A METHOD OF CONSTRAINED RANDOMIZATION

FOR $2^{\text {n }}$ FACTORIALS

By
KBNNETH JEROME TIIAHRT
Bachelor of Science
Augustana College
Sioux Falls, South Dakøta 1957
Master of Science
Kansas State University
Manhattan, Kanses
1959

Submitted to the faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
May, 1967

A METHOD OF CONSTRAINED RANDOMIZATION FOR 2^{n} FACTORIALS

660221

AGKNOWLEDGEMENTS

I wish to express my gratitude to Dr. David L. Weeks for serving as chairman of my graduate committee, for suggesting this thesis problem, and for his guidance in the preparation of this thesis.

I appreciate Professors Carl E. Marshall, Robert D. Morrison and Irvin T. Omtvedt serving on my advisory committee.

I am also grateful to the National Science Foundation for making funds available to me in the form of a Science Faculty Fellowship for the first year of my study, and to the American Lutheran Church for granting me a Faculty Growth Award during the second year of my study.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Sequential Experimentation. 1
Discussion of the Problem 4
Example 7
II. FINDING OPERATIONAL SEQUENCES 9
Preliminary Considerations. 9
Branch Diagrams 12
Adjacency Tables 12
Computer Use 14
III. CONSTRAINED RANDOMIZATION FOR A 2^{n-p} FACTORIAI, IN A RANDOMIZED NON \rightarrow CONSECUTIVE BLOCK DESIGN 16
Trensformation Generators and Constrained
Randomization 16
Randomization Model 22
Infinite Model 36
IV. CONSTRAINED RANDOMIZATION FOR OTHER $2^{\text {n }}$ FACTORIAL DESIGNS 40
The 2^{n-p} Factorial in a Randomized Consecutive Replication Design. 40
Completely Random $2^{19 p}$ Factorials 46
Split-plot Designs 47
V. SUMMARY AND EXTENSIONS 62
BIBLIOGRAPHY 65
APPENDIX A. 66
APPENDIX B 69

CHAPTERR I

INTHOEXUCTION

Sequential Experimentation

The concept of sequential experimentation is subject to the interpretation of the individual. To some persons it might suggest exm perimentation in which treatments were applied to each experimental unit in a sequential maner. Detection of effects due to this sort of sequential ordering has been investigated by Prairie and Zimmer [9]. Other persons might visualize experimentation in which results of applied treatments became available for observation in a sequential manner. This sort of situation would include experiments in which the treatments were applied to the experimental units in a sequential manner, with results of one treatment being observed before application of the following treatment. This is the sort of sequential expermentation in which the material presented in this thesis could be useful.

A great amount of this type of experimentation is related to improvement of manufacturing processes. Since most manufacturing processes are controlled by a number of factors, the experiment is usually designed to determine which combination of the possible levels of the controlling factors will give optimum output of the product.

A natural method of experimentation is a factorial arrangement of treatments where each factor is set at each of two or more levels with
all possible combinations of the other factor levels. A combination of factor levels is called a treatment combination if all factors under consideration are specified. In an exploratory type of experiment it is ordinarily sufficient to use only two levels of each of the factors. This is known as a $2^{\mathfrak{n}}$ factorial, where n is the number of factors. On the basis of the information gained from a 2^{n} factorial, one can obtain a related set of optimum operating conditions (optimum as indicated by this facterial). Additional experimentation can be done on selected factors at the discretion of the experimenter with other levels of these factors to find an improved optimum set of operating cond.tions.

A definition of the terminology to be used in describing sequential experiments is now given.

Definition 1-1. A treatment run will be the performance of an operation under the conditions specified by a particular treatment combination. An experiment will consist of a sequence of runs. Usually the number of runs in the sequence will be specified before the experiment begins.

Suppose the various treatment combinations (also denoted by te's) are run sequentially on the same piece or pieces of equipment. That is, the process is a continuing one and the various control settings or conditions, i. e. te's, are imposed on the process without shutdown, or with only a pause in the operation of the equipment. This sequential ordering of the te's is a basis for several potential difficulties. Each of these difficulties has very serious implications in both the performance of the physical operation as well as the interpretation of
the analysis of the experiment.
One of the problems created by the sequential ordering of the treatment runs is the phenomena of incompatibility of adjacent to's.

Definition 1-2. Two treatment combinations will be called adjacent if one follows immediately after the other in the sequential order of rumning the experiment.

Often the process under investigation or the nature of the equip. ment being used prevents one from having certain sets of operating conditions (te's) adjacent in the sequential order of running the experio ment. It may also be difficult to "line out" the apparatus if many factors are changed from one run to the next. Thus in the face of an incompatibility condition, the usual requirement of random assignment of te's to the experimental units (process runs in the industrial context) is restricted. This thesis deals with several aspects of this incompatibility condition on adjacent treatmeat combinations.

In particular, this work is concerned with 2^{n} factorials when the incompatibility condition restricts the number of factor levels which may be changed from run to run.

Another inherent problem of sequential processes is a "learning" or "wear" phenomena. Learning is any systematic change in the process not attributable to the applied treatments directly controlled by the experimenter. This aspect of sequential experimentation has been investigated in a number of papers, Daniel and Wilcoxon [2], Hill [5], and Cox [1].

In industrial experimentation results are usually available in a relatively short time. The period required for the experimentation is
measured in hours or days rather than weeks or months. This property makes it practicable to look at the results of sets of runs of te's or individual tc's before continuing with other runs or to run a fractional replicate of the complete factorial. One then obtains a statistical analysis of the results before continuing with additionel fractions to complete the factorial. Among the many useful papers regarding this sort of analysis one finds material by Floyd [4], Hunter [6], and Davis and Hay [3].

Discussion of the Problem

Consider an experimental situation as described previously where a 2^{n} factorial design of some type is to be run sequentially with the compatibility condition that no more than Δ factor levels may be changed between adjacent te's. In order that a statistical analysis of the experimental results have good properties, the usual approach of the statistician is to require full randomization. Under full randemization the properties of the statistical analysis depend only upon the assumptions made ooncerning the mathematical model used to describe the experimental process, see Kempthorne [7] or 0stle [10]. Obviously this will not be possible in the situation stated above unless $\Delta=n$. If $\Delta<n$, then only something less then the usual type of full raadomization may be done by the experimenter. It is the purpose of this writer to investigate this problem for arbitrary values of n and Δ. A method of constrained randomization will be given for complete factorial and fractional replicetions in rendomized block designs and for split-plot designs. As used in this thesis, constrained randomization consists of a method of randomization for any given sequence which will not destroy
the compatibility properties of adjacent te's. The experimenter obtains a sequence of the te's which satisfies the compatibility criterion, and then performs a series of operations at random on the sequence. The operations are restricted to those which preserve the compatibility of adjacent te's. The set of sequences obtained in this manner using constrained randomization is a subset of the set of possible sequences obtained using complete randomization. Other discussions of types of constrained randomization may be found in Kempthorne [8] and in Daniel and Wilcoxon [2].

A statistical analysis based on the constrained randomization technique used will be developed for the designs discussed using both the infinite model and a randomization model. Attentipn is given to estimation of main effects and interactions, estimation of the variances of these estimates, and estimation of experimental error.

In order to clarify the following discussion, several definitions will be made.

Definition l-3. Two treatment combinations have order of adjacency Δ if the number of factor levels which are different in the two adjacent tc's is equal to Δ.

Consider a 2^{n} factorial type experiment with treatment cambination i denoted by $\left(x_{i 1} x_{12} \ldots x_{i n}\right)$, where the $x_{i j}$'s are either 0 's or l's and similarly for adjacent treatment combinations i'. The order of adjacency, Δ, is given by the sum,

$$
\Delta=\sum_{j}\left|x_{i j}-x_{i}{ }^{\prime}\right|
$$

Definition 1-4. A sequence of treatment combinations is called a \triangle order sequence if the order of adjacency for every pair of adjacent te's in the sequence is equal to Δ.

Notice that restricting the value of Δ to be $<n$ in a 2^{n} factorial experiment induces a compatibility condition on the sequence, as mentioned earlier.

Definition 1-5. An perational sequence will be any sequence of the te's which satisfies the particular compatibility requirement imposed on the design by the experimenter and/or the experimental process.

An operational sequence is, therefore, one which may actually be run by the experimenter in the process under investigation.

The constrained randomization experimental designs developed in this thesis are applicable in a sequential process. The process under investigation is a factorial (2 level) experiment with a compatibility requirement on adjacent te's. The compatibility condition requires that the sequence of te's must be a Δ order sequence.

Three types of factorials are discussed. Methods of constrained randomization for full 2^{n} factorials in blocks and for 2^{n-p} fractional replicates are presented in Chapter III. Chapter IV contaias constrained randomization for split-plot designs of a factorial. The constrained randomization methods may be easily used by the experimenter. The methods of analysis developed for these designs under cone strained randomization will be related to different assumptions res garding the population of inference.

For both models unbiased estimates of main effects and interactions
are found. An estimate of experimental error is obtained and used to estimate variances of main effect and interaction estimates.

Example

Consider a 2^{2} factorial experiment in a randomized block design with three complete blocks to be run. Let the compatibility conditions require that each sequence be of order $\Delta=1$.

A 2^{2} factorial experiment consists of the tc's (00), (01), (10), (11). There are 84 different possible sequences of these four te's. Some of these will have order $\Delta=1$, and some will not. By listing all 24 possible sequences it is found that the eight operational se quences which follow have order $\Delta=1$.

00	00	01	01	10	10	11	11
01	10	00	11	00	11	01	10
11	11	10	10	01	01	00	00
10	01	11	00	11	00	10	01

The other 16 non-operational sequences have at least one adjacency with order $\Delta=2$. The sequences

00	00	01	01	10	10	11	11
01	10	00	11	00	11	01	10
10	01	11	00	11	00	10	01
11	11	10	10	01	01	00	00

all have orders of adjacency $\Delta=1$ for te 1 and tc $2, \Delta=2$ for te 2 and tc 3, and $\Delta=1$ for to 3 and tc 4. The sequences

00	00	01	01	10	10	11	11
11	11	10	10	01	01	00	00
01	10	00	11	00	11	01	10
10	01	11	00	11	00	10	01

all have orders of adjacency $\Delta=2$ for te 1 and tc $2, \Delta=1$ for te 2 and te 3 , and $\Delta=2$ for to 3 and tc 4. Thus the experimenter might pick at random with replacement three of the operational sequences in the first group. One sequence would be selected for each block or replication which is to be run.

In the 2^{2} factorial experiment it was not a difficult task to list all possible sequences and then separate the operational sequences, which satisfied the compatibility condition. In a larger experiment this method is not practical; in a 2^{3} experiment there are 8% pose sible sequences. More refined methods of finding sequences which satisfy particular compatibility conditions are presented in Chapter II.

CHAPTER II

FINDING OPERATIONAL SEQUENCES

This chapter deals with the problem of finding an operational sequence of order Δ for a 2^{n} factorial. An example is provided which demonstrates the difficulty of obtaining an operational sequence and a geometric interpretation of the problem is given.

Preliminary Considerations

Any method of finding an operational sequence for a 2^{n} factorial must use all 2^{n} treatment combinations. The order of adjacency of every pair of adjacent $t c^{\prime}$ s must be equal to Δ. (The degree of randomness used in obtaining the sequence will relate to the validity and generality of the analysis of the results of the experiment.):

One may think of the 2^{n} te's as points in a finite geometric space. Finding an operational sequence is equivalent to finding a path which connects the vertices of the space. The path must be unbroken, connect all of the vertices, and intersect each vertex only once. To satisfy the compatibility condition, the distance, measured along the lattice lines, between adjacent intersected points must be equal to Δ.

The major pitfall awaiting the individual constructing an operational sequence of tc's according to some random scheme is now related. After arranging some portion of the operational sequence and arriving at, say, the jth ordered tc in the sequence, no other tc can be found among the remaining unused tc's which satisfies the compatibility
condition. That is, for each of the unused te"s, the order of adjaceney with te j is not equal to Δ.

For example, consider a 2^{3} factorial experiment in a full replio oate design with $\Delta=1$. Suppose the following operational sequence bas been arranged: $000,010,110,111,101,001,011$. The only remaining to is 100. However, the order of adjacency of 011 and 100 is $\Delta=3$, $\operatorname{not} \Delta=1$.

Geometrically this problem can be thought of in the following manner. After some portion of the path connecting the vertex points in the finite geemetry is completed, all of the remaining points in the space are at a distance not equal to Δ from the end point of the path completed. Considering the above example of a 2^{3} factorial experia ment, the following graph illustrates the problem in a geometric sense. Solid lines with arrows denote the connect path. Again the lattice line distance from 011 to 100 is 3 units rather than 1 uait.

Thus it becomes clear that a method of finding a random operation al sequence is needed which will avoid the type of impassé which was just illustrated. This will be accomplished by using a method of constrained randomization on a set of transformation generators.

Definition 2-1. A transformation generator (tg) is an operational sequence with the first te being (00. . .0), the low level of each factor, which will generate a set of operational sequences under constrained randomization.

The notation $\operatorname{TG}\left(2^{n}, \Delta\right)$ will be used to identify a set of transformation generators for particular values of n and Δ. Using completely random selection from the set of generated operational sequences, the analysis of the data obtained from the selected sequences will be show to possess good statistical properties.

Definition 2oe. A pair of operational sequences are isomorphie if one may be obtained from the other by the methods of constrained randomization. Otherwise, they are not isomorphic.

The methods of constrained randomization presented in the subse. quent chapters require that one have a set of transformation generators.

Such a set of transformation generators may consist of only one sequence of te's or it may consist of a large number of seguences of te's. From an intuitive point of view, one would probably desire a large or even a maximal set of $t g$'s. However, this is not required in order to perform an analysis of the results.

There are two requirements which must be met in order for a se= quence to belong to the set of transformation generators. Each sequence must be an operational sequence and no pair of tg's should be isomorphic under the methods of constrained randomization. Thus it is required that one be able to find operational sequences by some method, which need not be random. That is, one need only be able to arrange all the te's into sequences which satisfy the compatibility condition. Then
all such sequences which have (00. - 0) as their first te and which are not isomorphic to one another make up the set of transformation generators. The remainder of this chapter deals with finding transformation generators.

Branch Diagrams

One could find a set of sequences which includes the raximal set of transformation generators by constructing a branch diagram for any particular 2^{n} experiment. This would be done in a manner similar to that shown for a 2^{2} with $\Delta=1$ below.

From this one gets the two operational sequences $00,01,11,10$ and $00,10,11,01$. Now the maximal set of tg^{\prime} 's for this situation, $T\left(2^{2}, \Delta=1\right)$, can consist of either of these but not both, since they are isomorphic under the method of constrained randomization presented in Chapter III. This method of finding all tg's, in fact fiading an even larger set of sequences of te's, has two defects. It is maneces=... sary to have a set of sequences larger than the maximal set of tg's for constrained randomization. Also, the number of possible branches on the diagram becomes unmanageably large for even a 2^{3} experiment with the compatibility requirement that the sequence be of order $\Delta \leq 2$.

Adjacency Tables

The intuition and natural caution of the experimenter weuld possibly cause him to desire a maximal set of transformation generators
for constrained randomization. However, it will be shown that one does not need to have a maximal or even a large set of tg's. Since one or only a few tg's will be sufficient, one might list all of the treatment combinations and the proceed to arrange them into a Δ order sequence. This process would be facilitated by the use of a tabular listing of te's with order of adjacency Δ. An example of such a table is given below. An x in the intersection of any row and column indicates that the te's listed in that row and column have order of adjacency equal to Δ.

For a 2^{3} experiment with $\Delta=1$, the following table indicates tc's with the proper order of adjacency.

Note that to finda transformation generator one would always start with ($00 . \cdot-0$) as the first te in the sequence. Then using the table above, or a similar one for other values of: n or Δ, the sequence could be completed by consulting the table at each step to find adjacent te's.

Of course in arranging a sequence satisfying the compatibility condition, one might find himself confronted with the same situation as in the earlier examples. A number of te's may still remain to be used, none of which has order of adjacency equal to Δ with respect to the
last te in the partially arranged sequence. In this case, one only wants an operational sequence and nothing is sacred concerning the order in which the tc's are encountered. Thus it will be satisfactory to rearrange the sequence already partially completed until all of the te's have been used and the final sequence is of order Δ. For instance, one might have the sequence $000,010,110,111,101,001,011$ for a 2^{3} with $\Delta=1$, leaving the te 100 left over. Suppose that 100 is in. serted after 110, in the fourth process run (plot). Then one has the partial sequence $000,010,110,100$. Next must follow 101, then either 111 or 001 . In either case the sequence may be finished using all eight te's and having order $\Delta=1$. Other possibilities obviously exist and would lead to other operational sequences, which could be used as transformation generators.

It was this method which was used to prepare Tables VI through XI: in the appendix. The first five tables or non-maximal portions of them could have been prepared in this manner. However, for these five tables the IBM 7040 computer at Oklahoma State University was employed to find all possible operational sequences for a given 2^{n} experiment and compatibility condition Δ.

Computer Use

Essentially the computer program was used to find all possible branches of the branch diagram. Then transformation generators, that is, operationsl sequences which are not isomorphic under constrained randomization, were found and are listed in the appendix. These are necessarily maximal sets of tg 's since all possible operational sem quences were searched by the computer to find the set of tg 's.

The computer program for a typical situation may be found in Appendix A.

The computer was not used for finding the sets of tg's after Table V in the Appendix B because the computer time required to find a maximal set of tg's was prohibitive. Also, since a maximal set is not required for constrained randomization, it was deemed sufficient to provide a set of representative tg's.

The methods of constrained randomization using sets of tg's are presented in the next chapters.

CHAPELER ITI

COMSTRAIMED RANDOMIZATLON FOR A $\varepsilon^{\mathrm{BCP}}$ FACIORIAI
IN A RAMDOMTEED MOUGONSENUNTVE BTOCK DESIGY

This chapter contains methods of comstreined ranemimation for $2^{20 p}$ factorials in randomised complete block designs, where each block
 and $0 \leq p<n$. A discusinom of sets of wique tranforwetion gener ators used in constrained randemizetion is included with references to the appropriate tables of these sets of generrtors in Appendix B. The nalysis of ewch of these designs is given, both for infinite model and for rancomisation model assumptons. whe model which particular exo perimenter may use will be determined by the proeess under investigation gnt the populatiom to which he wishes to drat inference.

Wrensformation Generetors and
Constrained Randonisation

As previously defined, an arrangement of the treatment combinations into a sequence which setisfies the compatibility condition is called an operational sequense. A transormetion generetor is a given operetional sequence of treatment combinations which is used in the censtrained randomization techoique to generate adaitional perational sequences. It is necessaxy to heve set of transformation genexatoris, each of which is unique under the method of constreined randomitation wheh
follows. The statistical analysis presented in subsequent sections of this thesis will be shown to be valid for any set of transformation generators. Thus a set consisting of only one transfornation generator will be sufficient for constrained randomization.

Sets of unique transformation generators for the various constrained experimental designs discussed in this thesis are given in the appendix.

Constrained randomization for a $2^{\text {nop }}$ factorial in nonmensecutive replicates is performed according to the following outline.
(1) For each replieation of the basic design a single transformation generator is chosen at random from the appropriate set of mique transformation generators in the appendix. The proper set of transformation generators is identifiable by the value of n and the compatibility condition.
(2) For each replication, randomly assign the n factors under iavestigation to the n pseudo factor names $x_{1}, x_{2}, \ldots, x_{0}$ in the 2^{n-p} treatment combinatiens. Note that the assignment is only done once in each replication. Thus each te in a given replication has the same assignment of real factor names.
(3) Randomly choose one of the bsse 2 numbers which represents a to used in the factorial experiment. Then combine this number with each te using vector addition modulo 2. Whis step effectively does a random assigament of the high and the low levels of each factor to the pseudo level nomes 0 and 1 in the 2^{n-p} te's, where the high levels are then renamed 1 and the low levels renamed 0 .

Example 3-1. As an example of this technique consider the following randomization obtained for one replication of a 2^{3} factorial experim ment when the compatibility condition requires that the order of adm jacency be equal to 1 , that is, a full 2^{3}, with $\Delta=1$.

From Table II in Appendix B, one finds a maximal set of transformation generators, namely $\operatorname{TG}\left(2^{3}, \Delta=1\right)$:
(1) 000, 001, 011, 010, 110, 100, 101, 111
(2) $000,001,011,010,110,111,101,100$
(3) $000,001,011,111,101,100,110,010$

One of these generators is selected by a random process. Suppose it is (2) $000,001,011,010,110,111,101,100$.

Following step (2) in the constrained randomization process, one randomily assigns the real factor names A, B, C to the pseudo factor names x_{1}, x_{2}, x_{3} in the 2^{3} sequence. Suppose that one obtained the following: $A=x_{2} ; B=x_{1} ;$ and $C=x_{3}$. The operational sequence would then be arranged into the following form: $000,001,101,100$, 110, 111, Oll, 010. Mote that this is still an operational sequence, i.e., that $\Delta=1$ for every adjacency.

To complete the constrained randomization procedure, one now chooses at random one of the base 2 numbers $000,001,010,011,100$, 101, 110 , 1ll. Suppose that it is 101. Then 101 is added componentwise modulo 2 to each of the tc's in the operational sequence obtained in step (2). The result is $101,100,000,001,011,010,110,111$. This is the operational sequence which would be run in the experimental situation under investigation by the experimenter. Note that the come patibility requirement, $\Delta=l_{\text {, }}$ still holds for this sequence. A theorem formalizing this observation follows.

Theorem 3m1. The sequence of treatment combinations resulting from constrained randomization is an operational sequence. If the set of unique transformation generators is maximal, then the operse tional sequence obtained is equivelent to randomly choosing an operational sequence from the totality of all such sequences of tces.

Proof of Theorem 301. The set of transformation generators is a set of operational sequences by definition. Thus after step (1) of the constrained randomization procedure, one has an operational sequence.

Step (2) is a renaming of the pseudo factors and therefore does not disturb the property of being an operational sequenee. This is a con sequence of the fact that every tc in the sequence receives identically the same assignment of real factor names. Thus for every pair of ada jacent to's i and $i^{\prime \prime}$, factors $x_{i j}$ and $x_{i}{ }^{p} j$ which corresponded positionowise before assigmment of factor names in step (2) still correspond positionowise after assignment of real factor names $x_{i j}$, and $X_{i}{ }^{p} j^{q}$. Hence the sum

$$
\begin{aligned}
\Delta & =\sum_{j}\left|x_{i j}-x_{i^{8} j}\right| \\
& =\sum_{j}\left|x_{i j^{8}}-x_{i^{\prime} j^{\prime}}\right|,
\end{aligned}
$$

where j^{\prime} is the new name under step (2) of j. This relationship will hold for every pair of adjacent te's in the sequences. The randomization which is to be performed in step (3) of the constrained candomization procedure also preserves the compatibility condition and thus the property of being an operational sequence. This is seen by considering two adjacent te's ($x_{1} x_{2} \cdots x_{n}$) and ($y_{1} y_{2} \cdots y_{n}$) which satisfy the compatibility requirement, having order of adjacency
< Δ. That is,

$$
\Sigma\left|x_{i}-y_{i}\right|<\Delta
$$

Using the method of randomization in step (3), one obtains the te $\left(x_{1}+a_{1}, x_{2}+a_{2}, \cdots, x_{n}+a_{n}\right)$ and the adjacent tc $\left(\dot{x}_{1}+a_{1}, y_{2}+a_{2}, \cdots\right.$, $y_{n}+a_{n}$) where $\left(a_{1} a_{2} \cdots a_{n}\right)$ is the randomly chosen base 2 number. From these two transformed adjacent te's the following relation is found.

$$
\Sigma\left|\left(x_{i}+a_{i}\right)=\left(y_{i}+a_{i}\right)\right|=\Sigma\left|x_{i}-y_{i}\right|<\Delta
$$

Hence the new sequence of transformed te's also satisfies the compatio bility condition. This completes the first portion of the proof.

The second statement in the theorem is simply a clarification of the notion of a maximal set of transformation generators. A set of such generators will not be called maximal unless it generates all possible operational sequences under the method of constrained randomization.

A result which is basic in the development of the theory of the randomization model is presented in the following theorem.

Theorem 3-2. Over all possible constrained randomizations of a given operational sequence each treatment combination appears an equal number of times in each position in the sequence. Since a transformation generator is an operational sequence, the same result holds for a tg.

Proof of Theorem 3-2. Consider any operational sequence which results from the constrained randomization procedure carried out in steps (1)
and (2). Such an operational sequence of te's has a total of 2^{nmp} possible randomizations under the procedure in step (3). A different randomization occurs for ach of the base 2 numbers in the factorial experiment. Let $y_{1} y_{2} \cdots y_{n}$ denote any one of these numbers. Consider any te denoted by ($x_{1} x_{2} \cdots x_{n}$) in any position in the operational sequence obtained at step (2). The n-tuple ($x_{1} x_{2} \cdots x_{n}$) is itself a particular base 2 number. For any choice of $\left(y_{1} y_{2} \cdots y_{n}\right)$ the vector sum

$$
\begin{aligned}
\left(x_{1} x_{2} \cdots x_{n}\right) \div\left(y_{1} y_{2} \cdots y_{n}\right) & =\left(x_{1}+y_{1}, x_{2}+y_{2}, \cdots, x_{n}+y_{n}\right) \\
& =\left(y_{1}^{s} y_{2}^{q} \cdots y_{n}^{q}\right) \text { modul0 } 2,
\end{aligned}
$$

where $\left(y_{1}^{\prime} y_{2}^{\prime} \cdots y_{n}^{\prime}\right)$ is again a base 2 number.
Note that if $\left(y_{1} y_{2} \cdots y_{n}\right) \neq\left(z_{1} z_{2} \cdots z_{n}\right)$ then $\sum_{i}\left|y_{i}-z_{i}\right| \neq 0$. For any n-tuple $\left(x_{1} x_{2} \cdots \cdot x_{n}\right)$, one then has

$$
\left(x_{1} x_{2} \cdots x_{n}\right)+\left(y_{1} y_{2} \cdots y_{n}\right) \neq\left(x_{1} x_{2} \cdots x_{n}\right)+\left(z_{1} z_{2} \cdots z_{n}\right)
$$

or

$$
\left(x_{1}+y_{1}, x_{2}+y_{2}, \cdots, x_{n}+y_{n}\right) \neq\left(x_{1}+z_{1}, x_{2}+z_{2}, \cdots, x_{n}+z_{n}\right)
$$

where the addition is component-wise modulo 2. Since if one has equality, then

$$
\sum_{i}\left|\left(x_{i}+y_{i}\right)-\left(x_{i}+z_{i}\right)\right|=0
$$

or

$$
\sum_{i}\left|x_{i}+y_{i}-x_{i}-z_{i}\right|=\sum_{i}\left|y_{i}-z_{i}\right|=0,
$$

which is a contradiction.

Since in step (3) of the constrained randomization, one has $2^{\text {anap}}$ distinct numbers $\left(y_{1} y_{2} \cdots y_{n}\right)$, there will be 2^{n-p} distinct sums.

$$
\left.\left(x_{1} x_{2} \cdots x_{n}\right)+\left(y_{1} y_{2} \cdots y_{n}\right)=y_{1}^{\prime} y_{2}^{\prime} \cdots y_{n}^{f}\right) .
$$

Now the only possible values of ($y_{1}^{\prime} y_{2}^{\prime} \cdots y_{n}^{\prime}$) are in the set of 2^{n-p} numbers in base 2, so it follows that each treatment combination (base 2 number) will appear in a particular position in the set of operational sequences obtained in step (3) exactly once.

Since this result was obtained for any operational sequence found after step (2), one must now consider the set of all possible randomio zations obtained after step (1). For a given transformation generator from step (1) there are n ! possible randomizations in step (2). Thus over the set of $n!2^{n-p}$ possible randomizations of a given transformation generator, every te will appear in a particular position in the set of these operational sequences n ! times. This completes the proof of Theorem 3-2.

The statistical analysis of this experimental design will now be investigated using the randomization model technique.

The Randomization Model

The population of inference under the randomization model is the experimental units (process runs) actually used, or the larger population from which experimental units were chosen at random. Extending this inference to any other population is a matter for the judgment of the experimenter. Conceptually every te can be applied to every process run in each replication. Let $y_{i j k}$ denote the population response : (conceptual yield) to treatment combination k, on experimental unit j
in replication i. Here there are 2^{n-p} treatment combinations, $k=1,2, \cdots, 2^{n-p}, 2^{n-p}$ experimental units (process runs) in each replication, $j=1,2, \cdots, 2^{n-p}$, and, suppose, r replications, $i=1,2, \cdots, r$, of the design.

Consider the identity

$$
y_{i j k}=\bar{y}_{\ldots}+\left(\bar{y}_{i, \ldots}-\bar{y}_{\ldots}\right)+\left(\bar{y}_{i j k}-\bar{y}_{i j .}\right)+\left(\bar{y}_{i j .}-\bar{y}_{i \ldots}\right)
$$

Assuming additivity of treatment effects, let $y_{i j k}-\bar{y}_{i, j}=t_{k}$, $\vec{y}_{\ldots}=\mu$, and $\bar{y}_{i \ldots}-\vec{y}_{\ldots}=b_{i}$. Note that $\sum_{i} b_{i}=\sum_{k} t_{k}=0$. Then one may write

$$
y_{i j k}=\mu+b_{i}+t_{k}+\left(\bar{y}_{i j .}-\bar{y}_{i \ldots}\right)
$$

Now, in fact, in the real world one only observes the yield of one te on any given process run. Thus one response is observed for each te in every replication. To relate the conceptual population of responses to the observed responses, consider the random variable $\delta_{i j}^{k}$ defined as follows.

$$
\delta_{i j}^{k}= \begin{cases}1 & \text { if tic } k \text { is on process run } j \text { of rep } i \\ 0 & \text { otherwise. }\end{cases}
$$

Now for a given i and j there are $2^{n-p} \delta^{\prime} s$. Only one of these is equal to 1 . If te k is on process run j then $\delta_{i j}^{k}=1$ and $\delta_{i j}^{k^{\prime}}=0$ for all other k^{\prime}. Note that $\sum_{j} \delta_{i j}^{k}=\sum_{k} \delta_{i j}^{k}=1$. Thus the observed response $y_{i k}$ to te k on rep i is given by

$$
\begin{aligned}
y_{i k}=\sum_{j} \delta_{i j}^{k} y_{i j k} & =\mu+b_{i}+t_{k}+\sum_{j} \delta_{i j}^{k}\left(\bar{y}_{i j .}-\bar{y}_{i . .}\right) \\
& =\mu+b_{i}+t_{k}+e_{i k},
\end{aligned}
$$

where $e_{i k}=\sum_{j} \delta_{i j}^{k}\left(\bar{y}_{i j}-\bar{y}_{i .}\right)$. Note $\sum_{k} e_{i k}=0$. The properties of this model for this design will be investigated in the following lemmas and theorems.

Lemma 3-1. Under constrained randomization in a $2^{\text {n-p }}$ factorial in a randomized complete block design, the random variable $\delta_{i j}^{k}$ introduced in the randomization model has the following distributional properties:
(1) $E\left[\delta_{i j}^{k}\right]=E\left[\left(\delta_{i j}^{k}\right)^{2}\right]=1 / 2^{n-p}$;
(2) $E\left[\delta_{i j}^{k} \delta_{i j}^{k}\right]=0, j \neq j^{\prime} ;$
(3) $E\left[\delta_{i j}^{k} \delta_{i, j^{\prime}}^{k^{\prime}}\right]=1 / 2^{2 n-2 p}, \quad i \neq i^{\prime} ;$
(4) $E\left[\delta_{i j}^{k} \delta_{i j}^{k^{\prime}}\right]=0, k \neq k^{\prime}$;
(5) $0 \leq E\left[\delta_{i j}^{k} E_{i j}^{k^{\prime}}\right] \leq l / 2^{n-p}, k \neq k^{\prime}, j \neq j^{\prime}$.

Proof of Lemma 3-1. Each part will be considered in turn. Note that all probabilities are a result of the method of constrained randomize:tion which was postulated previously. That is, constrained randomization was applied independently in each replication. A given treatment appears only once in any given replication and a given process run res ceives only one treatment, all subject to the primary constraint requiring that no more than Δ factors be allowed to change from to to adjacent tc.

Proof of (1). Using the usual definition of expectation,

$$
\begin{aligned}
E\left[\delta_{i j}^{i}\right]^{2} & =1 \cdot \operatorname{Prob}\left(\delta_{i j}^{k^{2}}=1\right)+0 \cdot \operatorname{Prob}\left(\delta_{i j}^{k^{2}}=0\right) \\
& =1 \cdot \operatorname{Prob}\left(\delta_{i j}^{k}=1\right)
\end{aligned}
$$

$$
\begin{aligned}
& =E\left[\delta_{i j}^{k}\right] \\
& =\operatorname{Prob}(t c \quad k \text { is on process run } j) .
\end{aligned}
$$

Now by Theorem 3-1, every te appears on process run j with equal fres quency. Hence the probability te k is on process run j is l/(the number of te's). Thus,

$$
E\left[\delta_{i j}^{k}\right]=1 / 2^{n-p}
$$

Proof of (2). For $j \neq j^{\prime}$,

$$
\begin{aligned}
E\left[\delta_{i j}^{k} \delta_{i j}^{k},\right] & =\operatorname{Prob}\left(\delta_{i j}^{k}=1, \quad \delta_{i j}^{k}=1\right) \\
& =\operatorname{Prob}\left(\delta_{i j}^{k}=1 \mid \delta_{i j}^{k}=1\right) \cdot \operatorname{Prob}\left(\delta_{i j}^{k}=1\right) \\
& =0 \cdot\left(1 / 2^{n-p}\right) \\
& =0,
\end{aligned}
$$

since te k cannot be on process run j, if it is on process run j.
Proof of (3). For iqi',

$$
\begin{aligned}
E\left[\delta_{i j}^{k} \delta_{i^{\prime} j^{\prime}}^{k}\right] & =\operatorname{Prob}\left(\delta_{i \prime j \prime}^{k}=1 \mid \delta_{i j}^{k}=1\right) \cdot \operatorname{Prob}\left(\delta_{i j}^{k}=1\right) \\
& =\operatorname{Prob}\left(\delta_{i \prime j \prime}^{k}=1\right) \cdot \operatorname{Prob}\left(\delta_{i j}^{k}=1\right),
\end{aligned}
$$

since randomization is independent in replications i and i^{\prime}. But

$$
P\left(\delta_{i^{\prime} j^{\prime}}^{k}=1\right)=\operatorname{Prob}\left(\delta_{i j}^{k}=1\right)=\left(1 / 2^{n-p}\right)
$$

so

$$
\begin{aligned}
E\left[\delta_{i j^{\prime}}^{k} \delta_{j^{\prime}}^{k}\right] & =\left(1 / 2^{n-p}\right)\left(1 / 2^{n-p}\right) \\
& =1 / 2^{2 n-2 p}
\end{aligned}
$$

Proof of (4). For $k \neq k^{\prime}$,

$$
\begin{aligned}
E\left[\delta_{i j}^{k} \delta_{i j}^{k^{\prime}}\right] & =\operatorname{Prob}\left(\delta_{i j}^{k^{\prime}}=1 \mid \delta_{i j}^{k}=1\right) \cdot \operatorname{Prob}\left(\delta_{i j}^{k}=1\right) \\
& =0 \cdot\left(1 / 2^{n-p}\right) \\
& =0
\end{aligned}
$$

since te k and tc $\cdot k^{\text {r }}$ are not both on process run j.
Proof of (5). For $k \neq k^{\prime}$, $\neq j^{\prime}$,

$$
E\left[\delta_{i j}^{k} \delta_{i j}^{k \prime}\right]=\operatorname{Prob}\left(\delta_{i j}^{k^{\prime}}=1 \mid \delta_{i j}^{k}=1\right) \cdot \operatorname{Prob}\left(\delta_{i j}^{k}=1\right)
$$

Now

$$
0 \leq \operatorname{Prob}\left(\delta_{i j}^{k^{\prime}}=1 \mid \delta_{i j}^{k}=1\right) \leq 1,
$$

and

$$
\operatorname{Prob}\left(\delta_{i j}^{k}=I\right)=I / 2^{n-p},
$$

so

$$
0 \leq E\left[\delta_{i j}^{k} \delta_{i j}^{k^{\prime}}\right] \leq I / 2^{n-p} .
$$

The value 0 is actually assumed by the conditional probability for j ' adjacent to j and for k not compatible with k. The value l is also assumed by the conditional probability for certain $2^{n a p}$ designs for particular j, j^{\prime}, k, and k^{\prime}. For instance, in a 2^{2} with $\Delta=1$, if $j=1, k=00$ then $j^{\prime}=3$ and $k^{\prime}=11$, the expression $P\left(\delta_{i 3}^{11}=1 \mid \delta_{i 1}^{00}=1\right)$ is equal to 1 .

As a further illustration of the impossibility of finding a simple expression for $\operatorname{Prob}\left(\delta_{i j}^{k \prime}=1 \mid \delta_{i j}^{k}=1\right)$, consider the following table
of conditional probabilities constructed for a 2^{3} factorial with $\Delta=1$. The table was constructed from a list of all operationel sequences for this factorial and the table entries are $\operatorname{Prob}\left(\delta_{i j}^{k^{\prime}}=1 \mid\right.$ $\left.\delta_{i l}^{000}=1\right)$.

	001	010	011	100	101	110	11
2	$\frac{1}{6}$	$\frac{1}{6}$	0	$\frac{1}{6}$	0	0	0
3	0	0	$\frac{1}{6}$	0	$\frac{1}{6}$	$\frac{1}{6}$	0
4	$\frac{2}{9}$	$\frac{2}{9}$	0	$\frac{2}{9}$	0	0	$\frac{1}{6}$
5	0	0	$\frac{1}{6}$	0	$\frac{1}{6}$	$\frac{1}{6}$	0
6	$\frac{2}{9}$	$\frac{2}{9}$	0	$\frac{2}{9}$	0	0	$\frac{1}{6}$
7	0	0	$\frac{1}{6}$	0	$\frac{1}{6}$	$\frac{1}{6}$	0
8	$\frac{2}{9}$	$\frac{2}{9}$	0	$\frac{2}{9}$	0	0	$\frac{1}{6}$

This completes the proof of Lemma 3-1.
The following lemaa relates the distributional properties of $\delta_{i j}^{k}$ to the randomization model, and is basic to the remainder of the materm ial developed for the design.

Lemma 3-2. Let $s^{2}=\sum_{j}\left(\bar{y}_{i j .}-\bar{y}_{i \ldots}\right)^{2}$. Then
(I) $E\left[e_{i k}\right]=0$,
(2) $E\left[e_{i k}^{2}\right]=s^{2} / 2^{n-p}$,
(3) $E\left[e_{i k} e_{i \prime k}^{\prime}\right]=E\left[e_{i k}, e_{i^{\prime} k},\right]=0, \quad i \neq i^{\prime}$,
(4) $-s^{2} / 2^{n-p} \leq E\left[e_{i k}, e_{i k^{\prime}}\right] \leq 0 ; k \neq k^{\prime}$.

Proof of Lemma 3-2.
Proof of (1). Consider

$$
E\left[e_{i k}\right]=E\left[\sum_{j} \delta_{i j}^{k}\left(\bar{y}_{i j}-\bar{y}_{i \ldots}\right)\right]
$$

Using Lemma 3-1, (1),

$$
\begin{aligned}
E\left[e_{i k}\right] & =\left(1 / 2^{n-p}\right) \sum_{j}\left(\bar{y}_{i j}-\bar{y}_{i \ldots}\right) \\
& =0
\end{aligned}
$$

Proof of (2). Consider

$$
\begin{aligned}
E\left[e_{i k}^{2}\right]= & E\left[\sum_{j} \delta_{i j}^{k}\left(\bar{y}_{i j .}-\bar{y}_{i \ldots}\right)^{2}+\right. \\
& \left.\sum_{\substack{j \neq j^{\prime}}} \sum_{i j}^{\prime} \delta_{i j} \delta_{i j^{\prime}}\left(\bar{y}_{i j .}-\bar{y}_{i \ldots}\right)\left(\bar{y}_{i j^{\prime} .}-\bar{y}_{i \ldots}\right)\right]
\end{aligned}
$$

Using Lemma 3-1, (1) and (2),

$$
\begin{aligned}
E\left[e_{i k}^{2}\right] & =\left(1 / 2^{n-p}\right) \sum_{j}\left(\bar{y}_{i j}-\bar{y}_{i \ldots}\right)^{2} \\
& =s^{2} / 2^{n-p}
\end{aligned}
$$

Proof of (3). For $i \neq i^{\prime}$,

$$
E\left[e_{i k}, e_{i{ }^{\prime} k^{\prime}}\right]=E\left[\sum_{j} \sum_{j}, \delta_{i j}^{k} \delta_{i^{\prime} j}^{k^{\prime}}\left(\bar{y}_{i j .}-\bar{y}_{i . .}\right)\left(\bar{y}_{i^{\prime} j^{\prime} .}-\bar{y}_{i^{\prime} . .}\right)\right]
$$

Using Lemma $3-1,(3)$ and the fact that $\sum_{j},\left(\bar{y}_{i^{\prime} j^{\prime}},-\bar{y}_{i}, \ldots\right)=0$,

$$
E\left[e_{i k}, e_{i^{\prime} k^{\prime}}\right]=0
$$

Proof of (4). For $k \neq k^{\prime}$, consider

$$
\begin{aligned}
& E\left[e_{i k}, e_{i k}\right]=E\left[\Sigma_{j} \delta_{i j}^{k} \delta_{i j}^{k i}\left(\vec{y}_{i j .}-\vec{y}_{i \ldots}\right)^{2}+\right.
\end{aligned}
$$

From lemma 3-1, (4) and (5), and using the fact that
$\sum_{j,}\left(\bar{y}_{i j p}-\bar{y}_{i \ldots}\right)=-\left(\bar{y}_{i j j}-\bar{y}_{i \ldots}\right)$,
af ${ }^{2}$
it is seen that
$-s^{2} / 2^{n-p} \leq E\left[e_{i k^{\prime}}, e_{i k^{\prime}}\right] \leq 0$.

This completes the proof of the lemma.

Theorem $3-3$. If $i \neq i^{\prime}, k \neq k$, then
(1) $E\left[y_{i k}\right]=\mu+b_{i}+t_{k}$,
(2) Var $\left(y_{i k}\right)=s^{2} / 2^{n-p}$,
(3) $\operatorname{Cov}\left(y_{i k^{\prime}} y_{i^{\prime} k}\right)=\operatorname{Cov}\left(y_{i k}, y_{i^{\prime} k^{\prime}}\right)=0$,
(4) $=s^{2} / 2^{n \propto p} \leq \operatorname{Cov}\left(y_{i k}, y_{i k}\right) \leq 0$.

Proof of Theorem 3-3.
Proof of (1). Consider

$$
\begin{aligned}
E\left[y_{i k}\right] & =E\left[\mu+b_{i}+t_{k}+e_{i k}\right] \\
& =\mu+b_{i}+t_{k} .
\end{aligned}
$$

Proof of (2). Consider

$$
\begin{aligned}
\operatorname{Var}\left(y_{i k}\right) & =E\left[e_{i k}^{2}\right] \\
& =s^{2} / 2^{n-p}
\end{aligned}
$$

Proof of (3). Since

$$
\operatorname{Cov}\left(y_{i k^{\prime}} y_{i k}\right)=E\left[e_{i k}, e_{i k}!\right.\text {, }
$$

$-s^{2} / 2^{n-p} \leq \operatorname{Cov}\left(y_{i k}, y_{i k}\right) \leq 0$.
Proof of (3). Consider

$$
\operatorname{Cov}\left(y_{i k}, y_{i}{ }^{\prime k}\right)=E\left[e_{i k}, e_{i^{\prime} k}\right]=0
$$

and
$\operatorname{Cov}\left(y_{i k}, y_{i k^{\prime} k^{\prime}}\right)=E\left[e_{i k}, e_{i k^{\prime}}\right]=0$.

This completes the proof of the theorem.

Corollary 3-1. The following properties follow directly,
(1) $E\left[\bar{y}_{: k}\right]=\mu+t_{k}$,
(2) $E\left[\bar{y}_{i_{0}}\right]=\mu+b_{i}$,
(3) $\operatorname{Var}\left(\bar{y}_{0 i}\right)=s^{2} / r 2^{n-p}$,
(4) $-s^{2} / r^{n-p} \leq \operatorname{Cov}\left(\bar{y}_{. k}, \bar{y}_{. k^{\prime}}\right) \leq 0, \quad k \neq k^{\prime}$.

Proof of Corollary 3-1.
Proof of (1). Consider

$$
\begin{aligned}
E\left[\bar{y}_{. k}\right] & =E\left[(1 / r) \sum_{i} y_{i k}\right] \\
& =(1 / r) \sum_{i} E\left[y_{i k}\right] \\
& =(1 / r) \sum_{i}\left(\mu+b_{i}+t_{k}\right) \\
& =\mu+t_{k} .
\end{aligned}
$$

Proof of (2). Consider

$$
E\left[\vec{y}_{i_{0}}\right]=\left(1 / 2^{n-p}\right) \sum_{i}\left(\mu+b_{i}+t_{k}\right)
$$

$$
=\mu+b_{i}
$$

Proof of (3). Consider

$$
\begin{aligned}
& \operatorname{Var}\left(\overline{\mathrm{y}}_{. k}\right)=\left(I / r^{2}\right)\left[\sum_{i} \operatorname{Var}\left(y_{i k}\right)+\sum_{i} \sum_{i}, \operatorname{Cov}\left(y_{i k}, y_{i k}\right)\right] \\
& =\left(1 / r^{2}\right)\left[\sum_{i} s^{2} / 2^{n-p}+\sum_{i} \sum_{i}, 0\right] \\
& =s^{2} / r 2^{n-p} .
\end{aligned}
$$

Proof of (4). For $i \neq i^{\prime}, k \neq k^{\prime}$,

$$
\begin{aligned}
\operatorname{Cov}\left(\bar{y}_{, k}, \bar{y}_{, k^{\prime}}\right)= & \left(1 / r^{2}\right)\left[\sum_{i} \operatorname{Cov}\left(y_{i k}, \bar{y}_{i k^{\prime}}\right)+\right. \\
& \left.\sum_{i} \sum_{i}, \operatorname{Cov}\left(y_{i k}, y_{i} k^{\prime}\right)\right] \\
= & \left(1 / r^{2}\right)\left[\sum_{i} \operatorname{Cov}\left(y_{i k}, y_{i k^{\prime}}\right)+\sum_{i} \sum_{i}, 0\right] .
\end{aligned}
$$

Thus one finds that

$$
-s^{2} / r z^{n-p} \leq \operatorname{Cov}\left(\bar{y}_{\cdot k^{\prime}}, \bar{y}_{. k^{1}}\right) \leq 0 .
$$

This completes the proof of the corollary.

One of the essential properties of any experimental design is that of giving unbiased estimates of the treatment effects. A theorem is now stated regarding this property.

Theorem 3.4. An unbiased estimate of the effect of any treatment combination k is given by $\overline{\mathrm{y}}_{. k}-\overline{\mathrm{y}}_{\text {.. }}$.
Proof of Theorem 3-4. Consider

$$
\begin{aligned}
E\left[\bar{y}_{. k}-\bar{y}_{.0}\right] & =E\left[\bar{y}_{. k}\right]-E\left[\vec{y}_{. .}\right] \\
& =\mu+t_{k}-\mu \\
& =t_{k} .
\end{aligned}
$$

This completes the proof of Theorem 3-4.

Since the basic design is a 2^{n-p} factorial, one wishes to estimate factorial effects. A factorial effect estimate is given by a linear contrast of the t_{k}. Using the notation $X_{1} X_{2} \cdot \cdots X_{n}$ to denote such a factorial effect; then

$$
x_{1} x_{2} \cdots x_{n}=\sum_{k} \pi_{k} t_{k}
$$

where $\pi_{k}= \pm\left(1 / 2^{\beta}\right)$ and $\sum_{k} \pi_{k}=1$. In the expression for π_{k} the * or - sign is determined by the te, k. The value of β is determined by the type of factorial effect that is being found and the particular te, k. If $X_{1} X_{2} \cdots X_{n}$ is a main effect or interaction, then all $\beta=2^{n \cdots p-1}$. Thus an unbiased estimate of $X_{1} X_{2} \cdots X_{n}$ is given by

$$
\sum_{k} \pi_{k}\left(\overline{\mathrm{y}}_{, k}-\overline{\mathrm{y}}_{\ldots}\right)=\sum_{k} \pi_{k} \overline{\mathrm{y}}_{. k}
$$

The experimenter who uses a statistical design to estimate treatment effects ordinarily also requires estimates of the variance of these estimates of treatment effects. In order to obtain estimates of these variances, consider the following theorems.

Theorem 3-5. The variance of an estimated main effect or interaction $X_{1} X_{2} \cdots X_{n}$ is bounded by

$$
0 \leq \operatorname{Var}\left(x_{1} x_{2} \cdots x_{n}\right) \leq s^{2}\left(2^{n-p-1}+1\right)\left(r 2^{2 n-2 p-2}\right)^{-1}
$$

The following lemma is essential to the proof of the theorem.
Lemma 3-3. Let $\alpha_{i}=a$ for $i=1, \cdots, 2^{n-1}$ and let $\alpha_{i}=-a$ for $i=2^{n-1}+1, \cdots, 2^{n}$, where a is any positive constant. In the expression

$$
\left(\Sigma \alpha_{i}\right)^{2}=\sum_{i} \alpha_{i}^{2}+\sum_{\substack{i \neq i \\ i \neq i}} \alpha_{i} \alpha_{i}
$$

there are $2^{n}\left(2^{n}-1\right)$ products $\alpha_{i} \alpha_{i}$, where $i \neq i$. Of these $2^{n}\left(2^{n-1}-1\right)$ are positive and $2^{2 n-1}$ are negative.

Proof of Lemms 3-3. Consider products $\alpha_{i} \alpha_{i}$, where $i \neq i^{\prime}$. There are 2^{n} ways to choose α_{i} and $2^{n}-1$ ways to choose α_{i} ", thus there are $2^{n}\left(2^{n}-1\right)$ such products.

In order for the product to be positive both α_{i} and α_{i}, are positive; this can happen in $2^{n-1}\left(2^{n-1}-1\right)$ ways. Just as many prom ducts exist where α_{i} and α_{i}, are both negative so the number of positive produots, $\alpha_{i} \alpha_{i}$, is $2\left(2^{n-1}\right)\left(2^{n-1}-1\right)-2^{n}\left(2^{n-1}-1\right)$.

The product $\alpha_{i} \alpha_{i}$, is negative if and only if one α is negative and one positive. This happens in $2\left(2^{n-1}\right)\left(2^{n-1}\right)$ ways. Thus there are a total of $2^{2 n-1}$ negative products. Note that $2^{n}\left(2^{n-1}-1\right)+2^{2 n-1}=$ $2^{n}\left(2^{n}-1\right)$ tetal products with $i \neq i^{\prime}$ as found previously. This completes the proof of Lemma 3-3.

The proof of theorem 3.5 follows immediately.

Proof of Theorem 3-5. It is desired to get bounds on the variance of a main effect or interaction,

$$
\operatorname{Var}\left(x_{1} x_{2} \cdots \cdot x_{n}\right)=\sum_{k} \pi_{k}^{2} \operatorname{Var}\left(\bar{y}_{\cdot k}\right)+\sum_{\substack{k \\ k \neq k}} \sum_{k}, \pi_{k} \pi_{k}, \operatorname{cov}\left(\bar{y}_{\cdot k}, \bar{y}_{0 k^{\prime}}\right)
$$

By Corollary 3-1,
$\operatorname{Var}\left(\stackrel{\rightharpoonup}{y}_{. k}\right)=s^{2} / r 2^{n-p}$
and

$$
-\mathrm{s}^{2} / \mathrm{r} 2^{\mathrm{n} \sim \mathrm{p}} \leq \operatorname{Cov}\left(\bar{y}_{. k^{\prime}}, \overline{\mathrm{y}}_{\cdot \mathrm{k}^{2}}\right) \leq 0 .
$$

In any contrast one-half the π_{i} are negative and one-half are positive. Thus 2^{n-1-p} of the π_{i} are negative and 2^{n-1-p} of the π_{i} are positive. Hence by Lemma $3-3$, $2^{n-p}\left(2^{n-1-p}-1\right)$ products $\pi_{k} \pi_{k}$, where $k \neq k^{\prime}$ are positive, and $2^{2 n-2 p-1}$ products are negative. Using these known facts, an upper bound on $\operatorname{Var}\left(X_{1} X_{2} \cdots x_{n}\right)$ will be obtained by using $\operatorname{Cov}\left(\bar{y}_{. k}, \bar{y}_{. k}\right)=-\sigma^{2} / r e^{n-p}$ when $\pi_{k} \pi_{k}$, is negative and using Cov ($\bar{y}_{. k}, \bar{y}_{. k}$,) $=0$ when $\pi_{k} \pi_{k}$, is positive. Note also that $\left|\pi_{k}\right|=1 / 2^{n-p-1}$ for a main effect or interaction so the actual upper bound on the variance is

$$
\begin{aligned}
\operatorname{Var}\left(X_{1} x_{2} \cdots x_{n}\right) & =\sum_{k} \pi_{k}^{2}\left(s^{2} / r 2^{n-p}\right)+\sum_{k} \sum_{k}, \pi_{k} \pi_{k}, \operatorname{Cov}\left(y^{\prime} \cdot k^{, y} \cdot k^{\prime}\right) \\
& \leq\left[s^{2} /(r)\left(2^{n-p}\right)\left(2^{2 n-2 p-2}\right)\right]\left[2^{n-p}+2^{2 n-2 p-1}+0\right]
\end{aligned}
$$

From this one gets

$$
\operatorname{Var}\left(x_{1} X_{2} \cdots X_{n}\right) \leq s^{2}\left(2^{n-p-1}+1\right) /\left(r 2^{2 n-2 p-2}\right)
$$

A lower bound for $\operatorname{Var}\left(X_{1} X_{2} \cdots X_{n}\right)$ is given by

$$
\begin{gathered}
\operatorname{Var}\left(X_{1} X_{2} \cdots X_{n}\right) \geq\left[s^{2} /(r)\left(2^{n-p}\right)\left(2^{2 n-2 p-2}\right)\right]\left[2^{n-p}-0=\right. \\
\left.\left(2^{n-p}\right)\left(2^{n-p}-1\right)\right]
\end{gathered}
$$

or

$$
\operatorname{Var}\left(x_{1} X_{2} \cdots x_{n}\right) \geq 0 \geq s^{2}\left(2-2^{n-p-1}\right) /\left(r 2^{2 n-2 p-2}\right)
$$

This completes the proof of Theorem $3=5$.

Consider the difference in the two bounds found on the variance in Theorem 3-6, Upper bound - Lower bound $=\mathrm{d}$. Then

$$
d=s^{2}\left(2^{n-p-1}+1\right) / r 2^{2 n-2 p-2}
$$

Clearly as $n-p$ gets large, the difference d approaches 0. For $n=p \geq 4$ the difference is not large, $a<(1 / 7)\left(s^{2} / r\right)$. Thus the bounds are sufficiently close together to be useful in finding the variance of a main effect or interaction. Note that by inereasing r, the number of replications, this difference, the upper bound on the variance, is made smaller.

Now that an expression which bounds the variance of any main effect or interaction has been found, it is desired to find an estimator of this variance. That is, one now needs an estimate of s^{2} which appears in the expression for $\operatorname{Var}\left(X_{1} X_{2} \cdots X_{n}\right)$.

Consider the usual analysis of variance tableau for a blocked exw perimental design based on the observed responses.

Source	df	Sum of Squares	E [Sum of Squares]
Total	$r 2^{n-p}-1$	$\sum_{i} \sum_{k}\left(y_{i k}-y_{n}\right)^{2}$	$2^{n-p_{\Sigma}} b_{i}+r \sum_{k} t_{k}^{2}+r s^{2}$
Blocks	r-1	$\sum_{i j}\left(\bar{y}_{i,}-\bar{y}_{\ldots}\right)^{2}$	$2^{n-p_{z}} b_{i}$
Treatments	$2^{n-p}-1$	$\sum_{i k}\left(\bar{y}_{. k}-\bar{y}_{.0}\right)^{2}$	$r \sum_{k} t_{k}^{2}+s^{2}$
Error	$(r-1)\left(2^{n-p}-1\right)$	$\sum_{i k} \sum_{k}\left(\bar{y}_{i k}-\bar{y}_{i}-\bar{y}_{. k}+\bar{y}_{\ldots}\right)^{2}$	$s^{2}(x-1)$

The expectations of the sums of squares in the AOV are found using the distributional properties given in Lemma 3-2, Theorem 3-3, and Corollary 3-1.

For example, consider the expectation of the total sum of squares,

$$
E\left[\sum_{i} \sum_{k}\left(y_{i k}-\bar{y}_{4.0}\right)^{2}\right]=E\left[\sum_{i} \sum_{k}\left(b_{i}+t_{k}+e_{i k}\right)^{2}\right]
$$

$$
\begin{aligned}
& =E\left[2^{n-p} \sum_{i} b_{i}^{2}+r \sum_{k} t_{k}^{2}+0+2 \sum_{i} \sum_{k} b_{i} e_{i k}+\right. \\
& \left.\quad 2 \sum_{i} \sum_{k} t_{k} e_{i k}+\sum_{i} \sum_{k} e_{i k}^{2}\right] \\
& =2^{n-p} \sum_{i} b_{i}^{2}+r \sum_{k} t_{k}^{2}+r s^{2} .
\end{aligned}
$$

From this analysis of variance it is seen that to get an estimate of the variance of $X_{1} X_{2} \cdots x_{n}$ one uses the expression

$$
2 /(r-1) \sum_{i} \sum_{k}\left(y_{i k}-\bar{y}_{i .}-\bar{y}_{. k}+\bar{y}_{\ldots}\right)^{2}
$$

as an estimate of s^{2}. Also, if in fact all treatment effects are zero, i.e., all $t_{k}=0$ then the design gives an unbiased test of treatment effects in the analysis of variance.

Infinite Model

If an experimenter can meet the assumptions necessary to use the analysis based on the infinite model, then the results in the follawing pages may be used. For infinite model analysis one assumes the model

$$
y_{i k}=\mu+b_{i}+t_{k}+e_{i k},
$$

where $i=1, \cdots, r, k=1, \cdots, 2^{n-p}, y_{i k}$ is the observed response to treatment k in block i, μ is the overall mean, b_{i} is the effect of block i, t_{k} is the effect of treatment $k, e_{i k}$ is the failure of observed response $y_{i k}$ to be explained by μ, b_{i} and t_{k}. The errors $e_{i k}$ are assumed to be distributed normally and independently with mean 0 and variance σ^{2}.

Theorem 3-6. An unbiased estimate of any main effect or interaction $\left(X_{1} x_{2} \cdot \hat{\circ} \cdot x_{n}\right)$ where $X_{1} X_{2} \cdot \cdots \cdot X_{n}=\sum_{k} \pi_{k} t_{k}$ is given by $\sum_{k} \pi_{k} \bar{y}_{0 k}$.

Proof of Theorem 3-6. Consider

$$
\begin{aligned}
E\left[\sum_{k} \pi_{k} \bar{y}_{. k}\right] & =\sum_{k}\left(\pi_{k} E\left[\bar{y}_{. k}\right]\right) \\
& =\sum_{k}\left(\pi_{k} E\left[\mu+t_{k}+\bar{b}_{0}+\frac{1}{r} \sum_{i} e_{i k}\right]\right) \\
& =\sum_{k}\left[\pi_{k}\left(\mu+t_{k}+\vec{b}_{0}\right)\right] \\
& =\left(\mu+\bar{b}_{\cdot}\right) \sum_{k} \pi_{k}+\sum_{k} \pi_{k} t_{k} \\
& =\sum_{k} \pi_{k} t_{k} .
\end{aligned}
$$

This completes the proof of Theorem 3-6.

Theorem 3-7. The variance of an estimated main effect or interaction $X_{1} X_{2} \cdots X_{n}$ is given exactly by
$\operatorname{Var}\left(X_{1} X_{2} \cdots X_{n}\right)=\frac{\sigma^{2}}{r} \sum_{k} \pi_{k}^{2}=\left(2^{n}+1\right) \sigma^{2} / r\left(2^{n-1}\right)$.

Proof of Theorem 3-7. Consider

$$
\begin{aligned}
\operatorname{Var}\left(x_{1} x_{2} \cdots x_{n}\right) & =\operatorname{Var}\left(\sum_{k} \pi_{k} \bar{y}_{. k}\right) \\
& =\sum_{k} \pi_{k}^{2} \operatorname{Var}\left(\bar{y}_{. k}\right)+\sum_{k} \sum_{\substack{k \\
k \neq k}} \pi_{k} \pi_{k}, \operatorname{Cov}\left(\bar{y}_{. k^{\prime}}, \bar{y}_{. k^{\circ}}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\operatorname{Var}\left(\bar{y}_{. k}\right) & =E\left[\bar{y}_{. k}-E\left(\bar{y}_{\cdot k}\right)\right]^{2} \\
& =E\left[\frac{1}{r} \sum_{i} e_{i k}\right]^{2} \\
& =\left(I / r^{2}\right) \sum_{i} E\left[e_{i k}^{2}\right]+\left(1 / r^{2}\right) \sum_{\substack{1 \\
i \neq i}} \sum_{i} E\left[e_{i k} e_{i}{ }^{\prime} k^{\prime}\right] \\
& =\left(1 / r^{2}\right) \sum_{i} \sigma^{2}+0 \\
& =\sigma^{2} / r
\end{aligned}
$$

Also,

$$
\operatorname{Cov}\left(\bar{y}_{. k}, \bar{y}_{. k!}\right)=E\left[\bar{y}_{. k}-E\left(\bar{y}_{. k}\right)\right]\left[\bar{y}_{. k^{\prime}}-E\left(\bar{y}_{K_{k}^{\prime}}\right)\right],
$$

So

$$
\begin{aligned}
\operatorname{Cov}\left(y_{. k^{\prime}} y_{, k^{\prime}}\right) & =E\left[\left(1 / r^{2}\right) \sum_{i} e_{i k} \sum_{i}, e_{i^{\prime} k^{\prime}}\right] \\
& =\left(1 / r^{2}\right) \sum_{i} \sum_{i}, E\left[e_{i k^{\prime}} e_{i^{\prime} k^{\prime}}\right] \\
& =0 .
\end{aligned}
$$

Thus using these two expressions one gets

$$
\begin{aligned}
\operatorname{Var}\left(X_{1} X_{2} \cdots X_{n}\right) & =\sum_{k} \pi_{k}^{2}(1 / r) \sigma^{2}+\sum_{k} \sum_{k}, \pi_{k} \pi_{k},(0) \\
& =\left(\sigma^{2} / r\right) \sum_{k} \pi_{k}^{2} \\
& \left.=\left(\sigma^{2} / r\right)\left(1 / 2^{n-1-p}\right)^{2}\left(2^{n-p}\right) 2^{n-p}+1\right) / 2 \\
& =\left(2^{n-p}+1\right) \sigma^{2} / r\left(2^{n-1-p}\right)
\end{aligned}
$$

This completes the proof of Theorem 3-7.

To find an estimator of this variance of a main effect or interaction, one needs an estimate of σ^{2}. Consider the analysis of variance tableau for a replicated experimental design.

Source	df	Sums of Squares	E [Sums of Squares]
Total	$r 2^{n-p}=1$	$\sum_{i k} \sum_{k}\left(y_{i k}-\bar{y}_{\ldots}\right)^{2}$	
Replications	r-1	$\sum_{i} \sum_{k}\left(\bar{y}_{i}-\bar{y}_{\ldots}\right)^{2}$	$(r-1) \sigma^{2}+2^{n-p} \Sigma b_{i}^{2}$
Treatments	$2^{n-p}-1$	$\sum_{i} \sum_{k}\left(\bar{y}_{0 k}-\bar{y}_{\ldots}\right)^{2}$	$\left(2^{n \bullet p}-1\right) \sigma^{2}+r \Sigma t_{k}^{2}$
Error	$(x-1)\left(2^{n-p}-1\right)$	$\sum_{i} \sum_{k}\left(y_{i k}-\bar{y}_{i,}-\bar{y}_{. k}+\vec{y}_{0}\right)^{2}$	$\sigma^{2}(r-1)\left(2^{n-p}-1\right)$

This may be found in Ostle [10].
Thus one may use $\left(1 /[r-1]\left[2^{n-p}-1\right] \sum_{i} \sum_{k}\left(y_{i k}-\bar{y}_{i}-\bar{y}_{k}+\bar{y}_{0}\right)^{2}\right.$ as an estimate of σ^{2} in the expression for $\operatorname{Var}\left(X_{1} X_{2} \cdots X_{n}\right)$ in onder to estimate the variance of an estimate of a main effect or interaction.

The material presented in this chapter deals with constrained randomization in a non-consecutive replication design. A method of constrained randomization for consecutive replication of 2^{n-p} factorials will be given in Chapter IV, and it will be shown that the statistical analysis based on a randomization model is identical with that just presented.

COMSTRATNED RANDOMTZATION FOR OTHER
 $2^{\text {n }}$ FACTORIAL EXPERTMEMPS

This chapter contains methods of constrained randomieation for several types of factoxial designs which are different than that given in Chapter III. Constrained randomization for 2^{n-p} factorials in randomized replication designs is discussed. In consecutive replication designs it is assumed that the sequences within all reps have the seme order, Δ, and that the order of the adjacency between all reps is also $\Delta_{\text {. }}$ That is, the same compatibility condition is in effect between all reps and within all reps.

Unblecked 2^{n-p} factorials with r replications of each te are discussed briefly:

Splitandot designs of several types for 2^{n-p} factorials are discussed and methods of constrained randomization are presented for each. The randomization model is developed giving unbiased estimates of factorial effects. Methods for estimating the variances of main effect and interaction estimates are presented, and an analysis of variance tableau is given with estimates of variances indicated.

The 2^{n-p} Factorial in a Randomized
Consecutive Replication Design

If the replications of the factorial experiment are to be run in
consecutive order immediately after one another, then the constraned randomization procedure is as given below.
(1) For each replication of the experiment a single tog is cbosen at random from a set of tis's, $T G\left(2^{n-p}, \Delta\right)$ 。
(2) Randomly assign the a real factors being investigated to the pseudo factor names $x_{1}, x_{2}, \cdots, x_{n}$. This is done independently in each replication.
(3) For the first replication do steps (1) and (2), then go on to the second replication, For all replicates after the first, find an "eligible" set of to's, those te's which are Δ adjacent to the last to in the previous replicate. If the compatibility condition is $\leq \Delta_{y}$ then the last te in the previous replicate is included in the eligible set.
(4) Select a te at random from the set of eligible te's. This te (base 2 number) is then combined with each te in the particular replication using vector addition modulo ?
(5) When all r replications have been randomized in the manner of steps (1) (4) above, then choose a to at random from the entire set of te's in the experiment. This te is then combined with every te in the entire extended sequence of all replications using vector addition modulo 2.

In order to simplify the arithmetic needed in actual praetice, steps (3)-(5) above may be replaced by the following.

For the first replication do steps (1) and (2) and then pick a te
from the set of all those used in the factorial. Combine this te with each te in the first rep using vector addition modulo 2. After this proceed as in steps (3) and (4) until all replicetions have been formed and then stap, omitting step (5).

Example $4-1$. Suppose one wished to run a second replication of the experiment in Example $3-1$ without a shutdown in the process the operm ational sequence which was found in Example $3-1$ using constrained randomization for the first rep was

$$
101, \quad 100, \quad 000, \quad 001, \quad 011, \quad 010, \quad 110,111 .
$$

To get the second operational sequence one applies constrained rana domization for consecutive replication. In step (1) suppose that one picks sequence (3) from the set $T G\left(2^{3}, \Delta=1\right)$,

000, 001, 011, 111, 101, 100, 110, 010.

Suppose that in step (2) the real factors are assigned to the pseudo factors as follows: $A=x_{1}, \quad B=x_{2}, \quad C=x_{3}$. The resulting sequence is still

$$
000,001,011,111, \quad 101,100,110,010 .
$$

Step (3). Since the first sequence eaded with te. 111 the set of eligible base 2 numbers for use in step (4) are those whose order of adjacency with 111 gives $\Delta \geq$ l。 This eligible set consists of the te's 011, 101, 110. Suppose that in step (4) 101 is selected at random: The operational sequence for the second replication becomes

$$
101, \quad 100, \quad 110, \quad 010,000,001, \quad 011,111 .
$$

Note that when the second replicate imediately follows the firsty the experimenter is essentially rmaing a sequence of 16 (that is, $2^{2 m p}$ 8^{n-p}) te's with order $\Delta=1$. A theorem importent to the dewelopwert ©f the rardemization model will now be stated.

Theorem 4-1. Over all possible constrained randominstions of a given operational sequence of consecutive replications each te appears an equal number of times in each position in each of the replications of the extended sequence.

Proof of Theorem hing. The proof of this theorem is an immediate extension of Theorem 3-2, Each of the consecutive replications in the extended sequence is an operational sequence. Consequently, Theorem 3-2 holds for each of the consecutive replications. This completes the proof of 歌解 $4-1$.

Using this theorem, the rendomization model will be developed for eonsecutive replicetions of a 2^{nop} factorial.

Since the consecutive replinetion design is a blocked design, the same model will be used es was used in Chapter III. The populatiou response, $y_{i j k}$, and the random variable, $\delta_{i j g}^{k}$ are defined as in Chapter III. Then

$$
\begin{aligned}
y_{i k} & =\sum_{j} \delta_{i j}^{k} y_{i j k} \\
& =\mu+b_{i}+t_{k}+e_{i k} 9
\end{aligned}
$$

where $e_{i k}=\sum_{j} \delta_{i j}^{k}\left(\bar{y}_{i j 0}-\vec{y}_{i \ldots}\right)$.
Much of the matexial regrarding the randomization model for con secutive replication will be the same as for the desiga in Chapter III with nonoconsecutive reps. The only difference in the two designs is
that in non-consecutive replication the constrained rancomimation 2 s done independently in the various replicates and in consecutive repinea tion it is not done independently. Thus the distributiongl prowerties of the ramdom variable $8_{i j}^{k}$ will be somewhat mifferent. Ths material presented on the randomizetion model for consecutive replications will, however, be essentially identical to thet for nonoconsecutive replica tions, and all of the results obtaned in Chapter III will be vaid sor the cansecutive replication design. Wabiased estimates of man effects and interactions may be found in the usum maner (see theorem 3-3). In addition the expression fown for the variance of such an estimete ine Theorem $3-5$ will be valid. The AOV and the expectations of the sums of squares will not be affected by the dependence of the randomization procedure in conserutive replications. Consequently the analysis and the interpretation of the analysis will be identical for consecutive replications under constrained randomization to the analysis and intera pretation found for nonmensecutive replications.

However, since constrained randomisation for consecutive replicga tions is mot done independently in the various replicates. The diso tributional properties of $\delta_{i_{4}}^{k}$ similar to those presented in Lemma 301 will now be given.

Lemma ${ }^{2}$. For eonsecutive replications
(1) $E\left[\delta_{i J}\right]^{2}=1 / 2^{n-p}$,
(2) $E\left[{ }^{k}{ }_{i j}^{k} \sigma_{i j}^{k}\right]=0, \quad j \neq j^{\prime}$,

(4) $E\left[\delta_{i j}^{k} \delta_{i j}^{k,}\right]=0, k \neq k^{2}$,
(5) $0 \leq E\left[\delta_{i j}^{k} \delta_{i j^{\prime}}^{\mathrm{k}^{\mathrm{j}}}\right] \leq I / 2^{\mathrm{n}-\mathrm{p}}, \quad j \neq j^{\prime}, \quad k \neq k^{8} \therefore$

Proof of Lemma 4-1. The proofs of (1), (2), (4) and (5) are identical to those given in Lemma 3-1.

Proof of (3). For $i \neq i^{\prime}$,

$$
E\left[\delta_{i j}^{k} \delta_{i^{\prime} j}^{k}\right]=\operatorname{Prob}\left(\delta_{i^{\prime} j}^{k^{\prime}}=1 \mid \delta_{i j}^{k}=1\right) \cdot \operatorname{Prob}\left(\delta_{i j}^{k}=1\right) .
$$

Now

$$
0 \leq \operatorname{Prob}\left(\delta_{i^{\prime} j}^{\mathrm{k}}=1 \mid \delta_{i j}^{\mathrm{k}}=1\right)<1,
$$

so

$$
0 \leq E\left[\delta_{i j}^{k} \delta_{i \prime j}^{k}\right] \leq 1 / 2^{n-p}
$$

This completes the proof of Lemma 4-1.

A lemma containing results basic to the randomization model for consecutive replication follows.

Lemma 4-2. Where $s^{2}=\sum_{j}\left(\bar{y}_{i j}-\bar{y}_{i o \cdot}\right)^{2}$,
(1) $E\left[e_{i k}\right]=0$,
(2) $E\left[e_{i k}^{2}\right]=s^{2} / 2^{n-p}$,
(3) $E\left[e_{i k^{e}} \mathrm{i}^{\ell} \mathrm{k}^{\mathrm{q}}\right]=0, \quad \mathrm{i} \neq \mathrm{i}^{\mathrm{\prime}}$,
(4) $-s^{2} / 2^{n-p} \leq E\left(e_{i k} e_{i k}\right] \leq 0, k \neq k^{*}$.

Proof of Lemma 4-2. In this lemma (1), (2) and (4) follow immediately, being identical with results (1), (2) and (4) in Lemma 3-2.

Proof of (3). For i $\neq \mathrm{F}^{\prime}$,

Ising Lerma $4-1,(3)$, and the fact that $\sum_{j}\left(\bar{y}_{i j}-\bar{y}_{i, 9}\right)=0$,

$$
E\left[e_{i k} e_{i k}, \quad\right]=0
$$

This completes the proof of Lemma $4-2$.

This lemma contains results identical to those in Lemma 3-2. Also the same observation model was derived for consecutive replication as for non-consecutive replication. Consequently since the development of the randomization model was besed entirely on Lemma 3 e2, the same devel opment will be valid in the model for consecutive replication based on Lemme 4-2. Thus the statistical analyses for consecutive and for none consecutive replication are done in the same manner and the results have the same statistical properties.

This completes the presentation and discussion of $2^{\text {nep }}$ factori\&ls in consecutive replication designs.

Completely Random $2^{\text {nop }}$ Fiactorials

Usually when the treatment combinations are to be run sequentially one would block them into replications if possible. Then the blocking would provide protection against any "learning" effect or gradual change in the process being investigated which was not recognized and taken into account. Because of this the unblocked design is mentioned only briefly.

If there is no reason to block the experiment but rather one only desires that each te be replicated, say r times, then one must form an operational sequence containing $r^{n o p}$ te's. In this situation the
sets of transformation generators provided in the appendix would not be utilized. One would need to find a set of tg's in which each to was ena comnterea r times. These encounters could be isolated or any combin nation of them could be sequentially adjacent if the compatibility con dition reads $\leq \triangle$ 。

With a set of transformation generators in hand one may simply follow the same method of constrained randomization as originally prem sented in Chapter III.

Several possible tg's for a 2^{3} with two replications of each to and with $\triangle \leq I$ are listed.
(1) $000,000,001,001,011,011,010,010,110,110,100,100,101,101,111,111$. Note that this is equivalent to an experiment with repeated sampling, (2) $000,001,011,010,110,100,101,111,111,101,100,110,010,011,001,000$. (3) $000,001,101,100,101,100,110,010,011,111,110,111,011,001,000,010$. Obviously many more possibilities exist and may be found by the methods presented in Chapter II.

Since the use of a completely random design in a sequential experiment is rather unlikely, the details of the randomization model are not presented. If it is deemed unnecessary to block the design, then perhaps the assumption of an infinite model will be reasonable as well.

Split-Plot Designs

Split-plot designs of many types can be visualized by considering various compatibility conditions on the te's. There might be one compatibility condition on the mainoplot treatment combinations, another on the subplot treatment combinations, and still a third condition rem lating to the adjacency of main-plots. The order of adjacency of
mainplots is determined by the main-plot treatments as well as the sub-plot treatment combinations which are made adjacent by the junction of the mainoplots. Various classes of designs will be discusaed for spilitoplot designs for 2^{n} factorials with three possible compatibility conditions. The order of adjacency of main-plots will be denoted by Δ. The order of the sequence of main-plot treatments will be denoted by $\Delta_{m i}$ mad the order of the sequence of sub-plot treatmeat combinations will be denoted by Δ_{s}, necessarily $\Delta \geq \Delta_{m}$.

If $\Delta_{m} \leq \Delta<\Delta_{m}+\Delta_{s}$ then the class of designs will be called elass (1) splitoplot designs. If $\Delta_{m}+\Delta_{s} \leq \Delta$ then the class of dew signs will be called class (2) split-plot designs. In class (1) splitplot designs, the randomization of the sub-plot te's is not independent of the suboplot te's in the adjacent main-plots. This dependency dauses one to use consecutive randomization procedures for suboplot randomisation. In class (2) split-plot designs the randomization of sub-plot te's is done independently within each main-plot and one may use non-consecutive randomization for sub-plots.

A special case of splitoplot designs, called class (0), will be discussed first as a paxticular type of ordinary noneconsecutive replic cation discussed earlier in Chapter III. If the mainoplot treatment consists of a single fector or of more than one factor applied in a split-... osplit-plot manner, then the design is a special case of the previously presented material on non-consecutive replication. These designs are a subset of the previously presented material. The set of possible arrays of te's is a subset of the possible arrays of te's obtained for ordinery blocked designs. Thus by restricting the tg's to those which list pseudo factors in a split-plot maner the earlier
discussion may be utilized. A short discussion including an exampe of this situation is given relating these splitoplots to the presentation in Chapter III.

Sets of tg's for a number of 2^{n} factorial experiments in a splitem plot design with order Δ may be found in Appendix B. If a set of $\mathrm{t}_{\mathrm{E}}{ }^{\mathrm{s}} \mathrm{s}$ is not fowe for the particular value of n and Δ desired then such a set of tg's may be found using the methods in Chapter II.

Constrained randomization of a 2^{n} factorial experiment in a splitoplot design of class (0) may be done as follows:
(1) A single $t g$ is chosen at random from the set of tg's identified for split-plot desigus for each replication of the design.
(2) For each replication one assigas the main plot factor to x_{1} in the $t c^{\prime} s\left(x_{1} x_{2} \cdots x_{n}\right)$. Then if there is a second splitmplot factor it is assigned to x_{2}, etc, until the splitoplot factors have been assigned to the first factor names. Then one randomly assigns the remaining sub-plot factors to the remaining pseudo fectors.
(3) For each replicstion randomly choose one of the base 2 numbers which represents a to used in the factorial experiment. Combine this number with each te using vector addition modulo 2.

An example is given showing this technique.
Example 4-1. Consider a ε^{3} with factor A as a main-plot treatment with $\Delta \leq$ 2. Fellowing step (1) in the constrained randomization prom cedure, \& tg is chosen from the set of tg'a numbers l-54 in Table ITI in Appendix B. Suppose it is tg number (52):
$000,011,001,010,111,101,110,100$. Step (2) requires that the mainaplot factor A be assigned to x_{1}. Then randomly assign B to x_{3} and C to x_{2}. The operational sequence is now $000,011,010,001,111,110,101$, 100.

In step (3) suppose that to 110 is selected. When 110 is added componentowise modulo 2 to each te in the sequence one obtains the operational sequence actually used in the experiment. It is 110,101, 100,111,001,000,011,010. Note that factor A is still in a split plot and that the sequeace is of order $\Delta \leq 2$. This result is formalized in the followiag theorems.

Theorem 4-2. The sequence of te's resulting from constrained rendomization for a split-plot design is an operational sequence. Proof of Theorem 4-2. This theorem is a corollary of Theorem 3-1, since constrained randomization for a split-plot design is a particular case of constrained randomization for a 2^{n-p} factorial in blocks.

Theorem 4-3. Over all possible constrained randomizations of a given tg each to appears an equal number of times in each position in the sequence.

Proof of Theorem 4-3. This theorem is a corollary of Theorem 3-2.

Theerems 42 and 403 give results identical to Theorems $3-1$ and 3-2. Thus the andysis of results from these split-plot designs can be besed entirely upon the randomization model presented in Chapter III.

In class (1) and elass (2) splitoplot designs there are three compatibility conditions. The order of the sequence of main-plot te's, Δ_{m}, the order of adjacency of main-plots, Δ, and the order of the sequences of sub-plot te's within each main-plot, Δ_{s}, are these
compatibility conditions. In either case, $\Delta \geq \Delta_{\text {, }}$. For either class (1) or class (2) designs the randomization of mainmplot treatment come binations may be done either before or after the randomization of subplot treatments and the two randomization procedures are done indepen. dently.

The constrained randomization procedure for main-plot te's is done according to the method given for randomized blocks in Chapter III.

In class (2) splitoplot designs where $\Delta_{m}+\Delta_{s} \leq \Delta$ the relation of Δ_{s} and Δ_{m} to Δ implies that the constrained randomization for sub-plot te's is done independently within each main-plot. Thus, for each main-plot the constrained randomization of sub-plot tc's is done according to the method given for non-consecutive replication of 2^{n} factorials given in Chapter III.

In class (1) splitoplot designs where $\Delta_{m} \leq \Delta<\Delta_{m}+\Delta_{s}$, in order that randomization of sub-plot treatment combinations be independent of the randomiza.tion of main-plot treatments, the sub-plot randomization must be done according to the method or randomization for consecutive blocks given earlier in this chapter. The set of "eligible" te's in step (3) will be restricted to those which have order of adjacency $\Delta-\Delta_{m}$ with respect to the last subplot te in the previous main-plot. Using this restriction on the set of eligible te's for the consecutive replicate randomization of sub-plot treatments, it is seen that either sub-plot treatments or main-plot treatments may be assigned to their respective experimental units first, and in this manner the independence of the two procedures is insured.

Due to the similarity of nonconsecutive and consecutive replication designs the development of the randomization model for classes (1)
and (2) split-plot designs will be done simultaneously.
For either class (1) or class (2) split-plot designs let $y_{\text {ighjk }}$ denote the population response in a split-plot design. The subseripts refer to the following: replications, $i=1, \cdots$, main-plots, $g=1, \cdots, 2^{m} ;$ sub-plots, $h=1, \cdots, 2^{n-m} ;$ main-plot treatment combinations, $j=1, \cdots, 2^{m}$; and sub-plot treatment combinatigns, $k=1, \cdots, 2^{n-m}$. Under the assumption of additivity of treatment effects one may write $y_{i g h j k}=t_{j k}+x_{i g h}$. Consider the identity

$$
\begin{aligned}
y_{i g h j k}= & \left(\bar{t}_{\ldots}+\bar{x}_{\ldots \ldots}\right)+\left(\bar{x}_{i \ldots}-\bar{x}_{\ldots}\right)+\left(\bar{t}_{j 0}-\bar{t}_{\ldots}\right)+\left(\bar{x}_{i g,}-\bar{x}_{i \ldots}\right) \\
& +\left(\bar{t}_{. k}-\bar{t}_{\ldots}\right)+\left(t_{j k}-\bar{t}_{j_{\ell}}-\bar{t}_{. k}+\bar{t}_{\ldots}\right)+\left(x_{i g h}-\bar{x}_{i g 。}\right)
\end{aligned}
$$

Let $\mu=\bar{t}_{\ldots}+\bar{x}_{\ldots,}, b_{i}=\bar{x}_{i \ldots}-\bar{x}_{\ldots,}, t_{j}=\bar{t}_{j .}-\bar{t}_{\ldots,} s_{k}=\bar{t}_{k}-\bar{t}_{\ldots}$ and $(t s)_{j k}=t_{j k}-\bar{t}_{j,}-\bar{t}_{. k}+\bar{t}_{\ldots}$: Then

$$
\begin{gathered}
y_{i g h j k}=\mu+b_{i}+t_{j}+\left(\bar{x}_{i g \cdot}-\bar{x}_{i \ldots}\right)+s_{k}+(t s)_{j k}+ \\
\left(x_{i g h}-\bar{x}_{i g}\right)
\end{gathered}
$$

In the real world one only observes one yield from a particular experimental unit. Let $y_{i j k}$ denote the observed yield of treatment $j k$ on replication i. To relate $y_{i j k}$ to $y_{i g h j k}$ consider the random variables defined as follows:

$$
\begin{aligned}
& \delta_{i g}^{j}= \begin{cases}1 & \text { if te } j \text { is on main-plot } g \text { of rep } i, \\
0 & \text { otherwise ; }\end{cases} \\
& \gamma_{\text {igh }}^{k}= \begin{cases}1 & \text { if te } k \text { is on sub-plot } h \text { in main-plot } g \\
0 & \text { of rep } i,\end{cases}
\end{aligned}
$$

Note that $\sum_{h} \gamma_{1 g h}^{k}=\sum_{g} \delta_{i g}^{j}=\sum_{k} \gamma_{i g h}^{k}=\sum_{j} \delta_{i g}^{j}=1$. Since the constrained randomization employed in the main-plots is independent of that employed in the sub-plots, the random variables δ and γ are indepen dent.

Then

$$
\begin{aligned}
y_{i g h}= & \sum_{g h} \delta_{i g}^{j} \gamma^{k} \\
= & \mu+b_{i g h}+t_{j g h j k}+\sum_{g} \delta_{i g}^{j}\left(\bar{x}_{i g .}-\bar{x}_{i \ldots}\right)+s_{k}+(t s)_{j k} \\
& +\sum_{g} \sum_{h} \delta_{i g}^{j} \gamma_{i g h}^{k}\left(x_{i g h}-\bar{x}_{i g .}\right)
\end{aligned}
$$

Thus

$$
\begin{gathered}
y_{i j k}=\mu+b_{i}+t_{j}+e_{i j}+s_{k}+(t s)_{j k}+\eta_{i j k} \\
\text { where } e_{i j}=\sum_{g} \delta_{i g}^{j}\left(\bar{x}_{i g .}-\stackrel{L}{x}_{i .}\right) \text { and } \eta_{i j k}=\sum_{g h} \delta_{i g}^{j} \gamma_{i g h}^{k}\left(x_{i g h}-\bar{x}_{i g .}\right) .
\end{gathered}
$$ The following means are expressed in terms of the above model:

$$
\begin{aligned}
& \bar{y}_{i j .}=\mu+b_{i}+t_{k}+e_{i j} \\
& \bar{y}_{. j .}=\mu+t_{j}+(1 / r) \sum_{i} e_{i j} \\
& \bar{y}_{\cdot \ldots} \equiv \mu \\
& \bar{y}_{i, k}=\mu+b_{i}+s_{k}+\left(1 / 2^{m}\right) \sum_{j} \eta_{i j k} \\
& \vec{y}_{1.0}=\mu+s_{k}+\left(1 / r 2^{m}\right) \sum_{i j} \sum_{i j k} \\
& \vec{y}_{i \ldots}=\mu+b_{i}
\end{aligned}
$$

The following lema giving the distributional properties of the random variables $\delta_{\text {ig }}^{j}$ and $\gamma_{i g h}^{k}$ will be used in developing the randomization model.

Lemma 4-3. The following expectations may be obtained:
(1) $E\left[\delta_{i g}^{j}\right]=E\left[\delta_{i g}^{j}\right]^{2}=1 / 2^{m}$;
(2) $E\left[\delta_{i g}^{j} \delta_{i g}^{j},\right]=0, g \neq g^{\prime}$;
(3) $0 \leq E\left[\delta_{i g^{\prime}}^{j} \delta_{i^{\prime} g^{\prime}}^{j}\right) \leq 1 / 2^{m}, \quad i \neq i^{\prime} ;$
(4) $E\left[\delta_{i g}^{j} \delta_{i g}^{j \prime}\right]=0, \quad j \neq j^{\prime} ;$
(5) $0 \leq E\left[\delta_{i g}^{j} \delta_{i g}^{j \prime}\right] \leq 1 / 2^{m}, \quad j \neq j^{\prime}, \quad g \neq g^{\prime} ;$
(6) $E\left[\gamma_{i g h}^{k}\right]=E\left[\gamma_{i g h}^{k}\right]^{2}=1 / 2^{n-m} ;$
(7) $E\left[\gamma_{i g h}^{k} \gamma_{i g h}^{k}\right]=0, \quad h \neq h^{\prime} ;$
(8) $0 \leq E\left[\gamma_{i g h}^{k} \gamma_{i}^{k^{\prime}} g^{\prime} h^{\prime}\right] \leq 1 / 2^{n-m}, \quad i g \neq i^{\prime} g^{\prime} ;$
(9) $E\left[\gamma_{i g h}^{k} \gamma_{i g h}^{k^{\prime}}\right]=0, \quad k \neq k^{\prime} ;$
(10) $0 \leq E\left[\gamma_{i g h^{k}}^{\gamma^{k!}}{ }^{k^{\prime}}\right] \leq l / 2^{n-m}, k \neq k^{\prime}, \quad h \neq h^{\prime} ;$
(II) $E\left[\delta_{i g}^{j} \gamma_{i g h}^{k}\right]^{2}=E\left[\delta_{i g}^{j} \gamma_{i g h}^{k}\right]=1 / 2^{n}$.

Proof of Lemma 4-3. The constrained randomization is done independently in main-plots and sub-plots. Thus the results stated in (1)-(10) follow immediately from Lemma 3-1 or Lemma 4-1, depending on whether the randomization was done for consecutive or nonconsecutive replications.

Proof of (11). To complete the proof of the lemma we have

$$
E\left[\delta_{i g}^{j} \gamma_{i g h}^{k}\right]^{2}=E\left[\delta_{i g}^{j}\right]^{2} E\left[\gamma_{i g h}^{k}\right]^{2}=1 / 2^{n}
$$

random variables $\delta_{i g}^{j}$ and $\gamma_{i g h}^{k}$ to the quantities $e_{i j}$ and $\eta_{i j k}$ in the observation model.

$$
\begin{aligned}
& \text { Lemma 4-4. In this lemma let } s^{2}=\sum_{\boldsymbol{\xi}}\left(\bar{x}_{i g} .-\bar{x}_{i . .}\right)^{2} \text { and } \\
& S_{s}^{2}=\sum_{g} \sum_{h}\left(x_{i g h}-\bar{x}_{i g .}\right)^{2}, \text { Then } \\
& \text { (1) } E\left[e_{i j}\right]=0 \text {, } \\
& \text { (2) } E\left[e_{i j}^{2}\right]^{2}=s^{2} / 2^{m} \text {, } \\
& \text { (3) } E\left[e_{i j} e_{i^{\prime} j^{\prime}}\right]=0, \quad i \neq i^{\prime} \text {, } \\
& \text { (4) }-s^{2} / 2^{m} \leq E\left[e_{i j} e_{i j}\right] \leq 0, j \neq j^{\prime} \text {, } \\
& \text { (5) } E\left[\eta_{i j k}\right]=0 \text {, } \\
& \text { (6) } E\left[\eta_{i j k}^{2}\right]=s_{s}^{2} / 2^{n} \text {, } \\
& \text { (7) } E\left[\eta_{i j k} \eta_{i}^{\prime} j^{\prime \prime} k^{\prime}\right]=0 \text {, either } j \neq j^{\prime} \text {, or } i \neq i^{\prime} \text {, } \\
& \text { (8) }-s_{s}^{2} / 2^{n} \leq E\left[\eta_{i j k} \eta_{i j k^{\prime}}\right] \leq 0, k \neq k^{\prime} .
\end{aligned}
$$

Proof of Lemma 4-4. Statements (1)-(4) follow immediately from Lemma $4-3$ in the same manner that the results in Lemma 3-2 were obtained from Lemma 3-1.

Proof of (5). Consider

$$
\begin{aligned}
E\left[\eta_{i j k}^{2}\right] & =\sum_{g} \sum_{h}\left(x_{i g h}-\bar{x}_{i g}\right) E\left[\delta_{i g}^{j} \gamma_{i g h}^{k}\right] \\
& =0 .
\end{aligned}
$$

Proof of (6). Consider

$$
\begin{aligned}
& E\left[\eta_{i j k}^{2}\right]=\sum_{g} \sum_{h}\left(x_{i g h}-\bar{x}_{i g .}\right)^{2} E\left[\delta_{i g}^{j}\right]^{2} E\left[\gamma_{i g h}^{k}\right]^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& E\left[\gamma_{i g h}^{k} \gamma_{i g}^{k} h^{\prime}\right]+\sum_{\substack{g \\
h \neq h^{\prime}}} \sum_{i g h}\left(x_{i g h}-\bar{x}_{i g{ }^{\prime}}\right)\left(x_{i g h},-\bar{x}_{i g 。}\right) \\
& E\left[\delta_{i g}^{j}\right]^{2} E\left[\gamma_{i g h}^{k} \gamma_{i g h^{\prime}}^{k}\right] .
\end{aligned}
$$

Using Lemma 4-3, (1), (2), (6) and (7),

$$
\begin{aligned}
E\left[\eta_{i j k}^{2}\right] & =\left(1 / 2^{n}\right) \sum_{g} \sum_{1}\left(x_{i g h}-\bar{x}_{i g \cdot}\right)^{2}+0+0+0 \\
& =s_{s / 2^{n}}^{2} .
\end{aligned}
$$

Proof of (7). For $j \neq \mathrm{j}^{\prime}$,

$$
\begin{aligned}
& E\left[\delta_{i g}^{j} \delta_{i^{\prime} g^{\prime}}^{j^{\prime}}\right] E\left[\gamma_{i g h^{\prime}} \gamma^{\prime} g^{\prime} h^{\prime}\right] .
\end{aligned}
$$

Using Lemma $4-3$, (5) and (8) and the fact that $\sum_{h}\left(x_{i g h}-\bar{x}_{i g}\right)=0$, this expectation is shown to be 0 .

Proof of (7). For $i \neq i^{\prime}, \quad \mathbf{E}\left[\eta_{i j k^{\prime}} \eta^{\prime} j^{\prime} k^{\prime}\right]=0$ in the same manner as when $j \neq j^{\prime}$ using Lemma $4-3$, (3), and (8).

Proof of (8). For $k \neq k^{\prime}$,

$$
\begin{aligned}
& E\left[\eta_{i j k} \eta_{i j k^{\bullet}}\right]=\sum_{g h}\left(x_{i g h}-\bar{x}_{i g .}\right)^{2} E\left[\delta_{i g}^{j}\right]^{2} E\left[\gamma_{i g h}^{k}\right]^{2}+
\end{aligned}
$$

Using Lemma 4m3, (1), (2), and (9),

$$
\begin{gathered}
E\left[\eta_{i j k^{\prime}}^{\eta_{i j k}^{\prime}}\right]=0+\left(1 / 2^{m}\right) \underset{\sum_{h \neq h}}{\sum_{h \neq}} \sum_{i g h}\left(x_{i g}\right)\left(\bar{x}_{i g h^{\prime}}-\bar{x}_{i g o}\right) \\
E\left[\gamma_{i g h^{k}}^{k} \gamma_{i g h^{\prime}}^{k^{\prime}}\right]+0+0 .
\end{gathered}
$$

Now using (10) and the fact that $\sum_{\substack{h^{\prime} \\ h \neq h^{\prime}}}\left(x_{i g h}^{\prime}-\bar{x}_{\text {ig. }}\right)=-\left(x_{\text {igh }}-\bar{x}_{\text {ig。 }}\right)$,
bounds are found for $E\left[\eta_{i j k} \eta_{i j k}\right]$,

$$
-s^{2} / 2^{n} \leq E\left[\eta_{i j k} \eta_{i j k^{1}}\right] \leq 0
$$

Now the analysis of main-plot treatments is based entirely on the means $\overline{\mathrm{y}}_{\mathrm{i}, \mathrm{j} .}=\mu+b_{i}+t_{k}+e_{i k}$. Thus, in view of Lemma 4-4, (I)-(4) and this "main-plot model" one sees that the analysis of mainuplot effects, $X_{1} X_{2} \ldots X_{m}$, is entirely the same as that presented in Chapter III. Thus an unbiased estimate of any main-plot effect, $X_{1} X_{2} \cdots X_{m}$, is given by $\sum_{j} \pi_{j} \bar{v}_{. j}$. . When $X_{1} X_{2} \cdots X_{m}$ is a main effect or interaction $\pi_{j}= \pm I / 2^{m-1}$ and

$$
0 \leq \operatorname{Var}\left(x_{1} X_{2} \cdots X_{m}\right) \leq s^{2}\left(2^{m-1}+1\right) /\left(r 2^{2 m-2}\right)
$$

where $s^{2}=\sum_{g}\left(\bar{x}_{i g .}-\bar{x}_{i \ldots}\right)^{2}$. An estimate of s^{2} may be found in the split-plot analysis of variance tableau,

$$
\hat{S}^{2}=\sum_{i} \sum_{j} \sum_{K}\left(\bar{y}_{i j}-\bar{y}_{. j .}-\bar{y}_{i \ldots}+\bar{y}_{\ldots}\right)^{2} /(r-1)\left(2^{n-m}\right)
$$

The analysis of subplot treatments is based on the means $\bar{y}_{i, k}=\mu+b_{i}+s_{k}+\left(1 / 2^{m}\right) \sum_{j} \eta_{i j k}$. The analysis of this "sub-plot model" is based on Lemma 4-4, (5)-(8). Thus, one sees that this analysis of sub-plot effects, $X_{m+1} X_{m+2} \cdots X_{n}$, is also entirely the same as that presented in Chapter III. Consequently, an unbiased estimate of any sub-plot effect $X_{m+1} X_{m+2} \cdots X_{n}$ is given by $\sum_{k} \pi_{k} \bar{y}_{\ldots k}$. For
a sub-plot main effect or interaction $\pi_{k}= \pm 1 / 2^{n-m-1}$ and one obtains

$$
0 \leq \operatorname{Var}\left(X_{m+1} x_{m+2} \cdots X_{n}\right) \leq s_{s}^{2}\left(2^{n-m-1}+1\right) / x e^{2 n-2},
$$

where $s_{s}^{2}=\sum_{g} \sum_{h}\left(x_{i g h}-\vec{x}_{i g}\right)^{2}$. An estimate of s_{s}^{2} is found from the split-plot AOV,

$$
\hat{S}_{s}^{2}=\sum_{i} \sum_{j} \sum_{k}\left(y_{i j k}-\bar{y}_{i j .}-\bar{y}_{. j k}+\bar{y}_{. j \cdot}\right)^{2} /(r-1)
$$

Factorial interaction effects $X_{1} X_{2} \cdots x_{n}$, are given by contrasts of (ts$)_{j k}$: That is, $X_{1} X_{2} \cdots X_{n}=\sum_{j K} \pi_{j k}(t s)_{j k}$. The follow" ing theorem indicates a method of finding an unbiased estimate of such an effect.

Theorem 4-4. An unbiased estimate of (ts$)_{\mathrm{jk}}$ is given by

$$
\overrightarrow{\mathrm{y}}_{\ldots j k}-\overrightarrow{\mathrm{y}}_{. j \cdot}-\overrightarrow{\mathrm{y}}_{\ldots k}+\overrightarrow{\mathrm{y}}_{\ldots}
$$

Proof of Theorem 4-4. Consider

$$
\begin{aligned}
E\left[\bar{y}_{\bullet j k}-\bar{y}_{\bullet j \bullet}-\bar{y}_{\bullet . k}+\bar{y}_{\ldots \ldots}\right]= & \mu+t_{j}+s_{k}+(t s)_{j k}-\left(\mu+t_{j}\right)- \\
& \left(\mu+s_{k}\right)+\mu \\
= & (t s)_{j k} .
\end{aligned}
$$

This completes the proof.

An upper bound on the variance of such an interaction estimate may be found from the following expressions,

$$
\begin{aligned}
\operatorname{Var}\left(x_{1} x_{2} \cdots \dot{x}_{n}\right) & =\operatorname{Var} \sum_{j k} \pi_{j k}\left(\bar{y}_{\cdot j k}-\bar{y}_{. j}-\bar{y}_{0 k}+\bar{y}_{\ldots}\right) \\
& =\operatorname{Var} \sum_{j k} \pi_{j k}\left[(t s)_{j k}+\frac{1}{r i} \sum_{i j k}-\frac{1}{\left.r 2^{I I} \sum_{i} \sum_{j} \eta_{i j k}\right]}\right. \\
& =\frac{1}{r^{2}} \mathbb{E}\left[\sum_{j} \sum_{j k} \pi_{j k}\left(\frac{1}{r} \eta_{i j k}-\frac{1}{e^{m}} \sum_{j}, \eta_{i j}{ }^{\prime k}\right)\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{r^{2}} E\left[\sum_{i} \sum_{j} \sum_{i} \sum_{i} \sum_{j,} \sum_{k} \pi_{j k} \pi_{j} k^{s}\left(\eta_{i j k}-\frac{1}{2^{12}} \sum_{j n} \eta_{i j j_{k}}\right) \cdot\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{r^{2} 2^{m}}\left[\sum_{i} \sum_{j} \sum_{k} \pi_{j k}^{2}\left(2^{m}-1\right) E\left[\eta_{i j k}^{2}\right]+\right. \\
& \sum_{i} \sum_{j} \sum_{k k^{\prime}} \pi_{j j k^{\prime}} \pi_{j k}{ }^{\prime}\left(2^{m}-1\right) E\left[\eta_{i j k} \eta_{i j k^{\prime}}\right]- \\
& k \neq{ }^{18} \\
& \sum_{\substack{i \\
j \neq j \prime}} \sum_{j \neq} \pi_{j k} \pi_{j \prime k} F\left[\eta_{i j k}^{2}\right] \text {. }
\end{aligned}
$$

 upper bound on the variance is given by

$$
\begin{aligned}
& \operatorname{Var}\left(x_{1} x_{2} \ldots x_{n}\right) \leq \frac{1}{r 2^{\text {min }}} \frac{S_{s}^{2}}{2^{n}}\left[\left(2^{m}-1\right) \sum_{j k} \sum_{j k}^{2}-\sum_{\substack{j \\
j \\
j \neq j}} \sum_{k} \pi_{j k} \pi_{j r k}+\right. \\
& \text { (wm = 1) } \sum_{j K} \sum_{k}, A \pi_{j k} \pi_{j k}= \\
& \text { k\& }{ }^{\prime} \text {. }
\end{aligned}
$$

$\left.\sum_{j} \sum_{j} \sum_{k} \sum_{K^{\prime}} B \pi_{j k} \pi_{j^{2} k^{\prime}}\right]$,
fo j', kef k
where

$$
A=\left\{\begin{array}{cc}
0 & \text { if } \pi_{j k} \pi_{j k}, \geq 0 \\
-1 & \text { if } \pi_{j k} \pi_{j k},
\end{array}\right.
$$

and

$$
B=\left\{\begin{array}{l}
-1 \text { if } \pi_{j k} \pi_{j} \prime_{k}^{\prime}>0 \\
0 \\
\text { if } \pi_{j k^{\prime} j^{\prime} k^{\prime}} \leq 0
\end{array}\right.
$$

An analysis of variance tableau for a split-plot design is given below. This is useful for testing hypotheses and for finding estimates

Souree	AOV		
	${ }^{\text {d }}$	Sum of Squares	E [Sum of Squares]
Total	$x 2^{n}-1$		$\begin{aligned} & 2^{n} \sum_{1} b_{i}^{2}+r 2^{n-m} \sum_{j} t_{j}^{2} \\ & +r 2^{n-m_{S}^{2}}+r 2^{m} \sum_{k} s_{k}^{2} \\ & +r \sum_{j K}(t s)_{j k}^{2}+r S_{s}^{2} \end{aligned}$
Blocks	5-1	$\sum_{1} \sum_{j} \sum_{K}\left(\bar{y}_{i} . .-\bar{y}^{\prime} \ldots\right)^{2}$	$2^{n} \sum_{i} b_{i}^{2}$
Main-plot Treatment	$2^{\text {m }}-1$	$\sum_{1} \sum_{j} \sum_{K}\left(\bar{y}_{. j .}-\overline{\mathrm{y}}_{\ldots} \ldots\right)^{2}$	$r 2^{n-m} \sum_{j} t_{j}^{2}+2^{n-m_{s}}{ }^{2}$
Error (a)	$(r-1)\left(2^{m}-1\right)$	$\sum_{1} \sum_{j} \sum_{K}\left(\bar{y}_{i j .}-\bar{y}_{. j .}-\bar{y}_{i .0}+\bar{y}_{\ldots} \ldots\right)^{2}$	$(\mathrm{r}-1) 2^{n-m} s^{2}$
SuboPlot Treatments	$2^{n-m}-1$	$\sum_{1} \sum_{j}\left(\bar{y}_{k} \ldots-\bar{y}_{\ldots} \ldots\right)^{2}$	$\mathrm{ra}^{\text {(1) }} \sum_{k} \mathrm{~s}_{\mathrm{k}}^{2}+\frac{1}{2^{\text {m }}} \mathrm{s}^{2}$
Suboplot Treatments x Main-plot Treatments	$\left(2^{m}-1\right)\left(2^{n-m}-1\right)$	$\sum_{i} \sum_{j} \sum_{k}\left(\bar{y}_{. j \mathrm{jk}}-\bar{y}_{. j}-\bar{y}_{0.0 \mathrm{k}}+\vec{y}_{\ldots}\right)^{2}$	$x \sum_{j=}(t s)_{j k}^{2}+\frac{2^{m}-1}{2^{19}} s_{s}^{2}$
Error (b)	$2^{m}(\operatorname{mol})\left(2^{n a m}-1\right)$	$\sum_{i=1} \sum_{j}\left(y_{i j k}-\bar{y}_{i j}-\bar{y}_{0 j k}+\bar{y}_{0 j 0}\right)^{2}$	$(x-1) s_{s}^{2}$

of S^{2} and S_{s}^{2} which are needed in order to estimate the variances of estimates of factorial effects found previously.

The expectations of the sums of squares may be found using Leman 4a4. Consider for example the expectation of the sub-plot treatment sum of squares.

$$
\begin{aligned}
& E\left[\sum_{i} \sum_{K}\left(\vec{y}_{00 k}-\vec{y}_{0.0}\right)^{2}\right]=E\left[\sum _ { i } \sum _ { K } \left(s^{2}-\frac{2 s \sum_{i} \sum_{j} \eta_{i} j^{\prime} k}{r 2^{m}}+\right.\right. \\
& \frac{1}{r^{2} e^{2 m}}\left\{\sum_{j}\left\{\sum_{i} \sum_{j " m} \eta_{i} j^{q} k_{i} \eta_{i n} j^{n k}\right)\right] \\
& =\sum_{i} \sum_{K}\left\{s^{2}-0+\frac{\lambda}{r^{2} 2^{2 m}}\left\langle\sum_{j} E\left[\eta_{i^{\prime} j^{\prime} k}^{2}\right]\right\}\right.
\end{aligned}
$$

Using Lemma 4-4, (6) and (7),

E [Sub-plot treatment sum of squares] =

$$
\begin{aligned}
& =\sum_{i} \sum_{j} \sum_{k}\left(s^{2}+\frac{1}{r^{2} 2^{2 m}} \sum_{i+j} \sum_{2^{2}}^{S_{3}^{2}}+0+0\right) \\
& =r 2^{m} s^{2}+\frac{1}{2^{1 I}} s_{s}^{2} .
\end{aligned}
$$

This concludes the development of constrained randomization for splitoplot designs. A summary of the material developed for constrained randomization procedures is given in the following chapter with one method for extending the results to factorials with factors at more then two levels.

CHAPTER V

SUMMARY AND EXPENSIONS

In this thesis methods of constrained randomization are given for 2^{n-p} factorials in several basic experimental designs. The randomizan tion procedure is restricted by a compatibility condition on adjacent treatment combinations which requires that the number of factor levels which may be changed from te to te be equal to Δ, where $\Delta<n=p$. Constrained randomization methods are given for blocked $\mathrm{e}^{\mathrm{n}-\mathrm{p}}$ factore ials in the situation where there is no compatibility condition between adjacent blocks, called non-consecutive replication, and for conseeutive replication of 2^{n-p} factorials where $t c^{\prime} s$ which are made adjacent by running the blocks in consecutive order must also satisfy the compatien bility condition. The statistical analysis and the interpretation of the results of these designs, based on a randomization model are shown to be identical.

Splitaplot designs could have three compatibllity conditions, one on adjacent main-plot treatments, a second on adjacent subaplot treato ments within main-plots, and a third condition regarding the adjacency of suboplot treatments between adjacent mainoplots. Methods of constrained randomization are given for 2^{n-p} factorials in three classes of splitoplot designs. The three classes of splitoplot designs dis= cussed include a class of designs with only one compatibility condition regarding all factors in a te, while the second class of splitoplot
designs presented has separate compatibility conditions on mainoplot tc's and on sub-plot te's within main-plots with no requirement on ade jecent sub-plot te's between main-plots. The third class of split-plot designs also has a compatibility condition on adjacent sub-plat te's between main-plots.

It is interesting that the methods of constraiged randomization given for the splitaplot designs and also a large portion of the development of the related splitoplot randomization model analysis follou as rather straightforward extensions of the previous material concerning 2^{n-p}
factorials in blocks.
Examples have been given illustrating the methods of constrained randomization for the various 2^{n-p} factorial designs discussed. These examples discuss and indicate the use of the tables of transm formation generators of $2^{\text {n }} \boldsymbol{p}$ factorial te's listed in Appendix B, which are used in the constrained randomization procedure.

The material presented in the previous chapters may be immediately extended to factorials of the form $p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{k}^{n_{k}}$, where p_{i} and n_{i} are non-distinet natural numbers, provided that a change of levels in any given factor is counted as one change in determining the order of adjacency of te's. If, however, the order of adjecency of te's is dem termined by the number of levels each factor in the to changes, then the methods of constrained randomization presented in this thesis are not applicable since they would not preserve this sort of order relation on the operational sequence of te's. Thus if the determination of the order of adjacency of te's is done in a maner which discriminates number of levels changed by any given factor or utilizes any type of "degree of difficulty" function for any given factor other than simply
denoting a change in levels being made, then in order to arrive at a random operational sequence of te's some method other than those pree sented in this thesis would need to be found.

BIBLIOGRAPHY

1. Cox, D. R. Planning of Experiments. New York: John Wiley and Sons, 1958.
2. Daniel, C., and Wilcoxon, F. "Factorial 2^{p-q} Plans Robust Against Linear and Quadratic Trends," Technometrics, VIII (1966): 259-278.
3. Davis, O. L., and Hay, W. A. "Construction and Uses of Fractional Factorial Designs in Industrial Researeh," Biometrics, Volume 6 (I950):233-249.
4. Floyd, J. C. "Penicillin Formulations: The Efficacy of Oily In jections," Journal of Pharmacy and Pharmacology, II (1948): 747-756.
5. Hill, H. M. "Experimental Designs to Adjust for Time Trends," Technometris, II (1960):67-82.
6. Hunter, J. S. "A Sort of Least Squares Estimation After Each Run," Technometrics, VI (1964):41-58.
7. Kempthorne, 0. The Design and Analysis of Experiments. New York: John Wiley and Sons, 1952.
8. Kempthorne, 0. Analysis of Variance Procedures. Aeronautical Research Laboratory: Wrightmpatterson Air Force Bese, Ohio, 1961.
9. Prarie, R. R., and Zimmer, W. J. "Abstract for 2^{p} Factorial Experiments with Factors Applied Sequentially," Technometries, VI (1965):275.
10. Ostel, B. Statistics in Research. Ames, Iowa: Iowa State Unitversity Press, 1963.

APPENDIX A

COMPUTER PROGRAM GIVING A MAXIMAL SET OF TRANSFORMATION
GENERATORS FOR A 2^{3} FACTORIAL WITH $\Delta \leq 2$

	$\begin{aligned} & \operatorname{DIMENSION} \operatorname{IA}(16), \operatorname{IND}(300,6), \\ & \operatorname{MM}(6,9), \operatorname{MN}(1800,9) \end{aligned}$	200.	$\begin{gathered} \text { WRITE }(6,202)(\operatorname{WN}(J J, J), \\ J=1, M M) \end{gathered}$
40	FORMAT (16I5)	202	FORMAT (iX,17I6)
	MP $=6$		$\mathrm{LE}=1$
	$\mathrm{M}=8$		$\mathrm{I}_{1}=1$
	$\mathrm{MM}=\mathrm{M}+\mathrm{l}$	299	D0 $310 \mathrm{~J}=1, \mathrm{MM}$
	READ (5,40) (IA (I), $\mathrm{I}=1, \mathrm{M})$	310	$\mathrm{MM}(\mathrm{I}, \mathrm{J})=\operatorname{NT}(\mathrm{LL}, \mathrm{J})$
	$K=1$		D0 $300 \cdot I=2, \mathrm{MM}$
	$\operatorname{NN}(1,1)=1$		$\mathrm{NMMA}=\mathrm{NM}(1, I) / 100$
	$\operatorname{NN}(1,2)=I A(1)$		NMB $=(\operatorname{MM}(1, I)-$ IMMA 1100$) / 10$
	Do 102 Il $=2, \mathrm{M}$		NMC $=\mathbb{I M}(1, I)-$ NMA $2100-$
	$\mathrm{NN}(\mathrm{K}, 3)=\mathrm{IA}(\mathrm{II})$		INMB 10
	II = 3		$\operatorname{MM}(2, I)=$ NMA $100+$ MMC*10 +
	CALE CHECK (NN, II, K, MD, LD		MMB
	IF (LD.EQ.6) GO TO 102		$\operatorname{NM}(3, I)=\operatorname{NMB} * 100+\operatorname{MMA} * 10+$
	IF(MD.EQ.I) GOTO 3		MMC
	GO TO 102		$\mathrm{NM}(4, I)=\mathrm{NMB} * 100+$ IMC* 10 +
3	D0 $103 \mathrm{I} 2=2, \mathrm{M}$		MMA
	$\begin{aligned} & \operatorname{MN}(\mathrm{K}, 4)=\mathrm{IA}(\mathrm{I} 2) \\ & \mathrm{II}=4 \end{aligned}$		$\underset{\operatorname{NMB}}{\operatorname{MM}(5 ; I)}=\mathbb{N M C} * 100+M M A * 10+$
	CALL CHECK (NN, II, $\mathrm{K}, \mathrm{MD}, \mathrm{LDD}$)		$\operatorname{IM}(6, I)=\operatorname{MMC*100}+\operatorname{IMB} * 10+$
	IF (LD.EQ.6) GO TO 103		NMA
	IF(MD.EQL) ©0 T0 4	300	CONTINUE
	G0 T0 103		D0 $320 \mathrm{I}=1, \mathrm{MP}$
	-		D0 $330 \mathrm{IK}=1, \mathrm{~K}$
	:		IF(NN(IK, 1) .EQ,0) G0 20330
8	D0 $108 \mathrm{I7}=2, \mathrm{M}$		D0 $340 \mathrm{~J}=2, \mathrm{MM}$
	$\operatorname{MNS}(\mathrm{K}, 9)=\mathrm{IA}(\mathrm{I} 7)$		$\operatorname{IF}(\mathbb{N M}(I, J) \cdot \operatorname{EQ} \cdot \mathrm{NN}(I K, J)) G 0$
	II $=9$		T0 321
	CALL CHECK (NN, II, K, MD, LD)		GO T0 330
	IF(LD.EQ.6) G0 T0 108	321	IF (J.EQ.9) GO TO 355 COMPTMUE
	IF(MD.EQ.I) GO TO 75	355	$\operatorname{IND}(I, I)=\operatorname{NN}(I K, I)$
	GO TO 108	355	$\text { IF(I.GE.2) GO T0 } 319$
75	$\underline{K K}=\mathrm{K}$		WRITE (6,501) (NM (IK, JJ),
	$K=K+1$ $\operatorname{NN}(\mathrm{~K}, \mathrm{l})$		$J J=1, M M)$
	$\mathrm{NN}(\mathrm{K}, 1)=\mathrm{K}$ $\mathrm{DO} 50 \mathrm{~J}=2, \mathrm{MM}$	501	FORMAT (1X, 17I6)
50	$\operatorname{NN}(\mathrm{K}, \mathrm{J})=\mathrm{NN}(\mathrm{KK}, \mathrm{J})$	319	$\operatorname{NN}(\operatorname{IK}, 1)=0$
108	CONTINUE		G0 to 320
107	continue	330	
106	COMTINUE	320	WRITE $(6,500)$ (IMD (L, J),
105	CONTINEE		WRITE $(6,500)(\operatorname{IMD}(L, J)$, $J=1, M P)$
104	CONTITUE	500	FORMAT (IX, 26I5)
103	CONTINUE	500	D0 $400 \mathrm{I}=1, \mathrm{~K}$
102	CONTINUE		IFF(NN(I, 1).EQ.O) GO T0 400
			G0 10420
	$\mathrm{DO} 200 \mathrm{JJ}=1, \mathrm{~K}$	400	conetnue

```
    G0 10 499
420 LL = I
    L=L+1
    G0 TO 299
4 9 9 ~ C O N T I N U E ~
    STOP
    END
```


CHECK DECK

SUBROURIME CHECK (NNT, II, $K, M D, L D$) DIMENSION $\operatorname{NN}(1800,9)$
$M D=2$
$L D=2$
$J=I I-1$
$30 \operatorname{IF}(\operatorname{MN}(K, I I) \cdot \operatorname{EQ} \cdot \operatorname{TNN}(\mathrm{K}, \mathrm{J}))$ GO TO 31
IF (J.EQ.2) GO T0 32
む $=\mathrm{J}-1$
GO TO 30
$32 \mathrm{~J}=\mathrm{II}-1$
$\mathbb{N A}=\mathbb{M N}\left(K_{,}, I I\right) / 100$
$\mathrm{NB}=(\mathrm{NN}(\mathrm{K}, \mathrm{II})-\mathbb{N A} * 100) 10$
$\mathbb{M C}=\operatorname{NN}(\mathrm{K}, \mathrm{II})-\mathbb{N A} * 100-\mathrm{NB}^{*} 10$
$M A=\mathbb{N N}(K, J) / 100$
$M B=(\operatorname{NN}(K, J)-M A * 100) / 10$
$M C=\operatorname{NN}(\mathrm{K}, J)-\mathrm{MA} * 100=\mathrm{MB} * 10$
$M D X=\operatorname{IABS}(N A-M A)+\operatorname{IABS}(N B-M B)$
$+\operatorname{IABS}(\mathrm{NC}-\mathrm{MC})$
IF (MCX.EQ.1) GO TO 33
IF(MDX.EQ.2) G0 4033
REIURN
$33 M D=1$
REYURN
$31 \quad L D=6$
RETURN
END
DATA INPUT FOR IA(I)
$000,001,010,011,100,101,110,111$

APPENDIX B

ITRANSFORMATION GENERATORS

 equivalent pairwise to a corresponding treatment combination in the parm ticular set of te's under consideration. The order of the set of tes is the usual increasing order of base 2 numbers. Thus, for example, in a 2^{2} factoriel $1=00,2=01,3=10,4=11$ 。

In each table given, whenever blank spaces are encountered it is to be assumed that the number last listed previously in the same colum is the proper entry.

TABLE I

$$
\operatorname{TB}\left(2^{2}, \Delta=1\right) ; \quad \operatorname{TG}\left(2^{4-2}, \quad \Delta=2\right), \quad I=A B=C B
$$

$$
\text { (1) } 1,2,4,3
$$

TABLE II

$T G\left(2^{3}, \Delta=1\right) ; \quad T G\left(2^{6-3}, \Delta=2\right), \quad I=A B=C D=E F$ For class (0) splitoplot designs use only $t g ' s$ (1) and (2).	
tg Number	Sequence of te's
(1)	1, 2, 4, 3, 7, 5, 6, 8
(2)	1, 2, 4, 3, 7, 8, 6, 5
(3)	1, 2, 4, 8, 6, 5, 7, 3

$$
\begin{gathered}
\operatorname{TG}\left(2^{3}, \Delta \quad 2\right) ; T G\left(2^{4-1}, \Delta=2\right), \\
I=A B C D ; \quad \operatorname{TG}\left(2^{6-3}, \Delta \quad 4\right), \quad I=A B=C D=E F \\
\text { For class (0) split-plot designs use only tg's (1)-(54), } \\
\text { for split-splitoplot designs use tg's (1)-(18). }
\end{gathered}
$$

TABLE III (Continued)

(127)	12483567	(177)	14265738	(2a7)	14653287
(128)	3576	(178)	5783	(228)	3782
(129)	3756	(179)	5837	(229)	7328
(130)	3765	(180)	5873	(230)	7382
(131)	5376	(181)	7358	(231)	7823
(132)	5673	(182)	7385	(232)	7832
(133)	6537	(183)	7538	(233)	8237
(134)	6573	(184)	7583	(234)	14658732
(135)	6735	(185)	7835	(255)	14673258
(136)	6753	(186)	7853	(236)	14673285
(137)	7356	(187)	8357	(237	3528
(138)	12487653	(188)	8375	(238)	3588
(139)	12834657	(189)	8537	(239)	38.25
(140)	4675	(190)	8573	(240)	3852
(141)	4756	(191)	8735	(24])	5238
(142)	4765	(192)	14268753	(242)	5283
(143)	5647	(193)	14283567	(243)	5328
(144)	5674	(194)	14283576	(244)	5382
(145)	5746	(195)	3756	(245)	5823
(146)	5764	(196)	3765	(246)	5832
(147)	7465	(197)	5376	(247)	8235
(148)	12837564	(198)	5673	(248)	8253
(149)	12843567	(199)	6537	(249)	8325
(150)	3576	(200)	6573	(250)	8352
(151)	3756	(201)	6735	(251)	8523
(158)	3765	(202)	6753	(252)	14678532
(153)	6537	(203)	7356	(253)	14682357
(154)	6573	(204)	14287653	(254)	2375
(155)	6735	(205)	14623578	(255)	2537
(156)	6753	(206)	3587	(256)	14682573
(157)	7356	(207)	3758	(257)	3257
(158)	12847653	(208)	3785	(258)	3752
(159)	12873465	(209)	3857	(259)	5237
(160)	3564	(210)	3875	(260)	5732
(161)	4356	(211)	5378	(261)	7325
(162)	12874653	(212)	5387	(262)	7352
(163)	14253768	(213)	5738	(263)	7523
(164)	3786	(214)	5783	(264)	14687532
(165)	3867	(215)	5837	(265)	14823567
(166)	3876	(216)	5873	(266)	3576
(167)	6738	(217)	8357	(267)	3756
(168)	6783	(218)	8375	(268)	3765
(169)	6837	(219)	8537	(269)	5376
(170)	6873	(220)	8573	(270)	5673
(171)	7386	(221)	8735	(271)	6537
(172)	7683	(222)	14628753	(272)	6573
(173)	+ 88376	(223)	14652378	(273)	6735
(174)	14258673	(224)	46387	(274)	14826753
(175)	14265378	(225)	14652837	(275)	14852376
(176)	5387	(226)	2873	(276)	2673

TABLE III (Continued)

| (277) | 14856237 | (281) | 14862537 | (285) | 14867325 | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| (278) | 4 | 673 | (282) | 2573 | (286) | 7359 |
| (279) | 148623 | 7 | (283) | 5237 | (287) | 7523 |
| (280) | | 2375 | (284) | 5732 | (288) | 7532 |

TABLE IV
TG(2, $\left.{ }^{3}, \triangle \leq 2\right)$
(I) 14527638
(2) 14528367
(3) 14582367
(4) 14582763
$\begin{array}{lllllllll}\text { (5) } & 1 & 4 & 6 & 3 & 5 & 8 & 2 & 7 \\ \text { (6) } & 1 & 4 & 6 & 3 & 8 & 5 & 2 & 7\end{array}$
(7) 14672358
(8) 14672385
(9) 14672538
$\begin{array}{lllllllll}(10) & 1 & 4 & 6 & 7 & 2 & 5 & 8 & 3 \\ (11) & 1 & 4 & 6 & 7 & 2 & 8 & 3 & 5 \\ (12) & 1 & 4 & 6 & 7 & 2 & 8 & 5 & 3\end{array}$
(12) 14672853
(13) 18235467
(14) 1 8235476
(15) 18236745
(16) 18274536
(17) 18274635

TABLE V

$T G\left(2^{4}, \Delta=1\right)$

For Class (0) split-plot designs use only tg's (1)-(54), for split-splitoplot designs use tg's (1)-(12).

TABLE V (Continued)

(123)
(124)
(125)
(126)
(127)
(128)
(129)
(130)
(131)
(132)
(133)
(134)
(135)
(136)
(137)
(138)
(139)
(140)
(114)
(142)
(143)
(144)
(145)
(146)
(147)
(148)
(149)
(150)
(151)
(152)
(153)
(154)

$12486141012161511 \begin{array}{llllll}9 & 13 & 5 & 7 & 3 \\ 13 & 5 & 7 & 3 & 11 & 9\end{array}$
$\begin{array}{lllll}9 & 11 & 3 & 7 & 5 \\ 9 & 10 & 12 & 16 & 15\end{array}$
151612109
$15161210 \quad 9113$
$91012161511 \quad 3 \quad 7 \quad 5$

15	16	12	10	9	11	3	7

$\begin{array}{llllllll}16 & 12 & 10 & 9 & 11 & 3 & 7 & 13 \\ 15 & 15 \\ & 15 & 5\end{array}$

15	13	5	7

$\begin{array}{llllll}13 & 5 & 7 & 3 & 11 & 15\end{array}$
15113

15	7	311	12	10	9	7	5

$\begin{array}{rrrrrrr}5 & 13 & 9 & 10 & 12 & 11 & 3 \\ 3 & 7 & 5 & 13 & 9 & 10 & 12 \\ 12 & 10 & 9 & 13 & 5 & 7 & 3\end{array}$

13 | 12 | 7 | 3 | 11 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| | 12 | | | | |
| | | | | 12 | 10 |

$\begin{array}{llllll}9 & 1012 & 11 & 3 & 7 & 5\end{array}$

$\begin{array}{lll}14 & 6 & 5 \\ 15 & 16 & 12\end{array}$
$\begin{array}{rrrrrrr}14 & 6 & 5 & 13 & 15 & 16 & 12 \\ 5 & 6 & 14 & 10 & 12 & 16 & 15 \\ 15 & 16 & 12 & 10 & 14 & 6 & 5\end{array}$
$\begin{array}{llllllll}12 & 10 & 9 & 13 & 5 & 6 & 14 & 16 \\ & 15 & 15 & 15 & 6 & 5\end{array}$
$\begin{array}{rlrrrrr}16 & 15 & 13 & 5 & 6 & 14 & 10 \\ & 9 \\ & 9 & 10 & 14 & 6 & 5\end{array}$
$1513 \quad 5 \quad 614161210 \quad 9$

TABLE (Continued)

table vi

$$
T G\left(2^{4}, \Delta \leq 2\right) ; T G\left(2^{5-1}, \Delta=2\right), \quad I=A B C D E ; \quad T G\left(2^{7-3}, \Delta \leq 4\right), \quad I=A B C=D E=F G
$$

For class（ 0 ）split－plot designs use tg＇s（1）－（10），for split－split－plot designs use tg＇s（1）－（5）．

TABLE VII

WABIE VIII
$\operatorname{Tg}\left(2^{5}, \Delta=1\right)$

TABIE IX
$\operatorname{TG}\left(2^{5}, \Delta \leq 2\right) ;$ $T\left(2^{6-1}, \Delta=2\right)$,
$I=A B C D E F$

TABLE X
$\operatorname{Tg}\left(2^{5}, \Delta \leq 3\right)$

Class (0)
Class (0)
Class (0)

Design tg	Design	Design
Splitoplot (1)-(2)	Splitmplot (1)-(6)	Splitoplot (1) (4)
Split-split- plot $(1)-(4)$	```Splitosplit= plot (1)-(4)```	$\begin{aligned} & \text { Split-splitm } \\ & \text { plot } \end{aligned} \text { (1)-(2) }$
Split-splito splitoplot . (1) -(6)	$\begin{array}{ll} \text { Splitosplit- } \\ \text { split-plot } & \text { (1)-(2) } \end{array}$	
(1) (2) (3) (4) (5) (6) (7) (8) (1) (2) (3) (4) (5) (6) (7) (8) (1) (2) (3)(4) (5)(6)(7)(8)		
11	1 l 1 l 1 l 1 l	1111110
4448484442510		
$\begin{array}{llllllll}3 & 3 & 3 & 3 & 3 & 8 & 9 & 26\end{array}$		
	$\begin{array}{llllllll}8 & 5 & 6 & 5 & 14 & 5 & 28 & 19\end{array}$	
$1613161310 \quad 7 \quad 730$	12913151071828	
	$10121112 \quad 6 \quad 31010$	914151327161828
$13161110 \quad 6 \quad 61131$	911914511.6	12167163272232
	$111015101316 \quad 420$	
1110131113101916		
	131510161142715	
101210161113		
		1515101030142416
	32222417312722121	
2727292726322027	2924232219253218	
	3021172020291225	
2626322932268815	$312320182822 \quad 330$	1726312414182514
30.30283130181613	2820222426201931	183126282612282
	2717192332322527	233020292915325
$3131253018.25 \quad 625$	251921192426,1111	20291926632229
293226262929517	2618182118171.512	$22272320 \quad 330177$
21.241818181212121	$22303025211929 \quad 9$	28212822192274
	2431253030243026	
$24212124191930 \quad 7$	2332282625312117	251929301293226
22 2323 22 17-27 3223	212931321730135	
1819242118282824	$17 \quad 2612728 \cdot 2728 \quad 5.23$	312318192327611
2017201720202620	$20283231.231823 \quad 8$	2918273131292323
	$18272929292117 \quad 7$	2720252320231921
1720172323221212	192526272223263	2622222710201119

$\underline{T H}\left(2^{6}, \Delta=1\right)$) spl	toplot	designs	(I)		
			$\pi\left(2^{6}, \Delta \leq 2\right)$			$T G\left(2^{6}, \Delta \leq 3\right)$		
(1)	(2)	(3)	(1)	(2)	(3)	(1)	(a)	(3)
1	1	1	1	1	1	1	1	1
17	33	5	2	41	9	20	23	
25	49	6	8	34	26	27	32	22
9	17	14	16	2	42	15	44	52
1335	2561	134	2445	4219	5723	1441	2017	57
2936	945	2920	739	5831	1721	1243	3059	283
3152	4137	6128	3140	2655	27	460	6335	4449
2356	5753	5312	2864	5052	5047	859	4941	1560
764	5821	3716	1858	1849	5846	1039	5538	3556
1560	425	4548	1041	2059	1864	1836	312	1131
1159	1013	4746	637	1225	2430	2250	1419	1426
2763	2615	1562	438	6028	4029	2156	2250	6212
1955	1847	3158	2046	5111	3931	963	560	5524
339	5063	6357	2761	$53 \quad 9$	5127	2961	2536	4363
447	3455	6449	954	233	6059	3153	4311	958
245	251	3250	1456	3917	2019	2445	483	1746
1837	619	2418	2263	1557	1235	534	136	413
2033	1420	82	3259	3233	833	1354	856	402
2441	4628	403	1252	4845	1649	3058	2140	5036
842	3812	5635	344	645	3252	2564	2433	1948
1634	5444	5533	1960	6338	484	2848	3910	2545
1438	2243	3941	2548	2714	5610	342	3416	4129
640	3059	742	1147	4329	5525	252	5829	3959
548	6860	2334	15.35	4462	3761	1755	4653	5420
2146	6452	2138	2933	1656	4162	740	3751	307
2262	3236	1754	3050	108	1114	1638	267	3216
3061	1635	2582	2153	636	436	3246	415	2138
3257	4839	2730	1349	304	322	2662	4264	6153
2858	407	1926	555	4624	554	649	6162	4283
2650	568	5110	2351	1340	1334	2351	5745	3464
1054	24.4	589	1736	6147	4536	1935	189	1827
1853	233	6011	2634	547	1538	1137	2728	5110
4449	3111	4443	5742	2235	6344	5747	5212	4733
4351	2927	3659	6243	2137	5328	3344	5447	373

VITA
 Kenneth Jerome Tiahrt
 Candidate for the Degree of
 Doctor of Philosophy

Thesis: A METHOD OF CONSTRAINED RANDOMIZATION FOR 2^{n} FACTORIALS
Major Field: Mathematies and Statistics
Biographical:
Personal Data: Born in Pierre, South Dakota, Februsry 5, 1935, the son of Arthur Waldo and Anne Stena Tiahrt.

Education: Graduated from Beaver Creek High School, Beever Creek, Minnesota, in May, 1953; received the Bachelor of Science degree from Augustana College, Sioux Falls, South Dakota, with majors in Mathematics and Physics, in May, 1957; rem ceived the Master of Science degree from Kansas State University, Manhattan, Kansas, with a major in Mathematics, in May, 1959; attended summer session at the University of Wisconsin, Madison, Wisconsin, in 1959; participant in MSF Summer Institute in Statistics at the Oklahoma State University, Stillwter, Oklahoma, in 1962; participant in MSF Summer Institute in Mathematics at the University of California, Los Angeles, California, in 1963; completed requirements for the Doctor of Philosophy degree in May, 1967.

Professional Experience: Laboratory assistant in the Department of Physics, Augustana College, Sioux Falls, South Dakota, 1953-1957; Graduate Assistant in the Department of Mathemat. ies, Kansas State University, Manhattan, Kansas, 1957-1959; Assistant Professor of Mathematics at Dana College, Blair, Nebrasks, 1959-1964: Graduate Assistant in the Department of Mathematics and Statistics, Oklahoma State University, Stillwater, Oklmhoma, 1965-1967.

Professional Organizations: Member of Pi Mu Epsilion, honorary mathematics fraternity; member of the Mathematical Association of Americs; member of the American Statistical Association; associate member of the Society of the Sigma Xi.

