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CHAPTER I 

INTRODUCTION 

Although in many experimental situations the number of experimental 

units and their grouping into blocks are totally under the control of 

t he experimenter , frequently he is unable to influence these without 

sacrifice of experimental material and precision or practicability. 

Thus incomplete block designs have been developed to cover those experi­

ment al situations in which considerations of the availability and natu­

ral occurrence of experimental units dictate a block size which is less 

than the number of treatments. 

Experimental situations in which considerations of availability and 

natural occurrence of experimental units lead to blocks whose size ex­

ceeds the number of treatments are also of interest. 

These situations may occur when the experimental units exist natu­

ral l y in groups even before the experimenter conceives of the problem. 

For example , an experiment in which t treatments of some sort are to be 

applied to newborn animals might be concerned with a species for which 

it is quite likely that the number of offspring in a litter exceeds t. 

Presuming that the principal cost associated with an experimental unit 

is incurred prior to its birth, the experimenter might not favor the 

discarding of litter members which would be necessary for the applica• 

tion of a randomized complete block design. Another example is avail• 

able from cer t ain horticult ur al experiments in which considerable 

1 



expense is involved in bringing plants to the blossoming stage. Here, 

with interest being in the effect on fruit of treatments applied to 

blossoms, and with each truss as a block, it would seem quite likely 

2 

that block size would exceed the number of treatments and that the sac­

rifice of experimental material should be minimized. A number of situa­

tions occurring in industrial experimentation are characterized by a 

cont inuance of overhead costs whether or not a service is used. These 

a lso may often be viewed as situations with fewer treatments than plots 

in a block. For example, suppose there exists interest in the differen­

tia l effects of six production methods where each method requires an 

hour of operating time and each is done by a single operator. Here, it 

would seem reasonable and desirable to designate operators as blocks and, 

since machine operators are usually assured by contract of eight-hour 

workdays, the number of experimenta_l units per block would be eight, two 

greater than the number of treatments. In this case there would be a 

uniformity of block size and current wages would discourage the obtain­

ing of blocks of size six through the dismissal of the workers after six 

hours . 

The pr oblem of experimentation with blocks of size greater than the 

number of treatments has apparently received leas attention than that of 

experimentation with blocks of size less than the number of treatments. 

It has, however , been considered recently by authors working with differ­

ing interests and points of view. s. c. Pearce (9) considered compara­

tive experiments in which one treatment, the control, was logically dif­

ferent from the others. An example is given in which four treatments, 

A, B, C, and D, were different weedkillers and the control, O, was no 

treatment. The purpose of the exper iment was to compare these new 



weedkillers not with each other but with the control; hence it follows 

that the control be more highly replicated than the other treatments. 

With four blocks available, each of seven plots, the experiment was 

designed thus : 

Block 1: 0 0 A ABC D 

Block 2: 0 0 ABC DD 

Block 3: 0 0 ABB CD 

Block 4: 0 0 ABC CD. 

3 

In a situation with the control introduced only in order to demonstrate 

the consequences of doing nothing, it would be replicated fewer times 

than the others. Pearce develops the application of a device, supple­

mented balance, to this sort of problem. A design has the supplemental 

balance property if blocks are of constant size, all treatments are rep­

licated r times except the supplementary one (the control) which has r 0 

replicates and each pair of treatments occur together in the same block 

A times unless one of the pair is the supplementing one in which case 

there are Ao occurrences. Supplemented balance in designs of several 

different types is considered. 

In a later paper Pearce (10) concerns himself with possible methods 

for designing experiments in which naturally occurring blocks are of 

varying sizes. Both the case in which all treatments are to be compared 

with equal precision and the case in which one treatment is a "control" 

are considered and computational procedures for their analysis are 

provided. 

w. T. Federer (2) encounters the problem of experimentation with 

blocks which have more plots than there are treatments by way of concern 
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with a common problem in plant breeding and in biochemical research, 

namely, the evaluation of new strains of treatments. Since it is felt 

that making small scale preliminary tests on "new" treatments in combina­

tion with standard experiments on other treatments would achieve a 

greater degree of efficiency in the use of resources, he defines an 

"augmented design" to this end. Such a design is defined tCi> be any 

standard design with "new" treatments added to the complete block, the 

inccmplete block 9 the row$ the column, etc. An example is given of a 

randomized block experiment for "standard" treatments augmented by a set 

of "new" treatments each of which appears only once in the experiment. 

The analysis is carried out and standard errors are given for compari­

sons of two standard treatments, two new treatments in the same block 

and in different blocks, and a standard treatment with a new treatment. 

The adjusted treatment sum of squares is partitioned into variability 

among standard treatments, among new treatments within blocks, and 

between standard and new treatments within blocks. A second example is 

given in which a balanced lattice design is augmented. Here again, each 

new treatment appears only once and variances for treatment comparisons 

are given as in the first example. An appendix to the paper contains 

the generalized AOV for all designs with one-way elimination of hetero­

geneity f0r both the fixed and mixed models. 

~. W. M. John (6) has examined this sort of experimental situation 

with special attention t o the problem in which two treatments are to be 

compared at different levels of another factor where the block size is 

three . General directions for analyses -in such situations are given. 

A later paper by John (7) defines an "extended complete block 

design" to be one in which the block size exceeds the number of 
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treatments, t, but is less than 2t and where each block contains each 

treatment at least once with some treatments duplicated in each block 

according to some balanced pattern. The paper then treats that situa-

tion in which each block contains a complete replicate plus a block from 

a Balanced Incomplete Block design and also the special case in which 

there is only one extra plot in each block. The designs are specified 

by v treatments , each replicated r times, b blocks each of size k, and 

by t he incidence matrix N which is v x b with each element a one or a 

t wo. Wher e T i s t he vector of treatment totals, B the vector of block 

totals, G t he gr and t otal of the observations, j a vector of l's, and 

A = rlv - ~ ' the intr ablock estimates are shown to be given by 

A NB ,Y r Gj 
Ar = T - k and the interbl ock est imates by kr = NB - --s-· 

The efficiency factor for the intrablock analysis is given as 

E -- v).. * where ' * -- 2 b ' d ' h f h i l h r - + h an h is t e parameter o t e ncomp ete 
rk 

block design. The intrablock and interblock analyses and the combina~ 

t i on of estimates are described and a numerical example is given to 

illustrate the method of analysis . 

The concern of the present investigation is with the sort of experi-

mental situations discussed and exemplified above, broadly, those in 

which the number of treatments is exceeded by block size. Unlike the 

work of Pea~ce (9 ) and Federer (2), the emphasis is not upon screening 

situations and no particular treatment is singled out for special atten-

tion , but rather interest i s confined to situations in which it is 

thought desirable t o estimate all possible treatment differences with 

equal precision. 

Also , consideration will be limited to those experimental situa-

tions in which blocks are of constant size. This condition would 
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frequently be met in industrial contexts; and although its strict real­

ization in biological experimentation would seem less likely, variability 

in litter size and truss size, for example, may be small enough so that 

the condition could be achieved by discarding far fewer experimental 

units than would be necessary for the application of the more usual 

designs. The circumstances encountered in experimentation which are to 

be deal t with are much like those which were of interest to John (7), 

but no restriction of block size to being less than twice the number of 

treatments is imposed and the necessity for the occurrence of a complete 

replicate in a block is not invoked. 

Generally then, the concern here is with the provision of easily 

applied methods of analyses, along with information on their effective­

ness, for those experimental situations which are characterized by exper­

imental units . of high cost which group naturally into constant-sized 

blocks so that costs are principally associated with blocks as a whole 

and so that the block size exceeds the number of treatments. 

The designs developed here to meet such situations may be termed 

Displaced Balanced Incomplete Block designs and are those obtained by 

the displacement of each one and each zero in existing Balanced Incom­

plete Block designs by the non-negative integers n1 and n.a, respectively. 

These designs share with Balanced Incomplete Block designs the 

properties of balance and simplicity of analysis. As would be expected, 

many of the formulae derived in the next chapters in connection with the 

development of the analysis are markedly similar to corresponding formu­

lae in the analysis of standard Balanced Incomplete Block designs. 

Chapter II contains the definition and description of these Dis­

placed designs , their intrablock analysis, and tables indicating "best" 
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designs for certain experimental situations. Chapter III treats the 

recovery of interblock information from this sort of design and the CGlll• 

bining of intrablock and interblock information. Chapter IV contains 

the summary and conclusions along with recommendations for further study 

for this and related areas of experimental design. 

A final example will now be given to illustrate those qualities of 

experimental situations which are in mind and to exhibit an application 

of a Displaced Balanced Incomplete Block design. 

An experimenter investigating the claim that the many different 

laundry deter gents on the market differ only in packaging and advertis-

ing found that there were eleven brands in the top sales category. He 

decided to use these for experimentation; and in order to make his con-

clusions D1Gre meaningful, he decided to have housewives use these deter-

gents to do their laundries in a setting which would allow for control 

and observation. To this end, he arranged to lease for a day a commer-

cial self-service laundry and advertised free laundering facilities, 

including detergent, to the coD111unity's housewives in exchange for the 
. 

opportunity of having a trained home economist determine the quality of 

each wash job. The laundry was equipped with machines of the same 

design and manufacturer, and it was found that fifty-five machines were 

located so as to be readily accessible. The experience of the laundry 

operator indicated that these machines would be in constant use or 

demand on the day of the experiment. The laundry was in operation from 

8 a.m. until 11 p.m., and a complete washing cycle on each machine was 

of twenty-five minutes duration. With an allowance of slightly more 
. 

than four minutes for the loading and unloading operations, it was found 

that thirty-one washings could be expected from each machine during the 
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test day. It was decided to use each machine as a block, an experimental 

unit being a machine load of laundry. The observed response would be, 

of course, the quality measure of the wash job. Thus the situation is 

one with eleven treatments, fifty-five blocks, and thirty-one experi-

mental units per block. Since the lease was for the whole day, the 

maj or overhead cost continues whether or not observations are taken. 

If a randomized complete block design were to be used, blocks of 

s ize twenty- two could be obtained by discarding nine experimental units 

from each block. The var iance of an estimate of the difference in ,two 
I 

detergent means would be given by n where~ is the variance associated 

with experimental units within blocks. 

An al ternative to this would be the splitting of each block into 

three groups of ten experiment al units each, with one experimental unit 

being discarded. The experiment could then be viewed as fifteen sub-

experiments each with eleven treatments, eleven blocks, and ten plots 

per block. Each of these fifteen sub- experiments could be analyzed as a 

Balanced Incomplete Block design, and the fifteen independent estimates 

of a treatment difference could be used to form a combined estimate. 

cr2 
This es timate would have a variance of 74•25 • Since the partitioning of 

blocks would probably be done arbitrarily, it would not necessarily fol-

low that the cr 2 here would be smaller than that appearing in the random-

ized complete block approach. 

The appr oach of John may most obviously be extended to cover situa-

tions , such as this one, in which block size lies between twice the num-

ber of treatments and three times the number of treatments, by putting 

on two COIJ!Plete replicates and addi ng a Balanced Incomplete Block design, 

that is, by having each treatment appear at least twice in each block 



9 

with some treatments appearing three times such that the triplicated 

treatments form a Balanced Incomplete Block design. The attempt to 

apply this adaptation of John's extended complete block designs to the 

present situations leads to a search of available Balanced Incomplete 

Block plans for one with eleven treatments, fifty-five blocks, and nine 

experimental units per block. The search for such a design would be 

fruitless and it would be concluded that this approaca would be 

inapplicable. 

It will be seen in the chapters which follow that a Displaced Bal-

anced Incomplete Block design can be applied in this situation without 

t he loss of any experimental units and that if this is done, the vari• 

a2 
ance of an estimate of treatment differences would be 77 •35 • 

Also of i nterest here is the fact that had it been possible to 

apply the earlier-mentioned adaptation of the extended complete block 

designs such an application would have been picked up in considering the 

applicable Displaced Balanced Incomplete Block designs. 



CHAPTER II 

DISPLACED BALANCED INCOMPLETE BLOCK DESIGNS 

AND THEIR INTRABLOCK ANALYSIS 

In the present chapter the definition and description of Displaced 

Balanced Incomplete Block designs is preceded by a brief discussion of 

the general two-way classification of which they are a special case. 

Si gnificant and well-known properties of this wider class are given and 

used to develop the special analysis of Displaced Balanced Incomplete 

Block designs. The problem of choosing among such displaced designs as 

are applicable in specific experimental situations is considered. 

The General Two-Way Classification 

The scalar model for the general two-way classification without 

interaction is given by: 

i=l, ••• ,t 

j=l, ••• ,b 

Yijk =µ+Ti + f3j + eijk; k = 1, •••, Cij 

E(eijk) = 0 

f c,a j i= i • , j= j ' , k= k. 
E(eijkei'j'k') = \O; otherwise 

in which Ti represents the effect of treatment i and i,j represents the 

effect of block j. The number of applications of treatment i in block j 

is given by cij and the matrix C = (c1j) is termed the incidence matrix. 

10 



11 

Displaced Balanced Incomplete Block Designs 

Definition 2.1: A Displaced Balanced Incomplete Block design, abbrevi­

ated DBIBD, is a connected, two-way design with the following properties: 

1. Each treatment is applied n1 or na times in a block (ni ~ O). 

2. Replacement of n1 by unity and na by zero results in a Balanced 

Incomplete Block Design (BIBD). 

The above definition implies the existence of a set of constants associ­

ated with any given DBIBD. These are: the number of treatments, the 

number of blocks, the number of experimental units per block, the number 

of applications in the experiment of each treatment, and the number of 

di stinct conjunctions in the same block of each pair of treatments. 

These constants are denoted t, b, k, r, and A, respectively. 

Some clarification of the definition may be obtained by considering 

a simple example. Suppo~e that, in an experimental situation with four 

treatments to be investigated, there are six blocks available for exper­

imentation , each containing ten plots. The layout exemplifying an appli­

cable DBIBD might appear as below: 

Treatments 

1 2 3 4 

1 3 3 2 2 
t = 4 

2 3 2 3 2 
b= 6 

3 3 2 2 3 
Blocks k= 10 

4 2 3 3 2 
r= 15 

5 2 3 2 3 
A = 37 

6 2 2 3 3 
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The values oft, b, k, and rare easily observed. The value for l 

may be obtained by selecting any pair of treatments, say Treatment 1 and 

Treatment 2, and noting the number of distinct conjunctions of these in 

each block. In Block 1, Treatment 1 occurs three times and each occur-

rence is accompanied by three distinct occurrences of Treatment 2; thus, 

there exist nine distinct conjunctions of Treatment 1 and Treatment 2 in 

Block 1 . In Block 2, Treatment 1 again occurs three times, but each 

occurrence is accompanied by only two occurrences of Treatment 2; thus, 

there exi st six distinct conjunctions of the two treatments in Block 2. 

Similarly, it may be seen that in Blocks 3, 4, S, and 6 there exist, 

respectively , six , six, six, and four distinct conjunctions of Treatment 

1 and Treatment 2 . Hence, the number of distinct conjunctions in the 

same block of the first two treatments is thirty-seven. That this value 

remains the same for any pair of treatments may be verified. 

The properties implied by the definition of a DBIBD may be stated 

in the notation of the general two-way classification as follows : 

1. cij = n1 ~ 0 or Cij = na > 0 

2. c.j = E 
i cij = k, Vj 

3. Ci • =E cij = r, Vi 
j 

4 . E Ci j Ci I j = X , Yi =f. i' 
j 

It follows directly from the definition of a DBIBD that, i n a given 

BIBD, displacement of the l's and O's by n1 1 s and Ilg 1 S, respectively, 

results , if the design is connected, in a DBIBD. It is this feature for 

which the DBIBD is named . In this sense, every DBIBD may be thought of 

as having been generated by a BIBD. 
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Definition 2.2: That BIBD obtained from a particular DBIBD by replacing 

n1 with unity and na with zero is the generating BIBD of the given DBIBD. 

The constants associated with a BIBD, number of treatments, number 

of blocks, number of experimental units per block, number of blocks in 

which each treatment appears, and number of conjunctions, are denc,ted 

h * * * * * ere by t , b , k , r , and l • 

A number of useful identities involving the constants of a DBIBD 

and those of its generating BIBD are immediate. These are given below: 

2. r*t = bk*, rt = bk = c •• 

3. A *(t - 1) = r*(k* - 1) 

4. k= n1k~ + (t - k*)na = n2 t + (n1 - :raa )k* 

s. r= n1r* + (b - r*)n1 = n2b + (n1 - Dsl )r* • 

An important relationship invelving l and ">.. * is given as Theorem 1 

in the next section. 

Intrablock Analysis of DIIBD's 

The general two-way classification model may be written in matrix 

notation as: Y= µj + X1T + XaS + e. In which case, the normal equa-
A -1 

tions are given by AT= q where A= X1 'X1 - X1'Xs(Xa'Xa) Xs'X1 and 
-1 

q = X1 'Y - X1 'Xa(Xs 'Xa) Xa uy. 

the intrablock estimates of the treatment effects in a OBIBD are 

obtained by way ef simplifications of A and q of the normal e~uations 

for the general two-way classification. 

As in the BIBDg we have the fellowing relationships: 
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Hence, A= rit - i cc•. 
Any off-diagonal element of cc• is apparently X •. · That is, if 

cc•= (b1j), then bij = X, i ~ j. This, along with the following theo­

rem. provides a useful relationship between X and).*. 

Pree£: bij = X *n11 + [ 2(r* - X *)Jn1n2 + [ b - X * - 2(r* - X *>Jna 2 

a a = X *n1 + (b - X *)n2 + 2(r* - X *)ne(n1 - na) 

= X *(n/ - n,/) + bn/ + 2n3 (n1 - no >[r - Dab - X *] 
n1 • Da . 

* a a a * = ). (n1 - De ) + bn2 + 2n2[ r - Dab - X (n1 - Ila)] 

= 'X. *(n/ - Ila 2 ) + bna I - 2bna2 + 2rna - 2neX *<n1 - n,) 

= 'X. *cn/1 
- n/) + 2rna - bn/ - 2naX *<n1 "' Ila) 

= >.. *(n.1 - ·na )[ (n1 + na) - 2n1] + ng (2r - bna) 

- a 
= x*(n1 - na) + n.(2r - bna) 

The desired relationship between. X and >...* is then X = X *(n1 - na )1 

+ n.2 (2r - bn2 ). 

Another theorem useful in the simplification of cc•= (bij) is 

given belew. 

Theorem 2.2: bu = rk - >.. (t - 1) 

Proof: bii = r*n 13 + (b - r*)n2 1 

= r*(n12 - na2 ) + bn:/1 

= (r - bn8 )(n1 + n8 ) + bn/ 

= (r - bna)n 1 + n8 r 

= (r • bna)n1 + [nabk - nart] + ngr 



= [ (r - bn; )(n1 - na) + (r - bn; )n;] 

+ [ nab(:1-~~ (n1 • n:a) + Ila 2 bt] - nart + n;r 

= (r • bng)(n1 ••a>+ n;bk*(n1 • na) + (r • bna)n; 

= [ (r - bna )(n1 - a 2 )k* - (r - bng )(n1 - ng )(k* .. l)] 

+ B3bk*(n1 "" U;) + (r • bfla)Dg - llgt(r • bng) + nar 
= rk*(a1 • na) - (r - bn2)(n1 • ne)(k* - 1) 

- n:a(r - bna)(t - 1) + ner 

= rk*(n1 - n2 ) - r*(n1 - na)2 (k* - 1) - ng(r - bn;)(t - l) 

+ n1r + (n2 rt - n2rt) 

it I * * = rnat + rk (n1 - na> - (n1 - ns) r (k - 1) 

- na(r - bn,)(t .• l) .. nar(t · - 1.) 

* * a r*(k* .. 1) = rCnst + k (n1 -11a)] • X (n1 • J.\1) - x* -

• na(2r - bna)(t w'l) 

15 

= xCnet + k*(n1 - na)J - [X*('n1 - De)2 + ne(2r - bns)J<t - l) 

= rk - X ( t - l) • 

Taking account cf the abeve theorems allows the expression 

CC 0 = (rk ... At)I + XJ. Hence,. A= rI "'.' !C(rk - Xt)I + ).J] 

= t[rk ... (rk - ).t)JI • t;>..J 
= il(I .. lJ). 

k t 

The rank of A is seen to bet - land the imposition of the usual 
i A Xt A restriction j t 'T' = 0 res1alts in the normal equations; k '1" = q. 

The q vector may be expressed as T - i: CB where T = (Ti) is the vector 

of treatment totals and B = (Bj) is the vector of block totals. Hence, 

A k 1 
'T'i = At(Ti - k 1c1i8J). 
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As in the BIBO, E q = ~(I - f J) T and Var q = ~(I - f J):12 • Hence, 

I\ -t A k 1 I\ I\ 
ET= T - T.Ji and VarT = At(I - t J)cr3. Also E(Ti - Ti•)= Ti -Ti' 

I\ I\ k. 20'2 
and Var (T i - T i, ) = At • 

Unlike the BIBO, it is possible with the OBIBO to provide a test 

for the interaction of blocks and treatments. The recognition of the 

possible existence of such interaction would seem desirable in many 

experimental situations. 

With the OBIBO scalar model as, Yijk = µ + Ti + 13 j + (TS )ij + eijk 

and letting~ be the number of empty cells, the intrablock analysis of 

variance table for testing H0 : (TS )i1 = (TS )13 = • • • = (TS >tb is as 

follows: 

Source 

Total 

Blocks 
(Unadj.) 

df 

n. • 

b 

Treatments t-1 
(Adj.) 

Blocks x (b-l}(t-1) - ~ 
Treatments 

Intrablock n •• - (bt-11) 
Error 

s.s. 

) a I i Yij• 1 a k 1 a 
H - - . Bj - - [Ti - -l:ctjBj] 
"'J nij k j At kj 

The value of the F-statistic for testing the hypothesis of no 

I interaction is given by i • 

M.S. 

I 

E 
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"Best" DBIBD for Given Numbers 

of Treatments and Block Sizes 

In a given experimental situation to which a DBIBD is applicable, 

it is clear that more than one such design may be applied. For example, 

in a situation with t = 5, k= 7, and b = 10, beth of the following two 

layouts are applicable DBIBD's. 

Treatments Treatments 

1 2 3 4 5 l 2 3 4 5 

l 1 l l 1 3· l 2 2 1 1 1 

2 l l l 3 l 2 l 1 2 2 l 

3 1 1 3 1 l 3 l 2 1 1 2 

4 1 3 1 l 1 4 2 l 2 l 1 

Blocks 5 3 1 1 l 1 Blocks 5 l l 1 2 2 

6 l 1 1 1 3 6 2 1 1 2 l 

7 1 1 l 3 1 7 1 2 2 l 1 

8 1 l 3 l l 8 1 1 2 1 2 
.. , .. , 

!.,, 

;.;;:;J i,l 
9 l 3 1 l 1 9 2 l 1 l 2 

U) 3 1 1 l 1 10 1 2 l 2 l 

The remainder of the present chapter is a consideration ef the 

criteria for and identification of "besttt designs for particular situa-

tions and culminates in a catalog of "best" designs for given t, k, and 

bk. This catalog contains entries for number of treatments from three 

to fifteen. For each value oft, k is allowed to range from t + 1 

through 3t. The values of bk which appear are all these pessible in 

view ef the necessity of the eXistence 0£ generating BIBD's. 



Procedure 

The following steps constitute the procedure used in the develop* 

ment of the catah!)g and were taken for each value of t: 

1. A listing of all possible BIBD's with the given t 
value was made. This was done by searching the 
indexes of Cechran and Cox (1) and Fisher and Yates 
(3)o For each design in the catalog there is a refer­
ence to one or another of these sources or an entry of 
''Unreduced."' All Cochran and Cox references are given 
as 11.xx where xx is the design number. Fisher and 
Yates references are identifiable as those with just a 
design number. Those BIBD obtainable by forming all 
possible combinations of the t numbers in groups of 
size k are unreferenced and indicated by ''Unreduced .. " 

2. Since any D:BIBD generated by a BIBD that has a comple• 
ment could equally well be generated by that cemple­
ment simply by interchanging the reles of n1 and n.,, 
pairs ef designs appearing in the list which were com­
plements were identified and one of eaeh pair elimi­
W!lted from the list. Also removed from the list were 
those BIBD 1 s which could be obtained by combining 
l!l)thers given ar cemplements of others given. This 
resulted in a shortest list of BIBD's which would 
generate all possible DBIBDvs. 

3. For each value of k, every design in the shortest list 
was considered separately and all pairs (n1 ,:rt..a) which 
when applied to that design would produce a DBIBD with 
the given k value were identified. 

4. The "best'' of the designs obtained in Step 3, i.e., 
the "best'' DBIBD with a given value of k and generated 
by a given BI!D, was selected by the criterion dis­
cussed below. Thus for each value oft, each value af 
k~ and for each possible underlying BIBD, a nbest" 
DBIBD was found. These were listed and appear in the 
appendix along with those values of 'bk which are 
attained by a single occurrence of the design and cor­
responding criteria values. 

s. Finally for given values oft, k, and bk, all surviv­
ing DBIBD 0 s were considered. These included the ''best" 
from each generating BIBO which could produce a DBIBD 
with the proper constants and also designs resulting 
from combinations of these. A criterion~ discussed 
below, was appli.ed to identify that design er combina­
tion ef designs which appears in the catalog. 

18 
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Criterion fer selection of. ''best" DBIBD for fixed t I k 1 and generating 
filQ . 

Since the primary interest of an investigator would quite likely be 

in the estimation of treatment differences, the minimization of the 

variance of this estimat~r is used as the basis of the criterion* It 

has been shown that Var ('T' i - ,.J.) = Zcfk for a D:BIBD. Since the fixing 
"- t · 

of k and t allows only ;\, to vary, the criterion becomes that of choosing 

the design which maximizes :>..., The following discussi0n provides a 

refin.®m~nt ef this c.dterion in terms of tha relative sizes of n1 and na. 

The ex:preHion \ = >.. *(n1 .. n2 ) 2 + n2(2r .. bna) may be viewed as a 

function £ d d i h f · d k h 1 k .. (t - k*)n; 

H•nce, ' : f;:.:n= ~(:n. ;t:; k~;~ .. ::r :• ~ (:: :1 :».) k* • 
'I* .. "' = "- (k tn ... """ + 2rn .. - bn.."" k*2 - ,.,,I "' "'I;! 

* = Lck13 ... 2ktn2 + t 2 na 2 ) + 2rna - bna1 
k*a 

= ( ~:;• - +·· -( 2:;>t - 2r)no + ~)". 

It may be neted th,at the ab@Jlve is t.he equation of a parabola wi.th axis 

parallel t® the f(na) ~xis. 

Taking first and sec@nd derivatives achieves the following results: 

2t .* * = k*a(A ... r ) • 



df (n2 ) rk*3 - kt>..* * 
Hence, d = 0 implies na= = n. 

na bk*' - A *t=3 

It is desirable at this point to give two short lemmas which will 

then be used to simplify the expression for n*. 

Lemma 1: 

Lemma 2: 

Proof: 

k* r* * * ---.... * = *~ since r t = k b. 
t .. k b - r 

(t - k*)A *t - (b - r*)k*1 = (A* - r*) (t - k*) 

(t - k*)>.. *t - (b - r*)k* 1 = (t - k*) 0. * + r*k* - r*) - bk~ 

+ r*k'itl 

= (>.. *t + r*k*t .. r*t ... k~ * - r*k*2 + r*k.*) - r*k*t + r*k¥ 

= >.. *t - r*t .. k<:\ * + r*k* 

= 'X. *(t ... k*) ~ r*(t .. k*) = (A* - r*) (t ... k*) 

Now bk*3 .. >.. *t 2 = r*tk* • >.. *t 2 = t(r*k* .. >.. *t) 

= t(r*k* .. >.. * .. r*k* + r*) = t(r* - >.. *) 

and rk~2 - >.. *tk = [ n1r* + (b - r*)n:.,]k*1 - [ n1 k* + (t - k*)n2 ]>.. *t 

[ . * J [ * ~ * r . *a * k * = ( b ... r ) ;; n1 + n; k - ( t ... k ) * n1 + na \ t 
b - r t ... k ~ 

( k* J = --*- n1 + n2 [ (b - r*)k*2 - (t - k*)>.. *tJ by Lemma 1 
t ... k 

( k* ~ * * = t--* n1 + n1 [ ( r - A. ) ( t 
- k 

- k*)J by Lemma 2 

= (r* - ). *) ~*n1 + (t - k*)nJ= (r* - >.. *)k. 

u n·* __ rk*a ... A *tk _ ir* - 1*)k -. _k aence, - - - - -
bk*2 - >.. *t1 (r* .. >.. *)t t • 

20 



21 

So it is seen that if f (n2 ) = (~:;2 
- b) n:a 2 - ( 2:: * - 2r) D:a + ~::a 

is considered to be a continuous function of na, it is the equation of a 

parabola with axis parallel to the f(n3 ) axis, opening downward and with 

vertex at n3 = n* = t• k - (t - k*)n3 
Since n1 = ------­

k* 

k 
where n:a = t' 

n1 = k - ( t - k*)k/ t = kt - ( t - k*)k = ~ = 
k* k*t t 

* n • It follows that, for a 

fixed k and with A= f(n1,n2 ) considered as a continuous function of n1 

and n2 , A= f(n 1,n2 ) achieves its maximum value at (n*,n*). 

The domain of f(n1,n2 ) is composed of points (n1 ,11g) where n1 and 

n2 are integral; n1 ?::, O, n2 ?::_ O. It follows from the parabolic nature 

of f(n2 ) that A achieves its maximum value for a fixed k at a point 

(n1,n2 ) in the domain such that the absolute distance of (n*,n*) from 

(n 1,n3 ) is less than the absolute distance from any other point in the 

domain. Letting the distance from (n*,n*) to (n1 ,ng) bed gives 

and [t 2(n13 + n2 2 ) - 2kt(n1 + n2 ) + 2k2J 

= t 2 (n1a + n3 3 ) . - 2t[n3 t + (n1 - na)k*J (n1 + n,,) 

+ 2[nat + (n1 - na)k*J 2 

= t 3 (n13 + n3 3 ) - 2t[n1n3 t + n21 t + ( n11 - na3 )k*J 

+ 2[ t 3 ng 1 + (n1 2 + na 3 - 2n1Dra )k*4 + 2tk*(n1n; - n; 3 )J 

= n12 (t2 - 2tk* + 2k*2 ) - 2n1n2(t2 + 2k*2 - 2tk*) 

+ Th./"(t2 - 2ta + 2tk* + 2t2 + 2k*9 - 4tk*) 

= (n1 - na) 2 (t2 - 2tk*+ 2k*2 ). 



t 2 • 2tk* + 2k*2 I .a So d3 = ti (n1 - n3 ) and it is seeu that a will be 

minimized (and 1 maximized) by choosing n1 and n, so that the absolute 

value of their difference is minimized. 

22 

It is interesting to note that a necessary and sufficient condition 

for n1 - na = 0 is that k be a multiple oft. 

Criterien for selection of "best'' DBIBD for fixed t 2 b, and bk 

Again the basis of the criterion is chesen as the minimization of 
~ 

Var ('T' i - 'I' j). 

·Three different situations, resulting from the varying nature of 

the bk value, can occur where there exist several possible generating 

BIBD's. These are considered below: 

Case l. The value of bk is attainable only by the single 

occurrence of one DBIID or another. Here, the best design 

may be determined by direct comparison of the A values asso-

ciated with all such designs. These A values are these 

appearing in the Appendix and that design with the greatest 

A value is chosen. 

Case 2. The value of bk is attainable only by N1 repetitions 

ef a DBIBD or by Na re~etitiens of a different DBIBD. Where 

N1 = N8 a direct· comparison of l 's f rem the repeated designs 

will identify the better design. However, where N1 • K.a the 

l's associated with designs ebtained by repetitions evolve 

from those of the repeated designs in different ways. Renee, 

the comparison of l's from the generating designs is ineffec-

tive. In such cases, the efficiency of a design, the ratio 
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~ 
of Var (Ti - Tj) from a randomized complete block design 

with the same number of treatments and number of experimental 
~ 

units to Var (Ti - Tj) from the design under consideration, 

was used as a criterion value. This property of a design is 

invaria~t. under repetitions. That DBIBD is selected whose 

.generating design has the greatest efficiency. 

Case 3. The value of bk is attainable by N1 repetitions of 

one DBIBD and Nia repetitions of a different DBIBD. Where the 

efficiency of the larger of these two generating designs ex-

ceeds that of the smaller, an estimator obtained by combining 

the estimator from the N1 repetitions with that of the N., 

repetitions is called for. The variance of this combined 

estimator involves a A from each of the generators and the 

. comparison of this design with other appropriate candidates 

is achieved by use of the efficiency criterion. 

The theorems which follow develop the combined estimator, its vari-

ance, and the efficiency of the related design. Corollaries are given 

which support and refine the efficiency criterion. 

Lemma 3: If a DBIBD is given by t, k, n1, na, b1 , r 1 , and Ai and a 

second DBIBD given by t, k, n1 , n1 , ha, r 2 , and Aa is obtained by repeat­

ing the first design N times, then A 1 = m.1 • 

Proof: By definition, b1 = Nb 1 , r 1 = Nr1 , and Aa * = N>..1 *. So 

A 1 = (n1 - n1 ) 1 Aa * + n2 (2r2 - b1 n1 ) = (n1 - ng )2 N>..1 * 
+ n1 (2Nr1 - Nb 1r 1 ) 

= N[(n1 - n1 ) 1 A1*+ n1 ('2r1 - b1x.)] = m.1. 
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Theorem 2.3: Where a DBIBD is given by t, k, b1 , r 1 , n11 , n13 , A. 1 and 

has an efficiency of E1 , a second DBIBD is given by t, k, h:a, r2 , ng 1 , 

n23 , X. 2 , and has an efficiency of Ea , and a design is e:,btained by com-

bining N1 repetitions of the first with N:a repetitions of the second; 

the best linear unbiased estimate of (Ti - Tj) is given by 

~ ~ 
where (Ti - r j )N1 and (Ti - r j )N2 are estimates fr0m the repetitions of 

the first and second designs, respectively. 

Proof: By the lemma: N1 repetitions of the first design produce a DBIBD 

titions of the second design produce a DBIBD with associated constants 

~ 2cr3 k 
Sa Var (r i - r j )N1 = NiAi t and 

By Theorem 18.11 Graybill (4): 

Theorem 2,4: The efficiency of the design described in Theorem 2.3 is 

(NiA1 + NaA.a)ta 
given by Ee = ( b b )a • 

N1 1 + Na a " 
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Corollary 1: The efficiency of a DBIBD is invariant under repetitions. 

Preof: Let the design be given by t, k, b, r, >.. and b.ave efficiency Ei, 
>.. t 1 

then E1 = bk2• 

'.By the theerem, the efficiency of the design obtained by N repetitiens 

of the given DBIBD is E = bTh.t2 = A t 2 = 1 1 • 
Nbk2 bk2 

Oorollar, 2: If an experimental situatien involves t treatments, 

N1b 1 + Nabs blocks wb.ere N1 > O, 0 < bgN1 < b1 ; k experimental units per 

bl0ck; and there exists a DBIBD with constants t, k, b1 , n11 , n12 , A 1 , 

E1 ; and a DBIBD with ceastants t, k, b1 , na1, n.11 , >.. 11111 Ea; then that 

DBIBD ebtained by combining N1 repetitions of the first design and Na 

repetitions ef the secend design is of greater efficiency than the 

N1b1 + Nabs design obtained by 61 repetitions of the ·second design if and 

enly if A 1b1 > A1b1• 

.PJ;oof: >.. 1 b2 > >..1 1>1 ¢=>, N1 X1b1 + NaAab1 > N1 >..1 b1 + Nal11 b11 
ri, 

'Y' (N1 Ai + Na Am )t2 Aa t 2 

~ (N1>..1 + Na~)ba > (N1b1 + Naba)la ¢:::> (I\bi + Naba)k.3 > bak2 

~ Ee> F.;. 

The eleven tables which follow make 11p the catalog ef "best" 

designs fer given t, k, and bk. 



k 

4 

5 

6 

7 

8 

9 

TABLE I 

BEST DBIBD•S WITH THREE TREATMENTS, bk EXPERIMENTAL 
UNITS, AND k EXPERIMENTAL UNITS PER BLOCK 

Associated BIB Design 

bk. b ki~ Reps. Source n1 n2 

12N 3 2 N Unred. 1 2 
N>O 

lSN 3 2 N Unred. 2 l 
N>O 

6N N R.C.B. 
N>O 

21N 3 2 N Unred. 2 3 
N>O 

24N 3 2 N Unred. 3 2 
N>O 

9N N R,C.B. 
N>O 

26 

E 

.9 375 

.9600 

LOOOO 

.9796 

.9844 

1.0000 



k 

5 

6 . :,~ 

7 

8 

9 

10 

11 

12 

27 

TABLE II 

BEST DBIBD•S WITH FOUR TREATMENTS, bk EXPERIMENTAL 
UNITS, AND k EXPERIMENTAL UNITS PER BLOCK 

Associated BIB Designs 

bk b k* Re s. Source n n E 

20N 4 3 N Unred. l 2 .9600 
N>O 

36N1+24N2 
N1~ 6 2 N1 11. l 2 l (13N3+8Ni:)4 

O~N2<3 4 3 N2 Unred. 2 0 ( 6N1 +4N2 )9· 

28N 4 3 N Unred. 2 l .9796 
N>O 

SN N R.C.B. 1.00 
N>O 

36N 4 3 N Unred. 2 3 .9877 
N>O 

60N1+40N2 
N1z<) 6 2 N1 11.1 3 2 (3ZN,+24Njj)4 

O:::N2<3 4 3 Na Unred. 3 1 ( 6N1 +4N2 )25 

44N 4 3 N Unred. 3 2 .9917 
N>O 

12N N R.C.B. 1.00 
N>O 
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TABLE III 

BEST DBIBD•S WITH FIVE TREATMENTS, bk EXPERIMENTAL 
UNITS, AND k EXPERIMENTAL UNITS PER BLOCK 

Associ.ated BIB Designs 

k bk b k* Re s. Source n n E 

6 30N 5 4 N Unred. l 2 .9722 
N>O 

70N1 +35N2 
7 N.1,2::0 10 2 N.1 11. 2 2 1 (19Ni+9Nil)25 

0~2<2 5 4 N2 Unred. 1 3 (10N1 +5N2 )49 

80N1 +40N2 
8 N.12;0 10 2 N.1 11.2 l 2 (25Ni+12Ni:}25 

O:s,N2<2 5 4 N2 Unred. 2 0 ( lON.1 + 5N2 )64 

9 45N 5 4 N Unred. 2 1 .9877 
N>O 

10 lON N R.C.B. 1.00 

11 55N 5 4 N Unred. 2 3 .9917 
N>O 

120N1 +60N2 

12 N.1,2P 10 2 N.1 11.2 3 2 (SZN~+28N~)25 · 
O:s,N2<2 ·s 4 N2 Unred. 2 4 (lON.1+SN2)144 

130N1 +65N2 

13 N1~ 10 2 N.1 11. 2 2 3 (67Ni+33N~)25 
O:s,N2<2 5 4 Na Unred. 3 1 ( lON.1 +SN2) 169 

14 70N 5 4 N Unred. 3 2 .9949 
N:>O 

15 15N R.C.B. 1.00 
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TABLE IV 

BEST DBIBD•S WITH SIX TREATMENTS, bk EXPERIMENTAL 
UNITS, AN,D k EXPERIMENTAL UNITS PER BLOCK 

Associated BIB Designs 

k k* Re s Sou c n E 

7 42N 6 5 N Unred. 1 2 .9796 
. N>O 

120N1+48Na 
8 N1~ 15 2 N1 11.3 2 1 ( 26N3 +!ONil )9 

O.:£N2<5 6 5 Na Unred. 1 3 (15N1+6N2)l6 

90N1+54N2 
9 N1~ 10 3 N.1. 11.4 1 2 (22Na,+12N;:)4 

~N2<5 6 5 Na Unred. 1 4 ( lON,1, +6N2 )9 

150N1+60Na 
10 N :::,0 1_ 15 2 N1 11.3 1 2 ( 4IN3 +16Ni1: )9 

O;;,;:N2<5 6 5 Na Unred. 2 0 (15N1+6Na)25 

11 66N 6 5 N Unred. 2 1 .9917 
N>O 

12 12N N R.C.B. 1.00 
N>O 

13 78N 6 5 N Unred. 2 3 .9941 
N>O 

210N1+84N2 
14 N1~ 0 15 2 N,1. 11.3 3 2 ,a1Na,+32N;:)9 

O~Na<5 6 5 Na Unred. 2 4 (15N,1.+6N2)49 

150N1-t90Na 
15 N.1.~ 10 3 N.1. 11.4 2 3 (62Na, +36N~)4 

O~N2<5 6 5 Na Urared. 2 5 (lON.1. +6Na )25 

240N1+96N2 
i6 N:1.~ 15 2 N,1. 11.3 2 3 (106Na,+42N;:l9 

0~2<5 6 5 Na Unred. 3 l (15N1+6Na)64 
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tABLE IV (continued) 

Associated BIB Designs 

k bk. b k~~ Re s Source n E 

17 102N 6 5 N Unred. 3 2 .9965 
N>O 

18 18N N R.C.B. 1.00 
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TABLE V 

BEST DBIBD•S WITH SEVEN TREATMENTS, bk EXPERIMENTAL 
UNITS, AND k EXPERIMENTAL UNITS PER BLOCK 

Asso.clated BIB Designs 

k b E 

8 56N 7 6 N Unred. 1 2 .9844 
N>O 

189N1+63N2 
9 N1~ 21 2 N1 U.2a 2 1 ( 34N• +1 &N1 )Z 

~2<3 7 6 N.a Unred. 1 3 (3N1+N2)8l 

10 70N 7 3 N U.7 2 1 .9800 
N>O 

11 77N 7 3 N 11.1 1 2 .9835 
N>O 

252N1 +84N2 
12 N >O 1_ 21 2 N1 11.2a 1 2 ( 6 lN~ +20N1 )7 

0~<3 7 6 N.a · Unred. 2 0 (3N1+N2)144 

13 91N 7 6 N Unreel. 2 1 .9941 
N>O 

14 98N N R.C.B. 1.00 
N>O 

15 !OSN 7 6 N Unred. 2 3 .9956 
N>O 

336N1 +U 2N2 

16 N1~ 21 2 N1 11.2a 3 2 (109N.+36Nil)Z 
~2<3 7 6 N2 Unred. 2 4 (3N1+N2)256 

17 119N 7 3 N u.1 3 2 .9931 
N>O 

18 · 126N 7 3 N v.1 2 3 .9938 

399N1 +133N2 
19 N1~ 21 2 N1 u.2a 2 3 ( 154N. +S &N1 )7 

~2<3 7 6 N2 Unred. 3 1 (3N1+N2)361 
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TABLE V (contlnued) 

Assoclated BIB Designs 

k b k* E 

20 140N 7 6 N Unred. 3 2 .9975 

21 147N 
N>O N R.C.B. 1.00 
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TABLE VI 

BEST DBIBD•S WITH EIGHT TREA'IMENTS, bk EXPERIMENTAL 
UNITS, AND k EXPERIMENTAL UNITS PER BLOCK 

Associated BIB Designs 

k bk b k* Re s Source n n E 

9 72N 8 7 N Unred. 1 2 .9877 

280N1 +80N2 
10 N12!) 28 2 N1. 11.9 2 1 ~43N.+12Nil)l6 

Os_N2<7 8 7 N2 Unred~ 1 3 ( 28N1 +8N2 )25 

11 88N 8 7 N Unred. 1 4 .9256 

168N1 +96N2 
12 N1.2!) 14 4 N1. 11.10 1 2 ~ 31N. +16Nil )4 

Os_N2<7 8 7 N2 Unred. 1 5 ( 14N1 +SN.a )9 __ 

13 104N 8 7 N -Unred. 1 6 .8521 

39 2N1 +112N2 
14 N1.2!) 28 2 N1. 11.9 1 2 ~85N3.+24Nil)l6 

Os_N2<7 8 7 N2 Unred. 2 0 ( 28N1 +8N2 )49 

15 120N 8 7 N Unred. 2 1 .9956 

16 16N N R.C.B. 1.00 

17 136N 8 7 N Unred. 2 3 .9965 

504N1.+144N2 
18 N1~ 28 2 N,1. 11.9 3 2 (l41N3.+40Nil)l6 

O:s.N 2<7 8 7 Na Unred. 2 4 ( 28N,1. +8N2 )81 

19 152N 8 7 N Unred. 2 5 .9751 

280N1. +160Na 
20 N1.~ 14 4 N1 11.10 2 3 (172N.+48Nil)4 

Os_N2<7 8 7 N2 Unred. 2 6 ( 14N1 +8N2 )25 

21 168N 8 7 N Unred. 3 0 .9796 



TABLE VI (continued) 

Associated BIB Designs 

k bk b k* Re s Source 

6 l6N1 +l 76Na 
22 N1~ 28 2 N1 11.9 

o:sµa<7 8 7 Na Unred. 

23 184N 8 7 N Unred., 

24 24N N R.C.B. 

n 

2 
3 

3 

i• 
I 

n 

3 
1 

2 

34 

E 

(211N~+60N2)l6 
(28N1+8Na)l21 

.9981 

1.00 



35 

TABLE VII 

BEST DBIBD•S WITH NINE TREATMENTS, bk EXPERIMENTAL 
UNITS, AND k EXPERIMENTAL UNITS PER BLOCK 

Associated BIB Designs 

k k n ·E 

10 90N 9 8 N Unred. 1 2 .9900 

396Ni -l-99Na 
11 Ni~ 36 2 Ni 11.3a 2 1 (53N~ +13Nz )81 

O~N2<4 9 8 Na Unred. 1 3 (36Ni +9N2 )121 

144Ni+108N2 
12 Ni,2;0 12 6 Ni 11.13 1 2 ( 2lN~ +lSNz )9 

<>.:£N2<4 9 8 Na Unred. 1 4 . (12N1+9N2)l6 

234Ni +U 7Na 
13 . N12:,<) 18 5 N1 11.12 1 2 · (37Ni+l7N.il)81 

~a<2 9 8 Na Unred. 1 5 (18Ni +9N2 )169 

252N1+126Na 
14 Ni,2:0 18 5 Ni 11.12 2 1 ~43N~ +19Nz)81 

~Na<2 9 8 Na Unred. 1 6 (l8N1+9Na)196 

270Ni+180Na+135N3 
15 Ni;!' 18 5 Ni 11.12 3 0 ( 45N~ +33N.il+21N a)9 

0$Na<3 12 6 Na 11.13 2 1 (18Ni +12Na+9N3)25 
Cl,$Na<2 9 8 N3 Unred. 1 7 

16 144N 9 8 N Unred. 2 0 .9844 

17 .153N 9 8 N Unred~ 2 1 .9965 

18 18N N R.C.B. 1.00 

19 171N 9 8 N Unred. 2 3 .9972 

20 180N 9 8 N Unred. 2 4 .9900 

252N.i.+l.89Na 
U..13 ( 65N, +48N a )9 21 Ni~ 1?. 6 N,1. 2 3 

.C>;S:Na<4 9 8 Na Unred. 2 5 ( 12Ni +9Na )49 
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TABLE VII (continued) 

Associated BIB Designs 

.k k k* E 

396N1 +198N2 
22 N12,0 18 5 N1 11.12 2 3 (lOZN.i. +52NaJS1 

~Na<2 9 8 N2 Unred. 2 6 ( l8N1 -+9N.a )484 

414N1+207N2 
23 N12,0 18 5 N1 11.12 3 2 (UZN~ +56Nil)81 

~N2<2 9 8 N2 Unred. 2 7· (l8N1-+9Na)529 

288N1 +216N2 
24 N12,C) 12 6 N1 11.13 3 2 (85N.i,+63Na)9 

~2<4 9 8 N2 Unred. 3 0 (12N1-+9N2)64 

900N1 +225Na 
( 277N,1, +69Nil )81 25 N12,C) 36 2 N1 11.3a 2 3 

O~N2<4 9 8 Na Unred. 3 1 (36N1-+9N2 )625 

26 234N 9 8 N Unred. 3 2 .9985 

27 27N \ N R.C.B. 1.00 
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TABLE VIII 

BEST DBIBD•S WITH TEN TREA'IMENTS, bk EXPERIMENTAL 
UNITS, AND k EXPERIMENTAL UNITS PER BLOCK 

Associated BIB Designs 

k bk b k"~ n n E 

11 UON 10 9 N Unred. 1 2 .9917 

540N1+120N2+180Na 
12 N2° 45 2 N.1 11.14 2 1 (64Ni+l4Nil+20NJ)25 

~N2<9 10 9 N2 Unred. 1 3 · ( 45N1 +16N2+15N2 )36 
~a<2 15 6 Na 11.18 2 0 

3 ON1+130N2 
13 N1P 30 3 N1 11.15 2 1 (50N,1, +16Na)!OO 

~2<3 10 9 N2 Unred. 1 4 (JON1+lON2)169 

210N1+140N2 
14 N1~ 15 6 N1 11.18 1 2 ( 29Ni +18Nil )25 

O_sN2<3 10 9 N2 Unred. 1 5 ( 15N1 +10N2 )49 

270N1+150N2 
15 N1.2:,0 18 5 N1 11.17 2 1 (40N~+20Na)4 

~N2<9 10 9 N2 Unred. 1 6 (18N1+10N2)9 

240N1+l60N2 
16 N1~ 15 6 N1 11.18 2 1 (38Ni+22Na)25 

O,$Na<3 10 9 N2 Unred. 1 7 (15N1 +10N2 )64 

510N1+170N2 
17 N1~ 30 3 N1 11.15 1 2 (86N~ +24Na )100 

~a<3 10 9 N2 Unred. 1 8 (30N1+lON2)289 

8lON1+180Na+270Na 
18 N1~ 45 2 N1 11.14 1 2 (145Ni+32Na+4ZNJ)25 

~N2<9 10 9 N2 Unred. 2 0 (45N1+10Na+15Na)81 
~a<2 15 6 Na 11.18 1 3 

19 190N 10 9 N Unred. 2 1 .9972 

20 200N N R.C.B. 1.00 

21 210N 10 9 N Unred. 2 3 .9977 
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TABLE VIII (continued) 

Associated BIB Designs 

k bk k"~ Re s Source n n E 

99 ON1 +220N2+330N 3 
22 N1~ 45 2 N1 11~14 3 2 (217N.+48N~+71N~)25 

O.:;;;:Na<9 10 9 Na Unred. 2 4 (45N1+lON2+lSN3)121 
O.:£N~2 15 6 N3 11.18 3 l 

690N1+230Na 
23 N1:z!) 30 3 N1 11.15 3 2 ( 158Nil. +5 2N, )100 

O_:sNa<3 10 9 Na Unred. 2 5 (30N1+10Na)529 

360N1+240Na 
24 N1:;!J 15 6 N1 11.18 2 3 (86Ni +56Ni: )25 

O_:sNa<3 10 9 Na Unr1:1d. 2 6 (15N1+10Na)144 

450N1+2SON.a 
25 N1~ 18 5 N1 11.17 3 2 (170N;i.+60Ni:)4 

O.:£N2<9 10 9 Na Unred. 2 7 ( l8N1 +10N2 )25 

390N1 +260Na 
26 N1z.-O 15 6 N1 11.18 3 2 ( 101N;i. +69N,J25 

O,:£Na<2 10 9 Na Unred. 2 8 (15N1+lON2)169 

8lON1+270N2 
27 N1,2() 30 3 N1 11.15 2 3 (218N3. +72N,)100 

O.:;;;:Na<3 10 9 Na Unred. 3 0 ( 30N1 +10Na )7 29 

1260N1+280N2+420N 3 
28 N1,2Cl· 45 2 N1 11.14 2 3 (352N1+78N,+116N~)25 

O.:£Na<9 10 9 Na Unred. 2 4 (45N1+lON2+15N3)196 
O.:£N 3<3 15 6 N3 11.18 3 1 

29 290N 10 9 N Unred. 3 2 .9988 

30 300N N R.C.B. 1.00 
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TABLE IX 

BEST DBIBD•S WITH ELEVEN TREATMENTS, bk EXPERIMENTAL 
UNITS, AND k EXPERIMENTAL UNITS PER BLOCK 

Associated BIB Designs 

k bk b k~~ Re s Source n n E 

12 132N 11 10 N Unred. 1 2 .9931 

715N1.+143N2 
13 N1..2:') 55 2 N1. ll.4a 2 1 (76Ni +15Nil:) 121 

<l:s,N2<5 11 10 N2 Unred. 1 3 (55N1. +UN2 )169 

14 154N 11 10 N Unred. 1 4 .9541 

825N1. +165Na 
15 N1.~ 55 2 N1. 11.4a 3 1 (99N.J.+19Nil)121 

O_;SN 2<5 11 10 N2 Unred. 1 5 (55N1. +UNa )225 

16 176N 11 5 N 11.19 2 1 .9883 

17 187N 11 5 N 11.19 1 2 .9896 

990N1,+198N2 

18 N1..?f> 55 2 N1. 11.4a 0 2 (144N~+25N11)121 
O~N2<5 11 10 Na Unred. 1 8 (55N1. +UN2 )324 

1045N1. +20JN2 
19 N1.~ 55 2 .N1. 11.4a 5 l ( 15 lN.J. +27Nil )121 

~2<5 11 10 N2 Unred. 1 9 (55N1. +UN2 )361 

UOON1. +220N2 
20 N1.~ 55 2 N1. 11.4a 1 2 (181N~+36Nil)l21 

O<N <5 - 1. 11 10 Na Unred. 2 0 (55N1. +UN2 )400 

21 231N 11 10 . N Unred. 2 1 .9977 

22 242N N R.C.B. 1.00 

23 253N 11 10 N Unred. 2 3 .9981 

132N1. +264N2 
24 N1.~ 55 2 N1. 11.4a 3 2 (261N~+52Ni:)121 

O_:SNa<S 11 10 Na Unred. 2 4 (55N1. +llNa )576 
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TABLE IX (continued) 

Associated BIB Designs 

k bk b k~~ Re s Source n n E 

25 275N 11 10 N. Unred. 2 5 .9856 

1430N1+286N2 
26 N1~ 55 2 N1 11.4a 4 2 (304N.+60N,)l21 

O~a<5 11 10 N2 Unred. 2 6 (55N1 +UN.a )676 

27 297N 11 5 N 11.19 4 1 .9959 

28 308N 11 5 N 11.19 2 3 .9962 

1595N1 +319N2 
29 N1~ 55 2 N1 11.4a 1 3 (379N;i.+74N,)121 

0S,N 2<5 11 5 Na 11.19 1 4 (55N1 +UN2 )841 . 

30 330N 11 10 N Unred. 3 0 .9900 

1705N1+341N2 
31 N1~ 55 2 N1 11.4a 2 3 ( 436N;i. +8zN, )121 

0S,N 2<5 11 10 Na Unred. 3 1 (55N1 +UN.a )961 

32 352N 11 10 N Unred. 3 2 .9990 

33 33N N R.C.B. 1.00 
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TABLE X 

BEST DBIBD•S WITH THIRTEEN TREATMENTS, bk EXPERIMENTAL 
UNITS, AND k EXPERIMENTAL UNITS PER BLOCK 

Associated BIB Designs 

k bk Sou ce n n E 

14 364N 26 6 N 41 0 2 .9286 

15 390N 26 3 N 11. 21 5 0 .7222 

416N1. +208N2 
16 N1.~ 26 3 N1. 11.21. 2 1 (39Nil. +16Ni:) 169 

<>s_N2<2 13 4 N2 11. 22 4 0 ( 26N1. +13N2 )256 

17 221N 13 4 N 11.22 2 1 .9896 

16 234N 13 4 N 11.22 0 2 .9630 

19 494N 26 6 N 41 2 1 .9903 

5 20N1 +260Na 
20 N1..2;,0 26 6 N1. 41 1 2 (61Nil, +25N,)169 

0~2<2 13 4 Na 11.22 5 .0 (26N1 +13Na)400 

21 273N 13 4 N 41 3 1 .9728 

22 286N 13 4 N 41 l 2 .9938 

23 598N 26 3 N 11. 21 1 2 .9953 

624N1. +312N2 
24 N1.~ 26 6 N1. 41 4 0 (80N1 +36Nil )169 

~N2<2 13 4 Na 11. 22 6 0 (26N1.+13N2)576 

650N1. +325N2 
25 N1.~ 26 6 N1. 41 3 1 (94N~ +46N, )169 

O~.a<2 13 4 Na 11. 22 4 1 (26N1 +13N2 )625 

26 26N N R.C.B. 1.00 
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TABLE X (continued) 

Associated BIB Designs 

k bk b k* R s Source n n E 

702N1+351N2 
27 N1~ 26 6 N1 41 1 3 ( llON.i, +54Niil) 169 

O,SN2<2 13 4 N2 11. 22 0 3 ( 26N1 +13N2 )729 

7 28N1 +364N2 
28 N1~ 26 6 N1 41 0 4 ( 112N.i, +49Niil)169 

O,;;;;N2<2 13 4 Na 11. 22 7 0 ( 26N1 +13N2 )784 

754N1 +377N2 
29 N1~ 26 3 N1 11. 21 3 2 ( 129Ni +6lN11 )169 

0;£N2<2 13 4 N2 11.22 5 1 ( 26N1 +13N2 )841 

30 390N 13 4 N 11. 22 3 2 .9967 

31 403N 13 4 N 11. 22 1 3 .9875 

832N1 +416N2 
32 N1~ 26 6 N1 41 3 2 .LJ.5 7N.i, +64N a) 169 

O,;;;;N2<2 13 4 N2 11.22 8 0 (26N1+13N2)1024 

858N1 +429Na 
33 N1~ 26 6 N1 41 2 3 (167N3+78N11)169 

OsN2<2 13 4 Na 11.22 6 1 ( 26N1 +13Na) 1089 

34 442N 13 4 N 11.22 4 2 .9896 

35 455N 13 4 N 11. 22 2 3 .9976 

936N1 +468N2 
36 N1;!J 26 3 N1 11. 21 2 3 ( 199N;1, +96Niil) 169 

O,;;;;Na<2 13 4 N2 11.22 0 4 ( 26N1 +13N2) 1296 

962N1 +481N2 
37 N1~ 26 6 N1 41 5 1 ( 202N.i. +9 7N~) 169 

oSN2<2 13 4 Na 11~22 7 1 ( 26N1 +13N2)1369 

988N1 +494N2 
( 220N~ +!09 Niil) 169 38 N1~ 26 6 N1 41 4 2 

O,;;;;N2<2 13 4 N2 Ll, 22 5 2 ( 26N1 +13Na )1444 

39 39N R,C,B. 1.00 
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TABLE XI 

BEST DBIBD•S WITH FIFTEEN TREATMENTS, bk EXPERIMENTAL 
UNITS, AND k EXPERIMENTAL UNITS PER BLOCK 

Associated BIB Designs 

k bk b k* n n E 

16 240N 15 7 N 11. 25 0 2 .9375 
N:>0 

18 630N 35 3 N 11.24 2 l .9921 
N>O 

735N1+315N2 
21 N1~ 35 6 N1 62 2 1 (68N1 +27N2)225 

O$,N2<7 15 7 N2 11. 25 3 0 ( 35N1 +15N2 )441 

22 330N 15 7 N 11. 25 2 1 .9917 
N:>O 

23 345N 15 7 N 11.25 1 2 .9924 
N>O 

840N1+360N2 
24 N1.;:;<> 35 6 N1 62 1 2 (89N;1, +36N, )225 

O$,N2<7 15 7 N2 11. 25 0 3 (35N1+15N2 )576 

27 945N 35 3 N 11.24 l 2 .9965 
N:>O 

28 420N 15 7 N 11.25 4 0 .9184 
N:>O 

29 435N 15 7 N 11. 25 3 l .9810 
N>O 

30 30N N R.C.B. 1.00 
N>O 

31 465N 15 7 N 11. 25 1 3 .9834 
N>O 

32 480N 15 7 N 11. 25 0 4 .9375 
N>O 
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TABLE XI (continued) 

Associated BIB Designs 

k bk b k"~ Re s Source n n E 

33 1155N 35 3 N 11.24 3 2 .9976 
N>O 

35 525N 15 7 N 11. 25 5 0 .9184 
N>,O 

1260N1 +540N 2 
36 N1.2,0 35 6 N1 62 3 2 ( 201N;1, +84No;:)225 

Os._Na<7 15 7 Na 11. 25 4 1 (35N1 +15N2 )1296 

37 555N 15 7 N 11. 25 3 2 .9971 
N::-0 

38 570N 15 7 N 11. 25 2 3 .9972 
N:>O 

1365N1 +585Na 
39 N1,;;;0 35 6 N1 62 2 3 (236N3+99N,)225 

O:£Na<7 15 7 Na 11.25 l 4 (35N.1.+lSN2)1521 

40 600N 15 7 N 11. 25 0 5 .9375 
N>O 

1470N1 +630N 2 
42 N1,;;;0 35 3 N1 11.24 2 3 ( 27 4Ni +108N,) 225 

Os._N2<7 15 7 Na 11. 25 4 2 (35N1 +15Na )1764 

43 645N 15 7 N 11. 25 5 l .9618 

N:>O 

44 660N 15 7 N u. 25 4 2 .9945 

N:>O 

45 45N N R.C.B. 1.00 



CHAPTER III 

THE RECOVERY OF INTERBLOCK INFORMATION 

In the preceding chapter, expressions for estimates of treatment 

effects in DBIBD's were obtained which were dependent on comparisons 

within blocks. The present chapter, using an assumption of random block 

effects, is a development of an interblock analysis. This analysis uses 

only block totals in the estimation of treatment effects. The problem 

of combining the intrablock and interblock estimates is aho considered. 

The Interblock Analysis 

Suppose the model for a DBIBD to be as follows: 

i=l, ••• ,t 

j=l, ••• ,b 

k = n1, Ila 

Bj - N(0,0"1 2 ); E(BjBj*) == O, j,& J* 

eijk .- N(O ,o-8 ); 

{
,..I. i-i* j=j * 

E( * * *) V J - t ' 8 ijk" 8 i j k = O; 0therwise 

E(~jeij*k) = O, "'i,j ,j*,k 

This may again be written in matrix form as: Y = µj + X1 T + XaB + e. 

Then X12 'Y, the vector 0£ block totals, may be simplified as follows: 

Xg'Y= Xg'(µj + X1 r + X:;S + e) = µX2 'j + Xg'X1 T + Xa'XaB + X;'e 

= µkj + C'T + kS + Xa'e. 

45 
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b It can be seen then that E(X. 'Y) = µkj 1 + C'r. Also, Var (Ka 'Y) 

= E[(kf:3 + X.'e) (kf3 + Xa'e)') 

= E(k21313' + Xa'ee'Xa) 

= k2 cr12 I + JC:a'XacfI 

= k(kcr1 2 + a 2)I. 

The model for block tetals, X8 'Y = µkj~ + C'r + (kS + X. 'e), may be 

written as Z = µkj ~ + C'r + 6. Then the normal equations for this model 

would be: 

(k.b kJic•) 
(:) = (k::z) ( kj~s_ 'Y) 

kCj~ 
= cc• CJta 'Y • 

These may be simplified te: 

C (b krji tJ (kY•••) 
(r~ • lt)It + ut) :;') = 

krj~ ex_ •y: • 

Summing the last trows of the above coefficient matrix, we have: 

j~[krjf, (rk • A t)lt + >..JE) 

= [rkt, (rk - >..t)Ji + >..tj~). 

2 1 1 1 
Now, since rt= bk, we have rkt = kb and also (rk - >..t)jt + Xtjt = krJt• 

Hence, there exists a dependency and the rank of the system of normal 

equations is seen to be at most t. 

The solution of the system may be accomplished by addition of the 
1 ,.., 

restriction jt r = O. Under this restriction, the normal equations 

become: 
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(b 
(rk - At):) (~) (ky···) = 

krjf ex_ 'Y • 

- 1.:..:..!. - L j lXa I y Hence, 1..1 = bk - bk b 
,..,, 

1 ( CL., 'Y - krj i µ) and 'T' = rk - At 

= 1 (C - krj i • ~k j:)L., 'Y rk - >..t 

= 1 (C - ! 3tc)Xa'Y 
rk - Xt t t 

= 1 (I - t J~)CX;'Y. 
rk - At 

It can be shown from the above considerations that, as in the case 

of balanced incomplete block designs, the fellowing important relation-

ships hold: 

- - t 1. i,. = T - 'T'. < j l 

- k(a 2 + ka1 2 ) 1 2. Var 'T' = rk - At (I ... t J) 

" "' 3. 'f and T are uncorrelated. 

The Combining of Intrablock and Interblock Estimators 

Where X1 = (X11 , Xu, ••• , X1t) and C = (f), we have 

ct . 
A A k 
'T'i = ft (X11'Y • t C1X.'Y) with Var ,- 1 = IT ('l - 1/t)d' and 

'; i = rk : >.. t ( 1 - 1/t)CiX2 'Y with Var:;:' 1 = k(a;k+. ~~s) (1 

and 'I' 1 are uncorrelated. 

By Theorem 18.11 of Graybill (4), the best linear unbiased esti• 

mators of ('T' 1 - T.), if the variances are known, is given by: 
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Since in most cases the variances appearing in the above expression 

are unknown, it cannot usually be applied directly. 

A very similar situation arises in the combining of intrablock and 
A ,,_ 

interblock estimators from BIB designs. If 'T' i * and 'I" i * are intrablock 

and interblock estimators, respectively, in a BIB design, then the best 

-linear unbiased estimator of 'T' i - 'T' • is given by 

where a*3 is the error variance and a 1*2 is tb.e block variance. .As in 

the DBIBD, cr*2 and a 1 *2 ara most often unknown and the usual procedure 

has been to consider methods of estimating these variances, or expres-

sions involving them, and thus obtain a random weighting of the intra-

block and i~terblock estimators that has desirable properties. 

The similarity of the problem of obtaining a useable combined esti• 

mator for a DBIBD to that problem for a BIBD suggests that the approach 

to the current problem.~e by way of applying the results and procedures 

of some investigator, coacerned with combining unbiased eatimater,. wao 

has made particular reference to BIBD 0s. 

In a recent paper,, Seshadri (11), concerned with the recovery of 

interblock information in a BIBD, develops random weights for combin:Lng 
; 

intrablock and interblock estimates which give rise to au estimator uni­

formly better than either of these in nearly ail experiments. Although 

there have been important earlier papers by Yates (13) and Graybill and 

Deal (5), this more recent paper, apparently, holds greater promise in 
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terms of range of applicability. The following development of a combined 

estimator for a DBIBD is along lines suggested by that study. 

Consider the following simplification of the expression for the com-

bined estimator in the case where the variances are known: 

A 2 2 "' 2 
v r i[k(cr + kcr1 )/rk - A tJ + r i[kcr !At] 

'i i = [ kcr 2!A tJ + [ k(cr2 + kcr1 2 )/rk - "- t] 

"[ a aJ ,..,[ aJ 'T 1 >-tk(cr + kcr1 ) + 'T 1 k(rk - "-t)cr 
= · a a :a 

(rk - A t)kcr + >.. tk(cr + kcr1 ·) 

_ ': ~ · . ( rk - >.. t ) kcr2 J 
- I • - 2 l! 2 

1 (rk .. "- t)kcr + "- tk(cr + kcr1 ) 

+ '1'. (rk - A t)kcr2 
1 :a a.·· . 2 

(rk - "- t)kcr + >.. tk(cr + kcr1 ) 

= ~ i + 0' i _ ~ i) ( rk - >.. t) kO" 2 

(rk - "- t)kcr2 + "- tk(o 2 + kcr1 :a) 

= ~ . + (T _ ~ ) ( rk - A t )cr2 • 
1 1 i k(rcr2 + "- kcr/) 

It will now be shown that the use of an unbiased estimate of 

(rk3• A t)cr2:a in the above expressian will lead tc, an unbiased estimate 
k(rcr + >.. kcr1 ) 

- " -of Ti - T. which is uniformly better than T 1 or Ti. 

A I': l • k 2J We have that T ,.... NLT - jt '1'., rt' (I - 1/t J)cr , 

- 1- k 'T' ..., N['l' - jt T., k >.. (I • 1/t J) (cr 2 + ko'11 )] , and that these are 
r .. t 

independent. There£ore, 

i; - ~)- Nf ,~a•+ r!Z ~Xt (c,2 + ka18 )] (I - 1/t J) 

k8 (ra1 + >.. ta11 ) · }·· 
= >.. t(rk • lt) ~ (I -. 1/t J') 



, c k , ) k8(ra 1 + '1.to:11 ) · 
Also, 11. t r - 11. t · • . · . (I - 1/t J) = (I .. 1/t J) 

k2 (ra' + >.. ta12) ). t(rk .. ). t) 

is independent and of rank t - 1. So by Theorem 4.8 ef Graybill (4), 

>.. t { rk - >.. t ) f i; ... ~ i )2 = ('1' _ ~ ) , [ . "'. t { rk ... >.. t) 1] ~ ... ~ ) 
k 1 ( ra 1 + >.. ta 1 2 ) i= 1 i · }s1 ( ra8 + >.. ta1 2 ) 

is distributed as ?<.3(t - 1) •. 
., .. 

Further, where s 2 is the intrablock error sum of squares and f i.$ 

the degrees of freedom for intrablock error, s8 /a1 is distributed as 

:i. . . >.. t { rk .. '1. t) t """ A a 
X(f) and is independent of 1 2 8 .,;1<r 1 • r 1> • 

k (rcr + A ta1 ) """" 

Now the ratio of these chi-square variables divided by their 

respective degrees of freedom will be distributed as F(f,t - 1). 

~ s1'k2 (ra1 + A tcr18 ) (t - 1) J t - 1 
SoE t ..... " =t-3 

a 8 ~l (r 1 - '1' 1 )8 £'1.t(rk - >.. t) 

and E ~ s8 k{t • 3) J = {rk - >.. t)cr 2 

t "" " a k( rcr2 t A tcr1 2 ) • 
f'1.t~1('l'i•r1) 

Therefere, we obtain the 

s1 k(t - 3) 

~ I,, 
New E r i = E '1" i + k( t • 

50 

normal variate with mean zero and variance k1 (ra2 + ). tcr1 2 )IA t(rk - ). t). 

/1, 

Ti-Ti ,..,, A 
Since t ...... is an odd function of (r 1 • T 1) and 

· A 2 
i~l ('1' i - '1" 1> 

~ 
() and '1' i is unbiased. 
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The first of these terms is immediately kc//>..t; the second and third 

terms may be evaluated by using the same transformation as that ·empleyed 

by Seshadri (11) and are 
. I 

• [ 2k(t ... 3)/f>..tJ [f(rk - >.. t) (cr 1) /k(t - 1) (ra8 + >.. ~cr1 1 )J and 
I S 

[ k(t - 3)/£>..tJ [ f (f + 2) (a3 ) /t - lJ 
V· 
v 

[>..t(rk - >.. t)/k1 (re/'+ >..ta/) (t - 3)J, respectively. So Var 'r i is given 

by kcr1 _ 2(t - 3) <1:k - >.. t) (a 2)1 + (£ - 3) (f + 2) (rk - >.. t) (cr2 ) 2 

>..t At(t - 1) (rcr8 + >..ta/) >..t(t - 1) f (ra1 + >..tcr12 ) 

~ . I I 

and Var 'r i - Var; =. Ct • 3) Crk • >,, t) (a > (f • 2) 
i ·. "- t ( t .. 1) f ( ra1 + >.. ta1 1 ) 

Consider rk - >..t. By Theorem 2.2, 

rk .. At = r*n18 + (b • r*)n11 • [>.. *(n1 • rt.a )1 + n;, (2r - bne )J 
= · r*n11 + (b - r*)na" 

- C >..*n1 a + A *n;,. .. 2>.. *n1na + bng I + 2n1 Rt r* .. 2nm I r*J 

= (r* • >..*)n11 +Cb - r* • "- * • b + 2r*Jn. 1 • 2(t* • >.. *)n1na 

= Cr* .. X *> Cri1 • na)1 :=. o. 
Thus, where n1 ~ Om, t > 3, and f > 2, the· v•riance of the combined 

estimator is seen t0 be exceeded by tb.e variance of the intrablock 

estimator. 

Therefore, for those designs appearing in the catalog of Chapter II, 

excluding those in Table I and those which reduce to randomized complete 

blocks, the combined estimator should be used. There exist no exceptions 

other tban those noted, since b(k - t) - ~ > 2 in every case. 



CHAPTER IV 

SUMMARY AND EXTENSIONS 

The cencern ef this thesis is with those experimental situations 

characterized by experimental units of high cost which gJ;'oup naturally 

into constant sized blocks such that costs are principally associated 

with blocks as a whole and such that block size exceeds the number of 

treatments. The intent is to provide easily applied methods of analysis 

fer such situations and to present information on their effectiveness. 

In Chapter II, Displaced Balanced Incemplete Bleck Designs are de­

fined to be those connected twe-way classificatien designs which are 

such that each treatment is applied either n1 or ng times in a block and 

with. the additional property that replacement of n1 by unity and Ila by 

zere would resu.lt in a Balanced Incemplete Block Design. A set of con­

stants associated with any such design is identified and identities re­

lating these are found and used to derive expressions for intrableck 

estimates of treatment effects and their variances. 

Recognition is accorded the fact that in an experimental situatien 

to which a DBIID is applicable more than one such design might fit. Con• 

sideratiens of the criteria for and identificatien of .tlbest" designs fei 

intrablock analysis in particular situations is therefore included. 

Those DBIBD's which are nbest" fer given numbers of treatments, experi­

mental units per block, and experimental units in the experiment are pre­

sented in tabular form. These tables are for all possible values oft 
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(number of treatments) between three and fifteen and for block sizes 

from t + 1 to 3t. 

53 

The assumption of random block effects makes possible the develop­

ment1 in Chapter III, of an analysis of DBIBD's based on block totals. 

A procedure for combining these interblock estimators with those from 

the intrablock analysis is developed and its applicability discussed. 

Several directions for further study and extension have been sug­

gested by the investigations reported here. Concern with experimental 

situations in which the balance condition could be replaced by one of 

partial balance might give rise to a useful research, paralleling this 

one, on what might be called, "Displaced Partially Balanced Incomplete 

Block Designs." Comparison of the properties of such designs with those 

proposed by Pearce (9) and Federer (2) would be interesting. 

Also of possible interest would be the development of more general 

methods for generating and analyzing balanced designs in which block 

size exceeds the number of treatments. Such a development might provide 

useful means for the analysis of those experiments which fail the condi­

tion of becoming BIBD's with the replacement of n1 and na by unity and 

zero, respectively. 

Another possible source of fruitful study might be the investiga­

tion of special properties possessed by DBIBD's which have been gener­

ated by special kinds of BIBD 1s, for example, properties peculiar to 

displaced designs generated from resolvable BIBD's. 

The investigation of special methods for combining intrablock and 

interblock estimators in designs characterized by extra large block size 

could also be a worthy area of inquiry. 

A potential application of the work done here to experiments using 



54 

a factorial arrangement of treatments might be profitably explored. 

That is, in a two-factor experiment with one factor at t levels and the 

second factor at b levels, the number of experimental units available 

for experimentation might be such that if all were used there would 

result .u,nequal replications of the treatment combinations. For example, 

suppose a factor A to be at four levels and a factor B to be at six 

levels and further suppose the availability of sixty experimental units. 

Rather than replicate each treatment combination twice and use only 

forty-eight experimental units, an experimenter might achieve maximum 

usage of his resources and retain some kind of balance by repeating some 

treatment combinations twice and others three times in the manner sug­

gested by the following layout: 

A 

0 1 2 3 

0 3 3 2 2 

l 3 2 3 2 

B 2 3 2 2 3 

3 2 3 3 2 

4 2 3 2 3 

5 2 2 3 3 

An intended similarity of the above with the ls.yout exemplifying a 

DBIBD which appears early in Chapter II.should be noted. The estimation 

of treatment effects and interactions in such a factorial arrangement 

might also closely resemble the results obtained in this paper and some 

additional value ef the tables of ''best" designs might be recognized. 
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TABLE XII 

BEST DBIBD•S WITH THREE TREATMENTS FOR GIVEN NUMBERS OF EXPERIMENTAL 
UNITS PER BLOCK AND GIVEN GENERATING BIB DESIGNS 

BIB Design 

Unreduced 
(b=3, k*=2, r*=2) 

k n bk E 

4 (1,2) 12 5 .9375 

5 (2,1) 15 8 .9600 

6 (2,2) 18 12 1.0000 

7 (2,3) 21 16 .9796 

8 (3,2) 24 21 .9844 

9 (3,3) 27 27 1.0000 
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TABLE XIII 

BEST DBIBD•S WITH FOUR TREATMENTS FOR GIVEN NUMBERS OF EXPERIMENTAL 
UNITS PER BLOCK AND GIVEN GENERATING BIB DESIGNS 

BIB Designs 

11.1 Unreduced 
( b::6., k*=2, r*=3) (b=4,k*=3,r*=3) 

k bk E bk E 

5 (1, 2) 20 6. .9600 

6 (2,1) 36 13 • 9630 (2,0) 24 . 8 .8889 

7 (2,1). 28 12 .9796 

8 (2,2) 48 24 1.0000 (2,2) 32 16 1.0000 

9 (2,3) 36 20 .9877 · 

10 (3,2) 60 37 .9867 (3,1) 40 24 .9600 

H (3,2) · 44 30 .9917 

!:2 (3,3) 72 54 1.0000 (3,3) 48 36 1.0000 
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TABLE XIV 

BEST DBIBD•S WITH FIVE TREATMENTS FOR GIVEN NUMBERS OF EXPERIMENTAL 
UNITS PER BLOCK AND GIVEN GENERATING BIB DESIGNS 

BIB Designs 

11.2 Unreduced 
(b=l0,k*=2,r*=4) ( b:5 , kU:4, r~~:4) 

k bk A E bk E 

6 (0,2) 60 12 .8333 (1,2) 30 7 .9722 

7 (2,1) 70 19 .9694 (1,3) 35 9 .9184 

8 (1,2) 80 25 .9766 (2,0) 40 12 .9375 

9 (3,1) 90 30 .9259 (2,1) 45 16 .9877 

10 (2,2) 100 40 1.0000 (2,2) 50 20 1.0000 

11 (1,3) 110 46 .9504 (2,3) 55 24 .9917 

12 (3,2) 120 57 .9896 (2,4) 60 28 .9722 

13 (2,3) 130 67 .9911 (3,1) 65 33 .9763 

14 (4,2) 140 76 .9694 (3,2) 70 39 .9949 

15 (3,3) 150 90 1.0000 (3,3) 75 45 1.0000 



_k 

7 

8 (2,1) 

9 

10 · (1,2) 

11 

12 (2,2) 

13 

. 14 (3,2) 

15 

16 (2,3) 

17 · 

· 18 (3,3) 

TABLE XV 

BEST DBIBD•S WITH SIX TREATMENTS FOR GIVEN NUMBERS OF EXPERIMENTAL 
UNITS PER BLOCK AND GIVEN GENERATING BIB DESIGNS 

BIB Designs 

11.4 Unreduced 11.3 
(b=15,k*=2,r*:::5) ( b=l O, k*=3 , r*:::5 )' · (b:=6 ,k*:::5 ,r*:::5) 

bk E E 

120 26 .. 9750 

(1,2) 90 22 .9778 

150 41 .9840 

180 . 60 1.0000 (2,2) 120 40 1.0000 

210 81 • 9918 

(2,3) 150 62 . .9920 

240 106 .9938 

270 135 1~0000 (3,3) ·. 180 90 · 1.0000 

(1,2) 

(1,3) 

(1,4) 

(2,0) 

(2,1) 

(2,2) 

·(2,3) 

(2,4) . 

(2,5) 

(3,1) 

(3,2) 

(3,3) 

42 

48 

54 

. ~o 

66 

72 

78 

84 

90 

96 

102 

108 

8 

10 

12 

16 

20 

24 

28 

32 

36 

42 

48 

E 

.9796 · 

· .9375 

.8889 

.9600 

.9917 

1.0000 · .. 

.9941 

.9796 

.9600 

.9844 

.9965 

54. 1.0000 °' 0 



TABLE XVI 

BEST DBIBD•S WITH SEVEN TREA'IMENTS FOR GIVEN NUMBERS OF EXJ?ERIMENTAL 
UNITS PER BLOCK AND GIVEN GENERATING BIB DESIGNS 

BIB Designs 

11.7 Unreduced 11.2a 
(b=7,k*=3,r*=3) ( b:7 , k*::6 , r*::6 ) (b=21,k*=2,r*::6) 

bk E k E n k . ). 

8 I {0,2) 56 -8 .8750 (1,2) 56 9 .9844 (4,0) 168 - 16 

9 I (3,0) . 63 ,9 .7778 (1,3) 63 11 .9506 (2,1) 189 34 

· 10· 1 ·- (2;1)" - - 70 ·.-14 .9800 I (1,4) 70 13 .9100 I co,2) 210 40 

11 I (1,2) 77 17 .• 9835 I (1,5) 77 15 .8678 J (3,1) 231 49 

12 I (0,3) 84 18 .8750 ·- (2,0) 84 20 .9722 (1,2) 252 61 

13 I (3,1) -91 23 .9527 _ (2,1) 91 24 .9941 ·- (4,1) 273 - 66 

14 I (2,2) 98 28 1.0000 (2,2) 98 28 1.0000 (2,2) 294 84 

15 I (1,3) 105 31 .9644 (2,3) 105 32 .9956 (0,3) 315 90 

16 I (4,1) 112 34 .9297 (2,4) 112 36 .9844 (3,2) 336 109 

17 I (3,2) 119 41 .9931 (2,5) 119 40 .9689 -(1,3) -· 357 - 121· 

18 I (2,3) 126 . 46 .9938 (3,0) 126 45 .,9722 _ (4,2) 378 136 

E 

.5833 -

.9794 

.9333 . 

.9449 

.9884 

.9112 

1.0000 

~9333_ 

.993S 

.9769 

.9794 C\ .... 



TABI.E XVI (continued) 

BIB Designs 

11.7 Unreduced 
(b.=7 ,k*=3,r*=3). (b=7 ,k*:::6 ,r*:::6) 

k n n bk E ti 

19 · (1,4) 133 .· 49 .9501 (3,1) 133 51 

20 I (4,2) 140 56 .9800 (3,2) 140 57 

21 I (3,3) 147 63 1.0000 (3,3) 147 63 

11.2a 
(b=21,k*=2,r*::6) 

E (n1 .n2) bk A 

.9889 (2,3) ·. 399 154 

· .9975 (5,2) 420 165 

1.0000 (3,3) 441 189 

E 

.9954 

,.9625 

1.0000 

°' N 



TABLE XVII 

BEST DBIBD•S WITH EIGHT TREATMENTS FOR GIVEN NU'MBERS OF EXPERIMENTAL 
UNITS PER BLOCK AND GIVEN GENERATING BIB DESIGNS 

BIB Desisns 

ll.9 11.10 Unreduced 
(b:28, k*=2, r*=7) (b=l4,k*::4,r*=7) ( b:::8, k*=7 , r*=7) 

k (ni.n2) bk A E . (n1 ._nz.)~_ bk_~~l- _____ _E~c ___ _l_n •• na) bk 'X E 

9 I I I {1,2) 72 10 .9877 

10 I (2,1) 280 43 .9829 (1,3) · 80 12 .9600 

11 I (1,4) 88 14 .9256 

12 I (3,1) 336 60 .9524 (1,2) 168 31 .9841 (1,5) 96 16 .8889 

13 I (1,6) 104 18 .8521 

14 1 (1,2) 392 85 .9913 (2,0) 112 24 .9796 

15 I (2,1) 120 28 .9956 

16 I (2,2) 448 112 1.0000 

I 
(2,2) 224 56 1.0000 (2,2) 128 32 1.0000 

17 I (2,3) 136 36 .9965 

18 I (3,2) 504 141 .9947 (2,4) 144 40 .9877 

19 I (2,5) 152 44 .9751 
0\ 
w 



TABLE XVII (continued) 

. BIB Designs 

11.9 11.10 
(b=28,k*=2,r*=7) (b=14,k*=4,r*=7) 

le_~ (n:1 .n2.) bk .. ~. E ~~ ~· (n3 ,na) bk ii. 

20 I (1,3) 560 172 .9829 I (2,3) 280 87 

21 I I 

22 I (2,3) 616 211 .9965 

I 23. I 

24 I (3,3) 672 252 1.0000 I (3,3) 336 126 

Unreduced 
(b=B,k*=7 ,r*=7) 

E (-D~ 1!11) bk i-

.9943 I (2,6) 160 48 

I . (3,0) 168 54 

(3,1) 176 60 

(3,2) 184 66 

1.0000 (3,3) 192 72 

E 

.9600 

.9796 

.9917 

.99.81 

1.0000 

. °' 
-I:' 



TABLE XVIII 

BEST DBIBDwS WITH NINE TREATMENTS FOR GIVEN NUMBERS OF EXPERIMENTAL 
UNITS PER BLOCK AND GIVEN GENERATING BIB DESIGNS 

BIB Designs 

11.3a 11.12 11.13 Unreduced 
(b=36,k*=2,r*=8) (b=l8,k*=5,r*=10) (b=l2,k*=6,r*=8) (b:9 ,k*:8 ,r*:8) 

k [n. ,n~) bk ,, E (n1 ,n2) bk ). E (n, ,n2) bk 1 E (n,,n2) bk A E 

10 I (5,0) 360 25 .5625 (2,0) 180 20 .9000 (1,2) 90 11 ,9900 

11 I (2,1) 396 53 .9855 (1,3) 99 13 .9669 

12 I (6,0) 432 36 .5625 (0,3) 216 27 .8438 (1,2) 144 21 .9844 (1,4) 108 15 .9375 

13 I (3,1) 468 72 .9586 (1, 2) 234 37 .9852 (1,5) 117 17 .9053 

14 I (0,2) 504 84 .9643 (2,1) 252 43 .9872 (1,6) 126 19 .8724 

15 I (4,1) 540 93 .9300 (3,0) 270 45 .9000 (2,1) 180 33 .9900 (1,7) 135 21 .8400 

16 I (1,2) 576 123 .9834 (0,4) 288 48 .8438 (2,0) 144 28 .9844 

17 I (5 ,1) 612 116 .9031 (1,3) 306 62 .9654 (2,1) 153 32 .9965 

18 I (2,2) 648 144 1.0000 (2,2) 324 72 1.0000 (2,2) 216 48 1.0000 (2,2) 162 36 1.0000 

19 I (6,1) 684 141 .8788 (3,1) 342 78 .9723 (2,3) 171 40 .9972 

20 I (3,2) 720 135 • 7594 (4,0) 360 80 .9000 (2,4) 180 44 ,9900 

21 I (0,3) 756 189 .• 9643 (1,4) 378 93 ,9490 (2,3) 252 65 .9949 (2,5) 189 48 .9796 

22 I (4,2) 792 212 .9855 (2,3) 396 107 .9948 (2,6) 198 52 ,9669 

23 I (1,3) 828 232 .9868 (3,2) 414 117 .9953 (2,7) 207 56 ,9527 

24 I (5 ,2) 864 249 .9727 (4,1) 432 123 .9609 (3,2) 288 85 .9961 (3,0) 216 63 .9844 

25 I (2,3) 900 277 .9972 (1,5) 450 130 .9360 (3,1) 225 69 ,9936 

26 I (6, 2) 936 288 .9586 (2,4) 468 148 .9852 (3,2) 234 75 ,9985 

27 I (3,3) 972 324 1.0000 (3,3) 486 162 1.0000 (3,3) 324 108 1.0000 (3,3) 243 81 1.0000 0\ 
\J1 



TABLE XIX 

BEST DBIBDtS WITH TEN TREA'IMENTS FOR GIVEN NUMBERS:OF EXPERIMENTAL 
UNITS PER BLOCK AND GIVEN GENERATING BIB DESIGNS 

BIB Desiims 

11.14 11.15 11.17 11.18 Unreduced 
(1>=45 ,k*=2,r*=9) ( 1>=30 ,k*=3 ,r*:9) (b=l8,k*= ,r*:9) ( b=l5, k*:6 , r*:9) (b=lO,k*:9 ,r*:9) 

k n n bk E bk E bk E n n bk E n n k E 

11 (1,2) 110 12 ,9917 

12 (2,1) 540 64 .9877 (4,0) 360 32 .7407 (2,0) 180 20 .9259 (1,3) 120 14 .9722 

13 (2,1) 390 50 · .9862 (1,4) 130 16 .9467 

14 (3,1) 630 -85 .9637 (0,2) 420 56 .9524 (1,2) 210 29 .9864 (1,5) 140 18 .9184 

15 (5,0) 450 50 .7407 (2,1) 270 40 .9877 (1,6) 150 20 .8889 

16 (0,2) 720 112 .9722 (3,1) 480 74 .9635 (2,1) 240 .38 .9896 (1,7) 160 22 .8594 

17 (1,2) 510 86 .9919 (1,8) 170 24 .8304 

18 (1,2) 810 145 ,9945 (6,0) 540 72 .7407 (1,3) 270 47 ,9671 (2,0) 180 32 ,9877 

191 
(4,1) 570 102 .9418 (2,1) 190 . 36 .9972 

20 (2,2) 900 180 1.0000 (2,2) 600 120 1.0000 (2,2) 360 72 1.0000 (2,2) JOO 60 1.0000 (2,2) 200 40 1.0000 

21 I (0,3) 630 126 .9524 (2,3) 210 44 ,9977 

22 (3,2) 990 217 .9963 (5,1} 660 134 .9229 (3,1) 330 71 .9780 (2,4) 220 48 .9917 

23 I (3,2) 690 158 .9956 (2,5) 230 52 ,9830 

24 (4,2) 1080 256 .9877 (1,3) 720 170 .9838 (2,3) 360 86 .9954 (2,6) 240 56 ,9722 

25 I (6,1) 750 170 ,9067 (3,2) 450 112 .;9956 (2,7) 250 60 .9600 

: I (1,3) 
1170 301 .9895 (4,2) 780 200 .9862 (3,2) 390 101 .9961 (2,8) 260 64 .9467 

(2,3) 810 218 .9968 (J,O) 270 72 .9877 

28 I (2,3) 1260 352 .9977 (0,4) 840 224 .9524 (2,4) 420 116 .9864 (3,1) 280 78 .9949 

29 I (5 ,2) 870 246 .9750 (3,2) 290 84 .9988 

30 I (3,3) 1350 405 1.0000 (3,3) 910 270 1.ooo6 (3,3) 540 162 1.0000 (3,3) 450 135 1.0000 (3,3) 300 90 1.0000 °' °' 



TABLE XX 

BEST DBIBD•S WITH ELEVEN TREA~S FOR GIVEN NUMBERS OF EXPERIMENTAl, 
UNITS PER BLOCK AND GIVEN GENERATING DESIGNS 

BIB Designs 

11.4a . 11.19 Unreduced 
· (b::55 ,k*=2, r*=lO) (b=ll,k*~,r*=5) (b=ll,k*=lO,r*=lO) 

k bk /\. E n bk E bk. ..··11. E 

12 I ·. (6,0) 660 .36 .5500 (0,2) 132 12 .9167 (1,2) 132 13 .9931 

. :: . I .. :::~~ 715 76 .9893 (1,3) 143 15 .9763 

·770- ·cc·cc:49 -- .5500 (1,4) 154 17 .9541 

15 I (3,1) 825 . 99 .9680 (3,0) 165 18 .8800 .· (1,5) 165 19 .9289 

16 I (8,0) 880 64 .5500 (2,1) 176 23 .9883 · I (1,6) 176 21 .9200 

17 t (4,1) 935 124 .• 9439 (1,2) 187 26 .9896 (1,7) 187 23 .8754-

18 I {0,2) 990 144 .9.778 (0,3) 198 27 .9167 (1,8) 198 25 .8488 

19 I (5,1) 1045 151 · .9202 I (1,9) 209 27. .8227 

20 I (1,2) 1100 181 .9955 (4,0) 220 32 .8800 (2,0) · 220 · 36 .9900 

21 I (6,1) 1155 180 .8980 (3,1) ·. 231 39 .9728 (2,1) 231 40 .9977 

22 I (2,2) . 1210 220 1.0000 I (2,2) 242 44 1.0000 (2,2) 242 44 1.0000 0\ 
...... 



TABLE XX (continued) 

BIB Designs 

11.4a 11.19 Unreduced 
(b=55,k*=2,r*=l0) (b=ll,k*=5,r*=5) (b=ll,k*=lO,r*=lO) 

bk "- E n n bk E n n bk "- E 

23 I (7 ,l) 1265 211 .5032 (1,3) 253 47 .9773 (2,3) 253 48 .9981 

24 I (3,2) 1320 261 .9969 (0,4) 264 48 .9167 (2,4) 264 52 .99;31 

25 I (8,1) 1375 244 .8589 (5 ,O) 275 50 .8800 (2,5) 275 56 .9856 

26 · I . (4.,2). 1430 304 .9893 (4,1) 286 59 .9600 (2,6) 286 60 .9763 

27 I (0,3) 1485 324 .• 9778 (3,2) 297 66 .9959 (2,7) 297 64 .9657 

28 I (5 ,2). 1540 349 .9793 (2,3) 308 71 .9962 (2,8) 308 68 .9541 

29 I (1,3) 1595 379 .9914 (1,4) 319 74 .9679 (2,9) 319 72 .9417 

30 I (6 ,2) 1650 396 .9680 (0,5) 330 75 .9167 (3,0) 330 81 .9900 

31 I (2,3) 1705 436 .9981 (5 ,1) 341 83 .9500 (3,1) 341 87 .9958 

32 I (7 ,2) 1760 445 .9561 (4,2) 352 92 .9883 (3,2) 352 93 .9990 

33 I (3,3) 1815 495 1.0000 (3,3) 363 99 1.0000 (3,3) 363 99 1.0000 

0\ 
CX> 



TABLE XXI 

BEST DBIBD•S WITH THIRTEEN TREA'lMENTS FOR GIVEN NUMBERS OF EXPERIMENTAL 
UNITS PER BLOCK AND GIVEN GENERATING BIB DESIGNS 

BIB Designs 

11.21 11.22 41 
(b=26,k*=3,r*=6) (b=l3,k*=4,r*=4) ( b=26 , k*=6 , r*=l 2) 

k ~~~ Jn~ .n2) bk E ~Jli"-n2) bk A E (n1 ,na) bk A E 

14 I I I (0,2) 364 28 .9286 

15 I (5 ,O) 390 25 .7222 

16 I (2,1) 416 39 .9902 (4,0) 208 16 _.8125 

17 I {2,1) 221 22 .9896 

18 I (6,0) 468 36 .7222 (0,2) 234 24 .9630 (3,0) 468 45 .9028 

19 I (3,1) 494 54 .9723 (2,1) 494 55 .9903 

20 I (0,2) 520 60 .9750 (5 ,O) 260 25 .8125 (1,2) 520 61 .9912 

21 I (7 ,0) 546 49 .7222 (3,1) 273 33 .9728 (0,3) 546 63 .9286 

22 I (4,1) 572 71 .9535 (1,2) 286 37 09938 

23 I (1,2) 598 81 .9953 

24 I (8,0) 624 64 .7222 (6,0) 312 36 .8125 (4,0) 624 80 .9028 

25 I (5 ,1) 650 90 .9360 (4,1) 325 46 .9568 (3,1) 650 94 .9776 
0\ 
\() 



TABLE XXI (continued) 

BIB Designs 

11.12 11.22 41 
(b=26,k*=3,r*=6) (b=l3,k*=4,r*=4) (b=26,k*=6,r*=12) 

k ( niLrul ~~ bk E bk E, n n bk A E 

26 I (2,2) 676 104 1.0000 . (2,2) 338 52 1.0000 (2,2) 676 104 1.0000 

27 I (9 ,O) 702 81 .7222 (0,3) 351 54 .9630 (1,3) 702 110 .9808 

28 I (6,i) 728 111 .9203 (7,0) 364 49 .8125 (0,4) 728 112 ~9286 

29 I (3,2) 754 129 .9970 (5,1) 377 61 .9429 

30 I (0,3) 780 135 .9750 (3,2) 390 69 .9967 (5 ,O) 780 125. .9028 

31 . , (7,1) 806 134 .9063 (1,3) 403 73 .9875 (4,1) 806 143 .9672 

32 I (4,2) 832 156 .9902 (8,0) 416 64 .8125 (3,2) 832 157 .9966 

33 I (1,3) 858 166 .9908 (6 ,1) 429 78 .9311 (2,3) 858 167 .9968 

34 I (8,1) 884 159 .8940 (4,2) 442 88 .9896 (1,4) 884 173 .9728 

35 I (5 ,2) 910 155 .9816 (2,3) 455 94 .9976 (0,5) 910 175 .9286 

36 I (2,3) 936 199 .9981 (0,4) 468 96 .9630 (6 ,O) , 936 180 .9028 

37 I (9 ,1) 962 186 .. 8831 (7 ,1) 481 97 .9211 (5 ,1) 962 202 .9591 

38 I (6,2) 988 216 .9723 (5 ,2) 494 119 .9812 (4,2) · 988 220 .9903 -..JI 
0 



k _n___.i_Jl 

39 (3,3) 

v·-

u.21 
(b=26,k*=3,r*::6) 

hk 

1014 234 

E 

1.0000 

TABLE XXI (continued) 

Ili..Il. 

(3,3) 

BIB Pe_s~ 

11.22 
(b=l3,k*=4,r*=4) 

blc 

507 117 

E 

1.0000 

41 
(b=26,k*=6,r*=l2) 

hk l 

(3,3) 1014 234 

E 

1.0000 

-..,I 
I-' 



TABLE XXll 

BEST DBIBD•S WITH FIFTEEN TREA'IMENTS FORGIVEN NUMBERS OF EXPERIMENTAL 
UNITS PER BLOCK AND GIVEN GENERATING BIB DESIGNS 

BIB Designs 

11.24 62 11.25 
(b=35,k*=3,r*=7) (b=35,k*=6,r*=14) (b=l5 ,k-i~=7 ,r*=7) 

lc ___ fn.1__4n2) ___ bk ______ J,. __ ____J; _____ _ln-1_.,n2) bk _______1___ -- E-~---· (n, ,na) bk :\ E 

16 

1 
I (0,2) 240 16 .9375 

17 

18 I (2,1} · · _ .63.0 50 .9921 (0,2) 630 48 .9524 

19 

20 

21 I (3,1) 735 67 .9767 (2,1) 735 68 .9913 

I 
(3,0) 315 27 .9184 

22 I (2,1) 330 32 .9917 

23 I I I (1,2) 345 35 .9924 

24 I (0,2) 840 88 .9821 I (1,2) 840 89 .9933 I (0,3) 360 36 .9375 

25 

26 I· I I -..J. 
N 



TABLE XXII (continued) 

BIB Designs 

11.24 62 11.25 
(b:35,k*=3,r*=7) (b=35,k*=6,r*=14) (b=l5 ,k*=7 ,r*=7) 

k n bk E n n bk E bk ;>.. E 

27 (1,2) · 945 113 .9965 (3,1) 945 111 .9788 

28 I I (4,0) 420 48 .9184 

29 I I (3,1) 435 55 .9810 

30 I· (2,2) 1050 140 1.0000 I (2,2) 1050 140 1.0000 · (2,2) 450 60 1.0000 
---· -·-- -- -- : -

31 . I (1,3) 465 63 .9834 

32 I I I (0,4) 480 64 .9375 

33 (3,2) 1155 169 .9976 I (1,3) 1155 167 .9858 

34 

35 I I (5,0) 525 75 .9184 

36 I {4,2) 1260 200 .9921 (3,2) 1260 201 .9970 (4,1) .540 84 .9722 
' 

37 I 
(3,2) 555 · 91 .9971 

38 (2,3) 570 96 .9972 

39 I (1,3) 1365 235 .9932 I (2,3) 1365 236 .9975 I (1,4) 585 99 .9763 ....., 
w 



TABLE XXII (continued) 

BIB Designs 

11.24 62 11.25 
(b=35,k*=3,r*=7) (b=35,k*=6,r*=l4) (b=l5,k*=7,r*=7) 

k (IlL.112) bk A E n n bk E n n bk A E 

40 (0,5) 600 100 .9375 

41 

42 (2,3) 1470 274 .9985 (4,2) 1470 272 .9913 (6 ,O) 630 108 .9184 

43 I, -- (5 ,1) 645 119 .9654 

44 I I I (4,2) 660 128 .9917 

45 I (3,3) - 1575 315 1.0000 I (3,3) 1575 315 1.0000 I (3,3) 675 135 1.0000 

-.....i 
-1:' 
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