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CHAPTER I
INTRODUCTION
Seguential Experimentation

The coneept of sequential experimentation is subjeet to the
interpretation of the individual. To some persons it might suggest ex-
perimentation in which treatments were applied to each experimental
unit In a sequential manner. Detection of effeects due to this sori of
sequential ordering has been investigated by Prairie and Zimmer [9];
Other persons might visualize experimentation in which results of
applied treatments became available for observation in a sequential
manner; This sort of situation would include experiments in which the
treatments were applied to the experimental units in & sequential
manher, with results of one treatment being observed before application
of the following treatment. This is the sort of sequential exper=
mentation in which thé material presented in this thesis could be
useful .

A great amount of this type of experimentation is related to im-
provement of hénﬁfacturing processes., Sinee most manufacturing pro-
cesses are controlled by a number Qf factors, the experiment is usually
designed to determine which combination of the possible levels of the
controlling faetors will give optimum output of the prbdnct.

Avnaturﬁl method of experimentation is a factorial arrangement of

treatments vhere each factor is set at each of two or more leve;é with
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all possible combinations of the other factor levels. A combination of
factor levels is called a treatment combination if all factors under
consideration are specified; In an exploratory type of experiment it is
ordinarily sufficient to use only two levels of each of the factors;
This is known as a 2" factorial, where n 1is the number of factors.
On the basis of the information gained from a a2 factorial, one can
obtain a related set of optimum operating conditions (optimum as indi;
_cated by this facterial), Additional experimentation can be done on
selected factors at the discretion of the’experimenter with other levelé
of these factors to find an improved optimum set of operating coédiu
tions;

A definition of the terminology to be used in deseribing sequential

experiments is now given,

Definition lel. A treatment run will be the performance of an

operation under the conditions specified by a particular treatment
combination. An experiment will consist of a sequence of rums.
Usually the nuﬁber of rung in the sequence will be specified before

the experiment begins..

Suppose the various treatment combinations (also denoted by te's)
are run sequentially on the same piece ¢r pieces of equipment; That is,
the process is a continuing one and the various control settings or con-
ditions, i, é. te's, are imposed on the process without shutdown, or
with only a pause in the operation of the equipment. This sequential
ordering of the te's is a basis for several potential diffieculties.

Each of these difficulties has very serlous implications in both the

‘perfo?mance'of the physical operation as well as the interpretation of



the analysis of the experiment.
One of the problems created by the sequential ordering of the

treatment runs is the phenomena of incompatibility of adjacent te's.

Definition 1-2, ZTwo treatment combinations will be called adjacent
if one follows immediately after the other in the sequential order

of running the experiment,

Often the process under investigation or the nature of the equip-
ment being used prevents one from having certain sets of operating con-
ditions (te's) adjacent in the sequéntial order df running the experi-
ment;' It may also be difficult to "line out" the spparatus if wany
factors are changed from one run to ‘the next., Thus in the face of an
incompatibility condition, the ususl reguirement of random assignment
of tc's to the experimental units (process runs in the industrial
context) is restricted. This thesis deals with several aspects of this
incompatibility condition on adjacent treatment combinatiéns;

In particular, this work is conecermed with 2" factorials when
the incompatibility condition restriets the number of factor levels
which may be ehﬁnged from run to run.

Another inherent problem of sequential processes is a "learning”
or "wear" phenomena, Learning is any systematic change in the process
not attributable to the applied treatments direetly controlled by the
experimenter. This aspect of sequential experimentation has been in=-
vestigated in a numbefuof papers, Daniel and Wileoxen [2], Hill [5], and
cox [1].

In industrial experimentation results are usually available in a

relatively short time. The period required for the experimentation is



measured in hours or days rather than weeks or m@nths; This property
makes it practieable to look at the results of sets of rums of te's or
individual te's before continuing with other runs or to run & fractional
‘replicate of the complete factorial. One then obtains a statistical
analysis of the resulis before continuing with additionel fraetions to
complete the factorial. Among the many useful papers regarding this
sort 6f analysis one finds material by Floyd [4], Hunter [6], and Davis

and Hay [3].
Digcugssioen of the Problem

Consider an experimental situation as deseribed previously where a

aI".l

factorial design of some type is to be run sequentially with the
compatibility condition that no meore than A faector levels may be
changed between adjacent te's. In order that a statistical analysis of
the experimental results have good properties, the usual approach of the
statistician is to require full rendemization. Under full randomization
the properties of the statisticel enalysis depend only upon the ussump;
tions made concerning the mathematical model used to describe the exper;
imentel process, see Kempthorne [7] or Ostle [10]. Obvicusly this will
not be possible in the situation stated above unless A= n, If A< n,
then only something less than the usual type of full randomization may
be done by the experimenter., It is the purpose of this writer to ine
vestigate this problem fer arbitrary velues of n and A, A method of
constrained réndomization will be given for complete factorial and
fractional replications in randomized bleck designs and for splite-plot

designs. As used in this thesis, constrained randomization consists of

& method of randomization for any given sequence which will not iestroy
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the @ompatibiiity properties of adjacent tc's; The experimenter obtains
a sequence of the te's which satisfies the compatibility .eriterion, and
then performs a series of operations at random on the_sequenee; The
operations are restriected to these which preserve the compatibility of
adjacent te's. The set of sequences obtained in this manner using qqn;
strained randomization is a subset of the set of possible sequences ob;
tained using complete randomization. Other discussions of types of con=-
strained randomization may be }eund in Kempthorne (8] and in Daniel and
Wileoxen [2].

A statistical analysis based on the constrained randomization
technigue used will be developed for the designs discussed using both
the infinite model and & randomization model. Attentibn is given te
estimation of main effects and interactions, estimation of the variances
of these estimates, and estimatit?n of experimental error;

In order to clarify the following disecussion, several definitions

will be made.

Definition l=3. Two treatment combinations have order of adjacency

A if the number of factor levels which are different in the two

adjacent tec's is equal te A.

Consider & 2" factorial type experiment with treatment cqmbina-

. E L § ]

(%1% p00eX; ), where the x;4's are either O's
or l1l's and similarly for adjacent treatment combinations i'. The

tion i denoted by

order of adlaceney, A, -‘is given by the sum,

A= %'Xij - xi'j,



Definition 1-k. A sequence of treatment combinations is called a

A order sequence if the order of adjacency for every palr of ad-

Jacent te's in the sequence is equal to A.

Notice that restricting the value of A to be < n in a 2?
factorial experiment induces a compatibility ¢ondition on the sequence,

as mentioned earlier.

Definition 1=5. ég_ggerational sequence will be any seguence of
w ) ' ) :

the tec's which satisfies the particular compatibility requirement

imposed on the design by the experimenter and/or the experimental

process.

An eperational sequence is, therefore? one which may actually be
run by the experimenter in the process under investigation.

The constrained randomization experimental designs developed in
this thesis are applicable iﬁ a sequential proeeés. The praceés under
investigation ié a factorial (2 level) experiment with a compatibility
reguirement on adjacent te's. The compatibility condition requires
that the sequence of tc's must be a A order sequence.

Three types of factorials are discussed. Methods of constrained
randomization for full 2% factorials in blocks and for 2° P frac=-
tional replicates are presented in Chapter I1I1. Chapter IV contains
constrained randomization for splite-plot designs of a factorial. The
constrained randomization methods may be easily used by the experimentexn

The methods of énalysis developed for these designs under eonkzu
strained randomization will be related to different assumptions re~
garding the populatien of inference.

For both models unbiased estimates of main effects and interactions



are found., An estimate of experimental error is obtained and used to

estimate variances of main effect and interaction estimates.
Example

Consider a 22 factorial experiment in a rendomized block design
with three complete blocks to be run. Let the compatibility conditions
require that each sequence be of order A= 1,

A 22 ractorial experiment consists of the tc's (OO), (o1), (10},
(11). There are 24 different possible sequences of these four te“s;
Some of these wi.l.l-, have order A = 1, and some will not. By listing
all 2k possible sequences it is found that the eight operational se-

quehces vhich follew have order A= 1.

00 00 oo oL 10 10 11 11
o1 10 00 1 00 11 01 10
11 11 10 10 oL 01 00 00
10 o1 11 00 11 00 10 01

The other 16 non-operational sequences have at least one adjacency witﬁ

order A= 2. The gsequences

00 00 ol o0l 10 10 1l 11
o0l 10 00 11 00 1l oL 10
10 o1 11 00 11 00 10 Ol

1l 11 10 10 QL (€11 00 00

all have orders of adjacency A =1 for te 1 and tc 2, A =2 for te 2

end tc 3, and A= 1 for tec 3 and te 4. The sequences



00 00 o1 0L 10 10 11 il

11 11 10 16 01 01 0 00
0L 10 00 11 00 11 0L .10
10 01 11 00 11 00 10 o1

all have corders of adjacency A= 2 for te 1 and tc 2, A= 1 for

tc 2 and te 3, and A= 2 for tc 3 and tc 4., Thus the experimenter
might pick at random with replacement three of the operational sequences
in the first group. O©One sequeﬁce wouldzbe gselected. for each block or
replication which is to be run.

In the 22 factorial experiment it was not a difficult task to
list all possible sequences and then separate the operational seguences,
whieh satisfied the compatibility cendition., In a larger experiment
this method is not practical; in a 27 experiment there are 8{@ pog=
sible sequences. More refined methods of finding sequences which satis-

fy particular compatibility conditions are presented in Chapter II,



CHAPTER IT
FINDING OPERATIONAL SEQUENCES

This chapter deals with the problem of finding an operational
sequence of order A for a 2" factorial. An example is provided which
demonstrates the difficulty of obtalning an operational sequence and a

geometric interpretation of the problem is given.
Preliminary Considerations

Any method of finding an operatiénal sequence for a 2"  factorial
-must use all 2 treatment combinations. The order of adjacency of
every pair of adjacent tc's must be equal to A. (The degree of random-
ness used in obtaining the sequence will relate to the validity and
generality of the analysis of the results of the experiment;);

One may think of the 2% te's as points in a finite geometrie
space., Finding an operational sequence is equivalent to finding a path
which connects the vertices of the space. The path must be unbroken,
connect all of the vertices, and interseet each vertex only once; To
satisfy the compatibility condition, the distance, measured along the
lattice lines, between adjacent intersected points must be equal to A.

The major pitfall awaiting the individual constructing an opera=-
tional sequence of te's according to some random scheme is now reiated.
After arrangingisome portion of the operational sequencé and arriving
at, say, the jth ordered te in the sequence, no other te can be found

among the remaining unused te's which satisfies the compatibility
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eondition. That is, for each of the unused te’s, the order of adjacency
with te ] ié n@f equal to A;

For example, consider a 23 factorial experiment in a full repli;
sate design with A = 1. Suppose the following operational sequence has
been arranged: 000,010,110,111,101,001,011. The only remaining te is
100; However, the order of adjacency of 01l and 100 is A= 3
not A= 1,

ée@metrically this problem can be thought of in the following
manner. After some portion of the path comnecting the vertex points in
the finite geomelry is completed, all 6f the rdemaining points in the
space are at a distance not equal to A from the end peint ef the path
@ompleted; Considering the above example of & 23 factorial experi=
ment, the following graph illustrates the problem in a geometric sense.
S0lid lines withAaerWS denote the connect path. Again the lattice

line distance from 01l to 100 is 3 units rather than 1 wunit,

(ool) (o11)

N

/

)

.' L o, au)
]

|

Thus it becomes clear that a method of finding a random eperation-
al sequence iz needed which will avoid the type'of impassé which was
Just illustrated, This will be accomplished by using a method of cone

strained randomization on a set of transformation generators,
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Definition 2«1, A transformation ggperator'(tg).is an operational

sequence with the first tc being (00« « +0), the low level of
each factor, which will generate a set of Operayional sequences

under constrained rsndomization.

The notation m@(an, 4) will be used to identify a set of trans-
formation generators for particular values of n and A. Using com=
pletely random selection from the set of generated operational sequences
the analysis of the data obtalned from the selected sequences will be

shown to possess good statistical properties.

Definition 2-2. A pair of operational sequences are isomorphis if

one may be obtained from the other by the methods of comstrained

rendomization. Otherwise,-they are not isomorphiec.

The methods of constrained randomization presented in theigubse-
quent chapters require that one have & set of transformation geﬁerators.
Such & set of transforﬁation generators may consist of only one

sequence ef te's or it may consist of a large number of sequences of
te's, From an intuitive point of view, one would probably desire & (
large or even a maximal set of tg's. However, this is net reguired in
order to perform an analysis of the reéults.

There are two requirements which must be met in order for a se=
guence to belong to the set of transformation generators. Each sequence
must be an operational sequence and no pair of tg's should be isomorphic
under the methods of constrained randemization. Thus it is regquired
that one be able to find operatipnal sequences by some method, which

need not be random. That is, one need only be able to arrange all the

te's into sequences which satisfy the compatibility condition. Then
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all such sequences which have (00+ + +0) as their first tc and which
are not isomorphic to one another make up the set of transformation
generators. The remainder of this chapter deals with finding trans-

formation generators,
Branch Diagrams

One could find a set of sequences which inecludes the maximel seb
of transformation generators by construeting a branch diagram for any
particular 2" experiment. This would be done in a menner similar to

that shown for a 2° with A= 1 bhelow.

0l —11 — 10

oo<
N10 —11—o0L

From this one gets the two operational sequences 00, 01, 11, 10 and
00, 10, 11, 0l., Now the maximal set of tg's for this situation,

2, A= 1), can consist of either of these but not both, since they

76(2
are isomorphie under the method of constrained randomi;ation'presénted
in Chapter III., This method of fin&ing all tg's, intféet finding an
even larger set of seguences of te's, has'two defeets. It is unneces--
sary to have a set of sequences larger than the maximal set of tg's for
constrained randomization. Also, the number of possible branches on

the diagram becomes upmanageably*large for even a '23 experiment with

the compatibility requirement that the sequence be of order AS 2,
Adjacency Tables

The intuition and natural caution of the experimenter would

possibly cause him to desire a maximal set of transformation generators
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for constrained randomization. However, it will be shown that one does
not need to have a maximal or even a large set of tg's. Since one or
only a few tg's will be sufficient, one might list &all of the treatment
combinations and the proceed to arrange them into a A order sequence;
This process would be facilitated by the use of & tabular listing of
te's with order of adjacency A. An example of such a table is given
below. An x in the intersection of any row and column indicates that
the te's listed in that row and column have ofﬂer of adjacency equ@l
to A,

For a 27 experiment with A =1, the following table indicates

te's with the proper order of adjaceney;

000 |

x | oo1 25, A=1

b4 010
% X 011

X . 100
x | | x| 101
X b4 110
x ' x x 111

Note that to find‘a transformation generator one would always start
with (00 « @) ds the first tc in i};he sequence., Then using the table
above, or a similar one for other values of., n or A, the seguence
could be completed by consulting the table at each step to find édja-
cent te's.

Of course in arranging a sequence satisfying the compatibility
condition, one might find himself confronted with the same situation as
in the earlier examples. A number of te's may still remain to be used,

none of which has order of adjacency egqual to A with respect to the
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last te in the partially arranged sequence., In this case, one only
wants an operational sequence and nothing is sacred concerning the order
in which the te's are encountered. Thus,it will be satisfactory te re-
arrange the seguence already partially completed until all of the te's
have been used and the final sequence is of order A, For instance; one
might have the sequence 000, 010, 110, 111, 101, 001, 011 for a 25
with A=1, leaving the te 100 left over. Supposg that 100 is imp=
serted after 110, 1in the fourth process run (plot). >Then one has the
partial sequence 000, 010, 110, 100. Next must follow 101, then
either 111 or G0l. In either case the sequence may Be finished using
all eight te's and having order A = 1, Other possibilities obviously
exist and would lead to other operational sequences, which could be used
as transformation generators.

It was this method which was used to prepare Tables VI through
XI' in the a@%endix, The first five tables or non-maximal portions of
them could have been prepared in this manner. However, for these five
tables the IBM TOLO computer at Oklahoms State University was en@ioyed
to find all possible operationéi seguences for a given 2nv experiment

-and compatibility eondition A,
Computer Use

Essentially the computer program was used to find all possible
branches of the branch diagram. Then transformation generators, that
is, operationsl sequences which are not isomorphic under eonstrained
randomization, were found and are listed in the gbpendix. These'are

necessarily maximal sets of tg's since all possible operational se=

guences were searched by the computer to find the set of tg's.
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The computer program for a typical situation may be found in
Appendix A.

The computer was not used for finding the sets of tg's after Table
V in the Appendix B because ﬁhe computer time required te find & maximal
set of tg's was prohibitive. Also, since a maximal set is not reguired
for constrained randomization, it was deemed sufficient to provide a set
of representative tg's.

The methods of constrained randomization using sets of tg's are

- presented in the next chapters.



CHAPTER III

CONSTRAINED RANDOMIZATION FOR A 2°°F FAGTORIAL

IN A RANDOMIZED NON-CONSECUTIVE BLOCK DESIGN

This chapter contains methods of constrained rancemization for
2P fractorials in randomized complete block designs, where each block
is independent of the others. The methods are applicable for n 2 2
and 0= p <n., A discussion of sets @f unigue transformetion gener-
ators used in constrained randemization is inecluded with references to
the appropriate tables of these sets of generators in Appendix B. The
analysis of each of these designs is given, both for infinite model amd
for randomizatien model assumptions. The model which a particular ex-
perimenter may use will be determined by thev@rmeess under investigabtion

ag&/the population to which he wishes to draw inference.

Transformation Genevators and

Constrained Randomization

'As previously defined, an arrangement of the treatment combinations
into a sequence which satisfies the @@mp&tibility condition is called an
operational seguence. A tramsformation generabter is a given operational
sequence of treatment combinations which is used in the censtrained
randomization technigue to generate additional eperational se@uenees;

It is necessary to bave & set of transformatien generateors, each of

which is unique under the method of constrained randomization whieh

16
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follows. The statistical anmalysis presented in subsequent sections of

this thesis will be shown to be velid for any set of transformation

generators. Thus a set eonsisting of only one transformation generator

will be sufficient for constrained randomization.

Sets of unique transformation generators for the varieus con-

strained experimental designs discussed in this thesis are given in the

appendix.

Constrained randemizetion for a 2B"P fagtorial in non-consecubive

replicates is performed according to the follewing outline.

(1)

(2)

(34)5.

For each replication of the basiec design a single transfermatien

generator is chesen at random from the appropriste set of unigue

transformation generators in the appendix. The proper set of

transformation generators is identifiable by the value of n and

the compatibility condition.

For each replication, randomly assign the n factors ugder
investigati@n to the n pseudo factor names Xys Xyy o0y X in
the 2%P treastment combinations. Note that the assignment is
@nlyvd@pe ;nee in each replication., Thus each tc in a given rep-
lication has the same assigonment of real factor names;

Randomly choose one of the base 2 numbers which represents a te
;;éd in the factorial experiment. Then combine this number with
each tec using veector addition modulo 2. This step éffeetively does
& random assigament of the high and the low levels of each factor

to the pseudo level names O and 1 in the 2P te's, where

the high levels are then renamed 1 and the low levels renamed O,
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Exemple énl; As an example of this technique comsider the following
rendomization obtained for one replication of & 25 -factorial eﬁperia
ment when the compatibility condition requires that the order of ad-
Jacency be equal to 1, - that is, a full 25: with A= 1.

From Table II in Appendix B, one finds a maximal set of transe~
formation generators, namely _TG(23 , A=1):
(1) o000, 0oL, 011, 010, 110, 100, 101, 111
(2) o000, 001, 011, 010, 110, 111, 101, 100
(3) o000, 001, 011, 111, 101, 100, 110, 010
One of these generators is selected by a random process. Suppose it is
(2) ooo; 001, 011, 010, 110, 111, 101, 100.

Following step (2) in the constrained randomization process, one

randomly essigns the real factor}names A,_B, C to the pseudo factor

names ' X;, X5, x3 in the 25 sequence, Suppose that one obtained the
following: A = Xn; B = x5 and C = x5. The operational seduence

would then be arranged into the following form: 000, 00L, 101, 100,
110, 111, 011, 010. Note that this is still an operational sequence,
i.e.; that A =1 for every adjacency.

To complete the constrained randomization proecedure, one now
chooses at random one of the base 2 numbers 000, 001, 010, 0ll, 100,
101, 110, 111. Suppose that it is 101. Then 101 is added component~
wise modulo 2 to each of the tec's in the eperational seguence eobtaeined
in step (2). The result is 101, 100, 000, 00L, Oll, 010, 110, 1ll,
This is the operational sequence which would be run in the éxperimental
situation under investigation by the experimenter. Noté that the con-
patibility reqqirement, A =1, still holds for this sequence. A

theorem formalizing this observation follows.
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Theorem 3-1. The sequence of treatment cembinations resulting from
constrained randomization is an operational sequenee; If the set
of unique transformetion generators is maximal, then the opera-
tional sequence obtained is equivalent to randomly choosing an
operational sequence from the totality of all such sequences of
te's,

Proof of Theorem 3-1.. The set of transformation generators is a set of

operational sequences by definition. Thus after step (1) of the con-
strained randemization proeeduﬁe, cne has an operational sequence.

Step (2) is a renaming of the pseudo factors and therefore does not
disturb the preperty of being an operational sequence, This is a con=~
sequence of the faet that every te in the sequence receives identieally
the same assignment of real factor names. Thus for every pair of ad-
jacent te's i mnd i', factors Xi4 and X4 which corresponded
position-wise before assignment of factor names in step (2) still cor-
respond positionewise after assignment of real factor names xij' and

xigj,. Hence the sum -

A= %I’Xij - xi, 34
= %"xij' - xiljl l)

where J' is the new name under step (2) of Jj. This relationship
will hold for every pair of adjacent te's in the sequehées.

The randomization which is to be performed in step (3) of the eon-
strained raandomization procedure.also preserves the compatibility con-
dition and thus the property of being an qpérational sequence. This is
seen by considering two adjacent tc's (xlx2°°9xn) and (ylyeoooyn)

which satisfy the compatibility requirement, having order of adjacenmcy
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< A, That is,

5

Using the method of randomization in atepA(B), one obtains the te
(xl+al, Xgtag, oo, xn+an) .and the adjacent te (¥ +a,, yyta,, e
T an) where (ala2~-oan) is the randomly chosen base 2 number.

From these two transformed adjacent te's the following relation is

¥

found.

Z|(x;+a;) = (yi+aig[ =Lz, -y, | <A

Hence the new sequence of transformed te's also satisfies the compatie-
'bility condition., This completes the first portion of the proof.

The second statement in the theorem is simply a clarifiecation ef
the notion of a maximal set of transformetion generaters; A set of
such generators will not be called maximal unless it generates all
possi@le operational sequences under the method of constrained random=-

ization,

A result which is basic in the develepment of the theory of the

randomization model is presented in the following theorem.

Theorem 3-2., Over all possible constrained randomizations of a
given opefational sequence each treatment combination appears an
equal number of times in each positioen in the sequenee; Since &
transformation generator is an operational sequence, the same
result holds for a tg.

Proof of Theorem 3-2, Consider any operational sequence which results

from the constrained randomization procedure carried out in steps 1)
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and (2). Such an operational sequence of te's has & total of a"P
possible randomizations under the procedure in step (3). A different
randomization oceurs for each of the base 2 numbers in the factorial
experiment. Let yiy2'°°yn denote any one of these numbers,

Consider any te denoted by (xlxa"'xn) in eny position in the
operational sequence obtained at step (2). The n-tuple (x1x2°°°xn) is
itself a particular base 2 number. For any choice of (y1y2°°°yn) the
vector sum

(epxgeeexy) # (yyypeeeyy) = (x40, XgH7p, woy XgHY)
= 14 Y..‘ ¢ y >
(y]vhe ey, )modulo 2,
where (yiyé.-.yé) is again a base 2 number.

Note that if (ylya---y ) # (zyz,0002 ) then %y, -z | # 0. For

any n-tuple (x  Kpe oo X ), one then has R
(xlx ooox ) + (yly XX y ) # ( x eeeX ) 4 (zlza-.oz )
or

(eybyys xghygs woey xhvp)  (obey, xgbeg, ooes xpbz)

where the addition is component-wise modulo 2. Since if one has

equality, then
Ei,l(xi+yi) - (xi+zi)l = 0
or
Z |ty =x;-n | = Ely;-z;] =0,

which is & c¢ontradiction.
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Since in step (3) of the constrained randomization, one has 2P

distinct numbers (ylyz"°yn), there will be 2°P gistinet sums.
L L O ] » a0 ! '00. $ "
(yxgeeex ) + (y,9p00y,) = ¥{¥52¥})

Now the only possible values of (yiyé~-~y£) are in the set of 2°°P
numbers in base 2, so it follows that each treatment combination (base
2 number) will appear in a particular position in the set of operational
sequences obtained in step (3) exactly once.

Since this result was obtained for any operational sequence found
after step (2), one must now consider the set of all possible randomi-
zations obtained after step (1). For a given transformation generator
from step (1) there are n! possiﬁle randomizations in step (2). Thus
over the set of n!2""P possible randomizations of a given transforma-
tion generator, every te will appear in a partieular position in the

set of these operational sequences n! times. This completes the

preoof of Theorem 3-2,

The statisticai analysis of this experimental design will now be

investigated using the randomization model technigue.
The Randomization Model

The population of inference under the randomization model is the
experimental units (process runs) actually used, or the larger popula-
tion from which experimental units were chosen at random. Extending
this inference to any other population is & matter for the Jjudgment of
the experimenter. Conceptually every te can be applied to every process
run in each replication. Let yijk denote the population response

(conceptual yield) to treatment combination k, on experimental unit J
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in replication. i. Here there are 2B-P treatment combinations,

n=p A~p . - .
k=1, 2, ¢¢0, 2%, 2 experimental units (process runs) in each
replication, J =1, 2, «*+, 2> P, and, suppose, r replications,
i=1,2, ***, r, of the design.

Consider the identity

Yige =V, % Op =¥, )+ Oy =v55)+ Gy =53 )
..»-/(
Assuming additivity of treatment effe?ts, let yijk - ylj. = tk,
y =k, and i, " Y, = bin‘ Note that E bi é_i tk = 0, Then

one may write

Vigg =Wty + b + (v -vy )

Now, in faet, in the real world one only observes the yield of one
te on any given process run. Thus one response is observed for each te
in every replication. To relate the conceptual population of responses
to the observed responses, consider the random variable Sk defined

1J

as follows.

iJ

k '-{jl if te k is on process run J of rep i
L0 otherwise.

Now for a given i and J there are 2P g1g, Only one of these is

equal to 1. If t¢ k 1is on process run J then 5?3 =1 and
. :
_afj =0 for all other k'. Note that J sfj =z afj =1 . Thus the

observed response y,, %o tc k on rep i is given by

o o B
ik =5 8y Vige =W+ by H b v 585 (vyy -y )
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ik ~
this model for this design will be investigated in the following lemmas

. Z k v . -—. : = :
where €, = aid (Yij. Y. ') . Note i e4 = 0. The properties of

and theorems.

Lemma 3-1. Under constrained randomization in a 2n;p factorial
k™
ij

introduced in the randomization model has the following distribu-

in 8 randomized complete block design, the random variable &

tional properties:
(1) El6f,) = B L7 = 172"
(2) E [8§35§J'] =0, J#3'
(3) E [al;'j&l.::s,] =1/2287% : #i';

(%) E[87.851 =0, k#x'

(5) 0% Blof,E,,151/2", kéx, 344

Proof of Lemma 3-1, Eﬁch part will be consldered in turn., Note that“
all probabilities are a result of the method of constrained randomiza;
tion which was postulated previously. That is, constrained randomiza=
tion was applied independently in each replication. A given treatment
appears only once in any given replication and a given process run re;
celves only one treatment, all subject to the primary constraint re-

quiring that no m;re than A factors be allowed.to change from tc to

adjacent tc.

Proof of (1). Using the usual definition of expectation,

142 K2 K2
E [5131 =1 Prob(BiJ = 1) + 0-Prob(s;, = 0)

k
= l-Prob(Si:j = 1)
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k
= E [5133
= Prob(te k is on process run Jj) .

Now by Theorem 3-l1, every tc appears on progess run J with équal fres
quency. Hence the probability te¢ k is on proeess run J is

1/(the number of te's), Thus,

k4 _ n-p
E [aij] =1/2"% ,

Proof of (2). For 3:# 3,

'_ k .k ko_
E [sijaij,] 137

#

k
Prob(aij, =1, B 1)

k k k
Prob(aij, =1 | aij = l)-Prob(Bij = 1)

0-(1/2"F)

30,

since t¢ k cannot be on process run J' if it is on process run J.

Proof of (3). For i # i',

k

k k Eo_ .y, Kk _
E [6135i'3'] = Prob(8.,,, = 1 | 8.y = 1) Prob(sij 1)

'.j'

k k
= Prob(&i,j, = 1)-Pr.ob(8ij =1) ,

since randomization is independent in replications i and i'., But

k

P(65.y, = 1) = Prov(sf, = 1) = (1/2° ) ,

80

E [sgjsg,j,] = (1/2°P)(1/2"P)

= 1/22n°ap .
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Proof of (4). For k # k',

E [5 k' - Prob(5 =1 | a?d = l)‘Ppr‘&?J = 1)

J iJ
= o-(l/zn'P)

=0

since te k and 1:c:~.=k£f are not both on process run J.

Proof of (5). For k # k', J+# 3,

.
E [Bij ij,] = Prob(s" J. =1 | 5 = 1)*Prob(85, = 1) .
Now
0 < Pr?b(bij' =1 | 513 =1)%1,
and
k =D
‘Prob(bij =1) =1/2%P,
SO

. k _k° n=p
< <
0S E [8ij5ij,] 1/2 .

bThe value 0 is actualiy-assumed by the conditional probability for J'
adjacent to J and for k' not compatible with k. The value 1 is
also assumed by the conditional probability for certain o8P designs
for particular J, J', k, and k'. For instance, in a 22 with

A=1, if J=1, k=00 then Jj' =3 and k' =11, the expression.

1l

P(a15

=1 | 6 = 1) is equal to 1.

As a further illustration of the impossibility of finding a simple

t
expression for Prob(égj, =1 ] 5?3 = 1), consider the following table
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of conditional probabilities constructed for a 27 factorial with

A= 1. The table was constructed from a list of all operational'se-

o \
quences for this factorial and the table entries are Prob(agj, = 1 Q
80£0=l).
k'
ooL | 010 { o011 | 100 | 100 | 110 § 111
2 sl g lol 2| ofofo
3 o | o % ol g | & | o
2l 2 2 1
h. -— - 3 —
5 |9 (%39 |°]°]¢®
3 5 o | o %;- 0 % %— 0
2 | 2 | 2 1 1
= 0 = 0 0
6 519 9 : [
ERREDERE
I 2 2. 1 2 I B
.8 - =] = ;i
‘ 3 3 9} 3 ¢ 0 z

This completes the proof of Lemma 3-l.
The f@lléwing lemme relates the distributional properties of 5?3
to the randomization model, and is bhasie fo the: remainder oé'the mater-

izl developed for the design.

L

_ 2 - - |2
Lgmma 32, Let 8 = g (Yij. - ¥ ). Then

(2) E [e?k] = 52/2n-p s

(3) Eleje ) =Ele,, e, =0, 1i4i

\ 2,0« .
(&) -s/2"P < g Cejpr €3] £ 05 & # Kk



Proog of Lemma 3-2.

Proof of (1). Consider

Bleyd =B 05 0,Gyy, -7, ).

lee
Using Lemma 3-1, (1),
Ele;l = (1/2%7F) E(yij. - 5;..)
aO.

Proof of (2). Consider

2 Kk - -
E [eikJ = E[3 sij(yij. - V..

E % i 13' 3. ° §£..)(§;J'. - §£..)]
i#dt

Using Lemma 3-1, (1) and (2),

)2

E»[e?k] = (l/2n-p) ‘{,Gr'ij. - Ej_,’,

= 52/2]3»"p .

Proof of (3). For i #1i',

ok k' |
Elepo ey =B % 8;8,,5.0y5 -y 0y, -

Using Lemma 3-1, (3) and the fact that 5 (5;,5,. -y.
E [eik, ei,k,] =0 .

Proof of (4). For k # k', consider

Ele E[ES

)2+

ik’ Sixtd ij 1J(V 3. " V4L,
3 % 13 13'( 1J. =¥ )0 - v, )
3 :



From Lemma 3-1, (%) and (5), and using the fact that

L Gyge, = ¥5,,) = (g, 7 Yy,
SESN
it is seen that

)

2 0=
- 8°/2 PsE[ei k1) S0 .

k* €1
This completes the proof of the lemma.
Theorem 3-3. If i #i', k# k', then
1) Ely,l=n+v, +1t,

2 ,.n=
(2) Var (yik) = 8 /2 p ?

(5) Cov (yik, Yi,k) = Cov (yik) yilkl) =0,

2,0~ ,
(#) = s°/2"F s Cov (v, v, ) S O .

Proof of Theorem %-=3.

Proof of {1). Consider

E [yik] =B [(p + b+t + eikJ

=|;L+bi+tko

Proof of (2). Consider

Var (yik) = E [e?kj

= sE/Enap .

Proof of (3). Since

Cov (32 Yipr) = B Loy €5yl

29



2 ,,0=p :
s /2 © < Cov (yik, yik!) o .

Proof of (3). Consider
Cov (yik, yi'k.) = E [eik, ei'k] =0
and

cov (yik, Yigk;) = E [eik) eilk'] = Q .

\

This completes the proof of the theorem.

Corollary 3-1. The following properties follow direectly,
1) Ely,J=u+1t,
(2) Ely;I=n+3,,
S - 2, ,0-p
(3) var (v ,) = s"/m2"",
_ 2, .n=p - P '
(4) -/ Pscov (v, ¥, )0, kfk' .

Proef of‘Corollary Feal

Proof of (1). Consider

4

B[7,]=E00/r)By,]

]

(1/x) § ELy,,]

[}

(1/r) & (u + b, + %

1 k)

= [ tk °

Proof of (2). Consider

Ely, ]= (1/2"°P) (s +by +t)
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Proof of (3). Consider

var (7 ) = /)% V'V;_ar (i) +§ Fe Cov (s V)]
= (1/:-?)[;L sa/en'P + Z::L Zi:, 0]

- SE/ﬂn-p .

Proof of (4). Por i'f i', k # k',

Cov (¥ ¥ gor) = 0/ )E Cov (ryps Vi) +
ZE, Cov (g Yyne)]
= (/FP)Ng Cov (v, vyp) + 3 5, 01
Thus §ne finds that
- sa/rén-p < Cov (;:k’ ;;k,) 0.
This completes the proof of the corollary.

One of the essential properties of any experimental design is that
of giving unbiased estimates of the treatment effects. A theorem is

now stated regarding this property.

Theorem §s4. An unbiased estimate of the effect of any treatment

combination k 1is given by §'k - ; .

Proof of Theorem 3-4%. Consider

Ely, -y l=2ly,l-=2ly ]
=p o+t -

=tk'
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This completes the proof of Theorem 3=,

Since the basiec design is a 2P factorial, one wishes to
estimate factorial effects. A factorial effeet estimate is given by a
linear contrast of the tkw Using the notation XiXé°°'Xn to denote
such a factorial effect, then

X XpeooX, =L xty,

: = B = i i » v
where 1 + (1/2°) and % m = 1. In the expression for m_ the
+ or = sign is determined by the te, k. The value of B is de~
termined by the type of factorial effect that is being found and the
partieular te, k. If X X,e+°X 1is a main effect or interaction, then

nup-1. Thus an unbiased estimate of X1X2°°'Xn is given by

all B =2

= =y _gp.z
En G-y, ) =20y,

The experimenter who uses a statistical design to estimate treat-
ment effects ordinarily also requires estimates of the variance of
these estimates of treatment effects., In order to obtain estimates of

these variances, consider the following theorems.

Theorem 3-5. The variance of an estimated main effect or

interaction X Xy X is bounded by

The following lemma is essential to the proof of the theorem.

Lemma 3-3, Let Q, =a for i =1, -+, Qn'l and let @, = -a

for i= En-l + 1, ce-, 2n, where & is any positive constant. In the

expression -



there are 2°(2° = 1) products o0, vhere i #-1'. Of these

2n~-1

nel - 1) @re positive and 2 are negative.

2%(2

Proof of Lemma 3-3, Consider products «,0 where i 7‘ i*. There

1% v
are 20 vays to choose ai and 2° -1 ways to choose ai" thus
there are 2%(2%-1) such products.

In erder for the product to be pesitive both ai and ai, are

( n-l

positive; this can happen in 2 - 1) ways. Just as wmany pro-

are hoth negative so the number of

n-l') (an"l - i) - 211(2

ducts exist where ai and @y

positive produats, ©.Q.,, is 2(2

Nel - l)u

The product aia is negative if and only if one @ is negative

i'
and one positive, This happens in 2(2

& total of 2% negative products. Note that 2°(2°% - 1) + 2

2=1y(2®1) vays. Thus there are

2n-1 -

2%(2" = 1) total produets with i # i' as found previcusly., This

completes the proof of Lemma 3-3.
The proof of Theorem 3-5 follows immediately.

Proof of Theorem 3=5. It is desired te get bounds on the variance of a

main effect or interaction,

Var ()L-I-Xe...xn) =}13{ :ti Var (Sr-.k) +Z %, 4%, Cov (;.k’ ;.k')°

kfk!
By Cerollary 3-l,

Var (y k) = sz/ren""

and

)so0.

2, a= - s
- s°/v2""P < cov (¥ 100 7 g
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In any contrast one-half the =n, are negative and one-half are

i
of the n, are negative and 2

2n-p(gn-l-»p
2n=-2p~1

D=l=p n=1-p

positive., Thus 2 of the

xi are positive, Hence by Lemma 3-3, = 1) products

where k # k' are positive, and 2 products are nega=-

LI
tive. Using these known facts, an upper bound on Var (X1X2°ﬁ°xn) will
e obtained by using Cov (Flk, §'k,) =z - Gg/rﬂn-p when “k“k' is

negative and using Cov (§'k, ;fk') 0 when mx is positive. Note

k'
slso that |= | = 1/2"P" "L for a main effect or interaction so the

actual upper bound on the variance is

Var (xixa...xn) = i ni(sa/r@n-P) +ﬁ§:§' LI Cov (y.k, y.k,)

< [s%/(r) (2%°P) (22220 2) ) 2P 4 22020l g,
From this one gets
2, n=p~l 2n-2p=-2
Var (X XyeeeX ) € s (en‘P +1)/(x2"" 2p-2y |
A lower bound for Var (XlXé°°°Xn) is given by

Var (xlxzmx ) 2 [s /(r)(an"P)(zan“Ep“a)][an"P

(2" P)(2"P - 1)],
or
Var (x1x2...xn) 202 s (a n~p~l)/(r2 n-ap-z) .
This completes the proof of Theorem 3=5.

Consider the differenée in the two bounds fpand bn the variance in

Theorem 3-6, Upper bound - Lower bound = d. Then

a= 2@ P 4 1) R
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Clearly a8 n - p gets large, the difference d approaches 0; For
n-p2h the difference is not large, 4 < (i/?)(sa/r). Thus thé
béunds are sufficiently elose together to be ﬁaeful in finding the vari=-
ance of a main effect or interaction. Note that by inecreasing r, the
number of replications, this difference, the upper bound on the vari=-
ance, is made smaller.

Now that an expression which bounds the variance of any main effect
or interaction has been found, it is desired to find an estimator of
this variance. That is, one now needs an estimate of 32 vhich appears
in the expression for Var (X1X2°"Xn).

Consider the usual analysis of variance tableau for a blocked ex=

perimental design based on the observed responses.

Source af Sum of Squares E [sum of Squares]
3 | n-p “y T - 2 - , n-p k 2 2
Total T2 1 }_;d:c (yik -y") | 27 FL by + rﬁ j:k-grs
Blocks fal 3% Gy - y?..) 2" "&b,
Treatments|2” P w1 §§ (y.vk- y.é) , r§ b+ s
n-p - = = .= 22
Error (r=1)(277 = 1)13% (ype =¥y =7 ¥7, ) (x = 1)

The expectations: of sthe sums'Gf:sqﬁares'ithhe‘AOY are found
using the distributional properties given in Lemme 3-2, Theorem 3-3,
and Corollary 3-1. | ”

For example, consider the expectation of the total sum of squares,

E[ZE Gy - 37'_3)2] = ETE U eik)QJ
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o [oBP p 2 2 u
El2 §bi+rgtk+o+2§§bieik+

2
221 F Y e " e

=2n~p§'b?+r§ ti-}-r‘se .

From this analysis of variance it is seen that to get an estimate of the

variance of X1X2-~-Xn one useg8 the expression
A UIE - Ty mT 4T )
AR I ik i. k

as an estimate of 32. Also, if im faect a8ll treatment effects are zero,
i.e., all tk = 0 then the design gives an unbiased test of treatment

effects in the analysis of variance.
Infinite Model

If an experimenter can meet the assumptions necessary to use the

analysis based on the infinite model, then the results in the follawing

pages may be used. For infinite model analysis one assumes the model

Vig =M + by + Ty +oeyy,

where i = 1y, #oe, v, k=1, *cs 2"P is the observed response

3 yik
to treatment k in bloek i, W is the overall umean, bi is the:

effeet of block 1, t, 1is the effect of treatment k, e, is the

k ik
failure of observed response Yik to be explained by W, bi and tk'
The errors e 8are assumed to be distributed normally and independ=

ently with mean 0 and variance 02.

Theorem 3=6, An unbiésed estimate of any main effect or interac-

tien (X1X2°3'Xn) where Xlxag'o X, = § n %, 1s given by iﬁky.,k .
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Proof of Theorem 3~6. Consider

L 17 ,] - £ (v 20y J)
=% (n E [ + t, + B". + J}?E eikJ)
=Elm (st +¥)]

= (b + ’E'O)E 0 +E T b

This completes the proof of Theorem 3-6.

Theorem 3-7. The variance of an estimated main effect or

interaction X_LXQ."Xn is given exactly by
02 2 n 2 n-1
Var (XX o=X )= —F 5 = (2" +1) o/r(27).

Proof of Theorem 3=-7. Consider

Var (xlxzo--xn) = Var (ﬁ ﬂk;.k)
. ~ L .
=§ e Yar (y*k) + E E, n 1, Cov (y,k’ y.k')°

k#k s
Now

var (v o) = Ely , - E(iik)ja
=E []?)i eik]2 _
= (1/r2) IE [e?k] + fl/ra).gz'{, E [eikei'k]
1'

= (l'/rg) z &+ 0

e P

Also,



@OV (Oy-:‘k, F.k") E[;nk - E(;ck)l[}.ek’ - E(geks)j b4
So

B [ (1/7%) % e Fr ©rged

]

8

Cov (¥ 4o ¥ 1)

a

(1/*) 53, Ele

1k%1 ke

=0

Thus using these two expressions ome gets

E :{i(l/r)az +3 %, n'kxtk,(o)
(/r) g &

(P /r)(1/22LP)2 (2R Py 4 1) /2

Var 0&"2‘ . »xn)

]

@ &+ 1) /r(2*17P)

i

' This completes the proof of Theorem 3-T.

To find an estimator of this variance of a main effect or inter-
action;, one needs an estimate of ¢ ., Consider the analysis of* vari=-

- ance tableau for & replicated experimentsal design.

Source ar Sums of Sguares E [Sums of Squares]
Total 2% Pa 33 (v~ 7 ..)2

Replications|re=1l Eli?(;i° - 'fr‘. . )2 (r- l)eg-a- 2™ Py b?
Treatments [2"P 1 SEG -7 )z @ 1) rE o2
Error (r-1)(@P-1)|5F Gy ¥y -7+ 7 P[P lr-2) @ 1)




This mey be found in Ostile (10].

Thus one may use (l/[r-l][@nép -:1] % E (yik - 5;; - g;k * 5:;)2
as an estimate of &® in the expression for Var (XiXﬁ*@@Xﬂ) in order
to estimate the variance of an estimate of a main effect or interscbion.

The material presented in this chapter desls with constrained rane
domization in a non=conse¢utive replication design. A method of con-
strained randomization for consecutive replication of 2"P “fa@terialé'
will be given in Chapter IV, and it will be shown that the statistical

analysis based on a randomization wmodel is identieal with that Just

presented.



CHAPTER IV

CONSTRATNED RANDOMIZATION FOR OTHER

2" FACTORTAL EXPERIMENTS

This chapter contains methods of constrained-randomization for
several types of factorial designs which are different than that given
in Chapter III. Constrained randomization for 2 F factorials in
randomized replication designs is discussed. In consecutive replication
designs it 1s assumed #ﬁat the sequencés within all reps have the same
order, A, and that the order of the adjacency between all reps is alsc
A. That is, the same compatibility conditien is in effect between all
reps and within all reps,

Unblecked 2" factorials with r fgplications of each te are
discussed briefly.

Split-plot designs of several types for 2° P factorials are
discussed and methods of constrained randomizafion are presented for
each; The randomization model is developed giving unbiased estimates
of factorial effects. Methods for estimating the variances of main
effect and interaction estimates are presented, and an analysis of

variance tableawn is given with estimates of variances indicated.

The 2%°P Factorial in a Randomized

Conseeutive Replication Desigh

If the repliecations of the factorial experiment are to be run in

ko
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consecutive order immediately after one anether, then the constrained

randomization procedure is as given below,

(1) For each replication of the experiment & single g is chosen at

n=p

random from a set of t&'s, Ta(2" -, A).

(2) Randomly assign the n real factors being investigated %o the
pseudo factor names Xy Xpy °°° Xpo This is d@ne_indepéhdently

in each replication.

(3) Por the first replication do steps (1) and (2), then go on %o the
second replication. For all replicates after the first, find an
"eligible" set of tcfs, those te's which are A adjacent te the
last te in the previous replicate. If the compatibility eenrnditieon
is £ A, then the last te in the previous replicate is included

in the eligible set.

(h) Select a te at random from the set of eligible te's. This te
(base 2 number) is then combined with each te in the particular

replication using vector addition modulo 2.

(%) When 81l r replications have been randomized in the manner of
ateps (1}=(4) above, then ehéose a tc at random from the entire
set-of te'é in the éxperimenﬁ.’ This te is then combined with
every te in the entire extended sequence of all replications using

veetor addition module 2.

In order te simplify the arithmetic needed in aetual praetice,

steps (3)=(5) above may be replaced by the following.

For the first replieation do steps (1) and (2) and then pick a te



from the set of all these used in the factorial., Cowbine this teo
with each te in the first rep using vector addition module 2.
After this proceed as in steps (3) and (4) until &1l r replica=-

tions have been formed and then step, omitting step (5).

Examgle L-1. Suppose one wished to run a second replication of the
. experiment in Example %=1 without a shutdewn in the process. The oper-
~ ational sequence which was found invExample 3=1 using constrained ran-

domization fer the first rep was
101, 100, ©00, O0O0lL, 011, €10, 110, 1ll.

To get the second operational sequence one applies constrained rane=
domization for consecutive replication., In step (1) suppose that one

picks sequence (3) from the set TG(25, A=1),
000, 00l, Ol1, 111, 101, 100, 110, OlO.

Suppose that in step (2) the real facters are assigned to the pseudo

facteors as follows: A = x B=x%, C=x The resulting seguence

1’ ps 3°
is still

©00, 001, 611, 111, 101, 100, 110, O10,
Step (3). Since the first sequence ended with te 111 the set of
eligible base 2 numbers for use in step (%) are those whose order of
adjaceney with 111 gives A= 1, This eligible set censists of the

te's 011, 101, 110, Suppose that in step (%) 101 is selected at

random.  The operational sequence for the second replication becomes

101, 100, 110, 010, 000, 00L, €11, 111,
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Nete that when the second replicate immediately follows the first, the

14

. . . ; - « Bep
experimenter iz essentially running & seguence of 16 (that is, 2~

oo
Hpem . . iy
2 p) te's with order A= 1., A theorem important to the development

of the randomization model will now be statbed.

Theorem 4-1, Over sll possible constrained randomizations of a
given operational seguence of copseeutive replications each te
appears an egual number of times in each position in each of the
replications of the extended sequence,

Proof of Theorem E?l, The proof of this theorem is an immedisbe

extension of Theorem 3-2, Each of the consecutive replications in The
extended sequence is an operational seguence. Consequently, Theorem
3-2 holds for each of the consecutive replications. This complebes the

proof of Theorem k<L,

Using this theorem, the randomizatiqn model will be developed for
consecutive replications of a En"p_ facterial.

Since the consecutive replié%tion design 1s & blozked design, the
game model wili be used as was uséd in Chapter III. The pepulation

and the random variable, 6?

iy’

response, are defined as in

yijkg
Chapter III. Then

k|
Yie = 3 P11

zp+bi+tk+eik,

kcﬁ
where € = % 613(313, -V, Ja

Much of the material regarding the randomizaticon model for cone

ioo

secutive replieation will be tke same as for the design in Chapter IIT

with non-consecutive reps. The only difference in the two designs is
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that in non-consecutive replication the constraired randomization is
done independently in the various replicates and in consecutive replica-
tion it is not done independently. Thus the distribuitional properties
of the random variable §§J will be S@mewhat'iifferent@ Tﬁ@ maberial
presented on the randomization model for consecutive replieaticns will,
however, be essenbtially identical to that for nen-consecutive replica-
tions, and all of the results @bﬁained in Chapter III“yill be valld for
the consesutive replication design. Hﬁbiaséd estimates of wain effects
and interactions may be found in the usual menner (see Theorsm 3-3). In
addition the expression found for the varisnce of such an estiwate ir
Theorem 35 wil&ybe valid., The AQV and the expecitations of the sums of
squares will not be affected by the dependence of the ran@@mizaﬁi@n
procedure in c@nse@uﬁive replications. Consequently the analysis and
the interpretation of the analysis will be ildentical for consecutive
replications wnder constrained randomization to the analysis amd inter-
pretation found for non-consecutive replications.

However, since constrained randomization for censecutive replica-
tions is mot doune independently in the various replicates. The dis-
tributional properties of BK similar to those presented in Lemma 3-1

id

will now be given,
Lemms hel., For sonsecutive replications

2 =D

(1) E[5,.]5=1/2"7,
1d
Bk k - . s g

(2) E Eoijaij,J =0, J # 3t

k okt N T T
(3) 0= E Eaijﬁi'j"] < 1/2%P, 4 g,

: k  k? ;’ .
() E Eaijsijj =0, k#k',



b5

(5) 0 E [ali{ k'

; ijf] < 1/2%P, 5435, kK :

Proof of Lemme h=l, The proofs of (1), (2), (&) and (5) are identical

to those given in Lemma 3«1,

Proof of (3). For i# if,

k k k' k ek
E Eaijsi.j,] - Prob(&i,jb, =1 | 5, 1) Proo(‘c‘;ij =1) .
Now
k k
0s Prob(&i,j, =1 | aid = 1) <1,
SO

k .k /o B=p
0S E [aijai.J.] < 1f27°F

This completes the proof of Lemma 4-1.
A lemma containing results basic to the‘randdmization model feor
consecutive replication follows.

y2

2

Lemmg, 4-2. Where s = % (;;j - ;;

2 2, n=
(2) Ele,]=s"/2"F,
(3) E Eeikeiikv] = OJ i 7! it 3

&) - 32/2”"’1’ < E(e l=o0, k#k',

ikCik?

Proof of Lemmwa 4-2. In this lemma (1), (2) and (%) follow immediately,
being identical with results (1), (2) and (4) in Lemma 3-2,

Proof of (3). For i # 1if,
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' k .k = e e T
E Eeik_eiik'] E [% 5& aijaifjg(yi‘jo yi@@}(yigjg@ &> yig )]@

@@

Using Lemmwa b=1l, (3), and the faet that % (;;j =y, ) =0,

Elejeined =0

This completes the proof of Lemma 4-2,

This lemms contains results identical to those in Lemma 3=2, Alse
the same observation model was derived for econsecutive replication as
for non-consecutive replication, Gonsequenﬁly:since the development of
the randemization model was based entirely on Lemma 3-2;, the same devel-
opment will be valid in the model for consecutive replication based on
Lemms %<2, Thus the statistical analyses for consecutive and for non=
consecutive replication are done in the same manner and the results
have the same statistieal properties.

This completes the presentation and discussion of 2™P  factor-

ia;s ir consecutive replication designs.
Completely Random 2P pactorials

Usually when the treatment combinations are to be run sequentially
one would block them into replieations if possible. Then the blocking
would provide protection against any "learning" effect or gradual
change in the process being investigated which was not recognized and
taken into account, Because of this the wnblocked design is menticned
only briefly,

If there is no reason te bleck the experiment but rather one only
desires that each te be replicated; say r times, then one must form

an operational seguence containing r2?7P te's, In this situation the



sets of trensformetion generators provided in the appendix would not be
utilized. One would need to find a set of tg's ir which each te was ené
eogntered r times. These enccunters could be isolated or any combi=-
nation of them could ﬁe sequentially adjacent if the compatibility con=
dition reads = A,

With a set of transformation generators in hand one mey simply
follow the same method of constrained randomization as originally pre-
sented in Chapter III.

Several possible tg's for a 25‘ with two replications of each to
and with A< 1 are listed.

(1) 000,000,001,00L,011,011,010,010,110,110,100,100,101,101,111,11L .
Note that this is equivalent to an experiment with repeated sampling.
(2) 000,001,011,010,110,100,101,111,111,101,100,110,010,011,001,000 .
(3) o000,001,101,100,101,100,110,010,011,111,110,111,011,001,000,010 .
Obviocusly many more possibilities exist.aﬁd may be found by the methods
presented in Chapter II.

Since the use of a completely random design in a sequential ex-
periment is rether unlikely, the details of the randomization model sre
not presented. If it is deemed unnecessary to block the design, then

perhaps the assumption of an infinite model will be reasonable as well.
'Split-Plot Designs

Split-plot designs of many types can be viéualized by considering
various compatibility conditions on the tc's., There might be one com=-
patibility cordition on the main-plot treatment combinations, another
on the subplot treatment combinations, and still a third condition re-

lating to the adjacency of main-plots. The order of adjacency of
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main-plots is determimed by the main-plot treatments as well as the
sub=plot treatment combinations which ére made adjacent by the Junction
of the main-plots. Various classes of designs will be discusaed for
split-plot designs for 2" factorials with three possible compatibility
conditions. The erder of adjacency of main-plots will be denoted by A,
- The order of the seguence of main-plot treatménts will be dencted by

éh’ and the order of the seguence of sub-plot treatment @ombinations
will be denoted by Ags necessarily A2 Ah'

Ir ﬂh €A Ah + Ag then the class of designs will be called
elass (1) split-plot designs. If Ah +‘Zb < A then the eclass of de-
signs will be called class (2) split-plot design§® In class (1) split=
plot designs, the randomization of the sub-plot te's is not independen#
of the submplgt te's in the adjacent main-plois. This dependency
¢auses one to use consecutive randomization procedureg for sub-plot
randomization., In class (2) split-plot designs the randomization of
sub=plot te's is done indeperndently within each main-plot and one may
use non-consecutive randomization for subepleots.

A special case of split-plot designs, called class (0), will be
discussed first as a partisular type of ordimary non-consecutive repli-=
cation discussed earlier im Chapter III. If the main-plot treatment
consists of a single factor or of méfe than one factor applied in a
split= °¢+ =gplit-plot manner, then the design is a special case of the
previcusly presented material on non-gonsecutive replication. Theée
designs are a subset of the previously presented material. The set of
possible arrays of te's is a subset of the possible arrays of tc's obe-
tained for erdipary blocked designs. Thﬁs by restricting the tg's te

those whieh list pseude factors in & spliteplot manner the earlier
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discussion may be utilized. A short discussion including an example of
this situation is given relating these gplit=-plots to the presentatien
in Chapter III.

Sets of tg's for a nﬁmber of 2" factorial experiments in & split~
plot design with order A may be found in Appendix B. If a set of tg's
is not fouwnd for the particular velue of n and  A desired then such
a set of tg's may be found using the methods in Chapter II.

Gonsﬁrained randomization of a 2% factorial experiment in a

split-plet design of class (0) may be done as follows:

1 single tg is chosen at random from the set of tg's i_en ifie
& single tg i h t dom T th t of tg's jdentified

for split-plot designs for each replication of the design.,

(2) For each replication one assigns the main-plot faetor to x in
the te's (xlxg coe xn), Then if there is a second split-plot
feotor it is.éssigned to Xp5 ete,, until the split-plet factors
have been assigned to the first factor names. Then one randemly
assigns the remaining subeplot factors to the remaining pseudo

factors,

(3) For each repliestion randomly choose one of the base 2 numbers
which represents a tc used in the factorial experiment. Combine

this number with each te using vecter addition medule 2.
An example is given showing this technique.

Exemple 4-1, Consider a 25 with factor A as a wmair-plot treatment
with A€ 2, Fellowing step (1) in the constrained randomization pro-
cedure, & tg is chosen frowm the set of t2's numbers 1-54% in Table III

in Appendix B, Suppose it is tg number (52):
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000,011,001,010,111,101,110,100. Step (2) requires that the main-plot
factor A be assigned to X Then randomly assign B te x3 and €
to x,. The operational seqguence is now OO0,0llyOlQ,OOl,llljlnglgl,

2

100,

| In step (3) suppose that tc 110 is selected, When 110 is added
component-wise modulo 2 to each te in the sequence one obitains the
cperational sequence actually used in the experiment. It is 110,101,
100,111,001,000,011,010. Note that factor A 1is still in a split plot

and that the sequence is of order A< 2. This result is formalized in

the following theorems.

Theorem 4-2. The sequence of tc's resulting from constrained

- randomization for a split-plot design is an operational sequence.

Proof of Theorem 4%-2, This theorem is a corollary of Theorem 3«1, since
e@nstfainéd rondomization for a split-plot design is a particular case

of constrained randomization for a 2%P  factorial in'blocks.

Theorem heé. over all pessible censtrained randomizations of a
given tg each tc appears an equal number of times in esch positien
in the sequence.

Proof of Theorem 4-3. This theorem is a corollary of Theorem 3-2.

Theerems'h~2 and %-3 give results identical to Theorems 3-1 and
3=2, Thus the amalysis ef results from these split-plot designs can be
based entirely upon the randomization model preéented in‘Cyapter IIT,

In class (1) and class (2) split-plot designs there aré three
compatibility eonditions. The order of the sequeﬁée'of mein-plot tels,
Ahy the order of adjacency @f'méinéplets, A, and the order of the

sequences of sub-plot te's within each main-plot, A%, are these
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compatibility conditions, In either case, A2 Ah” For either class
(1) or class (2) designs the randomizetion of main-plot treatment com=
birnations may be done either before or after the randomization of sub;
plot treatments and the two randomization procedures are done indepen=
dently.

The constrained randomization procedure for main-plot te's is done
sccording to the method given for randomized blocks in Chapter I;I0

In class (2) split-plot designs where By A S A the relation
of Ag and Ah to A implies that the constrained randomization for
sub-plot te's is done independently within each main-plot. Thus, for
each main-plot the constrained randomization of sub-plot tc's is done
according to the method given for non-consecutive replication of :én
factorials given in Chapter III.

In class (l) split-plot designs where A € A< A + A, in order
that randomization of sub-plot treatment combinations be independent of
the randomization of main-plot treatments, the sub-plot randomization
must be done acecerding to the methed or randomization for consecutive
blocks given earlier in this chapter. The set of "eligible" te's in
step (5) will be restricted to these whieh have order of adjacency
A = Ah with respect to the last sube=plot tec in the previous main-plot.
Using this restrietion on the set of eligible te's for the consecutive
replieate randomization of sub-plot treatments, it is seen that either
sub=plot treatments or main-plot treatments may be assigned to their
respective experimental units first, and in this manner the independence
of the two procedures is insured.

Due te the similarity of non-consecutive and consecutive réplica-

tion designs the development of the randomization model for classes (1)
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and (2) split-plot designs will be done simultaneously.
For either class (1) or class (2) split-plot designs let Y3 ghik
denote the population response in a split-plot design. The subseripts

refer to the following: replications, i =1, ¢+, y} wmain-plots,

g=1, eeo, gm; sub~plots, h = 1, «e., En-m; main-plet treatment

combinations, J =1, s++, 2%; and sub-plot treatment copbinatigns,

k=1, +++, 2°™", Under the assumption of additivity of treatment

effects one may write yighjk = tjk + xigh' Consider the identity

Yighdk = (t..+x:._.~.~)"'(xi..'x...)"' (t;]. -t )+ (xig."xi.,)

(B -F D+ (b -%

J.-t.k+t..)+ (xigh'x. ) ”7

ig.

Let p‘ = t.. + x‘..’ bi = xi.‘ - x...’ tJ = tqj. - t." sk = t k - tOO

and (‘bs)jk = #Jk - tg, -t v Then

yigh.jk =+ bi + tJ + (xigo - xi").‘v,+ sk + (ts),jk +

(xigh - xig.‘) .

In the real world one only ¢bserves one yield from a particular ex-
perimental unit, Let yijk‘ denote the observed yield of treatment Jk
on replication i. To relate yiJk to yighjk consider the randem

variables defined.as follows:

1l if t¢c J is on main-plot g of rep i,

=
£ - 0 otherwise ;
1l if te k is on sub-plot h in main-plot g
k] of rep ‘1,
b4 =
igh

0 otherwise.
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Note that Z 7., = sz 5 oK

ig = 'k 7'igh'
randomization employed in the main-plots is independent of that em~-

= 5 Ggg = 1. Since the constrained

ployed in the sub-plots, the random variables & and 7 are indepen-

dent.
Then
Vign = % Bfg llcghyighjk
=p+ b, ¥+ tJ + Z 6 (xlg.v- ;;..) + s, + (ts)jk
+2}B ig 1gh(xigh ;ig.) *
Thus

yijk“"""bi"' tJ+ €5 + 8, + (1;:5)‘1k+11i‘1k

e - S5 )
vhere ei.j ")éaig(xig. xi..) and TIiJ gﬁ ig 1gh ig,)°

The following means are expressed in terms of the above model:

-~

=p.+bi+t + e

Vi3, k © €13

Vg =wtty e A/ g ey,

Teer =it

AL AT @™ 51, g

3?' =B 45 + (a/x2") F5 M5 5

Vi, =P+

The following lemme giving the distributional properties of the
random variables ng and 71:gh will be used in developing the ran=-

domization model.

53



Lemma 4-3, The following expectations may be obtained:
Jq . J j2 o
(1) E[aigJ-EtaigJ =1/2 ;

(2) El8) 8] 1=0, g#e';

(3) 0< E [sggag,g,) <1/2% i#4ir;

() Ele]pl1=0, 343 ;

(5) 0< E [6gg6§g.l <1/2% 343, gefe;

K : -
(6) Byl =E [7§gh32'= 1/2%7"

(7) E [7l;gh7l;gh1] =0, h 7‘ h' ;
. ' )
(8) osE [71.;gh7}:;'g'h'] s 1/211 . » 1ig # i'g';

(9) E [yigh7§gh] =0, kfk';

k k!
<
(10) 0= By, 4] ]

ne=m v
lghvsl/a ] k%"': h?‘h'}

3K 12 _rod ko7 _ .en
(11) = [6igrith = E [6ig71ghj = 1/2" ,

f

Proof of Lemme 4-3. The constrained randomization is dene independently

in main-plots and sub-plots. Thus the results stated in (1)=-(10)
follow immediately from Lemma 3-1 or Lemma 4-l, depending on whether
the randomization was done for consecutive or non-consecutive replie-
cations.

Proof of (11). To eompletéﬂthe proof of the lemma we have

J .k 2 _ J 2 k 12 n
E [51g7ighq = E [aigJ E E7igh] =1/2" .

The following lemma relates the distributional properities of the
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random varisbles 85 and '7]i‘3h o the qusntities e,, aad M in

ig iJ
the observation’hodel,

iJk

Lemma 4-4, In this lemma let ?=x (x. =-x )2
A At Dol il . g lg‘ ioo

. - \2
8 = TR (tign = %ig,)

and

s» Then
(L) E [eiJ] =0,
() E[e5,1% = %",

(§) E [e, ,e.

ij 11313 = ‘O:-'y 1 # it ’

) - s Ble e 050, 34,

(5) EN l=0,

1jk

(6) EI12,1 = s2/2"

(f() E [nijkni,j,k,] =0, either 374 3y, or i#iv,

(8) -si/ansE[ni 1so, k#k'.

jknijk'

Proof of Lemma 4-4. Statements (1)-(4) follow immediately from Lemma
4=3 in the same manner that the results in Lemma 3-2 were obtained from
Lemma 3-l1,

Proof of (5). Consider

E En?dkl B Ceygp = %)) [89 /5 3

=5 R
g ig’igh
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Proof of (6). Consider

E m?dk] = EE (xigh ig ) EE&J ]2E|:71:|%gh]2

ig ig!

- 3
v+ ég;éﬁ'(xigh-xig;)(xig!hv"x ,)E[& Lol ]

kK k - -
E [71gh71g'h3 +ZR & (xigh' xig.")(xigh' - xig,) )
h!
E [t‘aj PE E71gh711{gh,] .
Using Lemma 4-5, (1), (2), (6) ana (7),
E['ﬂaj (1/2)2%(;: ')2+o+o+o
Jk igh "go
= S /2

»  Proof of (7). For J# 3,

E[nljk 'jlk Zéﬁﬁn (X -;ig-)(xi*g3h";i'g',)°
sfg g' ] E [7 'h'J .
Using Lemma 4,3, (5) and (8) and the fact ‘that T (xigh - E;g ) =0,

this expectation is shown to be O,

Proof of (7). For i#i', B (L 2 ',1'1:'] = 0 1in the same
menner as when J # j' using Lemms 1!--3, (3), and (8).

Proof of (8). For k # k',

E [, 'ﬂle, = }éﬁ (xigh -:'{i _)f"‘Etatj '.IEE[yli‘gh]2 +

ijk
| gl’iﬁ'(xi ) O = %y LIS Jaggyl,gh\)‘ 1
ggg%' igh 5(1‘:* "h b ig' )VE[ﬁj 5J JE[yigh7l;g'h]

Using Lemme 4=3, (1),-(2), and (9),
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BNy s gerd = 0+ (0/27) SRR Gxy - *ig )(x, 3 );

- X,
hfh’ ight  Tigs
E [7igh71gh'] +0+0,
s ” » '-- X e - X
Now using (10) and the fact that %} (xigh xig.) (xigh xig.) s
h#h'
bounds are found for E n. Jﬁnidk']
- s2/R < E [nljkﬂ Jk.] <0 .

Now the analysis of main-plot treatments is based entirely om the

means ng. =p b+t te Thus, in view of Lemma 4=k, (1)=(k)

ik*.
and this "main-plot model" one sees that the analysis of main-plot
effects, XlXé see Xh, is entirely the same as that presented in

Chapter III. Thus an unbiased estimate of any main-plot effect,

xixé cee Xm’ is given by Z n . Vhen X1X2 v X is a main.

J-J

effect or interaction =, = f_l/emnl and

J

+ 1)/ (r2

2
5 L N s -
0 € Var (»xlx2 xm) 8%(2 ,
. .8 — | 2 2 .
where 8° = é (xig - X, )" . An estimate of 8~ may be found in the

split-plot analysis of varisnce tablean,

n-m )

ég = )ig% (;itj. - ono - ;ioo * 5;01)2/(1. ) l)(2

The: analysis of subplot treatments is based on the means

——

Vi =B kbt + (1/2%) Z MiJk . The analysis of this "sub-plot
medelﬁ is based on Lemma 4-k, (5)~(8). Thus, one sees that this anal-

ysis of sub-plot effects, cet X0 is also entirely the same

K1 X2
as that presented in Chapter'iII, Consequently, an unbiased estimate

of any subeplot effect X m+2 vee Xﬁ is given by E “ky..k . For
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& sub-plot main effect or interaection T = i l/En”m‘l and one obtains

Newipysm] 2ne 2

0= Var (x xn) < 52(2 + 1)/r2

m+l m+2

2 . —
where §_ = EE (xish - X

ig )2 « An estimate of s‘z is found from the

split-plet AOV,
SRR
=35 Gage - Ty, -Vt 7))

Factorial interaction effects XlXé cee Xn’ are given by con=
trasts of (ts)Jk: That is, X X, ***X = gﬁ.njk(ts)jk « The follow-
ing theorem indicates a methed of finding an unmbiased estimete of such

an effect.

Theorem 44, An unbiased estimate of (ts)jk is given by

yq,jk - yo,jo - yook. + Y"' * -

Proof of Theorem bk, Consider

BOY g =¥,5, =T, v ¥, Jmpttybe (te)y - f‘tj) -
(s )+
= (tS)Jk .

This completes the proof.

An upper bound on the variance of such an interaction estimate

way be found from the following expressioens,

Y y y )

Var IF "jk(s:..jk " V. " V.xkTY,..

L 1 gsn
Var B x,,[ (62) 5 + T8Ny g = SwF§ M350

2
?E[§§ £ ",jk(r i3k gm % ‘nij"k)]

#

Var (X1X2~-~ Xh)
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L B ‘
= ?‘ B [§§ Eglgﬂﬁt ﬂjk ;jgkg(ﬂ ""ﬁ%n ﬂlgwk)
1
m-isjcks - éﬂrgnt T‘itéankv)j

o
= 2 (353 7, (" nmtnuk‘:l
25 EE' Kfjk“,jk'(am = DED 30 geed =
k?

835'1? %P M pd -

it
zﬁf’ﬁfé' TyeTgoee B U505 ged
s kfk!
. , 5% 52 _ , L
ow EETI ke = g oand "E’EgE[niJknijk']SO’ for k # k', so0 an

upper bound en the varianece is given by

Var (X1X2 soo Xn) < [(2 1) gﬁ ﬁjk %gﬁ P
(2 - 1) %EE, A ﬁ.jkﬁjk’ -
kfk'
THEE Byl
IH3's lopk!
where
Az{o if n,jkﬁ,jk' 2 0
-1 if ﬂjk“;}k' <0,
and

© if =, = <6 .

-l i >
5 z{ 1 if L
Je" 'k

An analysis of variance tebleau for a split-plot design is given

below. This is useful for testing hypotheses and for finding estimates
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Source af Sum of Squares E [Sum of Squares]
» n e 2 n 2 A= 2
Total 2 -1 5% Uige =v.,.) 27y b+ T § ot
n-n_ 2
+ r2" %% 4 " E k
+ r3E (t8)% + r 82
gx Jk 8
. : -7 )8 ns 2
- Blocks 5 -1 z;zg:]% (y B ym) 27 % b,
, | _ .z 2 2 6,2
Mein-plot Treatment 2 1 g%% (y.J. y.”) § tj +2 8
Error (a) (r -1)E" - 1) Ezi (v, -y Y. +7% )2 (r-1)2""sg 2
1 lJo o,jo fea o0e
Sub-Plot Treatments 2" .1 S5 (F . -7 )F D TR
‘ o v reatmen l%% yoek- yeoe E k Em 8
: -t - - - - 2 2 Ry 2
Sub-plot Trestments x | (2% - 1)(2"™ - 1 %ZE (y e ™ T =¥ Lty ) T %%« {t )t“}r + & - X 8,
Main-plot Treatments ¢ e * °* et - % 2
Error (b) 2N a1 ) (2% - 1 ZLE (y “F.s =Y oty >E (r -1)8
; ﬁ% iJk lj@ eak oqje

©9
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of 32 and 82 which are needed in order to estimate the variaﬁees of

estimates of factorial effects found previously.
The expectations of the sums of squares may be found using Lemua
hok, Consider for exsmple the expeetation of the sub-plot treatment

sum of squares.

2555 ,;nit N

(353 G, -7, ) = B [35F (& -
2 2m :F%'ﬁw 111 J' ”J"k)j

- 353 1< -0t rg§mtn ,j,kJ
E}%.Zjn E E'ﬂi,j,kni.juk] «f
I
b O J P
1"

Using Lemma héhg (6) aﬁd'(7):"vu

E [Subaplot treatment sum of squares]

= Egﬁ(s"+ 22m§§=@+ + 0)

e oem 2 1 .2
=2 8 +é'm'Ss

This concludes the development of constrained randomization for
-8plit-plot designs. A summary of the material developed for con-
strained randomization procedures is given in the following chapter

with one methed for extending the results to factorials withéiacmors at

more then two.levels,



CHAPTER V
SUMMARY AND EXTENSIONS

In this thesis methods of comstrained randomizati@n are given for
2"P factorials»in gseveral basic experimental designs; The randomiza-=
tion procedure is restricted by a compatibility condition on adjacent
treatment combinations whiéh‘requires;that the number of faector levels
vwhich may be changed from te to te be equal to A4, where A < ne=p,
Constrained randomization methods are given for blocked QEBQP factor-
ials in the situation where th;fe is ne cempatiﬁility condition between
adjJacent blocks, called non-censecutive replicatien;, and for consecutive
.repliecation of 2n=p factorials where te's which are made adjacent by
running the blocké in consecutive order must also gatisfy the compati-
bility condition. The statistical analysis and the interpretation of =
the results of these designs, based on a éand@mi%gtion model are shown
t6 be identical,

Split-plot designs ecould have three compatibility eehditi@ns, one
en adjaeent'main-plot treatmwents, a second on adjacent sub-plot tréat-
ments within maineplots, and a third condition regarding the adJjacency
of subsplot treatments between adjacent maineplots. Methods of eon-.
strained randomization are given for 2nﬁp factorials in three clasées
of spliteplot designs. The three classes of split-plot designs dis=-
cussed include a class of designs with only one compatibility condition

regarding all factors in a te, while the second class of split-pleot
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designs presented has separate compatibility conditions on mainép;@t
te's and on sub=plot te's within wain-pleots with no requirement on ad;
Jecent sub-plot te's between maine-plots. The third class ef split;plot
designs slso has a e@mpatibility conditien on adjacent sub-plet te's
between main-plots.

I% is interesting that the methods of constrained randemization
givenufor the split;plat designs ard also a large portion of the devel-
opment of the related splite-plot randomization model analysis follow as
rather straightforward extensions of the previous material concerning
2% P  pagtorials in bloaks;

Examples have been given illustrating the methéds of constrained
randouwization for the various p™P factorial designs discussed.

These examples discuss and indiecate the use of the tables of trans-
formation generators of 2%P  ractorial te's listed in.Appendix B,
which are used in the constrainedvrand@mization pr@cedure;

The material presented in the.pfevious ehgpters may ﬁe immediately
extended to faetorials of the form pih pggwe s o pik, where p; and
n, are non-distinet natural numbers,Aprevided that & change of levels
in any given facter is counted as one cﬁangé in_deteimining the order of
adjacency of te's.. If, however, the order of adjacenéy of te's is de-
termined by the numbe; of levels each factor in the tc¢ changes, then the
methods of constrained randomization presented in this thesis are not
applicable since they would not prééefve this seort of order relation on
the operational seguence of.te's. Thus if the determination of the
order of adjacenecy of te's is done in a wmanner whieh discriminates
number of levels chenged by any given factor or utilizes any type of

"degree of diffieulty” funection for any given factor other than simply



denoting a change in levels being made, thern in order to arrive at a
random operational sequence of tc's some method other than those pre-

sented in this thesis would need to be feound,
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Lo

75

50

108
107
106
105
10k
103
102

199

67

COMPUTER PROGRAM GIVING A MAXIMAL SET OF TRANSFORMATION

GENERATORS FOR A 2° FACTORIAL WITH A< 2

" DIMENSION IA(16),IND(300,6),

n(6,9),NN(1800,9)
FORMAT (1615)

MP = 6
M=8
MM = M + 1

READ (5,%0)(IA(I),I =1, M)
K=1

NN(1,1) = 1

NN(1,2) = 1A(1)

DO 102 Il = 2,M

W (K,3) = IA(T1)

II = 3 : )
CALL CHECK (MN,II,K,MD,LD)
IF(LD.EQ.6) GO TO 102
IF(Mb.EQ.1) GO TO 3

G0 TO 102

DO 103 12 = 2,M

NN(K,%) = IA(I2)

II = 4

CALL CHECK (NN,II,K,MD,LD)
IF(LD.EQ.6) GO TO 103
IF(MD.EQL) GO TO &

G0 TO 163

.
.
.

DO 108 IT = 2,M
NN(K;Q) = IA(IY)

II = 9

CALL CHECK (NN,II,K,MD,LD)
IF(LD.EQ.6) 60 TO 108
IF(MD.EQ.1) GO TO 75
GO TO 108

KK = K

K=K+ 1

NN(K,1) = K

DO 50 J = 2,MM
NN(K,J) = NN(KK J)
CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

IF(MD.EQ.1) GO TO 199
K=K--1

200 JJ = 1,K

200

202

299
310

200

321
340
355

501

319

330
320

500

400

WRITE (6,202)(8N{JJ,d),
J = 1,MM)

FORMAT (iX,17I16)"

LL = 1

L=1

DO 310 J = 1,MM

mW(1,J) = §N(LL,J)

DO 300 L = 2,MM

NMA (L, I)/lOO
B = (I\M(l I) - BMA%100)/10

ch m(L, I) - NMA¥100 =
NMB 10

nM(2,I)
NMB

M(3,I) = NMB¥100 + NMA¥10 +
WMC

MM(k,T) = NMB%LOO + NMC¥*LO +
NMA

MM(5,I) = NMC¥LOO + HMA*1O +
NMB

FM(6,I) = MMC*L0OO + NMBXLO +
NMA

CONTINUE

DO 320 I = 1,MP

DO 330 IK = 1 K

IF(NN(IK,1). EQ .0) GO TO 330
DO 340 J = 2,MM

7 (WM(1,d) .EQ NN(IK J)) 60
TO 321

GO TO 330

IF(J.EQ.9) GO TO 355

CONTINUE

IND(L,I) = NN(IK,1)

IF(I.GE.2) GO TO 319

WRITE (6,501 )(NN(IK,JdJ),
JJ = 1,MM)

FORMAT (1X, 1716)

NN(IK,1) = O

@0 TO 320

CONTINUE

CONTINUE

WRITE (6,500)(IND(L,d),
J = 1,MP) :

FORMAT (1X, 26I5)

DO 400 I = 1,K

IF(NN(T, l).EQ 0) GO TO uoo

80 T0 420

CONTINUE

= NMA¥100 + NMC¥10 +



320

32

33
31

68

GO TO 499
LL =T
L=L+1
GO TO 299
CONTINUE
STOP

ERD

CHECK DECK

SUBROUTINE CHECK (NN,II,K,MD,LD)

DIMENSION NN(1800,9)

MD = 2

LD= 2

J=1II -1

IF(NN(X, I1).EQ.NN(K,J)) GO TQ 31

I#(J.EQ.2) GO TO 32

J=J =1

G0 TO 30

Je Il -1

NA = HN(K,II)/100

NB = (NN(X,II) - NA¥%L00)10

NC = NN(K,II) ~ NA¥L0O - NB¥10

MA = NN(K,J)/100

MB = (NN(K,J) - MA*100)/10

MC = NN(K;J) - MA%100 - MB%10

MDX = IABS(NA - MA) + IABS(NB - MB)
+ IARS(NC - MC)

IF (MCX.EQ.1) GO TO 33

IF(MDX.EQ.2) GO TO 33

RETURN

MD = 1

RETYRN

LD= 6

RETURN

END

# B 8 8 8B 0

DATA INPUT FOR IA(I)
000,001,010,011,100,101,110,111
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TRANSFORMATION GENERATORS

In each table the ordered identification numbers 1, 2, #e<, N are
eguivalent pairwise to a corresponding treatment cowmbination in the pars
ticular set of t¢'s under e@nsideration; The order of the set of te's
is the usual increasing order of base Brnumbers; Thug, for example, in
a 2° factoriel 1 =00, 2=0l, 3=10, & = 11.

In each tasble given, whenever blanK spaces are encountered it is %o
be assumed that the number last listed\previously in the same column is

the proper entry,



TABLE I

TB(ga, A=1); Te(al"'a', A=2), I=AB=0CD

(l) l" 2, h', 3

TABLE II

w6(2, A=1); (%>, A=2), I=AB=0D=mF

For class (0) split-plot designs use only tg's (1) and (2).

tg Number | ~ Begquence of te's
() 1,2, 43,75, 6,8
(2) l’ 2’ h, 3.‘1 7, 8, 6’ 5

(3) 1,2, 4,8,6,5, 7,3
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TABLE III-

e(2®, o 2); w2, A=2),

I =880 76(253, A 4), I=AB=cD=gF

L]

(18)

For class (0) split-plot designs use only tg's (1)=(5%),
for splite-split-plot designs use tg's (1)-
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TABLE III (Continued)
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TABLE III (Continued)

TABLE IV

16(2°, AS 2)
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TABLE V

'.I'G(Eh, A=)
For Class (0) splitw-plot designs use only tg's (1)=(54), for split-split-plot designs use tg's (1)-{12).

12 4"5 7 5 6 81614 131511 9 10 12 1243 7 8 6 513 911 12 10 1k 16 15

) (30)
2) 111210 9 (31) 15 16 12 10 14
3) 1% 10 911 12 (32) 1k 10 12
4) 1001211 9  (33) 14 10 911 12 16 15
5) 7 8 6 5131k 161511 9 10 12 (34) 15 16 12
6) © 111210 9 (35) 12161511 9
7)) 13 15 16 1k 10 9 11 12 (36) 1612 10 911 15
8) 1012 11 9 (37) 1511 9 10 12 16 1k
9) 1248 6 5 7 311 91012 16 1k 13 15 (38) 1k 16 12
(10) 16 15 13 15 (39) 12 16 14 10 9
(11) 11 12 10 9 13 14 16 15 - (%0) ‘ 161211 910 1k
(12) o 13 15 16 14 (1) 1248 65 7 311 910 1% 13 15 16 12
(13) 1243 7 5 6 8161210 9 11 15 1% 1k (k2) ‘ : 13 1% 10 12 16 15
(%) ' 1% 13 9 11 15 (43) 15 16 12 10 14
(15) : 1511 9 (k) 1k 10 12-
(16) ; Y1l 910 1k 13 15 (45) 12 10 14 16 1513 9
(17) : 1513 9 10 1k (k6) 16 1% 10 9 13 15
(18) 1% 10 9 (&7) 1513 9 10 1k
(19) 913 15 11 12 (48) 1% 10 9
é&d) 12 11 9 13 15 (k9) 1513 9 10 12 16 14
21) 15 13 .9 (50) ik 16 12
(22) 13 910 12 11 15 (51) 1% 1612 10 9
(23) 16 1511 913 1k 10 12 (52) 1612 10" 9 13 14
(ak) 12 110 913 1k (53) 1413 9
(25 1k 13 9 55&) 1413 9 10 12
(26) 13 911 12 10 1% 55) 124%3% 7 5 61%10 9131511 12 16 8
(27) 7 8 6 513 910 12 11 15 16 1k (56). 1211 9131516 8
(28) 16 1% 11 15 gSY% 13 91012111516 8
58

(29) 15 11 1k 1511 910 12 16 8



TABLE V (Continued)

N : 00 00 QO] ~d ~T =3
BEBIFRRLIBTLRETEIAHR

1243 7 513 91012111516 8 6 1k 1243 7 81615111210 913

(91) 5
% 6 8 (92) . 1k
1%+ 6 81612 11 15 (93) % 6 5 12
15 11 12 (oh) 13 5 61k 10 9
1112101k 6 81615 (95) 12
1516 8 6 1% 10 12 (96) 9 11 12 10 14
1210 1% 6 8 (97) 71511 9101216 8 6 51
1+ 6 8161210 91115 (98) 1% 1
1511 91012 (99) 1% 13 5
12 10 9 (100) 101413 5 6 816 12
1511 9101216 8 61k {101) _ 13 5 6 816 12
: 1k 6 8 {102) 1k
1k 6 81612 (103) 1% 10 12
1216 8 614510 9 (1ok) 1k 10 12 16 8
16 8 61410 91112 {(105) 1210 913 5 6 816
. 1211 9 (106) 14
: 1211 9101k 6 8 {107) 1416 8
7 8 61410 911 12 16 1513 5 (108) b 16 8 6 5
12161511 913 .5 (109) 16 8 6 513 910
10 9111513 5 (110) 14
15111210 913 5 (111) 14 10 913
161210 9111513 5 61k . {112) 410 913 5
: k5 6 5 (113) 13 5 6 8161211 910
1» 6 513 911 15 (11k) 1k 10 9
1511 9 (115) 12
11 9101k 6 51315 (116) 1% 10 911 12
1513 5 61410 9 (117) 9 11 12 10 1k 16 8
91014 6 5 (118) 1410 9111216 8
1k 6 513 910 1211 15 (119) 16 8 6 513 911121
1511 9 1012 (120) 1% 10 9
1210 9 (121) B B
12 {122) b 1022 11 ¢

1511 ‘913 5 61k 10

l‘:’-‘

WG
W OO Do &

EE
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o E OO
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TABLE V (Continued)

(iaa) 1243 715161211 9 10 14 13

AR T AT OO N \NO

5 6 8 (155) 1248 6121012161511 913 5 T
(124 ) 1k 101211 913 5 6 8 (156) 13 § 7 311
(123) 1248 6 5 71513 91014161211 3 (157) 911 3 T
(126) 1k 161210 911 3 (158) 13 5 7 311 91012161
(127) . 161210 1513 911 3 (159) 15 16 12 10
(128; 1% 13 9101211 3 (160) 1516 12 10 9 11
(129 13 9101211 3 71516 1% (161) 91012161511 3 7
(130) 14161211 ‘3 715 (162) 15161210 911 3 7
(131) 15 7 3 (163) 16 12 10 911 3 7 5131
(132) 15 7 31112 (16h4) , 15 13
(133) 11 3 71516 12 10 14  (165) ©151% 5 7T 3
(134) f1k 1012 (166) 13 5 7 31115
(135) 12101k 1615 7 3 (167) 1511 3
(136) 1410 911 3 71516 12 (168) - 1511 3 7 5
(137) 121615 7 3 (169) 15 7 3111210 913 5
(138) _ 121615 7 311 9 (170) . 513 9101211 3
(139) . | 10 911 3 :715  (171) 11 3 7 513 91012
(1k0) 2157 3 (172) 1210 :913 5 7 3
(142) 15 7 311 191012 (173) 13 5 7 311 91012
(142) 1210 9 (17s) 1210 9
(143) 15 7 311 91012 16 14 (175) 9101211 3 7 5
(144) 1k 16 12 (176) 7 311 91012 16 1% 6 51315
(145) 12 16 1% 10 9  (177) - 1513 5 6 1%
(146) 61k 10 911 3 7 513151612 (178) : 1k 6 5
(147) 12161513 5 7 3 (179) 14 6 51315 16 12
(148) 13 5 7 31112 1615 (180) 13 5 6 14 10 12 16 15
(149) 15 16 12 (181) 15161210 1k 6 5
(150) 15161211 3 - (182) 1210 913 :5 6 1% 16 15
(151) 15161211 3 7 5 (183) 151614 6 5
(152) 121615 7 311 913 5 (184) 161513 5 61410 9
(153) 513 911 3 (185) 9101k 6 5
(154) 11 3 7 513 9 (186) 1513 5 614 161210 9
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TABLE ¥ (Continued)

(210)
(e11)
(212)

1248 7 3111513 91012161k 6 5

161210 913 5 6 14

% 6 5

1+ 6 513 9

1% 6 513 910 12

5 714 10 91315 16 12 11
12161513 911

13 910 12 16 15 11

15 16 12 10 9 11

16 12 10 913 15 11

1513 910121

1513 5 6 1% 16 12 10
1612101% 6 51
1% 6 513 91
161210 911 3 T

~

|_J

|_J

W ONO N
e

=

15 13 1
13 1% 6

[

15 11
1k 6 5 7

|_J
O\ W AW wvr £ W\
Eﬂ ~ o
'._l
= e

l:'!—'
N

~<<E§Gmﬁﬁqmdaﬁﬁﬁ
=

= e
101 U1 OE\D N1 08 108U 7 01 W8O8 W08 D8 AR D8 W

e
W
'—l

(213)
(21%4)
(215)
(216)
(217)
(218)
(219)
(220)
(221)
(222)
(223)
(22k)
(225)
(226)
(227)
(228)
(229)
(230)
(231)
(232)
(233)
(234)
(235)
(236)
(237)
(238)

12481612101% 6 51315 7 3 11.

11 3 7 5 61%10 9131
1513 5 614 10

910 14 6

9101k 6 51315 T

1513 9101% 6 5 7

14 6 5 7 3111210 913
15 13 9 10

15 13 9 10 12 11

13 9101211 3 T 15

15 7 3

15 7 311 9 10 12

1210 9

1615 7 311 913 5 6 1% 10 12
1210 913 5 6 14

=

[

i 6 5

1k 6 513 9

5 61413 9101211 3

11 3 7 5 61413 910 12
1210 91314 6 5 T 3
13 9101211 3 7 5 614
1+ 6 5 7 311 1

11 3 7 5 61k 1012
12101% 6.5 7 3

18 6 5 7 311 91012
1210 9

8L



TABLE VI

(2, as 2); me(2®), A=2), I=AaBooE; To(203, A< k), I=ABC = DE = FG

For class (0) split=plot designs use tg's (1)=(10), for split-split-plot designs use tg's (1)-(5).
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TABLE VII

7

(2", a2 3)
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TABLE VIII TABLE IX TABLE X
(2, A= 1) (2%, A< 2); (2°, A% 3)
(257, A = 2),
I = ABCDEF
Class (0) Class (0) Class (0)
Design tg Design tg Design ' tg
Split-plot (1)-(2) Split-plot (1)=(6) sSplit-plot (1)=(%)
Split-split- ., Splitesplite Splite-split~
plot (1)-(4)  plot (1)=(k) plot (1)=(2)

Split-split- Split-split-

split=plot . (1)-(6)  split-plot  (1)-(2) ,
1) (2)3) &) 6)6) (D 8) (1)) B 6) 6) (N ®) Q) R) B)E) (5)(E) (71 (8)

11111111 11111111 111111 1-° .
2 2 2 2 2 217 2 & 3 5 % 213 2 2 3 2 2 215252010
Yk %k 4 4 2510 2 2 2 312 6 822 5 716 12 24 17 27 %0
3 % 3 3 3 8 926 3 4 b 815101629 T 8 & k421191517
7 7 7 7 7161318 7 7 7 6 9 2213 8 41k 15213 k& 1k 13
5 8 5 8 8122922 5 6 3 4 314k 716 4 31111 9 31215
6 6 6 616113 6 6 8 8 2 8 g3L24 6 6 3 5 53L h 3
8 5 8 512 32514 8 5 6 51k 52819 2 5 5 81828 8 8
16 13161310 7 730 12 9131510 71828 161313 3 25 10 10 22
1% 1512 14 14 51529 10121112 6 31010 9 1% 1513 27 16 18 28
13161110 -6 611 3L ‘911 91k 511 6 & 1216 T1632 T 22 32
151515 9 514 2732 111015101316 420 10 9 9 7 8 521 24
11 10 13 11 13 10 19 16 1513 12 11 1612 20 32 13 11 12 14 16 13 9 12
9 9 91515 9 3 8 1315101611 k42715 1112 6 9 32129 6

10 11 10 16 ll 13 4 % 14216 1% 13 4 8 914 1410 8 62226 31 5
121214512 ‘915 2 3% 161416 9 T 151% ‘6 15 15 10 10 30 1k 2% 16
28 28 30 28 25 31 1819 3222 2k 1731272221 1932172517 2 5 31
27 27 29 27 26 32 20 27 29 24 23 22 19 25 32 18 21 25 24 1811 8 13 20
25 25 31 25 28 30 24 11 30 21 17 20 20 29 12 25 24 28 30 32 2 24 30 18
26 26 32 29 32 26 815 31 2320 18 2822 3 30 ,17 26 3L 2% 14 18 25 14
30 30 28 31 30 18 16 13 28 20 22 24 26 20 19 31 18 31 26 28 26 12 28 2
32 20 27 32 22 17 1% 9 27 17 19 23 32 32 25 27 :23 30 20 29 29 15 3 25
%1 31 25 30 1825 625 2519 21 19 2k 26.11 11 20 29 19 26 6 32 2 29
29 32 26 26 2929 517 26181821 18171512 222723520 3 30 17 7
21 2 18 18 31 21 21 21 22 30 3025 21 1929 9 2821 28221922 T &
23 22 22 20 27 25 22 5 24 31 25 30 30 24 30 26 30 17 32 17 28 6 16 19
eh 21 21 24 1919 30 T 2% 32 28 26 25 31 21 17 2519 29 30 12 9 32 26
22 23 2% 22 17 27 32 23 21 29 31 32 17 30 13 5 32 24 21 21 4% 11 26 27
18 19 24 21 18 28 28 24 17 26 27 2827 28 523 31 23 18 19 23 27 6 11
20 17 20 17 20 20 26 20 20 28 32 3123 18 25 '8 29 18 27 31 31 29 23 23
19181919 2k 24 10 28 18 27 29 29 29 21 17 7 27 20 25 23 20 23 19 21
17 20 17 23 23 22 12 12 19 25 26 27 22 23 26 3 26 22 22 27 10 20 11 9



TABLE XI
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6

For class (0) spliteplot designs use tg (1)

6

AS2)

(2 s A=1) - T¢(2°, m(263 A< 3)
@)y () (3) . 1)y ()  (3) 1y (@ 3
1 1 1 1 1 1 1 1 1
17 33 5 2 by 9 20 23 8
25 kg 6 8 3k 26. 27 32 22
9 17 14 16 2 k2 15 by 52
1335 25 6L 13 L4 24 45 k2 19 57 23 14 41 2017 57 6
29 36 9 45 29 20 739 58 31 17 21 12 ha 30 59 28 3
31 52 41 37 6L 28 3L 40 2655 2 7 L 60 63 35 bk ho
2% 56 57 55 53 12 2864 50 52 50 47 859 49 41 15 60
7 6k 58 21 37 16 18 58 18 49 58 L6 10 39 55 38 35 56
1560 42 5 k4548 10 41 20 59 18 64 18 36 31 2 11 31
11 59 1013 47 k46 6 37 12 25 24 30 22 50 1k 19 1k 26
27 63 26 15 15 62 4 38 60 28 ko 29 21 56 22 50 62 12
19 55 18 47 31 58 20 46 51 11 39 31 963 560 552k
339 50 63 63 57 27 61 53 9 51 27 29 61 25 36 L3 63
b 47 3k 55 Bk k9 954 25 3 6059 3155 4311 958
245 251 3250 1% 56 39 17 20 19 2% b5 B8 3 17 k6
18 37 615 24 18 22 65 15 57 12 35 534 1% 6 L 13
20 33 1k 20 8 2 32 59 32 33 8 33 13 54 856 40 2
b b1 46 28 4o 3 12 52 48 45 16 k9 30 58 21 40 50 36
842 3812 56 35 34 64 5 32 52 25 64 24 33 19 48
16 34 54 4 55 33 19 60 63 38 48 4 28 48 39 10 25 45
1% 38 22 43 39 41 25 48 27 1k 56 10 3 42 34 16 41 29
640 3059 742 11 47 43 29 55 25 252 5829 3959
5 48 62 60 23 3h 15 35 44 62 37 61 17 55 46 53 5k 20
21 46 64 52 21 38 29 33 16 56 4l 62 740 3751 30 7
22 62 32 36 17 5k 30 50 10 8 11 1k 16 38 26 T 32 16
30 61 16 35 25 22 21 53 636 43 6 32 46 'h 15 21 38
32 57 48 39 27 30 1349 30 4% 328 26 62 ka2 6k 61 53
28 58 4o T 19 26 555 k624 5 54 649 6L 62 k2 23
26 50 56 8 51 10 23 51 15 ko 13 34 23 51 57 45 34 6k
105 2% 4 52 9 17 36 61 47 45 36 19 35 186 9 18 27
12 5% 2% 3 60 11 26 3% 5§ T 15 38 11 37 27 28 51 10
b b9 31 11 Lk 43 57 42 22 35 63 44 57 47 52 12 k7 33
k3 51 29 27 36 59 62 43 21 37 53 28 33 Wk 37 3
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