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PREFACE 

This research is concerned with the problem of accu­

racy of industrial electronics inspectors on a visual 

isnpection task. In conducting the study, it was neces­

sary to develop a decision model for inspector accuracy in 

order to assure that satisfactory and complete measures of 

performance were used in reporting the experimental re­

sults. Reporting of inspector accuracy is usually treated 

in terms of the percentage of correct detections of non­

conforming product without equal consideration for the 

number of times good product is correctly identified. 

This results in an incomplete picture of the total 

situation. 

As the result of this study~ I feel that the 

signal detection model is most suitable for analyzing 

problems of inspector accuracy. The model formalizes and 

unifies the elements of the inspector accuracy problem 

and, thus, provides a convenient framework within which 

the experimenter can work. It is hoped that the identifi­

cation of the magnitude of error in correctly identifying 

conforming product and the treatment of visual inspection 

as a possible vigilance task will alert the professional 

quality control person to the significance of these 
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elements and so give them more weight in inspection per­

formance improvement efforts. 
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CHAPTER I 

INTRODUCTION 

The purpose of this research was to study the per­

formance of industrial inspectors both in detecting de­

fects and in identifying acceptable product. As will be 

shown later, most research related to inspection perfor­

mance considers defect detection to the complete exclusion 

of performance quality in product acceptance. The result 

is that the only inspection performance measure available 

to industrial management is the number of defects missed. 

This criterion does not fully establish the quality of in­

spector performance. 

The experimental design used in this stµdy provided 

for the collection of data pertinent to the ability of the 

industrial inspector to accept good product as well as to 

detect defects. As a result, the secondary task of the 

research became that of studying performance criteria,:, 

which accommodate both of these elements of the inspection 

task and evaluating their utility to industrial manage­

ment. A useful inspector performance criterion is one 

that not only enables the inspection supervisor to meet 

his responsibility for utilizing his personnel to the best 

possible advantage, but also is one which company 
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executives can readily use in communicating with the cus­

tomer concerning the quality of performance of the inspec­

tion function. 

Before suitable performance criteria can be defined, 

the magnitude of inspection error, both in detecting 

defects and in identifying acceptable product, must be 

quantified for a range of inspection tasks_. This research, 

which is con.cerned with a visual inspection task performed 

by electronics inspectors, is a start toward that 

objective. 

The Inspection Task Model 

A visual inspection situation may be modeled in the 

following manner. Visual inspection, as a processing task, 

is defined as the aided or unaided observation of details 

without measurement to determine the conformance and com­

pleteness of the part of finished product (18). The in­

spector is required to separate the fraction of the input 

that is nonconforming with respect to applicable specifi­

cations, drawings, and workmanship standards, and forward 

to the user only the conforming items (Figure 1). Thus, 

the process input can be represented as follows: 

I = Po I + qo I (1) 

where: 

I= total input 

Po= fraction of nonconforming items 



INPUT PROCESSOR 

Product Items J Inspector 
or ----, visually -

Characteristics inspects 

Specifications 
Drawings 

Workmanship Standards 
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OUTPUT 

{
Conforming Items 

or 
Characteristics 

{
Nonconforming 

Items or 
Characteristics 

Figure 1. Inspection Task Model 



q0 = fraction of conforming items = 1 - p 0 • 

In the inspection task it is desirable to identify 

correctly all the nonconforming items and segregate them 

from the conforming items. The inspector may err in this 

identification process in either or both of two ways: he 

may classify conforming items as being nonconforming, a 

Type I error; or he may classify nonconforming items as 

being conforming, a Type II error. 

4 

If p 1 is designated as the probability of a Type I 

error and p2 is designated as the probability of a Type II 

error, then a probability matrix can be constructed for 

the inspection process as follows: 

Prod­
uct 
Mix 

where: 

qo 

Po 

1- P1 

Decision Based on Inspection 

.Accept Reject 

Conforming ( l-P1 )qo qo CP1) 

Nonconformin, P2Po (l-P2 )po 

Total ( l-P1 ) ~ + P2 Po ~P1 + Po (l-P2) 

:::: a priori probability of conforming product 

in an inspection lot 

= a priori probability of nonconforming 

product in an inspection lot = (1- ~) 

== probability of a correct acceptance 

decision for conforming product 

1 - p2 = probability of a correct reject decision 

for nonconforming product. 

Total 

qo 

Po 

1 I 
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The products in each cell of the matrix are the joint 

probability elements of the conditional probability state-

ments associated with each stimulus-response combination 

of the matrix. These statements are of the form 

· £1X • Y) P(XIY) = P(Y) • (2) 

The following conditional probability statements can be 

written for the probability matrix for inspector decisions: 

P (Accept 1 Conforming) = ( 1 - Pl ).9.o 
qo 

P (Reject l Nonconforming)= ( 1 -p~2 2:20. 

P (RejectlConforming) = 9.o (p, ) 
qo 

P (Accept!Nonconforming) = P.o.l?2... 
Po 

Statement of the Problem 

( 3) 

(4) 

(5) 

(6) 

Development of the probability matrix leads to iden-

tification of the basic questions whose answers are sought 

by this research. 

The questions are as follows: 

1. Does the a priori probability of a non­

conforming item affect inspector perfor­

mance? Stated another way, is inspector 

performance independent of the fraction 

defective of the product mix? 

2. For a given range of a priori probabilities 



of non-conformance, is there an inspector 

performance decrement over time that does 

not exist over another range of a priori 

probabilities of nonconformance? 

3. What performance measures are most useful 

in describing the results obtained in 

answering questions one and two? 

6 

The balance of this chapter deals with the importance 

of these basic questions, while Chapter II reviews the 

literature on inspection accuracy. As question number two 

relates to the problem of vigilance performance decrement, 

Chapter III presents those aspects of the subject that 

relate to the inspection task. As the research problem 

relates to the theory of signal detection by human ob­

servers, Chapter IV discusses the inspection task in the 

framework of this theory. In Chapter V are presented a 

number of criteria found useful in describing the quality 

of performance of industrial inspectors. The experimental 

design for collecting and analyzing the data required for 

answering the basic questions is described in Chapter VI. 

Results of the experiment and their analysis are presented 

in Chapters VII and VIII. Chapter IX summarizes the re­

search and suggests additional experiments which may aid 

in answering questions arising from this work. 

Importance of the Problem 

The area of concern here is that of industrial 
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inspection wherein the inspector with high error rates can 

cause extensive damage by failure to identify defective 

material. If such material, known as "escapes" in indus­

trial terminology, is used in subsequent assembly opera­

tions, it may cause serious damage to material or injury 

to personnel. 

Although the technology of the industrial inspection 

has made rapid advances in the past few years, there still 

exists a large amount of waste resulting from inspector 

error. Inspection processes that seem to be associated 

with high error rates are those in which the inspector 

plays a passive role. A by-product of this situation is 

loss of attention or vigilance on the part of the inspec­

tor. Because of his loss of attention, he may fail to 

recognize nonconforming quality characteristics (Type II 

error) and may even fail to recognize conforming charac­

teristics (Type I error). 

Research in the area of industrial inspection has 

been minimal. What has been accomplished is, according 

to one author (22), characterized by incomplete reporting 

and inadequate experimental design. There has also been 

raised the question as to what constitutes a proper meas­

ure of accuracy for industrial inspectors. 

The inspection problem is essentially the same as the 

signal detection problem in military operations and it ap­

pears that signal detection theory as applied to human 

observers has considerable merit in the examination of 
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inspection accuracy. This subject is discussed in Chapter 

IV. 

The developing theory of vigilance has a number of 

implications for the inspection problem cited. Psycholo­

gists studying problems of monitoring radar screens, 

control panels, etc., have found that, at best, man is a 

poor monitor under a variety of conditions (3). Vigilance 

in this sense denotes man's degree of attention to his 

monitoring task. Therefore, a vigilance task is one in 

which the observer of a sequence of signals attempts to 

detect the occurrence of an infrequent, "wanted" signal 

which for some reason must be identified. For instance, 

the "wanted .. signal may be that one blip in a population 

of blips on a radar screen that designates an unfriendly 

aircraft. 

A parallel may be drawn between the vigilance task 

and industrial inspection processes. In the case of crit­

ical quality characteristics, nonconforming items must be 

detected. If these characteristics are designated prior 

to production, then in-process controls may be established 

in an effort to minimize the production of nonconforming 

items. The result should be a low level of defectiveness 

(perhaps p < 1.0%) in an inspection lot presented for 

examination. The inspector who has just inspected a long 

series (k) of these items'may not observe that the (k + 1) 

item is nonconforming. The lack of a defect in the pre­

vious sequence of items whose characteristics conform to 
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specification has resulted in a vigilance decrement such 

that he is not able to detect the existence of the non­

conforming characteristic on i tern (k + I). Vigilance re­

search has revealed that the ~etection of a wanted signal 

serves as reinforcement and so stimulates the subject to 

maintain his initial performance level. It has also shown 

that the introduction of .artificial wanted signals is sig­

nificant in the maintenance of performance levels (8). 

This suggests that in the industrial inspection task there 

should be introduced into the product sequence a number of 

items with known nonconforming characteristics in an ef­

fort to maintain the initial performance level of the 

inspector so as to minimize the likelihood of a vigilance 

performance decrement. 

Introduction of known defectives into the product in­

spection sequence is not new to industrial inspection. 

This effort was made in an attempt to gage an inspector's 

accuracy by comparing known defects found to the number 

introduced. However, there does not appear to have been 

any effort to introduce known defectives into an inspec­

tion lot for the purpose of manipulating the vigilance 

performance of the inspector. 

Summary 

In this chapter there has been presented a probabil­

ity matrix for the inspection tasks, statements of the 

basic questions to be answered in this research, and an 
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indication of the importance of the problem in the area of 

industrial inspection. 

Chapter II contains a review of the literature rela­

tive to inspection accuracy, while Chapter III is devoted 

to the developing theory of vigilance performance. 



C!f.APTER II 

INSPECTOR ACCURACY 

As stated in Chapter I, this research concerns the 

accuracy of inspectors in an industrial environment. Pre­

liminary to the review of related research, it is neces­

sary to describe the industrial inspection process so that 

the problem of accuracy can be put in its proper 

perspective. 

The basis for providing an inspection function in a 

manufacturing organization results f~om the fact that 

humans err and machines do not perform at a constant 

level. The industrial process requires a product design 

which is communicated to the manufacturer in the form of 

drawings and specifications. The design is translated to 

materials, processes, and skills and the product is made. 

Before passing the completed item over to the ulti­

mate user, it is necessary to assure that it conforms to 

design intent. Items not conforming are rejected and may 

be either reworked until they do conform or scrapped. 

The inspection process consists of measuring, exam­

~ning, testing, or otherwise comparing a unit of product 

with the process requirements. The comparison may be made 

either with or without the use of instruments. Instruments 

11 
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consist of one or more of a variety of gages, standard 

measuring devices, or special test equipment. A compari­

son without the use of instruments, generally referred to 

as visual inspection, requires testing by sight, touch, or 

manipulation. It is this latter class of inspection which 

is the concern of this research. 

Thus, the inspection function exists because indus­

trial management recognizes that nonconformances occur in 

manufacturing. Because machine processes are nonconstant 

and humans err, it is necessary to find and identify those 

errors in order to provide a product of satisfactory qual­

ity. In past years, management, although recognizing the 

potential error of the production worker, has failed to 

give adequate recognition to the error potential of the 

inspector. The advent of sampling plans and control 

charts did much to overcome this complete dependence on 

the inspector's accuracy. The philosophy of modern qual­

ity control is that 100 percent inspection is usually 

ineffective and expensive. Yet many organizations revert 

to 100 percent inspection at the start of a new design 

program. In the event of small or short product runs, 

screening all units of product may be the only way to 

assure that quality requirements are met in production. 

Regardless of how small the size of the run or how minimum 

the complexity of the product, inspection error is possi­

ble and, therefore, must be studied in greater depth in 

order to minimize potential costs. This research is 
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designed to be a contribution to that study. 

Review of the Literature 

One of the earliest studies dealing with inspector­

accuracy was that of Tifflin and Rogers in 1941 (28) 

wherein they were concerned with the accuracy of tinplate 

inspectors. In this study, 150 inspectors were each given 

150 plates to examine, of which 61 were defective. Cor­

rect identifications averaged 78.5 percent with a range of 

from 55 to 96 percent. 

In 1945 Lawshe and Tifflin (28) reported a study con­

cerned with inspector-accuracy when reading various 

micrometers and calipers to establish tolerances. The 

percentage of inspectors reading within the required tol­

erances ranged from nine percent to 64 percent for 11 in­

spection tasks. Also, the experimenters found that the 

accuracy of reading a micrometer did not correlate with 

age, experie·nce, or time on the present job. 

Hayes (17) reported on the inspection of piston rings 

for surface defects (sand and gas holes from the foundry) 

with the result of 67 percent inspector-accuracy; i.e., 67 

percent of the nonconforming items were classified as 

such. It is interesting to note that Hayes then sent the 

set of rings back through inspection, and the inspectors 

were led to believe that the lot had been reworked prior 

to being resubmitted. Accuracy then fell to 33 percent 

which indicates some considerable amount of loss of 
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attentiveness on the part of the inspectors. 

A study by Jacobsen (19) on 17 quality control in­

spectors thought to be 95 to 98 percent effective reported 

that these inspectors were only 80.5 percent accurate in 

identifying solder defects and ranged from 32 to 65 per­

cent accurate in identifying wiring and appearance defects 

on a wired unit with built-in defects. In a second exper­

iment (20) wherein 39 inspectors were tested on a similar 

wired unit with built-in defects, the result was 82.8 per­

cent accuracy. 

A number of other studies of inspector--accuracy are 

reported which indicate similar low levels of inspector­

accuracy. For instance, Carter (4) reported on the 

accuracy of inspectors of acoustical tiles. There was a 

visual inspection for defects in fabrication, coating, 

cutting, drilling, or bevelling. The results showed the 

inspectors correctly identified 95 percent of the good 

tiles, but rejected only 76 percent of the defective tiles. 

Ca.rter also pointed out that whereas the tiles were 86 

percent good when received, they were only 96 percent good 

after being inspected, thus realizing only 71 percent of 

the maximum possible improvement. Kennedy (21) reported 

on four groups of inspectors performing both visual and 

gaging operations with accuracies for three groups 

classed as "regulars" found to be 68 percent, 56. 25 per­

cent, and 57.14 percent, and accuracy for one group 

classed as "expert" found to be 66. 67 percent. 
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The cited studies were all concerned with industrial­

type inspection of various kir~_ds of product. The problem 

is not restricted to this emri.rornnent, however. Adams (1) 

reported on the inspection of hard red winter wheat where 

wheat grain is compared to grain standards by experienced 

wheat inspectors. The results are reporte~ as" ... 40 

percent of the initial estimates placed the sample 

improperly. " 

A critique of literature on inspector accuracy by 

McCornack in 1961 is of particular interest here (22). 

First, McCornack suggests that there are in effect four 

measures of performance that should be considered in eval-. 

uating inspectors. These he defined as: 

A1 = Percent of correct inspections. 

A2 - Percent of satisfactory product accepted. 

A-, -- Percent of defective product rejected. 

Ef == Efficiency in improving product. 

The use of A1 permits maximizing the total number of cor-

rect inspections and, thus, minimizing errors of misclas­

sification. It assumes that all errors are equally 

important 9 and that both correct decisions are important. 

The use of A2 permits maximizing the probability of 

accepting satisfactory product, and so minimizes the prob­

ability of rejecting satisfactory products. In this case, 

it is assumed that cost of product is high and there 

exists little concern about accepting defective product; 

therefore, little emphasis is placed on Type II errors. 
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The measure A3 permits maximizing the probability of 

rejecting defective product a:n.d 1 thus, rn.inimizes the prob­

ability of accepting defective product. ~:his measure 

concentrates on defects and ignores Type I errors. This 

is the measure of accuracy commonly used because the accu­

rate identification of defects is the inspection problem 

as seen by the inspectors themselves. 

The proposed accuracy measure Ef is defined by 

McCornack as the ratio of actual improvement achieved to 

the maximum possible improvement in percentage of satis­

factory product. Use of this measure permits maximization 

of the probability that the accepted product is defective. 

Not only is this index sensitive to both Type I and Type 

II errors, but also it takes into account defects created 

in the product by the inspector himself. 

All of the studies reviewed earlier in this chapter 

used the measure A3 in reporting results~ and only one of 

them considered the percent improvement in the product by 

the inspector. 

The second item of importance to this study in 

McCornack's critique is his suggestion that some inspec­

tion tasks may well be treated as vigilance tasks in an 

effort to broaden the examination of the problem of 

"escapes. 11 McCornack suggests that as man is a poor 

monitor, A3 may drop to about 0.5 in a short time and 

remain at this level for extended periods. 

One of McCornack's comments dealt with the lack of 



theory as to how an inspector does his job. The studies 

of Colquhoun (6, 7, 8), Thomas (27), and Seaborne (24), 

which seem to be an effort to overcome this deficiency, 

are summarized here because of their relation to the re-

search problem. 

Colquhoun defined inspection efficiency as the pro-
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portion of faults to which a response was made in a simple 

machine paced inspection task. He studied the effect of a 

short rest pause on efficiency and found that when work 

was uninterrupted for a period of one hour, efficiency, 

although high, declined after about 30 minutes. When a 

five minute rest was given at the end of 30 minutes, the 

efficiency level was maintained throughout the hour. The 

study was for a one hour period only and so did not simu­

late the workday situation. Colquhoun justifies this lim-

itation as follows: 

It is not uncommon for checking to continue for 
periods of two or three hours at a stretch with-
out an 'official' rest pause. However, although 
the flow of work may appear continuous, in the 
majority of factories, the time spent over the 
examination of individual items, or of particular 
parts of the material, can vary within quite wide 
limits, and this enables the inspector to take 
occasional brief rests during what might other-
wise be an unbroken session of checking (6). 

Colquhoun was also able to determine that differences 

in efficiency were unrelated to intelligence& In a subse­

quent experiment (7), he demonstrated that time of day and 

temperament had an effect on accuracy, but could not at 

the time of writing offer reasons for the observed effects. 



Thomas (27) treats the pc::rceptual organization of 

industrial inspectors and reports the following: 

1. An inspector may require a number of 
months to build up to the accepted level 
of skill. 

2. A difference exists between the formal 
description of the inspection task and 
the description built up by observation 
and discussion. 

3. A thoroughly experienced inspector seems 
to acquire a picture of "good" product 
such that defects stand out; and in 
addition, he gets to know what to inspect 
in'certain situations -- that is, he uses 
the cues available to him such as 
familiarity with product, process, and 
end use of product. 

Seaborne (24) reported on the social effects of an 

18 

inspection task with regard to accuracy. His results in-

dicated that the proportions of objects rejected by a sub-

ject on the basis of measured characteristics would be 

affected by the perceived proportions of rejections made 

by other persons working near at hand. Seaborne demon-

strated that group rejection norms developed in the 

laboratory as well as in the industrial situation and that 

the participants were not aware of making changes in their 

judging behavior. 

The ongoing research program of Harris (10, 11, 12, 

13, 14', 15, 16) has resulted in a number of findings which 

relate to this research. Of major interest in Harris' 

work is his consideration of the percentage of false 

detections made by inspectors. This percentage relates to 

McCornack's factor A2 which has not been considered to any 
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extent in other researcho Harris' findings are summarized 

below: 

1. Defect detection performance does not 
depend on: experience of the inspec­
tor, the number of false detections, 
or the time taken to perform the 
inspection. 

2. Some inspectors have bias for certain 
types of defects. 

3. Defect detection performance becomes 
worse as complexity of the product 
being inspected increases. 

4. The average percentage of defects de­
tected in ten studies ranged from 14 
percent to 74 percent, and the average 
percentage of false detections ranged 
from 15 percent to 70 percent. 

Summary 

In this chapter there have been presented summaries 

of a number of studies relative to the accuracy of indus-

trial inspectors along with a discussion of the measures 

of accuracy used. The following points were brought out 

in these studies: 

1. Inspector-accuracy ranged from nine percent 

to 96 percent with an unweighted mean of 64 

percent. The measure of accuracy used corre-

spends to l"lcCornack' s ".A.3 • " 

2. The percentage of false detections ranged 

from an average of 15 percent to 70 percent. 

The measure used relates to l"lcCornack' s "~ • " 

3. There is no correlation between accuracy and 



either age, experience, or time on present 

job. 

4. So called II expert II inspectors did not fare 

better than "regular 11 inspectors on a 

selected task. 

5. The belief that product was "good" when in 

fact it was not reduced the level of 

accuracy. 

6. A rest pause after the first 30 minutes of 

an inspection task seems to enhance the 

inspector's efficiency for the next 30 

minutes. 

7. An inspector continually adjusts his dis­

crimination as regards the inspection 

process and uses whatever cues are available 

in performing his task. 

8. In a group of inspectors, one individual's 

rate of accuracy may be affected by his 

perceived proportion of rejections made by 

his associates. 

9. Defect detection performance, while not 

dependent upon the number of false detec­

tions or upon the time taken for the 

inspection task, does appear to become worse 

as complexity of the items being inspected 

increases. 

10. Some inspectors have a habitual bias for 
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certain types of defects. 

The next ehapter will contain a brief discussion of 

vigilance task criteria along with some aspects of the 

vigilance concept that have bearing on this research. 
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CHAPTER III 

VIGILANCE TASK CRITERIA 

Vigilance is defined as a state of alertness in 

responding to a stimulus (9). Hence, a vigilance task is 

one which requires an individual to be alert for a partic­

ular infrequently appearing stimulus. 

The industrial inspector who must distinguish between 

units just within and/or just beyond the tolerance limit 

of acceptability is performing a vigilance task in that he 

may be making a visual determination of an infrequently 

appearing characteristic. Vigilance research (3) has in­

dicated that alertness of the individual performing a task 

tends to drop off during the first 30 minutes of a vigi­

lance task and then to stabilize at some lower level 

(Figure 2) (3). At this lower level, the probability of 

· detecting these infrequently appearing signals is lower, 

thus causing the operator to miss some number of what may 

be vital signals. In industrial inspection, these 

II escapes II may seriously hinder assembly or performance of 

one or more components. 

The problem of improving the accuracy of industrial 

inspectors is difficult and is one which needs more atten­

tion than that given in the past. The identification of 
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industrial inspection tasks as vigilance tasks relates them 

to the·research accomplished in the field of vigilance 

performance. If the results of this relationship appear 

useful in planning inspection work, immediate improvements 

are suggested. For this reason, the effort in this re­

search is directed toward constructing an experiment which 

simulates an inspection situation without regard to the 

kinds of tasks used in current vigilance performance 

studies. 

Vigilance Task Description 

The concern in this research is only with the gener­

ally accepted criteria for defining a vigilance task since 

a suitable operating definition enables one to specify 

task performance requirements without recourse to any of 

the contemporary theories which have been used in explain­

ing various kinds of behavior observed in vigilance 

experimentation. Thus, interest is limited to the vari­

ables that affect the vigilance decrement. 

The nine major variables which may affect the vigi­

lance task and their effects are noted below (3). 

1. Rate of signal presentation - An.increase in 

this rate results in a greater percentage of 

wanted signals detected. 

2. Intersignal magnitude - The more regular the 

interval, the more signals are detected. 

3. Signal magnitude - Signals of large magnitude 



(size, intensity, duration) escape detection 

less frequently than those of smaller 

magnitude. 

~-. Knowledge of results - Knowledge as to the 

fact of a missed wanted signal tends to 

minimize or postpone a vigilance decrement 

on the task. 

5. Environmental factors - Distractions which 

compete for the attention of the inspector 

will lower the apparent signal frequency 

and, consequently, result in deteriorated 

performance. 

6. Knowled~f signal location - When visual 

search is involved, performance is gener­

ally poorer than when location is known. 

7. Rest - After a short period of rest, the 

level of performance returns to that of 

the beginning of the task. 

8. Motivation level - Motivation determines 

the initial level of performance and may 

either expedite or postpone the onset of 

a decrement in performance. 

9o Extraneous stimuli - Such stimuli operate 

as a form of knowledge of results when 

applied at the time a signal is not 

detected. 

25 

From knowledge of these variables and his research in 
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the field, McGrath (3) has proposed a vigilance task 

description which was used a~:: the basis for designing the 

task used in this experiment. This description is repro-

duced below. 

1. The task will require an operator to per­
ceive and report a change in his operating 
environment. 

2. The observer's response behavior should 
have no effect upon the probability of 
signal occurrence. 

3. The signal to be detected may be either a 
discrete stimulus added to or taken away 
from the environment or a change in a 
continuously or intermittently presented 
stimulus. 

4. Any type of stimulus may be used as a 
signal provided it is perceivable by the 
observer when he is alerted or directed 
to it. 

5. The signal to be detected must be 
specified for the observer. 

6. When the signal is a stimulus not requiring 
an orientation response, the intensity of 
the signal stimulus should be close to the 
observer's threshold; otherwise, the less 
relevance the task ha.s for the study of 
vigilance performance. 

7. Signals should occur infrequently because 
as the rate of signal occurrence approaches 
the maximum responding rate of the subject, 
the less relevance the task has for the 
study of vigilance performance. 

8. The ratio of nonsignal stimuli to signal 
stimuli should be high. The closer this 
ratio is to 1:1, the less relevance the 
task has for the study of vigilance 
performance. 

9. The temporal order of signal occurrence 
should be irregular. As the temporal order 
of signal occurrence approaches absolute 
regularity, the task becomes less relevant 
to the study of vigilance performance. 



10. The task should be prolonged and contin­
uous. The briefer the work period, the 
less relevance the ta.sk has for the study 
of vigilance performance. 
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The major performance criterion for a vigilance task 

meeting the requirements of McGrath's description is both 

the detection of signals and the probability of that 

detection within some specified time limit following the 

occurrence of the signal. 

Some discussion of McGrath's vigilance task descrip-

tion is appropriate from the view of the inspection proc­

ess in order to establish the relevance of each of the 

items in this operating definition to the inspection 

process. 

With reference to item one, it is the responsibility 

of the inspector to identify and report defects in a 

series of items or characteristics being inspected, as 

noted in the previous definition of visual inspection. 

These defects are the changes in the operating environment 

which must be perceived and reported. All inspection 

tasks conform to this requirement. 

Likewise, all inspection tasks conform to the require-

ment of item two since the probability of a defect is a 

function of the manufacturing process which has concluded 

prior to inspection. Defect or signal occurrence prob­

abilities thus are a priori probabilities with reference 

to the inspection task. These cannot be changed by the 

inspector. 
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Item tbree relates to the nature of the defect it­

self. For instance, the ta:::1k used i.n this study employed 

a discrete stimulus added to the environment, in this 

case, a scratch or nick in the strands of a 22 gauge wire. 

The absence of a stimulus might refer to a missing part. 

Thus, a defect may exist in either sense - a stimulus 

added to or taken away from the environment. 

To be consistent with item four, the inspector must 

know what the defect is and be able to see and identify it 

when it is pointed out to him. If he does not know or 

understand the defect specification, he then becomes in­

volved in some form of problem solving rather than simply 

perceiving and reporting a change in his operating 

environment. 

Item five states simply that the inspector must know 

what kind of defect he is looking for. The foreman does 

not give him a binful of parts and say simply, "Inspect 

these." Rather, he says "Inspect these for x, y, and z 

defects." 

Intensity of the signal relative to the observer's 

threshold is difficult to translate to terms of the in­

spection tasks. In general, the defect must be detectable 

when the observer is alerted to it but it must not be so 

intense as to be completely disruptive to the observer. 

An unusual or extreme condition of a defect such as a cut 

wire when only nicks were expected, would be considered to 

be significantly above the threshold. 



29 

Infrequent occurrence of a signal is characteristic 

of inspection lots with low a priori probabilities of 

defectiveness. From item seven, it might be inferred that 

inspection tasks with low levels of defectiveness are more 

likely to be vigilance tasks than those with higher levels 

of defectiveness. This is because the inspector's ability 

is improved in an environment of frequently occurring 

signals. 

Item eight may be interpreted in the same manner as 

item seven. Inspection lots containing a low level of 

defectiveness have more relevance for vigilance perform­

ance than ones in which the level of defectiveness is 

high, perhaps as much as 50%. 

Item nine relates to the random occurrence of signals 

over time. If the between signal interval is regular so 

that the observer can perceive it, then the task is not a 

vigilance task. In the inspection situation, the inspec­

tor may draw items from a bin using some randomizing pro­

cedure, or it may be that the defects are manufactured in 

some random order of occurrence. It is assumed that the 

occurrence of a defect in an inspection situation is more 

irregular than not. 

Some inspection tasks are prolonged and continuous; 

others are not. In the factory situation, there is usu­

ally a mid-morning and a mid-afternoon break which coupled 

with the lunch break means that the maximum uninterrupted 

work period is two hours. Thus, an inspection task, 
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though continuous, would not last longer than two hours 

without interruption. In the experimenter's experience, 

the inspector embarked on a task of this duration would 

very likely stop after 30-40 minutes for a smoke, a drink 

of water, or for some other purpose, in order to relieve 

the monotony or fatigue associated with the task. This 

unscheduled relief enables him to resume work at his nor­

mal level of performance and, thus, avoid the decrement 

usually associated with vigilance tasks. 

Of the ten items listed in McGrath's vigilance task 

description, the first five relate directly to industrial 

inspection tasks. It is conformance to this description 

that enables industrial inspection tasks to be classed as 

vigilance tasks or not. Probably the most difficult re­

quirement to adhere to is number ten, since unscheduled 

relief periods tend to stimulate performance and so make 

the task less relevant for the study of vigilance 

performance. 

Vigilance Decrement Pattern 

Review of the research results reported by Buckner 

(3) indicates that there are three characteristics typical 

of patterns which represent a vigilance performance decre­

ment. The first of these is the pattern configuration. 

In general, the patterns are similar to those in Figure 2, 

with a minimum decrement of ten percentage points. 

Secondly, the decrement occurs in the second or third 
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period assuming ten to fifteen minute intervals. The 

third characteristic is that the curve should stabilize at 

the lower level of maximum decrement. 

Summary 

In this chapter, there has been presented a brief 

exposition of the major variables pertaining to a vigi­

lance task, a vigilance task description, a discussion of 

the inspection process relative to this operating defini­

tion of vigilance performance, and an operating descrip­

tion of the vigilance pattern. The chapter which follows 

presents a discussion of signal detection theory in terms 

of the inspection process. 



CHAPl:ER IV 

SIGNAL DETECTION THEORY 

Signal detection theory relative to human observers 

not only provides a theoretic framework for the inspection 

task, but also identifies performance parameters which may 

be'more· suitable for task evaluation than those of 

McCornack. 

Originally, Wald's theory of statistical decision 

(29) was translated into a theory of signal detection with 

initial applications in the field of radar design~ The 

detection theory that resulted was a general theory. Its 

generality suggested its relevance to the detection of 

signals by human observers. Research on this application 

of the theory was undertaken by Swets, Tanner and Birdsall 

( 26), whose paper "Decision Processes in Perception" is 

included in Sign~l Detection and Recognition 12.;z Human 

Observers: Contemporar~ Readings. Their work served as 

the base for additional experiments in the field,many of 

which are reported in the same text. 

This chapter describes the inspection task in terms 

of signal detection theory. The discussion is based on 

the original paper by Swets, Tanner and Birdsall. 
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:F'undamental Detection Problem 

In the fundamental detection problem~ an observation 

is made of events occurring in a fixed interval of time, 

and a decision is then made, based on this observation 

whether the time interval contained only background inter­

ference (noise) or background interference plus a signal 

(signal plus noise). Only these alternatives exist in the 

fundamental problem. Noise is always present, but the 

signal may or may not be present during a given time in­

terval. When the observer has completed each of his ob­

servations he reports, "Yes, a signal was present. 11 or 

II No, a signal was not present. " 

Visual inspection tasks as described earlier are a 

variation of the signal detection problem. Units of con­

forming product represent the element of noise while a 

defect on a unit of product represents the signal. The 

report made by the inspector takes the form of writing the 

defective item number on a defect report and/or removing 

it from the inspection lot. In the terminology used in 

this report, nonconforming units are equivalent to signal 

plus noise and conforming units are equivalent to noise 

alone. 

This situation may be represented graphically as in 

Figure 3 if the term observation is taken to refer to the 

sensory datum on which the decision is based and it is 

assumed to vary continuously along a single dimension. It 
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Figure 3. Probability Density Functions of Observations 
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is assumed further that any observation may arise either 

from a nonconforming item or a conforming item. 

The observation is labeled x and plotted on the 

abscissa.· The distribution fc(x) represents the probabil­

ity density that x will occur given conforming product, 

while the distribution fNC(x) represents the probability 

density that x will occur given nonconforming product. 

It is assumed that all observations may be described 

in terms of the continuum of a single axis and that both 

density functions may be assumed to be normal. 

Signal Detection Criteria 

Referring again to Figure 3, the inspector, given an 

observation, must decide from which hypothesis the obser-

vation resulted; that is, he must state that it came from 

one distribution or the other. In effect, the inspector 

must establish somewhere on the continuum a criterion xc 

such that if any observation x. is greater than x ~ he 
l c 

says "Yes, a defect occurred.", while if xi is less than 

xc, he says "No, a defect did not occur." 

In Figure 4 there are identified critical regions A 

(Accept) and R (Reject) as defined by xc. 

Now, it may be seen that the decision process has 

f.our outcomes. The inspector may say yes (R) or no (A), 

and he may be either correct or incorrect. The decision 

outcome relative to the nonconforming item, thus, may be a 

hit or correct rejection, (NC • R, the joint occurrence of 
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the hypothesis NC in and observation in Region R), a miss 

(NC · A), a correct acceptance ( C · A) or a false alarm 

(C · R). The interdependence of the four probabilities is 

obvious. Adjustment of the criterion x to increase the 

probability of a hit, p(NC · R), is achieved only by ac­

cepting an increase in the probability of a false alaram, 

p(C • R) and a decrease in the other probabilities. What~ 

ever the inspector's objectives, the optimal criterion can 

be specified in terms of the likelihood ratio. That is, 

if the observation is defined in terms of the likelihood 

ratio, A(x) = fN0 (x)/f0 (x), then the optimal criterion is 

specified by some value~ of A(x). 

To illustrate this manner of specifying the optimal 

criterion, it is necessary to rely on the concept of con­

ditional probabilities as opposed to the statement of 

joint occurrence noted before. These conditional prob­

abilities are the fundamental quantities in evaluating an 

observer's performance. 

The two probabilities of principal interest are the 

probability of a reject decision conditional upon the 

occurrence of a nonconforming item, or P(RJNC), and the 

probability of an acceptance decision given the occurrence 

of a conforming item, P(AIC). These two are sufficient 

for the others are merely their complements. 

P(A!NC) = 1 - P(R!NC) and P(RIC) = 1 --P(AlC). 

The conditional and joint probabilities are related 

as follows: 
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P(RlNC) = P(R O NC) 
P(NC) 

(7) 

P(AIC) = P(R • C) 
P(C) 

where 

P(NC) = a priori probability of defect 

occurrence. 

P(C) = 1 - P(NC) = a priori probability of 

occurrence of conforming units. 

With reference to Figure 4, P(R!NC) may be defined as 

the integral of fNC(x) over the critical region R, and 

P(AIC) as the integral of fc(x) over A. In other words, 

the two probabilities represent areas under the curves of 

Figure 4 on either side of some value xc. 

The expected value of the decision as the sum, over 

the potential outcomes of the decision, of the products of 

probability of outcome and desirability of outcome defines 

an optimal criterion by a critical value of likelihood 

ratio 13. If V equals positive value and K equals cost, 

then 

E(V) = VNC•RP(NC·R) + VC•AP(C·A) - KNC•AP(NC 0 A) -KC•RP(C•R) 

(8) 

Substituting a priori and conditional probabilities from 

Equation (2) into Eqµation (3), and collecting terms 

yields the result that maximizing E(V), the expected value 

is equivalent to maximizing 

P(RINC) - SP(RlC) (9) 
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where 

(10) 

· This value of~ is equal to the value of the likelihood 

ratio A(x). In Equation (9) ~ simply weighs the hits and 

false alarms, while in Equation (10) ~ is determined by the 

a priori probability of the occurrence of nonconforming 

items and of conforming items and the values for each of 

the decision outcomes. 

Thus, the optimal cutoff x0 is that point on the axis 

where the ratio of the ordinate value of fNC(x) to the 

ordinate value of fc(x) is~. The location of x0 along 

the x-axis depends not only on the a priori probabilities 

and values, but also upon the overlap of the two density 

functions; i.e., the signal strength. 

If one plots P(RlNC) as an ordinate versus P(RIC) as 

the abscissa as in Figure 5,. there is obtained a curve 

known as the receiver operating characteristic, or ROG 

curve. This curve with d' as a parameter is based on the 

assumption that the probability density functions, fc(x) 

and fNC(x), are normal and of equal variance. The parame­

ter of the family of ROG curves is called d' where 

(11) 

Figure 5 is plotted for three values of d'. Assume that 
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d' for the ideal inspector in a given task is 2.0. As the 

costs, K, and benefits, V, a.re changed, the optimal cri­

terion for the real inspector would change so that P(RINC) 

and P(RfC) will vary along the ROC curve, d' = 2.0. In 

the laboratory, trained observers have demonstrated their 

ability to adjust their criterion to conform to changes in 

the payoff (26). Adjusting the payoff and, therefore, the 

optimal criterion provides a means of maximizing either~ 

or A3 depending on the inspection objective. Application 

of this concept to industrial inspectors has not been 

attempted. .In this experiment, a payoff will be specified 

for the inspection task so that a first assessment of the 

problem of application can be made. 

In the signal detection problem, the separation be­

tween the means of the two density functions is a function 

of signal amplitude, therefore d' is an index of the 

detectability of a given signal for a given observer. 

Thus, it is a measure of the observer's sensory capabili­

ties, relative to the performance expected by an ideal 

observer, as well as a measure of the effective signal 

strength. Relative to the inspection task, d' serves as 

an index of the detectability.of a defect for a given 

inspector. Por the task used in this experiment, it is; 

not possible to quantify d' for the ideal observer as the 

signal energy and noise power required for determining the 

signal to noise ratio cannot be determined. However, the 

use of d' as the index of detectability of a population of 
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defects enables comparisons to be made of inspector per-

formance relative to that population, By· considering the 

test sample populations as standards, inspector perform­

ance can be expressed in terms of d' relative to those 

standards. 

The Decision Matrix 

To relate fully the signal detection problem to 

McCornack's criteria, it is necessary only to convert the 

probability matrix of Chapter I to a decision matrix by 

adding the payoff elements, V and K, to each cell. This 

is shown in Figure 6. 

Product 
Mix 

Conforming 

Nonconforming 

Decision 

Accept Reject 

P(C·A) = P(C•R) = 

( l-P1 )q0 P1 <lo 

i------------ ~------------
VNC•A KC·R 

P(NC·A) = P(NC•R) = 

P2 Po (1 - P2 )po 
----------- -------------

KNC·A VNC•R 

Figure 6. Inspection Decision Matrix 
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Summary 

In this chapter the inspection task has been describ-

ed in terms of signal detection theory-. The basic con--

cepts of the theory are: 

1. The representation of conforming and 

nonconforming product by overlapping 

statistical distributions. 

2o The representation of a decision cri-

terion and associated payoff matrix. 

3. The use of an ideal observer as the 

basis for evaluating real observers. 

From the empirical determinations of P(RINC) and 

P(RlC), it is possible to compute d 1 for each inspector so 

that this performance measure can be utilized in perform-

ance evaluation. Ideally, the experimenter should fix 

the V and K for each decision outcome and so control~ 

and, therefore 9 x O c In the laboratory situation with 

trained observers this has been accomplished 9 but the 

possibility of doing so with industrial inspectors is 

open to question. 

The determination of d' and x c will be made for the 

data of this ex-perirnent in order to consider in an explor-

atory sense their application to industrial inspection 

tasks. 

The following chapter deals with the question of 

performance criteria for the inspection task. 



CHAPTER V 

PERFORMANCE CRITERIA 

The identification of the magnitude of p1 enables 

inspector performance measures more meaningful than that 

of p2 alone to be developed. These measures are con­

structed using both p1 and p2 • In this chapter, other 

measures, new in the context of inspector performance 

evaluation, are described. The various measures will be 

applied to the results of the research and their potential 

application to the industrial inspection process 

considered. 

McCornack's Criteria 

The research reported in Chapter II in all cases used 

an accuracy criterion corresponding to McCornack's A3 • In 

addition, Harris used a measure for false detections which 

related to McCornack' s ~ • Harris' false detection meas­

ure, however, is simply the percentage of nondefectives in 

the total number of defectives reported. For a report of 

false detections in terms of A2 , it is necessary to know 

the true fraction defective. Unfortunately, Harris' stud­

ies did not report this information, so it is not possible 

to express A2 for his data exactly. Nor is it possible to 

44 



45 

express Harris' data in terms of A1 inasmuch as the total 

number of inspections is not known. 

In vigilance research the measure of effectiveness 

used corresponds to McCornack's A3 ; however, there is no 

reason to assume that the A2 type of error is not affected 

as well in the vigilance situation. 

It is the view of the experimenter that the factor A1 

should be used in preference to the other of McCornack's 

factors because it appears to be even more difficult to 

identify defects caused by the inspector than it is to 

identify those caused by the production mechanic. How­

ever, the major consideration should be based on the view 

to be taken of the product in the light of inspection 

results. It was stated in Chapter I that an inspector 

with a high error rate can cause substantial damage by 

passing defective hardware. This implies an error rate of 

the A3 type and does not consider the expense associated 

with the rejection of good product which involves an error 

rate of the A2 type. When defects are reported, they must 

either be repaired or eliminated through product replace­

ment. Either course of action is expensive not only from 

the standpoint of material and labor costs, but also from 

the view of a missed schedule and loss of quality reputa­

tion. Therefore, the factor A1 seems most appropriate for 

use as it relates both inspection errors to the total 

situation. 

However, these criteria, A1 , ~, and A3 , are not 
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really expressions of confidence in the decision to accept 

or reject an item once that decision has been made. They 

are simply expressions of past performance. What is 

needed is a statement of confidence as to the validity of 

the inspection decision given that it has been made under 

a particular set of conditions. To write this kind of 

criterion, it is necessary to resort to the rule of Bayes 

and conditional probabilities. 

Bayesian Criteria 

The rule of Bayes is stated as follows (23): 

0 •• ' 
B are mutually exclusive n 

events of which one must occur; that is 

n 
~ P(B.) = 1, then 

. 1 1 1= 

P(Br)P(A!Br) 
n 

.~ P(B.)•P(A1B.) 
l=l 1 1 

for r = 1, 2, .•• ~ or n. 

(12) 

Application of Bayes' rule to the decision matrix for the 

inspection task enables more meaningful statements con-

cerning performance to be written with respect to the 

validity of each of. the decisions made. One can now state 

the probability that an item is a conforming one given the 

decision to accept it, in the following manner: 

Substituting in Equation (2) as follows: 
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(13) 

where 

c = conforming item 

NC = nonconforming item 

A - accept decision 

R -· reject decision 

P(AlC) = probability of a correct decision on C 

P(C) :::: a priori probability of c 

P(NC) = a priori probability of NC 

P(A1NC) = probability of a Type II error on NC. 

Further substitution using appropriate values from the 

probability matrix of Chapter I gives: 

P(ClA) 
qo ( l-P1) 

= <i;tl-p1) + P2Po 
(14) 

which is the conditional probability of a conforming item 

given the decision to accept it by the inspector. 

Likewise, 

P(NC1R) (15) 

which is the conditional probability of a nonconforming 

item given that a decision to reject has been made by the 

inspector. Thus are established two criteria for evalu-

ating performance relative to either of the decisions in-

dicated by the probability matrix. 
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Bayesian Criteria Versus McCornack's Criteria 

McCornack's criteria, particularly A3 , are usually 

used in evaluating inspection processes. Using the deci­

sion matrix, these can be defined as follows: 

A1 = ( 1 - P1 ) q0 + ( 1 - P2 )po 

~ = ( 1 - P1 ) q0 / q0 = ( 1 - P1 ) 

A3 = ( 1 - P2 )p0 !Po = ( 1 - P2 ) • 

It can be seen that the Bayesian criteria use all 

(16) 

(17) 

(18) 

the information available relative to each decision, 

whereas McCornack's criteria are relative to each level of 

the product mix rather than to the decision process. That 

is, A2 and A"!> each consider only one cell of the matrix 

whereas Bayesian criteria consider two cells. A1 is the 

same for both McCornack's and Bayesian measures. 

Referring to Equation (14), the conditional probabil­

ity of a conforming item given an acceptance decision is a 

function of the number of conforming items and the number 

of nonconforming items accepted. Thus, P(C!A) is a meas­

ure of the goodness of the acceptance decision. Also, the 

conditional probability of a nonconforming item given a 

reject decision, Equation (15), is a function of the num­

ber of nonconforming items and number of conforming items 

rejected. Thus, P(NC,R) is a measure of the goodness of 

the rejection decision. Neither of these probabilities 
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measure performance in the traditional sense of A;_ and A3 ; 

that is, the ability to identi.fy good product or bad prod­

uct. The measure of the goodness of the inspection deci­

sion is an indication of the liklihood of defective 

product passed on to the next station or to the customer -

P(CJA), or an indication of the amount of good product 

reworked or scrapped - P(NCfR). As costs may be associ­

ated with both measures, the value of the application of 

Bayes' rule becomes apparent. 

In order that adequate comparison of these criteria 

can be made, the experimental data will be analyzed both 

ways, so that the utility of the criteria can be evaluated. 

Receiver Operating Characteristic Curve 

A further criterion not heretofore used in industrial 

inspection is the index of detectability of a given signal 

for a given observer, d'. This parameter has merit in 

evaluating the inspection process as it provides a basis 

for comparison of inspector's performance in terms of his 

receiver operating characteristic curve. As the data col­

lected in this experiment are readily amenable to its 

calculation 9 d' will be calculated for each inspector over 

the range of the study and its utility evaluated along 

with the criteria already discussed. 

Apparent Fraction Defective 

If there were no inspection errors (p1 = p2 = 0), the 
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fraction defective of an inspection lot reported by the 

inspector would equal the a p:r.·iori fraction defective, Po o 

However, if either or both kinds of errors have been com­

mitted by the inspector, then the fraction defective 

reported, p3 , will be 

(19) 

for 

(0 < p1 < 1) and (0 < p2 < 1). 

This criterion for performance has been proposed in order 

to provide a means of studying the effect of inspector 

error on lot disposition in a single sampling situation. 

Having determined values of p3 relative to corresponding 

values of p 0 , it is possible to evaluate the protection 

actually obtained in a sampling plan against that which 

the plan was designed to provide. Sampling plans are de­

signed with great mathematical rigor to provide a certain 

level of protection against acceptance of defective prod­

uct. This design is based on the assumption that there is 

no error in the inspection process or that whatever error 

exists is small and can be ignored. This assumption can 

be tested by seeing what decision for lot disposition 

would be made if p3 is perceived by the inspector rather 

than Po. 

Assume that a single sampling plan is designed to 

accept some value of p 0 with a probability of acceptance 



of 0.50. If the inspector's perceived value of product 

defectiveness, p3 , is close to the true value, Po, the 

inspection decision made will be very close to that ex­

pected under the specific sampling plan employed. That 
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is, lots will be accepted or rejected approximately fifty 

percent of the time. Unfortunately, they will likely be 

accepted or rejected for the wrong reasons when p1 and p2 

errors are being made. An accepted lot may have been 

accepted as the result of inspecting a sample wherein a 

number of defectives were missed, or a rejected lot may 

have been rejected because conforming units were rejected. 

One could argue that these kinds of errors either tend to 

cancel out, will be caught at the next station in the case 

of an improper acceptance, or will be caught by the mate­

rial review board in the case of improper rejection. This 

argument cannot be maintained because the costs associated 

with each alternative are not considered. For instance, 

if the recipient of the improperly accepted lot is the 

customer 9 then a loss of quality reputation and perhaps a 

loss of business results. In the other case, at a minimum, 

a loss of schedule position can occur, together with the 

possibility of unnecessary rework or a scrap disposition 

by a material review board. 

Summary 

In this chapter a number of criteria have been pro­

posed as possible measures of the quality of performance 
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of an inspection task. These measures will be applied to 

the results of the experiment and their potential useful­

ness indicated. 

The following chapter deals with the design and tech­

nique of the experiment. 



CHAPTER VI 

EXPERIMENTAL DESIGN AND TECHNIQUE 

This research is concerned with the accuracy of per;_ 

formance of a class of industrial inspectors. This re­

striction as to the population being tested automatically 

extends the research effort beyond the laboratory to a 

pseudo-industrial environment. As a result, the experi­

menter is immediately faced with the problem of realism in 

the experimental task. At one extreme of the continuum 

there exists the possibility of a wholly realistic test 

environment in which it may not be possible to establish 

and maintain experimental controls, whereas at the other 

extreme there exists a totally experimenter-controlled 

laboratory environment wherein the aspect of realism may 

be lost. In this research it was desired to obtain as 

great a degree of realism as possible so that the results 

would represent, at least to this degree, the real world 

environment. At the same time the necessity of presenting 

standardized situations to the testees was recognized, in­

cluding the assurance that the same problem must be admin­

istered to each of them. Thus, a compromise between the 

two extremes was reached. The details of the design are 

contained in the balance of this chapter. 

53 
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Data Collection Model 

The first step in the experimental design is to 

establish a model for data collection. The inspection 

model of Figure 1 may be restructured as follows: 

Input Processor ------- Output 

where: 

N0 = number of pieces in the inspection lot 

prior tb inspection. 

N1 = number of pieces accepted as conforming 

to specification. 

N2 - number of pieces rejected as nonconforming 

to specification. 

The division of N0 into N1 and N2 reflects the deci-

sions of the inspector relative to the existence of one or 

more defects in the inspection lot. To gather data con-

cerning N1 and N2 and to compute the performance criteria 

discussed earlier, it is necessary to make further defini-

tion as follows. Let: 

n0 number of conforming units in N0 • 

n1 = number of conforming units in N1 • 

~ number of conforming units in N2 • 

d0 - number of nonconforming units in N0 • 

d1 = number of nonconforming units in N1 o 
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d2 number of nonconforming units in N2 • 

Po -· true fraction defective of N0 • (0 < Po < 1). -

P1 = probability of Type I error in the ins pee-

tion process. (0 < P1 < 1) 

P2 ;::: probability of Type II error in the inspec-

tion process. (0 .S. P2 < 1) 

apparent fraction defective after the .th 
P3 l 

inspection. (0 < P3 < 1) 

Then the following relationships exist: 

No no + do (20) 

no = n1 + ~ (21) 

do = d1 + d2 (22) 

Po = do io. (23) 
do - No no + 

P1 = & (24) 
no 

P2 = .9:L (25) 
do 

P:; = (1 - Po) P1 + Po(l - P2 ) 

= ~±-.Qa. (26) 
No 

P(CI.A) n~ (27) - d1 n1 + 

P(NCIR) = n2 (28) n2 + d • 
2 

By fixing n0 and d0 for a given inspection lot and ob­

serving the n2 and ~ resulting from the inspection, each 
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of the criteria of concern can be readily calculated using 

simple addition and subtraction. Further, if each inspec­

tion item is uniquely identified such that it is readily 

discernible to an observer, then the observer can record 

which item the inspector is examining at any desired point 

in time and, thus, compute these same criteria relative to 

the desired time measure. 

Based on examination of vigilance performance studies 

(see Figure 2), a time measure of ten minutes was chosen 

within which to identify the vigilance decrement should it 

occur. 

Test Materials - Kind 

In order to approach the objective of realism as 

closely as possible, a wire preparation inspection task 

was chosen with minor modifications made in the usual 

method of inspection so as to assure control of the 

experiment. 

Normally, when conductors are assembled into a wire 

harness and the ends prepared for soldering or crimping, 

approximately one inch of insulation is mechanically 

stripped from the ends and the exposed strands are in­

spected for cuts, nicks, and missing strands. Unaccept­

able preparation is cause for rejection and requires 

appropriate corrective action. When one considers the 

inspection of successive bundles of stripped conductors 

for a few difficult-to-detect defects as a rep~titive task 
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with monotonous aspects, it may be supposed that this task 

may well meet McGrath's criteria for vigilance performance 

and, hence, should be evaluated in these terms. However, 

the use of wire bundles does not enable the experimenter 

to identify decision errors individually by conductor and 

so does not permit the identification of a specific wrong 

decision at the time of its occurrence. To overcome this 

constraint, four-inch lengths of thermally stripped, 22-

gauge, Teflon-coated conductor were assembled in groups of 

ten by affixing each of the ten conductors to a 12-inch 

strip of 1~2 inch masking tape about one inch apart. 

(See Figure 7.) The first strip of tape was then covered 

by a second strip which sealed the assembly. Pairs of 

strips were given a letter designation, A, B, C, •.. , and 

each conductor in the pair was numbered from one through 

twenty so that each conductor now had a unique alphanumeric 

identification. 

Randomly selected conductors were made defective by 

nicking or scraping them with a sharp knife. This opera­

tion left a defect like those left by a mechanical 

stripping process. 

Test Materials - Quantity 

As it was desired to evaluate performance under dif­

ferent levels of defectiveness as well as over time, four 

values of p0 were chosen to be .05, .15, .25, and .35 for 

four inspection lots where N0 equaled 260. In a pilot 
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Figure 7. Test Materials 
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study preceding this experiment, it was found that the 

average inspection rate was about four conductors a minute; 

hence, 260 was chosen as being sufficient for approxi­

mately one hour's inspection time. 

In an effort to avoid biasing any one set of test 

materials by accidentally making the defects different 

from those in any other set, the technique of making the 

defects with the knife was practiced until a reasonable 

degree of consistency was obtained. Then, the required 

208 defects for the four samples, along with some spares, 

were made at one time. These defective conductors were 

then distributed randomly over the four sets of materials 

until all were allocated. The defective items were then 

distributed randomly within the estimated time blocks per 

set of materials so that the fraction defective, p0 , for 

each ten minute period would be about the same as that for 

the total sample. For example, assume that an inspection 

is performed at the rate of four conductors per minute, or 

forty for each ten minute period, and the desired p0 for 

this particular lot is .10. This would mean that four 

defectives would be distributed randomly throughout each 

forty items. In this way, p0 is held more or less con­

stant relative to time throughout the test period. It is 

not possible to maintain the same level exactly throughout 

as the inspection task is operator-paced and inspectors 

will work at different rates. 

In this manner the four sets of test materials were 
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developed. The selection of the values 5, 15, 25, and 35 

for p0 was arbitrary in that the purpose was to test over. a 

broad range of defectiveness that is nevertheless consist­

ent with process averages experienced in industry. The 

philosophy was that the results of a gross cut at this 

problem could be expected to indicate where the next finer 

cut should be taken. Such was the case here. As will be 

noted in the conclusions section of this dissertation, 

recommendations are made as to the range of proposed 

follow-on experiments. 

The four sets (designated by p0 ) of materials were 

identified by assigning the numbers one through twenty to 

each letter of the alphabet as follows: 

5% - A(l-20) through M(l-20) 

15% - N(l-20) through Z(l-20) 

25% - AA(l-20) through MM(l-20) 

35% - NN(l-20) through ZZ(l-20). 

Thus, for each letter or double letter of the alphabet, 

there were two groups of ten conductors each. 

Inspectors Tested 

Seven electronic inspectors were chosen to partici­

pate in the experiment. All were senior electronics 

inspectors with at least twenty-four months experience. 

The inspectors were both male and female ranging in age 

from 28 to approximately 62 and carrying the same job 

classification. Their vision exceeded the minimum 
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requirement of their employer for the kinds of tasks 

performed. Their usual work consists of inspecting to 

standards, drawings, and specifications materials such as 

the prepared conductors used in this study and includes 

performing visu'al checks of complex electronic equipment. 

It is felt that this group should be a representative sam­

ple of this class of inspector. 

At the outset of the study, the inspectors were in­

formed of the experimental nature of the study and the 

kind of inspection task to be performed. In particular~ 

they were told that while they would be informed of the 

results of their performance on an individual basis, that 

they would be identified only as a group in the final 

report, and that the purpose of the study was to learn 

about performance without identifying those individuals 

who might not perform as well as others, thus protecting 

them from potential supervisory criticism. While each 

subject is known to the experimenter, he is identified 

only by letter in this dissertation. 

Test Schedule 

To avoid test compromising effects such as time of 

day and sample order, the schedule utilized a counter­

balanced design such that each inspector inspected the 

four samples in different order and at different times of 

day. Because of the work requirements placed on the in­

spectors throughout the test program, the original 
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schedu.le was lengthened; however, the sample order and 

time of day were maintained a::., planned. The test schedule 

is shown in Table I. Time period 1 began at 7:15 A. M. 

and ended just prior to the morning break. Period 2 began 

at 9:15 A. M. and ended at lunch. Period 3 began at 11:45 

A. M. and ended just prior to the afternoon break. The 

last period began at 1:45 P. M. and ended ten minutes 

before quitting time. Each period was approximately 105 

minutes in duration. 'rhis provided sufficient time for an 

instruction period, a pretest, and the main test. 

Pretraining Schedule 

In Chapter III ten elements of a vigilance task were 

defined. Item five of that list stated that the signal to 

be detected must be specified for the observer. Although 

the experimental task is one which is routine to the 

inspectors' work environment, a training program relative 

to the test materials was established to assure that the 

requirement of item five was met and that, in fact, the 

inspectors understood what was required of them. In 

addition, an attempt was made to establish the concept of 

payoff by assigning a relative val~e to each possible 

decision outcome and then discussing training performance 

in terms of this score. 

A copy of the instructions given to each inspector is 

' 
included in Appendix A. A copy of the data sheet 'is 

included in Appendix B. The instruction samples consisted 



Period --·--z 
Insp/p0 Insp/p0 

1 x A-15 
D-15 

2 x I-5 
x 

3 A-35 B-15 
x F-25 

4 D-5 G-5 
H-35 x 

----· --- -

TABLE I 

TESTING SCHEDULE 

Test Day 
3 4 

Insp/p0 Insp/p0 

-
G-25 F-35 

x H-15 

A-15 B-5 
H-25 G-35 

D-35 x 
I-15 

x I-35 
x 

-------· -----· ----

5----·--~ 
Insp/p0 Insp/p0 

B-35 I-25 
x x 

D-25 x 
x 

H-5 G-15 
x x 

F-15 B-25 
x x 

7 
Insp/p0 

x 

F-25 

x 

A-25 
x 

O'\ 
\..}J 
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of two groups.of ten conductors and two groups of twenty 

conductors with levels of p0 as noted in the flow chart of 

Figure 8. As the purpose of·the procedure.was:to assure 

that the inspectors were able to detect the existing 

defects, provision was made for repeated instruction as 

necessary. The training was concluded with a payoff 

greater than twelve in the last step. This was equivalent 

to two errors in classification. 

Test Procedure 

Following the satisfactory completion of the training 

by all inspectors, the testing for record was undertaken 

according to the schedule noted in Table I. 

The administration of the tests was accomplished in a 

controlled work area immediately adjacent to the inspector 

area. Each subject was seated at a table on which twenty­

six sets of ten conductors were laid out so that they 

could be examined in alphanumerical order. At the signal 

to begin, the subject examined the first set of ten con­

ductors and recorded the number of each one of them that 

appeared to be defective on his data sheet. He continued 

in this manner until all test items were inspected or 

until the end of 75 minutes. At the end of each ten 

minute period, the observer noted the number of the last 

item completed so that the rate of inspection and number 

of decision errors could be computed. 

Prior to each test a pretest of 20 items was given 
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INSPECT DISCUSS EACH 
10 WIRES WIRE 

Pn = .80 

l 
ESTABLISH PAYOFF ACCEPT ·GOOD = + I . 

CRITERIA REJECT BAD =+I 

i ACCEPT BAD = - 3 . 
REJECT GOOD= -3 

INSPECT 10 WIRES 
Po = .60 

-, 
P. 0.< 6 DI.SCUSS RESULT AND 

COMPUTE PAYOFF 

' INSPECT 20 WIRES 
Po= .15 

' P.O. <12 DISCUSS RESULT AND 
COMPUTE PAYOFF · 

i 
INSPECT 20 WIRES 

Po = .35. 

' P. 0.-< 12 DISCUSS RESULT AND 
COMPUTE PAYOFF 

l 
TRAINING COMPLETE 

Figure 8. Wire Preparation In$pection Training 
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the inspector. The twofold purpose of the pretest was to 

reinforce the training already given and to establish 

without verbalization the level of defectiveness to be 

experienced in the test for record. The reason fo;r this 

latter point is that an inspector working regularly with a 

particular manufacturing group gradually develops an ex-

pectancy or set for the level of defectiveness produced by 

the group (27). He may have no way of knowing, a priori, 
' 

what the level is but nevertheless he tends to work to his 

concept of it. Thus, in the pretest, an attempt was made 

to establish that expectancy without actually verbalizing 

the exact value of Po• 

At the conclusion of each·test, the data sheet was 

taken by the observer, the inspector was thanked and sent 

back to his work area. At the conclusion of all testing, 
. 

the results were reported to each inspector individually 

and to supe!vision for the group. The perf.ormance crite­

ria used in the report were McCornack's ~ and A3 • 

Data Analysis 

As the experimental data are not measured on a con-

tinuous scale but are i'nstead classified as "success" or 

"failure" for each performance measure, the statistical 

analysis will be undertaken using a X2 statistic for pro­

portions. The basis for this selection is that testing 

is to determine whether two or more binomial populations 



have the same parameter P*. Identifying k parameters as 

P1 = P2 = ••• = Pk, the null hypothesis to be tested is, 
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,against the alternative that at least two of these propor­

tions are unequal. Since four binomial populations are. 

utilized in the experiment, the value of k is four. The 

null hypothesis then is rewritten as 

where Pis the proportion of interest (the failures') for 

each of the performance measures. Thus, for the measure 

A1 , Pis the proportion of incorrect decisions or (1 - A1 ) 

for each p 0 • P for.~ represents the proportion of fail­

ures to correctly identify conforming product, and P for 

A, is the proportion of failure? to detect defects. 

The test used is based on the fact that 

(1) for large samples the sampling distribution 
of 

is approximately the standard normal distribu­
tion, (2) the square of a random variable 
having the standard normal distribution is a 
random variable having a chi-square distribu­
tion with one degree of freedom, and (3) the 
sum of k indpendent random variables having 

(29) 

*An uppercase Pis used to differentiate between the 
test proportion and the lower case Po , p 1 , p2 , and P, • 



·chi-square distributions with one degree of 
freedom is a random variable having the chi­
square distribution having k degrees of 
freedom (23). 

Therefore, the sampling distribution of the statistic 
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(x. - n.p. )2 
l l l 

n.Ptl - P) (30) 
l 

is approximately the chi-square distribution with k de­

grees of freedom. Thus, if the null hypothesis is true, 

and 

the chi-square statistic becomes 

k 

x2 = L 
i=l 

(x. - n.P) 2 
l l 

niPTI-=PT· 

As Pis unknown, there is substituted for P the pooled 

estimate 

• 0 • 

(31) 

(32) 

If the differences betwen the xi and the niP are large, 

the null hypothesis should be rejected, so that the criti­

cal region for the test is x2 > X 2 , with (k - 1) degrees - a. 

of freedom. In this experiment, a. is taken as 0.05. 

Applying the chi-square criterion to the problem of 



comparing several sample proportions in a 2 by k contin-

gency table, the data may be arranged in the following 

manner: 

Sample Sample Sample 

Success 1 2 k Total 
nl - xl n2 - ,X2 nk - x k n - x 

Failure xl x2 xk x 

Total nl n2 nk n 

In this table, n is total trials, and xis the total 

failures for n trials. 

To simplify the determination of X2, the computing 

method used is that attributed to Brandt and Snedecor by 

Cochran and Cox (5). It is 
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(33) 

where 

xi= the number of failures in the ith sample. 

P = over-all proportion of failures (P). 

Q = C 1 - P). 

The contingency table can now be rearranged as 

follows: 

po(l) p (2) 
0 

• 0 • po(k) Total 

Failures xl x2 ~ x 

Total nl n2 nk n 

p xl/nl x2/n2 xk/nk x/n 
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where P is (1 - A1 ), (1 - ~) or (1 - A3 ) as appropriate, 

and x/n is Po 

While contingency tables and the X 2 statistic are 

also appropriate for testing for time effects, they must 

be reinforced by comparing the plotted pattern to the con-

figuration criteria described in Chapter III. As interest 

is not only in a difference but also in the direction of 

the difference, the z statistic will be used to test the 

null hypothesis of no difference" If there is a perform-

ance decrement typical of vigilance performance then the 

maximum value of A3 should occur during the first or 

second time block and the minimum value should occur dur-

ing the third or fourth time block with the difference 

between them significant at CJ(,= 0.05. In this situation, 

the null and alternate hypotheses are 

with the critical region being z ~ z. 05 . As z. 05 = 1.645, 

the calculated value of z must be greater than or equal to 

1.645. The z statistic is computed by 

(34) 

.., 
where x equals the number of signals detected inn trials 

for each of the two populations and with 
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A 
p = (35) 

As vigilance studies are concerned with the percent­

age of signals detected, p1 and p2 in the equation for the 

z statistic above, become A3 (max) and A3 (min), 

respectively, and xis the number of signals detected inn 
A A 

trials per time block. The p then becomes A3 • 

Summary 

In this chapter there has been discussed the experi­

mental procedure used in the data collection phase of this 

research. The emphasis in the testing was to be as real-

istic as possible while maintaining control of the experi-

ment. A training procedure was established to assure that 

all inspectors worked to the same criteria. Through the 

use of standard instructions and test materials essen-

tially the same problem was administered to all testees. 

The next chapter presents the results of the data 

collection and their analysis according to the criteria 

defined earlier. 



CHAPTER VII 

RESULTS AND ANALYSIS 

The results of the analysis of the data collected 

during the course of the experiment are presented in this 

chapter with the order of discussion following that of the 

basic questions posed in Chapter I. 

Data summaries along with the contingency tables used 

in testing hypotheses are included in Appendices C through 

E. 

The first question dealt with the effect of the 

a priori probability of defectiveness of the test mate­

rials on inspector performance. The second question was 

concerned with evidence of a vigilance performance decre­

ment over the time of the test, and the third question 

related to the use of possible performance measures other 

than the traditional one of the percentage of defects 

detected (A3 ) in evaluating inspector performance. 

Effect of p 0 : McCornack's Criteria 

The computed values of A1 , A2 , and A3 for each po 

treatment are plotted in Figure 9. For each of the three 

measures, the null hypothesis of no difference in perform­

ance over the given range of p 0 was tested against the 

72 
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Figure 9. · McCornack's Criteria Versus Po 
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alternative hypothesis of unequality of performance using 

the x2 statistic and the method described in the previous 

chapter. The results are presented opposite question one 

in Table II. The contingency tables supporting Table II 

are in Appendix E. 

Because of the lower values of A3 in the 5%-15% range 

of p0 as compared to the 25%-35% range, question two of 

Table II was formulated and the data combined in a 2 x 2 

contingency table for testing. Because the null hypothe­

sis of question two was rejected, and because there 

appears to be an upward trend in A3 as p0 increases, ques­

tion three was formulated and tested using the method 

described in Appendix F. 

The results of these several tests indicate that 

while the differences in A3 over the range of Po are due 

to a linear regression ef"fect, the differences in the~ 

measure are not. 

In a further attempt to explain the variation in~ 

which led to the rejection of the null hypothesis of ques­

tion one, questions four and five were formulated and 

tested. As a result, it was determined that the value of 

~ at p0 =· 25% was contributing most of the variation in 

~ • Because this phenomenon cannot be explained at this 

time, further investigation of inspector performance rela­

tive to the correct identification of conforming items 

should be considered. Were it not for this disparity, the 

conclusion would have been that correct identification of 
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TABLE II 

TEST RESULTS: McCORNACK'S CRITERIA 

Test Questions Measure x2 x2 
.05;3 Decision 

1. Are there differ- A1 17.44 7.81 Re,iect Ho 
enc es in perform- ~ 13.51 7.81 Reject Ho 
ance among the Po A3 13.67 7.81 Reject Ho 
treatments? 

2 
x.02.11 

2. Are there differ- A2 4.17 3.84 Reject Ho 
enc es in perform- A3 12.82 3.84 Reject Ho 
ance between the 
combined treatment 
Po equal to 5%-15% 
and the combined 
treatment Po 
to 25%-35%? 

equal 

2 x .02;1 
3. Are the performance A2 2.22 3.84 Cannot 

differences due to Reject Ho 
a linear regression 
effect over the A3 9.25 3.84 Reject Ho 
range of Po? 

2 
x.0221 

4. Is the value of A2 14.66 3.84 Reject H0 

at Po ::: 25% differ-
ent from the other 
values of~? 

2 
x.022 2 

5. Are there differ- 1.77 5.99 Cannot 
enc es among the Reject Ho 
values of A2 for Po 
= 5%, 15%, and 35%? 



conforming items was not affected by the·a priori prob­

ability of conformance. 

Effect of p0 : Bayesian Criteria 
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The computed values of P(CIA) and P(NCIR) for each 

treatment of p0 are plotted in Figure 10. Inspection of 

the patterns suggests that a plateau exists in the mid­

range of p0 (15%-25%) with the extreme treatments differ­

ent from the midrange. 

Testing for these differences using the z statistic 

for proportions supports this hypothesis. The results of 

the several tests required are summarized in Table III. 

Relative to these performance measures, it is con­

cluded that the decision process is affected by the 

a priori probability of nonconforming product at the 

extremes whereas the midrange is stable but at a different 

level on the ordinate probability scale. At the 5% treat­

ment, it can be seen that few defective items are accepted 

but that many conforming items are rejected. These tend­

encies change significantly at the 15% treatment and even 

dramatically in the case of P(NC!R). More defective items 

are accepted while a great many less conforming items are 

rejected. There is not a significant difference in either 

measure from the 15% treatment to the 25% treatment while 

the trend downward in P(CIA) and the trend upward in 

P(NCIR) continues in the transition from 25% to 35%. 

The difference between the plot of P(CJA) and of 
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Measure 

P(CjA) 

P(NCIR) 

TABLE III 

TESTS OF HYPOTHESES FOR 
BAYESIAN CRITERIA 

Ho H1 Critical 
Region 

Po5 = p0 15 Po5 > Po 15 z > z .05 

Po 15 = Po 25 Po 15 > Po 25 z > z .05 

Po 25 = Po 35 Po 25 > Po 35 z > z .05 

Po5 = Pol5 Po5 < P0 15 z < -z .05 

Po 15 = Po 25 Po 15 > Po 25 z > z .05 

Po 25 = Po 35 Po 25 < Po 35 z < -z .05 
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Decision 

Reject Ho 

Cannot reject Ho 

Reject Ho 

Reject Ho 

Cannot reject Ho 

Reject Ho 
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P(NCJR) is of interest. T~aditionally, quality control 
' 

management regards inspectors as being equally able to 

identify either conforming product or nonconforming prod-

uct equally well. This view, if valid, would mean that 

both patterns would have occurred at about the same level 

of the ordinate scale. This is the case only in the 35% 

treatment of Po• At this point, it appears that both 

decisions are equally good. However, testing the null 

hypothesis of no difference as indicated below results in 

a significant difference in the opposite direction to that 

already observed; that is, the decision to reject is of 

better quality than the acceptance decision. The null and 

alternate hypotheses tested at Po = 35% were 

Ho: P(NCIR) = P(C!A) 

H1 : P(NC!R) > P(CJA) 

Critical region: z > z 
(X 

with the result that calculated z is 1.790. As z. 05 is 

1.645, the null hypothesis is rejected in favor of the 

alternative. 

The implication of changing performance level rela­

tive to p0 is significant for quality control management. 

It means that attention must be given to measuring per­

formance quality for combinations of p0 and inspection· 

tasks and then seeking ways and means for improving unac-

ceptable performance. 



Vigilance Performance: McCornack's Criteria 

The measures of A1 , ~, and A3 versus the five time 

blocks are plotted in Figure 11 in order to determine 

whether there exists a performance decrement similar to 

that observed in vigilance tasks. 
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Recalling that a vigilance performance decrement is a 

degradation in performance during the first thirty minutes 

of the task after which performance stabilizes at some 

lower level, only the pattern of A3 for Po of 15% is ob­

served to meet the criterion. The decrement during the 

first thirty minutes is approximately lo/fe although it is 

followed by a recovery of 10% during the next twenty 

minutes. While the magnitude of the fluctuations in the 

A3 pattern for p0 at 5% are considerably greater than the 

minimum requirement of 10%, the observed pattern does not 

conform to the usual configuration of the vigilance 

decrement pattern. 

Because of the apparent recovery during the last 

twenty minutes in the A3 pattern of performance at 15%, 

the question of whether this pattern of performance is 

representative of the typical vigilance performance pat­

tern needs testing. Two tests are required. The first is 

to determine whether the decrement is significant and the 

second (assuming H0 is rejected) is to determine whether 

the recovery is significant when compared to the lowest 

level observed. 
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In the first test the null and alternate· hypotheses 

are 

H0 : A.3 max ·- A.3 min 

H1 : A3 max > A3 min 

where the maximum value of A.3 is that observed for time 

block one and the minimum value is that observed for time 

block three. The calculated value of z was 2.44. As 

z. 05 is 1.645, the null hypothesis was rejected in favor 

of the alternate hypothesis. In the second test, the null 

and alternate hypotheses are 

H0 : A3 min = A3 max 

H1 : A3 min < A3 max 

where A3 min is for time block three and A3 max is for time 

block four. The critical region is z < -z. 05 . The calcu­

lated value of z was -1.020. As -z. 05 is -1.645, the null 

hypothesis cannot be rejected. Therefore, it is concluded 

that the pattern of A3 over time at p 0 of 15% is repre­

sentative of a vigilance performance decrement pattern. 

If performance at the 15% treatment is typical of 

vigilance performance, then performance at the 5% treat­

ment should also exhibit evidence of vigilance performance 

as the stimulus provided by defective items is even less; 

however, the observed results were contrary to those pre­

dicted. A problem in detection performance over time at 

the 5% level persists. The only significant difference is 

between time blocks three and four (z = 2.080), but the 
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pattern of fluctuation in the control chart sense is wide 

with a saw tooth effect which suggests that the sample may 

have been drawn from two different distributions. 

Two possible explanations for this situation occur. 

The first is that some bias has accidently been built into 

the five percent sample of test materials, and the second 

is that as the inspectors may not have been accustomed to 

such a low fraction defective, several of them had trouble 

adjusting to the detection requirementso As the test sam­

ples were carefully constructed and as the experiment was 

subject paced in that not everyone would inspect exactly 

the same items is a given time block, the second possibil­

ity seems more likely. 

The question of two populations of inspectors will be 

considered in the following chapter. 

Vigilance Performance: Bayesian Criteria 

As shown in Figure 12, plots were constructed for the 

change in P(C 1 A) and P(NC l R) over time to determine whether 

there was a performance decrement similar to that expected 

in a vigilance task. To make this determination, it was 

assumed that the operational definition of a vigilance per­

formance decrement presented in Chapter III is applicable 

to the Bayesian criteria. 

Two patterns conform to the requirements of the oper­

ational definition. Both are for the measure P(NCIR) and 

· are for the 5% and 25% treatments of Po• 
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This additional suggestion of a vigilance performance 

decrement is of interest as it indicates that more atten-

tion should be given to the examination of inspector per­

formance over time if desirable performance levels are to 

be achieved. 

Index of Detectability: d' 

Figure 13 S'hows the intersection of the two probabil-

ity density functions with the criteria xc and d' identi­

fied for each p treatment~ 
0 

~ As d' is defined as an index of detectability for a 

given signal for a given observer, it is used here as an 

index of the detectability of the test samples for the 

population of inspectors. The relatively close agreement 

suggests that the sample ~aterials were uniform and the 

inspectors, as a group, did not have more difficulty from 

one sample to another in making their inspection. 

Also of interest are the differences in xc for each 

treatment. It can be seen in Figure 13 that the criterion 

for p0 of 25% is the lowest of the four treatments. For 

some reason, the inspectors used,a different criterion for 

this treatment. Whatever the reason for the change, it 

does not appear to be the result of application of the V 

and K values provided them prior to the experiment. 

Application of these values to their selection of a cri-

terion would have resulted in substantially different xc 

and, therefore, A2 over the given range of p0 • Thi.s may 
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be seen by computing~ for each treatment and comparing 

it to the ratio of the ordinate of fN0 (x) to f 0 (x) at x0 • 

If the inspector's criterion were optimal, ~ should equal 

this ratio. 

·As V for correct decisions was one and K for incor­

rect decisions was three, V plus K equals four in both 

cases and so~ is simply the ratio of P(C) to P(NC). The 

differences between the ratio and~ are tabulated below. 

.05 

.15 

.25 

.35 

19.00 

5.67 

3.oq 
1.86 

4.74 

6.36 

2.44 

3.31 

Difference 

-14.261/ 

+ 0.69 

- 0.56 

+ 1.45 

The major difference between the criterion used and 

the optimal criterion was for the 5% treatment. To attain 

a~ of 19.00 for the given V and K, xc would have to be 

2.465. This value was obtained by a trial and error com­

parison of ratios of ordinates of the normal curve with 

the constraint that d' be 2.89. This would mean that the 

observed~ would be approximately 0.993 and the observed 

A3 would be 0.665. In other words, defect detection would 

suffer in order to improve the correct identification of 

conforming items. This view of the inspection task is 

diametrically opposed to the view of the inspection objec­

tive cited earlier which i~ to maximize A3 • 

From the above it is concluded that whatever payoff 
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the inspectors used, it was not that specified by the 

experimenter. One reason for this may be that the concept 

of payoff is not usually applied in this manner to inspec­

tion tasks. Generally, only a penalty is applied in the 

form of disciplinary action by supervision in the event 

that nonconforming items are missed by the inspector and 

then detected at some subsequent point in the process. A 

question in the application of the payoff concept to in­

dustrial inspection is the difficulty in determining 

realistic benefits and costs for the decision outcomes. 

This question is discussed briefly in the final chapter. 

Apparent Fraction Defective 

The apparent fraction defective p3 was defined as the 

value of product defectiveness perceived by the inspector 

as the result of occurrence of both kinds of inspection 

errors, p1 and p2 • 

Figure 14 is a plot of the normalized deviations of 

p3 from p0 for each time block. It can be seen in this 

plot how the inspectors adjusted their level of perform­

ance relative to the true fraction defective of the prod­

uct as they gained experience with the sample. With p0 

taken as zero, it can be seen that at p0 = 5% the average 

performance level was 0.95 standard deviations above p0 ; 

whereas, for the 15% and 35% treatments, as the average 

performance level was 0.93 and 1.0 standard deviations, 

respectively, below the true p0 • The average performance 
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at the 25% treatment was at 25%. The data supporting 

Figure 14 are in Appendix G6 
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The pattern at 15% is similar to that of the vigi­

lance performance decrement pattern and encompasses a net 

shift of 2.86 standard deviations from the maximum point 

at period one to the minimum point at period three. The 

conclusion is that p3 shows evidence of a vigilance decre­

ment in the same manner as A3 and P(NCfR). 

The major point of .interest is the inspector's error 

in estimating the true fraction defective of the inspec­

tion lot. At p0 of 5%, the tendency was to overestimate, 

while at 15% and 35%, the tendency was to underestimate. 

Even if the estimates were, on the average, correct as at 

25%, the decisions made would be for tbe wrong reasons 

because of the effect of p1 and p2 on the decision 

process. 

A detailed example of these error effects in a sam­

pling situation is included in Appendix H using the 

results of this experiment. In the example, the inspec­

tor's operating characteristic curve for the sampling plan 

used gives more protection against poor quality than the 

design operating characteristic curve. The use of any 

sampling plan implies that management has determined a 

satisfactory breakeven point for sampling error and cost 

of inspection. The effect of inspector error, which is 

not taken into account in the design of sampling plans, 

is, in this instance to increase costs of inspection above 
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those expected. The reason is that the higher rejection 

rate requires that a greater than expected number of lots 

must be screened. 

Summ.ary 

The criteria~ and A3 deal with correct decisions 

relative to Type I and Type II error, respectively, but do 

not relate these errors to the total situation. The con­

ditional probability statements P(CJA) and P(NClR) treat 

the acceptance decision and the rejection decision sepa­

rately and account for the errors made relative to each 

decision. No single one of these criteria is best for 

measuring performance per se. Each is good relative only 

to the objective for which a performance evaluation is 

being made. And certainly none of these criteria say how 

much better or worse performance is unless some utility 

measure be applied. To accomplish this one must consider 

the total decision process along with the benefits in­

curred for correct decisions and costs incurred when in­

correct decisions are made. While the criterion A1 is 

based on a probability statement which defines the prob­

ability of a correct decision given that one has been 

made, it in itself does not have any utility value as­

signed. While p 3 is an indication of the fraction defec­

tive perceived by the inspector and permits, in terms of 

the average total inspected, an indirect assessment of 

costs, it does not provide information about the magnitude 
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of either p1 or P2. 

The best criteria are determined. to be d' , xc and 

E(V) for the decision process, as not only are the kinds 

and costs of error included and related in the performance 

evaluation, a reference point, xc' is provided which, when 

compared to the optimal criterion indicates both the di­

rection and magnitude of the improvement needed. 

It was suggested earlier that some of the difficul­

ties observed with the 5% test sample may have been 

because part of the inspector group had more difficulty 

with this treatment than with the others. In other words, 

for p0 equal to five percent there were two populations of 

inspectors, one able to deal effectively with the treat­

ment, the other not. This question is analyzed in the 

following chapter. 



CH.APTER VIII 

TWO POPULATION ANALYSIS 

In the previous chapter a question concerning the 

possibility of two inspection groups relative to perform­

ance at the 5% treatment. Two approaches to the analysis 

of the data are available. The first, or classical meth­

od, utilizes the chi-square statistic while the second 

method utilizes signal detection criteria. The classical 

method requires analysis with reference to the usual in­

spection objective, maximizing detection of defects 

whereas the signal detection method relates to the utility 

of the process in terms of the payoff matrix. Both ap­

proaches will be described below. 

Classical Method 

The question of two populations of inspectors with 

respect to the 5% sample may be examined by testing for 

differences among the inspectors using the X2 statistic 

and a 2 x 7 contingency table. The criterion used is A1 

as it accounts for both correct decisions. 
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Inspector 

Failures 

Total 

p 

A 

21 

260 

B 

3 

260 

D 

10 

205 

F 

5 

260 

G 

6 

260 

H 

4 

260 

94. 

I Total 

4 53 

260 1765 

.0808 .0115 .0488 .0192 .0231 .0154 .0154 .0300 

The calculated x2 is 34.0. Since x~ 05 ; 6 = 12.84, the null 

hypothesis is rejected and it is concluded that there are 

significant individual differences among the inspectors 

for the 5% treatment. 

Inspection of the raw data reveals that three inspec­

tors - A, D, and F, made the greatest number of~ type 

errors while making the least number of A3 type errors. 

Total Errors 

ADF Share 

ADF % 

BGHI % 

38 

35 

92.2 

7.8 

15 

1 

6.67 

93.33 

With reference to the objective of maximizing tbe detec­

tion of defects, group ADF performs better than group BGHI 

at the 5% treatment, but at the expense of more errors in 

correctly identifying conforming items. The differences 

between the two groups are significant when tested using 

the chi-square statistic. The results are summarized 

below and the supporting contingency tables are in 

Appendix E. 
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Criterion Ho Hl 2 
2 

_•.9.2.il Decision 

~ ADF=BGHI ADF/BGHI 5.96 3.84 Reject Ho 

A3 ADF=BGHI ADF/BGHI 8.53 3.84 Reject Ho 

Signal Detection Method 

In the traditional sense, group ADF would be thought 

to be the better group of inspectors. However, with 

respect to the payoff matrix prescribed for this experi­

ment a different conclusion is possible. In Figure 15 are 

plotted d 1 and xc for each of these groups for the 5% 

treatment. The index of detectability~ d', is approxi-

mately the same for, both groups; whereas, the difference 

in criterion, xc' is 1.136 standard deviations. 

Now, the question of performance quality at p0 equal 

to five percent may be answered by saying that while both 

groups were equally able to detect defects (approximately 

the same d 1 ), each group used a different criterion and 

this difference accounts for the performance differences 

observed. 

The optimal criterion was defined earlier as that 

value of xc where~= 19.0. The ratio of the ordinates at 

the observed xc for each group are 

ADF 

BHGI 

fN0 (x)/f0 (x) 

0.570 

34.50 

Group ADF is less than~ while group BHGI is greater 

than~. By trial and error the optimal criterion was 
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determined to be approximately 2.57 ford'= 3.425. Group 

ADF needs to adjust its crit.zn:ion to the right by 0.98 

standard deviations~ while group BGHI needs to adjust its 

criterion to the left by 0.16 standard deviations. Thus, 

it would appear that group BGHI used a criterion much 

closer to that desired than the other group. 

Analysis of individual differences for the other 

treatments gave the following results: 

Po X2 x2 
.05;6 Decision 

15 s.90 12.84 Cannot reject Ho 

25 7.69 12.84 Cannot reject Ho 

35 60.60 12.84 Reject Ha 

Examination of the data for the 35% treatment revealed 

that inspectors F and H performed significantly different 

from the rest of the group, while differences among the 

rest of the group were not significant. As inspector F 

performed well 9 failing to identify correctly only four 

conforming items and inspector H performed poorly 1 failing 

to identify eighteen conforming items and nineteen defec-

tive items~ there was no further attempt at subgroup com­

parisons. The values of x 0 and d' for each inspector for 

each treatment are included in Appendix C. 

Inspector H inspected the 35% sample during the last 

period of the day. He looked at his watch a number of 

times and appeared to be concerned about quitting on time. 

This loss of attention may be the cause of his poor per-

formance. The difference in performance cannot be 
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explained except to say that his index of detectability 

was high for both this sample and the 5% sample (5.98 and 

6.06, respectively), thus his capability for this par­

ticular defect is better than the rest of the group. 

Summary 

This chapter has presented an analysis of inspector 

performance using both the classical and signal detection 

approaches. For the 5% treatment, two groups of inspec­

tors were identified. By relating performance and payoff 

using the signal detection approach, a different conclu­

sion as to desirable performance was reached than with the 

classical method. 

The following chapter sums up the research and recom­

mends several areas for additional study. 



CHAPTER IX 

SUMMARY AND CONCLUSIONS 

This final chapter is composed of three sections. 

First is presented a summary of the research, its applica­

bility, and the major conclusions. The second section 

describes some of the problems in the design and conduct 

of the experiment. The final section recommends poten­

tially worthwhile areas for additional study. 

Summary 

This disserta.tion reported an experimental study of 

inspector accuracy using industrial electronics inspec­

tors as subjects. A visual, subject-paced task was used 

in which the subject gave a "yes-no" response to a stimu­

lus presented for evaluation. The experimental task 

simulated a real-world task in that the stimuli used were 

the same as those with which the subjects had daily con­

tact. The performance measures were expressed in terms of 

success in giving the correct yes-no responses. 

The threefold objective of the research was to 

1. Determine the effect of the a priori prob­

ability of defectiveness on an inspector's 

decision to accept conforming items and to 
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reject nonconforming items. 

2. Determine whether a vigilance decrement 

could be observed for a task meeting 

vigilance task requirements. 

3. Determine which of several available 

measures was most effective in de­

scribing inspector performance. 
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These objectives were achieved as evidenced by the 

conclusions delineated below. As a particular class of 

inspectors was used in a visual, subject-paced task, the 

results may not be applicable in all cases. For instance, 

they should not,be applied to a task that is externally 

paced 9 as by a production line, nor should they be applied 

to a task requiring measurement, such as machine parts 

inspection. The results are thought to be generally 

applicable to visual inspection tasks meeting the require­

ments of a vigilance task description as presented in 

Chapter III. 

The major conclusions which follow are expressed in 

terms of the several performance measures described in the 

earlier chapters. These conclusions are: 

l~ Inspector performance relative to detection 

of defects (A3 ) varies linearly with p0 b 

2. Inspector performance·relative to correct 

identification of good product (A2 ) may be 

unaffected by p0 • In three treatments -

5%, 15%, and 35% - this was true. The 



observed dif~erence in the fourth treat-

inent, 25%, is in part explained by the 

choice of & different criterion, xc. 

3. The vigilance decrement for p0 of 15% 

using A3 and for the p0 of 5% and 25% 

using P(WCJR), indicates that the con-

sideration of the possibility of vigi-

lance performance for low .values of p 0 

in industrial inspection tasks is worth-

while. A short break or interruption 

after about fifteen minutes of a vigi-

lance type task would likely reduce the 

probability of a performance decrement. 

4. Inspectors had difficulty in estimating 

the true fraction defective (p3 versus 

p0 ) as evidenced by overestimation in 

one case and underestimation in two 

others. In a sampling situation, this 

variation caused by decision error will 

affect the protection offered by the 

sampling plan. 

5. Bayesian measures are more useful in 
( 

describing the quality of either deci-

sion than are the measures~ and A3 , 

since they account for all the informa-

tion relative to the decision for which 

they are written. 
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60 The signal detection measures d' and xc 

are more useful than the other measures 

in performance evaluation as they not 

only provide for relating performance 

to payoff, but also indicate the magni­

tude and direction of improvement 

required. 

7. A major difference in choice of xc was 

observed between two inspection groups 

for the 5% treatment. This difference 

was not in evidence at the 15% and 25% 

treatments. At the 35% treatment, two 

inspectors performed differently from 

the rest of the group, one scoring high 

and the other low. 

Problems in Experimentation 

102 

A number of pr'oblems existed in the conduct of this 

experiment which need to be identified. 

The first problem dealt with the availability of sub-

_jects. The participating inspectors were taken off the 

job either one or. two at a time to perform the tests. 

Since their availabiiity was a function of the work load 

in the department,. it was not always possible to obtain 

the particular one required for the experimental design. 

As a result, to maintain the constraints of order and time 

of day it was necessary to stretch the experiment over a 
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longer calendar period than was anticipated. 

The second problem was the establishment of the pay­

off values V and K. The values established in this exper­

iment were the result of a consensus of the views of three 

quality control engineers, three inspection supervisors, 

and a quality control manager. If possible, a more pre­

cise determination of payoff should be made in terms of 

actual dollars,although this may be very difficult because 

of the intangible costs which can apply. Also, considera­

tion of payoff requires that a clear statement of inspec­

tion objectives be made for the task along with a 

specification of the risks (Type I and Type II error) 

acceptable for the decision process. Ideally, the cri­

terion (xc) should be one which permits these risks and no 

more. By varying the payoff over the course of the exper­

iment, the experimenter could learn by comparison of xc's 

whether his specification of payoff was being followed in 

choice of criterion by the inspectors. 

The'third problem relates to the control of the 

introquction of the stimulus. All vigilance research 

reviewed by the experimenter used externally paced tasks; 

whereas, most visual inspection tasks are subject paced. 

For the purpose of this research, it was assumed that this 

difference would not be a problem since in the pilot study 

it was demonstrated that rate of presentation did not 

affect performance. The experimental task was designed 

based on a predicted average rate of four wires inspected. 
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per minute. Although one subject inspected at better than 

twice that rate.~ the quality of her performance did not 

differ from the rest of the group. 

Knowledge of the a priori probabilities of defective­

ness is the subject of the fourth p~oblem. Signal detec­

tion theory presumes a knowledge of this value by the 

observer prior to making the observations. However, the 

inspector does not usually know the fraction defective of 

the inspection lot prior to his inspection. His only cue 

may be his past experience with a given production depart­

ment or individual operator for the task at hand. In this 

experiment a cue was provided in the form of a pretest 

sample with the same fraction defective as the test sample 

in an effort to minimize uncertainty during the first few 

minutes of the task. 

The fifth problem relates to the recovery observed 

during the last twenty minutes of the experiment. As the 

inspector was able to see that the task would soon end as 

he inspected the 200th item, it is assumed that this stim­

ulated him to become more attentive during the final few 

minutes. As this effect was greater than anticipated 3 it 

is recommended that future experimenters furnish enough 

test materials to last twenty or thirty minutes beyond the 

time span of interest. 

The final problem deals with the lack of ability to· 

specify d' for an ideal observer for the test materials. 

A possibility might be to use the ratio of the area of the 



105 

defect to the .total area inspected as being comparable to 

the signal to noise ratio. This is essentially the same _· 

approach as that taken using electrical energy in the 

usual signal detection task. 

Recommendations for Additional Study 

A number of open questions requiring additional study 

have been generated during the course of this research. 

Also the research itself was not broad enough in scope to 

consider every pertinent aspect in great detail. The fol­

lowing areas of additional research are suggested as being 

of interest in extending knowledge of the accuracy of 

industrial inspectors. 

1. Evaluation of performance using the measure~· 

Specifically, why was not a vigilance decrement 

observed, and why was there a difference in 

criterion (xc) for the treatment at p0 equal 

25%? 

2. Evaluation of the Bayesian criteria. Either 

specification of an operating definition for 

vigilance performance using these criteria 

or experimental justification of the defini­

tion used in this experiment would be of 

interest. With reference to the question of 

the performance plateau at the midrange of 

the given p0 , the question might be asked 

whether this was peculiar to this 



experiment rather than a true performance 

characteristic. 

3. Evaluation of the s~gn~l detection criteria. 

Knowledge of the distribution of d' for a 

group of inspectors relative to a particular 

task would be of interest in deciding whether 

or not differences were significant between 

indices obtained for other inspectors and a 

standard population. However, the ava\~­

ability of a method for defining d' for the 

ideal observer as noted in problem six above, 

would eliminate this requirement. 

4. Evaluation of sampling plan design with 

respect to error possibilities and location 

of the criterion xc. Sampling plans should 

be designed by taking into account the 

risks of decision error as well as those of 

sampling error. In some inspection tasks, 

error probabilities may be small while in 

others they may be so large as to be pro­

hibitive. Development of a design method­

ology to account for deiision errors would 

be highly useful. 
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APPENDIX A 

TEST INSTRUCTIONS 

A. Pretest Instructions 

This is the first phase of a test program which is 

being conducted in your area during the next few weeks. 

The purpose of the program is to establish some 

guidelines for establishing values for the accuracy of the 

inspection function. Your group has been selected as the 

pilot group in the program. Results of the testing will 

be reported as group results with no attempt made to 

identify individual performance. 

Today, you will be taking some pencil and paper tests 

relating to visual inspection. The balance of the test 

program will involve a wire preparation inspection task. 

Instructions for each of today's tests will be pro­

vided by the test instructor. 
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B. Training Instructions 

This second phase of our test program involves a wire 

preparation inspection task. In this phase you will 

be asked to inspect a series of wire ends that have been 

thermally stripped, and to determine whether any of these 

three types of defects exist: 

1. Scraped strands such that the copper is 

showing 

2. Nicked or ringed strands 

3. Cut (missing) strands. 

You do not need to squawk other types of defects such as 

birdcaging, improper lay, insulation defects, etc. 

It is required that you do-not use a magnifying glass 

in making your inspection. 

The test conductor will give you instructions prior 

to your inspection of each set of wires. 
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B.l 1st Wire Group 

In the first task you are required to inspect each of 

ten wires. After inspecting the first wire, tell the test 

conductor whether or not you think it is defective before 

going on to wire Number 2. Repeat this procedure on each 

wire until inspection of all ten is completed. 
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B.2 Payoff Criteria 

Before proceeding further we will establish a system 

of keeping score on your performance. Whenever you accept 

a good wire or reject a defective wire, you will receive 

one point. But~ whenever you accept a defective wire or 

reject a good wire, you will have three points subtracted 

from your score. At the conclusion of the following test 

groups the test conductor will compute your score and tell 

you how you did. The best possible score will be 10, the 

worst possible score will be a minus 30. 
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B.3 2nd Wire Group 

In this task you are required to inspect each of ten 

wires. However, instead of telling the test conductor 

whether or not the wire is defective, write the letter/ 

number of any defective wire on a sheet of paper. After 

you have completed your inspection of all ten wires~ the 

test conductor will compute your score and tell you what 

it is. 
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B.4 3rd Wire Group 

In this inspection task you are required to inspect 

each of 20 wires. Record the letter/number of each 

defective wire on the sheet of paper as before. When you 

have completed your inspection, the test conductor will 

compute your score as before. 
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B.5 4th Wire Group 

In this last inspection task, you are again required 

to inspect each of 20 wires. Record the letter/number of 

each defective wire on the sheet of paper as before. When 

you have completed your inspection, the test conductor 

will compute your score as before. 
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C. General Instructions: Wire Preparation Inspection 

The third phase of our test prog~am invqlves a wire 

preparation inspection task. During the next few days 

you will be asked to inspect four samples of wire ends 

· that have ·been thermally stripped. Each sample contains a 

different number of defective wires. For each sample you 

are to determine whether any of.these three types of 

defects exist: 

1. Scraped strands such that copper is showing. 

2. Nicked or ringed strands. 

3. Cut (missing) strands. 

You do not need to squawk other types of defects such as 

birdcaging, improper lay, insulation, burned strands, 

etc. Be sure to inspect the total length of the exposed 

wire. 

It is required that you do not use a magnifying glass 

in making your inspection. 

You will notice that each wire has a small piece of 

insulation left on the end in an effort to prevent the 

lay from being disturbed. Please try not to remove or 

otherwise disturb this protective covering. 

Your score for the four samples will be determined 

as before. Whenever you accept a good wire or reject a 

bad wire, you will receive one point. But, whenever you 

accept a defective wire or reject a good wire, you will 

have three points subtracted from your score. After you 

have inspected all four samples, the test conductor will 
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compute your score and tell you how well you d.id. Please 

do not discuss your performance with the other inspectors 

until after the test program is over. Do not talk during 

the test. 

The test conductor will give you instructions prior 

to the inspection of each sample. 
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C.l Pretest Sample 

Before beginning your inspection of the test sample 

you will be given a practice.inspection sample of 20 wires. 

Record the number of each defective wire on the squawk 

sheet. After you have completed your inspection of the 

20 wires, the test conductor will compute your score. 

You will have five minutes to complete the practice 

inspection. 

Do you have any questions? 

When the test conductor gives you the signal, you may 

begin your inspection. 
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C.2 Wire Sample A-M 

In this task you are required to inspect 260 wires to 

determine whether or not there are scraped, nicked, 

ringed or cut strands. 

The sample consists of thirteen groups of wires 

lettered A through M. Each group contains twenty wires 

numbered 1 through 20. When you have determined that a 

defect exists, write the appropriate letter and number of 

the defective wire on the squawk sheet furnished you by 

the test conductor. For example, if wire Number 14 in 

group Bis defective, you will write Bl4 on the squawk 

sheet. 

You will have seventy-five minutes to make your 

inspection. Work steadily and accurately. 

Do you have any questions? 

When the test conductor gives you the signal, you 

may begin. 
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c.3 Wire Sample N-Z 

In this task you are required to inspect 260 wires to 

determine whether or not there are scraped, nicked, ringed 

or cut strands. 

The sample consists of thirteen groups of wires 

letter N through Z. Each group contains twenty wires 

numbered 1 through 20. When you have determined that a 

defect exists, write the appropriate letter and number of 

the defective wire on the squawk sheet furnished you by 

the test conductor. For example, if wire Number 14 in 

group R is defective, you will write R14 on the squawk 

sheet. 

You will have seventy-five minutes to make your 

inspection. Work steadily and accurately 

Do you have any questions? 

When the test conductor gives you the signal, you may 

begino 
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C.4 Wire Sample AA-MM 

In this task you are required to inspect 260 wires to 

determine whether or not there are scraped, nicked~ ringed, 

or cut strands. 

The sample consists of thirteen groups of wires 

lettered AA through MM. Each group contains twenty wires 

numbered 1 through 20. When you have determined that a 

defect exists~ write the appropriate letter and number of 

the defective wire on the squawk sheet furnished you by 

the test conductor. For example, if wire Number 14- in 

group BB is defective, you will write BB14 on the squawk 

sheet. 

You will have seventy-five minutes to make your 

inspection. Work steadily and accurately. 

Do you have any questions? 

When the test conductor give you the signal, you may 

begin. 
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c.5 Wire Sample NN-ZZ 

In this task you are required to inspect 260 wires to 

determine whether or not there are scraped~ nicked 9 ringed, 

or cut strands. 

The sample consists of thirteen groups of wires 

lettered NN through ZZ. Each group contains twenty wires 

numbered 1 through 20. When you have determined that a 

defect exists, write the appropriate letter and number of 

the defective wire on the squawk sheet furnished you by 

the test conductor. For example, if wire Number 14 in 

group RR is defective, you will write RR14 on the squawk 

sheet. 

You will have seventy-five minutes to make your in­

spection. Work steadily and accurately. 

Do you have any questions'? 

\vhen the test conductor gives you the signal 9 you may 

begino 



APPENDIX B 

INSPECTION DATA SHEET 

Inspector ~--------~---------------~---~ Date 

Test Noo Time Began ______ Time Ended~---

Write the number of any nonconforming item in the space 
provided below. In the event that you need additional 
space 1 you may use the reverse side of this sheet. 
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APPENDIX C 

SUMMARY OF PERFORMANCE MEASURES 
./r-, ..... 

FOR ~E~~) INSPECTORS 
~-:--,.. 

Inspector Po A1 * ~* A,* P(C1A)* P(NC1R)* XC d' 

A 5 919 919 923 996 375 1.40 2.83 
15 942 959 846 974 785 1.74 2.76 
25 963 975 925 975 923 1.96 3.1+0 
35 965 973 951 975 951 1.43 3.08 

B 5 988 1000 769 988 1000 4.00 4.74 
15 973 995 846 974 972 2.58 3.60 
25 942 943 938 980 848 1.58 3.12 
35 962 983 923 961 965 2.12 3. 5.5 

D 5 951 948 1000 1000 500 1.63 5.63 · 
15 950 972 820 969 843 1.91 2.83 
25 912 939 830 945 818 1.55 2.51 
35 938 988 846 923 975 2.26 3.28 

F 5 980 980 1000 1000 722 2.06 6.06 
15 962 982 846 975 893 2.10 3.12 
25 923 933 892 965 818 1.50 2.74 
35 984 976 1000 1000 958 1.98 5.98 

G 5 976 991 692 985 818 2.37 2.87 
15 9.59 978 846 975 869 2.02 3.04 
25 934 984 784 932 945 2.14 2.93 
35 926 0 970 846 922 940 1.88 2.90 

H 5 985 999 770 989 910 3.09 3.83 
15 988 1000 590 935 1000 4.00 4.23 
25 961 984 892 965 952 2.14 3.38 
35 820 865 736 860 748 1.10 1.73 

I 5 984 1000 692 985 1000 4.00 l~ 0 50 
15 923 977 615 936 828 2.00 2.29 
25 928 966 807 942 885 1.83 2.70 
35 926 994 802 903 986 2.54 3.39 

*Values in these columns should be divided by 1000 to 
obtain probabilities. 
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APPENDIX D-I 

PATA SUMMARY FOR SEVEN INSPECTORS 
SAMPLE A= 5% 

Period No no ll1 ~ do d1 d2 n1 +di! ll2 +di! ll1 +d1 

1 374 351 341 10 23 6 17 358 27 347 
2 410 395 391 4 15 1 14 405 18 392 
3 449 426 415 11 23 6 17 432 28 421 
4 279 265 254 11 14 0 14 268 25 254 
5 158 150 148 2 7 2 5 153 7 150 

Total 1670 1587 1549 38 82 15 67 1616 105 1564 

I-' Period A1 ~ A3 P3 Po P(C1A)_ P(NC)R) 1-~ d' 
I\) 
-...J 

1 .959 .973 .740 .0722 .0615 .983 .630 .027 2.57 
2 .989 .990 .935 .0439 .0368 .999 .779 .010 3.s3 
3 .960 .975 .740 .0625 .0514 .985 .608 .025 2.61 
4 .961 .960 1.000 .0896 .0502 1.000 .560 .040 5.24 
5 .975 .988 .715 .0444 .0444 .987 .715 .012 2.83 

Total .968 .976 .817 .063 .0491 .991 .638 .024 2.89 



APPENDIX D-II 

DATA SUMMARY FOR SEVEN INSPECTORS 
SAMPLE N = 15% 

Period No no n1 Il2 do d1 ~ 

l 377 319 305 14 58 8 50 
2 401 340 337 3 61 12 49 
3 403 342 338 4 61 20 41 
4 342 294 292 2 50 12 38 
5 162 140 135 5 22 5 17 

Total 1685 1435 1407 28 252 57 195 

Period A1 ~ A-, P, Po P(CIA) 

1 .942 .956 .862 .169 .154 .975 
2 .964 .992 .804 .129 .152 .965 
3 .941 .989 .672 .112 .151 .945 
4 .965 .995 .760 .117 .146 .961 
5 .940 .965 .773 .136 .136 .965 

Total .952 .981 .775 .132 .1495 .960 

ll1 +d2 Il2 +~ 

355 64 
386 52 
379 45 
330 40 
152 22 . 

1602 223 

P(NC!R) 1-~ 

.782 .044 

.943 .008 

.911 .011 

.950 .005 

.773 .035 

.875 .019 

Il1 +d1 

313 
349 
358 
304 
140 

1464 

d' 

2.80 
3.27 
2.74 
3.28 
2.51 

2.84 

f--J 
I\) 
(X) 



APPENDIX D-III 

DATA SUMMARY FOR SEVEN INSPECTORS 
SAMPLE AA= 25% 

Period No no n1 De Cl.a d1 ~· 

1 384 299 293 6 85 14 71 
2 449 333 326 7 116 13 103 
3 38? 292 272 20 95 12 83 
4 273 203 191 12 70 10 60 
5 172 127 118 9 45 6 39 

Total 1665 1254 i200 54 411 55 356 

Period A 1 Az A :, P:, Po P(CfA) 

1 .948 .980 .836 .203 .221 .955 
2 .973 .977 .889 .245 .259 .962 
3 .919 .932 .874 .266 • 246 .958 . 
4 .920 .942 .858 .264 .256 .951 
5 .915 .930 .868 .279 .262 .953 

Total .935 .958 .865 .24? .247 .956 

Il1 +d2 De +de 

364 77 
436 110 
355 103 
251 72 
157 48 

1563 410 

P(NC,R) 1-Az 

.923 .020 

.936 .023 

.806 .068 

.834 .058 

.813 .070 

.865 .042 

Il1 +d'll. 

307 
339 
284 
201 
124 

1255 

d' 

3.03 
3.22 
2.64 
2.64 
2.59 

2.83 

t-' 
I\) 

'° 



Period No no 

1 290 189 
2 318 204 
'3 327 207 
4 316 212 
5 313. 207 

Total 1564 1019 

Period A1 ~ 

1 .890 .953 
2 .940 .992 
3 .946 .962 
4 .963 .980 
5 .955 .992 

Total .939 .973 

APPENDIX D-IV 

DATA SUMMARY FOR SEVEN INSPECTORS 
SAMPLE NN = 35% 

n1 n2 do di ~ 

180 9 101 23 78 
201 3 114 16 98 
199 8 120 10 110 
208 4 104 8 96 
205 2 106 12 94 

993 26 545 69 476 

As P3 Po P(ClA) 

.772 ~300 .348 .887 

.859 .318 .369 .926 

.918 .361 .367 .952 

.923 .317 .329 .965 

.886 .307 .339 .945 

.874 .321 .348 .925 

A1 +~ ~ +d2 

258 87 
299 101 . 
309 118 
304 100 
299 96 

1469 502 

P(NClR) 1-~ 

.898 .047 

.970 .015 
.• 934 .055 
.960 .038 

.• 980 .044 

.948 .027 

n1 +di 

203 
217 
209 · 
216 
217 

1062 

d' 

2.42 
3.27 
2.99 
3.20 
2.92 

3.17 

1--' 
\.N 
0 
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APPENDIX E 

CONTINGENCY TABLES 

Contingency Tables for A1 , ~ and A3 

Po 5 15. 25 35 Total 

A1 Failures 54 83 109 95 341 
Total 1670 1685 1665 1564 6584 

P = (l-A1 ) .032 .049 .065 .061 .052 

~ Failures 38 28 54 26 146 
Total 1588 1435 1254 1019 5296 

p = (1 - ~) .024 .0195 .043 .0255 .276 

A-, Failures 15 57 55 69 196 
Total 82 252 411 545 1290 

P = (1 - A~) .183 .225 .135 .126 .152 

Sample calculation: 

A1 X2 = [(54)(.032) + (83)(.049) + (109)(.065) + 

(95)(.061) - (341)(.052)] + (.948)(.052) 

x 2 = 17.44 

X2 05 = 7.81, hence reject H0 • ; 3 
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E.2 Contingency Tables for~ and A3 
Combined Treatments 

Po 5-15 25-35 Total x2 
A-, Failures 72 124 196 

Total 334 956 1290 
P = (1 - A3 ) .2155 . 1295 . 01152 12.82 

A2 Failures 66 80 146 
Total .3023 2273 5296 

P = (1 - A2 ) .0218 .0352 .0276 4.17 

E.3 Contingency Tables for~ 
Combined Treatments 

Po 5, 15, 35 25 Total x2 

~ Failures 92 54 146 
Total 4042 1254 5296 

P == (1 - A2 ) .0228 .043 .0276 14.66 

po 5 15 35 Total x2 

~ Failures 38 28 26 92 
Total 1588 1435 1019 4042 

p = (1 - ~) .024 .0195 .0225 .0228 1.77 



E.4 Contingency Tables 

Group 

~ Failure 
Total 

p 

Group 
A3 Failure 

Total 
p 

ADF 

35 
631 

.0555 

ADF 
1 

36 
.0278 

for Two Groups 

BGHI 

3 
957 

.00314 

BGHI 
14 
52 

• 269 

of Inspectors 

Total 

38 
1588 
.024 

Total 
15 
88 

.1705 

x2 

5.92 

8.53 
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APPENDIX F 

METHOD FOR CALCULATING SIGNIFICANCE 

OF REGRESSION 

The single degree of freedom x2 for regression is 

found'by first determining the quantities 

Where N and Dare, respectively, the numerator and 

denominator of the regression coefficient b of Pon Po• 

Chi-square for linear regression then is 

x~ = 
p Q D 

with one degree of freedom. If a significant rela.tion­

ship exists, then it may be concluded that the true 

relation is approximately linear. 
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APPENDIX G 

NORMALIZED DEVIATION OF p3 FROf'l Po FOR EACH TIME BLOCK 

t P3 Po P3 -Po P3 -Po = kcr 
C5o 

1 .0722 .0615 +.0107 +.905 
2 .0439 .0368 +.0071 +.601 

5% 3 .0625 .0514 +.0111 +.994 
4 .0896 .0502 +.0394 +3.34 
5 .0444 . OL~44 .0000 __JL_ 

mean .0603 .0491 .0112 +.95 

n = 334.0 Po = .0491 p3 = .0603 O'o = .0118 

1 .169 .154 +.015 +.799 
2 .129 .152 -.023 -1.22 

15% 3 .112 .151 -.039 -2.06 
4 .117 .11+6 -.029 -1.54 
5 .136 .136 .o .o 

mean .132 .1495 -.0175 -.932 

361.0 - .1495 - .132 .0188 n = Po = P3 = C5o = 

1 .203 . 221 -.018 -.76 
2 .245 .259 -.014 -.59 

25% 3 .266 .246 . + .020 +.845 
4 .264 .256 +.008 +.338 
5 • 2'.B_ .262 +.012 +.218 

mean .247 .217 .o .o 
n = 333.0 Po = .247 -p3 = .247 C5o = .0237 

1 .300 .348 -.048 -1.78 
2 .318 .369 -.051 -1.90 

35% 3 .361 .367 -.006 -.223 
4 .317 .329 -.012 -.445 
5 :_2Q.'.Z.. ~ -.032 -1.190 

mean .321 .348 .027 -1.0 

313.0 - .318 - .321 .0269 n = Po = P3 = C5o = 
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APPENDIX H 

INSPECTOR ERROR EFFECTS ON 

SAMPLING DECISIONS 

A. For the purpose of this example, the single sampling 

plan n = 200, c = 14 was chosen to study the effect of 

inspection error with respect to the protection offered by 

the sampling plan. Table IV summarizes the computations 

for the operating characteristic curve of n = 200, c = 14 

when no errors are made and when p1 and p2 errors of the 

magnitude indicated occur. In Figure 16 are plotted the 

two OC curves. Examination of these curves shows that the 

inspectors as a group operate to a somewhat tighter plan 

than is desired. 

TABLE IV 

o.c. CURVE COMPUTATIONS 
P1 == 0.024, p~ = 0.183, n = 200, c = 14 

Po p 1-Po P1 (l-p0 ) Po ( l-P2 ) P3 np3 p 
a:3 a:o 

2 1.0 98 2.36 1.634 3.99 7.98 .983 
4 .983 96 2.31 3.270 5.58 11.16 .842 
6 .772 94 2.26 4.904 7.16 14.32 .542 
8 .368 92 2.21 6.540 8.75 17.50 .245 

10 .105 90 2.16 8.174 10.33 20.66 .083 
12 .070 88 2.11 9.808 11.92 23.94 .020 
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Figure 16. Effect of Inspection Error on O.C. 
Curves for a Single Sampling Plan 
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B. As there was identified. two groups of inspectors at 

the 5% level, each with different orders of p1 and p2 

error, their performance relative to sampling will be 

shown also. Table V summarizes the computations for the 

O.C. curves for each group and Figure 17 contains the 

plots of the O.C. curves. 

Inspection of Figure 17 shows that group ADF has a 

much tighter O.C. curve than group BGHI. The latter 

group's curve is close to that of the design curve up to 

p 0 of 9% where it crosses the design curve. For an in­

spection lot that was, say, 10% defective the protection 

obtained would be slightly less than that expected. The 

magnitude of the difference in this example is small, but 

under different amounts of error it could be sufficiently 

large to reduce the protection offered by the plan. That 

is, the inspectors' curve would be to the right of the 

design curve. 

C. The effect of the p1 error is to shift the inspector's 

O.C. curve to the right when p1 i~ small and to the left 

of the design curve when p1 is large. In Tables IV and V, 

inspection of the column headed p1 (1 - p 0 ) reveals little 

variation in that value compared to the other component 

of p 3 , Po ( 1 - p2 ) • Thus, if there were no p1 error, the 

effect of p2 error would be to move the O.C. curve to the 

right of the design O.C. curve. As p1 error increases, 

the O.C. curve moves back to the left, eventually becoming 

less than the design curve. Depending on the particular 



TABLE V 

CALCULATIONS OF PROBABILITY OF ACCEPTANCE FOR 
p3 FOR TWO INSPECTOR GROUPS 

Grou12 ADF 

For p0 = 5%: 1 - ~ = P1 = .0555 
A3 = 1 - P2 = .972 

Po (1-Po) P1 (1-Po) Po (l-P2) P, np3 

2 98 5.44. 1.945 7.385 14.79 
4 96 5.33 3.890 9.22 18.44 
6 94 5.22 5.835 11.055 22.10 
8 92 5.11 7.780 12.89 25.78 

10 90 5.00 9.725 14.725 
12 88 4.89 11.670 16.56 

Grou12 BGHI 

For p0 = 5%: 1 - ~ = P1 = .0278 
A, = 1 - P2 = .731 

Po (1-Po) P1 ( 1-Po) Po ( l-P2) P3 np, 

2 98 2.720 1.462 4.182 8.364 
4 96 2.665 3.924 5.589 11.178 
6 94 2.610 4.386 6.996 13.992 
8 92 2.555 5.848 8.403 16.806 

10 90 2.500 7.310 9.81 19.62 
12 88 2.446 8.770 11.216 22.432 
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error combination, the probability of acceptance of the 

perceived fraction defective, p3 tends to be less than 

that expected for p0 to some crossover point and then be­

comes greater than that expected for p0 • In either event, 

the decision to accept or reject a lot is made for the 

wrong reasons under conditions of inspector error. 
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