 
1 0 - _Ii 0 0 

24 360 

0 0 
1 0 

]; ]; 
24 360 360 

M = I; 
0 0 .....L 0 0 

360 720 

-1 0 - J; 0 
1 .....L -24 360 240 720 

,--

1 0 
_b 0 

1 1 
24 360 720 240 

The matrix (Z'Z)-l is listed in Table V. 

Thus, in terms of the element c, d and f of Z'Z, the average 



1 

ll 
2 

2Nf-c 

0 

0 

0 

-2c 
. ' .. 2 
4(2Nf-c ) 

-2c 

4(2Nf-c2) 

zl 

0 

£. 
cf-i 

0 

g 

cf-i 

0 

0 

TABLE V 

-1 
ELEMENTS OF THE MATRIX (Z' Z) FOR THE. SECOND ORDER MODEL 

z2_ 

0 

0 

£. 
cf-d·2 

0 

2d 
2 

4(cf-d ) 

-2d 
. 2 

4(cf-d ) 

zlz2 

0 

.!! 
cf-d2 

0 

£ 
cf-d2 

0 

0 

2 
zl 

··::: : .. zc 
. -2' 

4(2Nf-c,) 

0 

2d 
2 4(cf-d ) 

0 

- . N . c 

2 + 2 
4(2Nf-c) 4(cf-d) 

- .-.- .. N ......... . 

2 4(2Nf-c ) 

c 
2 

4(cf-d ) 

2 
z2 

-2c 
2 

4(2Nf-c ) 

0 

-2d c 
. ' - 2~ 

4(tf-d} 

0 

N _.,.._ c 
2 . 2 

4(2Nf-c) 4(cf-d) 

~+ c 

4(2Nf-c2 ) 4(cf-d2 ) 

(.,.) 
(.,.) 
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variance for the corresponding N-point symmetric design, D, is found to 

be 

720f - 30 c + N 

360 (2Nf .. c2) 
+ 30£ - 4 J3 d + c 

. . " 2 
360 (cf - d ) 

As in the case of the ge.neralized variance, Folks (6), showed the 

average variance to be invariant under nonsingular linear transforma-

tions of the independent variables. Thus, by Theorem 3-1, the average 

variance for the quadratic model is also invariant under the transfor-

mation from the space R to the space R'. 

The argument for invariance of the average variance goes as 

follows. Using the symbols defined in the proof of Theorem 3-1 let 

z = XBand v: = V~B, then since Bis nonsingular X = ZB-l and V~ = 

The average variance in the X space is given by 

= 

= 

= 

r/ J' q(x)V~(X'X)- 1v* d(x) 

I 

2 . I -1 
[ B ' - 1 z ' zB - 1 f 1 B ' - 1 vJ J I dz (J J q(z)VzB 

I' 

2 J q(z)V:(z'z)- 1vJ JI dz (J 

I' 

2 f p(z)V~(Z'Z)- 1vz dz (J , 
I' 

where J is the Jacobian of the transformation, 

The last expression is the average variance in the Z space. 

Other Criteria 

A criterion which has received some attention in the literature 
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is that of the minimum characteristic root of the matrix Z'Z, say n .. 
'· 1m1.n * . . 

The object if to choose the design, D, (or designs) which maximizes 

11min. That is: 

or equivalently: 

n* _ max. 
- DeS N 11min 

n''' = minN 
DeS ;\max 

-1 
where A is the maximum characteristic root of (Z'Z) , and in fact, max 

Amax= l/11min' 

The appeal of this criterion is due, in part at least, to the t'act 

that it relates to the variance of linear combinations of the param-

eters in the model. However, Folks (6) has shown that this criterion 

is not invariant under linear transformation, and it is due to this 

that this criterion will not be used. The characteristic roots of 

Z'Z and (Z'Z)-l are, however, listed in Tables VI and VII. 

TABLE VJ; 

CHARACTERISTIC ROOTS OF Z'Z 

~ [f+c J(f-c) 2 + 4d7] ~ [f+c + J(f+c/ 2 
111: = = - 4(cf-d ) ] 

~ [f+c J(f-c)2 + 4a2J :le: [f+c J(f+c) 2 2 
Tl2 = - = 2 - - 4(cf-d ) ] 

~ [4f+N + J(4f-N) 2 8c2] ~ [4f+N + j(4f+N}4 2 
1lj = + = - 8(2Nf-c )] 

~ [4f+N - j(4f-.N) 2 aa2J ~ L4f+N - J(4f+N) 2 -
2 

114 :::; + = 8(2Nf-c ) ] 

T1s = ~ [2f+c + j (2f-c) 2 + sa2J = :le: 2 [2f+c +J(2f+c) 2 - 8(c£-a2)] 

:le: [2f+c - J (2f-c) 2 + 
8d2] ~ r2f+c - J(2f+c) 2 2 J 

1:6 = 2 = - 8(cf-d ) 

Another criterion suggested by Folks (6) is that of the minimum 

average bias of y(u), where the bias is incurred when the true model 

is a polyno~ial of higher degree than that which is assumed by the 

experimenter. This criterion has been applied in the context of three 



TABLE VII 

CHARACTERISTIC ROOTS OF (Z'Z)-l 

"'1 
c + f + 6cc~f> 2 + 4d2,\ 

= 
2 2 (cf-d ) 

c + f - [ !c-fl + 4d2J\ 
"'2 

=· 
I 2 
2 (cf-d ) 

A3 = 4f + N + C!4f-N2 2 + 8c2J\ 
2 4(2Nf-c ) 

2 Bc2]\ 
\4 

4f + N - [(4f-N) + = 2 4(2Nf-c ) 

c + 2f + [(c-2f) 2 + 8d2i2 
A5 -

3 (cf-d2) 

c + 2f - [ (c-2f) 2 + 8d2]\ 

"'6 = 
2 4(cf-d ) 

and four-component mi~ture problems by Draper and Lawrence, (4) and 

(5). Although the class of designs considered by Draper and Lawrence 

neither includes, nor is included in, the class of symmetric designs, 
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the two classes overlap to the extent that it is felt that further con-

sideration of the criterion is not warran_ted in this thesis. 

Several other criteria have been suggested in the literature. It 

is not the purpose of this work, however, to make a survey of these 

cr:i,teria; but rathe:i:- to employ some of those which have been suggested. 

It is felt that either the criterion of minimum generalized vaiance or· 

of minimum average variance will appeal to the experimenter in most 

instances and the following chapters will be devoted to employing these 
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criteria in the search for optimum N-point symmetric designs. 



OPTIMUM GENERALIZED VARIANCE DESIGNS 

This chapter will be.concerned with the problem of selecting de

signs from the class SN which are optimal in the sense of minimizing 

the generalized variance of the ~s. The definition of optimal with 

respect to this criterion is given by Definition 3-3. Also in Chapter 

III it was seen that the criterion measure, I Z' Z I , is a function of 

the design factors. Consequently, I Z'Z I will be regarded as a response 

over the space, F, of design factors rather than over the space, RN, of 

design points. This will result in reducing the dimensiunality of the 

search by two-thirds since a separate search can be made for each sub

N 
class, S[u, t, s], of S • The corresponding factor .space has dimension-

ality t+2s compared to 3t + 6s for the search in·RN. 

If the optimal design or designs are found for each subclass of 

SN, it will be easy to select from among these the optimal designs for 

SN. This is the approach that will be taken. 

The problem in the case of the first order polynomial model is rel-

atively simple and can be handled analytically. For the second order 

model a computer-aided search will be conducted in the space F. As 

mentioned above the dimension of F for the subclass S[u, t, s] is t + 

2s. However, the dimensionality of the search can be reduced even more 

by virtue of Theorem 4-1. This theorem will allow the search in F to 

be limited to those points in F which correspond to designs having 

38 
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three or more points on the boundary of R. 

Theorem 4•1. If any $ymmetric design which is optimum with 

respect to generalized variance is plotted as an arrangement 

of points in R, then at least three points will lie on the 

boundary of R. 

Proof of Theorem 4-1. Let D be a de~ign in SN. Then there exists in-

tegers u, t, ands such that Dis an element of the subclass, 

N S[u, t, s], of S . 

Let B(R) be the subclass of all designs in S[u, t, s] which have 

some points on the boundary of R. Since these are symmetric designs, 

if-one point is on the boundary all points in the corresponding permu-

tation set will lie on the boundary .. Therefore, all designs in B(R) 

have at least three points on the boundary of R. 

Let F be the factor space corresponding to s[~, t, s] and let B(F) 

be the subset off which maps into B(R). 

Now from Chapter III: 

where, in terms of the t + 2s design factors, c is a sum of terms of 

the form 

or 

dis a sum of terms of the form 

or 

and f is a sum of terms of the form 

y4/24 or 
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For convenience denote the t + 2s factors by w1 , w2 , ••• , wt+2s 

and let 
t+2s 

r = ( l wf) ~ 
1 

and 

so that 

w. r cos e., i = 1, •.. , t+2s 
1 1 

Then 

2 c' c r 

d = r 3d 1 

f = r4f I 

where c' , d' and f' are functions of e = (e 1 , e2 , ... , et+Zs) ~lone'. 

Then making these substitutions it is seen that I Z 'Z ID can be written 

as 

16 
·/z'zin=r f(e). 

Since Z'Z is pos.itive semidefinite, I Z'Z In;;:,;: O. Also r;;:,;: 0 so 

that f(e);;:,;: O. Therefore, considering e fixed, the partial derivative 

below is nonnegative, i.e., 

o I Z'Z I D 15 
16 r f(el' ••. , et+s);;:,;: o. 

If I Z 'Z ID = 0 for all D in the subclass S[u, t, s], then by def

inition there exists no optimum design in the subclass. If I Z'Z ID> 0, 

then r > 0 so that 

ajz'zln 
----- > 0 . or 



Therefore, let (r1 , 9) correspond to n1 and (r2 , e) correspond to o2 

with r 2 > r 1 • Then 

I Z'Z IO 
2 

> I z'z In 
1 
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so that if (r2 , e) is a point in F then o2 is better than o1 and o1 is 

not optima 1. 

Now the set of points (r, e) in F withe fixed and r variable has 

a maximum element, (r, 9), which belongs to B(F), Furthermore, if D 
m m 

corresponds to (rm, e) and D corresponds to (r, e) with r < rm' then 

and D belongs to B(R). 
m 

This completes the proof of Theorem 4-1. 

As was stated previously, the above theorem will be useful in the 

search for optimum designs when the second order model is assumed. A 

similar theorem could be proved for first order models but this case is 

easily handled in the manner given below. 

First Order Model 

For the linear model: 

with matrix Z'Z has the form: 

N 0 0 

Z'Z = 0 c 0 

0 0 c 
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so that 

I z 'Z I :;: Nc2 

Thus to maximize Z' Z I for fixed N it is necessary to maximize 

c. But 

N N 

l 2 l 2 
c :=; zli :=; 

z2i 
i"'l i=l 

Thus c, as a measure of the "spread" of the design points, indicates 

that the optimum symmetric design is one in which the design points are 

distributed evenly on the three corners of the triangular region R', 

with any of the possible one or two remaining points being allocated to 

the center. 

An Example for the Case of the Second Order Model 

To illustrate some of the procedures to be used with larger values 

6 of N consider the search for optimum designs in S • A separate search 

will be conducted tn each of the subclasses, S[6, 0, OJ, S[3, 1, OJ, 

s[O, 0, lJ and s[o, 2, OJ; then the best design or designs from among 

those found in each case will be selected for the optimum in SN 

Clearly I Z'Z I = 0 for all designs in the subclasses S[6, O, OJ 

and S[3, 1, OJ, and hence no optimum designs exist in these subclasses. 

Consider the subclass S[O, 0, l]. From Table IV one finds: 

1 2 2 
c =6 (yl + 3Y2) 

1 2 2 
rl = 4J6 (y2 - yl) Yz 

and 



Thus 

I Z'Z I 1 2 4(12• 12 c 

= 0 
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for any design in S[O, 0, 1]. Hence, there exist no optimum designs in 

this subclass. 

For the subclass S[O, 2, OJ one finds: 

1 4 4 
and f :;::::- (yl + Y2) 24 

where 
1 

1 
2 

:::;; Y1 :::;; 

and 
1 

1 
2 

:::;; Y2 :::;; 

Substituting these values of c, d and f into the formula for I Z'Z I 
one has: 

This formula is symmetric in the factors y1 and y2 so that one 

need consider only those cases for which Yi<Yz· .Furthermore, due to 

Theorem 4-1, one need consider only those points in the factor space 

which lie in B(F), that is, the sets 

and 

{(yl' 1) 
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100 

50 

.. o .5 o.o 0.5 1.0 Yz 

Figure 6. 106 
J Z'Z I versus y2 With y1 = -0.5 

100 

50 

~----
-0.5 o.o 0.5 1.0 

Figure 7 ~ 106 . I Z' Z I Versus y 1 With y 2 = 1.0 
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The graph of I Z'Z I versus y2 with y1 =-\is given in Figure 6. 

The height of the curve is exaggerated for y2 between .:~f and \ in order 

to show its shape. The graph of I Z 'Z I as ~ functib.n of :>\ with y2 = 1 

is given in Figure 7, and again the height of the curve is exaggerated 

for y1 between O and 1, From these two graphs it can be deduced that 

the optimum 6-point design corresponds to the point (-\, 1) in the 

factor space. The corresponding design plotted as an arrangement of 

points in R is illustrated in Figure 8 below. This design is Sheffe's 

(11) 6-point design for the second order model. 

Figure 8. Optimum 6-Point Design 

Computer Usage and Results for the Second Order Model 

The above developments for the 6·point design were given in detail 

to illustrate the nse of the design factors in the search~ For larger 

values of Na computer program was written in the FORTRAN IV language 

for the IBM 7040 computer at Oklahoma State University. This program 

is listed in Appendix A. The program conducts a lattice search in the 

subspace B(F) of the factor space, making use of any symmetries in the 

factors to reduce the number of points to be investigated •. The program 
\ 

can be.instructed to search a given subclass, S[u, t, s], at points on 
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a grid of specified fineness, and to output the k best designs found. 

For N up to and including N = 17 the above program wa.s employed 

with a grid of O .1 increments in the design factors. . Ip. terms of tri-

angular coordinates an increment of 0.1 in the design factors· amounts 

to a ma_ximum increment of 6. 7 percent in any one mixture component. 

The 20 best designs were obtained as output in each case. For N up to 

and including N = 9 a finer grid was employed which amounted to incre~ 

ments as small as 0.1 percent in some components. Use of the finer 

grid did not result in the choice of any design other than those already 

founc;l. 

Results of the above search indicate that the minimum generalized 

variance design for each N has the same configuration as that for the 

6-point design )llustrated in Figure 8, except for some variation in 

the number of replicated points at the center, midpoints and corners 

of the triangular region. The following rules for allocation of the 

points were deduced from the computer output. 

Case 1: N divisible by 6~ Allocate N/6 points to each 

corner and to each midpoint; 

Case 2: N-1 (or N-2l divisible by 6. Allocate (N-1)/6 
I 

(or (N-2)/6) points to each corner and to each midpoint 

and allocate the remaining one. (or two) points to the 

center. 

Case 3: N divisible by 3 but not divisible by 6. There 

are two optimum designs. Allocate (N + 3)/6 points to 

each corner and (N-3)/6 points to each midpoint or vice 

versa. 



· Case 4: N-1 (or N-2) ,divisible by 3 but not divisible ·by '6~· 

Allocate (N+2)/6 (or (N+l)/6) points to: each corner and 

(N-4)/6 (or (N-5)/6) points to each midpoint and allocate 

the remaining one (or two) points to the center. 
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The above rules were verified for N up to 100 by assuming that for 

N greater than 17 the optimum designs would have the same configuration 

as that which was observed for smaller N, i.e., the simplex-lattice or 

simplex-centroid configuration. Then with this assumption the formula 

for· I Z'Z I was simplified and investigated in the manner outlined 

below. 

From the results of the investigation for N :s: 17 it was found that 

optimum designs in SN were elements of subclasses of the form: 

S[u, t, OJ , 

that is, no optimum designs were fqund having 6-point permutation sets. 

Thus, 

N = u + 3t • 

Lett= t 1 + t 2 , where t 1 is the number of 3-point permutation sets 

(replicates) located on the midpoints of the triangular boundary of R, 

and where t 2 is the number of 3-point sets (replicates) on the corners. 

Then for 

o :s: e ::;;; 1 

let 

and 

t 2 = (1 - e)t . 
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Since in F, -~ corresponds to a 3-point permutation set on the mid-

points of the triangular region, and 1 corresponds to a 3-point set on 

the corners of R, the elements c, d and f can then be written in terms 

of the design factors as 

(t/2) (l-3e/4) _ 

_ E _1 3 . 3 
d - 12 (tl ( 2) + t2(1)) 

= (t -5) (1- 99 /8) 

and 

= (t/24)(1-159/16) 

Then making these substitutions in 

2 2 2 I Z' Z I = (2Nf - c ) (cf - d ) 

one has 

3t5 82 2 · 2) I Z I Z I - - (1-e) (16u + 3 (9t-5u) e-27t9 - z20 

Now in the case where there are no center points, i.e., u 0, one has 

I Z'Z I 

which is symmetric about 9 = ~-

finds 

Taking the partial derivative of I Z'Z I with respect to 9 one 

a I z'z 
08 

3t5 9t-5u 
= ~ 9(1-9) [54t9(1-e) [ 18t - eJ 

2 

2 + (~ - 9) [16u + 3(9t - Su)e - 27te ]} , 
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and with u = O this reduces to 

al Z'Z 3\5 2 . . 2 =-- e (1-e) <~-e) 
oe 220 

which has, in the range of interest, a zero at e ~- Thus for u = 0, 

Now if N is divisible by 6 then tis divisible by 2 so that 

t 1 = t 2 is an integer. This corresponds to Case 1, above, and verifies 

the rule given there if u = 0 is assumed. 

With u = 0, Case Zand Case 4 above are not possible with symmet-

ric designs. For Case 3, where N is not divisible by 6, the solution 

t 1 = t 2 =~tis not an integer. The integer values for t 1 = et cor

respond toe= 0, 1/t, Z/t, •.• , 1, and of these, the two nearest 

e =~are 

and 

so that e:lther 

or 

t+l 
Bz = 2t 

(N/3) - 1 
ZN/3 

(N/3) + 1 = 
.2N/3 

N - 3 
6 

=] {.N + 3) 
tl 3 ' 2N 

N + 3 
6 

N - 3 
ZN 

N + 3 
ZN 

Both of these are valid solutions and each results in an optimal design 

since it was shown above that I Z 'Z I is symmetric about e = ~. This 

verifies the rule given for Case 3 if u = 0 is assumed. 

The optimum value for 9 could be found for arbitrary values of u 

by solving 



a I z'z 
ae = 0 

for roots in the range: 0 < e < 1. The general solution would be of 
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little value however, since in general, it would not result in integer 

solutions for t 1 an4 t 2 . Furthermore, for u 1 0, the expression for 

/ Z'Z / is not symmetric about the root in question. On the othe1; hand, 

it was relatively simple to program the computer to calculate for each 

N the value of / Z 'Z / for all possible combinations of u, t 1 and t 2 • 

-
Results of these computations showed no exceptions to the above rules 

for N up to 100. 

This completes the discussion on optimum generalized variance 

designs. Designs which are optimum with respect to average variance 

will be considered in the following chapter. 



CHAPTER V 

OPTIMUM AVERAGE VARIANCE DESIGNS 

This chapter will be concerned with the problem of choosing op

timal designs from the class SN using as the criterion the average var

iance of the predicted response. 

Optimum designs for the first order model can be readily obtained 

by the mechanisms already developed. The optimum designs for average 

variance are exactly those obtained for the criteria of gen~ralized 

variance, i.e., those with all points, up to the iargest multiple of 

three, distributed evenly on the corners of the triangular region and 

with the remaining points at the center. The rationale is essentially 

that given by Draper and Lawrence (4) and will not be discussed further 

here. Optimum designs from SN in the case of the second order model, 

however, cannot be obtained from the above mentioned work of Draper and 

Lawrence; therefore, the remainder of this chapter will be devoted to 

this case. 

The criterion of average variance presupposes a region of interest 

on which a density function is defined. As previously mentioned a uni

form density will be assumed. Initially the region of interest will be 

the entire triangular region, R (or R'). It will be shown how the re

sults obtained for this case can be used when the region of interest is 

any triangular region in R. Consideration will then be given to cases 

where the region of interest is a triangular subregion, T, of R, but 
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where it is possible to run design ... points in another subregion, Q, of 

R, which contains T and which has the same center point and orientation 

in Ras the region T. The region Q will be called the regio~ of oper-

ability. 

A computer program similar to the one used with the generalized 

variance criterion was used in the search for optimum average variance 

designs. This program, however, incorporates some additional search 

features based on developments in the following section. 

Preliminary Developments 

Let the region of interest be Rand let AVD denote the average 

variance of the N-point design, DeS[u, t, s]. Then from Chapter III, 

page 34, 

720f - 30c + N 

360 (2Nf - c2) 
+ 30f - 4 }1d + c 

2 
360 (cf - d ) 

where, in terms of the factors in F corresponding to D, c is a sum of 

terms of the form 

1 2 
2 y 

dis a sum of terms of the form 

Ji 3 
12 y or 

or 

and f is a sum of terms of the form 

.,..l 4 
24 y or 

Let the t+2s factors be denoted by t,7i, w2 , •.• , wt+s and let 



r = (l w~/2 
i 

and 

cos e. = w. Ir 
1. 1. 

so that 

Let 

r cos e .. 
1. 

Then (r,9) is the polar coordinate representation of the point in F 

corresponding to the design D. 

Thus c, d and f can be expressed as: 

2 
c = r c 1 

where c', d' and f' are functions of e alone. 

Substituting the ab~ve into the formula for AVD, one obtains 

.. 4 2 
720r f' - 30r c' + N 

360r4 (2Nf' - c 12 ) 

+ 30r 4 f' - 4 -fJ r 3 d' + / c' 

360 r 6 (c'f' - a12) 

Letting p = 1 and combining terms of like power in p, the above 
r 

expression can be written in the form 

where 

N 

360 (2Nf' ,2) - c 
+ c' 
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A3 = -·.Ji 
120 (c 'f' d'2) -

A2 
£' + c' = 

12 (c'f' - d'2) 12 (2Nf' - c'2) 

and 

2£' 

2Nf' - c' 2 

Now taking the partial derivative of AVP with respect top one 

obtains 

oAVD 
4A4p 3 + 3A3P 

2 + 2A2p = 
op 

Setting the above equal to zero yields the roots: 

P1 ~ 0 

[9A2 -
·~ 

-3A - 32A2A2) 3 3 
P2 = 

8A4 

and 

[ 2 \ -3A3 + 9A3 - 32A2A4J 
P3 = 8A4 
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Now considering AVD as a function of (r, e), withe fixed, one is 

looking at a ray in F beginning at the origin (O, e), and projecting 

through some point in B(F), corresponding to a design with at least 

three points on the boundary of R. The point at the origin with r = 0 

(or p = co) corresponds to the design haviJ1g all points concentrated at 

the center of the region R. fhus the average variance approaches in-

finity as r approaches zero (or p approaches infinity) along the ray. 

Therefore the largest positive root above, if such exists, represents 
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a possible local minimum value of the average variance along the ray. 

When such a root exists it will be denoted by p*, and the corresponding 

value of r by r* ~ 1/p*. The corresponding point coordinates in terms 

of the design factors are given by: 

If the point (wy, ..• , w;+s) is contained in F, it will be of 

interest to calculate AVD*• This is easily determined if the original 

design, D, corresponding to the point (r, e), is an element of B(F), 

since in this case (r*, e) is in F if and only if r* ~ r or p*~p. The 

manner in which these results were found useful is discussed below. 

Computer Usage and Results For the Region of Interest, R 

The developments in the above section suggest a method for begin-

ning the search for optimum designs in a subclass S[u, t, s]. Namely, 

calculate AVD for designs D, corresponding to a grid in B(F) and for 

each D determine if there exists a D* corresponding to a point in F. 

If so, calculate AVD*. Note that D* is a design with no points on the 

boundary of the region R. 

The program used in searching for optimum generalized variance 

designs searched a grid in B(F); This program was th~refore modified 

to perform the above suggested operations. The program listing is 

given in Appendix B. The resulting program was instructed to output 

the 20 best designs of the type D* as well as the 20 best designs cor-

responding to points in B(F). 

For N from 6 to 20 the program above was used with a grid of in-

crements of 0.1 in the design factors. 



56 

The best designs resulting from this search were all from sub

classes of the type S[u, t, O], that is, these designs contained no 6-

point permutation sets. Furthermore, these designs had all points on 

the boundary of R with the exception of one 3-point set in some cases, 

The above search was followed by a sequential pattern search de

scribed by Hookes and Jeeves (10). The computer program for the pattern 

search is listed in Appendix C. Starting points in the case of each N 

corresponded to the best design found by the grid search. The program 

was instructed to continue the search until 1000 iterations had been 

completed or until no improvement was achieved with increments of the 

design factors as small as 0.001. The resulting designs differed very 

little in average variance from those already found, the reduction 

being in fractions of one percent. The resulting design points were 

also in the same neighborhood as those already found, however, for each 

N divisible by 3 the optimum design was found to have one permutation 

set which was not on the boundary of R. 

Different starting points for the pattern search were also tried 

in several instances and convergence to approximately the same design 

was achieved. It is recognized that the average variance viewed as a 

response surface over F is multimoc;l.al and convergence to a local opti

mum point is possible. The grid search, with output of the 20 best 

points (or designs) effectively ensures that a global optimum or near 

optimum design has been found however. 

The best designs found by the above searches may be obtained from 

Table VIII. In this table N is the number of points in the design and 

AV is the average variance given as a fraction of c/. Coordinates of 

a representative point are given for each distinct permutation set in 
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TABLE VIlI 

AVERAGE VARIANCE DESIGNS IN R 

N AV r xl x2 ... x3 

6 .6330.5 1 0.000 0.000 1.000 
1 0.498 0.498 0.004 

7 .49950 1 0.333 0.333 0.333 
1 0.000 0.000 1.000 
1 0.500 0.500 0.000 

8 .44026 2 0.333 0.333 0.333 
1 0.000 0.000 1.000 
1 0.500 0.500 0.000 

9 .36602 1 0.000 0.000 1.000 
1 0.500 0.500 0.000 
1 0.490 0.490 0.020 

10 .32407 L 0.333 0.333 0,333 
1 0.000 0.000 1.000 
2 0.500 0.500 0.000 

11 .29852 2 0,333 0.333 0.333 
1 0.000 0.000 1.000 
2 0.500 0.500 0.000 

12 .27660 1 0.000 0.000 1.000 
2 0.500 0.500 0.000 
1 0.472 0.472 0.056 

13 .25637 1 0.333 0.333 0.333 
1 0.000 0.000 0.000 
3 0.500 0.500 0.000 

14 .24180 2 0.333 0.333 0.333 
1 0.000 0.000 1.000 
3 0.500 0.500 0.000 

15 .22743 2 0.000 0.000 1.000 
2 0.500 0.500 0.000 
1 0.484 0.484 0.032 

16 .20745 1 0,333 0.333 0.333 
2 0.000 0.000 1.000 
3 0.500 0.500 0,500 
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TABLE VIII (Continued) 

N AV r xl x2 X3 

17 .19326 2 0.333 0.333 0.333 
2 0.000 0.000 1.000 
3 .0.500 0.500 0.000 

18 .18276 2 0.000 0.000 1.000 
3 0.500 0.500 0.000 
1 0.452 0.452 0.096 

19 .17116 1 0.333 0.333 0,333 
2 0.000 0.000 1.000 
4 0.500 0.500 0.000 

20 .16204 2 0.333 0.333 0.333 
2 0.000 0.000 1.000 
4 0.500 0.500 0.000 
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the design. These are listed under the headings x1 , x2 and x3 • The 

remaining points of the set are found by taking all permutations of x1 , 

x2 and x3 . The number, r, preceding each set of coordinates indicates 

that r such permutation sets occur in the design. Therefore, the points 

obtained from the permutations of x1 , x2 and x3 should be replicated r 

times. 

A sample output from the lattice or grid search program is given 

in Appendix D. A sample of some of the "near optimum" designs obtained 

by use of this program are given in Appendix E. 

Triangular Subregions of Interest 

Suppose the region of interest is a triangular subregion, T, of 

R. Let the triangular coordinates of the corners of the region T be 

represented by the 3 x 1 vectors c1 , c2 and c3 . And let C be a 3 x 3 

matrix defined by 

Then R is transformed into T by 

t = c x 

where xis a 3 x 1 vector of coordinates in Randt is the correspond

ing vector of coordinates in T. If Tis a nondegenerate triangle the 

matrix C is nonsingular. Therefore, a. symmetric design in T can be 

defined as the image, under the above linear transformation, of a sym

metric design in R. Since products of nonsingular linear transforma

tions are again nonsingular and linear and since the average variance 

is invariant under such transformations, optimum designs for T can be 

found by applying the above transformations to all the points found 

from Table VIII for the optimum N•point designs in R. 
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Regions of Interest Contained in Regions of Operability 

Suppose the region of interest is a triangular subregion, T, of 

Rand that it is possible to operate in a larger subregion containing T. 

If T does not intersect the boundary of R it will often be possible to 

approximate the region of operability by drawing a larger triangle 

about T having the same centroid, shape and orientation in R as T. If 

it is assumed that the re$ion of operability Q is such a triangular 

region, then T can be transformed into R with the result that Q is 

transformed into a proportionately larger triangle containing R, Such 

a transformation is linear and nonsingular so that the search can be 

conducted in the transformed space. The previous computer programs can 

be used by simply extending t~ limits of the design factor space, F, 

by a proportion, 8, relating to the relative size of the triangles T 

and Q, 

The parameter e is defined as 

where LQ is the distance from the centroid of Q to the midpoint of one 

of its sides and LT is the distance from the common centroid to the 

midpoint of the corresponding side of T. 

The lattice search program was used withe= 1.5, 2.0, 2.5, 3.0 

and 4.0 for N up to 14. The results obtained with a grid of increments 

of 9/10 in the design factors are given in Table IX. No follow-up 

search was made with the pattern search program. 

The designs obtained from Table IX can be transformed to the 

original subregions T and Qin the samemanner as described in the 

preceding section. Namely, by use of the coordinates of the corners of 



the region T to build the transformation matrix C. It is important 

that all N points be determined by permutations of the coordinates 

given in Table IX before the transformation is applied. 
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TABLE IX 

AVERAGE VARIANCE DESIGNS IN Q 

N e AV r xl x2 X3 

6 1.5 .55444 1 0.533 0.533 -0.066 
1 -0.167 -0.167 1.334 

6 2.0 .52384 1 0.600 0,600 -0.200 
1 -0.333 -0.333 1.667 

6 2.5 .50713 1 0.600 0.600 -0 .200 
1 -0.500 -0.500 2 .000 

6 3.0 .47945 1 0.633 0.633 -o .266 
1 -0.667 -0.667 2.333 

6 4.0 .44997 1 o. 773 o. 773 -0.446 
1 -1.000 -1.000 3.000 

7 1.5 ,40984 1 0,333 0.333 0.333 
1 0.583 0.583 - 0 .166 
1 .. o.167 -0.167 1.334 

7 2.0 .38681 1 0.333 0.333 0.333 
1 0.600 0.600 -0.200 
1 . -0.333 ~0.333 1.667 

7 2.5 .36680 l 0.333 0.333 0.333 
1 0.667 0,667 -0~333 
1 -0.500 -0.500 2.000 

7 3.0 .35565 1 0.333 0.333 0.333 
1 0.733 0.733 -0.466 
1 -0.667 -0.667 2.333 

7 4.0 .33674 1 0.333 0.333 0.333 
1 0.733 0.733 -0.466 
1 -1.000 -1.000 3.000 

8 1.5 .32737 2 0.333 0.333 0.333 
1 0.583 0.583 -0. 166 
1 -0.167 -0.167 1.334 

8 2.0 .30411 2 0.333 0.333 0.333 
1 0.667 0.667 -0.333 
1 .. o.333 -0.333 1.667 
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TABLE IX (Continued) 

N e AV r xl x2 X3 

8 2.5 ,29349 2 0.333 0.333 0.333 
1 0.667 0.667 -0.333 
1 -0.500 -0.500 2.000 

8 3.0 .28026 2 0.333 o. 333 0.333 
1 0.733 o. 733 -0.466 
1 -0.667 -0. 66 7 2.333 

8 4.0 .26643 2 0.333 0.333 0.333 
1 0.867 0.867 -0. 734 
1 -1.000 .. 1.000 3.000 

9 1.5 .28085 3 0.333 0.333 0.333 
1 0.583 0.583 -0.166 
1 -0.167 -0 .167 1.334 

9 2.0 .25178 3 0.333 0.333 0.333 
1 0.667 0.667 -0.333 
l -0 .333 -0. 333 1.667 

9 2.5 .23990 3 0.333 0.333 0.333 
1 0.750 0.750 ... o.500 
1 -0.500 -0.500 2.000 

9 3.0 .23359 3 0.333 0.333 0.333 
1 0.833 0.833 -o. 666 
1 -0.667 -0.667 2.333 

9 4.0 .21953 3 0.333 0.333 0.333 
1 0.867 0,867 -0.734 
1 -1.000 -1.000 3.000 

10 1.5 .24634 1 0.333 0.333 0.333 
1 0.483 0.483 0.034 
1 0 .583 0.583 -0.166 
1 -0.167 - 0 .16 7 1.334 

10 2~0 .21818 4 0.333 0.333 0.333 
1 0.667 0.667 -0.333 
1 -0.333 -0.333 1.667 

10 2.5 .20443 4 0.333 0.333 0.333 
1 0.750 0.750 -0 .500 
1 -0.500 -0.500 2.000 
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TABLE IX (Continued) 

N e . AV r xl X2 X3 

10 3.0 .19707 4 0.333 0.333 0.333 
1 0.833 0.833 -o. 666 
1 .. Q. 667 -0 .667 2.333 

10 4.0 .18810 4 0.333 0.333 0.333 
1 0.867 0.867 -0. 734 
1 -1.000 -1.000 3.000 

11 1.5 .21767 2 0.333 0.333 0,333 
1 0.533 0.533 -0.066 
1 0.583 0.583 -0.166 
1 -0.167 -0.167 1.334 

11 2.0 .19469 2 0.333 0,333 0.333 
1 0.467 0.467 0.066 
1 0.667 0.667 -0 .333 
1 -0.333 -0.333 1.667 

11 2.5 .17973 5 0.333 0.333 0.333 
1 0.750 0.750 -0.500 
1 -o .500 -0 .500 2.000 

11 3.0 .17164 5 0.333 0.333 0.333 
1 0.833 0.833 -0.666 
1 -0.667 .. o. 667 2.333 

11 4.0 .16342 5 0.333 0.333 0.333 
1 1.000 1.000 -1.000 
1 -.1.000 -1.000 3.000 

12 1.5 .19428 3 0.333 0.333 0.333 
2 0.583 0.583 -0.166 
1 -0.167 -0.167 1.344 

12 2.0 .17480 3 0.333 0.333 0.333 
1 0.533 0.533 -0.066 
1 0.667 0,667 -0.333 
1 -0.333 -0.333 1.667 

12 .25 .16154 6 0.333 0,333 0.333 
1 0.750 0.750 -0.500 
1 -0.500 -0.500 2.000 

12 3.0 .15291 6 0.333 0.333 0.333 
1 0.833 0.833 -0.666 
1 -0,667 -0.667 2.333 
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TABLE IX (Continued) 

N e AV r xl x2 x3 

12 4.0 .14415 6 0.333 0.333 0.333 
1 1.000 1.000 -1.000 
1 -1.000 -1.000 3.000 

13 1.5 .17669 4 0.333 0.333 0.333 
2 0.583 0.583 -0.166 
1 -0.167 -0.167 1.334 

13 2.0 .15778 4 0.333 0.333 0.333 
1 0.600 0.600 -0.200 
1 0.667 0.667 -0.333 
1 -0.333 -0.333 1.667 

13 2.5 .14721 4 0.333 0.333 0.333 
1 0.600 0.600 -0 .200 
1 0.750 0.750 -0.500 
1 -0.500 -0 .500 2.000 

13 3.0 .13854 7 0.333 0.333 0.333 
1 0.833 0.833 -0.666 
1 -0.667 - 0. 66 7 2.333 

13 4.0 .12936 7 0.333 0.333 0.333 
1 1.000 1.000 -1.000 
1 -1.000 -1.000 3.000 

14 1.5 .16350 5 0.333 0.333 0.333 
2 0.583 0.583 -0.166 
1 -0.167 -0 .167 1.334 

14 2.0 .14352 5 0,333 0.333 0.333 
2 0.667 0.667 -0.333 
1 -0.333 -0 .333 1.667 

14 2.5 ,13446 5 0.333 0.333 0.333 
1 0.667 0.667 -0.333 
1 0.750 0.750 -0 .500 
1 -0.500 -0.500 2.000 

14 3.0 .12717 8 0.333 0.333 0.333 
1 0.833 0.833 -0. 666 
1 -0.667 -o .667 2.333 

14 4.0 .11765 8 0.333 0.333 0.333 
1 1.000 1.000 -1.000 
1 -1.000 -1.000 3.000 



CHAPTER VI 

EFFECT ON THE AVERAGE VARIANCE OF INCLUDING TOO 

MANY TERMS IN THE MODEL 

Another aspect of the problem of choosing a symmetric design, or 

any design for that matter, is the necessity of making a prior judgment 

as to the appropriate model. Even when polynomial models are assumed, 

there remains the problem of deciding on the degree or order of the 

polynomia 1. 

Suppose two models are under consideration, one of which is the 

correct model. Let the predicted responses at the point u be denoted 

by 

and 

where 

and 

(U = 

= 

y = U' ~ 
1 1 

~ = (Z' Z )-l Z' Y 
1 1 1 1 

-1 

( Z\Z1 z' 1 z2) ( y) . z•:y Z'2Zl Z'2z2 

( c11 
C21 

c12) . r\Y) 
c;:22 Z' 2y 
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were obtained from the respective models 

and 

If the second model is correct but the first is chosen then the 

error incurred involves both bias and variance. Draper and Lawrence, 

(4) and (5), have considered this problem. On the other hand suppose 

the first model above is correct, that is, ~2 = 0, but that the second 

is chosen. The error in this case can be measured in terms of average 

variances as will be shown below. 

Consider the squared difference: 

= [u'1 <~1 - S1) + u'2S2J2 

= (~l - S1)' U1U'1 <~1 - ~l) + ~'2U2U'2S2 

+ 2~'2U2U'1 <s1 - s1) 

Now :i,t is desired to find the expected value of (y2 - 9-1) 2 , de

noted by E(y2 - y1/, over the population of y2s and y1s at the point 

u. To accomplish this it is necessary to find: 

E(i:i' ~' ) 1-'2 2 

and 



Lemma 6-1. ~ E(S1 - ~l) <s1 - ~l)' = ell - (Z' lzl)-l 
a 

Proof of Lemma 6 .. 1. From the definitions given above one finds 

so that 

and using the fact that 

- ( I ) ( I )-1 e12 - -ell z 122 z 222 

one has 

- A 

E (r.i. l - r.i ) 1./ 1./1 

;:::: 0 . 

Therefore, 

A 

131 - 131 [e I e I ( I )-1 I J 
11 Z l + 122 'i - z l 21 Z t e 

so that 

l E(; - a )(; - ; )' = [e11Z'1 + e12Z'2 - (Z'1z1·)-1Z'1] • 2 1-11 1./1 1-11 1-11 
a 

Expanding this expression and using the well known identies for in-

verses of partitioned matrices the above result is obtained. 

Lemma 6-.2. 

Proof of Lemma 6-2. Now from the above definitions 
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so that 

and using the fact that 

one finds 

= 0 . 

Therefore 

so that 

~ E(~2~'2) = [c21z'1 + c22z'2l·[c21z\ +c22z'2]' • 
a 

Expansion of this expression results in the stated conclusion. 

Lemma 6-3. -t E(S1 - ~l)ij'z = cl2 
a 

Proof of Lemma 6-3. From the two lemmas above it is seen that 

-1 
2 E(S1 

a 

Expansion of this expression results in the stated conclusion. 

The above lemmas result in the theorem stated below. 

Theorem 6-4. If the appropriate model is 

y = ZS1 + e 

but the model 

is assumed, then the variances of the predicted responses 
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2 
at the point u, denoted respectively by a v 1(u) and 

2 
a v2(u) are such that 

Proof of Theore~ 6-4. From Lemmas 6-1, 6-2 and 6-3 one finds 

.. 

(Z I z ) -1 
1 1 

• Th . l E (- y"·1) 2 1 1 . h • en since 2 · y 2 .. is c ear y nonnegative one as 
a 

and the theorem is proved. 

The corollary stated below follows immediately. 

Corollary 6.-5. For the assumptioni; in Theorem 6-4 the 

average variances AV 2 and AV1 corresponding to the two 

models are such that: 

over any specified region of interest and for any · ·· 

weighting density p(u). 
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One might refer to an error of the type above, i.e., including 

too many terms in the chosen model, as an error of the first kind, and 

to the opposite type of error, i.e., including too few terms in the 

model, as an error of the second kind. The corollary above points out 

the existence of errors of the first kind, however, one would guess 

that this type error would usually be far less serious than an error 

of the second kind. 



CHAPTER VII 

S~RX AND EXTENSIONS 

The class of experimental designs defined in this thesis cire appr_o

priate for use in three component mixture,experiments. This class of 

designs, called symmetric designs, includes as subclasses the simplex~ 

lattice and simplex-centroid designs defined by Sheffe'. 

When a polynomial model of degree one or two is assumed and N ex

perimental points are to be run, designs can be found ~rom tables pre

sented in this thesis which are optimal in the sense of one or the 

other of two criteria. One criterion used is that of minimum general

ized variance of the ~·sin the model. The other criterion designates 

as optimal those designs for which the average variance of the pre

dicted response is a minimum. In this case the average is taken over 

a region in which the experimenter is assumed_ to have eq1,1f1l interest in 

the response at all points of the region. 

For the case of generalized variance the optimum designs .for e~ch 

N were found to have the same configuration i:IS the simplex designs 

mentioned above •. However, the number of replicates to be assigned to 

the points on the simplex vary with N. Ru~es for the allocation of 

replicates are given on page 43 of Chapter IV. 

With the criterion of average variance, designs were obtained for 

two cases relating to regions of interest and regions of operability. 

In the first case it is assumed that the regions of interest and 
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operability coincide and are some triangular subregion of the region.of 

all possible mixtures. Optimum designs for such cases may be obtaine9 

from Table VIII for N up to 20. In the second case it is assumed that 

the region of interest is a triangular subregion contained in another 

triangular subregion termed the region of operability. Designs for 

this case may be obtained from Table IX for N up to 14. 

The principal: idea behind the method of search for optimum designs 

consists of regarding the criterion measure, i.e., generalized variance, 

or average variance, as a response over a factor space called the de

sign factor space. Rather formal definitions of symmetric designs and 

design factors are given in Chapter II where it is also shown that a 

one~to-one correspondence exists between the class of symmetric design 

and the design factor space. 

In Chapter III it is shown that the criterion measures are func~ 

tions of the design factors. Also in this chapter most of the mathe

matical mechanisms needed for implementing the search are derived. 

Comput~r usage and results are presented for the case of optimum 

generalized variance and average variance designs in Chapters IV and V 

respectively. 

A development relating to the effect of the choice of the model on 

the average variance is presented in Chapter VI. 

Extensions to More Than Three Components 

By use of the concept of permutation sets it is evident how sym

metric designs could be defined for mixtures of q components. The 

number of different types of permutation sets is given by the number 

of nonnegative integer solutions to 



with 

If a solution is denoted by the ordered set of integers 

( ~l, X2 , • • • , X q) 

then the permutation set corresponding to this solution has 

elements. 

x '. 
q 

For q = 3, for example, there are three solutions to the abo~e 
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equation: (0, O, 3), (0, 1, 2) and (1, 1, 1). The c9rresponding types 

of permutation sets have 1, 3 and 6 points respectively. 

For q = 4 there are the five solutions: (p, 0, 0, 4), (0, 0, 1, 

3), (0, 0, 2, 2), (0, 1, 1, 2) and (1, 1, 1, 1) with the corresponding 

permutation sets having 1, 4, 6, 12 and 24 points. 

The concept of design factors can also be extended to the q-

component case. Let D be a symmetric design for q components, then D 

is the adjunct ion· of a n1,1mber of permutation sets. Each such set can 

be represented by a number of design factors. The number of design 

factors required to define a given permutation set may be deduced as 

follows. Let (x1 , x2 , ••• , xq) be the solution to the above mentioned 

equation which corresponds to the tyPe permutation set in question. 

Then the Let k be the number of nonzero integers in (x1 , x2 , ••. , xq). 

number of design factors required to define the permutation set is 

k - 1. 

For example, with q 3, the number of factors required to define 



a 6-point set with corresponding solution (1, 1, 1) is 3 - 1 = 2 and 

the number of factors for a 1-point set with solt1tion (0, O, 3) is 

1 .. 1 = o. 

With q = 4, the number of factors required to define a 12-point 

set with solution, (O, 1, 1, 2), is 3 .. 1 = 2. ~nd w.ith q = 5, the 

number of factors required to define a 10-point set corresponding to 

the solution, (0, 0, 0, 1, 4), is 2 - 1 = 1. 
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To pursue the search for opttmum designs for q-component mixtures 

it would be necessary to find the functional relationship between the 

criterion measure, e.g., average variance, and the design factor.s as 

was done for the case of three components. The developments in 

Chapters IV and V and the search programs woulp then ):lave to be mod:-

ified to incorporate these changes. Similarly such modifications would 

be required if the three-component problem were extended to the case of 

cubic or higher order models. 
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APPENDIX A 



c 
c 
c 
c 
c 
c 
c· 
c 
c 
c 
c 
c 
c 

c 
1000 

900 

850. 

800 

700 
801 

802 

LATTICE SEARCH PROGRAM FOR OPTTMUr,.1 GENfRALI7ED 
VARIANCE DESIGNS 

I/GENERALIZED VARIANCE OF svrv,~ETRIC DESIGNS 
FOR ~IXTURES OF THREE COMPONENTS 

INPUT 
rARn 1 ENTERED FOR EACH COMPUTER RUN 

D3 = SIZE INCREMENTS IN Fl 
D6 = SIZE INCREMENTS IN F312 
LOOK = NO• OF DESIGNS TO OUTPUT 
FORMATC2FlO.O,I2) 

<"ARD 2 ONE F.OR EACH PROBLEM 
NG= NO. CENTER POINTS 
NT= NO. 3-POINT SETS 
NZ= NO. 6-POJNT S~TS 
FORMATC313l 
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DIMENSION KC20),MAX!20l,NC!20),Cl<l60),Dl!l60l;Fl!l60) 
DIMENSION Z2(2000),Z312000l,C2!2000),D2!2000),F2(2000) 
DIMENSION ADET!40l,Zl(l60) 
DIMENSION A!40,20) 
SET UP C,D AND F ARRAYS 
READ!5,900) D3,D6,LOOV 
FORMAT(2FlO.O,I2) 
IF!D3.LT.O.Oll D3~.0l 
IF!D6.LT.0.02) D6=0.02 
WRITE!6,850) D3,D6 
FORMAT!4HlD3=,F6.3,1X,3H06=,F6.3//) 
R2=SQRT < 2. > '· 
R3=SQRTC3.) 
R6=SQRT(6.) 
NCNT1=2 
NCNT2=1 
LEAST=O 
MOST=O 
Cl<ll=0.5 
Dl ( 1 l =R3/12.0 
Fl< l) =0.041:66667 
Zl<ll=leO 
X=-0.5-D3 
u1x=1.o-.001 
X=X+D3 
IF(X.GE.UlX> GO TO 700 
NCNT2=NCNT2+1· 
Cl(NCNT2l=X*~2/2.0 
Dl(NCNT2)=R3*X**3/12.0 
Fl<NCNT?.l=X**4/24.0 
Zl<NCNT2)=X 
GO TO 800. 
WRITE!6,801)NCNT2 
FORMAT(7H0NCNT2=,Il0/9X,l~X,6X,7X,1HC,14X,1HD,14X,1HF> 
DO 802 J=l,NCNT2 , 
WRITE<6,803> Zl(J>~ClCJ>,blCJ),FlCJ> 



c 

803 

600 

500 

FORMAT<lX,Fl0.2,5X,3El5~8) 
X=-l.O/R2-D6 
B=-l.O/R2+.0001 
X=X+D6 
IF(X.GT.O.O) X=O.O 
Y=O.O-D6 
X2=X**?. 
UY=-3.0*X 
RB=UY-. 0•)01 
Y=Y+D6 
IF(Y.GT.UY) Y=UY · 
MOST=MOST+l 
C2<MOSTl=<X**2+3e*X2l/6.0 
D2(MOST)=(X2-Y**2l*X/(4.*R6) 
F2<MOST)=(C2(MOST)l**2/12.0 
Z2(MOSTl=X 
Z3CMOST)=Y 
IFCXeLE.Bl LEAST=LFAST+l 
IF(YeLT.BBl GO TO 500 
IFCX.LT.0.0) GO TO 600 
WRITEC6,~01)LEAST,MOST 

501 FORMATC8H0LEAST =,T10,5X,6HMOST =,Il0/9X,1HX,9X,1HY, 

502 
503 

504 

16X,7X,1HC,14X,1HD,14X,1HFl 
DO 502 J=l,MOST 
~vRITEC6,503)Z2(J) ,Z3(J) ,C2(J) ,D2(J) ,F2( J) 

FORMAT(lX,2FI0.2,5X,3El5.8l 
\<JR ITE ( 6, 504 l 
FORMAT( lHl l 
SET UP PARAMETERS FOR THE GIVFN CLASS OF DEStGNS 

40 READ(5,50l NG,NT,NZ 
50 FORMAT(313l 

DO 51 I I=l ,LOOK 
51 ADET( II l=O.O 

NDCNT=O 
NVAR=NT+NZ 
NFAC=NT+2*NZ 
N=NG+3*NT+6*NZ 
XN=N 
DO 52 J=l,NVAR 

52 NC(Jl=2 
IF<NT.EQ.Ol GO TO 54 
DO 53 J=l,NT 

53 MAXIJ)=NCNT2 
54 IFCNZ.EQ.Ol GO TO 56 

Jl=NT+l 
DO 55 J=Jl,NVAR 

55 MAX(J)="40ST 
56 IF<NT.C.T.Ol GO TO 57 

MAX(l)=LEAST 
GO TO 60 

57 IFCNZ.GT.O) GO TO 58 
IFCNT.LT.2) GO TO 58 
MAX(l)=NCNTl 
NCC2l=l 

/ 
' / 

;/ 
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GO TO 60 
58 Jl=NT+l 

NCIJI>=l 
60 WRJTE16,61) NG,NT;NZ,IJ,J=l~NFACl 
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61 FORMAT143H01/GENERALIZED VARIANCE ·oF DESIGNS FROM ~HE, 
19H CLASS Sl,3J3,lH)/4X,9Hl/GEN VAR,19,91111 

C ITERATIONS 
J=l 

1 K(Il=O 
2 K(J+ll=K<Il 

K(Jl=Kll)+l 
J=J+l 
JFII.GT.NVAR) GO TO 100 
NN=NCII) 
GO TO 11,21, NN 

5 I=I-1 
IFII.EQ.O) GO TO. 7 
IF<NCII).EQ.2) GO TO 6 
IFII.LF..NT> GO TO 6 
MAX(I)=LEAST. 
IF(K(l).LEo2) MAX<I>=MOST 

6 J FI K ( I l • LT• MAX ( I > > GO TO 2 
GO TO 5 

C OUTPUT 
7 DO 8 11=1,LOOK . 
8 WRITE(6,9) ADET(TT),(A(JI,J),J=l,NFACl 
9 FORMATl1X,El5.8,10Fll.8) 

WRJTF16,10)LOOK,NDCNT 
10 FORMAT(5HOBEST,13~3H OF,Il0,8H DESIGNS//) 

GO TO 40 
C CALCULATE I/GENERALIZED VARIANCE 

100 C=O.O 
D=O.O 
F=O.O 
NDCNT=NDCNT+l 
IF(NT.EQ.O) GO TO 110 
DO 105 J=l,NT 
L=K(J) 
C=C+Cl< Ll 
D=D+Dl< Ll 

105 F=F+F 1( Ll 
110 IF(NZ.EQ.Of G6 TO 120 

Jl=NT+l 
DO 115 J=Jl ,NVAR 
L=K(J) 
C=C+C21L> 
D=D+D21L) 

115 F=F+F2(Ll 
120 DET=4.0*(2.0*XN*F-C**2l*CC*F-D**2l**2 

LL=l 
DO 130 11=1,LOOK . 
IFCADETCIIl.LT.ADET(LLll LL=JI 

130 CONTINUE 
IF(DET.LE.ADET<LLll GO TO 140 



ADET ( Lll =DET . 
IF(NT.EQ.O) GO TO 135 
DO 131 I I=l,NT · 
L=K(II> 

131 A(LL,JI>=Zl(L> 
135 IF(NZ.F0.0) GO TO 140 

Jl=NT+l 
J2e:NT-l 
00 136 II=Jl,NVAR 
J2=J2+2 
J3=J2+1 
L=K(II) 
A(LL,J2)=Z2(ll 

136 A(LL,J3):Z3(L) 
140 GO TO 5 

END. 
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LATTICE SEARCH PROGRAM FOR OPTIMUM AVERAG~ 
VARIANCE DESIGNS 

C AVERAGE VARIANCE OF SY~ETRIC DESIGNS 
C FOR MIXTURES OF THREE CO~PONENTS 
C INPUT 
C CARD 1 ENTERED FOR EACH COMPUTER RUN 
C D3 = SIZE INCREMENTS IN Fl 
C D6 = SIZE INCREMENTS IN F312 · 
C THETA= RATIO OF O Tn R 
C LOOK = NO. OF DESIGNS OF EACH TYPE 
C ID AND D*l TO OUTPUT 
C FORMATC3Fl0.0,I2l 
C CARD 2 ONE FOR EACH PRORLFM 
C ~G =NO.CENTER POINTS 
C NT= NO. 3-POINT SETS 
C NZ= NO. 6-POINT SETS 
C FORMAT!3I3l 
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DIMENSION Z2C200U),Z3!2000l,C2(2000),D2(2000),F2(2000) 
DIMENSION KC201,MAXC20),NC(20),ClC160),Dl!l60l,FlC160) 
DIMENSION AC40,20) ,ZF! 20) ,COSIN(20l ,MIC40,20) ,AVAR(40) 
DIMENSION Arl~T(40),Z1Cl60) 

C SET UP C,D AND F ~RRAYS 
1000 READ!5,900) D3,D6,THETA,LOOK 
900 FORMATC3Fl0.0,I2l 

IFCTHETA.LE.O.) THETA=l. 
IF!D3.LT.O.Ol) D3=.0l 
IF(D6.LT.0.02) D6=0.02 
D3=D3*THETA 

850 

800 

D6=D6*THETA 
WRITEC6,850) D3,D6,THFTA 
FORMAT!4HlD3=,F6.3,JX,3HD6=,F6.3,1X,6HTHETA=tF6.3/(l 
R2=SORTC2.) 
R3=SQRTC3.) 
R6=SORT!6.) 
IFCLOOK.GT.40) LOOK=40 
NCNT1=2 
NCNT2=1 
LEAST=O 
MOST=O 
C1Cll=THETA**2/2. 
D1Cll=R3*THETA**3/12• 
F1Cll=TH~TA**4/24. 
Zl{ll=TH~TA 
X=-0.5*THETA-D3 
UlX=THETA-.001 
X=X+D3 
IFCX.GE.UlXl GO TO 700 
NCNT2=NCI\JT2+1 
ClCN(NT2)=X~*2/2.U 
DlCNCNT21=R3*X**3/12.0 
FlCNCNT2)=X**4/24.0 



Zl I NCNT 2 l =X 
GO TO 800 

700 WRITE16,80llNCNT2 
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801 FORMATl7HONCNT2=,Il0/9X,1HX,6X,7X,1HC,14X,1HD,14X,1HF) 
DO 802 J=l,NCNT2 

802 WRITEC6,803l ZlCJl;ClC,Jl,l)l(Jl,FllJl 
803 FORMAT(lX,FlC.2,5X,~~1~.A) 

. X=-THFT.t\/R2-D6 
B=-THETA/R2+~001 

600 X=X+D6 
lFIX.GT.O.O) X=O.O 
Y=O.O-D6 
X2=X**2 
UY=-3.0*X 
BB=UY_-.0001 

500 Y=Y+D6 
IFCY.GT.UYl Y=UY 
MOST=~!OST+l 
C2CMOSTl=CY**2+3.*X2l/6.0 
D2CMOSTl=IX2-Y**2l*X/!4e*R6) 
F2CMOST)=CC2CMOST))**2/12.0 
Z2(MOST)=Y 
Z3(MOST)=X 
IF(X.LE.Rl LEAST=LFAST+l 
IF(Y.LT~RBl GO TO 500 
IFCX.LT.O.Ol GO TO 600 
WRITE(6,50llLEAST,MOST 

501 FORMATCBHOLFAST =,I10,5X,6HMOST =,Il0/9X,lHX,9X,lHY, 
16X,7X,1HC,14X,1HD,14X,1HF) 

DO 502 J=l,MOST 
502 WRITFC6,503)Z2(Jl ,?~CJ) ,C2(J) ,D2(Jl ,F2CJ) 
503 FOR~AT!lX,2Fl0.2,~X,3El5.8l 

WRITE!6,504) 
504 FORMATClHll 

C SET UP PARAMETERS_ FOR THE-GIVEN CLASS OF DESIGNS 
40 READC5,501 NG,NT,NZ 
50 FORMATC3I31 

DO 51 II=l,LOOK 
AVARCII1=99999999. 

51 ADETCIIl=99999999. 
NDCNT=O 
MDCNT=O 
NVAR=I\IT+NZ 
NFAC=I\IT+2*NZ 
N=NG+3*NT+6*NZ 
XN=N 
DO 52 J=l,NVAR 

52 NCCJl=2 . 
IFCNT.EQ.Ol .GO TO 54 
DO 53 J=l,NT 

53_MAX(J)=NCNT2 
54 IFCNl.EQ.Ol GO TO 56 

Jl=NT+l 
DO 55 J=Jl,NVAR 



55 MAX(J)=MOST 
56 IFCNT.GT.Ol GO TO 57 

M.AX ( 1) =Ll=AST 
GO TO 60 

57 IFCNZ.GT.Ol GO TO 58 
IFCNT.LT.2l GO TO 58 
M.A.XCl )=NCNTl 
NCC2l=l 
GO TO 60 

58 Jl=NT+l 
NC{Jll=l 

60 WRITEC6,6ll NG,NT,NZ,CJ,J=l,NFACl 
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61 FORMAT(43HO AVER.AG!= VARIANCE OF DESIGNS FROM THE, 
19H CLASS S(,3I3,1H)/4X,9H AVG VAR,!9,9111) 

C ITERATIONS 
I=l 

1 K(Il=O 
2 KCl+l)=KCil 

K(Il=K(Il+l 
I=I+l 
IF(I.GT.NVAR) GO TO 100 
NN=NCCil 
GO TO Cl,2), NN 

5 I=I-1 
IF(I,EQ.Ol GO TO 7 
IFCNCCI).EQ.2) GO TO 6 
IFCI.LE.NTl GO TO 6 
MAXCI)=LEAST 
IFCKCl).LEe2l MAXC!l=MOST 

6 IFCKCJ).LTeMAXCI)) GO TO 2 
GO TO 5 

C OUTPUT 
7 DO 8 II=l,LOOK 
8 WRITEC6,9l ADETCII),CACII,Jl,J=l,NFAC) 
9 FORMATC1X,El5.B,10Fll.8) 

WRITEC6,10lLOOk,NDC~T 
10 FORMAT{5HOBEST,I3,3H OF,110,BH DESIGNS//) 

DO 11 IT=l,LOOK 
11 WRITEC6,9) AVAR(Ill,CAA(II,Jl,J=l,NFAC) 

WRITE<6,10l LOOK,MDCNT 
GO TO 40 

C CALCUL.ATF AVERAGE VARIANCt 
100 C=O.O 

D=O.O 
.F=O.O 
NDCNT=NDCNT+i 
IFCNT.EQ.O) GO TO 110 
DO 105 J=l,NT 
L=K(Jl 
C=C+Cl(U 
D=D+Dl(LJ 

105 F=F+F-1 ( L > 
110 IF(NZ.EQ.O) GO TO 120 

Jl=NT+l 



DO 115 J=Jl,NVAR 
L=K(J) 
C=C+C2(Ll 
D=D+D2(Ll 

115 F=F+F2(Ll 
120 FMCS=2.*XN*F-C**2 

CFMD=C*F-D**2 
FMCS=ABS(FMCS) 
CFMD=ABSCCFMD) 
IF!FMrS.LT.0.00001) GO TO 5 
IF!CFMD.LT.0.00001) GO TO 5 
DET=(720.*F-30.*C+XNl/(360e*FMCS) 
DET=DET+(30.*F-4.*R3*D+C)/(360.*CFMD) 
IFCNT.EQ.Ol GO TO 135 
DO 131 I T = l , NT 
L=KCIIl 

131 ZF(ll)=Zl(Ll 
135 IFCNZ.EQ.O) GO TO 140 

Jl=NT+l 
J2=NT-1 
DO 136 II=Jl,NVAR 
J2=J2+2 
J3=J2+1 
L=KCI!l 
Z F. C J 2 ) = Z 2 < L l 

136 ZF(J3)=Z3<L) 
140 SZF=O. 

DO 141 II=l,NFAC 
141 SZF=SZF+ZF<IIl**2 

SZF=SQRTCSZF) 
DO 142 II=l,NFAC 

14 2 COS IN ( I I l = Z F C J I ) I 5 7 F 
G4=XN/C360.*FMCS)+C/C360.*CFMDl 
G3=-R3*D/!120.*CFMD> 
G2=F/Cl2.*CFMDl-(/Cl2.*FMtS) 
LL=l 
DO 130 II=l,LOOK 
IFCADET!IIl.GT.ADETCLLll LL=II 

130 CONTINUE 
IF(DFT.GE.ADETCLL)) GO TO 150 
ADETCLL)=DET 
DO 145 II=l,NFAC 

145 A!LL,IIl=ZFCII) 
150 DSCMNT=9.*G3**2-32.*G2*G4 

IF!DSrMNT.LE.O.) GO TO 5 
DSCMNT=SQRTCDSCMNT) 
RHO=C-3.*G3+DSCMNT)/(8.*G4) 
·JF(RHO.LE.l.) GO TO 5 
·RSTAR=SZF/RHO 
DO 160 II=l,NFAC 

160 ZF!II)=RSTAR*COSIN(II) 
C=O. 
D=O. 
F=O. 
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IF<NT.EQ~OJ GO TO 17C 
DO 165 11=1,NT 
C=C+ZF < I I> **2 .· 
D=D+ZF(lll**3 

165 F=F+ZF(Ill**4 
C=C/2. 
D=D*R3/12. 
F=F/24. 

170 It<NZ.EQ.O) GO TO 180 
Jl=NT+l 
DO 166 II=Jl,NFAC,2 
C=C+(ZFCII>**2+3.*ZFCII+ll**2)/6e 
D=D+(ZFCI1+1>**2-ZF(IIl**2l*ZF(JI+llr(4.*R6) 

166 F=F+ ( ZF < H l **2+3.*ZF (.II +l > **2 > **2/432. 2) 

180 FMCS=2.*XN*F-C**2 
CFMD=C*F-D**2 
MDCNT=MDCNT+l 
VAR=(720.*F-30.*C+XNl/(360.*FMCSl 
VAR=VAR+(30.*F-4e*R3*D+Cl/1360e*CFMDJ 
LL=l < 
DO 190 IJ=l,LOOK 
IF(AVARIIIl.GT.AVAR(LLll LL=II 

190 CONTINUE 
IF(VAR.GE.AVAR(LLll GO TO 5 
AVAR(LLl=VAR 
DO 200 II=l~NFAC 

200 AA(LL,Ill=ZF(II) 
GO TO 5 
END 
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PATTERN SEARCH PROGRAM Foq OPTIMUM AVERAG~ 
VARIANCE DESIGNS 

C INPUT 
C CARD 1 
C NG= N0. CENTER POINTS 
C NT= NO. 3-POINT SETS 
C NZ~ NO. 6-POINT SETS 
C MCALC = MAX~ NO. ITERATIONS 
C TOL = SMALLEST CHANGE IN FACTORS 
C THETA= RATIO OF Q TOR 
C FORMATl3I3,1X,I5,2Fl0.0l 
C CARD 2 
C Dill= THF T+2S <NT+2NZI STEP SIZES 

FORl'vJAT(.8FlO.O) 
C rARD 3 
C B<I> = THE T+2S CNT+2NZl STARTING VALUES 
C FORMAT(5F15.Q). 

DIMENSION B ( 2, 10 l , T< 10, 10 l , D ( 10 ) , X ( 10 ) 
R2=SQRT(2.0) 
R3=SQRT<3.0) 
R6=SQRT<6.0) 

1 READ<5,2) NG,NT,NZ,MCALC,TOL,THETA 
2 FORMAT<3I3,1X,I5,.2F10.U) 

K=NT+2*NZ 
NV.A.R=NT+I\JZ 
READ<5~3l<D<Il,l=l,Kl 

3 FORMAT(8F10.0) 
IFID(ll.EQ.O.OISTOP 
DO 4 I=2,K 
J~(D(Il.tO.O.OlD(J)=Dlll 

4 CONTINUE 
READ I 5, 5 > < B < 1, I > , I= 1, K) 

5 FORMATC5F15.0) 
WRITE(6,6)NG,NT,NZ,MCALC,TOL,THETA,CI,I=l,K) 
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6 FORMAT(43H1SEARCH FOR MIN AV~ VAR DESIGN IN THE CLASS, 
13H S<,3I~,1H)/1X,14HMAX NO TRIALS=,110/lX, 8HSMALLEST, 
210H INTFRVAL=,Fl0.B/1X,6HTHETA=,F10.4/5X,7HAVG VAR,4X, 
310(J6,5Xll 

JCALC=O 
XU= THl:T A _, 
XL=-0.5*THETA. 
YL=THETA*<-J.O)/R2 
XN=NG+3*NT+6*MZ 

C ESTABLISH PATTERN 
100 DO 101 I=l,K 

Tll,I.>=B(l,Il 
101 X(Il=B<l,I> 

CALL AVARINT,NZ,NVAR,IC~LC,R2,R3,R6,XU,XL,YL,X,VAR, 
lMCALC,XN> 

37 VARM=VAR 
5 0 DO 11 0 I = l , K 



DO 109 J=l,2 
JJ=J+J 
DO 1C2 L=l,K 
IFCI.EQ.l)GO TO 33.· 
TCI ,L>=TCI-1,L) 

33 XCL>=TCI,L> 
IF(L.EQ.IJ X<Ll~TCI,Ll+(-1.0)**JJ*DCL) 

102 CONTINUE 
CALL AVAR(NT,NZ,NVAR,ICALC,R2,R3,R6,XU,XL,YL.x,vAR, 

lMCALC,XNl 
IFCICALC.r,T.MCALC1 .GO TO 1 

34 IF(VAP.~~.VAR~)GO TO 109 
VARM=VAR 
DO 103 L=l,K 

103 T(l,LJ=XCL> 
GO TO 110 

109 CONTI !\JUE 
110 CONTINUE 

ICHK=O 
DO 111 I= 1, K 
8(2,lJ=T(K,I.l 
DIF=ABS(B<l,I >-BC2,I.l 1· 
IF(DIF.LT.Oj00000002)JCHK=ICHK+l 

111 CONTIMUE 
IF(ICHK.LTeK)GO TO 500 
DO 112 I=l,K 
D( I l=D( I) /2.0 
IF<D(I).LTeTOL)GO TO l 

112 CONTINUE 
GO TO 100 

C PATTERN MOVES 
500 DO 501 I=l,K 

TC1,I)=2.0*B(2,I)-B(l,I) 
501 X<I>=T(l,I) 

CALL AVAR(NT,NZ,NVAR,JCALC,R2,R3,R6,XU,XL,YLtX,VAR, 
lMCALC,XN) 

IF(ICALC.GT.MCALCl GO TO 1 
35 V1\Rl=VAR 

DO 5 lC I= 1, K 
DO 509 J=l,2 
JJ=J+l 
DO 502 L=l,K 
IF(I.EQ.l) GO TO 53 
T( I ,Ll=T( I-1,L> 

53 XCL)=HI,L> 
IFCL.FQ.I)XCL)=TCJ,L>+<-l.O>**JJ*D(L) 

502 CONTlNUE 
CALL AVAR(NT,!\JZ,NVAR,JCALC,R2,R3,R6,XU,XL,YltX,VAR, 

lMCALC,XNl 
IF(ICAL(.r,T.MCALC) GO TO 1 

36 IFCVAR.GF.VARl)GO TO 509 
·vARl=VAR 

DO 503 L=l,K 
503 TCJ,L)=X(L> 
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509 
510 

511 

512 

513 

GO TO 510 
CONTINUE 
CONTINUE 
IFCVARl.GTeVARM)GO TO 512 
VARM=VARl 
DO 511 I=l,K 
B(l,I )=BC2,I l 
8(2,I)=T!K,Il 
GO TO 500 
DO 513 I=l,K 
BC1,I)=BC2,Il 
TCl,I)=BCl,I) 
DCil=DCI)/2.0 
IF ID C I l • LT• TOL l GO TO 1 
CONTI /\IUE 
.GO TO 50 
END 

SUBROUTINE AVARCNT,NZ,NVAR,ICALC,R2,R3,R6,XU,XL,YL,X, 
lVAR,MCALC,XN) 

DIMENSION XClO) 
700 ICALC=IC~LC+l 

K=NT+2*NZ 
IF(ICALC.GT.MCALClGO TO 802 
IFINT.EQ.O) GO TO 705 
DO 701 I=l,NT 
IFIXCil.GT.XU)GO TO 800 
IF(XCI).LT.Xll GO TO 800 

701 CONTINUE 
705 IF(NZ.EQ.Ol GO TO 710 

Jl=NT+l 
J2=NT'-l 
DO 706 I=Jl,NVAR 
J2=J2+2 
J3=J2+1 
IFCXCJ3).LT.YL)GO TO 800 
IFCXIJ3).GT.O.O) GO TO 800 
IF(X(J2).LT.O.O) ~o TO Pnn 
YU=-3.0*XCJ3) 
IFCXCJ2).GT.YU)GO TO 800 

706 CONTINUE 
710 CC=O.O 

DD=O.O 
FF=O.O 
IF(NT.EQ.Ol GO TO 720 
DO 715 I=l,NT 
CC=CC+X(Il**212.0 
OD=DD+R1*X<Il**3/12.0 

715 FF=FF+X(Il**4/24.0 
720 IF(NZ.EQ.Ol GO TO 735 

Jl=NT+l 
J2="lT-l 
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DO 725 .I=Jl,NVAR 
J2=J2+2 
J3=J2+1 
CC=CC+<X<J2)**2+3.0*X(J3l**2l/6•0 
DD=DD+(X<J3)**2-XfJ2l**2l*X(J3)/(4.0*R6) 

725 FF=FF+(X(J2l**2+3.0*X(J3l**2l**2/432.0 
735 FMCS=2.0*XN*FF-CC**2 

IF(FMrS.LT.0,0000001) GO TO 800 
CFMO=rC*FF-DD**2 
IF(CFMD.LTeO.OOOOOOl)GO TO 800 
VAR=(720.0*FF-30.0•CC+XN)/(360.0*FMCS) 
VAR=VAR+(30.0*FF-4.0*R3in~+CC)/(360.0*CFMD) 
GO TO 801 

800 VAR=99999999.0 
801 WRitEC6,7)VAR,CXCl),I=l,K) 

7 FORMAT(lX,El5.8,10Fll.8) 
802 RETURN 

END 
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SAMPLE OUTPUT FROM LATTICE SEARCH PROGRAM FOR 

OPTIMUM AVERAGE VARIANCE DESIGNS 

94 

The output below was obtained from a search in the design factor 

space, F = F~F312 , corresponding to 12-point designs i~ the subclass 

S[O, 2, l]. The search was conducted on a grid of increments of 0.1 in 

the design factors. 

Output for each design consists of the average variance, AV, and 

the corresponding point in F: 

The first five points below are from B(F), that is from the region 

of F corresponding to designs having some points on the boundary of R. 

These five were the best of 5546 such points investigated. The last 

five points correspond to designs with no points on the boundary of R. 

These were the best of 53 ·such points found in the 5546 cases cori.si<;ler-

ed.· 

AV Y1 Y2 Y31 Y32 

0.27663 1.000 -0.400 0.000 -0.707 

0.27685 1.000 -0.400 0.100 -0. 707 

0.27755 1.000 -0.400 0.200 -0,707 

o. 27778 1.000 ..,.Q.500 0.000 -0.707 

o. 27793 1.000 -0.300 0.000 -0.707 

0.85705 0.798 0.898 1.097 -0.705 

0.95025 . 0.885 0.885 1.180 -0.695 

1.04110 o. 778 o. 778 0.972 -0.687 

1.09145 0.767 0.863 1.151 -0.678 

1.13056 0.692 0.890 1.285 -0.699 
/ 
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N 

6 

7 

8 

9 

10 

11 

12 

13 

14 

TABLE X 

SOME "NEAR OPTIMUM" AVERAGE VARIANCE DESIGNS·IN R 
SELECTED FRO~ LATTICE PROGRAM OUTPUT 

AV r xl x2 

0.68995. 1 o.500 0.500 
1 0.033 0.033 

o. 5:3116 1 0.333· 0.333 
1 0.500 0.500 
1 0.033 0.033 

0.46835 2 0.333 0.333 
1 0.500 0.500 
1 0.033 0.033 

0. 396 79 1 0.000 0.000 
1 0.047 0.382 

0.36273 1 0.333 0.333 
1 0.000 0.000 
1 0.047 Q.382 

0.34121 2 0.333 0,333 
1 0.000 0.000 
1 0.047 0.382 

0.27997 1 0.000 0.000 
1 0.500 0.500 
1 0.047 0.429 

0.26349 1 0.333 0.333 
1 0.000 0.000 
1 0.500 0.500 
1 0.047 0.429 

0.24804 2 0.333 0.333 
1 0.000 0.000 
1 0.467 0.467 
1 0.000 0.406 
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X3 

0.000 
0.934 

0.333 
0.000 
0.934 

0.333 
0.000 
0.934 

1.000 
0.571 

0.333· 
1.000 
0.571 

0.333 
1.000 
0.571 

1.000 
0.000 
0.524 

0.333 
1.000 
0.000 
0.524 

0.333 
1.000 
0.066 
0.594 
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