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CHAPTER T
INTRODUGTION

The fundamental problem in the elastic analysis of aircrafi struc-
tures is the determination.of the distribution of stresses and displace-
ments under prescribed loads and constraints. This problem can be
readily solved for certain types of structures by direct solution cof the
differential equations of elasticity describing the elastic behavior of
the structuré° A good example of such a solution is the Engineering
Theory of Bending applied to box beam structures. However, these di-
rect solutions are usually based on certain simplifying assumptions
which are too restrictive particularly when applied to structures as
complex as the present day aircraft structures. Consequently, either
numerical or quasi numerical methods must invariably be used in air-
craft sfructural analysis to include the wvarious structural effects
which could not conveniently be accounted for in the direct solution
type methods.

The numerical and quasi numerical methods fall basically into two
groups: the first being strictly numericsl methods in which the differ-
ential equations describing the deflections and/or stresses in the
structure are solved by numerical procedures, and the second in which
the structure is idealized into an assembly of discrete structural
elements having an assumed form of stress or displacement distribution.

The complete solution is then obtaeined by combining these individual



approximate stress or displacement distributions in a manner which
satisfies the force equilibrium and displacement compatibility at the
junctions of these elements. Both these groups of methods involve ap-
preciable quantities of linear algebra which must be organized into a
systematic sequence of operations and to this end the use of matrix
algebra is a convenient method of defining the various processes in-~
volved in the analysis without the necessity of writing out the com-
plete operations in full.

The rapid development of the digital computer during recent years
has immensley enhanced the popularity of this second group of methods,
generally referred to as finite element methods or matrix methods.
Probably the most important reason for this lies in the fact that the
finite element methods readily lend themselves to matrix algebra which
is ideally suited for subsequent solution via the digital computer.

Finite element methods have been used extensively for the analysis
of aircraft structures. However, elementary theories are often insuffi-
cient in the prediction of the stress and deformation characteristics of
madern airframe configurations. Consequently, finite element methods
are topics of numerous current research efforts, with new analysis
capabilities being developed in terms of matrix operations of algebraic
equations.

The two most widely used finite element methods are referred to as
the force method and the direct stiffness or displacement method primarily
due to the assumption of the initial unknown quantities. Both methods
require the mathematical development of systems of finite elements,
which are joined to form the idealized structure and to develop the

necessary algebraic equations. The equations are generally solved by



either semi automatic or completely automatic sequence of computer
operations originating with the definition of the structural configura-
tion and terminating with the calculation of the structural response for
the applied external load configurations.

The purpose of this research effort is to improve the capability for
the analysis of stiffened shell structural skin panels and to demon-
strate thisimproved capability by the comparison of experimental and analyt-
ical results. The approach taken toward this improved capability is via one
of the two previously mentioned finite element methods: the matrix force
method. The matrix force method is described and illustrated in Chapter
II. This improved capability is verified theoretically by the direct
stiffnessmethod which is described in Chapter ITI. The matrix force method
is implemented by digital computer programs given in Appendices C and D,
respectively. The basis for ascertaining this improved capability is
provided by comparison of the analytical results with those from an ex-
perimental investigation, which is described in Chapter IV.

The structure considered in this dissertation is limited to a
planar oblique configuration. The structure is a monolithic semi-
monocoque trapezoidal shaped panel with thin webs and integral rein-
forcements. This type of structure has a significant relationship with
aircraft structural analysis. The words "monolithic™ and " semi-
monocoque' mean "being made of one integrated piece" and “stiffened
shell", respectively. Until recently, airplane skin panels or "skin"
type structures consisted of a very thin sheet of material to which was
attached various shaped extrusions. For the purpose of analysis, these
extrusions were theoretically replaced by a slender bar of circular

cross section equal to that of the actual extrusion. This slender bar



element or stringer, as it later became commonly referred to, was then
theoretically integrated into the thin sheet such that its centroid
coincided with that of the sheet. Presently, due to the perfection of
the chemical milling process, aircraft interior bulkhead and rib struc-
tures are integrated with the thin sheet -~ agreeing exactly with the
theoretical idealization of the older "assembled" skin type structures.

The structure under considerationis idealized as an array of rib and
stringer elements transmitting axial loads and thin web elements trans-
mitting shear and axial loads. The web elements may occasionally be
referred to as plate elements in the text of this work but they are
visualized as capable of carrying only loads applied within their
planes. The term, plate, is commonly applied to planar structural
elements which carry loads applied normal to their plane. The tapered
panel is oriented to lie in the xy plane, and the deflections and
stresses are produced by loads in both the x and y directions.

Finite element methods of analysis as they are presently known have
many origins and no single author can be recognized for contributing
entirely to their present form. Langefors (2) recognized that there is
a certain resemblance between the analysis of an elastic structure and
that of an electrical network. In both cases, simple members are
coupled together to constitute more or less complex systems. The prob-
lemof analysis is that of finding the physical state or internal energy
level of each element, in which this state is a consequence of the
introduction of certain disturbances into some parts of the structure.
Solution results from minimizing the potential or strain energy of the
structure. Argyris (4) described in matrix form the schematic analysis

of structures composed of discrete structural elements. He compiled
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a number of special analysis methods which were used for structural
analysis and demonstrated the similiarty among many of the analysis
methods by using matrix notation to abbreviate the mathematics. Argyris
bases his work mainly on simple physical arguments in contrast to
Langefors' work which is based upon the concept of strain energy for
deriving flexibility or stiffness expressions for individual elements.

From the background provided by Langefors, Argyris, and many
others, such as Wehle and Lansing (5), Turner, et al. (6), published
their work in 1956 and developed the direct stiffness method to its
present form. They extended matrix methods of structural analysis to
plate-type elements and described the analysis of plane stress problems
with the use of finite elements. Their derivations allow the stress element
to deform in a combination of certain assumed patterns. This concept
eliminates the necessity for knowing the behavior of an element before
its stiffness can be developed.

The version of the matrix force method of analysis used in this
research effort was introduced by Wehle and Lansing (5) when they first
published their work in 1952. They used the concept of strain energy
and Castigliano's Second Theorem to compile a library of flexibility
matrices for various individual elements and developed and extended the
techniques embodied in the classical redundant force method to matrix
algebra. Bruhn (7) further extended the work of Wehle and Lansing (5)
and presented it in a readily usable form.

These developments in the finite element approach to the approxi-
mate analysis of reinforced panels form the basis for this investiga-
tion. The structural behavior of a panel is determined by analyzing the

group behavior of small elastic elements connected at common joints to



form an idealized structure which approximates the actual panel. The
structural behavior is determined by element idealizations using both
the force and stiffness methods of analysis and assuming a different

stress behavior for the plate elements.

In order to achieve the desired improved capability for analyzing
planar, tapered stiffened shell structures, this dissertation has
undertaken four distinct tasks. These tasks are:

1. A new flexibility matrix has been derived for trapezoidal
shaped plate elements. This new flexibility matrix takes
into account both the efrects due to Poisson's ratio
coupling and those due to sweep. In essence, the idealiza-
tion is based upon the lumping concept. The direct-stress-
carrying capacity of the structural material is concentrated
along the stringers and ribs surrcunding a given plate while
shear carrying capacity is assigned to the panel areas con-
tained within the plate. This derivation appears in
Chapter II.

2. The matrix force method has been modified for the inclu=
sion of the new flexibility matrix of item one, above, for
analysis purposes. Analysis by this new flexibility matrix
of a planar stiffened shell structure such as the one used
in this investigation requires that the matrix force method
be modified. This modification is comprised mainly of °
"building up", by special means, the flexibility matiix
for the composite structure. The details for this
development are given in Chapter II.

3. A digital computer progam has .been developed which will



implement both the modified and unmodified versions of
the matrix force method. The concept employed in devel-
oping this digital computer program is that of writing a
"main" program which, in turn, calls upon existing sub-
routines to perform required matrix operations. Appendix
D contains a detailed description of this program.

L, A regimeﬁted approach has been formulated for the determina-
tion of [QIM], the matrix which contains the internal
generalized load distribution due to a given external
load and [QIR], the matrix containing the internal
generalized load distribution due to a given redundant
load. This technique is based upon the writing of
generalized freebody equations and the soluﬁion of
these equations in a manner peculiar to the determination
of [GIM] and [GIR]G This procedure is described in detail
in Chapter II.

The application of existing techniques contained within the matrix

force method enhanced by the tasks given above provide an improved

analysis capability for planar, tapered monolithic semi-monoque structures.
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CHAPTER II
MATRIX FORCE METHOD OF ANALYSIS

The matrix force method is a finite element method of structural
analysis which considers a structure to be an array of idealized elastic
elements which are considered to be joined along their common edges. In
this method of analysis, the internal generalized forces acting upon the
idealized elements of the structure are considered to be the initial un-
knowns. In essence, the matrix force method is based upon the supposi-'
tion that a large number 'of internal force distributions acting on
the idealized elements can be in equilibrium. The correct distribution
of internal forces is the one for which the mutual deformations of the
elements are also compatible.

In contrast to other finite element methods, the matrix force meth-
od raises the question of statical redundancy. The degree of redundancy
for the idealized structure must be determined, since the problem is
directed toward the solution for redundant forces (or groups of forces).
The equations of equilibrium in terms of forces are inadequate in number
to determine all the internal forces and they must, therefore, be sup-

" plemented by the equations of deflection compatibility.

Although the idea of determining the degree of redundancy for the
idealized structure may seem cumbersome, the force method, in general,
requires a smaller number of unknowns than other finite element methods

and, in turn, does not require intricate and complex computer programs



for its implementation as do other finite element methods. Also, the
smaller number of unknowns required by the force method does not place
such large memory requirements upon the digital computer and subse-
quently, in certain cases, larger and more complex structures may be
analyzed on a given size computer. Even more important is the fact
that the force method is a culmination of classical, established princi-
ples and theories which can be readily visualized. This gives the
researcher a good "feel" for what is actually happening throughout a
structural analysis by the matrix force method. From an academic
standpoint, the force method of analysis may be broken down into compo-
nent operations and the contribution of each operation to the final
result can be distinctly identified and monitored.

The version of the matrix force method used in this analytical
investigation is that which is presented by Bruhn (7). It is a special
adaptation of the redundant force method to the use of the high speed
digital computer.

The redundant force method is fully developed and is applied to
the analysis of the planar stiffened shell tapered skin panel used in
this research program. The remainder of this chapter covers new assump-
tions for the stress behavior for a given trapezoidal shaped plate and
the surrounding stringers and ribs and the subsequent development of a

new flexibility matrix based upon these assumptions.
Basic Equations

The internal forces of a statically indeterminant structure can be

expressed as

{‘Q ¥ [gim]{ Pm}‘l' [91,.] {qr}) (2-1)
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where
{ch} = column matrix of internal forces>
qé} = column matrix of redundant forces)

column matrix of external loads

PR NI
U
!

]

<ng= rectangular matrix of internal loads due to unit values
of the external locads in the stable statically determinant

structure or S.5.D.S.,

[g"}= rectangular matrix of internal loads due to unit values

of the redundants.

The redundant forces can be expressed in terms of the applied loads
by requiring compatibility of deformations throughout the structure,

The internal forces can be written as

{q;} - [G:m] {PW\}’ (2-2)

[Gi‘m_] = [gim]’[g.'r] [gf,-] [o(w] [gsr] -[gﬁ:l [oﬂi:‘] [g;m] ) (2-3)

E*U] = square symmetric matrix of element flexibility coeffi-

cients, deflection at point i for a unit force at point j.

The two matrix triple products in Equation (2-3) may be writien as

[9e] (%15 (9] = [Qvs] >



[ori)low][gn] = [

Then, Equation (2-2) may be rewritten as

[G’W‘] = [g‘im] - [gir] [a"s]_i [arnj *

If the product [ZlYSJ‘l[tLrn] be given the symbol Bssn] and

11

(o=lt)

the product [kaiwlkssw] be given the symbol BS“J’ then Equation (2-4)

can be simplified to the form

[Gim] = [Fim] = [Cme] - |

Stress for the bar element is given by

q.
O_b:_—'—'b )
Aib

where
qib = internsl force in the bar element)

/xib: cross sectional area of the bar element.

Stress for the web element is given by

Ow = Fiw y
w
+ w
where
qiw = assumed constant average shear flow)

i

thickness of web.

(2-53)

(2-6)

(2~7)



Deflections at the load points of the structure are given by

St = [Amnl{Prp> (2-8)

where

{Sm}= column of deflections,

Dol Bl [Go]

i)

square symmetric matrix of influence
coefficients for the complete redundant
structure, deflection at external loading

point m for a unit applied load, Pn = 1.

(Gren] = [Gomi] [t15] [Frm]
[Grm] = [arn][Gsn] -

In order to check the final results of a redundant force calcula-

1

tion after obtaining the final true forces [(5““],the product

[ar,n:li'ruc - [qﬁ] [°("J] [G'wn]) | (2-9)

can be formed and compared element~by-element with the matrix previously

computed,

[Bra] = [0 [1a] [gim]

The "true-matrix' elements (%lements of Blrnl e) should be zero, or
nearly so, if [(Bhﬁ]is error free.

Degree of Redundancy

If the panel in: Figure 13 is bullt in along the root rib



13

and is free along the other other edges, and if there are no unstiffened
cut-outs, the number of redundants, N, is given by (This constraint-

appears in the upper configuration of Figﬁre 1.)

N=>(B-2) o (2-10)

BAYS

where

ﬁg is the number of longitudinal effective stringer flanges which

are continuous across a rib junction and "2" is a constant.

The number of bays is the number of transverse sections defined in the
structural idealization. If acertainnumber of the stringer flanges are not
held at the root section, the number of redundants reduces accordingly.
The degree of redundancy is illustrated for the two-dimensional
panel. The number of redundants or degree of redundancy is the number
of unknown forces minus the number of independent equilibrium equations
which can be written for the structure.
From Figure 1,. the unknown forces are:
Unknown forces in longitudinal stringers . . . . . . 12
Unknown forces in transverse ribs « + ¢« o v « o« « . b
Unknown forces in the webs « « « v v ¢« v «+ & o + o« » §
Total 27.
The equations of equilibrium which can be written are:
Equilibrium between the stringers and webs . » « . o 12
Equilibrium bétween ribs and webs ¢ o-¢ o 5 o &« o +» G

Total 21.

Thus, “the number of redundants is: 27 - 21 = 6.



Figure 1.

Built-In Constraint

Statically Determinant Constraint

Possible Constraints in Panel Idealization
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Equation (2-10)may be evaluated for N, the number of redundants, to give

N=5"(B-2) = 5(4—2)=65

BAYS

Therefore, it is necessary to remove six of the unknown internal
forces by the use of fictitious cuts. The structure is then stable‘and
statically determinant.

To demonstrate the change in redundancy resulting from the use of a
statically determinant support system, the lower configuration shown'in
Figure 'l is considered.

The unknown forces are as follows:

Unknown forces in longitudinal stringers . . . . . . 10
Unknown forces in the transverse ribs . . . ¢« + . + 9

Unknown forces in the webs o s o 4 a4 o s e s s e e« 9

The equations of equilibrium which can be written areé:
Equilibrium befween stringers and webs . . . . . . . ié
Equilibrium between ribs and webs .« o ¢ o o o o .o o 12

Total 24,
The number of reaundants is then: 28 - 24 = L4,

Equation (2-10) may again be evaluated for N to give

N=>(8-2)=2(4-2)= 4.

BAYS

Analysis of the Test Structure

by the Matrix Force Method

The Matrix Force Method is applied in the analysis of a tapered
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integrally reinforced panel which is described in the experimental in-
vestigation, Chapter IV. A sketch of this panel and its geometry is
shown in Figure 2.

The first step in the analysis of the test structure is to calcu-
late the matrix E“iJ] which appears in Equation (2-3) and the terms
'ﬁ%;in Equation (2-6) and —%;; in Equation (2-7).

The given structure was idealized into an assembly of bar and
trapezoidal shaped web elements with the choice of internal generalized
forces as shown in Figure 2. Each bar element was theoretically con-
strained to carry only a linearly varying axial load, while each web
element was allowed to carry only an average constant shear flow value.

For ease of handling by the digital computer and for brevity, the
matrix [9“3] has been designated [}LPIJ], and the terms :w

4

_?;_ have been arranged to form [AREINV], a column vector.
w

The basic strain energy equations for the bar and trapezoidal web

and

elements are given along with sample calculations for coefficients of

[ALPIJ].

For a bar element with generalized loads q; and qj applied at

each end the elements of [ALPIJ] are

Oﬂu = 6:‘:5 = 9,1, (2-12)

where

L = length of the bar element,

A = cross sectional area of the bar element,

E = modulus of elasticity.



IR I F R

Figure 2. Structural Idealization of the Panel of
Figure 13, Illustrating the Choice of
Generalized Forces to be Used
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For a trapezoidal shaped web element with a éeneralized average

shear flow (; applied along its edges, the elements of [ALPIJ] are:

A = TST—’ , (2-13)
where
S = planform area of the web element,
t = thickness of the web element,
G = modulus of rigidity.

From the theory of elasticity, the modulus or rigidity is

= & _ -1k
6= 2G+y)] ’ (2-24)

where

Poisson’s ratio.

V

V is assumed to have a value of 0.325 which corresponds to

G=L4.0 x 10° psi, and E = 10.6 x 10° psi. (This value is V is shown in

Table 30, p..103, Reference 17). Therefore, Equation (2-14) becomes

E E

°% Raro3s] = 2.65

(2-15)

The result of Equation (2-15) may be substituted into Equation (2-13)

_____[(2'65) s . 2-16)

to give =
& °= Ty

The finite element distribution shown in Figure 2 may be used to defer=-

mine the coefficients of [ALPIJ]. A few sample calculations are

A iy = B = (1)(1s.482447),




_ (2)d0.111873) _ GL4594

Rz = 32,4%5 B %3%0.25)(1‘5) B (jéXZé" 6491 )’
10.411873 -

L - (4,)((%?‘25)(5‘) = (—jé_—)( b. 74‘124—‘7))

_(2.L9S _  (2.65)65000) /1 |
=Ev = T (GosIE) (E—)(3445.000000),
2l 71
'f’(az,z‘z.z,s?klé = (é)(élgs)(.e) -( £ X 3c. 000000)
[ 1
\ E

J( 8.000000).

9
W
tf
:
m
!

o

T
-

i

LAE (é)(O%iZS)( E)

The non-zero coefficients of the [ALPIJJ matrix are listed in Table
I. The [AREINV] column vector consists of reciprocal cross sectional
area values for the ends of the bar elements and reciprocal thickness

values for the web elements. Sample calculations would be

TERM 1,1 = gog= 4000000,

it

TERM131= 2= 20000000,

TERM22,1= 5oz = 8.000000,
The values of the [AREINV] column vector are listed in Table I1l.

Effective Aresas

ke

An assumption widsly used in aircraft design is to account for the
axial load carrying capability of the web by lumping the cross-
sectional area of the web with the stringers and ribs. The original
cross-sectional area of the bar elemeunt, plus the appropriate web cross-
sectional area, is usually referred to as effective flange area.

The amount of web area added to the stringer and/or rib area

depends on the stress level, type of material, and type of loading. For



TABLE X

[ALPIJ] MATRIX

Non-Zero Values Listed 1
NOTE: Each Coefficient Must be Multiplied by T

20

Row Column Coefficient Row Column Coefficient
1 1 13.4824973 12 11 6.7412485
1 2 6.7412485 12 12 26.9649940
2 1 6.7412485 13 13 2405, 0000000
2 2 26.9649940 14 14 2915 .0000000
2 % 6.7412485 15 15 2385 .0000000
3 2 6.7412485 16 16 3445 ,0000000
% 3 26.9649940 17 17 2915.0000000
n i 26.6996933% 18 18 3285.0000000
L 5 1%.3498465 19 19 3445,0000000
5 4 13.3498465 20 20 2915.0000000
5 5 5%.%993860 21 21 2285 .0000000
5 6 1%.3498465 22 22 32.0000000
6 5 1%.23498465 22 2% 8.0000000
6 6 53%.%993860 23 22 8.0000000
7 7 26.699693% 23 2% 22 , 0000000
7 8 1%.3498465 2L oL 26.6666667
8 7 1%.3498465 24 25 6.6666667
8 8 5%.3993860 25 ok 6.6666667
8 9 13.3498465 25 25 26 .6666667
9 8 1%.3498465 26 26 10.6666667
9 9 53.3993860 26 27 2.6666667

10 10 1%.4824973 27 26 2.6666667
11 11 26.96499L0 27 27 10.6666667
11 12 6.7412485
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TABLE 1I

[AREINV] COLUMN VECTCR

Row "Column Value Row Column Coefficient
1 ' 1 4, 0000000 15 1 20,0000000
2 1 4 ,0000000 16 1 20,0000000
3 1 4 ,0000000 17 1 20.0000000
4 1 8.0000000 18 1 200000000
5 1 8.0000000 19 1 20 . 0000000
6 1 8.0000000 20 1 20.0000000
7 1 8.0000000 21 1 20.0000000
8 1 8.0000000 22 1 . 8.0000000
9 1 8.0000000 23 1 8.0000000

10 1 4 ;0000000 24 1 8 .0000000
11 1 4 . 0000000 25 1 8.0000000
12 1 4 ,0000000 26 1 4 ,0000000
13 1 20.0000000 27 1 44 ,0000000
14 1 20.0000000




N
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example, by neglecting Poisson's ratio effect and assuming the same
material for stringers and flat plates, one-sixth to one-~half of the web
cross-sectional area should be added to the stringer area. The former
value applies wﬁen the field is in pure bending within its own plane,
and the latter value applies when it is under uniform axial stress.

In this investigation, one-half of the web cross=sectionzl area
has been lumped into that of the stringers and webs. The resulting
effective area of each stringer varies linearly along the axis of the
element while the effective area of each rib remains constant. The
[ALPIJ] terms for the ribs are calculated from the "unlumped®” formula
in the past section, but those terms for the stringers must be calcu-~
lated by different means.

The [ALPIJ] terms for the stringers were calculatéd with the use
of Figures A7.34b and A7.%4c of reference (7).

The non-zerc elements of [ALPIJ]9°“WAL” (web area lumped) are shown
listed in Table III and the values of [AREINV],““WAL” are listed in Table

IV.
Calculations of the [GIM], [GIR]3 and [FORCE] Matrices

Two choices of redundants were made to render the structure of
Figure 13 stabié and statically determinant.

Redundants choice number 1, or "RDC-1'", by which the generalized
forces Jes 9s s qb, q, $<48, and qq are assumed to be redundant, is
shown in Figuregzq

Redundants choice number 2, or "RDC«2'", by which the generalized
forces Qs Ch+9 9,5 Chq’ qzb’ and qzl are assumed to be redundant,

is shown in Figure 4.



TABLE III

[ALPIJ] MATRIX
(WWALW)

-

NOTE: Each Ccefficient Must be Multiplied by %

Row Column Coefficient Row Column "Coefficient
1 1 7.685023 11 12 - L,223387
1 2 3.939410 12 11 b.223387
2 1 3.939410 12 12 18.002341
2 2 16.712673 13 13 3445, 000000
2 3 4,3233287 1h 14 291.5.00000C
3 2 L .322287 15 15 2385 ,000000
3 2 18.002341 16 16 2z445,000000
L L 7.024624 17 17 2915.,0000C0
L 5 2.671207 18 18 2385 ,0000C0
5 4 3.671207 19 19 3445 ,000000
5 5 15.755438 20 20 2915 .000000
5 6 L.128452 21 21 2385. 000000
6 7 L.,138452 22 22 - 6.400000
6 8 17.875103 22 23 "~ 1.600000
7 7 7.20462L 23 22 1.60000C
7 8 %.671207 23 23 6 .4+00000
8 7 3.671207 2h 24 5333333
8 8 15755438 ob 25 1.333333
8 9 L.138452 25 2k 1.333333
9 8 h.138452 25 25 5333333
9 9 17.87510% 26 26 5333333

10 10 7.685023 26 27 1.3%3333
10 11 3.939417 27 26 1.323333
11 10 3.939417 27 27 5.323333
11 11 16,712673




TABLE IV
[AREINV} COLUMN VECTOR
( WAL )
Row Column Value Row Column Value
1 1 2.352941 15 1 20.,000000
2 1 2.500000 16 1 20.,000000
% 1 2666667 17 1 20.000000
4 1 2.105263% 18 1 20.000000
5 1 2.352041 19 1 20 .000000
6 1 2.666667 20 1 20000000
Vi 1 2,105263 21 1 20 . 000000
8 1 2.352041 22 1 1.600000
9 1 2.6665667 23 1 1.600000
10 1 2.352041 o4 1 1.600000
11 1 2 . 500000 25 1 1.600000
12 1 2.666667 26 1 2.,000000
13 1 20,000000 29 1 2.000000
14 1 20 .000000
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-~

Figure 3. Redundants Choice Figure L, Redundants Choice
Number 1., "RDC-1" Number 2, ""RDC-2"
Redundaats: g4 4 Redundants: qusy Qi
Gy dso Yve Gss dg, Qs Qigs o dat,

As in the case of the LALPIJ] sbrix and the [AREINV] column
vector, the metrices {qrwa and [q”] appearing in Equation (2-1) have
been design

ated LGLM] and {%IR]S respectively.

IM] matrix is caleulated by allowing each extermal locad to
have a wvaiue of 1 1b and determining the resulting internsil load distri-

bution assuming the wvalues of the internal redundant loads to be zerc.

gach internal redundant

The {GIRJ matrix is calculated by ailowing
lead %o have a value of 1 1b, assuming that the values of the external
loads are zercs

The calculation of the [GIM] and {GIRJ matrices for & struciure as

complex as the one under consideraiion becomes quite lengthy and tedicus.
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If local freebodies are drawn in a random manner, much repetition
results and there is a high chance for error.

A more regimented and precise approach can be developed. From the
degree of redundancy section, the development for the wall constraint
yields a precise approach to solve for the terms cof [GIM] and [GIR] in a
general manner. By the use of generalized Torces. shown in Figure
2, twenty-one freebodies can be drawn. Twelve freebodies can be drawn
containing a stringer and a web which produces twelve equations of equi-
librium between the stringer and webs. Then, nine freebodies can be
drawn containing a rib and a web which produces the remaining nine equa-
tions of equilibrium. An example of a freebody and resulting equilibri-

um equation is shown in Figure 5.

%4,

X
s 9,+H10.111873)q,,- 9, = O

\

\Ye
FPigure 5. Generalized Freebody and

Resulting Equation of
Equilibrium

The twenty-one equations in twenty-seven unknowns are listed as

follows:

dq, - g, +(10.111873)q,5 =0,



q,- 4,+(10.111873J%, =0, .-

q,+(10.111873)q,s = (1.0111873)R,

q, ~ 9s-(10.012385)q,,+(10.012385)], =0,

ds - 4.=(10.012385)q,, +(10.012385) q,,=0,

9 -(10.012385)9,s +(10.012385)a,, =(1.0012385) R,
Gy~ 9= (10.012385)qs +(10.012385)G, =0,

Qg— Gq —(10,0123'585)qH +(10.012385)4,, =0,
q,-(10.012385)d,e+ (10.012385)q,, = (1.0012385)R,
Ao = 9~ (10.111873) 4 =0,

9= G- (10.111873) 4z =0,

9, - (10.111873)q,, = (1.0111873)5

(19 = (5)% + G22=0

(6)A —@#)9s + Gz =0,

(5)as + 2. = R+HO.5)R +(0.15)R +(0025)R
(M)~ E) 4= %z +F2a= 0,

(6)Fn = (4)ig=Ang + Fog =0,

(5)9i= Geo + Gan = (0.5)R~(D.5)R ~(0.025)R+{D.023)R,
(M919=(5)%0 = G2a= 0,

(b)9z0 = (4)%es = 25 =0,

“6)%,+ Gaq = R +(0.15)R+D.025)R + (0.5)Ps.
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It is to be noted that all input data were read into the digital
computer with six digits to the right of the decimal point regardless
of their appearance in any figure, table, or example listing.

It has been established that six of the unknowns are redundant.
When a choice of redundants is made, the appropriate '"q" values can be
transferred to the right side of the equal sign with the external loads.
Now, there are twenty~one unknowns since the redundant "q" values are
either one or zero, depending upon whether the elements of [GIM] or
those of [GIR] are sought. Twenty=one linear simultaneous equations are
the result. These equations can be transformed into a matrix equation
consisting of a matrix of coefficients, a column vector representing the
unknowns and a matrix of constants. The coefficients matrices for RDC-1
and RDC-2 are shown in Tables V and VII and the matrices of constants
for both choices of redundants are shown in Tables VI and VIII.

A digital computer program was developed for solving the two sets
of equations and determining [GIM] and [GIR] automatically. An expla-
nation of that program is given in Appendix D. [GIM]QQQRDG-lwg““RDCwZW%
and [GIR]?““RDC-lﬂﬁgﬂRDGméﬁk are listed in Tables IX, X, XI, and XII,
respectively.

The {E%} column matrix of Equation (2-1) has been designated
[FORCE] and it consists of the actual values of the external loads.

Three load configurations (see Figure 3%, Chapter IV) were used in
this investigation, and {FORCE] matrices corresponding to these configu-

rations are shown in Table XVIII of Chapter IV.



fCOEF:i MATRIX, RDC-1

Non=Zero BElements Listed

TABLE V

Raw Col Coeff Row Col Coeff
1 1 1.000000 10 4 1.000000
1 2 -1.000000 10 5 -1.000000
1 7 10.111873 10 13 -10.111873
2 2 1.000000 11 1 1.000000
2 3 ~1.000000 11 6 -1.000000
2 8 10.111873 11 14 -10.111873
3 3 1.000000 12 - 6 -1.000000
3 9 10,111873 12 15 -10.111873
4 7 -10.012385 13 7 7.000000
4 10 10.012385 13 8 -5.000000
5 8 -10.012385 13 16 1.000000
5 11 10.012385 14 8 6.000000
6 9 -10.012385 14 9 =4.,000000
6 12 10.012385 14 18 1.000000
7 10 -10.012385 15 9 5.000000
7 13 10.012385 15 20 1.000000
8 11 -10.012385 16 10 7.000000
8 14 10.012385 16 11 -5.000000
9 - 12 -10.012385 16 16 ~1.000000
9 15 10.012385 16 17 1.000000
17 11 6.000000 19 14 ~5.000000
17 12 ~4.000000 19 14 -5.000000
17 18 -1,000000 20 14 6.000000
17 19 1.000000 20 15 -4,000000
18 12 5.000000 20 19 -1.000000
18 20 -1.000000 21 15 ~5.000000
18 21 1.000000 21 21 1.000000
19 13 7.000000

N3

e}



TABLE VI

[CONST] MATRIX

Non=Zero Values Listed

30

Row Column Coefficient Row Column Coefficient
3 1 1.0111873 8 11 1.0000000
b 6 -1,0000000 12 b 1.0111873
b 7 1 ,0000000 15 1 0.1500000
5 7 -1 .0000000 15 2 0.0250000
5 8 1.0000000 18 2 0.0250000
6 2 1.0012385 18 3 =0,0250000
6 =1 .0000000 21 3 0.0250000

9 ~1.0000000 21 b 0.1500000
7 10 1.0000000 21 5 1.0000000
8 10 ~1.0000000




TABLE VII

[COEF] MATRIX, RDC-2

Non-Zero Values Listed

Row Col Coeff Row Col Coeff
1 1 1.000000 10 11 -1.000000
1 2 -1.000000 11 11 1.000000
2 2 1.000000 11 12 -1.000000
2 3 ~-1.000000 12 - 12 1.000000
3 3 1.000000 13 16 1.000000
4 4 1.000000 14 18 1,000000
4 5 -1.000000 15 20 1.000000
4 13 10.012385 16 13 7.000000
5 5 1.000000 16 14 -5.000000
5 6 -1.000000 16 16 ~-1.000000
5 14 10.012385 16 17 1.000000
6 6 -1.000000 17 14 6.000000
6 15 10.012385 17 15 -4,000000
7 7 1.000000 17 18 ~-1.000000
7 8 -1.000000 17 18 -1,000000
7 13 -10,012385 17 19 1.000000
8 8 1.000000 18 T 15 5.000000
8 9 -1.000000 18 20 -1.000000
8 14 -10.012385 18 21 1.000000
9 9 1.000000 19 17 -1.000000
9 15 -10.012385 20 19 ~1.000000

10 10 1.000000. 20 21 1.000000




TABLE VIII

[CONSTJ MATRIX, RDC=2

Non~-Zero Values Listed

Row Col Coeff Row Col Coeff
1 6 -10.1118730 13 7 5.0000000
2 7 -10.1118730 14 7 -6,0000000
3 1 1.0111873 14 8 4.,0000000
3 8 -10.1118730 15 1 0.1500000
4 6 10.0123850 15 2 0.0250000
5 7 10.0123850 15 8 -5.0000000"
6 2 1.0012385 18 2 0.0250000
6 8 10.0123850 - 18 3 -0.0250000
7 9 -10.0123850 19 9 -7.0000000
8 10 -10.0123850 19 10 5,0000000
9 3 1.0012385 20 10 -6.0000000
9 11 -10.0123850 20 11 4,0000000

10 9 10.1118730 21 3 0.0250000

11 10 10.1118730 21 4 0.1500000

12 4 1.0118730 21 5 1.0000000

12 11 10.1118730 21 11 5.0000000

13 6 -7.0000000
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TABLE IX

[GIM] MATRIX FOR RDC-1

TABLE X

[GIMJ MATRIX FOR RDC-2

B =1 B, =1 B =1 B, =1 B =1
1 .7746 0.6003 0.4084 0.2143 1.4450
2 0.8223 0.6164 0.3923 0.1667 1.1240
3 0.8889 0.6388 0.3699 0.1000 0.6741
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 o 0 0 0
8 0 0 0 0 0
9 0 0 0 0 0

10 0.2143 0.4084 0.6003 0.7746 -1.4450

11 0.1667 0.3923 0.6164 0.0223 -1.1240

12 0.1000 0.3699 0.6388 0.8889 -0.6741

13 0.0047 0.0016 -0.0016 -0.0047 -0.0318
14 0.0066 0.0022 -0.0022 -0.0066 -0.04k4
15 0.0099 -0.0621 -0.0366 -0.0099 -0.0667

16 0.0047 0.0016 -0.0016 -0.0047 -0.0318
17 0.0066 0.0022 -0.0022 -0.0066 -0.0444

18 0.0099 0.0366 -0.0366 -0.0099 -0.0667

19 0.0047 -0.0016 -0.0016 -0.0047 -0.0318

20 0.0066 0.0022 -0.0022 -0.0066 -0.0444

21 0.0099 0.0366 0.0632 -0.0099 -0.0667

22 0 0 0 0 0

23 0 0 0 0 0

24 0 -0.2660 -0.1330 0 )

25 0 -0.1330 -0.2660 0 0

26 0.0989 0.3408 0.1829 0.0495 0.3333

27 0.0495 0.1829 0.3406 0.0989 0.6667

m P =
\i\ P, =1 P,=1 B, =1 B, =1 B =1
1 1.0112 0 0 0 0
2 1.0112 0 0 0 0
3 1.0112 0 0 0 0
4 -0.6457 0.7867 0.2146 0.6437 4.2910
5 -0.5006 0.8344 0.1669 0.5006 3.3370
6 -0.3004 0.9011 0.1001 0.3004 2.0020
7 0.6437 0.2146 0.7867 -0.6437 -4.2910
8 0.5006 0.1669 0.8344 -0.5006 -3.3370
9 0.3004 0.1001 0.9011 -0.3004 -2.0020
10 0 0 0 1.01l0 0
11 0 0 0 1.0110 0
12 0 0 0 1.0110 0
13 0 0 0 0 0
14 0 0 0 0 0
15 0 0 0 0 0
16 0.0143 0.0048 -0.0048 -0.0143 -0.0952
17 0.0200 0.0067 -0.0067 -0.0200 -0.1333
18 0.0300 0.0100 -0.0100 -0.0300 -0.2000
19 0 0 0 6 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 0 0 0
26 0.1500 0.0250 0 0 0
27 0 0 0.0250 0.1500 1.0000
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[GIR] MATRIX FOR RDC=2

TABLE XI

-0.

=1 =1 = = =

e 9 9 1 g 1 a9 1

1 0 0 -0.3366 -0.3366 0 0

2 0 -0.6733 0 o -0.3366 0
3 0 0 -0.6733 0 0 -0.3366

A 1.0000 0 0 0 0 0

5 0 1.0000 0 0 0 0

6 0 0 1.6000 0 0 0

7 0 0 0 1.0000 0 "0

8 0 0 0 0 1.0000 0
9 0 0 0 0 0 1.0000

©10 -0.3366 0 0 -0.6733 0 0

1 0 -0.3366 0 .0 -0.6733 0
12 ¢ 0 -0.3366 0- 0 -0.6733

13 .0666 -.0666 0 0.0333 -0.0333 0’
14 0 0.0666 ~ -0.0666 0 0.0333 -0.0333
15 0 0 - 0.0666 0 0 0.0333

16 =0.0333 0.0333 0 0.0333 -0.0333 - 0
17 0 -0.0333 . - 0.0333 0 0.0333 -0.0333
18 0 0. -0.0333 0 0 0.0333
19 - -0.0333 0.3333 0 -0.0666 0.0666 o
20 0 £0.0333 0.0333 0 -0.0666 0.0666
21 0 0 26.0333 0 0 -0.0666
S22 -0.4661 0.7990  -0.3333 -0.2330 0.3995 ~0.1665
23 . .-0.2330 0.3995 . -0.1665 -0.4661 0.7990 -0.3329
2 0 -0.3995 0.6658 0 -0.1998 0.3329
25 0 -0.1998 0.3329 0 ~0.3995 - 0.6658
26 0 0 -0.3329 0 0 0.1665
27 0 0 1665 0 0 -0.3329

[GIR] MATRIX FOR RDC-2

TABLE XII

r
: =41
:\ 1,

ol - =41 =t
14 Gt 9q =t 20"t 9t
1 -10.1120 ~10.1120 0 0 0 0
2 0 -10.1120 ~ -10.1120 "0 0 0
3 0 0 -10.1120 0 0 0
4 20.0200 20.0200 - 20.0200 10.0100 ~ -10.0100 10-0100
5 0. ©20.0200  20.0200 0 10.0100 10.0100
5 0 0 20.0200 0 0~ 10.0100
7 -10:0100 - -10.0100 . -10.0100.  =20.0200  =20.0200 ° - ~20.0200
8 0 -10.0100 '-10.0100 © 0. -20.0200 © ~20.0200
9 0 0 . -10.0100 0 0 -20.0200
10 0 0 o 10:1100 10.1100 10:1100
11 0 0 0 0 10.1100 10.1100
12 0 0 0 0 0 10.1100
i3 1.0000 0 0 0 0 0
14 0. 1.0000 ) 0 0 0
15 0 0 1.0000 0 0 0
16 -1.0000 0 o -1.0000 0 o .
7 0 £1.0000 0 - 0 -1.0000 0o !
18 0 0 -1.000 0 0 ~1.0000
19 0 0 0 1.0000 0 0
20 0 0 0 0 1.0000 )
21 0 0 o 0 0 1.0000
22 -7.0000 5.0000 0 0 .0 0
23 0 0 0 7.0000 -5.0000 0
24 0 -6.0000.  4.0000 0 0 0
25 0 0 0 0 6.0000 “-4.0000
26 0 0 -5.0000 0 0 0
27 0 o 0 0 5.0000

he



A Flexibility Matrix Which Incorporates

Poisson's Ratio and Sweep Effects

The standard approach tc analyzing stiffened shell structures has
been shown. The structure was idealized into an array of bar and plate
elements. The stringers and ribs were assumed to carry only a linearly
varying axial stress while the plates were assumed to carry only a cen-
stant average shear stress. In order to account for the axial stress
carrying capacity of the plates, a discrete amount of plate cross sec-
tional area was added to that of the bar elements bordering a particular
plate. Two [ALPIJ] matrices were developed. One [ALPIJ] matrix allowed
for no lumping of plate areas while the other [ALPIJ] matrix contained
terms which allowed for one-half of the plate cross sectional area to be
lumped into the adjacent bar element.

This method is approximately correct for rectangular or nearly rec-
tangular panels, bul in its present form neglects two couplings which
impose a restriction on its application:

1. The coupling between direct stresses which is referred to

as Poisson's ratio coupling.

2. The coupling between shear stresses and the direct stresses

existing in oblique panels.

In a recent paper, Grjedzielski (8) showed that both Poisson's
ratio and sweep in coupling can be accounted for in a rational mauner.
In essence, the idealization is based upon the lumping concept, wherein
the direct-stress-carrying capacity of the structural material is con-
centrated along the stringers and ribs surrounding a given plate and

shear carrying capacity is assigned to the panel areas contained within
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the plate. Although this has the appearance of the axial-fcrce-member,
shear panel idealization, the Poisson's ratio and sweep effectsare taken
into account by incorporating them intec the flexibility matrix.

Subsequently a new flexibility matrix for a trapezoidal shaped
plate is derived which takes into account effects due tco Poisson's ratio
and swWeeps

The strain energy of a plate can be given by

U= & -’E—ff[@"+®"‘-~ivo; Oy +2(1+Y TG ]dA. @D

Here, the integrals of Cgf‘and CI? are interpreted as strain energy of
the stringers and ribs bordering a web, respectively, and the integral of
7;$ as the energy of panelis and webs. The integral ofC&(j} represents

the cross coupling due to Poisson's ratioc.
Transformation Into Oblique Coordinates

To change from rectangular coordinates X,Y to trapezoidal ones u,
¢j9 the following transformation holds (This transformation is shown
in Figure 6.)3

Y =W Y= UTANY . (2=18)

The stress components will be used as follows:

(a) Stress components of the system Lk,qjg Gu, Oy, Tay ,

(v) Stress components of the auxiliary system X) Y:(jk) (79)

Txy \

(¢) Stress components of the grid system:Js, Oy , Tp

where C§5ﬂui(j;arethe direct stress of the stringer and rib caps,

respectively, and Tp is the average panel shearing stress.



Ou
Tu V Ty /
Ox Tuy
-

Y

Txy

0y

Figure 6. Transformation of Stress Components
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From the consideration of equilibrium of stresses at a point, the follow-
ing transformation equations between the stress components (a) and (b)

may be written (These equations are written from Figure 6.3

Tay = Tay + O SINY,
Gy = 0L COSY> (2-19)
Gy = GpSECY + 2 Tuy TANU+ GuSINP TAN Y,
Strain energy of the panels in terms of the trapezoidal coordinates
is obtained by substitutionof Equation (2-19) into Equation (2-17). After
replacing the integration element dxdy by uduodq}secﬁl}‘ ; there

results

= z%f f [o;f + o~ 2(Ncos™P-si N au oy
HASIN(GL+ ) Ty +(ELOSY+4SIN) Ty | 4l (o o)

For lumping theory, the particular terms have the following
meaning: The 713# term represents the shear energy of the pangl° The
CifaﬁdACEf terms are interpreted as bending energy of stringers and
ribs. The term containing(j&(%;introduces the Poisson's ratio coupling.
Finally, the term & sin#}@ja:+(j¢)7&¢ takes care of the coupling due

to the sweep angle.
Component Energy Terms

For the contribution of the flange stresses to the total strain
energy, a flange AB with stresses ¢, an¢ g, at the ends A an B,

respectively, is considered. There results
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- Sl 4 ) I

— 1B

a_ GUL-XP o2 X* L 2G Ga(XL=X?) x ‘ |

Hence, the energy possessed by the flanges can be stated as

L

- A
- AL [o2dy

bt

) |
_ A g (L-xf | a*Xx* 2 6oz (xL-x>
25[ [ el G 4 2@ 0] | gy

=4+ +aq),

where O;y U, are the direct stresses at each end of a lumped flange and
will be equal to the node force divided by the corresponding lumped
area.

Strain energy Lh)corresponding to the state of shear 7k>is

evaluated by integration. Thus LJP is given up

. —ZtE_fﬂ ¢os l/z+4smzqz]wﬁd3_4$¢_.

An expression for T__ is
ux

TLLlP -Tp U.7‘ J

% 2
-t 4SIN'Y | uruz 2
Up= zeff [a cosF T cosw} w3 7 dudy,
YU,




4o

f
-t 1 G_SINY luz-ut) 2
= aefw [coszsu + 4 cosﬂp](u ) v
2 2 2
= B TN, - TANY, + AT -TaRY,)
=) T -TAN ) E [+ 2B (TAN +TANSTAN e TAN'Y)

- Apgé[ug—%(mw +TAN%TAN%+TAN‘%)J)

where Ap = M(TA NE —TAN 5“)

= area of the plate.

Strain energy corresponding to Poisson's ratio and shear couplings
vis. CuCy > TuTuy ando—q, wy 1is obtained by taking the value of each
product due to the four node values, summing them up and taking the
average to represent the plate.

The total strain energy for the four flanges and the plate is given

-— Al )
U = "gg—( Ri + gt Tgyy RIE)

Orzi+ Ogze + ORa RZZ)




.._%_‘.E(VCOQQW'-SIN?L}{)C-O%"-"-(Lb,@,,C,;.,§l—l.bzd§.16*gza) N

- "E 'z(VCos“tA.—SIN?tr,)Q%S—i’?(lzb.ldi.z'ovguﬂz bzOgzz Gozz)
4+ 45N —4’—[ b Gt Gr) 1, bz(@:z+ _GEzD]
+ S 4SIN %'—Z"—Bz bi(GRiz + G+ ‘lb_z(ﬁizzéi-ﬁzzz)]
+ L:_,iag_z, _lf_%qs.tlal'é‘ [1 +§%(TAN‘!H -f-TANWN%-f—TAN“&)] .

Castigliano's second theorem states that a displacement 6% can be
derived from the strain energy U, expresgsed in terms of the applied loads

P, as

5= 95
o | ap
where F‘,) i1s the loading in the direction of the displacement 87 . The

expressioh for ES' may be written as
| U _oU_da;
%" Ok “do; "OR ap[ [t

But the expression for stress, Ca , is

__R.
CE - [&J

Therefore, the partial derivative of (Uj with respect to F? is

AGC; _ 1
oR = O A;

where E%j is theKrcneizer delta. Then the expression for ES; may be

written as

8i=[A1ls Ko} = Bl IR



where the expression for the flexibility matrix [Q%jJ.is

e T

‘SJ can be obtained by differentiating the strain energy with respect

to each stress term separately. Differentiating

gg—m;: é E (2 Oent G?iz’a>— _E_(VCDSZLH —5/N2%>Q%ﬂ(£'b' %1 '>

+ o= SINY Tp (biby),

gg&;z é?(z Orie RH> E(QCOSZ%—SINWZ Q%s—%(bb'cgab

+ 2= SINE T (kb))
u

@Gm

+ 2= SIN Yo (L, ba):

B2 G+ i) 005415

ou

OOz

ib‘( 2 Gea G ) (10057 - SIN) T Lo )

SINTp(Labs)

e SINY T C&bz,)»



where Ay, A,

6)0“ Aske (2 65y, + e~ (V005 ~SiN24.)S08 % (L. b, 07 )
524

LE S NZ// TP@zb)

gg = 22 Gop + 3, )- i{vooszsuz = SIN. )G (L becrea)
Sze

+ 2 S:Nwﬁp(ﬁzbz}

ouU
kA

= gE SIN‘/‘,’[LI;,(UE“+G§”>+Lbz(05z + GE?.))]
-+ —EtEfS]N . [«QZ bl(@éaz‘*"@z: + L2 bZ(GfEZ‘L -+ 6—527)]

+(b+bz)£~CLS—H"T[ 1+45 (TN ?’+TAN‘HTAN%+TANZ%_)}

Aj; and Ay are the total lumped areas in sections

9

normal to ribs R, R, , and stringers S, and S,. The equations above may

now be transformed into matrix notation such that

5L-=[ s|{a}-



The [ijnaﬁrix is shown in Figure 8.

The matrix triple product Eikﬂ[E;]E4L1 may now be formed, the result

AlS A
of which is the final flexibility matrix which incerporates the effects
of Poisson's ratio and sweep. Henceforth, this matrix will be referred
to as [ALPId] [A IJ] s is shown in Figure 9.

The sign conventicn for [ALPIJ]KrS for a typical trapezoidal panel

iy

is shown in Figure 7.

jons

£
—
)

>

(

e lf\i o R d
a, \f’ qd,
2

Figure 7. Sign Convention and a Typical Trapezcidal Panel
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Inclusion of [ALPIJ]prs Into the Matrix Force Method

for Analysis of the Test Structure

In order to apply the Matrix Force Method with [ALPIJ};TS included,
o
to an analysis of the test structure of Figure 13, the [ALPIJ] ix
for the composite structure must be "huilt uo" by special means.

The use of {ALPIJ}‘ implies that the test structure be idealized
in a diff rent manner. The given structure was idealized into the same
basic assembly of bar and trapezoidal shaped web elements, but, now,
with a choice of fifty-one internal generslized forces, instead of the
twenty-seven forces shown in Figure 2. Each bar element is still
theoretically constrained to carry only a linearly varying axisl load,
while each web element is still only allowed to carry an average con-
stant shear flow value, but, now, both the bar element load and web
shear flew will include the effects of Polsson's ratio and sweep. The
ifty-~one unknown ideslization of the test structure is shown in Figure
10.

For "building up" the composite [ALPIJJPTS matrix, the idealized
version of the test structure can be divided into three sections. The
first section consists of the top stringer, the upper center stringer,

4%

he enclosed ribs and webs. The second section consists of the
upper center stringer, lower center stringer and the ribs and webs
enclosed within these two stringers. The third section is made up of
the remaining lower center stringer, the bottom stringer and the ribs
and webs enclosed within these two stringers. For the contribution of
the second section to the composite [ALPIJ}? Figure 7 can be modified

to the form shown in Figure 11. Pigure 7 cen be modified to that shown
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in Pigure 12 for the contribution of the third section. Figure 7 can
be applied directly for the contribution of the first section.

The modification of the original sign convention for a typical
trapezoidal "cell" requires slight modification of [ALPIJ]prs . With
the use of a simple reindexing system, the composite [ALPIJ]prS may now
be evaluated. The coefficients of the composite [ALPIJ]prs are listed

in Table XIII.

Figure 11. Sign Convention for Section 2
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Figure 12. Sign Convention for Section 3

Finally, in order to be compatible with the composite [ALPIJ]prS,
the matrices [GIM]vand [GIR]‘and the column vector [AREINV] must be
redeveloped in terms of fifty-one unknowns instead of twenty-seven

unknownse.



COMPOSITE [ALPIJ]
prs

TABLE XIIT

Non~Zero Term Consisting of Nonsymmetrical Terms and
One-Half of the Symmetrical Terms are Listed

Row Col Coeff Row Col Coeff
1 1 8.171000 25 1 12.730000
2 1 4,086000 25 2 10.,910000
2 2 8.,171000 25 7 3.889000
3 3 8.698000 25 8 3.333333
4 3 4.349000 25 25 3501.333333
4 4 8.698000 26 3 11.610000
5 5. 9,298000 26 4 9.677000
6 5 4.649000 26 9 3.750000
6 6 9.298000 26 10 3.125000
7 7 7.417000 26 26 2962.666667
8 7 3,708000 27 5 10.340000
8 8 7.417000 27 6 8.276000
9 9 8.344000 27 11 3.571000

10 9 4,172000 27 12 2.857000

10 10 8,344000 27 27 2484 ,666667

11 11 9,536000 28 7 -3.889000

12 11 4 ,768000 28 8 -3.333333

12 12 9.536000 28 13 3.889000

13 13 7.417000 28 14 3.333333

14 13 3.708000 28 28 3471.000000

14 14 7.417000 29 9 -3,750000

15 15 8.344000 29 10 -3.125000

16 15 4.,172000 29 15 3.750000

16 16 8.344000 29 16 3.125000

17 17 9.536000 29 29 2964 .000000

18 17 4 .768000 30 11 -3.571000

18 18 9.536000 30 12 -2.857000

19 19 8.171000 30 17 3.571000

20 19 4.086000 30 18 2.857000

20 20 8.171000 30 30 2462 .666667

21 ‘21 8.698000 31 13 3.889000

22 21 4.349000 31 14 3.333333

22 22 8.698000 31 19 12.730000

23 23 9.298000 31 20 10.910000

24 23 4.649000 31 31 3501.333333

24 24 9.298000 32 15 3.750000
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TABLE XIII (Continued)

Col

Row Col Coeff Row Coeff

32 16 3.125000 41 11 ~0.919200
32 21 11.610000 41 26 2.000000
32 22 9.677000 41 27 2.000000
32 32 2962.666667 41 40 1.333333
33 17 3.571000 41 41 2.666667
33 18 2.857000 42 10 ~0.804300
33 23 10.340000 42 11 -0.919200
33 24 8.276000 42 29 -2.,000000
33 33 2484 ,600000 42 30 -2.000000
34 2 -0.860600 42 42 2.666667
34 3 -0.916200 43 16 -0.804300
34 "~ 25 7.200000 43 17 ~0.919200
34 26 7.200000 43 29 2.000000
34 34 3.200000 43 30 2.000000
35 8 -0.857900 43 42 1.333333
35 9 -0.965100 43 43 2.666667
35 25 2,400000 44 16 -0.804300
35 26 2.400000 44 17 -0.919200
35 34 1.600000 44 32 2.000000
35 35 3.200000 44 33 2.,000000
36 8 -0.857900 44 44 2.666667
36 9 -0.965100 45 22 ~0.763500
36 28 ~2.400000 45 23 ~0.816100
36 29 -2.400000 45 32 6.000000
37 14 ~0.857900 45 44 1.333333
37 15 -0.965100 45 45 2.666667
37 28 2.400000 46 6 -0.816100
37 29 2.400000 46 27 6.000000
37 36 1.600000 46 46 2.666667
37 37 3.200000 47 12 -0.919200
38 - 14 -0.857900 47 27 2.000000
38 15 -0.965100 47 46 1.333333
38 31 2.400000 47 47 2.666667
38 32 2.400000 48 12 -0.919200
38 38 3.200000 48 30 ~2.,000000
39 20 -~0.860600 48 48 2.666667
39 21 -0.916200 49 18 -0.919200
39 31 7.200000 49 30 2.000000
39 32 7.200000 49 48 1.333333
39 38 1.600000 49 49 2.666667
39 39 3.200000 50 18 -0.919200
40 4 -0.763500 50 33 2.000000
40 5 -0.816100 50 50 2.666667
40 26 6.000000 51 24 -0.816100
40 27 6.000000 51 33 6.000000
40 40 2.667000 51 50 1.333333
41 10 -0.804300 51 51 2.666667

R

\Ji



CHAPTER III
ANALYTICAL INVESTIGATION

The structural panel used in this investigation was designed so
that the idealization used in the force analyéis corresponded as pre-
cisely as possible to the actual test model. In the case of complex
structural configurations, the analysis problem should be divided into
two phases: the idealization of the complex structure; the analysis of
the idealized structure. |

In the first phase, large errors may occur due to computer size
limitations because it is necessary to approximate large structural
configurations with a relatively few number of structural elements. In
addition, thick panels are idealized as thin panels which carry no out-
of-plane loads; and tapered bar elements are idealized into constant
area sections that carry constant loads. These discrepancies occur in
the idealization phase of the analysis.

The second phase, the comparison between the structural behaviocr
of the panel and the mathematical analysis of the idealized panel, is
hopefully limited to errors in the mathematical representation of the
characteristics of the structural elements. It is first necessary to
prove that an idealized structural configuration behaves in a manner
similar to an actual structural configuration of approximately the same
geometric characteristics. After this comparison is made, the errors

resulting from idealization procedures can be more accurately
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investigated.

The design of the research model shown in Figure 13 is based on the
idealization of actual structural configurations that are commonly en-
countered in aerospace structural analysis. This structural configura-
tion results in a convenient idealization for the force method of
analysise.

An extensive analysis of the structure was performed using the
matrix force method described in Chapter II. A complete analysis of the
structure was performed using sach of the flexibility matrices described
in Chapter II for each of the load configurations performed in the
experimental investigation. Load condition No. 1 consists of four
equivalent loads szpplied at the forward edge of the panel of
Figure 13. Loéd condition No. 2 consists of a ''‘shear' load ap-
plied at the upper forward edge of the panel in a diregtion perpendicu-
lar to those of LC-1l. Lozd condition No. 3 is similar to LC-1 but
consists of only two equivalent loads applied in the "axial® direction.
IC1,LC-2, and LC~3 are shown in Figure 33. The array of load values for
each load condition are shown in Table XVIIIL:

The first analysis is illustrated in detail to show how the

matrices{qi} ’{Gb} 3{@,} ,{8&, and [a\r'n:l are determined.

true
Generation of the Matrices: [QI], LS‘I‘RESS:!s

[DELTAM], and [ARNTR]

The matrices of{%h} of Equation (2-1)4Fg>and§ﬁ},of Equations (2-6)

and (247)9{5%} on page 11, and Bl*WJtrueOf Equation (2-9),

have each been designated as followss



Figure 13.

Test Panel and Its Geometry

— L—o.so’

SECTION A-A
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{qi} = :OI:]
[o;,w'wJ = :STRES:S:]
(8.0 = | DELTAN]

[ m] = ARNTR}
tyue L

The digital computer program described and illustrated in Appendix

C was used to calculate six sets of values for the above four matrices.
Three sets of values or runs were made for each, the RDC~-1 assumption

and the RDC=2 assumption.
The combination of the input matrices [ALPIJ:I9 [AREINV], [GIM:Is

[e1], 2na [FORCE] for each run 1s shown as follows:

Run No. 1:  [ATPIJ| 3 [AREINV] ,
{GIM]ﬁ RDC-1 ; [GIR], RDC-1
FromseT;

Run No. 2: [ALPIJ| 3 [AREINV] ;
(11|, RDC-1 3 [GIR], RDC-1 ;
[romosTys

Run No. 3 [ALPIJ | 5 [AREINV] j

[GIM]s RDC-1 % [GIR], RDC-1

[FORCE]LC“B
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Run No. b [ALPIJ] : [AREINV] :
{GIM]g RDC-2 3 [GIR]S RDC-2 :

[FORCE]LC“l

Run No. 5: | ALPIT| 5 [AREINV] 5

-

{GIM]$ RDC-2 {GIR]s RDC-2
’[EORCE]LC_g

Run No. 6: ;ALPIJ] : [AREINV] :

fGIM]q RDC-2 [GIR], RDC-2

fFORCE]LCMB

The values of [QIﬂ are shown in Figures 14 and 15 the values of
[STRESS] are shown in Figures 16 and 17 énd the values of [DELTAM] are
shown in Table XIV.

The producta of Equation (2=9) were performed and these
values which make up {ARNTR] are shown in Table XV. The magnitude of
these values indicates that the matrix R}[h@}is almost error-free.
This serves as a good check on the accuracy of values of [QI:I5
[STRESS], and [DELTAM:Io

Since the two redundants choices produce results which are so
similar, only RDC-1 was used in the analysis containing [ALPIJ:IPTS°

The values of [QIJ; [STRESS]9 and [DELTAM] produced by [ALPIJ]prS

analysis are shown in Figures 18 and 19 and Table XVI.
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TABLE XIV

[DELTAM] MATRIX

All values must be multiplied by 1/E

o
3

LC-1 LC-2 LC-3
P1 =P2 =P3 ::PAL?-'-“-:‘LOO P5=loO Pz :'P'j 3100
120.8230 52.5279 575455
131.203%0 18.7801 7%.6570
RDC-1 131.2030 =15.0746 73,6570
120.8230 -52.2956 57.5455
2.9277 268.4080 32,7055
125,1380 54,1391 58.9804
133%.0030 18.8426 74022k
RDC-2 133.0030 ~15,1283 7L, 022k
125.1380 ~5%,9236 58,9804
%,9300 268.4080 2.,714%
TABLE XV
[ARNTR] MATRIX
RDC=-1 RDC~2
1 «1,35601 E-06 =1.60279 E-05
For all 2 =1.84588 E-06 ~4.,26222 E-05
Load 3 ~1.54250 E-06 ~%.,86368 B-C5
Configurations k4 ~8.1213% E-07 ~1.70259 E~03
g «5.07102 E-07 1.29342 B-05
& =7.07102 E-C7 8.41729 BE-05
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TABLE XVI
[DELTAM] MATRIX FROM EXTENDED FORCE ANALYSIS

NOTE: All values must be multiplied by 1/E

[}
\Ji

LC-1 LC-2 LC-3
Py =P, =P; =P, =1.0 Pg=1.0 P, =P3 =1.0
76 . 196k 28,7230 27.6296
76.7557 7.3656 L8.8485
RDC-1 7705933 ~11.2631 49 .6506
7%.6320 ~-32.9868 28.210%
-8.1613 188.1140 =3.8975




Analysis by the Direct Stiffness Method

The direct stiffrnessmethod has been employed in three separate analyses

.

of the test structure in order to provide theoretical results with which those
of the matrix force method may be compsred. Also, the description and
subsequent appiication of the direct stiffness method illustrates its

)

basic characteristics in contrast to those of the matrix force methed.
The direct stiffness method is a finite element method of structur-
al aualysis which considers a structure to be an assembly cf idealized
elastic elements which are assumed to be joined only at discrete points
called nodes. The stiffness method is a contrast to the force method,
which is described in Chapter II, in that displacements, not forces, are
the initial unknown gquantities. The problem is directed toward the solu-
tion for unknown displacements at the joints, and the resulting stress dis-

tribution iscaleulated sut

sequently from the displacements. In these terms,
there are always as many equations of equilibrium aveilable as there are un-
knowns. The relaticunship of forces and of displacements is defined for
the node peiunts on the structure by the stiffness matrix. The stiffness
matrix for the complete structure is cobtained by adding the stiffness
coefficients for common degrees of freedom of adjacent elements at each
node on the structure. The summed stiffness coefficients define the
coefficients for the iinear algebraic equations relating the nodal
forces and the nodal displacements of the complete structure. The
general stiffrness coefficient an is the force in the direction J due

to the unit displacement in the direction h, while all other displace-

ments are zero. As a result of equilibrium conditions, the stiffness
matrix is a positive definite, symmeiric matrix; and the sum of the

coefficients along any row or column of the stiffness matrix is equal
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to zero.

The forces and deflections in each element of the structure are
related by an assumed stress-strain relationship for the idealized ele-
ment. The displacements of the nodes in a structure are considered as
the initial unknown quantities. A large number of mutually compat-
ible deformations of the elements are possible; the correct pattern of
displacements of the elements is the one for which the equations of
equilibrium are satisfied.

If the idealized structursl elements,for which the stiffness coef-
ficients are known,are combined for a continucus structure, the compos-

ite stiffness matrix for the total structure is assembled as

Kll Kl? ° Kin Kiéw
K21 KQQ o ° o
Kji R o th ij
Kmi ° ° Kmh Km%J
b

Where each th term is the stiffness coefficient representing the total
force component produced at node Jj due to a corresponding unit displace=
ment component as node h.

With the use of these ideas, the basic equations of the direct
stiffness method can be summarized. These equaticns asppear in Appendix
A

Two theoretical elements are used in the direct stiffness analysis
of the test structure of Figure 1%. They are the planar bar element and
the plansr triangular element. The derivation of the stiffness matrices

for each of these elements is given and follows meinly from the work of



Turner et al. (6). These matrices have been derived in a manner which
is applicable to this particular application of the direct stifiness
method to an analysis. These derivations appear in Appendix A.

The stresses in each element may now be evaluated from the node
point displacements. The equations for these quantities are given in

Appendix A.

Analysis of the Test Structure:

Structural Idealiization

Three choices of structural idealization were used in this investi-

gation. Each employs the constant stressed bar element and the constant

V-Je

stressed trianguviar element. These three cholices of idealiization are
shown in Figure 20.

Idealization choice number one or IDC=1 bresks the original struc-
ture into an array of bar and triangular plate elements, each original
web being divided into ftwo triangular elements.

Idealization choice number two or IDC=2 4is identical to ICD-1
except the triangular plate elements replacing each original web are
oriented in a different direction.

Idealization choice number three or IDC=3 breaks each original
web into four triangular plates and introduces a new hypothetical ncde
at the intersection of the diagenals connesting the corners of ecach
webo

Calculation c¢f the element stiffness matrizes and the buildup of
the stiffness matrix for the composiie structure are implemented by the

Stress Analysis System of Reference (11). A more detziled description

and example listing of the Stress Analysis System is given in Appendix B.
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Three separate analyses of the panel shown in Figure 13 are con-
ducted. The first analysis will utilize the two triangle web makeup of
IDC-1. The second analysis will utilize IDC-2 which is also a two tri~
angle web makeup, but oriented in a different direction. The third
analysis employs IDC~3% and is a four triangle web makeup.

The three load conditions used in the matrix force method analysis
are used in each stiffness analysis. These varicus load conditions
appear in Chapter IV and have beeun described sarlier in this chapter.

The input data required for the Stress Analysis System consists of
node numbers, element numbers and geometric descriptions of the ideal-
ized structure. Therefore, the first step for preparing input data for
an analysis is to establish nodes, node numbers, idealized elements, and
idealized element numbers.

The idealized structure is then defined in terms of the number of
the node point, the coordinates of the node point, the external load
condition and load values acting on the node point, and the definition
of the boundary condition at the node point.

The idealized panel must also be defined in terms of the struc~
tural data. The structural data consist of the location of the ideal=-
ized elements relative to the node points, the type of structural
element, and the description of its material properties.

- The node data and the structural data are then employed in
evaluating the stiffness matrix of the appropriate element. If the
element is a bars[}<:]of Equation(ﬁw?)ia evaluated; if the element is a

itriangular plate, of Equation (4-17)4is evaluated.
g 1K

The content of the stiffness matrix for essh tar and plate element

3

may now be combined into a composite stifiness matrix for the entire



structure by tabulating the contribution of the elements to the warious

modes of the structure.

Generation of Node Peint Displacements;

Forces and Element Stresses

As described in Appendix A, the unconstrained node point displace~
ments are the result of the product of the inverse of the partitioned
composite stiffness matrix and the external forces acting on the struc-
ture. Nodal displacements for IDC-1l, IDC=2, and IDC~3 are shown in
Table XVIX.

If {6} in Equation (A-18) are set equal the nodal displacements, the
internal forces acting at each node may now be calculated with the use
of [Ké]: [Fﬁ} s the composite stiffness matrix. Forces acting on
exterﬁally loaded and reaction nodes are shown in Figure 21 for. the
third idealization choice and each load condition.

The stresses in each bar element may be calculated with the use of
Equation (4-23) by employing the end point displacements of each bar.
Plate element stresses may be calculated by evaluating Equation (A-24).
Element stresses for the third idealization choice and each of the load
conditions are shown in Figures 22, 23, and 24,

B This chapter has included the explanation of and the results of
analyses of the test structure by both the matrix force method and the
direct stiffness method. A more detailed and extensive analysis was
performed with the matrix force method while an abbreviated analysis was
conducted with the direct stiffness method.

The test structure was first analyzed with the matrix force method

in its unmodified form. Two choices of redundants were used along with



the unmodified ‘:ALPIJ]‘matrixo A second analysis was performed with

the new_[ALPIJ]brS matrix, which accounts for Poisscu's ratio and sweep
effects, included in the modified wversion of the matrix force methed.
The final analysis of the test structure was performed with the direct
stiffness method to provide a theoretical comparison with the results of
the second analysis utilizing the new {ALPIJ]

prs
The results of the analysis by the ummcdified matrix force method

matrix.

indicate that the two redundants choicesy; RDC~1 and RDC-2, produce val-
ues of internal forces, element stresses and load point displacements
which ars quite similar. This shows, among other things, that the input
matrices were accurately calculated.

A general comparison of the results of the analysis with the modi-
fied version of the matrix force method including the new [ALPIJ]prS
matrix with those of the unmodified matrix force method shows that all
results: internal forces, element stresses and load point displacements,
of the modified method are significantly smaller in value than those of
the unmodified version.

Finally, a comparison of the resulits of the analysis with the modi-
fied matrix force method with those of the direct stiffness method indi-
cates favorable agreement of the element stresses and the load point

displacements.



TABLE XVII

LOAD POINT DISPLACEMENTS

LC1 Lc2 LC3
o.7259x10:§ +o°2785x10j27 0.3117xio:§
0.7554x10 +0.9220x10_¢ 0.4481x10

IDC-1 007548x10“5 -0.7852x10" o.L+5o6xlo"‘5
O°7212x10"g -002874XIOZE 0,2998x10“2
0.4784x10" 0.1738x10 0.1367x10"

e -5 -5 -5
0.7212%10 0.2843x10 0.2998%10
0,7548x10”g 008577x10:2 0.4506x10:§

IDC-2 0,7554}{10“"5 -0.9252x10_¢ O.4481x10“5
007259x10:6 _003106x10:4 O°3117x1007

-0.330%x10 0.1749%10 -0.6749x10
0.7237x10:§ 00327Ox10:; o°2892xlo:§
0.7615x10 5 0.1054x10 7 0.4723x10 5

IDC-2 0.7615x10"C ~0.9497x10_¢ 0.4723x10”2

0.7237x10" -0.3448x%10 L o.2892x10‘6
_0.7390x1o"'7 0.1879x10" 0.1046x10™
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CHAPTER IV
EXPERIMENTAL ANALYSIS

The purpose of this experimental investigation is to provide data
for direct comparison to the analytical methods. Since the structural
ideglization techniques provide a unlque and somewhat unrealistic struc-
tural configuration, prior experimental date are unavailable for ccmpar-
ison purposes. The experimental facility and the structural skin panel
that were developed for this investigation are shown in Figure 25 and a
general flcor plan of the facility is given in Figure 26.

One objective of the experimental investigation is the determina-
tion of the complete state of strain at various points in the model for
three conditicns of external loading. The strain gages are positioned
on the panel at points which corrsspond with points easily selected for
the analytical soluticns. These locations of the strain gages reduce
any errors that might occur as a result of extrapolating either the
anélytical or the experimental data.

The research model was mechanically milled from %@“U(}é“ X 96
aluminum 202@wT351 bare plate, QQ A 250/4C, by Northwest FEngineering
Company, Oklahoma City, Oklahoma. This material was selected because
of its high wiilization in current aircraft programs. The panel was
machined from one-half inch thick plate to eliminate jeints. The panel

and its geometry are shown in Figure 13.
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Test Apparatus and Instrumentation

=

A list of the major equipment in this test program is given i
Appendix F.

The types of strain gages selected for this experimental program

weres
Axial Rosette
Manufacturer The Budd Co. The Budd Co.
Type C1l2-121-A C12-121D-R3Y
Gage Factor 2.07 & %@? 2,03 iz%@%
Resistance 120 % 0.2 ohms 120 £ 0.2 ohms

Eastman 910 cement was used to bond the strain gages to the sup=-
face of the model after the surface of the model had been prepared using

sandpaper, trichlorethylens, and an acid neutralizer. A three-wirs

e

systemr was used %o sounget the strain gages to the read oult instrumenta-
tion in order to cansel the effect of changes ¢f wire resistance
sncountered due to changes in rcom temperature.

The strain gage data recording instrumentation consists of Budd
Model P 350 Strain Indicators and Budd Model SB-l Switeh and Bslance

Units. These portable strain indicators and switch and balanse units,

ghown in Figure 27 were used to record a total of 188 channsls of

gtrain deata.

ns were measured with Sterrett Dizsl Indisaters. The

o
4]
}-l;
[ 2]
&
[+
or
o
[}

indicators have a range of 0.4 inches znd = gradvatisn of C.000L

in Figure 28. Data from thsse dial iandicators wers used to determine

the deflectsd shape of the panel. Avpendix F contains a debailed



Figure 27.

Portable Strain Gage Instrumentation
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Experimental Tapered Reinforced Skin Panel

Figure 28
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explanztion of the calibration of the dial gages.

The loads were applied with an Empco Vertical Motion Jack Style
JH=20, purchased from the Enterprise Machine Parts Corporatiocn. Pre-
liminary tests indicated that these mechanical load devices were satis-
factory for this type of static testing. BLH SR-4 Load Cells were used
to monitor the external loads on the panel. The loading systeﬁ is
shown in Figure 29= These load cells were calibrated by the manufac-
turer for an accuracy of % 0.25 percent of full scale load value.

In crder to read boﬁh load cells on the BLH SR-4 Indicator, the
load cells were connected to the indicator through the BLH Switch and
Balance Unit, and the system calibrated for a gage factor of 2.0, The
SR-4 Load Cells were used to calibrate the BLH, Type N, Indicator
against the Budd portable indicators bésed on the calibration factors
specified by The Budd Company. The system was also calibrated with
‘test equipment at the Halliburton Oil Company, Duncan, Oklahoma. A more
detailed explanation of this calibration is given in Appendix E.

The loading system is shown in Figure 29. Load=divider sysﬁems
shown in Figures 25 and 28 were used to divide the load symmetrically
to the various load points for load configuration numbers one and
three.

The basic loading fixture for the experimental investi-
gation, Figure 25, was designed, fabkricated, and used in previcus
experimental programs at Oklahoma State University (113, (12).

One of the most critical aspects of testing thesse small structural
configﬁrations for deflection and stress characteristics is the manner
in which. the model is supportsd in the loéding fixture. The support

system must not contribute effects at the supports which cannot be



Figure 29.

Mechanical Loading System

a8



8¢

represented accurately as boundary conditicns. The support system
sheuld be rigid enough to minimize the contributions to the panel
deflections for meximum loads. Two types of support configuraticns
were considered: a simple support comnfiguration, and a fixed-base
configuration. KEither of these support configurations could be handled
accurately in the anélysisg however, dus to the results of Ayres' (12)
work, the fixed support system, Figure 30 was chosen. A large factor
affecting this choice was a result of friction in the sliding support
which must be zssumed friction free.

Preliminary tests were conducted on the panel with twenty sirain
gages to determine the panel alignment characteristics and to verify
the design and application of the related test equipment. The objec-
tives of the preliminary tests were:

1. To ascertain out=of=plane bending and torsion effecis;

2, To ascertain the linearity of the load deflection

relationshipss

3. To determine hysteresis effects

]

To determine the amount of preload reguired to remowe

£
c

the initial joint slippage in the model.

The results of these preliminary tests indicated that hysteresis
effects were negligibie for the load conditisns io be investigated. In
addition, the model yielded linear resulis with straius of sufficient
magnitude to be recorded easily from the available equipment for the
desired load levels. Siress concentration effects were
cbeerved from both the lozd divider system and the support systenm.
These unavoidable effects wers nct excessive and, hence, did nct

prejudice the experimental data.
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Support System

Figure 30.
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The preliminary tests did indicate that a small amount of out-of-
plane deformation was present in the model as a result of the machining
cperation. This initial deformation had a significant effect on strain
measured at the surface of the stringers and ribs. The strain gages on

the stringers and ribs were actually one=fourth inch from the center
plane of the model. However, good results were obtained by using
“strain gages located opposite each other on the ribs and stringers and
by using the average of the two readings.

The initial shape of the model also had a significant effect for
the shear load gonfiguration. The initial eccentricity resulted in
less load gapacity than would have been present for a perfect model.
Thls difficulty was overcome by using a 10,000-pound uniform preload to
straighten the model for the shear locad configuration. 8ince the com-~
bined load was';till in the linear load-deformation range, the effect
of the 10,000-pound uniform lcoad was easily segregated from the shear
load effects.

Subsequent to the completion of the prelimiunary tests, an addi-
tional 168 strain gage legs were applied to the model at the typical
locations shown in Figure 2i. In many cases, redundant gage locations
were used to check the symmetry of load distribution. The axial and
rosette gages were numbered as shown in Figure 3L. All axial gage num=-
bers begin with ¥1" signifying one leg, while all rosette leg numbers
begin with "3 signifying three legs. AlL even numbered legs ars
located on the side shown in Figure 31 and all odd aumbered legs wiih
the "=0%" designation are mounted on the opposite side, "mating” with
the appropriate even numbered legs. The numbering system was designed

to provide maximum flexibility in the adding or in the changing o
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Figure 32. Load Configurations

gages. The gage locations are shown in Figure 33.

Deflections and internal load distributions were determined experi-
mentally for the fundamental types of applied lcads that are found on
actual aircraft structural skin panel configurations. The test config-

nrations are divided intc three load conditions. These three load con-

ditions are shown in Figure 32. The force wvalues corresponding to the
configurations are shown in Table XVIII. Datarfor each test configura-
tion were obtained after a check out of the test equipment.

Three tests correspouding to the appropriate load conditions were
conducted. These tests are shown in Table’XVIIIo All strain geges were
monitored during each test. All experimental strain data were reduced
to final values of stress by techniques explained im Appendix E.
Deflection data were obtained for the magnitudes of external loads
shown in Table XVITI. Since hysteresis effecis were demonstrated to be

small in the preliminary test, data were recorded for increasing loads
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TABLE XVIII

FORCE VALUES

Value

Pi 1 2 3 b 5 6 7
P, 1 250 500 750 1000 1250 1500
el P, 1 250 500 750 1000 1250 1500
TisT o La 1 250 500 750 1000 1250 1500
P, 1 250 500 750 1000 1250 1500

P, 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0

P, 0 0 0 0 0 0 0

er s P 0 0 0 0 0 0 0

> b, 0 0 0 0 0 0 0
P 1 200 Loo 600 800 1000 1200

P, 0 0 0 0 0 0 0
L3 P, 1 250 500 750 1000 1250 1500
fpsr 1 Da 1 250 500 750 1000 1250 1500

P, 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0

4]
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at equal intervals for the number of observations during each test con-
dition as shown in Table XVIII. The deflection data are shown in the
experimental portions of Tables XIX, XX, and XXI of Chapter V.

The stress data for each load conditicn are shown in Figures 34,
35, and 36. In these figures, the stress values are given in terms of
PSI per pound of load cell load. For example: to obtain the correct
values for LC-1, the values of Figure 34, should be multiplied by 4.

This chapter has provided a detailed explanation of the experimen-
tal analysis conducted on the test structure. The purpose of and the
main objective of this experimental investigation have each been out-
lined. The construction of the test structure itself was described in-
cluding details of the material employed, the manufacturer, etc.

The testing facility and all load application equipment, strain
measuring apparatus, and deflection measuring equipment have been pre-
sented. The calibration of all pertinent equipment was given. The
representative load configurations used were illustrated along with the
force values corresponding to each configuration.

All stress datawere calculated from strain data measured directly
by the portable strain gage instrumentation. The strain data were
reduced from ten observaticns at each strain gage leg location tc a
representative value of strain per unit load cell load by the least
squares fit criterion of statistical theory. This treatment of the
experimental strain data is explained in Appendix E.

All experimental deflecticn data were reduced by hard and verified
to a certain extent by comparing the deflection values of loaded points
in the axial direction with those values determined by summing the

strain data at represeniative points along the axis of each stringer.
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This compariscn showed good agreement between the experimentally meas-
ured deflection data and the approximate integration of the axial strain
values/along the stringers.

The above comparison and the result of the calibration of all

critical measuring equipment indicate that all experimental data are

correct within a reasonable amount of accuracy.



CHAPTER V

COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

The objective of this research effort is to develop the capability
for the analytical and experimental investigation of integrally rein-
forced tapered skin panels with finite element methods of structural
analysis. The analytical capabilities, which are developed, include
both the force and direct stiffness methods of structural analysis.

The stiffness method of analysis demonstrates how a structure with
complicated geometry can be analyzed with relatively simple theoretical
elements through idealization. All three analyses were performed with
the digital computer specifying only the geometric and structural con-
figuration of the skin panel. The analysis capability is described in
Chapter III and Appendices A and B. The results of the stiffness
method analysis serve as both a check and theoretical comparison
for the results of the analysis by the matrix force method.

The matrix force method of analysis was used for the more extensive
investigations of the structural skin panel. It demonstrates the redun-
dant load paths that are possible in the analysis of complex skin struc-
tures. The accuracy of the matrix force analysis is influenced by the
choice of the idealized statically determinate system. The idealized
systems used in this investigation satisfactorily represent the princi-
pal load paths throughout the structure. The idealization resulted in

well-conditioned matrices preserving computational accuracy and stress
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variations that represent the actual structural behavior. Consequently,
good results are obtained from the matrix force method of analysis. The
analysis capability is available for further study of any class of two
dimensional structural configurations. The scope of these problems is
too broad to be mentioned here.

The experimental capabilities developed during this and previous
investigations have provided fundamental procedures and equipment that
are applicable for numerous future research programs. Some of these
possibilities are suggested in Chapter VI.

A total of three tests were performed with the integrally rein-
forced tapered panel, using three load conditions applicable for this
type of structure. These three load conditions have been described in
Chapters III and IV. Only the basic data required for comparison to
the analytical results are reported in this thesis. Data from addition-
al tests would only duplicate the basic information given in this chapten
The basic data reported here are sufficient to indicate the good
agreement between the analytical and experimental results. This agree-
ment demonstrates the applicability of the finite elements methods of
structural analysis for planar stiffened shell structural skin panels.

The comparisons of the analytical and experimental stress results
at typical points on the panel are shown in Figures 37 through 44. The
comparisons of the analytical and experimental deflection results for
points on the edge of the panel are shown in Tables IX, X, and XI.

The deflections representing the corner point where the shear load
is applied are actually shown for two different points located as close
as possible to each other. The analytical data are obtained for the

exact point where the shear load is applied. Due to the loading system,



it was not possible to place a dial indicator at the same point.
Therefore, the experimental data are obtained for a point approximately
two inches from the point where the shear load is applied.

The experimental deflection data shown in Tables IX, X, and XI are
corrected based on the measured deflections of the supporting system.

Figures 27, %8, and 39 show axial stress values produced by load
conditions 1, 2, and 3, respectively. The stress values are oriented in
the x direction and are plotted at the strain gage locations along the
center point of the center bay of the test structure. The reference
point for plotting is the longitudinal centerline of the ftest structure.
Distances to the left of the centerline are negative while those to the
right are positive. A 'best fit" straight line has been drawn by hand
through the exverimentsl data points. The dimensions of the test struc-
ture are shown in Figure 13 and the strain gage locations are shown in
Figure 32. Figure 44 is very similar to Figures 37, 38, and 39 except
that 1t shows values of shear stress produced by load condition 3.
These shear stress values were plotted at the strain gage locations
along the center point of center bay of the test structure. Only those
locations resting on the surface of the webs are applicable since only
single legged axial gages are mounted on the surface of the stringers
and, furthermore, the modified or extended matrix force method contains
no assumption that the idealized bar elements carry shesr stress.

Figures 40, 41, 42, and 43 show values of axial stress produced by
load conditions 1, 2, and 3. These stress values are plotted along the
axes of the stringers. The experimental values appear opposite the
strain gage locations on each stringer while the values from the ex-

tended matrix force method which contains the new flexibility matrix
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[ALPIJ]prs appear at the "idealized junctions® of the bar elements
making up each stringer.

Tables XIX, XX, and XXI show experimental values of lcad point
deflection versus theoretical values. The theoretical values are those
produced by the extended matrix force method with the new [ALPIJJ s
matrix included. The experimental values from two representative tests
were averaged and normalized for measured baée deflection.

Figures 37 and 40 contain stress results produced by each of the
four analyses of the test structure: the experimentsal analysis, the
extended matrix force analysis which contains the new [ALPIJ]prS
matrix, the unmodified version of the matrix force method employing
redundants choice number 1 and the direct stiffness method. As can be
readily seen from these two figures, a very definite improvement in the
axial stress results has been made by the use of the new flexibility
matrix, [ALPIJ]prS included in the extended version of the matrix force
method over those of the unmodified version of the matrix force method.
This fact is born out by Figures 38, 29, 41, 42, and 43. Furthermore,
the results of %he extended matrix force method agrse quite favorably
with those of the direct stiffness method.

As can be seen from Tables XIX, XX, and XXI, the values of locad
point deflection produced by the extended matrix force method agree very

well with the normalized average of the experimental values.
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TABLE XIX

- COMPARISON OF DEFLECTIONS FOR LC=1

10,000 LB
" 3
$+ 3 Hz. A?/
| kf @K gix
© © ©® ©
EXPERIMENTAL THEORETICAL
Point of Normalized
Deflection Test 1 Test 2 Average
1 0.0275 0.0281 0.0188 ¢:018C
2 0.0274 0.0287 0.0188 o 0.0181
3 0.0255 0.0261 0.0177 0.0183
I 0.0259 0.0267 0.0194 0.0174

*Normalized Average deflection are adjusted for measured base
deflection.
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TABLE XX

COMPARISON OF DEFLECTIONS FOR IC=2

1000 LB R |
' el ok 30 | A
20 F >
10 r
® Test
A Theory
0 1 8 L o
0.01 0.02  0.03
© ©
EXPERIMENTAL THEORETICAL
Point of *Normalized
Deflection Test 1 Test 2 Average
A 0.0257 0.0273 0.0174 0.0177
B 0.0179 0.0185 0.0117
c 0.007% 0.0084 0.00k4

*Normalized Average deflections are adjusted for measured base
deflection.



TABLE XXI

COMPARISON OF DEFLECTIONS FOR LC-3

5000 LB

4
f j

EXPERIMENTAL :
Point of Normalized
Deflection Test 1 Test 2 Average
1 0.0120 0.0122 0.0081
2 0.0156 0.0171 0.0118
3 0.0165 0,0189 0.0120
b4 » 0.0106 0.,0118 0.0079

THEORETICAL

0.0065
0.0115
0.0117

0.0067

*Normalized Average deflections are adjusted for measured base

deflection.



CHAPTER VI
CCONCLUSIONS AND RECOMMENDATIONS

At the outset, it was stated that the purpose and goal of this
research effortwas tc develop an improved capability for the analysis
of stiffened shell structural skin panels and to demonstrate this im-
proved capability by the compariscn of experimental and analytical re-
sults. Furthermore, it was stated that in order to first develop this
improved capability for the analysis of stiffened shell structural skin
panels and then to demounstrate it, four distinct tasks were undertaken.
These tasks were:

1. To derive a new flexibility matrix for trapezcidal shaped

plate elements. This new flexibility matrix would take
intc account both the effects due to Poisson's ratic
coupling and those due to sweep.

2. To modify the matrix force method for the inclusion of
the new flexibility matrix from item one for analysis
PUrpoOSes.

3. To develop a digital computer program which would imple-
ment both the modified and unmodified versions of the
matrix force method.

L. To formulate a regimented approach to the determination
of [GIM:I9 the matrix which contains the internal general-

ized load distribution due to a given external load and

I_I
fd
Sl
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[@IR], the matrix containing the internal generalized
load distribution due to a given redundant load.

The test structure was first analyzed by the unmodified version of
the matrix force method. Then, the new [ALPLJ]prS matrix was derived
and the matrix force method was modified for its inclusion. The test
structure was analyzed with the extended force method containing
[ALPIJ]prs. To provide a theoretical check and comparison for the re-
sults of the extended force method, the test structure was analyzed with
the existing form of the direct stiffness method. The results from all
of the above analytical investigations were compiled and presented. In
order to provide a basis for ascertaining improvement of the capability
for theoretically analyzing stiffened shell structural skin panels, an
experimental investigation was conducted of the test structure. The re-
sults of this investigation were compiled and presented. Then, the re-
sults of the analysis with the unmodified matrix force method, the
results of the analysis with the extended matrix force method, the
results of analysis with the direct stiffness method and the results of
the experimental analysis were all brought into sharp comparison.

The subsequent conclusions have been reached as a consequence of
the previous effort.

1. A very definite improvement in the prediction of stress

and displacement characteristics of planar, tapered
stiffened shell structures has been produced by the use
of the extended version of the matrix force method which
contains the new [ALPIJ]prs' This matrix applies tec all
plenar, trapezoidal shaped plates except those for which

two corners approach one poirt. The analysis of a
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complete family of trajezoildsl plates to deltermine a criti-

cal value of the angle ¥, above which [ALPIJ]prS would naot
apply, would require a very expsnsive experimental program.
The results of the analysis with the extended matrix

force method agree well with those of the analysis with the
direct stiffness method. This enhances and reinforces the
first conclusion, above. The characteristics of the direct
stiffness method have been contrasted with those of the
matrix force method and, as a result, better insight into
the application of these two methods has been provided.

A good capability for analyzing planar, tapered stiffened
shell structures by experimental means has been es#ablished.
The experimental facilities as outlined in Chapter IV are
capable of providing correct results within a reasonable
amount of accuracy. The development of techniques for sta-
tistically reducing the straln data provides a valuable tool
for future researchers in this area.

The matrix force method having been modified for the in-
clusion of ['ALPIJ:IprB becomes a well developed vehicle
within which other idealizations may be included for sub-
sequent analyses of planar, tapered stiffened shell skin
panels. This method has been developed from a general
standpoint and, consequently, is applicable to a broad
class of structural configurations.

The digital computer program which implements the extended
matrix force method is an important companion to the ex-

tended matrix force method. Having been developed with
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the concept in mind of writing a "main" program, which, in
turn, calls upon existing subroutines to perform required
matrix‘operations9 this computer program is quite flexible
and is also applicable to a broad array of force analyses.
6. The regimented approach to the determination of the [GIM]
and [GIR] matrices is a very definite improvement owver the
haphazard writing of overlapping freebodies and the in-
volved solution of the resulting freebody equations. This
approach enhances and broadens the applicability of the ex-
tended matrix force method to say ncthing of the reduction

of the chance for human error involved in developing [GIM]
and [GIRJ»

Recommendations for Future Work

In addition to the conclusions just mentioned, this study precipi-
tated many topics for future study and scrutiny. The current investiga-
tion could be advanced to deal with planar stiffened shell structures
of arbitrary geometry such as the quadrilateral. The extension of the
present development of the [ALPIJ]prS to a quadrilaterally shaped Ycell"
of stringers and ribs bordering a plate of this same configuration and
its subsequent application to an analysis would be a very interesting
topic for future cousideraticn.

The current investigation could be continued for a cutout ium the
center section of the planar skin panel described in Chapter IV. The
capabilities developed in this program can be used for direct applica~
tion to the problem of cutout sections. IExtending the analysis capabil-

ity for arbitrary cutout configurations would ke valuable for praciical
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aircraft design considerations.

A broad extension of the present capability would be the analysis
of three dimensional structures beginning with various shapes of box
structures containing components which could be idealized into an array
of bar and plate elements of arbitrary configuration.

Another topic for future investigation would be the development of
a fully automatic digital computer program to implement the matrix force
method. The flexibility matrices of various theoretical elements could
be combined in a symbolic manner within this program such that a given
flexibility matrix could be Ybuilt up® automatically. Also, the scheme
for writing generalized freebody equations could be programmed such that
[GIM] and [GIR] would be calculated automatically as soon as a choice of
redundants was made. These two features combined with the main matrix
force program given in Appendix C would allow the researcher to obtalin
results automatically with a choice of redundants.

As a result of the broad class of problems encountered in this in-
vestigation, it is recommended that future studies make full use of the
current computing capabilities. In addition, a study of idealization
techniques and computational procedures would be a valuable contribu-

tion, providing significant reductions in computer running time.
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APPENDIX A

BASIC EQUATIONS, DERIVATION OF ELEMENT STIFFNESS

MATRICES FOR THE DIRECT STIFFNESS METHOD
Basic Equations

The nodal forces on a structural element can be expressed in terms

of the nodal displacements by the equation

{+} = [K]{S}x | (A-1)

where
{F}z:column matrix of nodal forces on an element,
{S}:zcolumn matrix of nodal displacements of an element,

[k]z square, symmetric matrix of stiffness coefficients for
an element.
The stiffness coefficient matrix forvthe complete structure can be
obtained by superposing the element stiffness matrices. The reéulting

matrix equation is of the form

{7 = [Kisn

where

{F}>= column matrix of external forces at the nodes of the
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structure (including reactions),
{SE} = column matrix of nodal displacements (including boundary
displacements),

[KJ = square, symmetric matrix of stiffness coefficients of

the entire structure.

Once the displacements have been obtained, the internal forces can
be calculated for each element from its force~displacement equation
(Equation (A-1)): or, sincé the stresses in an element can be expressed
in terms of the nodal forces, stress-displacement equations can be
derived for the elements, and the stresses can be determined without

first finding the nodal forces.

Development of a Stiffness Matrix for

the Planar Bar Element

If loads are applied at points (nodes) 1 and 2, each node
can experience two components of displacement. Therefore, prior to the
introduction of boundary conditions (supports) the stiffness matrix,
[K] will be 4 x L.
In order to develop the terms in the {K] matrix, each deformation
component must be considered singularly, i.e.,
Wi Uy = deflection in the X direction,
Viy Vo = deflection in the ¥ direction,
then, the results are superimposed.
From a consideration of the bar element in Figure 45, it is assumed

that UL, # O as shown with W, =V,=V,=0,1.e., end V1" fixed.
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Figure 45. Planar Bar Element

From Figure 45, the expression for AL is

AL = Uz COS B

If the expressions for cos@}c and coxGy, are

COS6E= >\>

COS &y = M,

then the expression for AL is

Al=Uz\,

Then t (F.g) relation for an axially loaded member is

AL = f—éj P=(ALBAE :AE(Z\(—Lz) .

The components of the force P at node "2" are

Fre = PLOSE = AE{ N U.)COSO= AENU,» (4-3)
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R, = PCOS6y=AE-(\U.)Cos0y= AENHU,. (a-b)

From static equilibrium of the member, i.e., Z F'-X :0)' ZFY =0)

the expressions for the forces are

Fai = ’an-“('A'LE XLLL) (A-5)
B == P = (A ke (4-6)

Fa X Wy
A N K= SYMM Vi
> = T > )
Ez ')? "XﬁL )? W2

Ma DY NTE VO Ve
J - -

(4%7)

or the forces are expressed as

(3= [€)58)-

Derivation of the Stiffness Matrix

for the Triangular Plate Element

The first step in the development of the triangular plate stiffness
matrix is to express the three components of the strain within each
element in terms of thevsix corner displacement. The geometry of a
typical triangular plate element is defined in Figure 46,

The assumed displacement pattern is shown in Figure b7,
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Figure 46. Element Dimensions

Figure 47.

Assumed Displacement Pattern
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The strains within each element are obtained from the displacement

pattern by considering the basic definitions of strain.

_oV ’ (A-8)

If each component of strain is set equal to a constant, linear

displacements of the following form may be solved for. They are

UY) =€+ CaX +C3Y
(A-9)
V(xY) =CetCsX +CLY-

Since each node of the triangular plate,Figure 48, can undergo dis-

placement in two directions, Equation (A~9) may be evaluated in terms

YV

> X U

Figure 48. Triangular Plate Nomenclature
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cf the coordinates and displacements of the three nodes. This provides
six equaticns from which the six unknown constants Cy, C;, Cs, C4, Cg,

and Cg may be found.

Now, Equation (A-8) may be evaluated in terms of the constants C”

and 4n matrix form is

{E}: [A]{8}, | (A-10)

where EAC]is a transformation matrix in terms of the coordinate and

displacements of each of the three nodes.

For isotropic materials which obey Hooke's Law
21
€ = T(O—X—VG;’ )5

€

it

v _lfé*(gg ~- 6 )

S (A-11)

- Ry - z(i—g_\?)m)

where
V = Poisson's ratio.

If Equation (A-11) is solved for o Oj’ and Txy and the results put in

matrix form, they would appear as

Gx 1 \ 0 €,
E | v
Gyy = 1=3=| V 1 O & o> (A-12)
N 1-
i | O O > | ke

or, in symbolic form



j-st
ny
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(3= [eXe

The stress from the three assumed load states shown in Figure 49

are now transformed into resultant forces acting at the corners of the

element.
- 2 -
D Gx .
- 7+ —
P 3
i | * r
Tor
\
L AL ) L A J Z’\
3
’ Y
Oy
2

‘r\!\‘!‘x

Figure 49. Stress Resultants for the Triangular Plate

Then an expression for the forces can be written as

G .

where {f} is the set of resultant forces at the nodes of the plate.
The element stresses can be expressed in terms of corner displace-

ments by substituting Equation (A-10) into Equation {A-13) to give
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{c} = [B][A]{s} (A-15)

The substitution of Equation (A-15) into Equation (A-14) yields

(F) = [cdlB][ A 8] (4-16)

Equation (A-16), which is an expression for corner forces in terms

of corner displacements, can be written in the following form

()= [K]{a)

with the expression for [K}Ebeing

[k] =[c][B][A];

where [K] is the 6 x 6 stiffness matrix for the triangulaf plate element

and is given in Figure 50.
Determination of Deflections

The content of the stiffness matrix for each bar and plate element
may now be combined into a composite stiffness matrix for the entire
structure by tabulating the contribution of the elements to the various

nodes of the structure. The expression for the forces is

(<) -k (e

where [Kq] is the composite stiffness matrix of the structure.

The apﬁlication of the constraints of fixity (also thought of as
boundary conditions) will render a certain subset of{S} equal to zero.
If{F} ,':Ké]and {S}areeach permuted such that the zero subset of{g}

appears in the lower half of the column, then the equation
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Figure 5C.

Equation (A-17) Featuring the Triangular Stiffness Matrix

s

I

62T
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{Fp= (k] fobs

can be partitioned such that

(R = [Kea] {5 (A-19)

where

{Sé} is the nonzero subset of{?} .

Then, the required deflections are given by the expression

{sd= [ (4-20)

‘where {E{} is the set of external forces and {;é} deflection at each

unconstrained node due to {F;>c

Calculation of Stresses in the Bar Element

Y,V

!
0

-~

S
L § > X, W

Yy &

i

Figure 51. Deflection Diagram of Bar Element
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From Figure 51, the expression for stress is

o g,] , (A-21)

- P _ _E
O =5 =L
where

A = area of the element.

But & and 0, may be expressed as

§2 = U2COSBx+ VLOSBy = U\ + Vahs
(a-22)
§ = U,LOS6Gx +%COSBy = A+ VL
Then, substituting for & and §,, Equation (A-21) becomes
¢ =—P= Hlu+vr)  (wa-vp],
or, in matrix form, the expression for O becomes
. " |
Gp =R-=-E - A o] \L . (A-23)
V'Z »

Calculation of Stresses in the Triangular Plate Element

The set of deflections {S%} may be substituted back into Equation

(A-~15) to give

{Giy=[B][A]{8}> (4-24)

where the preoduct [Jfﬂ[/\] depends on nodal coordinates, Young's

modulus and Poisson’s ratio.



APPENDIX B

STRESS ANALYSIS SYSTEM

The Stress Analysis System is a digital computer program using
matrix methods based on discrete element idealization for two-
dimensional structures. The complete solution for deflections and
stresses requires only that the structure be defined in terms of its
geometrical characteristics and types of structural elements. The
structure is first idealized as an assemblage of discrete structural
elements. Fach structural element has an assumed form of displacement
or stress distribution. The complete solution is obtained by satisfying
the force equilibrium and displacement compatibility at the junctions of
the elements. Thus, the conditions of equilibrium and compatibility are
satisfied at only a finite number of points which do not necessarily
imply any appreciable loss of accuracy. When the size of the element
is sufficiently small in relation to the over-all size of the structure
and the variations of stresses within the structure do not exceed those
allowed in the mathematical model, the discrete element methods give
good approximations to the exact solutions.

The displacement method is the basis for developing this digital
computer program for analyzing two-dimensional rectangular panel config-
urations for arbitrary load and support conditions. The system provides
solutions for displacements and infernal or external forces at the

structural node points and stresses at any stress node points defined
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for the structural element.

The input data required for the Stress Analysis System consist of
node numbers, element numbers, and geometric descriptions of the ideal-
jzation structure and locations of desired stress results on the ele-
ments. The program is divided into the following categories:

1. Geometric description of the structure.

2. Idealized description of the structure.

3. Generation of stiffness matrices.

L. Generation of stress matrices.

5. Deflection soclution.

6. Reaction force solution.

7. Generalized stress calculations.

8. Printing of analysis results.

The first step for preparing the input data for the analysis is to
simulate the actual structure as an assemblage of idealized elements,
which is commonly referred to as the idealized structure.

The structure is formed from available elements; i.e., stringers
and triangular plates, so that it is capable of representing the deflec-
tion behavior of the actual structure. The idealized structure is
described in terms of the node data and the structural data. The node
data consist of the number of the node point, the coordinates of the
node point, the external forces acting on the node point, and the defi=-
nition of the boundary condition at the node point. The structural data
consist of the location of the idealized elements relative to the node
points, the type of structural element, and the description of its
material properties.

The location of the node points is given relative to a



two-dimensional rectangular coordinate system. The n node points are
numbered consecutively from 1 to n in the direction of the minimum
widtho

The boundary conditions are specified by restricting the displace-
ment of the supported node point in the directions of the intended sup-
ports. This is achieved by placing a 1 in column 80 of each node data
card for the degrees of freedom which are to be restrained. If insuf-
ficient boundary conditions are defined, the stiffness of the general
structure is zero in that direction. Consequently, the stiffness matrix
is singular and the analysis cannot be completed.

The loading conditions are given as part of the node data. Three
loading conditions can be considered in each analysis. The loads are
entered by listing the x and y components of the applied load in the x
and y rows of the node points on which the loads are acting. The actual
external lecads acting on the real structure are represented by concen-
trated loads acting at the node points of the idealized structure.

The locations of the idealized elements are given relative to the
node points in the structural data. The idealized elements are numbered
consecutively. No specific grouping is required between stringer or
triangular plate elements. If an integer is assigned to a stringer, the
next integer can be assigned to a ﬁriangular plate. For stringer ele=-
ments, the connecting node point numbers are given in columns 6 through
9 and 10 through 13 of the structural data cards and are called nodes P
and Q. For triangular plates, the nodes are called P, Q, and R, and are
listed in consecutive order ciockwise around the triangular plate; The
implication in listing the corner node point numbers is that it auto-

matically assigns a local xy coordinate system for the triangie. The



135

local x axis extends from node P to node R; the local y axis extends
from node P to node Q.

The stress components are calculated and printed out relative to
the local coordinate system. For example, if the structure has grid
lines parallel to the x and y axis of the general coordinate system, a
PQR sequence is chosen so that the coordinate axes for each triangular
plate have directions identical to those of the general coordinate axes.
In this case, the stresses are then relative to the external coordinate
axes and are the same for all triangular plates. The stress results
for the stringer elements are given relative to the axis of the
stringers. As additional elements are added to this program, the common
element coordinate system should be maintained.

The type of idealized element is specified in the structural data
by entering the type number in column 24.

The elastic properties of the material are defined in the struc-
tural data and consist of modulus of elasticity and Poisson's ratio.

Stresses are calculated for the stress node points defined for each
element relative to the local coordinate system of the element. The
characteristic dimensions of the idealized elements are defined by the
coordinates of their end or corner node points. The coordinates of the
stress node points are given in inches relative to the local coordinate
system for the element. A maximum of five stress nodes can be used in
each analysis. If no stress nodes are specified, stresses are auto-
matically computed for the coordinates of the centroid of the element.

Node numbers, element numbers, element-type numbers, and support
conditions are always entered as integers. All other data are entered

with a decimal point in the proper place.
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Once the idealized structure and the loading conditions are defined,
the computational sequence follows from the stiffness method. The
stiffness and stress matrices are generated for each element using the
structural material properties and the dimensions obtained from the node
data. The rows and columns of the stiffness matrix and stress and load
matrices are in the order of x and y for each node point on the struc-
ture. In general, if P is the number of the node point, the x and y
degrees of freedom at P are labeled 2P-1 and 2P, respectively. .These
numbers are then used as indices to denote a displacement or force
component acting at node P in either x or y direction.

The matrix K (BARK) is the stiffness matrix of the idealized
structure in lower symmetric form. It is obtained by simply summing up
the contributions of the various element stiffness coefficients in the
direction of each displacement. To facilitate this summation, the MPQRS
numbering scheme is used to denote the x and y directions of each of the
nodes.

Once the element stiffness matrices have been computed based on the
stiffness properties and the node locations of each element, the coeffi-
cients of the stiffness matrix are assigned indices according to the
MPQRS scheme. The indices designate the position of the stiffness ma-
trix for the individual composite stiffness matrix for the total struc-
ture. The total stiffness matrix K is obtained by summing the stiffness
matrix elements with common indices obtained by the MPQRS scheme. As
the stiffness matrix for each element is generated, it is added to the
large K matrix.

The output data are presented in two forms, an abbreviated form

containing only the basic results of the analysis and an extended form
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including all of the individual plate and stringer stiffness and stress.

The coefficients of K are the forces generated at the node points
in the x and y directions, when one node is displaced a unit distance in
the x or y direction and all other displacements are restrained. The
sum of the coefficients in every row and column is zero since the forces
generated at restrained node points and the force developed due to the
unit displacement are in equilibrium. If the structure is restrained
from rotation and translation degrees of freedom by removing the rows
and columns of the K matrix that represent the displacement of boundary
conditions, the matrix is subsequently nonsingular. Removing these
rows and columns decreases the size of the matrix and consequently
changes the indices of the coefficients of K. Conse@uently, one has
thé choice of using the reduced matrix and changing the indices of the
rows and column designations oﬁ removing the rows and columns except on
the diagonal. The diagonal element is replaced by a 1. The result is
that the stiffness matrix will contain a unit matrix which will not
effect the soclution of the simultaneous equations obtained by performing
the dnverse operation. This technique does save the numbering scheme
but, of course, retains the size of the stiffness matrix. This method
of modification rather than reduction of the stiffness matrix is uti=-
lized in this program because it simplifies the bookkeeping problems
throughout the calculations; and,; for these types of structures, the
decrease in the size of the stiffness matrix obiained by reducing the
matrix for the boundary conditions is not a significant advantage.

After the stiffness matrices for each element have been added to
the total stiffness matrix E9 the métrix K is modified, as mentioned in

the previous paragraph, according to the defined boundary conditions.



The modified stiffness matrix is theh inverted and the node point

deflections are calculated from the equation

53 = [T -

The deflection matrix {gg is a complete listing of the node displace-
ments, including the zero displacements at the boundaries.

The stresses in each idealized element are calculated from the
deflections Egg for the element, which must be obtained from the total
283 matrix. The stresses are computed by generating the stress matrix
for the coordinates of the stress node point and postmultiplying the
element stress matrix by the element displacements. The stresses within
the idealized element are based on the assumptions made for deriving the
stiffness and stress matrices. Consequently, the stresses at any number
of points in a single plate may be obtained through the stress coeffi-
cient matrix and the corner displacements of the plate or stringer ele-
ment. The components of the stress tensor at the stress node points
defined in the stress node data are calculated relative to the local
coordinate system of the plate element.

The reaction forces at the boundary node points are computbed from

the equation

{r= [R]{s3)

by evaluating the right-hand side of the equation where K is the origi=-
nal stiffness matrix before boundary conditions are applied. The reac=
tion forces are used for checking the original input data or the

accunulation of numerical errors ian the computing process and do
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provide a solution for the reactions in the directions of the specified
boundary conditions.

The output is controlled by placing a numeral 1 in column 20 of
the program control card. If no parameter is used in column 20, the

abbreviated form of the analysis will be printed.
Example Listing

A complete listing of the main program and required subroutines

is given in Table XXII. (Table XXII is shown on the next page.)



TABLE XXII

FORTRAN PROGRAM FOR THE STRESS ANALYSIS SYSTEM {12)

SAS PROGRAM BY Ge STONE
DIMENSION AL{2)4AL2(2)5AL3(2)91PQRS{4}sMPQRS(8)3DSK{8+8)+sSTR{3481,

100RU(8y5) s STRESS{3s5)sR{12}sBARK{1830}) sNBCI6ECIsX(60)sY (60}
2UBAR(6055) yFORCE(60+51y0BARI603s51 s XN{60»5 19 YN{60s5)

101
102
123
104
105
106
107
109
110
111
112
113
114
115
1le

EQUIVALENCE{IPQRS(4) 5151 s {IPQRS13)+IR) s+ {IPQRS(2}+iQ)»(IPQRSI1),1IP}
FORMAT { 2X»+ 1PBE1642}

FORMAT { 2Xs 1P4El1643}

FORMAT (1HOs 7HK BAR 1 » 1X)

FCRMAT (2X,15])

FORMAT { 6HO I = » I5s 13H [IPQRS{I} = » 15}

FORMAT { 6HO K = » 15, 13H MPQRS{(K) = s I5)

FORMAT { 6HOLA + 15s 19H KI = MPQRS{LA} = s I5)

FORMAT { 6HOKJ = » I5)

FORMAT { 6HOBARK({s I5s 9H ) = DSK{s }5¢ 2H s o 155 2H } }
FORMAT ( 6HC I = 4 I5)

FORMAT ( 6HOIJ = » 154 12H NBC(1J) = 4 I5)

FORMAT { 7HO LA = s 15, 7H 1 = » I5s 17H BARKI(I) = 1.0 }-
FORMAT ( 41HO NUMBER OF ROWS AND COLS TO BE ZEROED = » I5)
FORMAT { 6HO I = » 15, 15H BARK{I} = 0.0 1

FORMAT (2Xs I5s5X+3E14.835Xs 15+5Xs 4E14e84 / 2Xs B8I10»

1 7/ 2Xs 4110}

200
201
202

FORMAT { 25H0 ELEMENT STRESS MATRIX 3
FORMAT ( 8HONODE 22{8X4sTHTYPE OF}+49XsBHSTRESSES?Y
FORMAT (1X s 6HNUMBER 99X+ 7THELEMENT 58X s GHSTRESS s 10X s 6HCASE 111X sGHCAS

1€ 2 s11X3s6HCASE 35,11X,6HCASE 4511Xs6HCASE 53

203
204
205
206
21"
221
222
251
252

253
254
255
256
257
258

2

259
603
612
687

800
801

802

804
805
809
992
993
994
995
8629
B798
8799

1 52H ELEMENT

FORMAT (25H1 GENERALIZED STRESS CALCULATIONS )

FORMAT (33H1 DEFLECTIONS FOR ELEMENT NUMBER s 15 )
FORMAT(//43H STRESSES AT THE CENTROID OF THE ELEMENT//}
FORMAT (30HO STRESSES FOR ELEMENT NUMBER s I3, 6H TYPE 13}
FORMAT{1HO» 1499Xs15+14X42HXX99X95E17-81}

FORMAT{33X 92HXYs 9X+5(2X+E15.81}
FCRMAT{33X42HYYs 9X55(2X9E158}}
FORMAT (I1551X95F1244)

FORMAT( 44H1 STRESS NODE COORDINATES s /
NODE 1 NODE 2 NODE 3 NODE & NODE 5 )
FORMATIL IXs I3+ 2H X5 5F12e4s )

FORMAT (I1541Xs5F12e4)

FORMAT(1Xs1392H Ys5F1244)

FORMAT{1X¢30HNO STRESS MATRIX FOR TYPE 91342X s 7THELEMENT }
FORMAT(1X,30HNO STIFFNESS MATRIX FCR TYPE s1342Xs THELEMENT}
FORMAT ( 8H ELEMENT,s 25Xs 16HCOORDINATES FORs /
7H NUMBER» 4X»54HNODE 1 NODE 2 NODE 3 NODE &
NODE 5 1}

FORMAT{1HO 42 7THNORMALIZED COORDINATES X = 5F1244510Xs4HY = sF12.4)
FORMAT(1016}

FORMAT(6E13.0)

FORMAT{1X»4HDET=5E14a2+10Xs2HL=+13)

FORMAT(1HI)

FORMAT {1HO s 10HNODE POINTs5 Xs11HCOORDINATES»47X»

125HDEFLECTION OF NODE POINTS}

FORMAT{ 1X 9 6HNUMBER » 40X s 6HCASE 1911X o

16HCASE 2s11XsS8HCASE 3511X96HCASE 4911Xs6HCASE 5 )

FORMAT{1HO92X+12513Xs1HX»s24X45E1748)
FORMAT( 18X+ 1HY»24X+5E1748)

FORMAT( 11HINODE POINT$3Xs11HCOORDINATES»63Xs6HFORCES )
FORMAT (2014}

FORMAT (6X26F 1240912}

FORMAT (15941491351X+E100642F6,0}

SORMAT{1H1,12A6)

FORMAT ( I9HAMATRIX 1S SINGULAR)

FORMAT (7H1 K BAR  /1X)

FORMAT(16H1 K BAR INVERSE/1X})

SAS001
SAS5002
SAS003
SAS004
SASQ05
SAS006
SAS007
SAS008
SAS009
SAS010
SAS5011

SAS012
SAS013
SASOl4
SAS015
SAS0le
SAS017
SAS018
SAS019
SAS020
SAS021
SAS022
SAS023
SAS024
SAS025
SAS026
SAS027
SAS028
SAS029
SAS030
SAS021

SAS032
SAS5033
SA5034
SAS035
SAS036
SAS037
SAS038
S5AS5039
SAS040
SASQ041
SAS042
SAS043
SAS044
SAS5045
SAS5046
SAS047
SAS048
SAS049
SASO50
SAS051
SAS052
SAS053
SAS5054
SAS055
SAS056
SAS057
SAS058
SAS059
SAS060
SAS061
SAS062

9603 FORMAT{ TH NODES=+I5+5Xs9HELEMENTS=915+5Xs6HCASES=91255X
1+13HSTRESS NODES= si2/
2 89H NODE COORDINATE LOAD 1
3 1.0AD 4 LOAD 5 SUPPORT/1X}
9993 FORMAT(1Xs13+2H XsF124391Xs5F12e356X911/1X21362H YsF120391Xs5F120
13+46Xs111) !
9994 FORMAT(IXs15+41431354XsE11e4sFlledsFl3os )}
9995 FORMAT(114H1 ELEM P Q R S TYPE E PR TH
11CKNESS~AREA }
31009 FORMAT{1Xs3HROVs{49/1Xs{1Pl0E1344})
99999 FORMAT({1H1,23HEXECUTION COMPLETED FORs12A6) -
839 CONTINUE
REWIND 3
REWIND &
C READ IN TITLE
READ{54995) (R{J}sJ=1,12}
WRITE{6+9995) (R{J)eJ=1412}
C READ IN PARAMETERS
READ{5+603) NNODESsNELEMsNCaNSNsIWRITE
WRITE(659603) NNODESSNELEMsNCyNSN
N2=2 *NNODES
NUM= {N2*{N2+1}}/2
C READ IN NODE LOCATIONSs FORCEs, AND BQUNDARY CONDITIONS
00 7777 I=1sNNODES
12=2%]
READ{5+993) X{I)s (FORCE(I2-1+J}y J=1+5 }+BARK{I2=-1},
1 Y(I}s (FORCE (12sJ3}s J=145)s BARKI(12}
- T777 WRITE (6999933  19X(I}s (FORCE(IZ2-1loJ)sJ=195}s BARK(]2=1}»
1 Ts YU1)y {FORCE (12 5 J)s J=1+5)sBARKI12)
C THE NCROSS ROWS AND COLS. TO BE STRUCK FROM K-BAR AS DICTATED BY
C BOUNDARY CCNDITIONSs AREF STORED IN ARRAY NBC{I).
C BARK IS USED TO READ THE INDEX OF FIXED BOUNDARY NODES
1J=0
D0 7778 I=1sN2
1F{BARK{1)117779+7778+7779
7779 1J=1J+1
NBC{IJ)=1
IF{IWRITE«EQe0) GO TO 7778
WRITE (6,5111) 1
WRITE (6s112) 1Js I
7778 CONTINUE
NCROSS=1J
DO 320 I=1.NUM
BARK (1})=0.0
320 CONTINUE

LOAD 2 LOAD 3

C READ NCDE NUMBER TYPE ELEMENT MODULUS PR AREA
WRITE(6+99951)
DO 236 NN=1sNELEM
READ{5+994}) TEsIP»IQsIRsISINTYPESESPRyA
IF{IWRITE«EQs0} GO TO 513
WRITE (699995}
‘513 CONTINUE
WRITE(6+99994) IE+IP+IQsIRsISINTYPESESPRYA
GO TO (192439435964 7+B59}sNTYPE
1 CONTINUE
CHEXNNEREE RRRERAXHRSTRINGER AND RIB CALCULATIONSH#HHAEFEFERRNAEHEHERRNEREEL
JLAM=4

DO 10004 I=1le4
DO 10004 J=1ls4

10004 DSK{Ie¢J)=0e0

CALCULATE THE PG DIRECTION COSINES.
XQP=X(IQ}=X{1P)

SA5063
SAS064
SAS065
SAS066
SA5067
SAS068
SAS069
SAS070
SAS071
SAS072
SAS073
SASO T4
SAS075
SAS076
SAS077
SAS078
SAS079
SAS080
SAS5081
$A5082
§A5083
SAS084
SAS085
SAS086
SAS087
SAS088
SAS089
SAS090
SAS091
SAS092
SAS093
SAS094
SAS095
SAS096
SAS097
SAS098
SAS099
SAS100
$AS101
SASlo2
SAS103
SAS104
SAS105
SAS106
SAs107
SAS108
SAS109
SAS1l0
SAS111
SAS112
§AS113
SAS114
SAS115
SAS116
S5AS117
SAS118
SAS119
SAS120
SAS121
SAS122
5AS123
SAS124

T

7
4

+

b



TABLE XXIT (Co

YQP=Y{IQ)=-Y{IP} SAS125 Y2=Y{IR}=-¥Y{IQ} . 5A5187
D1=SQRT {XQP*%2+YQP%*2} SAS126 D2=SQRT (X2##2+4Y2%#4%2} SAS1B8

D2 = b1 SAS127 AL(1)=XQP/D1 SAS1B9
AL{1}=XQP/D1 SAS128 AL121=YQP/D1 SAS190
AL{2)=YQP/D1 SAS129 AL2{11}=X2/D2 SAS191
AE=A*E SAS130 AL21{21}=Y2/D2 SAS192
D02391=1+2 SAS131 BETA=D1/D2 SAS193
D0239J=1+2 SAS132 ET1I=AE/(le~PR#%2) ‘ SAS194

DSK {I+J) = AL{T)*AL (JI®*AE/D1 SAS133 ET2=AE/{2++2+%*PR) . SAS195
DSK{I+2sJ} = -DSK{1ls+J) SAS134 C CALCULATE THE KD+KS MATRIX SAS196

DSK {1sJ+2) = —-DSK{l+ ) SAS135 PR2=PR#*%2 SAS197
DSK{142,J+2) = DSK{l,J) S5AS136 DSK  {lel)= ETI1®#BETA/3.+ET2/(3.%*BETA) - SAS198

239 CONTINUE SAS137 DSK  t2+1)1={ET1#PR+ET2) /4. SAS199
IF{IWRITE.EQaD) GO TO 500 SAS5138 DSK  (34+1)=ET1#BETA/6.-ET2/({3.*BETA} S5AS5200
WRITE (65205} NTYPE SAS139 DSK {4, —ET1#PR+ET2) /4. SAS201
WRITE {64103} SAS140 DSK (5,1 ET1*#BETA/6.-ET2/16+%*BETA) 5AS202
WRITE (621021} {{DSK{1sJ)sI=1sa)s J=1s4) SAS141 DSK  (7s1 ET1#BETA/3.+ET2/{6.*BETA) SAS203

500 CONTINUE SAS142 DSK (252 T1/{3.*BETAY+ET2*BETA/3, SAS204
GO TO 235 SAS143 DSK  l&4s2 ET1/(3.%BETAI+ET2#BETA/6 SAS205

2 CONVINUE SAS 144 DSK 1692 ET1/(6+4%BETA}-ET2#*BETA /6. SAS206

C AAEXRARZBARXXALAXSTRINGER WITH LINEAR STRESS FUNCTION #*x¥zxxxxxasx® SAS145 DSK  (Bs2 T1/16.%BETAY~ET2*BETA/ 3. SAS207
JLAM=4 SAS146 DSK  (3+3)=ETI#BETA/3.+ET2/(3.*BETA} SAS5208

DO 10005 I=1+4 SAS147 DSK {593 ET1#BETA/3.+ET2/(6,*BETA} S5A5209

DO 10005 J=1ls4 SAS148 DSK (691 DSK (2,11} SAS210
10005 DSK(1sJ1=0.0 ! SAS149 DSK (Bsl DSK (4,1} SAS211
CALCULATE THE PQ DIRECTION COSINES. SAS150 DSK  {3+2 DSK {451} SAS212
XQP=X(IQ}-X(IP} SAS151 DSK {542 DSK (2,1} SAS213
YQP=Y({IQ)-Y{IP} S5AS5152 DSK (72 DSK {441} SAS214
D1=SQRT (XQP#*#2+YQP*%2) S5AS5153 DSK (443 DSK  {2s1% 5AS215

0z = D1 SAS154 DSK {643 DSK (4,1} SAS216
AL(1}=XQP/D1 SAS155 DSK  (7+3)= DSK ({5s1) SAS217
AL(2)=YQP/D1 SAS156 DSK  (Bs33)= DSK (291} SAS218
AE=A*E S5AS157 DSK  (4s4)= DSK  (2+2) SAS219

DO 240 I=142 SAS158 DSK  (5¢4}= DSK {3+2) SAS220

DO 240 J=1,42 SAS159 DSK (B2 SAS221
DSK{IsJ}=AL(I}*AL(JIH{AE/D1I*440/ 3.0 SAS160 DsK 12,11 5A5222
DSK{1429J}==DSK{1sJ} SAS161 DSK {652 SAS223
DSK{ 19 42)==DSK(15J} SAS162 DsK (1,1) SAS224
DSK{[+24sJ+2) = DSK{]sJ} SAS163 DO 8620 1=2+4 - SAS225

240 CONTINUE SAS164 DSK  (I1+44+5)=DSK {101} SAS226
IF(IWRITE.EQs0} GO TC 511 SAS165 B620 DSK {(I+4563=DSK (1+2} SAS227
WRITE (64205} NTYPE SAS166 DSK  {747)= DSK {1,1}) SAS228
WRITE (65103} 5AS167 DSK  (Bs73==DSK {2s1} SAS229
WRITE (6+102) {{DSK{IsJlsI=19b}s J=1,s4) SAS168 DSK (8.8 DSK {202} SAS523¢0

511 CONTINUE SAS169 DO 302 J=1.8 . SAS231
GO TO 235 S5AS5170 DO 302 I=1,8 . 5AS232

3 CONTINUE SAS171 302 DSK{Js1} = DSK(1sJ} SAS5233

4 CONTINUE SAS172 IF{IWRITELEQs0) GO TO 502 . 5AS234
WRITE(69257) NTYPE S5AS173 WRITE (692051 NTYPE SAS235%

GO YO 839 SAS174 WRITE (651033 . SAS236

5 CONTINUE SAS175 WRITI (651013 ((DSK{IsJ)sl1=1+81s J=148} SAS237
CRREARMEXHAXARERARFRECTANGULARFPLATE*CALCULATIONSH X R %24 xau At uNtnatnnn’ SAS176 502 CONTINUE . SAS238
CRERRXMERRARAXERRREXEASSUMED DISPLACEMENT FUNCTTON®ER¥ XXX R XX XRIXNSRNEXE  SAS1TT GO TO 235 . SAS5239
DQ 10003 I = 1.8 S5AS178 . 6 CONTINUE SAS5240

DO 1n003 J=1,8 SAS179 CrAnAanAXAtNnn*n 2 %X #RECTANGULARMPLATE#CALCULATIONSH# RS R SRR AR NRG AR RAERNANSE  SAS24]
10003 DSK (IsJ} = 040 SAS180 CH®XRAARXASSUMED STRESS FUNCTION WITH FIVE COEFFICIENTSH###¥xexssfusuxds SAS242
JLAM=8 SAs18l DO 10002 I = 148 . SAS243
XOP=X{IQ}-X(1P} S5A5182 DQ 10002 J = 1,8 SAS244
YOP=Y{1Q}~Y{IP) SAS183 10002 DSK (IsJ) = 0s0 SAS245
D1=50RT (XQP*¥2+YQP*%2) SAS18B4 JLAM=8 SAS246
AE=A*E SAS185 XQP=X{I1Q}~X{IP} SAS247

X2=X{1R}-X{10) SAS186 YOP=Y{1Q)=-Y(IP) . SAS248




TABLE XXII

D1I=SORT (XQP*%2+YQP%*%2) SAS249 JLAM=8 SAS311
AE=A*E SAS250 XQP=X{I1Q)}-X{1P} SAS312
X2=X(IR)=Xt1Q} SAS251 YQP=Y{I1Q}-Y(IP} SAS5313
Y2=Y{IR)-Y(1Q} 5AS$252 - BY=SQRT (XQP&#¥*2+YQP#¥2) SAS31l4
D2=SQRT (X2%%2+Y2%%2) SAS253 D1 = BY S5AS315
AL{1)=XQP/D1 S5AS254 AE=A®E SAS316
AL{21=YQP/D1 SAS255 AL{1}Y=XQP/D1 SAS317
AL2{11=x2/D2 SAS256 AL{2)Y=YQP/D1 SAS318
AL21t21¥=Y2/D2 S5AS257 X2=X{IR)-X(1Q} SAS319
BETA=D1/D2 SAS258 CIRY-Y(IQ) SAS320
ET1=AE/ {1,—-PR*%2) SAS259 QRT {(X2#%2+Y2%%2) SAS5321
ET2=AE/{2e+2+%PR} SAS260 AX SAS322
PR2=PR*¥*2 SAS261 ALP = (3.0%AX¥AX) + (BY¥*BY} S§AS323

C CALCULATE THE KD+KS MATRIX SAS262 BET = {AX%AX})} + (3.0 * BY*¥BY) SAS324
DSK  {151)= {2.%{4.-PR2)XBETA/3.+{1.~PR}/BETAI*ET1/8. SAS263 DSK(191)1=+{35.%BY*BY®ALP*¥BET )+ ((BY®¥4}%BET )~ (6. #FAX*AX®BYXBY®BET)+( SAS325

DSK {241 {1e+PR}I*ET1/84 SAS264 1G9 AAXKAX*ALPXBET )+ (G % {AXX*4 ) *BET) SAS326
DSK  (351)= {24%(2.+PRZ2I*BETA/3e-{1.—PR}/BETA}*ET1/8. SAS265 DSK{2+1)=18+*AX*BYRALP#BET SAS327

DSK  {(491)= 11,=-3.%PRI*ET1/8 SAS5266 DSK{341)=+({194#BY*BYXALP*BET)={ (BYR*4}*¥BET I+ (6« *AXAX*¥BY®BY®BET)-{ SAS328
DSK  (531)= {-2%{2.+PR21¥BETA/34~{1.~PR)/BETA}I*ET1/8. SAS267 19+ XAXHAX*AL P¥BET I {9 ¥ {AX®¥4)#BET) SAS5329

DSK  (T791)= {~24%{44~PR2I*¥BETA/3,+{12~PR)/BETAI*ET1/8e SAS268 DSK{5411=~(1G«*BY*BY*ALP*BET )+ (BY**4)#BET )~ {6 *AXXAXXBY#BY®BET)-{ SAS330

DSK  (252)= {24%(4+4=PR2)/{3*BETAI4+{1.-PRI*BFTA}*ET1/8, SAS269 19+ ¥AXKAXRALPXBET J+{ G ¥ (AX®®4)*BET) SAS331

DSK {432}z (~2e%{4o~PR2)/{2+*BETA}+{1,-PRI*BETAI*ET1/84 SAS270 DSK{Ts1)==(35.%BY%BYXALP*BET )= ((BY®*4 ) *BET)+ {6 #AXXAX®BY#BY*BET)+({ SAS332

DSK  (632)= (=2+%{2.+PR2)/13.%BETA}-{1.~PR)I*BETAI*ET]1/8. SAS271 19+ #AXRAX* AL PRBET )~ (9% {AX®%4)%BET) SAS333

DSK  (8s2)¥= {2.%(24+PR2I/{3+%BETA}—(1.-PRIXNBETA}I*ET1/8. SAS272 DSK(2521=+ {35, %AXXAXKALPH*BET )+ { {AX*%4 ) *ALP )= (6. RAXRAXXBY #BY*ALP)+( SAS334
DSK {2%{4e~PR2)*BETA/3. +{1.-PR}/BETAI*ET1/8. SAS273 19 #BYSBY*ALP*BET I+ (9. % {BYEX4I¥ALP) S5AS5335
DSK {~2+%{4e—PR2IHBETA/3e+{1e~PP}/BETAI*ET1/8s SAS274 DSK{432)=— (354 %AXKAXRALP¥BET J=( (AX¥¥4 ) #ALP I+ {6+ FAXRAX¥BY#BY®ALP}+{ SAS336
DSK {2+1) SA5275 19+ ¥BY#®BY*ALP*BET ) - {Fo % (BY®EL)*ALP) SAS337

DsSK {491 SAS276 DSK(6921=={19+s *AXKAXHALP*BET )+ { (AX**4 ] BALP )~ (6. ®AX*AX¥BY ®BY*ALP)}-{ SAS338

DSK {491} SAS277 19, *BYRBY*ALP*BET )+ (G * (BY*R4)}¥ALP) SAS339

DSK {2+1) SA5278 DSK{B8+2)=+ {19 ¥AX#AX*ALP*¥BET I~ {AX¥R4JRALPI+ {6 ¥AXRAX®BY*BYRALP}~{ SAS340

DSK {451 S5AS279 19+ #BY*BY*ALPRBET - {9+ % (BY* %4} *ALP) S5AS341

DSK 12411 SAS280 DSK{6e1} =—DSK{2s1} SAS342

DsK {491} S5AS281 DSK(542} = DSK{691) SAS343
DsSK {591} SAS282 DSK{3+3} = DSK{1lsl} SAS344

DSK {251} S5AS283 DSK{4s3) = DSK{6s1) SAS345
DsK (2429 S5AS5284 DSK{393) = DSK{7s1} S5AS346
DSK (3521} SAS285 DSK{7+¢3} = DSK{5+1}) SAS347

DSK  {69+4) 18521} - SAS286 DSK {853} = DSK(2s1) SAS348

DSK  (7s4)= DSK (2,1} S5AS287 DSK{4ea) = DSK(2s2) SAS349

DSK (Bs4)= DSK (652) SAS288 DSK{6s4) = DSK(84+2) SAS350

DSK  (545)= DSK {lsl} SAS289 DSK{7s4) = DSK{2s1) SAS351

DO 8621 1=2,4 S5AS5290 DSK{Bs4) = DSK{6+2) SAS352

DSK  (I+4551=DSK (1.1} SAS291 DSK{5+5) = DSK{1lsl) SAS353
8621 DSK {I14436)=DSK (1+2} SAS292 DSK{6+5) = DSK{Zs1} SAS354
DSK  {7+71= DSK (1lsl} SAS5293 DSK{7s5) = DSK{341} SAS355°

DSK  {B8s7)=-DSK {2,1) SAS294 DSK{6+6) = DSK{242) SAS356
DSK  (BsB)= DSK (2+2) SAS295 DSK{Bs6) = DSKl4e2) . SAS357

DN 301 J=1,8 SAS296 DSK{7s7) = DSK(1s1} SAS358

DO 301 [=1,48 ) SAS297 DSK{8s7) = DSK{5s1} SAS359

301 DSK{JsI} = DSKI(TsJ) 5AS298 DSK(8+8) = DSK{Zs2} SAS360
IF{IWRITELEQ4C} GO TO &01 SA5299 DO 402 J=1.8 SAS361
WRITE (6+205) NTYPE : SAS300 DO 402 1=1.8 SAS362
WRITE (65103} S5AS301 402 DSK(JsT) = DSK (1sJ7 SAS363
WRITE {6+101) ({DSK{IsJ1sI=198)y J=148B} SAS302 DO 403 1=148 SAS364

501 CONTINUE SAS303 DQ 403 J=1,8 SAS365
GO TO 235 SAS304 403 DSK{IsJ} = DSKU{IsJ)}* ((E*A)/(96.*ALP*BETRAX®RY)) SAS366

7 CONTINUE SAS305 IF(IWRITE.EQeD) GO TO 512 SAS367
CHR*ERUREREHEHNHE K XHRECTANGULAR¥DLATFXCALCULATJONSH R RS XXX RREXEXERXRKBRLN  SAS306 WRITE 164205} NTYPE SAS368
Cxuxxx®®%ASSUMED STRFSS FUNCTION WITH SFVEN COEFFICIENTS*®e¥Xxedsxmxxxa¥ SAS307 WRITE (65103} SAS369
DO 10006 I = 1.8 SAS308 WRITE (6+101) {{DSK{lsJ}s1=148)s J=148} SAS370

DO 10006 J = 1,8 SAS5309 512 CONTINUE SAS5371
10006 DSK (I1sJ) = 0.0 SAS310 GO TO 235 S5AS372

8y
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117

118

8

o

CONTINUE

JLAM=6

XRP=X{IR}-X(1P}
YRP=Y{IRI=-Y(IP}
XRE=X{IR}=X{1Q}
YRG=Y(IR}-Y{IQ)

XQP =X{IQ)-X{IP)

YOP =Y (IQ)-Y{IP)

D1 =SQRT{XQP#**2+YQP*%2)
AL{1)=XQP /D1

AL{2)=YQP /D1

AE=A®E

RR=AL {1)*XRP+AL(2)*YRP
X2=XRP-AL(1}%*RR
Y2=YRP-AL(2)#*RR

D2=SQRT (X2%#2+Y2¥%%2)
AL2(11=X2/D2

AL2(2)=Y2/D2

CHANGE FROM DATUM TO LOCAL COORDINATES
X21=XQP*AL2{1}+YQP*AL2{2)
Y21=XQP®*AL {1)+YQP®AL (2}
X31=XRP®AL2(1}+YRP*AL2{2)"
Y31=XRP*AL [1}+YRP®AL (27 ~~~~~
X32=XRQ*AL2{1}+YRQ®AL2(2}
Y32=4ARQ*AL (1)+YRQ*AL (2)
Al23=(X32%Y21-X21%Y321/2.
ET1=AE/ (4e*A123% {1, —PR¥*®21})
ET2=AE/(B+#Al23%{14+PR)}}

CALCULATE THE K SUB (D) + X SUB (S) MATRIX.

DSK (lsl)= ETI® Y32%%2 +ET2*
DSK {2+41)= —ETI®* PR®*Y32%X32 ~ET2%
DSK 12+2)= ETI® X32%%2 +ET2%
DSK (3513= —ET1* Y32#Y31 ~ET2%
DSK (3s2)= ET1® PR®X32%Y3] +ET2#
DSK {3+3)= ETI® Y31%%2 +ET2*
DsK {4s1)= ET1# PR¥*y32%x3] +ET2 %
DsK {452)= —ET1*® x32%x31 -ET2%
DsK {453)= —ET1%. PR#Y31%x31 -ET2*
DSK {4s4)= ETI® X31w%2 +ET2%
DSK (5+1)= ET1® Y32#Y21 +ET2%
DsK (592)= —ET1%* PR*X32%Y2] -ET2%
DSK {5+3)= =~ET1% y31l=y21l -ET2%
DSK {5+4)= ET1* PR¥X31#Y21 +ET2%
DSK {5+5)= ET1® yv2]1%%2 +ET 2%
DsK {691)= —ET1* PR*Y32%X21 -ET2*
DSK (652)= ETL® x32%x21 +ET2*
DsK (6+3)= ETL1* PR¥Y31%x21 +ET2*
DSK (6r4)= ~ETI® X31#x21 -ET2%
DSK {695)= =ET1* PR#*Y21%*X21 —~ET2%
DsK {6361= ET1* X21%%2 +ET2%

DO I17 J=1+6

DO 117 I=1l.6
DSK{JsI1}=DSK(I,J}
IF({IWRITE<EQ.0} GO TO 118
WRITE(6+205) NTYPE
WRITE(64103})

WRITE{6s101) ((DSK{lsJ}sI=1s61sJ=146}
CONTIRNUE

GO TO 235

CONTINUE

WRITE (6+257)

X32%%2

X32#Y32
Y32u%2

X32%X31
Y32#x31
X31%%2

X32%Y31
Y32%Y31
X31#y31
Y31#%2

X32%x21
Y32#x21
x31%x21
Y31%x21
X21%%2

X32%Y21
Y32%Y21
X31%y2]1
Y31%Y21
X21#Y21
Y21%%2

TABLE X¥XII (Continued)

SAS373

SAS376
SAS377
SAS378
SAS379
SAS380
SAS381
SAS382
SAS383
SAS384
SAS385
SAS386

SAS387

SAS388
SAS389
SAS390
SAS391
SAS392
SAS393
SAS394
SAS395
SAS396
SAS397
SAS398
SAS399
SAS400
SAS401
SAS5402
SAS403
SAS404
SAS405
SAS406
SAS407
SAS408
SAS409
SAS410
SAS411
SAS612
' SAS613
SAS4l4
SAS415
SAS416
SAS417
SAS418
SAS619
SAS420
SAS621
SAS422
SAS423
SAS424
SAS425
SAS426
SAS427
SAS428
SAS429
SAS430
SAS5431
SAS432
SAS433
SAS434

SAS374
SAS375

1

235

504
29

38

374

505
37

C ADD KBAR 1

GO TO B39

C MPQRS{I} CONTAINS THE SCHEME FOR PLACING THE ELEMENT MATRICES INTO
C THERE LARGER COUNTERPARTS.

CONTINUE

K=0

JROW = JLAM / 2

DO 39 I=1,JROW

DO 39 J=1s2

K=K+1
MPQRS(K}=2%1PQRS{])1-2+J
IF{IWRITE.EQ.0) GO TO 504
WRITE (64106} K» MPQRS(K)
CONTINUE

CONTINUE

INTO KBAR

DO 37 LA=1,JLAM
KI=MPQRS{LA)

DO 37 I=1lsJLAM
KL=MPQRS(1)

IF{KI=KL)37 »3745374

KJ=( {I#(KI-1))/2+KL
BARK{KJ)}=BARK(KJ}+DSK (LAsI)
IF({IWRITELEQ.0} GO TO 505
WRITE (6+107) LAy KI
WRITE (65110} KJy LAy I
CONTINUE

CONTINUE

CH#n%EWRITE TAPE & FOR STRESS CALCULATIONS, #HER M ai ittt fu e aisauss

506
236

WRITE (&) NTYPEsEsPRyA»JLAMID1sD29AL{1)9AL(2) 4MPQRSy IPQRS
IF{IWRITE.EQ.0) GO TO 506

WRITE({6+87981}

CALL WRT ( BARKs N2}

CONTINUE

CONTINUE

Coun*an®WRITE COMPLETE STIFFNESS MATRIX ON TAPE 3 FOR FORCE CALCULATION'

31007

WRITE{ 3) (BARK{I}yI=1sNUM}
WRITF(6+8798)

NF=0

NS=0

DO 31007 J=1sN2

NS=NF+1

NF=NF+J

WRITE (6931009} Js(BARK{I}s TI=NSsNF)

C REMOVE SINGULARITIES FROM K-BAR BY PLACING 1 ON. DIAGONAL AND 2ERO
C ELSEWHERE ON DUPLICATED ROWS AND COLUMNS.

507
315

508

316

WRITE {64114} NCROSS

DO 316 LC=1sNCROSS
LA=NBCILC)

DO 315 1=14N2
L=MAXO(LA»I)
KA={LA+I)Y+{L*(L=-3)1/2
IFUIWRITE«EQeD) GO TO 507
WRITE (6+115) KA

CONTINUE

BARK(KA)=0
KBe(LA®(LA+1}}/2
IF(IWRITE.EQs 0) GO TO 508
WRITE (64113 } LAs KB
CONTINUE

BARK{KB)=1a

CONTINUE
IF(IWRITE.EQe 0) GO TO 509

SAS435

SAS436
SAS437
SAS438
SAS439
SAS440
SAS44l
SAS642
SAS4L43
SASGbs
SAS445
SASL46
SAS44L?
SASG4S8

SAS449

SAS450
SAS451
SAS452
SAS453
SAS4L54
SAS455
SAS456
SASL57
SAS458
SAS459

SAS461
SASG62
SAS463
SAS4b4
SAS465
SAS466
SASL6T
SAS4L68
SASL69
SAS4LTO
SAS6T1
SAS472
5AS6473
SAS&T4
SAS4TS
SAS&T6
SAS4TT
SAS4T8
SASGT9
SAS480
SAS4B1
SAS482
SAS683
SASLB4
5A5485
SASLB6
SAS487
SAS4B8
5AS4LB9
SAS490
5AS6491
SAS492
SAS493
SASG9L
SAS495:
SAS496

. SAS460



509

CALCULATE

31008
30001
8623

317

319

510

900

638
637

TARLE XXIT (G

WRITE(6,8798)

CALL WRT ( BARKs N2)

CONTINUE

K-BAR-INVERSE. IF ISING IS O ON RETURN THE MATRIX IS SINGULA
CALL SYMINV (N2, BARK, ISING)
WRITE(658799)

NS=0

NF=0

DO 31008 J=1+N2

NS=NF+1

NF=N&+J

WRITE(6+31009) Jy (BARK(I)4I=NSsNF)
IF(ISING) 317586235317
WRITE(6+8629)

GO TO B39

CONTINUE

ZERO DIAGONAL ELEMENTS OF BARK INVERSE
DO 319 LC=1,NCROSS
LA=(NBC{LC)#INBCILCI+1)}/2
BARK(LA)=0

IF(IWRITE.EQs 0) GO TO 510
WRITE(6+8799)

CALL WRT ( BARK,s N2)

CONTINUE

CALL SMMPY (BARK s FORCE sUBAR N2 »NC)
WRITE(63800)

WRITE(6+801)

WRITE(6+802)

K=0

DO 638 I=1,N252

K=K+1

WRITE(65804) Ky {UBAR(15J)sJ=1,NC)
WRITZ(65805) (UBARII+I3J)sJ=1,NC)
CONTINUE

Cxa%unuxexWRITE FORCES ACTING ON THE STRUCTURE *RRE

70

-

640

WRITE{648097}

WRITE(6+802)

K=0

DO 701 I=14N2y2

K=K+1

WRITE(69804) Ks{FORCE{IsJ}5J=14NC}
WRITE(6+805)}{FORCE{I+15J}sJ=14sNC)
CALCULATE THE FORCE MATRIX = KBAR * UBAR
REWIND 3

READ{3) {BARK(I}sI=1sNUM}

CALL SMMPY {BARKsUBAR »QBARsN2.NC}
WRITE(6+809}

WRITE(6+802)

K=0

DO 640 I=1sN2s2

K=K+1

WRITE (69804} K» (QBAR(IsJ}s J=1sNC}
WRITE(6+805) {QBAR(I+1sJ) eJ=1+NC)

Cruuwprnnnun®®sf| EMENT GENFRALIZED STRESS CALCULATIONSH®®&ER¥Ke k¥4 EEEEERN

642

IF{NSN.EQ.0) GO TO 642

WRITE (6+203}

CONTINUE

REWIND 4

DC 370 NN=1sNELEM

READ {41 NTYPE+sEsPRsA,JLAMsDY2D2+AL (1) 4+ALI2)+MPQRS »1PORS
IF{IWRITELEQ.0} GO TO 641 .

WRITE (649116} NTYPE,E-PR»A.JLAM;DIoDZ;AL(1)~AL(2)’MFQRS +IPQRS

SAS5497
S5AS498
SAS5499
SAS500
SAS501
SAS502
SAS503
SAS504
SAS505
SAS506
SAS507
SAS508
SAS509
SAS510
SAS511
S5AS512
S5AS513
SAS514
SAS515
S5AS516
SASS517
SAS518
SAS519
SAS520
S5AS521
SAS522
SAS523
SAS524
SAS525
SAS526

- SAS527

SAS528
SAS529

SAS530 -
SASS531

SAS532
SAS533
SAS534
SAS535
SAS536
SAS537
SAS538
SAS539
SAS540
SAS541
SAS542
SAS543
SAS544
SASS545
SAS546
SAS547
SAS548
SAS549
SAS550
SAS551
S5AS552
SAS553
SAS554
SAS555
SAS556
SAS557
SAS558

641

CONTINUE

[ LA L s L ey R R T e e Yy
C SELECT U-BAR-1 FROM U-BAR AND STORE IT IN QORU{IsJ)

220

223

DO 220 I=1l,4JLAM

KI=MPQRS{I)

DO 220 J=14NC

QORU(T+J)=UBAR(KIsJ}

WRITE (6+204) NN

WRITE (64801)

WRITE (64802}

K=0

DO 223 I = lsJLAMs 2

K=K+1

WRITE (62804} IPQRS(K}s {QORULTI»J)»J=1sNC)
WRITE(6+805) {(QORU{I+1ls J)rJd=1+NC)
CONTINUE

It R e s e T T e R R e e e e s Y

375

379

376

377

378

11

CHExRuxundptaud¥’¥STRESS MATRIX STRINGER ELEMENT#

CxwnuuwnuxxtSTRINGER STRESS MATRIX

22

IF{NSN.EQ.0} GO TO 379

WRITE (64258}

IF{NTYPE+GEs 5) GO TO 375
READ{54+251) Ts{XN{NNyJ)sJ=1yNSN)
WRITE(69253) Is (XN(NNsJ)sJ=1sNSN)
GO TO 376

CONTIKNUE

REAC (5+251)1s (XN{NNsJ)+J=1,NSN}
READ{5+254) I1+{YN{NN,J)sJ=19NSN}
WRITE{64253)1s (XN{NNsJ}sJ=12sNSN}
WRITE(642553 19 {YN{NNsJ}»J=1sNSN}
GO TO 376

CONTINUE

IF{NSN«EQsD) NSN1=1

TF{NSNeNE«O) NSNI=NSN
XN{NNs1)=D2/2s

YN(NN»13=D1/24

WRITE{6+205)

CONTINUE

DO 237 NNSN=1sNSN1

DO 377 I=1.3

D0 377 J=1,.8

STR {IsJ) = 040

DO 378 1=1,3

DO 378 J=1,+5

STRESS (IsJ) = 0.0

GO TO (11922933444955366»77988+99)sNTYPE

CONT INUE
AEREN - LTI

WRITE (6+200}

STR {1ls1) —{AL{13*E} 7 D1
STR (192} = —{AL{2)%E)} / D1
STR {1+43) = AL(1I*E / D!
STR {ls4) = AL{2)*E / D1

WRITE {6+101) {STR {leJrsd=104)
CALL MXM (STRsQORUsSTRESSsNC)
GO T0. 30

ASSUMED STRESS FUNCTION*»eesszzymsss
CONTINUE

XX = XN{NN,NNSN} / D2

WRITE(6s101} XX

STR {1s1}==(AL{1}®E}®{1s0~XX]} / Dl

STR {1s2)=={AL(2)*E1*{1.0-XX} / Dl

STR (193)=AL (1} *E*XX / D1

STR {1943 =AL(2)®E%XX /7 DY

SAS559
SAS560
SAS561
SAS5562
SAS563
SAS564
SAS565
SAS566
S5AS567
SAS568
SAS569
SAS570
SAS571
SAS572
SAS573
SAS574
SASS575
SAS576
SASS57T7
SAS578
SAS579
SAS580
SASS581
SAS582
SAS583
SAS584
SAS585
SAS586
SAS587
SAS588
SAS589
SAS590
5AS591
SAS592
S5AS5593

SAS594

SAS595
SAS596

 SAS597

SAS598
SAS599
SAS5600
SAS601
SAS602
SAS5603
SAS604
SAS605
SAS606
SAS607
SAS608
SAS609
SAS610
SAS611
5AS612
SAS613
SAS614
SAS615
SAS616
SAS61T
SAS618
SAS619
SAS620

Wy



33
44

55

TABLE XXIT

WRITE{6+200)

WRITE{64101}(STR {19y 9J=194)
CALL MXM (STRsQORUsSTRESSsNC)
GO T0 30

CONTINUE

CONTINUE

WRITE {65256}

GO TO 839

CONTINUE

CRARARRARAXERARRRRRCTRESS MATRIX ASSUMED DISPLACEMENTSS 33 53 35 3t 35 53 30 34 38 59 3¢

XX = XN{NN,NNSN} / D2

YY = YN{NN,NNSN} / D1
WRITE(6+2591 XX,YY

XA = D2

YB = D1

EPRO=1.0-PR*#*2

EPR1=E/EPRC
STRU15131=—EPR1I*{1.0~-YY)/XA
STR{1+2)=—EPR1#PR*{1.,0-XX)/YB

STR{1.3 EPR1*XX/XA
STR{1ls4 ~{5TR{1+2))
STR{145)= ={(S5TR{1+3}}

STR{1+6)=EPR1*PR¥*XX/YB

STR{1s7)= ={S5TR{ls1}}
STR{1,8 -{STR(1+6})
STR{2311=~EPR1*PR*(1,0-YY}/XA
STR{2+2)=~EPR1%{1.0-XX}/YB

STR(24+3)=—EPR1I*PR*YY /XA

STR{Zs4 ~{STR(2+2}}
STR{2+5)= ~—(STR{2:3)}
STR{2s63}=EPR1*XX/YB
STR{Zs73= —{STR{2s1))
~{STR(2s6}}

EPR1%*(1+0-PRI*(1,0-XX}/{2.0%YB}
STR{342)=-EPR1I#{140~PR}I*{1,0-YY}/{2,0%XA}
STR{343)= —(STR{(3,1}))
EPR1#YY*(1.0-PR}/(2.0%XA)
STR{3+5)1=EPR1#XX*{1.C-PR}/{2.0%YB)

STR{3+6)= ~1STRI3,54}}
STR{347)= ~{(STR{3s5))
STR{348}= =—{STR{3,2)}

WRITE (64200}

WRITE (651013 {(STR{IsJ)s J=148),s I=1s3)
CALL MXM (STRyQORUsSTRESSsNC?

GO TO 30

66 CONTINUE

CH¥xuu%H2¥STRESS MATRIX ASSUMED STRESS FUNCTION WITH 5 COEFFICIENTSH®xx#w

XX = XN(NNsNNSN} / D2
YY = YN(NNsJNNSN)} / Dl
WRITE(6+259) XXsYY

+0%XX-1e0

EPR5=1¢0-2.0%XX
STR(le)-EPRl‘((EPRO*EPRZ)—I 0)/12.0%XA)
EPR1%#PR/(2.0%YB}

STR{1+3 PR1%{ {EPRO¥EPR2}~1e0}/(2Z+0%XA}
STR{1+6)=EPRI¥PR/{2.0%YB)

SAS621
SAS622
SAS623
SAS624
SAS625
SAS626
SAS627
S5AS628
SAS5629
SAS630
SAS5631
SAS5632
SAS633
SAS634
5AS635
SAS636
SAS637
SAS638
SAS5639
SAS640
SAS641
SAS642
SAS643
SAS644
SAS645
SAS646
SAS64T
SAS648
SAS649
SAS650
SAS651
SAS652
SAS653
SAS654
SAS655
SAS656
SAS657
SAS658
SAS5659
SAS660
SAS661
SAS662
SAS663
SAS664
SAS665
SAS666
SAS667
SAS668
SAS669
SAS670
SAS671
SAS672
SAS673
SAS674
SAS67S
SAS6T6
SAS677
SAS678
SAS679
SAS680
SAS681
SAS682

(Con

77

CHuRNRSTRESS MATRIX = WITH SEVEN CORFFTCTENTSEI MMM NN NN NI AN

371

tnued)

STR{1+5)=EPRI*{{EPRO*EPR2)+1.0)7(2+0%XA}
STR{146)=5TR(1s4}

STR{1»7T}=EPR1*{ {EPRO*EPR3)+140)/7{2.0%XA)
STR(14+8 STR{1.4)

STR{2s1 EPRI®PR/ {2+ 0%XA}

STR{2+21=EPR1* [ {EPRO¥EPR&}-10}/(2+0%YB)
STR{243)=STR{241}

STR(294)=EPR1I*{ {EPRO*EPR51+1401/(2.0%YB}
STR{295}1==STR(2,1)

STR{2961=EPR1#*{ {EPRO*EPRL}+140)/(2.0%YB)
STR(2+71=STR{2,5)
STR{Z+B)=EPR1*({{EPRO*EPRS51-1401/1{2.0%YB)}
STR(34+1) = —{EPR1I*#{140-PR}/{4,0 * YB})
STR{342) = —{EPRI*{140=PR}/ (4,0 * XA)}
STR{3,3)=~5TR{3,1}

STR{344)=STR{3,2}

STR{3,71=STR{3,1}

STR(3581=5TR{3,+6)

WRITE(6+200}
WRITE(6s101){{STR{IsJ)9J=1s8)s1=243}
CALL MXM {STRyQORUsSTRESSsNC)

GO TO 30
CONTINUE

By = D1

AX = D2

XX= XN{NNsNNSN)

YY= (N{NNsNNSN}

WRITE(69259) XX,YY

ALP = (3.%D2%*D2 + D1%DI1}

BET={3.%D1#D1}+(D2%D2)

DO 371 I=1,3

DO 371 J=1,8

STR{TsJ) = 0.0

STR{1s1}= —(102.#BYRALP#BET)~{ 6% (BY#®3}#BETI+{1B.#AX*AX®BY#BET}
1+YY#{ {96+ #ALP*BETI+(12.*BY*BY®BET )~ {364 #AX®#AX®BET})

STR{2s1)= =1{ 1B.*BY*ALP*BET)=(18.* (BY#®3)#BET)+(54, #AXRAXRBY #BET)
14YY®({ 36.%#BY*BY*¥BET) - (10B.#AX*#AX*BET))

STRI341}= =0 18e*AXWALP*BET }={54.#(AX*#3}#BET)+{18.*AX*BY*BY*BET)

1-XX#{( 36.%BY*BY*BET) ~ (10B*#AX®#AX®BET}) .

STR{1923= —{ 1B.*AX®ALP#BET}-{18*{AX®¥3)RALP ) +{54#AXRBYRBY®ALP)
1+4XX®({ 364 *AX®AX®ALP) — (108+*BY#BY®ALP}}

STR{2921= —{102%AX®ALP*BET)—{ 6., % (AX®#3J#ALP}I+{1B,*AX*BY#BY®ALP)
1+XX#{ (96 #ALP®BET] — (36 *BY®BY®ALP} + (12.%¥AXWAX®ALP})

STR{3+21= —{ 1B.*BYRALP¥BET)~(54.%{BYR#3)*ALP}+ (18, #AXHAXRBYRALP)
1=YY%(({ 36 #AXRAX¥ALP) — (108.%*BY®BY®ALP}}

STR{1s3)= =1 6e*BYXALP*¥BET}+( 6.%(BY®%3)%#BET)-(1B.#AX*AX#BY*BET)
I4YY#*( (=964 #ALP*BET)}~(12,%BY#BY®BET 1+ {36, #AXHAX#BET )

STR{243)= ={ 18.#BYXALP*BET)+{1B8.#(BY®*#3)%BET) {54, #AX#AX*BY#BET)
1+YY*((-36,#BY*BY®*BET) + (108.%AX#AX*BET))

STR{3+33= +{ 18+.%AX®ALP#BET}+{54, '(AX"B)'BET)-(lB.’AX’BV'BY'BET)
1-XX*{{~36.%BY*BY*BET) + (108.*AX®AX#BET))

STRELls&d= +{ 1B HAXFALPHBET }4{18.% (AX®RI}RALP)I=(54+ ®AX#BY#BY#ALP)
I4XXH{ (~36. #AXRAXFALP) + (108.%#BY#BYRALP))

STR{294)= +{102.%AX*ALP*¥BET )+ ( 6o* (AX®XIJHALP )}~ (184 *AX*BYXBY®#ALP)
14+XX%({(~96 4 #ALP#BET )+ (36, #BYRBY#ALP 1~ (12, #AX*AX*ALP))

STRUBs4)= ~( 18.¥BYRALPXBET }+{S54,#(BY##3)HALP )~ (18, %AXHAX#BYRALP)
1-YY®{{~36 #AXHAXHALP} + (108.%BY#BY®ALP}))

STR{1951= +{ G *BYSALP*BET~{ 6.#(BY®#3)#BFET)+{18.*AX#AX*BY#BET}
14YYR{ (96 #ALP*BET )+ ({12, #BY*BY*BET}—(36.#AX®AX*#BET) )

SAS683
SAS684
SAS5685
SAS686
SAS687
SAS688
SAS689
SAS690
SAS691
SA5692
SAS693
SAS694
SAS695

SAS696

SAS697
SAS698
SAS699
SAS700
SAST01
SAS702
SAS7T03
SAST04
SAST0S
SAST06
SAS707
SAS708
SAS709
SAST10
SAST11
SAS712
SAST13
SAST14
SAST15
SAS716
SAST17
SAS718
SAST19
SAST20
SAS721
S5AS722
SAS723
S5AS724
SAS725
SAST26
SAST27
SAS728

SAST29

SAST30
SAS731
SAST32
SAS733

SAST34

SAST3S
SAS736
SAST37
SAS5738
SAST39
SAST40
SAS741
SAST42
SAST43
SAST44

FA

=
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404

8

=)

377

378

119

1290

TABLE XXII {Conti

STR(295)= { 184¥BYXALP*BET)={18.% (BY®X3)¥BET}+{54«*AX*AX#BY#BET)
1+YY*{{ 36.*BY*BY¥BET) — {(10B.%AX*AX*BET))

STRU395)= +( 18e*AX®ALPH¥BET ) - (54 % [AX*#3)¥BET}+(18.¥AX¥BY*BY*BET)
1-XX%*({ 36+*BY*BY*BET) ~ (108.%AX*AX*BET))

STR{1+6)= +{ 1B*AXXALPX*BET)—(184*{AX#X3)#ALP}+{54. *AX¥BY¥BY*ALP)
1+XXH{{ 364 ¥AXXAX*ALP) = {10B+*BY#BY*ALP}} .

STR{2s61= +1 6. *AXW¥ALP*¥BETI-( 6o% (AXN%3}%ALP)+{18.%AX*BY*BY*ALP}
14+XX* ({96 *ALP*¥BET) — {36, *BY*#BY*ALP) + [12.%AX*AX¥ALP)}

STR{3561= { 1B4*BYXALPH*BET 1 -{54.%(BY**3)%¥ALP )+ (1B ¥AX¥AX*BY*ALP}
1-YY%{ {4364 *AX*¥AXXALP)Y — [108.%BY¥BY®*ALP))

STR(1s7)= (1024*BY®ALP*BET)}+{ 6% (BY*%#3)#¥BET}~(18.%AX¥AX*EY*BET)
14YY#*((~964 *ALP*BET }— (12 *BY#BY*BET )+ (36, ¥AX®AX#*BET )}
STR{2»7)= { 1B+*BY¥ALP*¥BET)+{18.*(BY#*#3)*BET )~ (54.*AX*AX*BY*BET)

1+YY*({ (-36,#BY%BY*BET) + (108 *AX*AX*BET))

STR{3s7)= —( 1B+*AXXALP*BET }+(54 % {AX*¥3)}%BET ]~ {18, *AX*BY*BY*BET)
1-XX¥({=364%¥BY¥BY¥BET) + (108.¥AX*AX*BET})

STR{1s8}= —( 1B *AX¥ALP®BETI+{1Bo* {AXX%3)¥ALP - (54 ¥AXKBY*BY*ALP)
1+XX#( (=366 ¥AXAXFALP) + {108.%BY*BYXALP))

STR{228)= ~( 6o¥AX®ALP¥BET)+({ 6o #(AX¥X3)}KALP}~({18.¥AX¥BY*BY*ALP)
1+XX*{ (=964 ¥ALP*BET )+ (364 ¥BY®BY®ALP )= (12, #AXXAX¥ALP) )
STR(398}= ( 18.¥BY®ALPHBET}+({54e% (BY*X3}%ALP)— (18, ¥AX*AXBY#ALP)
T-YYH{ (=36« KAXFAX*ALP) + (108.#BY*BY®ALP)}

DO 404 I=1,3 =~ .

DO 404 J=1,8

STR(IsJ)= STR{IWJI*(E/(96.*ALP*BET *AX*BY))

WRITE(6,200)

WRITE(69101) ({{STR(IsJ}yJ=15B8151=1,3)

CALL MXM (STRyQORU+STRESSsNC)

GO TO 30

CONTINUE

DO 377 I=1,3

DO 377 J=1,8

STR  (IsJ) = 0.0

DO 378 1=1,3

DO 378 J=1,5

STRESS (IsJ) = 0.0

DO 119 I=1,3

DO 119 J=1,6

STR{1sJ1=0.0

STR{1s1)=Y32

STR{1+2)=—PR*X32

STR(1s3)=~Y31

STRU1s4)=PR¥X31

STRU1,51=Y21

STR{196)=—PR*X21

STR(241)=PR*Y32

STR{292)=-X32

STR{24+3}==PR¥Y31

STR{2y4)1=X31

STR(2951=PR*Y21

STR{2»61=-X21

STR{3s1}==({1s—PR)/241%X32

STR{392)=((1e=PR)/24)%Y32

STR(323)1={{1e~PR) /24 1%X3]

STR{3s4)=—({le=PR)/243%Y31

STR{3553=—{(1a=PR}/24}*X21

STR{3+63=({1e=PR}/241%Y2]

DO 170 I=1,3 ’

DO 120 J=1,6
STRITsJI=(E/(2e%0o5*{X32#Y21-X21#Y32)% (1o~ (PR¥¥2}1})*#STR(15J}
WRITE(64200)

WRITE(6y101){{STR{I+J)sJ=1y8),15143)

SAST745
SAST46
SAST4T
SAST48
SAS749
SAS750
SAS751
SAST52
SAST53
SAST54
SAST55
SAST56
SASTST
SAS758
SAST59
SAS760
SASTH1
SAS762
SAST63
SASTe4
SAST65
SAS766
SAS767
SAST68
SAST769

SASTT0

SASTT1
SASTT2
SAS773
SAST74
SAS775
SASTT6
SASTTT
SAS778

SASTT9
SAS780

SAST81
SAS782
SAST83
SAS784
SAS785
SAS786
SAST87
SAST88
SAS789
SAS790
SAST791
SAST792
SAS793
SAS794
SAS795
SAST96
SAST97
SAS798

'SAS799

SAS800
SAS801
5A5802
SAS803
SAS804
SAS805
SAS806

99

30

237
370

19999
11999

SIBFT

97

98

2

inued)

CALL MXM (STRsQORUsSTRESSNC}

GO TO 30

CONTINUE

WRITE {64256}

GO TO 839

CONTINUE

WRITE(6+2063 NNsNTYPE

WRITE (65201}

WRITE (64202}

WRITE (6+219) NNSNs NTYPEs (STRESS{1sl)s I=1,NQ)
IF{NTYPE«LE«&4) GO TO 237

WRITE (69222} {STRESS{2s1}s I=14NC)
WRITE (69221} {STRESS(3s1)s I=1sNC)
CONTINUE

CONTINUE

REWIND 3

REWIND &4
WRITE(6+999991{R{JIsJ=1+12}
GO TO 839

CALL EXIT

END

C SYMINV

SUBROUTINE SYMINV { I0s As ISING)
DIMENSTON A(18301+COL{60}
IF(I0-11800+810+97

~=~=~INVERSE OF 2X2--=-
C=A(11*%A{3)1~Al12)%A(2)
IF(C)198+900+98

A(2)1==A{21/C

COL{1y=AL1)/C

Atly=A131/C

- A(33=CDL{1}Y

99

100

200

300

400

410

IF(10-2)8005720,99

K=1

M=10-1

DO7001011=2,4M

K=K+1011

Lol e HoOF SYMMETRICMATRIX#COLUMN====

N=0

D0100I=1,1011

CoLt11=0

D03001=151011

TA=K+1

DO3C0J=1+1

N=N+1 N
COLtJY=COL{JI+A(NI*A{TA)
1F{J=11200,300,800
1B=K+J
COL{I3=COL{TI+A(NI*A(IB)
CONTINUE
~COMPUTER22-=~~

=0
D04001=151011
TAZK+]
C=C+A{TAIRCOLLT)
TA=1A+]1
C=A{1A)~C
IF({C)410+900+410
C=1le0/C

AtIA)=C
-=—~COMPUTEB21-—=~
D05001=1+1011

SASBO7
SASE08
SASB09
SAS810
SAS811
SAS812
SAS813
SAS814
SASB15
SASB16
5AS817
SASB18
SAS819
SAsSB20
SAS821
S5AS822
SASB23
SASB24
S5AS825
SAS826
SASB27

SMINVOO1
SMINVO02
SMINVOO3
SMINVOO4
SMINVOO5
SMINVOO6
SMINVOO7
SMINVOO8
SMINVOO09
SMINVO10
SMINVO11
SMINVO12
SMINVO13
SMINVO14
SMINVO15
SMINVOl6
SMINVO17
SMINVO18
SMINVO19
SMINV020
SMINVO21
SMINVO22
SMINVO23
SMINVO24
SMINVO25
SMINVO26
SMINVO27
SMINV028
SMINV029
SMINVO30
SMINVO31
SMINVO32
SMINVO33
SMINVO34
SMINVO35
SMINVO36
SMINVO037
SMINVO38
SMINVO39
SMINVO4O




TABLE XXIT (Continued)

TA=K+1 SMINVO41
500 A(lA)==C*COL(I} SMINVO42
C ~———COMPUTEBll-~—— SMINVO43
N=0 SMINVO&44
DO60JII=1,1011 SMINVO04S
DO600J=1s1 SMINVO46
N=N+1 SMINVO4T
TA=K+J SMINVOD48
600 A(NI=AIN}I-ALTA)¥COL(I) . SMINVO4S
700 CONTINUE SMINVO50
720 1SING=1 SMINVO51
710 RETURN SMINVOS52
900 1SING=0 SMINVO53
GOTO710 SMINVOSG
810 A(13=1.0/At1) SMINVOS5
GO TO 720 SMINVOS6
800 ISING = 2 SMINVOS7
RETURN SMINVO58
END SMINVO59
$IBFTC SMMPY
SUBROUTINE SMMPY{AsB,CaN34NCY SMMPY001
C (KINVERSE } ¥ {FORCE ) ®®*DEFLECTIONS* %% #NO OF ROWS**¥¥NO OF FORCES SMMPYO002
DIMENSION A(1830)+B(6055)5C{6045) SMMPY 003
DC 100 I=14N3 SMMPYO0 04
DO 100 J=1,NC SMMPYO005
CtisJ1=0 SMMPYOO06
DO 1J0 Kl=1,N3 SMMPYOO0T
L=MAXO(1,K1) SMMPYO008
K={L*(L-3))/2+(14K1} SMMPYO009
10C CUl1sJ)=A{KI*BIKL1yJI+C{IsJ) SMMPY010
RETURN - SMMPYO11
END SMMPY012
$IBFTC WRT
SUBROUTINE WRT(As N3} WRTOO1
DIMENSION At1} WRT002
31009 FORMAT{1Xs3HROWsI45/1X, (1P10EL13441) WRT003
NF=0 WRT0O04
NS=0 . WRT00S
DO 31010 J=1sN3 WRT006
NS=NF+1 WRTOO7
NF=NF+J WRT008
31017 WRITE (6531009) Js{AlI)y I=NSeNF) WRTO009
RETURN WRTO10
END WRTO11
SIBFTC MXM
SUBROUTINE MXM ( As Bs Cs NCI MXM0O1
DIMENSION A{348)5B(8+5)5C(3+5) MXM002
DO 20 1=1+3 MXM0O3 «
DS 20 J=1sNC MXMO 04
20 CtlsJ) = 0.0 MXMOOS
DO 10 1=1+3 MXM006
PC 10  J=1,.NC MXM0O7
DO 10 N=1+8 MXMOO8
10 ClIsd) = CtIsd) + ACISN} * B(NsJ) MX4009
RETURN MXMO10

END MXMO11




APPENDIX C

A DIGITAL COMPUTER PROGRAM FOR IMPLEMENTING

THE MATRIX FORCE METHOD

(Mr. Bill Accola of the University Computing Center, Oklahoma

3 L

State University, rendered very able and valuable assistance

to the planning of this program and had a major role in its

development. )

The fellowing computer program is developed from the concept set
forth by Reference (12): namely, that of building up a main program
from a set of matrix subroutines with each subroutine performing some
matrix manipulation (multiplication, inversion, addition, etc.). The
subroutines used in this program are primarily those listed in Reference
(12). The only exceptions are modified versions of the subroutines

RMATNZ and WRTMAT,
Modifications of RMATNZ

A counter (IENT) has been added tc this subroutine to keep track of
which call the subroutine is in. According to the time of entry, the
appropriate heading for the matrix that is read is printed with its
titley ise., when IENT is 1, the computed GO TO statement number 1000
sends control to statement number 4, which prints out the name [ALPIJ]
with Format 10%. To adjust this subroutine for different programs, the
order of the matrices to be read in must be known. A numbered write

statement must be set up for each matrix with the appropriate format
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for that matrix. With these statements in order; statement 1000 must be
altered to send control to the proper write statement according to the
current entry the subroutine is in.

Also, statement 102 has been changed from

102 FORMAT (6X,Ik,6X, 14 E10.4)
to

102 FORMAT {6X,I4,6X,IL E14.7).
Modifications of WRTMAT

This subroutine has been altered in the same manner as was RMATNZ.
A numbered write statement is needed for each matrix that is to be
printed. A format is needed with the name of a matrix for each matrix
that is to be printed. With these statements added, the computed GO TO
statement must be changed to send control to the proper write statement

depending upon the time of entry which determines the matrix that is

&

o

printed.

Additional Matrix Designations

The following matricss are defined as

es] = L], o T eaen ],
O] = [4RN], (G J=[ann ],
Gim] = [cam], (8- [ o5 ]=[6RTALR,
Geu ] = [o30], o I[ 15 ] = lGmzace],



[Gne] = [amP], [z ]= [xzom],
[t ] = [ lovs T= Pirsiny 7.

With the above definitions and those made in prior topics, the

equations given in Chapter II are converted to computer

language and a description of the computer program may now be given.
Program Description

This package program is made up of a main program and several sub-
routines. The main program serves only to prepare arrays for openaw
tions which are carried out in subroutines. The flow of manipulations

of the matrices can be followed through the main program.

Since the input/output assignments are held in common for all the
subroutines, KIN (input) and KOUT (output) must be established. On the
IBM 7040 KIN is set to 5, and KOUT is set to 6. This causes all data to
be read in from the card reader and all output to be printed on the
printer.

Two calls to RMATNZ read in [ALPIJ] and [GIR]e Each call reads
the matrix and prints the matrix with the appropriate title. [ALPIJ]
and [GIR] are manipulated as AXB giving [GRIALP]'which is printed by a
call to WRTMAT. Then [GRIALP] is multiplied by [GIR] gliving [ARS]O
This multiplication is {nitiated by a call to MXM. The resulting [ARS]
is printed with WRTMAT. A DO-=loop is inserted to save {ARS] in STORE as
it is desired later %o inveri {ARSJFand then multiply back to obltain an
identity matriz. (The izmversion subroutine destroys the input

matrix.)
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After storing [ARS], [ARSINV] is obtained and is printed with a
call to [INVERX] and a call to WRTMAT. To check the condition of [ARS],
the identity matrix [XIDM] is computed by MXM and then printed with
WRTMAT.

After printing [XIDM], [GIM] is read and printed via RMATNZ and
the [GRIALP] and [GIM] are multiplied giving [ARN], which is printed
with WRTMAT. To obtain [GSN], MM is called to multiply [ARSINV] by
[ARN]; The result is then printed. Another multiplication is per-
formed obtaining [GSN] from [ARSINV] X [ARN]o Following the printing
of [GSN], [GIR] is multiplied by fGSN] to get [GMP]° Since [ARSINV] is
no longer needed, [GMP]icould have been stored in [ARSINV]O Next [@MP]
is subtracted from [GIM]‘giving [GGIM] which is then printed. The sub-
traction is done with a call to MSM. {FORGE] is read in and printed
with a call to RMATNZ and is then multiplied by [GGIM] to give the
desired {QI]O [QI] is printed by a call to WRTMAT. To find the
stresses, the matrix [AREINV] is printed and then rSTRESS (1)] is set
equal to {QI (1)7 and fSTREss (2)] equal to [QI (2)]., This is done
because the first two elements of any array in this program are the
number of rows and the number of columns. Following the multiplication
of [AREINV] and [QI} which is done element-wise, the result, {STRESS]9
will be the same size as [QI]° The actual multiplication is done with a
double DO=loop. Following the multiplication, [STRESS] is printed with
WRTMAT and punched which gives output capable of being read with RMATNZ.

To obtajin deflections, the transpose of [GIM] is multiplied times
[ALPIJ](:[GIM]'X [ALPIJ}t) giving [GMIALP] which is then printed with
WRTMAT. MXM is used to obtain [GMIALP].X {GIM] resulting in [AMN]o

[AMN] is printed. Next, another transposed multiplication is
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performed giving [GNN]9 which is printed. A subtraction [AMN} - fGNN]
is performed, giving {CAMN?Q which 1s alsc printed with WRTMAT, The
deflection matrix, {DELTAM] is computed by multiplying (CAMN]'by {FORGE]Q
{DELTAM]_is then printed with WRTMAT.

To obtain a check on the final results of a redundant force calou=-
lation, a multiplication of [GRIALP] and {GGIM]'is pefformed giving
]iARNTR]o fARNTR] could have been stored in [GMIALP]for aglmost anywhere
since the program is so near completion. [ARNTR] is then printed and a

CALL EXIT concludes processing of the program.
Example Iisting

A complete listing of the main program, required subroutines and

input matrices is given in Table XXITI,



TABLE XXIIT

FORTRAN PROGRAM FOR IMPLEMENTING THE

MATRIX FORCE METHOD
SIBFTC MAIN DECK CALL MTXM{ARNsGSNsGNN}
C FORTRAN IV MATRIX PACKAGE FOR STRUCTURAL ANALYSIS CALL WRTMAT(GNN)
C ARMY RESEARCH OFFICE CONTRACT  PROFs Re Es CHAPELs PROJECT LEADER CALL MSM{AMN3sGNNsCAMN}

COMMON KIN, KOUT CALL WRTMAT{CAMN}

DIMENSION ALPIJ(2650)+GIR(350)+GRIALP(350)5ARS(1001»ARSINV(100}+ CALL MXM{CAMN+FORCE»DELTAM)
1STORE{100) +XIDM{ 100} »GIM{999) s ARN(100) »GSN{100) sGMP (350} +CGIMI350) : CALL WRTMAT(DELTAM}
1+FORCE(200}5G1{1000) sAREINV(100)sSTRESS(1000) +GMIALP (402} sAMN{350)» 4 REDUNDANCY
1y . CALL MXMI(GRIALPyCGIM,ARNTR)
1GNN(350)sCAMN(350) s DELTAMI350) yARNTR(350) CALL WRTMAT{ARNTR}

KIN=5 CALL EXIT

KOUT=6 END

1CT=0 $I1BFTC RMATNZ

READ(54100) IPCH SUBROUTINE RMATNZ (A}

100 FORMAT(11) C READ NONZERO ELEMENTS ONLY AND STORE AS FULL MATRIX

CALL RMATNZ{ALPIJ} c LAST DATA CARD OF MATRIX MUST BE FOLLOWED BY END CARD

CALL RMATNZ(GIR} DIMENSION A{1)

CALL MTXM (GIRs ALPIJs GRIALP) COMMON KINs KOUT

CALL WRTMAT{GRIALP) 101 FORMAT(6Xs1496Xs143E1407)
CALL MXM {GRIALPs GIR» ARS} 103 FORMAT(THIALPIJ +1433Xy1HXs14)

CALL WRTMAT(ARS} 104  FORMAT(10Xs3HROW»s161}

DO1I1=1,38 105 FORMAT  {25X»s 6E15.4)

1 STCRE(I)}=ARS(I} 106  FORMAT{4H1GIRs1433Xs1HX214)

CALL INVERX{ARS3ARSINV,DET,IE) 107  FORMAT{4HIGIMsI493Xs1HX>14)

CALL WRTMAT({ARSINV) 108  FORMAT(6HIFORCE»143s3Xs1HXs14)

CALL MXM(ARSINV,STORE +XIDM) 109  FORMAT(THLAREINV,I43s3Xs1HX,14)

CALL WRTMAT{XIDM) IENT=IENT+1

CALL RMATNZ (GIM} READ(KINs101)LyL1

CALL MXM (GRIALPs GIM, ARN} Atli=L
CALL WRTMAT (ARN} At23=L1
CALL MXM {ARSINVs, ARNjs GSN) TJMAX=L#L1+2
CALL WRTMAT(GSN} DO 1 I = 3, 1JMAX
CALL MXM (GIRs GSN»s GMP} 1 A{I} = 040

CALL WRTMAT{(GMP} 2 READ(KIN»101)IMsNyOATA
CALL MSM (GIMsGMP»CGIM) IF (N «LEs 0 } GO TO 1000
CALL WRTMAT(CGIM) T={M-13%L1+N+2
CALL RMATNZ (FORCE) A{1} = DATA
CALL MXM (CGIM, FORCE, QT) GO TO 2
CALL WRTMAT(GQI) [« PRINT INPUT MATRIX

11 ICT=ICT+1 1000 GO TO (4353697393915 1ENT
TELM=1{QI1(1)*QI(2))+2. 4 WRITE(KOUT103)L,L1
DO12I=1+]1ELM 8 L2=3

12 STRESS(I1=0+0 DO3K=14L

CALL RMATNZ (AREINV} L3=L1+L2-1

STRESS(11=01(1) WRITE (KOUTs 104) K

STRESS(21=01(2) WRITE (KOUT» 105)(AfT)s I =L2, L3}

TROWS=STRESS(1)+2. L2 = L3 + 1

1COLS=STRESS(2) 3 CONTINUE

DO31=1,1COLS RETURN

D02.J=34 IROWS 5 WRITE(KOUT,106)LsL1

K={J=3)*IFIX{QI(2))+] GO TO 8

L=K+2 6 WRITE(XOUT,107)LsL1

2 STRESS{L}=AREINV(J}*0I(L) GO TO 8

3 CONTINUE 7 WRITE(KOUT+1083LsL1

CALL WRTMAT{STRESS) GO TO 8

IF{IPCH«EC.0}GO TO 9993 9 WRITE(KOUT»109)LsL1

CALL PUNCH(STRESS) GO TO 8

9993 IF(1CT4LE.11GO TO 11 END

C DEFLECTIONS $IBFTC WRTMAT DECK
CALL MTXM{GIMsALPTJsGMIALP) SUBROUTINE WRTMAT(A)
CALL WRTMAT{GMIALP) DIMESION A(1}

CALL MXM{GMIALPsGIMsAMN)
CALL WRTMAT {AMN)

100

COMMON KINs KOUT
FORMAT{THIGRIALP+I433Xs1HXs14)




101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

10

11

13

14

i5

16

18

TABLE XXIII {(Co

FORMAT {4H1ARS s 14+3Xs1HXs14)
FORMAT{4H1ARNsT4»3Xs1HXs14)
FORMAT (4H1GSN» 14 93X 1HXs 14)
FORMAT{4H1IGMP 9 T4 43Xy IHX s 14}
FORMAT{5H1CGIMs [ 453Xy 1HXs14)
FORMAT(3H1QT »14+3Xs1HXs141}
FORMAT (20X 1P6E1645}
FORMAT{10Xs5H ROW s14)
FORMAT{ 7THIARSINV s T4 33X s 1HX 14}
FORMAT ( 4H1AMN s T4 93X 9 1HX 9 14}
FORMAT{4HIGNN 9 T4 93X 31HXs14)
FORMAT(THIDELTAM, 143X, 1HX 141}
FORMAT(6HIARNTR s 1443 Xs1HXs 14}
FORMAT{5H1XIDMs I493X,1HXs14)
FORMAT{7HIGMIALP s I1493Xy1HX 14}
FORMAT (5HICAMN» 143X 3 1HXs 14}
FORMAT{ THISTRESS s 149 3Xs 1HX s 14)
TENT=T1ENT+1

L = A{l}

Ll = A(2)

Lz = 3.

GO TQ (3545101595565 74B859518418516411512517913414)51ENT
DO2K=1,L

L3 =12+ L1 -1
WRITE(KOUT,1081K
WRITE(KOUT,107}{AL11+1=L2,13)
L2 =13+ 1

CONTINUE

RETURN

WRITE(KOUT+100}L,sL1

GO 10 1

WRITE{KOUT,101)LsL1

GO TJ 1

WRITE(KOUT.102)L»L1

GO 70 1

WRITE(KOUT103)0L,L1

GO 70 1

WRITE{KOUT,1043LsL1

GO TO 1

WRITE(KOUT+1053¢LsL1

GO TO 1

WRITE(KOUT,106)LsL1

GO TO 1

WRITE(KOUTs109711LsL1

GO TO 1

WRITE{KOUT,1101LsL1

G0 70 1

WRITE(KOUTS111)LsL1

GO TO

WRITZ(KOUT,112}3L sl 1

GO TO 1

WRITE(KOUT,113)LsL1

GO TO 1

WRITE(KOUTs114)LsL1

GO TO 1

WRITE{KOUT1151)L,L1

GO TO 1

WRITE(KOUT,1163L,sL1

GO TO 1

WRITE(KOUT«1171LsL1

GO TO 1

END

Snued)

$IBFTC PUNCH DECK

100

SUBROUTINE PUNCH(A)}
DIMENSION ALl}
FORMAT{6X9 14 96X s T49ELLeT)
INROW=1

ICoLIT=0

L=A{1)

Ll=4a(2}

L2=L% 142

D0O31=3,4L2

ICOLCT=ICOLCT+1
IF{ICOLCT.EQeL1+11GO TO 2
IF{A(I)1oEQe0+0}GO TO 3
WRITE{7,100) INROW,ICOLCTHAL])
GO TO 3

INROW=INROW+1

ICOoLCT=1

GO TO 1

CONTINUE

RETURN

END

$IBFVC INVERX

ao00

801

802

803

SUBROUTINE INVERX{AsBsDET,IE}
DIMENSION A{1},8(1)}
DET = 1.0

1

3,5L10,L9
.0

1

r
]
3
ZUHZ 0NN
t=n+Z22on

J =13

+ 1+
weN

Q
~OWZZZW

[
>
Hwaoonnnon

L1 = 1sJK

J+ N = 2)/0N+ )

= NR

= N = NR

JN1 = 4 + N

IF (NRI oLTe 1) GO TO 900

IF (NR] «GTe 1} GO TO 804
AMAX = ABS (A{J}}

AMXA = ABS (A(JUN1}}

IF (AMAX «GEs AMXA} GO TO 9C0C

zzz
oD
-

N5 = J - NR + 1
N6 = N5 + N~ 1
1AD = N

DO B03 IT = N5,N6
IT6 = IT + IAD
ATEM = A{IT}
ALIT) = ALITS)
A{ITE) = ATEM
ATEM = B(IT)
B(ITY = B(IT6}
B{ITs) = ATEM

ST



804

805

806
807

900

50
700

701
702

100

101

200

300

400

GO
J11
Jlo
AMA
Do

TABLE XXIII (Continued)

TO 900

= J+ N+

= J+ N

X = ABS (A(J))
807 IT = 1sNRI

AMXA = ABS (A(J10)}

IF
AMA
NR1
J1e
Jiz
NS
N6
ITE
1AD
IF
CON
DEN
1F
IF
OET
GO
DET
DO

(AMAX +GE« AMXA}GO TO 806
X = AMXA
= (J11 + N = 2)1/7(N + 1}
= J10 + N
= Jll + N + 1
J ~ NR + 1
NS + N = 1
= NR1 - NR
= TTEM#*N
{IAD +GTe O )
TINVE
04 = A{J}
{DENOM «EQ. 0.0} GO TO 51
{JAD +GTe« 0 ) GO TO 701
= DET*DENOM
T0 702
= DET*{-DENOM}
100 JI' = N1yN2 ~° 77777

M

GO TO 802

AfJ1l) = A{J1}/DENOM

B(J1)

J3

B{J1)/DENOM

DO 101 J1 = N3,N&

A(J1Y = A{J1l)} - AMULT*A{J3}
B{J1Y = B(J1l) ~ AMULT#*B(J3}
J3 0= J3 + 1

J2 = J2 + N

J3 = J4

N3 = N3 + N

NG = N& + N

N1l = N1 + N

N2 = N2 + N

Jo = JO0 - 1

J=J+ N+ 1

J2 = J + N

Ja = U4 + N

DENOM = A{J)

IF {(DENOM .EG. 0.0} GO TO 51
A(J} = A(J)/DENOM

DET = DET#DENOM

LT =J - N+ 1

D0 400 J1 = LTsJ

8(J1} = B(J1)/DENOM

Jo = JX

J2 = J - N

Js = J - N+

N2 = J2 = N

DO 630 L1 = 1sJK

J3 = Ja

N3 = N2 + 1

N4 = N2 + N

DO 500 L = 1+J0

AMULT = A(J2)

DO 401 J1 = N3,4N&
A(JLY = A(J1) = AMULT®A[J3}
8(J1) = B(J1} - AMULT#*B(J3)

401 J3 = J3 + ]
J3 = Js
J2 = J2 - N
N3 = N3 = N

500 N4 = N& = N
N2 = N2 -~ N
JOo = Jo -1
J=J=N=-1
J2 = J - N

600 J4 = Ju = N
IE = 1

703 RETURN

51 IE = 0
GO TO 703
END
$IBFTC MXM

SUBROUTINE MXM (AsBsC)
DIMENSION A(l}, B(1), Ct1}
COMMON XINe KOUT

100 FORMAT(1HO»I14+41HMATRICES NOT CONFORMAL FOR MULTIPLICATIONsT4s1HXs

11494HMULT s T4 1IHXs 1 4)
MATCON = MATCON + 1

TROWA = A(1l}
ICOLA = A(2})
IROWB = B(1}

ICOLB = B(2}
IF(120LA«ED+1ROWBIGOTO4
WRITE (KOUTs 100} MATCONs IROWAs 1COLAs IROWBs I1COLB
G0 70 6 .
4 N = IROWA ® ICOLB + 2
DO 5 I = 1,N

5 C{1} = 0.0
ix =3
I =3
J =3
K =3
KX = 3

DO 10 M = 1o IROWA
DO 9 N = 1s ICOLB
DO 8 Nx= 1, ICOLA
CiJy = C(Jy + A(I) » B(K}

aonoon
t
>

X = IX + ICOLA
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SIBFTC MTXM

SUBROUTINE MTXM (A, By Q)
C READ MATRIX A BY ROWS WITH READ SUBROUTINE
C PREMULTIPLY THE MATRIX (B) BY THE TRANSPOSE OF MATRIX

(A}
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2
25
1
2
25

34~

3
4
26

34~

3
4
26

40-

5
6
27

40-

5
6
27

46-

7
8
25

28—

7
8
25
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35~
36~

9
10
26

29—
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9
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29~
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42-

11
12
27

30-
41
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11
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30~
47~
48~

13
14
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31
13
14

0e6741249E
0+2100000E
0«6741249E
0.1348250E
0+1800000E
07100246E
0.1348250E
0e6741249E
0-1800000E
07100246E
0+6741249E
0+1348250E
0+1500000E
0.5916872E
0+1348250E
0e6741249E
0+1500000E
0.5916872E
0+6741249E
041348250E
0.1200000E
0+2366749E
062669969E
0+1334985E
0«1400000E
0+«1400000E
041334985E
042669969E
0+1200000E
01200000E
0e1544173E
0e1544173E
02669969E
0+1334985E
0.1200000E
0+1200000E
0e1544173E
0e1544173E
0¢1334985E
0+2669969E
0.100000CE
0+1000000E
0.1286811E
0.1286811E
0e2669969E
041334985E
0+1000000E
0+1000000E
0.1286811E
012868118
0.1334985E
Ce2669969E
0.8000000E
0.8000000E
0.5147242E
0.5147242E
042669969E
0.1334985E
0+1400000E
0.1400000E
0.1334985E
042669969E

01
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01
02
02
01
02
o1
02
01l
01
02
02
0l
02
01
02
01
02
02
01
0z
02
02
n2
02
02
02
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02
02
0z
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02
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02
02
02
02
02
02
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02
02
02
02
02
02
02
02
01
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02
02
02
02
02
02

TABLE XXIII {Cec

DIMENSTION A(1l)s B{1l)s C(1}
COMMON KINs KOUT
100 FORMAT(1HO+14941HMATRICES NOT CONFORMAL FOR MULTIPLICATIONs1432HXs 14
11495HMULT s[4 9 2HX 14)
MATCON = MATCON + 1

1COLA = A{l})
IROWA = A(2)
IROWB = B{1l)
1CoLs = B(2)

IF{ICOLASEQ+IROWBIGO TO 4
WRITE (KOUTs+ 100) MATCONs IROWAs ICOLAs IROWBs ICOLB
GO TO 6
4 N = IROWA *# 1COLB + 2
O 5 I = 1sN

5 Cl11 = 0.0
Ix = 3
1 =3
J=3
K = 13
KX = 3

DO 10 M = 1o IROWA
DO 9 N = 1s ICOLB
DO 8 ANX= 1ls ICOLA
CtJ)y = Ctdy + A(I) * BIK}
= I + IROWA
K + ICOLB

$IBFTC MSM
SUBROUTINE MSM (AsBsC}
DIMENSION Al{l}s B(l)y Ct1}
COMMON KIN, KOUT .
100 FORMAT{ 1HL »38HMATRICES NOT CONFORMAL FOR SUBTRACTIONs2X+6HIROWA=s1
123641ROWB=,12) ® X
101 FORMAT({1HL+38HMATRICES NOT CONFORMAL FOR SUBTRACTIONs2Xs6HJCOLA=412y
12+6HJICOLB=,12)
IF{A(1)e+NE.B{1}}GOTO40
IF{A{2)«NE.B{2}3GOTO4L
L=IFIX{ACIYI®IFIXTAL2) )42

D0101=3,L
10 CtI)=AC1)=BLI}
C{ly=8¢(1)
Ct21=8(2)
20 RETURN
40 WRITE(KOUT,100}A€1)+B(1)
GO TO 20
41 WRITEIKOUT,1011A12),B(2)
GO TO 20
END
0
51 51
1 1 0+1348250E 02

O



APPENDIX D

A DIGITAL COMPUTER PROGRAM FOR CALCULATING
[GIM] AND [GIR]

This digital computer program solves the twenty-one simultaneous
equations described in Chapter II. Then, it reindexes the solution
values such that for [GIM] the selected redundant internal forces are
zero and the remainder of the [GIM] matrix is made up of the solution
values. For [GIR], the selected redundant internal forces are set
equal to unity with the sclution values making up the remaining
positions.

The input to this program consists of the [COEF] and [CONSTj
matrices, both of which are described in Chapter II, placed side-
by-side and listed as one large matrix. The solution matrix is found
by the Gaussian elimination process and listed. The soiution matrix is
then broken apart and a zero matrix inserted at the appropriate loca-
tions for the formation of ITGIM]° This process is repeated except t

P me
1o

an identity matrix is fuserted at the approprialte locations to
[ome])
The subroutines included in this program are as listed:
1. The READ 3 Subroutine, which reads in all input data.
2. The SOLVE Subrcutine, which determines the solution
values,

%. The MOVE Subroutine, which breaks apart the solution

=

L
"J1
3



matrix for the insertion of the identity and zero
matrices.
k. The IDENT Subroutine, which places the identity and
zero matrices in the appropriate locations in the
solution matrix.
5. The PRINT 1 Subroutine, which prints the final results.
A complete Fortran listing of the main program and the required

subroutinesare given in Table XXIV.



$10 B-0001 STONE 1001 FORMAT{12s168+110sE1447)
$J0B STONE 2627-40041 2001 FORMAT{6H ERRORs 14,2161}
$IBJOB NAMEPR TUNT=5
SIBFTC MAIN NODECK KMAX = IROW#1COL
DIMENSION AINPUT(1000) sOUTPUT(1000)sIN (2135 1CTLR(2735ICTLC{36)+SOL{1000} DO 3 K=1,KMAX
1L(1000) s TEMP(1000),GIM(1000) 3 ALK) = 0,0
DIMENSION ID(12) 5 READ{TUNTs1001) ITMsIsdsy
READ{5+100)1D IF{ITM.EQe9) RETURN
100  FORMAT{12A6) IF{14LELO} GO TO 10
CALL READ3{AINPUT+21,36} R IF{1.GT,IROW) GO TO 11
CALL SOLVE(AINPUTsOUTPUT»IN +21+36) IF{JeLE4O) GO TO 10
CALL PRINTI{AINPUT;6521+361+0505050+0,1D? IF{JeGT41COL) GO TO 11
READ{55100}1D JK1 = (I~11%ICOL+J
DO1i=1,15 ALJK1Y = ¥
1 CICTLC{I)=T421 GO TO 5
CALL MOVE{OUTPUT+SOL3215365252141550,1CTLC} 10 IERR = 901
CALL PRINTI(SOLs6521915504035050+051D) G0 TO 12
DO2i=1,3 11 IERR = 902
2 ICTLR(I)=1 12 WRITE(352001) IERR,I,sJ
DO31=4521 G0 TO 5
3 ICTLR(T+63=1 END
DO4I=1,9 SIBFTC IDENT  NODECK
4 1CTLC{1 =1 SUBROUTINE IDENT (A+IROW)
READ(55100%1D DIMENSION Afl
CALL MOVE{SOLsGIMs21+15535275951CTLR,ICTLC) 1COLCT=0
CALL PRINTI{(GIMs642759+0+0+0,0»051D} INROW=1
CALL PUNCH2(GIM»74+27,9) IELM=IROW® TROW
CALL IDENT{GIM»27} DO 3 I=1+1ELM
DOS1=156 ICOLCT=ICOLCT+1
5 ICTLC(I)=1+3 IF{ICOLCTLGT+IROWIGO TO 2
CALL MOVE{GIMyTEMP27+2752+2756405ICTLC) 1 A{11=0.0
ICTLRI1)=1 IF(ICOLCTEQe INROWIA(TI=140
ICTLR(21=2 GO TO 3
ICTLR(3)=3 2 ICOLCT=1
DO61=4521 INROW=1NROW+1
6 ICTLR(1463=1 GO 7O 1
DO71=156 3 CONTINUE
7 ICTLCITI =149 RETURN
CALL MOVE(SOLsTEMP,27+155392756,ICTLRsICTLC) END
READ(55100) ID $IBFTC PUNCHZ NODECK
TEMP{26)=1.0 SUBROUTINE PUNCH2{As TUNT» IROWs1COL)
TEMP{33) =140 DIMENSION A1} ’
TEMP({401=140 1COLCT=0
TEMP(4T1=140 INROW=1
TEMP(54)=140 IELM= IROW » I1COL
CALL PUNCHZ(TEMP+7,2756) DO 3 I=1+1ELM
CALL PRINTL(TEMP16527565050+0,0405101 1COLCT=1COLCT+1
CALL EXIT IFEICOLCTYGTLICOLIGO TO 2
END 1 IF(A(114EQeD40)GO TO 3
SIBFTC WRITE(TUNT»2001) INROWs»ICOLCTsA(I}

TABLE XXIV

A FORTRAN PROGRAM FOR DETERMINING THE
MATRICES [GIM] AND [GIR]

SUBROUTINE READ3 (AsIROW«1COL)
DIMENSIONA(])

C A SUBROUTINE OF THE MATRIX PACKAGE DECK WRITTEN BY BILL ACCOLA
€ TH!S SUBROUTINE IS DESIGNED TO READ NONZERO ELEMENTS OF A MATRIXa

~

GO T0 3
1COLCT=1
INROW=INROW+1
GO TO 1

MP260010
MP260020
MP260030
MP260040
MP260050
MP260060
MP260070
MP260060
MP260090
MP260100
MP260110
MP260120
MP260130
MP260140
MP260150
MP260160
MP26017T0



2002

2001

$IBFTC SOLV

TABLE

3 CONTINUE
WRITE{IUNT»2002)
FORMAT(1X»1H9)
FORMAT(6X91496Xs149E24e7)
RETURN

END

NODECK
- SUBROUTINE SOLVE(AsB>INTXsIROWsICOL}
DIMENSION A{1)sB(1}+INTX{1)

A SUBROUTINE OF THE MATRIX PACKAGE DECK WRITTEN B8Y BILL ACCOLA
SOLVE SIMULTANEOUS EQUATIONS- A IS INPUT MATRIX OF COEFFICIENTS AND

C
C
C  SOLUTIONS AUGMENTED
C

B IS OUTPUT MATRIX OF IDENTITY AND UNKNOWNS

AUGMENTED.

11

21

41

51

IENT = IENT+1
FORMAT({19HKERROR 461 IN ENTRYsI3s10H OF SOLVE )
N=IROW#*1COL

DO 1 I=14N -

B(I1=A(I)

LOOP=1

INROW=LOOP

TEMP=-4999E+38

ISTART=({ INROW-1)*#1COL+LOOP
1STOP=1START+IROW~LOOP
NCOL=LOOP
DO311=ISTART,1STOP
IF(B{11.LT.TEMPIGO TO 31
TEMP=B(I)

IROWHD= INROW

THOLD=NCOL

NCOL=NCOL+1

INROW=INROW+1

IF ( INROWsLE.IROWIGO TO 21
INTX(LOOP}=1HOLD -
1START={ IROWHO-11#ICOL+1
1STOP=1START+1COL-1
1'SUBB=(LOOP~13#1COL+1
DO411=ISTARTsISTOP
TEMP=B{1SUBB)
B(ISUBB)=B(1)
1SUBB=15UBB+1

B{11=TEMP
1STOP={1ROW~1}#ICOL+IHOLD
1SUBB=LOOP
DO511=IHOLDsISTOP»ICOL
TEMP=B(1SUBB}
B{ISUBB)=B(I) “
B(1)=TEMP . -
15UBB=1SUBB+1COL

NCOL=LOOP

NROW=1 ]
T=(NCOL-1}#ICOL+NCOL
J=I+1COL

IF(B(114EQe040)GO TO 12

-

~

XXIV (Continued)

MP 240010
MP240020
MP240030
MP240040
MP240050
MP240060
MP240070
MP 240080
MP240090
MP240100
MP240110
MP240120
MP240130
MP240140
MP240150
MP240160
MP240170
MP240180
MP240190
MP240200
MP240210
MP240220
MP240230
MP240240
MP240250
MP240260
MP240270
MP240280
MP240290
MP240300
MP240310
MP240320
MP240330
MP240340
MP240350
MP240360
MP240370
MP240380
MP2403%0
MP 240400
MP240410
MP 240420
MP240430
MP240440
MP240450
MP240460

10
m

12

SIBFTC MOVE

2001

v e w

STORE = 14/B(1)

DO 3 Lxl,J
IF{LeEQeNCOL®ICOL+1} GO TO &
BI{L)=STORE#B(L)

Bll)=le

IF1JeGTeN) J=J=N
STORE=B{(J}
K=J+1COL-RCOL

M=1

DO 6 L=JsK
B(L)=B(L)~STORE*B{M)
M=M+1

1F (NROW+EQe IROW-11GO TO 7
NROW=NROW+1

J=J+1coL

GO TO 5 :
IF(LOOP«GE= IROW!GO TO '8
LOOP=LOOP+1

GO0 TO 11

LOOP=IROW
NDIFF=1COL-IROW-1

.IHOLD=INTX{LOOP}

IF (1HOLD<EQ.LOOP}IGO TO 111
ISTART=LOOP*#I1COL~NDIFF
1STOP=LOOP*1COL
1SUBB=IHOLD*ICOL-NDIFF
DO10I=1START»1STOP

TEMP=B(1)

B(1}=B{ISUBB}

BUISUBB)=TEMP

1SUBB=}SUBB+1

LOOP=LOOP~1

1F(LOOPeLE«O)RETURN

GO TO 9

WRITE(6+100)IENT

RETURN

END

NODECKsLIST

SUBROUT INE MOVE(A»Bs TROWAsICOLAsIDEL » IDROWSIDCOLs JCTLR,ICTLCY
DIMENSION At1)+B(1)sICTLRI1},ICTLCELY
FORMAT{ 1HK s SHERROR»1439H IN ENTRY3+13,8H OF MOVE}
IERR=120

TENT®IENT4+1

XDEL= IDEL+1

ISWTCHeO0

1COLCT=0

INROW=1

JK=0

IF{IROWALEQ.01G0 TO 99
IF{ICOLALEQ.01GO TO 98
IFtIDEL«GT+41GO TO 97

IF L IDEL-1DROW-IDCOL+EQeIDEL}GO TO 30
IELB=IDROW#1DCOL

D099991=131ELB

MP240470
MP 240480
MP240490
MP 240500
MP 240510
MP240520
MP240530
MP240540
MP240550
MP240560
MP240570
MP240580
MP240590
MP 240600
MP240610
MP240620
MP 240 630
MP240640
MP240650
MP240 660
MP240670
MP240680
MP240690
MP 240700
MP240710
MP240720
MP240730
MP240740
MP240750
MP240760
MP240770
MP240780
MP 240790
MP240800
MP240810
MP240820
MP240830
MP070010

MP070010

MP070020
MPOT0030
MPOT0040
MPOT0050
MP070060
MPO70070
MP070080
MP070090
MP070100
MPO70110
MPOT0120
MP0O70130
MPO70140
MPD70150
MP0O70160




TABLE XXIV (Continued)

1COLCT=ICOLCT+] MPO70170 END MP0O70710
IF(1COLCTWEQeIDCOL+1)GO TO 50 MP070180 $IBFTC PRINTL NODECK
1 GO TO (23396335111 sKDEL MPO70190 SUBROUTINE PRINT1{AsIUNTsIROWsICOLsIDELs IDROWsIDCOLsICTLRYICTLC  MP040010
2 JK=1 MP0O70200 141D} MP0O40020
GO TO 20 MP070210 DIMENSION A{1)sICTLR(1}+ICTLC{1}+1ID(12}sTL10) MP040030
50 INROW=INROW+1 MP070220 C A SUBROUTINE OF THE MATRIX PACKAGE DECK WRITTEN BY BILL ACCOLA MP040040
1CoLCT=1 MPD70230 C THIS SUBROUTINE IS DESIGNED TO PRINT A WITH TEN COLUMNS PER PAGEe MP040050
GO TO 1 MP0O70240 2001 FORMAT{1H1s12A6»10Xs4HPAGEs13} MP040060
3 IF({ICOLCToNE«11GO TO 5 MP070250 2002 FORMAT{1Xs10112} MP040070
DO4J=1s1ROWA MP070260 2003 FORMAT{1X+I14s10E2245) MP0400 80
IF{JeEQeICTLR{INROW}IGO TO 5 MPO70270 2004 FORMAT{1HKs6HERROR s13910H IN ENTRY sI12910H OF PRINT1) MP040090
4 CONTINUE MP070280 1PG = 1 MP040100
GO TO 9999 MP070290 JSTR = 1 MP040110
5 JK=(J~11*1COLA+ICOLCT MPOT70300Q 1ERR=903 MP040120
IF{NDEL+EQs41GO TO 9 MPOT0310 ™ IENT=IENT+1 MP040130
GO 10 20 MP070320 JsTP2=1DCOL MP040140
6 DO7JJ=191COLA MP070330 1STP=1ROW MP040150
IF(JJeEQ.ICTLCIICOLCT)IGO TO 8 MP070340 IF(IDEL-IDROW=-IDCOL+EQeIDELIGO TO 25 MP040160
7 CONTINUE MP070350 10 KDEL=IDEL+1 MP040170
GO TO 9999 MP070360 GO TO (17923+11524,24)sKDEL MP040180
8 IF(KDELoEQe4)GO TO 10 MP070370 17 JsTp2=1coL ’ MP040190
JK={ INROW-1)#ICOLA+JJ MP070380 1 JSTP1=ICOL MP040200
GO TO 20 MP070390- GOTO3 MP040210
9 JK1=JK MPO70400 11 IF{1DCOL4EQ40}GO TO 99 MP040220
GO TO 6 MPOTD410 2 JSTP1=1DCOL : MP040230
10 JK=JK+JSJ-I1COLCT MPOT0420 3 JSTP = JUSTR49 MP040240
GO TO 20 MP070430 IF{JSTPeGTeJSTP13IJSTP=JSTPI MP040 250
11 DO12J=1sIROWA MP070440 WRITE{IUNT»2001) ID,IPG MP040260
IFCISWTCHeEQe21GO TO 17 MPD70450 WRITE(IUNT»2002) (JyJ=JSTRsJSTP? MP040270
IF(J.EGICTLR( INROWIIGO TO 13 MP070460 DO3QGI=1+1STP MP040280
17 IFUISWTCHeGES31GO TO 15 MPOT0470 DO 5 K=1,10 MP040250
IF(JeEQeICTLRIICOLCT)IGO TO 14 MP070480 5 T{K} = 0e0 MP040300
GO TO 12 MP070490 GO TO (129751297573 +KDEL MP040310
13 JK1=4J MPD70500 12 IK=1 © MP040320
ISWTCH=TSWTCH+2 MP070510 GO TO 8 MP040330
GO TO 17 MP070520 7 IK=ICTLR(I) MP040340
14 ISWTCH=TSWTCH+3 MP070530 IF{IKeGT«IROW}IGO TO 97 MP040350
JKz=J MPO70540 IF{IKsLEsO} GO TC 21 MP040360 ,
15 IF{ISWTCHeEQa51GC TO 16 MPO70550 8 IK=(IK=-1}*1C0L MP040370
12 CONTINUE MP0O70560 DO 20 JsJSTRsJSTP MP040380
I1SWTCH=0 MPOT70570 GO TO (13+13+1491416)sKDEL MP0403950
GO TO 9999 MP0O70580 13 JK=J MP040400
16 JK=(JK1-11#ICOLA+JK2 MP070590 GO TO 18 MP040410
ISWTCH=0 MP070600 14 JK=ICTLC LY MP040420
20 BIII=A(JIK} MPDT0610 IF{JKeGT4ICOLIGO TO 96 MP040430
9999 CONTINUE MP070620 GO YO 19 MP040440 .
RETURN MP070630 16 JK=I1CTLR(J) MP040450
30 IFUIDEL.EQ.03}GO TO 1 MP0O70640 IF(JKsGT4ICOLIGO TO 96 MP040460
TIERR=TERR+1 MPOT70650 19 IF(JKeLEL0)GOTO20 . MP040470
97 IERR=IERR+1 MPO70660 18 IK1=1K+JK MP0404 80
98 1ERR=TERR+1 MPOT0670 15 JK=J-JSTR+1 MP040.490
99 IERR=TERR+1 MPO70680 TCJKI=A(IK]) MP040500
WRITE{652001) TERRs IENT MP070690 20 CONTINUE MP040510

RETURN MP0O70700 21 IF{JSTP«GT«101G0 TO 22 MP040520




30

WRITE(IUNT22003)1s(T{J}sJ=1sJSTP}

CONTINUE

IF{JSTP.EQeJSTPZIRETURN
IF{JSTP.EQeIDCOL?} RETURN

IPG = IPG+1

JSTR = JSTP+1

JSTP3=JSTP~({I1PG-1)1%10

WRITE{IUNT»2003114(T(J}sJ=1»JSTP3)

IF{IDROW+EQ.01GO TO 98

IF{IDEL«NF+03}GO TO 100

WRITE{6+2004) IERR, IENT

GO TO 3
22
GO T0 30
23 1STP=I1DROW
JSTP2=1COL
GOTO1
24 ISTP=IDROW
GOT02
25
GO 10 10
96 1ERR=TERR+1
97 IERR=IERR+1
98 TERR=IERR+1
99 IERR=IERR+1
- 100 IERR=IERR+1
RETURN
END
SENTRY
INPUT MATRIX
1
1
1
2
2
2
3
3
4
4
5
5
-]
&
7
7
]
8
9
9
10
10
10
11
11
11

1 1+000C000E+00
2-1.0000000E+00
7 1.0111873E+01
2 1«0000000E+00
3-1.0000000E+00
8 1.0111873E+01
3 1.0000000E+00
9 140111873E+01
7-1.0012385E+01
10 1.0012385E+01
8-1.0012385E+01
11 1.0012385E+01
9-1+0012385E+01
12 1.0012385E+01
10~140012385E+01
13 1.0012385E+01
11-1.0012385E+01
14 1400123B5E+01
12-1.0012385E+01
15 1.0012385E+01
4 140000000E+00
5-1.0000000E+00
13-1.0111873E+01
5 1+000000CE+00
6-1+0000000E+00
14-140111873E+01

TABLE XXIV (Countinued)

MP040530
MP040540
MP040550
MP040560
MP040570
MP0O&40580
MP040590
MPQ40600
MP0&40610
MP040620
MP040630
MP040640
MP0O40650
MP040660
MP040670
MP040680
MP040690
MPQ40700
MP0&40710
MP040720
MP040 730
MP040 740
MPQ40750
MP040760
MPQ40770
MP0&40 780

21SIMEQNSTAPFARDC1
21SIMEQNSTAPFARDCI
21SIMEQNSTAPFARDCL
21SIMEQNSTAPFARDC1
21SIMEQNSTAPFARDC]
21SIMEQNSTAPFARDCL
21SIMEQNSTAPFARDC]
21SIMEQNSTAPFARDC)
21SIMEQNSTAPFARDC1
21SIMEQNSTAPFARDCI
21SIMEQNSTAPFARDCL
21SIMEQNSTAPFARDCI
21SIMEQNSTAPFARDC1
21SIMEQNSTAPFARDCI
21SIMEQNSTAPFARDC]
21STMEQNSTAPFARDCI
21SIMEQNSTAPFARDC]
21SIMEQNSTAPFARDC]
21SIMEQNSTAPFARDC]
21SIMEQNSTAPFARDC]
21SIMEQNSTAPFARDCI
21SIMEGNSTAPFARDC]
21SIMEGNSTAPFARDCL
21SIMEQNSTAPFARDC]
21SIMEQNS i APFARDC1
21SIMEQNSTAPFARDCL

6 1.0000000E+00
15-140111873E401
7 7.0000000E+00

8-5,0000000E+00
16 140000000E+00
8 640000000E+00

9-440000000E+00
18 1.0000000E+00

9 5,0000000E+00
20 1.0000000E+00
10 740000000E+00
11-540000000E+00
16-1+0000000E+00
17 140000000E+00
11 640000000E+00
12-440000000E+00
18~140000000E+00
19 140000000E+00
12 5¢0000000E+00
20~140000000E+00
21 1.0000000E+00
13 7.0000000E+00
14-540000000E+400
17-1.0000000E+00
14 6.0000000E+00
15-440000000E+GO
19-1.0000000E+00
15-5,0000000E+00
21 140000000E+00
22 1.0111873E+00
30 1.0012385E400
31-1.0000000E+00
32 1,0000000E+00
32-1,0000000E+00
33 1.0000000E+00
23 1,00123B5E+00
33-1.0000000E+00
34-140000000E+00
35 140000000E+00
35-1,0000000E400
36 140000000E+00
24 1,0012385E+00
36-140000000E+00
25 140111873E+00
30 245000000E-02
22 145000000E~01
23 245000000E-02
28 5.0000000E~01
29 1.0000000E+00
30 2.5000000E-02
23 2.5000000E-02
24=245000000E~02
27-5.0000000E-01
28 540000000€-01

21SIMEQNSTAPFARDCI
21SIMEQNSTAPFARDCL
21SIMEQNSTAPFARDCI1
21SIMEQGNSTAPFARDC1
21SIMEQNSTAPFARDC1
21SIMEQNSTAPFARDCY
21SIMEQNSTAPFARDC1
21SIMEQNSTAPFARDC1
21SIMEGNSTAPFARDC1
21SIMEQNSTAPFARDC]
21SIMEQNSTAPFARDC]
21SIMEQNSTAPFARDC1
21SIMEQNSTAPFARDC1
21SIMEQNSTAPFARDC]
21SIMEQNSTAPFARDC1
21SIMEQNSTAPFARDCI
21SIMEQNSTAPFARDC1
21SIMEQNSTAPFARDCI1
21SIMEQNSTAPFARDCL
21SIMEQNSTAPFARDCIL
21SIMEQNSTAPFARDC]
21SIMEQNSTAPFARDCI
21SIMEQNSTAPFARDC]
21SIMEQNSTAPFARDC1
21SIMEQNSTAPFARDCI
21SIMEQNS{APFARDC]
21SIMEQNSTAPFARDCI
21SIMEQNSTAPFARDC1
21SIMEQNSTAPFARDC]
21SITMEQNS» CORR=C I)NSTsRDC1
21SIMEQNS s CORR=CONSTsRDCY
21SIMEQNS»CORR-CINSTsRDC1
21SIMEQNS s CORR-CONSTSRDC1
21SIMEQNSs CORR-CONST+RDC1

21SIMEQNSs CORR-CONST,RDC1 *

21SIMEQNS s CORR~CONSTSRDC1
21SIMEQNS» CORR-CONSTsRDC1
21SIMEQNS»CORR-CONST4RDC1
21SIMEQNS»CORR-CONST»RDC1
21SIMEQNS, CORR-CONSTsRDC1
21SIMEQNS+CORR-CONST,RDC1
21SIMEQNS s CORR=-CONST»RDCY
21SIMEQNSyCORR—CONST+RDC1
21SIMEQNS s CORR-CONST»RDC1
21SIMEQNS» CORR-CONST»RDC1
21SIMEQNSCORR-CONSTRDC1
21STMEQNS s CORR~CONST+RDC1
21SIMEQNS+CORR-CONST»RDC1
21STMEQNS+CORR-CONST»RDC1
21SIMEQNS s CORR=CONSTsRDC1
21SIMEQNSs CORR-CONSTsRDC1
21SIMEQNSsCORR~CONSTRDC1
21SIMEQNS s CORR-CONST»RDC1
21STMEQNS+CORR=CQNST+RDC1

29T



9
SOLUTION MATRIX
GIM FROM SOLUTIONS
GIR FROM SOLUTIONS
$IBSYS

24
25
26
27

2+«5000000E-02
145000000E~01
1.0000000E+00
540000000E~01

TABLE XXIV (

21SIMEQNSy CORR-C INSTsRDC1
Z1SIMEQNS s CORR-CONSTSRDC1
21SIMEQNS s CORR-CINST9RDC1
21SIMEQNS, CORR=CONST+RDC1

[
(939

ju



APPENDIX K

TREATMENT OF EXPERIMENTAL DATA

The experimental strain data were processed by the IBM 7040 Digital

o
&)

Computer. The basic dats obtalned the sirain gages are reducsd

for each of the losad conditions.

sse are obtained by finding t

the leasi-squares criterion. The method of least

& guantity chiained

walue «f v rcan then be based upon an assumed or observed vaiue of .

The word "begt' is gynonomous witl

value and Hg he

.‘i.:—"lcj 23 LU

where of and B are

each obhservaticlle

@ o

mindm?

[

zing the sum of




The linear model can be solved for e, to give

LC n : ivt
26? = Z(Y; - "in)zz Z(oc+ BXi V) -
1= 1=1 P=1

A function of two variszbies is minimized by taking the partial derivae
tive of the function with respect to each of the varisbles in turn and
getting each derivative equal to zerc.

Thus, the first partial derivative is

"

our expressed

74;*-+—f%§E}X; = jg:ﬁ?.

The second peritial derivative is

J

are simuitaneous for < andjgo

The two equaticns above can be solved Ffor o and B to zgive

2. DEx)-(Ev )g ) v-px

[}
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where:
is defined as the least squares estimator of «.

is defined as the least squares estimator of‘B.

>

i=1
mean of yi“s,

M s 2
¥

41
it

»E
it

mean of xi“s°

A
y now, is the intercept and g is the slope of the "best" straight

D>

A
line positioned among the data points. B, then, is the unit strain per
unit lead cell lcad and is the ultimate objective of the above calcula-
tions,|g , the intercept, is merely a function of the value at which

the strain indicators are initially balanced or zerced. See Figure 52.

\i STRAIN, IN/IN

>

LOAD CELL LDAD, LB

Figure 52. Typical BExperimental Data

Correlation of Experimental Dsta

In the previous section, constants in a linear equation relating

two variables, x and y, were determined by using pairs of observations
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(xi9 yi) of these variables. The determination of these ccnstants was
based entirely upon the assumption that a linear relationship exists
between x and y. This assumption is quite reasonable as the experimen-
tal model is loaded only within its elastic range which implies Hockean
stress~strain behavior.

The situation may arise such that it is not known in advance
whether the two varliables x and y are related. Furthermore, if pairs
of observations (xi’ yi) are taken as before, the data may be scattered
so widely because of experimental errors that it is not clear whether or
not there is any relation between x and y. By representing the observa-
tions (xi, yi) graphically, a picture (Figure 53) similar to Figure 52
might be obtained. Are x and y related, or are they not? Is there any
"ecorrelation™ between x and y?

There are an infinite wvariety of possible functional relationships
between x and y. There is no general way of investigating all possible
relationships but the simpler ones can be checked. The simplest one, of
course, is a linear equation. Therefdre9 a reasonable place to begin is
to ask whether there i1s a linear relatlonship between x and y, i.e.y a
"linear correlation.”

This question can at least be answered partizlly by taking a
speclal case of the method of least squares for ftwo unknowns. A linear

relationship between x and y can be assumed
Y=mx+b,

and the constants m and b can be determined from observations (x19 yi)

in the same manner as in the previous section. In particular,
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ms n(S xY)- (2% %Y
n(ZxF (2%
The scattered poiunts are represented by drawing the '"best straight line"

through them. Then, the expression for e, is

i

C; =mx; +b-VYi.
ei represents the vertical distance between the point (Xi, yi) and the
strajght linedesecribed by the constants m and b. Inthiscase, the method
of least squares minimizes the sum of the squares of the vertical dis-
tances between the point and the straight line. The line determined by
this procedure is sometimes called the "line of regression of y on x.*

If there is no correlation at all between x and y, the sum of

squares will be minimized by a horizontal line, or m = O.

Figure 53%. Scattering of Data Points

There is no particular reason for writing the assumed relationship

betweer X and y in the form



g—,—w
T
O

Y =wx+ b,

3

It could just as well have been written

/
X=m'Y + b,
in which case the rcles of x and y have been reversed. In this case,
the error used in the method of least squares is given by
- 1’ !
e =m’Y:i+b -Xi.
The method of least squares now minimizes the sum of the squares of the
horizontal distance between the line
/
X = m'Y+ b,
and the points (Xi% yi) representing the observations. The result is

B o y c ] v z «
the line of yegression of x on y. The expressiocn for m’ would be

_nlEx) -ExEy)
nZY9- V)

! . 5 o -
Then m* is the reciprocal of m.

If there is no correlation between x and y, the method of least
o o M . . ’ L « " -‘ ‘

squares will give the value m" = O, a vertical line. If, cun the other
hand, ail points lie exactly on the line, i.e., the correlation is per-
fect, then the same line as the previous one must result. Therefore, in
i z - o 1 ’ B}
the case of perfect correlation, —7 s mormm =l If there is no cor-

. 3

i : 7 : o
relation between x and y, mm' = Q. The product mm’, then, has something

to do with the extent to which the variables x and y are ccorrelatad.

It follows, then, that a "correlation coefficient,"™ R, can be

defined as: a(3xy) -(EX(ZY)
R=VMT = 15 - (z T v - (EFT%
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Rewritten, R sometimes appears as

& i@(a—f)z
Bl -
ZL(Y;“‘?)

Thus, R = 1 means perfeci correlation, and R = O means no correlation.

R =

Consequently, for imperfect correlation, O}I R' 21 o

Suppose, now, that Rhas been calculated for a set of observations.
How is this result interpreted? The interpretation of the correlation
coefficient R is based on experience. The question is how large a value
of R indicates a significant correlation between the variables x and y.
Because of random fluctuaticns in the experimental data, R would not be
exactly equal to zerc, even if the dsta were completely erroneous.
similarly, due %¢ experimentzl fluctuations, R would not be exactly
equal to one. However, since the mnature of the problem dictates that a
linear relationghip exists and the experimental errcrs are hopefully
minimized, then one should expect to get values in the neighborhesd of
R = 1. The criterion used to determine whether the linear correlation is
substantial is to consider the probabiiity of cbtaining a value of R as
large as pessible purely by chance from the observations of two varl-
ables which are noct related. TableXXV has been salculated to give the
probability of obtaining a given walue of R for variocus numbers of palrs
of observations (16).

From TableXXVfbr ten observations, N equals ten. The probability
P is 0.10 of finding a correlation soefficient of 0.549 or larger and a

probability of 0.0l of finding R greater than or equal to 0.765 if the



TABLE XXV

CORRELATION COEFFICIENTS*

Probability
N 010 0.0 0.02 0.01 0,001
3 0,988 - 0,997 0.999 1,000 1,000
b 0900  0.95 0,980 0,990  0.999
5  0.805 0878  0.9% 095 0,992
6 0.729 0.811 0.882  0.917 0. 974
7 0.669 0,754 0.833  0.87%% 0,951
8 0.621 0.707 0,789 0,834 0.925
10 0.549 - 0.632 0.716 0.765 0,872
12 0.497 0,576 0.658 0,708 0.823
15 0.441 0.514 0.592 0.641 0,760

20 0.378 0, ity 0.516 0,361 0.679

*Thls table is: adapted from Table V of H, Young,
Statistical Treatment of Experimental Data published by
McGraw-Hill Book Company. “1Inc,, New York '
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variables are not related. If, for ten observations, the correlation
coefficient R = 0.9, there is reasonable assurance that this indicates
a true correlation and not an acecident. Convsrsely, if R = C.5, this
would mean that the data were guestionable since there is more than a
ten per cent chance that this value.wauld cecur for random data. A com-
monly used rule of thumb for interpreting values of the correlation
coefficient is to regard the correlation as significant if there is less
than one chance in twenty, P = 0.05, that the value will occur by chance
(16) For any value of the correlation cosfficient greater than the
value given in the Table II for P = 0,05, the experimental data should
be regarded as showing a significant correlation.

R, then, is a measure of how well the straight line based onxQ and
ﬁ "fits" the data. But it is only a measure of the "“best fit" of a
linear relationship to the experimental data and is in ne way an indica-
tion that the experimental data accurately wepresent the physical phe«
nomena. It is merely an indication that a linear correlation exists

between the varlables x and y.
Stress=Strain Relatious

For the single legged axial strain gage, the stressestrain relation

Gaxial = B €axial )

wheres
E = Modulus of elasticity.
The development of stresses from strain values for the delta or "y"

pattern rosette strain gage is as follows.
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From reference (1*‘;»).3 the general equation for finding ng GY and XY

from 619629 and €, is

& T sIN2d Co0S28
ol o 1

0" lradf-LE |- 4
= 24@’00 240’ ~3 —_ .&_.

%
LEG1 X ¢=1
%

Figure 54. Leg Locations and Reading Sequence

€.+ €y

€4= > + exgéY cosz¢ ,_{_%%_,S/NZ@)

(cf. Figure 54).

e LK. O WS . 9o s . i i PP D . B gt vy 5
By substituting in z,, £, £5, Py B and Py g, vecomes

¢
€, +€ €~ €
e = SIS 4 _x__,z_wzcoswi 4 %z,sma%,

= St 4 S Svcos2b, 4 7%(_39’/\124»2,

€, 4 € €, — € 7
€= x-; Y . AT YC0S2%y - XLSINZGy,

By substituting in values of cos 20 and sin 20,

éI = €)( ) e

)

€,= i‘ +34Y m«/f’%:y)
€ €

€= 4’&'—}—34_“’ - “‘E_XY

£y G4 and £g besoue

o



It € By and YxY are solved for in terms of gy, &, and &5, g &g

and O become
Xy

€ = &,

€, = -6;1. +2'€L -+ 26Es’
Y™ 3

_ —2€ +2& |
Fr= /3

For plane stress distribution for isotropic material obeying Hooke's

Xy
E 1
Ox = 7-y% (éx + VEY))

T Q &+ &)

law, the expression for o_, ¢, and T__ are
X0y

Oy

H

__E Y,

where Q = Poisson's Ratio.

Ly

It =, & and ¥ are substituted in terms of g., o, and gz9 T_s
s By BOGE_ . 13 S29 39 Yy

¢, and T__ become
y Xy

|

E .
Oy = ss5|GVDE + 2 (€. + &)

. _E --ez+es]ﬂ
G Y

The principle stresses are given bys

- O 4+9 4+ ¢ 2
Gy = XF— + L Ao~ o V4775

Tvax = T/ (Gi— Oy ) +4Ter

6 = TAN'i[—M],

-z 2 Ty



Data Reduction Computer Program

A digital computer program has been developed to calculate the
required stress results for each axial gage and "y" pattern rosette.
The strain data are copied onto the special data sheet shown in Table
XXVI and then keypunched on IBM cards. A4ll axial gage data are processed
first followed by the rosette gage data. FEach three sets of rosette
gage data is used for the required calculations ahove. The program

oprints the test data in tabular form for each indicator. The correla-

Fag

tion coefficient and stress data ars sunmarized at the end of the

te provide a mors ra

3

id analysis of the experimental resulis.

The validity of the data is indicated by the correlation coefficient. A

Fortran listing of the digital computer pfogram is shown in Table XXVII.
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OKLAHOMA STATE UNIVERSITY
AEROSPACE LABORATORY

SCHOOL OF MECHANICAL ENSINEERTNG
4. C. STONE Ex, 7223

TAPERED PANEL EXPER. DATA |RECORDED BY DATE TesT NO.___| SPECIAL COMMENTS : PAGE —]
LOAD CONFIGURATION NO. — |PUNCRED BY DATE AR e S vy
izlaje . rnymun.u-[mnuslﬁra:\n: 22 j-- H-}-.--m\nsnnnmnT "_-_ jl:., 33 o hairrha s s
.DEE’Olib OEl-lole] -O* =06 ] |_'_‘
.oig—o-(a \El-lole .-szjfa JJOE-0l6]
.os-ole olz -EE‘ JOEI-10i6 «|OE|"]
.0 —o*a .Q,}g; .JOE[-1016 -4&"0
- DIEFI06 .ﬁg— (3 .|oEl-10i6 Jos—ok
.o -o[; LinlEl-iolg CEl-j0i6 , DE-P
Iolek-lo Jlolek lol lolel-lol blekb
.oi5;$ i f-rgs LIOE1-10i6 LOEFIOE
- 104 Lolel-bolel .olf-oé . lolEl-106
E-QE ol oel-lolg LOE|I-PE !
bl o |-lol lolEl-lole elolellol HEE
.l_ns-ul; El-10'g Joel-lole .lolE-lo' i
.os-r;l% .oE’OL’g. .o}s—o& . -ch
A 2 - E‘dﬂ JOE|- |$ . ‘iPl‘ }
i TE:.Q‘& . E'C%S .ols-ob .gF—l°i5 R
JOEL-ls Jdel-lole Jok£l-lolé loigl-lo Ll
olg—_ora LOE -] E: ois- ob = o!s;o!s !
,QE‘-:)I_ ,,lg—o log]-io¢ LloEl-lo'e B
olel-lole olei-lele ol]-los olel-lo'e il
.]o:-o]a JolE[" @ .|01E-°15 .oi-ﬂ-l‘ i
._:olr- olb JolEi=C6 .0F- 01" -of;-ols .IaE'OiS |
,0E- o!s oE~lc6 ] olf- oii_: : !j‘- 4'é. .lolf- 0
o 5‘10!6 € “’16 i 0'5:91{: a p‘__- 06 .iO'if' L]
Iolf —10’ JCE °]r, A olE - ols .1012:_'— ok ,JO!E - 06
TJelde ANz leLloks oo ‘Tole-ol

9T



$1D

B-0001 ACCOLA

$IBJOB NAMEPR
$IBFTC DKNAME NODECK
INTEGER GAGE1sGAGE2+GAGE3»GAGE&sCARDIsCARD2+TYPEL s TYPE2+TYPE3»TYPES . SUMY=SUMY+AVE( ]}

100
101
102
104

105
106
107
109
110
111
112
113
lla
115
116
117
118
119
120
121
122
123

11

14

DIMENSION X(10}

DIMENSION AVE(10})s1D14}
FORMAT{I1s1351145E12.154A5)
FORMAT { 1HKs 14HERROR IN CARD1»s8HGAGE NOe.sI4)

FORMAT{1HY}

FORMAT{1HK s TX2BHGAGE NOe9I3+6H AXIALs1Xs4A5)
FORMAT{1HK» 7X+8HGAGE NOes13+8H ROSETTEsIXs4A5)
FORMAT(IH +3{5X+E15.8})

TABLE XXVII

AXIAL AND ROSEITE STRAIN GATE DATA
REDUCTION PROGRAM

DO31=1,10
AVE{1)=AVE{1)/1000.
SUMXY=X {1 }#AVE (I}+SUMXY

3 SUMYSQ=5UMYSQ+AVE{I)#AVE(])
SQSUMY=SUMY*SUMY
BETA={10¢%SUMXY~SUMX*SUMY} /DENOM
BETA=BETA*GFR
ALPHA=(SUMY/10.}~-BETA®XBAR

FORMAT (1HK s 14HERROR IN CARD2+8HGAGE NOesla} DO41=1410
FORMAT(62HKSECOND GAGE OF THI1S SET DOES NOT AGREE IN TYPE TO FIRST XMXBSQ=XMXBSQ+{ (X{I1)-XBAR}#%2)
1GAGE+s14) ' 4 YMYB3Q=YMYBSQ+( {AVE{1}~SUMY/ 104} #%2}

CCEFF=BETA*SQRT (XMXBSQ/YMYBSQ)
IF{TYPE1-EQ+3)G0O TO 50
WRITE(64106)GAGEL»1ID
DO51=1s10

FORMAT(GHKSLOPE ISsE124595X+14HY=-INTERCEPT IS,E10.3) 5 WRITE(&9109) AVE(T}

FORMAT(15H SIGMA{AXIAL} =+F12.5s6HPSI/LB}
FORMAT{11H SIGMA(X} =,E12+5+6HPSI/LB)
FORMATI{1XH SIGMA({Y} =4E12.5+6HPSI/LB}
FORMAT{2XsGHTAUIXY} =9E12.5,6HPSI/LBY
FORMAT{13H SIGMA(MAX} =+E12.5,6HPS1/LB}
FORMAT{13H SIGMA(MIN) =+£12.5,6HPSI/LB}
FORMAT(11H TAU(MAX} =4E12.5+6HPSI/LB)
FORMAT{24H PHI(SIGMAX) =43E12+5+7HDEGREES)
FORMAT{14H PHI{TAUMAX} =sE12+5s7HDEGREES)
FORMAT{16H SIGMA{TAUMAX) =,E124546HPSI/LB)}
FORMAT({26H CORRELATION COEFFICIENT =3F9.6}
FORMAT{3F10.5}

FORMAT{6H GFR =s+F744}
READ(5+1221BEGIN»XINCR»GFR
BEGIN=BEGIN/1000.

XINCR=XINCR/1000.

X{1}=BEGIN

SuMX=Xxt1}

SUMXSQ=BEGIN®*BEGIN

DO111=2,10

X1 y=X{I=11+XINCR

SUMX 2SUMX+X £ 1)

SUMXSQ=SUMXSQ+X{ T ) %#X {1}

SUMSOX=SUMX¥*SUMX

DENCM=10+ * SUMX5Q-SUMSQX

XBAR=SUMX/10e

NUMRQOS=0

1CT=0

E=1046E+06

TERM=E/2.683125

CONTINUE

XMXBSQ=0e0

ICT=1CT+1

READ{ 5410031 TYPE1,GAGELsCARDL+tAVEtI}91=1453+1D
IF{CARD1«NE.11GO TO 99

READ(54+100} TYPE2:GAGE2+CARD2» tAVE{ 1} +1=6,10}
IF(CARD2.NE«23GO TO 98

IF{{GAGE2+NE+GAGE1}+»OR«(TYPE1.NE.TYPE2]11GO TO 98

IF{{TYPELaEQs31+sANDs {NUMROS.EQs0}}1CT=4
IF{ICTeGE&IWRITE(64105)
IF{ICTeGE«41CT=1

SUMXY=0.0

SUMY=0.

SUMYSQ=0.0

YMYB8SQ=0.0

WRITE(69+1101BETA,ALPHA
WRITE{65123)GFR
WRITE{69121)CCEFF
SIGAXL=BETA¥*E
WRITEt{6+111)1SIGAXL
GO TO 1

50 NUMROS=NUMROS+1
WRITE{65107)GAGEL+1ID
D061=1.+10

6 WRITE(65109) AVELI)
WRITE{63110)BETALALPHA
WRITZE(69123)GFR
WRITE(65121}CCEFF
IF({NUMROS.EQs1)BETA1=BETA
IF{NUMROS+EQe2 }BETA2=BETA
IF{NUMROS«EQe3 }BETA3=BETA
IF{NUMROSeNE«3)GO TO 1 o
IF{NUMROS.EQ«3}NUMROS=0
SIGX=TERM® {2, 675%BETAL)+0,650% (BETAZ+BETA3)
SIGY=TERME (-4 025%BETAL1+2.*{BETAZ+RETA3))
TAUXY={E/14325)%(~BETA2+BETA3})/1.732
STMAX={SIGX+S1GY}/2.
TAUMAX=SQRT ({SIGX-SIGY }##2+4 #TAUXY#TAUXY /2,
SIGMAX=STMAX+TAUMAX
SIGMIN=STMAX~TAUMAX
PSMAX=ATAN{2+*TAUXY/({SIGX~ SIGY}1/2a
PTMAX=ATAN{—{SIGX-SIGY}/2+#TAUXY) /2.
WRITE{6+112)S1GX
WRITE(69113)S1GY
WRITE{6s114) TAUXY
WRITE(69115)SIGMAX
WRITE{69116)SIGMIN
WRITE(651171TAUMAX
WRITZI{69118)PSMAX
WRITE{6+1191PTMAX
WRITE(6+1201STMAX

GO TO 1

99 WRITE(64101)
GO TO 1

98 WRITE(6+102)
GO 70 1

ST WRITE(6+104)
GO TO 1
END

SENTRY




APPENDIX F

LIST OF MAJOR INSTRUMENTATION

Strain Indicator (4) Budd Model P350

Switch and Balance Unit (25) Budd Model SB-1

Switch and Balance Unit BLH Type PSBA20 Model 3
Switch and Bzlance Unit BLH Type 225

SRf4 Strain Indicator BLH Type N

10,000-1b. Load CellA‘ - BLH Type U3G1

5,000-1%. Load Ceil BLH Type U3GL

Dial Indisators (10) Starrett No. 656=617
Calibration Unit BLH Model 625



APPENDIX G
CALIBRATION OF STRAIN GAGE SYSTEMS

Once the strain gages are attached to the panel, it is not possible
to attain a calibration by the use of a known strain situation. The
strain gages are manufacturéd under carefully controlled conditions,
and the gage factor for each lot of gages is within about t 0.27 per
cent. The gage factor and the gage resistance make pcssible a simple
method for calibrating the resistance strain gage system. This method
consists of determining the system's response te the introduction of a
specific small resistance change at the gage and of calculating the
resulting equivalent strain. The resistance change is introduced by
shunting a relatively high value precision resistor across the gage as

shown in the following figure.

Figure 55. Strain Gage Bridge
With Calibration
Resgistor

et
-~
O
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The equivalent strain for the shunt resistor in parallel with the

active gage is

where GF = gage factor,

it

r
g

r
S

gage resistance, ohms,

shuht resistance, ohms.

The Budd portable strain indicator systems were calibrated with a
60K ohm resistor. The resistor was shunted across each active gage.

Direct calibration of an external bridge input by using a known
resistance assures maximum accuracy if the gage resistances are known
accurately and load resistances are insignificant. The shunt calibra-
tion c¢ircuit is alsc helpful to ascertain the error caused by load
resistance when long input leads are used.

The maximum variation for any single gage was well within its
required accuracy, and 70 per cent of gages were within 2 per cent of
the calibration value. Results from the calibration tests are shown

in the following table.
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TABLE XXVIII

TYPICAL INDICATOR READINGS DURING
CALIBRATION TESTS

Gage Indicator Reading ‘Indicator Reading Nét
Number Zero Level With Shunt Resistor Change
100k 2770 1757 1013
1010 3757 2747 1010
1014 -39 | -1050 1011
1017 795 -222 1017
1022 1507 495 1012
1040 262 =650 1012
1058 -530 ~-1545 ‘ 1015
3073 8010 7005 1005
3091 1806 - 800 1006
2095 -216 -1227 1011

Calibration of Load Recording Equipment

A calibration of the load recording equipment was performed to
detefmine the accuracy of the load application system. The BLH U-3G1
type load cells have strain gages with a gage factor of 2.0 and a
resistance of 350 ohms. With a 60K{calibration resistor, the computed
strain should be 2900,

The calibration was performed from the zero reading for the 5000~
pound load cell of 11050. The AOKQresistor was shunted across each

leg of the strain gage bridge, and the following records wereobtained:



Shunt Dial Reading Net Change
K=
P1 to Sl 13915 2865
P1 to S2 8240 2810
. .
P2 to 51 8180 2870
P, to S, 13860 2810

The same proéedure'was used in calibrating the system for the
10,000-pound load cell. Agairi9 the gage factor of 2.0 and a gage
resistance of 350 ohms provide a strain input of 2500. The 6CKQ
resistor was shunted across the four arms of the bridge, one arm at

a time. The following records were obtained:

Shunt Dial Reading Net Change
P1 to 51 13770 2870
P2 to 8, 8100 2800
P, to s1 8030 2870

1 281
P2 to 32 13715 2815

In general, a value of approximately 2800 to 2870 was obtained for
each leg of the strain gage bridge. This is a variation of APPTOX=
imately three per cent or corresponds to a gage factor change of from
2.00 to 2,07, which might actually be the gage factor for the strain
gages used in the load cell.

The Load indicator system was subsequently calibrated with a BLH
Model 625 voltage divider unit. A linear change in indicator reading
was obtained for a linear change in MV/V input. The load cells have a
IMV/V full scale output which sorresponds to 6000 units on the BLH SR-&
Indicateor.

As a further calibration of.the complete load application system,

the testing facilities of Helliburton 01l Company, Duncan, Oklahoma,
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were utilized.

The author is indebted %o Mr. Elwin Seay, Prdject Engineer,
Halliburton 0il Company, and his.assistants for their aid in completing
the tests. |

Both ‘the 5000 LB and 10,000 LB load cells were hooked into a hy-

“draulic testing machine and corresponding readings were made from the
BLH Strain Indicator at certain known load values.
Typical load versus indicator readings are shown for the 5000 LB

and 10,000 LB locad cells in Tables XXIX and XXX.

TABLE XXIX

CALIBRATION OF 5000 LB BLH U-3Gl
TYPE LOAD CELL

Bridge Hookup: Full; Resistance Capacity: 3508 ;GF =.2,00;Channel: -1

Date: 26 May 66

Known Load From BLH Strain
Hydraulic Testing Machine (LB) Indicator Reading
0 13,370
1,145 14,725
2,170 . 15,940
3,210 ’ 17,175
L, 255 18,400

4,775 19,015
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TABLE XXX

CALIBRATION COF 10,000 LB BLH U-3Gl
TYPE LOAD CELL

Bridge Hookup: Full; Resistance Capacity: 350Q@GF = 2.00; Channel: 1

Date: 26 May 66

Knewn Load From BLH Strain
Hydraulic Testing Machine (LB) Indicator Reading
0 17,320
995 17,910
2,995 ‘ 19,099
5,000 20,291
7,005 | 21,491

9,500 ' 23,000




APPENDIX H
CALIBRATION QF DIAL INDICATORS

The Starrett Dial Indicators were calibrated with the "0.05" thick
size of Fonda Gage Blocks, Unit Set 845, Serial Number N-154; manuface
tured by the Fonda Gage Company, Inc., Stamford, Conneticut. These
blocks are rated at ¥ .000008 in. accuracy.

Typical readings before and after block insertion and the differ-

ence in readings are shown in Table XXXI.

TABLE XXXI

CALIBRATION OF STARRETT DIAL INDICATORS
USING A "0.05" THICK FONDA GAGE BLOCK

Dial Gage No, Réading Before Reading After Difference

Block Insertion Block Insertion
5 0.1000 0.1506 l 0.0506
6 0.3140 0.3%645 0.0505
7 0.0205 0.0706 0.0501
8 v 0.1500 0.2003 0.050%
% 0.1000 0.1503% 0.0503
10 0.0400 0.0900 0.0500

The maximum error is 1.2 per cent.
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