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" LIST OF PRINCIPAL SYMBOLS

vector potential function

magnetic induction vector

primary dipéle magnetic inductioh vector
first-order magnetic iﬁduction vectofs
electric displacement vector

electric field intensity vector

~ electron charge

magnetic field intensity vector

total current, primary coil

current density vector

first-order current density vectors
mass of an electron

mass of an atom

electron number density

ion number density

number of ﬁurns, primary coil

number of turns, & coil |

number of turhs; ¥ coil

guality factor of an electric circuit
electron-atom collision cross section
radius of a cylindrical region

magnetic Reynolds number

Vv



r _distance in spherical coordinates

rp characteristic radius, primary coil

Ty characteristic radius, £ coil

Ty characteristic radius, ¥ coil

T temperature

t subscript refers to first-order fields caused by o
U velocity vector |

,UH axial velocit& component

X,Y,Z dimensionless Cartesian coordinates

Xy¥ 2 Cartesian coordinates

Vs distance from primary coil to either secondary coil
Z axial coordinate

o degree of ionization

S magnetic skin depth factor

€ dieléctric constant

@2 boundary correction factor for o

®Y boundary correction factor fof oU“

6 azimuthal coordinate

K vmagnetic permeability

?é average electron collision frequency

p radial coordinate

z conductivity coil

g | electrical conductivity

Y » conductivity-velocity coil

o5 signal induced on X coil

5o signal induced on I coil in an infinite medium
QY. signal inducéd on Y coil
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signal induced on Y coil in an infinite medium
stream function for current density

frequency of»impressed powver

plasma elecfron frequency

subscript refers to first-order fields caused by aly,
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SUMMARY

A three-coil plasma probe that measures both the conductivity and
velocity of laboratory plasmas having low magnetic Reynolds ngmbers has
been developed and tested by Rossow and Posch. As a first approximation,
it was assumed that ﬁhe piaéma Boundary was far from and much larger
than the probe.' At the suégestion of V. J. Rossow, the‘present work
was undertaken té extend the previous theory by deriving factors which
correct for the presence of cylindrical boundaries. As a check on this
numerical work, several computed values were compared with experimental
data, taken in cylinders of acid. Since the agreement was satisfactory,
the boundary correction factors were used to reduce data taken as the
probe was swept through an argon plasma generated by a constricted-arc
wind funnel. These resultant profiles represent local values of the
conductivity and veiocity in the presence of the boundary of the plasuma
jet that are in agreement with estimates made by other means. It was
found that the raw data underestimates conductivity and overestimates

velocity.
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CHAPTER I
INTRODUCTION

A plasma is an ionized, electrically-conducting gas-consiating, in
the general case, of electrons, positive or negative ions, atoms, mole-
cules, and photons; most definitions add the restriction that a plhsma
must be electrically neutral on a macroscopic scale. The non-neutral
particles may be multiply ionized and the neutrals (atoms or molecules)
may be electronically excited. The photons may exhibit a broad spectrum
of quantized frequencies. Plasma temperatures can range from 100° X in
interstellar space to more than 108 OK in a thermonuclear reaction.
However, the present work is primarily concerned with laboratory plasmas
which are generated by electric arcs and have temperatures from 5000° K
to 40,000° K. Perhaps the most important characteristic of a plasma is
its ability to conduct an electric current; this fact accounts for the
existence of the many and diverse phenomena that have been observed in
ionized gases.

The transport properties of a plasma differ markedly from those of
an un-ionized gas because the Coulomb-type interparticle forces existing
in the former are vastly different from the nonelectrical interparticle
forces in the latter. The measurement of these properties in high tem-
perature laboratory plasmas has necessitated the modification of tradi-
tional transducers, such as pitot tubes and thermocouples, to withstand

high heat flux rates and function properly in an ionized environment



without greatly perturbing the medium. 1In addition, it has been neces-
sary to develop measurement techniques to determine electron and ion
temperatures (which are not equal in a nonequilibrium plasma), particle
number densities, and the total electron collision frequency. Some
measurements are made externally be means of X-ray, microwave, and
laser interferometry and absorption or emission spectroscopy. The
properties may then be used to infer the transport coefficients by
means of an appropriate formula.

However, internal measurements are desirable to serve as a check
on the external data and to obtain, if possible, local values. For
example, in the design of magnetohydrodynamic power generators and
accelerators, knowledge of local conductivity and velocity is of
vital importance in choosing electrode locations and in determining
efficiency. But the hostile plasma environment poses severe design
problems: Consequently, many conductivity instruments have been
designed (see, for example, Reference 1-15, 20) but only a few are
immersible (see References 4, 5, and 20). In Chapter II a represen-
tative sampling of previous conductivity and velocity measurement
techniques are reviewed.

The present work is based on a design by Rossow and Posch (20)
of an immersible three-coil conductivity/velocity probe which repre-
sents a significant improvement upon previous methods because it
minimizes the heat flux sensitivity (4, 5) and large flow perturbation
(4) problems of othér designs. Briefly, this instrument consists of a
primary and two secondary coils. The alternating current in the primary
coil creates an oscillating magnetic dipole field. The secondary coils

are located in such a manner as to respond to perturbations of the pri-



mary dipole field caused by the electrical conductivity and the motion
of the surrounding medium. Further details of this instrument are
presented in Chapter II.

In the theoretical analysis of most magnetofluidmechanic problems,
the magnetic Reynolds number, Rm = Ui, indicates the relative magni-
tudes between the impressed and induced magnetic fields. 1In this defi-
nition g is the electrical conductivity, y 1is the permeability, U is
the speed, ‘and 1 1is some characteristic length. If Rm is small,
Reference 21 shows that the induced magnetic field is also small com-
pared to the impressed field. Then the analysis can be greatly simpli-
fied by the use of a power series expansion in Rm since only first-
order terms need be considered. This approach was used in the analysis
of Rossow and Posch because Rm is small for most plasmas generated by
electric arcs; the probe design of Reference 20 was tested in a con-
stricted-arc wind tunnel where Rm ranged from 10™* go 10 '. There-
fore, the neglect of terms of order Rﬁf was reasonable.

The theory of Rossow and Posch also assumed an unbounded plasma
having uniform electrical conductivity and velocity. The principal pur-
pose of the present work is to present theoretical modifications which
will remove these restrictions for the case of a free plasma jet having
a cylindrical boundary.

Accordingly, Chapter III presents modif;:;tions of the unbounded
field theory which are necessary whenever the three-coil probe nears
a plasma boundary. Initially, the conductivity ¢ and velocity U are
assumed to be constant inside the jet of radius R and zero elsewhere
as illustrated in Figure 1. Using this idealized model, the modifica-

tions are derived and presented graphically in the form of boundary
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Figure 1. Cross-stream variation of plasma variaBles
assumed in theory.
correction factors. These theoretical correction factors are compared
with experimental results obtained by the probe in a deep plastic
cylinder filled with an electrolyte.
In Chapter IV the correction factors are utilized to develop a
method for computing the local conductivity and velocity of a plasma

stream from data (similar to that of Figure 2) which varied continously

ogorol

-R R

Figure 2. Typical profile in plasma jet.

-across the stream as obtained by a probe as it was swept through an
argon plasma jet generated by a constricted-arc wind tunnel. = The method
is then applied to a typical data record and the resulting conductivity
and velocity profiles are presented and discussed.

Chapter V contains concluding remarks, and the Appendix includes a
‘ discussion of electfical conductivity formulas, computer program de-

tails, and remarks on displacement currents in plasmas and electrolytes.



CHAPTER II
PREVIOUS INVESTIGATIONS

In the first section of this chapter, several représentative
conductivity measurement techniques are reviewed (References 1-15).
Velocity measurement devices are discussed in the second section
(References 16-19). A third section is devoted to a review of the

conductivity/velocity probe system designed by Rossow and Posch (20).
Electrical Conductivity

Many electrical conductors obey a very simple relationship, known
as Ohm's law, involving the current density vector d, the electrical
conductivity o, and the applied electric field intensity vector E.

This familiar equation is
g = oF | (1)

where ¢ 1is a property of the conductor,

At first glance it is tempting to extend this law to plasmas and
to measure o By inserting two electrodes into the ionized gas and
then observe the current which results from the application of a known
electric field., However, the introduction of such a device, called a
Langmuir probe, into a plasma results in various boundary layer and
electfode surface effects which can greatiy influence the measured

resistance, Therefore, Langmuir probés are seldom used to determine



0. However, a theory has been developed to utilize the Langmuir probe
for the measurement of ion number density and ion and electron tempera-
tures.

. The ideal immersible plasma conductivity probe has many design
requirements. If the probe is used in a plasma jet from an arc dis-
charge, then it must withstand high heat flux rates. . The probe output
should not be significantly affected by the electric charge sheath or
the thermal and velocity boundary layers which form on it surfaces.
If the probe is supplied with pulsating power, then the impressed fre~
quency w must be muéh less than . Ve’ the avérage electron collision
frequency. This. restriction assures that electrons will suffer many
collisions per cycle and, consequently, that the effective dc conduc-
tivity will be measured., . Also, the impressed frequency must avoid

resonance effects with the electron plasma frequency

2 (2)
w = 2
P nee /mego

where e is.the electron charge, n, is the electron particle density,

€o is the permittivity of free space, and m, is the electron mass.

. Equation- (2) represents the frequency of electrostatic electron oscil-
lations that may occur in a plasma as a result of microscopic charge
separation, wp for laboratory plasmas is of the order 1012Hz. . Another
restriction on. the magnitude of w is related to the electromagnetic

skin depth factor & defined by the relationship

§ = (2/ow)’ 3
where M is magnetic permeability, & is a measure of the depth of
penetration of an electromagnetic field into a conducting medium. The

magnitude of w must be chosen so that the probe's magnetic field



" penetrates beyond the adjacent conducting boundary layers into the
unperturbed. free stream, However, in direct opposition to. these limita-
tions on the maximum value of  , the impressed frequency must be great
enough: to ensure an acceptable signal~-to-noise ratio. Calibration
should be simple, convenient, and accurate. A linear relationship
between output signal and conductivity is preferred. . Finally, the
device should not be too costly or complicated.

Many electrical conductivity measurements utilize a solenoid that
is external to and coaxial with a cylindrical plasma stream or a shock
tube  (see, for example, Reference 1-3, 6~15). 1If. the solenoid is sup~
plied with a small amount of power to generate a “primary" magnetic
field within. the core, then 'secondary" search coils may be used to
sense the perturbation of the primary field caused by the presence
and/or motion of a conducting core. . The voltages induced on the sec-
ondaries are then used to infer the conductivity or velocity of the
coaxial medium. When the primary power supply is constant (1), the
conducting medium must be in motion; this restriction may be removed
by the use of pulsating power (11-14), subject to the limitations on
the impressed frequency mentioned above.

Alternately, the coaxial solenoid may be used as an active compo-~
nent of a tuned, oscillating, L-C network. The introduction of a con-
ducting medium into the core of the solenoid causes a change, Af, in
the resonant frequency, fo, of the circuit and a change, AQ, in the
quality factor, Qo’ of the circuit. The quality factor, Q, is defined

as the ratio of the time averaged energy stored.in the oscillator



circuit to the emergy loss per cycle. . Calibration curves are»used»to
predict conductivity as a function of.Af/fo (8-10) or as a function
of AQ/QQ @) .

Another technique employs two identical single~layer solenoids as
the active elements of a symmetrical RF bridge. The bridge is balanced
when air is the core medium in both coils. Introduction of a plasma
into the core of one solenoid causes the bridge to become unbalanced
and the magnitude of the unbalance may be related to the average conduc-
tivity of the plasma core. The bridge power may be sinusoidal (3) or
pulsed (2).

The method of Luther (11) employs a long, coaxial solenoid and a
small one-turn coil that is inserted into.the plasma core through a
hole in the solenoid. . The search coil is used to determine a radial

profile of the axial magnetic field B . Then U is related to B,

and its radial gradient, BBZ/Bp, by means of a theoretical analysis.
As previously mentioned, few immersible probes have béen reported.

The device of Olson and Lary (4) consist$ of a small (8mm o.d.)
cylindrical single-layer solenoid enclosed in an insulating tube. . The
sinusoidal power which is supplied to the coil induces plasma currents.
The power dissipated by these currents may be measured and related to
the average electrical conductivity. The recent desigp_by Stubbe (5)
is similar to that of Olson and Lary and uses a much smaller coil
(1.4 mm o. d.). . The three-coil conductivity/velocity probe of Rossow
and Posch- (20) is described Below in a separate section of this chapter.

- 'Each of the methodé discussed above suffers from one or more dis-
advantages. . The technique of Lin et al. (1) employs a coaxial primary

solenoid supplied with constant power and a single upstream secondary



or sensing coil. Although this method is comparatively uncomplicated,
it is limited to moving gases and cannot be used to obtain local wvalues
of g. Fuhs (12) has. improved the Lin configuration by adding a down-
stream secondary coil and changing the primary power supply to sinus-
oidal (uw= 80017 -Hz). These revisions remove the restriction on moving
gases and permit the calculation of a oU profile where Uy 1is the
axial velocity; however, the method does not yield separate o and,U"
profiles. |
. The two-solenoid, pulse-operated bridge method of Persson (2)
relates the bridge unbalance caused by the plasma core to a radial
average of the ratio ne/se.\ Conductivity is then computed by means of
the formula
o= (0, /V,)(/m). | (“)
The use of this formula is a disadvantage because this equation
involves many assumptions, some of which are discussed in Appendix A.
-Koritz and Keck (3) used a bridge supplied with sinusoidal power
(w = 3.8 MHz) and related bridge unbalance directly to a radial average
value of 0. The principal disadvantage of these two bridge techniques
is their inability to determine local values.

The devices reported by Blackman (6), Donskoi et al. (7), Akimov
and Konenko (8),.Tanaka and Hagi (9), and Savic and Boult (10) are
based on the Af/fo method outlined above.

Akimov and Komenko (7) have pointed out two potential sources for
error in the Af/fo and AQ/Qo methods. 1. - Because.the stray capaci-
tance of a coil is increased in the vicinity of a conductor, the L-C
network must be deéigned so that the stray capacitance problems encoun=-

tered by Tanake and Hagi will be negligible. 2.  To obtain acceptable
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sepnsitivity, the Af/fo method must use frequencies of the order 1 MHz
to 50 MHz, Because all plasma jets are radially nonuniform, the elec-
tromagnetic skin depth  factor {, being inversely proportioenal to o,
increases from a minimum at the center of the jet to a maximum at the
edge of the jet. Therefore, it is possible that the use of a high fre-
quency power supply may prevent adequate penetration of the applied
field into the highly conductive core of a plasma jet so that the
change, Af, may not be proportional to a radial average of the conduc-
 tivity. .Akimov and Konenko suggest that /R must exceed 1.6 at the
center of the plasma jet and this requirement caused:Akimov and.- Konenko
to question the results of Blackman's experiments.

Several investigators have objected to calibration methods which
employ electrolytes because the displacement current may not be negli=-
gible in a polarizable electrolyte at the high frequencies employed for
the Af/fo.techniques (see Appendix C for a discussion on the displace-
ment current). Therefore, Savic and Boult used mercury, copper, and a
bizmuth-tin alloy for calibration materials. However, the resulting
calibration curve was nonlinear and did not extend below 700 mho/meter.

The method of Tanaka and Hagi is based on the existence of an
annular gap between the coil and the plasma core and the theory shows
that this instrument may be calibrated using an air core. . The tech-
niques of Hollister‘(15) and -Donskoi et al (7) are similar to that of
Tanaka and Hagi. Poberezhskii (13), commenting on the work of Donskoi
et al., has shown that a small error in the ratio of the-jet radius to
the coil radius can result in a large conductivity error. This could
be a serious disadvantage because in many  instances it is difficult te

determine the radius of the jet.
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The imstrument of Poberezhskii (14) is similar to the: Fuhs.device
except that this design employs one primary and four secondary coils
which coaxially surround the plasma jet. The theory indicates that if
two secondary coils, symmetrically located with respect to the primary,
are wound in the same direction, then the potential induced on those
two coils will be proportional to o. Similarly, the potential induced
-on the remaining two coils, wound in opposition, will be proportional
to.oU . However, the technique employs complicated circuitry, yields
only average values, and is sensitive to extraneous signals.

. With one exception, none of the external solenoid devices is capa-
ble of obtaining a local value of og.  Poberezhskii (13) explains how
the measurements of Donskoi may be used to obtain a plasma jet conduc-
tivity profile. However, the method is quite complex and may be subject
to considerable error, as noted above, unless the radius of the jet is
known with considerable accuracy. - Poberezhskii does not present an
example of the method.

Previous immersible probes have disadvantages, too. The radius
of the probe of Olson and Lary (4) was large (4mm) compared to the
radius of the jet (12.5 mm) in which it was tested. . Therefore, the
flow perturbation caused by this probe was not negligible. .The high
heat flux rate caused large coil resistance changes which had to be
eliminated by cooling the probe with dry nitrogen. Because of the use
of high frequency (13.5 MHz - 23 MHz) power togéther with the use of
electrolytes for calibration, the results of Olson and Lary may be sub-
jet to considerable error. Stubbe (5) has reduced the flow perturba-
tion difficulty of the Olson and Lary design by reducing the diameter

of the immersible coil to 1.4 mm, but no provision is made for cooling.
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Consequently, the- application of this device appears to be limited to
a shock tube because high heat flux rates result in undesirable coil

resistance changes.
. Velocity

As is the case with conductivity, the application of traditional
velocity probes to highly energetic ionized gases usually requires con-
siderable modifications and a careful amalysis of possible error sources
such as ablation effects, shock waves, and relaxation phenomena. Barkan
and Whitman (16) have designed and tested a simple expendable plasma
pitot tube which yields a Mach number profile of the jet. - Other methods
use such techniques as photographing the trajectory of injected
sparks (17). A theoretical method for computing velocity profiles
within the constrictor tube of a constricted-arc wind tunnel has been
reported by Stine et al. (18); the method uses experimental tunnel data
such as total current, voltage gradient, total heat loss, mass flow,
and pressure, Gottschlich ét al. (19) have developed a theory whereby
- knowledge of temperature and thermal conductivity profiles can be.used
to obtain a velocity profile from the jet centerline out to one=-third
of the jet radius.  Outside this region the relative error becomes
large because of possible. temperature measurement errors and because
asymmetry effects are more pronounced at the boundaries of the jet.
Poberezhskii's method of measuring average velocity has already been

discussed in the previous section.
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A Three~Coil Conductivity/Velocity Probe

RdssOw and Posch (20) have developed and tested an immersible,
three-coil plasma probe which represents‘a‘significant improvement upon
previous téchniques because it is capable of determining local electri-
cal conductivity and velocity Valﬁes without greatly perturbing the
flow and because it can be used in such a manner that heat-~flux sensi-
tivity is negligible. . Since the present work is based on the probe
design of Rossow and-Posch, selected material from Reference 20 will
be reviewed in this section.

The basic concepts of the instrument can be understood by refer-

ring to Figures 3 and 4 which were prepared by superposition of the

S

Figure 3. Perturbation.of the lines of force for the primary
dipole field B_ caused by the presence of a
conducting flubd at rest.
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probe onto Figures 2 and 3 of Reference 20. Figure 3 illustrates the
principle by which conductivity is measured. Three small coils labeled

P for primary, ¥ for conductivity, and Y for velocity, lie in the

Figure 4. Perturbation of the lines of force for the primary
dipole field B_ caused by the presence and
motion of a coRducting fluid.

same plane (x = 0) and are mounted on support rods in such a way that
the axes of the X aﬁd P coils are parallel to the z-axis while the
axis of the Y coil is parallel to the y=-axis.

In the absence of a‘conducting or a dielectric medium, the pulsat-
ing current in the primary coil produces a magnetic field which may be

approximated by an oscillating ideal magnetic dipole field. The solid
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- lines labeled gp indicate the shape of the lines of force for the
primary dipole field at an instant in time. Under these circumstances
it can be seen that the primary field produces no flux linkage at
either the ¥ coil or the Y coil. However, in the presence of a
conducting, quiescent medium, the primary magnetic field induces cur-
rents which, in turn, create a perturbation magnetic field designated
as hto . The dotted lines indicate an instantaneous position of the
lines of force for the resultant magnetic field (primary plus perturba-
tion) which does produce flux linkage at the ¥ coil while the

coil is still free of flux linkage due to its orientation.

Similarly, in Figure 4, the dotted lines indicate a particular
instantaneous position of the lines of force for the resultant magnetic
field which is the sum of the primary field gé and a perturbation
field p“ caused by the motion of a conducting fluid across the primary
lines of force. As the sketch shows, the resultant field produces flux
linkage at the Y coil while the £ coil flux linkage is zero for such
a disturbance. )

Since the perturbation fluxes at the two secondary coils are time
dependent,. Faraday's law of induction implies that the potential output
of the ¥ coil will be proportional to the magnitude of the z-component
of the field perturbation caused by the conductivity ¢ and the poten=-
tial output of the Y coil will be propeortional to the magnitude of the
y-component of the field perturbation caused by the product of the
conductivity ¢ and velocity Uy or oly -

. The theoretical analysis of Rossow and Posch begins with Maxwell;s

equations
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,y N E = O’ 2 o E = O, (5)

¥ XB=ul, (®
)]

VXE=-305 -

the simplified Ohm's law

™
W

o + U X B), (8)

the conservation of charge equation for a neutral plasma

v-.£=o, )

~

and the Coulomb or transverse-gage condition

.V - A=0. (10)

In these equations E is the electric field intensity vector, B is
the magnetic induction vector, J is the current density vector, U is
the plasma veloecity vector, ¢ is the electrical conductivity, [ is

the permeability, andfé is a vector potential function such that

o~

B =V X A. (11)

To obtain a solution for these equations, Rossow and Posch have
imposed the following restrictions

1. The flow field is unbounded.

2. The electrical conductivity and velocity are taken to be

constant over the entire flow field.
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3. . The only applied field is Ep which is that magnetic- field
created by the oscillating current in the primary coil.

4, Since the magnitude oflgp is less than 10°°. gauss, the
representation of conductivity as a.scalar quantity is justi-
fiable. (In the presence of large applied fields, the conduc~-
tivity of a plasma assumes a tensorial form.)

5. . The small magnitude of ﬁp also justifies the representation
of the resultant magnetic field, B, as a power series expan-
sion in the magnetic Reynolds number, Rm. . As mentioned in
Chapter 1, typical values of--Rm fpr constricted~arc wind
tunnels. range from 10 * to 10 * sé that neglect of terms of
order R.ma is reasonable.

6. Radiation effects are neglected.

7. 1In Equation (6) the displacement current term is neglected.
Omission of this term is justified below in Appendix C.

-As a zeroth-order approximation for B, Rossow and Posch used the

primary dipole field Ep which would be produced by an idealized pri-
mary coil in free space. . The vector potential‘£® for such a field is

well known and appears on page 237 of Stratton.(22) as

H =

) (12)

= M
‘ép(stSz:t) - - B X Z(

where m is the magnetic dipole moment of the idealized primary coil
_ - 3 2. %
located at (x,y,z) = (0,0,0), and r = (x° + y~ + 27)%. Thus,

. Equation (11) yields the solution
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Bp =¥ X4Ap. ()
Since B, is»ﬁime dependent, Equetion (7) requires the_existencé
of an associated electric-field,'denoted byisubscript' t,bsaéh that
'ZXEt?—a.—.EB. T
~ : at’ . o ‘
and this equation may be solved for Et-‘
Equation (8) suggests that the total current may be cohsidered as
the sum of two components, the first of which is
Ty = oy | (s

and the secqnd is

)| = oY X Bp = oUjk X By | | (16)
where U ='U“§ as in Figure L and the unit vectors i, Q’ k are
directed in the positive x,y,z directions, respectively. The first'
component, Jt, 1s caused by the application of an electric field, Ei,
'to a stationary conducting fluid. The second component, QH,'arises
from the motion UHE of a conducting fluid across lines of force, §p.

The analysis of Reference 20 continues by using Equation (6) tp
solve for the first-order perturbation fields Qiland Q“ which accom-
pany Jy and J;;. Thus, the resultant magnetic fleld, iﬁcluding first- -
order terms only, is

B=Bp+be*tby. .. an

This equation, together with Equations (6),-(7), and (8), could be used
to sslve‘for currents and pérturbation fields of higher order in Rp.
Howéver; as previously mentiosed, the terms of higher order may be

neglected in the present case because Rp 1s small,
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For future reference, the following solutions a.re'listed :f"rom

‘Reference 20:

. _ = xz . , 3z & | 322 A .
gp = ._m cos‘wt.[l rs + 21 ‘ rs + ;3' r2 - l>] . (18)
Etx = -um sin wty X G‘;) o (19)
Jiy = ~owm sin wt 1@) + JQ‘J‘CE):I - ’ (20)

5\ J\
B | y= X2 ' |

d. = 3Umcos wt|i == - —] | L

S ~“ |~ rS 2 r® ‘ : &
_ opuwm xz yz r? + Zav ’

by, _‘.. 5~ sin wt[} F+ d=*k r3 (22)
) oulym 32 x Y, 2 .

P“ = 5 cos wtl1 __.rz l ;g‘l' g rs + k ;'—3" (23)

wvhere Ip 1s the peak current supplied at frequehcy w to the np-
turn pri'mary coil who_s,e characteristic radius is lrp.

Equations (18) through (24), plus Faraday's law of induction, dic-
tat_e:the locations of the seeondary colls T and ,Y_.' Fa.ra.day'.s law
states that the pote‘ntia.l ®; 1nduced on a secondary anywhere vin the

flow field mey be a.pproxima.ted by

dg = -nngrg? 3¢ (Q * Ng) . (25)

where rg 1s the characteristic radius of the ng-turn secondary, B
1s the resultant field evaluated at the center of the coil, and Ny 1is

a unit vector parallel to the axis of the coil. Thus, 1f the cen_ter of
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the T coil is located at (x,y,z) = (O,yz,yzﬂfﬁ) and is oriented such

that Ny = k, then Equations (22) and (25) may be combined to obtain

11,0
: 5 D
®2°Q = (nzrzz)(nprp )(LJ-UJ)z —_— cos Wt (26)
6N 3/2 I
where o refers to an unbounded medium. Similarly, if the center of

the Y coil is located at (x,y,z) = (O,—yZ,O) such that Ny = j, then

the potential induced on the Y coil in an unbounded medium will be

wEun Iyl

@Ym = -(nyryz)(nprpz) -—=8——2—— sin wt . ) (27)
JZ

Equation (27) represents the potential that would be induced on
the I secondary if the probe of Figurev3 were immersed in an infinite
conducting medium. However, currents cannot flow through the regions
occupled by the probe itsélf. ‘Equation (20) indicates that the strength
of the induced currents decreases as r = so that only the region
occupied by the primary coil support rod aﬁd coll shield contributes to
a significant loss of signal at ﬁhe secondary coil., This loss had been
calculated by Rossow and Posch for boeth secondaries and the corrections
are reproduced in Figure 5. The abscissa 1is EpO/yZ where pg is the
support rod radius and y2 is the coil spacing defined above. The
ordinates K: and Ky represent féctors by which the oscilloscope read-
ings ®Z and @Y must be multiplied to account for the loss Qf signal.

Figure 6 is a sketch of the electrical circuit whi;h was used for
the probes tested by Rossow and Posch. The priﬁary coil is supplied
with power (0.1 amp, 15 volts) from a 100-kHz crystal-controlled oscil-

lator by means of shielded litz wires. The signal inducéd on the X
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colil is first amplified by a factor of 5 in a solid-state differential

amplifier, then conditioned by a magnetostrictiVe filter with a %15 Hz

-0 A 2 3 4 5
Probe diameter/probe spacing; 2 po/ys

~ Figure 5. Factors used to correct secondary voltages

. for loss of signal caused by the presence
of the primary-coll support rod.
(Reference 20)

bandpass to reduce amplifier and plasma stream noise, and, finally,
displayed on a dual-beam cathode ray oscilloscope. The signal ffom
the Y coil receives identical treatment. Like the primary circuit,
‘the secondary circuits make use of shielaed litz wires. The shields
of all three circuits are connected to a common ground.

As shown in Figure 6, each of the tickler coils is a transformer

consisting of one turn of secondary circult wire, two turns of primary
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circuit wire, and a brass or a ferrite core. The directions of the

windings are also indicated in the figure. The function of the tickler

Z coil
B

" Primary
cait

AmplifierJFilter]

Dual beam
oscilloscope

]

T coil LM i
JAmplifier —

Brass core Ferrite core
tickler tickler
cails coils
(phase) (amplitude)

Figure 6. Electrical circuit used in tests of probes by
Rossow and Posch. (Reference 20)

coils is to induce 1n the secondary circuits signals which ﬁull out
unwanted.signals picked up by the coils when the probe is held in room
air. The spurious signais may be caused by slight misalinemeht of the
coils, stray noise and capacitance, or by the fact that the actual
field of the primary coil of finite size deviates slightly from the '
field produced by the ideal magnetic dipole upon which the theory 1s
based. The axial position of the brass core determines the phase of
the null signal while the axial position of the ferrite core-deter-
mines the amplitude of the null signal,

The probe may be calibrated by one of two methods. The first
method is based on the theoretical anaiysis and 1nvqlves displacements

of the coils in the z-direction relative to the primary coil. If, for
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'example, the L coil 1s moved from 1ts design location at

Ax,y,2) = (O,yz,yE/JE) to a calibration position at (x,y,z) = (O,yz,O)
with no change in orientation, then the output of the 2» coil'in_free
space may be computed from Equatioﬁs (18) and (25) aﬂdrthe peak-to-peak

signal at the oscilloscope will be

2apw

(28)

‘I’Eca.l = Ke[]'_p(nprpa)(nzrz

where K repreéents the total amplification factor for the electrical

circuit and the coil.pérameter.factor Ky, 1s defined as

Ky = Ip(nprpg)(nzrzz)

so that

by 8

KeKg = ®Scal Fg * , (29)
Now, 1f the probe with its coils located in the design positions were
immersed in an infinite medlum of constant conductivity, then the sig-

nal oy displayed at the oscilloscdpe would be _

0y = KeKpbyo, | - - (30)
and, by introducing Equations (28) and-(29) and rearranging, Equa-
tion (30) becomes

2
Wayy Oroal

(31)
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where the numerical vdlue of the factor in brackets 1s.called the con-

' ductivity calibiation‘constant. Tt should be emphasized that Equa-

tion (31) 1is restricted to an unbounded medium of constant conductivity.
In a similar manner fhe method may be extended to-the Y coil by

recofding its free-spacé output ®Ycai when the Y ‘coil has been moved

from (x,y,z) = (O,-yE,O) to (x,y,z) = (O,-yz,-yz/Q).‘ Proceeding as

above and utilizing Equation (31), the following equations may be

derived: .
96J5 Ky }
b L1200y, _
(0] Ky 128wy
U Oy [ Lcal &y 2] (33)

I 65' <bYcal'KE '25[&5

The second calibration.method is based on experiment. The preced-
ing discussion Implies that the oscillescope signal ¢2 for an
unbounded medium of constant conductivity o 1s a function of four
parameters such that .

Kby = KKoo o . (34)
where K, and Ky are defined above and K. 1s a coil parameter factor
vhich includes such quantities as ngrp?, ngry?, Ip, u, and w; note
that K, of Equation (34) is similar but not equal to the Kg defined
in Equation (28). Equation (34) may be modified to account for the
existence of a cylindrical boundary by_introducing a correction factor
@2 ~which, if the probe is at the center of the cylinder, is a function
of coll spacing ¥y divided by the cylinder radius.-R. Therefore,
Equation (34) becomes
Kgoy = K KcOg(yy/R)o (35)

and as R increases without bound, 8y must approach unity. Thus, if
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- the probe is immersed in the center of several deep cylindrical con-
tainers of varying radii filled with an electrolyte of known o, then
the corresponding scope readings, corrected for loss of signal, may be
plotted vs. R™*. If the éontainers are large enough, the plotted

s s -1 ]
points are linear and may be extrapqlated to R™ = O.. If [Kf®2]3-1=0

represent the extrapolated intercept, then Equation (35) yields

[i5s]
KK = -—-—-;E—ifg- | | (36)

because @2(0) = 1. Therefore, Equation (34) may be rearranged to

read

K
o= QZ[KeEC] “(37)

and the factor in brackets, the conductivity calibration donstant, is
determined by Equation (36) and Figure 5.

" Rossow and Posch constructedvand calibrated three probes.. Table I
is a summary of the theoretical and experimental values for the cali-
bration constants for the three probes.

TABLE I

CHARACTERISTICS OF PROBES TESTED,

Coil Coil and o /o . o/l - U,05/%y,

Probe Spacing, Rod Diameter, ,/'2’ T Tﬁmv m£' T s en
Number ys, mm 2pgy, mm Experimenta SOretiCal mheoretical

T 22 6.l 209 221 6,100

IT 22 2.0 3000 —— 14,600

TIT 8 2.0 ' 613 610 3,300
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The theoretical constant for Probe IT was not determined. The agreement
between the experimental and theoretical conductivity constants serves
to confirm the theoretical analysis of Rossow and Posch. As shown in
Chapter IV, Equations (31) and (32) may be applied to probe data taken
along a diameter of a cylindrical jet to obtain conservative estimates
for the actual ¢ and GU“ profiles.

All three probes were tésted by Rossow and Posch in an argon plasma
Jet generated by a 1,27-cm constricted-arc wind tunnel; the findings of_
those tests are briefly reviewed in the following paragraphs. TFig-
ure 7(a) shows Probe I mounted on the air-driven dolly which swept the
device along a horizontal diameter of the free supersonic Jet. The
circular exit plane of the converging-diverging nozzle is shown to the
right of the probe, The vertical main support cylinder was made of
brass and was covered with Teflon, Initially, the horizontal coil
support rods were made of Teflon and this construction proved to be
unsatisfactory because the high heat flux caused the rods to droop,
This difficulty was overcome by using ceramic support rods. Figure T7(b)
shows Probes T and IT equipped with ceramic rods and Teflon heat shieldé.
Silicone rubber was also tried as a heat shield material but was not as
suitable as Teflon because the silicoﬁe rubber shields had a tendency
to form a conducting char layer that probably caused inconsistent data
and short-circuiting of several colls. To assure fore-and—aff symmetry
of the induced currents Jt and QH* it was found that.the heat shiel@s
should extend from two to four coil dlameters ahead of‘the colls in the

upstream direction.



The arc current, I,,.., was varied from 100 to 400 amps and the

other tunnel variables were such that the jet was supersonic throughout

Figure 7(a). Probe I mounted on a traversing carriage near the
nozzle exit. (Courtesy of Rossow and Posch)

this range. Conductivity data were obtained with Probe I over the

range 100 < I, < 400 amp and with Probes II and III over the range
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150 < Ig.o < LOO amp. It was estimated that the lowest measurable

value of conductivity for Probe I was 1.0 mho/meter and 10 mho/meter

for Probes II and III.

Figure 7(b). Probe II is on the left and Probe I is on the right.
(Courtesy of Rossow and Posch)

All three probes yielded well-defined conductivity recordings-
When Rossow and Posch applied Equation (37) to centerline values of @E
taken by the three probes under the same tunnel operating conditions,
the computed values of o agreed within about 10 percent. The velocity

recordings obtained with Probes I and IT were also well defined. A
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féw reasonablevvelocity records | wére obtained with Probe _iII before
the Y coil developed a short circuit.

Probe Ii was tested with a séries of Teflon cone-cylinder heat
shields,:each‘having different cone half-angles, in an effort to ascer- :
tain the effects of shock-wave and boundary-layer interactions on the
recorded data, Thevdutside diameter of each shield was 3.16 mm and the
inside diameter was 2.0 mm. Half-angles tested were 50; 10°, 200, 300,
and %0° and each shield extended at least 4.0 mm beyond the coil in the
upstream 2z direction to assure the necessary fore and aft gymmetry;
The probe was swept through the stream in less than 0.3 secbnd because
1t had been experimentally determined that the Teflon cones would begin
to ablate appreciably if exposed to the Jet for more thaﬁ 0.5 secondi
Ablation should be avdided because fhe ablation products may cause a
large change in the electrical'conducﬁivity'of the adjécent bouﬁdafy
layer.. The date obtained with the different cone-cylinder heat shields
did not differ in any important details.‘ This fesult indicated that
neither the conductivity nor the velocity data of Probe II was signifi-
cantly affected by the shdck-wave sweepback or boundary-layer
interaction over the range of flows tested.

Additional.coil design information for Probe II is as follows:

P Y z
Minimum Diameter, mm 2.0 2.0 2.0
Maximum Diameter , mm 4.0 4.0 4.0
Number of Turns : 122 175 T00

Wire Size (Copper, Enameled), mm # 38 AWG ,038 .038



30

The coil forms on which the wifes are wound shoUld‘be noncbnducting and
should havé a low coefficient of ﬁhérmal expaﬁsion,' Shielded litz
should Be used to connect the coils to the external cipcuitry. To pre--
vent the possible existence of electroétaﬁic coupling with the primary
coil or plasma étream, the secondary coils and all metal components
should be iﬁdependently shielded and, to prevent electrical leakgge,
all hollow spaces‘should be filled with a suitable potting material
such as silicone rubber, It was found that fhe shields should not be
allowed to contact each other except at some convenient ground in the
external circuitry.

Concerning heat flux sensitivity, the oscilloscope tracings
obtained by Rossow anvaosch did exhibit some asymmetry with respect to
the centerline of the jet (see Figure 16); However, this asymmetry was
caused'byithe réSponse time of thebprobe system, A two-way sweep of the
instrument produced, by superposition of recordings, a symmetric signal
tracing.A |

By way of summary, the probe design of Rossow and Posch offers the
following advantages:

| 1. The instrument can be used to obtain local values of conductiv-
ity énd velocity by a method to be outlined in Chgpter Iv,
2. Thé design of Probe II has virtually eliminated the heat fluk
. sensitivity aﬁd flow perturbation problems of previous
immersible instruments.

3, Although the impressed frequeticy is comparatively low, the

sensitivity of the probe is aS;gfeat as or greater than that

of previous immersible instruments; The use of low-frequency
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'impressed power decreases the complications caused by stray
capacitance and allows omission of the displacement current
term,

Because of the simplicity of the probe and its components, the
fabrication, construction, and assembly of the instrument
system are within the capability of any research laboratory

having a modest machine shop and an oscilloscope,



CHAPTER IIT
FIELD EQUATIONS FOR A CYLINDRICAL CONDUCTING FLUID

As mentioned in Chapter IT, the theory of Rossow and Posch (20)
decoupled the perturbation magnetic flelds by neglecting terms of order
Rm?, assumed o and UH to be constant and uniform, and cépsidered only
an unbounded medium, This chapter presents modifications of the previ-
ous theory by recognizing the presence of-a cylindfical boundary of

radius R such that the plasma occupies the region

x2+y2§R2; ~0< 7 <o .

Also, the position of the probe will not be restricted to the center of
the cylindrical region. Turthermore, for this part of the analysis it
is assumed that o and UH Jare constant and uniform in the region occu-
pied by the plasma and that these quantities vanish elsewhere. The
present analysis will also ignore terms of order ng, the displacement
current, and relativistic effects. The only applied field is @p: which
is caused by the oscillating current iﬁ the primary ceil and fhis field,

being of the order 1078 gauss, 1s so small that the assumption of scalar

conductivity is well justified.
Electrical Conductivity

The analysis begins with a consideration of the basic equations
which are identical, except for the boundary conditions, to those of

Chapter II (see Equations (5) through (11)).

32
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Because o and U” vanish outside the cylinder, the two boundary

conditions on the current density vector are

J=0 whenever x= + y2 > R® (38)

J N =0 for x*+yZ=FR? . (39)

where N, 1s a unif vector which is perpendicular to the cylindrical
boundary.
If Equation (11) is substituted into Equation (6), the result will
be
gXYXA=u | (40)
and if this expression is expanded so that Equation (10) may be applied,
then the final result will be |
VA = 4ud (s1)
where it is understood that the Laplacian operates on each rectangular
component of A. Equation (41) represents a condensation of the three
Maxwell equations. Therefore; the problem reduces to the solution of
Equations (8) and (41) subject to the boundary conditions of Equa-
tions (38) and (39). R | |
The solution to Equation (41) is uniqpe and it may be solved by
finding a Green's function or by an equivalent technique; the method of
images (see, for example, Chapter 2 of Referénce 23). The latter method.
was chosen because it appears to be a simpler approach and it makes use
of Equations (18) through (24) from Chapter II. |
It is also convenient to use an dnalogy based on the steady, two- |
dimensional flow of an incompressible'fluid for which there exists a
potential function W, called the stream function, such that the

velocity field U 1is glven by
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U=y Xk¥ - (42)

~

An important property of the stream function is the fact that lines of
constant ¥ are streamlines.
This analogy may be used to .represent the two-dimensional current

density vector field as
J =9 Xky (43)

so that. current paths or loops will colncide with lines of constant YV,
Returning to the method of images, considef the geometry of

Figure 8 where the medium is assumedkto be unbounded, at rest, and of

uniform and constant o. If the real coil is located at

(x,y,z) = (a,0,0), then an image system 6f strength A located at

(-a,0,0), must be found such that one of the induced current

(%,y,2)
loops will coincide with the dashed cylinder and thereby satisfy onhe of
the boundary conditions.

The current, J¢.., induced by.the real coil is given by Equation (20)

which, for the present case, becomes

/[y X -
J = Qplif - 3
Ltr t[vgﬁ) + Q( +3

Gt = cwm sin wt

)

where

and

r2 = (x -a)% + g2+ 22,

Therefore, a real stream function for Jtr is

o.,~1/2
]

Vi = Ggl(x - a)2 + y% + ¢ (L45)
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Figure 8. Relation between real and image dipole

Figure 9.

locations,

-
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i
g
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v

Probe location inside the cylindrical
boundary.
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"~ By trial and error, a stream function

Vs ~AGl(x+ )24 y2 4 £212 ()

was found fbr the image system so that the resultanf stream function
1s » | | _ |
Vg = Gefl(x - a)2 + y2 + zz]—l/z-‘lk[(x + a)z + y® ; A?zz]-l/?]
| (47)
and the total induced current becomes Jt = ¥V X kyy. This expression

for ¢ 1is particularly useful because the surface defined by the con-

dition Vg = O happens to be the cylindrical surface

2 2 _ 2
()] - Y (3

50 that the current loops corresponding to Vi = O meet the requirement
specified by Equation (39).

Referring to Figure 9, it is desirable.to translate the y-aﬁis
to the center of the jet of radius R. Figure 9 illustrates the loca-
tions of the réal primary énd secondary I coils after the y-axis has
been translated a distance L = a(&% + l)/@ﬂ? - 1), that is, to the
center of the jet. Since L - a = p and R=22AA&% _ 1), a and A
may be solved as functions of R and p’_with the result that
| (8% - p?)/2p (19)
A=R/p . , | (50)

a

If these expressions are substituted into Equatipn (47) and if the
y-axis is translated a distance I, theq“it follows that
) -1 '2 —_——2.2 2 . -
Vg = -Gl (X P2+ y2 + z22) /2 R(px:+ R®= 4 pZy2 + R2z3) l/2] .
o (51)
Therefore, the final expression for thé resultant current density vector

is
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gt =¥ Xk¥

R2 2 . : -
- 4;‘,{1[ "oy B y J
“Lpx v + 02 + R2A)Y R (5750 4 y2 + 22) Y2

[ Rp(px + R3) X+ p :l}

- J -. 3 .

= (px4—R§ + poy2 + R222)3/2 (x+-p2 + y2 + z2) /2 (52)
Equation (6) may now be used to obtain bt from the relation

YX by =udy | (53)
by use of Equation (ll),'page 231 of Reference 22.v That 1s; the per-
turbation field, by, at any field point (x',y',z') in the cylindrical
plasma is given as |

by (x',y',2',t) = ﬁ% h/‘ Jf C Je(x,y,2,t) X yrot ax dy az

T R | (54

© _R

2 2 sl/2
where r = (x-x' 4+ y-y' .+ z-2' ) . Note that the current density

vector gt does not vanish outside of the cylindrical region as
required by Equation (38). However, this requirement is satisfied by
Equation (54) because the limits of integration do not extend beyond

tﬁe cylindrical boundary so that the mathemafiéal cufrent loops outsideb
of the cylinder cannot contribute to Dby. Since the axis of the T
coil is parallel to k, only the 2z component of by will be used in
Faraday's law, Equation (25). Noting that (x',y',z') = (—p,yz,yz/ﬁ),‘.

the 2z component of by must be
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. =E_G£f[R | , ‘ py(y~yg)+(pX+R2)(x+p) ‘
zt i Lo LR -2 ‘a/a
_ x+p 2 57 +z- } (px+R + p2y2+ R 2)
y(y yz)+(x+p) .
- —|ax @ a2 ‘ _
B 3/2 :
<x+p +y_y'£2+z- ('T"2+y2+z> B . (55)

If the variables x, y, z and parameters p, y 1in the last equation
are nondimensionalized with respect £o the jet radius R, then it
follows that

uthff PY(Y-8) +P(X+P)(PX+1)
.=
" -t =1 1Y QHP +¥-824+E Dj (PX-&-l AR Y R

et ]
: e waa
<x+P2+Y-s""+ Z-D::) <m2+Y2+ za> J _ (56)
where X =x/R, Y =y/R, Z=2/R, P =p/R, and S = yz/R, Substitution

of this expression into ‘Faraday's law yields

: 5 I g cos wh
@2 = -(nzrz )(nprpg)(pw ——_—igﬁ——-f f f FE dX dY dz
-l - 2
ErE (57)
where Fy 1s used to denote the complicated integrand of the preceding
expression. In order to eliminate the probevénd coil characteristics,
Equation (57) is made dimensionless by dividing it by Equation (26) to

obtain

® o A1 .Jl'Yg
z 3JES j

T 6(8,P) = - Fp aX &f dz . (58)
-0 =l _J‘i__:fz .

Note that if P = 0, then ®Z as defined by Equation (58) is the same
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as the function ®2(VE/R) of Equation (35). For a given prébe, the
conductivity correction factor @y represents the ratio of the signal
which would be.induced in a finite cylindrical region having a conétant
conductivity to the signal which wquld be induced'in an infinité region
having the same constant conductivity. | .

As might be anticipated, the integrals of Equation (58) cannot be
evaluated reédiiy in closed form. Although one integrétion could be
accomplished, it was more convenient to evaluate the integrals numeri-
cally rather than deal with the elliptic integrals which would result
from the analyticai integration. Therefore, Equation (58)‘§as evaluated
ﬁsing a numerical 10-point Gausslan-quadrature computer program which is
described in Appendix B. The résults of the computation are presented

in Pigures 10 and 11. Figure 10 is a plot of @y vs. P = p/R for four

$:.05

n
0 4 2 3 4 5 6 7 8 9
P=p/R

Figure 10. Conductivity correction factor as a function of
radial position of the probe for several
values of the coll spacing parameter .S.
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- values of the parameter § = ‘yz/R ; the dashed portions of the curves
represent extrapolations which will be discussed in‘ChaptervIV.

Similarly, Figuré 1l is a plot of ®2 vs, S = yz/R for five values

92 =q)z /q)Zm

0] . 2 3 4 5 |
S=yy/R

Figure 11. Conductivity correction factor as a function of
the coil spacing parameter S for several

radial positions of the probe.

of the parameter P = p/R and extrapolations are represented by

dashes, Additiocnal points were not computed because each calculation

of By consumed about one-half hour of the computer time, However,

the data reduction method presented in :Chapter IV shows that satisfac-

tory results can be achieved with the curves of Figures 10 and 11,



Tabular values, correct to three significant figures

convenience in Table IT,

TABLE IT

CONDUCTIVITY CCRRECTION FACTORS

, are listed for

b1

P = p/R
0.05 0.10 0. 20 0.30 0.80

0.00 o.9u8 0.892 0.783 0.675 0.140
0.L0 0.937 0.871 0.742  0.615  =~--e-
0.60 0.916 0.830 0,662 0.506  =~==--
0.80 0.847 0.691 0.439 0.248  ~ee--
0.90 0.713 0.471 0.176 0.0hhk  —ooeo

The conductivity formulas of Chapter II may now be modified to

account for the presence of’a cylindrical boundary.

Equation (31) now becomes

5 = °z _{%alibration]

®Z(S’P) constant

-The last expression is still limited to the case of

conductivity.

Specifically,

constant

(59)
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Product of Conductivity and Velocity or ol '

- Another application of the method of images yields a UU” stream

function W" such that

a/2

R xR R R P e I

vhere GH = oU“m4cos wt, and the y-axis has been translated to the
center of the stream as in Figure 9. Using the stream.funétion analogy
explained above, the current density vector can be derived and the

result is

3ji = <y SRRy (BT 4 pyR 4 B22R) /2 - 3y (7 24 2) /P g

'[ 3R°p W(pxﬂ? + Py R2,2) /2 = 3(x+p) (FFF+ y2+ 2) -5/2]:1}’

(61)

As was the case with Dby, b

" is related to g, by the triple integral

pylxtytsz'st) = = [ [ [ gyGoy,zt) xgrt ax gy @z (62)
where r = (x - x'? +y - y'” Z - z'e)l/z. Because the axis of the

Y coil is barallel to the y-axis, only the j component of p“' will
contribute to the induced electromotive force. That component, eval-
uated at (x',y',z') = (-p; -yy,0) and nondimensionalized with respect to

R, is

by o o f f f vz2. I b
I 4®® [{3E (BT°+ 1480 +27) /2|_1>x+1 + pAy24 72)5/2

1 3Gy e pr N
s/‘adx“'dz=zm32fj_;f fy o

i (T + Y2+ 72) N S ~Jixz
| | e (63)

where FY represents .the integrand.
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Therefore, Faraday's law predicts that the potential ¢¥ induced

at the Y coil will be

2

| 3ul
by = -<nyrf> (nprp‘?)auu -i-éi—i—— sinw [ [ [Py aX ar az (64)

and, if this expression is divided by Equation (27) to eliminate probe

and coill characteristics, then the result is

_Y2
o 2
z%..E.@Y(s,p _E—fff R, X & az . (65)

- 14Y2

The correction factor ®Y defined by Equation (65) is simii;r to the
conductivity correction factor @s. because, for a given probe, ®Y
represents the ratio of the signal which ﬁould be induced in a finite
cylindrical region having uniform values of ¢ and U” .to the signal
which would be induced in an infinite region having the same uniform
values of o and U“. For convenience, this parameter will hereafter be
referred to as the velocityacorrecﬁion factor even though it applies to
the product cU“.

As was the case with @y, the integrations required by Equation (65)
were performed numerically on a digital computer using a program simiiaf
to that used to accompl;sh the integrations in Equation (58). The
results are presented in Figures 12 and 13. Tabular values, correct
to three significant figures, are also listed in Table III. The curves
of Figure 12 indicate that if S 5_0.10? then the deviation of @y from
unity is negligible except at the very édge of the cylindrical stream;
Aé anticipated, the conductivity correction factors are-larger than the

veloclty correction factors.
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Figure 12. Correction factor for oU;; as a function of
radial position of the probe for several values
of the coil spacing parameter S.

$1/®Teo

ar

0 i 2 3 4 5 B 7T .8 .9 10
S=¥g /R

Figure 13. Correctibn factor for oU as a function of the
coll spacing parameter S for several radial

positions of the probe.
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TABLE III

VELOCITY CORRECTION FACTORS

S = yz/R
P = p/R ’

0,05 0,10 0.20  0.30 0.80  1.00
0.00  —mmmm mmmee aeeee 0.994 0.880 0.731
0.60 cm—— e 0.986 0.966  mmmim  mcwa-
0.70  ==mom —oee- 0,978  0.934  ceeoneeeee '
0.80  0.997 0.988 0.937 0.839 =---- - —---
0.90 0.990 0.942 0.780 . 0.551 =;;ee cmce-

0.95  0.925 0.754% O0.443 0.291
 Equations (32) and (33) may now be modified to become

QY éalibration
oUy = @; constant _ (66)

and

ﬁ“ oy Op [calibration] (67)

- EE'@; constant
Equations (66) and (67) are limited fo a conducting fluid having a
cylindrical boundary, uniform o, and uniform U”;'it should be noted
that the calibration constants in these two equations are not equal.
The conductivity correction factors presented in Figures 10 and 11
were verified experimentally using Probe II. (This experiment was per-
formed with the aid of Mr. R. E. Posch.) Eéch of two plexiglas cylin-
ders having different diameters was filled with an electrolyte having a
conductivity of 74.8 mho/meter. Then the radial variation of the &

coll output was recorded for each cylinder. The results were normalized
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‘'with respect to an experimentall&_determined value of or to-obtain
®z.. Figure-lﬁ compaies the experimental values of ®2 with theoretical
values coﬁputed from the cuivee of Figure ll; and it can be seen that‘
the differences are iess than 10 percent except near the edge where the
output of the I coll was very small and was extremely sensitive to the

alinement of the probe's axis parallel to the z-axis of the cylinder.

85:-05/d5

L i } | 1 1 I} 1 1 lv _&
0 J 2 3 4 5 6 T 8 9 10 1
P=p/R

Figure 14. Comparison of numerical values of @ (solid
curves) with experimental values (points)
computed from data taken with Probe II in
cylinders of acid.

The probe was also placed immediately adjacent to and outside of
each cylinder wall (in room air) to record the magnitude of the signal
produced by the currents that were induced in the electrolyte by the

primary dipole field, B As indicated by the data points at P ='1,025

p.
and P = 1,10, the result was that the signals were too small to be
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observed on the oscilloscope aﬁ its maximum sen;itivity setting, that
is, the.induced signals were at leastvten times smaller than any éignals
obtained inside the cylinders,. Now, in a free plasma jet it is reason-
able to assume that the conductivity increases from zero at the edge to
a maximum at the centerline, The result of the experiment indicates
that, when the probe is swept through the jet, the signal induced on the
L coil at a given radial position, say p,, is not significantly
influenced by the increased conductivity in the region 0 < p < b, sO°
that o5 is primarily a function of the variable conduétivity in the

region Po <o <R.



CHAPTER IV

A METHOD FOR COMPUTING CONDUCTIVITY AND VELOCITY

PROFILES OF AXISYMMFETRIC PLASMA JETS

In this chapter a method for computing conductivity and velocity
profilles ié presented and applied to data taken by ?robe IT in a
constricted-arc wind tunnel, The method is based on the prémise that
the continuously varying profile can be approximated by a number of
steps as suggested in Figure 15, It is then assumed that each level
can be treated as a cylinder ofAconstant conductivity (or cU“) by the
theofy developed in Chapter III, As noted at the end of thét chaptér,
the probe receivés a negligible signal if it is outside a cylinder of
conducting fluid, - Hence, 1f the analysis of'a given profile is started
at the outside boundary of a jet, the calculations can proceed to the
" center in an explicit fashion so that all parameters are known as each
step is made inward, As illustrated in Figure 15; the cylindrical
plasma jet is, as a first approximation, subdivided into a finite
- number, n, of concentric cylindrical regions each having a different,
but constant conductivity., The upper part of the sketch shows a cross
séction of fhe Jet and the lower partvdisplays a'typical ¢E trace
together with thé n-step approximati@n of the actual continuodsly-
varying conductivity profile.i |

When the probe is located at thefradial position p, shown in

Figure 15, the second part of the pre?iously mentioned experiment

48
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Figure 15. Method of subdividing measured prqfiles in order
to make boundary corrections. '

indicates that the influence of the increased conductivity in the inner
regions has a negligiblg effect on the value of QZ‘ Therefore, ®2,1
may be interpreted as the signal which resulﬁs from placing the probe
at a radips P1 in a cylindrical region of radius Pg containing a
fluid of condubtivity 61, The signal ¢2,2’ results from placing the‘
probe simultaneously at a radius po 1in two cylindrical regions of
radii Py and p; containing, respeétively, fiuidé of conductivity o,

and 0o - 01, .Similarly,'¢z 3 is caused by lmmersing the probe
&y )
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similtaneously in the center of three cylindrical regions of radii Py
pl , and pé contalning, réspectively, flulds of c-onductiviyy 01, \
0o - 01, and g5 - 0. The extension of this reasoning to ;bz,n is
stralghtforward and the results may be put into mathematical form by

“the following set of n 1linear equations in n unknowns:

°z,1 = G %\ 3, 7 B,

_ 01 Y2 pp), % -0 /Y5 1)
(Dz,2 = E—i@z —P—o- 3 5—0-> + __Cz @Z:(‘ﬁ; ’ Pl

_ 0141 ~ 01 Y Pn-
(DZ,n-l = Z [ on By 1’ BL )’ n>2.

0., = 04 yz
®p,n = z [1 102 1] ®2(_pi ) 0) . J

1=o - (68)

In these equations Cy represents the probe calibration constant and
0o 1s identically zero. After inserting values for ®2 from Fig-
ures 10 and 11, these simultaneous equations may be solved for
o, i =1, n.

The same technique may be applied to obtaln a o’ﬁu profile and

the equations which must be solved for an n-step approximation are:
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[GU" ]1 T pl) v . ..\

Y2 = T ®n\5o ’ %o

oo . = [oUy] @YG’_}; P2\ , [oU, ), - [oUyl, o(E P2

1,27 cy Py ’ Po Cy ‘\p, ’ P1
o ~ [O'U“] o _Z_ Ré. . [O'U“]g - [O'U“]l o _E _Pé
_ Y)3 . CY Po ’ ‘po CY Y b1 ’ Py

(o015 - Loy, -
Ty ®Y<;2 ’ P2> (_69)

_ rz [O'U“];\_+l [O'U“
QY’n ) <;; > _ ;J

vhere Cy is the probe cal;bration constant, [cU“]o is identically
zero, and the values for ®Y are given in Figures 12 and 13,_ The solu-
tions of Equations (68) and (69) may then be combined to obtain an
n-step approximation of the U” profile. As the number of subdivisions
is 1increased, subject to the limitations to be discuséed below, the
discontinuous step profiles should approach the actual continuously
varying profiles. |

The data reduction technique may be divided into three parte as
follows.

l; The edge of the jetrmay be determined from the I coil out-

put provided that the-response time of the probe is known.

The response time of Probe II, based on a consideration of
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data taken as the instrument was swept both ways through the

stream, was estimated to be 0.03 second (20). Figure 16 is a

Scope sensitivity
settings:

T (.02 mv/cm)
Z (.05 mv/cm)

—=—— Sweep direction

Figure 16. Data record obtained with Probe II in a
constricted-arc wind tunnel having an
arc current Ig,. =\?OO amp. (Courtesy
of Rossow and Posch

typical data record obtained by Rossow and Posch with Probe II
and the conductivity data (lower trace) indicates that the
extreme radius of the jet was about 9.5 cm. To assess the
sensitivity of the data reduction method to the magnitude of
the jet radius, profiles were computed for three radii:

9.0 cm, 9.5 cm, and 10.0 cm; the corrected centerline values
of ¢ and U for the three cases did not differ by more than
10 percent. Therefore, the method is not highly dependent on
an accurate determination of the jet radius.

The null signal should be added to the &y trace and sub-
tracted from the ®r trace; reasons for this procedure are

1

discussed below. Then, peak-to-peak values of ¢y and @Y may
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be plotted vs. radial position of the instrument; the radial
position should be adjusted to compensate for the response
time of the system. A mean value for the &y curve is used,
thereby eliminating the local signal excursions caused by
random stream noise.

3. The next step is to subdivide the cylindrical Jet into sub-
regions as suggested by Figure 15 and to apply Equations (68)
and (69) to the Os- and ¢y data. It is suggested that this
step be repeated several times in order to see thg effect on
accuracy; that 1s, as a first approximation, use three sub-
regions to obtain three-step d‘and U“ profiles. Then, as
a second approximation, use four subregions for the computa-

"tion. Additional approximations obtained by increasing the
number of subdivisions can be carried out to increase the
accuracy and definition of the curves. A limitation on the
maximum number ofJSubdivisioné is discussed below.

The velocity trace of Figure 16 indicates a minimum signal ét
about 2.8 cm from thé center of the oscilloscope screen. Thié phenom-
enon is due to the fact that EH and @p are 180° out of phase as.
indicated by Equations (19) and (21). Outside the stream 9y 1is

nonzero due to the fact that the actual B differs slightly from

D

the theoretical @p‘

 As the probe nears the edge of the stream, the.
‘magnitude of QH increases and gauses QY? which is proportional to
Ep + EH’ to decrease because of the 180° phase difference. Shortly
thereafter, the magnitude of p“ dominates and ®Y begins to

increase. Therefore, when the data is reduced, the ordinates

oy
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“should be _m'c_reased by the value of the ﬁull signal 'wh_ilé' the .02
ordinates'Should;bé decfeased-by‘the value of.the null signai;

‘ Usinévthe data of Figﬁre'l6, the’prbfilésxof-Figﬁre_IY weré com-
putédjfor‘fwo differentvsets.of four:subregions. The éofrespon@iﬁg
prbfiles did not differ siénificantly and agreéd.to'within 5 perceht
at thé centeriine; The dashed curves in the figure represent profiles
which were not corrected for.the'presence of a cylindrical boundary and

are based on the application of equations of the form

’ ' calibration . gl . [calibration
& - and .
’ ¢z constant . ¢Y ~ | constant

Y
.td.centefline values of>‘¢i and ¢Y' The uncorrected U“ profile was
obtained by dividing‘the dashed ordinafes,of the oU“ profile by the‘
dashed ordinates of the g prbfile. It was found that the correéted
Uj| profile is in agreement with ﬁhe'éalculations 6f Stine et al, (18).
As antiéibated,.the conductivity coirection factorl @z had greaﬁer
influence on the reduction of data than did the velocity correction
factor ®Y. In fact, the example presentéd 1n.Figure 17 indicates that
the correctlons of the dﬁ“_‘profile are almost negligible, However,
due to the_conductivity corrections, the corrected U" profile may
differ considerably from the uncorrected Uy profile, |

As mentioned above, the cholce of.subregionsbis hot complefely
arbitrary and it was found that the values of Nh)) and R impose-two
important restrictions which must be observed during the reduction of
the data, The first restriction mﬁy be understood by conéidering the
curves of Figure 18; Consider a fluid having a éylindrical boundary

and, for example, a constant cbnductiﬁity of 888 mho/meter; Suppose
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Figure 17. Conductivity and velocity profiles based on the data of
Figure 16 using Probe II.in a free argon plasma jet.
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Figure 18. Uncertainty resulting from an oscilloscope
reading which is in error by 1 mm.

that an oscilloscope recording is made of @Z vs. radial position, p,

for this fluid. Then, if the correct @Z values are substituted into

. the formula

calibration]
[¢) constant

- = 0
5. B /K,p/D) 79

for different values of p, the horizontal curve marked St rue will be
the result. However, the smallest screen division for many oscillo-
scope is 0.2 cm and with the presence of a slight amount of noise, it is

possible to err by as much as 0.1 cm when reading the oscilloscope data
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record. Thérefore, using a scope sensitivity setting of 0.05 mV/em

the calibration constant for Probe 11, and the aboce equation;_the efrbr
curves of Figure 18 were computed for two different values of the para-
meter yZ/R.' Thé figure shows that a reading error of 0.1 cm can resuit_
in a large error in o Qhen'yZ/R = 0.3 and p/R 2 0.80.‘vThe error is

not as large when yE/R = 0,10.

Thus if yZ/R_is small, the stream can be .subdivided into several
subregions without risking the. introduction of a large5oscilloscope

reading error. The o profile of Figure 19 furnishes an illustration of

600

500

/Correc'ed

400 - N\
: \
E \
~
§5>3C)0—- /\
f_ Uncorrected/’
200}
[[o]0}
F I N N W O {
0 1.2 3 4.5 6 7 8 -9 10
' radi

Figure 19. - Conductivity profile based on data. taken
with Probe III by Rossow and Posch in
an argon plasma. jet.
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this principle. The corrected 0' profile, using.déta:taken.with.
“Prbbé IIT (yz/Rv='O;08h); was computed on the basis of hine.subregions.
However, the cqrrectéd' c. profile of Figuré 17, using data from Probe II
(yz/R.= 0.23h),:is based on four subregions becausé'it was found that
further subdivision introduced large errors, It is also interestiﬁg,
but not surprising, to note that the smaller the value of Yz/R: the
smaller the resulting corrections, |
The other restriction concerns thé choice of fhe radius, pj, of the

innermos® subregion, It is obvious that ph ,musfibe choéeﬁ éo that‘
Pp 2 ¥yy. However, referring,té the curve for P =0 in Figuré li, it
is recommended that p, be chosen so that p, é.l.lhyz; This restric-
tion on the choice of p, DPlaces a lower limit of appioximately‘o,lo
on the correction factor @y, Smaller values of this facfbr would mag-
nify oscilloscope reading errors by an intolerable amount,

- It is difficult to estimate the overall accuracy of the preceding
' data—reducﬁion technique, The uncertainty resulting ffdﬁ the presence
of random electromagnetic néise and/or oscilloscope reading error has
already been discussed, Another possible error soufce'is the neglect of
axial variations in o and U“' Howevér, the magnitgde of sﬁéh an error
is probébly small because the magnitudes of the 1induced current vectors, .
J¢ and i decrease rapidly i the axial direction and because the
effects of the higher upstream values of ¢ and U“ mey be canceled by
the lower downstreém values, If the ﬁlasma stream is steady and fairly
free from random electromagnetic noisé) the date reduction technique
‘presented in this chapter probably yiéids centerline values which differ

from the true values by no more than iO percent.‘
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An experiment was carried out with HQSO4 acid solutions in plexi- ’
glas cylinders to find out how accurately the theory could predict the
conductivity potential The testfwas performed in the three concentric
| plexiglas cylinders which are sketched in the plan view of Figure 20;
the centerline position of the instrument 1s also- shown such that the
axls of the probe 1s parallel to the z-axis of the cylinders The depth
~of each cylinder was at least 18-cm because tests indicated that this
value simulated a cylinder of infinite extent. All'plexiglasywalls were
h.7 mm thick-and the inside radii of‘the‘cylinders were 5,95 cm,i9,77 cm,
and 12;3 cm as indicated in Figure 20, The center cylinder uas filled
with a sulphuric acid solution having a conductiyity of'7h;8 mho/meter
as determined by a conductivity.cell measurement; Similarly;‘the two
gnnular spaces Were filled with acid solutions having conduCtivities'of‘
49 and 29'mho/meter. B |

It was found that the probe reading at the center of the three
containers could'be predicted from the theory of‘Chapter IIT by cOnSiderF
ing the probe to be immersed simultaneously at the center of three cyl-
inders of radii 12,3 cm; 9.77 cm, and 5,95 cm containing‘electrolytes.of
conductivity 29;’20, and 25,8 mho/meter, respectively, Then Equa-
tion (59), | "

%—2— = -85 who/m-nV , (71).
@x(s,P) : . : v
.may be used to compute the contribution:of the currents induced in each
cylinder to the total probe'OUtput; fhe calibration constant of 1585
given above differs from the value of 3000 given in Reference 20 because

of a subsequent change in the electrical circult, ‘Using the correction
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Figure 20. Conductivity measurements using Probe IT
(y5 = 2.22 cm) in concentric cylinders
of sulphuric acid solutions.
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factors of Chapter III and setting yy = 2.22 cm, the predicted probe -

output becomes

2,22 2.20 2.0 N])
Qz T[9®zl23,0> 2@ 977,(94'25%595,0)]@

igég-[?9vx 0.895 + 20 X 0.753 + 25.8 X 0.602] :

J

(72)'

0.0338 mV.

This theoretical value agrees duite well with the experimental value of
1 0.034 mV. The off-axis experimental valuea of ézv for the case p # O‘
could not be predicted by the theory becaﬁse the two inner plexiélas
walls created rather complicated boundary conditions. |

As mentioned in Chapter II, data in the constricted arc were.
obtained with three prbbea. The aneerrected data for the three probes
did not agree as,well as desired, and it was found that when the bound - |
ary correctiens were'made; the disagreement was increased. No difficulty »
was encountered with'reducing the data but it was not possible to deterh
mine why the corrected probe data disagreed by as much as hO percent on
certain runs. Some of the disagreement between the probes 1is felt to
be due Eo the large diameter of the coll in the case of Probe I and by
the close coil spacing in the case of Probe IIT. Apparently, the
~ design parameter, 2po/yz, is alsova measure of the magnitude of mutual
flow disturbance effects between support;rods and colls. The values of
this parameter for Probes I, IT, and IIIiwere 0.291, 0.091, and'0;250;
respectively. Unfortunately;'both PrObee.Ivand IIT developed shorts in
the eoils during the tests so that & series of tests aimed at resolvingv

these discrepancies could not be made. (Suggestions as to further :
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studies in regard to these problems are discussed in Chapter V.) Probe
IT survived many tests wilthout any apparent deterioration of its per-
formance. It is believed that fhis instrument was the most accurate of
the three probes because it had the most faveorable value of coil diam-
eter/coilvspacing (0.091) and because the velocity profile cf Figure 17

compared favorably with estimates made by other means (18).



 CHAPTER V
CONCLUDING REMARKS

Tests in C6ncentric cylinderé.filled with acid éolutions furnished
reasonable confirmatiéﬁ of the conductivity correction fgctofs which
were used to correct the raw conductivity data‘fér the existenge of'a
boundary ahd fbr cross-stream ¢ variations, sting 'oU“ cérrectioh
factdrs, the method was extehded to raw aU” data and the éorrected o
and .aU”_ profiles were'usedvtovcompute a velocity prqfile which agrged
with other estimates,
Although these results indicaﬁe that the présent'design'has the
_ advaﬁfages of'practicality and theéfetical justificatibn; somé additiohal
develépmeht:is needed, Specifically, the folldwing items shoﬁld beb |
investigated, '_ - | |
1, A"sﬁitable experimental'ﬁethod should be found fqr:determining
the dU“.>calibratioh constant, -
2.‘_In an effort to ascertain the effect of the parameter 2po/yz
on probe performance, a-smalier‘device which permits vafiation
of the coil spacing should‘be constructed and tested for several
values of 2po/y2. under identical conditions and the corrected.
_data_ffom‘these tests shoﬁld b? analyzed for the possible .
existenée of mutual flow disturbance effec_ﬁs between suppbrt

rods and coils,

63
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Another parameter which should recelve attention is the fre-
quency, Q, of the impressed power, An oscillator having
several output frequendies could be used with the probe to
evaluate the importance of w.

Improvement of the response time of the instrument system

should be attempted,
Although ceramic tubing was found to be satisfactory for coil

support rods,'other materials, such as precision quértz tubing,

should be tested,
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APPENDIX A
ELECTRICAL. CONDUCTIVITY: FORMULAS

- This section is devoted to a discussion of formulas which express
electrical condiuctivity o as a function of other plasma properties
such as electron number density,_ne, temperature T, and average elec~
tron collision.frequencyfse. . Thus, by means of these formulas, knowl—
edge of certain plasma properties may be used to check experimental
conductivity. values, Conversely, experimental conductivity values may .
be used in conjunction with the formulas to predict certain plasma
- properties.

A plasma was described: in Chapter I as an extremely complex mixture
of charged particles, neutrals, and photons. This complexity necessi-
tates the adoption of several restrictions, approximations, and assump-
tions before it is: possible to derive a mathematical expression. for
electrical conductivity. Hence, this discussion will be restricted to

. ternary, neutral plasmas consisting of electrons, singly ionized posi-
tive ions,. and neutral atoms; the subscripts for these three components
will be e, I, and-A, respectiﬁelya . Furthermore,. it is assumed that
applied magnetic and electric fields are small so that the distribution
function for each of the components deviates only slightly from a
Maxwellian distribution.

It is convenient to classify piasmas on-the basis of the degree

of ionization @, which is defined as
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o =ne/lneg+m) - (13)
vhere ne\ﬁdd ng afe the_e1ec£r6n>and neutral particle densities in |
geométry space. A gés is said to-be slightly ioni;ed'if q*< 1074,
pa.z;tia;llly ionized‘if 107 <a <107, and i“ully ionizéd whehéver

a > 1072, These somewhat afbitrary regimes‘hafe been suggested by
Delcroix (24) énd‘others.- ' o |

| Mbst rigorous derivations of electrical conductivity expréssions
depend on the solutions of two integro-differehtial equations known as
the Boltzmann equation and the Fokker-Planck quation. The,dependent
variable in these equations is a distributidn function for each of the
gas components. Hence, for a ternary plasma it 1s necessary to seek
simultaneous solutions'to'threé nonlinear}coupled integro-~differential
equations.

Both the Boltzmann and the Fokker—Planck equations contain terms
which expréss the influence of-diffusioﬁ phenomehon, externally applied
forces, and interparticle collisions on the distribution function. The
prinéipal difference between the two approaches lies in the collision
tefms: the Boltzmann equation is based on binary elastic collisions
while the Fokker-Planck equation consideré many long fange simultaneous
Coulombic interactions. Chapman and quling‘(25) present a derivation
of and severai solutions to the Boltzmann equafion for un-ionized gases.
The paper by Ahtye (26) cOntéins a rigorous, second-order.Chapman-
Enskog formulation for argon and the_reSults-are valid fbr any value of
&. However, the complexity bf the rigorous solutién methods necessitates
the use of approximate conductivity formulas for engineering applica-

tions. Several of these formulas are presented.below.
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Based on a first-order solution of the Boltzmann equation and
assuming that electrons are the principal charge carriers, Chdpman and

Cowling derived the following expression for a slightly ionized gas:

' 1 / 2 » . ‘ : .
2 + .
Bzaekr grn :IemAmA) ] y who/meter ' (1)
A : : ‘

In this equation the elemehtary-charge_is e = 1.602x10"18 coulomb,
-Boltzmann's constant is k = 1.3805X10-23 joule/oK; QeAl is the total
electron-atoh'collision cross section in meter®, T 1is the tempefature
in oK, and me, my are; respectively, the electron and atomic masses in

kilograms. Because mg/my << 1, Equation (74) may be simplified to

['e AN
QeATl/z

o = 1.09x10-12 , mho/meter . | (75)
Equation (75) is restricted to a singly ionized ternary plasma.sﬁch that
a<:10f4. The quantity QeA is a function of temperaturé and the polariz-
ability of the particular atomic species (24). Chapter L éf.MbDaniel '
(27) contains expefimental QeA values for several gases. |

When @ = 1, the gas is fully ionized and, for this case, Spitzer
(28) has derived a formuila for o baéed on.avsolutioh of the Fokker -

Planck equétion, This result, which considers electron and ion currents,

is’ _
o = 1.53x10°21%/2[ 1n A]™ uwho/meter (76)
where 8/
. o
€okT.
= 11.94x10 ~—l-‘7°§--2- (17

‘and the permittivity of free space is: €o = (361x10°) %, farad/meter.
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Equétion (76) assuﬁes elastic collisions, consiéefs only e-e and e-I
collisions; and‘negiécts closé encounterS’which-%esult_in a partiéle
defiection.gngle'gfeatgr than 90°; 1In spite of thése restrictioﬁs,
this'formulé deviates no more than 7 bercent frém the more exact anal-
ysis of Ahtyéf Furthérmore, the experimental data df'Lih et.al. (1) |
suggests that Equation (76) is valid for ‘10"_'2’< @< 1.0. In the deri-
vation of Equation (76), certain nondominant terms ﬁere ﬁegleqted by
Spitzer so that the result is correct to terms of order (lnl\)-l.

In Chapter 5 of Sutton.and Sherman (29);~thé‘Boltzmaﬁn equatidn-
is solved for a Lorentzian gas which 15 defined as a binarf'gas suchb
. that the haés of one type of_particlé (electron) is very émall comparéd
with fhe mass of the other type.(éé&; an atom), and where the inter-
action between like particles is negligible compared with the inter-

action between unlike particleé. An approximate formuls which results

from this solution is

o = ngefugte (18)
where Vg iévthé total average electron.collision frequency defined
by the sum | , ‘
o = Ty + Pop = nAéeQeA + n78eQ,y (79)
and ¢Cg 1is the meén thermal eleptron speed which‘is given by
Go = (sm/@;)”z. (80) |
Values for Qg and Qg vs.wéév;may be %ound in Chapter 4 of McDaniel(
“Equation (78) neglects é;e and assumes thaf’electrons are the_prin-

cipal charge carriers. If there are several species present in the

ionized gas, Equation (78) may still be used by substituting for v,
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the expression'

e = I¥en)g * Ier), G

ﬁhere s refers to aiparticular gas component. .
For a ternary mixture, Lin et al. (1) proposed an appréximation

~for v  of the form

‘nge? n A ' . o
Vel = g - (82)
© e ), 53%1072pY 2 ,

so that Equation (78) will reduce to Equation (76) in the fully ionized
limit. Thus, Equations (78), (79), and (82) combine to yield
a. -
@ ln A (1 - a)QaT¥ 2
+ .

15310 %% 1.09x0

(83)

=12

where the coefficient of Qgp hasvbeen adjusted to yield Equation (75)_
for small a. As before, Qep may be read from the data of McDantel.
| Ahtye has examined the accuracy of Equation (83) for argon and
found that the rigorous second-order Chapmann-Enskog formulatidn pre-
dicted values which were almost two orders of magnitude lowér-whenever
lO'”*S a 5_10'?. Several factors may account for this discrepancy:
1. Equation (83) does not consider ion Qurrgnfs which may not
be negligible as a - 10™.. |
2. BSecond-order collision coupling effects and I-I collisions
are also ignored.
3. In Equation (83) the cross section Qg must, for simplicity;‘
be evaluated gt some mean valﬁe whereés, in Ahtye;s analysis,

‘Qea 1s an empirically determined function of the relative
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ﬁhermal spéed.between electrons and atomé és well asrthe
’iﬁtérpartiéle potential function.‘_The émpiriCAl'expression
for. Qep appeéfs upder:gn integral_which.must Bé e&aluatédl
to obtain'jﬁeA. o |
Frost (30) proposed a mixing rule for é partialiyvionized
Lorentzian gas contalning se&erél atomiélépecies and the rﬁle wﬁs based
on the use of a nonconstant empirical'function for'erA while I-I
collisions and the ion current contributiéns wére igﬁored;‘ Schweitzer
and Mitchner_(3l) solved the Boltzmann equation by making ﬁse of-the“'
féct'that me/mA 2 mg/mp << 1 to simplify‘a.third-order:Chapman-Enskog |
formulation. Thermal diffusion and ion currents were not cbnsidered_in
.this paper. Schweitzer ahd Mitchnef also cOmpafed their fesults with
Frost's mixing rule and found thét the two agfeed to bétter than
15 percent‘for'all a <1,
‘Thus, it appears that the simple formulas of Equations (75), (76),
~and (83) are adequaﬁe for prqliminary ehgineering desién calculatidns.
If greater preCision is desired for @ in the range 107 < @ < 1072
Frost's mixing rule should be applied.- |
Assuming that Qep 1s a function‘of temperature only, the above |
conductivity formulas indicate that o is a function of «, ng, and
T. But d, for a given gas, is a funétion of p and T by virtue of

the Saha equation -

¥/t g
Y ol 58
oL oo | (84)

vhere G is a constant which depends.on the statistical weights of
the positive ion and the atom and qy 1s the first ionization potential

of the gas atom. The static pressure,'p, may be determined by means_of



an appropriate pressure transducer, the temperature, T, may be measured
by spectroscopy, and n, may be inferred from the data of a Langmuir
probe, Haworth (32) gives a detéiled account of spectroscopic tempera-
ture diagnostics and Subtton and Sherman present an analysis of the

Langmuir probe,



APPENDIX B
DIGITAL COMPUTER INTEGRATION USING GAUSSIAN QUADRATURE

The tripie integrations required by Equations (58) and (65) of
Chapter IIT were performed on an IBM 7090/709h Computer System using
g Fortran IV Gaussian-quadrature program, The Gaussian-quadrature
method, as presented by Hildebrand (33) for the case of one independent

variable, is based on the formula

1 N m
f f(x)dx = Z Hf(x) + E (85)

-1 o

where x; is the 1ith =zero of the Legendre polynomial Pm(x) and

where
Hy = 2 (86)
L7 wpp g (x)Pp(xi)
The error E may be written as
amtl, |4
pa—2 () (e, (87)

) (om + 1)[(2-m)'.]3

in which & 1s some point in the interval (-1, 1). 1If the interval
of integration is not (-1, 1), then a suitable transformation may be
applied to the independent variable so that the abbve formulas may be -
applied.. It 1s assumed that the function f(i) is analytically defined
and it can be shown that if f(x) is a polynomial of degree 2m-1, then

E = 0. The method may be extended to any finite number of independent
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variables by the use éf a_nestéd integration procedure. Gauséian.
quadrature ylelds appfoximately thébsame degree of accuracy as
Lagrangian quadrature but the formeriis "faster" because it does not
- require the evaluation of as many:ordinates as the latter (see page
312 of Reference 33)..
Fiéure 2l is a'copy of a typical program which was used toievél-
- uate the tripie integrals of Chapter III. This particular program

was written in cylindrical coordinates for the case P = p/R = 0. The

TC1101 . .
EXTERNAL FORMULA NUMBER  ~ SOURCE STATEMENT

4 CONDUCTIVETY CORRECTIONS INTEGRATE FUS,PoR,TyZ)
DIST(RyZbs (SQRTIReReIeZ))av3
DENON(RT4Z)= {SQRT (ROR+525-2.00ReSOSINITI® (2~ TOTOS) 002] ) 003
UP(RyT)mRaRe{R=-5eSINIT))
FOR Ty Z)SUPCR,T)/4DESTIR,Z}*DENGH IR, To2})
DIMENSION BRLS) BT(S),BZ(5)
NAMELIST/INPUT/SoR1qR2, T T2021¢22oNRyNT N2
3 READ(S, INPUT)
WRITE(6, INPUT)
K=0
16 KaKel )
15 BZIK)=GAUSSIZLo224N242)
BT(K)=GAUS2(T1,T2,NT,T)

BRIK)=GAUSI(R1.R2,NR R
BRIKIaF(RyTo2) .
BT{K)=BR{K)
BLIK)I=BT(K)
MRITE(6,98)BL(K}

98 FORMATULHO,6HBZ{K)=EL15.8)
NR=NR+L
NTeNTel
NIsNIed
EF{2-K320,20414

20 EPS=BIZ(K)-BZ(K~1)
WRITE(6,99)EPS

99 FORMAT{1HO 4HEPS=oE15.8)
G0 70 13
"END

Figure 21. Typical computer program used to accomplish the
triple integrations of Equation (58).

first four statements are used to define the integrand F(R,T,Z) whei‘e

R 1is the radial coordinate, T 1is thé azimﬁthal angle, and 2 1is the 
axial coordinate. The next item is an input statement using a NAMELIST
subroutine td input the bara.meter -S(%Z/R); the limits of integration:

R1 <R <R2, TL LT <T2, 21 €Z < 7Z2; and the mesh-width parameters:
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NR, NT, ahd NZ. An example msy clarify the use of the parameters NR,
NT, and NZ. If the radial limits of integration are input as Rl = 0.1
snd R2 = 0.3, then an input of MR = 4 would cause the division of the
ihterval 0.1 <R <£0.3 into four equal subintervals over each‘of which
the Gaussian quadrature formulas of Equations (85), (86), and (87)
would be applied‘using a value of n = 10.

The calling statement for the 10-point Gaussian quadratuie sub-
routine is  BZ(K) = GAUSS(Z1, Z2, Nz; Z). The next two statements
call subroutines for nested integration. The statement

BR(K) = F(R,T,Z) causes the execution of the integration
R2
BR(K) = Jp; F(R,T,Z)dR.
Then, BT(X) = BR(K) causes the computation

BT(K) =j‘§f BR(K)ar ,

and the final integration,

BZ(K) =]§i Br(K)az ,

is instigated by the statement BZ(K) = BT(K).

To check convergence of the numerical method, the integrations
were repeated a second time after each of the parameters NR, NT, and
NZ had been increased by unity. Convergence was considered adeqguate
if the difference (called EPS in the program) between successive inte-
grations was less than #0.0005.

For the case P # 0, it was more convenient to use rectangulaf
coordinates and the region of integratibn was subdivided into twenty

subregions. The subdivisions were chosen so as to exclude the two
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singularities and to permit the use of larger values of NR, NT, and NZ
in the subregions close to the singularities. Each of thé twenty sub-
-regions was further subdivided in the axial direction.'rComputer time
reguired to evaluate the triple integral for one set of values for S
and P was approximately 30 miputes. Figure 22 is a copy of a typical

output for the program of Figure 21.

SINPUT
3 . 0.93000000E 00,
R1 = 0.80000000E 00,
R2 - 0.09999999E 01,
Tl .  0420943999E 01,

T2 =, 0.47T123999E Ol,
21 . 0.91999999E 00,
22 - 0.52000000€ Ol,
NR - 1,

NY - 2,
NZ - 2y
$ END

BZ(K)= 0,31221495E~01
BZ(K)= 0,31221494€-01
EPS=-~0.69849193E-09

Figure 22. Typiecal computer program output for the program of
Figure 21.
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In the programs which wefe written in rectanguiar coordinates;
the total regibn of integration was subdivided in such a way thét'
each singularity was at the center of a cubical subregion whose volume’
was approximétély 10724, The computer was not allowed to integrate in
theSe smallbsubrégions. o

Therefore, it was necessary to perform an analytical estimate of
the value of the_integrations taken over a typical exciuded'éubical
subregion} .Consider.the first term in the integrand of Equation (71).

- If the 6rigin‘of the X,Y,Z system is translated to thé location of the
Y coil at (X,Y,Z) = (-P,-S,0), then the absolute value of the result
will be .
108 (1078 (10 . PPZE(¥ - 8)da¥ a&f dZ
f f f | ()_(2+Y2 ‘23/2¢>x+1 p2)° +P2(Y 8)%+ 7 ]5’2

o o o

P2|Y - 5|
5/ -X
[(Px+1 P2)%+ P2(¥ - 8) +z]
value
on cube
flo'aflo'éflo's 72 4% ar &
—_ o, 3/ 2
o o o (X2+ T3+ T3

where. X =X -P, Y=Y -5, Z = Z andithe singularity is now located
at (Y,T,Z)

(0,0,0). Since f,'f, andﬁz are‘very small compared with
S and P, the maxinum value of the factor within the braces in the cubi-
cal region of integration is approximately

PP
[(1 -P?)® + Fs

éjs/a.'
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Next, it is convenient to transform to spherical coordinates by setting

—

X=rsingcos 8, =r sin ¢ sin 6, Z =r cos ¢ so that

-8 -8 -8 . “ .
flo flo flo 72 dX &Y dZ, <fﬂfzr.flr4c°52'¢sincpdr.d9 do
o o o (72+T2+22)3/2_ o Yo VYo oo r®

2
. hztrl

3

where r; 1is the radius of any sphere which contains the cubical sub-

region. Therefore, it is now possible to write

-8 - = . )
fl° f1° afm ° P72(T-8)ak af &
o Jo Yo (F24T% 2R (X+1-P7)%+ P2(T - 9)% 4 2217/P

by SP2r, 2

< (88)

30(1 -72)% + FPs® ]/ 2

The right-hand side of this expression is a maximum when the value of
P is close to‘one and when the value of S 1is small. A sphere of
radius 1, = 10—5 would éertainly contain the cubical region in
question and the value S’= 0.05 probably represents the smallest
practical 1limit of the fatio yE/R. Therefore, substifuting these
values and setting P = 0.95, the right-hand side of Equation (88) is
found to be of the order 10'5, which 1s a negligible guantity compared
with the smaliest value for the tripie integral obtained 5y'computer
integration over all regions except those containing singﬁlarities.
Thereforé, Equation (88) justifies the neglect of the cubic region -
containing the singularity (x,Y,2) = (-P,-S,0). The other three sin-
gularities cbntained in Equations (56)_and (63) were checked in the

same manner with similar results.
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Although the analytlcal 1nterval of integration along the Z=-axis
was =0 < 7 <o, it was found that the regions such that |ZI > 6, 0 con~-

tributed a negligible amount to the value of the triple 1ntegrals.'



APPENDIX C
DISPLACEMENT CURRENTS IN PLASMAS AND ELECTROLYTES

Neglect of the displacement current term, common to almost all
previous conductivity probe theories, should be justified for both

plésma and electrolyte. The complete form for Equation (6) is

IxH=J+ (89)

&g

where H. 1s the magnetic field intensity' vector, J 1s the current
density vector, D is the electric displacement vector, and oD/dt
is Called the displacement current. Assuming that plasmas and elec-

trolytes are linear, isotropic média, the constitutive equations are

D = B | o  (90)

i

=53 | » (91)
-where € 1s the dielectric constant and K, the magnetiC'permeability,
may be taken to be = Lo = Wx10™7 henry/m for plasmas and
electrolytes. |

By virtue of Ohm's law, J = oE, and setting E=E; cos wt,

Equations (89), (90), and (91) may be combined to yield

B : :
gx;—;-=o§o cos wt - weko sin wh
or .
B N VE
~ we ’
v X o= Eoo‘[l + -0,—> ] cos(wb + a) (92)
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- 1/2 : : -
where a = cos [l + (we/d)z] / . Thus, the displacement current is
negligible if wefo << 1.
Cambel (34) has derived a formula to evaluate the ratio ‘we fo

for a plasma. It is given as

- 2 ‘ : :
we _ w |V WP .
o | (G- ) (53)

where W is the impressed frequency, ﬁe is the total electron colli-
sion frequency, and mp is the plasma electron fréquency defined ih
Equation (2). Substitutioﬁ of typical gas discharge values of

Ve = 1.2X10° sec™ and Wy = 5.6x10™" sec-t from page 11 of Thoﬁpson

(35) reduces Equation (92) to the approximate formula

We » W
g 1,2x108

The design of Rossow and Posch uses a 100-kHz power supply so
that we/o ;'1/1910, However, w for the probes inspired by Blackman's
instrument is approximately 23 MHz for which we/o = 1/8,3, Therefore,
neglect of BQ/at in a plasma seems Jjustifiable for the former but
may be questionable for the latter,

For electrolytes, the ratio we/o can be evaluated from handbook
(36) values for o and €, Assuming a standard solution of sulphuric
acid and water having a conductivity of 77.7 mho/meter at 21° C and a

dielectric constant équal to that of pure water, the ratio becomes

== O.91)<10";llw | (9u).

Therefore, for w = 2yX10° as used by Rossow and Posch,

= = 5,71x107®



and for w = h6nx10§ as used by Blackman,

=== 1.32x1073,

Hence, it appears that BQ/Bt  is negligible at both frequencies in

the HpoS04 electrolyte. -
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