STRESS AND DISPLACEMENT ANALYSIS

OF PLANAR STIFFENED SHELL STRUCTURES

By
GORDON CAMPBELL ${ }_{\eta}$ STONE
Bachelor of Science
Southern Methodist University Dallas, Texas 1960
Master of Science
Oklahoma State University Stillwater, Oklahoma 1963

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
May, 1967

Thesis Approved:

*

660193

ACKNOWLEDGMENTS

The author wishes to express his appreciation to the Thesis Adviser, Associate Professor R. E. Chapel, for his advice and encouragement during the course of this study. In addition, the efforts of Associate Professor L. J. Fila, Graduate Study Committee Chairmang and those of Dr. R. L. Lowery and Dr. E. K. McLachlan, committee members, are appreciated.

Likewise, the author is grateful to his colleagues, Dr. M. U. Ayres and Mr. John Levosky, and wishes to thank his associates, Mr. Steve Burchett, Mr. Don Kinsey, Mr. John Wallace, Mr. Everett Smiley, Mr. Everett Cook, and Mr. Bill Accola, for their sooperation throughout his graduate program. The aid of the Mechanical Engineering School Staff is also recognized.

With deep gratitude, the author recognuzes hus wife, Martha, for her continued encouragement, understanding, and her numerous sacrifices for the completion of this undertaking.

Miss Velda Davis is thanked for her assistance rendered while typing the final manuscript.

The Army Research Office - Durham is recognized for its sponsorship of this research effort under contract Number DA-31-124-ARO-D-235.

TABLE OF CONTENTSChapterPage
I. INTRODUCTION I
II. MATRIX FORCE METHOD OF ANALYSIS 8
Basic Equations 9
Analysis of the Test Structure by the Matrix Force Method 15
Effective Area 19
Calculations of the $[G I M],[G I R]$, and $[$ FORCE $]$
Matrices 22
A Flexibility Matrix Which Incorporates Poisson's Ratio and Sweep Effects 35
Transformation Into Oblique Coordinates 36
Component Energy Terms 38
Inclusion of $[A L P I J]_{\text {prs }}$ Into the Matrix Force Method for Analysis of the Test Structure 47
III. ANALYTICAL INVESTIGATION 53
Generation of the Matrices: [QI], [STRESS],[DELTAM], and $A R N T R]$54
Analysis by the Birect Stiffiness Method 66
Analysis of the Test Structure:
Structural Idealization 68
Generation of Node Point Displacements; Forces and Element Stresses 71
IV. EXPERIMENTAL ANALYSIS 78
Test Apparatus and Instrumentation 81
V. COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS 98
VI. CONCLUSION AND RECOMMENDATIONS 113
Recommendations for Future Work 116
A SELECTED BIBLIOGRAPHY 118ChapterPage
APPENDIX A - BASIC EQUATIONS, DERIVATION OF ELEMENT STIFFNESS MATRICES FOR THE DIRECT STIFFNESS METHOD 120
Basic Equations 120
Development of a Stiffness Matrix for the Planar Bar Element 121 121
Derivation of the Stiffness Matrix
for the Triangular Plate Element 123
Determination of Deflections 128
Calculation of Stresses in the Bar Element 130
Calculation of Stresses in the Triangular
Plate Element 131
APPENDIX B - STRESS ANALYSIS SYSTEM 132
Example Listing 139
APPENDIX C - A DIGITAL COMPUTER PROGRAM FOR
IMPLEMENTING THE MATRIX FORCE METHOD 148
Modifications of RMATNZ 148
Modifications of WRTMAT 149
Additional Matrix Designations 149
Program Description 150
Example Listing 152
APPENDIX D - A DIGITAL COMPUTER PROGRAM FOR
CALCULATING $[$ GIM $]$ AND $[$ GIR $]$ 157
APPENDIX E - TREATMENT OF EXPERIMENTAL DATA 164
Correlation of Experimental Data 166
Stress-Strain Relations 172
Data Reduction Computer Program 175
APPENDIX F - LIST OF MAJOR INSTRUMENTATION 178
APPENDIX G - CALIBRATION OF STRAIN GAGE SYSTEMS 179
Calibration of Load Recording Equipment 181
APPENDIX H - CALIBRATION OF DIAL INDICATORS 185

LIST OF TABLES

Table Page
I. [ALPIJ]Matrix 20
II. [AREINV] Column Vector 21
III. [ALPIJ] Matrix (${ }^{0}$ WAL") 23
IV. [AREINV] Column Vector ("WAL") 24
V. [COEF] Matrix, RDC -1 25
VI. [CONST] Matrix, RDC-I 30
VII. [COEF] Matrix, RDC-2 31
VIII. [CONSIT] Matrix, RDC-2 32
IX. [GIM] Matrix for RDC-1 33
X. [GIM] Matrix for RDC-2 33
XI. [GIR] Matrix for RDC-1 34
XII. [GIR] Matrix for RDC-2 34
XIII. Composite $[A L P I J]$ prss $^{\circ}$ 51
XIV. [DELTAM] Matrix 62
XV. [ARNTR] Matrix 62
XVI. [DELTAM] Matrix From Extended Force Analysis 65
XVII. Load Point Displacements 73
XVIII, Force Values 92
XIX. Comparison of Deflections for LC-I 110
XX. Comparison of Deflections for LC-2 111
XXI. Comparison of Deflections for LCm 3 112TablePage
XXII. Fortran Program for Stress Analysis System 140
XXII. Fortran Program for Implementing the
Matrix Force Method 153
XXIV. A Fortran Progran for Determining theMatrices $[G I M]$ and $[G I R] \ldots159$
XXV. Correlation Coefficients 371
XXVI, Sample Data Sheet 176
XXVII. Axial and Rosette Strain Gage Data Reduction Program . 177
XXVIII. Typical Indicator Readings During Calibration Tests 181
XXIX. Calibration of 5000 LB BLH U-3Gl Type Load Cell 183
XXX. Calibration of 10,000 LB BLAF U-3G1 Type Load Cell 184
XXXI. Calibration of Starrett Dial Indicators 185

LIST OF FIGURES

Figure Page

1. Possible Constraints in Panel Idealization 14
2. Structural Idealization of the Panel of Figure 13 Illustrating the Choice of Generalized Forces to be Used 17
3. Redundants Choice Number 1, ${ }^{19}$ RDC-1" Redundants:
$q_{4}, q_{E}, q_{6} q_{7,} q_{8,} q_{9}$ 25
4. Redundants Choice Number 2; "RDC-2" Redundants:
$q_{13}, q_{14}, q_{15}, q_{10}, q_{20}, q_{21}$ 25
5. Generalized Freebody and Resulting Equation of Equilibrium 26
6. Transformation of Stress Components 37
7. Sign Convention and a Typical Trapezoidal Panel 44
8. The Matrix $[S]$ 45
9. The Flexibility Matrix, [ALPIJ $]_{\text {prs }}$ 46
10. Second Structural Idealization Illustrating 51 Generalized Forces 48
11. Sign Convention for Section 2 49
12. Sign Convention for Section 3 50
13. Test Panel and Its Geometry 55
14. $[Q I]$ Values for RDC-I, LC-I, LC-2, and LC-3 58
15. $[Q I]$ Values for RDC -2 , LC-1, $L C-2$, and $L C-3$ 59
16. STRESS Values for RDC-1, LC-1, IC-2, and LC-3 60
17. [STRESS] Values for RDC-2, LC-I, LC- 2, and LCo 3 61
18. $[Q I]$ Values for $[A L P I J]$ prs, RDC $-1, L C-1, L C-2$, and $L C=3$ 63
Figure Page
19. $[$ STRESS $]$ Values for $[A L P I J]$ prs $^{9} R D C-1, L C-1$, and $L C-3$ 64
20. Structural Idealization Choices 69
21. Internal Forces Acting on Externally Loaded and Reaction Nodes for IDC-3 74
22. Element Stresses for IDC-3, LC-I 75
23. Element Stresses for IDC-3, LC-2 76
24. Element Stresses for IDC-3, LC -3 77
25. Experimental Facility and Structural Skin Panel 79
26. Floor Plan of Experimental Facility 80
27. Portable Strain Gage Instrumentation 82
28. Experimental Tapered Reinforced Skin Panei 83
29. Mechanical Loading System 85
30. Support System 87
31. Gage Numbering System 89
32. Gage Locations 90
33. Load Configurations 91
34. Stress Values for LG-1, Test No. 2 93
35. Stress Values for LC-2, Test No. 3 94
36. Stress Values for LC-3, Test No. 1 95
37. Axial Stresses for LCol 102
38. Axial Stresses for LC-2 103
39. Axial Stresses for LC- 3 104
40. Top Stringer Stresses for LCol 105
41. Stringer Stresses for LC-1 106
42. Stringer Stresses for LC -2 107
43. Stringer Stresses for LC-3 108
Figure Page
44. Shear Stresses for LCW3 109
45. Planar Bar Element 122
46. Element Dimensions 124
47. Assumed Displacement Pattern 124
48. Triangular Plate Nomenclature 125
49. Stress Resultants for Triangular Plate 127
50. Equation (A-17) Featuring the Triangular Stiffness Matrix 129
51. Deflection Diagram of Bar Element 130
52. Typical Experimental Data 166
53. Scattering of Data Points 168
54. Leg Locations and Reading Sequence 173
55. Strain Gage Bridge With Calibration Resistor 179

CHAPTER In

INTRODUCTION

The fundamental problem in the elastic analysis of aircraft structures is the determination of the distribution of stresses and displacements under prescribed loads and constraints. This problem can be readily solved for certain types of structures by direct solution of the differential equations of elasticity describing the elastic behavior of the structure. A good example of such a solution is the Engineering Theory of Bending applied to box beam structures. However, these direct solutions are usually based on certain simplyfying assumptions which are too restrictive particularly when applied to structures as complex as the present day aircraft structures. Consequentiy, either numerical or quasi numerical methods must invariably be used in airm craft structural analysis to include the vaxious structural effects which could not conveniently be accounted for in the direct solution type methods.

The numerical and quasi numerical methods fall basically into two groups: the first being strictly numerical methods in which the differm ential equations describing the deflections and/or stresses in the structure are solved by numerical procedures, and the second in which the structure is idealized into an assembly of discrete structural elements having an assumed form of stress or displacement distribution. The complete solution is then obtained by combining these individual
approximate stress or displacement distributions in a manner which satisfies the force equilibrium and displacement compatibility at the junctions of these elements. Both these groups of methods involve appreciable quantities of linear algebra which must be organized into a systematic sequence of operations and to this end the use of matrix algebra is a convenient method of defining the various processes involved in the analysis without the necessity of writing out the complete operations in full.

The rapid development of the digital computer during recent years has immensley enhanced the popularity of this second group of methods, generally referred to as finite element methods or matrix methods. Probably the most important reason for this lies in the fact that the finite element methods readily lend themselves to matrix algebra which is ideally suited for subsequent solution via the digital computer.

Finite element methods have been used extensively for the analysis of aircraft structures. However, elementary theories are often insufficient in the prediction of the stress and deformation characteristics of modern airframe configurations. Consequently, finite element methods are topics of numerous current research efforts, with new analysis capabilities being developed in terms of matrix operations of algebraic equations.

The two most widely used finite element methods are referred to as the force method and the direct stiffness or displacement method primarily due to the assumption of the initial unknown quantities. Eoth methods require the mathematical development of systems of finite elements, which are joined to form the idealized structure and to develop the necessary algebraic equations. The equations are generally solved by
either semi automatic or completely automatic sequence of computer operations originating with the definition of the structural configuration and terminating with the calculation of the structural response for the applied external load configurations.

The purpose of this research effort is to improve the capability for the analysis of stiffened shell structural skin panels and to demonstrate this improved capability by the comparison of experimental and analytical results. The approach taken toward this improved capability is via one of the two previously mentioned finite element methods: the matrix force method. The matrix force method is described and illustrated in Chapter II. This improved capability is verified theoretically by the direct stiffness method which is described in Chapter III. The matrix force method is implemented by digital computer programs given in Appendices C and D, respectively. The basis for ascertaining this improved capability is provided by comparison of the analytical results with those from an experimental investigation, which is described in Chapter IV.

The structure considered in this dissertation is limited to a planar oblique configuration. The structure is a monolithic semimonocoque trapezoidal shaped panel with thin webs and integral reinforcements. This type of structure has a significant relationship with aircraft structural analysis. The words "monolithic" and "semimonocoque" mean "being made of one integrated piece" and "stiffened shell", respectively. Until recently, airplane skin panels or "skin" type structures consisted of a very thin sheet of material to which was attached various shaped extrusions. For the purpose of analysis, these extrusions were theoretically replaced by a slender bar of circular cross section equal to that of the actual extrusion. This slender bar
element or stringer, as it later became commonly referred to, was then theoretically integrated into the thin sheet such that its centroid coincided with that of the sheet. Presently, due to the perfection of the chemical milling process, aircraft interior bulkhead and rib structures are integrated with the thin sheet -- agreeing exactly with the theoretical idealization of the older "assembled" skin type structures.

The structure under consideration is idealized as an array of rib and stringer elements transmitting axial loads and thin web elements transmitting shear and axial loads. The web elements may occasionally be referred to as plate elements in the text of this work but they are visualized as capable of carrying only loads applied within their planes. The term, plate, is commonly applied to planar structural elements which carry loads applied normal to their plane. The tapered panel is oriented to lie in the xy plane, and the deflections and stresses are produced by loads in both the x and y directions.

Finite element methods of analysis as they are presently known have many origins and no single author can be recognized for contributing entirely to their present form. Langefors (2) recognized that there is a certain resemblance between the analysis of an elastic structure and that of an electrical network. In both cases, simple members are coupled together to constitute more or less complex systems. The problem of analysis is that of finding the physical state or internal energy level of each element, in which this state is a consequence of the introduction of certain disturbances into some parts of the structure. Solution results from minimizing the potential or strain energy of the structure. Argyris (4) described in matrix form the schematic analysis of structures composed of discrete structural elements. He compiled
a number of special analysis methods which were used for structural analysis and demonstrated the similiarty among many of the analysis methods by using matrix notation to abbreviate the mathematics. Argyris bases his work mainly on simple physical arguments in contrast to Langefors' work which is based upon the concept of strain energy for deriving flexibility or stiffness expressions for individual elements.

From the background provided by Langefors, Argyris, and many others, such as Wehle and Lansing (5), Turner, et al. (6), published their work in 1956 and developed the direct stiffness method to its present form. They extended matrix methods of structural analysis to plate-type elements and described the analysis of plane stress problems with the use of finite elements. Their derivations allow the stress element to deform in a combination of certain assumed patterns. This concept eliminates the necessity for knowing the behavior of an element before its stiffness can be developed.

The version of the matrix force method of analysis used in this research effort was introduced by Wehle and Lansing (5) when they first published their work in 1952. They used the concept of strain energy and Castigliano's Second Theorem to compile a library of flexibility matrices for various individual elements and developed and extended the techniques embodied in the classical redundant force method to matrix algebra. Bruhn (7) further extended the work of Wehle and Lansing (5) and presented it in a readily usable form.

These developments in the finite element approach to the approximate analysis of reinforced panels form the basis for this investigation. The structural behavior of a panel is determined by analyzing the group behavior of small elastic elements connected at common joints to
form an idealized structure which approximates the actual panel. The structural behavior is determined by element idealizations using both the force and stiffness methods of analysis and assuming a different stress behavior for the plate elements.

In order to achieve the desired improved capability for analyzing planar, tapered stiffened shell structures, this dissertation has undertaken four distinct tasks. These tasks are:

1. A new flexibility matrix has been derived for trapezoidal shaped plate elements. Whis new flexibility matrix takes into account both the effects due to Poisson's ratio coupling and those due to sweep. In essence, the idealization is based upon the lumping concept. The direct-stresscarrying capacity of the structural material is concentrated along the stringers and ribs surrounding a given plate while shear carrying capacity is assigned to the panel areas contained within the plate. This derivation appears in Chapter II.
2. The matrix force method has been modified for the inclusion of the new flexibility matrix of item one, above, for analysis purposes. Analysis by this new flexibility matrix of a planar stiffened shell structure such as the one used in this investigation requires that the matrix force method be modified. This modification is comprised mainly of "building up", by special means, the flexibility matiix for the composite structure. The details for this development are given in Chapter II.
3. A digital computer progan has been developed which will
implement both the modified and unmodified versions of the matrix force method. The concept employed in developing this digital computer program is that of writing a "main" program which, in turn, calls upon existing subroutines to perform required matrix operations. Appendix D contains a detailed description of this program.
4. A regimented approach has been formulated for the determination of $[G I M]$, the matrix which contains the internal generalized load distribution due to a given external load and [GIR], the matrix containing the internal generalized load distribution due to a given redundant load. This technique is based upon the writing of generalized freebody equations and the solution of these equations in a manner peculiar to the determination of $[G I M]$ and $[G I R]$. This procedure is described in detail in Chapter II。

The application of existing techniques contained within the matrix force method enhanced by the tasks given above provide an improved analysis capability for planax, tapered monolithic semi-monoque structures.

CHAPTER II

MATRIX FORCE METHOD OF ANALYSIS

The matrix force method is a finite element method of structural analysis which considers a structure to be an array of idealized elastic elements which are considered to be joined along their common edges. In this method of analysis, the internal generalized forces acting upon the idealized elements of the structure are considered to be the initial unknowns. In essence, the matrix force method is based upon the supposition that a large number of internal force distributions acting on the idealized elements can be in equilibrium. The correct distribution of internal forces is the one for which the mutual deformations of the elements are also compatible.

In contrast to other finite element methods, the matrix force method raises the question of statical redundancy. The degree of redundancy for the idealized structure must be determined, since the problem is direated toward the solution for redundant forces (or groups of forces). The equations of equilibrium in terms of forces are inadequate in number to determine all the internal forces and they must, therefore, be supplemented by the equations of deflection compatibility.

Although the idea of determining the degree of redundancy for the idealized structure may seem cumbersome, the force method, in general, requires a smaller number of unknowns than other finite element methods and, in turn, does not require intricate and complex computer programs
for its implementation as do other finite element methods. Also, the smaller number of unknowns required by the force method does not place such large memory requirements upon the digital computer and subsequently, in certain cases, larger and more complex structures may be analyzed on a given size computer. Even more important is the fact that the force method is a culmination of classical, established principles and theories which can be readily visualized. This gives the researcher a good "feel" for what is actually happening throughout a structural analysis by the matrix force method. From an academic standpoint, the force method of analysis may be broken down into component operations and the contribution of each operation to the final result can be distinctly identified and monitored.

The version of the matrix force method used in this analytical investigation is that which is presented by Bruhn (7). It is a special adaptation of the redundant force method to the use of the high speed digital computer.

The redundant force method is fully developed and is applied to the analysis of the planar stiffened shell tapered skin panel used in this research program. The remainder of this chapter covers new assumptions for the stress behavior for a given trapezoidal shaped plate and the surrounding stringers and ribs and the subsequent development of a new flexibility matrix based upon these assumptions.

Basic Equations

The internal forces of a statically indeterminant structure can be expressed as

$$
\begin{equation*}
\left\{q_{i j},=\left[g_{\mathrm{m}}\right]\left\{\mathrm{P}_{\mathrm{m}}\right\}+\left[q_{q_{1 r}}\right]\left\{q_{q}\right\},\right. \tag{2-1}
\end{equation*}
$$

where

$$
\begin{aligned}
\left\{q_{i}\right\}= & \text { column matrix of internal forces, } \\
\left\{q_{r}\right\}= & \text { column matrix of redundant forces, } \\
\left\{q_{m}\right\}= & \text { column matrix of external loads, } \\
{\left[g_{i m}\right]=} & \text { rectangular matrix of internal loads due to unit values } \\
& \text { of the external loads in the stable statically determinant } \\
& \text { structure or S.S.D.S., } \\
{\left[g_{i r}\right]=} & \text { rectangular matrix of internal loads due to unit values } \\
\quad & \text { of the redundants. }
\end{aligned}
$$

The redundant forces can be expressed in terms of the applied loads by requiring compatibility of deformations throughout the structure. The internal forces can be written as

$$
\begin{equation*}
\left\{q_{i}\right\}=\left[G_{i m}\right]\left\{P_{m}\right\} \tag{2-2}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[G_{i m}\right]=\left[g_{i m}\right]-\left[g_{i r}\right]\left(\left[g_{r i}\right]\left[\alpha_{i j}\right]\left[g_{i r}\right]\right)^{-1}\left[g_{r i}\right]\left[\alpha_{i j}\right]\left[g_{i m}\right] \tag{2-3}
\end{equation*}
$$

and
$\left[\alpha_{i j}\right]=$ square symmetric matrix of element flexibility coeffincients, deflection at point i for a unit force at point \mathfrak{j} 。

The two matrix triple products in Equation (2-3) may be written as

$$
\left[g_{r r}\right]\left[\alpha_{r 1}\right]\left[g_{\left.r_{r}\right]}\right]=\left[a_{r s}\right],
$$

$$
\left[g_{r i}\right]\left[\alpha_{i j}\right]\left[g_{i r}\right]=\left[a_{r n}\right]
$$

Then, Equation (2-3) may be rewritten as

$$
\begin{equation*}
\left[G_{i m}\right]=\left[g_{i m}\right]-\left[g_{i r}\right]\left[a_{r s}\right]^{-1}\left[a_{r n}\right] \tag{2-4}
\end{equation*}
$$

If the product $\left[a_{r s}\right]^{-1}\left[a_{r n}\right]$ be given the symbol $\left[G_{s n}\right]$ and
the product $[G i r]\left[G_{s n}\right]$ be given the symbol $\left[G_{m p}\right]$, then Equation (2-4)
can be simplified to the form

$$
\begin{equation*}
\left[G_{i m}\right]=\left[g_{i m}\right]-\left[G_{m p}\right] \tag{2-5}
\end{equation*}
$$

Stress for the bar element is given by

$$
\begin{equation*}
\sigma_{b}=\frac{q_{i b}}{A_{i b}}, \tag{2-6}
\end{equation*}
$$

where

$$
\begin{aligned}
& q_{i b}=\text { internal force in the bar element }, \\
& A_{i b}=\text { cross sectional area of the bar element. }
\end{aligned}
$$

Stress for the web element is given by

$$
\sigma_{w}=\frac{q_{i w}}{t_{i w}},
$$

where

$$
\begin{aligned}
& q_{i w}=\text { assumed constant average shear flow, } \\
& t_{i w}=\text { thickness of web. }
\end{aligned}
$$

Deflections at the load points of the structure are given by

$$
\begin{equation*}
\left\{\delta_{m}\right\}=\left[A_{m n}\right]\left\{P_{n}\right\} \tag{2-8}
\end{equation*}
$$

where

$$
\begin{aligned}
\left\{\delta_{m}\right\}= & \text { column of deflections, } \\
{\left[A_{m n}\right]=\left[a_{m n}\right]-\left[G_{n n}\right]=} & \text { square symmetric matrix of influence } \\
& \text { coefficients for the complete redundant } \\
& \text { structure, deflection at external loading } \\
& \text { point m for a unit applied load, } P_{n}=1 . \\
{\left[a_{m n}\right]=} & {\left[G_{m i}\right]\left[\alpha_{i j}\right]\left[G_{i m}\right] } \\
{\left[G_{n n}\right]=} & {\left[a_{r n}\right]\left[G_{s n}\right] }
\end{aligned}
$$

In order to check the final results of a redundant force calculation after obtaining the final true forces [Gim], the product

$$
\left[a_{r n}\right]_{t r u e}=\left[g_{r i}\right]\left[\alpha_{i j}\right]\left[G_{i m}\right]
$$

can be formed and compared element-by-element with the matrix previously computed,

$$
\left[a_{r n}\right]=\left[g_{r i}\right]\left[\alpha_{i j}\right]\left[g_{i m}\right] .
$$

The "true-matrix" elements (elements of $\left[a_{r n}\right]_{\text {True }}$) should be zero, or nearly so, if $\left[G_{i m}\right]$ is error free.
and is free along the other other edges, and if there are no unstiffened cut-outs, the number of redundents; N, is given by (This constraint appears in the upper configuration of Figure 1.)

$$
\begin{equation*}
N=\sum_{B A Y S}(\beta-2) \tag{2-10}
\end{equation*}
$$

where
β is the number of longitudinal effective stringer flanges which are continuous across a rib junction and "2" is a constant.

The number of bays is the number of transverse sections defined in the structural idealization. If a certain number of the stringer flanges are not held at the root section, the number of redundants reduces accordingly.

The degree of redundancy is illustrated for the two-dimensional panel. The number of redundants or degree of redundancy is the number of unknown forces minus the number of independent equilibrium equations which can be written for the structure.

From Figure 1, the unknown forces are:
Unknown forces in longitudinal stringers 12
Unknown forces in transverse ribs 6
Unknown forces in the webs 9
Total 27.
The equations of equilibrium which can be written are:
Equilibrium between the stringers and webs 12
Equilibrium between ribs and webs 9
Total 21.
Thus, the number of redundants is: $27-21=6$.

Built-In Constraint

Figure 1. Possible Constraints in Panel Idealization

Equation (2-10) may be evaluated for N, the number of redundants, to give

$$
N=\sum_{B A Y S}(\beta-2)=3(4-2)=6
$$

Therefore, it is necessary to remove six of the unknown internal forces by the use of fictitious cuts. The structure is then stable and statically determinant.

To demonstrate the change in redundancy resulting from the use of a statically determinant support system, the lower configuration shown in Figure il is considered.

The unknown forces are as follows:
Unknown forces in longitudinal stringers 10
Unknown forces in the transverse ribs 9
Unknown forces in the webs 9
Total 28.
The equations of equilibrium which can be written are:
Equilibrium between stringers and webs 12
Equilibrium between ribs and webs 12
Total $\overline{24}$.
The number of redundants is then: $28-24=4$.
Equation (2-10) may again be evaluated for N to give

$$
N=\sum_{B A Y S}(\beta-2)=2(4-2)=4
$$

Analysis of the Test Structure by the Matrix Force Method

The Matrix Force Method is applied in the analysis of a tapered
integrally reinforced panel which is described in the experimental investigation, Chapter IV. A sketch of this panel and its geometry is shown in Figure 2.

The first step in the analysis of the test structure is to calculate the matrix $\left[\alpha_{i j}\right]$ which appears in Equation (2-3) and the terms $\frac{1}{A_{i b}}$ in Equation (2-6) and $\frac{1}{t_{i w}}$ in Equation (2-7).

The given structure was idealized into an assembly of bar and trapezoidal shaped web elements with the choice of internal generalized forces as shown in Figure 2. Each bar element was theoretically constrained to carry only a linearly varying axial load, while each web element was allowed to carry only an average constant shear flow value.

For ease of handling by the digital computer and for brevity, the matrix $\left[\alpha_{i j}\right]$ has been designated $[A L P I J]$, and the terms $\frac{1}{A_{i b}}$ and $\frac{1}{t_{i w}}$ have been arranged to form [AREINV], a column vector.

The basic strain energy equations for the bar and trapezoidal web elements are given along with sample calculations for coefficients of [ALPIJ].

For a bar element with generalized loads q_{i} and q_{j} applied at each end the elements of $[A L P I J]$ are

$$
\begin{align*}
& \alpha_{i i}=\frac{L}{3 A E}=\alpha_{j j} \tag{2-11}\\
& \alpha_{i j}=\frac{L}{6 A E}=\alpha_{j i} \tag{2-12}
\end{align*}
$$

where
$L=$ length of the bar element,
$A=$ cross sectional area of the bar element,
$E=$ modulus of elasticity.

For a trapezoidal shaped web element with a generalized average shear flow q_{i} applied along its edges, the elements of $[A L P I J]$ are:

$$
\begin{equation*}
\alpha_{i j}=\frac{s}{G \dagger}, \tag{2-13}
\end{equation*}
$$

where
$S=$ planform area of the web element,
$t=$ thickness of the web element,
$G=$ modulus of rigidity.

From the theory of elasticity, the modulus or rigidity is

$$
\begin{equation*}
G=\frac{E}{[2(1+\nabla)]}, \tag{2-14}
\end{equation*}
$$

where
$\nabla=$ Poisson ${ }^{\text {s }}$ s ratio.
∇ is assumed to have a value of 0.325 which corresponds to $G=4.0 \times 10^{6} \mathrm{psi}$, and $E=10.6 \times 10^{6} \mathrm{psi}$. (This value is ∇ is shown in Table 30, p. 103, Reference 17). Therefore, Equation (2-14) becomes

$$
\begin{equation*}
G=\frac{E}{[2(1+0.325)]}=\frac{E}{2.65} \tag{2-15}
\end{equation*}
$$

The result of Equation (2-15) may be substituted into Equation (2-13)
to give $\quad G=\frac{[(2.65) S]}{E t}$.

The finite element distribution shown in Figure 2 may be used to determ mine the coefficients of [ALPIJ]. A few sample calculations are

$$
\alpha_{1,1}=\frac{L}{3 A E}=\frac{10.111873}{(3)(0.25) E}=\left(\frac{1}{E}\right)(13.482497),
$$

$$
\begin{aligned}
& \alpha_{2,2}=\frac{2 L}{3 A E}=\frac{(2)(10.111873)}{(3)(0.25)(E)}=\left(\frac{1}{E}\right)(26.964994) \\
& \alpha_{1,2}=\frac{L}{6 A E}=\frac{10.111873}{(6)(0.25)(E)}=\left(\frac{1}{E}\right)(6.741249), \\
& \alpha_{16,16}=\frac{(2.65) S}{E t}=\frac{(2.65)(65.000)}{(0.05)(E)}=\left(\frac{1}{E}\right)(3445.000000), \\
& \alpha_{22,22}=\frac{2 L}{3 A E}=\frac{(2)(6)}{(3)(0.125)(E)}=\left(\frac{1}{E}\right)(32.000000) \\
& \alpha_{23,23}=\frac{L}{6 A E}=\frac{6}{(6)(0.125)(E)}=\left(-\frac{1}{E}\right)(8.000000)
\end{aligned}
$$

The non-zero coefficients of the [ALPIJ] matrix are listed in Table I. The [AREINV] coIumn vector consists of reciprocal cross sectional area values for the ends of the bar elements and reciprocal thickness values for the web elements. Sample calculations would be

$$
\begin{aligned}
& \text { TERM } 1,1=\frac{1}{0.25}=4.000000 \\
& \text { TERM 13.1 }=\frac{1}{0.05}=20.000000 \\
& \text { TERM 22. } 1=\frac{1}{0.125}=8.000000
\end{aligned}
$$

The values of the [AREINV] column vector are listed in Table II.

Effective Area

An assumption widely used in aircraft design is to account for the axial load carrying capabilly of the web by lumping the crossm sectional area of the web with the stringers and ribs. The original cross-sectional area of the bar element, plus the appropriate web crosssectional area, is usually referred to as effective flange area.

The anount of web area edded to the stringer and/or rib area depends on the stress level, type of material, and type of loading. For

TABLE I
[AIPIJ] MATRIX
Non-Zero Values Listed
NOTE: Each Coefficient Must be Multiplied by $\frac{I}{E}$

Row	Column	Coefficient	Row	Column	Coefficient
1	1	13.4824973	12	11	6.7412485
1	2	6.7412485	12	12	26.9649940
2	1	6.7412485	13	13	3445.0000000
2	2	26.9649940	14	14	2915.0000000
2	3	6.7412485	15	15	2385.0000000
3	2	6.7412485	16	16	3445.0000000
3	3	26.9649940	17	17	2915.0000000
4	4	26.6996933	18	18	3285.0000000
4	5	13.3498465	19	19	3445.0000000
5	4	13.3498465	20	20	2915.0000000
5	5	53.3993860	21	21	3285.0000000
5	6	13.3498465	22	22	32.0000000
6	5	13.3498465	22	23	8.0000000
6	6	53.393860	23	22	8.000000
7	7	26.6996933	23	23	32.000000
7	8	13.3498465	24	24	26.6666667
8	7	13.3498465	24	25	6.6666667
8	8	53.3993860	25	24	6.6666667
8	9	13.3498465	25	25	26.6666667
9	8	13.3498465	26	26	10.6666667
9	9	53.3993860	26	27	2.6666667
10	10	13.4824973	27	26	2.6666667
11	11	26.9649940	27	27	10.6666667
11	12	6.7412485			

TABLE II

[AREINV] COLUMN VECTOR
$\left.\begin{array}{rccccc}\hline \text { Row } & \text { Column } & \text { Value } & \text { Row } & \text { Column } & \text { Coefficient } \\ \hline & & 1 & 4.0000000 & 15 & 1\end{array}\right) 20.0000000$
example, by neglecting Poisson's ratio effect and assuming the same material for stringers and flat plates, one-sixth to one half of the web cross-sectional area should be added to the stringer area. The former value applies when the field is in pure bending within its own plane, and the latter value applies when it is under uniform axial stress.

In this investigation, onewhalf of the web crossmsectional area has been lumped into that of the stringers and webs. The resulting effective area of each stringer varies linearly along the axis of the element while the effective area of each rib remains constant. The [ALPIJ] terms for the ribs are calculated from the "unlumped" formula in the past section, but those terms for the stringers must be calculated by different means.

The $[A L P I J]$ terms for the stringers were calculated with the use of Figures $A 7.34 \mathrm{~b}$ and A 7.34 c of reference (7).

The nonwzero elements of [AIPIJ], "WAL" (web area lumped) are shown listed in Table III and the values of [AREINV], "WAL" are listed in Table IV.

$$
\text { Calculations of the }[G I M],[G I R] \text {, and }[\text { FORCE }] \text { Matrices }
$$

Two choices of redundants were made to render the structure of Figure 13 stable and statically determinant.

Redundants choice number 1 , or "RDCm", by which the generalized forces $q_{4}, q_{5}, q_{6}, q_{7}, q_{8}$, and q_{9} are assumed to be redundant, is shown in Figure 3.

Redundants choice number 2, or "RDC-2", by which the generalized forces $q_{13}, q_{14}, q_{15}, q_{19}, q_{20}$, and q_{21} are assumed to be redundant, is shown in Figure 4 .

TABLE III
$\left.[A I P I J]_{(0 \text { WAL }}{ }^{*}\right)$ MATRIX

NOTE: Each Coefficient Must be Multiplied by $\frac{1}{E}$

Row	Column	Coefficient	Row	Column	Coefficient
1	1	7.685023	11	12	4.323387
1	2	3.939410	12	11	4.323387
2	1	3.939410	12	12	18.002341
2	2	16.712673	13	13	3445.000000
2	3	4.323387	14	14	2915.000000
3	2	4.323387	15	15	2385.000000
3	3	18.002341	16	26	3445.000000
4	4	7.224624	17	17	2915.000000
4	5	3.671207	18	18	2385.000000
5	4	3.671207	19	19	3445.000000
5	5	15.755438	20	20	2915.000000
5	6	4.138452	21	21	2385.000000
6	7	4.138452	22	22	6.400000
6	8	17.875103	22	23	1.600000
7	7	7.224624	23	22	1.600000
7	8	3.671207	23	23	6.400000
8	7	3.671207	24	24	5.333333
8	8	15.755438	24	25	1.333333
8	9	4.138452	25	24	1.333333
9	8	4.138452	25	25	5.333333
9	9	17.875103	26	26	5.333333
10	10	7.685023	26	27	1.333333
10	11	3.939417	27	26	1.333333
11	10	3.939417	27	27	5.333333
11	11	16.712673			

TABLE IV

$$
[\text { AREINV }]_{\left(0 W^{n L}\right)} \text { COLUMN VECTOR }
$$

Row	Column	Value	Row	Column	Value
	1	2.352941	15	1	20.000000
1	1	2.500000	16	1	20.000000
2	1	2.666667	17	1	20.000000
3	1	2.105263	18	1	20.000000
4	1	2.352941	19	1	20.000000
5	1	2.666667	20	1	20.000000
6	1	2.105263	21	1	20.00000
7	1	2.652941	22	1	1.000000
8	1	2.352967	23	1	1.600000
9	1	2.500000	24	1	1.000000
10	1	2.666667	25	1	1.000000
11	1	20.000000	26	1	2.000000
12	20.000000		1	2.000000	
13					
14					

Figure 3. Redundants Choice Number 1 , "RDC ${ }^{1}$ " Redundants: q_{4} q5: qe, 9\%, Gis, qs.

Figure 4. Redundants Choice Number $2,{ }^{19}$ RDC F^{20} Redunderits: $q_{13} q_{14}$ $q_{15} ; q_{19}, q_{20}$, q_{21}.

As in the case of the $[A L P I J]$ matrix and the [AREINV] column vector, the metrices [Gim] and [Gir] appearing in Equation (2u) have been designated $[G I M]$ and $[G I R]$, joespectively.

The [GIM] natrix is calculated by allowing each external load to have a value of 1 In and determining the resulting internal load distrim bution assuming the values of the internal redundant loads to be zero.

The $[$ GIR $]$ matrix is calculated by allowing each internal redundant load to have a value of I Ib, assuming that the values of the external loads are zero.

The calculation of the $[G I M]$ and $[G I R]$ metrices for a structure as complex as the one under consideration beomee quite lengthy and tedous.

If local freebodies are drawn in a random manner, much repetition results and there is a high chance for error.

A more regimented and precise approach can be developed. From the degree of redundancy section, the development for the wall constraint yields a precise approach to solve for the terms of $[G I M]$ and $[G I R]$ in a general manner. By the use of generalized forces shown in Figure 2, twenty-one freebodies can be drawn. Twelve freebodies can be drawn containing a stringer and a web which produces twelve equations of equiplibrium between the stringer and webs. Then, nine freebodies can be drawn containing a rib and a web which produces the remaining nine equal. tions of equilibrium. An example of a freebody and resulting equilibrium equation is shown in Figure 5 .

$$
q_{1}+(10.111873) q_{13}-q_{2}=0
$$

Figure 5. Generalized Free body and Resulting Equation of Equilibrium

The twentyoone equations in twentyoseven unknown are listed as follows:

$$
q_{1}-q_{2}+(10.111873) q_{13}=0
$$

$$
\begin{aligned}
& q_{2}-q_{3}+(10.111873) q_{14}=0, \\
& q_{3}+(10.111873) q_{15}=(1.0111873) p_{1}, \\
& q_{4}-q_{5}-(10.012385) q_{13}+(10.012385) q_{16}=0 \text {, } \\
& q_{5}-q_{6}-(10.012385) q_{14}+(10.012385) q_{17}=0, \\
& q_{6}-(10.012385) q_{15}+(10.012385) q_{18}=(1.0012385) p_{21} \\
& q_{1}-q_{8}-(10.012385) q_{16}+(10.012385) q_{19}=0, \\
& q_{8}-q_{q}-(10.012385) q_{11}+(10.012385) q_{20}=0, \\
& q_{9}-(10.012385) q_{18}+(10.012385) q_{21}=(1.0012385) p_{3}, \\
& q_{10}-q_{11}-(10.111873) q_{19}=0, \\
& q_{11}-q_{12}-(10.111873) q_{20}=0 \text {, } \\
& q_{12}-(10.111873) q_{21}=(1.0111873) P_{4}, \\
& \text { (7) } q_{13}-(5) q_{14}+q_{22}=0 \text {, } \\
& \text { (6) } q_{14}-(4) q_{15}+q_{24}=0 \text {, } \\
& (5) q_{15}+q_{26}=P_{8}+(0.5) P_{7}+(0.15) P_{1}+(0.025) P_{2}, \\
& \text { (7) } q_{16}-(5) q_{17}-q_{22}+q_{23}=0 \text {, } \\
& \text { (6) } q_{17}-(4) q_{18}-q_{24}+q_{25}=0 \text {, } \\
& (5) q_{1 B}-q_{26}+q_{27}=(0.5) P_{7}-(0.5) P_{6}-(0.025) P_{3}+(0.025) P_{2}, \\
& \text { (7) } q_{19}-(5) q_{20}-q_{23}=0 \text {, } \\
& \text { (b) } q_{20}-(4) q_{21}-q_{25}=0 \text {, } \\
& -(5) q_{21}+q_{27}=P_{5}+(0.15) p_{4}+(0.025) p_{3}+(0.5) p_{6} .
\end{aligned}
$$

It is to be noted that all input data were read into the digital computer with six digits to the right of the decimal point regardless of their appearance in any figure, table, or example listing.

It has been established that six of the unknowns are redundant. When a choice of redundants is made, the appropriate ${ }^{19} q$ " values can be transferred to the right side of the equal sign with the external loads. Now, there are twentymone unknowns since the redundant " q " values are either one or zero, depending upon whether the elements of [GIM] or those of $[G I R]$ are sought. Twenty-one linear simultaneous equations are the result. These equations can be transformed into a matrix equation consisting of a matrix of coefficients, a column vector representing the unknowns and a matrix of constants. The coefficients matrices for RDC-1 and RDC-2 are shown in Tables V and VII and the matrices of constants for both choices of redundants are shown in Tables VI and VIII.

A digital computer program was developed for solving the two sets of equations and determining $[G I M]$ and $[G I R]$ automatically. An expla-
 and $[G I R]$, "rRDC-1" ${ }^{n 9} R D C-2^{n 9}$, are listed in Tables $I X, X, X I$, and XII, respectively。

The $\left\{P_{m}\right\}$ column matrix of Equation ($2 \mathrm{~m}-1$) has been designated [FORCE] and it consists of the actual values of the external loads.

Three load configurations (see Figure 33, Chapter IV) were used in this investigation, and [FORCE $]$ matrices corresponding to these configurations are show in Table XVIII of Chapter IV.

> TABLE V
> $[$ COHF $]$ MATRIX $_{9}$ RDC-I
> Non-Zero Elements Listed

Row	Col	Coeff	Row	Col	Coeff
1	1	1.000000	10	4	1.000000
1	2	-1.000000	10	5	-1.000000
1	7	10.111873	10	13	-10.111873
2	2	1.000000	11	1	1.000000
2	3	-1.000000	11	6	-1.000000
2	8	10.111873	11	14	-10.111873
3	3	1.000000	12	6	-1.000000
3	9	10.111873	12	15	-10.111873
4	7	-10.012385	13	7	7.000000
4	10	10.012385	13	8	-5.000000
5	8	-10.012385	13	16	1.000000
5	11	10.012385	14	8	6.000000
6	9	-10.012385	14	9	-4.000000
6	12	10.012385	14	18	1.000000
7	10	-10.012385	15	9	5.000000
7	13	10.012385	15	20	1.000000
8	11	-10.012385	16	10	7.000000
8	14	10.012385	16	11	-5.000000
9	12	-10.012385	16	16	-1.000000
9	15	10.012385	16	17	1.000000
17	11	6.000000	19	14	-5.000000
17	12	-4.000000	19	14	-5.000000
17	18	-1.000000	20	14	6.000000
17	19	1.000000	20	15	-4.000000
18	12	5.000000	20	19	-1.000000
18	20	-1.000000	21	15	-5.000000
18	21	1.000000	21	21	1.000000
19	13	7.000000			

TABLE VI

RDC-I
Non-Zero Values Listed

Row	Column	Coefficient	Row	Column	Coefficient
3	1	1.0111873	8	11	1.0000000
4	6	-1.0000000	12	4	1.0111873
4	7	1.0000000	15	1	0.1500000
5	7	-1.0000000	15	2	0.0250000
5	8	1.0000000	18	2	0.0250000
6	2	1.0012385	18	3	-0.0250000
6	8	-1.0000000	21	3	0.0250000
7	9	-1.0000000	21	4	0.1500000
7	10	1.0000000	21	5	1.0000000
8	10	-1.0000000			

TABLE VII
[CORF] MATRIX, RDC~2
Non-Zero Values Listed

Row	Col	Coeff	Row	Col	Coeff
	1	1.000000	10	11	-1.000000
1	2	-1.000000	11	11	1.000000
2	2	1.000000	11	12	-1.000000
2	3	-1.000000	12	12	1.000000
3	3	1.000000	13	16	1.000000
4	4	1.000000	14	18	1.000000
4	5	-1.000000	15	20	1.000000
4	13	10.012385	16	13	7.000000
5	5	1.000000	16	14	-5.000000
5	6	-1.000000	16	16	-1.000000
5	14	10.012385	16	17	1.000000
6	6	-1.000000	17	14	6.000000
6	15	10.012385	17	15	-4.000000
7	7	1.000000	17	18	-1.000000
7	8	-1.000000	17	18	-1.000000
7	13	-10.012385	17	19	1.000000
8	8	1.000000	18	15	5.000000
8	9	-1.000000	18	20	-1.000000
8	14	-10.012385	18	21	1.000000
9	9	1.000000	19	17	-1.000000
9	15	-10.012385	20	19	-1.000000
10	10	1.000000	20	21	1.000000

TABLE VIII
 [CONST] MATRIX, RDC-2
 Non-Zero Values Listed

Row	Col	Coeff	Row	Col	Coeff
1	6	-10.1118730	13	7	5.0000000
2	7	-10.1118730	14	7	-6.0000000
3	1	1.0111873	14	8	4.0000000
3	8	-10.1118730	15	1	0.1500000
4	6	10.0123850	15	2	0.0250000
5	7	10.0123850	15	8	-5.0000000
6	2	1.0012385	18	2	0.0250000
6	8	10.0123850	18	3	-0.0250000
7	9	-10.0123850	19	9	-7.0000000
8	10	-10.0123850	19	10	5.0000000
9	3	1.0012385	20	10	-6.0000000
9	11	-10.0123850	20	11	4.0000000
10	9	10.1118730	21	3	0.0250000
11	10	10.1118730	21	4	0.1500000
12	4	1.0118730	21	5	1.0000000
12	11	10.1118730		11	5.0000000
13	6	-7.0000000			

TABLE IX
[GIM] MATRIX FOR RDC-1

m	$\mathrm{P}_{\mathbf{1}}=1$	$P_{\mathbf{2}}=1$	$P_{\mathbf{3}}=1$	$P_{\mathbf{4}}=1$	$P_{\mathbf{5}}=1$
i					
1	0.7746	0.6003	0.4084	0.2143	1.4450
2	0.8223	0.6164	0.3923	0.1667	1.1240
3	0.8889	0.6388	0.3699	0.1000	0.6741
4	0	0	0	0	0
5	0	0	0	0	0
6	0	0	0	0	0
7	0	0	0	0	0
8	0	0	0	0	0
9	0	0	0	0	0
10	0.2143	0.4084	0.6003	0.9746	-1.4450
11	0.1667	0.3923	0.6164	0.0223	-1.1240
12	0.1000	0.3699	0.6388	0.8889	-0.6741
13	0.0047	0.0016	-0.0016	-0.0047	-0.0318
14	0.0066	0.0022	-0.0022	-0.0066	-0.0444
15	0.0099	-0.0621	-0.0366	-0.0099	-0.0667
16	0.0047	0.0016	-0.0016	-0.0047	-0.0318
17	0.0066	0.0022	-0.0022	-0.0066	-0.0444
18	0.0099	0.0366	-0.0366	-0.0099	-0.0667
19	0.0047	-0.0016	-0.0016	-0.0047	-0.0318
20	0.0066	0.0022	-0.0022	-0.0066	-0.0444
21	0.0099	0.0366	0.0632	-0.0099	-0.0667
22	0	0	0	0	0
23	0	0	0	0	0
24	0	-0.2660	-0.1330	0	0
25	0	-0.1330	-0.2660	0	0
26	0.0989	0.3408	0.1829	0.0495	0.3333
27	0.0495	0.1829	0.3406	0.0989	0.6667

TABLE X
[GIM] MATRIX FOR RDC-2

m	$P_{1}=1$	$P_{\mathbf{Z}}=1$	$P_{3}=1$	$P_{4}=1$	$P_{5}=1$
1	1.0112	0	0	0	0
2	1.0112	0	0	0	0
3	1.0112	0	0	0	0
4	-0.6457	0.7867	0.2146	0.6437	4.2910
5	-0.5006	0.8344	0.1669	0.5606	3.3370
6	-0.3004	0.9011	0.1001	0.3004	2.0020
7	0.6437	0.2146	0.7867	-0.6437	-4.2910
8	0.5006	0.1669	0.8344	-0.5006	-3.3370
9	0.3004	0.1001	0.9011	-0.3004	-2.0020
10	0	0	0	1.0110	0
11	0	0	0	1.0110	0
12	0	0	0	1.0110	0
13	0	0	0	0	0
14	0	0	0	0	0
15	0	0	0	0	0
16	0.0143	0.0048	-0.0048	-0.0143	-0.0952
17	0.0200	0.0067	-0.0067	-0.0200	-0.1333
18	0.0300	0.0100	-0.0100	-0.0300	-0.2000
19	0	0	0	0	0
20	0	0	0	0	0
21	0	0	0	0	0
22	0	0	0	0	0
23	0	0	0	0	0
24	0	0	0	0	0
25	0	0	0	0	0
26	0.1500	0.0250	0	0	0
27	0	0	0	0	0
		0	0	0	0

TABLE XI
[GIR] MATRIX FOR RDC-2

i	$q_{4}=1$	$q_{5}=1$	$q_{6}=1$	$q_{7}=1$	$q_{8}=1$	$q_{9}=1$
1	0	0	-0.3366	-0.3366	0	0.
2	0	-0.6733	0	0	-0.3366	0
3	0	0	-0.6733	0	0	-0.3366
4	1.0000	0	0	0	0	0
5	0	1.0000	0	0	0	0
6	0	0	1.0000	0	0	0
7	0	0	0	1.0000	0	0
8	0	0	0	0	1.0000	0
9	0	0	0	0	0	1.0000
10	-0.3366	0	0	-0.6733	0	0
1.1	0	-0.3366	0	0	-0.6733	0
12	G	0	-0.3366	0	0	-0.6733
13	. 0666	-. 0666	0	0.0333	-0.0333	0
14	0	0.0666	-0.0666	0	0.0333	-0.0333
15	0	0	0.0666	0	0	0.0333
16	-0.0333	0.0333	0	0.0333	-0.0333	0
17	0	-0.0333	0.0333	0	0.0333	-0.0333
18	0	0	-0.0333	0	0 \%	0.0333
19	-0.0333	0.3333	0	-0.0666	0.0666	0
20	0	-0.0333	0.0333	0	-0.0666	0.0666
21	0	0	-6.0333	0	0	-0.0666
22	-0.4661	0.7990	-0. 3333	-0.2330	0.3995	-0.1665
23	-0.2330	0.3995	-0.1665	-0.4661	0.7990	-0.3329
24	0	-0.3995	0.6658	0	-0.1998	0.3329
25	0	-0:1998	0.3329	0	-0.3995	0.6658
26	0	0	-0.3329	0	0	0.1665
27.	0	0	-0.1665	0	0	-0.3329

TABLE XII
[GIR] MATRIX FOR RDG-2

i	$\mathrm{q}_{13}=41$	$q_{14}=1$	$9_{15}=+1$	$919=1$	$9_{20} 51$.	$q_{2 i}=+1$
1	-10.1120	-10.1120	0	0	0	0
2	0	-10.1120	-10.1120	0	0	0
3	0	0	-10.1120	\cdots	0	0
4	20.0200	20.0200	20.0200	10.0100	10.0100	10.0100
5	0	20.0200	20.0200	0	10.0100	10.0100
6	0	0	20.0200	0	0	10.0100
7	-10.0100	-10.0100	-10.0100	-20.0200	-20.0200	-20.0200
8	0	-10.0100	-10.0100	0	-20.0200	-20.0200
9	0	0	-10.0100	0	-	-20.0200
10	0	0	0	10:1100	10.1100	10.1100
11	0	0	0	0	10.1100	10.1100
12	0	0	0	0	0	10.1100
13	1.0000	0	0	0	0	0
14	0	1.0000	0	0	0	0
15	0	0	1.0000	0	0	0
16	-1.0000	0	0	-1.0000	0	0
17	0 .	-1.0000	0	0	-1.0000	0
18	0	0	-1.0000	0	0	-1.0000
19	0	0	0	1.0000	0	0
20	0	0	0	0	1.0000	0
21	0	0	0	0	0	1.0000
22	-7.0000	5.0000	0	0	0	0
23	0	0	0	7.0000	-5.0000	0
24	0	-6.0000.	4.0000	0	0	0
25	0	0	- 0	0	6.0000	-4.0000
26	0	0	-5.0000	0	0	0
27	0	0	0	0	0	5.0000

A. Flexibility Matrix Which Incorporates
 Poisson's Ratio and Sweep Effects

The standard approach to analyzing stiffened shell structures has been shown. The structure was idealized into an array of bar and plate elements. The stringers and ribs were assumed to carry only a linearly varying axial stress while the plates were assumed to carry only a constant average shear stress. In order to account for the axial stress carrying capacity of the plates, a discrete amount of plate cross sectional area was added to that of the bar elements bordering a particular plate. Two [ALPIJ] matrices were developed。 One [ALPIJ] matrix allowed for no lumping of plate areas while the other [ALPIJ] matrix contained terms which allowed for one-half of the plate cross sectional area to be lumped into the adjacent bar element.

This method is approximately correct for rectangular or nearly rectangular panels, but in its present form neglects two couplings which impose a restriction on its application:

1. The coupling between direct stresses which is referred to as Poisson's ratio coupling.
2. The coupling between shear stresses and the direct stresses existing in oblique panels.

In a recent paper, Grjedzielski (8) showed that both Poisson ${ }^{9}$ s ratio and sweep in coupling can be accounted for in a rational manner. In essence, the idealization is based upon the lumping concept, wherein the direct-stress-carrying capacity of the structural material is concentrated along the stringers and ribs surrounding a given plate and shear carrying capacity is assigned to the panel areas contained within
the plate. Although this has the appearance of the axial-force-member ${ }^{\circ}$ shear panel idealization, the Poisson's ratio and sweep effectsare taken into account by incorporating them into the flexibility matrix.

Subsequently a new flexibilyty matrix for a trapezoidal shaped plate is derived which takes into account effects due to Poisson ${ }^{0}$ s ratio and sweep.

The strain energy of a plate can be given by

$$
\begin{equation*}
U=\frac{1}{2} \frac{t}{E} \iint\left[\sigma_{X}^{2}+\sigma_{Y}^{2}-2 V \sigma_{X} \sigma_{Y}+2(1+V) \tau_{X Y}^{2}\right] d A . \tag{2-17}
\end{equation*}
$$

Here, the integrals of σ_{X}^{2} and σ_{Y}^{2} are interpreted as strain energy of the stringers and ribs bordering a web, respectively, and the integral of $\tau_{X Y}^{2}$ as the energy of panels and webs. The integral of $\sigma_{X} \sigma_{Y}$ represents the cross coupling due to Poisson's ratio.

Transformation Into Oblique Coordinates

To change from rectangular coordinates X, Y to trapezoidal ones u, ψ, the following transformation holds (This transformation is shown in Figure 6.):

$$
\begin{equation*}
X=U, \quad Y=U T A N \Psi . \tag{2-18}
\end{equation*}
$$

The stress components will be used as follows:
(a) Stress components of the system $U, \psi: \sigma_{u}, \sigma_{\psi}, \tau_{u \psi}$,
(b) Stress components of the auxiliary system $X, Y: \sigma_{X}, \sigma_{Y}$, $\tau_{X Y}$,
(c) Stress components of the grid system: $\sigma_{S}, \sigma_{r}, \tau_{P}$, where σ_{s} and σ_{r} are the direct stress of the stringer and rib caps, respectively, and \mathcal{T}_{p} is the average panel shearing stress.

Figure 6. Transformation of Stress Components

From the consideration of equilibrium of stresses at a point, the following transformation equations between the stress components (a) and (b) may be written (These equations are written from Figure 6.):

$$
\begin{align*}
& \tau_{x y}=\tau_{u \psi}+\sigma_{u} \operatorname{Sin} \psi, \\
& \sigma_{x}=\sigma_{u} \cos \psi, \tag{2-19}\\
& \sigma_{y}=\sigma_{\psi} \operatorname{SEC} \psi+2 \tau_{u \psi} \operatorname{TAN} \psi+\sigma_{u} \operatorname{Sin} \psi \operatorname{TAN} \psi .
\end{align*}
$$

Strain energy of the panels in terms of the trapezoidal coordinates is obtained by substitution of Equation (2-19) Into Equation (2-17) After replacing the integration element $d x d y$ by $u d u \cdot d \psi \sec ^{2} \psi$, there results

$$
\begin{aligned}
U= & \frac{+}{2 E} \iint\left[\sigma_{u}^{2}+\sigma_{\psi}^{2}-2\left(\nabla \operatorname{CoS}^{2} \psi-\operatorname{Sin}^{2} \psi\right) \sigma_{u} \sigma_{\psi}\right. \\
& \left.+4 \operatorname{Sin} \psi\left(\sigma_{u}+\sigma_{\psi}\right) \tau_{u \psi}+\left(\frac{E}{G} \operatorname{CoS}^{2} \psi+4 \operatorname{SiN}^{2} \psi\right) \tau_{u \psi}^{2}\right] \frac{u d u d \psi}{\operatorname{Cos}^{4} \psi} \cdot
\end{aligned}
$$

For lumping theory, the particular terms have the following meaning: The $T_{u}^{2} \psi$ term represents the shear energy of the panel. The σ_{u}^{2} and σ_{ψ}^{2} terms are interpreted as bending energy of stringers and ribs. The term containing $\sigma_{u} \sigma_{\psi}$ introduces the Poisson's ratio coupling. Finally, the term $4 \sin \psi\left(\sigma_{u}+\sigma_{\psi}\right) T_{u \psi}$ takes care of the coupling due to the sweep angle。

Component Energy Terms

For the contribution of the flange stresses to the total strain energy, a flange $A B$ with stresses σ_{2} and σ_{2} at the ends A an B, respectively, is considered. There results

$$
\begin{aligned}
& \sigma_{x}=\frac{\sigma_{1}(L-X)}{L}+\sigma_{2}\left(\frac{X}{L}\right) \\
& \sigma_{x}^{2}=\frac{\sigma_{1}^{2}(L-X)^{2}}{L^{2}}+\sigma_{2}^{2} \frac{X^{2}}{L^{2}}+\frac{2 \sigma_{1} \sigma_{2}\left(X L-X^{2}\right)}{L^{2}}
\end{aligned}
$$

Hence, the energy possessed by the flanges can be stated as

$$
\begin{aligned}
U & =\frac{A L}{2 E} \int_{0}^{L} \sigma^{2} d x \\
& =\frac{A L}{2 E} \int_{0}^{L}\left[\frac{\sigma_{1}^{2}(L-x)^{2}}{L^{2}}+\frac{\sigma_{2}^{2} x^{2}}{L^{2}}+\frac{2 \sigma_{1} \sigma_{2}\left(x_{L}-x^{2}\right)}{L^{2}}\right] d x \\
& =\frac{A L}{2 E}\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{1} \sigma_{2}\right)
\end{aligned}
$$

where σ_{1}, σ_{2} are the direct stresses at each end of a lumped flange and will be equal to the node force divided by the corresponding lumped area.

$$
\text { Strain energy } \bigcup_{P} \text { corresponding to the state of shear } \tau_{P} \text { is }
$$

evaluated by integration. Thus U_{p} is given up

$$
U_{p}=\frac{+}{2 E} \iint\left[\frac{E}{G} \cos ^{2} \psi+4 \sin ^{2} \psi\right] \tau_{u \psi}^{2} \frac{u d u d \psi}{\cos \psi \psi} .
$$

An expression for $\tau_{u x}$ is

$$
\begin{aligned}
& \tau_{u \psi}=\tau_{P} \frac{u_{1} u_{2}}{u^{2}} \\
& U_{P}=\frac{+}{2 E} \int_{\psi_{1}}^{\psi_{2}} \int_{u_{1}}^{u_{2}}\left[\frac{E}{G} \frac{1}{\cos ^{2} \psi}+\frac{4 \sin ^{2} \psi}{\cos ^{4} \psi}\right] \frac{u_{1}^{2} u_{2}^{2}}{u^{3}} \tau_{p}^{2} d u d \psi
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{+}{2 G} \int_{\psi_{1}}^{\psi_{2}}\left[\frac{1}{\cos ^{2} \psi}+\frac{4 G}{E} \frac{\left.S_{1 N^{2} \psi}^{\operatorname{Cos}^{4} \psi}\right]\left(\frac{u_{2}^{2}-u_{1}^{2}}{2}\right) T_{p}^{2} d \psi}{=\frac{+T_{p}^{2}}{2 G}\left(\frac{u_{2}^{2}-u_{1}^{2}}{2}\right)\left[\operatorname{TAN} \psi_{2}-\operatorname{TAN} \psi_{1}+\frac{4 G}{3 E}\left(\operatorname{TAN}^{3} \psi_{2}-\operatorname{TAN}^{3} \psi_{1}\right)\right]}\right. \\
& =\left(\frac{u_{2}^{2}-u_{1}^{2}}{2}\right)\left(\operatorname{TAN} \psi_{2}-\operatorname{TAN} \psi_{1}\right) \frac{T_{P}^{2}}{2 G}\left[1+\frac{4 G}{3 E}\left(\operatorname{TAN}^{2} \psi_{2}+\operatorname{TAN} \Psi_{1} \operatorname{TAN} \psi_{2}+\operatorname{TAN}^{2} \psi_{1}\right)\right] \\
& =A_{p} \frac{+T_{p}^{2}}{2 G}\left[1+\frac{4 G}{3 E}\left(\operatorname{TAN}^{2} \psi_{1}+\operatorname{TAN} \psi_{1} \operatorname{TAN} \psi_{2}+\operatorname{TAN}^{2} \psi_{2}\right)\right],
\end{aligned}
$$

where $\quad A_{p}=\frac{u_{z}^{2}-u_{1}^{2}}{2}\left(\operatorname{TAN} \psi_{2}-\operatorname{TAN} \psi_{1}\right)$
$=$ area of the plate.
Strain energy corresponding to Poisson's ratio and shear couplings vis. $\sigma_{u} \sigma_{\psi}, \sigma_{u} \tau_{u}$ and $\sigma_{\psi} T_{u \psi}$ is obtained by taking the value of each product due to the four node values, summing them up and taking the average to represent the plate.

The total strain energy for the four flanges and the plate is given by

$$
\begin{aligned}
U & =\frac{A_{1} b_{1}}{b E}\left(\sigma_{R 11}^{2}+\sigma_{R 12}^{2}+\sigma_{R 11} \sigma_{R 12}\right) \\
& +\frac{A_{2} b_{2}}{b E}\left(\sigma_{R 21}^{2}+\sigma_{R 22}^{2}+\sigma_{R 21} \sigma_{R 22}\right) \\
& +\frac{A_{3} l_{1}}{b E}\left(\sigma_{S 11}^{2}+\sigma_{S 12}^{2}+\sigma_{S 11} \sigma_{S 12}\right) \\
& +\frac{A_{4} l_{2}}{6 E}\left(\sigma_{S 21}^{2}+\sigma_{S 22}^{2}+\sigma_{S 21} \sigma_{S 22}\right)
\end{aligned}
$$

$-\frac{t}{2 E} \cdot 2\left(\nabla \cos ^{2} \psi_{1}-\operatorname{SIN}^{2} \psi_{1}\right) \frac{\cos \psi_{1}}{4}\left(l_{1} b_{1} \sigma_{S 11} \sigma_{R 11}+l_{1} b_{2} \sigma_{S 12} \sigma_{R 21}\right)$
$-\frac{+}{2 E} \cdot 2\left(\nabla \cos ^{2} \psi_{2}-\sin N^{2} \psi_{2}\right) \frac{\cos \psi_{2}}{4}\left(l_{2} b_{1} \sigma_{R 12} \sigma_{s 21}+l_{2} b_{2} \sigma_{R 22} \sigma_{S 22}\right)$
$+\frac{t}{2 E} \cdot 4 \sin \psi_{1} \cdot \frac{T_{\rho}}{4}\left[l_{1} b_{1}\left(\sigma_{S 11}+\sigma_{R 11}\right)+l_{1} b_{2}\left(\sigma_{S 12}+\sigma_{R 21}\right)\right]$
$+\frac{+}{2 E} \cdot 4 \sin \psi_{2} \cdot \frac{\tau_{P}}{4}\left[l_{2} b_{1}\left(\sigma_{R 12}+\sigma_{S 21}\right)+l_{2} b_{2}\left(\sigma_{R 22}+\sigma_{S 22}\right)\right]$
$+\frac{b_{1}+b_{2}}{2} \cdot \frac{l_{1} \cos \psi^{6}}{G} \cdot \frac{+\tau_{P}^{2}}{2}\left[1+\frac{4 G}{3 E}\left(\operatorname{TaN}^{2} \psi_{1}+\operatorname{TAN} \psi_{1} \operatorname{TAN} \psi_{2}+\operatorname{TAN}^{2} \psi_{2}\right)\right]$.
Castigliano's second theorem states that a displacement δ_{i} can be derived from the strain energy U, expressed in terms of the applied loads P, as

$$
\delta_{i}=\frac{\partial U}{\partial P_{i}}
$$

where P_{i} is the loading in the direction of the displacement δ_{i}. The expression for δ_{i} may be written as

$$
\delta_{i}=\frac{\partial U}{\partial P_{i}}=\frac{\partial U}{\partial \sigma_{j}} \cdot \frac{\partial \sigma_{j}}{\partial P_{i}}=\frac{\partial \sigma_{j}}{\partial P_{i}}[S]\{\sigma\} .
$$

But the expression for stress, σ_{j}, is

$$
\sigma_{j}=\frac{P_{j}}{A_{j}}
$$

Therefore, the partial derivative of σ_{j} with respect to P_{i} is

$$
\frac{\partial \sigma_{j}}{\partial R_{i}}=\delta_{i j} \cdot \frac{1}{A_{j}}
$$

where $\delta_{i j}$ is the kronsersdelta. Then the expression for δ_{i} may be written as

$$
\delta_{i}=\left[\frac{1}{A}\right][S]\{\sigma\}=\left[\frac{1}{A}\right][S]\left[\frac{1}{A}\right]\{P\}
$$

where the expression for the flexibility matrix $\left[\alpha_{i j}\right]$ is

$$
\left[\frac{1}{A}\right][S]\left[\frac{1}{A}\right]=\left[\alpha_{i j}\right]
$$

$[S]$ can be obtained by differentiating the strain energy with respect to each stress term separately. Differentiating

$$
\begin{aligned}
& \frac{\partial U}{\partial \sigma_{R 11}}=\frac{A_{1} b_{1}}{6 E}\left(2 \sigma_{R 11}+\sigma_{R 22}\right)-\frac{+}{E}\left(\nabla \operatorname{Cos}^{2} \psi_{1}-\operatorname{Sin}^{2} \psi_{1}\right) \frac{\cos \psi}{4}\left(l_{1} b_{1} \sigma_{S 11}\right) \\
& +\frac{+}{2 E} \operatorname{SiN} \psi T_{P}\left(l_{1} b_{1}\right), \\
& \frac{\partial U}{\partial \sigma_{R 12}}=\frac{A_{1} b_{1}}{6 E}\left(2 \sigma_{R 12}+\sigma_{R 11}\right)-\frac{+}{E}\left(V \cos ^{2} \psi_{2}-\sin ^{2} \psi_{2}\right) \frac{\cos \psi_{3}}{4}\left(l_{2} b_{1} \sigma_{\text {S21 }}\right) \\
& +\frac{+}{2 E} \operatorname{SiN} \psi_{2} \tau_{p}\left(l_{2} b_{1}\right), \\
& \frac{\partial U}{\partial \sigma_{R 21}}=\frac{A_{2} b_{2}}{6 E}\left(2 \sigma_{R 21}+\sigma_{R 22}\right)-\frac{+}{E}\left(\nabla \cos ^{2} \psi_{1}-\operatorname{SiN} N^{2} \psi_{1}\right) \frac{\cos \psi_{4}}{4}\left(l_{1} b_{2} \sigma_{S 12}\right) \\
& +\frac{+}{2 E} \operatorname{SIN} \psi_{1} \tau_{p}\left(l_{1} b_{2}\right), \\
& \frac{\partial U}{\partial \sigma_{R 22}}=\frac{A_{2} b_{2}}{6 E}\left(2 \sigma_{R 22}+\sigma_{R 21}\right)-\frac{+}{E}\left(V \operatorname{Cos}^{2} \psi_{2}-\operatorname{Sin}^{2} \psi_{2}\right) \frac{\cos \psi_{2}}{4}\left(l_{2} b_{2} \sigma_{s 22}\right) \\
& +\frac{+}{2 E} S \operatorname{N} \Psi_{2} T_{P}\left(l_{2} b_{2}\right), \\
& \frac{\partial U}{\partial \sigma_{S 11}}=\frac{A_{3} l_{1}}{6 E}\left(2 \sigma_{S 11}+\sigma_{s 12}\right)-\frac{+}{E}\left(\nabla \operatorname{Cos}^{2} \psi_{1}-\operatorname{Sin}^{2} \psi_{1}\right) \frac{\cos \psi_{1}}{4}\left(l_{1} b_{1} \sigma_{R 11}\right) \\
& +\frac{+}{2 E} \operatorname{SiN} \psi_{i} T_{P}\left(l_{1} b_{1}\right), \\
& \frac{\partial U}{\partial \sigma_{S 12}}=\frac{A_{3} l_{1}}{b E}\left(2 \sigma_{S 12}+\sigma_{S 11}\right)-\frac{t}{E}\left(V \cos ^{2} \psi_{1}-\sin N^{2} \psi\right) \frac{\cos \psi_{1}}{4}\left(\ell_{1} b_{2} \sigma_{R 21}\right) \\
& +\frac{+}{2 E} S I N \psi_{1} T_{P}\left(l_{1} b_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial U}{\partial \sigma_{S 21}} & =\frac{A_{4} l_{2}}{6 E}\left(2 \sigma_{s 21}+\sigma_{S 22}\right)-\frac{t}{E}\left(\nabla \cos ^{2} \psi_{2}-\operatorname{Sin} N_{2} \psi_{2}\right) \frac{\cos \psi_{2}}{4}\left(l_{2} b_{1} \sigma_{R 12}\right) \\
& +\frac{+}{2 E} \operatorname{SiN} \psi_{2} \tau_{p}\left(l_{2} b_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial U}{\partial \sigma_{S 22}} & =\frac{A_{4} l_{2}}{6 E}\left(2 \sigma_{S 22}+\sigma_{S 21}\right)-\frac{t}{E}\left(\nabla \cos ^{2} \psi_{2}-\operatorname{SiN}{ }^{2} \psi_{2}\right) \frac{\cos \psi_{2}}{4}\left(l_{2} b_{2} \sigma_{R 22}\right) \\
& +\frac{t}{2 E} \operatorname{Sin} \psi_{2} \tau_{p}\left(l_{2} b_{2}\right) \\
\frac{\partial U}{\partial \tau_{P}} & =\frac{+}{2 E} \operatorname{Sin} \psi_{1}\left[l_{1} b_{1}\left(\sigma_{S 11}+\sigma_{R 11}\right)+l_{1} b_{2}\left(\sigma_{S 12}+\sigma_{R 21}\right)\right] \\
& +\frac{t}{2 E} \sin \psi_{2}\left[l_{2} b_{1}\left(\sigma_{R 12}+\sigma_{S 21}+l_{2} b_{2}\left(\sigma_{R 22}+\sigma_{S 22}\right)\right]\right. \\
& +\left(b_{1}+b_{2}\right) \frac{l_{1} \cos \psi_{1}}{G}+\tau_{p}\left[1+\frac{4 G}{3 E}\left(\operatorname{TAN} \psi_{1}+\operatorname{TAN} \psi_{1} \operatorname{TAN} \psi_{2}+\operatorname{TAN} \psi_{2}\right)\right]
\end{aligned}
$$

where $A_{2}, A_{2} A_{39}$ and A_{4} are the total lumped areas in sectors normal to rios R_{1}, R_{2}, and stringers S_{1} and S_{2}. The equations above may now be transformed into matrix notation such that

$$
\frac{\partial U}{\partial \sigma_{i}}=[S]\{\sigma\}
$$

The $[S]$ matrix is shown in Figure 8.
The matrix triple product $\left[\frac{1}{A}\right][S]\left[\frac{1}{A}\right]$ may now be formed, the result of which is the final flexibility matrix which incorporates the effects of Poisson's ratio and sweep. Henceforth, this matrix will be referred to as $[A L P I J]_{\text {prs }}{ }^{\circ}[A I P I J]_{\text {prs }}$ is showa in Figure 90

The sign convention for $[A L P I J]_{p r s}$ for a typical trapezoidal panel is show in Figure 7.

Figure 7. Sign Conrention and a Typical Trapezoidal Panel

$$
\begin{aligned}
& \phi_{1}=\left(\nabla-\operatorname{TAN}^{2} \psi_{1}\right) \cos ^{3} \psi_{1} \\
& \phi_{2}=\left(\nabla-\operatorname{TAN}^{2} \psi_{2}\right) \cos ^{3} \psi_{2} \\
& \phi_{3}=\left[2+2 \nabla+\frac{3}{4}\left(\operatorname{TAN}^{2} \psi_{1}+\operatorname{TAN}^{2} \psi_{T A N} \psi_{2}+\operatorname{TAN}^{2} \psi_{2}\right)\right]
\end{aligned}
$$

Figure 8. The Matrix [s]

$$
\begin{aligned}
& \phi_{1}=\left(\nabla-\operatorname{TAN}^{2} \psi_{1}\right) \cos ^{3} \psi_{1} \\
& \phi_{2}=\left(\nabla-\operatorname{TAN}^{2} \psi_{2}\right) \cos ^{3} \psi_{2} \\
& \phi_{3}=\left[2+2 \nabla+\frac{4}{3}\left(\operatorname{TAN}^{2} \psi_{1}+\operatorname{TAN} \psi_{1} \operatorname{TAN} \psi_{2}+\operatorname{TAN}^{2} \psi_{2}\right)\right]
\end{aligned}
$$

Figure 9. The Flexibility Matrix. [ALPIJ] ${ }_{\text {pres }}$

IncIusion of $[A L P I J]$ prs Into the Matrix Force Method for Analysis of the Test Structure

In order to apply the Matrix Force Method with [ALPIJ] prs included, to an analysis of the test structure of Figure 13, the [ALPIJ] matrix for the composite structure must be "built up" by special means.

The, use of $[\text { ALPIJ }]_{\text {prs }}$ implies that the test structure be idealieed in a different manner. The given structure was idealized into the same basic assembly of bar and trapezoidal shaped web elements, but, now, with a choice of fifty-one internal generalized forces, instead of the twenty-seven forces shown in Figure 2. Each bar element is still theoretically constrained to carry only a linearly varying axial load, while each web element is still only allowed to carry an average constant shear flow value, but, now, both the bar element load and web shear thow will include the effects of Poisson's ratio and sweep. The fifty-one uknown idealization of the test structure is shown in Figure 10.

For "building up" the composite $[A L P I J]$ prs matrix, the idealized version of the test structure can be divided into three sections. The first section consists of the top stringer, the upper center stringer, and the enclosed ribs and webs. The second section consists of the upper center stringer, lower center stringer and the ribs and webs enclosed wint these two stringers. The third section is made up of the remaining lower center stringer, the bottom stringer and the ribs and webs enclosed within these two stringers. For the contribution of the second section to the composite [AIPIJ], Figure 7 can be modified to the form show in Figure 11. Figure 7 can be modified to that shom
Figure 10。

in Figure 12 for the contribution of the third section. Figure 7 can be applied directly for the contribution of the first section.

The modification of the original sign convention for a typical trapezoidal "cell" requires slight modification of [ALPIJ $]_{\mathrm{prs}}$. With the use of a simple reindexing system, the composite $[A L P I J]_{\text {prs }}$ may now be evaluated. The coefficients of the composite $[A L P I J]_{\text {prs }}$ are listed in Table XIII.

Figure ll. Sign Convention for Section 2

Figure 12. Sign Convention for Section 3

Finally, in order to be compatible with the composite $[$ ALPIJ $]$ prs, the matrices $[G I M]$ and $[G I R]$ and the column vector $[$ AREINV $]$ must be redeveloped in terms of fifty-one unknown instead of twenty-seven unknowns.

TABLE XIII
COMPOSITE $[A L P I J]_{\text {prs }}$
Non-Zero Term Consisting of Nonsymmetrical Terms and
One-Half of the Symmetrical Terms are Listed

Row	Col	Coeff	Row	Col	Coeff
1	1	8.171000	25	1	12.730000
2	1	4.086000	25	2	10.910000
2	2	8.171000	25	7	3.889000
3	3	8.698000	25	8	3.333333
4	3	4.349000	25	25	3501.333333
4	4	8.698000	26	3	11.610000
5	5	9.298000	26	4	9.677000
6	5	4.649000	26	9	3.750000
6	6	9.298000	26	10	3.125000
7	7	7.417000	26	26	2962.666667
8	7	3.708000	27	5	10.340000
8	8	7.417000	27	6	8.276000
9	9	8.344000	27	11	3.571000
10	9	4.172000	27	12	2.857000
10	10	8.344000	27	27	2484.666667
11	11	9.536000	28	7	-3.889000
12	11	4.768000	28	8	-3.333333
12	12	9.536000	28	13	3.889000
13	13	7.417000	28	14	3.333333
14	13	3.708000	28	28	3471.000000
14	14	7.417000	29	9	-3.750000
15	15	8.344000	29	10	-3.125000
16	15	4.172000	29	15	3.750000
16	16	8.344000	29	16	3.125000
17	17	9.536000	29	29	2964.000000
18	17	4.768000	30	11	-3.571000
18	18	9.536000	30	12	-2.857000
19	19	8.171000	30	17	3.571000
20	19	4.086000	30	18	2.857000
20	20	8.171000	30	30	2462.666667
21	21	8.698000	31	13	3.889000
22	21	4.349000	31	14	3.333333
22	22	8.698000	31	19	12.730000
23	23	9.298000	31	20	10.910000
24	23	4.649000	31	31	3501.333333
24	24	9.298000	32	15	3.750000

TABLE XIII (Continued)

Row	Col	Coeff	Row	Col	Coeff
32	16	3.125000	41	11	-0.919200
32	21	11.610000	41	26	2.000000
32	22	9.677000	41	27	2.000000
32	32	2962.666667	41	40	1.333333
33	17	3.571000	41	41	2.666667
33	18	2.857000	42	10	-0.804300
33	23	10.340000	42	11	-0.919200
33	24	8.276000	42	29	-2.000000
33	33	2484.600000	42	30	-2.000000
34	2	-0.860600	42	42	2.666667
34	3	-0.916200	43	16	-0.804300
34	25	7.200000	43	17	-0.919200
34	26	7.200000	43	29	2.000000
34	34	3.200000	43	30	2.000000
35	8	-0.857900	43	42	1.333333
35	9	-0.965100	43	43	2.666667
35	25	2.400000	44	16	-0.804300
35	26	2.400000	44	17	-0.919200
35	34	1.600000	44	32	2.000000
35	35	3.200000	44	33	2.000000
36	8	-0.857900	44	44	2.666667
36	9	-0.965100	45	22	-0.763500
36	28	-2.400000	45	23	-0.816100
36	29	-2.400000	45	32	6.000000
37	14	-0.857900	45	44	1.333333
. 37	15	-0.965100	45	45	2.666667
37	28	2.400000	46	6	-0.816100
37	29	2.400000	46	27	6.000000
37	36	1.600000	46	46	2.666667
37	37	3.200000	47	12	-0.919200
38	14	-0.857900	47	27	2.000000
38	15	-0.965100	47	46	1.333333
38	31	2.400000	47	47	2.666667
38	32	2.400000	48	12	-0.919200
38	38	3.200000	48	30	-2.000000
39	20	-0.860600	48	48	2.666667
39	21	-0.916200	49	18	-0.919200
39	31	7.200000	49	30	2.000000
39	32	7.200000	49	48	1.333333
39	38	1.600000	49	49	2.666667
39	39	3.200000	50	18	-0.919200
40	4	-0.763500	50	33	2.000000
40	5	-0.816100	50	50	2.666667
40	26	6.000000	51	24	-0.816100
40	27	6.000000	51	33	6.000000
40	40	2.667000	51	50	1.333333
41	10	-0.804300	51	51	2.666667

CHAPTER III

ANALYTICAL INVESTIGATION

The structural panel used in this investigation was designed so that the idealization used in the force analysis corresponded as precisely as possible to the actual test model. In the case of complex structural configurations, the analysis problem should be divided into two phases: the idealization of the complex structure; the analysis of the idealized structure.

In the first phase, large errors may occur due to computer size Iimitations because it is necessary to approximate large structural configurations with a relatively few number of structural elements. In addition, thick panels are idealized as thin panels which carry no out-of-plane loads; and tapered bar elements are idealized into constant area sections that carry constant loads. These discrepancies occur in the idealization phase of the analysis.

The second phase, the comparison between the structural behavior of the panel and the mathematical analysis of the idealized panel, is hopefully limited to errors in the mathematical representation of the characteristics of the structural elements. It is first necessary to prove that an idealized structural configuration behaves in a manner similar to an actual structural configuration of approximately the same geometric characteristics. After this comparison is made, the errors resulting from idealization procedures can be more accurately
investigated.
The design of the research model shown in Figure 13 is based on the idealization of actual structural configurations that are commonly encountered in aerospace structural analysis. This structural configuration results in a convenient idealization for the force method of analysis.

An extensive analysis of the structure was performed using the matrix force method described in Chapter II. A complete analysis of the structure was performed using each of the flexibility matrices described in Chapter II for each of the Ioad configurations performed in the experimental investigation. Load condition No. l consists of four equivalent loads applied at the forward edge of the panel of Figure 13. Load condition No. 2 consists of a "shear" load applied at the upper forward edge of the panel in a direction perpendicular to those of LC.-I. Load condition No. 3 is similar to LC-I but consists of only two equivalent loads applied in the "axial" direction. LC-1, LC-2, and LC-3 are shown in Figure 33. The array of load values for each load condition are shown in Table XVIII:

The first analysis is illustrated in detail to show how the $\operatorname{matrices}\left\{q_{i}\right\},\left\{\sigma_{b}\right\},\left\{\sigma_{w}\right\},\left\{\delta_{m}\right\}$, and $\left[a_{r n}\right]_{\text {true }}$ are determined. Generation of the Matrices: [QI], [STRESS], $[$ DELTAM $]$, and [ARNTR]

The matrices of $\left\{q_{i}\right\}$ of Equation (2-1), $\left\{\sigma_{b}\right\}$ and $\left\{\sigma_{w}\right\}$, of Equations (2-5) and $(2.7),\left\{\delta_{m}\right\}$ on page 11_{9} and $\left[a_{r n}\right]_{\text {true }}$ of Equation (2-9), have each been designated as follows:

Figure 13. Test Panel and Its Geometry

$$
\begin{aligned}
\left\{q_{i}\right\} & =[\text { QI }] \\
{\left[\sigma_{b}, \sigma_{w}\right] } & =[\text { STRESS } S] \\
\left\{\delta_{m}\right\} & =[\text { DELTA }] \\
{\left[a_{r n}\right]_{\text {true }} } & =[\text { ARNTR }]
\end{aligned}
$$

The digital computer program described and illustrated in Appendix C was used to calculate six sets of values for the above four matrices. Three sets of values or runs were made for each, the RDC-l assumption and the RDC-2 assumption.

The combination of the input matrices [ALPIJ], [AREINV], [GIM], [GIR], and [FORCE] for each run is shown as follows:

$$
\begin{aligned}
& \text { Run No. 1: } \quad \text { [AIPIJ]; }[A R E I N V] \text {; } \\
& {[G I M], R D C-1 ;[G I R], R D C-1 ;} \\
& {[\text { FORCE }]_{\text {IC-I }}} \\
& \text { Run No. 2: [AIPIJ]; [AREINV]; } \\
& {[G I M], R D C-1 ;[G I R], R D C-1 ;} \\
& {[\text { FORCE }]_{\mathrm{IC}-2}} \\
& \text { Run No. 3: }[\text { ALPIJ }] ;[\text { AREINV }] ; \\
& {[G I M], R D C-1 ;[G I R], R D C-1 ;} \\
& {[\text { FORCE }]_{\text {IC }-3}}
\end{aligned}
$$

Run No. 4: [AIPIJ]; [AREINV]; $[G I M], R D C-2 ;[G I R], R D C-2 ;$ $[\text { FORCE }]_{\text {IC- }-1}$

Run No. 5: [AIPIJ]; [AREINV]; [GIM], RDC--2 : [GIR], RDC-2; $[\text { FORCE }]_{\text {LiC-2 }}$
Run No. 6: [ALPIJ]; [AREINV]; [GIM], RDC-2; [GIR], RDC-2; $[\text { FORCE }]_{\text {IC }-3}$

The values of $[Q I]$ are shown in Figures 14 and 15 the values of [STRESS] are shown in Figures 16 and 17 and the values of [DELTAM] are shown in Table XIV。

The products of Equation (209) were performed and these values which make up [ARNTR] are shown in Table XV. The magnitude of these values indicates that the matrix $[G \mid M]$ is almost error-free. This serves as a good check on the accuracy of values of $[Q I]$, [STRESS], and [DELTAM].

Since the two redundants choices produce results which are so similar, only RDC-I was used in the analysis containing $[A I P I J]$ prs ${ }^{\circ}$

The values of $[$ QI $]$, [STRESS $]$, and [DELTAM $]$ produced by [ALPIJ $]_{\text {prs }}$ analysis are shown in Figures 18 and 19 and Table XVI。

TABLE XIV
[DELTAM] MATRIX
NOTE: All values must be multiplied by $1 / E$

	$P_{1}=P_{2}=P_{3}=P_{4}=1.0$	$\begin{gathered} L C-2 \\ P_{5}=1.0 \end{gathered}$	$\begin{gathered} \mathrm{LC}-3 \\ \mathrm{P}_{2}=\mathrm{P}_{3}=1.0 \end{gathered}$
RDC-1	120.8230	52.5279	57.5455
	131.2030	18.7801	73.6570
	131.2030	-15.0746	$73.65 \% 0$
	120.8230	-52.2956	57.5455
	3.9377	268.4080	3.7055
RDC. 2	125.1380	54.1391	58.9804
	133.0030	18.8426	74.0224
	133.0030	-15.1283	74.0224
	125.1380	-53.9236	58.9804
	3.9300	268.4080	3.7143

TABLE XV
[ARNTR] MATRIX

		RDC-I	RDC -2
	1	$-1.35601 \mathrm{E}-06$	$-1.60279 \mathrm{E}-05$
For all	2	$-1.84588 \mathrm{E}-06$	$-4.26322 \mathrm{E}-05$
Load	3	$-1.54250 \mathrm{E}=06$	$-3.86368 \mathrm{E}=05$
Configurations	4	$-8.12133 \mathrm{E}-07$	$-1.70259 \mathrm{E}-05$
	5	$-6.07102 \mathrm{E}=07$	$1.29342 \mathrm{E}-05$
	6	$-7.07102 \mathrm{E}-07$	$8.41729 \mathrm{E}-05$

Figure 18. [QI] Values for $[\text { ALPIJ }]_{\text {prs }}$, RDC-1, LC-1, LC-2, and LC-3

TABLE XVI
[DELTAM] MATRIX FROM EXTENDED FORCE ANALYSIS
NOTE: All values must be multiplied by $1 / E$

	$\underset{P_{I}=P_{2}=P_{3}=P_{4}=1.0}{\frac{L C-1}{}}$	$\begin{gathered} L C-2 \\ \mathrm{P}_{5}=1.0 \end{gathered}$	$\begin{gathered} \operatorname{LCm3} \\ \mathrm{P}_{2}=\mathrm{P}_{3}=1.0 \end{gathered}$
RDC-I	76.4964	28.7230	27.6396
	76.7557	7.3656	48.8485
	77.5933	-11.2631	49.6506
	73.8320	-32.9868	28.2103
	-8.1613	188.1140	--3.8975

Analysis by the Direct Stiffness Method

The direct stiffness method has been employed in three separate analyses of the test structure in order to provide theoretical results with which those of the matrix force method may be compared. Also, the description and subsequent application of the direct stiffness method illustrates its basic characteristics in contrast to those of the matrix force method.

The direct stiffness method is a finite element method of structural analysis which considers a structure to be an assembly of idealized elastic elements which are assumed to be joined oniy at discrete points called nodes. The stiffiness method is a contrast to the force method, which is described in Chapter $\mathrm{II}_{\text {, }}$ in that displacements, not forces, are the initial unknown quantrities. The problem is directed toward the solum tion for unknown displacementsat the joints, and the resulting stwess distribution iscalculated swhequenty from the displacements. In the se tewn, there are always as many equations cf equilibriun available as there are unknown. The relationship of forces and of displacements is defined for the node paints on the structure by the stiffness matrix. The stiffness matrix for the complete structure is obtained by adding the stiffness coefficients for common degrees of freedom of adjacent elements at each node on the structure. The summed stiffiness coefticients define the coefficients for the inear algebraic equations relating the nodal forces and the nodal displacements of the complete structure. The general stiffness coefficient $K_{j n}$ is the force in the direction j due to the unit displacement in the direction h, while all other displacea ments are zero. As a result of equilibrium conditions, the stiffness matrix is a positive definite, symmetric matrix; and the sum of the coefficients along any row or column of the stiffness matrix is equal
to zero．

The forces and deflections in each element of the structure are related by an assumed stress－strain relationship for the idealized ele－ ment．The displacements of the nodes in a structure are considered as the initial unknown quantities．A large number of mutually compato ible deformations of the elements are possible；the correct pattern of displacements of the elements is the one for which the equations of equilibrium are satisfied．

If the idealized structursi elements，for which the stiffness coefo ficients are known，are combined for a continuous stricture，the compose ite stiffness matrix for the total structure is assembled as

K_{11}	K_{12}	－	$\mathrm{K}_{\text {in }}$	K_{im}
K_{21}	K_{22}	－	－	－
－	－	－	－	－
K_{jz}	－	。	$\mathrm{K}_{\mathrm{jgh}}$	K_{jm}
K_{mI}	。	。	K_{mh}	K_{mm}

Where each $K_{j h}$ term is the stiffeness ooefficient representing the total force component produced at node j due to a corresponding unit displacew ment component as node h 。

With the use of these ideas，the basic equations of the direct stiffness method can be summarized．These equations appear in Appendix A．

Two theoretical elements are used in the direct stiffness analysis of the test structure of Figure 33．They are the planar bar element and the planar triangular element．The derivatior of the stiffness matrices for each of these elements is given and follows manly from the work of

Turner et al. (6). These matrices have been derived in a manner which is appicable to this particular application of the direct stifiness method to an analysis. These derivations appear in Appendix A.

The stresses in each element may now be evaluated irom the node point displacements. The equations for these quantities are given in Appendix A.

Analysis of the Test Structure:

Structural Idealization

Three choices of structural idealization were used in this investio gation. Each employs the constant stressed bar element and the constant stressed triangular element. These three choices of idealization are shown in Figure 20.

Idealization choice number one or IDCal breaks the original structure into an array of bar and triangular plate elementss each original web being divided into two triangular elements.

Idealization choice number two or IDCw2 is identical to ICD 1 except the trianguiar plate elements replacing each original weis are oriented in a different direction.

Idealization choice number three or IDC-3 breaks each original web into four triangular plates and introduces a new hypothetion rode at the intersection of the diagonals comecting the corners of each web.

Calculation of the element stiffness matrises and the buildup of the stiffness matrix for the composite structure are implemerted by the Stress Analysis System of Reference (11). A more detailed description and example listing of the Stress Analysis System is given in Appendix Bo

Figure 20. Structural Ideallation Choseas

Three separate analyses of the panel shown in Figure i3 are conducted. The first analysis will utilize the two triangle web makeup of IDC-1. The second analysis will utilize IDC-2 which is also a two triangle web makeup, but oriented in a different direction. The third analysis employs IDC-3 and is a four triangle web makeup.

The three load conditions used in the matrix force method analysis are used in each stiffness analysis. These various load conditions appear in Chapter IV and have been described earlier in this chapter.

The input data required for the Stress Analysis System consists of node numbers, element numbers and geometric descriptions of the idealized structure. Therefore, the first step for preparing input data for an analysis is to establish nodes, node numbers, idealized elements, and idealized element numbers.

The idealized structure is then defined in terms of the number of the node point, the coordinates of the node point, the external load condition and load values acting on the node polut, and the definition of the boundary condition at the node point.

The idealized panel must also be defined in terms of the structural data. The structural data consist of the location of the ideal. ized elements relative to the node points, the type of structural element, and the description of its material properties.
"The node data and the structural data are then employed in evaluating the stiffness matrix of the appropriate element. If the element is a bar, $[K]$ of Equation $(A \infty)$ is evaluated; if the element is a triangular plate, $[K]$ of Equation (A-1) is eraluated.

The content of the stiffness macrix for ean bex and plate element may now be combined into a composite stifiness matrix for the entire
structure by tabulating the contribution of the elements to the various modes of the structure.

Generation of Node Point Displacements;
 Forces and Element Stresses

As described in Appendix A, the unconstrained node point displacew ments are the result of the product of the inverse of the partitioned composite stiffness matrix and the external forces acting on the structure. Nodal displacements for $I D C-1, ~ I D C-2$, and $I D C-3$ are show in Table XVII.

If $\{\delta\}$ in Equation ($A-18$) are set equal the nodal displacements, the internal forces acting at each node may now be calculated with the use of $\left[K_{c}\right]=[\bar{K}]$, the composite stiffness matrix. Forces acting on externally loaded and reaction nodes are shown in Figure 21 for the third idealization choice and each load condition.

The stresses in each bar element may be calculated with the use of Equation (Am23) by employing the end point displacements of each bar. Plate element stresses may be calculated by evaluating Equation (A-24). Element stresses for the third idealization chowe and each of the load conditions are shown in Figures 22. 23, and 24.

This chapter has included the explanation of and the results of analyses of the test structure by both the matrix force method and the direct stiffness method. A more detailed and extensive analysis was performed with the matrix force method while an abbreviated analysis was conducted with the direct stiffness method.

The test structure was first analyzed with the matrix foree method in its unmodifiled form. Two choices of redundants were used along with
the unmodified $[A L P I J]$ matrix. A second analysis was performed with the new [ALPIJ $]_{\text {prs }}$ matrix, which accounts for Poisscnis ratio and sweep effects, included in the modified wersion of the matrix force method. The final analysis of the test structure was performed with the direct stiffness method to provide a theoretical comparison with the results of the second analysis utilizing the new [ALPIJ $]_{\text {prs }}$ matrix.

The results of the analysis by the unnodified matrix force method indicate that the two redundants choices, RDC -1 and RDC -2 , produce values of internal forces, element stresses and load point displacements which are quite similar. This shows, among other things, that the input matrices were accurately calculated.

A general comparison of the results of the analysis with the modim fied version of the matrix force method including the new [ALPIJ] prs matrix with those of the unmodified matrix foree method shows that all results: internal forces, element stresses and load point displacenents, of the modified method are significantly smaller in value than those of the unmodified version.

Finally, a comparison of the results of the analysis with the modim fied matrix force method with those of the direct stiffness method indicates favorable agreement of the element stresses and the load point displacements.

TABLE XVII
LOAD POINT DISPLACEMENTS

	LCl	LC2	LC3
IDC-1	0.7259×10^{-5}	$+0.2785 \times 10^{-5}$	0.3117×10^{-5}
	0.7259 0.755×10^{-5}	+0.2725x10 ${ }^{+0.9}$	0.3117×10^{-5}
	0.7548×10^{-5}	-0.7852×10^{-6}	0.4506×10^{-5}
	0.7212×10^{-5}	-0.2874×10^{-5}	0.2998×10^{-5}
	0.4784×10^{-5}	0.1738×10^{04}	$0.1367 \times 10^{\text {mo }}$
IDC-2	0.7212×10^{-5}	0.2843×10^{-5}	0.2998×10^{-5}
	0.7548×10^{-5}	0.8577×10^{-6}	0.4506×10^{-5}
	0.7554×10^{-5}	-0.9252×10-6	0.4481×10^{-5}
	0.7259×10^{-5}	-0.3106×10^{-5}	0.3117×10^{-5}
	-0.3303×10^{-6}	0.1749×10^{-4}	-0.6749×10^{-7}
IDC-2	0.7237×10^{-5}	0.3270×10^{-5}	0.2892×10^{-5}
	0.7615×10^{-5}	0.1054×10^{-5}	$0.4723 \times 10^{-5} 5$
	0.7615×10^{-5}	-0.9497×10-6	0.4723×10^{-5}
	0.7237×10^{-5}	-0.3448×10^{-5}	0.2892×10^{-5}
	-0.7390×10^{-7}	0.1879×10^{-4}	0.1046×10^{-6}

Figure 2I. Internal Forces Acting on Externaliy Loaded and Reaction Nodes for IDC-3

Figure 22. Element Stresses for IDC-3. LC-I

Figure 23. Element Stresses for IDC-3, LC-2

Figure 24. Element Stresses for IDC -3, LC -3

CHAPTER IV

EXPERIMENTAL ANALYSIS

The purpose of this experimental investigation is to provide data for direct comparison to the analytical methods. Since the structural fdeclization techniques provide a unique and somewhe unreailistic structural configuration, prior experimental data are unavailable for comparison purposes. The experimental facility and the structural skin panel that were developed for this investigation are shown in Figure 25 and a general floor plan of the facility is given in Figure 26.

One objective of the experimental investigation is the determination of the complete state of strain at various points in the model for three conditions of external loading. The strain gages are positioned on the panel at points which correspond with points easily selected for the analyticai solutions. These locations of the strain gages reduce any errors that might occur as a result of extwapolating either the analytical or the experimental data.

The research model was mechanically milled from $5 / 800 \times 36^{00} \times 96$ aluminum 2024-T351 bare piateg QQ A 250/4C, by Northwest Engineering Company, Oklahoma City, Oklahoma. This materiai was selected because of its high widization in current aircraft programs. The panel was machined from onewalf inch thick plate to eliminate joints. The panel and its geometry are shown in Figure 13.

Figure 25. Experimental Facility and Structural Skin Panel

Figure 26. Floor Plan of Experimental Facility

Test Apparatus and Instrumentation

A list of the major equipment in this test program is given in Appendix F .

The types of strain gages selected for this experimental program were:

	Axial	Rosette
Manufacturer	The Budd Co.	The Budd Co.
Type	C12-121.A	C12-121D-R3Y
Gage Fastox	$2.07 \pm 1 / 2 \%$	$2.03 \times^{1 / 2 \%}$
Resistance	120 ± 0.2 ohms	120 ± 0.2 ohns

Eastman 910 cement was used to bond the strain gages to the surem face of the model after the surface of the model had been prepared using sandpapezs trichlecthylene, and an acid neutralizer. A threewire system was used to connect the strain gages to the read out instrumentation in order to cancel the effect of changes of wire resistance encountered due to changes in room temperature.

The strain gage data recorong instrumentation consists of Budd Model P 350 Strain Indicators and Budd Model SBel Switch and Balance Units. These portable strain indicators and switch and balance units. show in Figure 27 were used to record a total of 188 chanmels of strain data.

Deflections were measured with Starrett Dial Indicators. The indicators have a range of 0.4 inches end a graduation of 0.0001 inch. The dial indicators were located at the boundary of the panel es show in Figure 28. Data from these dial indicators were used to determine the derlected shape of the panel. Appendix F contains a detailed

Figure 27. Portable Strain Gage Instrumentation

Figure 28. Experimental Tapered Reinforced Skin Panel
explanation of the calibration of the dial gages.
The loads were applied with an Empco Vertical Motion Jack Style JH-20, purchased from the Enterprise Machine Parts Corporation. PreIiminary tests indicated that these mechanical load devices were satism factory for this type of static testing, BLH SR-4 Load Cells were used to monitor the external loads on the panel. The loading system is shown in Figure 29. These load cells were calibrated by the manufacturer for an accuracy of ± 0.25 percent of fuil scale load ralue.

In crder to read both load cells on the BLH SR-4 Indicatorg the Ioad cells were connected to the indicator through the BLH Switch and Balance Unit, and the system calibrated for a gage factor of 2.0 . The SR-4 Load Cells were used to calibrate the BLH, Type N, Indicator against the Budd portable indicators based on the calibration factors specified by The Budd Company. The system was also calibrated with test equipment at the Helliburton Oil Company, Duncan, Oklahoma。 A more detalled explanation of this calibration is given in Appendix E.

The loading system is shown in Figure 29. Load-divider systems shown in Figures 25 and 28 were used to divide the load symmetroneally to the various load points for load configuration numbers one and three.

The basis loading fixture for the experimental investic gation, Figure 25, was designed, fabricated, and used in previous experimental programs at Okiahoma State Unifersity (12), (12).

One of the most cricical aspects of testing these small structural configurations for deflection and stress charactexistics is the manner In which the model is supported in the loading fixture. The supporto system must not contribute effects at the supports which cannot be

Figure 29. Mechanical Loading System.
represented accurately as boundary conditions. The support system should be rigid enough to minimize the contributions to the panel deflections for maximum loads. Two types of support configurations were considered: a simple support configuration, and a fixedobase configuration. Either of these support configurations could be handled accurately in the analysis: however, due to the results of Ayres ${ }^{\circ}$ (12) work, the fixed support system, Figure 30 was chosen. A large factor affecting this choice was a result of friction in the sliding support which must be assumed friction free.

Preliminary tests were conducted on the panel with twenty strain gages to determine the panel alignment characteristics and to verify the design and application of the related test equipment. The objectives or the preliminary tests were:

1. To ascertain out-ofoplane bending and torsion effects;
2. To ascertain the linearity of the load deflection relationships;
3. To determine hysteresis effeots:
4. To determine the amount of preload required to remoye the indtial joint slippage in the model.

The results of these preliminary tests indicated that hysteresis effects were negligibie for the load condtions to be investigated. In addition, the model yielded linear results with strains of sufficient magnitude to be recorded easily from the avallable equipment for the desired load levels. Stress concentration effects were coserved from both the load divider system and the support system. These unavoidable effects were not exeessive and, hence, did not prejudice the experimental data.

Figure 30. Support System

The preliminary tests did indicate that a small amount of outwof plane deformation was present in the model as a result of the machinging operation. This inftial deformation had a significant effect on strain measured at the surface of the stringers and ribs. The strain gages on the siringers and ribs were actually one-fourth inch from the center plane of the model. However, good results wers obtained by using strain gages located opposite each other on the ribs and stringers and by using the average of the two readings.

The inftial shape of the model also had a significant effect for the shear load configuration. The nitial eccentricity resulted In less load capacity then would have been present for a perfect model. This difficulty was overcome by using a $10,000-$ pound uniform preload to straighten the model for the shear load configuration. Since the comm f bined load was still in the linear load-deformation range, the effect of the 10,000 pound uniform load was easily segregated from the shear load effects.

Subsequent to the completion of the preliminary tests, an addim tional 168 stran gage legs were applied to the model at the typical. locations shown in Figure 31. In many cases, redundant gage locations were used to check the symmetry of load distribution. The axial and rosette gages were numbered as shown in Figure 31. All axial gage nume bers begin with "1" signifying one leg, while all rosette leg numbers begin with ${ }^{93} 3^{30}$ signinying three legs. All even numbered legs are located on the side shown in Figuse 32, and all odd numbered legs with the ${ }^{n 0} 0^{0 n}$ designation are mounted on the oposite side, "mating ${ }^{n 0}$ with the appropriate even numbered legs. The numbering system was designed to provide maximum flexibility in the adding or in the changing of

Figure 31. Gage Numbering System

Figure 32. Load Configurations
gages. The gage locations are shown in Figure 33.
Deflections and internal load distributions were determined experio mentally for the fundanental types of applied loads that are found on actual aircraft structural skin panel configurations. The test configurations are divided into three load conditions. These three load conditions are show in Figure 32. The foree values corresponding to the configurations are shown in Table XVIII. Data for each test configuram tion were obtained affter a check out of the test equipment.

Three tests corresponding to the appropriate load conditions were conducted. These tests are shown in Table XVIII. All strain gages were monitored during each test. Aill experimental strain data were reduced to final values of etress by techniques explained in Appendix E. Deflection data were obtained for the magnitudes of external loads show in Table XVIII, Since hysteresis effects were demonstrated to be small in the preiminary test, data were recorded for increasing loads

Figure 33. Gage Locations

TABLE XVIII
FORCE VALJES

		1	2	3	4	5	6	7	8	9	10	11
$\begin{gathered} \text { LC1 } \\ \text { TEST } 2 \end{gathered}$	P	1	250	500	750	1000	1250	1500	1750	2000	2250	2500
	P_{2}	1	250	500	750	1000	1250	1500	1750	2000	2250	2500
	P_{3}^{2}	1	250	500	750	1000	1250	1500	1750	2000	2250	2500
	P_{4}	1	250	500	750	1000	1250	1500	1750	2000	2250	2500
	P_{5}	0	0	0	0	0	0	0	0	0	0	0
$\begin{gathered} \text { LC2 } \\ \text { TEST } 3 \end{gathered}$		0	0	0	0	0	0	0	0	0	0	0
	P_{2}	0	0	0	0	0	0	0	0	0	0	0
	P_{3}	0	0	0	0	0	0	0	0	0	0	0
	P_{4}	0	0	0	0	0	0	0	0	0	0	0
	P_{5}	1	200	400	600	800	1000	1200	1400	1600	1800	2000
$\begin{gathered} \text { LC3 } \\ \text { TEST } 1 \end{gathered}$	P_{1}	0	0	0	0	0	0	- 0	0	0	0	0
	P_{2}	1	250	500	750	1000	1250	1500	1750	2000	2250	2500
	P_{3}	1	250	500	750	1000	1250	1500	1750	2000	2250	2500
	P_{4}	0	0	0	0	0	0	\bigcirc	0	0	0	0
	P_{5}	0	0	0	0	0	0	0	0	0	0	0

Figure 34. Stress Values for LCol, Test No. 2

Figure 35. Stress Values fortc-2, Test No: 3

Figure 36. Stress Values for LC-3, Test No. 1
at equal intervals for the number of observations during each test condition as shown in Table XVIII. The deflection data are shown in the experimentai portions of Tables XIX, XX, and XXI of Chapter V.

The stress data for each load condition are shown in Figures 34, 35, and 36. In these figures, the stress values are given in terms of PSI per pound of load cell load. For example: to obtain the correct values for LC-1, the values of Figure 34, should be multiplied by 4.

This chapter has provided a detailed explanation of the experimental analysis conducted on the test structure. The purpose of and the main objective of this experimental investigation have each been outlined. The construction of the test structure itself was described including details of the material employed, the manufacturer, etc.

The testing facility and all load application equipment, strain measuring apparatus, and deflection measuring equipment have been presented. The calibration of all pertinent equipment was given. The representative load configurations used were illustrated along with the force values corresponding to each configuration.

All stress datawere calculated from strain data measured directly by the portable strain gage instrumentation. The strain data were reduced from ten observations at each strain gage leg location to a representative value of strain per unit load cell load by the least squares fit criterion of statistical theory. This treatment of the experimental strain data is explained in Appendix E.

All experimental deflection data were reduced by hand and verified to a certain extent by comparing the deflection values of loaded points in the axial direction with those values determined by summing the strain data at representative points along the axis of each stringer.

This comparison showed good agreement between the experimentally measured deflection data and the approximate integration of the axial strain values along the stringers.

The above comparison and the result of the calibration of all critical measuring equipment indicate that all experimental data are correct within a reasonable amount of accuracy.

CHAPTER V

COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

The objective of this research effort is to develop the capability for the analytical and experimental investigation of integrally reinforced tapered skin panels with finite element methods of structural analysis. The analytical capabilities, which are developed, include both the force and direct stiffness methods of structural analysis.

The stiffness method of analysis demonstrates how a structure with complicated geometry can be analyzed with relatively simple theoretical elements through idealization. All three analyses were performed with the digital computer specifying only the geometric and structural configuration of the skin panel. The analysis capability is described in Chapter III and Appendices A and B. The results of the stiffness method analysis serve as both a check and theoretical comparison for the results of the analysis by the matrix force method.

The matrix force method of analysis was used for the more extensive investigations of the structural skin panel. It demonstrates the redundant load paths that are possible in the analysis of complex skin structures. The accuracy of the matrix force analysis is influenced by the choice of the idealized statically determinate system. The idealized systems used in this investigation satisfactorily represent the principal load paths throughout the structure. The idealization resulted in well-conditioned matrices preserving computational accuracy and stress
variations that represent the actual structural behavior. Consequently, good results are obtained from the matrix force method of analysis. The analysis capability is available for further study of any class of two dimensional structural configurations. The scope of these problems is too broad to be mentioned here.

The experimental capabilities developed during this and previous investigations have provided fundamental procedures and equipment that are applicable for numerous future research programs. Some of these possibilities are suggested in Chapter VI.

A total of three tests were performed with the integrally reinforced tapered panel, using three load conditions applicable for this type of structure. These three load conditions have been described in Chapters III and IV. Only the basic data required for comparison to the analytical results are reported in this thesis. Data from additional tests would only duplicate the basic information given in this chapter. The basic data reported here are sufficient to indicate the good agreement between the analytical and experimental results. This agreement demonstrates the applicability of the finite elements methods of structural analysis for planar stiffened shell structural skin panels.

The comparisons of the analytical and experimental stress results at typical points on the panel are shown in Figures 37 through 44. The comparisons of the analytical and experimental deflection results for points on the edge of the panel are shown in Tables IX, X, and XI.

The deflections representing the corner point where the shear load is applied are actually shown for two different points located as close as possible to each other. The analytical data are obtained for the exact point where the shear load is applied. Due to the loading system,
it was not possible to place a dial indicator at the same point。
Therefore, the experimental data are obtained for a point approximately two inches from the point where the shear load is applied.

The experimental deflection data shown in Tables $I X, X$, and $X I$ are corrected based on the measured deflections of the supporting system.

Figures 37: 38, and 39 show axial stress values produced by load conditions 1, 2, and 3, respectively. The stress values are oriented in the x direction and are plotted at the strain gage locations along the center point of the centex bay of the test structure. The reference point for plotting is the longitudinal centerline of the test structure。 Distances to the left of the centerline are negative while those to the right are positive. A"best fit" straight line has been drawn by hand through the experimentar data points. The dimensions of the test structure are shown an Figure 13 and the strain gage locations are shown in Figure 32. Figure 44 is very similar to Figures 37,38 , and 39 except that it shows values of shear stress produced by load condition 3. These shear stress values were plotted at the strain gage locations along the center point of center bay of the test structure. Only those locations resting on the surface of the webs are applicable since only single legged axial gages are mounted on the surface of the stroingers and, furthermore, the modjefed or extended matrix foree method contains no assumption that the idealized bar elements carry shear stress.

Figures $40,41,42$, and 43 show values of axial stress produced by load conditions $I_{9} 2$, and 3. These stress values are plotted along the axes of the stringers. The experimental values appear opposite the strain gage locations on each stringer while the values from the extended matrix force method which contains the new flexibility matrix
$[\text { ALPIJ }]_{\text {prs }}$ appear at the "idealized junctions" of the bar elements making up each stringer.

Tables XIX, XX, and XXI show experimental values of load point deflection versus theoretical values. The theoretical values are those produced by the extended matrix force method with the new [ALPIJ] prs matrix included. The experimental values from two representative tests were averaged and normalized for measured base deflection.

Figures 37 and 40 contain stress results produced by each of the four analyses of the test structure: the experimental analysis, the extended matrix force analysis which contains the new $[A L P I J]$ prs matrix, the unmodified version of the matrix force method employing redundants choice number 1 and the direct stiffness method. As can be readily seen from these two figures, a very definite improvement in the axial stress resuits has been made by the use of the new flexibility matrix, $[A L P I J]_{\text {pre }}$ included in the extended version of the matrix force method over those of the unmodified version of the matrix force method. This fact is born out by Figures 38, 39, 41, 42, and 43. Furthermore, the results of the extended matrix force method agree quite favorably with those of the direct stiffness method.

As can be seen from Tables XIX, XX, and XXI, the values of load point deflection produced by the extended matrix force method agree very well with the normalized average of the experimental values.

$\varepsilon^{01} \times$ '(ISd) Sassaydis tyixy

Figure 37. Axial Stresses for LC-I

Figure 38. Axial Stresses for LC-2

Figure 39. Axial Stresses for LC-3

Figure 40. Top Stringer Stresses for LCoi

Figure 4I. Stringer Stresses for LCol

Figure 43. Stringer Stresses for LC-3

Figure 44. Shear Stresses for LC-3

TABLE XIX

COMPARISON OF DEFLECTIONS FOR LCm 1

EXPERIMENTAL
Point of Deflection

1
Test 1
Test 2
0.0275
0.0281

THEORETICAL
Normalized
Average
$0.0188 \quad 0.0180$
2
3
$\begin{array}{ll}0.0274 & 0.0287 \\ 0.0255 & 0.0261 \\ 0.0259 & 0.0267\end{array}$

0.0188	0.0181
0.0177	0.0183
0.0194	0.0174

*Normalized Average deflection are adjusted for measured base deflection.

TABLE XX

COMPARISON OF DEFLECTIONS FOR LC-2

EXPERIMENTAL

Point of Deflection	Test 1	Test 2	*Normalized	Average
A	0.0257	0.0273	0.0174	0.0177
B	0.0179	0.0185	0.0117	
C	0.0074	0.0084	0.0044	

*Normalized Average deflections are adjusted for measured base deflection.

TABLE XXI

Point of Deflection	Test 1	Test 2	Normalized Average	THEORETICAL
1	0.0120	0.0122	0.0081	0.0065
2	0.0156	0.0171	0.0118	0.0115
3	0.0165	0.0189	0.0120	0.0117
4	0.0106	0.0118	0.0079	0.0067

[^0]
CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

At the outset, it was stated that the purpose and goal of this research effort was to develop an improved capability for the analysis of stiffened shell structural skin panels and to demonstrate this im proved capability by the comparison of experimental and analytical rew sults. Furthermore, it was stated that in order to first develop this improved capability for the analysis of stiffened shell structural skin panels and then to demonstrate it, four distinct tasks were undertaken. These tasks were:

1. To derive a new flexibility matrix for trapezoidal shaped plate elements. This new flexibility matrix would take into account both the effects due to Poisson's ratio coupling and those due to sweep.
2. To modify the matrix force method for the inclusion of the new flexibility matrix from iten one for analysis purposes.
3. To develop a digital computer program which would implement both the modjfied and unnodified versions of the matrix force method.
4. To formulate a regimented approach to the determination of $[G I M]$, the matrix which contains the internal generalized load distribution due to a given external load and
[GIR], the matrix containing the internal generalized load distribution due to a given redundant load.

The test structure was first analyzed by the unmodified version of the matrix force method. Then, the new $[\text { ALPIJ }]_{\text {prs }}$ matrix was derived and the matrix force method was modified for its inclusion. The test structure was analyzed with the extended force method containing $[A L P I J]_{\text {prs }}$. To provide a theoretical check and comparison for the results of the extended force method, the test structure was analyzed with the existing form of the direct stiffness method. The results from all of the above analytical investigations were compiled and presented. In order to provide a basis for ascertaining improvement of the capability for theoretically analyzing stiffened shell structural skin panels, an experimental investigation was conducted of the test structure. The results of this investigation were compiled and presented. Then, the results of the analysis with the unmodified matrix force method, the results of the analysis with the extended matrix force method, the results of analysis with the direct stiffness method and the results of the experimental analysis were all brought into sharp comparison.

The subsequent conclusions have been reached as a consequence of the previous effort.

1. A very definite improvement in the prediction of stress and displacement characteristics of planar, tapered stiffened shell structures has been produced by the use of the extended version of the matrix force method which contains the new $[A L P I J]_{\text {prs }}$. This matrix applies to all plonar, trapezoidal chaped plates except those for which two corners approach one point. The anailysis of a
complete family of trapezoilal piates to determine a critical value of the angle φ, above which $[\text { AIPTJ }]_{\text {pors }}$ would not apply, would require a very expensive experimental program.
2. The results of the analysis with the extended matrix force method agree well with those of the analysis with the direct stiffness method. This enhances and reinforces the first conclusion, above. The characteristics of the direct stiffness method have been contrasted with those of the matrix force method and, as a result, better insight into the application of these two methods has been provided.
3. A good capability for analyzing planar, tapered stiffened shell structures by experimental means has been established. The experimental facilities as outlined in Chapter IV are capable of providing correct results within a reasonable amount of accuracy. The development of techniques for statistically reducing the strain data provides a valuable tool for future researchers in this area.
4. The matrix force method having been modified for the inclusion of $[\text { ALPIJ }]_{\text {prs }}$ becomes a well developed vehicle within which other idealizations may be included for subsequent analyses of planar, tapered stiffened shell skin panels. This method has been developed from a general standpoint and, consequently, is applicable to a broad class of structural configurations.
5. The digital computer program which implements the extended matrix force method is an important companion to the extended matrix force method. Having been developed with
the concept in mind of writing a "main" program, which, in turng calls upon existing subroutines to perform required matrix operations, thís computer program is quite flexible and is also applicable to a broad array of force analyses.
6. The regimented approach to the determination of the $[G I M]$ and $[G I R]$ matrices is a very definite improvement over the haphazard writing of overlapping freebodies and the involved solution of the resulting freebody equations. This approach enhaness and broadens the apolicability of the extended matrix force method to say nothing of the reduction of the chance for human error involved in developing [GIM] and $[G I R]$.

Recommendations for Puture Work

In addition to the conclusions just mentioned, this study precipitated many topics for future study and scrutiny. The current investigation could be advanced to deal with planar stiffened shell structures of arbitrary geometry such as the quadrilateral. The extension of the : present development of the $[A L P I J]$ prs to a quadrilaterally shaped "cell" of stringers and rubs bordering a plate of this same configuration and its subsequent application to an analysis would be a very interesting topic for future consideration.

The current investigation could be continued for a cutout in the center section of the planar skin panel described in Chapter IV. The capabilities developed in this program can be used for direct application to the problem of cutout sections. Extending the analysis capabinity for arbitrary cutout configurations would be valuable for practical
aircraft design considerations.
A broad extension of the present capability would be the analysis of three dimensional structures beginning with various shapes of box structures containing components which could be idealized into an array of bar and plate elements of arbitrary configuration.

Another topic for future investigation would be the development of a fully automatic digital computer program to implement the matrix force method. The flexibility matrices of various theoretical elements could be combined in a symbolic manner within this program such that a given filexibility matrix could be ${ }^{09}$ built up ${ }^{98}$ automatically. Also, the scheme for writing generalized freebody equations could be programmed such that [GIM] and [GIR] would be calculated automatically as soon as a choice of redundants was made. These two features combined with the main matrix force program given in Appendix C would allow the researcher to obtain results automatically with a choice of redundants.

As a result of the broad class of problems encountered in this inw vestigation, it is recommended that future studies make full use of the current computing capabilities. In addition, a study of idealization techniques and computational procedures would be a valuable contribution, providing significant reductions in computer running time.

A SELECTED BIBLIOGRAPHY

(1) Timoshenko, So, and J. N. Goodier. Theory of Elasticity. 2nd ed. New York, N. Y.: McGraw-Hill Book Company, Inc., 1951.
(2) Langefors, B. "Analysis of Elastic Structures by Matrix Transformation With Special Regard to Semimonoque Structures, " Journal of the Aeronautical Sciences, Vol. 19 (1952), pp. 451-458.
(3) Argyris, J. H. "Die Matrizentheorie Der Statik, " IngenieurArchiv. Vol. 25 (1957), pp. 174-192.
(4) Argyris, J. H., and S.Kelsey. Energy Theorems of Structural Analysis. London: Butterworths', 1960.
(5) Wehle, L., and W. Lansing. "A Method for Reducing the Analysis of Complex Redundant Structure to a Routine Procedure," Journal of the Aeronautical Sciences, Vol. 19 (1952).
(6) Turner, M. Jo, Ro W. Clough, H. C. Martin, and L. J. Topp. "Stiffness and Deflection Analysis of Complex Structures, " Journal of the Aerospace Sciences, Vol. 23 (1956), pp. 805823.
(7) Bruhn, E. F. Analysis and Design of Flight Vehicle Structures. Cincinnati, Ohio: Tri-State Offset Company, 1965.
(8) Grzedzielski, A. L. M. "Organization of a Large Computation in Aircraft Stress Analysis, " Aeronautical Report LR 297, National Research Council of Canada (1959).
(9) Borg, So F., and J. J. Gennaro. Advanced Structurai Analysis. Princeton, New Jersey: D. Van Nostrand Company, Inc., 1960.
(10) Chapel, R. E., and E. L. Cook. The Boeing Company Structures Project No. 204607. Progress Report, April 1, 1964.
(11) Cook, E.L. "An Analytical and Experimental Investigation of Amonolithic Trapezoidal Shear Panel Subjected to Mechanical Loading (unpub. Ph.D. thesis, Oklahoma State University, 1966).
(12) Ayres, M. U. "Theoretical and Experimental Comparison of Matrix Methods for Structural Analysis" (unpub. Ph.D. thesis, Oklahoma State University, July, 1966)。
(13) Mood, Aiexander M., and Frankifn A. Graybill. Introduction to the Theory of Statistics. New York, N. Y.: McGraw-Hill Book Company, Inc., 1963.
(14) Freund, J. E., P.E. Livermore, and Irwin Miller. Manuel of Experimental Statistics. Englewood Cliffs, New Jersey: Prentice -Hall , Inc., 1960.
(15) Beers, Y. Theory of Error. Reading, Massachusetts: AddisonWesley Publishing Company, Inc., 1962.
(16) Young, H. D. Statistical Treatment of Experimental Data. New York, N. Y.: McGraw-Hill Book Company, Inc., 1962.
(17) Perry, Co Go, and H.R. Lissner. The Strain Gage Primer. New York, Ne Y.: MeGraw-Hill Book Company, Inc., 1962.
(18) Angermayer, Karl. Structural Aluminum Design. Richmond, Virginia: Reynolds Metals Company, 1964.

APPENDIX A

BASIC EQUATIONS, DERIVATION OF ELEMENT STIFFNESS
 MATRICES FOR THE DIRECT STIFFNESS METHOD

Basic Equations

The nodal forces on a structural element can be expressed in terms of the nodal displacements by the equation

$$
\begin{equation*}
\{f\}=[K]\{\delta\} \tag{A-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \{f\}=\text { column matrix of nodal forces on an element, } \\
& \{\delta\}=\text { column matrix of nodal displacements of an element, } \\
& {[K]=\text { square, symmetric matrix of stiffness coefficients for }}
\end{aligned}
$$ an element.

The stiffness coefficient matrix for the complete structure can be obtained by superposing the element stiffness matrices. The resulting matrix equation is of the form

$$
\begin{equation*}
\{F\}=\left[K_{c}\right]\{\delta\} \tag{A-2}
\end{equation*}
$$

where
$\{F\}=$ column matrix of external forces at the nodes of the
structure (including reactions),
$\left\{\delta_{c}\right\}=$ column matrix of nodal displacements (including boundary displacements),
$\left[K_{0}\right]=$ square, symmetric matrix of stiffness coefficients of the entire structure.

Once the displacements have been obtained, the internal forces can be calculated for each element from its force-displacement equation (Equation (A-1)); or, since the stresses in an element can be expressed in terms of the nodal forces, stress-displacement equations can be derived for the elements, and the stresses can be determined without first finding the nodal forces.

Development of a Stiffness Matrix for the Planar Bar Element

If loads are applied at points (nodes) 1 and 2, each node can experience two components of displacement. Therefore, prior to the introduction of boundary conditions (supports) the stiffness matrix, $[K]$ will be 4×4 。

In order to develop the terms in the $[K]$ matrix, each deformation component must be considered singularly, i.e., $u_{1}, u_{2}=$ deflection in the X direction, $V_{1,} V_{2}=$ deflection in the I direction, then, the results are superimposed.

From a consideration of the bar element in Figure 45, it is assumed that $u_{2} \neq 0$ as shown with $u_{1}=v_{1}=v_{2}=0$, i.e., end "I inxed.

Figure 45. Planar Bar Element

From Figure 45, the expression for $\Delta \mathrm{L}$ is

$$
\Delta L=u_{z} \cos \theta_{x}
$$

If the expressions for $\cos \theta_{x}$ and $\operatorname{cox} \theta_{y}$, are

$$
\begin{aligned}
& \cos \theta_{x}=\lambda_{1} \\
& \cos \theta_{y}=\mu_{1}
\end{aligned}
$$

then the expression for $\Delta \mathrm{L}$ is

$$
\Delta L=U_{2} \lambda .
$$

Then $t(F-\delta)$ relation for an axially loaded member is

$$
\Delta L=\frac{P L}{A E} \Rightarrow P=\frac{(\Delta L) A E}{L}=\frac{A E\left(\lambda U_{2}\right)}{L}
$$

The components of the force P at node $" 2 "$ are

$$
\begin{equation*}
F_{x 2}=P \cos \theta_{x}=\frac{A E}{L}\left(\lambda U_{2}\right) \cos \theta_{x}=\frac{A E}{L} \lambda^{2} U_{z} \tag{A-3}
\end{equation*}
$$

$$
\begin{equation*}
F_{y_{z}}=P \cos \theta_{y}=\frac{A E}{L}\left(\lambda u_{z}\right) \cos \theta_{y}=\frac{A E}{L} \lambda \mu u_{z} . \tag{A-4}
\end{equation*}
$$

From static equilibrium of the member, i.e., $\sum F_{X}=0 ; \sum F_{Y}=0$, the expressions for the forces are

$$
\begin{align*}
& F_{x_{1}}=-F_{x_{2}}=-\left(\frac{A E}{L}\right) \lambda^{2} U_{2} \tag{A-5}\\
& F_{y_{1}}=-F_{y_{2}}=-\left(\frac{A E}{L}\right) \lambda \mu U_{2} . \tag{A-6}
\end{align*}
$$

From a similar analysis for v_{2}, u_{1}, and v_{1}, the forces are expressed as

$$
\left\{\begin{array}{c}
F_{x_{1}} \tag{-}\\
F_{y_{2}} \\
F_{x 2} \\
F_{y_{2}}
\end{array}\right\}=\frac{A E}{L}\left[\begin{array}{ccc}
\lambda^{2} & & \\
\lambda \mu & \mu^{2} & S Y M M \\
-\lambda^{2} & -\lambda \mu & \lambda^{2} \\
-\lambda \mu & -\mu & \lambda \mu
\end{array} \mu^{2}\right]\left[\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2}
\end{array}\right\}
$$

or the forces are expressed as

$$
\{F\}=[K]\{\delta\}
$$

Derivation of the Stiffness Matrix
for the Triangular Plate Element

The first step in the development of the triangular plate stiffness matrix is to express the three components of the strain within each element in terms of the six corner displacement. The geometry of a typical triangular plate element is defined in Figure 46.

The assumed displacement pattern is shown in Figure 47.

Figure 46. Element Dimensions

Figure 47. Assumed Displacement Pattern

The strains within each element are obtained from the displacement pattern by considering the basic definitions of strain.

$$
\begin{align*}
& \epsilon_{X}=\frac{\partial u}{\partial x}, \\
& \epsilon_{Y}=\frac{\partial v}{\partial Y}, \tag{A-8}\\
& \gamma_{X Y}=\frac{\partial u}{\partial Y}+\frac{\partial v}{\partial x} .
\end{align*}
$$

If each component of strain is set equal to a constant, linear dispiacements of the following form may be solved for. They are

$$
\begin{align*}
& U(X, Y)=C_{1}+C_{2} X+C_{3} Y, \tag{A-9}\\
& V(X, Y)=C_{4}+C_{5} X+C_{6} Y .
\end{align*}
$$

Since each node of the triangular plate, Figure 48 , can undergo displacement in two directions, Equation (A-9) may be evaluated in terms

Figure 48. Triangular Plate Nomenclature
of the coordinates and displacements of the three nodes. This provides six equations from which the six unknown constants $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$, and C_{6} may be found.

Now, Equation (A-8) may be evaluated in terms of the constants C_{i} and in matrix form is

$$
\begin{equation*}
\{\epsilon\}=[A]\{\delta\}, \tag{A-10}
\end{equation*}
$$

where $[A]$ is a transformation matrix in terms of the coordinate and displacements of each of the three nodes.

For isotropic materials which obey Hooke's Law

$$
\begin{align*}
& \epsilon_{x}=\frac{1}{E}\left(\sigma_{x}-\nabla \sigma_{y}\right) \\
& \epsilon_{y}=\frac{1}{E}\left(\sigma_{y}-\nabla \sigma_{x}\right) \\
& \gamma_{x y}=\frac{\tau_{x y}}{G}=\frac{2(1+\nabla) \tau_{x y}}{E}, \tag{A-11}
\end{align*}
$$

where

$$
\nabla=\text { Poisson's ratio. }
$$

If Equation ($A-11$) is solved for σ_{x}, σ_{y} : and $\tau_{x y}$ and the results put in matrix form, they would appear as

$$
\left\{\begin{array}{c}
\sigma_{X} \tag{A-12}\\
\sigma_{Y} \\
\sigma_{X Y}
\end{array}\right\}=\frac{E}{1-\nabla^{2}}\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nabla & 1 & 0 \\
0 & 0 & \frac{1-\nabla}{2}
\end{array}\right]\left\{\begin{array}{c}
\epsilon_{X} \\
\epsilon_{Y} \\
\gamma_{X Y}
\end{array}\right\}
$$

or, in symbolic form

$$
\begin{equation*}
\{\sigma\}=[B]\{\epsilon\}, \tag{A-13}
\end{equation*}
$$

The stress from the three assumed load states shown in Figure 49 are now transformed into resultant forces acting at the corners of the element.

Figure 49. Stress Resultants for the Triangular Plate

Then an expression for the forces can be written as

$$
\begin{equation*}
\{F\}=[C]\{\delta\}, \tag{A-14}
\end{equation*}
$$

where $\{F\}$ is the set of resultant forces at the nodes of the plate.
The element stresses can be expressed in terms of corner displacements by substituting Equation (A-10) into Equation (A-13) to give

$$
\begin{equation*}
\{\sigma\}=[B][A]\{\delta\} . \tag{A-15}
\end{equation*}
$$

The substitution of Equation (A-15) into Equation (A-14) yields

$$
\begin{equation*}
\{F\}=[C][B][A]\{\delta\} \tag{A-16}
\end{equation*}
$$

Equation (A-16), which is an expression for corner forces in terms of corner displacements, can be written in the following form

$$
\begin{equation*}
\{F\}=[K]\{\delta\}, \tag{A-17}
\end{equation*}
$$

with the expression for $[K]$ being

$$
[K]=[C][B][A],
$$

where $[K]$ is the 6×6 stiffness matrix for the triangular plate element and is given in Figure 50.

Determination of Deflections

The content of the stiffness matrix for each bar and plate element may now be combined into a composite stiffness matrix for the entire structure by tabulating the contribution of the elements to the various nodes of the structure. The expression for the forces is

$$
\begin{equation*}
\{F\}=\left[K_{c}\right]\{\delta\}, \tag{A-18}
\end{equation*}
$$

where $\left[K_{c}\right]$ is the composite stiffness matrix of the structure.
The application of the constraints of fixity (also thought of as boundary conditions) will render a certain subset of $\{\delta\}$ equal to zero. If $\{F\},\left[K_{c}\right]$ and $\{\delta\}$ are each permuted such that the zero subset of $\{\delta\}$ appears in the lower half of the column, then the equation

Figure 50. Equation (A-17) Featuring the Triangular Stifiness Matrix

$$
\{F\}=\left[K_{c}\right]\{\delta\},
$$

can be partitioned such that

$$
\begin{equation*}
\left\{F_{a}\right\}=\left[K_{c a}\right]\left\{\delta_{a}\right\}, \tag{A-19}
\end{equation*}
$$

where
$\left\{\delta_{a}\right\}$ is the nonzero subset of $\{\delta\}$.
Then, the required deflections are given by the expression

$$
\begin{equation*}
\left\{\delta_{a}\right\}=\left[K_{c a}\right]^{-1}\left\{F_{a}\right\}, \tag{A-20}
\end{equation*}
$$

where $\left\{F_{a}\right\}$ is the set of external forces and $\left\{\delta_{a}\right\}$ deflection at each unconstrained node due to $\left\{F_{a}\right\}$.

Calculation of Stresses in the Bar Element

Figure 51. Deflection Diagram of Bar Element

From Figure 5I, the expression for stress is

$$
\begin{equation*}
\sigma=\frac{P}{A}=\frac{E}{L}\left[\delta_{2}-\delta_{1}\right] \tag{A-21}
\end{equation*}
$$

where

$$
A=\text { area of the element. }
$$

But δ_{1} and δ_{2} may be expressed as

$$
\begin{align*}
& \delta_{2}=u_{2} \cos \theta_{x}+v_{2} \cos \theta_{y}=u_{2} \lambda+v_{2} \mu, \\
& \delta_{1}=u_{1} \cos \theta_{x}+v_{1} \cos \theta_{y}=u_{1} \lambda+v_{1} \mu . \tag{A-22}
\end{align*}
$$

Then, substituting for δ_{1} and δ_{2}, Equation (A-21) becomes

$$
\sigma=\frac{P}{A}=\frac{E}{L}\left[\left(u_{2} \lambda+v_{2} \mu\right) \quad\left(u_{1} \lambda-v_{1} \mu\right)\right],
$$

or, in matrix form, the expression for σ becomes

$$
\sigma_{1-2}=\frac{P}{A}=\frac{E}{L}\left[\begin{array}{llll}
-\lambda-\mu & \lambda & \mu
\end{array}\right]\left\{\begin{array}{l}
u_{1} \tag{A-23}\\
v_{1} \\
u_{2} \\
v_{2}
\end{array}\right\} .
$$

Calculation of Stresses in the Triangular Plate Element
The set of deflections $\left\{\delta_{a}\right\}$ may be substituted back into Equation (A-15) to give

$$
\begin{equation*}
\left\{\sigma_{a}\right\}=[B][A]\left\{\delta_{a}\right\}, \tag{A-24}
\end{equation*}
$$

where the product $[B][A]$ depends on nodal coordinates, Young's modulus and Poisson's ratio.

APPENDIX B

STRESS ANALYSIS SYSTEM

Abstract

The Stress Analysis System is a digital computer program using matrix methods based on discrete element idealization for twodimensional structures. The complete solution for deflections and stresses requires only that the structure be defined in terms of its geometrical characteristics and types of structural elements. The structure is firsi idealized as an assemblage of discrete structural elements. Wach structural element has an assumed form of displacement or stress distribution. The complete solution is obtained by satisfying the force equilibrium and displacement compatibility at the junctions of the elements. Thus, the conditions of equilibrium and compatibilfty are satisfied at only a finite number of points which do not necessarily imply any appreciable loss of accuracy. When the size of the element is sufficiently small in relation to the over-all size of the structure and the variations of stresses within the structure do not exceed those allowed in the mathematical model, the discrete element methods give good approximations to the exact solutions.

The displacement method is the basis for developing this digital computer program for analyzing two-dimensional rectangular panel configurations for arbitrary load and support conditions. The system provides solutions for displacements and internal or external forces at the structural node points and stresses at any stress node points defined

for the structural element.
The input data required for the Stress Analysis System consist of node numbers, element numbers, and geometric descriptions of the idealization structure and locations of desired stress results on the elements. The program is divided into the following categories:

1. Geometric description of the structure.
2. Idealized description of the structure.
3. Generation of stiffness matrices.
4. Generation of stress matrices.
5. Deflection solution.
6. Reaction force solution.
7. Generalized stress calculations.
8. Printing of analysis results.

The first step for preparing the input data for the analysis is to simulate the actual structure as an assemblage of idealized elements, which is commonly referred to as the idealized structure.

The structure is formed from available elements, ioe.g stringers and triangular plates, so that it is capable of representing the deflection behavior of the actual structure. The idealized structure is described in terms of the node data and the structural data. The node data consist of the number of the node pointg the coordinates of the node point, the external forces acting on the node point, and the defit nition of the boundary condition at the node point. The structural data consist of the location of the idealized elements relative to the node points, the type of structural element, and the description of its materi̊al propextieso

The location of the node points ís given relative to a
two dimensional rectangular coordinate system. The n node points are numbered consecutively from 1 to n in the direction of the minimum width.

The boundary conditions are specified by restricting the displacement of the supported node point in the directions of the intended supports. This is achieved by placing a 1 in column 80 of each node data card for the degrees of freedom which are to be restrained. If insufficient boundary conditions are defined, the stiffness of the general structure is zero in that direction. Consequently, the stiffness matrix is singular and the analysis cannot be completed.

The loading conditions are given as part of the node data. Three loading conditions can be considered in each analysis. The loads are entered by listing the x and y components of the applied load in the x and y rows of the node points on which the loads are acting. The actual external loads acting on the real structure are represented by concentrated loads acting at the node points of the idealized structure.

The locations of the idealized elements are given relative to the node points in the structural data. The idealized elements are numbered consecutively. No specỉinic grouping is required between stringer or triangular plate elements. If an integer is assigned to a stringer, the next integer can be assigned to a triangular plate. For stringer elements, the connecting node point numbers are given in columns 6 through 9 and 10 through 13 of the structural data cards and are called nodes P and Q. For triangular plates, the nodes are called P, Q, and R, and are listed in consecutive order clockwise around the triangular plate. The implication in listing the corner node point numbers is that it automatically assigns a local xy coordinate system for the triangle. The
local x axis extends from node P to node R; the local y axis extends from node P to node Q.

The stress components are calculated and printed out relative to the local coordinate system. For example, if the structure has grid lines parallel to the x and y axis of the general coordinate system, a PQR sequence is chosen so that the coordinate axes for each triangular plate have directions identical to those of the general coordinate axes. In this case, the stresses are then relative to the external coordinate axes and are the same for all triangular plates. The stress results for the stringer elements are given relative to the axis of the stringers. As additional elements are added to this program, the common element coordinate system should be maintained.

The type of idealized element is specified in the structural data by entering the type number in column 24.

The elastic properties of the material are defined in the structural data and consist of modulus of elasticity and Poisson's ratio.

Stresses are calculated for the stress node points defined for each element relative to the local coordinate system of the element. The characteristic dimensions of the idealized elements are defined by the coordinates of their end or corner node points. The coordinates of the stress node points are given in inches relative to the local coordinate system for the element. A maximum of five stress nodes can be used in each analysis. If no stress nodes are specified, stresses are automatically computed for the coordinates of the centroid of the element.

Node numbers, element numbers, element-type numbers, and support conditions are always entered as integers. All other data are entered with a decimal point in the proper place.

Once the idealized structure and the loading conditions are defined, the computational sequence follows from the stiffness method. The stiffness and stress matrices are generated for each element using the structural material properties and the dimensions obtained from the node data. The rows and columns of the stiffness matrix and stress and load matrices are in the order of x and y for each node point on the structure. In general, if P is the number of the node point, the x and y degrees of freedom at P are labeled $2 \mathrm{P}-1$ and 2 P , respectively. These numbers are then used as indices to denote a displacement or force component acting at node P in either x or y direction.

The matrix \bar{K} (BARK) is the stiffness matrix of the idealized structure in lower symmetric form. It is obtained by simply summing up the contributions of the various element stiffness coefficients in the direction of each displacement. To facilitate this summation, the MPQRS numbering scheme is used to denote the x and y directions of each of the nodes.

Once the element stiffness matrices have been computed based on the stiffness properties and the node locations of each element, the coefficients of the stiffness matrix are assigned indices according to the MPQRS scheme. The indices designate the position of the stiffness matrix for the individual composite stiffness matrix for the total structure. The total stiffness matrix $\overline{\mathrm{K}}$ is obtained by summing the stiffness matrix elements with common indices obtained by the MPQRS scheme. As the stiffness matrix for each element is generated, it is added to the large $\overline{\mathrm{K}}$ matrix.

The output data are presented in two forms, an abbreviated form containing only the basic results of the analysis and an extended form
including all of the individual plate and stringer stiffness and stress. The coefficients of \bar{K} are the forces generated at the node points in the x and y directions, when one node is displaced a unit distance in the x or y direction and all other displacements are restrained. The sum of the coefficients in every row and column is zero since the forces generated at restrained node points and the force developed due to the unit displacement are in equilibrium. If the structure is restrained from rotation and translation degrees of freedom by removing the rows and columns of the $\overline{\mathrm{K}}$ matrix that represent the displacement of boundary conditions, the matrix is subsequently nonsingular. Removing these rows and columns decreases the size of the matrix and consequently changes the indices of the coefficients of $\overline{\mathrm{K}}$. Consequently, one has the choice of using the reduced matrix and changing the indices of the rows and column designations or removing the rows and columns except on the diagonal. The diagonal element is replaced by a 1. The result is that the stiffness matrix will contain a unit matrix which will not effect the solution of the simultaneous equations obtained by performing the inverse operation. This technique does save the numbering scheme but, of course, retains the size of the stiffness matrix. This method of modification rather than reduction of the stiffness matrix is utic lized in this program because it simplifies the bookkeeping problems throughout the calculations; and, for these types of structures, the decrease in the size of the stiffness matrix obtained by reducing the matrix for the boundary conditions is not a significant advantage.

After the stiffness matrices for each element have been added to the total stiffness matrix $\overline{\mathrm{K}}_{\text {, }}$ the matrix $\overline{\mathrm{K}}$ is modified, as mentioned in the previous paragraph, according to the defined boundary conditions.

The modified stiffness matrix is then inverted and the node point deflections are calculated from the equation

$$
\{\delta\}=[K]^{-1}\{F\}
$$

The deflection matrix $\{\delta\}$ is a complete listing of the node displacements, inciuding the zero displacements at the boundaries.

The stresses in each idealized element are calculated from the deflections $\{\delta\}$ for the element, which must be obtained from the total $\{\delta\}$ matrix. The stresses are computed by generating the stress matrix for the coordinates of the stress node point and postmultiplying the element stress matrix by the element displacements. The stresses within the idealized element are based on the assumptions made for deriving the stiffness and stress matrices. Consequently, the stresses at any number of points in a single plate may be obtained through the stress coefficient matrix and the corner displacements of the plate or stringer element. The components of the stress tensor at the stress node points defined in the stress node data are calculated relative to the local coordinate system of the plate element.

The reaction forees at the boundary node points are computed from the equation

$$
\{F\}=[\bar{K}]\{\delta\})
$$

by evaluating the rightohand side of the equation where \widetilde{K} is the origio nal stiffness matrix before boundary conditions are applied. The yeaction forces are used for checking the original input data or the accumulation of numerical errors in the computing process and do
provide a solution for the reactions in the directions of the specified boundary conditions.

The output is controlled by placing a numeral 1 in column 30 of the program control card. If no parameter is used in column 30, the abbreviated form of the analysis will be printed.

Example Listing

A complete listing of the main program and required subroutines is given in Table XXII. (Table XXII is shown on the next page.)

```
    SAS PROGRAM BY G. STONE
        S(2),AL3(2),1PGRS(4),MPORS(8),DSK(8,8),STR(3,B)
        IOORU(8,5),STRESS(3,5),R(12),BARK(1830),NBC(60),X(60),Y(60).
        ZUBAR{60,5),FORCE{60,5),OBAR(60,5),XN(60,5),YN(60,5)
lol FORMAT: 2X, 1PEEE6.31
    102 FORMAT (2X, 1P4E16.3), (1H0, HK BAR 1, 1X)
O4 FORMAT (2X,15)
```



```
    *)
    MO FORMAT GHOBARKi, I5,9H)=DSK(, 15, 2H, , 15, 2M:
```



```
    lol
    *)
```



```
    1, 2x,4:10
    OCNORMA; & 25HO ELEMENT STRESS MATRIX,
201 FORMAT(8HONODE ,2(8X,7HTYPE OF),49X,8HSTRESSES)
    ME 2,11X,6HCASE 3,11X,GHCASE 4,11X,GHCASE 5;
204 FOPMAT {33H1 DEFLECIIONS FOR ELEMENT NUMBER ,IS,
\,
205 FORMAT///43H STRESSES AT THE CENTROID OF THE ELEMENT/\prime), (3, SH TYPE,I3)
    6 FORMAT (30HO STRESSES FOR ELEMENT NUMBER
FORMAT(33X,2HXY, 9X,5(2X,E15.8))
2 FCRM, \T (33X,2HYY, 9X,5(x 
    FORNAT144H1 4, NODE NOD NTRESS NODE COORDINATES
    53 FORMATH 11, 13, 2H X, 5F12.4,',
    253 FORMAN 1X,13, 2HX, 5F12,
256 FORMAT(1X,3OHNO STRESS MATRIX FOR TYPE ,I3,2X,7HELEMENT
    \, (%)
```



```
603 FORMAT(1016)
612 FORMAT(GE13.0)
800 FORMAT(1HI)
8O1 FORMATIHO,1OHNODE POINT,5 X,11HCOORDINATES,47X,
    802 125HDELECTION OF NODE POINS!
    *,6HCASE 1,1IX,
    16HCASE 2,11X,SHCASE 3,11X, ©HCASE 4,11X,6HCASE 5
804 FORMITIEX,1HY,24X,5E17.8)
809 FORMAT: 11HINODE POINT, 3X,1IHCOORDINATES,63X,6HFORCES,
992 FORMAT(2014)
993 FORMAT (6X,6F12,0,12)
$994 FORMAT (15,414,13,1X, E10.6,2F6.0
895 FORMAT(1H1,12N6) IS SINGULAR)
88798 FORMAT (7H1 K BAR (IX)
c
SAS PROGRAM BY G. STONE
DIMENSION ALIRI ALL
```


SASOO4
152H ELEMENT NODE 1 NODE 2 NODE 3 NODE COORDINATES
SAS006
SAS007
SASOOB
\AS009
SASO10
SASO13
SASO15
SASO17
SASO18
SAS019
SASO20
SASO22
SASO23
SASO24

```

 OAD 3 SASSO66

 23,6X.111

IICKNESS-AREA
31009 FORET
F

839 CONTINUE REWIND \({ }^{3}\)
C READ REWND TITLE
READ (5,995) (R(J), J=1,12)
WRITE(6,995) (R(J), J=1.12)
© READ IN PARAMETERS
READ (5,603) NNODES, NELEM,NC,NSN,1WRITE
 \(\mathrm{N} 2=2\) *NNODES
\(N U M=(N 2 *(N 2+1) 1) / 2\)
C READ IN NODE LOCATIONS, FORCE, AND BOUNDARY CONDITIONS DO \(7777 \mathrm{I} \quad \mathrm{I}=1\), NNODES
\(12=2.1\) \(12=2 * 1\)
\(R E A D(5,993)\)
\(X(1), \quad(F O R C E(12-1)\)
READ(5,993) X(1), (FORCE(12-1, J), J=1,5 1, BARK(12-1),

C THE NCROSS ROWS AND COLS. TO BE STRUCK FROM K-BAR , AS DICTATED BY
 IJ=0
DO \(7778 \mathrm{I}=1, N 2\)
IF BARK 1 I) \(7779,7779,7779\)
7779 1
\(1 J=1 J+1\)
NBC \((1 J)=1\)
NBC(IJ)=1
IFIIWRITE.EG.O) GO TO 7778
WRITE \((6,111)\) I
WRITE \((6,112)\) IJ, I
7778 CONTINUE
NO \(370 \quad I=1 . N U M\)
BARK \(1:=0.0\)
BARK 11\()=\)
320 CONTINUE
320 CONTINUE
READ NCDE NUMER
WRITE
(6,99995)
WRI TE 26,9995 )
DO 236
NN \(=1\), NELEM
READ 15,994 IE, IP,IO,IR,IS,NTYPE, E,PR,A
IFIIWRITE.EO.OI GO TO
513 WRITE CONTINUE,
WRITE 16,9994 I IE,IP,IO,IR,IS, NTYPE,E,PR,A
60 TO \(11,2,3,4,5,6,7, R, 9), N T Y P E\)
C*****************STRINGER AND RIB CALCULATIONS***********************
\(\begin{array}{ll}\text { JLAM=4 } & \\ \text { DD } 10004 \\ \text { DD } 10004 \\ J=1: 4\end{array}\)
10004 DO \(10004 J=1: 4\)
10004 DSK (I.0 \()=0.0\)
CALCULATE TME PO DIRECTION COSINES.
XOP=XI:O)-X(IP)
SAS123
SAS124

TABIE XXII (Gombnued)
```

 YOP=Y(10)-Y(1P)
 02= D1
 AL(1)=XOP/D
 L(2)=YGP/D
 DO2391
 DO2391=1,2
 DSK (I,J)=AL(I)*AL(J)*AE/D
 DSK(1+2,J) = -DSK(1,J)
 DSK(1+2;J+2)=-DSK(1,J)
 239 CONTINUE
 IF(IWRITE.EQaO) GO TO 500
 WRITE (6,205) NTYPE
 WRITE (6,103)((OSK(1,J),1=1,4), J=1,4)
 500 WRITE CONTINUE
 G0 TO 235
 2CONINNE
 DO 10005 1=1,4
 Do 10005 J=1,
 CaLCULATE THE PO DIRECTION COSINES.
XQP=X(1Q)-x(1P)
l
D2 = 01
AL(1)=XOP/D1
AL(2)=Y
AE=A*E I=1,2
DSK(1,J)=AL(I)*AL(J)*(AE/O1)*4.0/ 3.0
DSK (1+2,J)=-DSK (1,J)
40 DSK(I+2,J+2) = DSK{1,J)
240
IF(IWRITE.EO.0) 60 TO 511
WRITE (6,205) NTYPE
MR!TE (6,103)
511 CONTINUE
3 CONTINUE
WRITE(6,257) NTYPE
GO TO 839
CONTINUE

```

```

 **************AS
 1 0 0 0 3
XOP=x(IO)-x(IP)
YOP=Y(IO)-Y(ID)
DI=SORT (XOP**2+YOP**2)
x2=x(IR)-x(10)

```



SAS187
SASIBB SAS188
SAS189
SAS190
SAS19 SAS190
SAS191
SAS192 SAS191
SAS192
SAS193 SAS 193
SAS194
SAS SAS194
SAS195
SAS196 SAS196
SAS197
SAS198 SAS197
SAS198
SAS 199 SAS199
SAS200
SAS201 SAS201
SAS202
SAS203 SAS203
SAS204
SAS205 SAS204
SAS205
SAS206 SAS206
SAS207
SAS207
SAS208
SAS208
SAS209
SAS 210
SAS210
SAS211
SAS211
SAS212
SAS
SAS212
SAS213
SAS214
SAS215

SAS
SAS
SAS
SAS
SA
S
SA
C********ASSUMED STRESS FUNCTION WITH FIVE COEFFICIENTS*************** SAS2411
\(\begin{array}{lll}\text { DO } 10002 & j=1,8 & \text { SAS244 } \\ \text { DO } 1,8 & \text { SAS245 }\end{array}\)
ルAM=8 0.0
\(x O P=x(10)-x(1 P)\)
\(Y O P=Y(10)-Y(I P)\)

TABLE XXII (Conqumed)
```

 D1=SORT { XOP**2+YQP**2;
 AE=A*E
 Y2=Y(1R)-Y(10)
 D2=SORT (x2**2+Y2**2)
 AL(1)=XOP/D1
 AL2(1)=x2/02
 AL2(2)=Y2/D2
 META=D1/D2
 l
 CALCULATE THE KDNS MATRIX
 SAK (1,1)=(2:*(4.-PR2)*BE
 DSK (3,1)= (2.*(2.+PR2)*BETA/3.-1),-PR)/BETA)*ET1/8.
 DSK ({4,1)=(1,-3**PR)*ET1/8, (1), (-2.*(2,PR2)&ETA/3,-(1,-PR)/BETA)*ET1/8.
 SSK
 *)
 *)
 (8,2)=(2.*(2.+PR2)/(3.*BETA)-(1,-PR)*BETA)*ET1/B.
 D,
 3621 DSK
 OSK (I +4,5)=DSK
 301 DO D \
 *)
 WRITE (6,205) NTYPE
 WRITE (6,101) {(DSK:1,J),i=1,8), J=1,8)
 501
l CONTINUE
******************RECTANGULAR*PLATF*CALCULATIONS***********************
********ASSUMED STRFSS FUNCTION WITH SFVEN COEFFICIENTS****************
DO 10006 I = 1,8
0006 DSK (1,J)=0.0

```


JLAM=B
\(\mathrm{XOP}=\mathrm{x}(10)-\mathrm{x}(1 \mathrm{P})\)
\(\mathrm{OQ}=\mathrm{Y}(10)-Y(1 \mathrm{P})\)
YY=SORT \(\{X Q P * * 2+Y O P * * 2\)
\(D 1=B Y\)
\(A E=A * E\)
AL(1) \(=\times 0 P / D\)
\(A L(2)=Y O P D D 1\)
\(x_{2}=x(I R)-x(10)\)
\(x 2=x(I R)-x(I O)\)
A \(=Y(1 R)-Y(1 Q)\)
\(A X=\operatorname{SORT}(X 2 * * 2+Y 2 * 2)\)
\(D 2=A x\)
\(D 2=A x\)
\(A L P=(3.0 * A X * A X)+(B Y * B Y)\)
\(B E T=(A X * A)+1\)
DSK \((1,1)=+(350 * B Y * B Y * A L P * B E T)+(8 B Y * * 4) * B E T)-(60 * A X * A X * B Y * B Y * B E T)+(\) 19*AX*AX*ALP*EET)+(9O*PAX**4)*BET)
\(D K(2,118 . * A X B Y * A D * B E T\)
DSK \((2,1)=18 \cdot * A X * B Y * A L P * B E T\)
\(D S K(3,1)=+119 * * B * B Y * A L P * B E\)
DSK*AX*AX*ALP*BFT \(-19 * *(A X * * 4) * B E T) * 4) * B E T)+(6 . * A X * A X * B Y * B Y * B E T)-1\)
\(D S X(5+1)=-119 * * B Y * B Y * A L P * B E T)+(1 B Y * * 4) * B E T)-(60 * A X * A X * B Y * B Y * B E T)-(~\) \(19 * * A X A X * A L P * R F T)+(9 * *(A X * * 4) * B E T)\)
\(D S K(7,1)=-(35 * * Y * B Y * A L P * B E T)-(18 Y\)
 DSK \((2,21=+135 * * A X * A X * A(P * B E T)+(1 A X * * 4) * A L P)-(60 * A X * A X * B Y * B Y * A L P)+1\)

29**Y*EY*ALP*BET-19**(BY**4)*ALP)
\(D S K(6,2)=-119 . * A X * A X * A L P * B E T * 1(A X)\)
\(D S K(6,2)=-(19 * * A X * A X * A L P * B E T) *(1)(A X * * 4) * A L P)-(60 * A X * A X * B Y * B Y * A L P)-1\)
\(19 . * B * B Y * A L P * B E T)+(9 * *(B Y * *) * A L P)\)

\(19 * * Y * B Y * A L P * B E T)-\{9 * * B Y * * 4) * A L P)\)
\(\operatorname{DSK}(6 \cdot 1)=-\operatorname{DSK}(2,1)\)
\(\operatorname{DSK}(5,2)=\operatorname{DSK}(6,1)\)
\(\operatorname{DSK}(5,2)=\operatorname{DSK}(6,1)\)
\(\operatorname{DS}(3,3)=\operatorname{DSK}(1,1)\)
DSK \((4,3)=D S K(6,1\)
DSK \((5,3)=\) DSK \((7,1)\)
DS 17,3\()=\) DSK \((5,1)\)
DS \((8,3)=D S K(2,1)\)
\(\operatorname{DSK}(7,3)=\operatorname{DSK}(5,1)\)
\(\operatorname{DSK}(8,3)=\operatorname{DSK}(2 ; 1\)
\(\operatorname{DSK}(4,4)=\operatorname{DSK}(2,2)\)
\(\begin{aligned} \text { DSK }(4,4) & =\operatorname{DSK}(2,2) \\ \text { DSK }(6,4) & =\operatorname{DSK}(8,2)\end{aligned}\)
\(\operatorname{DSK}(6,4)=\operatorname{DSK}(8,2)\)
\(\operatorname{DSK}(7,4)=\operatorname{DSK}(2,1)\)
\(\operatorname{DSK}(\mathrm{B}, 4)=\operatorname{DSK}(6,2)\)
DSK \((7,4)=\) DSK \((2,1)\)
DSK \((8,4)=D S K(6,2)\)
DS \((5,5)=\) DSK \((1,1)\)
\(\operatorname{DSK}(5,5)=\operatorname{DSK}(1,1)\)
DSK \((6,5)=\operatorname{DSK}(2,1)\)
DSK \((6,5)=\operatorname{DSK}(2,1)\)
DSK \((7,5)=\) SK \((3,1)\)
DS \((6,6)=\operatorname{SK}(2,2)\)
DSK \((8,6)=\operatorname{DSK}(4,2)\)
DSK \(1,7,7)=\operatorname{DSK}(1,91)\)
\(\operatorname{DSK}(7,7)=\operatorname{DSK}(1,1\)
\(\operatorname{DSK}(8,7)=\operatorname{DSK}(6,1)\)
\(\operatorname{DSK}(8,8)=\operatorname{DSK}(2,2)\)
DO \(402 \quad j=1, ~\)
DO
402
\(1=1\)
402 D
\(\begin{array}{ll}\text { DO } 403 & 1=1,8 \\ \text { DO } & 403 \\ J=1,8\end{array}\)
403
3 DSK(I,J) \(={ }^{2}\) DSK(1,J)* ( \(\left.(E * A) /(96 * * A L P * B E T * A X * B Y)\right)\) IFIWRITE.EO.01 60 TO 512
WRITE (6.205) NTYPE
WRITE (6,003) NT
WRITE ( 6,101 ) (tDSK (I, \(, 1,1=1,8), J=1,8)\)
12 CONTINUE
60 TO 235

TABLE XXII (Continued)


( 41 continve
C SELECT U-GAR-I FROM U-GAR AND STORE IT IN OORUTI, , DO 220
\(\mathrm{KI}=\mathrm{MPORS}(\mathrm{I})\)
, JLAM
KI=MPQRS(I)
DO \(2 \geq 0 J=1, N C\)
\(220 \begin{aligned} & \text { CORUIT, J) =UBAR(KI,J) } \\ & \text { WRITE }(6.204)\end{aligned}\)
WRITE \((6,204)\) N
WRITE \((6,801)\)
WRITE \((6,801)\)
WRITE \((6,802)\)
\(\mathrm{K}=0\)
\(\mathrm{DO} 223 \mathrm{I}=1, \mathrm{LAM}\). 2
\(K=K+1\)
WRITE \((6,804)\) IPORS(K), TOORU(I,J),JE1,NC) WRITE (6,805) (QORU(1+1, J), J=1•NC)
\(\underset{c * * * *}{223}\)
IFINSN.EO.O1 GO TO 379
WRITE 18.258 ,
IF (NTPE
1F (NTYPE.GE. 5 ) GO TO 375
READ 5,251, I, \((X N(N N, J), J=1, N S N)\)
WRITE(6,253) \(1,(\) XN(NN, Ji, \(j=1\), NSN \()\)
375 CONTINUE
REAC \((5,2511, ~(X N(N N, J), J=1, N S N)\) READ (5,254) I, (YN(NN, J):J=1,NSN: WR! TE \((6,253) 1, \quad(X N\) NNN, \(J, J=1, N S N)\)
GO TO 376 , (HN(NN, J), \(J=1\) NSN \()\)
379 CONTINUE IF (NSN.EQ.O) NSN \(1=1\)
IF (NSN.NE. FINSN.NE.0) N
XN(NN, 1 ) \(=0212\). YN(NN +1\()=D 1 / 2\)
376 WRITEI6,205
376 CONTINUE

\(377 \operatorname{STR}^{11, J!}=0.0\)
378 DO \(378 \quad J=1,5\)
378 STRESS \((1,5)=0.0\)
GO TO \((1,22,33,44\),
2,33,44,55,66,77,88,991, NTYPE
c**************STRESS MATRIX STRINGER ELEMENT************************ \(\begin{array}{ll}\text { WRITE }(6,200) \\ \text { STR } & (1,1)=-(A L(1) * E), \\ \text { STR } & (1,21=-\operatorname{laL}(2) * E) \\ \text { STR } & \text { DI }\end{array}\) \(\begin{array}{ll}\text { STR } & (1,2)=-(1 A L(2) * E), ~ \\ S T R & 11,3)=A(1) * E,\end{array}\)
 WRITE (6,101) (STR (1,
CALL MXM (STR, CORU,STRESS,NC)
GO TO 30 .
********STRINGER STRESS
22 CNTINUE
XX \(=\) XN(NN,NNSN) \(/ D 2\) \(X X I T E(6,101) X X\)
WR
STR \((1,1)=-(A L(1) * E) *(1.0-x x)\), \(D\)
\(\begin{array}{ll}\text { STR } & (1,1)=-(A L(1) * E) *(1 \cdot 0-x x) \quad, D 1 \\ S T R & (1,2)=-A L(2) * E *(1,0-x x) \quad, D 1\end{array}\)


NSN




TABLE XXIT (Continued)
\begin{tabular}{|c|c|}
\hline  & \({ }_{\text {SASS622 }}^{\text {SAS }}\) \\
\hline  & SAS623 \\
\hline G0 To 30 & SAS624 \\
\hline 33 continue & \\
\hline Continue & Stister \\
\hline wryte (6,256) & SAS628 \\
\hline 55 continue & SAS629 \\
\hline ***********STRESS MA & \\
\hline xntNo.NNSN1/D2 & \\
\hline YY \(=\) YN(NN,NNSN) / D1 & SAS6 \\
\hline WRITE 6 , 259 ) XX , YY & SA5633 \\
\hline \(x^{x A}=D 2\) & \({ }_{\text {Sast }}\) \\
\hline \(\mathrm{YB}=01\) & SA56635 \\
\hline EPRO \(=1.0-\mathrm{PR} * * 2\) & SAS6636 \\
\hline EPR1 1 E/EPR \({ }^{\text {d }}\) & \\
\hline STR \(11,11=-\) EPR \(1 *(1.0-Y Y) / \times 4\) & Sastis \\
\hline  & \\
\hline  & SAS641 \\
\hline STR(1) 5) \(=-(\operatorname{STR}(1,3) 11\) & SA5642 \\
\hline STR(1,6) \(=\) EPR1*PR*xx/YB & SAS643 \\
\hline STR(1,7) \(=-(\operatorname{STR}(1,1) 11\) & SAS5644 \\
\hline STR \((1,8)=-\) STR (1,6) & SAS645 \\
\hline \(\operatorname{STR}(2,1)=-\) EPR1*PR* \((1.0-Y Y) / X\) & SA5646 \\
\hline STR 2,2\()=-\operatorname{EPR} 1 *(1,0-x \times 1 /\) YB & SAS647 \\
\hline  & SAS648 \\
\hline STR (2,4) \(=-(\) STR \((2,2) 11\) & SASE49 \\
\hline STRR(2,5) \(=-(\) STR 12,3\() 11\) & \\
\hline  & SAS691. \\
\hline STR & SAS653 \\
\hline  & SAS654 \\
\hline STR( 3,2\()=-E P R 1 *(1.0-P R) *(1,0-Y Y) /(2,0 * \times A)\) & Sas655 \\
\hline \(\operatorname{STR}(3,3)=-(\operatorname{STR}(3,1)\) ) & SA5656 \\
\hline STR (3,4)=-EPR1*YY*(1.0-PR \(/\) / \((2.0 * *\) ( \()\) & SA5657 \\
\hline STR( 3,5 ) \(=\) EPR \(1 * \times X *(1.0-P R) /(2.0 * Y B)\) & \({ }_{\text {Sast }}\) \\
\hline STR(3,6) \(=-(\) STR 13,4\() 1\) & SA5659 \\
\hline STR(3,7) \(=-\left(\right.\) STR (3,5) \({ }^{\text {( }}\) & SAS660 \\
\hline StR( 3,8 ) \(=-1\) STR( 3,21\()\) & SAS661 \\
\hline  & SAS662
SAS63
Sas \\
\hline  & SAS664 \\
\hline  & SA5665 \\
\hline COntinue & SAS666 \\
\hline xx \(=\) XNSNN,NSSN: & SAS668 \\
\hline & \\
\hline  & SAS670 \\
\hline \(X^{\prime \prime}=D 2\) & \({ }_{\text {SAS6671 }}^{\text {SAS6 }}\) \\
\hline  & \({ }_{\text {Sas6 }}\) \\
\hline EPR1=E/EPRo & SA5674 \\
\hline EPR2 \(2=2.0 * Y Y-1.0\) & SA5675 \\
\hline \({ }_{\text {EPR }} \mathrm{EP} 31.00-2.0 * Y Y\) & SAAS676
SAS677 \\
\hline  & SAS678. \\
\hline  & SAS679 \\
\hline STR(1,2) =-EPR1*PR/(2.0*Y) & SASS80 \\
\hline STR (1,4) \(=\) EPR1*PR/( \(2.0 * 4\) ) & SAS682 \\
\hline
\end{tabular}
\(\operatorname{STR}(1,2)=-E P R 1 * P R /(2.0 * Y B)\)
\(\operatorname{STR}(1,3)=E P R 1 *(1 E P R O * E R 2)-1.0) / 12.0 * X A)\)
\(\operatorname{STR}(1,4)=E P R 1 * P R /(2.0 * Y B)\)

SAS621
SAS622
SAS623 SAS624
SAS625 SAS626
SAS627 SAS6228
SAS628
SAS 29 SAS630 SAS631
SAS632 SAS633 SAS634
SAS635 SAS636
SASS37 SAS639
SAS640
SAS SAS641
SAS642 SAS643
SAS644
SAS644
SAS 646
SAS 46 SAS647
SAS648 SAS650 as651
AS652 SAS654 AS655 SAS658
SAS659

SAS 681 SAS659
SAS 661
\begin{tabular}{l} 
SAS662 \\
SAS 63 \\
\hline
\end{tabular}
SAS664
SAS666

STR(1,5)=EPR1*(1EPRO*EPR2)+1.01/(2.0*XA
 \(\operatorname{STR}(1,7)=E R R 1 *(1,4)\)
\(\operatorname{STR}(1,8)=-\operatorname{STR}(1,4)\)


\(\operatorname{STR}(2 ; 4)=E P R 1 *(1 E P R O * E P R 5)+1.0) /(2.0 * Y B\)
\(\operatorname{STR}(2,5)=-\operatorname{STR}(2,1)\)
\(\operatorname{STR}(2,6)=\operatorname{SPR} 1 *((5 \operatorname{PRO} * E P R 4)+1.0) /(2.0 * Y 8)\)
\(\operatorname{STR}(2,7)=\operatorname{STR}(2,5)\)
STR \((2, B)=E P R 1 * 1(E P R O * E P R 51-1.01 /(2.0 * Y B\)
STR \((3.1)=-(E P R 1 *(1.0-P R) /(4.0 * Y B))\)
\(\operatorname{STR}(3,2)=-(E P R 14(1,0)\)
\(\operatorname{TR}(3,3)=-5 T R(31)\)
\(\operatorname{STR}(3,3)=-5 T R(3,1)\)
\(\operatorname{STR}(3,4)=\operatorname{STR}(3,21)\)
\(\operatorname{STR}(3,5)=\operatorname{STR}(3,3)\)
\(\operatorname{STR}(3,6)=-\operatorname{STR}(3,2)\)
\(\operatorname{STR}(3,6)=-\operatorname{STR}(3,2\)
\(\operatorname{STR}(3,7)=\operatorname{STR}(3,1)\)
\(\operatorname{STR}(3,7)=\operatorname{STR}(3,1)\)
\(\operatorname{STR}(3,8)=\operatorname{STR}(3,6)\)
WR1TE(6,200)
WRITE(6,101)( (STRTI, J), J=1,8), \(\mathrm{I}=1,31\)
CAL TO 30 (STR,QORU,STRESS,NC)
CONTINUE
**STRESS MATRIX - WITH SEVEN COFFFICIENTS*********************************) \(B Y=D 1\)
\(A X=D 2\)
\(X X=X N(N N, N N S N)\)
\(Y Y=(N(S N S N S N)\)
\(Y=\) NN NN, NNSN \()\)
ALP \(=13 . * D 2 * D 2+D 1 * D 1\)



+YY*(196.*ALP*BET)+112**BY*BY*BET1-136**AX*AX*BET) \({ }^{(1)}\)


\(1-X X * 1136 * * B * B Y * B E T)-(108 * * A X * A X * B E T 1)\)
STR(1,2)
\(1+X X 11136 * * A X A A X A A L P)-(108 * B Y * B Y * A L P)\)
STR \(2,21=-(102 * A X * A L P * B E T)-(G 6 * *(A X * * 3) * A L P)+(18 * * A X * B Y * B Y * A L P)\)
\(1+X *(196)\)
\(1+X X *(196 \cdot * A L P * B E T)-(36 * * Y * B Y A A L P)+112 * * A X A A X A A L P) 1\)


\(1+Y Y *(1-96 . * A L P * B E T)-112 * * B Y * B Y * B E T)+(360 * A X * A X * B E T)\)
STR \((2,3)=-(18, * B Y * A L P * B E T)+(18 . *(B Y * * 3) * B E T)-(54 \cdot * A X * A X * B Y * B E T)\)
\(1+Y Y(-1-20)\)
STR \((3,3)=+(18 * A X * A L P * B E T)+(54 * *(A X * * 3) * B E T)-118 . * A X * B Y * B Y * B E T)\)
S \()\)
\(1-X \times(1-36 * * B Y B Y * B E T)+(108 * * A X * A X * B E T) 1\)
\(1+X X *(1-360 * A X * A X * A L P)+(108 . * B Y * B Y * A L P))\)
STR \((2,4)=+(102\) **AX*ALP*BET) \(+160 *(A X * * 3) * A L P)-(188 * A X * B Y * B Y * A L P\)


STR \((1,5)=+6 \quad 6 \cdot * B Y * A L P * B E T 1-160 *(B Y * * 3) * B E T)+(18 ; *\)
\(1+Y Y *(96 * * A L P * B E T)+(12 * * B Y * Y * B E T)-(36 * * A X A X * B E T))\)

\section*{TABIE XXIT (Continued)}
```

 STR(2,5)=(1)
 STR(3,5)=+1 28**AX*ALP*BET)-(54**(AX**3)*BET)+(18.*AX*BY*BY*BET)
 lol
 STR(1, (3)=+180*AXALP*BE)-(18*(AX**))*
 STR(2,6)=+1 60*AX*ALP*BET)-(60*(AX**3)*ALP)+118.*AX*BY*BY*ALP)
    ```

```

 STR(3,6)= (18.*BY*ALP*BET)-(54.*(AY**3)*
 STR(1,7)=(102.*BY*ALP*BET)+(6.*(BY**3)*BET)-(18**AX*AX*BY*BET)
 S*)
 STR(2,7)=(18.**Y*ALP*BET)+(18**(BY**3)*BET (-{54**AX*AX*BY*BET)
 \,
 \,
 1+XX*({-36.*AX*AX*ALP)+{(108**BY*(Y*ALP)
 STR(?;8)=-1 6.*AX*ALP*BET+* 6.*(AX**3)*ALP)-118.*AX*BY*BY*ALP)
 lol
 -YY*(-36.*AX**Y*ALP)+(108.*BY*BY*ALP)
 DO 404 I=1;3
 404 STR(I,J)= STR(I,J)*(E/(96.*ALP*BET *AX*BY))
WRITE{6,200)
WRITE(6,101)(ISTR(I,J),J=1,B1,1=1.3)
CALL MXM (STR,QORU,STRESS,NC)
88 CONTINUE
DO 377 I=1,3
377 STR (IGN)=0.0
DO 378 1=1,3

```

```

\
CO 119 J=1:6
STR
STR(1,2)-PR*\times32
STR (1,3)=-YR* (
STR(1,5)=Y21
STR(1,6)=-PR**21
STR{2,2)=-x32
STR
STR(2,4)=x 31
STR (2,6)=-x21
\
STR{3,2)=(11:-PR)/20)**32
STR(3,3)=((1.-PR)/20)**31
STR(3,5)=-(11,-PR)/2)**21
STR{3,0)=(11.-PR:/2.)*Y21
DO 1>0 1=1,3
120 STRI,N)=(E)(2**0.5*(X32*Y21-X21*Y32)*(10-(PR**2)!1)*STR(1,J)
MRITE{6,200)(USTR(I,J),J=1,8),I=1,3)

```

    \(9{ }^{9}\) GOTOTINUE
    CALL MXM
60 TO 30
99 CONTINUE
    WRITE 16.256 )
GO TO 899
    30 GO TO 839
    CONTINUE
WRITE \((6,206)\) NN,NTYPE
    WRITE 6.2061 ,
WRITE \((6,201)\)
WRITE \((16,2021\)
WRITE \((6,219)\)
    WRITE \((6,202)\)
WRITE \((6,219)\) NNSN, NTYPE, (STRESS(1,1), IEIONC)


    237
    CONTINUE
CONTINUE
    REWIND 3
        REWIND 3
REWIND 4
WRITE
        REWIND 4
WRITE(6, 99999\()(R(J), J=1,12)\)
19999
        E16,999
TO 839
EX1T
1999
    END
Sibftc Syminv
        surroutine syminv ( io, A, ising,
        SURROUTINE SYMINV (IO, A,
OIMENSION A 118301, COL( 601
IF(10-1)
    \(C_{97} \mathrm{C}=\mathrm{A}(1) * A(3)-A(2) * A(2)\)
    \(\quad \mathrm{I}=\mathrm{A}(1) * \mathrm{~A}(3)-\mathrm{Al}\)
9 I
\(\mathrm{A}(2) 98,900.98\)
    \(98 \quad \begin{aligned} & I F(C) 98,900,98 \\ & A(2)=-A(2) / C\end{aligned}\)
        COLIT)=A(1)/C
        \(A(1)=A(3) / C\)
\(A(3)=C D L(1)\)
    IF(10-2)800,720,99
    99
        \(K=1\)
\(M=10-1\)
        D07001011 \(=2, \mathrm{M}\)
        007001011
\(k=k+1011\)
        \(\mathrm{N}=0\)
    DO1001 \(=1,1011\)
\(C O L(1)=0\)
    COLII \(=0\)
DO3001
        \(03001=1,1011\)
\(1 A=k+1\)
        \(1 A=K+1\)
\(D 0300=1,1\)
\(N=N+1\)
        \(\mathrm{N}=\mathrm{N}+1=1\)
\(C O L(J)=\operatorname{COL}(J)+A(N) * A(I A)\)
        \(C O L(J)=C O L(J)+A(N) * A\)
\(1 F(J-1) 200,300,800\)
    200
        \(1 B=K+J\)
\(C O L I)=C O L(I)+A(N) * A(I B)\)
    \(c^{300}\)

        \(-C=0\) COMPUTE日22
\(C 04001=1,1011\)

    00
        \(A=K+1\)
\(=C+A(A) * C O L\)
        \(C=C+A(t A)\)
\(1 A=A+1\)
        \(I A=I A+A\)
\(C=A(I A)-C\)
\(I F(C) 410,900,410\)
    \(410 \begin{aligned} & \text { IF }=1.0 / C \\ & A \mid 1 A)=C\end{aligned}\)
\(410 \begin{aligned} & C=1.01 C \\ & A|A|=C\end{aligned}\)
C \(\quad\) AIIA \(=\mathrm{C}\) (


TABLE XXTT (Continued)

```

 DOS0.1=1,101
 N=N+1
 N=N+1
 S00 A(N)=A(N)-A(TA)*COL(1)
700 CONTINUE
720 ISING=1
l10
810 A(1)=1.0/A(1)
800 G0 TO 720
800 ISINS =2
RENURN
SUBROUTINE SMMPY{A,B,C,N3*NC)
DIMENSION A(1830),8(60,5),(60,5)
DC 100 I=1,N3
DO 100 J=1
DO 130 K1=1,N3
l=MAXO(1,K1)
10c (}\begin{array}{l}{K={1-*(L-3))/2+(1+K1)}
{(1),J:=A(K)*B(K1,J)+C(1,J)}
RETURN
AIBFIC WRT
SUBROUTINE WRTIA, N32
DIMENSION Al11
31009 FORMAT(1X,3HROW,14,/1X,(1P10E13.4)
NF=0
DO 31010 J=1,N3
MSNFN+1
31017 WRITE (6,31009) J,(A{I), I=NS.NF
WRITE '
|gFIC END (
BFTC MXM SUBROUTINE MXM I A, B, C, NC:
OIMENSION A(3,8),8(8,5),C(3,5)
CNMENSION A,
20 (11,3)=0.0
DO 10 1=1,3
*)

```

```

SMINVO41
SMINVO42
SMINVO4
SMINVO44
SMINVO46
SMINV46
SMINVO49
SMINVO5O
SMINVO51
SMINV52
SMINVO54
SM1NV555
SMINVO57
SMINV588
SMMPYOO1
SMMPYOO2
SMMPYO3
SMMPYOO4
SMMP 年缺
SMMPYOO7
SMMPYO8
SMMPOOO
SMMPYO1O
SMMPYO1I
WRTOO1
WRT001
WRT003
WRT005
WRT006
WRT008
M\timesMOO1
MXMOO1
MXMOO2
MMMOO4
M MXM005
MMM006
MMXM008
MXMOO9

```

\section*{APPENDIX \(C\)}

\section*{A DIGITAL COMPUTER PROGRAM FOR IMPLEMENTING \\ THE MATRIX FORGE METHOD}
(Mr. Bill Accola of the University Computing Center, Oklahoma State University fendered very able and valuable assistance to the planning of this program and had a major role in its development.)

The following computer program is developed from the concept set forth by Reference (l2): namely, that of building up a main program from a set of matrax subroutines with each subroutine performing some matmix manipulation (multiplicationg inversiong additiong etco)。 The subroutines used in this program are primarily those listed in Reference (12). The only exceptions are modified versions of the subroutines RMATNZ and WRTMAX.

\section*{Modifications of RMATNZ}

A counter (IENT) has been added to this subroutine to keep track of which call the subroutine is in. According to the time of entry, the appropriate heading for the matrix that is read is printed with its titleg i。eag when IENT is \(l_{g}\) the computed GO TO statement number 1000 sends control to statement number 4, which prints out the name [ALPIJ] with Format 103. To adjust this subroutine for different programs, the order of the matrices to be read in must be known. A numbered write statement must be set up for each matrix with the appropriate format
for that matrix. With these statements in order, statement 1000 must be altered to send control to the proper write statement according to the current entry the subroutine is in.

Also, statement 102 has been changed from
\[
\begin{aligned}
& 102 \text { FORMAT }(6 \mathrm{X}, \mathrm{I} 4,6 \mathrm{X}, \mathrm{I} 4, \mathrm{ElO}, 4) \\
& \text { to } \\
& 102 \text { FORMAT }(6 \mathrm{X}, \mathrm{I} 4,6 \mathrm{X}, \mathrm{I} 4, \mathrm{EI} 4.7) \text {. } \\
& \text { Modifications of WRTMAT }
\end{aligned}
\]

This subroutine has been altered in the same manner as was RMATNZ. A numbered write statement is needed for each matrix that is to be printed. A format is needed with the name of a matrix for each matrix that is to be printed. With these statements added, the computed GO TO statement must be changed to send control to the proper write statement depending upon the time of entry which determines the matrix that is printed.

\section*{Additional Matrix Designations}

The following matrices are defined as
\[
\begin{array}{lr}
{\left[a_{r S}\right] \equiv[A R S],} & {\left[A_{M N}\right] \equiv[C A M N],} \\
{\left[a_{r n}\right] \equiv[A R N],} & {\left[G_{N N}\right]=[G N N],} \\
{\left[G_{i m}\right] \equiv[G G I M],} & {\left[g_{i r}\right]\left[\alpha_{i j}\right] \equiv[G R I A L P],} \\
{\left[G_{S N}\right] \equiv[G S N],} & {\left[g_{i m}\right]\left[\alpha_{i j}\right] \equiv[G M I A L P],}
\end{array}
\]
\[
\begin{array}{ll}
{\left[G_{M P}\right] \equiv[G M P],} & {[I] \equiv[X I D M],} \\
{\left[a_{M N}\right] \equiv[A M N],} & {\left[a_{r s}\right]^{-1} \equiv[A R S I N V] .}
\end{array}
\]

With the above definitions and those made in prior topics, the equations given in Chapter II are converted to compater language and a description of the computer program may now be given.

\section*{Program Description}

This package program is made up of a main program and several subroutines. The main program serves only to prepare arrays for openations which are carried out in subroutines. The flow of manipulations of the matrices can be followed through the main program.

Since the input/output assignments are held in common for all the subroutines, KIN (input) and KOUP (output) must be established. On the IBM 7040 KIN is set to 5, and KOUT is set to 6 . This causes all data to be read in from the card reader and all output to be printed on the printer.

Two calls to RMATNZ read in [ALPIJ] and [GIR]. Each call reads the matrix and prints the matrix with the appropriate title. [ALPIJ] and \([G I R]\) are manipulated as AXB giving [GRIALP] which is printed by a call to WRTMAT. Then [GRIALP] is multiplied by [GIR] giving [ARS]. This multiplication is inftiated by a call to MXM。 The resulting [ARS] is printed with WRTMAT. A DO-loop is inserted to save [ARS] in STORE as it is desired latern to jngert [ARS] and then multiply back to obtain an identity matrix. (nine inversion subroutine destroys the input matrix.

After storing [ARS], [ARSINV] is obtained and is printed with a call to [INVERX] and a call to WRTMAT. To check the condition of [ARS], the identity matrix [XIDM] is computed by MXM and then printed with WRTMAT.

After printing [XIDM], [GIM] is read and printed via RMATNZ and the [GRIALP] and [GIM] are muItiplied giving [ARN], which is printed with WRTMAT. To obtain [GSN], MXM is called to multiply [ARSINV] by [ARN]. The result is then printed. Another multiplication is performed obtaining [GSN] from [ARSINV \(] \times[\) ARN \(]\). Following the printing of \([G S N],[G I R]\) is multiplied by \([G S N]\) to get \([G M P]\). Since [ARSINV \(]\) is no longer needed, [GMP] could have been stored in [ARSINV]. Next [GMP] is subtracted from \([G I M]\) giving [CGIM \(]\) which is then printed. The subtraction is done with a call to MSM。 [FORCE] is read in and printed with a call to RMATNZ and is then multiplied by [CGIM] to give the desired [QI]. [QI] is printed by a call to WRTMAT. To find the stresses, the matrix [AREINV] is printed and then [STRESS (1)] is set equal to \([Q I(1)]\) and \([\operatorname{STRESS}\) (2) \(]\) equal to \([Q I\) (2) \(]\). This is done because the first two elements of any array in this program are the number of rows and the number of columis. Following the multiplication of \([A R E I N V]\) and \([Q I]\) which is done elementwise, the result, [STRESS], will be the same size as [QI]. The actual multiplication is done with a double DO-loop. Following the multiplication, [STRESS] is printed with WRTMAT and punched which gives output capable of being read with RMATNZ.

To obtain deflections, the transpose of [GIM] is multiplied times \([A I P I J]([G I M] \times[A L P I J])\) giving [GMIALP] which is then printed with WRTMAT. MXM is used to obtain [GMIALP] \(]\) [GIM] resulting ina [AMN].
[AMN] is printed。 Next, another transposed multiplication is
performed giving [GNN], which is printed. A subtraction [AMN]-[GNN] is performed, giving [CAMN], which is also printed with WRTMAT. The deflection matrix, \([\) DELTAM \(]\) is computed by multipiying [CAMN] by [FORCE \(]\). [DELTAM] is then printed with WRTMAT.

To obtain a check on the final results of a redundant force calculation, a multiplication of [GRIALP] and [GGIM] is performed giving [ARNTR ]. [ARNTR \(]\) could have been stored in [GMIAIP] or almost anywhere since the program is so near completion. [ARNTR] is then printed and a CALL EXIT concludes processing of the program.

> Example Listing

A complete listing of the main program, required subroutines and input matrices is given in Table XXTH.

\section*{TABLE XXIII}

\section*{FORTRAN PROGRAM FOR TMPLEMENTING ITHE \\ MATRIX TORCE METHOD}
```

SIBFTC MAIN DECK
ARMY RESEARCH OFFICE CONTRACT PROF. R. E. CHAPEL, PROJECT LEADER
COMMON KIN, KOUT (250),GR(350),GR1ALP(350),ARS(100),ARS1NV(100),
ISTORE{100),XIDM(100),GIM(999),ARN(100),GSN(100),GMP(350),CEIM(350),
1,
KIN=5
KNN=5
ICT=0
READ(5,100)/1PCH
CALL RMATNZ(ALPIJ)
ALL RMATNZ (GIR)
ALL MTXM (GIR, ALPIN, GRIALP
CALL MXM (GRIALP, GIR, ARS)
CALL WRIMAT(ARS)
STCRE(I)=ARSI
CALL INVERX(ARS,ARSINV,DET,IE)
CALL WRTMAT(ARSINV)
CALL MXM(ARSINV,STORE, XIDM)
CALL WRTMAT (XIDM)
CALL RMATNZ (GIM), GIM, ARNI
CALL MXM (ARSINV, ARN, GSN)
(ALL WRTMAT(GSN),ARN,GSNI
CALL MXMMGGIR, GSN, GMP
CALL MSM (GIM,GMP,GGIM
CALL WRTMAT(CGIM)
CALL MXM (CGIM, FORCE, OI)
CALL WRTMATGI;
IELM=101(1)*0I(2))+2.
MO12I=1,IELM
CALL RMATNZ(AREINV
STRESS(2)=01(2)
iROWS=STRES5(1)+2.
COLS=STRESS(2)
DO31=1,ICOLS
K=(J=3)*IFIXIOI(2))+1
L=K+2
TRESS(L)=AREINV(J)*O1(L)
CONTINE,
CALL. WRTMAT(STRESS)
CALL PUNCHISTRESSI
IF(ICT.LE.1)GO TO 11
OEFLECTIONS
CALL WRTMATGGMIALP)
CALL MXH(GMIALP,GIM,AMN)
sibFTC Main PGCK
ARMY RESEARCH OFFICE CONTRACT PROF.R.E. CHAPEL, PROJECT LEADER OIMENSION ALPIJ (2650), GIR(350), GR1ALP(350),ARS(100), ARSINV(100), 1,FORCE (200), GI(1000), AREINV(100),STRESS(10001, EMIALP(402), AMN(350).
(GNN(350), CAMN(350), DELTAM: 350), ARNTR (350

```

\section*{KOUT \(=6\)}
```

READ $(5,100)$ IPC
CALL RMATNZ (ALPIJ)
CALL RMATNZ (GIR)
ALL MTXM (GIR. ALPIN, GRIALP
CALL MXM GGRIALP, GIR, ARS)
DO1I $=1,38$
CALL INVERXIARS,ARSINV,DET,IE
CALL MRM(ARSINV,STORE, XIDM)
CALL WRTMAT (XIDM)
CALL RMATNZ (GIM)
ALL MRM MAT(ARN, GIM, ARN)
L MRM (ARSINV, ARN, GSN)
CALL WRTMAT(GMP)
CALL MSM (GIM,GMP, CGIM
WLL WRTMAT (CGIM)
CALL MXM 'CGIM, FORCE, QII
11
$2 \mathrm{I}=1$ IELM
CALL RMATNZTAREINV
STRESS(2)=OI(2)
IROWS =STRESS (1) +2 .
DO31=1.ICOLS
$\mathrm{K}=\{\mathrm{J}-3) * \mathrm{IFIX}$ (OI(2) $)+\mathrm{i}$
TRESS(L)=AREINV(J)*OI(L)
ONTINUE
TFIIPCH.EO.OIGO TO 9993
(ICT*LE. 1) 60 TO 11
CALL WRTMAT TGMIALP

```

```

 ALL MIXMIARNOGSNOGNN
 CALL WRTMATGNNN
 CALL MRTMAT(AMNGNN,GNN,CAMN)
 CALL MSMLAMN,GNN;C
 CALL MXM(CAMN,FORCE,DELTAM
 ALL WRTMAT (DELTAM)
 CALL MXM(GRIALP,CGIM,ARNTR)
 ALL WRTMATARNTR
 CALL WRTMT
 SIbFTC RMATNZ
SUBROUTINE RMATNZ (A) NNI AND STORE AS FULL MATRIX
last data card of matrix muSt be followed by end card
OIMENSION Al1)
FORMAT(6X,14,6x,14,E14.7)
FORMAT(6X,14,6x,14,E14.7)
FORMAT(10X.3HROW;16;
O5 FORMAT (25x, 6E15.4)
FORMAT (4H1GIR,14,3X,1HX,14)
O8 FORMAT(SHFORCE,14,3X,1HX,I4)
FORMAT(TH1AREINV,I4,3X,1HX,14
IENT=IENT+1
A(1)=L
A(2)=L1
DO 1 1 ! = 3. IJMAX
2
READIXIN,101IM,N,OATA
I={M-1:LELI+N+2
I={M-1|*LI+
C PRINT INPUT MATRIX
2000 GO TO {4,5,5,7,9,91,IENT
4 WRITEIKOUT,103IL:LI
L2=3
L3=L1+L2-1
l
WRIE (KOUT, 105)(AGI), I =L2, L3
3)}\begin{array}{l}{\mathrm{ L2 CONTINUE}}
{\mathrm{ RETURN}}
WRITE(KOUT,106)L,L
WRITEGKOUT,1O6)L,LI
WRITEGKOUT,107,LPLI
WRITEGKOUT,108)L.L
60 10 8
WRITE(KOUT,109)L.LI
GO TO 8
SIBFTC WRTMAT DECK
SUBROUTINE WRTMAT(A)
DIME ISION AlII
100 FORMATITHIGRIALP,14,3X,1HX,14

```

\section*{TABLE XXIII (Continved)}
```

101. FORMAT(4H1ARS,14,3X,2HX,14)
FORMAT(4-1ARS,14,3X,iHX,144
FORMAT(4HIARN,14,3X,1HX,14)
FORMAT (4H1GMP,14,3x,1HX,14,
FORMAT15HICGIM,14,3X,1HX,14
FORMAT(20X,1PGE16.5)
FORMAT(10x,5H ROW,:54)
```

```

 FORMAT (4HIAMN,14,3X,1HX,14
 FORM,T(4H1GNN,14,3X,1H,14)
 FORNAT(6H1ARNTR,14,3X,1HX,14
 FORMAT (THIGMIALP,14,3X,1HX,14
 16 FORMAT(1HIGMMN,14,3X,1HX,14)
ENT=IENT+1 (ESS,14,3X,1HX,14
IENT=IENT
L1 =A(2)
L2 = 3'13,4,10,15,5,6,7,8,9,18,18,16,11,12,17,13,141,1ENT
LO2K=1,L
WRITE(KOUT,107)(Al1),I=L2,L3)
L2= L3+1
CONTIN
WRITECKOUT,1001L,LI
G0 TO 1
WRI EKOUT 101ML,L
GO TJ I
GO TO 1NOUT,103)L,
Go TO 1
WR1TE TKOUT,104ML,L

```

```

GO To 1
WRITE(KOUT,106)L.L
GO TO 1MOUT, 1091L,L1
GO TO 1
WR1TEIKOUT,H10IL,L1
GO TO 1/ WRITEMOUT,IIIML
l
GO TO IMOU,113)L,
GO TO 1
WR1TE(KOUT.114)L,LI
GO TO l
GO TO \
WR1TE(KOUT,116)L,L1
-GOTO1
GO TO

```
```

SIBFTC PUNCH DECK
SIMENSION A(1)
ORMAT:6X,14,6X,14,E14.7
INROW=1
L=A(1)
Ll=4(2)
L2=L*L1+2
COLCT=1COLCT+1
FIICOLCTEG:LI+1)GO TO 2
F(A!I).EO.0.01G0 TO 3
GO To 3
COLCT=1
GO TO 1
GONTINUE
RETURN
ENO
\mathrm{ Subrautine inverxia,b,DEt,ie)}
DIMENSION A(I),B(I)

```

```

 C10 = N**2 + 2
    ```

```

 B(1)=0.
 B(1)=N
 L9=N+1
 2 B(1)=1.0
 JK=N-
 J N = = 3
 N2=N+2
 NO=N-
 J4 = 3 L1 = 1,JK
 NR=(J+N-2)/(N+1)
 NRI =NR
    ```

```

 OO AMAX = ABS (AlJ)
 AMXA = ABS (A,JN1))
 IF LAMAX -GE:AM
 IAD=N
 O2 DO3 IT = N5,N6
 ITG= IT+IAD
 A(IT)=A(ITG
 A(1TS) =ATEM
 ATEM = BIIT:
    ```


TABLE XXIII (Continued)
```

```
\(804 \begin{aligned} & 6010900 \\ & 311=J+N+1 \\ & 310=J+N\end{aligned}\)
```

```
\(804 \begin{aligned} & 6010900 \\ & 311=J+N+1 \\ & 310=J+N\end{aligned}\)
    \(J 10=J+N(A C J)\)
\(A M A X=A B S\)
```

```
    \(J 10=J+N(A C J)\)
\(A M A X=A B S\)
```

```


```

```
    305 IF (AMAX AM AMXA GE AMXA)GO TO BO6
```

```
    305 IF (AMAX AM AMXA GE AMXA)GO TO BO6
    305 IF (AMAX \(=\) AMXA GE AMXA) 60 TO 806
    305 IF (AMAX \(=\) AMXA GE AMXA) 60 TO 806
    NR1 \(=(J 11+N-2) /(N+1\)
    NR1 \(=(J 11+N-2) /(N+1\)
    \(\begin{aligned} & 806 J 10=\mathrm{J} 10+N \\ & 307 \\ & \mathrm{~J} 12=\mathrm{N} 11+\mathrm{N}+1\end{aligned}\)
    \(\begin{aligned} & 806 J 10=\mathrm{J} 10+N \\ & 307 \\ & \mathrm{~J} 12=\mathrm{N} 11+\mathrm{N}+1\end{aligned}\)
    \(\begin{array}{ll}55 & =\mathcal{L}-N R+ \\ N\end{array}\)
    \(\begin{array}{ll}55 & =\mathcal{L}-N R+ \\ N\end{array}\)
    \(N 6=N 5+{ }^{N}-1\)
\(1 T E M=N R 1-N R\)
    \(N 6=N 5+{ }^{N}-1\)
\(1 T E M=N R 1-N R\)
        IAD \(=\) ITEM*N
IF 1 .
        IAD \(=\) ITEM*N
IF 1 .
IF IAD
IAN CONINUE GT. \(0, ~ 60 ~ T O ~ B 02 ~\)
IF IAD
IAN CONINUE GT. \(0, ~ 60 ~ T O ~ B 02 ~\)
DENOA = Al
DENOA = Al
IF IDENOM.EO. O.O1GOTO 5
```

```
IF IDENOM.EO. O.O1GOTO 5
```

```


```

```
GO TO 702
```

```
```

```
GO TO 702
```

```


```

```
\(702 \mathrm{DO} 100 \mathrm{JI}=\mathrm{N} 1, N 2\)
\(\mathrm{~A}(\mathrm{~J} 1)=\mathrm{N}\),
```

```
\(702 \mathrm{DO} 100 \mathrm{JI}=\mathrm{N} 1, N 2\)
\(\mathrm{~A}(\mathrm{~J} 1)=\mathrm{N}\),
\(A(J 1)=A(J 1) / D E N O M\)
\(100 \mathrm{~B}(\mathrm{~J} 1)=\mathrm{g}(J 1) / D E N O M\)
\(A(J 1)=A(J 1) / D E N O M\)
\(100 \mathrm{~B}(\mathrm{~J} 1)=\mathrm{g}(J 1) / D E N O M\)
    \(13=J 4\)
\(N 3=N 2+1\)
    \(13=J 4\)
\(N 3=N 2+1\)
    \(N 4=N 2+N\),
    \(N 4=N 2+N\),
    AMULT \(=A(J 2)\)
    AMULT \(=A(J 2)\)
    \(\begin{aligned} & \text { AMULT } \\ & \text { DO } 101 \\ & A 1 \\ & A 1\end{aligned}=N 3, N 4\)
    \(\begin{aligned} & \text { AMULT } \\ & \text { DO } 101 \\ & A 1 \\ & A 1\end{aligned}=N 3, N 4\)
    \(\begin{array}{ll}A(J 1) & =A(J 1)-A M U L T * A(J 3)\end{array}\)
    \(\begin{array}{ll}A(J 1) & =A(J 1)-A M U L T * A(J 3)\end{array}\)
    A1

J 3
\(\mathrm{~J}=\mathrm{J}=\mathrm{J}+1\)
    A1

J 3
\(\mathrm{~J}=\mathrm{J}=\mathrm{J}+1\)
    \(\mathrm{J} 3=\mathrm{J}=\mathrm{J}\)
\(\mathrm{N} 3=\mathrm{N} 3+\)
    \(\mathrm{J} 3=\mathrm{J}=\mathrm{J}\)
\(\mathrm{N} 3=\mathrm{N} 3+\)
\(\begin{aligned} N 3 & =N 3+N \\ N 3 & =N 4+N \\ N 4 & =N 1+N\end{aligned}\)
\(\begin{aligned} N 3 & =N 3+N \\ N 3 & =N 4+N \\ N 4 & =N 1+N\end{aligned}\)
    \(N 1=N 2+N\)
\(N 2=N 2+N\)
\(J 0=J 0-1\)
    \(N 1=N 2+N\)
\(N 2=N 2+N\)
\(J 0=J 0-1\)
    \(N 1=N 2+N\)
\(10=J 0-1\)
    \(N 1=N 2+N\)
\(10=J 0-1\)
    \(J=J+N+1\)
    \(J=J+N+1\)
\(300 \mathrm{~J}_{4}=\mathrm{J}_{4}^{++}{ }^{+} \mathrm{N}\)
\(300 \mathrm{~J}_{4}=\mathrm{J}_{4}^{++}{ }^{+} \mathrm{N}\)
    DENOM \(=A(d)\)
IF (DENOM .EO. O.O) 60 TO 51
    DENOM \(=A(d)\)
IF (DENOM .EO. O.O) 60 TO 51
\(60 \mathrm{~A}(\mathrm{~J})=\mathrm{A}(\mathrm{J} / \mathrm{IDENOM}\)
\(60 \mathrm{~A}(\mathrm{~J})=\mathrm{A}(\mathrm{J} / \mathrm{IDENOM}\)
    DET \(=\mathrm{DET*DENOM}\)
\(L T=J-N+1\)
    DET \(=\mathrm{DET*DENOM}\)
\(L T=J-N+1\)
\(L T=J-N+1\)
\(00400 \mathrm{~J}=\mathrm{LT}\),
\(L T=J-N+1\)
\(00400 \mathrm{~J}=\mathrm{LT}\),
400 B (Jl) = B(Jl) CDENOM
400 B (Jl) = B(Jl) CDENOM
    \(\mathrm{JO}=\mathrm{JK}\)
\(\mathrm{J} 2=\mathrm{J}-\mathrm{N}\)
    \(\mathrm{JO}=\mathrm{JK}\)
\(\mathrm{J} 2=\mathrm{J}-\mathrm{N}\)
    \(J_{2}=J-N\)
\(\mathrm{~S}_{4}=\mathrm{J}-\mathrm{N}+\mathrm{N}\)
    \(J_{2}=J-N\)
\(\mathrm{~S}_{4}=\mathrm{J}-\mathrm{N}+\mathrm{N}\)
    \(12=J 2-N\)
    \(12=J 2-N\)
    \(13=14{ }^{2}=\)
    \(13=14{ }^{2}=\)
    J3 \(=14\)
\(N 3=N 2+1\)
\(N 4=N 2+N\)
```

```
    J3 \(=14\)
\(N 3=N 2+1\)
\(N 4=N 2+N\)
```

```


```

 \(112=J 11+N+1\)
 $N 5=J-N R+1$

```
    \(112=J 11+N+1\)
\(N 5=J-N R+1\)
    DO \(200 \mathrm{~L}=1\), Jo
    DO \(200 \mathrm{~L}=1\), Jo
    \(A(J))=A(J 1)-A M U L T * A(J 3)\)
\(B(J 1)=B(J 1)-A M U L T * B(J 3)\)
    \(A(J))=A(J 1)-A M U L T * A(J 3)\)
\(B(J 1)=B(J 1)-A M U L T * B(J 3)\)
    \(J_{2}=J_{2}+N\)
\(J_{3}=J_{4}\)
    \(J_{2}=J_{2}+N\)
\(J_{3}=J_{4}\)
60 DET \(=\) DET*DENOM
60 DET \(=\) DET*DENOM
    \(J_{4}=J-N+2\)
    \(J_{4}=J-N+2\)
    DO 30 Li N \(=1\), Jk
```

 DO 30 Li N \(=1\), Jk
    ```
```

 Do \(401 \mathrm{~J}_{1}=\mathrm{N}_{3}, \mathrm{~N} 4\)
 \(A(J 1)=A(J 1)-A M U L T * A(J 3)\)
 $B(J 1)=B(J 1)-A M U L T B(J 3)$

```

```

 \(J 2=J 2-N\)
 \(\begin{aligned} & \\ & 500 N_{3}=N 3-N \\ & N 4=N 4\end{aligned}\)
 \(N 4=N 4-N\)
 $N 2=N 2-N$
$\mathrm{NO}=\mathrm{NO}-\mathrm{N}$
$\mathrm{J}=\mathrm{J}-\mathrm{N}-1$
$\begin{array}{ll}J 2=J-N- \\ J 2 & =J-N \\ 14\end{array}$
600
703 IE $=1$
703 RETURN
51 IE $=0$
IE $=\mathrm{O}^{\circ}$
GOTO 703
SIBFTC MXM
SUBROUTINE MXM (A,B,C)
DIMENSION A(1), B(1), C(1)
FOMMONCIHO, KA,41HMATRICES NOT CONFORMAL FOR MULTIPLICATION,I4,1HX,

```

```

 IROWA \(=A(1)\)
 ICOLA $=A(2)$
IROWB $=\mathrm{B}_{11}$
ICOLB $=8(2)$
IFITOLA.EE: 1ROWBIGOTO
WRITE GKOUT, 1001 MATCON, IROWA, ICOLA, IROWB, ICOLB
GO TO 6
$\mathrm{N}=1$ TROWA $* 1 \mathrm{COLB}+{ }^{-}$
DO 5 I $=1$.N
$5($ (I) $=0.0$
$=3$
$1=3$
$j=3$
$\mathrm{l}=3$
$k=3$
$\mathrm{k} x=3$
$\begin{array}{ll}\mathrm{KX}={ }^{3} \\ \mathrm{DO} & 10 \mathrm{M}=1,1 \text { ROWA }\end{array}$

```


```

 \(=1+1\)
 $k=k+1$ COLS
$\begin{aligned} k & =k+ \\ 1 & =1 x \\ j & =j+1\end{aligned}$
$k=$
$J=\begin{gathered}J+1 \\ k x= \\ k x+1\end{gathered}, ~$
$\begin{aligned} & 9 \\ & k=k x \\ & t x=1 x+1 \text { COLA }\end{aligned}$

```

```

 \(10 \mathrm{KX}={ }^{3}\)
 $6(1)^{3}=A(1)$
$0 \mathrm{KX}=3$
$C(1)=A(1)$
$C(2)=S(2)$
$c(2)=$
RETURN
RETURN
END
SIBFIC M
SUBRoutine mTXM (A, B, C)

```


TABLE XXIII (Continued)
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline & 0.1348 & \\
\hline & & \\
\hline & 0.18000 & \\
\hline & 100 & \\
\hline & & \\
\hline & 0.13482 & \\
\hline & 0.15000 & \\
\hline & . 59168 & \\
\hline & 34 & \\
\hline & & \\
\hline & 0.150 & \\
\hline & 0.591 & \\
\hline & & \\
\hline & 0.13482 & \\
\hline & 0.120 & \\
\hline & . 23 & \\
\hline & 0.2669 & \\
\hline & & \\
\hline & 140 & \\
\hline & 0.140 & \\
\hline & . 13 & \\
\hline & 26 & \\
\hline & & \\
\hline & 0.120 & \\
\hline & 0.154 & \\
\hline & & \\
\hline & 0.26 & \\
\hline & 0.133 & \\
\hline & 0.12 & \\
\hline & 0.120000 & \\
\hline & . 1 & \\
\hline & 0.15 & \\
\hline & 0.13 & \\
\hline & & \\
\hline & 0.10 & \\
\hline & - .100 & \\
\hline & -0.128681 & \\
\hline & & \\
\hline & 0.26 & \\
\hline & 0.13 & \\
\hline & \(0 \cdot 100000\) & \\
\hline & . 10000 & \\
\hline & 0.128 & \\
\hline & 0.128 & \\
\hline & 0.133 & \\
\hline & 0.266 & \\
\hline & 0.80000 & \\
\hline & 8000 & \\
\hline & -0.514724 & \\
\hline & . 51 & \\
\hline & 0.26 & \\
\hline 140 & 0.13349 & \\
\hline & 0.1400000E & \\
\hline & 0.14 & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

COMMON KIN All), B(1), C11
COMMON KIN, KOUT
\(114,5 \mathrm{HMULT}, 14,2 \mathrm{HX}\) 14)
MATCON \(=\) MATCON +1
ICOLA \(=A(1)\)
IROWA
IROWA \(=A\{2\}\)
1ROWB \(=B(1)\)
COLB \(=B(2\)
IFITCOLA.EO. 1 ROWBIGO TO 4
WRITE (KOUT, 100) MATCON, IROWA, ICOLA, IROWB, ICOLB
GO TO 6
\(4 \mathrm{~N}=1\) IROWA \(* 1\) COLB +2
\({ }^{00} 5^{5}=1=1, N\)
\(C(1)=0.0\)
\(1 x=3\)
\(\mathrm{I}=3\)
\(=3\)
\(\mathrm{k}=3\)
\(k=3\)
\(k x=3\)
\(\begin{array}{lll}\mathrm{DO} & 10 \mathrm{M} & =1 \text {, IROWA } \\ \mathrm{DO} & \mathrm{M}\end{array}\)


\(1=1+\) IROWA
\(8 k=k+I C O L B\)
\(\mathrm{j}=\mathrm{I} x\)
\(j=1\)
\(j+1\)

\(k=k x\)
\(1 x=1 x+1\)
\(1=1 x\)
\({ }_{10} \begin{gathered}k=3 \\ k x=3\end{gathered}\)
\(\begin{aligned} & 10 \mathrm{KX}=3 \\ & 6(11)^{3}=A(2) \\ & C(2)=B(2)\end{aligned}\)
RETURN
SIBFTC MSM
SUBROUTINE MSM \((A, B, C)\)
OIMENSION AC1),
COMM
FORMATIIHL,3BHMATRICES NOT CONFORMAL FOR SUBTRACTION, \(2 \times\). 6 HIROWA \(=.1\)


IFACD NE. B (1) 1001040

\(L=1 F 1 \times(A, 1\)
\(D 0101=3, L\)
\(C(1)=A 1)-B(1)\)
C(1) \(=A(1)-B\)
\((11)=B(1)\)
\(C(1)=8(1)\)
\(C(2)=8(2)\)
WRITE(KOUT, 100)A(1),B(1)
GO TO 20
WRITE(KOUT, 101)A12), BI2)
WRITE(KOUT,101)A(2), B(2)
GO TO 20
GNO
ENO
\(\begin{array}{rrr}51 & 51 & \\ 1 & 1 & 0.1348250 E\end{array}\)

\section*{APPENDIX D}

\section*{A DIGITAL COMPUTER PROGRAM FOR CALCULATING \\ \[
[G I M] \text { AND }[G I R]
\]}

This digital computer program solves the twenty-one simultaneous equations described in Chapter II. Then, it reindexes the solution values such that for \([\) GIM \(]\) the selected redundant internal forces are zero and the remainder of the \([G I M]\) matrix is made up of the solution values. For \([G I R]\), the selected redundant internal forces are set equal to witity with the solution values making up the remaining positions.

The input to this program consists of the [COEF \(]\) and [CONST \(]\) matrices, both of which are described in Chapter II, placed side-by-side and listed as one large matrix. The solution matrix is found by the Gaussian elimination process and listed. The solution matrix is then broken apart and a zero matrix inserted at the appropriate locations for the formation of [GIM]. This process is repeated except that an identity matrix is inserted at the appropriate locations ta form [GIR].

The subroutines included in this program are as listed:
1. The READ 3 Subroutine, which reads in all input data.
2. The SOLVE Subroutine, which determines the solution values.
3. The MOVE Subroutine, which breaks apart the solution
matrix for the insertion of the identity and zero
matrices.
4. The IDENT Subroutine, which places the identity and zero matrices in the appropriate locations in the solution matrix.
5. The PRINT 1 Subroutine, which prints the final results.

A complete Fortran listing of the main program and the required subroutinesare given in Table XXIV。

\section*{TABLE XXIV}

A FORIRAN PROGRAM FOR DETERMINING THE MATRICES [GIM] AND [GIR]
```

\$ID B-OOO1 STONE
SIEFTC MAIN NODECK
DIMENSION AINPUT(1000),OUTPUT(1000),1N (21),1CTLR(27),ICTLC(36),SOL(1000),
(1000),TEMP(1000),GIM(2000)
oimension idilz)
READ(5,100)ID
CALL READ3(AINPUT,21,36
CALL SOLVE(AINPUT,OUTPUT,IN ,21,36)
CALL PRINT1IAINPUT,6,21,36,0,0,0,0,0,ID
READI5,100M1D
ICTLC(I)=I+2
l
DO2I=1,3
l
3 - ICTLR(1+6)=1
4 ICTLC(1)=1
READ(5,100:10
CALL MOVE(SOL,GIM,21,15,3,27,9,ICTLR,ICTLC)
CALL PRINT1GGM,5,27,0,0,0,0,0,0,1D)
CALL IDENT(GIM,27;27,
O05:=1,6
ICTLC(1)=I+3, MEM,27,27,2,27,6,0,1CTLC
ICTLR(1)=1
\CTLR(2)=2
6 DO6I=4,21 (CTLR(1+6)=1
7 ICTLC[!)=
CALL MOVEISOL,TEMP,27,15,3,27,6,ICTLR,ICTLCI
READ(5,200)TO
TEMP(26)=1:0
TEMP (33)=1:0
TEMP (47) =1.0
CALL PUNCH2(TEMP,7,27,6)
CALL PRINT1:TEMP,6,27,6,0,0,0,0,0,101
CALL EXIT
sIbFTC
SUBROUTINE READ3 (A,IROW,ICOL)
C A SIMROUTNE OF THE MATRIX PACKAGE DECK WRITTEN EY BILL ACCOLA

```
1001 FORMAT(I2,IB,I10,E14.7)

2001 FORMATIT2,18,110,E14.7) IUNT \(_{\text {KMAX }}=5\) IROW*ICOL

\({ }^{3} A(K)=0.0\)
5 READITUNT,1001I ITM,I,J,Y IFAITM.EO,9) RETURN
IFII.LE.O) GO TO

 IF(J.GTICOL) 60 TO
JK1 \(=(I-1) * C O L+1\) JK1 \(=11-1\)
\(A(J K 2)=Y\)
\(G 0 T O=5\)
A(JK1) \(=Y\)
GO \(10=5\)
10 IERR \(=901\)
GORR \(=901\)
GO TO 12
12 GOTO 12
12 ERR \(=902\)
GOTE(3,2001) IERR, \(1, J\)
GO TO 5 \({ }^{\text {GO TO }}{ }^{\text {TO }} 5\)
SIBFTC IDENT NODECK SUBROUTINE NODECK (ADENT (A,IROW) DIMENSION A:1) \(1 \mathrm{COLCT}=0\)
\(\mathrm{IRROW}=1\) IELMEIROW*IROW
DO 3 I=I,IELM
IFIICOLCT.GT.IROW)GO TO 2
1 AlII \(=0.0\)
IFIICOLCT.EO. INROWIACI \(=1.0\)
GO TO
2
\(1 \mathrm{COLCT}=1\)
INROW=1NROW+
3 GOTOI
RETURN
\$IBFTC PUNCHZ NODECK SUBROUTINE PUN
DIMENSION AII)
1COLCT=
IELM= 1 ROW * 1 COL
DO 3 I=1, IELM
IFIICOLCT.GT.ICOL)GO TO
1 IFIATII.EQ.0.01G0 TO 3
WRITEIIUNT 2001 I INROW,ICOLCT,AII)
\(2 \begin{gathered}\text { GO TO } 3 \\ \text { ICOLCTE }\end{gathered}\)
2 ICOLCTE1
INROWO INROW+1
GO TO 1

TABLE XXIV (Continued)

3 continue
WRITE(IUNT,2002)

RETURN
END
SIBFTC SOLV NODECK
SUBROUTINE SOLVEIA,B,INTX,IROW•ICOL)
C A SURROUTINE OF THE MATRIX PACKAGE DECK WRITTEN GY 日ILL ACCOLA
SOLVE SIMULIANEOUS EQUATIONS-A AIS INPT MATRIX OF COEFFICIENTS AND
SOLUTIONS AUGMENTED B IS OUTPUT MATRIX OF IDENTITY AND UNKNOWNS C AUGMENTED.
200 IENT \(=\) IENT +1
FORMAT/19HK \(N=1 R O W+1 \mathrm{COL}\)
\(\mathrm{DO} 1 \quad 1=1, \mathrm{~N}\)
\(18(1)=A 11\)
LOOP \(=1\)
LOOP \(=1\)
INROW \(=\) LOOP
\(11 \quad\) INROW \(=\) LOOP

15TOP \(=\) ISTART+IROW-LOO
NCOL LOOP
DO
NCOL=LOOP
DO3IIISTAR

        TEMP \(=\) B(I)
IROWHD 1 INROW
IHOLD=NCOL
    IROWHDEINROW
IHOD=NCOL
NCOL \(=N C O L+1\)
    NCOL \(=\) NCOL 1
    INROW \(\mathrm{INROW}+1\)
IF(INROW.LE.IROW)GO TO 21
    INTX(LOOP) \(=1\) HOLD
    ISTART \(=\) (IROWHO-1)*ICOL +1
ISTOP 1 ITART + ICOL-1
    STOP \(=1\) ISTART \(+1 \mathrm{COL-1}\)
SUBB \(=(\) LOOP -1\()+1 \mathrm{COO}+1\)
    DO41I=ISTART:ISTOP
    TEMP \(=\) (IS SUB \()\)
    \(\mathrm{B}(15 \mathrm{SUB})=\mathrm{B}(1)\)
i SUBE \(=1 \mathrm{SUBB}+1\)
41 BiIf=TEMP

    1SUBB=LOOP
    TEMP \(=B(15 U B B)\)


51
\(15 \cup B S=15 \cup \mathrm{SBE}+1 \mathrm{COL}\)
NCOL \(=100\)
\(N R O\)



STORE \(=1 . / B 11\)
DO 3 L×1, J
\(3 \mathrm{~B}(\mathrm{~L})=\mathrm{STORE*B(L)}\)
\(4 \mathrm{~B}(1)=1\).
4 Bl11=1.
5 IFIJ.GT.
STORE=B(J)
\(\mathrm{K}=\mathrm{J}+1 \mathrm{ICOL}-\mathrm{NCO}\)
\(\mathrm{M}=\mathrm{I}\)
DO
\(\mathrm{M}=1\)
DO
\(8(1)\)
\(6 \underset{M F}{M F}\)

IFINROW.EO.
NROWNROW
.
GO TO 5
JFILOOP.GE.IROW)GO TO 8
LOOP = LOOP +1
\(8 \quad\) GOOTO 11
NDIFFZICOL-IROW-
IHOLD \(=1 N T X(L O O P)\)
IF(IHOLD.EO.LOOP)
ISO
ISTARTELOOP \(=\) ICOL
ISTOP \(=\) LOOP ICOL
ISUBBEIHOLD*ICOL-NDIFF
DOIOI 1 START \(15 T O P\)
DO1OI=1START,ISTOP
TEMP \(=\) BII
TEMP \(=B(1)\)
\(B(1)=B(I S\)
BTISUBE)=TEMP
ISUBE
R
\({ }_{111}^{10}\)
\(15 U B 8=15 U B 8+1\)
LOOP \(=\) LOOP-
IF 1 LOOP.LE-O) RETURN
12 GOTTO \({ }^{\text {GRITETG,100IIENT }}\)
\begin{tabular}{l} 
WRITEIG \\
RETURN \\
END \\
\hline
\end{tabular}
SIbFTC \({ }^{\text {END }}\)
MOVE NODECK,LIST
SUBROUT INE MOVE (A,
SUBROUTINE MOVELA,B,IROWA,ICOLA,IDEL, IDROW,IDCOL, ICTLR,ICTLC
2001
FORMATIIHK,SHERROR,14,9H IN ENTRY, 3 , BH OF MOVE)
IERR=120
IENT=IENT+1
KDEL \(=10 E L+1\)
KDELLIDEL
ISWTCHEO
ICOCT
ICOLCT=0
INROW=1
\(j K=0\)
IFIIROWA.EQ.O)GO TO 99
IF 1 ICOLA.EQ.O. 160 TO 98
IF
IFIDEL.GI.4160 TO 97
ITIDEL-IDROW-IDCOL.EO.IDEL) \(G O\) TO 30
IELB=10ROW*1DCOL
D099991=1,IELB

TABLE XXIV (Continued)

ICOLCT=ICOLCT+1
IF(ICOLCT.EO.IDCOL+1)GO TO 50
60 TO \(12,3,6,3,11\); KDEL
\(\begin{array}{ll}\mathrm{JK}=1 \\ 60 & 20\end{array}\)
so INROW*INROW+1
\(\mathrm{NROLCT}=1\)
GO
TO

DO4J=1,IROWA
IF(J.EG.ICTLRGINROW)IGO TO
CONTINUE
GO TO 999
JK \(=1 \mathrm{~J}=1) * 1 \mathrm{COLA+ICOLCT}\)
IFADEL*EO.4)GO TO
60 TO 20

CONTINUE
GO TO
OG9

IK=IINROW-1) \(\geqslant 1 \mathrm{COL} A+j\)
GO TO 20
\(J K I=J K\)
\(J K 1=J K\)
60 TO
\(J K=J K+J J-1\) COLCT
60 TO 20
DO12 \(121,1 R O W A\)

IF(ISWTCHOGE 3 )INROW) GO TO 13
IF(J.FO.ICTLRIICOLCT) IGO TO 14
GO TO
\(\mathrm{JK} 1=\mathrm{j}\)
ISWTCH \(=15\) WWTCH +2
GO TO 17
ISWTCH \(=15 W T C H+3\)

IFIISWTCH.EQ.5IGO TO 16
CONTINUE I SWTCH=0 ISWTCH=0
GO TO 9999
\(16 \quad \mathrm{JK}=(\mathrm{JKI}-1) * \mathrm{iCOLA}+J K 2\)
\(20 \quad \begin{aligned} & 15 W T C H=0 \\ & B(I)=A(J K)\end{aligned}\)
\(\stackrel{20}{9999}\)
RETURN
IFIIDEL.EQ.O:GO TO 1
IERR \(=\) IER \(R+1\)
IERR
IERR
IER +1


```

gigFtC ENDINTI Nodeck
SUBROUTINE PRINTIIA,IUNT,IROW,ICOL,IDEL,IDROW,IDCOL,ICTLR,ICTLC
DID)
C A SUBROUTINE OF THE MATRIX PACKAGE DECK WRITTEN BY BILL ACCOLA
¢ A SUBROUTINE OF THE MATRIX PACKAGE DECK WRITTEN BY BILL ACCOLA
FORMAT(1H1,12AG,10X,4HPAGE,13)
2002 FORMAT(1X.10I12)
\,
IPG = 1
JSTR = 1
IENT=IENT+1
IDCO
STP=IROW
10 KDEL=1DEL+1
37 JSTP2=1COL
MSTPI=1CO
11.IF(10COL.EQ.0)GO TO 90
JSIP1 = IOCOL

```

```

 MRITEIIUNT,2001) ID,IPG
 00301=1,15TP
 DO 5 K=1,10
 GO TO (12,7,12,7,7),KDEL
 12 }\quad\begin{array}{l}{1K=1}
{60}
{60}
G0 40.8
IFIIK-GT.IROW)GO TO 97
IF(IK.LE.O) 60 TO 21
8 IK=1IK-1)NICO:
GO TO (13,13,14,14,16),KDE
13 JK=J
14 JK=ICTLC!J)
IF(JK.GT.IC
16 JK=1CTLR(J)
IF(JK.GT.ICOLIGOTO
19
JK=JNSTK+\
21 20 MONINUE}\mathrm{ IFIJSTP.GT.10,G0 TO 22

```

MP070710
MPO40010
MP040020
MP 400020
MP 040030 \begin{tabular}{l} 
MPO40030 \\
MPO40040 \\
\hline
\end{tabular} MP P 400 Cl
MP 040050
MP 040060 MP 040060
MPO40070
 MPO40080
MP 40090
MP040100 MPO4010 \begin{tabular}{l} 
MPO40110 \\
MP 040120 \\
\hline
\end{tabular}

MPO 04140
MP 040150
MPO 040160
MPO40150
MPP40160
MP 040170
MPO
MP 04016
MPO
MP
MPO
MPO4018
MPO 0419
MPO 040200
MPO4O190
MPP40200
MP040210
\begin{tabular}{l} 
MP MP 040210 \\
MP 040220 \\
\hline
\end{tabular}
MPO40220
MP 0 O2230
MPO 020240
MPO42230
MP 20240
MP40250
MPO 40250
MP 40260
MPO4O260
MPO 40270
MPO40270
MP
MP 240290
\(M P 040300\)
MPO
MPO 40300
\(M 040\)
MPO40310
MPO40320
MPO 030330
\begin{tabular}{l} 
MPO4 \\
MPO \\
MPO 40330 \\
\hline
\end{tabular}
MPO4O
MPO
MPP40350
MPO40360
MPO
MPO4O360
MPO40370
MPO 40380
MP 040380
MP 040390
MPO40390
MP 040400
MP 40400
MPO 40410
MP P 40420
MPO 040430
\begin{tabular}{l} 
MPO40430 \\
MPO 040440 \\
\hline
\end{tabular}
\begin{tabular}{l}
MPO \\
MPO 040450 \\
MPO 04040 \\
\hline
\end{tabular}
MP 040460
MP 040470
MPO40470
MPO 040480

MP 4040500
MPO 40510
MP040510

TABLE XXIV (Continued)
\(30 \stackrel{w}{c}\)
ONTE (HUNT,2003)1, (TJI,J=1,JSTP:
IFUSTP.EO.JSTPZIRETURN
FiJSTP.EO.IDCOL) RE TURN
JSTR \(=\mathrm{JSTP}+\mathrm{I}\).
22
23

60 TO 30
ISTP=10
IFST
\(\mathrm{JSTP} 2=1 \mathrm{COL}\)
GOTOL
24 ISTP=IDRO
25
96
97
99
100
FIIDEL.NE.0)GO T0 100
60 TO
IERR \(=10\)
IERR +1
\(\mathrm{I} E R \mathrm{R}=\mathrm{IERR}+1\)
\(\mathrm{I} E R \mathrm{R}=\mathrm{IERR}+1\)
\(I E R R=I E R R+1\)
\(I E R R=I E R R+1\)
 END
sENTRY
\begin{tabular}{|c|c|}
\hline R1X & \\
\hline 1 & \(11.0000000 \mathrm{E}+00\) \\
\hline 1 & 2-1.0000000E+00 \\
\hline 1 & \(71.0111873 \mathrm{E}+01\) \\
\hline 2 & \(21.0000000 \mathrm{E}+00\) \\
\hline 2 & 3-1.0000000E+00 \\
\hline 2 & \(81.0111873 \mathrm{E}+01\) \\
\hline 3 & \(31.0000000 \mathrm{E}+00\) \\
\hline 3 & 9 1.0111873E+01 \\
\hline 4 & 7-1.0012385E+01 \\
\hline 4 & \(101.00123855+01\) \\
\hline 5 & 8-1.0012385E+01 \\
\hline 5 & \(111.0012385 \mathrm{E}+01\) \\
\hline 6 & 9-1.0012385E+01 \\
\hline 8 & \(121.0012385 \mathrm{E}+01\) \\
\hline 7 & 10-1.0012385E+01 \\
\hline 7 & \(131.0012385 \mathrm{E}+01\) \\
\hline 8 & 11-1.0012385E+01 \\
\hline 8 & \(141.0012385 \mathrm{E}+01\) \\
\hline 9 & 12-1.0012385E+01 \\
\hline 9 & \(151.0012385 \mathrm{E}+01\) \\
\hline 10 & \(41.0000000 \mathrm{E}+00\) \\
\hline 10 & 5-1.0000000E+00 \\
\hline 10 & 13-1.0111873E+01 \\
\hline 11 & \(51.0000000 \mathrm{E}+00\) \\
\hline 11 & 6-1.0000000E +00 \\
\hline 11 & 14-1.0111873E+01 \\
\hline
\end{tabular}

MP 040530
MP 040540 MPO40530
MP 040550
MP040560

 MPO 040590
MPO 040600 MP 040600
MP 040610 MP 040610
MP 040620 MP 040620
MP 040630
MP 040640 MPO40640
MPO 040650 MP 040660
MP 040670 MP 040670
MPO 040680 MPO40680
MP040590 MPO 40700
MPO 40710 MP 040720
MP 040730
 MPP40750
MP 040760 MP P 40770
MP 040780

215 IMEGNSTAPFARDCI
215 IMEGNSTAPFARDCI 21SIMEGNSTAPFARDCI
215 IMEONSTAPFARDCI 21SIMEQNSTAPFARDC1 \(2151 M E G S T A P A R D C 1\) 21SIMEQNSTAPFARDC 21SIMEENSTAPARDC,
\(21 S\) IMONSTAPFARDC 21SIMENSTAPARDC,
21SIMENSTAPARDRC 1SIMEQNSTAPFARDC1
21SIMEQNSTAPFARDCI
215 IMEONSTAPFARDC1
21SIMEONSTAPFARDC1
21SIMEONSTAPFARDC1
ISISEONSTAP
1SIMEQNSTAPFARDC
15 SMEQNSTAPFARDC
21SIMEONSTAPARDCI
\(21 S\) IEONSTAPFARDC1
215:MEONSTAPFARDC
1 SIMEONSTAPFARDC
1 SIMEONSTAPFARDC
21SIMEONSTAPFARDC1
21 SIMEONSTAPFARDC1
\(21 S\) IMEONSTAPFARDC1
\(21 S I M E Q N S T A P F A R D C 1\)
21SIMEDNSTAPFARDC1
21 SIMEONSIAPFARDC1
21SIMEONSTAPFARDC1
21SIMEONSTAPFARDCI

\(61.0000000 \mathrm{E}+00\)
\(15-1.0111873 \mathrm{E}+01\)
\(77.000000 \mathrm{E}+00\)
\(8-5.0000000 \mathrm{E}+00\)
\(161.0000000 \mathrm{E}+00\)
\(6.1 .0000000 \mathrm{E}+00\)
\(6.0000000 \mathrm{E}+00\) - \(6 \cdot 0000000 \mathrm{E}+00\)
\(-4.0000000 \mathrm{E}+00\)
\(18 \quad 1.0000000 \mathrm{E}+00\)
9
\(9.0000000 \mathrm{E}+00\)
\(201.0000000 \mathrm{E}+00\)
\(107.0000000 \mathrm{E}+00\)
\(11-5.0000000 \mathrm{E}+00\)
\(11-5.0000000 \mathrm{E}+00\)
\(16-1.0000000 \mathrm{E}+00\)
\(16-1.000000 \mathrm{E}+00\)
\(171.000000 \mathrm{E}+00\)
\(116.0000000 \mathrm{E}+00\)
\(12-4.0000000 \mathrm{E}+00\)
\(12-4.0000000 \mathrm{E}+00\)
\(18-1.0000000 \mathrm{E}+00\)
\(18-1.0000000 \mathrm{E}+00\)
\(191.000000 \mathrm{E}+00\)
\(125.0000000 \mathrm{E}+00\)
\(125.000000 \mathrm{E}+00\)
\(20-1.000000 \mathrm{E}+00\)
\(211.0000000 \mathrm{E}+00\)
\(211.0000000 \mathrm{E}+00\)
\(137.000000 \mathrm{E}+00\)
\(14-5.000000 \mathrm{E}+00\)
\(14-5.0000000 E+00\)
\(17-1.0000000 \mathrm{E}+00\)
\(146.0000000 \mathrm{E}+00\)
\(14.6 .0000000 \mathrm{E}+00\)
\(15-4000000 \mathrm{E}+60\)
\(19-1.0000000 \mathrm{E}+00\)
\(15-5.000000 \mathrm{E}+00\)
11
\(\begin{array}{ll}21 & 1.0 \\ 22 & 1.0\end{array}\)
\(3011.001235 \mathrm{E}+00\)
\(31-1.000000 \mathrm{E}+00\)
\(31-1.0000000 \mathrm{E}+00\)
\(321.000000 \mathrm{E}+00\)
\(32-1.000000 \mathrm{E}+00\)
\(32-1.0000000 \mathrm{E}+00\)
\(331.000000 \mathrm{E}+00\)
\(231.000000 \mathrm{E}+0\)
\(33-1.00000000 \mathrm{E}+0\)
33 E
\(33-1.0000000 \mathrm{E}+00\)
\(34-1.0000000 \mathrm{E}+00\)
\(351.0000000 \mathrm{E}+00\)
\(351.0000000 \mathrm{E}+00\)
\(35-1.0000000 \mathrm{E}+00\)
\(35-1.0000000 \mathrm{E}+00\)
36
24
\(241.0012385 \mathrm{E}+00\)
\(36-1.0000000 \mathrm{E}+00\)
\(36-1.000000 \mathrm{E}+00\)
\(251.0111873 \mathrm{E}+00\)
30
\(\begin{array}{ll}25 & 1.5100000 \mathrm{E}-02 \\ 32 & 2.5000 \\ 22 & 1.500000 \mathrm{E}-01\end{array}\)
\(221.5000000 \mathrm{E}-01\)
\(232.500000 \mathrm{E}-02\)
\(285.000000 \mathrm{E}-01\)
\(285.0000000 \mathrm{E}=01\)
\(291.0000000 \mathrm{E}+00\)
\(302.500000 \mathrm{E}-02\)
\(\begin{array}{ll}30 & 2.5000000 \mathrm{E}-02 \\ 23 & 2.5000000 \mathrm{E}-02\end{array}\)
\(32.5000000 \mathrm{E}-02\)
\(4-2.5000000 \mathrm{E}-02\)
\(7-5 \cdot 0000000 \mathrm{E}-01\)
\(8.000000 \mathrm{E}-01\)

21SIMEONSTAPFARDC 21SIMEQNSTAPFARDC
\(21 S I E Q N S T A P A R D C\) 2151 MEQNSTAPFARDC
\(22 S I M E G S T A P F A R D C\) 21SIMEGSNTAPFARDC
\(2151 M E N S T A P A R C\)
2151 21SIMEGNSTAPFARDC
\(21 S\) MEONSTAPFARDC 21SIMEOSTAPAPAROC
215 IMESSTAPARDC 215 IMEONSTAPFARDC1
\(21 S I M E O N S T A P F A R D C 1\)
    21 SIMEONSTAPFARDC1
215 SIMEGNSTAPARDC1
    2151 IEQNSTAPFARDC
\(215 M E Q N S T A P F A R D C 1\)
    21 SIMEQNSTAPFARDC.

    21SIMEQNSTAPFARDC
21SIMEQNSTAPFARDC
    \(215 I M E Q N S T A P F A R D C\)
\(21 S I M E Q N S T A P F A R D C\)
    21SIMEANSTAPFARDC
21 SIM
21 SEARDC
    2151 MEONSTAPFARDC
    21 SIMEONSTAPFARDC
    21SIMEQNSTAPFARDC
    21SIMEOSTAPFFADC
\(21 S 1 M E N S\) FAPFARDC
\(215 I M E O N S T A P F A R C\)
    \(21 S I M E Q N S T A P F A R D C\)
\(21 S I M E N S T A P F R D C\)
\(21 S I M E Q N S T A P F A R D\)
21 SIMEONS

ISIMEONS, CORR-CINST,RDC1
Z1SIMEONS, CORR-CONST,RDC
21SIMEQN, CORR CONST, RDDC
215 IMEONS . CORR-CONST
215:MEONS. CORR-CONST RDC
\(215 I M E O N S\). CORR-CONSTTRDC
2SIMEONS,CORR-CONST,RDC
\(2151 M E O N S\), CORR-CONSTRDC
\(2151 M E O S\),CORRCONSTRDC
ISIMEONS, CORR-CONSTRDC
21SIMEONS:CORR-CONSTRTRDC
21SIMEOS:CORPCONST
21SIMEONS:CORR-CONST, RDC
21SIMEQNS, CORR-CONST,RDC1
\(21 S I M E O N S\),ORR-CNST;RDC
1SIMEONS, CORR-CONST,RDC
21SIMEONS, CORR-CONST,RDC
21SIMEONS, CORR-CONSTRDC
21SIMEONS.CORR-CONST, RDC1
21SIMEQNS, CORR-CONST,RDC1
1SIMEQNS, CORR-CONST, RDC
1SIMEQNS, CORR-CONST,RDC
21SIMENS*CORR-CONSTRDCI
21SIMEONS \(\quad\) CORR-CONST,RDC1

TABLF XXIV (Contraued)
```

 21
 21 [l
 SOLUTION MATRIX
GIM FROM SOLLIIONS
GIR FROM SOLUTIONS sibsys

```

1SIMEONS, CORR-C INST.RDC
15IMEQNS, CORR-CONST,RDCI 21SIMEONS, CORR-CNST,RDCI
2ISIMEQNS,CORR-CONST,RDC1

\section*{APPENDTX E:}

\section*{TREATMENT OF EXPERIMENTAL DATA}

The experimental strain data were processed by the IBM 7040 Digital Computer. The basio data obtained from the strain gages are reduced to Values per unt Load for each of the Load conditpons.

The strain vause are obtained by finding the most rellable tinear relationship using the Leastonquares creteriono The method of Ieast squares prowides thet the most probable function for a quantity obtained from a set of moasurenents te the functuon which mingmizes the sum of the squares of the deviathons or exors of these measurementso In a
 of pained values of two variables \(x\) and \(y\) pis desired. Predictions of a palve ty \(y\) one chen be based upon an assumed or observed yalue of xo The word "best is synonomous when the method of least squares (u4).

It ie assumed that (ys ar) whon are the date (y beine a strain waiue and yo betng a comesponding wawue ai load oell load) suoh that

\[
Y_{i}=\alpha+\beta X_{i}+\mathcal{B}_{i}
\]
where of and \(\beta\) are vniknow parameters and ei is the errer present wot each observarion. Least squares estumators awe found tox of and \(\beta\) by minmizing the sum on squares of the exrome, \(\sum_{i=1}^{n} e_{i}^{2}\)

The Anear model can be solved fox \(e_{i}\) to give
\[
\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2}=\sum_{i=1}^{n}\left(\alpha+\beta x_{i}-y_{i}\right)^{2}
\]

A function of two variables is minimized by taking the partial derivefive of the function with respect to each of the variables in turn and setting each dempative equal to zero.

Thus, the first partial derivative is
\[
\frac{\partial}{\partial \alpha} \sum e_{i}^{2}=\sum 2\left(\alpha+\beta x_{i}-y_{i}\right)=0
\]
or expressed differertyg th is
\[
n \alpha+\beta \sum X_{i}=\sum Y_{i}
\]

The second partial derivative is
\[
\frac{\partial}{\partial \beta} \sum e_{i}^{2}=\sum 2 x_{i}\left(y_{i}-\alpha-\beta x_{i}\right)=0
\]
or expressed differently
\[
\alpha \sum x_{i}+\beta \sum x_{i}^{2}=\sum x_{i} y_{i}
\]

The equations
\[
\begin{aligned}
& \alpha n+\beta \sum x_{i}=\sum Y_{i} \\
& \alpha \sum x_{i}+\beta \sum x_{i}^{2}=\sum X_{i} Y_{i}
\end{aligned}
\]
are simultaneous for \(\alpha\) and \(\beta\).
The wo equations above can be solved for \(\alpha\) and \(\beta\) to give
\[
\begin{aligned}
& \hat{\alpha}=\frac{\left(\sum Y_{i}\right)\left(\sum X_{i}^{2}\right)-\left(\sum Y_{i} X_{i}\right)\left(\sum X_{i}\right)}{n\left(\sum X_{i}^{2}\right)-\left(\sum X_{i}\right)^{2}}=\bar{Y}-\hat{\beta} \cdot \bar{X}_{1} \\
& \hat{\beta}=\frac{n\left(\sum Y_{i} X_{i}\right)-\left(\sum Y_{i}\right)\left(\sum X_{i}\right)}{n\left(\left\langle X_{i}^{2}\right)-\left(\sum X_{i}\right)^{2}\right.}
\end{aligned}
\]
where:
\(\hat{\alpha}\) is defined as the least squares estimator of \(\alpha\).
\(\hat{\beta}\) is defined as the least squares estimator of \(\beta\).
\(\sum \equiv \sum_{i=1}^{n}\).
\(\bar{y}=\) mean of \(\overline{y z}_{\frac{1}{i}} s\),
\(\overline{\mathrm{x}}=\) mean of \(\mathrm{x}_{\mathrm{i}}{ }^{\circ}\) s.
\(\hat{\alpha}\), now, is the intercept and \(\hat{\beta}\) is the slope of the "best" straight line positioned among the data points. \(\hat{\beta}\), then, is the unit strain per unit load cell load and is the ultimate objective of the above calculations. \(\hat{\alpha}\), the intercept, is merely a function of the value at which the strain indicators are initially balanced or zeroed. See Figure 52.


Figure 52. Typical Experimental Data
```

Correlation of Experimental Data

```

In the previous section, constants in a Iinear equation relating two variables, \(x\) and \(y\), were determined by using pairs of observations
( \(x_{i}, y_{i}\) ) of these variables. The determination of these constants was based entirely upon the assumption that a linear relationship exists between \(x\) and \(y\). This assumption is quite reasonable as the experimental model is loaded only within its elastic range which implies Hookean stress-strain behavior.

The situation may arise such that it is not known in advance whether the two variables x and y are related. Furthermore, if pairs of observations ( \(x_{i}, y_{i}\) ) are taken as before, the data may be scattered so widely because of experimental errors that it is not clear whether or not there is any relation between \(x\) and \(y\). By representing the observac tions ( \(x_{i}, y_{i}\) ) graphically, a picture (Figure 53) similar to Figure 52 might be obtained. Are \(x\) and \(y\) related, or are they not? Is there any "correlation" between \(x\) and \(y\) ?

There are an infinite variety of possible functional relationships between \(x\) and \(y\). There is no general way of investigating all possible relationships but the simpler ones can be checked. The simplest one, of course, is a linear equation. Therefore, a reasonable place to begin is to ask whether there is a linear relationshlp between x and y , i.e., a "line ar sorrelation."

This question can at least be answered partiaily by taking a special case of the method of least squares for two unknowns. A Inear relationship between \(x\) and \(y\) can be assumed
\[
Y=m X+b,
\]
and the constants \(m\) and \(b\) can be determined from observations ( \(x_{i}, y_{i}\) ) in the same manner as in the previous section. In particular,
\[
m=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}}
\]

The scattered points are represented by drawing the "best straight line" through them. Then, the expression for \(e_{i}\) is
\[
e_{i}=m x_{i}+b-y_{i}
\]
\(e_{i}\) represents the vertical distance between the point ( \(x_{i}, y_{i}\) ) and the straight line described by the constants \(m\) and \(b\). In this case, the method of least squares minimizes the sum of the squares of the vertical distances between the point and the straight line. The line determined by this procedure is sometimes called the "Ine of regression of \(y\) on \(x_{0}{ }^{n}\) If there is no correlation at all between \(x\) and \(y\), the sum of squares will be minimized by a horizontal line, or \(m=0\).


Figure 53. Scattering of Data Points

There is no particular reason for writing the assumed relationship between x and y in the form
\[
y=m x+b
\]

It could just as weil heve been written
\[
x=m^{\prime} y+b^{\prime}
\]

In which case the roles of \(x\) and \(y\) have been reversed. In this case \({ }_{8}\) the error used in the method of least squares is given by
\[
e_{i}=m^{\prime} y_{i}+b^{\prime}-x_{i}
\]

The method of least squares now minimizes the sum of the squares of the horizontal distance between the line
\[
x=m^{\prime} Y+b^{\prime}
\]
and the points ( \(x_{i n} y_{i}\) ) representing the observations. The result is the line of regression of \(x\) on \(y\). The expression for \(m^{\prime}\) would be
\[
m^{\prime}=\frac{n\left(\sum X Y\right)-\left(\sum x\right)\left(\sum y\right)}{n\left(\sum Y^{2}\right)-\left(\sum Y\right)^{2}}
\]

Then \(m^{\prime}\) is the reciprocal of \(m\) 。
If there is no comrelation between \(x\) and \(y\), the method of least squares will give the value \(\mathrm{m}^{\prime}=0\), a vertical line. If, on the other hand, all points lie exactly on the line, ioe., the correlation is perm fect, then the same line as the previous one must result. Therefore, in the case of perfect correlations \(\frac{I}{m}=m\) or \(m^{\prime}=1\) 。 If there is no coro relation betweer \(x\) and \(y_{8} \mathrm{~mm}^{\prime}=\) O. The product ram', then, has something \(^{\text {a }}\). Then to do with the extent to which the variables \(x\) and \(y\) are correlated.

It follows, then, that a \({ }^{19}\) correlation coefricient, \({ }^{19} R\), can be defined as:
\[
R=\sqrt{m m^{\prime}}=\frac{n\left(\sum X Y\right)-\left(\sum X\right)\left(\sum Y\right)}{\left[n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}\right]^{1 / 2} \cdot\left[x\left(\sum y^{2}\right)-\left(\sum Y\right)^{2}\right]^{1 / 2}} .
\]

Rewritten, R sometimes appears as
\[
R=\hat{\beta} \sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{Y}\right)^{2}}}
\]

Thus, \(R=1\) means perfect correlation, and \(R=0\) means no correlationo Consequently, for imperfect correlation, \(0 \geq|R| \geq 1\).

Suppose, now, that R has been calculated for a set of observations. How is this result interpreted? The interpretation of the correlation coefficient \(R\) is based on experience. The question is how large a value of \(R\) indicates a significant correlation between the variables \(x\) and \(y\). Because of random fluctuations in the experimental data, \(R\) would not be exactly equal to zero, even if the data were completely erroneous. similariy, due to experimental fluctuations, \(R\) would not be exactly equal to one. However, since the nature of the problem dictates that a linear relationship exists and the experimental errors are hopefully minimized, then one should expect to get, values in the neighbowhood of \(\mathrm{R}=1\). The criterion used to determine whether the inear coraclation is substantial is to consider the probability of obtaining a value of \(R\) as large as possible purely by chance from the obsergations of two veriables which are not related. Table XXY has been calculated to give the probability of obtaining a given value of \(R\) for various numbers of pairs of observations (16).

From Table XXV for ten observations, \(N\) equals ten. The probability \(P\) is 0.10 of finding a correlation soefficient of 0.549 or larger and a probability of 0.01 of finding \(R\) greater than or equal to 0.765 if the

TABLE XXV
CORRELATION COEFFICIENTS*
\begin{tabular}{llllll}
\hline & \multicolumn{5}{c}{ Probability } \\
N & 0.10 & 0.05 & 0.02 & 0.01 & 0.001 \\
\hline 3 & 0.988 & 0.997 & 0.999 & 1.000 & 1.000 \\
4 & 0.900 & 0.950 & 0.980 & 0.990 & 0.999 \\
5 & 0.805 & 0.878 & 0.934 & 0.959 & 0.992 \\
6 & 0.729 & 0.811 & 0.882 & 0.917 & 0.974 \\
7 & 0.669 & 0.754 & 0.833 & 0.874 & 0.951 \\
8 & 0.621 & 0.707 & 0.789 & 0.834 & 0.925 \\
10 & 0.549 & 0.632 & 0.716 & 0.765 & 0.872 \\
12 & 0.497 & 0.576 & 0.658 & 0.708 & 0.823 \\
15 & 0.441 & 0.514 & 0.592 & 0.641 & 0.760 \\
20 & 0.378 & 0.444 & 0.516 & 0.561 & 0.679 \\
\hline
\end{tabular}
*This table is adapted from Table V of H. Young, Statistical Treatment of Experimental Data published by McGraw-Hill Book Company, Inc., New York.
variables are not related. If, for ten observations, the correlation coefficient \(R=0.9\), there is reasonable assurance that this indicates a true correlation and not an accident. Congersely, if \(R=0.5\), this would mean that the data were questionabie since there is more than a ten per cent chance that this value would oceur for random data. A commoniy used rule of thumb for interpreting values of the correlation coefficient is to regard the correlation as significant if there is less than one chance in twenty, \(P=0.05\), that the value will occur by chance (16). For any value of the correlation coefficient greater than the value given in the Table II for \(P=0.05\), the experimental data should be regarded as showing a significant correlation.
\(R_{9}\) then, is a measure of how well the straight line based on \(\hat{\theta}\) and \(\hat{\beta}{ }^{\text {"fits }}\) " the data. But it is only a measure of the \({ }^{n}\) best fitvo a linear relationship to the experimental data and is in no way an fudicac tion that the experimental data accurately zepresent the physical phenomena. It is merely an indication that a linear correlation exists between the wariables \(x\) and \(y \circ\)

\section*{StressaStrain Relations}

For the single legged axial strain gage, the stressmatwain relation is:
\[
\sigma_{a \times i a l}=E_{0} \varepsilon_{a x i a l}
\]
where:
\[
E=\text { Modulus of elasticity. }
\]

The development of stresses from strain values for the delta os \({ }^{37} y^{10}\) pattern rosette strain gage is as follows.

From reference ( 7 ), the general equation for finding \(\epsilon_{x^{9}} \epsilon_{y}\) and \(Y_{x y}\) from \(\epsilon_{1}, \epsilon_{2}\), and \(\epsilon_{3}\) is

\[
\begin{aligned}
& \phi_{1}=0^{\circ} \\
& \phi_{2}=120^{\circ} \\
& \phi_{3}=240^{\circ}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline\(\phi\) & \(\operatorname{Sin} 2 \phi\) & \(\cos 2 \phi\) \\
\hline \(0^{\circ}\) & 0 & 1 \\
\hline \(120^{\circ}\) & \(-\frac{\sqrt{3}}{2}\) & \(-\frac{1}{2}\) \\
\hline \(240^{\circ}\) & \(\frac{\sqrt{3}}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

Figure 54. Leg Locations and Reading Sequence
\[
\epsilon_{\phi}=\frac{\varepsilon_{x}+\epsilon_{y}}{2}+\frac{\epsilon_{x}-\epsilon_{y}}{2} \cos 2 \phi+\frac{\gamma_{x y}}{2} \sin 2 \phi,
\]
(cf. Figure 54).

\[
\begin{aligned}
& \epsilon_{1}=\frac{\epsilon_{x}+\epsilon_{y}}{2}+\frac{\epsilon_{x}-\epsilon_{y}}{2} \cos 2 \phi_{2}+\frac{\gamma_{x y}}{2} \sin 2 \phi_{1} \\
& \epsilon_{2}=\frac{\epsilon_{x}+\epsilon_{y}}{2}+\frac{\epsilon_{x}-\epsilon_{y}}{2} \cos 2 \phi_{2}+\frac{\gamma_{y}}{2} \sin 2 \phi_{2)} \\
& \epsilon_{3}=\frac{\epsilon_{x}+\epsilon_{y}}{2}+\frac{\epsilon_{x}-\epsilon_{y} \cos 2 \phi_{3}+\frac{\gamma_{x y}}{2} \sin 2 \phi_{3}}{2}
\end{aligned}
\]

By substituting in values of \(\cos 2 \varphi\) and sin \(2 \varphi_{2} \varepsilon_{20} \varepsilon_{2}\) and \(\varepsilon_{3}\) become
\[
\begin{aligned}
& \epsilon_{1}=\epsilon_{x} \\
& \epsilon_{2}=\frac{\epsilon_{x}}{4}+\frac{3 \epsilon_{y}}{4}-\frac{\sqrt{3}}{4} \gamma_{x y} \\
& \epsilon_{3}=\frac{\epsilon_{x}}{4}+\frac{3 \epsilon_{y}}{4}-\frac{\sqrt{3}}{4} y_{y y}
\end{aligned}
\]

If \(\varepsilon_{X}, \varepsilon_{Y}\), and \(\gamma_{X Y}\) are solved for in terms of \(\varepsilon_{i}, \varepsilon_{29}\) and \(\varepsilon_{3}, \varepsilon_{X}, \varepsilon_{y}\), and \(\sigma_{x y}\) become \(\epsilon_{x}=\epsilon_{1}\) )
\[
\begin{aligned}
& \epsilon_{Y}=\frac{-\epsilon_{1}+2 \epsilon_{2}+2 \epsilon_{3}}{3} \\
& \gamma_{X Y}=\frac{-2 \epsilon_{2}+2 \epsilon_{3}}{\sqrt{3}}
\end{aligned}
\]

For plane stress distribution for isotropic material obeying Hooke's law, the expression for \(\sigma_{x}, \sigma_{y}\), and \(\tau_{x y}\) are
\[
\begin{aligned}
& \sigma_{X}=\frac{E}{1-\nabla^{2}}\left(\epsilon_{X}+\nabla \epsilon_{Y}\right), \\
& \sigma_{Y}=\frac{E}{1-\nabla^{2}}\left(\nabla \epsilon_{X}+\epsilon_{Y}\right), \\
& \tau_{X Y}=\frac{E}{2(1+\nabla)} Y_{X Y}
\end{aligned}
\]
where \(V=\) Poisson's Ratio.
Is \(\varepsilon_{x}, \varepsilon_{y}\), and \(\gamma_{x y}\) are substituted in terms of \(\varepsilon_{3}\), \(\varepsilon_{2}\), and \(\varepsilon_{32} \sigma_{x}{ }^{9}\) \(\sigma_{y}\), and \(\tau_{x y}\) become
\[
\begin{aligned}
& \sigma_{X}=\frac{E}{3\left(1-\nabla^{2}\right)}\left[(3-\nabla) \epsilon_{1}+2 \nabla\left(\epsilon_{2}+\epsilon_{3}\right)\right], \\
& \left.\sigma_{Y}=\frac{E}{3\left(1-\nabla^{2}\right)}\left[(3 \nabla-1) \epsilon_{1}+2\left(\epsilon_{z}+\epsilon_{3}\right)\right]\right) \\
& T_{X Y}=\frac{E}{(1+\nabla)}\left[\frac{-\epsilon_{2}+\epsilon_{3}}{\sqrt{3}}\right]
\end{aligned}
\]

The principle stresses are given by:
\[
\begin{aligned}
& \sigma_{\text {MAX }}=\frac{\sigma_{X}+\sigma_{Y}}{2} \pm \frac{1}{2} \sqrt{\left(\sigma_{X}-\sigma_{Y}\right)^{2}+4 \tau_{X Y}^{2},} \\
& \tau_{\text {MAX }}=\frac{1}{2} \sqrt{\left(\sigma_{X}-\sigma_{Y}\right)^{2}+4 \tau_{X Y}^{2}} \\
& \phi=\frac{1}{2} T A N^{-1}\left[-\frac{\left(\sigma_{X}-\sigma_{X}\right)}{2 T_{X Y}}\right]
\end{aligned}
\]

\section*{Data Reduction Computer Program}

A digital computer program has been developed to calculate the required stress results for each axial gage and "y" pattern rosette. The strain data are copied onto the special data sheet shown in Table XXVI and then keypunched on IBM cards. All axial gage data are processed first followed by the rosette gage data. Each three sets of rosette gage data is used for the required calculetions above. The program prints the test data fin tabular form for each indicator. The correlation coefficient and stress data are summarized at the end of the analysis to povide e more rapld analysis of the experimental results. The validity of the data is indicated by the correlation coefficient. A Fortran listing of the digntal computer program is shown in Table XXVII.

TABLE XXVI

SAMPLE DATA SHEET

OKLAHOMA STATE UNIVERSITY
AEROSPACE LABORATORY
SCHOOL OF MECHANICAL ENGINEERTNG


\title{
AXIAL AND ROSETTE STRAIN GATE DATA
}

RGDUETION PROGRAM
\({ }_{51}\) SID
NAMEPR \({ }^{\text {B-0001 ACCOLA }}\)
SIBFTC DKNAME NODECK 1 INEGER GAGE1,GAGE2,GAGE3,GAGE4,CARD1, CARD2,TYPE1,TYPE2,TYPE 3,TYPE 4
14 DIMENSION X(10)

100 FORMAT(11,13,11,5E12.1,4A5)
101 FORMAT 1 HK, 14HERROR IN CARD1,8HGAGE NO.. 14
104 FORMAT (GOHKSECOND GAGE OF THIS SET DOES NOT AGREE IN TYPE TO FIRST
IGAGE.,144
FORMATIH2
105
106
107
FORMAT (IHI




FORMAT (11 H SIGMA(Y) \(=. E 12.5 .6 \mathrm{HPS} 1 / \mathrm{LB}\)
FORMAT 12 X, SHTAU(XY) \(=\) =E12.5.6HPSI/LB)

FORMAT(IIM TAU(MAX) \(=\) E \(12.5,6 \mathrm{HPS}\) I/LA)
FORMAT(14H PHISIGMAX) \(= \pm E 12.5,7\) HDEGREES \()\)

FORMAT(26H CORELATION COEFFICIENT \(=\),F9.6)
122 FORNAT \(13 F 10.5 \%\)
123 FORMAT \(6 H\) GFR \(=, F 7.4\)
READ 5 ,122)BEGIN,XINCR,GFR
BEGIN=BEGIN/1000.
\(\times 1\) INCR=XINCR/1000.
\(\mathrm{XINCR}=\mathrm{XINC}\)
\(\mathrm{X}\{1=\mathrm{BEG} \mathrm{N}\)
\(\mathrm{S} 1 \mathrm{~N}=\mathrm{X} \mid 1 \mathrm{~N}\)

SUMXSO \(=\) BEGIN
DOEGTA
O111
\(00111=2,10\)
\(x(1)=x(1-1)\)
\(x(1)=x(1-1)+x 1\)
SUMX \(=\) SUM \(x+x \in 1:\)

SUMSOX \(=\) SUM \(X *\) SUMX
EENCM=10.*SUMXSO-SUMSOX
XBAR=SUMX 120 .
X BAR \(=\) SUMX
NUMROS
\(I C T=0\)
\(E=10.6 E+0\)
TERM=E/2.683125
CONTINUE
\(\times M \times B S O=0.0\)
\(\mathrm{XMXBSO}=0.0\)
\(1 C T=1 C T+1\)


READ 15,100 )TYPE2:GAGE2,
IFAR (CARD2.NE. \(21 G 0\) TO 98
IF

IF (TYPE1.EQ. 3 ).AND. (NUM
IFIICT.GE.4) WRITE (6.105)
IF (ICT.GE:4) ICT \(=1\)
\(\operatorname{SUMXY}=0.0\)
\(\operatorname{SUM}=0\).
SUMY=0.
\(S U M Y S Q=0.0\)
\(Y M Y B S O=0.0\)

SUMXY=X(1)*AVE ( 1 ) + SUMXY
SUMY \(=X M Y+A V E(1)+\) SUMX
SUMY \(=\) SUM
SUMY \(O=S U M Y S O+A V E(1) * A V E(I)\)
3 SUMYSQ \(=\) SUMYSO+AVE(I)*AVE(I)
EETA \(=(10\). *SUMXY
BETA=BETA*GFR
ALPHA \(=1\) SUMY/10.1-BETA*XBAR
ALPHA \(=\) SUMMY/10 1 -BETA*XBAR
DO4 \(1=1=10\)

FITYPE1.EO. 3160 TO 50
WRITEI6.106GAGE1,ID
WRI \(1=1.10\)
WRITE 10.109\()\)
WRITE \(16+110\) BETA,ALPHA
RRITE (6+110)BETA,
WRITE16123)GFR
WRITE16,121)CCEFF

WRITE 16,111 ISIGAX
GO TO 1
NUMROS \(=\) NUMROS +1
NUMROS \(=\) NUMROS
WRITEIG,107) GAGE1,ID
WRITE (6,107)GAGE1.1O
DO6 \(1=1.10\)
WRITE16,109)
WRITE(6,110)
BETA,ALPHA
WR1TE 16,123 )GFR
IF (NUMROS.EO.1)BETAI \(=B E T A\)
IF \(F\) NUMRRS.EO. 2 BETAL
Finumposine 3 IGO Ta 1
IFINUMROS. EDE 3 I NUMROS \(=0\)

SIGY \(=\) TERM* \((-.025 * B E T A 1+2 * *(B E T A 2+8 E T A 3)\)
TAUX \(Y=(E / 1.325) *(-B E T A 2+B E T A 3) / 1.732\)
S.TMAX \(=(S 1 G X+S 16 Y) / 2\).
STAZ \(+8 E T A 3) / 1.73\)

TAUMAX \(=\) SQRT(ISIGX-SIGY)**2+4**TAUXY*TAUXY) \(/ 2\)
SIGMAX \(=\) STMAX + TAUMAX
SIGMIN
STMAX-TAUMAX

WRITE(6.112)SIGX
WRITE(6.113)SIGY
WRITE 6.113 )SIGY
WRIEE 6,114 TAUXY
WRITESG:115ISIGMAX
WRITE(6.116)SIGMIN
WRITE16.1171TAUMAX
WRITEF6,1181PSMAX
WRITEF6,119PTMAX
WRITEE6.1201STMAX
WRITE16,120)STM
GOTO 1
WRITE 16,101 )
WRITEI6,101)
GO TO 1
WRITE (6,102)
GRTOR(6.204)
GO To
END
RY \(^{\text {END }}\)

\section*{APPENDIX F}

\section*{LIST OF MAJOR INSTRUMENTATION}
Strain Indicator (4)
Switch and Balance Unit (25)
Switch and Balance Unit
Switch and Belance Unit
SR-4 Strain Indicatox
10,000-1b. Load Cell
5,000 1b. Load Cell
Dial Indicators (10)
Calibration Unit

Budd Model P350
Budd Model SB-I
BLH Type PSBAZO Model 3
BLH Type 225
BLH Type N
BLH Type U3GI
BLH Type U3G1.
Starrett No. 656-617
BLIE Model 625

\section*{APPENDIX G}

\section*{CALIBRATION OF STRAIN GAGE SYSTEMS}

Once the strain gage are attached to the panel, it is not possible to attain a calibration by the use of a known strain situation. The strain gages are manufactured under carefully controlled conditions, and the gage factor for each lot of gases is within about \(\pm 0.27\) per cent. The gage factor and the gage resistance make possible a simple method for calibrating the resistance strain gage system. This method consists of determining the system's response to the introduction of a specific small resistance change at the gage and of calculating the resulting equativat strain. The resistance change is introduced by shunting a relatively high value precision resistor across the gage as shown in the following figure.


Figure 55. Strain Gage Bridge With Calibration Resistor

The equivalent strain for the shunt resistor in parallel with the active gage is
\[
\epsilon=\frac{1}{G F}\left(\frac{r_{g}}{r_{g}+r_{s}}\right)
\]
where GF = gage factor,
\(r_{g}=\) gage resistance, ohms,
\(r_{s}=\) shunt resistance, ohms.
The Budd portable strain indicator systems were calibrated with a 60 K ohm resistor. The resistor was shunted across each active gage.

Direct calibration of an external bridge input by using a known resistance assures maximum accuracy if the gage resistances are known accurately and load resistances are insignificant. The shunt calibration circuit is also helpful to ascertain the error caused by load resistance when long input leads are used.

The maximum variation for any single gage was well within its required accuracy, and 70 per cent of gages were within 2 per cent of the calibration value. Results from the calibration tests are show in the following table.

TABLE XXVIII
TYPICAL INDICATOR READINGS DURING
CALIBRATION TESTS
\begin{tabular}{lccc}
\hline \begin{tabular}{c} 
Gage \\
Number
\end{tabular} & \begin{tabular}{c} 
Indicator Reading \\
Zero Level
\end{tabular} & \begin{tabular}{c} 
Indicator Reading \\
With Shunt Resistor
\end{tabular} & \begin{tabular}{c} 
Net \\
Change
\end{tabular} \\
\hline 1004 & 2770 & 1757 & 1013 \\
1010 & 3757 & 2747 & 1010 \\
1014 & -39 & -1050 & 1011 \\
1017 & 795 & -222 & 1017 \\
1022 & 1507 & 495 & 1012 \\
1040 & 362 & -650 & 1012 \\
1058 & -530 & -1545 & 1015 \\
3073 & 8010 & 7005 & 1005 \\
3091 & 1806 & 800 & 1006 \\
2095 & -216 & -1227 & 1011 \\
\hline
\end{tabular}

Calibration of Load Recording Equipment

A calibration of the load recording equipment was performed to determine the accuracy of the load application system. The BLH U-3GI type load cells have strain gages with a gage factor of 2.0 and a resistance of 350 ohns. With a 60 K Qcalibration resistor, the computed strain should be 2900 .

The calibration was performed from the zero reading for the 5000 e pound load cell of 11050. The \(60 K \Omega\) resistor was shunted across each leg of the strain gage bridge, and the following records wereobtained:
\begin{tabular}{ccc} 
Shunt & Dial Reading & Net Change \\
\(P_{1}\) to \(S_{1}\) & 13915 & 2865 \\
\(P_{1}\) to \(S_{2}\) & 8240 & 2810 \\
\(P_{2}\) to \(S_{1}\) & 8180 & 2870 \\
\(P_{2}\) to \(S_{2}\) & 13860 & 2810
\end{tabular}

The same procedure was used in calibrating the system for the 10,000 -pound load cell. Again, the gage factor of 2.0 and a gage resistance of 350 ohms provide a strain input of 2900 . The 60K \(\Omega\) resistor was shunted across the four arms of the bridge, one arm at a time. The following records were obtained:
\begin{tabular}{ccc} 
Shunt & Dial Reading & Net Change \\
\(P_{1}\) to \(S_{1}\) & 13770 & 2870 \\
\(P_{2}\) to \(S_{2}\) & 8100 & 2800 \\
\(P_{2}\) to \(S_{1}\) & 8030 & 2870 \\
\(P_{2}\) to \(S_{2}\) & 13715 & 2815
\end{tabular}

In general, 2 value of approximately 2800 to 2870 was obtained for each leg of the strain gage bridge. This is a variation of approxImately three per cent or corresponds to a gage factor change of from 2.00 to 2.07 , which might actually be the gage factor for the strain gages used in the load eell.

The load indicator system was subsequently calibrated with a BLF Model 625 voltage divider unit. A linear change in indicator reading was obtained for a linear change in MY/V input. The load cells have a 3MV/V full scale output which corresponds to 6000 units on the BLH Skw indicator.

As a further calibration of the complete load application system \({ }_{9}\) the testing facilities of Haniburton Oil Company, Duncan, Oklahomas
were utilized.
The author is indebted to Mr. Elwin Seay, Project Engineer, Halliburton Oil Company, and his assistants for their aid in completing the tests.

Both the 5000 LB and 10,000 LB load cells were hooked into a hydraulic testing machine and corresponding readings were made from the BLH Strain Indicator at certain known load values.

Typical load versus indicator readings are shown for the 5000 LB and 10,000 LB load cells in Tables XXIX and XXX.

TABLE XXIX
CALIBRATION OF 5000 LB BLH U-3GI TYPE LOAD CELL


TABLE XXX
CALIBRATION OF 10,000 LB BLH U-3G1
TYPE LOAD CELL


\section*{APPENDIX H}

\section*{CALIBRATION OF DIAL INDICATORS}

The Starrett Dial Indicators were calibrated with the "0.05" thick size of Fonda Gage Blocks, Unit Set 845, Serial Number N-154, manufactured by the Fonda Gage Company, Inc.g Stamford, Conneticut. These blocks are rated at \(\pm .000008\) in. accuracy.

Typical readings before and after block insertion and the differm ence in readings are shown in Table XXXI.

TABLE XXXI

CALIBRATION OF STARRETT DIAL INDICATORS USING A "0.05" THICK FONDA GAGE BLOCK
\begin{tabular}{cccc}
\hline Dial Gage No. & \begin{tabular}{c} 
Reading Before \\
Block Insertion
\end{tabular} & \begin{tabular}{c} 
Reading After \\
Block Insertion
\end{tabular} & Difference \\
\hline 5 & 0.1000 & 0.1506 & 0.0506 \\
6 & 0.3140 & 0.3645 & 0.0505 \\
7 & 0.0205 & 0.0705 & 0.0501 \\
8 & 0.1500 & 0.2003 & 0.0503 \\
9 & 0.0400 & 0.1503 & 0.0503 \\
\hline
\end{tabular}

The maximum error is 1.2 per cent.

\section*{VITA}

Gordon Campbell Stone
Candidate for the Degree of
Doctor of Philosophy

\section*{Thesis: STRESS AND DISPLACEMENT ANALYSIS OF PLANAR STIFFENED SHELL STRUCTURES}

Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Big Spring, Texas, November 1, 1936, the son of Gordon and Inez Campbell Stone. Married to Martha Gay Fuqua on February 4, 1961. Father of a daughter, Mary Kathryn, born August 26, 1963 and a son, Wilson Gordon, born September 7, 1966.

Education: Attended grade school in Stanton, Texas; graduated from Stanton High School in 1955; received the Bachelor of Science degree in Mechanical Engineering with an Aeronautical option from Southern Methodist University in June, 1960; received the Master of Science degree from Oklahoma State University, with a major in Mechanical Engineering, in May, 1963; completed requirements for the Doctor of Philosophy degree in October, 1966.

Professional Experience: Employed as Junior Engineer by Convair, a Division of General Dynamics Corporation, Ft. Worth, Texas for 18 months during the period September, 1956 through March, 1959 in compliance with the SMU Engineering School's Co-op Plan. Employed as Design Engineer by Standard Manufacturing Co., Inc., Dallas, Texas from June, 1960 to August, 1961. Served as Graduate Assistant in the School of Mechanical Engineering at Oklahoma State University from September, 1962 to August, 1963; Research Assistant in the School of Mechanical Engineering at Oklahoma State University from September, 1964 to September, 1965; Staff Assistant in the School of Mechanical Engineering at Oklahoma State University from September, 1965 to October, 1966.

Organizations: American Institute of Aeronautics and Astronautics```


[^0]:    *Normalized Average deflections are adjusted for measured base deflection.

