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CHAPTER I 

GENERAL INTRODUCTION 

One of the most important aspects of a plant ls the internal 

water balance or degree of water stress bec~use this controls the 

physiological and biochemical processes and conditions which de• 

t!!rmine the quantity and quality of plant growth~ 

Various methods for determining water stress have been reviewed 
"'"" 

by Kram,r and Brix (1965) and Levitt (1965). They reviewed the measure• 

ment of drought resistance and discussed some problems involv!d in · 

using only one method of determining drought resistance in all types of 
' ' ' 

plants. 

Asa~ (1961) considered drought resistance in crop plants under 

two separate categories. From review of the results of hls tests it 

appears tha.t none of them proved consistently successful in predicting 

field performance of different varietles,of crop plants. Levitt, 

Sullivan and Krull (1960) have proposed that adaptation tc, dry climate 

ls due to (a) ability to stay alive and (b) abllitf to grow and develop. 

:Water stress in .plants 1nfluenc~,s such processes as water uptake, . 

root pre~surep .seed germination,. stomatal clo$ure, transpiration, 

photosynthesis, respiration, enzymatic activity, growth of shoots and 
' . 

,. 
roots, ·shrinkage of tis,sues, 'ml.neral relations,' etc. 

The purpose of this study. was to investigate the relation between 

the protein and ribonucleic acid components of wheat plants and their 

'. 1 
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tolerance to water stress in an effort to determine a basis for reslstQ 

ance to water stress which may be used to provide an index for breeding 

for drought resistance, 

This investigation is presented in two parts. Part A consists of 

the effects of water stress on ribonucleic acid components and 

Part B consists of the effects of water stress on protein components. 

A separate literature review will be presented for each part of this 

study, 



PART A 

EFFECTS OF WATER STRESS ON RIBONUCLEIC ACID 

COMPONENTS 

3 



CHAPTER II 

REVIEW OF LITERATURE 

Functions of RNA 

Reviews by Hoagland (1960), ~erg (1961), Ts'o (1962), and Moldave 

(1965), have led to a clearly defined hypothesis for the function of 

RNA in the intermediate reactions of protein synthesis. An outline 

of this hypothesis is as follows: 

Individual amino acids are activated in the presence of ATP, 

magnesium ions, and specific enzymes (aminoacyl soluble RNA synthesis), 

to form enzyme-bound aminoacyl adenylates and inorganic pyrophosphate. 

The carboxyl,group of the amino acid is linked to the phosphate group 

of the enzyme-bound complex and is transferred to amino acidqspecific 

acceptor•sRNA's where it is attached by an ester linkage to the ribose 

portion of the terminal adenosine residue. The amino acid-binding end 

of sRNA consists of a cytidylatemcytidylate•adenylate (CCA) sequence. 

Aminoacyt sRNA0s react with templateobound ribosomes (polyribosomes) 

at specific positions determined by the nucleotide sequence of the 

template (or messenger) RNA. The aminoacyl sRNA9s are specifically 

aligned in relation to the growing peptide chain, the Coterminal end 

of which is linked to sRNA. Nucleophille attack by the oC•amino group 

of the incoming aminoacyl sRNA on the carboxyl carbon atom of peptidyl 

sRNA results in the formation of a new peptide bond and release of 

the sRNA that was previously attached to the end of the growing 

chain. The polypeptide chain is linked thro,gh the rtew-amino 

4 



acid to its corresponding sRNA. Polyribosomes0 bound aminoacyl sRNA 

and peptidyl sRNA are therefore intermediates in protein synthesis. 

5 

The incorporation of the aminoacyl moiety of aminoacyl sRNA into the 

growing ribosome 0 bound peptide chain requires GTP, glutathione, and at 

least two enzymes. The me~senger and the ribosome then move one 

coding unit over in relation to each other. A new nucleotide sequence 

in messenger RNA ls thus placed in position to basempair properly with 

the next aminoacyl sRNA. As this process is repeated, the polypeptide 

chain grows from its N•terminal to its C0 terminal residue by the 

sequential addition of amlnoacyl sRNA's. The sequence of amino acids 

is determined by the nucleotide sequence of messenger RNA; the latter 

ls determined by the deoxynucleotide sequence in DNA, which ts tranQ 

scribed in the form of a complementary polyrlbonucleotlde chain9 the 

messenger. Subsequently, the ribosome moves far enough along the 

messenger molecule to allow a new ribosome to attach. A second 

ident\cal peptide chain can now be initiated and synthesized in the 

path of the second ribosome in the same way. Thus, several identical 

peptide chains can be synthesized simultaneously on a polyribosome com0 

plex. Eventually, at the end of the messenger-RNA chain, the ribosome, 

the completed polypeptide chain, and the terminal, esterified $RNA are 

released from the polyribosome. 

Functions of Ribosomes 

In the electron microscope the ribosomes appear as uniform round 

electron dense particles having an average diameter of 100 to 300 I. 
The ribosomes contain 80 to 90 per cent of the total cellular RNA. 

Some evidence indicates that ribosomes exist in mitochondria, 



chloroplasts, and ln the nucleus ln addition to the cytoplasm. In 

correlating electron microscopic observations and biochemical studies 

it has been established that microsomes, which are sedimented by 

centrifuging the mitochon~riaofree supernatant fraction tissue homo 0 

genate at 1009 000 g for an hour or more, are ribosomes still attached 

to varying amounts of lipoprotein of the endoplasmic reticulum. The 

ribosomes consist of equal parts of relatively highly polymerized RNA 

and protein. Both the RNA and protein are composed of subunits of 

several sizes which are possibly held together by Mg++ linkages. 

Various types of enzyme activities have been reported associated 

with the ribosomes. The presence of ribonuclease ln ribosomes has 

been reported by several investigators along with other enzymes such 

6 

as glucose0 6Qphosphatase, nucleotide0 cytochrome C reductase, peptidase, 

BQgalactosidase and amylase. 

Ribosomes are held together in clusters. The electron microscope 

studies show the individual ribosomes of the clusters of ribosomes 

or polysomes are fastened together by a nucleic acid strand which is 

about 10 to 15 X in diameter. Brief treatment with RNAase releases all 

the ribosomes as individual particles of sedimentation coefficient 

80 s, which is characteristic of single ribosomes. 

Bonner (1965) presented evidence to show that ribosomes combine 

with messenger RNA at chain ends only, while·after combination of ribo 0 

somes with messenger RNA, he found ribosomes at various positions along 

the length of the messenger RNA. As synthesis of a peptide chain is 

finished ribosomes leave the polysome. This Indicates that ribosom~s 

read the messenger RNA sequentially and that attachment and release of 

ribosomes to messenger are associated with initiation and completion of 



peptide chain growth. 

Allen and Schweet (1962) made the observation that ribosomes are 

very sensitive to RNAase while enzymological release of the labeled 

protein is not influenced. 

7 

The control of protein synthesis by the ribosomes is probably due 

to inability of the ribosome to proceed'tO synthesize a new protein 

molecule u~less the previously finished one can be released. Morris 

and Schweet (1962) reported that both an enzyme and ATP are needed to 

release labeled protein from retlculocyte ribosomes and that such re0 

lease ls accomplished without apparent degradation of the ribosomes. 

Using cultured tobacco cells, Nicolson and Flamm (1965) showed 

the cells contained two kinds of ribosomes: (1) Those bound to the 

endoplasmic reticulum requiring deoxycholate for release (bound 

ribosomes) and (2) those which are readily extracted with Tris buffer 

(free ribosomes). Both types sediment in the 70 to 80 S range. The 

bound ribosomes incorporate precursors of both protein and RNA at a 

significantly more rapid rate!!!!!!! than do the free ribosomes. 

Oeprotelnized ribosomal RNA showed that the bound ribosomes are composed 

of 25, 16 and 8 to 5 S RNA, whereas the free ribosomes contain only 

25 s RNA and a heterogeneous fraction sedimenting between 10 and 5 s. 

The protein/RNA ratio was the same for each type of ribosome. 

The effects of Mg++ ions on the ribosome complex may be representQ 

ed by the following: (Davidson, 1965; Spirln, 1964; Nicolson and Flamm, 

1965; Ts'o, 1962). 



25 S + 25 s 
Increase MG++ ions> 

'\, 
50 S 

+ ~ 70 s + 70 s ~ 100 s 

30 S 

16 s ! 16 s 
i 

8 S + 8 S 
Decrease Mg++ ions 

Only the ribosomes bound as polyribosomes are active in protein 

synthesis in complex with messenger RNA and soluble or transfer RNAo 

Ribosomes combine with messenger RNA at chain ends only 9 while after 

combination of ribosomes with messenger RNA, ribosomes are found at 

various positions along the length of the messenger molecule. 

Ribosomes read the messenger RNA sequentially and attachment and 

release of ribosome to messenger are associated respectively with 

initiation and completion of peptide chain growth 0 

Microsomes, which consist of llpoproteln and ribosomes, do not 

possess the power to reproduce. Bonner (1965) concludes that the RNA 

8 

of ribosomes is formed by DNA ... dependent RNA synthesis on the chromosome. 

The RNA thus synthesized moves in some way to the nucle~lus, where it 

is complexed with ribosomal protein. 

Functions of Soluble RNA 

The so ... called soluble RNA; (sRNA, adaptor RNA or transfer RNA) 

accounts for approximately 10% of the total RNA content. Most sources 

of data give the·molecular weight as about 25 9 000 to 309 000 9 which 

corresponds to not more than 80 to 100 nucleotides. In all active 

molecules of "soluble" RNA, the end nucleotides are arranged in a 

characteristic sequence, CCA, (Splrin, 1964). Three things distinguish 
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the sRNA found in cell homogenates fractionated by differential centriQ 

fugationi (1) Small size 9 (2) high content of the S~ribosyl uracil mono~ 

phosphate and (3) ability to accept specific amino acids and transfer 

them under enzymic control to microsomal protein (Smith 9 1960). A 

preparation can be tested for specific biological ability, which is 

the ability to combine with activated amino acids and transfer these 

to the ribosomes in the presence of appropriate enzyme systems 

(Hoagland, 1960}. 

The soluble fraction of cells contains RNA which is not bound to 

protein and which precipitates at pH 5. This precipitate includes 

also the "pH 5 enzymes" 9 among which are the amino acid activating 

systems (McQuillen 9 1962). 

Studies have demonstrated that the structural similarities among 

the sRNA chains go no further than the CCA trinucleotide end group. 

The secondary structure of sRNA is apparently not involved in the 

recognition of the activating enzyme since heat treatment sufficient 

to disorganize the secondary structure does not impair the ability to 

accept amino acids (Davidsc:m9 1965) o There appears to be more than one 

form of sRNA specific for each amino acid and at least one fO)rnt Olf sRNA 

specific for each amino acid (Von Ehrenstein and Dais, 1963) 

The nucleotide sequence adjacent to the CCA end of the RNA chains 

specific for isoleucine is different from the corresponding sequence 

in the RNA chains which accept leucine 0 Indications are also that 

heterogeneity of nucleotide sequences also occurs among chains specific 

for a single amino acid. Grunberg"'Manago (1963} reports only de"' 

gradation of a fraction of the chains specific for a particular amino 

acid by polynucleotide phosphorylase 0 Mg++ seems to have a protective 
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effect on the secondary structure of sRNA which causes resistance to 

polynucleotide phosphorylase. From several sources of data, Grunberg

Manago shows the characteristics of sRNA to have a near equivalence in 

the molar ratio of adenylic to uridylic and guanylic to cytidylic 

acids. 

Transfer of the amino acid is stimulated, as is the incorporation 

of free amino acids, by the presence of ATP, GTP, and a nondialyzable 

heat=labile fraction derived from the soluble portion of the tissue 

extract. By loading the reaction mixture with relatively large 

quantities of ribosomes and small amounts of amino acyl RNA, almost 

all of the amino acids can be incorporated into the ribosomes (Berg, 

1961). 

Functions of Messenger RNA 

Messenger RNA (mRNA) is generally found in cells in relatively 

small amounts not exceeding approximately 5 to 8% of total RNA content. 

Spirin (1964), reporting works by several investigators 9 has shown the 

molecular weight to vary over a wide range from 20,000 to 50,000 to 

2 x 106 and even higher. The sedimentation coefficients vary from 4 to 

30 Svedberg units with some as high as 45 Svedberg units. 

From works done with bacteria it was found that mRNA was a rapidly 

labeled RNA fraction. It has a base composition reflecting the DNA 

base composition and possesses long nucleotide sequences complementary 

to its homologous DNA. It is very heterogeneous with respect to 

molecular weight which possibly reflects the different sizes of the 

polypeptide chains to be synthesized. It can be associated under 

certain conditions with ribosomes, which are sites of protein synthesis. 



TUrnover rate of mRNA is very high for bacteria9 however in higher 

plants the turnover rate is not as rapid. 

H 

The metabolic turnover rate of polyribosomal messenger RNA is 

more rapid than that of ribosomal RNA 0 It sediments in gradients beQ 

tween sRNA and ribosomal RNA (Ogata et al. 9 1963). Its base composiQ 

tion is different from those of the sRNA and ribosomal RNA (Munro and 

Korner 9 1964) and when it ls incubated !!l vitro with appropriate riboc 

somal systems it stimulates the incorporation of amino acids (Revel 

and Hiatt, 1964).. 

Moldave (1965) reviewed studies which suggest that ribosomembound 

messenger,,RNA ls resistant to breakdown9 and that protection is 

attributable to the cessation of protein synthesls 9 thereby preventing 

the completion of polypeptide chains and release of messenger RNA from 

the ribosome. The individual ribosomes are fastened together by a 

nucleic acid strand which is 10 to 15 1 in diameter as determined by 

the electron microscope. With RNAase treatment the strands were cut 9 

releasing all the ribosomes as individual particles of sedimentation 

coefficient 80 s, characteristic of single ribosomes of higher 

organisms. 

It is commonly suggested that RNA specifies the sequence of amino 

acids in the protein formed on a particular ribosome. It has been 

proposed that mRNA is patterned on the DNA and carries information to 

a ribosome 9 enabling it to fabricate a particular protein molecule. 

Bonner (1965) presented evidence that a single strand of the 

double helical DNA of a c~romosome is transcribed. The single strand 

transcription of DNA assures that mRNA will be able to base pair with 
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molecules of sRNA. It is upon this recognition by base pairing of 

mRNA by sRNA that the sequencing of amino acids in enzyme molecules is 

obtained. The liberation of finished protein by the ribosomal system 

depends on the messenger RNA being intact. 

As shown by Hardesty et al. (1963), 80 s ribosomes combine with 

polysome0 labeled mRNA and the attachment requires energy in the form 

of ATP and it is enzymatic, as determined by a decrease in rate of 

attachment ln the cold. That attachment occurs at the end of the mRNA 

chain ls indicated by the findings of Goodman and Rich (1963) that 

binding of 80 S ribosomes to polysomes is proportional to the number 

of mRNA ends rather than to the total length of mRNA. The binding of 

ribosomes to polysomes is inhibited by the presence of small molecular 

weight poly A9 which presumably acts by being bound to the ribosome, 

blocking the mRNA attachment site. 

From the accumulated data, the indications are that the active 

cellular component in protein synthesis consists of ribosomal clusters 

held together by mRNA. 

Effects of Senescence on RNA Content 

Shah and Loomis (1965) showed that RNA concentration was highest 

in young leaf blades and lowest in the older leaves of sugar beets. 

The molar proportion of purine components declined with increasing 

leaf age, while pyrimidine compon~nts increased. Young blades had the 

highest purine/pyrimidine ratio (1.28) while the old leaves were low 

(0.90). 

Oota and Takata (1959) showed a decline in RNA ln aging cotyledons 
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which was matched by a rise in RNA in the growing points of the plants 

of which they proposed that the transport of RNA out of aging organs 

was an integral part of the development of senescence. 

"The Microsomal fraction", isolated from avocado fruit in which 

the mitochondria have lost the ability to carry out oxidative 

phosphorylation!!! !!!2. and!!! vitro, is still capable of an ATP 0 

dependent incorporation of labeled amino acids into protein. Exactly 

similar but more detailed results have been obtained with the micro• 

somal fraction from pea cotyledons in normal and induced senescence 

(Young et al., 1960). One may conclude that the ribonucleoproteins 

are still capable of functioning !!l !!!2, but does not because of the 

lack of ATP. Such a conclusion is consistent with the known stability 

of isolated ribonucleoprotein particles, their capacity for dissocia0 

t:lon into subunits, and their reassociation to form functional 

particles (Varner, 1961). 

Oota (1964) advanced a hypothesis for the fate of ribosomal RNA 

in senescing cells. He visualizes a stepwise breakdown of ribosomes 

during cell senescence as follows: Intact ribosomes~RNA separated 

from protein moiety .... further degradation of RNA"""' free RNA as small 

size expelled into soluble cytoplasm (termed "transportable RNA"). 

"Transportable RNA" is speculated to be transported to actively grow .. 

ing portions or RNA0 sinks to be utilized there for the reconstruction 

of ribosomes. Upon ultra0 centrifugation, microsomal RNAs from both 

hypocotyl and cotyledon of beans are resolved into 24 9 17 and 5 S 

components, whereas supernatant RNAs from hypocotyl and cotyledon 

yield a sharp 4 speak and an asymmetrically diffused peak at 4 s, 
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respectively. "Transportable RNA" appears to consist of 4S or smaller 

particles. 

Senescence in plants may be due to some physiological mechanism 

which creates a distinct catabolic condition. The decline in anabolic 

activities seems to be a natural consequence of the deterioration 

of RNA and protein components as senescence advances (Leopold, 1964). 

Effects of Water Stress on RNA Con.tent 

The role of ribonucleic acids (RNA) in protein synthesis has 

prompted investigations into the influence of water stress on RNA 

metabolism (Gates and Bonner, 1959; Kessler, 1961; West, 1962; 

Todd and Basler, 1965). 

Kessler (1961) found in preliminary work that water deficits 

impair the nucleic acid system which is intimately connected with 

protein synthesis. 

West (1962) found water stress reduced fresh and dryoweight in 

corn seedlings and that proteins and nucleotides were quantitatively 

decreased. He suggested that reduced growth in the stressed seedlings 

may have been a result of a shift in adenosine triphosphate production 

to guanosine triphosphate and uridine triphosphate. Ribonucleic acid 

from seedlings grown under water stress contained a significantly 

higher ratio of guanosine monophosphate and uridine monophosphate 

to cytidine monophosphate and adenosine monophosphate (West, 1962). 

The harmful effect of drought may be on the enzyme activity due to 

the effect of water stress on the nucleic acid system which is 

intimately connected with protein synthesis. Kessler (1961) using 
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incorporation studies with uracilQC=l4 on tomato plants, found that 

the rate of incorporation into RNA was similar in the water=stressed 

and control plants, indicating that the RNA synthesis system was not 

hampered. Kessler (1959) also found that water stress reduced RNA 

content in sunflowers. Gates and Bonner (1959) concluded that the 

block to net RNA synthesis was caused by more rapid destruction than 

synthesis of RNA. They showed that the leaves of molsture0 stressed 

tomato plants possess the ability to incorporate 32P•labeled phosphate 

into RNA even though they do not exhibit any net synthesis of RNA. 

Todd and Basler (1965), working with different varieties of wheat 

exposed to various levels of water stress, found a decrease in nucleic 

acid content in various subcellular fractions of leaves and crowns. 

They postulated that death of the plants would occur whenever the 

nucleic acid content of any given fraction dropped below a certain 

critical level a~d suggested that drought injury is primarily due to a 

destruction of cellular components by hydrolytic enzymes. The most 

drought tolerant part of cereal plants showed the least change in 

nucleic acids as well as protein. 

Effect of Water Stress on Purine and Pyrimidine Content 

of RNA 

The possibility that ad~nine is destroyed ln drought has been prc 0 

posed by Kessler (1961) 9 as has been suggested with high temperature 

(Hlghkin, 1957). It has been suggested that in heat 0 reslstant varieties 

the amount of adenine increases with increase in temperature (Galston 

et al., 1949). Kessler (1961) also proposed the possibility that 

adenine somehow stabilizes the RNAase=x (ribosome) complex and limits 



16 

its destruction. 

Kessler (1961) showed that various purine and pyrimidine bases 

either promote or inhibit the synthesis of either RNA or DNA or both. 

Such changes in the nucleic acid metabolism should somehow be reQ 

fleeted in the resistance of plants to drought. 

A striking difference was found between the nucleotides of water 

stressed and check corn seedlings. The water stressed seedlings were 

high in GTP plus UTP and low in ATP, the check seedlings were high in 

. ADP and extremely low tn GDP, ··Wher-eas-·t·he ,r~lattve quanti,ties of ADP 

and GDP were equal in the stressed seedlings. Water stress alters 

G + U markedly the structure of corn seedling RNA by increasing the A+ C 

ratio (West 9 1962). 

In adenine 0 treated tomato plants the RNAase activity remained low 

while the RNA level remained high, close to that of the control plants. 

Water stressed plants showed increased RNAase activity with lower 

amounts of RNA (Kessler, 1961). Using olive leaves Kessler and Frank= 

Tishel (1962) found an increase in the G + C ratio with water stress~ 
A+ U 

with the most rapid increase from Oto 20% water loss. 



CHAPTER I II 

METHODS AND MATERIALS 

Preparation of Plant Material 

The hard red winter wheat (Triticum aestivum L.) varieties 

C:heye:nne (CI 8885) and Ponca (CI 12128) were planted in 6 inch pots 

with sand, soil and peat moss mixture (2: l: 1). Cheyenne variety 

is considered to be drought hardy whereas Ponca ts considered to be 

dro~ght susceptible. 
' . ,.· 

. ·, 
They were grown in environmental growth chambers 

and in an Agronomy Department greenhouse at Oklahoma State University. 

The plants were allowed to grow for three weeks before a water stress 

gradient was started. 

The controlled environment experim~nts were carried out using four 

different controlled eq.vironment chamber units with temperature settings 

at 16° days and 10°, nights; 21° d,ays and 16° nis;_hts; 21° days and 

0 0 ' 0 21 nights; and one wit:h 27 days and 21 nights setting until the 

beginning of vat.er stress, at which time. the. setting •s changed to 
0 . -

41 during the daytime for the duratl1;>n of the water stress. The tight 

intensity in each of th~ units was 22,000 tux at plant level. The 

light and dark periods were of 12 h~urs each. 
'I . : ' 

The greenhouse expert•ents were without 1 ight intensity and temp .. 

erature controls. The temperatu;r-e ranged from 15° during the nights 
0 ·- 0 

to ~imum of 41 d~rlng the growth period. A mean of 18 night and 
0 , .... 

135 day was recorded for the dura_tion of the experiments. 

17 
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The degree of water stress was determined by the relative 

turgidity method of Weatherley (1950). This method has been shown to 

be an excellent indicator of degree of moisture stress in cereal 

plants (Todd et al., 1962). 

All plants were harvested between 10:00 A.M. and 11:00 A.M. in an 

effort to standardize possible fluctuations in water content and dry 

matter. Halevy and Monselise (1963) showed a fluctuation in dry weight 

during a 24 hour period which causes a change in the water percentage. 

At harvest the leaf portions were separated from the crowns on all 

plants used in the tests. The number of plants and the fresh weights 

were determined on the plant portions at the time of harvest. The dry 

weights were determined after the plartt portions were oven dried. 

At harvest the fresh plant materials were treated in boiling 

95% ethyl alcohol for one minute, and dried lft an oven at 100° for 

three hours. The material was then ground tn a Wiley mill, using a 

sixty mesh screen, and the meal stored in a deep freeze until used. 

AU of the test were made from tht s meal. 

EXtraction of RNA 

Several methods for the extraction of RNA from plant material have 

been investigated. Some different methods-have been presented and 

reviewed by Ogur and Rosen (1950), Smillie and l(rotkov (1960) 9 

de Deken°Grenson and de Deken (1959), Ingle (1963), Zscheile and Murray 

(1963) and Guinn (1966). 

In this investigation extraction of RNA from plant tissue and 

estimation of nucleotide content (refer to appendix ) was made by 

modification of a method reported by Zscheile and Murray (1963). 
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One gram of wheat leaf meal or 0.5 gm crown meal was weighed for 

extraction of RNA 0 The RNA was removed quantitatively from the dried 

material with four extractions of 40 ml each of 0.55 M sodium chloride 

solution and steaming each extraction in a pressure cooker or an auto~ 

clave at 100°. The resultant supernatants on centrifugation were 

pooled~ and equal volumes of 951. ethyl alcohol were added and the 

mixtures were cooled at about 2° overnight. The resultant suspensions 

were centrifuged batchwise (1500 X g for ten minutes f~~ each batch) 9 

in a 50 ml centrifuge tubes. The supernatant fractions were discarded 0 

The RNA was a white gelatinous precipitate in the bottom of the 

centd fuge tube 0 

Hydrolysis of RNA 

The RNA was hydrolyzed by adding l ml of 0.5 M KOH to the preQ 

cipitate in the centrifuge tube 9 and the mixture was incubated 40 

0 
hours in a water bath at 30. The hydrolysate was transferred to a 

calibrated centrifuge tube after adjusting the pH to about 8.5 with 

hydrochloric acid and diluted to 10 ml. Centrifugations were at 

1500 X g which removed the non .. hydrolyzed material. The supernatants 

(hydrolysates) were used for determining total ribonucleic acid by 

diluting hydrolysates and determining RNA spectrophotometrically. 

Separation of Ribonucleotides 

Before nucleotide separation was made on an anion exchange column~ 

a complete ultraviolet spectrum was recorded udng a Perkin .. Elmer 202 

recording spectrophotometer. A spectrum was recorded for each of the 
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100 ml fractions from the anion exchange column, and the moles of each 

nucleotide was determined by the formula developed by Zscheile and 

MUrray (1963)~ The steps in the procedures for anion column preparation 

and formulas for calculations of molarity of nucleotide content are 

given tn the appendix. 



CHAPTER IV 

RESULTS 

Separation ol: Nucleotides on Anion Exchange Column 

To check the elution pattern of nucleotides from the anion exchange 

column, 100 ml fractions of elutants were collected in volumes of 

5.2 ml. Absorbance was determined on each 5.2 ml volume to determine 

if the nucleotides .were removed from the columns within the 100 ml 

fractions. It was found that the order of elution was cytidylic acid 

and 2° and 3° 1denyUc acid using 0.01 N HCl as the first elutant. 

These nucleotides are distinguilfti!td .\by the .difference in their 

absorbance at 268.7 DJiU and 284 n,.s. Cytidylic acid has high absorbance 

. ' 
at both wave<J;jijjgths where,_, adenyU.c acid has a very small amount of 

... .' ·-:~:- ·t .· ' 

abosrbance at 284 11Jl and high absorbance at 268. 1 n,a (Figure l). The 

above findings are in agreement with Cohn (1955) and Zscheile and 

Murray (1963). All the cytidyUc acid wa.s l'em@Ved fft>m the column in 

approximately 20 ml of elutant and all the adenylic acid was removed 

before 100 ml @f 0.01 N HCl flowed through the column. 

The second fraction using 100 ml of O. l N HCl separated uridyl le 

acids and guanylic acids with uridylic acid being eluted first, 

followed by guanylie acid. Absorbance was determined at 268 '1 and 

290 1'1· From the results shown in Figure 1 it may be assumed that the 

100 ml fractions are sufficient to remove the nucleotides from the 

columns into two separate fractions. 

21 
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Anion exchange chromatogram elution pattern of RNA alkaline 
hydrolysate ·from wheat leaves. Column: Dowex~1~c1·, 400 mash. 6 cm x 1.1 cm. 
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Comparison of Wheat RNA With Yeast RNA 

After hydrolysis of yeast RNA and separation of the nucleotides 

with anion exchange column, the absorbance spectrum was determined 

(Figure 2). The absorbance spectrum for Cheyenne and Ponca wheat leaf 

RNA hydrolysate was found to be similar to the absorbance spectrum of 

yeast RNA hydrolysate (Figure 3 and 4) 0 The absorbance spectrum of the 

hydrolysate would Indicate that the extraction and hydrolysis of RNA 

from plant material gives preparations that were relatively free from 

large amounts of contaminating materials such as proteins. The 

absorbance spectra were determined on the hydrolysate and resultant 

fractions from anion exchange separation for all the plants which were 

grown in the environmental growth chamb,rs. All test samples were 

similar to the examples ln Figures 3 and 4. 

Total RNA Content of Gradl•nt Water Stressed Wheat Plants 

At Different Growing Temperatures 

Todd and Basler (1965) reported a reduction in RNA content as a 

result of water' stress. Similar results were obtained when the RNA 

content WJs calculated on a per pl•nt bast~, (Figure 5). The reductions 

of RNA content in wheat plants when subjected to water stress were 

slmllar·for'the plants grown at 27° day• 21° night and 21° day o 

16° night. However the plants grown at 16° day .• 10° night showed an 

increase -in RNA content per plant -after 4 -days without additional water 

followed by a slight drop in temperature after 8 days. At this temp• 

erature the increase in RNA content could be th• result of less 

actual water stress on the plants due to less water loss by transplra• 
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Figure 2. Absorption spectra of 5 mg hydroly~ed 
yeast RNA and resultant fract.ions l 
(Fi) and 2 (F2).after anlon exchange 
SEi!paratlon. (Diluted 100 X) 
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Figure 3. \baorptlon spectra of total hydrolyzed 
RNA extracted from 4 weeks old 
Cheyenne wheat leaves before anion 
exchange separation and resultant 
100 ml fraction l (F. 1) and 2 (F2) 
after separation on anion exchange 
column. (Diluted 100 X) 
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Figure 5. Total RNA per plant from Cheyenne and Ponca wheat 
leaves grown under different temperature regimes. 
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tion. In most cases after 8 days water stress the Ponca variety showed 

a greater decrease in·RNA content per plant'than did the Cheyenne 

variety. The·water loss appears to decrease the RNA content of Cheyenne 

more rapidly than Ponca for the fir~t 4 days after which time the RNA 

content of the Ponca variety is lost more rapidly 9 while Cheyenne tends 

to have a decreased rate of RNA loss. This results tn a considerably 

higher RNA conte~t in Cheyenne than Ponca when the plants are subjected 

to severe water stress. 

Comparison of Nucleotide Composition of Wheat Plants 

Grown ln Control Environment Chambers and Greenhouse 

Nucleotlde·composltlon of 4•weeks old wheat plants grown at a 

constant temperature (21°) may be used to incUcate what,, could be 

expected when'the wheat plants ate·grown at near optimum temperature 

(Tables I and II,). · The G + C/ A + u· rat lo ls the same for both varieties 

at about 1.35, which indicate the G + C type RNA of wheat plant tissue. 

The purine/pyrimidine ratios are·· about equal to 1. When the plants are 

subjected to water stress not only does the RNA content decrease but 

also the type of RNA changes as indicated by an increase ln the G + C/ 

A+ U ratios (Table IV). The per cent nucleotide composition of leaves 

from plants grown ln greenhouse are represented in ~igure 6 showing 

an increase in the G + C composition after the 4 days water stress. 

However after 8 days stress the percentage composition of G + C again 

resembles that of O days water stress. This indicates a more rapid loss 

of adenylic acid and uridyllc acid with a relatively small amount of 

water stress at about 75% relative turgidity. As the stress increases 



TABLE I 

NUCLEOTIDE COMPOSITIONS OF 4 WEEKS Q OLD WHEAT PLANTS 

GROWN IN CONTROLLED ENVIRONMENT AT 21° 

Moles/100 Moles Nucleotide 
ug/gm 

Water Stress Dry Wt. 
0 Days 

*% Adenylic Cytidylic Guanylic Uridylic 
R.T. Acid Acid Acid Acid 

Leaves 
Cheyenne 6000 97 19.4 24.6 33.0 23.0 
Ponca 8000 91 20.9 24.8 32.6 21.8 

Crowns 
Cheyenne 8000 97 18.9 22.2 35.9 23.9 
Ponca 14000 91 21.1 22.9 34, 1 22.9 

*R.T. e Relative turgidity 
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TABLE II 

NUCLEOTIDE RATIOS OF 4 - WEEKS OLD WHEAT PLANTS 

GROVN IN CONTROLLED ENVIRONMENT AT 21° 

Mole~lgm Dry Wt. 10-6 I Ratios 

Vater Stress I Total A C G u. I All) CIA GIA clu GIC 
Days . 

Leaves 
Cheyenne 

0 9.23 1. 79 2.27 3.05 2.12 0.84 . 1.27 1.70 1.07 1.34 
Ponca 

0 . 13.33 2.78 3.30 4.35 2.90 0.96 1.19 1.56 1.14 1.32 

Crowns 
Cheyenne 

0 14.20 2.55 3.15 5.lO 3.40 0.79 1.18 U90 0.93 1~62 
Ponca 

0 23.60 4. 75 . 5 .. 40 8.05 _ 5.40 0 .• 88 1.14 . 1.69 l.00 .l.4.9 

GIU g:t£ 
A+U 

1.44 l.36 

1.so t.35 

1.50 1:39 

l..49 1 .. 33 

A+C 
G+U 

0.79 

0.84 

0.67 

0.75 

A+G. 
C+U 

1;02 

0~99 

1.16 

1.18 

w 
0 
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TABLE III 

EFFEC'l'S OF WATER STRESS AND REWATERING ON NUCLEOTIDE COMPOSITIONS OF 

LEAVES FROM 4 WEEKS = OLD WHEAT PLANTS GROWN IN GREENHOUSE 

Water Stress 
Days 

Cheyenne 
0 
4 
8 

*5"'2 
*7"'2 

Ponca 
0 
4 
8 

•5 .. 2 
*7=2 

ug/gm 
Dry Wt. 

5200 
3200 
2900 
4800 
3760 

5400 
3995 
3985 
5513 
3600 

% 
R.T. 

91 
77 
52 
95 
96 

94 
64 
47 
96 
97 

Moles/100 Moles Nucleotide 

Adenvlic 
Acid 

18.6 
16.2 
19 .1 
18.7 
18.8 

18.4 
14.7 
18.2 
19 .5 
19.1 

Cytidylic 
Acid 

24.7 
24.5 
26.0 
26.0 
26.0 

25.8 
22.6 
26.5 
25.7 
24.1 

GuanyUc 
Acid 

35.3 
40.4 
32.6 
33.1 
35.2 

36.4 
42.2 
32.7 
34.0 
35.7 

Uridylic 
Acid 

21.4 
18.8 
22.3 
22.2 
20.0 

19.4 
20.5 
22.6 
20.8 
21.1. 

*5o2; 5 days without water, followed by rewatering and 2 days regrowth. 
*7°2; 7 days without water, followed by rewatering and 2 days regrowth. 



TABLE IV 

EFFECTS OF WATER STRES~ AND REWATF.:RING ON NUCL~OTIDE RATIOS 0~ LEAVES 

FROM 4 - WE'FXS OLD WHEAT PLANTS GROWN IN GREENHOUSE 

Moles/gm Dry Wt. 10·6 Ratios 

Water Stress I Total A C G u A/U ch. GIA C/U G/C G/U 
days 

-.. -. 

. Cheyenne 
0 9.39 L 75 2.32 3.31 2.01 0.87 1.33 1.89 1.15 1.43 1.65 
4 5 79 0.94 1 42 2~34 1.09 0.86 · 1. 51 2.49 1.30 1165 2.15 
8 5. 12 0.98 1. 33 l. 67 1.14 o". 86 1. 36 1. 70 1. 11 1.26 1.46 

*5-2 8.66 1. 62 2·. 25 2.87 1.92 0.84 1.39 1. 77 1.17 1.28 1.49 
*7-2 5.85 1. iO 1.52 2.06 1 .. 11 0.94 1.36 1.87 l. 30 1.36 1. 76 

Ponca 
O· 9,93 1. 83 2.56 3.61 1.93 0.95 i .40 1.97 1.33 1.41 1.87 
4 7. 17 "1.05 1. 62 3.02 1.47 0:71 1. SI, ·2.88 1. 10 1.86 2.05 
8 :1 .13 1.30 1. 89 2.33 1. 61 0.81 1.45 1. 79 1. 17 1. 23 1.45 

*5-2 9.93 1.94 2.55 3. 38 2.06 0,94 1. 31 1. 74 1.24 1.33 1.64 
*7-2 5.82 1.11 1.40 2.08 1. 23 0.90 1.26 1..87 1.14 1.49 1.69 

-
*5-2: 5 days without water~· followed by rewatering and 2· days regrowth. 

· *7-2: 7 days without water, followed by rewatering and 2 days regrowth. 

2!£.~ ~ 
M;U G+U C+U 

1,.30 o. 77 . l. 16 
l. 86 0. 69 1.30 
1.42 o. 82 1.07 
1.160.81 1.08 
1.57 0.81 1.11 

1.64 o. 79 1.,0 
L84 o.60 1.33 
1. 45 0. 91 . 1. 04 
1.48 o. 97 1.15 
1.49 o. 76 1.21 

I,,) 
N 
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an increase in degradation of guanylic acid occurs. As the total RNA 

is decreasing (Table III) during gradient water stress the percentage 

rate of decomposition.of the nucleotide must be changing from that of 

A+ U degradation to also G + C degradation as water stress proceeds 

(Figure 6). 

The temperature at which the plants are grown and subjected to a 

gradient water stress appears to have effect on the nucleotide com"' 

position of the RNA. Plants that have been grown at 16° day"' 10° 

night show no apparent change in the RNA composition (Figure 7 A). 

However, the plants grown at 21° day= 16° night (Figure 7 B) showed 

a different composition of RNA with water stress. The content of 

G + C increased as the A+ U content decreased. When the plants were 

0 0 grown at 27. day and 21 night the same type of changes occurred 

0 0 (Figure 7 C) as when the plants were grown at 21 day"' 16 night. 

0 
The plants which were subjected to 41 during days showed no significant 

change in the type of RNA (Figure 7 D), however, the total RNA content 

showed an increase with water stress (Appendix ). RNA"increase may 

be due to the effect of rapid rate of water loss on enzyme activity, 

such as RNAase, which causes RNA degradation. The O days water"' 

stressed plants, when subjected to the higher temperature during the 

stress period, had greater RNA degradation. Enzyme activity was allowed 

to occur due to a sufficient water supply. 

Cheyenne and Ponca showed the same type of changes in their nucleo"' 

tide composition, however the changes were greater with ponca than with 

Cheyenne at the end of 8 days water stress. It appears that Cheyenne 

tends to react faster to slight water stress, whereas Ponca reacts 
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slower as indicated by changes in nucleotide composition. However, 

when Ponca reached greater water stress the rate of increase in G + C 

content of the RNA was accelerated. 

Figure 8 shows the same type of response of water stress on the 

nucleotide composition of the crowns as was shown with the leaves, 

however the response appears to be ~elayed. This indicates the 

greater resistance of the crowns to water stress. The Cheyenne crowns 

appear to be more resistant to water stress than Ponca crowns. In 

most cases it would appear that there may be translocation of RNA 

from the leaves to the area of the crowns (Refer to Appendix) 

The nucleotide composition of RNA during water stress may be 

-valuated if one examines the results from 4 weeks 0 old wheat plants 

grown in growth chambers and 6 weeksoold wheat plants grown in green° 

house (Figures 9 and 10 respectively). The C/A and G/U ratios show 

increase with an increase in water stress. These changes suggest a 

more rapid degradation of adenylic acid and uridylic acid than guanyllc 

acid and cytidylic acid as the total RNA content of the plants are de 0 

creasing. 

In general the same type responses were found with the plants 

which were grown in the gr~enhouse. However 9 after 8 days of water 

stress, the difference in their ratios were not as great as the plants 

grown under controlled environment. 

The resistance of the plants to changes in their nucleotide com0 

position when grown in the greenhouse under conditions of water stress 

may reflect the effects of varying temperatures (Figure 10). 

The RNA structure may become more stable in those cases where 

water stress ls also combined with extreme variations of temperature 
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(Kessler and Frank 0 Tishel, 1962). 



CHAPTER V 

DISCUSSION 

The method of Zscheile and Murray (1963) for determining nucleo 0 

tide composition of RNA in plants proved to be a rapid method for 

determining the nucleotide composition of wheat RNA. The method makes 

possible the determination of the nuclreotide 9omposition of several 

samples at the same time by using several columns. The separation can 

be accomplished in about 8 hours. The reproducibility is good when 

using the same source of RNA and new anion resin for each determination. 

At near optimum growth temperatures the RNA content of wheat 

plants decreases under the effects of water stress. This is in agree0 

ment with Gates and Bonner (1956) 9 Kessler (1961) and To~d and Basler 

{ 1965). If this less is du~ to an enhlllriced RNA hydrolysis by water 

stress 9 as suggested by Kessler, then the nucleotide composition of 

the RNA from water stressed plants wotd.d be indicative of the more r 1"' 

sistant RNA components within the plant cells, The hydrolysis rate 

of ribosomal RNA is usually considered to be lower than that of free 

RNA. The RNA in the integrated 80 s fot'm is apparently less exposed 

than RNA in subunits which in turn is less exposed than free RNA 

(Ts 0o, 1962). It would appear therefore that the soluble RNA and 

messenger RNA would be the types of RNA which would be roost affected 

by increased hydrolysis, leaving as a result of high water stress, 

mostly polyribosome type RNA. such polyribosomes would have bound 

messenger RNA which wuld be protected to some extent from hydrolysis 

40 
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(Moldave, 1965). 

The nucleotide compos\tion of total wheat leaf RNA was found to be 

a "G C" type. In this respect the wheat leaf RNA was similar to barley 

(Zscheile and Murray, 1963), tobacco (Reddi, 1957), corn (West, 1962) 9 

olives (Kessler and Frank-Tishel, 1962) and cotton (Ketterman and 

Ergle, 1966). 

There appears to be an interaction of temperature with the degree 

of water stress at the temperature which is normally considered to be 

desirable for growing wheat plants. There ls a more drastic change ln 

the RN.A nucleotide composltlon toward an increased G + C type RN.A than 

when the plants are grown at a higher or lower temperature. Wheat 

plants which have lost approximately 50% of their water content still 

have the ablllty to recover rapidly as shown in Table III, page 31. 

This indicates that the synthetic system for new RNA synthesis is not 

destroye~ at·this level of water stress. 

The nucleotide composition of non-stressed wheat plants (Table II) 

is in agreement with Mihaelovic', Grujic'and Radzijer (1964), who 

attempted to show a difference in the total nucleotide composition of 

RNA between low-yielding wheat varieties and high0 yielding wheat 

varieties. They showed ttie·purine/pyrimidine (A+ G/C + U) ratio to 

be 1.07 and the 6-amino/6aoxo bases (A+ C/G + U) to be 0,94 using 

young wheat shoots 10 to 12 days old. A significant differenc was not 
. 
found in the nucleotide composition of drouth hardy and drouth 

susceptible varieties of wheat except under extreme water stress con-

ditions~ 

Accordi~ to West (1962) water stress causes an increase in the 

G + U/A + C.ratio of corn seedling RNA. The same type of trend may 



42 

also be observed with wheat RNA. However, the use of such a ratio to 

distinguish between drought hardy and drought susceptible wheat 

varieties appear to be invalid. Kessler and FrankQTishel (1962) noted 

that with different types of higher plants the G + C/A + U ratio inQ 

creases with water stress. They suggested that the varieties in which 

the RNA composition retained a higher G + C/A + U ratio would be more 

drought resls.tant than the varieties that had lower G + C/A + U ratio. 

From the results presented in this paper no such correlation could be 

found that would be useable as an index in determining drought reg 

st stance. 

Leslie (1961) found that ribosoines from human liver cells contain 

histones. When separated from the RNA, these histones showed RNAase 

activity. RNAase activity of ribosomes was also reported by 

Setterfield et al. (1960), Kessler and Engelberg (1962) and others 

using plant material. If the RNAase is bound to the RNA of the riboQ 

somes one could postulate that water stress would cause an uncoupling 

of the RNAase (histones or ~asic prote,tn) from the RNA which would 

result therefore, in a more rapid hydrolysis due to the free RNAase. 

Such a finding would be consistent with the increased RNAase activity 

found by Kessler (1961) in water stressed plants. 

The nucleotide composition of pea seedling ribosomes contain about 

53 per cent G + C (Wallace and Ts 0o, 1961). From a hypochromic effect 

it was suggested that base pairing similar to that in DNA may also 

occur in ribosomal RNA. Wheat leaf RNA appeared to have near symmetry 

(G to C and A to U) in base ratios to about 50% water loss. With 

greater water loss the ratios become more asymmetrical (Figures 9 and 
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10). 

It has been shown that uracil induces the synthesis of protein 

when the ratio of U/G is increased in inactivated ribonucleic acid 

(Kessler, 1956). In Figure 10 it was shown that wheat plants grown 

in a greenhouse and under controlled environment had a decrease in 

uracil content and an increase in guanine content. This could cause 

the loss of protein synthesis when the plants are subjected to severe 

water stress. 



PART B 

EFFECTS OF WATER STRESS ON PROTEIN 

COMPONENTS 
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CHAPTER II 

REVIEW OF LITERATUR,E 

Functions and Distribution of Protein 

In Plant Cells 

The properties of proteins and protein complexes as they exist in 

the cells and tissues of plants are primary d~terminers of the morphoo 

logical and physiological characteristics of the plants. 

Most of the protein of the leaf is enzymes (Pirie, 1959). It is 

now widely accepted that enzymes are proteins (Davies et al., 1964). 

An examination of the ratios in which different enzymes occur in 

leaves gn,wn under different physiological conditions could give 

information on the nature of leaf protein an~ whether "storage Protein" 

occurs in the leaf or whether all the protein is made up of enzymes. 

The problem of i~vestigating leaf protein, however 9 is that leaves that 

have been taken from the plant and exposed to adverse conditions for 

~nly a few hours may show a distribution of proteins significantly 

different from that in the leaves when they were harvested. 

In young leaves growing under good conditions as much as 40 per 

cent of the dry matter may be protein. As t~e leaf matures the protein 

content decreases. This may be caused by a change in the ratio of 

fibrous tissue to tissue rich in plastlds (Pirie, 1955). In tobacco 

leaves the phosphatase, inverta~e, and peroxidase content does nc>t 

diminish prop@rtionately to the decrease in total prot,ein (Axelrod and 
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Jagendorf, 1951). According to Pirie 9 (1955) approximately 30 to 

50 per cent of the protein in a recently matured leaf is believed 

present in the chloroplasts, 4 per cent in the mitochondria, 

approximately 10 per cent in the micorosmal fraction and the remain"' 

der in the cytoplasm except approximately 5 per cent which is attached 

to the cell wall and nuclear material.· 

From the investigation of the subcellular fractions of wheat 

leaves Todd and Basler (1965) reported a distribution of protein as 

followsi 15 per cent in debris and nuclei; 20 per cent in chloroplasts; 

2 to 4 per cent in mitochondria and 60 per cent in $.Upern•tant 

fraction which, would .. -lnc,lude .. r.ibo-somes .. 4tld cytot)la$n. 
. :'• : 'i 

Fraction I Protein 

In Leaves 

Wildman and Bonner (1947) first described the presence of a 

single electrophoretically homogeneous protein which constituted about 

75 per cent of the total proteins of spinach.,,leaf cytoplasm. They 

termed this protein "Fraction·1n9 which was beiteved to occur only in 

dicotyledonous plants. This protein was ~haracterized as having a 

sedimentation constant of about 18 Svedberg units. 

It has been shown that fraction I protein was associated mostly 

with the chloroplasts in spinach leaves and that it showed ribulose 
I . 

1,S~diphosphate (RuDP) carboxylase·actlvity (Lyttleton and Ts'o 9 1958). 

That about 90 per cent of the total RuDP carlloxylase activity in 

chloroplasts was associated with a preparation which was largely 

fraction I protein was obsened by Park and Pon ( 1961). 

Mendiola and Akazawa (1963) found fra~tion I type protein in rice 
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leaves using gel filtration (Seph•dex) and starch .. gel electrophoresis 

to characterize the protein. The major component of the solluble 

pro,tein was ab~~.t:o catall.ytie the flxatlon of 14co2 using rllbose0 5 .. 

phosphate';~,l substrate in the system. Thi ~in prcdi2ct of 14co2 fix .. 

atlon was 3°phosphoglyceric acid. The ,nzymes repcrted associated 

with the ·fraction l protein are phosphcrlbohomerase, phosphor .. 

ibulokinase and l 9 5°diphosphate carbcxylase (Wildman, 1961; Hasetkorn 

et al., 1965; Mendiola and Akazawa, 1964, Boardman, 1962g and others). 

Boardman (1962) isolated from etiolated leaves a purified protein .. 

protochlorophyll complex which had similar physical properties to 

those of fraction l protein. Trown (1965) 9 using Sephadex GQ200 fer 

separation and purification of prctelns9 concluded that fraction I 

protein is crude RuDP carboxylase which may also make up the protein 

moiety of protoch1orcphy11 holochrome. He was also able to separate 

RuDP carboxylase from phosphoriboisomerase a~d phosphoribulokinase. 

RuDP carboxylase was found to be an 18 s protein. 

From electron microscope studies Haselkorn. et al. (1965) ccncl~ded 

that the fraction 1 protein consists of a cube about 120 I along each 

edge, containing 24 subunits. The protein contained RuDP C$rboxy1ase 

activity. Kreutz (1965) suggested that enzymes alt'e attached to the 

subunits. 

Basic Proteins And Their Functions 

The basic protein (histone) has long been recognized as the coma 

panion°proteln of DNA in anl.mal and. plant cells. The basic proteins (of 

cell nuclei have recently been reviewed by MUrray (1965). Bonner (1965) 
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has reported extensively on the functi~n of histones in relation to 

chromatin as a gene control mechanism 0 Schwimmer and Benner (1965) 

~sed basic protein (nucleohistone) as template for the replication of 

DNA. 

The presence in ribosomes of basic proteins (hist~nes} which are 

latent ribonucleases have been reported by LesUe (1961). He proposed 

the hypothesis that each RNA template has a specific stabilizing 

histone which acts as depolymerase ~n other unprotected RNAijs. 

Watson (1963) found no ribonuclease activity prior to ribosome 

breakdown and suggested the basic proteins have primarily a structural 

role functionin~ to'hold the ribosomal RNA in the correct position for 

peptide bond formation. It was found by Setterfield et al. (1960) 

that the basic protein fraction from ribosomes of buds of pea seedlings 

represented about 29 per cent of the protein of the ribosomes. 

From the results of experiments with corn scute11um Hansen and 

Swanson (1962) suggested that the biochemical basis for respiratory 

senescence in plant cells may be in those events leading to large in° 

creases in ribonucl!.ease arAd/or other basic protehis. 

Bound Water In Proteins 

A single complex protein I001lecule can bind to its l)(lllar groups 

some 20j000 water moleculesj particularly to hydroxyl 9 carboxylj amino 

and amide groups (Stocker, 1960). The intra= and ftnter=molecular 

bridges and the hydration shell of the molecules hawe been recognized 

as dependent on the chemical structure of the protein. A relationship 

between hydration and the state of bonding exists in that the hydration 
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shell covers and protects the points of bonding and the bridges. It 

also hinders the formation of new bridges and renders difficult the 

destruction of existing bridges. The existing protein structures are 

therefore stabilized by hydration. There is no sharp distinction 

between water which is bound by hydration and free water. The charge 

and dipole forces rapidly decrease with distance and so a very strongly 

bound inner layer is surrounded by successively less strongly bound 

layers. 

Todd and Levitt (1951) used the term bound water for the water 

held at room temperature in an evacuated desiccator containing a 
. 0 

disiccant but driven off in an oven at 80. Bound water was considered 

by Levitt to be that portion of water held by dry matter in equilibrium 

with a definite low vapor pressure. The greater part of the bound 

water is due to solutes and colloids in the cell wall (Levitt, 1965). 

A theory has been proposed which predicts the amount of hydration 

possessed by any given protein based solely on the amino acid coma 

position of that protein (Fisher, 1965) 0 The predicted values agree 

closely with those experimentally determined in such cases where direct 

measurements are available. Using the amino acid composition of 

individual proteins 9 Fisher (1965) calculated the first mcnomolecular 

layer of water which is strongly bound to protein. From the calculated 

values of 34 individual proteins the average value was 0.28 grams 

water vapor per 1 gm protein which corresponds to only about 20 per 

cent of the final amount of water absorbed by a protein. 

From studies on ribonucleoprotein particles from mamnalian ribo 0 

somes, Petermann and Hamilton (1961) found that ribosomes carry several 
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times their own weight of water and pointed out that they must be 

spongelike in form. At pH of about 8 the excess protein is dissociated 

from the ribosomal RNA. Walter (1966). concluded that the hydration of 

proteins is largely dependent upon pH values or the influence of 

electrolytes. 

Effects of Water Stress on Proteins 

The resistance to water stress in plants is primarily a matter of 

the colloidal=chemlcal properties of the protoplasm and of metabolism. 

In the more resistant mesophytes the chief characteristic is the 

presence of very int6nsive metabolic activity and of an ability to 

maintain synthetic reactions at a high level during wilting. Of great 

importance among colloldalQchemlcal properties are a high degree of 

hydration of the colloids, high viscosity and elasticity of the proto= 

plasm and the quantity of bound water (Henkel, 1961). 

Petrie ( 1943') quoted Oparin as stating that a decrease. in water 

content causes release of adsorbed enzymes into the continuous ph,se 

where they effect hydrolysis. Petrie and Wood (1938) found that when 

the water content and nitrogen supply of the leaves of gramineous 

plants were varied, the values of the protein content could be almost 

exactly predicted in terms of the contents of amino acids and water. 

They pointed out that while water is a factor ln the relation between 

proteins and amino acids on .a dry"'welght basis!} they did not know 

whether this app_lled also on a cencentration basis. Aspinall et al. 

(1964) found that inbarl-ey, the organ which is growing most rapidly at 

the time of water stress is the one most affected. 
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Upon examining the ability of different leaves to recover from 

stress Vickery (1956) concluded that recovery was correlated with the 

protein content of the leaf and that in low protein leaves the enzymes 

necessary for recovery had been depleted. Todd and Yoo (1964) found 

that protein content of detached wheat leaves decreased with desiccation 

and that different enzymes are lost at different rates. In the soluble 

fraction, the enzymes saccharase and phosphatase were lost at a faster 

rate than peroxidase and peptidase ln relation to total protein. 

DUring heat and water stress young corn plants showed a 3 fold drop in 

nitrate reductase activity on fresh weight basis (Mattas and Paull, 

(1965). The nitrate content increased with increased water stress. 

Shah and Loomis (1965) found that water stress decre•sed the protein 

content in the soluble and insoluble fractions of sugar beet leaves at 

different stages of leaf maturity. 

Free mnino acids in barley plants under conditions of deficient 

water have an increase in proline. valine, and arginine with a re0 

duction of alanine, glutamic acid and gammaQaminobutyric acid 

(Savitskaya, 1965) •. Younis et al. (1965) found different relative conQ 

centrations of free amino acids ln corn seedlings after they were subQ 

jected to different temperature regimes with water stress which 

indicated changes in protein compositiono 



CHAPTER III 

METHODS AND MATERIALS 

Preparation of Plant Material 

Winter wheat varieties, Red Chief, Cheyenne and Ponca, were grown 

in controlled environment chambers. The temperature was maintained at 

20° to 22° constant temperature. The light intensity at pot level was 

11,000 lux using a grow lux light source. 

The plants were grown in 6 ineh clay pots using vermiculite as 

soil medium. The plants were watered regularly with Hoagland 0 s 

complete nutrient solutiolll until the water stress period was startedo 

The water stress was maintained on the experimental plants to provide 

plants with a relative water content of about 60 to 70% (slightly 

wilted and 20 to 30% (wilted). 

A control was harvested at the same time as the experimentals. 

The last mature leaves were selected for protein analysis fr@m plants 

with the youngest leaf 2 to 4 cm long. The crown portion used in the 

analysis consisted of about 3 cm portion cf the plant above the roots. 

After harvest rof the plet portions the tissue was homogenized in 

cold trtsQglycine buffer (0.1 M, pH 8.3) using a glass hand hcmogeptzer 

maintained at 2° in a cold room. Ten leaves or 10 crowns were J>@oled 

for each test. The homogenates were centrifuged for 20 minutes at 

27,000 X gravity. The final supernatant fraction consisted of 5 ml 

each, One to 2 ml of this supernatant fraction was used fer separation 
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of protein fractions on Sephadex and O.U to 0.2 ml was used for poly= 

acrylamide gel electrophoresis separation. 

Separat"lon of Soluble Proteins 

Using Dextran Gel (Sephadex) 

The dextran gel Sephadex G=lOO was used and columns of 1.1 cm X 

80 cm were prepared by a p~ocedure similar to that described by Flodin 

(1962) and Mendiola and Akazawa (1964). The elution pattern from the 

Jel columns was continuously minitored by a turner Model 111 Fluoro= 

meter which was connected to a recorder. The eluate from the column 

was then collected in 5 .ml fractions. This provided contll.nuous 

written record so that on completion of an automatic run a desirable 

fraction could be readily located. 

Proteins were determined by ul~raQviolet absorbance (Warburg and 

Christian, 1942) 9 fluorometric measurements and Folll.nophenol protein 

tests (Lowry et al. 9 U95U) on each 5 ml fractll.on. Fluorescence 

analysis appears to be more sensitive and specific than U.V. absorp= 

tion. Fluorescence is considered quite selective for the proteins 

sll.nce the highly U.V. absorbing nucleic acll.ddedvatives are only 

slll.ghtly fluorescent. A 25411'1 primary ll.nterference filter (~ctlvating 

filter) and a secondary (emis~icn) narrow pass fll.lter which peaks at 

360 1191 were used in the Fluoremeter fer increasing the specificity for 

proteins. Ultr ... violet absorbance was determined using a Perkll.ncoElmer 

Model 202 recording s~ctrcphotcmeter. A spectrum frc:mi 19011'1 to 350 

np was recorded for each fraction that contaln~d protein. 



Separation of Soluble Proteins Using 

Polyacrylamide Gel Electrophoresis 
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Properties 2!. Polyacrylamideg Polyacrylamides are synthetic polymers 

formed from low molecular weight chemicals obtainable in high purity. 

The pore size of polyacrylamide gels can be varied through a w:lde range 

by adjustment of the monomer concentration, and preparation of the gels 

is a simple and rapid procedure. These gels are transparent to visible 

radiation through a wide range of monomer concentrations. PolyQ 

acrylamide gel lattices are carbcnocarbon polymers with pendant amide 

groups, are relatively inert chemically and have few or no ionic side 

groups (Davis~ 1964; Williams and a,tsfeld, 1964; Steward and Barber 

(1964). 

Preparations !!,_ Polyacrylamide Columns~ The method used in preparing 

the gel columns was similar to the method described by Ornstein (1964) 

and Davis (1964). The chemicals used and their formulations are given 

in the appendix (Basic Proteins, page 92; Acidic Proteins, page 93). 

The procedures used in preparation cf the columns were those sugQ 

gested by Buchler Instruments 11 Inc. who manufactured the htst.f'U!llent 

used in carrying out the pclyacirylamtde gel eleotrcphcresls experiments. 

Staining 2!, Separated Pniiteinsg A solutil\Wi\ of 1% m111idoschwarz (amid~ 

black) in 7% acetic acid was used to stain the protein bands. The 

excess background stain was removed electrophoretically by placing the 

gels into glass tubes (1,0 cm x 26 cm) with one end constricted to reQ 

tain the gels in the tubes. The gels were removed from the separation 

tubes and destaining tubes with the aid of a small pump which forced 

water behind the g~l, causing the gel to be pushed out of the tubes. 



Following the destai,ning process the gels were stored in glass tubes 

containing 1% Formalin solution. 
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CHAPTER IV 

RESULTS 

Dextran Gel Separation of Proteins 

Using the florescent properties of··proteins, a record of the 

units of florescence was automatically recorded as the proteins were 

eluted from the Sephadex column (Figure 11). A relative protein 

elution profile was determined, using known proteins, which was used 

fer the approximate estimation of the size of unknown proteins 

(Whitaker, 1963). Utilization of this method of separation of proteins 

shows that the wheat leaf soluble protein can be separated into two 

groups which shall be referred to as fraction A and fraction B (Figure 

llb) 1• Fraction A was eluted with the void voltUDe of the column equal 

to yglobulin and therefore is presumed to have a JIIC:illecular weight 

greater than 100,000, which is the exclusion limit cf separation of the 

proteins on Sephadex GQlOO. Fraction B protein may be considered to 

have a maximum molecular weight of approximately 20,000 compared to 

trypsin (Figure 11) and probably also c@ntalns small peptides and amino 

acids which ~uld net be separated from the 51 000 t® 20,000 molecular 

weight proteins using Sephadex GolOO. 

Sephadex GolOO columns were utilized in determining if the effects 

of water stress ~n the wheat plants caused any observable changes in 

the amount ~f p~tein which was f@und in fraction A and fraction B. 

lFigure llQ is representative of several replications. 
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Using units of fluorescence as a test method, (Figure llb) it was shown 

that fraction A protein was decreased and fraction B protein was in° 

creased (Figures 12 and 13) by water stress. 

Each 5 ml fraction from the Sephadex column was tested for protein 

content and related to a standard protein source. The change in the 

amount of wheat leaf proteins in fraction A and B was related to the 

total protein content before separation (Figure 12). The results 

showed a decrease in fraction A proteins with an increase in the 

fraction B proteins. The total amount of protein showed relatively 

little change as a result of water stress wh~n utilizing this method 

of Investigation. 

Similar results were also found in the crowns of the three 

varieties of wheat used except that the rate of change or magnitude was 

as great (Figure 13). In Red Chief and Cheyenne varieties there was 

an increase In total protein in the wilted plants after an initial d.rop 

in total protein with the slightly wilted plants. 

In figure 14 the ratios of fraction A and B proteins determined 

spectrophotometrically shows the same response for wheat leaves and 

crowns. These similarities reflect a decrease in fraction A and an 

increase in fraction B with increased water stress. The response may 

be further illustrated by utilizing the ratios of fluorescence as an 

indication of the response to water stress. Figure 15 shows a decrease 

in ratios with increased water stress, A relationship to the drought 

hardy varieties may be indicated by the initial ratios of protein and 

the rate at which fraction A protein decreases with water stress. The 

rank from most drought resistant to least drought resistant is Red 
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Chief 9 Cheyenne and Ponca. The Mgher rad<0>s of Fraction A/B for each 

level of water stress would be lln the same order, 

Acrylamide Gel Electrophoresis Separation 

of Proteins 

Electrophoretic separation on acrylamide gel is readily accomq 

plished with a very high level of reproducibility, When using the 

same protein source and the same conditions of separation9 it ls 

possible to get visually identical results. 

Figure 16 shows a representative separation profile of (a) egg 

albumin9 (b) wheat germ9 (c) and wheat leaf proteins. The photographs 

of the stai.ned gel tubes show the relative amounts of protein by the 

intensity of the bandsi the darker bands represent greater amounts of 

proteins and th~ lighter bands a lesser amount of protein. Bands 

which were visible :\l.n the stained gels but not vftsible in the photo"' 

graph are illustrated by the very light diagram bands. The diagrSD1° 

matlc interpretation beneath the photographs are used ltn aU subsequent 

illustrations of the prctein separation pr~files 0 

Wheat Plants Grown Under Controlled Envltr@nmefit 

When plants were grown under constant light and temperature cono 

dit1ons 9 a decrease in the large molecular weight pr@teltn near the 

origin and an increase in the smaller molecular weight materials near 

the front was observed when the plants were water stressed (Figure 17). 

The number of protein bands increased with increasing water stress as 

well as the intensity of some of the bands. Red Chief 9 with increased 

water stress, showed primarily an increase in intensity cf the bands in 



.... ...... 
mm Dork 

II 

111 
ii 
ii 

..... ..... ..... ..... ..... ..... ..... :···· .... ..... . ..... \l :: 

. .... .... .... .... .... Medium Dork I Light 
. 

.~·· .........,..- ~ · " 

... ... ... ... ... ... ... 

111 
•:• ::: 

................... ....•...•........... ....•.•............. 
:::::::::::::::::::: .................... 
:::::::::::::::::::: ................... 

.. .. 

. .. . .. ... . .. . .. 

. .. 

Ill 

-- -~~ ~ 

~I 

iiiiiiii Ill 

.. 
:: .. .. .. 

Very Light 

Anode 

a 

;: b 

C 

0 
Origin 

50 100 
Front 

Figure 16. · The electrophoretlc separations of soluble proteins 
ln pH 8.3 Tris 0 glycine buffer on 7.51. Acrylamide 
gel . (a o egg albumin; b O wheat germ~ c O wheat 
leaf) 

64 



Red Chief 

w 

s w lllmlll!IIIII . · l!ll _ I Ill l!l!l!l!I II 

· w mi l!lil 111111 . . Iii ~JI ml 1111111111 II ~1 ·1 I ii 

s w lill llllll Iii 111 1rn1 . 111 ~ 11 l!II II~ 
w I n111rn · ~-111 . IIUlll Iii Ill ~m I rr 11 J ~~ I 11!1~ 

0 
Origin 

50 100 
Front 

Figure 17. Diagrammatic interpret.tions of the 
electrophoretic separations on 7.5% 
Acrylamide gel (pH 8.3) of the soluble 
proteins from Wllter stressed wheat 
leaves grown under controlled environo 
ment. (C-control; SW-slightly 
wilted; Wowilted) 

65 



loork m . If,!,!,. 
Efil§J Medium Dork /:mm Light I . 

Very Light 
. 

Red Chief 

. w _l!I -~11111111--..11~1111 _· 1_11 --Lii.ili]I-.----
Cheyenne 

SW L:_.,.t. __ i·, •. ' .•• 
11 _1>1._......· 1>_)1 v-11...-:1 -----tL.1 .. _: .. · .. •1----t1· ..... ··,._l ..•. ;i..__

1·.·· .. 
11 ...w__l'l,il' _ ~ l ~ ti ·- .. l 

w_li _ _......l!lll!l_!I _!!!~;:!! _l!I:_Ji~il _1111111 __ 

Ponca 

ti 11··· Ii 

wll ....__ _!ill-.i::..:llil.:.:.1--m ..l!l..-1!1 ~1111;!..__II ~1111~_-__ 

0 
Origin 

50 100 
Front 

Figure 18. Diagrammatic interpretation of the 
electrophoiretic separations on 1 ,5% 
Acrylamide gel (pH 4.5) of the soluble 
proteins from water stressed wheat 
leaves grown under controlled environ° 
ment. (C"'control ~ SW0 sUghtly wUted; 
W<>wilted) 

66 



67 

the 30 to 60 Rf range, whereas Cheyenne and Ponca had an increase in 

the number of bands throughout the smaller molecular weight range of 

the gel. By comparing the diagrams of figure 17 with figure 16 9 diagram 

of egg albumin, it could be assumed that the albumin type protein is 

increased in the wilted plant leaves~ 

Figure 18 also shows a change in the type of basic proteins from 

the same sample as shown in figure 17. Protein separation in the Ponca 

variety shows a greater increase in the basic type protein than the 

Red Chief or Cheyenne varieties. 

When the leaves were ground with Clelandws sulfhydryl reagent at 

25 mg/100 ml concentration (Cleland 9 1964) in the trisQglycine buffer, 

no additional protein bands were observed using either the pH 8.3 or 

4.5 system for separati~n. 

Wheat Plant Grown In Field Pl~ts 

Leaf samples were taken at random from wheat plants growing in 

field plots at different time during the growing season to compare the 

protein from plant leav~s gr~wn in controlled environment and that from 

field grown plants. 

Seven different wheat varleties2 were used which included the 

three varieties investigated under controlled environment. Figures 19 

and 20 show the protein band profile Qf wheat leaf samples from 10g 

weeks old plants, with the separation systems at pH 8 0 3 and 4.5 respectQ 

ively. The. 10 ... weeks old plants were subjected to moisture stress 

2Red Chief CI 12109; Cheyenne Cl 8885~ Ponca Cl 12128; Concho 
CI 12517; Kaw 61; Improved Triumph Cl 13667; Kan King CI 12719. 
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during the period from October 12 9 to mid December~ 1965, due to lack 

of rainf&ll. When comparing the 10°weeks old field grown plant with 

the controlled environment grown plant one could readily see a greater 

similarity in the wilted plant samples to the field ,grcwn,samples. 

Representative samples of the 20eweeks old plants are shown in figures 

21 and 22 which also show a prcgressive change in the protein types. 

The bands show differences among varieties with greater difference 

being found in the acidic proteins (pH 8,3) (Figure 21) than with basic 

proteins (pH 4.5) (Figure 22), 



Cff4PTER V 

DISCUSSION 

Sephadex gel column chromatography and acrylamide gel electroa 

phoreds were shown to be very useful in the inves.tigation of the 

effects of water stress on the pr@tein components in wheat·ptlmt tissues. 

Using Sephadex gel columns, Mendiola and Akazawa (1964) found the 

major protein component of rice leaves had enzymatic activities assoc 0 

iated with what has been previously reported as fraction 1 protein 

(Wildman and Bonner, 1947; Lyttleton and Ts 0o, 1958; Dorner et al., 

1957; Park and Pon, 1961; and others) 0 The elution profile obt~ined 

for wheat leaf material indicated that fractll.on A is of the same 

general type as fraction I protein. 

Estimation of the mclecular weights of the fraction A and B 

proteins using Sephadex gelofiltration (Whitaker, 1963; Andrews, 1964) 

indicates that the fraction A protein is greater than 100,000 1M1lecular 

weight and fraction B has a molecular weight of approximately 20,000 

or less. FractilDn A is mobile in a 3% acrylamide gel but not able to 

penetrate m@re than a few millimeters in 7 0 5% acrylamide gel at pH 8.3 

which indicates also its large molecular weight. 

Steward et al. (1964) applied the acrylamide gel electrophor~sts 

technique to the separation of components of the soluble pr@teins from 

different organs of pea seedlings with high levels of sensitivity and 

reproducibility. Steward (1965) provided evidence that the protein 

complement of cells changes as they developed, based on the changing 
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activities of several enzymes relative to each other. 

The changes in wheat leaf protein composition under water stress 

is shown by changes in the number and location of protein bands from 

acrylamide gel electrophoresis. The protein bands show changes which 

occurred as a result of water stress for both the acidic and basic 

protein groups. 

Todd and Basler (1965) showed the supernatant fraction from 27,000 

x g centrifugation (which contained ribosomes) decreased in nucleic 

acids with increasing water stress. If one considers the RNA Q basic 

protein (histone) concept of Leslie (1961), then one weuld expect that 

the degradation of the ribosomes would increase the amount and number 

of free basic proteins of small molecular weights. Proteins of this 

type may escape detection when using acid precipitation as a means of 

collecting proteins from buffer extracts for analysis since the smaller 

basic proteins are soluble in acid media. This could explain the 

proteins remaining near the same total amount during the water stress, 

while fraction A protein was decreasing with water stress, and could 

very'.well explain the different results which have previously been 

reported. Some investigators have shown an increase in protein with 

water stress whereas others have shown a decrease 0 When the protein 

was separated and different methods of protein analysis were used in 

analysing wheat leaf protein, the large IIKlJlecular weight proteins de0 

creased while the smaller molecular weights,proteins -increasedo The 

hypothesis that water stress causes the breakdown of the synthesizing 

enzyme complex and releases protein fragments which have hydrolyzing 

properties may be accepted if the smaller molecular weight fraction 

could be shown to be composed of proteins with different enzyme 
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activity. Such a hypothesis would also be in agreement with the conQ 

clusion of Vickery (1956) that in leaves of stressed plants the enzymes 

for recovery had been depleted. A change can be seen in the wheat 

leaf proteins as a result of the action of water stresso Such a change 

could be related to the loss cf synthesizing enzymes and an Increase 

in the hydrolytic enzymes. 

The decrease in RNA as well as the change in the ratios of nucleo= 

tides (as was shown in Part A) could very well be the reason for the 

lack of recovery of some plants from severe water stress. Recovery 

would be greatly hampered if the synthesizing systems of the plant 

tissue is badly dam,aged as a result of the breakdown of the RNA comQ 

ponents and the synthesizing enzyme system. Hydrolysis may be an im= 

portant means of mobilizing materials for translocation to a growing 

point where renewed growth would be possible when the plant was re= 

watered (Todd and Yoo, 1964). The lower limit of water stress which 

must not be exceeded by the plant in order for the plant to maintain 

itself without e~cessive hydrolysis could be a critical factor for the 

plant. The minimum level of water content at which a plant is able to 

maintain its stt'\lctures is therefore not only related to the total 

amount of protein but also to the amino acid com~sition of the protein 

(Fisher, 1965). 

The more resistant wheat varieties show a greater amount of large 

molecular weight proteins than the non°resistant varieties and thereo 

fore should have mere bound water and, consequently, the more resistant 

varieties would contain a higher water content under comparable levels 

of desiccation (Todd et al. 9 1962). 



GENERAL SUMMARY 

The method used for the determination of nucleotide composition of 

RNA ln plant tissue was a rapid method of determination, which had good 

repeatlbility when using test samples from the same RNA source. 

The effects of water stress on the RNA compt>nents indicates not 

only a loss in total RNA but also a change in the nucleotide compost• 

tion, exemplified by an increase in the G + C type RNA 0 A consistent 

difference in nucleotide composition was not detected which could be 

applied in screening wheat varieties for resistance to water stress, 

The t®tal amount of RNA was generally found to be higher for the 

drought resistant variety (Cheyenne) than other less tolerant varieties 

when subjE!ct to comparable water stresses. The percentage lcsss of the 

nucleotides adenylic and uridylic acid was much greater than for 

guanylic and cytidylic acid. such lesses were noted with only a very 

small amcl))'ffllt of water stress (75% water content). The results of the 

effect of water stress on the ribonucleic acid components in the wheat 

tissu~s were interrelated lrlth the temperature and the light intensity. 

Sephadex gel filtration and acrylamide gel electrophoresis were 

very useful as techniques for investigating the effects of water stress 

on protein compcnents in the wheat plant. From the elution profile 

of proteins from Sephadex GQlOO• two fractions were separated. When 

the plants were subjected t@ water stress fraction A decreased in 

amount and fraction B increased 9 which corresponds to a decrease in the 

large molecular weight and an increase in the smaller molecular weight 
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proteins. The same type of response was also found when the pr())teins 

were separated by scrylamide gel electrophoTesis. Witer stress caused 

an increase in the n'i.11mber and quantities of protei~ of smaller molecular 

weight while the larger lll()lecular weight proteins were decreasing in 

quantity. A simill.ar response was q.oted for both the basic and acidic 

proteins. The level of water stress at which a plant is able to main"' 

tain sufficient synthesizing structural components, therefore, would 

determine its limits for water stress. The results of the nucleic 

acid and the protein studies would indicate that the more drought 

resistant wheat vadeties are better able to maintain their structural 

components when they are subjected to wilting. These studies have 

openea up many areas which might be investigated in the overall re ... 

sponse ($f water stress en plants. Investigation hi.to the enzymatic 

nature of the various proteins which can be separated by acrylamide 

gel electrophoresis would probably be one of the more useful areas of 

investigation. 
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Procedure For Preparation of Dowex .. 1 Cla Form9 

Anion Exchange Column 

1. Prepare l x 8 cm column of resin. 

2. Wash with 100 ml deionized H2o. 

3. 10 ml Hydrolysate (from alkaline hydrolysis of 

4. 50 ml water. 

5. 50 ml 0.1 N Ammonium Chloride. 

6. 50 ml water. 

Fraction l (F1) 0 100 ml 0.01 N Hydrochloric acid. 

Read absorbance O 268.7 mu and 284 mu. 

Fraction 2 (F2) 0 100 ml 0.1 N Hydrochloric acid. 

Read absorb•nce a 268 mu and 290 mu. 

Calculations For Nucleotide Compositions 

F1 Adenylic acid molarity 

(11.07 X A268.7) 0 (9,90 x A2a4) X 10°5 

CyUdyUc acid molarity 

(9,901 ~ A2a4) C> (1.631 X A26a.1) X 10°5 

F2 Guanylic acid molarity 

(20.329 x A290) .. (0.681 x A268) X H11""5 

Uridylic acid molarity 

(12.674 x A268) 0 (21.111 X A290) X 10°5 

RNA) 
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PROCEDURES FOR DETERMINING TOTAL RNA AND NUCLEOTIDE CONTENT 

Ground Meal 

I 
Extract RNA 4 X wll.th 0.55 M NaCl 
at 100°g (40 ml fer 30 min.) 

I 
·Centrifuge 

Precipitate with V/V 
ethyl alcohol (95%) 
overnight at 2°. 

Centrll.fuge batchwise 
(1 9 500 X g for 20 min.) 

Red due 

Supernatant Precll.pll.tste 

I 
Discard 

Total RNA Hydrolysate 
I 

I 
Hydrolyze 40 hrs. at 
30° with 1 mlo.5 N KOH 

I 
Adjust pH to 8.5 

I 
Oil.lute to 10 ml and 
centrll.fuge 

Dowex Cr fcrml) 200 .. 400 mesh 
anfon ex¢hange column 

I 
Estimation of nucleotll.des 

F .31 N HCl 
Cytll.dyHc Acid .. 
Adenylic Acid 

'2 
0.1NHC1 
Guanylll.c Acll.d 
Urll.dyUc Acid 
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Preparat~on of Acrylandde Gel C~lumns 

l. Stopper clean dry tubes with specially shaped silicone rubber 
stoppers. 

2. Place tube in vertical position. 

3. Mix equal parts of solutions I 3 and I 4 in aspirat@r flask. 

90 

At room temperature remove air by evacuation. (smallo~re s©luticn) 

4. Using a plastic syringe connected to a long tygon tube 9 the 
s~1ut1on is then added into the tubes until the lowest ma~k @n 
tube is reached. Any air bubbles should be r~wed. 

5. overlay the solution in the tube with a few millimeters of distilled 
water. A Pasteur capillary pipette with tip curvature t~rn up~ 
is useful in getting a sharp interface between acrylamide liquid 
and water layer. 

6. Leave at room temperature for app~ximately @ne h@ur f@r poly= 
merizaticn of the acrylmt11ide. 

1. Remowe the water layer. 

8. Mix equal parts of soluti~n I 5 and water. Rinse the tubes abto>ve 
the gel and remove the solution immediately. 

9. Mix equal parts of solution# 5 and wate~ in an aspixat@r flask 
and remove air by evacuation. (1argeopore solution) 

10. Pipette the mixed solution ~nto the tube to the desired amount 
for spacer gel (3o4 cm) and overlay with a small moo,~nt @f watero 

11. Expose the liquids to a strong fluorescent lamp at a distance of 
a few inches for gelificati@n which is generally complete in 
approximately 30 minutes@~ less. 

12. Renwve the excess water layer and replace with the 1b\\llff~~ ~y~t~m 
used in the compartments. 

13. Allow gels to eccl to operating temperature (applf@Ximately 2° ~ 4@) 
and apply sample (1a5 mg pr~tein) in s~~Cll:'ol@e s~lution t© the t@p 
of the gel. 

15. Make connection to ~he power supply and t~~n on po>~~ supply. 
(Noteg The power supply should not be tujffied ~n when the ci~c~it 
ls not complete.) 
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160 Adjust Pl)i~er supply settittgS8 
pH 8.3 system= 5 mA/tube f~~ R h@ur chen 8.5 mA/t~b~ f.@r 4 Jtwu~so 
pH 4.5 system a 805 mA/tube for Rh@~~ then RO mA/buibe fo~ J.5 h©~rso 

R1. '!\l!~n off p;t»We~ supply and Tiem~we gel fll:'((i)m t~bes and ~~ain in 1% 
amidit)) black :itlll!. 7% at:edc ac:itd f((i)f' l h\(0)1l!!ll:'. 

19. Place the gel in tubes with ~ne end slightly C(())fiSttieted t((i) retain 
the gel in the tubes and completely fill the tubes with 7% aeetic 
acid. Remcve all air bubbles and fill the c~mpartments ~f the 
electrophoresis apparatus wftth 1% acetic acid. 

20. Connect electrode to power supply~ turn (O)fi powe~ and adjust 
volt setting to about 600 to 800 volts. D@stain:itng is usually 
acccmplished in 6 to 8 hcurs. (Notes Av@id excess heating at 
high v~ltage by ca~rying ~ut p~ocess under ref~ige~ati@no) 

21. Rem(l)we gelis from t~bes and puit into tubes with 1% f@~mali~ s~l~ti~n 
and label with essential 1nf~rmat1on. 



A. 

B. 

c. 

D. 

E. 

48 m1 
n.2 ml 
4.0 ml 

48 m:il 
2. 81 mlL 
0.46 ml 

1.5% 
c·c§o' g 

o.a g 

rn g 
2.5 g 

NQJX)ltassli~m hydT@xlide 
Acetic acid (glacial 
Tetrmnethy1ethy1enedimt11ine 

Wate'.it' t~ make 100 ml 

NQ~tassll1Um hydlt'~xide 
Acetic acid (glacial) 
Tetramethy1ethy1~fiediamline 

Water t@ make ROO ml 

U5% 
60 g Acr.ylamide 

0,4 g Methy1efieb~$&Clt'y1~mllde 
Watelt' t~ make 100 ml 

Acry1amirde 
Methylenebisacrylamide 

Water to make 100 ml 

4.0 mg Rib@fl~win 
Watelt' t:~ IMke WO ml 

Compartment b~ffe~ 
3 L 2 g J"'aianhue 

800 ml Acetllc acid (g1aclla1) 
Water t@ make 1 liter. 

Small.ll.optll'.il:'S SIOllUtll,IO)lri\8 1 pa11rt A 
2 pall:'t~ C 
1 patlt't W&\t<e'.it' 

Mllx bef@iEe l\ill!,le '"'ab astjm eiqud v@1l.\Uiri1(e @f /al 

f~eshly p~~pa~ed @@lwt~@@ @f ~i!tim~filiWlll 

persulphate (Oo28 gm/iOij ml)o 

Larg~~Ji)Ql~e scl~tiong 1 part B 
2 palt'ts D 
l paxt E 
4 pairt :s wa tell:' 
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Stock Solutlicns f0>ft' pH 8.3 Acey1aide Gd System 

Solution 1g 

Solution 2 g 

Solution 3g 

Sclutll.cn 4i 

ScluHon 5g 

Sc1ution 6g 

75 g Acrylam!de 
2 g N•NQMethy1enebisac~ytamide 

0.038 g Potassium ferricyanide 
Make up to 250 ml wll.th water 

24 ml 2 :normal HCl 
36 g 2-.amino m 2 hydrcxymethyl-

193 PlfOpanediol (Tris buffer) 
0.46 ml N9 N9N1,Nl • Tetramethylenedll.amine 
Make up to 250 ml with water 

Mix equal part$ of solutions I 1 and# 2; if 
refrigeratedi thll.s is stable fer several weeks. 

Catalyst for gellfication of solution# 3 9 

prepare a 0.14% ammonium persulfate in H2o. 

20 g 
5,0 g 

1. 71 ml 
5.7 g 

Acrylamide 
NQNgMethtlenebisacry1aimide 

86% phosphoric acid 
2Qamino Q 2 hydrcxymet~y1 • 
l 93 propanedfoll (Tds buffer) 

0,004 g Riboflavin 
Make up to 400 ml with wate~ 

Buffer f(l)r ccmpartmentsg 
12. H g (Trh) 2 .. am:lm .. 2 .. IC\\ych"@Xymetlrnyl, .... 

1,3 propanedlioll 
7.5 g Glycine 

1000 ml Water 
Adjust pH if necessat'y 
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TABLE V 

NUCLEOTIDE COMPOSITION OF 4 ° WEEKS OLD WHEAT PLANTS 

GROWN IN GREENHOUSE 

Moles/100 Moles Nucleotide 
ug/gm *% 

Water Stress Dry Wt. RT Adenylic Cytidylic Guanylic Urldylic 
Days RNA Acid Acid Acid Acid 

Cheyenne Leaves 
0 6100 89 21.0 25.6 36.4 17 .o 
4 4000 68 18.7 28.8 32.4 20.1 
8 2600 30 19.2 30.4 '.30.4 20.0 

Ponca Leaves 
0 6300 89· 21.2 26.4 31.8 20.6 
4 4600 58 22.5 25.3 29.0 23.2 
8 2600 30 26.3 28.3 29.4 18.7 

* RT 0 Relative Turgidity 



TABLE Vt. 

NUCLEOTIDE RATIOS OF 4 • 'WEEKS OLD WHEAT LEAVES 

.GROWN IN GREENHOUSE 

AY»les/: Dry:; lU-~.1 A/U 
Ratios· 

Water Stress l To·tal CIA G/A ClJJ G/C 
Days . 

Leaves 
Cheyenne 

0 11:76 2.40 3.05 .4.27 2.04 1.24 1.22 1. 73 1.51 1~42 
4 5.63 L24 1.91 1.15 1.33 0.93. 1.54 1.73 1.43 1.13 
8 ·s.os 0.97 1.54 1.54 1.03. 0.96 1.58 . 1.58 1 .• 52 1.00 

~nca 
0 11.38 2.41 . , 3.02 3 .. 60 2.35 1.03 1.25 1.50 1.28 1.20 
4 8 22 1.84 2.09 2.39 1.90 0.97 1.12 1.29 . 1.09 1.15 
8 4.23 l.00 1.20 1 24 0.79 1.41 1.08 1.12 1.51 1.04 

Average of three tests 

G/U 2:!£ 
A+U 

2.14 1.65 
l.61 1.58 
1".52 1.52 

1.54 1.48 
1.25 1.20 
1.57 1.36 

A+c -~ 
G+U C+U 

o.87 · L30 
0.90 1."05· 
0.98 0.97 

0.91· L12 
0.92 1.06 
1 08 1.12 

IO 
·VI 



Days Water Stressed 

*Cheyenne Leaves 
0 
4 
8 

Ponca Leaves 
0 
4 
8 

Cheyenne Crowns 
0 
4 
8 

Ponca Crowns 
0 
4 

.s 

* Average of three tests 

TABLE VII 

NUCLEOTIDE COMPOSITIONS OF 6 • WEEKS OLD 

WHEAT PLANTS GROWN IN GREENHOUSE 

Moles/100 Moles .Nucleotide 

ug/gm Dry Wt. 
RNA 

7920 
5480 
7000 

8200 
5920 
5920 

10,800 
8,600 
9,400 

13,000 
10,160 
8,880 

Adenyllc 
Acid 

20. 72 
19.38 
17.84 

· 20.31 
19.19 
16.05 

20.13 
18.98 
19. 71 

19 85 
18.59 
20.12 

Cytidylic 
Acid 

25.9.5 
26.80' 
.25.3t 

24.75 
25. 72 
24.72 

24.31 
24.88 
22.08 

24.68 
27.41 
21.21 

·Guanylic 
Acid 

30.72 
32.37 
37. 12. 

32.62 
33.01 
39. 6.7 

51.38 
51;67 
38.96 

51.81 
51.42 
38.23 

Uridylic 
Acid 

22.61 
21.44 
20.09 

22.32 
22.07 
19.56 

4.26 
4.47 

19.25 

4.29 
2.58 

20.43 

I() 
0\ 



TABLE VIII 

NUCLEOTIDE RATIOS OF 6 - WEEKS OLD WHEAT PLANTS 

GROWN IN GREENHOUSE 

Moles/gm Dry lit. 10+ Ratios 

Water Stress I Total A C G U A/U C/A G/A ,,C/U G/C .G/U ~ ~ ~ 
Days · A+U G+U C+U 

· *Leaves 
Cheyenne 

0 6.90 1.43 1 79 2.12 1 56 0.92 1.25 1.4"8 1.15 -1. rs 1;36 1.30 0.88 1.05 
4 4.85 . 0.94 1.30 1.57 1.04 0.90 1; 38 1.67 1.25 1.21 · 1.51 1.45 0.86 1.07 
8 6.52 1.14 1.65 2.42 1.31" 0.89 1.42 · 2.08 1.26 1.47 1.85 1.66 0.75 0.92 

Ponca 
0 6.99 1.42 1;73 2.28 1.56. 0.91 1.22 .1.61 1.11 1.32 1.46 1.35 0.82 1.12 
4 5.21 1.00 1.34 1. 72 1.15 0.87 1.34 1. 72 1. i7 . 1.28 1.50 1.42 0.81 1.09 
8 5.42. 0.87 1.34 2.15 . 1.06 0.82 1.5.4 2.47 L26 1.60 2.03 1.80. 0.69 1.25 

Crowns 
Cheyenne 

0 15.96 3.20 3.88 8.20 o.68 4.73 1.21 2.55 5.70 2.11 12.06 3.12 · o.79. 2.52 
4 12.54 2.38 3.12 6.48 0.56 4.25 1.31 2.72 5.57 2.08 11.56 3.24 o.78 2.40 
. 8 13.09 2.58 2.89 5 .10 . 2.52 1.02 1.12 1.98 1.15 1.76 2.02 1.56 0.72 1.41 

Ponca 
0 18.64 3.70 4~60 9.54 o.so 4.63 1.24 2.58 5.75 2.07 11.93 3.12 o.so 2.46 
4 14. 74 2.74 .. 4.04 7.58 0.38 7.20 1.47 2.77 10.66 1.88 19.93 3.72 0.84 2.34 
8 12.92 2.60 2.74 4.94 2.64 .98 0.95 1.90 1.04 1.80 1.87 1.47 o. 71 1.40 

*Average of 'three tests; 1 gm; Dry Wt. /sample. 

'° ..... 



TABLE IX 

NUCLEOTIDE COMPOSITIONS OF 4 - WEEKS OLD WHEAT. PLANTS GROWN IN CONTROLLED ENVIRONMENT 

AT 16° DAYS AND 10° NIGHTS 

Days Water Stressed 

Cheyenne Leaves 
0 
4 
8 
C 

Ponca _Leaves · 
0 
4 
8 
C 

Cheyenne Crowns· 
0 
4· .-. 

8 
Ponca Crowns 

0 
4 
8 

ug/gm Dry Wt. 
RNA 

5387 
5543 
4875 
5440 

5387 
5337 
4003 
5850 

3438 
5697 
5543 

2566 
5337 
5286 

ug.RNA 
Plant 

107.6 
138.5 
130,0 
94.5. 

101.\t 
115·0 
94.0 

110.0 

26.2 
49.4 
48.5 

17 .5· 
35.5 
37.0 

AdenyUc 
Acid 

17,5 
19.4 
18,5 
19 .4 

20 8 
19 .5 .. · 
20.0 · 

. 17. 7 

12.8 
14.0 
14.6 

13.6 
14 .. 8 
16.9 

Moles/100 Moles Nucleotide 

CytldyUc 
Acid 

28.7 
28.8 
28.7 
29.0 

21·.s 
27.6 
27.5 
28.8 

27.2 
27.2 
28.0 

27.4 
28.2. 
27.5 

Guanylic 
Acid 

34.8 
31. 7. 
32.2 
32.6 

29.7 
33.8 
34.0 
35.4. 

40.7 
39.4 
39.4 

43.8 
38."2 
37.3 

Uridylic_ 
Acid · 

19.0 
20. l 
20.6· 
19.0 

21. 7 . 
19. l 
18.5 
18.l 

19.3 
19.4 
1s.O 

15.2 
18.8 
18.3 

'° 00 



TABLE X 

NUCLEOTIDE RATIOS OF 4 - WEEKS OLD WHEAT PLANTS GROWN IN CONTROLLED ENVIRONMENT. 

AT 16° DAYS AND 10° NIGHTS 

Moles/gm Dry Wt. 10·6 Ratios 

Water Stress I Total A C G u A/U C/A G/A C/U G/C G/U ~ ~ ~ 
Days A+U G+U C+U 

Leaves 
Cheyenne 

0 9.14 l.62 2.62 3.17 l. 73 ·0.92 1.64 1.99 1.51 1.21 1.83 l. 72 1.07 1. 10 
4 8.81 1.71 2.54 2.79 l. 77. 0.97 1.48 1.63 1.43 1.10 1.58 1.53 0. 94 1 04 
8 8.61 1.59 2.47 2.78 1. 77 0.90 1.55 1. 74 1.39 1.12 1.56 1.47 o. 69 1 03 
C 9.57 1.86 2 .77 3.12 1. 82 1.02 1.49 1.68 1.53 1.12 1. 72 1.60 0.94 1.08 

Ponca 
0 9.33 1.94 2.59 2. 77 2."03 0.96 1.34 1.43 1.28 1.07 1.37 1.35 0.94 1.02 
4 9.40 1,83 2.60 3.17 1.30 1.02 1.42 1.73 1.45 1.22 1. 77 1.59 ·. o. 89 1.14 
8 7 .14 1.43 1. 97 2.42 1.32 . 1.08 1.38· 1. 70 . 1.49 1.24 1.84 1.59 0.91 1.17 
C 9.92 1. 76 2.86 3.51 1. 78 0.98· 1,63 2.00· 1.59 1.23 1. 96 1.80 0.87 1. 1.3 

Crowns 
Cheyenne 

0 8,72 l.12 2.37 3.55 1.68 0.67 2.13 3.18 2; 13 1.50 2.11 2.11 0.69 1.15 
4 13.29 1.86 3.61 5.24 2.58 0.72 l.94 2.81 1.94. 1.45 2.03 2.00 0. 71 1. 15 
8 13 78 2.00 3~85 4.43 2.50 0,80 1. 92 2.70 1.92 1.41 2.19 2.04 o·.14 1.01 

Ponca 
0 6,91 0,94 1.89 3.02 1.06 0.89 2,01 3.22 2.01 1.60 2.88 2.46 0. 70 1. 34 
4 12.62 1.86 3.53 4.85 2. 38 0. 79 · 1. 90 2.58 1.91 1.35 2.03 1.97 0. 71 1.14 
8 13.01 2.20 3.57 4.86 2.38 0 .92· 1.63 2.21 1.63 1.36 2.04 1.84 0.80 1.19 

IO 
IO 



TA'RLE XI 

NUCLEOTIDE COMPOSITION OF 4 • WEEKS OLD WHEAT PLANTS GROWN IN CONTROLLED ENVIRONMENT 

AT 21° DAYS AND 16° NIGHTS 

Moles/100 Moles Nucleotide 

Days Water Stressed ug/gm Dry Wt. us.RNA AdenyUc CytidyUc Guanylic UridyUc 
RNA Plant Acid Acid Acid Acid 

Cheyenne Leaves 
G 3772 93.8 19.8 27.4 33 6 19 2 
4 2874 66.3 18.3 27.8 35.6 18.3 
8 2514 51.8 15.6 30.8 · 38.6 15.0 
C 5646 102.5 18.6 27.3 34.6 19.5 

Ponca Leaves 
0 4875 89.7 20.-3 28.8 33.7 17.2 
4 4824 80.0 20.2 28.6 34.6 16.6 
8 0616 · 10.9 09.9 32 6 41.0 16.5 
C 7288 88 5 18.7 27.8 36.3 172 

Cheyenne Crowns: 
0 -3284 22.8 09.1 28.7 45.5 16.7 
4 4003 30.4 16 4 26.4 36.l 21 l 
8 46.19 32 a· 12.7 27.4 39.8 20 1. 

Ponca Crowns_ 
0 4773 26.0 16.1 29.0 36.4 18.5 
4 5253 34.0 15 3 27.3 38 2 14.2 
8 2208 13.4 12.4 27.5 50.2 09.9 

-0 
0 



TABLE XII 

. NUCLEOTIDE RATIOS OF 4 • WEEKS OLD WHEAT PLANTS GROWN IN CONTROLLED ENVIRONMENT 

AT 21° DAYS AND 16° NIGHTS 

Moles/gm Dey Wt. 10·6 Ratios 

Water Stress I Total I A C cf :U· AIU C/A G/A C/U G/C G/U ~~ ~· 

Days A+U G+U C+U 

Leaves 
Cheyenne 

0 . 6.93 1.26 1. 75 2.14 1.22 1.03 1.38 1. 70 1.43 1.23 1. 75 1.56 0.90 1.14 
4 5 .12 0.96 1.43 1. 87 0.96 · 1.00 1.52 1.95 1.52 1.28 L95 1. 73 0.86 1.18 
8 · 4. 13 o.so 1.58 1.98 0. 77 1.04 1.97 2.47 2~05 1.25 2.57 2.27 0.86 1.18 
C 8.44 1.57 2.30 . 2.92 1.65 0.95 1.47 1.86 1.40 1.27 1. 77 · 1.59 0.84 1 14 

Ponca 
0 7.49 1.52 2.16 2.52 1.29 1.18 1.42 1.66 1.67 1.17 1.96 1.66 o·.97 1.17 
4 7.33 l.48 2.10 2.53 1.22 1.22 1.42 1. 71 1. 72 1.21 2.08 1. 72 0 .95 1.20 
8 1.60 0 .16 0.52 0 .65 0.27 2.42 3.29 4.14 1.98 1.26 2.48 2.80 0. 74 1.03 
C 10.77 2.01 2~99 3.91 1.86 1.09 1.49 · l.94 1.62 1.31 2.11 1. 79 O. 87 · 1. 22 

Crowns 
Cheyenne 

0 7.48 0.68 2. 15 3.39 1.26 0.54 3.is 5.04 3.15 1.59 2.72 2.86 0.61 1 19 
4 9.75 1.62 2.54 3.53 2.06 0. 79 1.61 2.20 1.61 1.37 1.71 1.65 0.74 1.13 
8 10.36 1.32 2.84 4 12 2.08 0 .63 2.16 3.13 2.16 1.45 1.98 2.05 O .67 1.10 

Ponca · 
0 11.30 l 82 · 3.28 4.12 2.08 o. 88 1.80 2.26 1. 81 l.'26 1. 97 l.90 0 .82 1.11 
4 10. 82 1.66 2.96 4.12 2.08 0 .BO 1. 78 2.50 1.78 1.40 2.69 1.89 0. 75 1.15 
8 5.66 0. 70 1.55 2,85 0.56 l 25 2.22 4.05 2.22 1.83 5.07 3.49 0 .65 1 68 -0 -



TABLE XIII 

NUCLEOtIDE COMPOSITION O? 4 - WEEKS OLD WHEAT PLANTS GROWN IN CONTROLLED ENVIRONMENT 

AT 27° DAYS AND 21° NIGHTS 

Moles/100 Moles Nucleotide 

Days Water Stressed ug/gmDry Wt. ug/RNA Adenyllc Cytidyllc Guanyllc Uridylic 
RNA Plant Acid Acid Acid Acid 

Cheyenne Leaves 
0 6004 122.0 25.2 27 .• 6 30.1 17 .1 
4 37.20 60.3 21.2 · 27.9 31. 7 19.2 
8 4516· 67.3 2i.o 29.5 30.8 18.7 
C 6466 102.0. · 19.5 28.9 29.9 21 7 

Ponca Leaves 
0 5337 84.8 23.0 29 6 . 30.4 17 .0 
4 4388 68 2 . . . 22.4 30.1 29. l 18.4 
8 3387 42.0 19_.0 31.0 34.6 15.4 
C 6260 ·89.5 17.8 · 28.2 36.6 17 .4 

Cheyenne Crowns 
0 . 3336 20.9 15.4 17.0 43.5 22 5 
4 2617 16.42 16.5 28.8 37.1 17.6 
8 5645 36 6 12.8 29.8 39."5 · 17.9 

Ponca Crowns 
0 2515 13.5 12.5 34.8 33.7 19,0 
4 2874 18.3 14.8 29.2 38.6 17..4. 
8 2412 12 9 13.9 30.0 41.4 14 7 

-0 
N 



TABLE XIV 

NUCLEOTIDE RATIOS OF 4 - WEEK<; OLD WHEAT PLANTS GROWN IN CONTROLLED ENVIRONMENT 
(.r. 

AT :27° DAYS AND 21° NIGHTS 

I -6 Moles gm Dry Wt. 10 Ratios 

Water ·Stress I Total A C G u A/U C/A G/A . C/U G/C G/'O G+C A+c &!9. --·-Days A+U G+U C+U 

Leaves 
Cheyenne 

0 7 ,41 1.87 2.05. 2.23 1.26 1.47. 1.10 1.19 1.61 1.09 1 •. 76 1.36 1.12 1.24 
4 5.56 1.18 1.55 1. 76 . 1.07 LlO. 1.32 · 1.49 1.45 1.14 1.65 1.47 0.97 1.12 
8 7.24 1.52 2.13 2.23 1.36 1.12 1,41 · 1.47 1.58 1.04 1.65 1.52 1.02 1,08 
C 10~31 2.01 2.9·9_. 3.11 2.20 0.90 1.48 1.53 1.33 1.03 1.38 1.45 0,94 0,99 

Ponca 
0 8.14 1.87 2.42 2.47 1.36 1.35 1.29· 1.32 1. 74 1.03 1. 79 1.48 1.11 1.14 
4 7.02 1.57 2.12. 2.04 1.29 1.22 1.34 . 1.30 1.64 · 0.97 1.58 1.45 1.10 1.06 
8 4.43 o.84 1.37 1.53 0.69 i.23 . 1,63 1.82 2.01 1.12 2.25 1.89 1.00 1.15 
C 10.68 1.-90 3.01 3. 91 l_.86 1.02 1.58. 2.06 1.62 1.30 2.10 1. 84 0,86 1.19 

Crowns 
Cheyenne 

0 6.23 0.96 1.06 2.81 1.40 0,69 l._10 2.82 1. 10 2,56 1.93 1.64 0,48 1.53 
4 8 • .13 1.34 2.:34 3.01 1.44 0,93 1. 74 2.25 1.75 1.29 2.11 1.92 0.83 1.15 
8 11.41 1.46 3 41 · " . 4,50 2.04 0,72 2.33 3.09 2.33 1.33 2.21 2.26 o. 73 1.09 

Ponca 
0 6.64 ·. 0,83 2.:31 2.24 1.26 0,66 2.78 2.70 2.78 .97 1.77 2.17 0.93 0.86 
4 7 31 · l.08 2.13 2.82 1.28 0,84 .1.97 2,61 1.97 1.32 2.22 2.10 o. 78 1.14 

.8 6.88 0.96 2.06 2 84 1.02 0,94 1.16 2.98 2.16 1.38 2.82 2.47 0,78 1.23 

-0 
IN 



TABLE XV 

NUCLEOTIDE COMPOSITION OF 4 • WEEKS OLD WHEAT PLANTS GROWN IN CONTROLLED ENVIRONMENT 

AT 41° DAYS AND 21°. NIGHTS 

Moles/100 Moles Nucleotide 

Days.Water Stressed ug/gm Dey Wt. u15.RNA Adenylic Cytidylic GuanyUc llridylic 
RNA Plant Acid A,cid Acid Acid 

Cheyenne Leaves 
0 4310 70.6 16.5 28.2 . 35.3 20.0: 

.. 4 6882. 78.0 19.2 27.1 35.8 .17. 9 
8 8980 .·_ 101.0- 26.0 28.9 .34. 7 10.4 

Ponca Leaves 
c) 3613 52.0 16.6 29.6 32 3 21.5 
4 8376 123.0 21.9 28.6 29.3 20.2 
8 9545 99.5 28.0 2a.2· 32.3 11.5 

Cheyenne Crowns 
0 3800 20.4 23.6 37.5 18.5 
4 2770 18.6 28.0 34.8 18.6 
8 4160 23.3 24.4 36.8 15.5 

Ponca Crowns 
0 4620 18.6 24.1 39.5 11 .8 
4 4970 13.9 . 22.0 45.6 18.5 
8 ·4360 16.9 25.2 41.5 16.4 

0 
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TABLE XVI 

NUCLEOTIDE RATIOS OF 4 - WEEKS OLD WHEAT PLANTS .GROWN IN CONTROLLED ENVIRONMENT 

AT 41° DAYS AND 21° NIGHTS 

Moles/gm Dry Wt. 10-6 Ratios 

Water Str-ess I Total A C G u AIU C/A GIA C/'O G/C G/U ~ ~ 
Days . A+U G+U 

Leaves 
Cheyenne 

0 6.35 1.05 1. 79 2.24 1.27 0.83 1.71 2 .14 1.41 1.25 1. 77 1.73 0,81 
4 10.42 1.99 2.83 3.74 1.86 1.07 1.41 1.86 1.51 1.32 2 00 l. 71 0.86 
8 9 80 2.55 2.83 3.40 1 02 2.50 1.11 1.33 2.78 1.20 3.34 1,75 1.22 

Ponca 
o·· 6 32 1.05 1.87 2.04 1 36 0.77 1.78 1.95 1.38 1.09 1.50 1.62 0.86 
4 13.26 2.91 3.79 3.89 2.67 1.08 1.31 1.34 1.42 1.02 1.45 1.38 1.02 
8 12.25 3.43 3.46 3.96 1 40 2.43 Lot 1.15 2.45 1.15 2.81 1.54 1.28 

Crowns ... 
Cheyenne 

0 17.27 3.50 4,08 6.49 3.20 1.10 1.16 1.84 1. 16 1.59 2.03 1.58 0. 79 
4 14.61 2.73 4.10 5.00 2.70 1.00 1.51 1.87 1.51 1.24 1.87 1.69 0 .88 
8 15. 74 3,66 3,85 5.80. 2.43 1.50 1,05 1,58 1.05 1.51 2.37 1.60 1.24 

Ponca 
0 17 32 3.20 4.18 6,84 3.10 1.04 1.30 2.12 1.30 1.64 2.22 1. 75 0. 75 
4 14 48 2.70 4.28 8.90 3.60 0. 75 1.58 3.28 1.58 2.07 2.46 2.08 0 .55 
8 15.72 2.66 3.98 6.52 2.56 1.03 1.49 2.46 1.49 1.65 2.53 2.01 0. 73 

~ 
C+U 

1.08 
1.22 
1.55 

0 96 
1.05 

·1.52 

l. 37 
1.14 
1.51 

1 38 
1.47 
1.40 
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