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CBAPfD I 

Sequeatial Experimentation 

!he ooaeept ef' sequ.eatial experimentation is su.bJeet to the 

im:berpretatien of the individual. To some persons it might suggest ex• 

perimenta.tion in waich treatments were applied te each experimental 

wait in a sequential maDner. Deteotioa of effects due to this sert ef 

sequential. or4eriag has 'Deen investigated by Prairie ud Zimmer [ 9J • 

Other persens might visualize experimentation in which results of 

applied. treatments 'beeame available for e'bservatie:m in a se1u.ential 

maeer. !fhis sort c,f situ.tion would include experiments in which the 

treatments were applied tg the experimental u.nits in a sequential 

manner, with results of one treatment being observed before applieati0n 

of the following treatment. This is the sort of sequential expe:r,-

mentation in which the material presented in this thesis could be 

uefu.J.. 

A great-araeu.t o:f' this type of experimentation is reJ.•ted. to im .. 

provement of manufacturing processes. Sinee 1:1ost manufacturing pro-

cesses a.re eentrolled. by a number of facters., the experiment is usually 

designed te determine which combination of the possible 1evels of the 

eom.trelling facters will. give optimum output of the product. 

A natural method of experimentation is a faetoriaJ. arrangement of 

treatments where each fact0r is set at ea.ell of' two or more 1evels with 
l 

.l 

I 
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all possibl.e e0mbina.tiens of the other factor l.evels .. A eombina.tion of 

factor l.evels is called a treatment combination if all factors under 

eonsideration are specified. In an expl.o:ratory- type of experiment it is 

ordinarily sufficient to use only two l.evels of each of the factors. 

fhis ~s known as a 2n faetoria.l, where n is the number of factors. 

@n the basis of the il!lformation gained from a 2• factoria.l, ene ee.n 

obtain a related set of optimum operating conditions (optimum as indi• 

. cated 't>y this facrteriaJ.).. Additional experimentation can be done en 

selected factors at the discretion of the experimenter with other levels 
I 

of these factors to find an imi11iroved optimum set of operating co~~-
• 

tions. 

A definition of the terminolQS1 to ee used in describing se1uential. 

experiments is now given. 

Definition l•l. A treatment rlil'rl will \e the performance of an ......... ..- .. -·-·· ........... 
ope:rati0n under the conditions specified by a particlillar treatment 

combination. An e,e;rze:riment will consist.of a sequence of runs. 

Usuall.y the number ef ru.r.u; in the sequence will be specified before 

the experiment begins. 

Suppose the various treatment eombinations (also denoted by te•s) 

are run setuentially on the same pieee~r pieces of equipment. fha.t is, 

the process is a continuing one and the various control settings or eon-

dit;i.ons, i.e. te's, a.re imposed on the process without shutdown, or 

with only- a pause in the operation of the equipment. This sequential 

ordering of the te's is a basis :f'or several potential diffieuJ.ties. 

F.a.eh of these diffieul.ties has ve7:y serious impl.ieations in both the 

performance of the physical operation as wcl.l as the interpretation o:f' 
~. 
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the analysis of the experiment. 

One of the problems created by the seqY.ential ord,ering of the 

treatment runs is the phenomena. of incompatibility of adjacent tc's. 

Definition 1-a •. Twe treatment combinations will be called adjaeent 

if one follows i~mediately after the other in the sequential order 
' 

of running the experiment. 

Often the process under investigation or the nature of the equip ... 

ment being used prevents one from having certain sets of opera.ting eon­

iltions (te's) adjacent in the sequential order of r\i.llning the e.x:peri .. 

ment. It may also be difficult to "line out11 the apparatus if many-

factors are ehanged from one run to the next. Thus in the fae,e of an 

incompatibility condition, the usual re1uirement of random assignment 

of te's to the experimental units (prGcese runs in the industrial. 

ctntext) is restricted.. fhis the,:t.s deals with several aspects c>:f.' this 

ineempatibility condition on adjacent treatment eomoinations. 

In partieuJ.ar, th::1..111 work is eencerned with 2n faetorieJ.s when 

the incompatibility condition restricts the number of :f.'aetor leveJ.s 

which may be changed from run to run. 

Another inherent problem of sequential precesses is a "learning" 

or "wear" pl'!lenomena. Learning is any systematic ehange in the process 

not attributable to the applied treatments directly controlled by the 

experimenter. This &SP.eat of sequential. experimentation has been in­

vestigated in a number of papers, Daniel. and Wilcoxon [ 2], Ifill ( 5], and 

Cox [1]. 

In industrial. experimentatian results are usually available in a 

relativ~y short time. The period required for the experimentation is 



measured in hours or days rather tban weeks or manths .. This property 

makes it practicable to look at the results of sets of runs of te•s or 

individual. tc's before continuing with other runs or te run a fractional 

replicate of the complete factorial.. One then obtains.a- statistical 

analysis of the results before continuing wi1sh ad41tiomal fractions to 

00mplete the factorial. Among the many useful papers regarding this 

sort &f amalysis one finds material by Fle1d C 4], :e:u.ter C 6], an<i Ela.vis 

and Bay c,J. 

Discussion of the Problem 

Consider am experimental situation as desc~ibed previously where a 

In fact.rial tesip ef some type is to be rWD. sequentially with the 

compatibility condition that no more than A faoter levels may be 

changed between atjaeeat tc's. In orde~ that a statistical analysis of 

the experimental results have soo4 preper.ties, th.e •auaJ. appreaoh ef the 

statistician is te re1aire full raniomi1ation. Under fllll randt»mization 

~he properties of the statistical ana.J.ysis 4epeai onJ.1 upon the assump­

tions made eo•oerning the mathematical motel •sed to describe the exper• 

imental process:, see ICempth0rne (7J er Ostle (10J. 9bvio'tlslr this will 

not be possible iJI th.e situation statei above Wllees A• n. If' A< n, 

then. enJ.1 something less than the usual.type of fall raad.omizatiGn may 

be done by the experimenter. It is the purpose of this writer to in• 

vestigate this problem fer arbitrary values ef n and. A. A method of' 
' 

constrained randomization will be given fer complete factorial and. 

fraetional replications in randomized block designs and for split•p1ot 

designs. As used in this thesis, constrained ran4omization consists ef 

a method of randomization for any given seq"enee which will not destroy 
' 



the ce111patibility- preperties of adjacent te•s. 211.e experimenter obtains 

a sequence ef the tc •s wb.teh satisfies the cempatibilitt. :.e.riterien, and 

th.ea performs a series of opei'atictns at randGm en the seia.uenee. !rhe 

operations are restricted to those wldeh preserve the compatibility of 

adjacent te •s. !rhe set of se1•enees obtained .. in this manner using e.~n­

strain.ed ranciemization is a subset ef the set ef possible se1uenees ob• 

tained using ee111plete rand.Gmization. Other discussions of types of con­

strained ran4omization. may- be f'oand i:a lCempthome C 8] and in l>aniel and 

Wilcoxon [ aJ. 

A statistical analysis based on the constrained randomization 

technique used will be developed for the designs discussed using both 

the infinite medel .an.4 a randomization model.. Attenti~n is given to 

estimatien of main effects and interactions, estimation of the variances 

of these estimates, and estimatien of' experimental error. 
I 

In order to clarify the following aiseussion, several ~efinitions 

will be made. 

Definition i-3. Two treatment eombi:nations have order ,!£.~djacenei 
, 

A if' the number_of faeter level.s wh.ieh are dif'fel'ellt im. the two 

adjacent te's is equal to a. 

CeDSider a a• factorial type experiment with treat•ent eqmbina­

tion i deneted by :(~il.~2 ••• xin), where the x1J•s are either O's 

or l • s and similari;r fer adjacent treatment eoml>inations i • • The 

order of adjacency, A, ·is· given by the sum, 

A= tlx. 4 - x. 14 1 • J l.c1 l. tJ 



Definition 1.Ji.. A sequence of' treatme:m.t eombinatins' is called a 

~ order sequence if' the order of ad~acency for every pair of' ad­

J~eent te's in the se1uenee is equal to A. 

Notice th.at restricting the value of' .A to ie < :n in a an 

factorial experimen.t induces a compatibility condition on the sequence, 

as mentioned earlier. 

Definition 1-{;. !! operati~nal se9u.ence will be any sequence of 
' ' 

' ~ ' ' ' 

the te's which satisfies tlle particular cempatibilfty requirem~nt 
,, 

~mpesed en the desigll by the experimenter and/or the experimental 

process. 

An operational sequence is, therefore, one which Dl&Y actuall.y be 

1'Wl QY the experimenter in the process under investigation. 

The constraineci randon(d.ze.tion eXJ:>erimental. designs developed in 

this thesis are applicable in a sequential process. The process under 

investig~tion is a factorial (a level) experiment with a cempatibility 

requirement om. adjacent te's. The compatibility condition requires 

that the sequence of' tc's must be a 6. order sequence. 

!hree types of factorials are discussed.. Methods ef constraimed 
. n ~ 

randomization for :f'u.11 2 factorials in blocks and for 2 f'rae-

tiomaJ. replicates are presented in Chapter III. Chapter IV contains 

constrained ran.demization. f'or split-plot designs of a factorial. T.be 

6 

constrained randomiza:tion methods may be easil:r used by the experimenter. 

The methods of' analysis developed for these d.esig:ns W14er eon';,. ·. 

strained randomization will be related to different assumptions re~ 

garding the population of inference. 

For beth 111odels unbiased estimates of.main effects and interactions 

/ 



are found. An estimate of experimenta.J.. error is ebtained and used to 

estimate ve.rianees of main effect and interaction estimates. 

Example 

Consider a. 22 factorial experiment in a. randomized block design 

with three complete blocks to be run. Let the compatibility conditions 

require that ea.eh sequence be of order 6 = 1. 

7 

A 22 faeterial experiment consists of the tc's (oo), (01), (10), 

(11). There are 24 different possible sequences of these four te's. 

Some of these will have order 6 = 1, and some will not. By listing 

a.11 24 possible sequences it is found that the eight operational se~ 

quences which follow have order 6. = 1. 

00 00 01 01 10 10 11 11 

01 10 00 ll 00 11 01 10 

11 11 10 10 01 01 00 00 

10 01 11 00 11 00 10 01 

ifhe other 16 non~opers.tiona.l sequences have at least one adjacency with 

order 6 = 2. The sequences 

00 00 01 01 10 10 11 11 

01 10 00 11 00 11 01 10 

1.0 01 ll 00 l.l. 00 10 01 

1.1 11 1.0 10 01 01 00 00 

all have orders of adjacency 6 = l forte land te 2, 6 = 2 for tc 2 

and tc 3, and fl.~ 1 forte 3 and tc 4. The sequences 



8 

00 00 01 01 10 10 11 11 

11 11 10 10 01 01 00 00 

01 10 00 11 00 11 01 10 

10 01 ll 00 11 00 10 01 

all have orders of adjacency A• 2 forte l am.d tc 2, t::. • 1 for 

tc 2 and te :,, and !J:. • 2 fGr tc .3 and te !f.. Thus the experimenter 

might pick at random with replacement three ef the operational. sequences 

in the first group. One sequeJICe woul:d be selected. for each block or 

.replication which is to be run. 

In the 22 factorial experiment it was not a difficult task to 

list all possible se1uences and then separate the c;,perational sequences:, 

which satisfied the compatibility condition. In a larger experiment 

tllis · method is not practical.; in a 23 experiment there are Bir( };)OS•·· 

sible sequenae..s. 'More refined methods of finding sequences which satisa 

fy particular compatibility conditions are presented in Chapter II. 



CHAPTER II 

FlNDING OPERATIONAL SEQUENCES 

This chapter deals with the problem of finding an operational 

sequence of order A. for a 2n factorial. An example is provided which 

demonstrates the dif:Ucul ty of obtaining an operational sequence and a 

geometric interpretation of the problem is given. 

Preliminary Considerations 

Any method of finding an operational sequence for a 2° factorial 

-must use all 2n treatment combinations. The order of adjacency of 

every pair of adjacent tc's must be equal to A.. (The degree of random0 

ness used in obtaining the sequence will relate to the validity and 

generality of the analysis of the results of the experiment.): 

One may think of the 2n tc's as points in a finite geometric 

space. Finding an operational sequence is equivalent to finding a path 

which connects the vertices of the space. The path must be unbroken, 

connect all of the vertices, and intersect each vertex only once. To 

satisfy the compatibility condition, the distance, measured along the 

lattice lines, between adjacent intersected points must be eq~l to A. • 

. The major pitfall awaiting the individual constructing an opera­

tional sequence of tc's according to some random scheme is now related. 

After arranging some portion of the operational sequence and arriving 

at, say, the jth ordered tc in the sequence, no other tc can be found 

among the remaining unused tc's which satisfies the compatibility 

9 



lO 

~ondition. That is, for each e:f' th.e tm.'!lSed tc•s., the erder ef adjacency 

with te j is not equal te A. 

For example, eonsidl.er a 23 fa.etoria.l experimemt in a full repli"" 

cate design with A• 1. Suppese the fellowing operational sequence has 

been arranged: o@e,010,110,lll,101,001,ou. The onl.r remaining to is 

100. Hewever, the order of atlljaeeney e:f' ·OJ.l and 100 is A=,;, 

net A• l. 

Geemetrieal.ly this pre"bl.em can be thought of in the :f'oJ.J.owing 

manner. After some p~rtion of the path connecting the vertex points in 

the finite geemetry is eempleted, all of the r•maining points in the 

space are at a distance not e1u.a..l to A :f'rem th.e end peimt of the path. 

completed. Considering the above example of a 23 faot0rial experi• 

ment., the follow:t.m.g graph illustrates the pro'blelll in a geometric sense. 

Solid lines with arrews den0te the eol!lllect path. Again the lattice 

line diste.n.ee f'Nlil Oll to 1@0 is 3 units rather than l u.nit. 

Start .... 

I 
I 
I 

' i 

' ' ' 'il---"~--'~(lll) 

'(ooo) 
" I 
', I . 
. , ....._(ioo) ·. __ _ 

Thus it becomes cl.ear that a method of 'finding a ra.ndom operation.• 

al sequenee is needed which w;Ul avoid the·:type ~f impass& whiell wa.s 

Just illustrated. This will be aeeemp.lisaed by- using a methed of eon-

strained randomization en a set of trans:f'orma.tien generators. 

i'~ 
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Definition 2-1. A transformation a;enerato;I' (tg) is an operational 

sequence with the first tc being (00• • •O), the low level of 

each factor, which will generate a set of operational sequences 

under constrained randomization. 

The notation TG(2n, A) will be used to identify a set of trans­

formation genera.tors for particular values of n and A. ~sing com• 

pletely random selection from the set of generated operational sequence~ 

the analysis of the de.ta obtained from·the selected sequences will be 

shown to possess good statistical properties. 

Definition ~ ... :a. A pa.ir of operational sequences a1"e isomo?:J2h}._Ja if 

ene may be obtained from the other by the methods of constrained 

ran.domization. Otherwise., they ar·e not isomorphic. 

The methods of constrained randomization presented in the subse­

quent chapters require that one have a set of transformation generators. 

Such a set of transformation genera.tors may consist of only one 

sequence of te's or it may eonsist of a. large number of sequences of 

te 's. From a.n intuitive point of view., ene wuJ.d probably desire a 

large or even·a. maximal set of tg's. However., this is not required in 

order to perform an analysis of the results. 

There are two requirements which must be met in order for a. se"" 

quenee to belong to the set of transformation generators. F.aeh sequence 

must be an operationl,ll. sequence and no pair of tg's should be isomorphic 

under the methods of constrained r~ndomization. Thus it is required 

that one be able to find operational. sequences by some method, whieh 

need not be random. That is., one need only be able to arrange all the 

tc's into sequences which satisfy the compatibility condition. Then 
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all such seqaences which have (00• • •O) as their first to and which 

are not isomorphic to one another make up the set of tl'B.nsformation 

generators. The remainder of this chapter deals with finding trans-

formation gene;a.tors. 

Braneh Diagrams 

One could find a set of se1uenees which includes t~e maximal set 

of transf0rmation generators by constructing a branch diagram for any 

n particular 2 experiment. This wou.l-d be done in a manner similar to 

a that shown for a 2 with A• 1 below. 

01-11-10 oo( , 
·. 10-11-.. 01 

Freui this one gets the two opera;t;ional sequences 00, 01, 11, 10 and 

oo, 10, 11, 01. Now the maximal set ef tg's for this situation, 
2 . 

TG(2 , A• 1), eau consist of either of these but not both, since they 

are isomorph:1,.e UD.der the method. of constrained randomization presented 

in Chapter III. This method. of' f inci'ing all tg' s, in fact finding an 

even larger set of' sequences of te's, has two defects. It is unneees- .. 

sary to have a set of sequences larger-than the maxilllal set of' te;'s for 

constrained randomization. Also, the number of possible branches on 

the dil!l,gram beeomes W1ma.nageab1y' large for even a · 23 experiment with 
! 

the eompatibility re1uirement tbat the sequence be of order A~ 2. 

Adjacency Te.bl.es' 

The intuition and :natural caut!on of the experimenter wul.d 

possibly cause him to desire a maximal,. set of transformation generators 
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for constrained randomization. However, it will be shown that one does 

not need to have a maximal or even a large set of tg's. Since one or 

only a,' few tg's wilJ. be su.fficient, one might list all of the treatment 

eombina.tions and the proceed to arrange them into a A order sequence., 

This process would be facilitated by the use of a tabular listing_of 

te's with order of adjacency A. An example of such a table is given 

below. An x in the intersection of any row and column indicates that 

the te's listed in that row and column have order of adjacency equal 

to A. 

For a 23 experiment with 6 = 1, the following table indicates 

te's with the proper order of adjacency. 

oocr-
X 001 23 . , 6 = l 
X 010 

X X 011 

X 100 

X X 101 

X X 110 

X X X 111 I 

Note that to find·'-a transformation generator one would always start 

with (00• • •O) Eis the first te in the sequence. Then using the table 

above, or a similar one for other values of·.,. n or A, the sequence 

could be completed by consul.ting the table at each step to find adja-

cent tc 's.\ 

Of eourse in ar.ranging a sequence satisfying the compatibility 

condition, one might find himself confronted with the same situation as 

in the ea:rlier examples o A number of tc 's may stilJ. remain te be used, 

none of whieh has order of adJaeeney e1u.al to A with respect to the 
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last te in the partially arranged sequence. In this case, one only 

wants an opera.tienal sequence and nothing is sacred concerning the order 

in which the tc's are encountered. Thua.it will be satisfactory to re-

arrange the sequence already partially completed until all of the. te's 

have been used and the final sequence is of order A. For instance, one 

might have the sequence 000, 010, llO, 111, 101, 001., OU for ·a 23 

with A= 1, leaving the tc 100 left over. Suppose that 100 is in ... 

serted after ~iO, in the fourth process run {plot). Then one has the 

partial sequence 000, 010, 110, 1000 Next must follow 101, then 

either 111 or 001. In either ease the sequence ma.y be finished using 

all eight te's and having order A= 1. Other possibilities obviously 

exist and would lead to other operational sequences, whieh could be used 

as transformation generators. 

It was this method which was used to prepare Tables VI through 

XI in the appendix~ The first five tables or non-maximal portions of 

them eo1illd have been prepared in this me.:r:uaer. However, for these five 

tables the IBM 7040 computer at Oklahoma State U'niversity was employed 

to find all possible QperationaJ. sequences for a given 2n experiment 

and compatibility eondition A. 

Computer' \Tse 

Essentia.lly the computer program was used to find all possible 

branches o:f the branch diagram. Then transformation genera.tors, that 

is, operational sequences which are not isomorphic under constrained 
i 

randomization, were found and a.re listed in the ippendix. These are 

necessarily maximal sets of tg•s since a.11 possible operational. se• 

quenees were searched by the computer to find the set of tg•so 



The computer program for a tyPie$.l situation lllS.Y be foumd in 

Appendix A. 

15 

The computer was not used for finding the sets of tg's after Table 

Vin the Appendix B because the computer time required to find a maximal 

set of tg's was prohibitive. Also, since a maximal set is not required 

for constrained randomization, it was deemed sufficient to provide a set 

of representative tg•s. 

The methods of constrained randomization using sets of tg's are 

presented in the next chapters. 



CHAPTER III 

CONST.RA.Im.EID :.RANDOMIZATION F©R A 2n~p FACTORIAL 

IN A RANOOMIZED JM((Jllfc;CONSEtlUTIVE BLOOK DESIGN 

This chapter ~®ntains meth~ds of aQnstni.ined ran@~mization for 

:en·-p factorials in :ra.nd©Jmi~ed @ornplete block designs J where each bl@ck 

is independent ~f the others. The meth@ds mre applicable for n ~ f 

and O s: p < n.. A dis(rn.ssi~n (l)f sets of eique t:ran.sforma.tion gener= 

ators used in constrained. :ra.nd®mization is included with references to 

the appropriate tables ©f these sets of geneNto:rs in Appendix :B. The 

ana.irsis ~f each of these designs is givenv both for infinite model and 

for randomizati@n l!lr(]ldel assumpt:i.onso The model which a particular ex­

perimenter may use will be determined by the·pro~ess under investiga.t.i.@n 

~,~d ,the popu.lati4;lln to which he wishes to dnw inf ~ren~e o 

Tra:msf~rms.t;ion: Generators a.nd 

Co~st:ra.ined Randomi~ation 

As previously definedv a.n a.r:ra:ngement ifjJf thl!:! treatment e~mbinations 

into a sequence whi~h satisfies the @~mpatibility @ondition is called an 

operational. se1uen@eo A transf~rma.tion gene:lr:'eit®r is a given ope::rational 

sequence of treatment combina.ti~ns which is used in the c~nstrained 

randomization technique t@ generate additional ope:ratio:!'..ilal. sequeneeso 

It is necessary t@ have a set @f t:ransform~ti~~ generat@rs» each.of 

which is unique w:i.der the meth~d of constrained :randomi~ation which 
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follows. The statistical analysis presented in subsequent secti~ns of 

this thesis will be sho·wn te be val.id for any set of tra.Jisfo:rma.tion 

generators. Thu.a a set consisting of only one trans:f'o:rmatien generator 

wiil be su:t'fieient for eonstra.ined rand.0mizatien. 

Sets of unique transformation genera.tors f0r the various con ... 

strained experimental designs discussed in this thesis a.re given in the 

appendix. 

Constrained ra~~mization for a an•p faetoria.l in non~eonsecutive 

replieates is performed a~c(!!)r'ding to the following outline. 

(1) For eacll repli~ation of the basic design a single transf~nnati@n 

generator is chesen at ra.ndqm frem the appropriate set of unique 

transformation generators i:p. the appendix. The preper set of' 

tram.sforme.tion geaera.tors is ide:atifiable by the value of n and 

the compatibility ~ondition. 

(2) For eaeh replication, randomly assign the n factors under 

investigation t~ the n pseudo factor names xl, x2, 000 , xn in 

the 2~~p treatment c@mbinati@ns. Note that the assig:o.ment is 

only done onee in ea.eh rep.liea.tion. Thus each te in a given rep 0 

J.ieation has the same assignl!lent ef real factor names. 

(3). B.a.ndomly choose ene of the base 2 numbers which represents ate 

used in the factorial e:x:periment. Then combine this number with 

eaeh to using vector addition modulo 2. This step effective.ly does 

a random assignment of the high and the low J.evels of each factor 

to the pseudo level ~mes O and l · in the 2n-p te 9s, where 

the high J.evels a.re then renamed 1 and the low levels renamed o. 
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J!!a!Ple 3•1. As an example of this teelm.ique consider the fellowing 

randomization obtained fer one replication of a a' ·factorial .~eri• 

ment when the compatibility condition requires .. that the order of· ad• 

Jaeency be eqqal to 1., . that is, a full a3.' with l::J. • 1. 

Fro11 Table n in Appendix B, one finds a maximal set of tre.ns­

forlliation genera.tors, namely . TG(a3, A = 1): 

(1) ooo, 001, @ll, 010, uo, 1.00, 101., lll 

(2) ooo, 001, 011, 010, ll©, 111, 101., 100 

(3) ooo, 001, ou, ill, 101, 1.00, 110 . , 010 

One ef these generators is selected by a random proeess. SuppG>se it is 

(2) ooo, 001., 011, 01.9, 1.10, lll, 1.01, 100. 

Fellowing step (2) in the constrained ran~miza.tion.process., one 

' randomly assigns the. real :t'aetcr umes A, B, C to the pseudo factor 

names · ~/ ~, x3 in th~ 23 sequence. Suppose that OD:e obtained the 

following: A = x2; :B • .x1; and C = x3• The operational sequence 

would then be arra.ngea. into the following form: ooo, 001, 101., 100., 

110, lll, 011, 01.0. Hote that this is still an operational. sequence, 

i.e., that l::J. = 1. fer every adJaeeney. 

To eeurplete the constrained randomization procedure, one now 

chooses a.t random om.e of the base 2 nwnbers 000, 0011 01.0, Oil, l©O, 

1011 1.10, ill. Suppose that it is 101. !hen 1.01 is added eomponent­

wise modulo 2 to ea.oh of the te's in the operational sequence obtained 

in step (2). The resw.t is 1.011 1001 000, 0011 Oil, 010, 1.1.01 lllo 

This is the operatien.al sequ.enee which. wul.d be run in -the experimental. 

situation under investigation by the experimenter. Note that the eem• 

patibilit;y requirement, l::J. • 1 1 still hol.ds f'or this sequence. A 

theorem formalizi:og this observation follows. 
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Theorem 3~. The secauence of treatment eombinations resulting from 

eenstra.ined rand0misation is an operational sequence. If' the set 

of unicaue tra.n.sfc1n:.,aation generators is rna:dmaJ., then the epera.­

tiomal sequenoe obtained is equivalent to randomly choosing an 

eperational sequence from the totality of all such sequences of 

te'so 

P~TGof of' Theorem ,3•1. The set of tra.n111formation genera.tors is a set of' 

operational se1uenaes by definition. Thus after step (1) 0f the aQn• 

strained randomisation procedure, one has an 0perational. sequence. 

Step (2) is a renaming ·or the pseudo factors and therefore clloes not 

disturb the preperty of being an operation.al sequence. Th.is is a. aen-

sequence of the fact that every te in the sequence receives identically 

the same assignment of~ factor names. Thus for every pair of ad­

jacent te 's 1·' ·am.d i 1 , factors x1J. and x1, J which correspended 

position ... wise before assignment ©f factor names in step (2) still cor·­

respond positio:n-wi~e after assignment 0f' real factor names xi.1' and 

Renee the sum 

A • ~ I xiJ - xi, j j 

= 1JxiJ' - xi'J' I, 

where J' is the new name under step (2) of J. This relationship 

will hold for every pair of adjacent te's in the sequences. 

T.he :raadomiza~io~ which is to be per.formed in step (3) c;,f the con-

strained ra.ndomization procedure also preserves the eo111patibility con­

dition and thus the property of being an ~erational sequence. This is 

seen by eensidering two adjacent tc's C:xix2••,xn) and (y1r 2•••rn) 

which satisfy the compatibility requ.ireme~t, having order ef' adJacien.cy 
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< h.. That 1.s, 

\ 
1 

Using the me~d of randomization in ~tep (3), one obtains the te_ 

(Xi_+ap ~+a8, •••, xn+a.11 ) . and. the adJaoent te (f1+a1, ;r2+a2, • ~ •, 

"1.,l an) where (a1a8 • • •an) is the ranumly ehesen base a :nwnber. 

From these two tramsformed adJaeent tc's the following relation is 

foum.d. 

I! I (xi+ai) ... (;yi+ai) I • iqxi • 11 I < 8 • 
) 

Hence the new se1uen.ee of tra:m.s:f'ormed tc•s alse satisfies the compati• 

· l>ility eonditien. This completes the first pertien. of the proof. 

!rhe second statement in the theorem is simply a clarifieatien of 

the n.cties. of a maximal· set of transformia.tien ge:nerators.. A set of 

au.eh generators will not be called maximal w'll.ess it generates~ 

possible $J>erational seCJ,uenees under the method of constrained random-

izatien • 

.. / 
A res'lil.t which is basic in the development of the theory of' the 

randomization model is presented in the following theorem. 

Theorem ~-a. Overall possible constrained randomizations of a 

given operation.al sequence each treatment eombinatien appears an 

equal. number ef times in ea.eh position iu the sequence. Since a 

transfol"1118.tion generater is au eperatioD.al sequence, the same 

resuJ.t holds for a tg. 

Pnof ef Theorem 3 ... a. Coui4er any operatienal seca.uence which. resuJ.ts 

from the constrained raDdomizatien procedure carried ou.t in steps (1) 



and (2). n•p Sueh an operational sequence of te's has a total of 2 

possible randomizations under the procedu~e in step (3). A different 

randomization oecu.rs for each of the base 2 numbers in the factorial. 

experiment. Let YiYa•••Yn denote any one of these numbers. 

Consider any te denoted by (x1xB•••x) in any position in the 
• n 

operational sequence obtained at step (2). The n•tuple (~x2•••xn) is 

itself a particular base a P,umber. For any._ choice of (y y •• •y ) the . 1 a n, 

vector sum 

where (y'~' •• •'1') 1 a n 
is again a base 2 number. 

Note t.ba.t if (y1;r2•••rn), (z~z2•••zn) then ¥111 - z1 1 :J, o. For 

any n-tuple (x1x2···xn), one t~en bas 

or 

wnere the addition is component-wise modulo a. Sinee if one has 

equality, then 

E.j(xi+y.) - (x1+z.)I = 0 i 1 . 1 

or 

which is a contra.diction. 
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Since in step (3) of the constrained randomization, one has 2n-p 

( ) 2n-p distinct numbers y1y2 •••yn, there will be distinct sums. 

Now the only possible values of (yiy2 • • •y~) are in the set of 2n-p 

numbers in base 2, so it fo1:J.ows that each treatment combination (base 

2 number) will appear in a partiew.ar position in the set of operational 

sequences obtained in step (3) exactly.once. 

Since this resul.t was obtained for any operational sequence found 

after step (2), one must now consider the set of all possible randomi­

zations obtained after step (1). For a given transformation generator 

from step (1) there are n! possible rand.0mizaticnis in step (2). Thus 

over the set of n!2n•p possible randomizations of a given transforms.-

tion generator, every te will appear in a particular position in the 

set of these operational sequences n! times. This completes the 

proof of Theorem 3-2. 

The statistical analysis of this experimental design will now be 

investigated. u.sing the rando•ization model technique. 

!he Randomi;ation Model 

The popw.ation of inference under the ,random-izatien model is the 

experimental units (process runs) aotwu.ly'used, or the larger popw.a-

tion from whi,:h experimental units were chosen at random. Extending 

this inference to any other population is a matter for the Judgment of 

the experimenter. Conceptwu.ly every te ean be applied to every process 

run in each replication. Let yiJk denote the popw.ation response 

(conceptual yield) to treatment combination k, en experimental unit j 



in replication i. Here there are 2n-p treatment combinations, 

k = 1, 2, •••, 2n·p, 2n-p exper~mental units (process runs) in each 

replication, j = l, 2, • • •, 2n-p, and, suppose, r replications, 

i = 1, 2, ···, r, of the design. 

Consider the identity 

Y · Jk = "i ,+ Ci... - "i ) + <"i. Jk - "i. J ) + Ci. · - 'i. ) 
1 - • • • l. • • • • • 1 1 • 1J. 1 ... 

,,,--/ 

Assuming additivity of treatment effects, let 

y and y. - y = b • 
1, • • • • i" 

Note that 

one may write 

yijk - yij. = tk, 

I: b . = I: tk :i:; O. Then 
i 1 k 

Now, in fact, in the real world one only observes the yield of one 

tc on any given process run. Thus one response is observed for each tc 

in every replication. To relate the conceptual population of responses 

to the observed responses, consider the random variable defined 

as follows. 

={l. 
0 

if tc k is on process run j of rep i 

otherwise. 

Now for a given i and j there are en·p 8 's • Only one of these is 

equal to l. If tc k is on process run j 

k' k 
8ij = 0 for all other k'. Note that ~ 8ij 

observed response ;y ik to tc k on rep . i 

k 
then 8ij = l 

k = i ~ij ... l. 

is given by 

and 

Thus the 
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I: k·· - -where ,eik • .1 &:ij (yij~ - y1.) .• Note i eik • o. The properties of 

this model for this design will be investigated in the following lemmas 

and theorems. 

Lemma ;3-1. Under constrained randomization in a 2:n-p factorial. 

in a randomized complete brock design, the random ~ria.ble at;· 
introduced in the ra~~omization model has the follo•ing distribu-

tiona.l p;roperties: 

(1 ) [ ·. k J c < k )2J I n-p E ~iJ • E 8iJ = l 2 ; 

(2) E[a:.-,s:_.,,J-o, Ji.1'; 

·(3) E (6:lt:-~ ,l• l/2en-2p, i j i '; 

Proof of Lemma 3-1. Each part will be considered in turn. Note that 
._1 •·· 

all probabilities a.re a resul.t of the methed of constrained randomiza­

tio~ which was post'IU.ated previously. That is, constrained randomiza-

tion was applied independently in each replication. A given treatment 

appears only once in any given replication and a given process run re~ 

ceives only Gne treatment, all subject to the primary constraint re-

q,uiring that DO more than l:::. factors be al.lowed to change from tc te 

adjacent tc. 

Pn>of of (1). ,,,-ng the Uual definitien of expectation, 

12· · ·1c2 k2 
E (61jJ · = l·Prob(6ij • 1) + O•Prob(6iJ = 0) 

k 
• l •Prob(i\J = 1) 
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= Prob(tc k is on prooess l'Wl j) • 

Now by Theorem 3•1, every tc appears on proc;ess run 
I ' 

j with equal fre~ 

quenoy. Hence the probability tc k is on process run j is 

1/(the number of t~'s). Thus, 

P.roQf of (2). For j ,~ j ', 

k \lt J k E [51i\.1, • Prob(8ij, • 1, 
k 

8ij ~ l) 

k 
• Prob(iij, • l 

k k 
~ij • l)•Prob(8ij = 1) 

• 0 • (1/an-p) 

= Q ' 

since tc k cannot be on proe·ess run j' if it is on process run j. 

Proof of (3). Fo~ i, i', 
E [6~/>:, j ,J • Prob(8:, j, • l I l~j • 1) •Prob(61.1 = 1) 

k k 
• Prob(61 ,j, = l)•Prob(8ij • 1), 

since randomization ts independent in replications- i and i'. But 

so 
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ProQf of (4) • For k ~ k', 

k k'. k' 
E [&iJf>iJJ • Prob{l\j • 1 

• O• {1/2n·p) 

• 0 

since te k and te ·. Jt1' are nG>t both on process run j. 

P,roof of (5). For k ~ k', .1· r/ J', 

Now 

a.nd 

( k > I n•p Prob 6ij = l • l 2 ·, . , 

so 

0., !:: E [ .. k .. k' J !: 1/"'n-p 
uijuij' ' • 

The value O is actu.eJ.17-asswned 9y the conditional probability for j' 

adjacent to j and for k' not compatible with k. The value l is 

also assumed by the conditional probability for certain 2n·p designs 

for particular J, J', k, and k'. For instance, in a 22 ~ith 

A= 1, if j • 1, k = 00 then j' • 3 and . k' • ll, the expressi©n · 

P(6t~ • l I &1~ = 1) . is equal to l. 

As a further illustration of the impossibility of finding a simple 

. k' I k expression for Prob(&ij' = l 6ij • 1), consider the following table 



of conditional p:roba'bilities eonstru.eted fer a 23 fae.torial with 

A.• l. · The table was eo:nstru.eted from a ],ist of all operational' se­

k' 
qu.enees for this factorial and the tabl, entries are Prob(&iJ' • 1 I 

6~0 • l). 

This 

k' 

001 010 011 100 101 llO lll 

a l l 0 l 
0 0 0 { ; i 

,i " 

; 0 0 
1 

0, 
l 0 ; { :; 

4 2 2 
0 

2 
0 0 

l 
9 

.... - {· 9 9 

J' 5 Q' 0 
1 

0 l .J. ·· 0 t i ib 

' 
a 2 

0 
a 

~ 0 
1 

9 i 9 6 

7 0 0 l 
~ 

1 l. fa} f b i 
' 8 ' 2 I 

0 2 0 'O l 
J - ·9 b 9 

. 
completes the :proof' of Lemma 3-i. 

.'( 

k The follo:wing lemma relates thf tistri'buti!i>nal properties of &iJ 
.. ·;' 

27 

to the randomization model,. and is basic to theirema.ind.er oJthe mater-
> C 

iaJ. 4eveloped for the design. · 

(~) [ 2 ]· 2/ n•p , E eik • s 2 , 



Proof of L~mma. 3 .. 2. 

Proof of (1). Consider 

Using Lemma 3•1, (1), 

= 0 • 

Proof of ! 2) • Consider 

2 . k - - 2 
E [e.k] = E [I; 8.j(y.j - y. ) + 

1 J 1 1 • 1 •• 

~ ~', 8il1j 1 <i1j. - ii . .><i1j'. - i1.)J 
jrj' 

Using Lemma. 3Ql, (1) and (2), 

Proof of (31• For i /: i', 

Using Lemma 3 .. 1, (3) and the fa.et that ~, (yi, j,. - i 1 , • .) = o, 

Proof of. (!J.). For k ~ k', consider 

28 



From Lemma. 3•1, (4) and (5), a.nd using the fa.ct that 

:>~· <riJ'. - 1i.) ~ ... (y'i.1~ .. ,i.) , 
j,l:J• 

it is seen. that 

This completes the proof of the lemma.'. 

Theorem 3..:1• If i r i ', lt 'f k', then 

(1 ) E [ '1 ik] = !Ji + bi + tk ' 

(2) Var (y1k) • s2/2n-p, 

Proof of Theorem 3 .. ,. 

Proof of (1) • Consider 

• IJ, + b. + tk. 
J. . 

Proof' of (2). Consider 
. 2 

Var (y ik) • E [ eik] 

2/nn'"'p :,; S C. 0 

Proof of (3). Sinee 
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... s~/an ... p 1.: Cov {y ik' y ikl) !e O • 

Proof of , (3) • Consider 

and 

This completes the proof of the theorem. 

c.orellary: :, .. 1. The following properties follow directly, 

!2;'oof of Corolla:rz: 3 .. 1. 

Proof of ~l) • Consider 

', 

E [ y.-kJ • E [ (1/r_} 1i./ Y ikJ 

= (1/r) ! E [y1kJ 

= (1/r) ! {i:,. + bi +,. tk) 

P!f>Of of (2). Consider 
\ 



=fJ,+b .• 
J. 

Proof of ~3)$ Consider 

Var Cr.k) = (l/r2)[¥ Var (yik) + 11• Cov {yik, yi'k)J 

= (l/r2)[t s2/2n-p + z1· ~. oJ 
. J. . ]. 

2/ .. n-p = s r2 • 

Proof of (4). For · i , i' , k ~ k' , 

Thu.s one finds that 

! !• Cov (yik' Yi'k')] 
a 

= (1/r Ki Cov (y ik' y ik,). + ~ ! , oJ e 

This eompletes the proof of the corollary. 

One of the essential properties of any experimental design is that 
( 

of giving unbiased estimates of the treatment effects. A theorem is 

now stated regarding this property. 

f}leorem 3~. An unbiased estimate of the effect of any treatment 

combination k is given by y - y • • k: •• 

Proof of Theorem J-4. Consider 

=fJ,+t -1,1, 
k 



This completes the proof of Theorem ;-4. 

Since the basic design is a 2n·p fa.etorial, one wishes to 

estimate factorial effects. A factorial effect estimate is given by a 

linear contra.st of the tk·· Using the notation X_ X • .. X to denote 
--i .2 n 

such a factorial effect, then 

where n:k = !. (l/2f3) and ~ ~ = 1. In the expression for ,rk the 

+ or - sign is determined by the te, k. The value of f3 is de-

termined by the type of factorial effect that is being found and the 

particular tc, k. If x1x2•••Xn is a main effect or interaction, then 

all f3 = e.n·p·l. Thus an unbiased estimate of X1X2•••X0 is given by 

I: 1C,p(i k - y ) = I: ,rky k· .. k A 4l oo k . • 

The experimenter who uses a. statistical design to estimate treat-

ment effects ordinarily also requires estimates of the variance of 

these estimates of treatment effects. In order to obtain estimates of 

these variances, consider the following theorems. 

~eorem 3.5. The variance of an estimated main effect or 

The following lemma is essential to the proof of the theorem. 

Lemma. 3-2, .. Let a1 = a for n-1 
i = 1, •••, 2 and let ai = -a. 

for 

expression · 

n ••• , 2, where a is any positive constant. In the 
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where i f-1•. Of these 

are negative. 

P~of of Lemma ~-,3. Oensider precltacts cc1o:1, where i 'f i •. There 

· n· n are 2 ways te choose a1 and a - l ways te eaoose a1,, thus 

there are 2D.(an .. 1) such p;rodu.ets. 

In order for the product to be positive both ai and ai, are 

n-lc n-1 ) positive, this ca.u happen in 2 _2 - 1 ways. Just as QJS.ny pN• 

d•ets exist waere ai and ai, are both negative so the nwnber et 

iti A-~ - iS ~con•l)(•n•l • 1) •. oD.con-1 • 1). pos ve pre-ih,s, ai""'i.., a. e "' "' a. 

The preo.u.et a1<¥1, is negative if and onlt if one a is negative 

· .· · ( :n•l) ( n•l) and one positive. Th.is happens in ! 2 2 ways. Thus there are 
.;· ... 

. · 2n-l . nc n-1 ) 2n-l a total. of a negative produ.ets. Ifote that a a - l + 2 = 

2n(211 - 1) tot&+ produets with i ,- i • as fot11.nd p~ev:i;l!'lusly. This 

complete~ the preof of Lemma 3.3. 

The preof of !heorem 3•5 fellows immeiiately. 

Proof ef Theor~B\ ,.5. It is desired to get bounds •n the variance of a 
I~' 

main effect or interaetien, 

(- ) 2/ n•p Var Y.k = s r2 

anti 



In any contre.st one .. haJ.f the ui are negative and one-half are 

positive. Thu.s en·l-p of the u. are negative and en•l•p of the 
1 . 

• 1 are positive. Hence by Lemme. 3•3, en·p (2n·l ... p ... 1) products 
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l(k,tk' where k r k' are positive, and 22n-2p-l produets a.re nega­

tive. Using these known facts, an upper bound on Var <x.ix2 • .. Xn) will 

"tie obtained.by using Cov <r.k, Y.k,) = - 1-/r'B.n-p when "k\:• is 

negative and using Oov (y.k., 'i'.k') = O when nk•k' is positive. Note 

I I I n-p-1 also that ~ = l 2 for a. ma.in effeet or interaction so the 

actual upper bound on the variance is 

Va.r 

From this one gets 

or 

Var (~Xa·••Xn) ii:: [s2/.(r)(2n .. p)(22n ... 2p-a)][2n-p .. 0 -

(2n·p)(2n-p - l)] , 

This completes the proof of Theorem 3.5. 

Consider the difference in the two bounds found on the variance in 

Theorem 3-6., Vpper boUlld .. Lower bound = d. ~en 



Clearly- as n • p gets large, the 4if'ference d approaches o. For 

n·~ p ~ 4 the difference is not large, d< {1/7)(s2/r). Thus the 

bounds are sufficiently close together to be aaefuJ. in finding the vari• 

ance of a main effect or interaction. Jote that by increasing r, the 

number of replications, this difference, the upper bound en the vari-

anee, is ma.lie smaller. 

ltov that an expression which bQunds the variance of any main effect 

or interaction has been found, it is desired to find an estimator of 
2 this variance. That is, one now needs an estimate of s which appears 

in the expression for Var (:I_i:Ka···x.). 

Consider the usual analysis of variance tableau for a blocked ex-

perimental. design based on the observed responses. 

Source df' Sum of Squares 
.~~-"''.' ·-

Total n-n r2 &" ... J. 

Blocks 

Error 

E [ Sum of Squares] 

an-p~ ba 
"'[. i 

· a a ri tk + s 

The expectations: of:;th~ sums of' ;·~quares in'·the AQY are found 

using the distributiQilaJ. properties given·i1;1Lemm$ 3•2, Theo:tem 3-3, 

and Corollary ;-1. 

For example, consider the expectation of the total sum of squares, 
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,. E [ 2n..p ! b~ + rt t: + 0 + 2 ! l bi eik + 

a 
2 fl tk~ik + t·l eikJ 

n-p . 2 2 2 
• 2 'i bi + ri tk + rs . 

From this analysis of variance it is seen that to get an estimate of the 

variance of JS_~···Xn one uses the expression 

as an estimate of 
2 . 

s • Also, if in- fact all treatment effects are zero, 

i.e., all tk • O then the design gives an unbiased test of treatment 

effects in the analysis of variance. 

Infinite Model 

If an experimenter can meet i;he a~_su.mptions necessary .to use the 

analysis based on the infinite model, then the results in the fo;I.l~wing 

pages may be \lsed. For infinite model analysis one assumes the model 

where i • 1, • • •, r, k • 1, ••• 

to treatment k in block i, µ. 

, n-p 2 , is the observed response 

is the overall mean, b. is the· 
l. 

effect of block i, tk is the effect of treatment k, eik is the 

failure of observed response yik to be explained by 1,1,, b1 and. tk. 

The errors eik are assumed to be distributed norma.ll.y and independ• 

ently with.mean O and variance r!-. 

The~_rem 3-0. An unbiased estimate of &JlY main effect or intera.c-
' 

tion (1:i_ Xa • i • Xn) where JS_~~ • • Xn • l ,rk tk is given by i_ '\.Y .k • 



Proof of Tp.eorem ,3 ... 6. Consider 

E (~ uky.kJ = i (ffk. E [i,.k)) 

= !: { ,c E [µ. + t + b + !. t e. ) ) 
K· k k • r 1 ik 

= i r nk (µ. + tk + i;'.)J 

= (µ. + i>_)f 1(k + i :n:ktk 

= i ffktk • 

This completes the proof of Theorem :, ... 6. 

'.J;}leorem 3.7. The variance of an estimated main effect or 

interaction JS_~···Xn is given exactly by 

a. 
( ) a !: · a ( n ) 2/ ( n-1) Var JS_ Xa • • •x11 = r K nk = 2 + l a r 2 ·· • 

;E_roo~ of Theorem 3.7. Consider 

Now 

Also, 

Var (JS_ Xa· • •Xn) • Var Ci nky.k) 

2 
• ~ :n:k !ar (y,.,k) + ~ ~, :lfk1!k' Cov (y.k, Y .. k,)" 

k:/k' 

Va.r (r.k) = E [y.k .. E(y~k)]1 

= E (!·-t e.k]2 
r 1 1 

= (l/r2) t E [ e~k] + (1/r2 ) t t, E [ e.ke. 'k] 
1 . 1 1.~J.. 1 1 , ir1' 

= (1:/r2 ) t a2 + 0 
J. 

fi 

2 
= o Jr .. 



So 

Cov 2 
(1.k, r.k') = E ((1/r·) ! eik !• ei'k'J 

• (l/r2) ! ! ' E [ eikei 'k'J 

• ·o •· 

Thus using these two expressions one gets 

a :a 
Var (~~···Xn) •i ,rk(l/r)a +ii, uk,rk,(O) 

= { o2/r) i { 
• (a2/r)(l/2n-l-p)2(an·p)2n-p + 1)/2 

= (28 -p + 1)Jl/r(2n·l-p) • 

This completes tl:!.e proof of Theore.m 3 ... 7. 

To find a.n estimator ef this variance ef a 11$in effect or inter• 

action, one needs an estimate of 2 ~. Consider the analysis o~ va.ri-

ance tableau. for a replicated experimental design. 

Source 

Total ...,.,n•p . 
.i;·c;; . - J. 

Replications r .. 1 

Error 

Sqs of Squares E.' [Sums .. of _SqWil.res] 

(r-1)'1+ 2n·p1: 1s: 

(2n-p -1)1-+ rt t; 
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This may be foun_d in Ostiie [ 10J. 

Thus one ma.y use (1/[r ... 1J[2n""p ... 1J ~ ii (yik .. r1 ., ... Y,.k + Y.,:.)2 

2 
as an estimate of G in the expression for Var (:is_~·~$xn) in order 

to estimate the variance of a.n estimate of a. ma.in ef'fec·t; or intera.ct:to:o.., 

The material presented in this chapter deals with constrained ra.n-

domization in a. non .. aonseeutive replication design .. A method of con­

strained randomization for consecutive replication of 2nQp fa~torials · 
._)' ~ 

will be given in Chapter r;v, and it will be shown that the statistiea.l 

analysis based on a randomization model is identical with that just 

presented. 



COISTRADTED RANDtlUZATIOJI FOR OTHER 

9.n FACTORIAL EXPERDIElffS 

This chapter contains metkods of constrained-randomization for 

several types Gf factorial designs which are different than that given 

in Chapter IIIo Const;'!:'8.ined ra,adomization for an-p factorials in 

randomized replication designs is discu.ss~d. In eonseeutive replieatien 

designs it is asstUl'led that the seiuenees within aJ.l reps have the same 

order, 6., and that the order of the adjacency between all reps is also 

6.o That is, the same compatibility condition is in effect between aJ.l 

reps and within all repso 

n-p Unblocked a faetoriaJ.s with r r,plieations of each te are 

discussed briefly~ 

, n-p SpJ.ii; ... p,.ibot designs of several types fQr 2 factorials are 

discussed and methods of constrained ra.ndamiz,tion are'presented for 

each. The rap.domization model. is deveJ.eped giving unbiased estimates 

of factorial effects. Method.$ for estimating, the variances of main 

effect and·. interaction estimates are ~resentl!d, and an analysis of 
. . . 

variance tableau is given with e~timat-E;ts of variances indicated. 

neop 
The a FaetoriaJ. in a Be.ndemized 

Consecutive Rep1ication Design 

If' the replications of the faQtoria.l experiment are to be run in 



ee:nseeutive order irnmedia,tely after one another, then the cc:nst:rs.ined 

randomization procedure is as given below. 

(1) For each replication of the experiment a single tg is chosen at 

random from a set of tg's, TG(2n-p, 8). 

(a) Randomly assign the n real factors being investi~ated tq the 

pseudo factor names ~, x~, "0 •, x11 .. This is done independently 

in ea.ch replication. 

(3) For the fiNt replication do steps (1) a.nd (2), then go on to the 

seeond replica.ti.on,. For all replicates after the first, find an 

"eligible" set of tc's, those te's which are 6. adjacent to the 

last tc in the previous replicate. If the compatibility condition 

is s: b.1 then the last tc in the previous replicate is included 

in the eligible set. 

(4) Select ate at random from the set of eligible tc's. '!'his tc 

(base 2 number) is then combined with each te in the particular 

replication using vector addition modulo~~ 

($) When all r replications have been randomized in the manner ef 

steps (11-(4) above, then choose a tc at random from the E;lntire 

set of te's in the experiment. This to is then combined with 

every te in the entire extended sequence of all replications using 

vector addition module 2. 

In order to simplify the arithmetic needed in actual p:raetiee, 

steps (3)-(5) above lllaY be replaced by the following. 

For the first replication do steps {l) and {2) and then pick ate 



from the set of a.11 these used in. the factorial.. C:0mb:i.ne this te 

with eaeh tc in the first rep using vector addition modulo 2G 

After this proceed as in steps (:;) and (.!.t.) until all r replica. ... 

tions have been formed and then stQp, omitting step (5)@ 

!,;ample ~:!.,o Suppose one wished to run a second replication of the 
.:. 

experiment in Example 3-1 without a shutdown in the process® The oper-

atio:o.a..l sequence which was found in Example 3•1 using constrained ran-

d@miz~tion fer the first rep was 

101, 100, ooo, 001, 011, 010, 110, 111@ 

To get the second operational sequence one applies constrained ran­

domization for consecutive replication. In step (1) suppose that one 

picks sequence (3) from the set TG(a3, t!:. a 1) 1 

ooo, 001, 011, 111, 101, 100, 110, 010. 

Suppose ·that in step (2) the rea.l factors are assigned to the pseudo 

factors as follows: A~ x1, B m x2, C ~ x3 o The resulting sequen~e 

is still 

ooo, 001, 011, lll, 101, 100, 110, 010@ 

Step (3)o Since the first sequence ended with te. 111 the set 0f 
I 

eligible base 2 numbers for use in step (4) are those whose order of 

adja.ieenqy with 111 gives A"" lo This eligible set CQnsists of the 

tc's Oll, 101, 1100 Suppose that in step (4) 101 is selected at 

:random .. · The 0perat:ienal sequence for the second replication becomes 

101., .1001 llO, 0101 000,11 0011 Oll, 11.J.o 



Note that when the second replicate immediately fol.1.ovs the first, the 

experimenter is essentially running a sequence of 16 (that is, all""P + 

n-p) 2 te's :with order A= l., A theorem important to the denre.lopment 

of the rand~mi~ati@n model will now be stated. 

Theorem 4 ... 1.. Over aJ.l possible eon.strained ra.ndomi1&a.tions e:f;' a 

given operatiol'.l&l sequence of cionseeutive replications ea.eh te 

appears an equal. number o:f' times ilil. ea.eh position in ea.ch ©f the 

repli~ations of the extended seque•ee. 

Proof E>f Theorem 4~1. The proof of this theorem is an immediate 

extension of Theerem 3 ... 2. Ea.eh of the eonsec.utive replications in the 

extended sequence is an operational se,uence. Consequently, Theorem 

3°2 holds for ea.eh of the eonseeutive replications. This completes the 

proof of ~eorem 4-J.. 

Using this theorem, the randomization model will be developed fer 

n-p . consecutive replications of a 2 faoteriaJ.. 

Since the eonsecutive repli~ftien design is a blocked ~~sign, the 

same m~del. will be used as was used in Chapter III. The p@palation 

k response, yijk' and the random variable, a1j, are defined as in 

Chapter III. Tb.en 

where k - -e.k ~ t 5.j(y .. - y. )o 
1 J 1 1Jo 100 

Much·of the material regarding the randomization model for eon~ 

secutive replication will be the same as for the design in Chapter III 

with non-consecutive repso The only difference in the two designs is 



that in non .. eonsecutive replicatic>n the constrained re:ndoroization is 

done independently in the various replicates and in conseeuti1re repllei!it-

tion it is not done independently o ThQs the distributional properties 

of the random variable ~tj will be somewhat differeirt~ The material 

presented on the ra.x:td\!llmiza.tion model for ,consecutive r·eplieations wi.U, 

ti@ns, and all of the results obtained in Ch.apter III' r:tll be wJ.id f~r 

the consei:llutive repliciation design.. "tr:abia.seci estima.t~s ©f mai:p. e:f'fe(,ts 

and interacti@ns may be found in the usual manner ( see .Theor~m 3,,,3)" In 

Theorem 3-5 wil1 be valido The AOV and the expe@tations of the sums of 

squares will not be affected by the dependence of the randomization 

procedure in consecutive replications. Consequently the analysis and 

the interpretation @f tke analysis will be identical. for ce:nseeutive 

repli@ations 1:11.nd.er C(l)nstreined randomization to the analysis and inter"' 

pretation found for non-conseeutive replications. 

·tiens is not done independently in the various replicates. ~he dis= 

tributional p~perties of ak similar to those presented in Lemma 3~1 
i,j 

(1) 

For eonsecutive replications 

[ ] 2 I n~p E ,8.. = 1 2 , 
1.J 

k 1 k' , 

• .1 • f 
l.;l. p 



to those given in Lemma 3•1 .. 

Now 

so 

Proof o.f (31.. For i r.J i ' 1 

[ k k J k' k k E 8. ~8.' ., m: Prob{8. q1 = 1 I 8. 4 ""'l) 0 Prc>'b(5 .. ,,:: 1) .. 
1u 1 J 1 u 1u 1J 

0 ~ Prob ( 8 ~, . , ""' 1 I 8 k1. j = 1 ) < 1, 
1 J 

This completes the proof of Lemma 4-1. 

A lemma containing results basic to the randomization model for 

consecutive replication follo~s. 

Proof of Lemma. lJ.-2. In. this lemma (1), (2) and (4) follow immediately, 

being identical. with results (1), (2) and (4} in Lemma 3-2. 

Proof of (.21 • For i 'f • f 

1 ' 
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Using Lemma 4~1, (3), and the faet that t (i .. - y, ) = 0 1 J l.J. l, .. ,. 

Thiij completes the proof of Lemma 4-2. 

This lemma contains results identical to those in Lemma 3-2~ Also 

the same observation model was derived for consecutive replication as 

f©Jr non-consecutive replieationo Consequently since the development; of 

the randomization model was based entirely on Lenuna. 3 ... :2jl the same deveJ.-

@pme~t will be valid in the model for consecutive replication based on 

Lemma 4~2. Thus the statistical analyses for consecutive and for non-

consecutive replication are done in the same manner and the results 

have the same statistical properties. 

'!'his completes the presentation and discussion of 2n-p factor~ 

ials in consecutive replication designs. 

eompletely Random 2n-p Factorials 

Usually when the treatment combinations are to be run sequentially 

one would block them into replications if possible. Then the blocking 

would provide protection against any "lea.ming" effect or gradual 

change in the process being investigated which was not recognized and 

taken into aeeount. Because of this the unblocked design is mentioned 

only briefly .. 

If' there is oo reason to block the experiment but rather one only 

desi,:,es that ea.~h te be replicated, say r ti~es, then ene must form 

an ~peratio:nal sequence containing n""p r2 te•s. In this situa.ti©n the 



sets of transformation genera.tors provided in the append.ix would not be 

utilized$ One would need to find a set of tg's in which each tc was en~ 

~ountered r times. These encounters could be isolated or any combi­

nation of them eould be sequentially adjacent if the compatibility eon= 

di tion reads ~ 6.. 

With a set of transformation gene:t1ators in hand one may simply 

follow the same method of constrained randomization as originally pre­

sented in Chapter III. 

Several possible tg's for a 23 with two replications of eaeh tc 

and with 6.~ 1 are listed. 

(1) 000 .9000 ,001,001,011,011,010 ,010 ,llO ,110 1100 ,100 ,l.Ol,101,111,ll.l • 

Note that this is equivalent to an experiment with repeated sampling$ 

(2) 000,001,011,010 ,1.10 .,100 .,101,111.,111,101,100 ,1.10 ,010 ,011.,001.,000 • 

(3) OOOJOOlplOl,l00,101;,lOO,llO.,OlO,Oll.,lll.,llO.,lll,Oll,OOl,OOO,OlO ® 

Obviously many more possibilities exist an.d may be found by the methods 

presented :tn Chapter II. 

Since the use of a completely random design in a sequential ex­

periment is :rather unlikely, the details of the randomization model are 

not presented. If it is deemed unnecessary to block the design, then 

perhaps the assumption of a.n infinite model will be reasonable as well. 

Split-Plot Designs 

Split~plot designs of many types can be visualized by considering 

various compatibility conditions on the te's. There might be one com­

patibility condition on the main-plot treatment combinations, another 

on the subplot treatment combinations, and still a third condition req 

lating to the adjacency of main-plots~ The order of adjaceney of 



main~plots is determined by the main-plot treatments as well as the 

sub ... plot treatment combinations which are made adjacent by the junction. 

of the main-plots., Various c].a.sses of designs will be discussed for 

split~plot designs for 2n factoria.J.s with three possible compatibility 

conditions. The order of adjacency of main~plots will be denoted by fj.@ 

The order of the sequence of ma.in-plot treatments will be denoted by 

6 7 and the order of the sequence of sub-plot treatment combinations 
m 

will be denoted by 6s' necessarily 6 I: A • m 
then the elass of designs will be called 

cl~ss (1) split-plot designso If 6. + ~ ~ 6 then the class of de-m s 

signs will be ca..lled class (2) split-plot designs® In class (l) split-

plot designs, the :randomization of the sub-plot tc's is not independent 

of the sub ... plot te's in the adjacent ma.in°plotso This dependency 

causes ~ne to use consecutive :randomization procedures for sub-plot 

randomization. In class (2) split..,plot designs the ra.ndomizatien of 

sub ... plot tc 's is done independently within ea.ch ma.in-plot and one may 

use non ... eonsecutive randomization for sub ... plets .. 

A special case of split ... plot designs, called class (o), will be 

diseussed first as a particular type of ordinary non ... consecutive repli-

eati©Jn discussed earlier in Chapter III. If the ma.in .. plot treatment 

consists of a single factor or of more than one factor applied in a 

split- 000 0 split-plot manner, then the design is a special case of the 

previously presented material on non~conseeutive replicationo These 

designs are a subset of the previously presented material. The set of 

possible arrays of tc's is a subset of the possible arrays of te's ob-

tained :for ordinaey blocked designs .. Tbus by restricting thetgvs to 

those wni@h list pse~do factors in a split-plot manner the earlier 



dis1;;:ussion may be utilized. A short discussion lncluding an example of 

this situation is given relating these split-plots to the presentatien 

in Chapter IIIe 

Sets of tg's for a number of an factorial experiments in a split~ 

plot design with order 6. may be found in Appendix Bo If a set of tg's 

is not found for the partieu.lar value of n and A desired then such 

a set of tg 1s may be found using the methods in Chapter IIo 

Constrained randomization of a 2n factorial experiment in a. 

split.,,plc;t design of class (0) ma.y be done as follows: 

(l) A singl:e tg is chosen at random from the set of tg 1 s to.entified 

for split-plot designs for ea.eh replication of the design.,, 

(:2) For ea.~h replication one assigns the main .. plot faetor to ~ in 

the te 1s (Xix2 ° 00 xn). Then if there is a second split-plot 

factor it is IJi.ssigned to x2, eto., until the split-plat factors 

have been assigned to the first factor names~ Then one randomly 

assigns the remaining sub 0 plot factors to the remaining pseudo 

f'a~torso 

(3) For eaeh replieation randomly choose one of the base a numbers 

which represents a tc used in the factorial experimento Combine 

this number with each te using vector addition modulo 2o 

An example is given show-J_ng this technique .. 

!;.ite.!,Pl~ 4~J,, .. Consider a 25 with factor A as a main~plot treatment 

with b. ts 2o FQllowing step (1) in the e~nstraine.d randomiza;l;;i@n pro­

eedure, e tg is chosen from the set of tg's numbers 1~54 in Table III 

in Appendix Bo Suppose it is tg number (52h 



ooo,ou,001,010,1u,101,llo,100. Step (2) requires that the ma.in-plot 

factor A be assigned to x1 • Then randomly assigm. B te x3 and C 

to x2• The operatiena.J.. sequence is n@w ooo,ou,010,001,u1,110,101, 

100. 

In step (3) suppose that tc J.10 is selected. When 110 is added 

eo11ponent-wise medu.lo 2 to each to in the seq~ence one obtains the 
< 

eper.ationl sequence aetuall.y used in the experiment. It is 110,101, 

lOO,lll,OOl,OOO,Oll,OlO. Note that :factor A is still in a split plot 

and that the se1111.oce is ef order 1::,.$1: 2. This res\'IJ.t·is f'~rmal.ized in 

the following theoremso 

Theorem 4 .. 2. The sequence of te's resu.lting :frem constrained 

ra.nd.Qmiza.tion for a split-plot design is an operational sequence .. 

Proof of .Theerem 4°2. This th¢orem·is a corollary of Theorem 3•1, since 

eon.strained ra.ndollization :for a split-plot design is a particular ease 

of constrained randomizatio:m. for a a11·P :fa.oto:riaJ. in'bloaks. 
' 

~eorem 4-]. Over all possible constrained randorllizations o:f' a. 

given tg each te appears an equal nwuber of times in each position 

in the sequence. 

Proof of Theorem Ji.-,3,. This theorem is a corollary of !b.eerem 3-2. 

Theorems 4 ... 2 and 4 ... 3 give resu.lts identics.l to Theorems 3 ... 1 u.d 

3.2. Thus the an.e.J..ysis e:f results from these split-plot designs oan'be 

based entirely 'lll.pOn the randomization medel presented in Chapter III .. 
/ 

In class (1) and CJlass (2) spl.it-pl.ot designs there a.re three 

compatibility eondition.s. The ol"der of the se1uence· of main-plat to's, 

L\1, the order of aa.ja.eenay 0:f· lftain..;plots, A, and the order o~ the 

sequences of sub-plot tc•s within each mainoaplot, 6. , are these s 



compatibility conditions. In either case, A~ 6. For either class m 

(1) or class (2) designs th~ randomi~ation of main-plot treatment com• 

binations may be d.ene either before or after the randomization of sub-

plot treatments and the two randomizatien procedures are done indepen-

dently. 

The constrained randomization procedure for ma.in-plot te's is done 

aeeording to the method given for randomized blocks in Chapter III. 

In class (2) split .. plet designs where .\ti,m + As " 6 the relation 

of 6 and 6 to A implies that the constrained randomization for s m 

sub-plot te's is done independently within each main-plot. Thus, for 

each main-plot the constrained randomization of sub~plot tc's is done 

n according to the method given for non-eonsecuti ve replication of J2 

factorials given in Chapter III. 

In class (1) split-plot designs wh~re A ~ A< A +A, in order m m s 

that randomization of sub-plot treatment combinations be independent of 

the randomization of main-plot treatments, the sub-plot randemization 

must be done aeeording to ~e method or randomization for consecutive 

bloeks given earlier in this chapter. !he set of "eligible" te•s in 

step (3) will be restricted to those .which have order of adJaeency 

A - t\a _with_respeet to the last sub..plot-tc in the previous main-plot. 

Vsing this restriction en the set of eligible te's for the consecutive 

replicate randomization of sub-plot treatments, it is seen that either 

sub-plot treatments or ma.in-plot treatments may be assigned to their 

respective experimental units first, and in this manner the independence 

of the two procedures is insured. 

Due to the similarity of non-eonseeutive and consecutive replica-

tion designs the development of the ra.ndamization model for elasse$ {l) 



and (2) split-plot designs will be done sim1Utaneously. 

For either class (1) or el.ass (2) split-plot designs let yigh.Jk 

denote the popuJ..ation respope in e. split-plot design., The su.bseripts 

refer to the following: replications, i = 1, • • •, fJ ma.in-plots, 

m n•m g = 1, •••, 2; sub-plots, h = 1, •••, 2 ; ma.in-plot treatment 

eombinatio:u, m 
j = 1 1 •••, 2;; and sub•plot treatment eo'8bi:na.t1Qns, 

n-m · · · 
k = 1, •••, 2 • Under the assumption of additivity of' treatment 

ef'f'ects one may write l\gh.jk = t jk + xign.. Consider the identity 

Let 

and 

11 .......... 4k = er + x~ _ > + Ci'i - i' > + er 4 - t" > + ci'i -xi > 
e,,u,d •• ••• •• ••• u• •• g. •• 

+ (t k .. t ) + ( tjk - :tj -t k + t ) + (x. ,.'I, - xi. ) . 
• •• . . • • •• 1~ g. 

s • t - t k .k •• 

y igl:J.jk = fl + bi + t., + (xig·. - xi • .,.,+ sk + (ts)jk + 

(x:1,gh -· iig.) • 

In the real wor.ld one only 9bserves one yield from a partieuJ..ar ex-

perimental W1it. Let y ijk denote the observed yield of' treatment jk 

en repli.cat:l,on i. '.ro relate yijk to yighjk e~nsider the random 

varial>les defineci,as·follews: 

j {l .. 6. = 
ig . (:) 

if tc j is on main-plot g of' rep 1, 

otherwise; 

if te k is on sub-plot h in main-plot g 
of rep 1 , 

otherwise. 



Note that E .. 7~gh = I: 8~ = I: 7~ h = E 6~ = 1. S:j.nce the eon.strained h ~ .·. g l.g k J.g.. J l.g 

randomization employed in the ma.in-plots is independent of that em-

~loyed in the sub-plots, the random variables 8 and 7 are indepen-

dent. 

Thus 

where 

Then 

Y igh = it 8fg7~gh1 ighJk 

= µ, + bi + tJ + I: 8 ~ (i". - i"1 .•• ) + sk + { ts ) J.k g 1g 1g. 

J k . -
+ it 8ig71gh(xigh • xig) ' 

Yijk = 1:1. + 0i + tj + eij + sk + (ts)jk + 11ijk 

J- J.. . jk( -
e .. = I: 8. (x. - x. ) and 11.jk = EE 8. 1. h x. ·h - x. ). 1J g l.g 1g. 1. • 1. · gli 1g 1g 1g a.g. 

The following means are expressed in terms of the above .model:. 

Yij. =~+bi + tk + eiJ 

Y.J. = IJ, + tj + (1/r) ¥ eij 

--:- .. ' 

Y'• ... ·~ IJ, 

Yt.k = P. + bi + 8k + (l/2.m) ·~ 1lijk 

Yi~.k = P. + 8k + (l/'r2m) !~ 11 1Jk 

The following lefQDla givi~g the distributional pl'9'perties of the 

random variables a1J and 7~ h·. will be used in developing the ran-g 1g 

domization model. 



.. ~-

Lerama 4-,. The t'ollowilli expectations may be obtained: 

(1) E [sfgJ = E [6fgJ2 = 1/a• ~ 

(e) E [6J &j J = 0 g J. g' ; ig ig' , T . , 

i , i' ; 

( C k J [ k Ja I n-m 6) E 1 igh = E 7 igh = l i ; 

( ) [ k k J . · ..J I 7 E 7 igh7 igh, . = 0, . h T h ; 

[ k k' J n-m 
(8) 0 ~ E 7igl,li'g'h' t: 1/2 , ig 'f i'g'; 

k k' J (9) E (yigli"igh = 0 , k 'f k' ; 

( ) [ k k • J . I n-1 .1 .1 10 0 st E 7 igh7 igh I S: l 2 · , k T k', h T h I i 

j k J2 j k J . n 
{ll) E [ 6 i 7i . h = E [ & i 7. h = 1/2 • g g g 1g 

I 

Proof of Lemma 4-3. The constrained randomization is. done independently 

~n main-plots and sub-plots. Thus the resuJ.ts stated in {1)~(10) 

follow immediately from Lemma 3-1 o~ Lemma 4-1, depending on whether 

the randomizat:i.oa was done for conseeuti ve or non-eoiu;1ecuti ve repli• 

catiQns. 
.-, 

Proof of {ll). · To c0111plete the proof of the lemma we have 

[ J k J2 . [ J J2 [ k Ja ·/ n E &1 7."~ = E &. E 7.gh·. = l 2 • g 1e,u, 1g 1 

':l'be following leQIII& relates the distributi~naJ. properties of the 
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., . k 
random variables 6ig and 7 igh to the t•ntittes eij and 1'1iJk in 

the observati-on-- model. 

;Lemma 4-4. In this lem• let s2 = I: Ci .. i )2 aad a; ig. i •• 
2 - a - S • I:I: (x.;..,.\,, - x. ) • fhem. ,• ga ~ ig. , 

(1) E [e1JJ = @ , 

(2) E [ e!.,J2 • s2/a,m , 

(~) E [e1Je1 ,.,,J = O:, ::1:} 1• , 
k 

.k 

0 k 
(6) E [11 2 J = s2/2• k ijk s , 

( •;m c· J . .L 8) • S 8 2 fl: E 11 iJk 11 iJk, ~ 0 , k r k' • 

Proof o:f'_ I,emma 4.Ji.. Stat.eme:m.ts (l)-(4) follow immediately- from Lemma 

4•3 in the same manner that the results i~ Lemma 3-2 were obtained from 

Lemma 3-1. 

Pry,of ef (5). Consider 

= () • 

. ' .... · 



Proof of (6). Consider 

Using Lemma 4-3, (1), (2), (6) and (7), 

,) Proof of (7)o For j, J',. 

Using Lemma 4-3, (5) and (8) a.nd the fact that E (xi ,.. ... i'. ) = o, 
h . g.µ ig. 

this expectation is shown to be o. 

Proof of (7). For i , i •, E([11ijk11i, j 'k'J = O in the same 

manner as when j ::f. j' using Lemml;l 4-3, (3), and (8). 

Proof ?f ( 8) • For k :) k' , 

- 2 j 2 k 2 
E [11 .• k'.ll'jk'J :EI: (x. h-x. ) E[6. J E[11..,. __ n J + 

1J ·. 1 . · g 1i ig · ig • ig &.& 

- . · --·· ..a [ . 2 - k \"k' i~t' (xigh - Xiig/),(~i~lf';~x{~) . .t'J ~igJi: E[?igb'.7igh'J + 
h,'h' /' 
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-,- "k .. i . - .• '-l • j k k' iti 'i• (xigh -~i~{(~~~''h •· xig1~_;; ))EJ~fg6ig ,J E [ 7 igh7 ig 'hJ0 

Vsing Lemma 4-3, (1),,,(2), and (9), 



Now using (10) and the fact that i, (xigh' • xig.) = ... (xigh -

h,'h' 
'bounds are foad fer E [11 iJk11 i,1k ,) , 

xi > ' g. 

Now the analysis of main-plot treatments is based entirely on the 

means · yij. = JJ, -~bi+ tk + eik •. Th.us, in view of Lemma. At.-4, (1)-('4.) 

and this "main-plot model" one sees that the anaJ..ysis of main~plot 

effects, JS_~ r.. Xm' is: entirely the same as that presented in 
i 

Chapter III. Tll.us an unbiased estimate ef any main ... plot effect, 

JS_~ • • • xm, is given by ~ ,,, J'i.J. . When JS. x2 • • • xm is a. main. 

+ I m-1 effect or interaeti0n 71.J = .;.. l 2 .· and 

o ~ Var (x1x2 ••• x.) ~ s2(2m·l + 1)/(r22m-e), 

S7 

a - - 2 2 where S = t (xi - x. ) • An estimate of S may be fowid in the g g. i •• 

split-plot analysis of variance tableau, 

.6.2 - · - - - )!/( ( n ... m s = tE~ (;yi"' • 1 4 • Yi + y r • 1) 2 ) • 
1J~ d• •d• •• ~-

The:: anaJ.ysis of subplet treatments is )~sed en the means 

- ;m Yi.k = I' + bi + sk + (1 2 ) .~ 1tiJk • The. analysis ef' this "sub-p.lot 

model" is based on Lemma 4-4, (5)-(8). Th.us, one sees that this anal-
~ . 

ysis ef su.b-plet ef'f'eets 1 . ,xm+l. x\D'l-2 • • • x11, is also entirely the same 

as that presented in Chapte:r;-'in. CJonseq,uentJ.y, an un.biased estimate 

of' any sub-pl.ct ef'feet \i+i xm+2 ••• ~ is given by i ~'i .• k • For 
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I n-m-1 a sub-plet main effect or in.tera.cti0n ,ck = t l 2 ana one obtains 

( ) a( n-m-1 . )/ an-a 0 111:· Var X . . X . .. • • X. :S: S 2 + l r2 · , 
.. 111+1 m+I n s . 

a i ( - )a 8a where S = E xi.h - x1 • An estimate ef 
S, g · •. 8• S 

is found from the 

split-plot A.GV, 

Factorial. interaction effects ~x2 ••• Xn, are given by een­

tra.sts ef' · (ts)jk: That is, 1S_Xa •••-in= ~i •Jk(ts)jk. The follow• 

ing theorem ~adiea.tes a method of' finding an unbiased estimate of sueh 

an effect. 

Theorem 4-4. An unbiased estimate ef' (ts)jk is given by 

-Y'.,.;jit .. Y' .J • • 1 • • k + ~ • • • • 

P;n>of of' fheorem 4..!t-. Con.sider 

E [y .. k • 'i" • "i k + 7 . J = p.+t_.+ sk+ (ts)"k•(P. +t,.) • 
•d' •d• •• ' ••• d d d 

This completes the preof'. 

(µ,+ sk)+ µ, 

= (ts) jk •. 

An upper bound on the variance of sueh an. i~tera.etion estimate 

may be found from the following expressions, 

Var (1:i_Xa··· x.) = Var ~i j(Jk("i.jk - Y.J. - Y •• k + "i •• .> 
~ Var ~f icj"J. (ts) Jk + ~! 'flijk - ~iii t ~ 1lijkJ 

1 [ · 1 1 . . Ja .. = i2°E 1.l l ujk(j_:'l'tijk - iii~' 1liJ'k) 



·-

e ~ E ['!~it•fi• ,rjk,tj'k*('flijk .. ~~ 11 'ijijtlk)* 

(Tli t j 'k' "' ? ~m Tip jnfk' )] 

1 a m ,, 2 
= ~ 2m [~ ~ i 1r jk (a - 1 )_.E [11 ijkJ + 

t~ ii• ~k,rJk'(2m .. l)E [11ijk11ijk 1J .., 
'klfk t . 

[ 2 J 'i~i~ :l{jk,rj'kF, ilijk ... 
jy,J' 

'i~j~f, 1tjk1\i'k' E [1lijk11ijk'J ~ Jr J , , k;'k • 
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2 ~ 

Now E[1'1~jkJ=~ and -~!tE[1lijk1lijk'J:,;;o., for k1k', soa.n 

upper bound 011 the variance le given by 

where 

and 

An analysis of variance tableau for a split~plot design is given 

below. This is useful for testing hypotheses and for finding estimates 



Bouree 

Total. 

Bloeks 

Me.in-plot Treatment 

Errer {a) 

Su.b ... P.lot Treatments 

Sub-plot Treatments x 
Main-plot Treatments 

Error (b) 

df 

D re - 1 

5 -- l 

2m - l 

{r - 1)(2m .. 1) 

n-m 1 2 -

(2m·. 1)(2n·m - 1) 

m( ( n-m 2 r•l) 2 · - l) 

AOV 

Sum of Squares 

... 2 
1Yt (yijk - Y •• .> 

t1i <r"i •• - 'i .. _>2 

>i~i G· • .,. - "i •• ) 2 

(- - - - 2 EE E y _. y • y + y ) 
~Jlt ij. .j. ,.. • •• 

Ci - -:; - )2 !~ i .. ~ ... 

EE E (y _ .. y • y + y )2 
~J~ .Jk .j. ..k ••• 

'i~i (yiJk - 1iJ .... 'i .. Jk + -; • .,)a _ 

E [ Sum o:f' Squares] 

en t b: + rin-m ~ t~ 

.+ ran·msa + ram i s: 
2 2 

+ r~i_ (ts)jk + r S8 

ant b: 
ran·m ~ t~ + 8n-m8a 

(~ - l) an•m S2 

r!.m. E r.l· + 1... Si 
It k 2m s _ 

2 :am 
r ~i (ts) ~k + , ....... J.. 8m 

• ;Ill 11!1 

(r - 1.) s2 
' s g' 



of s2 and s: whieh are needed in order to estimate the varia,ees of 

estimates of faetoriaJ. effeets found previou~ly. 

The expectations of the au.ms of aqua.res ma.y be found using Lemma. 

4.Ji.. Consider for example the expeetation of the sub-plot treatment 

sum of squares. 

: 2 l . .. [ 2 J· · · = I:~. I: f s .. O+ ; ~ '-.k~ E Tl. t ~ ,,~ : :+ ;i; 1 J 1i .. r ·· 2 ... m \J.. J' i ..i .n. 

M•~" E [1} if j 'k'l'I it j "kJ + 
:i.~r:i" 

Fr,~~" E [11i'j'kili".f'kJ)J .. 
i'::/i"' 

tJsing Lemma 4.,.4, (6) and (7), 

E [ Su.b ... plot treatment su.m of squares] '" 
2 i . s2 

= J E i (s + 2 2m FE 7 + O + O) 
J r2 J'2 

m 2 l 2 
=ras +::trS. a s 

This ce111el11des the development ef constrained randomization for 

.split ... plet designs. A summary of the material. developed for eon-

strained randomization procedures is given in the fol.lowing chapter 

with one method for extending the results to factorials with,taeroors at 



In this thesis methods of constrained randomization are given for 

anap faetoria.l.s in several basic experimentai designs. 'fhe ra.ndomiza-

tion procedure is restricted by a eempatibility condition on adjacent 

t:reatment eombinations whieh'requires 'that the number of factor levels 

which may be changed from te tote be etual to A, where A< n-p. 

Constrained randomization methods are given for blocked '.:2n-p faetor-
1-, 

ials in the situation where t.,re is no compatibility eond.iti0n between 

adjacent blocks, ea.lled non-consecutive repl.ioation, and for eo:aseeutive 
nop ,replication of 2 faetoria.l.s where te•s which are made adjacent by 

rwa.ning the blocks in consecutive erder mut also satisfy the eompati• 

bility eonditi0n. The statistical analysis and the interpretation of: 

the results of these designs, based on a randomi~ation model are sh@wn. 

te> be id.entieal .• 

Split-plot designs could have three compatibility conditions, one 

en aa.Jaeent main-plot treatments, a second on adjacent sub-plot treat­

ments within main•plots, and a third. eond.ition regarding the adjacency 

ot sub-plot _treatments between adjacent main-pJ.ets. Meth.eds et eon­

strained randomization are given for an•p factorials in three classes 

of split-plot designs. fhe three Qlasses of' split-pl.et designs dis­

cussed include a el.ass of designs with omly one eompatibil.ity condition 

regarding a.l.J. faeto?"S ·1n ate, while the second el.ass of split-plot 



designs presented bas separate cempa.tibilitr conditions en me.incopJ.ot 
- - . 

tc•s and on su.o....,let te•s within main-plots with no requ.irement on ad• 

jacent sub-plot tc•s between main-plots. The thir4 class of split...pl.ot 

designs a.lse has a compatibility- eendition on ad.jaeent sub-plot tc's 

between main-plots. 

It is interesting that the methods ef eon.strained randomization 

given for the split-plot design.sand a.lso a large portion of the deval• 

epment of' the related -spli t•plet randomizati0n model e.muysis foll.ow as 

rather straightforwari extensions of the previeu.s materia.l eenee:rning 

n-p 2 factorials in. lillock.s. 

Examples have been given. illustrating the methtllds of' co:astra.ined 

ra.Jldomiza.tion for the various a•-,:, faetoria.l designs discussed. 

These examples discuss and indicate the use ef the tables of trans-
n-p . 

formatien generat0rs of 2 factorial. te•s listed in Appendix B, 

which are used in. the constrained randomization procedure. 

The material presented in the previou.s chapters may be immediately 

n. ?ls llk extended to faetoria.ls et the form p~ p2 _ • • • pk , where pi and 

n. a.re nen .. aistinet natu.ral. nubers,_ Ji)'rc;,vided. that a. change et levels i .- , 
' . 

in any given factor is eounted as one change in determining the 0rder ef 

adjacency of tc•s.'. If, however, the ord.er of adJa.eeney of te'•,~s de• 

termined bJ the nu.oiber of levels eae)l factor in the te changes., then tla.e 

metheds of constrained randomization presented in this thesis are not 

appJ.icable since they wow.d not preserve this sort of order relation. on 

the opera.tiom.al. se1aemee ef te's. Thu.s if the determination of the 

order of adJaeeney of tc's is done in a manner which discriminates 

nwnber of levels changed by any given factor or utili~es any type of 

"degree of difficulty" £W1etion for any given factor other than simply 



denoting a change in levels being made, then in order to arrive at a 

random opera.tienal sequence of te's some method other than th@se pre­

sented in this thesis would need to be f@Ulld. 
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4o 

8 

75 

50 
108 
107 
106 
105 
104 
103 
102 

199 
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COMPUTD PROOIAM GIVDJG A MAXIMAL SET 0F fBANSFOBMATION 

GENDATOJlS Fil A 23 FACTORIAL WITH A ~ 2 

DIMDSI0N ·IA(16),IlfD{30Q.,ffi), 
D{6,9),n{1Boo,9) 

FOBMAT (16I5) 
MP • 6 
M•8 
MM• M + l 
RF.AD (5,40){IA(I),I • l, M) 
K•l 
D{l,l) • l 
D{l,2) = IA{l) 
DO 102 ll • 2,M 
D{K,3) = IA(ll) 
II • 3 
CALL CHECK {D,II,K,MD,LD) 
IF(LD.EQ.6) GI TO 102 
IF(MD.EQ.l) GO TO 3 
GO T0.102 
DO H>3 Ie • 2,M 
D{K,4) • IA(I2) 
II• 4 
CAI,L CBECK (D,II,K,MD,LD) 
IF{LD.EQ.6) GO Tl 103 
IF(MD.EQ.l) GO TO 4 
G0'1'0103 

• • • 
:00 108 I7 • a,M 
D(K,9) • IA{I7) 
II• 9 
CALL CHECK {D:,II,K,Ml>,LD) 
IF{LD.EQ~6) GG TO 108 
IF·{MD.EQ.l) GO TO 75 
GO TO 108 
KK = K 
K•IC+l 
D{K,l) • IC 
00 50 J • 2,MM 
NX{K,J) • D(KK,J) 
COlffilfflE 
COlffllUE 
COITIWE 
C0ft!lfflE 
COHINR 
COffIDE 
CONTINUE 
IF(IID.EQ.l) GO TO 199 
K=K-1 
lllQ 200 JJ • l,K 

200 WRITE {6,202){D(JJ,J), 

202 

299 
310 

300 

3:n 
340 
355 

501 
319 

330 
:,ao 

500 

40© 

J = l,MM) 
FOBMAT (iX,17!6}': 
LL• l 
L =·J. 
lX) 310 J • l,MM 
IM{l,J} • NN(LL,J) 
oo ;oo -I.. 2 o 
DIA • IM(l,I)/ioo 
ID • {D{l,I) • NMA.*100)/10 
DC • D(l,I) • N'MA*lOO .. 

mm 10 
IM(2, I) = N.MA.*10@ + DC*lO + 

mm 
0(3,I) = NM:5*100 + NMA*lO + 

NMC 
&(4,I) = Nl,CS*lOO + NMCitlO + 

I.MA 
D{5,I) • DIC*lOO + NMA.*10 + 

lD1B 
0(6,I) • BC*lOO + NMB*lO + 

NMA 
COHIWE 
00 320 I = l,MP · 
00 330 IK • ·l,K 
IF(Nl'l{IK,l).EQ.O)"G@ TO 330 
DO ;40 J = 2,MM 
IF(IM(I,J).EQ.NN(IK,J)) GO 

TO 321. 
GO TO 330 
IF(J.EQ.9) GO TO 355 
COftINUE. 
IlfD{L,I) = NN{IK,1) 
IF(I.GE.2) GO Te 319 
WRITE (6,501)(1tl(IK,JJ), 

JJ • l,MM) . 
FORMAT {lX, 1716) 
:O(IK,l) • 0 
GO TO 320 
C(llffiffE 
C0NfiDE / wm:n {6.,'5oo)(nm(L,J), 

J = l,MP) 
FOBMA! {lX, 86I5) 
:DO 4QO I • l,K · 
IF{NN(I,l).EQ.0) GO TO 400 
GO TO 420 
C@ftDTUE 



GO TO 499 
420 LL a I 

L•L+l 
GO lfO 299 

499 OOftINUE 
STOP 
END 

CHECK DECK 

SUBROOTIIE CHECK (D,II,K.,MD,LD) 
DIMEl~IOB D(l8o0,9) 
MD :-r 2 
1D ;• 2 
J = II - l 

30 IF{NN(K,II).EQ.:NN(K,J)) GO T0 31 
IF(J.EQ.2) GO TO 32 
J !iii J .. l 
GO TO 30 

32 J • II • l 
NA• NN(K,II)/100 
l\T.B • (111i(K,II) • NA.*100)10 
NC • IN(K,II) • NA*lOO - D*lO 
MA• D(K,J)/100 
MB• (D(K,J) - MA.*100)/10 
MC • D(K,;J) ... MA*l00 • M'B*lO 
MDX • IABS(D. • MA) + IABS(D • Ml) 

+ IABS(BC • MC) 
IF(MCX.EQ.l) GO~ 33 
IF(MDX.EQ.2) GO TO 33 
RETUll 

33 n • l 
llffll 

31 LD 0= '6 
RE'.ffll.Ui 
ED 

DATA mu! FOR IA(I) 
ooo,001,010,011,100,101,110,111 
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Jp 

IDRANSFORMATION GENERATORS 

In each table the erdered identifieatien numbers i, 2, ~•~, m are 

equiV!:U.ent pairwise to a corresponding treatment combination in the par~ 

ticu.lar set of te's under consideration. The order of the set of te's 

is the usual increasing order of base 2- numbers. Thus, for example, in 

a a 2 factorial l = oo, 2 = 01, 3 = 10, 4 = 11. 

In ea.oh table given, whenever bltanK spaces are encountered it is to 

be assumed that the number last listed previously in the same @olumn is 

the proper entry. 



TABLE I 

2 TB(2 , A• l)J I = AB :m CD 

(1) 1, a, 4, 3 

TABLE II 

I= AB = CD= EF 

For class (o) split-plot designs use omly tg's (1) and (2). 

tg Number Sequence of tc's 

(1) 1, 2, 4., 3, 7, 5, 6, 8 

(2) 1, 2 , 4, 3, 7, 8, 6, 5 

(3) 1, a , 4, 8 
' 

6, 5, 7, 3 



((1) 
(2) 
(3) 
(4) 
,(5) 
• (6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 
(13~ 
(14) 
(15) 
(16) ?1) 
18) 

(19) 
(ae) 
(21) 
(aa) 
(23) 
(24) 
(15) 
(a6) 
(27) 
(28) 
(29) 
(:,o) 
(31) 
(;2) 
{33) 
(34) 
(35) 
(36) 

-- p1> 
38) 

(39) 
(40) 
(l1) 
(42) 

m(a'., A 2); m(24•1, t:.. a), 
6...; 

I• AB('lD; m(a '-,. l:!:.. 4), I• AB= CD• Er 

For el.ass (o) split-plot designs use only tg's (1)•(54), 
for split-split-pl0t designs use tg's (1)-(18). 

--, 

l 2 3 4 6 5 8 7 (43) l 2 4"3 6 4 T 8 (~5) 12 3 8 4 6 517 
6 7 8 5:" (44) 5 7 8 6 , (86) 4 6 1 5 
7 8 5 6 (45) 5 8 6 7 (87) 4 7 5 6 
7 8 6 5 (46) 5 8 7 6 (88) 4 7 6 5 
8 7 .5 6 (47) 7 5 6 8 ~89) 5 6 '4 7 

12348765 (48) 7 5 8 6 90) 5 G 7 4 
12435678 {49) 7 6 5 8 {9.1) 5 7 4 6 

5 6 8 7 (50) 7 6 8 5 (92) 5 1 6 4 
7 8 .5 6 (51) 8 5 6 7 (93) 6 4 7 5 
7 8 6 5 (52) 8 s 7 6 (?<l 6 5 7 4 

::> 8 7 56 p,> 8 6 5 7 95 7 4 6 5 
1 a 4.:, -s 1 6 5 54) 12438675 ~96 12387564 
J. 4 2 3' 5 e 7 8 (55) l 2 3 5 6 4 7 8 (97) J. 2 4 6 5 ; 7 8 

, 5 6 8 7 (56) 6487 (98) ; ; a 1 
7 8 ' 6 (57) 6 7 4 8 (99) 5 7 3 8 
7 8 6 5 (58) 6 7 8 4 (100) 5 7 8 , 
8 7 5 6 (59) 6847 (101) .5 8 3!'7 

14238765 f 6o) 6874 -?oa) 5 8 7 3 
12346758 61.) 7468 103) 7 3 '8 

-=\ 6 7 8 5 (62) 748, (104) 1, e, 
. 6 8 5 7 (63) 7648 (105) 1, ,·s 

6 8 7 5 (64) 1 6 8 4 (106) 7 5 8 3 
7 5 6 8 (65) T 8 4 Ei (H>7) 7 8 3 5 
7 5 8 6 (66) 7864 (108) l 2·4 6 7 8 5 J 

"<;7658 -(67) 8467 (109) 124683 
' "l G 7 6 8 5 (68) ·.t 8476 (110) 8 3 7,5 

< 8 5 6 7 (69) 8647 (lll) 8 5 3:7 · a~, 1 ,- (70) 2674 (lla) 8 5 7 3 
8 ti 5 7 (71) 8746 (113) 8735 

12348675 _J72) 8764 (114) 12468753 
J. 2 4 :, 5 7 6 8 (73') 12374685 (115) 1 2 4 7 3 5 6 8 

5 7 8 6 (74) 4 8 5 fi (116) 3 ; 8 6 
5 8 6·7 (75) 4 8 6 5 (117) 3 8 5 6 
5876 (76) -, _,· lj: 8 (118) 3 8>6 5 
7 5 68 (77) :; :6':-8 1'- (119) 5386 
7 5 8 6 (78) 5 8 4 6 {120) 5 6 8 3 
1 6 5 8 (79) 5 8 6 4 (121) 6 5 3 8 
7 6 8 5 (Bo) 6 4 8 5 (122) 6 5 8:, 
8 5 €i 7 (BJ.) 6584 (183) 6 8 3 5 
8 5 7 ,-~ (82) 8 4 6 5 (124) 6 as, 
8 6 5 7 {83) 8 5 6 4 ~1:25) 8 3 5 6 
8 6 7 5 (84) 4 6 5 8 126) 12478653 

< , 
,. 



(127) 1 a 4 8 ; 5 6 7 
(128) , . . 3 5 7 6 
(129) 3 7 5 6 
(1;0) 3 7 6 5 
(131) 5 3 7 6 
(132) 5 6 7 ; 
(133) 6 5; 7 
(134) 6 5 7 3 
(135) 6 7 3 5 
(136) 6 7 5 3 
(137) 7 3 5 6 
(138) 1 a 4 8 7 6 5; 
(139) 1 2 8 3 4 (; 5 7 
(140) 4 6 7 5.· 
(141) 4 1 5 6 !142) 4 7 6 5 
143) 5 6 4 7 
144.) 5 6 7 4 

(145) 5 7 4 6 
(146) 5 7 6 4 
(147) 7 4 6 5 
(148) 1 a 8; 7 5 6 4 
(149} l 2 8. 4 3 5 6 1 
(150) 3 5 7 6 
(151) 3 7 5 6 
(152} 3 7 6 5 
(153) 6 5 3 7 
(154) 6 5 7 3 
(155) 6 7 3 5 
(156) 6 7 5 -3 
(157) 7 3 S 6 
(158) l 2, 8 4 7 6 5 3 
(159) 1 a 8 7; 4 6 5 
(100) 3 5 6 4 
(161) 4 3 5 6 
(162) 1 2 8_ 7 4 6 5 3 
(163) 1 4 2 5 3 7 6 8 
(164) 3 7 8 6 
(165) 3 8 6 7 
(166) 3 8 7 6 
(167) 6 7 3 8 
(168) 6 7 8 3 
(169) 6 8 3 7 
(170) 6 8 7 3 
(171) 7 3 8 6 
(J.72) 7 6 8 3 
(173) 8 3 7 6 
(174) l 4 2 5 8 6 7:; 
(175) l 4 2 6 5 3 7 8 
(176) 5 3 8 1 

TABLE III (Continued) 
I 

(J. 77} 
(178) 
(179) 
(18o) 
(181) 
(182) 
(183) 
(184) 
(185) 
(186) 
(187) 
(188) 
(189) 
(190) 
(191) 

. (192) 
(193) 
(194) 
(195) 
(196) 
(197) 
(198) 
(199) 
(200) 
(201) 
(202) 
(203) 
(204) 
(205) 
(206) 
(207) 
(208) 
(209) 
(210) 
(211) 
(:na) 
(9.13) 
(214) 
(215) 
(ai.6) 
(217) 
(218) 
(219) 
(210) 
(221) 
(222) 
(223) 
(224) 
(225) 
(226) 

1 4 a , ; 1 3 B 
5 7 8 3 
5 8 3 7 
5 8 7 3 
7 3 5 8 
7 3 8 5 
7 5 :; 8 
7 5 8 3 
7 8 3 5 
7 8 5 3 
8 3 5 7 
8 3 7 5 
8 5 3 7 
8 5 7 3 
8 7 3 5 

1 4 2 6 8 7 5 3 
1 4 a 8 3 5 6 7 
1 4 a 8 3 ; 1 6 

3 7 5 6 
3 7 6 5 
5 3 7 6 
5 6 7 3 
6 5 3 7 
6 5 7 3 
6 7 3 5 
6 7 5 3 
7 3 5 6 

14287653 
1 4 6 a ; ; 7 8 

3 5 8 7 
3 7 5 8 
3 7 8 5 
3 8 '':7 
3 8 7 5 
5 3 7 8 
5 3 8 7 
5 7 3 8 
5 7 8 3 
5 8 3 7 
5 8 7 3 
8 3 5 7 
8 3 7 5 
8 5 3 7 
8 5 7 3 
8 7 3 5 

lli-628753 
14652378 

2 3 8 7 
lli-652837 

a 8 7 3 

(2~7) 
(228) 
(229) 
(230) 
(231) 
(132) 
(233) 
(234) 
(255) 
(836) 
(237 
(238) 
(239) 
(240) 
(241) 
(242) 
(ali-3) 
(244) 
(245) 
(246) 
(247) 
(248) 
(249) 
(250) 
(251) 
(252) 
(253) 
(254) 
(255) 
(256) 
(257) 
(258) 
(i59) 
(200) 
(261) 
(262) 
(263) 
(2~) 
(265) 
(26,) 
(267) 
(268) 
(269) 
(270) 
(271) 
(272) 
(273) 
(274) 
(275) 
(276) 

73 

1 4 6 5 3 a 8 7 
3 7 8 a 
7 :; 2 8 
7 3 8 2 
7 8 2 3 
7 8:; 2 
8 2 3 7 

14658732 
l lf. 6 7 3 2 5 8 
1 4 6 7 :; 2 8 5 

3 5 a 8 
3 5 8 2 
3 8-2 5 
3 8 5 2 
5 2 3 8 
5 a 8 ; 
5 3 2 8 
5 3 8 2 
5 8 2 3 
5 8 :5 2 
8 2 3 5 
8 2 5 3 
8 ; a 5 
8 .3 5 2 
8 5 2 3 

1 4 6 7 8 5 3 2 
l 4 6 8 2 3 '5 7 

2 :; 7 5 
2 5 3 7 

1 4 6 8 2 .5 7 3 
:; 2 5 1 
3 1 5 2 
5 2 3 7 
5 T :; 2 
7 ; a 5 
7:; 5 a 
7 5 a 3 

111-68753! 
14823567 

3 5 7 6 
3 7; 6 
3 7 6 5 
5 3 7 6 
5 6l 1 3 
6 5 3 7 
6 5 7 3 
6 7 3 5 

1 4 8 2 6 7 5 3 
1 4 8-5 a 3 7 6 

2 6 7 :, 



(277) 1 4 8 5 6 i 3 7 
(278) 6 7 3 2 
(279) 1 4 8 6 2 3 5 7 
(280) 2 3 7 5 

(1) 1 4 5 a 7 6 3 8 
(2) l 4 5 2 8 3 6 7 
(3) 1 4 5 8 2 3 6 7 
(4) 1 4 5 8 2 7 6 3 
(5) 1 4 6 3 5 8 2 7 
(6) l 4 6 3 8 5 2 7 

TABLE III (Centinued) 

(281) l 4 8 6 2 5 3 7 
(282) 2 5 7 3 
(283) 5 2 3 7 
(284) 5 7 3 2 

(7) l 4 6 7 2 3 5 8 
(8) l 4 6 7 2 3 8 5 
(9) l 4 6 7 2 5 3 8 

(10) l 4 6 7 2 5 8 3 .· 
(11) 1 4 6 7 2 8 3 5 
(12) l 4 6 7 2 8 5 3 

74. 

{aB;) 1 4 8 6 7 3 e; 
(~86) 7 3 5 2. 

~&87) 7 5 I' 
(288) 7 5 3 ~ 

(13) l 8 2 3 5 4 6 7 
(14) 1 8 2 3 5 4, 7 6 

. (15) 1 8 2 3 6 7 ~ 5 
(16) l 8 2 7 4 5 3 6 
(17) l 8 2 7 4 6 3 5 



TAJ3LE V 

- ---- ~--~-~-- --~-- -~---------4 . 
N(2 , A= 1) 

For Class (o) split-plot designs use only tg's (1)-(54), for split-split-plot designs use tg's (1)•(12). 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 
(~:;) 
(rif) 
(15) 
{i~) 
{l7) 
(18) 
(19) 
(e __ :_._o __ ":_) 
(~) 
(22) 
(23) 
·(e~') 
(25) 
(a6) 
(27) 
(28) 
(29) 

l 2 4 3 7 5 6 8 16 14 13 15 11 9 10 12 
11 12 lO 9 

14 10 911 12 
10 12 11 9 

7 8 6 5 13 14 16 15 11 9_ 10 12 
11 12 lO 9 

13 15 16 14 10 9 11 12 
10 12 11 9 

1 a 4 8 6 5 7 ; 11 9 10 12 16 14 13 1; 
16 15 13 15 

11 12 10 9 13 14 16 15 
13 15 16 14 

· 1 2 4 3 7 5' 6 8 16 12 10 9 11 15 13 14 
14 13 911 15 

15 .ii 9 
J ' 11 9 10 14 l.j 15 

15. 13 9 10 14 
14 10 9 

9 13 15 11 12 
12 11 9 1, 15 

15 13 . 9 
13 9 10 12 11 15 

16 15 11 9 13 14 10 12 
12 10 9 13 14 

14 13 9 
13 9 1112 10 14 

7 8 6 5 13 9 10 12 1115 16 14 
16 14 11 15 

15 11 l4 

(:5.0) 
(31) 
(32) 
(33) 
{34) 
(35) 
(36) 
(37) 
(38) 
(39) 
(40) 
(41) 
(42) 
(43) 
(44) 
(45) 
(46) 
(47) 
(48) 
(49) 
(50) 
(51) 
(52) 
(53) 
(54) 
(55) 
(56) 
(57) 
(58) 

l 2 4 3 7 8 6 5 13 9 11 12 1·0 l!t l6 15 
15 16 12 10 14 

14 10 12 
14 10 9 11 12 16 15 

15 16 12 
12 16 15 11 9 

16 '12 10 9 11 15 
15 ll 9 10 12 16 14 

14 16 12 
12 16 14 10 9 

16 12 11 9 10 14 
l 2 4 8 6 : 5 7 3 11 9 10 14 13 15 16 12 

13 14 10 12 16 15 
15 16 12 10 14 

14 10 12 
12 10 141615- 13 9 

16 14 10 9 13 15 
15 13 9 10 14 

14 10 9 
15 13 9 10 12 16 14 

14 16 12 
14 16 12 J.0 9 

16 12 10 · 9 13 14 
14 1.3 9 

14 13 9 10 12 
1 2 4 3 7 5 6 l~ 10 9 13 15 11 12 16 8 

1:2 11 9 13 15 16 8 
13 9 10 12 ll 15 16 8 

15 l.l 9 10 li 16 8 -4 
\.JI 



(59') 
(6o) 
(61) 
(62) 
{6;) 
(~) 
(6$') 
(66) 
(67) 
(6$) 
(69) 
(1~) 
(7t) 
(1~) 
(73) 
(74.) 
(75) 
(70} 
(7·T) 
(78) 
{T9) 
(Bo)' 
(Si) 
(82) 
(83) 
(~) 
(85) 
(86) 
(87) 
(88) 
(89) 
(90) 

TABLE V (Continued) 

1 e 4 3 7 5 13 910 12 1115 16 8 6 14 
14 6 8 

14 6 81612 ll 15 
. 15 11 12 

1112 10 14 6 8·1615 
15 16 8 6 14 10 12 

12 10 14 6 8 
14 6 816 12 10 9 1115 

15 11 9 10 12 
12 10 9 

15 ll 9 10 12 16 8 · 6 14 
14 ,6 8 

14 6 8 16 12 
12 16 8 6 14 10 9 

16 8 6 14 10 t ll 12 
li 11 9 

U 11 910 1.ti: :6 8 
7· 8 6 14 10 9 1112 16 15 13. 5 

12 16 15 ll 9 13 5 
10 9 ll 15 13. 5 

15 ii 1210 913 5 
16 12 10 9 ll J.5 13 5 .. 6 14 

llt: 6 5 
J.4 6 5 13 9 ll 15 

l.5 ll 9 
ll 9 10 14 6 . 5 J.3 J.5 

15 1; 5 6 14 10 9 
9 10 14 6 5 

14 6 5 13 91012 J.J. 15 
.l5 11 9 10 12 

12 10 9 
15 ll · 9 13 5 6 14 10 12 

'(9i) 
. (92) 
. (93) 
'(~) 
. (95) 
. (96) 
\;(97) 
;/(98) 
:'(99) 
(100) 
{101) 
{102) l.i.03) 
J.04) 
105) 

(io6) 
(107) 
(io8) 
(109) 
(i.10) 
(i.ll) 
(U2) 
(113) 
(i14) 
(115) 
(116) 
(117) 
(118) 
(119) 
(120) 
(121) 
(122) 

1 a 4 ; 7 8 16 15 11 12 10 9 13 5 6·-14 
: . J.4 6 5 

14 6 5 13 9 
13 5 614 10 91112 

12 11 9 
9 1112 10 14 6 5 

7 15 11 9 10 12 16 8 6 5 13 14 
14 13 5 

J.4 13 5 6 8 
10 14 13 5 6 816 12 
13 5 6 816 12 10 14 

14 10 12 
14 10 12 16 8 

14-10 12 16 8 6 5 
12 10 9 13 5 6 816 14 

14 16 8 
14 16 8 6 5 

14 16 8 6 5 13 9 
16 8 6 5 13 9 lO 14 

14 10 9 
14 10 9 13. 5 

14 10 9 l3 5 6 8 
13 5 6 8161a 11 9 10 14 

14 10 9 ll 12 
12 11 9 

14- 10 9 ll 12 16 8 
9 ll 12 10 14 16 8 6 5 

14 10 9 1112 16 8 6 5 
16 8 6 5 13 9 l.l 12 10 14 

14 io 9 1112 
. J.211 9 

14 10 12 11 9 13 5 .-.:J 
,Q'\ 



(123) 
(124) 
(125,) 
(126) 
(127) 
(1a8) 
(129) 
(130) 
(131) 
(132) 
(133) 
(l 4) 3 
(1:,;) 
(136) 
(137) 
(1,eJ 
(139) 
(14(9) 
(141) 
(142) 
(143) 
(144) 
(145) 
(146) 
(147) 
(148) 
(149) 
(150) 
(151) 
(152) 

~i;?~ 

TABLE V (Continued) 

l 2 4 3 7 15 16 12 11 910 14 13 5 6 8 
14 10 12 11 913 5 6 8 

1 a 4 8 6 5 71; 13 9 10 14 16 12 11 :, 
14 16 12 10 911 3 
16 .1.2 .1.0 14 13 9 11 3 

14 13 9 10 12 11 3 
13 9 10 12 11 3 115 16 14 

14 16 l.2 ll ;!' 7 15 
) 15 7 ; 

15 1 :; ll. 12 
11 3 7 15 li 12 10 14 

} 14 10 12 
. 12 10 14 16 15 '7 3 

14 10 911 3 115 16 12 
12 16 15 1 3 

12 16 15 "f 3 ll 9 
10 9 ll 3 _;,., 1$, 

$ 15 - 7 3 
15 7 3 li ( 9 10 12 

_ 12 io - 9 
15 . 7 3 11 9 lQ 1:2 16 J.4 

]; J.4 J.6 J.2 
12 Hi J.4 l.Q 9 

6 1.4 1.0 9 11 3 7 5 13 J.5 1.6 J.2 
12 16 15 1; 5 7 3 

13 5 7 3 ll 12 16 15 
i5 l.Q 12 

15 16 12 11 3 
15 16 1a 11 3 7 5 

12 16 15 7 3 l.l 9 13 5 
5 13 9 11 3 

11 3 7 5 13 9 

(155) 
(156) 
(157) 
(158) 
(159) 
(160) 
(161) 
(162) ., 
(16:,) 
(1.64) 
(165) 

· (J.66) 
(167) 
(168) 
(169) 
(170) 
(171) 
(l. 72) 
(J. 73) 
(174) 
(175) 
(176) 
(177) 
(178) 
(179) 
(J.8o) 
(181.) 
(182) 
(183) 
(184) 
(185) 
(186) 

l 2 4 8 6 14 10 12 16 15 11 9 13 5 7 · 3 
13 5 7 3 11 9 

9 ll 3 7 5-
13 5 7 3 ll 9 10 12 16 15 

15 16 12 10 9 
15 16 12 10 9 ll 3 

9 10 12 l.6 15 11 3 1 5 
15 16 12 10 9 ll 3 7 5 

16 12 10 9 11 3 7 5 13 15 · 
. 15' 13 5 
C 1, l.J 5 7 3 

13 5 7 3 11 15 
15 11 3 

15 ll 3 7 5 
15 7 3 1112 l.0 9 13 5 

5 13 910 12 11 3 
11 3 7 5 13 9 lO 12 

12 10 }9 13 5 7 3 
13 5 7 3 ll 9 10 12 

12 J.O 9 
9 10 12 11 3 7 5 

7 3 ll 9 10 l.i 1~ l4 6 - 5 13 15 
;.:. 1; l} 5 .-6 14 

i, 14 :6 ; 
14 6 . 5 1:; 15 i6 J..2 . 

13 5 6 i4 10 12 J.6 15. 
15 16 12 10 14 , 6 5 . 

12 10 9 1.; d> 6 14 i6 J.5 
- i5 i6 1.4 6 . ; 

16 15 1} -5 6 1.>+ 10 9 
9 10 l.4 6 5 

J.5 13 5 6 l.4 J.6 12 10 9 
~ 
-.:i 



(187) 
(188) 
(189) 
(190) 
,(191) 
(192) 
(193) 
(194) 

<.19. '.··.) (196(l 
(197) 
(i98) 
(199) 
(200) 
(201) 
(202) 
(203) 
(20~) 
(205) 
(206) 
(207) 
('208) 
(209) 
(210) 
(2ll) 
(21:2) 

TABLE V (Continued) 

l 2 4 8 7 3 ll 15 13 9 10 12 16 14 6 5 
16 12 10 913 5 614 

14 6 .5 
14 6 5 13 9 

14 6 5 13 9 10 12 
5 7 14 10 9 13 15 16 12 ll 3 

12 16 15 13 $Lil 3 
13 9 10 12 16 lJ 11 3 

15 16 12 10 9 ll 3 
16 12 10 9 13 15 ll 3 

15 13 9 10 12 11 3 
15 13 5 6 14 16 12 10 9 ll 3 

16 12 10 14 6 5 13 9 ll 3 
14 6 5 13 9 10 12 11 3 

16 12 10 9 11 3 7 5 6 l~ 13 15 
15 13 5 6 14 

l!J. 6 5 
15 13 14 6 5 .. 7 3 

13 14 6 5 7 3 1115 
l.5 ll 3 

15 ll 3 7 5 6 14 
14 6 5 7 3 11 ·· 9 J.3 15 

15 13 9 
15 13 9 11 3 

13 9 ll 3 7 15 
15 7 3 

(ru.3) 
(214) 
(215) 
(216) 
(217) 
(:218) 
(219) 
(220) 
(221) 
(222) 
(223) 
(22~) 
(225) 
(226) 
(227) 
(228) 
(229) 
(230) 
(231) 
(232) 
(233) 
(2;54) 
(a35) 
(236) 
(237) 
(238) 

l 24816 12 10 14 6 5 13 15 7 3 ll. 9 
ll 3 7 5 614 10 9 13 15 

15 13 5 6 14 J.O 9 
9 10 14 6 5 

9 10 14 6 5 13 15 7 3 
15 13 9 10 14 6 5 7 3 

14 6 5 7 3 1112 10. 9 13 15 
15 13 9 10 12 

15 13 9 10 12 ll 3 
13 9 10 12 ll 3 7 15 

-J.5 7 3 
15 7 3 ll 9 10 12 

12 J.O 9 
1615 7 3 11 9 13 5 6 14 10 12 

12 10 9 13 5 6 14 
J.4 6 5 

14 6 5 13 9 
5 6 14 13 9 10 J.2 ll 3 

11 3 7 5 6 14 13 9 10 12 
12 10 9 13 14 6 5 7 3 

13 9 10 12 11 3 7 5 6 14 
14 6 5 7 3 ll l~ 

11 3 7 5 6 14 10 l~ 
12 .lO 14 6 ·. 5 7 3 

14 o ·; 7 3 11 '9 20 ia 
12 lO 9 

-:i co 



TABLE VI 

TG(a4, A~ 2); TG(25·l j A = 2), I = ABODE; TG(2 ?•3, Ai!!: 4); I = ABC = DE .., FG 

For class (0) split..:.plotdesigns use tg's (1)-(10), for split ... split~plot designs use tef's (1) .. (5). 

(1) l 4 2 3 7 5 6 8 12 10 9 11 15 13 14 16 
(2) l 2 4 3 8 5 7 6 10 9 ll 12 14 16 13 14 
(3) .. 1· • 4 3 2 5 6 8 7 ll 9 10 J.ti! 16 J.3 15 14 
(4) J. 4 2 3 5 8 6 7 ll 10 J.2 9 J.3 14 16 J.5 
(5) 1 3 a 4 7 6 8 5 9 12 11 10 1:, 15 16 14 
( 6) l 5 2 4 7 3. 8 6 13 ll 9 15 12 10 14 16 
(7) l 4 7 3 8 6 2 5 14 9 18 15 13 10 16 ll 
( 8) 1 6 4 e 8 1 ; 5 9 14 10 16 1a 15 1; 11 
( 9) l 2 8 5 3 6 4 '7 ll 16 13 10 14 9 12 15 

(10) l 7 3 8 €i 4: 2 5 15 12 14 10 ll 16 13 9 

(11.) 1 6 10 12 4 a 14 16 11 :, 8 7 13 15 9 5 
(11) J. 2 lii 15 9 3 8 J.4 10 6 5 J.J J.6 ll 4 7 
(13) 1 5 6 14 a ia 4 16 8 J.5 :, 1 13 11 9 10 
(14) l J.O 16 14 5 8 J.2 9 2 6 13 11 7 3 4 15 
(15) l 13 J.4 1> 8 2 10 16 ll 4 7 15 5 9 :; 12 
(l{)) l 13 6 10 2 14 9 5 7, 3 J.l 16 J.2 4 8 15 
(17) 1 9 3 12 u 7 16 13 5 \ 8 a 10 4 6 14 15 
(J.$) l 3 7 16 l.O 6 4 ll 9 J.4 5 8 2 12 15 13 
(19) J. 4 ll 15 5 7 13 10 2 J.2 9 3 8 J.4 6 16 
(ao) 1 7 4 10 1; 5 15 9 12 3 11 16 8 14 6 a 

TABLE VII 
/ 

4 
TG(2 , A :l!! .3) 

(l) 1 14 11 2 7 9 4 5 16 3 6 15 10 8 13 12 
(2) l 12 7 2 11 14 4 9 8 13 3 6 15 10 5 16 
(3) l 8 11 2 7 14 3 10 15 6 1.2 13 4 5 16 9 
{4) 1 16 9 8 11 2 13 4 14 3 6 15 10 7 12 5 q 

XO 



TABLE VIII 

Class (0) 

Design 

Spli t•pl.ot 
Split ... split-

plot 
Split .. split"" 

spl.i tmplot 

tg 

(1)-(2) 

(1)-(4) 

, (1)•;(6) 

m(a5, A 1:. 2); 
( 6-1 ) TG2 ,A=2, 

I = ABCDEF 

Class (0) 

Design 

Split-plot 
Split-split­

plot 
Split-split ... 

split-plot 

tg 

(1) .. (6) 

(1)-(4) 

(1)-(2) 

80 

TABLE X 

5 TG(2,A-£3) 

Class (0) 

Design 

Split ... plot 
Split ... split .. 

plot. 

tg 

(1)-(4) 

(1) .. (2) 

' 
(1) (2)-(3) (I~) (5) (6) (7) (8) (i) (2) (3) (~;) (;) (6) (7) (8). (1) (2) (3) (4) (5) (6) (7) ($) 

l l l l l l l l 
2 e e a s a 17 2 
4 4 4 4 4 4 25 10 
3 ' 3 3 3 8 9 26 
7 7 7 7 · 7 16 13 18 
5 8 5 8 8 12 29 22 
6 6 6 6 16 11 31 6 
8 5 8 5 21;:2 3 23 14 

16 13 16 13 io 1 1 30 
14 15 12 14 i~ 5 15 29 
13 16 1110 :6 6 11 31 
15 14 15 9 '5 14 27 32 
1110 13 111, io 1916 

9 9 9 15 15, 9 3 8 
10 1110 16 ii 13 4 4 
12 12 14 12 J 9 15 2 3 
as ea ;o as?~ ;11a 19 
27 27 29 27 2G 32 20 27 
25 25 3~ 25 28 30 24 11 
26 26 32 29 32 26 8· 15 
30 30 28 313018 16 13 
32 29 27 32 ae 17 14 9 
;1 31 25 30 is 25 6 25 
29 32 26 26 29 29 5 17 
212418 18 3;1. 21 2l 21 
23 ee ae 20 27 23 22 5 
24 al 2.1 24 19 19 30 7 
22 23 e:, 2a 1f 27 32 23 
1819 24 2118 28 28 24 
20 17 20 17 20 20 26 20 
19 18 19 19 24 24 10 28 
112011 23 23 22 12 1a 

·11111111 111111.' 
4 , 5 1 a 13 ~ 2 , 2 2 2 15 25 20 10 
2 2 2 3 12 6 8 22 5 7 16 12 24 17 27 30 
3 4 4 8 15 10 16 29 7 8 4 4 21 19 15 17 
7 7 7 6 9 2 24 13 8 4 14 15 13 4 14 13 
5 6 3 4 3 14 7 i6 4 3 1111 9 3 12 15 
6 8 8 2 8 9 31. a4 6 6 3 5 5 31 4 3 
8 5 6 5 r4 52819 :a 5 5 8 1.8 28 8 8 

12 9 13 15 10 7 18 28 16 1.3 13 3 25 10 10 22 
10 12 11 12 6 3 10 1~ 9 14 15 13 27 16 18 28 
'9 11 9 14 . !, 11 6 lil· 12 16 7 16 32 7 22 32 

11 10 15 10 13 16 .. 4 20 10 9 9 7 8 5 21 24 
15 13 12 1116 12 20 32 13 1112 141613 912 
13 15 10 16 li 4271, 1112 6 9 3 21 29 6 
14 16 14 13 :4 8 914 14 10 8 6 22 26 31 5 
16 14 16 . 9 7 15 14 ·' 15 15 10 10 30 14 24 16 
32. 22 a4 17 :31 27 22 ai 19 32 17 25 17 2 5 31 
29 24 23 22 19 25 32 1~ 21 25 241811 8 13 20 
30 2117 2.0 202912 25 24 28 30 32 2 24 30 18 
31 23 20 18 28 22 3 30 ,17 26 31. 24 14 18 25 14 
28 ao 22 24 a, 20 19 31 .18 31 26 28 26 12 28 2 
87 17 19 23 32 32 25 21 ,·23 30 20 29 29 15 3 25 
25 19 21 19 24 ~ut,li u ao 29 19 26 6 32 2 29 
26 18182118i71i 1~ a2 27 23 ao 3 30 17 7 
22 30 -30 25 21 19 29 ~ 28 2J.. 28 22 19 22 7 4 
24 31 25 30 30 24 30 26 30 17 32 17 28 6 16 19 
23 32 28 26 25 31 21. 17 25 19 29 30 12 9 32 26 
21. 29 31. 32 17 30 13 5 32 24 2J. 2J.. 4 11. 26 27 
17 a~ 27 28,27 28 5. 23 3.1231.819 23 27 611. 
20 28 32'312318 23 '8 29 18 27 31 31 29 23 23 
18 27 29 29 2921.1.7 7 27 20 25 23 20 23 19 21 
19 25 26 27 22 23 26 3 26 22 2~ 2710 20 ll. 9 
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TABLE XI 

For class (0). split-plot designs u.se tg (1) 

'l'G(26, fl• l) ·-- m(26, A ,s 2) ( 6 N 2, b. '!I. 3) 

Ci) ' (1) (2) (;) (2) (3) (1) (e) (3) 

1 1 l l l l l l l 
17 33 5 2 41 9 20 2;) 8 
25 49 6 8 34 26. 27 3a 22 

9 17 14 16 2 42 15 44 52 
13 35 25 61. 13 4 24 45 42 19 57 23 14 41 20 17 57 6 
29 36 9 45 29 20 7 39 58 31 17 21 12 43 30 59 28 .. , 
31 52 41 31 6J. 28 31 4o 26 55. 2 1 4 60 63 35 44 49 
ti3 56 57 53 53 12 28·64 50 52 50 47 8 59 49 41 15 60 
7 64 58 21. 37 1.6 18 58 18 49 58 46 10 39 55 38 35 56 

15 6o 42 5 45 48 10 41 20 59 18 64 18 36 31 2 ll 31 
11 59 10 1.3 47 46 6 37 12 25 a4 30 22 50 14 19 lli- 26 
27 63 26 15 15 62 4 38 6o 28 40 29 21 56 22 50 62 12 
19 55 18 47 31 58 ae 46 51 ll :59 31 9 63 >; 6o 5; 24 

3 ;9 50 63 63 57 27 61 53 9 51 !7 29 61 :!!5 36 4 (5:, 3 
4 47 34 55 ~ ~9 9 54 23 3 6@ 59 3l 53 ~3 ll -9 58 
a 45 2 51 32 50 14 56 39 17 20 19 24 li-5 48 3 17 46 

18 37 6 19 a4 18 22 63 15 57 i2 35 5 34 13 6 4 i3 
20 33 J.4 20 ·--s 2 32 59 32 '' 8 33 13 5li- 58 56 40 2 
24 41 46 28 40 3 1a 52 48 45 16·49 30 58 21 40 50 :;6 
8 42 38 12 56 35 :; 44 64 5 32 52 25 64 24 33 l.9 48 

16 34 54 44 
'' 33 

19 6o 6:; 38 48 4 28 48 -'9 10 25 li-; 
14 38 22 43 

'' 41 
25 48 27 14 ,, 10 3 42 :,h- 16 41 29 

6 40 30 59 7 42 11 47 43 29 55 25 a 52 $8 29 39 59 
5 48 62 6e a; }4 15 35 44 62 37 61 17 55 46 53 ;4 20 

21 46 611- ;2 21 38 · 29 33 16 56 41 62 7'40 )1 51 30 1 
22 62 ;a 36 17 54 30 50 10 8 11 14 16 :;8 a6 7 ;a 16 
30 61 16 35 25 22 21 5,3 6 36 4) 6 32 46 ;4 15 lll 38 
;a 57 .lt-8 39 27 30 13 49 30 4 3 2"2 86 62 42 64 61. 53 
28 58 40 7 1.9 26 5 55 46 24 5 54 6 49 61 62 42 23 
26 50 56 8 51 J.O 23 51 l~ 40 13 34 23 51 57 45 ;Ai. 64 
10 54 24 4 5! 9 17 ;6 61 47 4; 36 19 35 18 9 18 27 
12 53 23 :; 6© ll e6 34 54 1 15 JS 11 37 27 28 5110 
44 49 31 ll 44 4:; 57 4a 22 35 63 44 57 47 52 12 47 33 
43 51 2, 27 :;6 59 62 43 8l 37 53 28 33 44, 54 47 37 3 
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