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CHAPTER f 

INTRODUCTION 

The fundamental problem in the elastic analysis of aircraft struc

tures is the determination of the distribution of stresses and displace

ments under prescribed loads and constraints. This problem can be 

readily solved for certain types of structures by direct solution of the 

differential equations of elasticity describing the elastic behavior of 

the structure. A good example of suc.h a solution is the Engineering 

Theory of Bending applied to box beam structures. However, these di

rect solutions are usually based on ce~tain simplifying assumptions 

which are too restrictive particularly when applied to structures as 

complex as the present day aircraft structures. Consequently, either 

numerical or quasi numerical methods must invariably be used in air= 

craft structurai analysis to include the various structural effects 

which could not conveniently be accounted for in the direct solution 

type methods. 

The numerical and quasi numerical methods fall basically into two 

groups: the first being strictly numerical methods in which the differ= 

ential equations describing the deflections and/or stresses in the 

structure are solved by numerical procedures~ and the second in which 

the structure is idealized into an assembly of discrete structural 

elements having an assumed form of stress or displacement distributiono 

The complete $Olution is then obtained by combining these individual 

l 



approximate stress or displacement distributions in a manner which 

satisfies the force equilibrium and displacement compatibility at the 

junctions of these elements. Both these groups of methods involve ap

preciable quantities of linear algebra which must be organized into a 

systematic sequence of operations and to this end the use of matrix 

algebra is a convenient method of de f ining the various processes in

volved in the analysis without the necessi ty of writing out the com

plete operations in full. 

The rapid development of the digi t al computer during recent years 

has immensley enhanced the popularity of this second group of methods, 

generally referred to as finite element methods or matrix methods. 

Probably the most important reason for this lies in the fact that the 

finite element methods readily lend themselves to matrix algebra which 

is ideally suited for subsequent solution via the digital computer. 

2 

Finite element methods have been used extensively for the analysis 

of aircraft structures. However, elementary theories are often insuffi

cient in the predic t ion of the stress and deformation characteristics of 

modern airframe configurations . Consequently, finite element methods 

are topics of numerous current research efforts, with new analysis 

capabilities being developed in terms of matrix operations of algebraic 

equations. 

The two most widely used finite element methods are referred t o as 

the force method and the direct stiffness or displacement method primarily 

due to the assumption of the initial unknown quantities . Both methods 

require the mathematical development of systems of finite elements~ 

which are joined to form the idealized structure and to develop the 

necessary algebraic equations. The equations are generally solved by 
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either semi automatic or completely automatic sequence of computer 

operations originating with the definition of the structural configura

tion and terminating with the calculation of the structural response for 

the applied external load configurations. 

The purpose of this research effort is to improve the capability for 

the analysis of stiffened shell structural skin panels and to demon

strate this improved capability by the comparison of experimental and analyt

ical results. The approach taken toward this improved capability is via one 

of the two previously mentioned finite element methods: the matrix forc e 

method.. The matrix fore~ methdd is ' described and illustrated in Chapter 

II. This improved capability is verified theoretically by the direct 

stiffness method wh:i.ch i s described in Chapter III . The matrix forc e method 

is implemented by digital eomputer , programs given in Appendic es C and D, 

respectively. The basis for •ascertaining this improved capability is 

provided by cbmparison of the analytical r esult s with those from an ex

periment al investigation, which is described in Chapter IV. 

The structure considered in this dissertation is limited to a 

planar oblique configuration. The structure is a monol ithic semi

monocoque trapezoidal shaped panel with thin webs and integral rein

forcements. This type of structure has a significant relationship with 

aircraft structural analysis. The words "monolithic" and visemi 

monocoque " mean "being made of one integrated piece" and 11 stiffened 

shell", r espectively. Until recently, airplane skin panels or II skin 11 

type structures consisted of a very thin sheet of material to which was 

attached various shaped extrusions. For the purpose of analysis, these 

extrusions were theoretically replaced by a slender bar of circular 

cross section equal to that of the actual extrusion. This slender bar 



element or stringer, as it later became commonly referred toj was then 

theoretically integrated into the thin sheet such that its centroid 

coincided with that of the sheet. Presently, due to the perfection of 

the chemical milling process, aircraft interior bulkhead and rib struc

tures are integrated with the thin sheet -- agreeing exactly with the 

theoretical idealization of the older II assembled II skin type structures. 

4 

The structure under consideration is idealized as an array of rib and 

stringer elements transmitting axial loads and thin web elements trans

mitting shear and axial loads. The web elements may occasionally be 

referred to as plate elements in the text of this work but they are 

visualized as capable of carrying only loads applied within their 

planes. The term , plate, is commonly applied to planar struct ural 

elements which carry loads applied normal to their plane. The tapered 

panel is oriented to lie in the xy plane, and the deflections and 

stresses are produced by loads in both the x and y directionso 

Finite element methods of analysis as they are presently known have 

many origins and no single author can be recognized for contributing 

entirely to their present form. Langefors (2) recognized that there is 

a certain r esemblance between the analysis of an elastic s tructure and 

that of an electrical network. In both cases, simple members are 

coupled together to constitute more or less complex systems . The prob

l em of analysis is that of finding the physical state or i nt:ernal energy 

level of each element, in whi ch this st.at~ i s a consequence of the 

introduction of certain disturbances into some parts of the structure. 

Solution r esults from minimizing the potential or strain ener gy of the 

structure. Argyris (4) described in matrix form the schematic analysis 

of structures composed of discrete structural elements . He compiled 
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a number of special analysis methods which were used for structural 

analysis and demonstrated the similiarty among many of the anal ysis 

methods by using matrix notation to abbreviate the mathematics. Argyris 

bases his work mainly on simple physical arguments in contrast to 

Langefors' work which is based upon the concept of strain energy for 

deriving flexibility or stiffness expressions for individual elements. 

From the background provided by Langefors, Argyr·is, and many 

others, such as Wehle and Lansing (5), Turner, et al. (6), published 

their work in 1956 and developed the direct stiffness method to i t s 

present form. They extended matrix methods of structural analysis to 

plate-type elements and described the analysis of plane stress problems 

with the use of finite elements. Their .derivations allow the stress element 

to deform in a combination of certain assumed patterns . This concept 

eliminates the necessity for knowing the behavior of an element before 

its stiffness can be developed. 

The version of the matrix force method of analysis used i n this 

research effort was introduced by Wehle and Lansing (5) when they fi rst 

published their work in 1952 . They used the concept of strain energy 

and Castigliano's Second Theorem to compile a library of flexibili t y 

matrices for various individual elements and developed and extended t he 

techniques embodied in the classical redundant force method to matrix 

algebra. Bruhn (7) further extended the work of Wehle and Lansing (5) 

and presented it in a readily usable form. 

These developments in the finite element approach to the approxi

mate analysis of reinforced panels form the basis for this investiga= 

tion. The structural behavior of a panel is determined by analyzing the 

group behavior of small elastic elements connected at common joints to 



form an idealized structure which approximates the actual panel. The 

structural behavior is determined by element idealizations using both 

the force and stiffness methods of analysis and assuming a different 

stress behavior for the plate el ements. 

In order to achieve t he desired improved capability for ari.a.lyzing 

planar; tapered stiffened shell struc tures ;. this dissertation has 

1.1.t:..d<::rtaken four distinct tasks , These t asks are : 

1. A new .f'lexibili ty matrix 'has been ·(leri ved · f or · trapezoidal 

shaped plate element s . This new flexibility matrix takes 

into account both the eff ects due to Poisson ' s ratio 

coupling and those due to sweep. In essence, the idealiza

tion is based upon the lumping concept. The direct-stress

carrying capacity of the structural material is concentrated 

along the stringers and ribs surrounding a given plate while 

shear carrying capacity is assigned to the panel areas con~ 

tained within the plate. This derivation appears in 

Chapter II. 

2. The matrfx ·force method has been modified for the inclu.;.:. 

sion of the new flexibility matrix of item one, above, for 

analysis purposes. Analysis by this new flexibility matrix 

of a planar stiffened shell structure such as the one used 

in this investigation requires that the matrix force method 

be modified. This modification is comprised mainly of · · 

"building up°', · by :specia.l means, the fl a'X:ibility matr i ·x 

for the composite structure. The details for this 

development are given in Chapter II. 

3 • A digital computei· progam · .has : been · developed ·which· will 

6 



implement both the modified and unmodified versions of 

the matrix force method. The concept employed in devel-

oping this digital computer program is that of writing a 

"main II program which., in turn, calls upon existing sub

routines to perform required matrix operations. Appendix 

D contains a detailed description of this program. 

4. A regimented approach has been formulated for the determina

tion of [arMJ, the matrix which contains the internal 

generalized load distribution due to a given external 

load and [a1RJ, the matrix containing the internal 

generalized load distribution due to a given redundant 

load. This technique is based upon the writing of 

7 

generalized freebody equations and the solution of 

these equations in a manner peculiar to the determination 

of [aIMJ and [aIRJ. This procedure is described in detail 

in Chapter II. 
The application of existing techniques contained w:i,thin the matrix 

force method enhanced by the tasks given above provide an improved 

analysis capability for planar, tapered monolithic semi-monoque structures. 
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CHAPTER II 

MATRIX FORCE METI'HOD OF ANALYSIS 

The matrix force method is a finite element method of structural 

analysis which considers a structure to be an array of idealized eiastic 

elements which are considered to be joined along their common edges. In 

this method of analysis, the internal generalized forces acting upon the 

idealized elements of the structure are considered to be the initial un-

knowns. In essence, the matrix force method is based upon the supposi-

tion that a la.+-ge number : of· internal fo:r·ce· distributi'ons acting on , 

the idealized elements can be in equilibrium. The correct distribution 

of internal forces is the one for which the mutual deformations of the 

elements are also compatible. 

In contrast to other finite element methods, the matrix force meth

od :raises the question of statical redundancy. The degree of redundancy 

for the idealized structure must be determined, since the problem is 

directed toward the solution for redundant forces (or groups of forces). 

The equations of equilibrium in terms of forces are inadequate in number 

to determine all the internal forces and they must, therefore, be sup-

· plemented by the equations of deflection compatibility. 

Although the idea of determining the degree of redundancy for the 

idealized structure may seem cumbersome, the force method, in general, 

requires a smaller number of unknowns than other finite element methods 

and, in turn, does not require intricate and complex computer programs 

8 



for its implementation as do other finite element met~ods. Also, the 

smaller number of unknowns required by the force method does not place 

such large memory requirements upon the digital computer and subse

quently, in certain cases, larger and more complex struqtures may be 

analyzed on a given size computer. Even more important is the fact 

9 

that the force method is a culmination of classical, established princi

ples and theories which can be readily visualized. This gives the 

researcher a good "feel" for what is actually happening throughout a 

structural analysis by the matrix force method. From an academic 

standpoint, the force method of analysis may be broken down into compo

nent operations and the contribution of each operation to the final 

result can be distinctly identified and monitored. 

The version of the matrix force method used in this analytical 

investigation is that which is presented by Bruhn (7). It is a special 

adaptation of the redundant force method to the use of the high speed 

digital computer. 

The r edundant force method is fully developed and is applied to 

the ~nalysis of the planar stiffened shell tapered skin panel used in 

this research program. The remainder of this chapt er covers new assump

tions for the stress behavior f or a given trapezoidal shaped pl a te and 

the surrounding stringers and ribs and the subsequent development of a 

new flexibility matrix based upon these assumptions. 

Basic Equations 

The internal forces of a statically indeterminant structure can be 

expressed as 

(2-1) 



where 

{qi} = column matrix of internal forces) 

{ q~ = column matrix of redundant forces, 

{ ~} = column matrix of external loads , 

[g,~= rectangular matrix of internal loads due to unit values 

10 

of the external loads in the stable statically determinant 

structure or s.s.n.s., 

[ girJ= rectangular matrix of :internal loads due to unit values 

of the redundants. 

The redundant forces can be expressed in terms of the applied loads 

by requiring compatibility of deformations throughout the structure~ 

The internal forces can be written as 

(2-2) 

where 

[ G;,,J = [ g,,,J-[ <l,,J( [g,-J [c{;j][ 91r] rrg,J [o1;j] [9;,.J , (2-3) 

and 

8jj] = square symmetric matrix of element flexibility coeffi

cients, deflection at point i for a unit force at point j. 

The two matrix triple products :i,nEquation (2-3) may be written as 
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Then, Equation (2-3) may be rewritten as 

(2-4) 

If the product [a'""s]-1 [a.rnJ be given the symbol [Gs11J and 

the product [~ir.][Gsaj be given _the symbol [Gwcl, then Eqµation (2-4) 

can be simplified to the form 

(2-5) 

Stress for the bar element is given by 

(2-6) 

where 

qib = internal force in the bar element, 

,fl.ib= cross sectional area of the bar element. 

Stress for the web element is given by 

where 

qiw = assumed constant average shear flowJ 

trw = thickness of web. 



12 

Deflections at the load points of t4e structure are given by 

(2-8) 

where 

{ 8J = column of deflections J 

= square symmetric matrix of influence 

coefficients for the compl.ete redundant 

structure, deflection at external loading 

point m for a unit applied load, P = 1. n 

In order to check the final results of a redundant force calcula

tion after obtaining the final true forces [ Gim ], the product 

(2-9) 

can be formed and compared element-by-element with the matrix previously 

computed, 

The "true-matrix" elements (elements of [o..rrJ-rrue) shoµld be zero, or 

nearly so, if [ GrJis error free. 

Degree of Redundancy 

If the panel in Figure 13 .is built in along the root rib 



and is free along the·other other edges, and i,f there are no.unstiffeneq. 

cut-outs, the number o'f redundants; N, is given by (This c·onstraint · 

~ppears in the upper configuration of Fi~ure 1.) 

(2-10) 

where 

f3 is the number of longitudinal effective stringer flaJl€ies which 

are continuous across a rib Junction and "2" is a constant. 

The number of bays is the number of transverse sections defined in the 

structural idealization. If a certain number of the stringer flanges are not 

held at the root section, the number of redundants reduces accordingly. 

The degree of redundancy is illustrated for the two-dimensional 

panel. The number of redundants or degree of redundancy is the number 

of unknown forces minus the number of independent equilibrium equations 

which can be written for the structure. 

From Figure 1,: the unknown forces are: 

Unknown forces in longitudinal stringers , • • • 12 

Unknown forces in transverse ribs . . . . ~ . ~ . . 6 

Unknown forces in the webs. • • • 9 

Total 27. 

The equations of equilibrium which can be written are: 

Equilibrium between the stringers and webs • , • • • 1:2 

Equilibrium between ribs and webs • • ~ 8 ct II . . 9 

Total 21. 

Thus; ';the ·number. of redundants is: 27 - 21 ;:: 6. 
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Built-In Constraint 

@ 

[ 
@ ~====; 

Statically Determinant Constraint 

Figure 1. Possible Constraints in Panel Idealization 
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Equa:tion (2 ... 10):may be evaluated for N,, the number of redundarits,, ·to give 

N= I(/3-2) 
BAY.S 

3(4~2)= 6-

Therefore, it is necessary to remove six of the unknown internal 

forces by the use of fictitious cuts. The structure is then stable and 

statically determinant. 

To demonstrate the change in redundancy resulting from the use of a 

statically determinant support system, the lower· configuration, shown>in 

Figureil is considered. 

The unknown forces are as follows: 

Unknown forces in longitudinal stringers. • 10 

Unknown forces in the transverse ribs . . 9 

Unknown forces in the webs 9 

Total 28. 

The equations of equilibrium which can be written are: 

Equilibrium between stringers and webs. 12 

Equilibrium between ribs and webs •• 12 

Total 24. 

The number of reduri.dants is then: · 28 ... 24 = 4. 

Equation (2--10) may again be e.valuated for N to give 

N = L (,8 - 2) = 2 ( 4 - 2) = 4 · 
BAYS · 

Analysis of the Test Structure 

by the Matrix Force Method 

The Matrix Force Method is applied in the analysis of a tapered 



integrally reinforced panel which is described in the experimental in-

vestigation, Chapter IV. A sketch of this panel and its geometry is 

shown in Figure 2. 

The first step in the analysis of the test structure is to calcu-

late the matrix 

:t. 
-A in Equation 

1b 

[o(;J] which appears in Equation (2-3} and the terms 

(2-6) and .it in Equation (2-7). 
iW 

The given structure was idealized into an assembly of bar and 
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trapezoidal shaped web elements with the choice of internal generalized 

forces as shown in Figure 2. Each bar element was theoretically con-

strained to carry only a linearly varying axial load, while each web 

element was allowed to carry only an average constant shear flow value. 

For ease of handling by the digital computer and for brevity, the 

matrix has been designated 

~~~ have been arranged to form 
t;w 

[ ALPIJ ], and the terms !ib 
[AREINV ], a column vector. 

and 

The basic strain energy equations for the bar and trapezoidal web 

elements are given along with sample calculations for coefficients of 

For a bar element with generalized loads q1 and qJ applied at 

each end the elements of [ALPIJ] are 

O(ii = L :: d.jl)) 3AE 
(2-11) 

~IJ = L 
':: o\J i ) 6AE 

( 2- 12) 

where 

L = length of the bar element, 

A = cross sectional area of the bar element> 

E = modulus of elasticity. 



\ l 

l 

j g__ i .. - 5..L~ --Ps 
Pi tfi ti? ~ 

Figure 2 . Struc t ural Idealization of the Panel of 
Figure 13, Illustrating the Choice of 
Generalized Forces to be Used 
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For a trapezoidal shaped web element with a generalized average 

shear flow qi applied along its edges, the elements of [ALPIJJ are: 

where 

where 

s 
o<.;j = GT> 

S = planform area of the web element, 

t = thickness of the web element) 

G = modulus of rigidity. 

From the theory of elasticity, the modulus or rigidity is 

V = Poisson 1 s ratio. 

E 
G= [2(1+Q)J ) 

V is assumed to have a value of 0.325 which corresponds to 

(2-13) 

(2-14) 

G = 4.o x 106 psi, and E = 10.6 x 106 psi. (This value is I/ is shown in 

Table 30, p. i03, Referenqe 17)~ Therefore, Equation (2-14) becomes 

E G= ---~; 
[2(1 +0.3ZS)] 

E ~--· 2.b5 
(2-15) 

The result of Equation (2-15) may be substituted into Equation (2-13) 

to give 
_ [(2.'-5)S] 

G- • Et 
(2-16) 

The firii te element distribution shown in Figure 2 may be used to deter

mine the coefficients of [ALPIJ J. A few sample calculations are 

~¥ = 3~E : /(~)}~.~~)~ = ( ~ J(13.fS~4q 7) > 



"" - ZL = 
V\z/2 - 3AE 

L 
d.. 1;2.. -:: hA E- = 
a< _ Cz.toQS = 

11,,,,c.- Et 

l2jf 10._111sw = (- 1 '(26 c,,4-qq4\ T3 o.25.x'E} £ ; • 1 ) 
.t0.111873 _ lA._j/ ) 
(~X0,25)(£) - , £ A h. 7412+~ 1 

i.ros ,s.ooo) 
0.05 E -

(2 lo 

-=ti )(344-5".DODOOO)> 

= t { X 3 Z..DOODDO) ) 

= t i j( 8.000000). 
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The non-zero coefficients of the [ALPIJJ matrix are listed in Table 

I. The [AREINV J column vector consists of reciprocal cross sectional 

area values for the ends of the bar elements and reciprocal thickness 

values for the web elements. Sample calculations would be 

1 TERM 1,1 : o.2.s = 4.DODODD, 

TERM 13, 1 = _A.__-= 20. 000000 J 0.05 

The values of the [AREINvJ column vector are listed in Table II. 

Effecti',.re Area 

An assumption widely used in aircraft design is to account for the 

axial load carrying capability of the web by lumping the cross-

sectional area of the web with the stringers and ribs. The original 

cross-sectional area of the bar element,plus the appropriate web cross-

sectional area, is usually refe·rred to as effective flange area. 

The amount of web area added to the stringer and/or rib area 

depends on the stress level, type of material, and type of loading. For 
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TABLE I 

[ ALPIJ J MATRIX 

Nan-Zera Values Listed 1 
NOTE: Each Coefficient Must be Multiplied by E 

Row Column Coefficient Row Column Coefficient 

1 1 13.4824973 12 11 6.7412485 
1 2 6.7412485 12 12 26.9649940 
2 1 6.7412485 13 13 3445.0000000 
2 2 26.9649940 14 14 2915.0000000 
2 3 6.7412485 15 15 2385.0000000 
3 2 6.7412485 16 16 3445.0000000 
3 3 26.9649940 17 17 2915.0000000 
4 4 26.6996933 18 18 3285;0000000 
4 5 13.3498465 19 19 3445.0000000 
5 4 13.3498465 20 20 2915.0000000 
5 5 53.3993860 21 21 3285.0000000 
5 6 13.3498465 22 22 32.0000000 
6 5 13.3498465 22 23 8.0000000 
6 6 53.3993860 23 . 22 8.0000000 
7 7 26.6996933 23 23 32~0000000 
7 8 13.3498465 24 24 26.6666667 
8 7 13.3498465 24 25 6.6666667 
8 8 53.3993860 25 24 6.6666667 
8 9 13.3498465 25 25 26.6666667 
9 8 13.3498465 26 26 10.6666667 
9 9 53.3993860 26 27 2.6666667 

10 10 13.4824973 27 26 2.6666667 
11 11 26.9649940 27 27 10.6666667 
11 12 6.7412485 
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TABLE II 

[AREINVJ COLUMN VECTOR 

Row ·column Value Row Column Coefficient 

1 l 4.0000000 15 1 .· 20. 0000000 
2 1 4.0000000 16 1 20.0000000 
3 1 4.0000000 17 1 20.0000000 
4 1 8.0000000 18 1 . 20 0 0000000 
5 1 8.0000000 19 1 20.0000000 
6 1 8.0000000 20 1 20.0000000 
7 1 8.0000000 21 1 20.0000000 
8 1 8.0000000 22 1 ; 8.0000000 
9 .1 8.0000000 23 1 8 .• 0000000 

10 1 4.0000000 24 1 8.0000000 
11 1 4.0000000 25 1 8.0000000 
12 1 4.0000000 26 1 4.0000000 
13 1 20.0000000 27 1 4.0000000 
14 l 20.0000000 
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example, by neglecting Poisson's ratio effect and assuming the same 

material for stringers and flat plates 9 one-sixth to one-half of the web 

cross-sectional area should be added to the stringer area. The former 

value applies when the field is in pure bending within its own plane, 

and the latter value applies when it is under uniform axial stress. 

In this investigation, one-half of the web cross-sectional area 

has been lumped into that of the stringers and webs. The resulting 

effective area of each stringer varies linearly along the axis of the 

element while the effective area of each rib remains constant. The 

[ ALPIJ J terms for the ribs are calculated from the II unlumped II formula 

in the past section, but those terms for the stringers must be calcu-

lated by different means. 

The [ALPIJJ terms for the stringers were calculated with the use 

of Figures A7.3~-b and A7.34c of reference (7). 

The non-zero elements of [ ALPIJ ]~ 11 WALn ( web area lumped) are shown 

listed in Table III and the values of [ AREINV ], 19 WAL" are listed in Table 

IV. 

Two choices of redundants were made to render the structure of 

Figure 13 stable and statically determinant. 

Redundants choice number 1, or II RDC=l 11 , by which the generalized 

forces q4 , q5 , q~, q'I, q8 , and q9 are assumed to be redundant, is 
~, 

shown in Figure 3. 

Redundants choice number 2, or II RDC=2 11 ~ by which the generalized 

forces q13 , q14 , q15 , q19 , q20 , and ~e.1. are assumed to be 1;;edvndant, 

is shown in Figure 4. 
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TABLE III 

[ALPIJJ MATRIX 
( in WA1ni) 

NOTE: Each Coefficient Must be Multiplied by! 

Row Column Coefficient Row Column Coefficient 

1 1 70685023 11 12 ~-.323387 
1 2 3.939410 12 11 4.323387 
2 1 3.939410 12 12 18.002341 
2 2 16.712673 13 13 3445.000000 
2 3 4.323387 14 14 2915.000000 
3 2 4.323387 15 15 2385.000000 
3 3 18.002341 16 16 3445.000000 
4 4 7.224624 17 17 2915.000000 
4 5 3.671207 18 18 2385.000000 
5 4 3.671207 19 19 3445.000000 
5 5 15.755438 20 20 2915.000000 
5 6 l+.138452 21 21 2385.000000 
6 7 4.138452 22 22 6.400000 
6 8 1'7.875103 22 23 1.600000 
7 7 7.224624 23 22 1.600000 
7 8 3.671207 23 23 6.400000 
8 7 3.671207 24 24 5.333333 
8 8 1_5.755438 24 25 1.333333 
8 9 4.138452 25 24 1.333333 
9 8 4.138452 25 25 5.333333 
9 9 17.875103 26 26 5.333333 

10 10 '7.685023 26 27 1.333333 
10 11 3.939417 27 26 1.333333 
11 10 3 °9391+17 27 27 5.333333 
11 11 16.712673 
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TABLE IV 

[AREINV J COLUMN VECTOR 
( uo WALOO) 

Row Column Value Row Column Value 

1 1 2.352941 15 1 20.000000 
2 1 2.500000 16 1 20.000000 
3 l 2.666667 17 1 20.000000 
4 l 2.105263 18 1 20.000000 
5 1 2.352941 19 l 20.000000 
6 1 2.666667 20 1 20.000000 
7 1 2.105263 21 1 20.000000 
8 l 2.352941 22 l 1.600000 
9 1 2.666667 23 1 1.600000 

10 1 2.35291+1 24 1 1.600000 
11 1 2.500000 25 l 1.600000 
12 1 2.666667 26 1 2.000000 
13 1 20.000000 27 1 2.000000 
14 1 20.000000 
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Figure 3. Redundants Choice 
Number 1~ 11 RDC-,1 11 

Redundants: q4~ 
q5 ~ q6 ? q,'/' ~ q9 , qg • 

Redundants Choice 
Number 2 ~ 11 RDC-2 11 

Redundants~ q13, q14~ 

q15 1 q:19 ~ q20 'J qa • 

As in the case of the [ALPIJ J matrix and the [ AREINV J column 

vector~ the meJ:r:ices [ gh'nJ and [ gir] appearing in EquatioL C~-,-1) have 

been designate:l [arM] and [aIR ]~ I'espectivelyo 

The [GrMJ matr:tx is calculated by allowing each external load to 

have a value of l lb and determining the resulting internal load d.istri= 

but:fon assuming the values of the internal redundant loads to be zero o 

The [ (HR J ma. is calculated by allowing each internal redundant 

load to have a value of l lb 9 assuming that the values of the external 

loads are zero, 

The calzmlation of the [ GIM] and [a1RJ mat:dces for a structure as 
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If local freebodies are drawn in a random manner, much repetition 

results and there is a high chance for error. 

A more regimented and precise approach can be developed. From the 

degree of redundancy section, the development for the wall constraint 

yields a precise approach to solve for the terms of [arMJ and [arRJ in a 

general manner. By the use of generalized forces shown in Figure 

2, .. twenty-one freebod:i,es can be drawn. Twelve freebodies can be drawn 

containing a stringer and a web which produces twelve equations of equi-

librium between the stringer and webs. Then, nine freebodies can be 

drawn containing a rib and a web which produces the remaining nine equa-

tions of equilibrium. An example of a freebody and resulting equilibri-

um equation is shown in Figure 5. 

Figure 5. Generalized Freebody and 
Resulting Equation of 
Equilibrium 

The twenty-one equations in twenty-seven unknowns are listed as 

follows: 

q 1 - qa +(.1.0.111873) q, 3 = 0 > 



qz - q3 +(10~+118}3Jq';-/-:: o·)·:- _· . ,; . 

q3 + (10.111a13)q15 = (J..0111973) R, 

q1 - '1s--(10.01Z385)q13+(1D.0/23B5)q,b=O, 

qs - qt.. -( 10.0ic385)q.4 + (10.01~385) q,,., = o, 

q" -(1D.01Z385)q,s +~0.0i2385)q,s =~.00i'c.385)Ft 

q'1 - q8 - (i.0.012.395)q,/p + (i0.01Z385)q,., =01 

q9 - q9 -(10.Q1i385)q,, +(10.01t385)q?.D =01 

q~ -(i0.Qf 2_385)qrB + (10.0.1.2.385)q?.I: (1 .. 0012395)~, 

qlO - q •• -(io.111873) q,ct =OJ 

q11 - q1-z.-(10.111873 )q20 =0 J 

q,2.- (10.111B73)q2, = (i.0111B73)P+ ) 

(7) q,3 - (s)q,4 + qzz = 0) 

(b)q,+-C4)q,s + q21" =O) 

(S)q,s + qz(,, = Pe +(o. 5) R + (0.15) Fi +(O.Ot:S)Pz.) 

(7)q,,..-(s)q,, - qz.z + qf:3 = 0) 

(t:.)q,, -(4-)q,s- q:a+ + qz.~ = 0.) 

(s)q,s - q2" + qa, = (o.5)R-(D.5)Fl-(D.025)B+(o.o~s)!j_) 

(7)q,'I -(5)q20 - q'.2.! = 0) 

(~)qzo -(4-)q-z., - q'l.S = OJ 

·-(S)<lz:, + qz1 = R.; +(o.15)f>++(o.ozs)g + (o.s) P1o .• 

27 
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It is to be noted that all input data were read into the digital 

computer with six digits to the right of the decimal point regardless 

of their appearance in any figure, table, or example listing. 

It has been established that six of the unknowns are redundant. 

When a choice of redundants is made, the appropriate "qn values can be 

transferred to the right side of the equal sign with the external loads. 

Now, there are twenty-one unknowns since the redundant "q'° values are 

either one or zero, depending upon whether the elements of [aIMJ or 

those of [aIRJ are sought. Twenty-one linear simultaneous equations are 

the result. These equations can be transformed into a matrix equation 

consisting of a matrix of coefficients, a column vector representing the 

unknowns and a matrix of constants. The coefficients matrices for RDC-1 

and RDC-2 are shown in Tables V and VII and the matrices of constants 

for both choices of redundants are shown in Tables VI and VIII, 

A digital computer program was developed for solving the two sets 

of equations and determining [aIMJ and [aIRJ automatically. An expla

nation of that program is given in Appendix D. [aIM], 01 RDC-1 10, 01 RDC-2 1\ 

and [ GIR ], vuRDC-1 1\ 11 RDC=2 '', are listed in Tables IX~ X~ XI~ and XII, 

respectively. 

The {P~ column matrix of Equation (2--1) has been designated 

[FORCE] and it consists of the actual values of the external loads. 

Three load configurations (see Figure 33~ Chapter IV) were used in 

this investigation, and [FORCE] matrices corresponding to these configu

rations are shown in Table XVIII of Chapter IV. 



Row Col 

l l 
l 2 
l 7 
2 2 
2 3 
2 8 
3 3 
3 9 
4 7 
4 10 
5 8 
5 11 
6 9 
6 12 
7 10 
7 13 
8 11 
8 14 
9 12 
9 15 

17 11 
17 12 
17 18 
17 19 
18 12 
18 20 
18 21 
19 13 

TABLE V 

[coEF J MATRIX~ RDC-1 

Non=Zero Elements Listed 

Coe ff Row 

1.000000 10 
-1.000000 10 
10.111873 10 

1.000000 11 
-1.000000 11 
10.111873 11 

1.000000 12 
10.111873 12 

-10.012385 13 
10.012385 13 

-10.012385 13 
10.012385 14 

-10.012385 14 
10.012385 14 

-10.012385 15 
10.012385 15 

-10.012385 16 
10.012385 16 

-10.012385 16 
10.012385 16 

6.000000 19 
-4.000000 19 
-1.000000 20 

1.000000 20 
5.000000 20 

-1.000000 21 
1.000000 21 
7.000000 

29 

Col Coe ff 

4 1.000000 
5 -1.000000 

13 -10.111873 
l 1.000000 
6 -1.000000 

14 -10.111873 
6 -1.000000 

15 -10.111873 
7 7.000000 
8 -5.000000 

16 1.000000 
8 6.000000 
9 -4.000000 

18 1.000000 
9 5.000000 

20 1.000000 
10 7.000000 
11 -5.000000 
16 -1.000000 
17 1.000000 
14 -5.000000 
14 -5.000000 
14 6.000000 
15 -4.000000 
19 -1.000000 
15 -5.000000 
21 1.000000 



Row Column 

3 l 

4 6 

4 7 

5 7 

5 8 

6 2 

6 8 

7 9 

7 10 

8 10 

TABLE VI 

[ CONST J MATRIX 

RDC-1 

Non-Zero Values Listed 

Coefficient Row 

1.0111873 8 

-1.0000000 12 

1.0000000 15 

-1.0000000 15 

1.0000000 18 

1.0012385 18 

-1.0000000 21 

-1.0000000 21 

1.0000000 21 

-1.0000000 
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Column Coefficient; 

11 1.0000000 

4 1.0111873 

1 0.1500000 

2 0.0250000 

2 0.0250000 

3 -0.0250000 

3 0.0250000 

4 0.1500000 

5 1.0000000 



Row Col 

1 1 
1 2 
2 2 
2 3 
3 3 
4 4 
4 5 
4 13 
5 5 
5 6 
5 14 
6 6 
6 15 
7 7 
7 8 
7 13 
8 8 
8 9 
8 14 
9 9 
9 15 

10 10 

TABLE VII 

[coEF J MATRIX~ RDC-2 

Non-Zero Values Listed 

Coe ff Row 

1.000000 10 
-1.000000 11 

1.000000 11 
-1.000000 12 
1.000000 13 
1.000000 14 

-1.000000 15 
10.012385 16 

1.000000 16 
-1.000000 16 
10.012385 16 
-1.000000 17 
10.012385 17 

1.000000 17 
-1.000000 17 

-10.012385 17 
1.000000 18 

-1.000000 18 
-10.012385 18 

1.000000 19 
-10.012385 20 

1.000000 20 
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Col Coe ff 

11 -1.000000 
11 1.000000 
12 -1.000000 
12 1.000000 
16 1.000000 
18 1.000000 
20 1.000000 
13 7.000000 
14 -5.000000 
16 -1.000000 
17 1.000000 
14 6.000000 
15 -4.000000 
18 -1.000000 
18 -1.000000 
19 1.000000 
15 5.000000 
20 -1.000000 
21 1.000000 
17 -1.000000 
19 -1.000000 
21 1.000000 



Row Col 

l 6 
2 7 
3 l 
3 8 
4 6 
5 7 
6 2 
6 8 
7 9 
8 10 
9 3 
9 11 

10 9 
11 10 
12 4 
12 11 
13 6 

TABLE VIII 

[coNsTJ MATRIX, RDC-2 

Non-Zero Values Listed 

Coe ff Row 

-10.1118730 13 
-10.1118730 14 

1.0111873 14 
-10.1118730 15 
10.0123850 15 
10.0123850 15 

1.0012385 18 
10.0123850 18 

-10.0123850 19 
-10.0123850 19 

1.0012385 20 
-10.0123850 2.0 

10.1118730 21 
10.1118730 21 

1.0118730 21 
10.1118730 21 
-7.0000000 
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Col Coe ff 

7 5.0000000 
7 -6.0000000 
8 4.0000000 
l 0.1500000 
2 0.0250000 
8 -5.0000000· 
2 0.0250000 
3 -0.0250000 
9 -7.0000000 

10 5.0000000 
10 -6.0000000 
11 4.0000000 
3 0.0250000 
4 0.1500000 
5 1.0000000 

11 5.0000000 



TABLE IX 

[ GIM j MATRIX FOR RDC-1 

~ P1 =l p~ =l P3 =1 P+ ~1 P5 =l 

1 0.7746 0.6003 0.4084 0. 2143 1. 4450 
2 0.8223 0.6164 0. 3923 0.1667 1. 1240 
3 0.8889 0. 6388 0.3699 tl.1000 o. 6741 

.4 0 0 0 0 0 
5 0 0 0 0 0 
6 0 0 0 0 0 

7 0 o o o 0 
8 0 0 0 0 0 

0 0 0 0 0 

10 0. 2143 0.4084 o. 6003 0. 7746 -1.4450 
11 0.1667 0.3923 0.6164 0.0223 -1. 1240 
12 0.1000 0.3699 o. 6388 0.8889 -0.6741 

13 0.0047 0.0016 -0.0016 -0.0047 -0.0318 
14 0.0066 0.0022 -0.0022 -0.0066 -0.0444 
15 0.0099 -0.0621 -o. 0366 -0. 0099 -0.0667 

16 0.0047 0.0016 -0.0016 -0.0047 -0.0318 
17 0.0066 0.0022 -0.0022 -0. 0066 -0.0444 
18 0. 0099 0. 0366 -0.0366 -0.0099 -0.0667 

19 0.0047 -0.0016 -0. 0016 -0.0047 -0.0318 
20 0.0066 0. 0022 -0.0022 -0.0066 -0.0444 
21 0. 0099 0.0366 0. 0632 -0.0099 -0.0667 

22 0 0 0 0 0 
23 0 0 0 0 0 

24 0 -0. 2660 -0.1330 0 0 
25 o -0.1330 -0.2660 0 0 

26 0 .0989 0.3408 0.1829 0.0495 o. 3333 
27 0.0495 0.1829 0. 3406 0.0989 0. 6667 

~ P1 =l 

1 1. 0112 
2 1. 0 l 12 
3 1. 0112 

I+ -0.6457 
5 -0.5006 
6 -0.3004 

7 0.6437 
8 0.5006 
9 0.3004 

10 0 
11 o 
12 o 

13 0 
14 0 
15 0 

16 0.0143 
17 0.0200 
18 0.0300 

19 0 
20 0 
21 0 

22 0 
23 0 

24 0 
25 0 

26 0. 1500 
27 0 

TABLE X 

[GIM J MATRIX :B'OR RDC-2 

P2 =1 pl =l p. =l 

0 0 0 
0 0 0 
o 0 0 

0.7867 0.2146 0.6437 
0.8344 0.1669 0.5006 
0. 9011 0.1001 0.3004 

o. 2146 0.7867 -0.6437 
0.1669 0.8344 -0.5006 
0 .1001 0. 9011 -0.3004 

0 0 1. 0110 
o 0 1. 0110 
o 0 1. 0110 

0 0 0 
0 0 0 
0 0 0 

0.0048 -0.0048 -0.0143 
0.0067 -0.0067 -0.0200 
0.0100 -0.0100 -0.0300 

0 0 G 
0 0 0 
0 0 0 

0 0 0 
0 0 0 

0 0 0 
0 0 0 

0.0250 0 0 
0 0.0250 o. 1500 

P5 =1 

0 
0 
0 

4.2910 
3. 3370 
2.0020 

-4.2910 
-3.3370 
-2.0020 

0 
o 
o 

0 
0 
0 

-0.0952 
-0.1333 
-0.2000 

0 
0 
0 

0 
0 

0 
0 

0 
1. 0000 

\.;--J 
\J',I 



TABLE XI 

[GIRJ MATRIX FOR RDC-2 

~ q =l • q~=l ci"' =l q =l 
.? 

q =l 
9 

q =l 
9 

0 0 -0. 3366 -0. 3366 0 0 
0 -0. 6733 0 0 -0.3366 0 
0 0 -0.6733 0 0 -0.3366 

4 1.0000 0 0 0 0 0 
5 0 1.0000 0 0 0 0 
6 0 0 1.0000 0 0 0 

7 0 0 0 1.0000 0 0 
8 0 0 0 0 1.0000 0 
9 0 0 0 0 0 1.0000 

10 -0.3366 0 0 -0. 6733 0 0 
11 0 -0. 3366 0 0 -0 .. 6733 0 
12 (, 0 -0. 3366 0 0 -0. 6733 

l3 .0666 - .. 0666 0 0.0333 -0.0333 0 
14 0 0.0666 -0.0666 0 0,0333 -0.0333 
15 0 0 o. 0666. 0 0 0. 0333 

16 -0.0333 0.0333 0 0.0333 -0.0333 0 
17 0 -0.0333 0.0333 0 0.0333 -0. 0333 
18 () 0 -0.0333 0 0 0.0333 

19 -.o. 0333 0.3333 0 -0.0666 0.0666 0 
20 0 -0. 0333 0.0333 0 -0.0666 0.0666 
21 0 0 -0.0333 0 0 -0. 0666 

22 . -0.4661 o. 7990 -0. 3333 -0. 2330 0. 3995 -0. 1665 
23 co. 2330 0. 3995 -0 .1665 -0.4661 0. 7990 -0.3329 

24 0 so. 3995 0.6658 0 -0.1998 0.3329 
25 0 -0.1998 0.3329 0 -0.3995 0.6658 

26 0 0 -0.3329 0 0 0.1665 
27 0 -0 -0.1665 0 0 -0.3329 

TABLE XII 

[orRJ MATRIX FOR RDC-2 

0( q 
13 

=il q =H 
11 

q =il 
IS 

q =tl 
11 

1 -10.1120 -10.u20 0 0 
2 0 -10. 1120 -10.1120 0 
3 0 0 -10.1120 0 

4 20.0200 20.0200 20.0200 10.0100 
5 0 20.0200 20.0200 0 
6 0 0 20.0200 0 

7 -!0;0100 -10.0100 -10.0100 •20.0200 
8 0 -10.0100 -10.0100 0 
9 0 0 -10.0100 0 

10 0 0 C 10; HOO 
11 0 0 0 0 
12 0 0 0 0 

13 LOOOO 0 0 0 
14 0. l.0000 0 0 
15 0 0 1.0000 0 

16 -1.0000 0 0 -LOOOO 
17 0 -1.0000 0 0 
18 0 0 -1.0000 0 

19 0 0 0 1.0000 
20 0 0 0 0 
21 0 0 0 0 

22 -7.0000 5.0000 0 0 
23 0 0 0 7 .0000 
24 0 -6.0000 4.0000 0 

25 0 0 0 0 
26 0 0 -5:0000 0 
27 0 0 0 0 

qzo =tl 

0 
0 
0 

. 10. 0100 
10.0100 

0 

-20.0200 
-20. 0200 

0 

10.1100 
lO. 1100 

0 

0 
0 
0 

0 
-1.0000 

0 

0 
1.0000 

0 

0 
-5.0000 

0 

6.0000 
0 
0 

q"' =tl 

0 
0 
0 

W.0100 
10.0100 
10.0100 

-20.0200 
-20.0200 
-20.0200 

10. llOO 
10.1100 
10.1100 

0 
0 
0 

0 
0 

-1.0000 

0 
0 

1.0000 

0 
0 
0 

-4.0000 
0 

5.0000 

\.),I 
-~ 
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A Flexibility Matrix Which Incorporates 

Poisson 1 s Ratio and Sweep Effects 

The standard approach to analyzing stiffened shell structures has 

been showno The structure was idealized into an array of bar and plate 

elementso The stringers and ribs were assumed to carry only a linearly 

varying axial stress while the plates were assumed to carry only a con-

stant average shear stress. In order to account for the axial stress 

carrying capacity of the plates~ a discrete amount of plate cross sec-

tional area was added to that of the bar elements bordering a particular 

plate. Two [ ALPIJ J matrices were developed. One [ ALPIJ] matrix allowed 

for no lumping of plate areas while the other [ALPIJ] matrix contained 

terms which allowed for one-half of the plate cross sectional area to be 

lumped into the adjacent bar element. 

This method is approximately correct for rectangular or nearly rec-

tangular panels~ but in its present form neglects two couplings which 

impose a restriction on i.ts application: 

1. The coupling between direct stresses which is referred to 

as Poisson's ratio coupling. 

2. The coupling between shear stresses and the direct stresses 

existing in oblique panels. 

In a recent paper 5 Grjedzielski (8) showed that both Poisson°s 

ratio and sweep in coupling can be accounted for in a rational manner. 

In essence~ the idealization is based upon the lumping concept, wherein 

the direct-stress-carrying capacity of the structural material is con-

centrated along the stringers and ribs surrounding a given plate and 

shear carrying capacity is assigned to the panel areas contained within 



the plate. Although this has the appearance of the axial-force-member~ 

shear panel idealization, the ~oisson 1 s ratio and sweep effectsaretaken 

into account by incorporating them into the. flexibility matrix. 

Subsequently a new flexibility matrix for a trapezoidal shaped 

plate is derived which takes into account effects due to Poisson 1 s ratio 

and sweep. 

The strain energy of a plate can be given by 

(2-17) 

Here, the integrals of CJx~ and~ are interpreted as strain energy of 

the stringers and ribs bordering a web,respectivelY, and the integral of 

2. Ty_y as the energy of panels and webs. The integral of~ Uy represents 

the cross coupling due to Poisson's ratio. 

Transformation Into Oblique Coordinates 

To change from rectangular coordinates X,Y to trapezoidal ones u, 

lj;, the following transformation holds (This transformation is shown 

in Figure 6. ) : 

Y·= UTANo/. 

The stress components will be used as follows: 

(a) Stress components of the system U, 'flf- uu., Ucp, 'Tu.f 1 

(b) Stress components of the auxiliary system X; Y: u)(.. > Uy J 

Txy., 

(c) Stress components of the grid system: 0-s > Uy- J Tp > 

where Vs and urare the direct stress of the stringer and rib caps, 

respectively, and Tp is the average panel shearing stress. 

(2-18) 
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Txy 

i 
CTy 

Figure 6. Transformation of Stress Components 



From the consideration of equilibrium of stresses at a point~ the follow-

ing transformation equations between the stress components (a) and (b) 

may be written (These equations are written from Figure 6.): 

'/xy = Tu.ljl + Gu.. SI N\/11 

Gx = Ou. C.0 S LjJ , 

Oy = ulfSEC\j; + 2 Tu.If TAN\j;+uu.SIN\jJTA Nlp. 
(2-19) 

Strain energy of the panels in terms of the trapezoidal coordinates 

is obtained by substitution of Equation (2-19) into Equation (2-17). After 

replacing the integration element d*dY byu.du.•dl/'sec-2.'/' ~ there 

results 

U cc 2tE { f [ u: + u,/ - 2( V cos 'i/J-s I N2 iJ,) Vu. Vy, 

+4S1N1/J(a-u + o-l/')Tu.ir+~~ COS2 ¥1+4S/ N2 \/J)Tt1viJ~§t;i.f ,, <2~20) 

For lumping theory, the particular terms have the following 

meaning: 2. The Tu~ term represents the shear energy of the panel. The 

o-Jand 0-,p terms are interpreted as bending energy of stringers and 

ribs. The term containing Gu Oq, introduces the Poisson I s ratio coupling. 

Finally, the term 4 sin\J.I (uu + CTip) Tu.If takes care of the coupling due 

to the sweep angle. 

Component Energy Terms 

For the contribution of the flange stresses to the total strain 

energy, a flange AB with stresses a1 and c2 at the ends A an B, 

respectivelyj is considered. There results 
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Hence~ the energy possessed by the flanges can be stated as 

where u,, ~ are the direct stresses at each end of a lumped flange and 

will be equal to the node force divided by the corresponding lumped 

areao 

Strain energy LJp corresponding to the state of shear Tp is 

evaluated by integration. Thus Up is given up 

U- _j-_(([_g_co5zlf, 4S N21 ''] -z. u.du..cllJI P- Z. E j j Ci 'r + I '-f/ Tutp COS+ l.f 

An expression for T is 
U.."C 

T, - T, u, U.z. 
U..tp - p~J 

• 



_ -t 1 4_g_ SI N'2.4J u-z.-u.,_ 'Z. i !J)'l. 

- ~E. 'II [ co5''f + £ coS'"<P]~h d'i' 

- +T/ e-i-U"f)[ 1/, ,I, . A.fa_( 3,/, 31/,)~ .. - 2Gi 2.. TAN-r ... -TAN'rl + 3E TAN 't'z.-TAN 'YI~ 

where 

, =e1!_2u::-)(TA NY-'z-TA N l/1)~~+ ~(TANz<& + TANCfiTANlJJz+TAN2 lfi)] 

- Ap \.1?. ~+*(TANzlfi + TAN~TAN'f',.+TAN~~ J 

= area of the plate. 
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Strain energy corresponding to Poisson's ratio and shear couplings 

vis. Ou.vii' > vu.. Tu_y, and Oqi Ulf' is obtained by taking the value of each 

product due to the four node values, summing them up and taking the 

average to represent the plate. 

by 

The total strain energy for the four flanges and the plate is given 

LJ = !1~
1 (a-~+e7i<~~+uRll~12.) 

+ '12k'(~i1 + ~ 222. + uR2 I ~22) 

· + A:f (0s~, + Gsie. +Os110s,e) 

+ 1:~2
( Os~, +Os~~ +Os2.10s2a) 
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+k• 4SJNW:f~1b,( Osu+°Ru)+l,b~(o;,i.+ URtJ] 

+ z.+E • 'r SIN I/'"£• f ~ ... b,( ~1z + Cis2.1)+ l'Lba.(~i:~ +Oiu~ 

+ 1,, ~b, , ¥• t;'lt.+ ~(TAN"!/: +TA N'l.'TAN9'. +TAN...,,,)} 

Castigliano 's second theorem states that a displacement Oi can be 

derived from the strain energy U, expressed in terms of the applied loads 

P, as 

~ = au ) o, a P; 

where P; is the loading in the direction of the displacement 8;, The 

expression for 0; may be written as 

But the expression for stress, OJ , is 

R G = _.i_. 
J Aj 

Therefore, the partial derivative of Oj with respect to F? is 

where 8;j is theK:cc::,:,':r-':'rdelta" Then the expression for O; may be 

written as 

8i =[ ;][s]{u} = E!:J[S]l!j{P}, 



where the expression for the flexibility matrix [ ijJ is 

[ i ][ s Jt t ]== [ qjj} 
[s] can be obtained by differentiating the strain energy with respect 

to each stress term separately. Differentiating 

~~RII = !· M 2 a,,.. 1 + ~ ... '2)- H "ICOS"'-'11 -51 N"'r~(R., b, Os11) 

+ c..T£ SIN W Tp(l.b), 

~~ = !·~·(2 Uia1e.+ 0ii11)- +(sicos•y.,,-s,N'tJ~.b,o,,_~ 
U R1'2 

+ 2--tE Sit-.!%. Tp(i,.b,) > 

~U = i 2t( 2- ~21 + Up_22)- -t(~COS"LY:-S I N2.i/1)ff-Yi-(1,bz ~'~ 
UGRc.l 

+ks1N 'f.Tp(ftbJ, 

~ ~ = i •['( 2 <ii<u + UR?.1 )- --t-( V COS21",. -SI W'l',.~~b. o;2 ~ 
u R'2.'2 

+-iis1N ~Tp(!..,_ba)> 

au -Mir:> ) t (ncos'Z.. s NZ.11J)COSW!o b ) ~ - lo£. \..C-... Os"11 + Us,2 - ~v 1/1.,... I T1 4- tf' 1 %, 
UUs11 · 

+tr SIN 1/17P(t.,bJ> 

. ~u = ~~'(za;,a +o;,,)-4.--(~cos2 w-s1N1.w~(l,ba~21) 
uOs,a. 

+ iE SIN o/, Tp (i, bJ, 
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~U = ti_-{ 2 %z2 +o;1.i)-+( VCOS 2 'fz. -SJ N2 lf~)~(i1.b~~z~ 
uGs~'2. 

+ i:.+E SIN!fa Tp(kbr.)> 

~~ = z\ SI N'I/ ~,b,( lls11 +Us,~+)., b.( q,;~ + "Rzi) J 
+ iE SIN 'P2. ~z. b,(£1R,a + Gs2.1 + {"2. b2( UR~,+ us-z:2.] 

+(b,+ b:L) R, cgsw-,.. 'Tp [1 + ft(TAN2°'11+ TAN'l1TAN~+TAN~Lf'2-)]) 

where A1 ~ A2 ~ A~~ and ~ are_ the total lumped areas in sections 

normal to ribs R1 , Ra~ and stringers S, and S2. ~ The equations above may 

now be transformed into matrix notation such that 

j~ ==[ s]{cr}-: 
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The [SJ matrix is shown in Figure 8. 

The matrix triple product tl][ s]r~j may now be formed~ the result 

of which is the final flexibility matrix which incorporates the effects 

of Poisson 9 s ratio and sweep. Henceforth~ this matrix will be referred 

to as [ALPIJJ. . [ALPIJJ. is shown in Figure 9. prs prs 

The sign convention for [ALPIJJ1 for a typical trapezoidal panel prs 

is shown in Figure 7. 

·1 q'2. .--------+-

. Figure 7. Sign Convention and a Typical Trapezoidal Panel 



A.l:i, ~.e. 
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3E. l::.E. 
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f, = (v-TAN"2W)aos0 '1', . 
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~3 = r +'2. v + iPN'af, +TAN1H~N""+T.4N~~1 
Figure 8. The Matrix [sJ 
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Figure 9. The Flexibility Matrix~ [ALPIJJprs 
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Inclusion of [ALPIJJ Into the Matrix Force Method prs 

for Analysis of the Test Structure 

In order to apply the Matrix Force Method with [ALPIJJ. . included, · prs 

to an analysis of the test structure of Figure 13, the [ ALPIJ J matrix 

for the composite structure must be ''built up" by special means. 

The use of [ALPIJJ' implies that the test structure be idealized · prs 

in a different manner. The given structure was idealized into the same 

basic assembly of bar and trapezoidal shaped web elements, but, now, 

with a choice of fifty-one internal generalized forces, instead of the 

twenty-seven forces shown in Figure 2. Each bar element is still 

theoretically constrained to carry only a linearly varying axial load, 

while each web element is still only allowed to carry an average con-

stant shear flow value? but, now, both the bar element load and web 

shear flow will include the effects of Poisson's ratio and sweep. The 

fifty-one unknown idealization of the test structure is shown in Figure 

10. 

For "building up n the composite [ ALPIJ Jprs matrix, the idealized 

version of the test structure can be divided into three sections. The 

first section consists of the top stringer, the upper center stringer, 

and the enclosed ribs and webs. The second section consists of the 

upper center stringer, lower center stringer and the ribs and webs 

enclosed within these two stringers. The third section is made up of 

the remaining lower center stringer, the bottom stringer and the ribs 

and webs enclosed within these two stringers. For the contribution of 

the second section to the composite [ALPIJJ, Figure 7 can be modified 

to the form shown in Figure 11. Figure 7 can be modified to that sho11m 
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it 19 

Figure 10. Second Structural Idealization I11uatrat:!ug 
Fif'ty-one Gener'a.lized Forces 



49 

in Figure 12 for the contribution of the third section. Figure 7 can 

be applied directly for the contribution of the first section. 

The modification of the original sign convention for a typical 

trapezoidal "cell II requires slight modification of [ALPIJJ . With prs 

the use of a simple reindexing system, the composite [ALPIJJ may now prs 

be evaluated. The coefficients of the composite [ALPIJJ . are listed prs 

in Table XIII. 

Figure 11. Sign Convention for Section 2 



Figure 12. Sign Convention for Section 3 

Finally~ in order to be compatible with the composite [ALPIJJ , prs 

the ma trices [ GIM] and [ GIR J and the column vector [ AREINV J must be 

redeveloped in terms of fifty-one unknowns instead of twenty-seven 

unknowns. 
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Row 

1 
2 
2 
3 
4 
4 
5 
6 
6 
7 
8 
8 
9 

10 
10 
11 
12 
12 
13 
14 
14 
15 
16 
16 
17 
18 
18 
19 
20 
20 
21 
22 
22 
23 
24 
24 

TABLE XIII 

COMPOSITE [ALPIJ~rs 

Non~Zero Term Consisting of Nonsymmetrical Terms and 
One-Half of the Symmetrical Terms are Listed 

Col Coe ff Row Col Coe ff 

1 8.171000 25 1 12.730000 
1 ·4.086000 25 2 10.910000 
2 8.171000 25 7 3.889000 
3 8.698000 25 8 3.333333 
3 4.349000 25 25 3501. 333333 
4 8.698000 26 3 11.610000 
5 9.298000 26 4 9.677000 
5 4.649000 26 9 3.750000 
6 9.298000 26 10 3.125000 
7 7.417000 26 26 2962.666667 
7 3.708000 27 5 10.340000 
8 7.417000 27 6 8.276000 
9 8.344000 27 11 3.571000 

.9 4.172000 27 12 2.857000 
10 8.344000 27 27 2484.666667 
11 9.536000 28 7 -3.889000 
11 4.768000 28 8 -3.333333 
12 9.536000 28 13 3.889000 
13 7.417000 28 14 3.333333 
13 3,708000 28 . 28 3471.000000 
14 7.417000 29 9 -3. 750000. 
15 8.344000 29 10 -3,125000 
15 4.172000 29 15 3,750000 
16 ·8.344000 29 16 3.125000 
17 9.536000 29 29 2964.000000 
17 4.768000 30 11 -3.571000 
18 9.536000 30 12 -2.857000 
19 8.171000 30 17 3.571000 
19 4.086000 30 18 2.857000 
20 8.171000 30 30 2462.666667 

'21 8.698000 31 13 3.889000 
21 4.349000 31 14 3.333333 
22 8.698000 31 19 12.730000 
23 9.298000 31 20 10.910000 
23 4.649000 31 31 3501.333333 
24 9.298000 32 15 3.750000 
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TABLE XIII (Continued) 

Row Col Coe ff Row Col Coe ff 

32 16 3.125000 41 11 -0.919200 
32 21 11.610000 41 26 2.000000 
32 22 9.677000 41 27 2.000000 
32 32 2962.666667 41 40 1. 333333 
33 17 3.571000 . 41 41 2.666667 
33 18 2.857000 42 10 -0.804300 
33 23 10.340000 42 11 -0.919200 
33 24 8.276000 42 29 -2.000000 
33 33 2484.600000 42 30 -2.000000 
34 2 -0.860600 42 42 2.666667 
34 3 -0.916200 43 16 -0.804300 
34 . 25 7.200000 43 17 -0.919200 
34 26 7.200000 43 29 2.000000 
34 34 3.200000 43 30 2.000000 
35 8 -0.857900 43 42 1.333333 
35 9 -0. 965100 43 43 2.666667 
35 25 2.400000 44 16 -0.804300 
35 26 2.400000 44 17 -0.919200 
35 34 1.600000 44 32 2.000000 
35 35 3.200000 44 33 2.000000 
36 8 -0.857900 44 44 2.666667 
36 9 -0. 965100 45 22 -0.763500 
36 28 -2.400000 45 23 -0 .816100 
36 29 -2.400000 45 32 6.000000 
37 14 -0.857900 45 44 1.333333 
.37 15 -0 .965100 45 45 2.666667 
37 28 2.400000 46 6 -0.816100 
37 29 2.400000 46 27 6.000000 
37 36 1.600000 46 46 2.666667 
37 37 3.200000 47 12 -0.919200 
38 14 -0,857900 47 27 2.000000 
38 15 -0.965100 47 46 1. 333333 
38 31 2.400000 47 47 2.666667 
38 32 2.400000 48 12 -0.919200 
38 38 3.200000 48 30 -2.000000 
39 20 -0.860600 48 48 2.666667 
39 21 -0.916200 49 18 -0 .919200 
39 31 7.200000 49 30 2.000000 
39 32 7.200000 49. 48 1.333333 
39 38 1.600000 49 49 2.666667 
39 39 3.200000 50 18 -0.919200 
40 4 -0.763500 50 33 2.000000 
40 5 -0 .816100 50 50 2.666667 
40 26 6.000000 51 24 -0 .816100 
40 27 6.000000 51 33 6.000000 
40 40 2.667000 51 50 1.333333 
41 10 -0.804300 51 51 2.666667 



CHAPTER III 

ANALYTICAL INVESTIGATION 

The structural panel used in this investigation was designed so 

that the idealization used in the force analysis corresponded as pre

cisely as possible to the actual test model. In the case of complex 

structural configurations, the analysis problem should be divided into 

two phases: the idealization of the complex structure; the analysis of 

the idealized structure. 

In the first phase, large errqrs may occur due to computer size 

limitations because it is necessary to approximate large structural 

configurations with a relatively few number of structural elements. In 

addition, thick panels are idealized as thin panels which carry no out

of-plane loads; and tapered bar elements are idealized into constant 

area sections that carry constant loads. These discrepancies occur in 

the idealization phase of the analysis. 

The second phase, the comparison between the structural behavior 

of the panel and the mathematical analysis of the idealized panel, is 

hopefully limited to errors in the mathematical representation of the 

characteristics of the structural elements •. It is first necessary to 

prove that an idealized structural configuration behaves in a manner 

similar to an actual structural configuration of approximately the same 

geometric characteristics. After this comparison is made, the errors 

resulting from idealization procedures can be more accurately 
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investigated. 

The design of the research model shown in Figure 13 is based on the 

idealization of actual structural configurations that are commonly en-

countered in aerospace structural analysis. This structural configura-

tion results in a convenient idealization for the force method of 

analysis. 

An extensive analysis of the structure was performed using the 

matrix force method described in Chapter II. A complete analysis of the 

structure was performed using each of the flexibility matrices described 

in Chapter II for each of the load configurations performed in the 

experimental investigation. Load condition No. 1 consists of four 

equivalent loads applied at the forward edge of the panel of 

Figure 13. Load condition No. 2 consists of a "shear" load ap-

plied at the upper forward edge of the panel in a direction perpendicu-

lar to those of LC-1. Load condition No. 3 is similar to LC-1 but 

consists of only two equivalent loads applied in the "axial" direction. 

LC-1,LC-2, andLC-3are shown in Figure 33. The array of load values for 

each load condition are shown in Table XVIII. 

The first analysis is illustrated in detail to show how the 

matrices{q,} ,{ uJ ,{ uJ ,{ 8~, and ra.n\J are determined. L true 

Generation of the Ma.trices: [QI], [sTRESS J, 
[ DELTAM ], and [ ARNTR] 

The matrices of {qJ of Equation (2-1),{a"b}andf"f, of Equations (2-6) 

and (2-7 >,{~ on page 11, and [ar.JtY"U~ of Equation (2-9), 

have each been designated as follows: 



100· 

I 

7.00" 

r--
700" 

uzs·~ 0.25'' ---10.00" 10.00· 10.00·---
2.2.5" 

Figure 13. Test Panel and Its Geometry 

__J_ 

--io.so" 
-+!1-+o-Q. D $ .. 

I 
I 

_J 

--io.2s· 

111_1 
, ... --io.25'· 

_j_ 

--io.SO" 

-J ~0.50" 
SECTION A-A. 

\JI 
\Jl 



56 

{qi} [or] 
[~) crw) - [sTREs:s] -

{8w} = [oELTAMJ 

r~nJ .. = 
true 

[ARNTRJ 
The digite,l computer program described and illustrated in Appendix 

C was used to calculate six sets of values for the above four matrices. 

Three sets of values or runs were made for each, the RDC-1 assumption 

and the RDC-2 assumption. 

The combination of the input matrices [ ALPIJ ], [AREINV ], [ GIM ], 

[G:m ], and. [FORCE] for each run is shown as follows;. 

Run No. 1: [ALPIJJ; [AREINVJ; 

[GrMJ, RDC-1 ; [<HR], RDC-1 ; 

[FoRcE]LC-1 

Run No. 2: [ALPlJJ; [AREINVJ ; 

[Grl"IJ, RDC-1; [GrR], RDC-1 ; 

[FoRcE]Lc-~ 

Run No. 3: [ALPIJJ ; [AREINVJ ; 

[GrMJ, RDC-1; [GrR], RDC-1 ; 

[FoRcE]LC-3 



Run No. 4: [ALPIJJ; [AREINVJ; 

[GrMJ, RDG~2; [GIR], RDG-2 ~ 

[FoRcE]LG-1 

Run No. 5: [ALPIJJ ; [AREINVJ ; 

[GrMJ, RDC-2 ; [GrRJ, RDC-2 ; 

[FoRcE]Lc-2 

Run No. 6: [ ALPIJ J ; [AREINV J ; 
[GrM}, RDG-2; [GrRJ, RDG-2 ; 

[FoRcE]LC-3 

The values of [Qr] are shown in Figures 14 and 15 the values of 

[sTRESS J are shown in Figures 16 and 17 and the values of [nELTAM J are 

shown in Table XIV. 

The products of Equation (2-9) were performed and these 

values which make up [ARNTRJ are shown in Table XV. The magnitude of 

these values indicates that the matrix [GI~ is almost error-free. 

This serves as a good check on the accuracy of values of [QI], 

[sTREssJ, and [nELTAM J. 
Since the two redundants choices produce results which are so 

similar, only RDC-1 was used in the analysis containing [ALPIJJ. • prs 

The values of [QI], [STRESS], and [nELTAM] produced by [AI.,PIJ Jprs 

analysis are shown in Figures 18 and 19 and Table XVI. 
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RDC-1 

RDC-2 

For all 
Load 

Configurations 

TABLE XIV 

[DELTAM J MATRIX 

NOTE; All values must be multiplied by 1/E 

LC~,l LC-2 
P1 =P2 :P3 :P4=l.O Ps=l.O 

120.8230 52.5279 

131.2030 18.7801 

131.2030 -15.0746 

120.8230 -52.2956 

3.9377 268.4080 

125.1380 54.1391 

133.0030 18.8426 

133.0030 -15.1283 

125.1380 -53°9236 

3.9300 268.4080 

TABLE XV 

[ARNTRJ MATRIX 

RDC-1 

1 -1.35601 E-06 
2 -1.84588 E-06 

3 -1.54250 E-06 
I+ -8.12133 E-07 

5 -6.07102 E=07 
6 =7 .07102 E-07 

62 

LC-3 
P2 =P:, =l.O 

57.5455 

73.6570 

73.6570 

57.5455 

3.7055 

58.9804 

74.0224 

74.0224 

58.9804 

3.7143 

RDC=2 

-1.60279 E-05 
-4.26322 E-05 

-3.86368 E-05 

-1.70259 E-05 
1o29342 E--,05 

8.41729 E-05 
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RDC-1 

TABLE XVI 

[DELTAM J MATRIX FROM EXTENDED FORCE ANALYSIS 

NOTE: All values must be multiplied by 1/E 

LC-1 LC-2 
P1 =P2 =P3 =P4 =1.0 P5 =1.0 

76 .~-964 28.7230 

76.7557 7.3656 

77.5933 -11.2631 

73.8320 -32.9868 

-8.1613 188.1140 

65 

LC-3 
P2 =P3 =l.O 

27.6396 

~-8.8485 

49 .. 6506 

28.2103 

=3°8975 
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Analysis by the Direct Stiffness Method 

The direct stiffness method has been employed in three separate analyses 

of the test structure in order to provide theoretical results with which those 

of the matrix force method may be comparedo Also~ the description and 

subsequent application of the direct stiffness method illustrates its 

basic characteristics in contrast to those of the matrix force method. 

The direct stiffness method is a finite element method of structur-

al analysis which considers a structure to be an assembly of idealized 

elastic elements which are assumed to be joined only at discrete points 

called nodeso The stiffness method is a contrast to the force methodj 

which is described in Chapter II, in that displacements, not forces, are 

the initial unknown quantities. The problem is directed toward the solu-

tion for unknown. displacements at the joints~ and the resulting stress dis-

tribution is calculated subsequently :from the displacements. In these terms, 

there are always as many equa:ti.ons of equilibrium available as there are u:n= 

knowns. The relationship of forces and of displacements is defined for 

the node points on the structure by the stiffness matrix. The stiffness 

matrix for the complete structure is obtained by adding the stiffness 

coefficients for common degrees of freedom of adjacent elements at each 

node on the structure. The summed stiffness coefficients define the 

coefficients for the linear algebraic equations relating the nodal 

forces and the nodal displacements of the complete structure. The 

general stiffness coefficient K, is the force in the direction j due 
Jll 

to the unit displacement in the direction h, while all other displace-

ments are zero. As a result of equilibrium conditionss the stiffness 

matrix is a posith)'e definite, symmetric matrix; and the sum of the 

coefficients along any row or column of the stiffness matrix is equal 
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to zero. 

The forces and deflections in each element of the structure are 

related by an assumed stress-strain relationship for the idealized ele-

ment. The displacements of the nodes in a structure are considered as 

the initial unknown quantities. A large number of mutually compat-

ible deformations of the elements are possible; the correct pattern of 

displacements of the elements is the one for which the equations of 

equilibrium are satisfied. 

If the idealized structural elementslfor which the stiffness coef-

ficients are known,are combined for a continuous structure, the compos-

ite stiffness matrix for the total structure is assembled as 

Kll K12 Kin Kim 

K21 K22 

0 

K .• 
JJ. Kjh K. 

Jm 

Kmi Kmh K 
mn 

Where each Kjh term is the stiffness coefficient representing the total 

force component produced at node j due to a corresponding unit displace-

ment component as node h. 

With the use of these ideas, the basic equations of the direct 

stiffness method can be summarized. These equations appear in Appendix 

Two theoretical elements are used in the direct stiffness analysis 

of the test structure of Figure 13. They are the planar bar element and 

the planar triangular element. The derivation of the stiffness matrices 

for each of these elements is given and follows mainly from the work of 
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Turner et al. (6). These matrices have been derived in a manner which 

is applicable to this particular application of the direct stiffness 

method to an analysis. These derivations appear in Appendix A. 

The stresses in each element may now be evaluated from the node 

point displacements. The equations for these quantities a.re given in 

Appendix A. 

Analysis of the Test Structure: 

Structural Idealization 

Three choices of structural idealization were used in this investi

gation. Each employs the constant stressed bar element and the constant 

stressed triangular element.· These three choices of idealization are 

shown in Figure 20. 

Idealization choice number one or IDC=l breaks the original struc

ture into an array of bar and triangular plate elements~ each original 

web being divided into two triangular elements. 

Idealization choice number two or IDC-2 is identical to ICD-1 

except the triangular plate elements replacing each original web are 

oriented in a different direction. 

Idealization choice number three or IDC-3 breaks each original 

web into four triangular plates and introduces a new hypothetical node 

at the intersection of the diagonals connecting the corners of each 

web. 

Calculation of the element stiffness matrices and the buildup of 

the stiffness matrix for the composite structure are implemented by the 

Stress Analysis System of Reference ~:11). A more detailed descript:fon 

and example listing of the Stress Analysis System is given in Appendix B. 
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Figure 20- Structural Idea.lizatlon Choic-2Js 
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Three separate analyses of the panel shown in Figure 13 are con-

ducted. The first analysis will utilize the two triangle web makeup of 

IDC-lo The second analysis will utilize IDC-2 which is also a two tri-

angle web makeup, but oriented in a different directiono The third 

analysis employs IDC-3 and is a four triangle web makeup. 

The three load conditions used in the matrix force method analysis 

are used in each stiffness analysis. These various load conditions 

appear in Chapter IV and have been described earlier in this chapter. 

The input data required for the Stress Analysis System consists of 

node numbers, element numbers and geometric descriptions of the ideal-

ized struct~re. Therefore, the first step for preparing input data for 

an analysis is to establish nodes, node numbers, idealized elements, and 

idealized element numbers. 

The idealized structure is then defined in terms of the number of 

the node point, the coordinates of the node point, the external load 

condition and load values acting on the node point, and the definition 

of the boundary condition at the node point. 

The idealized panel must also be defined in terms of the struc-

tural data. The structural data consist of the location of the ideal-

ized elements relative to the node points, the type of structural 

element, and the description of its material properties. 

- i;,, The node data and the structural data are then employed in 

evaluating the stiffness matrix of the appropriate element. If the 

element is a bar, [ K J of Equation (A=?) is evaluated; if the element is a 

,triangular plate, [ K J of Equation (A=l?) 1.s eYaluated. 

The content of the stiffness matrix: for each 'bax" and plate element 

may now be combined into a composite stiffness matrix for the entire 
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structure by tabulating the contribution of the elements to the various 

modes of the structure. 

Generation of Node Point Displacements; 

Fo~ces and Element Stresses 

As described in Appendix Aj the unconstrained node point displace-

ments are the result of the product of the inverse of the partitioned 

composite stiffness matrix and the external forces acting on the struc-

ture. Nodal displacements for IDC-1~ IDC-2~ and IDC-3 are shown in 

Table XVII. 

If { 6} in Equation (A-18) are set equal the nodal displacements, the 

internal forces acting at each node may now be calculated with the use 

of [KJ = [ K J, the composite stiffness matrix. Forces acting on 

externally loaded and reaction nodes are shown in Figure 21 for.the 

third idealization choice and each load condition. 

The stresses in each bar element may be calculated ivith the use of 

Equation (A-23) by employing the end point displacements of each bar. 

Plate element stresses may be calculated by evaluating Equatio~ (A-24). 

Element stresses for the third idealization choice and each of the load 

conditions are shown in Figures 22j 23, and 24. 

This chapter has included the explanation of and the results of 

analyses of the test structure by both the matrix force method and the 

direct stiffness method. A more detailed and extensive analysis was 

performed with the matrix force method while an abbreviated analysis was 

conducted with the direct stiffness method. 

The test structure was first analyzed with the matrix force method 

in its unmodified form. Two choices of redundants were used along with 



the u..rimodified [ALPIJ] matrix. A second analysis was performed with 

the new [ALPIJJ. matrix~ which accounts for Poisson°s ratio and sweep . prs 

effects, included in the modified version of the matrix force method. 

The final analysis of the test structure was performed with the direct 

stiffness method to provide a theoretical comparison w~th the results of 

the second analysis utilizing the new [-ALPLJJ matrix. prs 

The results of.the analysis by the unmodified matrix force method 

indicate that the two redundants choices~ RDC-1 and RDC=2;) produce val-

ues of internal forces 9 element stresses and load point displacements 

which are quite similar. This shows 9 among other things;) that the input 

matrices were accurately calculated. 

A general comparison of the results of the analysis with the modi

fied version of the matrix force method including the new [ALPIJJ prs 

matrix with those of the unmodified matrix force method shows that all 

results: :internal forces, element stresses and load point displacements, 

of the modified method are significantly smaller in value than those of 

the unmodified version. 

F:inally, a comparison of the results of the analysis with the modi-

fied matrix force method with those of the direct stiffness method indi-

cates favorable agreement of the element stresses and the load point 

displacements. 
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TABLE XVII 

LOAD POINT DISPLACEMENTS 

LCl LC2 LC3 

o.7259x10-~ 5 o.3117x10-5 +o.2785x10:6 
o.7554x10-5 +o.922ox10 6 o.448lxl0-~ 

IDC-1 o.7548x10:5 -o.7852x10-5 o.4506x10-5 
o.7212x10 5 -0.2874x10=4 o.2998x10-6 
o.4784xlO- o.1738x10- o.1367x10= 

_t:: 

o.2843x10:~ o.2998x10:§ o.7212x10 ~ 
O. 75L~8xlO-5 o.8577x10_6 o.4506x10 5 

IDC-2 o.7554x10:5 -o.9252x10 5 o.4481x10:5 
o.7259x10_6 _,o.3106x10-4 o.3117x10 

-0.3303xlO o.1749x10= -0.67L~9x10-? 

o.7237x10-~ o.327ox10:§ o.2892x10=§ 

IDC-2 
o.7615x10-5 o.105l+x10 _6 o.4723x10=5 
o.7615x10"" -0.9497xlo_5 o.4723x10=5 
o.7237x10=5 -o.3448x10 4 o.2892x10-6 

-o.739ox10-7 o.1879x10- o.1046xl0-
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CHAPTER IV 

EXPERIMENTAL ANALYSIS 

The purpose of this experimental investigation is to provide data 

for direct comparison to the analytical methods. Since the structural 

:idealization techniques provide a unique and somewhat unrealistic struc

tural configuration~ prior experimental data are unavailable for compar

ison purposes. The experimental facility and the structural skin panel 

that were developed for this investigation are shown in Figure 25 and a 

general floor plan of the facility is given in Figure 26. 

One objective of the experimental investigation is the determina

tion of the complete state of strain at various points in the model for 

three conditions of external loading. The strain gages are positioned 

on the panel at points which correspond with points easily selected for 

the analytical solutions. These locations of the strain gages reduce 

any errors that might occur as a result of extrapolating either the 

analytical or the experimental data. 

The research model was mechanically milled from ~8 ,q X 36 uu X 96 

aluminum 2024=T351 bare plate~ QQ A 250/4C., by Northwest Engineering 

Company., Oklahoma City~ Oklahoma. This material was selected "because 

of its high utilization in current aircraft programs. The panel was 

machined from one-half inch thick plate to eliminate joints. The panel 

and its geometry are shown in Figure 13. 



Figure 25. Experimental Facility and Structural Skin Panel 
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Test Apparatus and Instrumentation 

A list of the major equipment in this test program is given in. 

Appendix F o 

were: 

The types of strain gages selected for this experimental program 

Manufacturer 

Type 

Gage Factor 

Resistance 

Axial 

The Budd Co. 

Cl2-12l=A 

:2 .. 07 ± 72% 

120 ± Oo2 ohms 

Rosette 

The Budd Coo 

Cl2-121D-R3Y 

2.03 t 72% 

120 :t Oo2 ohms 

Eastman 910 cement was used to bond the strain gages to the sur

face of the model after the surface of the model had been prepared using 

sandpaper~ trichlcrethylene~ and an acid neutralizer. A three-wir,':I 

system was used to connect the strain gages to the read out instrumenta= 

tion in order to cancel the effect of changes of wire resistance 

encountered due to changes in room temperatureo 

The strain gage data recording instrumentation consists of Budd 

Model P 350 Strain Indicators and Budd Model SB=l Switch and Balance 

Units. These portable strain indicators and switch and balance units~ 

shown in Figure 27 were used to record a total of 188 channels of 

strain data. 

Deflections were measured with Starrett Dial Indicators. The 

indicators have a range of 0 .. 4 inches and a graduation of OoOOOl in,::;'h. 

The dial in.cl,icators were located at the boundary of the panel as shown 

in Figure 28. Data from these dial indicators were used to determ:i!.ne 

the deflected shape of the panel. Appendix F contains a deta:lled 
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Figure 27 . Portable Strain Gage Instrumentation 



Figure 28. Experimental Tapered Reinforced Skin Panel 
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explanation of the calibration of the dial gages. 

The loads were applied with an Empco Vertical Motion Jack Style 

JH-20, purchased from the Enterprise Machine Parts Corporation .. Pre

liminary tests indicated that these mechanical load devices were satis

factory for this type of static testing. BLH SR-4 Load Cells were used 

to monitor the external loads on the panel. The loading system is 

shown in Figure 29. These load cells were calibrated by the manufac

turer for an accuracy of± 0.25 percent of full scale load value. 

In order to read both load cells on the BLH SR-4 Indicatorj the 

load cells were connected to the indicator through the BLH Switch and 

Balance Unit, and the system calibrated for a gage factor of 2.0. The 

SR-4 Load Cells were used to calibrate the BLH, Type N, Indicator 

against the Budd portable indicators based on the calibration fact.ors 

specified by The Budd Companyo The system was also calibrated ~~th· 

test equipment at the Halliburton Oil Company, Duncan~ Oklahoma. A more 

detailed explanation of this calibration is given in Appendix E. 

The loading system is shown in Figure 29. Load=divider systems 

shown in Figures 25 and 28 were used to divide the load symmetrically 

to the various load points for load configuration numbers one and 

three. 

The basic loading fixture for the experimental investi= 

gationj Figure 25,was designed, fabricated, and used in previous 

experimental programs at Oklahoma State University (11)~ (12)o 

One of the most critical aspects of testing these small structural 

con.figurations for deflection and stress characteristics is the manner 

in which the model is supported in the loading fixtu.re. The support 

system must not contribute effects at the supports which cannot be 
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represented accurately as boundary conditions. The support system 

should be rigid enough to minimize the contributions to the panel 

deflections for maximum loads. Two types of support configurations 

were considered: a simple support configuration 9 and a fixed=base 

configuration. Either of these support configurations could be handled 

accurately in the analysis; howe,rer 9 due to the results of Ayres 0 (12) 

work, the fixed support system, Figure 30 was chosen. A large factor 

affecting this choice was a result of friction in the sliding support 

which must be assumed friction. free. 

Preliminary tests were conducted on the panel 11.i:li.th twenty strain 

gages to determine the panel alignment characteristics and to verify 

the design and application of the related test equipmento The objec

tives of the preliminary tests were: 

1. To ascertain out-of-plane bending and torsion effectsi 

:2. To ascertain the linearity of the load deflection 

relationships; 

3 o To determine hysteresis effecd:;s 9 

4o To de-termin.e the amount of preload required to remove 

the initial joint slippage in the model. 

The results of these preliminary tests indicated that hysteresis 

effects were negligi'ble for the load condi tfons to be investigated. I:n 

addition~ the model yielded linear results with strains of sufficient 

magnitude to be recorded easily from the available equipment for the 

desired load leve,lso Stress concentration effects were 

observed from both the load divider system and the support system. 

These unavoidable effects were not excessive and 9 hence~ did net 

prejudice the experimental data. 
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Figure 30. Support System 
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The preliminary tests did indicate that a small amount of out-of-

plane deformation was present in the model as a result of the machining 

operationo This initial deformation had a significant effect on strain 

measured at the surface of the stringers and ribs. The strain gages on 

the stringers and ribs were actually one-fourth inch from the center 

plane of the modelo However~ good results were obtained by using 

-~train gages located opposite each other on the ribs and stringers and 

by using the avera~e of the two readings. 

The initial shape of the model also had a significant effect for 

the shear load configuration. The initial eccentricity resuited in 

less load capacity than would have been present for a perfect model. 

This difficulty was overcome by using a 10,000-pound uniform preload to 

straighten the model for the shear load configurationo Since the com-

bined load was still in the linear load-deformation range 3 the effect 

of the 10~000-pound uniform load was easily segregated from the shear 

load effects. 

Subsequent to the completion of the preliminary tests, an addi

tional 168 strain gage legs were applied to the model at the typical 

locations shown in Figure 31. In many cases, redundant gage locations 

were used to check the symmetry of load distribution. The axial and 

rosette gages were numbered as shown in Figure 3lo All axial gage num-

bers begin with "01Q9 signifying one leg 9 while all rosette leg numbers 

begin with 00 3 1\ signifying three legs. All even numbered legs a.re 

located on the side shown in Figure 31 and all odd numbered legs with 

the 00 =0°0 designation are mounted on the opposite side~ 00 mating'0 1.dth 

the appropriate even numbered legs. The numbering system was designed 

to provide maximum flexibility in the adding or in the changing of 
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Deflections and internal load distributions were determined experi

mentally for the fundamental types of applied loads that are found on 

actual aircraft structural skin panel configurations. The test config

uratj_ons are divided into three load conditions. These three load co11-

di tions are sho\llm in Figure 3.2. The force values corresponding to the 

configurations are shown in Table XVIII. Data for each test configura= 

tion were obtained_ after a check out of the test equipment. 

Three tests corresponding to the appropriate load conditions were 

conducted. These tests are shown in Table XVIII. All strain gages were 

monitored during each testo A:tl experimental strain data were :reduced 

to final ,ralues of stress by techniques explained in Appendix E. 

Deflection data were obtained for the magnitudes of external loads 

shown in Table XVIIL Since hysteres:i_s effects were demonstrated to be 

small in the preliminary test 9 data were recorded for increasing loads 
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LCl 
TEST 2 

LC2 
TEST 3 

, LC3 
TEST 1 

pl 
pl:! 
PS 
P4 
p5 

pl 
P2 
PS 
P4 
ps 

pl 
p2 
PS 
P4 
p5 

1 

1 
1 
1 
1 
0 

0 
0 
0 
0 
1 

0 
1 
1 
0 
0 

2 

250 
250 
250 
250 

0 

0 
0 
0 
0 

200 

0 
250 
250 

0 
0 

3 

500 
500 
500 
500 

0 

0 
0 
0 
0 

400 

0 
500 
500 

0 
0 

4 

750 
750 
750 
750 

0 

0 
0 
0 
0 

600 

0 
750 
750 

0 
0 

TABLE XVIII 

FORCE VALUES 

5 

1000 
1000 
1000 
1000 

0 

0 
0 
0 
0 
Boo 

0 
1000 
1000 

0 
0 

6 

1250 
1250 
1250 
1250 

0 

0 
0 
0 
0 

1000 

0 
1250 
1250 

0 
0 

7 

1500 
1500 
1500 
1500 

0 

0 
0 
0 
0 

1200 

·O 
1500 
1500 
0 
0 

8 

1750 
1750 
1750 
1750 

0 

0 
0 
0 
0 

1400 

0 
1750 
1750 

0 
0 

9 

2000 
2000 
2000 
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0 

0 
0 
0 
0 

1600 

0 
2000 
2000 

0 
0 

10 

2250 
2250 
2250 
2250 

0 

0 
0 
0 
0 

1800 
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2250 
2250 

0 
0 

11 

2500 
2500 
2500 
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0 

0 
0 
0 
0 

2000 

0 
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2500 

0 
0 
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at equal inter,rals for the number of observations during each test con

dition as shown in Table XVIII. The deflection data are shown in the 

experimental portions of Tables XIX~ XXi and XXI of Chapter V. 

The stress data for each load condition are shown in Figures 34, 

35, and 36. In these figures, the stress values are given in terms of 

PSI per pound of load cell load. For example: to obtain the correct 

values for LC-1, the values of Figure 34, should be multiplied by 4. 

This chapter has provided a detailed explanation of the experimen

tal analysis conducted on the test structure. The purpose of and the 

main objective of this experimental investigation have each been out

lined. The construction of the test struc tui•e itself was described in

cluding details of the material employed, the manufacturer, etc. 

The testing facility and all load application equipment, strain 

measuring apparatus, and deflection measuring equipment ha·l'·e been pre

sented. The calibration of all pert.inent equipment was ghren. The 

representative load configur ations used were illustrated along with the 

force values corresponding t o each configura~ion. 

All stress data wer6' calculated from strain data measured directly 

by the portable strain gage instrumentation. The s t rain data were 

reduced from ten obseryations at each strain gage leg location to a 

representative value of strain per unit l oad cell load by the least 

squares fit criterion of statistical theory. This treatment of the 

experimental strain data is explained in Appendix E. 

All experimental deflection data were reduced by hand and Yerified 

to~ certain extent by comparing the deflection values of loaded points 

in the axial direction wi.th those values determined by summing the 

strain da·::;a at represent ati~ve points along t he axis of each stringer. 
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This compa.rison showed good agreement between the experimentally meas

ured deflection data and the approximate integration of the axial strain 

values along the stringers" 

The above comparison and the result of thE\ calibration of all 

critical measuring equipment indicate that all experimental data are 

correct within a reasonable am01.mt of accuracyo 



CHAPTER V 

COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS 

The objective of this research effort is to develop the capability 

for the analytical and experimental investigation of integrally rein

forced tapered skin panels with finite element methods of structural 

analysis. The analytical capabilities, which are developed, include 

both the force and direct stiffness methods of structural analysis. 

The stiffness method of analysis demonstrates how a structure with 

complicated geometry can be analyzed with relatively simple theoretical 

elements through idealization. All three analyses were performed wi th 

the digital computer specifying only the geometric and structural con

figuration of the skin panel. The analysis capability is described in 

Chapter III and Appendices A and B. The results of the stiffness 

method analysis serve . as both a check and theore t i cal comparison 

for the results of the analysis by the matrix force method. 

The matrix force method of analysis was used for the more extensive 

investigations of the structural skin panel. It demonstrates the redun

dant load paths that are possible in the analysis of complex skin struc

tures. The accuracy of the matrix force analysis is influenced by the 

choice of the idealized statically determinate system. The idealized 

systems used in this investigation satisfactorily represent the princi

pal load paths throughout the structure. The idealization resul ted in 

well-conditioned matrices preserving computational accuracy and stress 

98 
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variations that represent the actual structural behavior. Consequently, 

good results are obtained from the matrix force method of analysis. The 

analysis capability is available for further study of any class of two 

dimensional structural configurations. The scope of these problems is 

too broad to be mentioned here. 

The experimental capabilities developed during this and previous 

investigations have provided fundamental procedures and equipment that 

are applicable for numerous future research programs. Some of these 

possibilities are suggested in Chapter VI. 

A total of three t ests were performed with the integrally rein

forced tapered panel, using three load conditions applicable for this 

type of structure. These three load conditions have been described in 

Chapters III and IV. Only the basic data required for comparison to 

the analytical results are reported in this thesis. Data from addi t ion

al tests would only duplicate the basic information given in this chapten 

The basic data reported here are sufficient to indicate the good 

agreement between the analytical and experimental results. This agree

ment demonstrates the applicability of the finite elements methods of 

structural analysis for planar stiffened shell structural skin panels. 

The comparisons of the analytical and experimental stress results 

at typical points on the panel are shown in Figur~s 37 throµgh 44. The 

comparisons of the analytical and experimental deflection results for 

points on the edge of the panel are shown in Tabies IX, X, and XI . 

The deflections representing the corner point where the shear l oad 

is applied are actually shown for two different points located as close 

as possible to each other. The analytical data are obtained for the 

exact point where the shear load is appl ied. Due to the l oading syst em , 
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it was not possible to place a dial indicator at the same point. 

Therefore, the experimental data are obtained for a point approximately 

two inches from the point where the shear load is applied. 

The experimental deflection data shown in Table~ IXj x, ~nd XI are 

corrected based on the measured deflections of the supporting system. 

Figures 37, 38, and 39 show axial stress values produced by load 

conditions 1, 2, and 3, respectively. The stress values are oriented in 

the x direction and are plotted at the strain gage locations along the 

center point of the center bay of the test structure. The reference 

point for plotting is the longitudinal centerline of the test structure. 

Distances to the left of the centerline are negative while those to the 

right are positive. A "best fit" straight line has been drawn by hand 

through the experimental data points. The dimensio~s of the test struc

ture are shown in Figure 13 and the strain gage locations are shown in 

Figure 32. Figure 44 is very similar to Figures 37, 38, and 39 except 

that it shows values of shear stress produced by load condition 3. 

These shear stress values were plotted at the strain gage locations 

along the center point of center bay of the test structure. Only those 

locations resting on the surface of the webs are applicable since only 

single legged axial gages are mounted on the surface of the stringers 

and, furthermore, the modified or extended matrix force method contains 

no assumption that the idealized bar elements carry shear stress. 

Figures 40, 41, 42, and 43 show values of axial stress produced by 

load conditions 1, 2 1 and 3. These stress values are plotted along the 

axes of the stringers. The experimental values appear opposite the 

strain gage locations on each stringer while the values from the ex

tended matrix force method which contains the new flexibility matrix 



[ALPIJ Jprs appear at the 11 idealized junctions" of the bar elements 

making up each stringer. 

Tables XIX 3 XX 1 and XXI show experimental values of load point 
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deflection versus theoretical values. The theoretical values a.re those 

produced by the extended matrix force method with the new [ALPIJJ 
prs 

matrix included. The experimental values from two representative tests 

were averaged and normalized for measured base deflection. 

Figures 37 and 40 conta:1.n stress results produced by each of the 

four analyses of the test structure: 

extended matrix force analysis which 

the experimental analysis, 

contains the new [ALPIJJ prs 

the 

matrix, the unmodified version of the matrix force method employing 

redundants choice number 1 and the direct stiffness method. As can be 

readily seen from these two figures, a very definite improvement in the 

axial stress results has been made ·ty the use of the new flexibility 

matrix~ [ALPIJJprs included in the extended version of the matrix force 

method over those of the unmodified version of the matrix force method. 

This fact is born out by Figures 38, 39~ 41, 42, and 43. Furthermore~ 

the results of the extended matrix force method agn?.e quite favorably 

with those of the direct stiffness method. 

As can be seen from Tables XIX~ XX, and XX!? the values of load 

point deflection produced by the extended matrix forc:e method agree very 

well with the normalized average of the experimental values. 
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TABLE XIX 

COMPARISON OF DEFLECTIONS FOR LC-1 

10~000 LB 

t 

EXPERIMENTAL THIDRETICAL 
Point of Normalized 
Deflection Test l Test 2 Average 

1 000275 0.0281 0.0188 0.0180 

2 0.0274 0.0287 0.0188 ·• 0.0181 

3 0.0255 0.0261 0 .• 0177 0.0183 

4 0.0259 0.0267 0.0194 0.0174 

*Normalized Average deflection are adjusted for measured base 
deflection. 
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TABLE XX 

COMPARISON OF DEFLECTIONS FOR LC-2 

20 

10 

0 Test 
A Theory 

0 

EXPERIMENTAL THEORETICAL 
Point of 
Deflection 

A 

B 

C 

Test 1 

0.0'257 

0.0179 

0.0074 

Test 2 

0.0273 

0.0185 

0.0084. 

*Normalized 
Average 

0.0174 0.0177 

0.0117 

0.0044 

*Normalized Average deflections are adjusted for measured base 
deflection. 



Point o:f 
Deflection 

l 

2 

3 

4 

TABLE XXI 

COMPARISON OF DEFLECTIONS FOR LC-3 

EXPERIMENTAL 
Normalized 

Test l Test 2 Average 

0.0120 0.0122 0.0081 

0.0156 0.0171 0.0118 

0.0165 0.0189 0.0120 

0.0106 0.0118 0.0079 
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THEORETICAL 

0.0065 

0.0115 

0.0117 

0.0067 

*Normalized Average deflections are adjusted for measured base 
deflection. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

At the outset, it was stated that the purpose and goal of this 

research effort was to de\relop an improved capability for the analysis 

of stiffened sh,e,11 structural skin panels and to demonstrate this im= 

proved capability by the comparison of experimental and analytical re-

sults. Furthermore 9 it was stated that in order to first dev(:;lop this 

improved capability for the analysis of stiffened shell structural skin 

panels and then to demonstrate it, four distinct tasks were undertaken. 

These tas~s were: 

1. To derive a new flexibility matrix for trapezoidal shaped 

plate elements. This new flexibility matrix would take 

into account both the effects due to Poissonqs ratio 

coupling and those due to sweep. 

2. To modify the matrix force method for the inclusion of 

the new flexibility matrix from item one for analys1.s 

purposes. 

3. To develop a digi ta.1 computer program which would imple= 

ment both the mod:i.fied and unmodified versions of the 

matrix force method. 

4. To formulate a regimented approach to the determination 

of [ GIM ]~ the matrix which contains the internal general

ized load dh,tribution due to a given external load and 
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[GrRJ~ the matrix containing the internal generalized 

load distribution due to a given redundant load. 
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The test structure was first analyzed by the unmodified version of 

the matrix force method. Then, the new [ALPIJ~rs matrix was derived 

and the matrix force method was modified for its inclusion. The test 

structure was analyzed with the extended force method containing 

[ALPIJ~rs· To provide a theoretical check and comparison for the re

sults of the extended force method, the test structure was analyzed with 

the existing form of the direct stiffness method. The results from all 

of the above analytical investigations were compiled and presented. In 

order to provide a basis for ascertaining improvement of the capability 

for theoretically analyzing stiffened shell structural skin panels, an 

experimental investigation was conducted of the test structure. The re-

sults of this investigation were compiled and presented. Then, the re

sults of the analysis with the unmodified matrix force method, the 

results of the analysis wit h the extended matrix force method, the 

results of analysis with the direct stiffness method and the results of 

the experimental analysis were all brought into sharp comparison. 

The subsequent conclusions have been reached as a consequence of 

the previous effort. 

1. A very definite improvement in the prediction of stress 

and displacement characteristics of planar, tapered 

stiffened shell structures has been produced by the use 

of the extended version of the matrix force method which 

contains the new [ ALPIJ 1rs. Th.is matrix applies to all 

pJ.1:1'1.ar, trapezoidal aha:ped plates &:.ccept those for which 

two corners approach one point. The analysis of a 



complete fam:.ly of t::::'·a.;,ezoi.l&l :r;la-c:E',s t o de :;&:::'1'1,ine a criti-

cal value of the ar.,.gle r.p, abo7e which I ALPIJ.Jpl would W)~ 
L rs 

apply, would ~equire a very expensive experimental program o 

2. The results of the analysis with the extended matrix 

force method agree well with those of the analysis wi.th the 

direct stiffness method. This enhances and reinforces the 

first conclusion, above. The characteristics of the direct 

stiffness method have been contrasted with those of the 

matrix force method and , as a result, better insight into 

the application of these two methods has been provided. 

3. A good capability for analyzing planar, tapered stiffened 

shell structures by experimental means has been established. 

The experimental facilities as outlined in Chapter IV are 

capable of providing correct results within a 1•easonable 

amount of accuracy·o. The development of techniques for sta-

tistically reducing the strain- data prov~des a valuable tool 

for future researchers in this area. 

4o The matrix force method having been modified for the in

clusion of [ ALPIJ 1rs 'becomes a well developed vehicle 

within which other idealizations may be included for sub-

sequent analyses of planar , tapered stiffened shell skin 

panels. This method has been developed from a general 

standpoint and , consequently, is applicable to a broad 

class of structural configurations. 

5. The digital computer program which implements the extended 

matrix force method is an important companion to the ex-

tended matrix force method. Having been developed with 
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the concept in mind of writing a ''main II program, which, in 

turn~ calls upon existing subroutines to perform required 

matrix operationsj this computer p~ogram is quite flexible 

and is also applicable to a broad array of force analyses. 

6. The regimented approach to the determination of the [arMJ 
and [GIRJ matrices is a very definite improvement oYer the 

haphazard writing of overlapping freebodies and the in-

valved solution of the resulting freebody equations. This 

approach enhances and broadens the applicability of the ex-

tended matrix force method to say nothing of the reduction 

of the chance for hwnan error involved in developing [arMJ 
and [aIR J. 

Recommendations for Future Work 
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In add:'ttion to the conclusions just mentioned, this study precipi-

tated many topics for future study and scrutiny. The current investiga-

tion could be advanced to deal with planar stiffened shell structures 

of arbitrary geometry such as the quadrilateral. The extension of the 

present development of the [ALPIJJ to a quadrilaterally shaped 19 ce11" prs 

of stringers and ribs bordering a plate of this same configuration and 

its subsequent application to an analysis would be a very interesting 

topic for future consideration. 

The current investigation could be continued for a cutout in the 

center section of the planar skin panel de.scri·bed in Chapter IV. The 

capabilities developed in this program can be used for direct applica-

tion to the problem of cutout sections. Extending the analysis capabil·· 

ity for arbitrary cutout configurations would be valuable for practical 
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aircraft design considerations. 

A broad extension of the present capability would be the analysis 

of three dimensional structures beginning with various shapes of box 

structures containing components which could be idealized into an array 

of bar and plate elements of arbitrary configuration. 

Another topic for future investigation would be the development of 

a fully automatic digital computer program to implement the matrix force 

method. The flexibility matrices of various theoretical elements could 

be combined in.a symbolic manner within this program such that a given 

flexibility matrix could be 00 built up 00 automatically. Also, the scheme 

for writing generalized freebody equations could be programmed such that 

[GrMJ and [GrRJ would be calculated automatically as soc~ as a choice of 

redundants was made. These two features combined with the main matrix 

force program given in Appendix C would allow the researcher to obtain 

results automatically With a choice of redundants. 

As a result of the broad ciass of problems encountered in this in-

vestigation, it is recommended that future studies make full use of the 

current computing capabilities. In addition, a study of idealization 

techniques and computational procedures would be a valuable contribu-

tion, providing significant reductions in computer running time. 
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APPENDIX A 

BASIC EQUATIONS, DERIVATION OF ELEMENT STIFFNESS 

MATRICES FOR THE DIRECT STIFFNESS METHOD 

Basic Equations 

The nodal forces on a structural element can be expressed in terms 

of the nodal displacements by the equation 

where 

{f} = column matrix of nodal forces on an element, 

{s} = column matrix of nodal displacements of an element) 

[ K] = square 1 symmetric matrix of stiffness coefficients for 

an element. 

(A-1) 

The stiffness coefficient matrix for the complete structure can be 

obtained by superposing the element stiffness matrices. The resulting 

matrix equation is of the form 

(A-2) 

where 

{F} = column matrix of external forces at the nodes of the 
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structure (including reactions)> 

{be}= column matrix of nodal displacements (including boundary 

displacements), 

[K~ = square, symmetric matrix of stiffness coefficients of 

the entire structure. 
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Once the displacements have been obtained, the internal forces can 

be calculated for each element from its force-displacement equation 

(Equation (A-1)); or, since the stresses in an element can be expressed 

in terms of the nodal forces, stress-displacement equations can be 

derived for the elements, and the stresses can be determined without 

first finding the nodal forces. 

Development of a Stiffness Matrix for 

the Planar Bar Element 

If loads are applied at points (nodes) 1 and ~, each node 

can experience two components of displacement. Therefore, prior to the 

introduction of boundary conditions (supports) the stiffness matrix, 

[K] w111 be 4 x 4. 

In order to develop the terms in the [K] matrix, each deformation 

component must be considered singularly, i.e., 

u.1 , U.i. = deflection in the X direction, 

v, > V-z.. = deflection in the Y direction, 

then, the results are superimposed. 

From a consideration of the bar element in Figure 45, it is assumed 
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Figure 45. Planar Bar Element 

From Figure 45, the expression for ~L is 

Ll L-= U-z. COS Bx• 

If the expressions for cos8 and cox8 , are 
X y 

COSBx= A> 

COS Gy = f.lJ 

then the expression for ~Lis 
11 L == Ll-z. A , 

Then t (F-~) relation for an axially loaded member is 

The components of the force Pat node "2 11 are 



From static equilibrium of the member, i.e., L Fx=O 5 LFy=O) 

the expressions for the forces are 

h<, = -Fx,.. = _(AL~ j >ttJ .... ) 

Fy, =-Fy~ = -( AC j\f-LU.r. • 
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(A-4) 

(A-5) 

(A-6) 

From a similar analysis for v2 , u1 , and v1,, the forces are expressed as 

r;1 '!: U, 

~ _ AE \f-L µ?... SYMM V, 
(A:7) 

--c- ) 

~2 
-\'Z. -\f-L \'Z. U..2 

FYz. -\f-L -fl, \fl, µ1-. Vz. 

or the forces are expressed as 

{F}=[KJ{s}-

Derivation of the Stiffness Matrix 

for the Tri~ngular Plate Element 

The first step in the development of the triangular plate stiffness 

matrix is to express the three components of the strain within each 

element in terms of the six corner displacement. The geometry of a 

typical triangular plate element is defined in Figure 46. 

The assumed displacement pattern is shown in Figure 47. 



1:24 

::========--a-s-------------~~1 __ ......__,_xJ~ 

Figure 46. Element Dimensions 

y 

----

i----U;--~ 

Figure 47. Assumed Displacement Pattern 
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The strains within each element are obtained from th~ displacement 

pattern by considering the basic definitions of strain. 

au_ 
Ex= c)X 

_av 
Ey - c) y 

au. 
'Yxr = a y + OV 

ax • 

If each component of strain is set equal to a constant, linear 

displacements of the following form may be solved foro They are 

(A-8) 

(A ... 9) 

Since each node of the triangular plate,Figure 48,can undergo dis

placement in two directions, Equation (A-9) may be evaluated in terms 

y,v 

2 

3 

Figure 48. Triangular Plate Nomenclature 

-~ ,., 
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of the coordinates and displacements of the three nodes. This provides 

six equations from which the six unknown constants C1, C2 , c3, C4 , C6 ~ 

and C6 may be found. 

Now, Equation (A-8) may be evaluated in terms of the constants Ci 

and in matrix form is 

{E}= [A]{s}) (A-10) 

where[/\] is a transformation matrix in terms of the coordinate and 

displacements of each of the three nodes. 

For isotropic materials which obey Hooke's Law 

where 

V = Poisson's ratio. 

Ex ~ i ( Ux - Q vy } 

Ey -.;. ~ ( Cfy - ~ Ux } 

'V _ rrxy ~ 2(1 + v)1xy 
txy- ~ E (A-11) 

If Equation (A-11) :ts solved for a . a. , and 1:' and the results put in 
X' y xy 

matrix form~ they would appear as 

Gx 1 v 0 Ex 

Uy 
E v i 0 Ey (A-12) = 1. - \J'a 

'fxy 0 0 
1-v 'Xv 2. 

or~ in symbolic form 
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(A-13) 

The stress from the three assumed load states shown in Figure 49 

are now transformed into resultant forces acting at the corners of the 

element. 

ft ff !tt!tttt 
3 

Figure 49. Stress Resultants for the Triangular Plate 

Then an expression for the forces can be written as 

{ F} = [c]{o}> (A-14) 

where {F} is the set of resultant forces at the nodes of the plate. 

The element stresses can be expressed in terms of corner displace-

ments by substituting Equation (A-10) into Equation (A-13) to give 
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{u} ~ [8][A]{8}· (A-15) 

The substitution of Equation (A-15) into Equation (A-14) yields 

{ F} = [ C ][ B ][A]{ s}. (A-16) 

Equation (A-16), which is an expression for corner forces in terms 

of corner displacements, can be written in the following form 

{F} = [K]{s}, (A-17) 

with the expression for [ K J being 

[ K] = [ C] [ B] [A] ) 

where [K] is the 6 X 6 stiffness matrix for the triangular plate element 

and is given in Figure 50. 

Determination of Deflections 

The content of the stiffness matrix for each bar and plate element 

may now be combined into a composite stiffness matrix for the entire 

structure by tabulating the contribution of the elements to the various 

nodes of the structure. The expression for the forces is. 

(A-18) 

where [K~J is the composite stiffness matrix of the structure. 

The application of the constraints of fixity (also thought of as 

boundary conditions) will render a certain subset of { c5') equal to zero. 

rr{F}, [ Kc] and { S}a'l:"e each permuted such that the zero subset of{cS} 

appears in the lower half of the column, then the equation 
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can be partitioned such that 

(A-19) 

where 

{sJ is the nonzero subset of{&} • 

Then, the required deflections are given by the expression 

(A-20) 

where {F-} is the set of external forces and {6"-} deflection at each 

unconstrained node due to {F~)· 

Calculation of Stresses in the Bar Element 

V, 

Figure 51. Deflection Diagram of Bar Element 
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From Figure 51~ the expression for stress is 

(A-21) 

where 

A= area of the element. 

But 61 and 62 may be expressed as 

62 = u_-z COS 8x-+ V-zCOS9y -= U,_\ + Vzf-l> 

(A-22) 

Then, substituting for 61 and bz, Equation (A-21) becomes 

or, in matrix form, the expression for a becomes 

Oi-1> = f = +[-A-µ A µ J ( I} 
Calculation of Stresses in the Triangular Plate Element 

The set of deflections { ~o...} may be substituted back into Equation 

(A-15) to give 

where the product [ B][ A J depends on nodal coordinates, Young's 

modulus and Poisson 1 s ratio. 

(A.,,24) 



APPENDIX B 

STRESS ANALYSIS SYSTEM 

The Stress Analysis System is a digital computer program using 

matrix methods based on discrete element idealization for two

dimensional structures. The complete solution for deflections and 

stresses requires only that the structure be defined in terms of its 

geometrical characteristics and types of structural elements. The 

structure is first idealized as an assemblage of discrete structural 

elements. Each structural element has an assumed form of displacement 

or stress distribution. The complete solution is obtained by satisfying 

the force equilibrium and displacement compatibility at the junctions of 

the elements. Thus, the conditions of equilibrium and compatibility are 

satisfied at only a finite number of points which do not necessarily 

imply any appreciable loss of accuracy. When the size of the element 

is sufficiently small in relation to the over-all size of the structure 

and the variations of stresses within the structure do not exceed those 

allowed in the mathematical model, the discrete element methods give 

good approximations to the exact solutions. 

The displacement method is the basis for developing this digital 

computer program for analyzing two-dimensional rectangular panel config

urations for arbitrary load and support conditions. The system provides 

solutions for displacements and internal or external forces at the 

structural node points and stresses at any stress node points defined 
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for the structural element. 

The input data required for the Stress Analysis System consist of 

node numbers, element numbers, and geometric descriptions of the ideal

ization structure and locations of desired stress results on the ele

ments. The program is divided into the following categories: 

1. Geometric description of the structure. 

2. Idealized description of the structure. 

3. Generation of stiffness matrices. 

4. Generation of stress matriqes. 

5. Deflection solution. 

6. Reaction force solution. 

7. Generalized stress calculations. 

8. Printing of analysis results. 

The first step for preparing the input data for the ana!ysis is to 

simulate the actual structure as an assemblage of idealized elements, 

which is commonly referred to as the idealized structure. 

The structure is formed from available elements, i.e., stringers 

and triangular plates 9 so that it is capable of representing the deflec

tion behavior of the actual structure. The idealized structure is 

described in terms of the node data and the structural data. The node 

data consist of the number of the node point, the coordinates of the 

node point, the external forces acting on the node point, and the defi

nition of the boundary condition at the node point. The structural data 

consist of the location of the idealized elements relative to the node 

points, the type of structural element, and the description of its 

material properties. 

The location of the node points is given relative to a 



two-dimensional rectangular coordinate systemo Then node points are 

numbered consecutively from l ton in the direction of the minimum 

width. 

The boundary conditions are specified by restricting the displace

ment of the supported node point in the directions of the intended sup

ports. This is achieved by placing al in column 80 of each node·data 

card for the degrees of freedom which are to be restrained. If insuf

ficient boundary conditions are defined, the stiffness of the general 

structure is zero in that direction. Consequently, the stiffness matrix 

is singular and the analysis cannot be completed. 

The loading conditions are given as part of the node data. Three 

loading conditions can be _considered in each analysis. The loads are 

entered by listing the x and y components of the applied load in the x 

and y rows of the node points on which the loads are acting. The actual 

external loads acting on the real structure are represented by concen

trated loads acting at the node points of the idealized structure. 

The locations of the idealized elements are given relative to the 

node points in the structural data. The idealized elements are numbered 

consecutively. No specific grouping is required between stringer or 

triangular plate elements. If an integer is assigned to a stringer, the 

next integer can be assigned to a triangular plate. For stringer ele~ 

ments, the connecting node point numbers a.re given in columns 6 through 

9 and 10 through 13 of the structural data cards and are called nodes P 

and Q. For triangular platesj the nodes are called P, Q~ and R, and are 

listed in consecutive order clockwise around the triangular plate. The 

implication in listing the corner node point numbers is that it auto

matically assigns a local xy coordinate system for the triangle. The 



local x axis extends from node P to node R; the local y axis extends 

from node P to node Q. 
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The stress components are calculated and printed out relative to 

t he local coordinate system. For example, if the structure has grid 

lines par allel t o the x and y axis of the general coordinate system, a 

PQR sequence is chosen so that the coordinate axes for each triangular 

plate have directions identical to those of the general coordinate axes. 

In this case, the stresses are then relative to the external coordinate 

axes and are the same for all triangular plates. The stress results 

for the stringer elements are given relative to the axis of the 

stringers. As addit ional elements are added to this program, the common 

element coordinate system should be maintained. 

The type of idealized element is specified in the structural data 

by entering the type number in column 24. 

The elastic properties of the material are defined in the struc

tural data and consist of modulus of elasticity and Poisson's ratio. 

Stresses are calculated for the stress node points defined for each 

element relative to the l ocal coordinate system of the element. The 

characteristic dimensions of the i dealized elements are defined by the 

coordinates of their end or corner node points. The coordinates of the 

stress node points are given i n i nches relative to the local coordinate 

system for the element. A maximum of five stress nodes can be used in 

each analysis. If no stress nodes are specified, stresses are auto

matically computed for the coordinates of the centroid of the element . 

Node numbers, element numbers, element-type numbers, and support 

condi tions are always entered as i ntegers. All other data are entered 

with a deci mal point i n the proper place. 



Once the idealized structure and the loading conditions are defined, 

the computati onal sequence follows from the stiffness method. The 

stiffness and str ess matrices are generated for each element using the 

structural material properties and the dimensions obtained from the node 

data. The rows and columns of the stiffness matrix and stress and load 

matrices are in the order of x and y for each node point on the struc

ture. In general, if Pis the number of the node point, the x and y 

degrees of freedom at Pare labeled 2P-l and 2P, respectively. These 

numbers are then used as indices to denote a displacement or force 

component acting a t node Pin either x or y direction. 

The matrix K (BARK) is the stiffness matrix of the idealized 

structure in lower symmetric form. It is obtained by simply summing up 

the contributions of the various element stiffness coefficients in the 

direction of each displacement. To facilitate this summation, the MPQRS 

numbering scheme is used to denote the x and y directions of each of the 

nodes. 

Once the element stiffness matri ces have been computed based on the 

stiffness properties and the node locations of each el ement, the coeffi

cients of the stiffness matrix are assigned indices according to the 

MPQRS scheme. The indices designate the position of the stiffness ma

trix for the individual composite stiffness matrix for the total struc

ture. The total stiffness matrix K is obtained by summing the stiffness 

matri x elements with common indices obtained by the MPQRS scheme. As 

the stiffness matrix for each element is generated, it is added to the 

large K matrix. 

The output data are presented in two forms, an abbreviated form 

containing only the basic results of the analysis and an extended form 



including all of the individual plate and stringer stiffness and stress. 

The coefficients of Kare the forces generated at the node points 

in the x and y directions 1 when one node is displaced a unit distance in 

the x or y direction and all other displacements are restrained. The 

sum of the coefficients in every row and column is zero since the forces 

generated at restrained node points and the force developed due to the 

unit displacement are in equilibrium. If the structure is restrained 

from rotation and translation degrees of freedom by removing the rows 

and columns of the K matrix that represent the displacement of boundary 

conditions~ the matrix is subsequently nonsingular. Removing these 

rows and columns decreases the size of the matrix and consequently 

changes the indices of the coefficients of K. Consequently, one has 

the choice of using the reduced matrix and changing the indices of the 

rows and column de.:;dgnations or removing the rows and columns except on 

the diagonaL The diagonal element is replaced by a 1. The result is 

that the stiffness matrix will contain a unit matrix which will not 

effect the solution of the simultaneous equations obtained by performing 

the inverse operation. This technique does save the numbering scheme 

but~ of courses retains the size of the stiffness matrix. This method 

of modification rather than reduction of the stiffness matrix is uti

lized in this program because it simplifies the bookkeeping problems 

throughout the calculations; and 9 for these types of structu~es~ the 

decrease in the size of the stiffness matrix obtained by reducing the 

matrix for the boundary conditions is not a significant advantage. 

After the stiffness matrices for each element have been added to 

the total stiffness matrix K~ the matrix K is modified~ as mentioned in 

the previous paragraph~ according to the defined 'boundary conditions. 



The modified stiffness matrix is then inverted and the node point 

deflections are calculated from the equation 

The deflection matrix[~$ is a complete listing of the node displace-

ments~ including the zero displacements at the boundaries. 

The stresses in each idealized element are calculated from the 

deflections [~5 for the element~ which must be obtained from the total 

[~_§ matrix. The stresses are computed by generating the stress matrix 

for the coordinates of the stress node point and postmultiplying the 

element stress matrix by the element displacements. The stresses within 

the idealized element are based on the assumptions made for deriving the 

stiffness and stress matrices. Consequently~ the stresses at any number 

of points in a single plate may be obtained through the stress coeffi= 

cient matrix and the corner displacements of the plate or stringer ele-

ment. The components: of the stress tensor at the stress node points 

defined in the stress node data are calculated relative to the local 

coordinate system of the plate element. 

The reaction forces at the boundary node points are computed f'rom 

the equation 

by evaluating the right-hand side of the equation where K is the origi= 

nal stiffness matrix before boundary conditions are applied. The reac-

tion forces are used for checking the original input data or the 

accumulation of numerical errors in the computing process and do 
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provide a solution for the reactions in the directions of the specified 

boundary conditions. 

The output is controlled by placing a numeral 1 in column 30 of 

the program control card. If no parameter is used in column 30, the 

abbreviated form of the analysis will be printed. 

Example Listing 

A complete listing of the main program and required subroutines 

is given in Table XXII. (Table XXII is shown on the next page.) 



TABLE XXII 

FORTRAN PROGRAM F'OR THE STRESS ANALYSIS SYSTEM (12) 

SAS PROGRAM BY G. STONE 
DIMENSrON AL I 2 l ,AL2{ 2 J ,AL3 r 2 l, IPQRS(4) ,MPQRS{ 8 I ,OSK( 8 ,B) ,STR ( 3,8 J, 

100RU(8,51,STRESS(3,5J,Rfl2>,BARK(l830J,N8Cf60l,X(60l,Yf601, 
2UBAR{60,5l,FORCE{60,5J,QBAR(60,5J,XN{60,5J,YN(60,5) 

EQUIVALENCE! IPQR:S!4 I, IS l, ( IPORSI 3 l, IR! t f IPORS ( Zl, IQ),< JPQRS I l J. IP I 
101 FORMAT ( 2X, 1PSE16.3J 
102 FORMAT ( 2X, 1P4El6.31 
1':3 FORtJ.AT (!HO, 7HK BAR 1 , lX) 
104 FORMAT 12X,l5l 
105 FORMAT { 6HO I = , rs, 13H 
106 FORMAT ( 6HO K = , IS, 13H 
107 FORMAT I 6HOLA = , J59 19H 
109 FORMAT ( 6HOKJ = , J?) 

JPQRS( I l = , 15) 
MPQRS!Kl = ., J5l 
KI = MPQRS(LAJ = , 151 

110 FORMAT I 6HOBARKt, 15, 9H l = DSK(., rs~ 2H ~ , 15, 2H l l 
111 FORM~T ( 6HO I = , 151 
112 FORMAT { 6H01J = , 15, 12H NBC(IJ) 15) 
113 FOR~AT f 7HO LA=, IS, 7H I = , 15, 17H BARK[JJ l<>O 
114 FORMAT ( 41HO NUMBEQ OF ROWS AND COLS TO BE ZEROED=, 15) 
115 FOR~AT ( 6HO I = , IS, 15H BARK! I) = O.O J 
116 FORMAT 12X, 15,5X,3El4~B,5X, J5,5X, 4El4.B, I 2X• 8110, 

l I 2X, 4110} 
2cc FORMAT I 25HO ELEMENT STRESS MATRIX l 
201 FORMAT(8HONODE ,2f8X,7HTYPE Ofl,49X,BHSTRESSES) 

l" 

202 FORMATC1X,6HNUMBER,9X~7HELFMENT,8X,6HSTRESS,10X,6HCASE 1,11X,6HCAS 
lE 2 ,11X,6HCASE 3,11X,6HCASE 4,I1X,6HCASE 51 

20 3 FORMAT C 35Hl GENERAL I ZED STRESS CALCULATIONS 
204 FORMAT (33Hl DEFLECTIONS FOR ELEMENT NUMBER , 15 l 
205 FOR~AT(//43H STRESSES AT THE CENTROID OF THE ELEMENT//) 
206 FORMAT (30HO STRESSES FOR ELEMENT NUMBER 13, 6H TYPE ,13) 
21~ FORMATilH0,!4,9X,I5,14X,2HXX,9X,5El7"81 

221 FORMAT(33X,2HXY, 9X,5l2X,El5.Bll 
222 FORM,\TC33X,21iYY, 9X,5f2X,El5.8)1 

251 FORMAT {!5,1X,5Fl2.4l 
252 FORl<ATC 44Hl STRESS NODE COORDINATES , I 

1 52H ELEMENT NODE 1 NODE 2 NODE 3 NODE 4 NODE 5 
253 FORMAT! lX, 13, 2H X, 5Fl2.4, } 
254 FORMAT (I5,1X,~Fl2.4) 
255 FORMAT(lX,13,2H Y,5Fl2.4) 
256 FORMAT(lX,30HNO STRESS MATRIX FOR TYPE 
257 FORMAT11X,30HNO STIFFNESS MATRIX FOR TYPE 
258 ~ORMAT { BH ELEMENT, 25X, 16HCOORDJNATES 

1 7H NUMBER, 4X,54HNODE l NODE 2 
2 NODE 5 l 

,I3,2X,7HELEMENTl 
,I3,2X,7HELEMENT1 

FOR, I 
NODE 3 NODE 4 

259 FORMAT{lH0,27HNORMALIZED COORDINATES X = ,_Fl2.4,lOX,4HY ,Fl2.4} 
603 FORMATC10!6l 
612 FORMATf6EJ3.0l 
687 FORMAT I lX ,4HDET = ,El4e.2, !OX ,2HL= • I 31 

800 FORMATClHl) 
801 FORMAT!lHO,lOHNODE POINT,5 X,11HCOORDJNATES,47X, 

!25HOEFLECTION OF NODE POINTS} 
802 FORMAT!lX,6HNUMBER,40X,6HCASE l,llX , 

804 
805 
809 

16HCASE 2,11X,6HCASE 3,11X,6HCASE 4,11X,6HCASE 5 
FORMAT(lH0,2X,12,13X,lHX,24X,5El7.8J 
FORM ~T ! 18-X, lHY ,24X,5El 7.9) 
FORMATt llHlNDDE POJNT,3X,11HCOORDINATES,63X,6HFORCES l 

992 FOR'-1AT!2014l 
993 FORMAT(6X,6Fl2.0,12) 

994 FORMAT{J5,414,J3,lX,ElOe6,2F6.0I 
995 !="OR~AT{1Hl,12A61 
8629 FORMAT(l9HAMATR[X JS SINGULAR) 
8798 FORMAT (7Hl K BAR /lXl 
8799 FORMAT!l6Hl K BAR INVERSE/IX! 

SASOOl 
SAS002 
SAS003 
SAS004 
SAS005 
SAS006 
SAS007 
SAS008 
SAS009 
SASOlO 
SASOl l 
SAS012 
SASO 13 
SAS014 
SAS015 
SAS016 
SAS017 
SASO 18 
SAS019 
SAS020 
SAS02 l 
SAS022 
SAS023 
SAS024 
SAS025 
SAS026 
SAS027 
SAS028 
SAS029 
SAS030 
SASO"?l 
SAS032 
SAS033 
SAS034 
SAS035 
SAS036 
SAS037 
SAS038 
SAS039 
SAS040 
SASQ41 
SAS042 
SAS043 
SAS044 
SAS045 
SAS046 
SAS047 
SAS048 
SAS049 
SAS050 
SAS051 
SAS052 
SAS053 
SAS054 
SAS055 
SAS056 
SA5057 
SAS058 
SAS059 
SAS060 
SAS06 l 
SAS062 

9603 FOR~ATI 7H NODES=,I5,5X,9HELEMENTS=,I5,5X,6HCASES=,I2,5X 
1,13HSTRESS NODES= ,12/ 
2 89H NODE COORDINATE LOAD l LOAD 2 LOAD 3 
3 I.DAD 4 LOAD 5 SUPPORT fl X J 

9993 FORMATIIX,J3,2H X,F12.3,1X,5Fl2.3,bX9ll/lX,l3,2H Y,Fl2~3,1X,5Fl2~ 
13,6X,I11 

9994 FOR~AT(lX,I5,4I4,I3,4X,Ell.4,Fll.4,Fl3e4 I 
9995 FORMATfll4Hl ELE~ P O R S TYPE E 

l T CKNESS-AREA 
31009 FORMATllX,3HROW,I4,/lX,11PlOE13.41) 
99999 FORMATflHl,23HEXECUTION COMPLETED FOR,12A6l 

839 CONTINUE 
REWIND 3 
REWIND 4 

READ IN TITLE 
READ(S,995) IRCJ>,J=l,12) 
WRITE16,9951 IRIJl,J=l,121 

C READ IN PARAMETERS 
REA0£5t6D3) NNODES•NELEM,NC,NSN,IWRITE 
V.'RITEC6,9603 I NNODES,-NELEM,NC,NSN 
N2=2 *NNODES 
NUM=(N2*lN2+lll~2 

READ IN NODE LOCATIONS, FORCE, AND BOUNDARY CONDITIONS 
DO 7777 l=l,NNODES 
12=2*1 
REA0(5•993J X{l1, IFORCEII2-l,JJ, J=l,5 J,BARKCI2-U, 

l Yiil,-(FORCE (J2,Jl, J=l,5), BARKII21 
7777 WRITE 16,9993) I,X{l), IFORCEII2-l;JJ,J=l95l, BARK(IZ-11, 

1 I, Y(I), !FORCE 112, JI, J=l,5>,BARKtl21 

PR 
l 

C THE NCROSS ROWS AND COLS, TO BE STRUCK FROM K-BAR ,AS DICTATED BY 
C BOUNDARY CONDITIONS, ARE STORED IN ARRAY NBC(I), 
C BARK IS USED TO READ THE INDEX OF FIXED BOUNDARY NODES 

IJ=O 
DO 7778 I=l,N2 
!F(BARK!l)J7779,7778,7779 

7779 lJ=IJ+l 
NBCC!Jl=l 
IFCIWRITE,EO.Ol GO TO 7778 
WRITE f6,llll I 
WRITE {6,112) lJ, 

7778 CONTINUE 
NCROSS= I J 
DO 3?0 I=l,NUM 
BARK Cll=0,0 

320 CONTINUE 
REAO NCDE NUMBER TYPE ELEMENT MODULUS PR AREA 

WRJTE!6,99951 
DO 236 NN= 1, NEL EM 
READ!5*994l I·E,JP,IQ,IR,15,NTYPE,E,PR,A 
!Ff!WRITE.EO.Ol GO TO 513 
WR! TE {6,9995 l 

513 CONTINUE 
WRJ TE C 6,9994 l t E', IP. ro, IR~ I S,NTYPE,E ,PR,A 
GO TO fl,2,3,4,5,b,7,8,91,NTYPE 

l CONTINUE 

TH 

(*********•********STRINGER AND RIB Cfi.L(_ULAT IONS******* .. ***************** 
JLAM=4 
DO 10004 I=l,4 
DO 10004 J=lt4 

10004 DSKCI,Jl=O.O 
CALCULATE THE PO DIRECTION COSINES, 

XQP=XtIQJ-XllPI 

SAS063 
SAS064 
SAS065 
SAS066 
SAS067 
SAS068 
SAS069 
SAS070 
SAS07l 
SAS072 
SAS073 
SAS074 
SAS075 
SAS076 
SAS077 
SAS078 
SAS079 
SASOBO 
SAS081 
SAS082 
SASOS3 
SASOB4 
SAS085 
SAS086 
SASOS7 
SASOS8 
SAS089 
SAS090 
SAS091 
SASD92 
SAS093 
SAS094 
SAS095 
SAS096 
SAS097 
SAS098 
SAS099 
SASlDO 
SASlOl 
SASl02 
SASl03 
SAS104 
SAS105 
SASl06 
SAS107 
SASlOB 
SAS109 
SASllO 
SASlll 
SAS112 
SAS113 
SAS114 
SAS115 
SASl 16 
SAS! 17 
SASllB 
SAS119 
SAS120 
SAS121 
sAs122 
SAS123 
SAS124" 



TABLE XXII (Con:tinued) 

YQP=YIIQl-YIIPI 
Dl=SQRT lXOP**2+VOP**2J 
D2 • DJ 
ALI 1 l=XQP/Dl 
ALI 2) •YQP/Dl 
AE=A*E 
D02391=1,2 
·00239J=1,2 
OSK (l,JJ AL(l)*ALIJl*AE/Dl 
DSKfl+2,J) -DSKll,J) 
OSK Cl,J+2J -DSKII,J) 
DSKII+2,J+2) DSKCI,JJ 

239 CONTINUE 
IF(IWRITE.Ea.o, GO TO 500 
WRITE 16,205) NTYPE 
WRITF.: (6,1031 
WRITi: 16,1021 l(DSKIJ,JhI=l,41. J=l,41 

500 CONTINUE 
GO TO 235 
CON i·lNUE 

C ****************STRINGER WITH LINEAR STRESS FUNCTION************* 
JLAM=4 . 
DO 10005 I =1,4 
DO 10005 J=l,4 

10005 DSK(I,JJ=o.o 
CALCULATE THE PQ DIRfCTION COSINES, 

XQP=XI !0)-X(IPI 
YQP=YI IQ)-YI IPI 
0 l=SQRT C XOP**2+YOP**21 
D2 = DJ 
ALI l l=XQP/Dl 
ALl21=YQP/D1 
AE=A*E 
DO 240 I=l,"z 
DO 240 J=l ,2 
DSKCl,JJ=ALlll*ALIJl*IAE/011*4•0/ 3e0 
DSKll+2,Jl=-DSK!l,JI 
DSKCI,J+21=-DSK{I,JI 
OSKII+2,J+21 = DSKCJ,JJ 

240 CONTINUE 
IFIIWR!TE,EQ,01 GO TO 511 
WRITE 16,205) NTYPE 
WRITE 16,103! 
WRITE <6,1021 llDSKCl,.Jl,l=l,4J, J=l,41 

511 CONTINUE 
GO TO 235 

3 CONTINUE 
4 CONTINUE 

WRITEl6,257l NTYPE 
GO TO 839 
CONTINUE 

.C*******:* **********RE"CTANGULAR*PLAT f *CALCULATIONS*********************** 
C********************ASSUMED DISPLACEMENT FUNCTION********************** 

DO 10003 I= 1,8 
DO 10003 J=l,8 

10003 OSK 11,JI = 0,0 
JLAM=8 
XQP=XI !Ql-X (!Pl 
YOP=YI !Ql,-YI !Pl 
Dl=SQRT {XQP**2+YOP**2J 
AE=A*E 
X2=Xl!Rl-X!IQI 

SAS125 
SAS126 
SAS127 
SAS128 
SAS129 
SAS130 
SASl 31 
SAS132 
SAS133 
SAS134 
SAS135 
SAS136 
SAS137 
SAS138 
SAS139 
SAS140 
SAS141 
SAS142 
SAS143 
SAS144 
SAS145 
SAS146 
SAS147 
SAS148 
SAS149 
SAS150 
SAS151 
SAS152 
SAS153 
SAS154 
SASl 55 
SAS156 
SAS157 
SAS158 
SAS159 
SAS160 
SAS161 
SAS162 
SAS163 
SAS164 
SASi65 
SAS166 
SASl67 
SAS168 
SAS169 
SASl 70 
SASl 71 
SASl 72 
SAS173 
SASl 74 
SAS175 
SASl 76 
SAS177 
SAS! 78 
SASl 79 
SAS180 
SAS181 
SAS182 
SAS183 
SAS184 
SASl85 
SASl86 

C 

Y2•YI !Rl-YI IQ) 
02=SQRT I X2**2+Y2**2 J 
AL Ill =XQP/Dl 
ALI 2 l •YQP/Dl 
AL2 I l l•X2/D2 
AL212 l=Y2/D2 
BETA•Ol/D2 
ETl=AE/ll.-PR**2J 
ET2=AE/(2.+2.*PRJ 
CALCULATE THE KD+KS MATRIX 
PR:2=PR:**2 
DSK 11,ll• ETl*BETA/3o+ET2/13,*BETAl 
OSK 12,1J=IETl*PR:+ET2J/4e 
DSK 13,ll=ETl*BETA/6.-ET2/13.*BETAl 
DSK 14,ll=I-ETl*PR+ET21/4, 
DSK 15,ll=-ET14BETA/6,-ET2/16,*BETA) 
OSK ( 7, l J =-ETI•BETA/3 e+ET2/ I 6 •*BET A J 
OSK ( 2 ,2 J =ET 1/ I 3-e*BETA J+ET 2*BETA/3o 
OSK ( 4 ,2 l =-ETl IC 3e*.BETA 1 +ET2*BETA /6e 
OSK C6,21=-ETl/16e*8ETAJ-ET2*BETA/6e 
OSK I 8, 2 I =ETl/ I 60 *BET A J-ET2*8ETA/3o 
OSK 13,3J=ETl*BETA/3.+ET2/13.*BETA) 
OSK 15,31=-ETl*BETA/3.+ET2/16s*BETAJ 
OSK C6,1J=-DSK 12,11 
OSK 18,11=-DSK 14,1 I 
OSK 13,2)=-DSK 14,1) 
DSK I 5, 21 =-DSK I 2, 1 ) 
OSK 17,21= DSK (4,1) 
OSK 14,31=-DSK 12,lJ 
OSK (6,3):c OSK C4,1J 
DSK 17,31= DSK 15,ll 
DSK 18,31= OSK 12,ll 
OSK 14,41• DSK 12,21 
DSK 15,4!= DSK !3,21 
OSK 16,41= OSK 18,21 
OSK 17,41= OSK 12,11 
D!=iK 18,4)= OSK 16,21 
DSK 15,5)= DSK 11,ll 
DO 8620 Jc2,4 
DSK 11+4,5l•DSK 

8620 OSK IJ+4,6)=0SK 
DSK 17,7)= OSK 
OSK 18,7)=--0SK 
OSK 18,81= OSK 
DO 302 J=l,8 
DO 302 I=l,8 

l I ,lJ 
I I ,2) 

n ,1, 
(2,1) 
,2.21 

302 DSKCJ,IJ = DSKll,JI 
!FIIWRITEoEOoOl GO TO 502 
WRITE 16,205) NTYPE 
WRITE 16,1031 
WRIT.! 16,1011 ICOSKCJ,JJ,I=1,8J, J=lt8) 

502 CONTINUE 
GO TO 235 

6 CONTINUE 
C******************RECTANGULAR*PLATE*CALCULAT [ONS*********************** 
(********ASSUMED STRESS FUNCTION WITH FIVE COEFFICIENTS**************** 

00 10002 I= 1,8 
DO 10002 J = 1,8 

10002 DSK 11,JI • 0,0 
JLAM=8 
XQP=Xl!Q)-XIIP) 
YOP=YI !Ql-YI !Pl 

SAS187 
SAS188 
SAS189 
SASl90 
SAS191 
SAS192 
SAS193 
SAS194 
SAS195 
SAS196 
SAS197 
SAS198 
SAS199 
SAS200 
SAS201 
SAS202 
SAS203 
SAS204 
SAS205 
SAS206 
SAS207 
SA5208 
SAS209 
SAS210 
SAS211 
SAS212 
SAS213 
SAS214 
SAS215 
SAS216 
SAS217 
SAS218 
SAS219 
SAS220 
SAS221 
SAS222 
SAS223 
SAS224 
SAS225 
SAS226 
SAS227 
SAS228 
SAS229 
SAS230 
SAS231 
SAS232 
SAS233 
SAS234 
SAS235 
SAS236 
SAS237 
SAS238 
SAS239 
SAS240 
SAS241 
SAS242 
SAS243 
SAS244 
SAS245 
SAS246 
SAS247 
SAS248 

!--·' 
~ 
1-d 



TABLE XXII ( Co:o:t:inued) 

Dl=SQRT (XOP**2+YQP**2) 
AE=A•E 
X2=XIIRI-XIJQI 
Y2=YI !RI-YI IQ) 
D2=SQRT (X2**2+Y2**2> 
ALI 11 =XQP /DI 
AL<2l=YQP/Dl 
AL2 I l I =X2/D2 
AL2 I 2 I =Y21D2 
BETA=Dl/D2 
ETl=AE/Cl.-PR*~2l 
ET2=AE/12e+2.*PRl 
PR2=PR**2 
CALC~LATE THE KD+KS MATRIX 
OSK (l,ll= 12.*14.-PR21*BETA/3e+ll•-PRI/BETAl*ET1/8e 
OSK (2,ll= ll.+PR)*ETl/8• 
DSK (3,11= C2e*l2.+PR2l*BETA/3.-lle-PR1/BETAl*ET1/B. 
DSK I 4t 11 = < 1.-3.*PR l *ET l /8. 
bSK 15,11= <-Z.*12e+PR2l~BETAl3.-!l.-PRJ/BfTAl*ETl/8. 
OSK 17,.11= l-2.*14.-PRZl*BETA/3e+!l.-PRI/BETA1*ET1/8• 
DSK (2,2>= 12.~(4.-PR2l/{3.*BETAl+ll.-PRl*BfTAl*ETl/8. 
OSK (4,2)= l-2.*14.-PP21/C3e*BfTAl+lle-PRJ*8fTAl*E'Tl/8. 
OSK (6,21= f-2,*12.+PR2l/13,*BETAl-ll,-PRJ*BfTAl*fTl/B. 
OSK f 8,2) = I 2•* 12 ,+PRZ 1 / I '.':5 •*BETA 1-1 l .-PR )«-BE'TA) *ETl/8. 
OSK 13,31= l2.•14.-PR?l*BtTA/3. +fl.-~R)/BETA)*ETl/8. 
OSK 15,3J= l-2.*14.-PR2J*BETAt3.+ll.-PPJ/BETA)*ETl/B. 
DSK <6,lJ=-DSK 12,ll 
OSK 18,ll=-DSK 14,ll 
DSK 13,2)=-DSK 14,ll 
DSK <5,21=-DSK 12,11 
OSK (7,21= OSK 14,11 
OSK 14,31=-DSK <2,11 
OSK f6,31= OSK 14tl I 
OSK <7,31= OSK (5,11 
OSK 18,31= OSK <2,11 
OSK (4,41= OSK 12,2l 
OSK <5,41= OSK 13,21 
OSK 16,41= OSK lB,21 
OSK 17,41= OSK 12,ll 
OSK 18,4)= OSK 16,2) 
D SK f 5, 5 I = OSK I l , 1 I 
DO 8621 1=2,4 
OSK II+4,51=DSK 11,1) 

8621 OSK (I+4,61=DSK (1,21 
OSK 17,7)= OSK 11,ll 
OSK 18,7)=-DSK 12,ll 
DSK IB,Bl= DSK 12,21 
DO 301 J=l ,8 
DO 301 1=1,8 

301 DSKCJ,11 = DSKCl,Jl 
JFIIWRITE.EQoOl GO TO 501 
WRITE 16,2051 NTYPE 
WRITE 16,1031 
WRITE 16,1011 ({OSKII,JJ,1=1,Blt J=l;S) 

501 CONTINUE 
GO TO 235 

7 CONTINUE 
C******************RECTANGULAR*PLATF*CALCULATJONS*********************** 
(********ASSUMED STRFSS FUNCTION WITH SfVEN COEFFICIENTS**************** 

DO 10006 I = 1,8 
DO 10006 J = l,B 

10006 OSK (l,Jl = O.O 

SAS249 
SAS250 
SAS251 
SAS252 
SAS253 
SAS254 
SAS255 
SAS256 
SAS257 
SAS258 
SAS259 
SAS260 
SAS261 
SAS262 
SAS263 
SAS264 
SAS265 
SAS266 
SAS267 
SAS268 
SAS269 
SAS270 
SAS271 
SAS272 
SA5273 
SAS274 
SAS275 
SAS276 
SAS277 
SAS27B 
SAS279 
SAS280 
SAS281 
SAS282 
SAS2B3 
SAS284 
SAS2B5 
SAS286 
SAS287 
SAS288 
SAS289 
SAS290 
SAS29l 
SAS292. 
SAS293 
SAS294 
SAS295 
SAS296 
SAS297 
SAS298 
SAS299 
SAS300 
SAS301 
SAS302 
SAS303 
SAS304 
SAS305 
SAS306 
SAS307 
SAS30B 
SAS309 
SAS310 

JLAM=B 
XQP=X(JQ)-X I !Pl 
YQP=YI JQ)-Y( IP) 
BY=SQRT IXCP**2+YOP**2) 
Dl • BY 
AE=A•E 
AL< 11 •XOP/Dl 
AL< 2 l =YQP /DI 
X2=XI IR)-Xf IQ) 
Y2=YrJRl-Y(IQI 
AX=SQRT CX2**2+Y2**21 
D2 = AX 
ALP= (3eO*AX*AXl + IBY*BYl 
BET~ IAX*AXJ + C3e0 ~ BY*BYJ 
DSKl1,11=+(35.*BY*BY*ALP*BETJ+CCBY**41*BETJ-(6a*AX*AX*BY*BY*BETI+( 

19.~AX*AX*ALP*BET)+(9o*(AX**4)*BETI 
DSKl2,ll=l8e*AX*BY*ALP*BET 
DSKC3,lJ=+(l9.•BY*BY*ALP*BETl-(CBY**4J*BETl+C6e*AX*AX*BY*BY*BETI-C 

19.*AX*AX*ALP*BCTl-19e*(AX**41*BET) 
DSKC5,IJ=-Cl9e*BY*BY*ALP*BETl+C(BY**41*BETl-(6o*AX*AX*BY•BY*BET1-( 

19e*AX*AX*ALP*BETl+f9e*CAX**4l*BETl 
DSKC7,11=-C35e*BY*BY*ALP•BETJ-((8Y**4J*BET)+(6o*AX*AX*BY•BY•BETJ+C 

19.•AX*AX*ALP*BETl-(9.•(AX**41*BETJ 
DSKl2,21=+135e*AX*AX*ALP*BETJ+llAX**41*ALPJ-{6a*AX*AX*BY*BY*ALP1+1 

19•*BY*BY*ALP*BETJ+l9.•CBY**4i*ALPJ 
OSKC4,21=-(35e*AX*AX*ALP*BETJ-(IAX**4)*ALPJ+(6•*AX*AX*BY*BY*ALPI+( 

l9•*BY*BY*ALP*BETl-(9.•CBY**4)*ALPJ 
DSKl6,2J~-tl9e*AX*AX*ALP*BETl+(CAX**41*ALPJ-16e*AX*AX*BY•BY*ALPI-< 

l9e*BY*BY*ALP*BET)+C9.•IBY**41*ALPJ 
DSKC8,2J=+ll9e*AX*AX*ALP*BCT1-llAX**41*ALPJ+{6e*AX*AX*BY*BY*ALPJ-( 

19e*BY•BY*ALP*BETJ-C9e*(BY**41*ALPI 
DSKt6,ll =-DSKl2,ll 
DSK15,2l D5Kf6,ll 
DSKt3,3l D5Ktl,ll 
DSKf4,3l DSKt6,ll 
DSKC;,31 DSKC7,1J 
D5KC7,3J = DSKC5,l) 
DSKf8,31 = D5Kf2,1l 
DSKC4,41 :i:· OSKf2,2J 
D5K(6,4I :i: DSKC8,2) 
DSKf7,4l D5Kt2,ll 
DSKf8,4l D5Kf6,2l 
DSK15,51 = OSKll,11 
D5K16,51 = DSKt2,1) 
DSKl7,51 • OSK(3,l) 
OSK(6,6) :i: DSKl2•21 
D5Kt8,6I = DSK!4,21 
DSK<7,71 = DSKCl,11 
DSK18,7l DSK16,ll 
DSKIB,Bl = D5Kf2,2i 
DO 402 J=l,8 
DO 402 I=l,8 

402 DSKIJ,Jl • OSK 11,JI 
DO 403 Isl ,8 
DO 403 J=l,8 

403 DSKCI,Jl = OSKtl,J)* IIC*Al/(96e*ALP*BET*AX*RYIJ 
IF(IWRITE,EQoOI GQ TO 512 
WRITE (6,2051 NTYPE 
WRITE !6,1031 
WRITE (6,1011 CIDSKtI,Jl,I=l,81, J=l,81 

512 CONTINUE 
GO TO 235 

5AS311 
SAS312 
SAS313 
SAS314 
SAS315 
5AS316 
SAS317 
SAS318 
SAS319 
SAS320 
SAS321 
SAS322 
SAS323 
SAS324 
SAS325 
SAS326 
SAS327 
SAS32B 
SAS329 
SAS330 
SAS331 
SAS332 
SAS333 
SAS334 
SAS335 
SAS336 
SAS337 
SAS338 
SAS339 
SAS340 
SAS34l 
SAS342 
SAS343 
5AS344 
SAS345 
SAS346 
SAS347 
SAS348 
SAS349 
SAS350 
SAS351 
SAS352 
SAS353 
SAS354 
SAS355' 
SAS356 
SAS357 
SAS358 
SAS359 
SAS360 
SAS361 
SAS362 
SAS363 
SAS364 
SAS365 
SAS366 
SAS367 
SAS368 
SAS369 
SAS370 
SAS37l 
5AS372 

!·-· 
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TABLE XXII (Cmi.tinued) 

8 CONTINUE 
C*******************TRIANGULAR*PLATE*CALCULATIONS*********************** 

JLAM=6 
XRP=X(JR)-XIIPl 
YRP=Yl!Rl-YCIP) 
XRQ=Xl!Rl-X(IO) 
YRQ=Y< JR)-y( IQ) 
XQP =X(IQ)-X<IP) 
YQP .:Y( IQ)-Y( IPJ 
Dl =SQRT(XOP**2+YOP**2) 
AL(l)=XQP /Dl 
AL12l=YQP /Dl 
AE=A*E 
RR=AL(ll*XRP+AL(21*YRP 
X2=XRP-AL1l)*RR 
Y2=YRP-ALl2)*RR 
D2=SQRT CX2**2+Y2**21 
AL21ll=X2/D2 
AL2l2l=Y2/D2 
CHANGE FROM DATUM TO LOCAL COORDINATES 
X2l=XOP*AL2 Cl )+YQP*AL2 I 2 J 
Y2l=XOP*AL ( l)+YOP*AL (2 I 
X3l=XRP*AL2Cll+YRP*AL2C21 
Y3l=XRP*AL- Cl)+YRP*AL--(2_l ____ _ 
X32=XRO*AL2Cl}+YRO*AL2(21 
Y32=~RO*AL Cl)+YRO*AL (2) 
Al23=(X32*Y21-X2l*Y32J/2. 
ET1=AE/(4.•Al23*Cl.-PR**2l l 
ET2=AE/ 18.•Al23*Cl.+PRJ l 

C CALCULATE THE K SUB CD)+ K SUB CS) MATR!Xo 
OSK 11,1)= ETl* Y32**2 +ET2* X32**2 
DSK 12,11= -ETl* PR*Y32*X32 -ET2* X32*Y32 
OSK <2,2)= Ell* X32**2 +ET2* Y32**2 
OSK 13,11= -ETl* Y32*Y31 -ET2* X32*X31 
DSK (3,2)= ETl* PR*X32*Y31 +ET2* Y32*X31 
DSK C3,3J= ETl* Y31**2 +ET2* X31**2 
DSK (4,11 = ETl* PR*Y32*X31 +ET2* X32*Y31 
OSK (4,2J= -ETl* X32*X31 -ET2* Y32*Y31 
DSK (4,31= -ETl* PR*Y3l*X31 -ET2* X3l*Y31 
OSK (4,4)= ETl* X31**2 +ET2* Y31**2 
OSK (5,lJ= ETl* Y32*Y21 +ET2* X32*X21 
DSK (5,2)= -ETl* PR*X32*Y21 -ET2* Y32*X21 
OSK <5,3!= -ETl* Y3l*Y21 -FT2* X3l*X21 
OSK (5,4)= ETl* PR*X3l*Y21 +ET2* Y3l*X21 
OSK (5,5)= ETl* Y21**2 +ET2* X21**2 
DSK (6,lJ= -ETl* PR*Y32*X21 -ET2* X32*Y21 
OSK C6,21= ETl* X32*X21 +ET2* Y32*Y21 
OSK (6,3)= ETl* PR*V3l*X21 +ET2* X3l*Y21 
OSK 16,4!= -ETl* X3l*X21 -ET2* Y3l*Y21 
OSK C6,5l= -ETl* PR*Y2l*X21 ~ET2* X21*Y21 
OSK (6,61= ETl* X21**2 +ET2* Y21**2 
DO 117 J=l,6 
DO 117 1=1,6 

117 DSK(J,Il=OSKCt,Jl 
!FIIWRITE.EQ.Ol GO TO 118 
WRJTE(6,205l NTYPE 
WRITEC6,103J 
WRITEC6,l01J C<OSKII,Jl,I=l,6],J=l,6l 

118 CONTINUE 
GO TO 235 

9 CONTINUE 
WRITE !6,2571 

SAS373 
SAS374 
SAS375 
SAS376 
SAS377 
SAS378 
SAS379 
SAS380 
SAS381 
SAS382 
SAS383 
SAS384 
SAS385 
SAS386 
SAS387 
SAS388 
SAS389 
SAS390 
SAS39l 
SAS392 
SAS393 
SAS394 
SAS395 
SAS396 
SAS397 
SAS398 
SAS399 
SAS400 
SAS40l 
SAS402 
SAS403 
SAS404 
SAS405 
SAS406 
SAS407 
SAS408 
SAS409 
SAS410 
SAS411 
SAS412 
SAS413 
SAS414 
SAS415 
SAS416 
SAS417 
SAS418 
SAS419 
SAS420 
SAS421 
SAS422 
SAS423 
SAS424 
SAS425 
SAS426 
SAS427 
SAS428 
SAS429 
SAS430 
SAS43l 
SAS432 
SAS433 
SAS434 

GO TO 839 
C MPQRS(J) CONTAINS THE SCHEME FOR PLACING THE ELEMENT MATRICES INTO 
C THERE LARGER COUNTERPARTS. 

235 CONTINUE 
K•O 
JROW • JLAM I 2 
DO 39 J=l,JROW 
DO 39 J=l,2 
K=K+l 
MPQRS(K1=2•JPQRSCJ)-2+J 
!F(!~RITE.EQ.Ol GO TO 504 
WRITE 16,1061 K, MPQRS(K) 

504 CONTINUE 
39 CONTINUE 

C ADD KBAR I INTO KBAR 
38 DO 37 LA=l ,JLAM 

KJ•MPQRSCLA) 
DO 37 I=l,JLAM 
KL=MPQRS(ll 
JF(KJ-KLl37 ,374,374 

374 KJ=( ~l*CKJ-1) l/2+KL 
BARK(KJ)=BARKIKJ)+DSK ILA,! l 
IFCIWR!TE.EQ.O) GO TO 505 
WRITE (6,107) LA, KI 
WRITE (6,llOJ KJ, LA, 

505 CONTINUE 
37 CONTINUE 

C*****WRJTE TAPE 4 FOR STRESS CALCULATIONS.***************************** 
WRITE ·!41 NTYPE,E,PR,A,JLAM,Dl,D2,ALC1J,ALC2J.,MPORS, IPORS 
JF(!WRITEoEO•Ol GO TO 506 
WRITE16,8798l 
CALL WRT ( BARK, N2t 

506 CONTINUE 
236 CONTINUE 

C*******WRJTE COMPLETE STIFFNESS MATRIX ON TAPE 3 FOR FORCE CALCULATION* 
WRITE( 31 (BARK(!l,!=1,NUM) . 
WR!TF:(6,8798) 
NF=O 
NS=O 
DO 31007 J=l,N2 
NS=NF+l 
NF=NF+J 

31007 WRITE (6,31009) J,CBARK!ll, I=NS,NFI 
C REMOVE SINGULARITIES FROM K-BAR BY PLACING l ON DIAGONAL AND .ZERO 
C ELSEWHERE ON DUPLICATED ROWS AND COLUMNS. 

WRITE (6,1141 NCROSS 
DO 316 LC=l,NCROSS 
LA=NBCCLC) 
DO 31-5 I=l ,N2 
L=MAXO(LAtll 
KA=<LA+! l+CL*(L-3) 1/2 
IF!IWRITE.EQ.Ol GO TO 507 
WRITE (6,115) KA 

507 CONTINUE 
315 BARKIKA)•O 

KB=CLA*CLA+l)J/2 
IF! IWRITEoEO, 01 GO TO 508 
WRITE f6,ll3 1 LA, KB 

508 CONTINUE 
.BARK(KBl=l• 

316 CONTINUE 
JF(IWRJTE.EOo· 0) GO TO 509 

. SAS435 
SAS436 
SAS437 
SAS438 
SAS439 
SAS440 
SAS441 
SAS442 
SAS443 
SAS444 
SAS445 
SAS446 
SAS447 
SAS448 
SAS449 
SAS450 
SAS451 
SAS452 
SAS453 
SAS454 
SAS455 
SAS456 
SAS457 
SAS458 
SAS459 
SAS460 
SAS461 
SAS462 
SAS463 
SAS464 
SAS465 
SAS466 
SAS467 
SAS468 
SAS469 
SAS470 
SAS47l 
SA5472 
SA5473 
SAS474 
SAS475 
SAS476 
SAS477 
SAS478 
SAS479 
SAS480 
SAS48l 
SAS482 
SA5483 
SAS484 
SAS485 
SAS486 
SAS487 
SAS488. 
SAS489 
SAS490 
SAS49l 
SAS492 
SA5493 
SAS494 
SA5495 
SAS496 

.... , 
+-:

\j~ 



TABLE XXII (Continued) 

WRITE16,87981 
CALL WRT ( BARK, N2l 

509 CONTINUE 
CALCULATE K-BAR-INVERSE, IF ISING ISO ON RfTURN THE MATRIX IS S!NGULA 

CALL SYMINV fN2, BARK, ISING) 
WRITEC6,87991 
NS=O 
NF=O 
DO 31008 J=l,N2 
NS=NF+l 
NF=Nr"+J 

31008 WRITEl6,31009l J,(BARK(Il,I=NS,NF) 
30001 IFCJSINGl317,8623,317 

8623 WR1TEl6,8629J 
GD TO 839 

317 CONTINUE 
ZERO DIAGONAL ELEMENTS OF BARK INVfRSE 
DD 319 LC=l,NCROSS 
LA= { NBC ( LC l *f NBC I LC I +l J l /2 

319 BARKILA)=O 
IF(IWRJTE.EQ. OJ GO TO 510 
WRITE{6,8799J 
CALL WRT I BARK, N2) 

510 CONTINUE 
CALL SMMPY!BARK,FORCE,UBAR~N2,NC) 
WRITE{6,800l 
WRITE!6,80ll 

900 WRITE!6,802l 
K=O 
DO 638 l=l,N2,2 
K=K+l 
WRITE(6,804l K,IUBAR!I,JJ,J=l,NCJ 

638 WRIT.:'16,8051 {UB.h.R(J+l,Jl,J=l,NCl 
6 37 CONT I NUE 

C******~**WRITE FORCES ACTING ON THE STRUCTURE************************** 
WRTTE!61809l 
WRITE16,8021 
K=O 
DO 701 I=l,N2,2 
K=K+l 
WRITE<6,804l K,CFORCE(J,Jl,J=l,NCJ 

701 WR I TE (6,805 l ( FORCE ( I+l ,JI ,J=l ,NC l 
CALCULATE THE FORCE MATRIX = KBAR * UB/1.R 
REWIND 3 
READ(3J(BARK(ll,I=l,NUM) 
CALL SMMPY (8ARK,UBAP ,QBAR,N2,NC) 
WRITEf6,809l 
WRITE(6,S02l 
K=O 
DO 6-+0 I=l,N2,2 
K=K+l 
WRITE {6,804) K, (QBAR!I,Jl, .J=l,NC> 

640 WRITEC6,805l lQBAR{I+l,Jl ,J=l,NCJ 
(**************ELEMENT GCNERAL I ZED STRESS CflLCULti. T IONS*•***•************ 

IFINSN,EO,OJ GO TO 642 
WRITE {6,203) 

642 CONTINUE 
REt\lIND 4 
DO 370 NN=l,NELE~ 
READ (4l NTYPE,E,PR,A,JLA~,Dl,02,AL{lJ,ALl2l,MPQRS ,IPORS 
JF(IWRITE,EQ,Ol GO TO 641 ~,i 

WRITE (6,116) NTYPE,E,PR,A,JLAM,Dl,D2,.ALfll ,AL{2l ,M~QRS ,IPQRS 

SAS497 
SAS498 
SAS499 
SAS500 
SAS50l 
SAS502 
SAS503 
SAS504 
SAS505 
SAS506 
SAS507 
SAS50B 
SAS509 
SAS510 
SAS511 
SAS512 
SAS513 
SAS514 
SAS515 
SAS516 
SAS517 
SAS518 
SAS519 
SAS520 
SAS521 
SAS522 
SAS523 
SAS524 
SAS525 
SAS526 
SAS527 
SAS528 
SAS529 
SAS530 
SAS531 
SAS532 
SAS533 
SAS534 
SAS535 
SAS536 
SAS537 
SAS538 
SAS539 
SAS540 
SAS541 
SAS542 
SAS543 
SAS544 
SAS545 
SAS546 
SAS547 
SAS548 
SAS549 
SAS550 
SAS551 
SAS552 
SAS553 
SAS554 
SAS555 
SAS5 56 
SAS557 
SAS558 

641 CONTINUE 
(**************************•**************·**************************** 

SELECT U-BAR-1 FROM U-SAR AND STORE IT IN OORUll,JJ 
DO 220 J=l,.JLAM 
Kl=MPQRSl!l 
DO 2!0 .J=l,NC 

220 OORUCI,.Jl=UBARIKT,Jl 
WRITE (6,2041 NN 
WRITE (6,8011 
WRITE C6,802l 
K=O 
DO 223 I = l,JLAM, 
K=K+l 
WRITE (6,804) IPQRSCK), IQORUCI,.J>,J=l,NCJ 
WRITEl6,805) lQORUCI+l, JJ,J=l,NC) 

223 CONTINUE 
(********************************•************************************* 

IFINSN,E0,01 GO TO 379 
WRITE 16,2c:;8) 
IFINTYPE,GE, 51 GO TO 375 
READ15,2511 J,(XNCNN,JJ,J=l,NSNJ 
WRITF:16,253) 1,CXNINN,J),J=l,NSNI 
GO TJ 376 

375 CONTINUE 
REAC (5,25111, (XNCNN,Jl,J=l,NSNI 
READC5,254l I,CYNlNN,Jl,J=l,NSNI 
WRITEl6,25311, fXN(NN,J),J=l,NSNl 
WRITE16,2551 I,CYN(NN,JJ,J=l,NSNI 
GO TO 376 

379 CONTINUE 
IFINSN.EQ.01 NSNl=l 
IFINSN.NE.01 NSNl=NSN 
XNINN,l l=D2/2. 
YN{N-N,1 )=01/2. 
WRITEl6,205J 

376 CONTINUE 
DO 237 NNSN=l,NSNl 
DO 377 1=1,3 
DO 377 J=l,8 

377 STR fI,JI = 0,0 
DO 378 !=1,3 
DO 378 J=l,5 

378 STRESS 11,JI = 0,0 
GO TO fll,22,33,44,55,66,77,8~,991,NTYPE 

11 CONTINUE 
C***************STRESS MATRIX STRINGER ELEMF.NT************************** 

WRITE 16,2001 
STR Cl,11 -(Allll*El I DI 
STR Cl,2J =- -CALC21*E) I 01 
STR 11,31 = ALlll*E I Dl 
STR 11,4) = ALC21•E I DI 
WRITE 16,101) ISTR Cl,JJ,J=l,41 
CALL MXM CSTR,OORUtSTRESS,N(l 
GO TO. 30 

(***********STRINGER STRESS ~ATRJX ASSUMED STRESS FUNCTION************* 
22 CONTINUE 

XX= XNINN,NNSNJ I 02 
WRITEC6.101J XX 
STR Cl,ll=-CAL<ll*EJ*ll,O-XXJ I 01 
STR (1,2J=-(ALC21*El*Cl.O-XX) I 01 
STR ll,3l=AL(ll*E*XX I DI 
STR Cl,4l=AL12l*E*XX I 01 

SAS559 
SAS560 
SAS561 
SAS562 
SAS563 
SAS564 
SAS565 
SAS566 
SAS567 
SAS568 
SAS569 
SAS570 
SAS571 
SAS572 
SAS573 
SAS574 
SAS575 
SAS576 
SAS577 
SAS578 
SAS579 
SAS580 
SAS581 
SAS582 
SAS583 
SAS584 
SAS585 
SAS586 
SAS587 
SAS588 
SAS589 
SAS590 
SAS591 
SAS592 
SAS593 
SAS594 
SAS595 
SAS596 
SAS597 
SAS598 
SAS599 
SAS600 
SAS60l 
SAS602 
SAS603 
SAS604 
SAS605 
SAS606 
SAS607 
SAS608 
SAS609 
SAS610 
SAS6ll 
SAS612 
SAS613 
SAS614 
SAS615 
SAS616 
SAS6P 
SAS618 
SAS619 
SAS620 



TABLE XXII 

WRITE<6,200l 
WRTTE(6,10ll<STR (1,Jl,J=l,41 
CALL MXM (STR,OORU,STRESS,NCJ 
GO TO 30 

33 CONTINUE 
44 CONTINUE 

WRITE {6,256) 
GO T:J 839 

55 CONTINUE 
C********4 *********STRESS MATRIX ASSUMED DISPLACEMENTS****************** 

XX= XN(NN,NNSNJ I 02 
YY = YNCNN,NNSNI I 01 
WRITE{6,2591 XX,YY 
XA = 02 
YB= DI 
EPRO= 1. O-PR**2 
EPRl=E/EPRO 
STR I l, 1 l =-EPRliH 1.0-vv) /XA 
STR ( 1, 2 l =-EPRI•PR* { 1.0-xx) /YB 
STR(l,31=-EPRl*XX/XA 
STR11,4l= -{STR(l,211 
STRII,5)= -<STR<l,3Jl 
STR11,6)=EPRl*PR*XX/YB 
STR!l,71= -tSTR(l,lJJ 
STR0,81= -(STRll,611 
STRl2,ll=-EPRl+PR*ll.O-YYl/XA 
STR C 2 ,2 I =-EPRl• ( 1 O'·o-xx} /YB 
STR(Z,31=-EPRl+PR*YY/XA 
STR!Z,4)= -<STRIZ,211 
STRC2,51= -ISTR12,3JI 
STR I 2 ,61 =EPR l*XX/YB 
STR12,7l= -<STR{2,1Jl 
STR!2,8l= -CSTRC2,6)l 
S TR I~• l J =-EPR l * ( 1. 0-PR I* ( 1. 0-XX l / I 2. O*YB l 
STRIJ,2l=-EPRl*(l.O-PR)*ll.O-YYl/l2sO*XAJ 
STRC3,3l= -(STR13,ll I 
STRl3,4l=-EPRl*YY*il.O-PRJ/{2.0*XA) 
STR(3,5l=EPRl*XX*Cl.0-PRl/12•0*YB) 
STRl3,61= -ISTRl3,4ll 
STR!3,7l= -ISTRl3,5J) 
STR13,81= -ISTRC3,2Jl 
WRITE 16,2001 
WRITE 16,lOlll(STRl!,J>, J=l,81, !=1,31 
CALL MXM tSTR,QORU,STRESS,NCJ 
GO TO 30 

66 CONTINUE 
(*********STRESS MATRIX ASSUMED STRESS FUNCTION WITH 5 COEFFICIENTS***** 

XX = XNINN,NNSNJ I D2 
YY = YN(NN,NNSNl I Dl 
WRJTE(6,259l XX,YY 
XA = D2 
YB: DI 
EPRO=l.0-PP.**2 
EPRl=E/EPRO 
EPR2=2.0*YY-l•O 
EPR3=1.o-2.o+YY 
EPR4~2.o•xx-1.o 
EPR5=1.o-2.o-11-xx 
STR I l, l l=EPRl*I ( EPRO*EPR2 l-1·.o JI I 2.o•xA l 
STR<l,2)=-EPRl+PR/12.0+YBl 
STR I 1,3 l =EPR l* ( I EPRO*EPR? l-1.0 J / I· 2 • O*XA J 
STR I 1 ,4 J =EPR l*PR/ I 2 .O*YB l 

SAS621 
SAS622 
SAS623 
SAS624 
SAS62 5 
SAS626 
SAS627 
SAS62 8 
SAS629 
SAS630 
SAS631 
SAS632 
SAS633 
SAS634 
SAS635 
SAS636 
SAS637 
SAS638 
SAS639 
SAS640 
SAS641 
SAS642 
SAS643 
SAS644 
SAS645 
SAS646 
SAS647 
SAS648 
SAS649 
SAS650 
SAS651 
SAS652 
SAS653 
SAS654 
SAS655 
SAS656 
SAS657 
SAS658 
SAS659 
SAS660 
SAS661 
SAS662 
SAS663 
SAS664 
SAS665 
SAS666 
SAS667 
SAS668 
SAS669 
SAS670 
SAS671 
SA56 72 
SAS673 
SAS674 
SAS675 
SA5676 
SAS677 
SAS678. 
SAS679 
SAS680 
SA5681 
SAS682 

(·C,·,·T'-.'; 'TU'f'>d) 1 ........ L,l...,4...L, _., . 

STR!l,5J=EPRl*ltEPRO*EPR21+1.0l/f2•0*XA1 
STRfl,6)=STRfl,4) 
STR(l,7J=EPRl*l<EPRO•EPR31+l•0)/(2.0*XA) 
STRfl,B)=-STRfl,41 
S~R<2,lJ=-EPRl•PRl<2•0*XAl 
STR<2,2>=EPRl*!IEPRO*EPR4l-l.Ol/l2•0*YBJ 
STRl~t31=STR12,11 
STR!2,4l=EPR1*1!EPRO*EPR5l+l.OJ/(2o0*YB1 
STRl2,5)=-STRl2,ll 
STR12,6J=EPR1*11EPRO•EPR41+1.0J/l2~0*YBJ 
STR(2,7)=STR12,S) 
STR!2,BJ=EPRl*llEPRO*EPR5J-l.Ol/f2oO*YBJ 
STR13,l) = -lEPRl*Cl.O-PRl/(4G0 * YB11 
STRC3,2l = -IEPRl*ll.O-PRl/14~0 * XAJJ 
STR(3,3J=-STR(3,1) 
STRl3,4l=STR13,2l 
STR13,5l=STR13,3) 
STRt3,6J=-STRl3,21 
STR13,7l=STR13,ll 
STRl3,Bl=STRl3,6) 
WRITEC6,200J 
WRITEl6,101J ( lSTR( I ,J) ,J=l,8 l, J=l,31 
CALL MXM (STR,QORU,STRESS,flCl 
GO TO 30 

77 CONT I NUE 
(*****STRESS MATRIX - WITH SEVEN COEFFICIENTS*************************** 

BY= Dl 
AX= 02 
XX= XN(NN,NNSN) 
YY= fNINNtNNSNI 
WRITE<6,259l XX,YY 
ALP= 13.*02*02 + Dl•Dll 
BET=t3.•Dl•Dll+<D2*02J 
DO 371 !=1,3 
DO 371 J=l,B 

3 71 S TR I I , J l = 0 • 0 
STR!l,11= -1102.•BY*ALP•BETJ-< 6.•rBY**3l*BETJ+flB.•AX*AX*BY•BETJ 

l+YY*lf96.•ALP*BETl+ll2.*BY*BY•BETJ-f36.•AX*AX*BETJ) 
S TR ( 2, 1 J = - f 18 • •BY*ALP*BET J- C 18 •·* I BY**3 J *BET l +f 54. •AX*AX*BY•BET J 

l+YY*lf 36.•BY*BY*BETJ - (108.•AX*AX•BET)l 
STRC3,ll= -( lB.*AX*ALP•B~Tl-1·54.•fAX**31*BETJ+il8.*AX*BY•BY*BET) 

1-XX*(( 36.•BY*BY*BETJ - (108.*AX•AX*BETll 
STR(l,21= -I 18.*AX*ALP*BETl-(lB.•1AX**3)*ALPJ+C54o*AX*BY*BY*ALPl 

l+XX*II 36.*AX*AX*ALPJ - llOBe*BY*BY*ALPll 
STR(2,2l= -1102.*AX*ALP*BETJ-( 6.•tAX**31*ALPl+ll8.*AX*BY*BY*ALPl 

l+XX*( (96.*ALP*BETJ - I 36,*BY*8Y*ALPJ + ( 12.*AX"'·AX*ALPl 1 
STR l J ,2 l = - I 18.*BY*ALP*BET l-154 •* IBY**3 I *ALP I+ 11 s.•AX*AX*BY*ALP J 

1-YY*(( 36.•AX*AX*ALPJ - <108.•BY•BY*ALPll 
STR<l.31= --! 6~*BY*ALP•BETJ+f 6.•IBY*'*3J•BETl-(18.•AX•AX•BY*BFTJ 

}+YY*(l-96.*ALP*BETl-ll2•*8Y*RY*BETJ+(36.•AX*AX*BETll 
STR12,3l= ·-< 18.*BY*ALP*BETJ+(l8.•IBY**31*BETJ~t54.•AX*AX*BY*BETJ 

l+YY*l{-36.•BY*BY*BETJ + 1108.*AX*AX~BET)l 
STR<3•3l= +{ 18.*AX*ALP*BF.Tl+l54.*CAX**3l*BETJ-118.*AX*BY*BY*BETJ 

l-XX*((-36•*BY*BY*BETJ + (108.*AX*AX•BETJJ 
STR(l94)= +l 18.*AX*ALP*BETl+fl8.•<AX**3J•ALPJ-C54.*AX*BY*BY*ALPJ 

l+XX*fl-36.*AX*AX*ALPI + <108.•BY*BY*ALPII 
STR12,4l= +1102.*AX*ALP*BETI+( 6.+tAX**3l*ALPJ-ClB.•4X•BY*BY•ALPJ 

l+XX*(l-96.*ALP•BETl+f36.*BY*BY*ALP1-112.*AX*AX*ALP11 
STR(3.4l= -( 18.*BY*ALP+BETJ+(54.•18Y**3)•ALPJ-118.•AX*AX*BY*ALPJ 

l-YY*l(-36.+AX*AX*ALPJ +. !lOB.•BY*BY•ALPll 
STRll,51= +I 6.•BY*ALP*B[TJ-( 6a*IAY**3J*BF.Tl+ll8.*AX*AX*BY*BFTJ 

l+YY*fl96.•ALP•BETJ+Cl2.*BY*BY*BETJ-136.•AX*AX*BET11 

SAS683 
SAS684 
SAS685 
SAS686 
SAS687 
SAS688 
SAS689 
SAS690 
SAS691 
SA5692 
SAS693 
SAS694 
SAS695 
SAS696 
SA5697 
SAS698 
SAS699 
SA5700 
SAS701 
SAS702 
SAS703 
SAS704 
SAS705 
SAS706 
SAS707 
SAS708 
SAS709 
SAS7IO 
SAS71 I 
SAS712 
SAS713 
SAS714 
SAS715 
SAS716 
SAS717 
SAS718 
SA5719 
SAS720 
SAS721 
SAS722 
SAS723 
SAS724 
SAS725 
SAS726 
SA5727 
SAS72B 
SAS729 
SAS730 
SAS731 
SAS732 
SAS733 
SAS734 
SAS735 
SA5736 
SAS737 
SAS73B 
SAS739 
SAS740 
SAS741 
SA5742 
SA5743 
SA5744 
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TABLE XXII (Ccmt:l.nued) 

STRCZ,5)= ( 18.*BY*ALP*BETl-(18.*(BY**3l*BETJ+(54.*AX*AX*BY*BETl 
l+YY*CC 36.*BY*BY*BETJ - 1108.*AX*AX*BETll 
STR(J,5)= +C 18.*AX*ALP*BETl-154e*IAX**31*BETl+(IB.*AX*BY*BY*BET) 

)-XX*!! 36.*BY*BY*BETl - (106.*AX*AX*BfTll 
STR!l.61= +( 18.*AX*ALP*BETI-Cl8.*IAX**3l*ALPl+C54~*AX*BY*BY*ALPJ 

l+XX«(C 36.*AX*AX*ALPJ - (108.*BY*BY*ALPll 
STR!2,6l= +1 6,*AX*ALP*BETJ-( 6,*(AX**3l*ALP)+!l8.*AX*BY*BY*ALPl 

l+XX*({96,*ALP*BETl - (36,*BY*8Y*ALPl + 112,*AX*AX*ALP)) 
S TR I 3 ~6 l = f 18 • *BY*ALP*BET 1- C 54, * ( AY**'3 l *ALP I+! 18 • *AX*AX*BY*ALP l 

l-YY*((+36,*AX*AX*ALP) - 1108,*BY*BY*ALPl) 
STR { 1, 7 l = { 102 ,*BY*ALP*BET l + ( 6.* fAY**3 l *BET l- r 18.*AX*AX*BY*BET l 

l+YY*f{-96.*ALP*BETJ-(12.*BY*BY*BETJ+f36.*AX*AX*BET!l 
STR!2,7)= ( 18.*BY*ALP*BETl+{l8.*[BY**3l*BETJ-(54.*AX*AX*BY*BETI 

l+YY*(f-36.*BY*BY*BETl + (108.*AX*AX*BET)I 
STR(3,7l= -( 18.*AX*ALP*BETl+(54.*IAX**3l*BET)-{18.+AX*BY*BY*BETl 

I-XX•<<-36.*BY*BY*BETJ + (108.*AX*AX*BETll 
STRll,BJ= -( 18.*AX*ALP*BETl+(l8 .. *fAX**3l*ALPl-C54.*AX*BY*BY*ALP) 

l+XX*((-36.*AX*AX*ALP) + (108.*BY*BY*ALPJ) 
STR(~t8l= -I 6.*AX*ALP*BETJ+( 6.*fAX**3l*ALPJ-Cl8.*AX*BY*BY*ALP) 

l+XX*(f-96.*ALP*BET)+{36.*BY*BY*ALPJ-!12.*AX*AX*ALP!l 
STR(3,8l= C 18.*BY*ALP*BETJ+f54.+fBY**3l*ALP)-C18.*AX*AX*BY*ALPI 

l-YY*ff-36.+AX*AX*ALP) + {108.•BY*BY+ALP)I 
DO 404 1=1;3 
DO 404 J=l,8 

404 STR<I,Jl= STRfl,Jl*(E/(96.+ALP*BET *AX•BYll 
WRITEC6,200l 
WRITE( 6,101 l If STR( I ,Jl ,J=l,81, I=l,3 l 
CALL MXM fSTR,QORU,STRESS,NCl 
GO TO 30 

88 CONTINUE 
DO 377 t=l,3 
DO 377 J=l,8 

377 STR r I ,Jl = Q .. O 
DO 378 I=l,3 
D0.378 J=l,5 

378 STRESS CI,Ji • ~.O 
00 119 1=1,3 
DO 119 J=l,6 

119 STRCJ,J)=Q.O 
STR(l,l)=Y32 
STR 11,2 )=-PR*X32 
STR(l,3l=-Y31 
STRl1,41=PR*X3l 
STRl1,5l=Y21 
STR(l,6)=-PR*X21 
STRl2tll=PR*Y32 
STR12,2l=-X32 
STR12,31=-PR*Y31 
STRl2,4l=X31 
STRl2,5l=PR*Y21 
S1R(2,6l=-X2l 
STRl3,ll=-l{l.-PR)/2•l*X32 
STRl3,2)={ c-1.-PRl/2.l*Y32 
STRC3,3l=C Cl.-PRl/2. l*X31 
STRf3,4l=-(!l.-PRl/2.l*Y3l 
STRf3t5l=-C fl.-PRl/2.)*X21 
STR(3,6l=I ll.-PR)/2.J*Y21 
DO 1? 0 1 = 1, 3 
DO Lrn J=l,6 

120 STRII,Jl=IE/12.*0•5*(X32*Y21-X2l*Y32)*(l.-!PR**2l)J)*STR(I,J) 
'1,,iRITE.16,2001 
WRITE I 6,101 l I ( STR ( I , J l, J= 1, 8 l , I= 1, 3 l 

SAS745 
SAS746 
SAS74 7 
SAS748 
SAS749 
SAS750 
SAS751 
SAS752 
SAS753 
SAS754 
SAS755 
SAS756 
SAS757 
SAS758 
SAS759 
SAS760 
SAS761 
SAS762 
SAS763 
SAS764 
SAS765 
SAS766 
SAS767 
SAS768 
SAS769 
SAS770 
SAS771 
SAS772 
SAS773 
SAS774 
SAS775 
SAS776 
SAS777 
SAS778 
SAS779 
SAS780 
SAS78 l 
SAS782 
SAS783 
SAS784 
SAS785 
SAS786 
SAS787 
SAS788 
SAS789 
SAS790 
SAS791 
SAS792 
SAS793 
SAS794 
SAS795 
SAS796 
SAS797 
SAS798 
SAS799 
SAS800 
SASSO! 
SAS802 
SAS803 
SAS804 
SAS805 
SAS806 

CALL MXM ISTR,CORU,STRESS,NCI 
GO TO 30 

99 CONTINUE 
WRITE C 6,256 l 
GO TO 839 

30 CONTINUE 
WRITE16i2D6l NN,NTYPE 
WRITE 16,201) 
WRITE (6,202) 
WRITE 16,2191 NNSN, NTYPE, ISTRESS{l'iilJt Ji::1,NC) 
IFCNTYPE•LE•41 GO TO 237 
io!RITE (6,222) !STRESSl2,l), I=l,NC) 
WRITE {6,221) ISTRESS13,Ih I=l,NCl 

237 CONTINUE 
370 CONTINUE 

REWIND 3 
REWIND 4 
WRITEl6,99999l IRCJ) ~J=l,121 

19999 GO TO 839 
11999 CALL EXIT 

END 
SIBFTC SYMINV 

SUBROUTINE SYMINV ( JO, A, ISING) 
DIMENSION AC1830l,COLC60l 
IF(IO-llB00,810,97 

C ----INVERSE OF 2X2----
97 C=Alll*Al3l-A(2l*AC2! 

JF('::198,900,98 
98 AC2l=-AC21/C 

COLllJ=All)/C 
ACll=AC3l/C 
AC3l•COLCI) 
IFU0-2)800,720,99 

99 K=l 
M•I0-1 
D0700 I 011•2 ,M 
K=K+IOll 
----L.L.H.OFSYMMETRICMATRIX*CDLUMN---
N•O 
DOIOOI=l,1011 

100 COLC!l=O 
D0300I=l, 1011 
JA=K+l 
D0300J=l,I 
N=N+l 
COLCJl=COLCJl+AfNl*ACIAl 
IFIJ-1)200,300,800 

200 I B=K+J 
COL(ll=COLCil+A(NJ*AIIBI 

300 CONTINUE 
C ----COMPUTE822----

C=O 
D0400I=!, 1011 
I A::K .-1 

400 C=C+ACIAl*COL(Il 
. IA=tA+l 

C•AC IAl-C 
!F(C)410,900,410 

410 C•l.O/C 
AC I A)•C 
----COMPUTEB21---
D0500 I =l ,10 Jl 

SASSO? 
SAS BOB 
SAS809 
SAS BIO 
SAS811 
SAS812 
SAS813 
SAS8!4 
SAS8!5 
SAS816 
SAS817 
SAS818 
SAS8!9 
SASB20 
SAS821 
SASS22 
SAS823 
SAS824 
SAS825 
SAS826 
SASS27 

SMINVOOI 
SMINV002 
SMINV003 
SMINV004 
SMINV005 
SMINV006 
SMINV007 
SMINVOOB 
SMINV009 
SMINVOIO 
SMINVOll 
SMINVOl2 
SMINV013 
SMINVOl4 
SMINV015 
SMINV016 
SMINV017 
SM INVOlB 
SMINV019 
SMINV020 
SMINV021 
SMINV022 
SMINV023 
SMINV024 
SMINV025 
SMINV026 
SMINV027 
SMINV028 
SMINV029 
SMINV030 
SMINV031 
SMINV032 
SMINV033 
SMINV034 
SMINV035 
SM!NV036 
SMINV037 
SMINV038 
SMINV039 
SMINV040 !·" 
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TABLE XXII (Continued) 

JA=K+I 
500 A(JAJ=-C*COL<ll 

C ----COMPUTEBll----
N=O 
D060Jl=l,!Oll 
D0600J= l, I 
N=N+l 
IA=K+J 

600 AINl=AINJ-AI !Al*COLI I l 
700 CONTINUE 
720 ISING=! 
710 RETURN 
900 I S!NG=O 

GOT0710 
810 Atl1=1.0/Alll 

GO TO 720 
800 ISING= 2 

RETURN 
END 

$IB1'TC SMMPY 
SUBROUTINE SMMPYCA,B,C,N3,NC1 
(KINVERSEl*IFORCEl***DfFLECTIONS****NO OF ROWS****NO OF FORCES 
DIMENSION All8301,B(60,51,Cl60,5) 
DO 100 l=l ,N3 
DO 100 J=l ,NC 
CI I ,Jl =O 
DO lJO Kl=l,N3 
L=MAXO( I ,Kl l 
K=CL*IL-3)1/2+1I+Kll 

lOC CtI,Jl=AIKl*BIKl,J)+CIJ,Jl 
RETURN 
END 

$IBFTC WRT 
SUBROUTINE WRT(A, N3l 
DIMENSION A(ll 

31009 FORMATClX,3HROW,I4,/lX,11PlOE13.4lJ 
NF=O 
NS=O 
DO 31010 J=ltN3 
NS=:'ff+l 
NF=NF+J 

310l"l WRITE 16,310091 J,IACII, J=NS,NFl 
RETURN 
END 

SIBFTC MXM 
SUBROUTINE MXM I A, B, Ct NCI 
DIMENSION AC3,S1 ,618,51 ,C13t51 
DO 20 I=l,3 
DO :?O J=l,NC 

20 CII,Jl = O.O 
DO 10 !=1,3 
DC 10 J=l ,NC 
DO 10 N=l,8 

10 CII,Jl = CCI,.Jl + A<I,NJ * B!N,Jl 
RETURN 
END 

SMINV04l 
SM!NV042 
SMINV043 
SMJNV044 
SMJNV045 
SMJNV046 
SMINV047 
SMINV048 
SMJNV049 
SM!NV050 
SM!NV051 
SM!NV052 
SM!NV053 
SMINV054 
SMJNV055 
SMJNV056 
SMINV057 
SMINV058 
SMINV059 

SMMPYOOl 
SMMPY002 
SMMPY003 
SMMPY004 
SMMPY005 
SMMPY006 
SMMPY007 
SMMPYOOB 
SMMPY009 
SMMPYOIO 
SMMPYOll 
SMMPY012 

WRTOOl 
WRT002 
WRT003 
WRT004 
WRT005 
WRT006 
WRT007 
WRTOOB 
WRT009 
WRTOlO 
WRTOll 

MXMOOl 
MXM002 
MXM003 
MXM004 
..,XM005 
MXM006 
MXM007 
MXM008 
MXM009 
MXMOlO 
MXMOll 
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APPENDIX C 

A DIGITAL COMPUTER PROGRAM FOR IMPLEMENTING 

THE MATRIX FORCE METHOD 

(Mr. Bill Accola of the University Computing Centerj Oklahoma 
State University9 rendered very able and valuable assistance 
to the planning of this program and had a major role in its 
development.) 

The following computer program is developed from the concept set 

forth by Reference (12); namely~ that of building up a main program 

from a set of matrix subroutines with each subroutine performing some 

matrix manipulation (multiplication~ inversionj addition 9 etc.). The 

subroutines used in this program are primarily those listed in Reference 

(12). The only exceptions are modified versions of the subroutines 

RMATNZ and WRTMAT. 

Modifications of RMATNZ 

A counter (IENT) has been added to this subroutine to keep track of 

which call the subroutine is in. According to the time of entry~ the 

appropriate heading for the matrix that is read is printed with its 

title~ i.eo 9 when IENT is 1 9 the computed GO TO statement number 1000 

sends control to statement number 4j which prints out the name [ALPIJJ 

with Format 103. To adjust this subroutine for different programs 9 the 

order of the matrices to be read in must be knowno A numbered write 

statement must be set up for each matrix with the appropriate format 

148 
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for that matrixo With these statements in order 3 statement 1000 must be 

altered to send control to the proper.write statement according to the 

current entry the subroutine is ino 

Also~ statement 102 has been changed from 

to 

Modifications of WRTMAT 

This subroutine has been altered in the same manner as was RMATNZ. 

A numbered write statement is needed for each matrix that is to be 

printed. A format is needed with the name of a matrix for each matrix 

that; is to be printed. Wi'ch these statements added. 9 the computed GO TO 

statement must be changed to send con.trol to the proper write statement 

depending upon the time of entry which determines the matrix that is 

Additional Matrix Designations 

Tb.e fcllo·wi11g mat.1~i.c(3:s are defin(~d as 

[fl.rs] - [ ARS]) [A11N ] ~ [cAMN]) = 

r arnl - [ ARN] i [ ~NN J = [ ~ N N ] , = 

[c;im] - ~~r1> [9,, ][ O\i~] =~RIAL~, --

[~sN J = [~sN_] l ~;~ ][ ~iJ] = ~MIAL~ i -



[G~p] : [GM~, 

~MN] = [AM~ J 

[ I J = [xroMJ, 

~~ J' ~RS/NV J. 
With the above definitions and those made in prior topicsj the 

equations given in Chapter II are converted to computer 

language and a description of the computer program may now be giveno 

Program Description 

150 

This package program is made up of a main program and several sub-

routineso The main program serves only to prepare arrays for ope~a-

tions which are carried out in subroutineso The flow of manipulations 

of the matrices can be followed through the main program. 

Since the input/output assignments are held in common for all the 

subroutines~ KIN (input) and KOUT (output) must be established. On the 

IBM 7040 KIN is set to 5~ and KOUT is set to 6. This causes all data to 

be read in from the card reader and all output to be printed on the 

printer. 

Two calls to RMATNZ read in [ALPIJ J and [ GIR ]• Fach call reads 

the matrix and prints the matrix with the appropriate title. [ALPIJJ 

and [GrRJ are manipulated as AXB giving [GRIALP J which is printed by a 

call to WRTMAT. Then [ GRIALP J is multi plied by [ GIR J giving [ AR$ J. 

This multiplication is initiated by a call to MXM. The resulting [ ARS J 
is printed with WRTMAT. A D0=loop is inserted to save [ARs] in STORE as 

it is desired la·cer to invert [ARS] and then multiply back to obtain an 

identity matrix. (The inversion subroutine destroys the input 

matrix.) 
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After storing [ARs], [ARSINVJ is obtained and is printed with a 

call to [rNVERX Janda call to WRTMATo To check the condition of [ARsJ, 

the identity matrix [xrDMJ is computed by MXM and then printed with 

WRTMATo 

After printing [xrDMJ, [GrMJ is read and printed via RMATNZ and 

the [GRIALP J and [GrMJ are multiplied giving [ARN], which is printed 

with WRTMATo To obtain [GsN ], MXM is called to multiply [ARSINV] by 

[ ARN J The result is then printed. Another multiplication is per

formed obtaining [ GSN J from [ ARSINV J X [ARN} Following the printing 

of [GsNJ, [arRJ is multiplied by [osNJ to get [oMP J. Since [ARsrNVJ is 

no longer needed, [ GMP] could have been stored in [ARSINV J. Next [ GMP] 

is subtracted from [ GIM] giving [ CGUI J which is then printed. The sub

traction is done with a call to MSM. [FORCE] is read in and printed 

with a call to RMATNZ and is then multiplied by [cGIMJ to give the 

desired [QI} [QI] is printed by a call to WRTMAT. To find the 

stresses, the matrix [AREINVJ is printed and then [sTRESS (1)] is set 

equal to [QI (1)]' and [sTRESS (2) J equal to [QI (2) J. This is done 

because the first two elements of any array in this program are the 

number of rows and the number of columns. Following the multiplication 

of [AREINVJ and [Qr] which is done element-wise, the result, [sTRESs], 

will be the same size as [Qr]. The actual multiplication is done with a 

double DO-loop. Following the multiplication, [sTREss] is printed with 

WRTMAT and punched which gives output capable of being read with RMATNZ. 

To obtain deflections, the transpose of [GrMJ is multiplied times 

[ ALPIJ J ( [ GIM J X [ ALPIJ J) giving [ GMIALP J which is then printed with 

WRTMAT.. MXM is used to obtain [GMIALP J X [ GIM J resulting in [ AMN J.. 
[AMNJ is printedo Next~ another transposed multiplication is 



performed giving [aNNJ~ which is printed. A subtraction [AMNJ = [aNN J 
is performed~ giving [cAMNJ~ which is also printed with WRTMAT. The 

deflection matrix~ [DELTAM J is computed by multiplying [cAMN] by [FORCE J 
[DELTAM] is then printed with WRTMATo 

To obtain a check on the final results of a redundant force calcu= 

lation~ a multiplication of [oRIALP J and (cGIMJ is performed giving 

[ ARNTR J [ ARNTR J could have been stored in [ GMIALP] or almost anywhere 

since the program is so near completiono [ARNTRJ is then printed and a 

CALL EXIT concludes processing of the program. 

Example Listing 

A complete listing of the main program, required subroutines and 

input matrices is given in Tabl~ XXIII. 



TABLE XXIII 

FORTRAN PROGRAM FOR IMPLEMENTING THE 
MATRIX FORCE METHOD 

$IBFTC MAIN DECK 
C FORTRAN IV MATRIX PACKAGE FOR STRUCTURAL ANALYSIS 
C ARMY RESEARCH OFFICE CONTRACT PROF. R. Eo CHAPEL, PROJECT LEADER 

COMMON KIN, KOUT 

10·0 

11 

12 

9993 
C 

DIMENSION ALPIJ12650J,GIRl350J,GRIALPl350J,ARSllOOJ,ARSINVllOOJ, 
lSTORE!lOOl,XIOM!lOOJ,61Ml999J,ARN!lOOJ,GSN!lOOl,GMPl350J,CGIMl350J 
l,FORCE(200J,Ql<lOOOJ,AREINVllOOJ,STRESS!lOOOJ,G~IALPl402),AMN!350J, 
1, 

.lGNN I 350 J ,CAMN I 350 J ,DEL TAMI 350 J ,ARN TR I 350 I 
KIN=S 
KOUT=6 
ICT•O 
READ<S,lOOIIPCH 
FORMAT ( I lJ 
CALL RMATNZCALPIJJ 
CALL RMATNZIGIRI 
CALL MTXM !GIR, ALPIJ, GRIALPJ 
CALL WRTMAT!GRIALPI 
CALL MXM !GRIALP, GIR, ARSJ 
CALL WRTMAT CARS J 
OOlI=l,38 
STC~EI I J=ARSC I I 
CALL INVERX<ARS,ARSJNV,DET,IEJ 
CALL WRTMAT!ARSiNVI 
CALL MXM<ARSINV,STORE,XID~J 
CALL WRTMAT<XIOMJ 
CALL RMATNZCGIMJ 
CALL MXM (GRIALP, GIM, ARN) 
CALL WRTMAT!ARNJ 
CALL MXM CARSINV, ARN, GSNJ 
CALL WRTMATIGSNJ 
CALL MXM !GIR, GSN, GMPJ 
CALL WRTMAT!GMPJ 
CALL MSM !GIM,GMP,CGIMJ 
CALL WRTMAT!CGIMJ 
CALL RMATNZIFORCEJ 
CALL MXM.CCGIM, FORCf, QIJ 
CALL WRTMAT!QI l 
ICT=ICT+l 
IELM=IQI ( 1 )*OI (21 )+2. 
D0121=1,IELM 
STRESS( I i=o.o 
CALL RMATNZIAREINVJ 
STRESS!ll=OlllJ 
STRESS(2J=QI 12) 
1ROWS=STRES5Cl1+2. 
ICOLS=STRESSl2J 
D031=1,ICOLS 
D02J=3,IROWS 
K= ( J-3 J*IFIX !QI I 21 J+ 1· 
L=K.+2 
STRESS<LJ•AREINV!Jl*Ol<LJ 
CONTINUE 
CALL WRTMATISTRESSJ 
IF!IPCH.EQ,OJGO TO 9993 
CALL PUNCHtSTRESSJ 
IF!ICT,LE,lJGO TO 11 
DEFLECT IONS 
CALL MTXM(GIM,ALPIJ,GMJALPJ 
CALL WRTMAT(GMIALPl 
CALL MXM(GMIALP,GIM,AMNl 
CALL WRTMAT(AMNJ 

CALL MTXM!ARN,GSN,GNNJ 
CALL WRTMAT(GNNI 
CALL MSM<AMN,GNN,CAMNI 
CALL WRTMATICAMNI 
CALL MXM(CAMN,FORCE,OELTAMJ 
CALL WRTMAT!OELTAMI 

C REDUNDANCY 
CALL MXMIGRIALP,CGIM,ARNTRI 
CALL WRTMAT(ARNTRI 
CALL EXIT 
END 

$1BFTC RMATNZ 
SUBROUTINE RMATNZ !Al 

C READ NONZERO ELEMENTS ONLY AND STORE AS FULL MATRIX 
C LAST DATA CARD OF MATRIX MUST BE FOLLOWED BY END CARO 

DIMENSIO~ All! 
COMMON KIN, KOUT 

101 FORMATC6Xtl4,6X,I4,El4.7) 
103 FORMAT(7HlALPIJ ,14,3X,1HX,141 
104 FORMAT!l0X,3HROW,16J 

lOS FORM~T <2SX, 6ElS,41 
106 FORMATl4HlGIR,14,3X,l.HX,141 
107 FOR~AT(4HlGIM,I4,3X,lHX,l4) 
108 FORMAT(6HlFORCE,14,3X,1HX,141 
109 FORMAT(7HlAREINV,14,3X,lHX,14J 

IENT=IENT+l 
READ!KIN,lOllL,Ll 
A( l l=L 
M21•Ll 
I JMAX=L*Ll+2 
DO l I= 3, IJMAX 
A!I l = 0,0 
REAO!KIN,lOllM,N,DATA 
IF IN ,LE, 0 J GO TO 1000 
l=<M-ll*Ll+N+2 
A!I I • DATA 
GO TO 2 

C PRINT INPUT MATRIX 
1000 Go ro 14,5,6,7,9,9>,IENT 
4 WRITECKOUT,1031L,Ll 
8 L2=3 

003Kzl•L 
L3=Ll+L2~1 
WRITE !KOUT, 104) K 
WRITE !KOUT, 105l(Alllt I •L2, L31 
L2 = L3 + 1 
CONTINUE 
RETURN 
WRITEIKOUT,1061L,Ll 
GO TO 8 
WRITE<KOUT,107lL,Ll 
GO TO 8 
WRITE<KOUT,108lL,Ll 
GO TO 8 
WRITE<KOUT,1091L,Ll 
GO TO 8 
END· 

$IBFTC WRTMAT DECK 
SUBROUTINE WRTMAT!Al 
DIMEISION Alli 
COMMON KIN, KOUT 

100 FOR~AT(7HlGRIALP,14,3X,1HX,I4l .... 
\..t1 
\J,1 



101 FORMAT(4HlARS,14,3X,lHX,I4) 
102 FORMATl4HlARN,t4,3X,lHX,14) 
103 FORMAT(4HlGSN,I4,3X,1HX,I4) 
104 FORMATl4HlGMP,l4,3XtlHX,14) 
105 FORMAT(5HlCGIM,T4,3X,lHX,t4l 
106 FORMATf3HlQI ,I4,3X,1HX,l4J 
107 FOR~AT!20X,1P6El6.5J 
108 FORMATC10X,5H ROW ,I4l 
109 FORMAT(7H1ARS1NV,I4,3X,1HX,14J 
110 FORMAT(4HlAMN,14,3X,lHX,I4) 
111 FORM.\T(4HlGNN,I4,3X,lHX,14l 
112 FORMAT{7HlDELfAM,14,3X,lHX,14l 
113 FOR~ATl6HlARNTR,I4,3X,lHX,I41 
114 FORMAT(5HlXIDM,14,3X,lHX,l41 
115 FORMAT(7HlGMIALP,I4,3X,1HX,I4l 
116 FORMATf5HlCAMN,I4,3X,lHX,I4l 
117 FORMATl7HlSTRESS,14,3X,1HX,14) 

IENT=IENT+l 
L = A<ll 
Ll = A!Zl 
L2 = 3 
GO TO 13,4,10,15,5,6,7,8,9,lB,lB,16,11,l2,17,13,14) ,JENT 
002K=l,L 
L3 = L2 + Ll - l 
WRITE(KOUT,lOBlK 
WRITECKOUT,107l(Alll.J=L2,L3l 
L2 = L3 + 1 
CONTINUE 
RETURN 
WRITE(KOUT,lOOlL,Ll 
GO TO l 

4 WRJTECKOUT,lOl>L,Ll 
GO TJ l 
WRJTECKOUT,102)l,Ll 
GO TO l 
WRITE£KOUT,1031L,Ll 
GO TO l 
WRITECKOUT,1041L,Ll 
GO TO l 
WRITECKOUT,1051L,Ll 
GO TO l 
WRITE(KOUT,106JL,Ll 
GO TO l 

10 WRITEIKOUT,109JL,Ll 
GO TO l 

11 WRITE!KOUT,llOlL,Ll 
GO JO l 

12 WRITE{KOUT,llllL,Ll 
GO TO 1 

13 WRITCCKOUT,ll2JL,Ll 
GO TO l 

14 WRITE(KOUT,113lL,Ll 
GO TO 1 

15 WRITECKOUT,ll4ll,Ll 
GO TO 1 

16 WRITECKOUT,115lL,Ll 
GO TO 1 

17 WRITECKOUT,116lL,Ll 
GO TO l 

18 WRITECKOUT,117lL,Ll 
GO TO l 
END 

1rABLE }G'CIII ( Con t.inued) 

SIBFTC PUNCH DECK 
SUBROUTINE PUNCH!Al 
DIMENSION A Ill 

100 FORMAT(6X,I4,6X,14,El4•7) 
INROW=l 
ICOL:T=O 
L=A{ll 
Ll=•<2J 
L2=L*Ll+2 
D031=3,L2 
I COL CT= I COLCT+l 
IF{ICOLCT.EC•Ll+llGO TO 2 
IF!A{!J.EQ.O.QJGO TO 3 
WRITE(7,lOOlINROW,ICOLCT,ACJl 
GO TO 3 
rnROW= I NROW+l 
I COLCT=l 
GO TO l 
CONTINUE 
RETURN 
ENO 

$ l BFIC I NVERX 
SUBRJUTINE INVERX(A,B,DET,1El 
DIMENSION A!ll,B!ll 
OET = loO 
N = A{l) 

LIO= N**2 + 2 
DO 1 I = 1 ,L 10 

l BI I l a. 
BI l l N 
6121 N 
L9 = N + 
DO 2 I 3,Ll0,L9 
B < I l 1. 0 
JK = N - l 
J = 3 
NI 3 
N2 N + 
JO= N -
J2 = N + 
J4 = 3 
DO 300 Ll = 1,JK 
NR = (J + N - 2)/(N + 1) 
NRl = NR 
NRI • N - NR 
JNl = J + N 
IF INRI •LT• lJ GO TO 900 
IF INRI .GTo 1l GO TO 804 

800 AMAX= ABS {A{Jll 
AMXA = ABS !AIJNlJJ 
IF {AMAX .GE. AMXAJ GO TO 900 

801 N5 = J - NR + l 
N6 = N5 + N - l 
!AD= N 

802 DO 803 IT= N5,N6 
IT6 = IT + !AD 
ATEM=A{!TJ 
A!!TJ = A!!T6J 
A I IT6 J = ATEM 
ATEM = B{!Tl 
B!!Tl = B!!T6J 

803 B!!Tol = ATEM 
~ 
\Jl 
+"" 



GO TO 900 
804 Jll = J + N + 1 

JlO = J + N 
AMAX= ABS (A(Jll 
DO 807 IT= l,NRI 
AMXA = ABS (A(JlOll 
IF !AMAX ,GE• AMXAlGO TO 806 

805 AMAX= AMXA 
NRl = {Jll + N - 21/{N + 11 

806 JlO = JlO + N 
807 Jll = Jll + N + 1 

N5 = J - NR + 1 
N6 = N5 + N - 1 
ITEM = NRl - NR 
IAD = ITEM*N 
IF (!AD ,GT, 0 I GO TO 802 

900 CONTINUE 
DENO!= A(Jl 
IF <DENOM ,EQ, 0,0l GO TO 51 

50 IF (!AD ,GT, 0 l GO TO 701 
700 DET = DET•DENOM 

GO TO 702 
701 DET = DET•<-DENOMl 
702 00" 100 Jl = Nl ,N2 

A<Jll = A(Jll/DENOM 
100 BIJ!l = B(Jll/DENOM 

J3 = J4 
N3 = N2 + 1 
N4 = N2 + N 
DO 200 L = l,JO 
AMULT = ACJ2l 
00 101 Jl = N3,N4 
AIJl) = A(Jl) - AMULT*ACJ3) 
B(Jll = BIJll - AMULT*B{J3) 

101 J3 J3 + l 
J2 J2 + N 
J3 J4 
N3 N3 + 

200 N4 N4 + 
Nl NI+ N 
NZ N2 + N 
JO JO - l 
J=J+N+ 
J2 = J + N 

300 J4 = J4 + l'l 
DENOM = A(JI 
IF (VENOM .Ea. o.O) GO TO 51 

60 A<Jl = A(J)/DENOM 
DET = DET+DENOM 
LT= J - N + l 
DO 400 Jl = LT,J 

400 B<Jll = B(Jll/DENOM 
JO JK 
J2 = J - N 
J4 = J - N + 1 
N2 = J2 - N 
DO 6)0 Ll ::: l,JK 
J3 = J4 
N3 = N2 + 
N4 =-NZ+ N 
DO 500 L = 1,JO 
AMULT = A(J2l 

TABLE XXIII (Gontinu.ed) 

DO 401 Jl = N3,N4 
A(Jll = A(Jll - AMULT*A(J3) 
B(Jll = B(Jll ~ AMULT*BIJ3) 

401 J3 J3 + 1 
J3 J4 
J2 J2 - N 
N3 N3 - N 

500 N4 N4 - N 
N2 N2 - N 
JO JO - 1 
J = J - N -
J2 = J - N 

600 J4 = J4 - N 
IE= l 

703 RETURN 
51 IE = 0 

GO TO 703 
END 

$! BFTC MXM 
SUBROUTINE MXM CA,B,C) 
DIMENSION A(ll, BCll, CCl) 
COMMON KIN, KOUT 

100 FORMAT(lHO,I4,4lHMATRJCES NOT CONFORMAL FOR MULTIPLICATION,14,lHX, 
l14,4HMULT,I4,1HX,14) 

MATCON = MATCON + 1 
IROWA A(ll 
!COLA = A<2 I 
IROWB = Bill 
ICOLB = 8(2) 
IFCI:OLA.EQ,IROWBlGOT04 
WRITE (KOUT, 100) MATCON, IROWA, ICOLA, IROWB, ICOLB 
GO TO 6 , 

4 N = IROWA * lCOLB + 2 
DO 5 I = l ,N 
CCII = O.O 
IX= 3 
I = 3 
J = 3 
K = 3 
KX = 3 
DO 10 M = 1, IROWA 
DO 9 N = 1, I COLB 
DO 8 NX= 1, !COLA 
C(J) = C(JJ + ACI> * SCKl 
I I+l 

<l K = I( + ICOLB 
I = IX 
J::: J+l 
KX =KX+l 

9 K = KX 
IX = IX + I COLA 
I = IX 
K = 3 

10 KX =3 
6 C!ll = Alli 

C(2) = 8(2) 
RETURN 
END 

$!BFTC MTXM 
SUBROUTINE MTXM [A, B, C) 

C READ MATRIX A BY ROWS WITH READ SUBROUTINE 
C PREMULTIPLY THE MATRIX (Bl BY THE TRANSPOSf OF MATRIX !Al 



l 
l 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
7 
7 
7 
7 
B 
s 
8 
8 
8 
8 
9 
9 
9 
9 
9 
9 

10 
10 
10 
10 
10 
10 
II 
II 
II 
II 
II 
II 
12 
12 
12 
12 
12 
12 
B 
23 
13 
13 
14 
14 

2 Oo6741249E 01 
25 0.2JOOOOOE 02 

I Oo6741249E 01 
2 Ool348250E 02 

25 o.1800000E 02 
34-0;7!00246E 01 

3 O.J348250E 02 
4 Oo6741249E 01 

26 o.1800000E 02 
34-0o7!00246E 01 

3 0.674!249E 01 
4 Ool348250E 02 

26 Ool500000E 02 
40-0o5916872E 01 

5 0.!348250E 02 
6 Oo674!249E 01 

27 Oo!500000E 02 
40-0.59!6872E 01 

5 o.6741249E 01 
6 Ool348250E 02 

27 Oo !200000E 02 
46-0.2366749E 01 

7 0.2669969E 02 
8 Ool334985E 02 

25 Ool400000E 02 
28-0ol400000E 02 

7 Ool334985E 02 
8 Oo2669969E 02 

25 0.1200000E 02 
28-0 o l 200000E 02 
35-0o l 544!73E 02 
36-0ol544173E 02 

9 Oo2669969E 02 
10 Ool334985E 02 
26 Ool200000E 02 
29-0.!200000E 02 
35-o.!544173E 02 
36-0.!544!73E 02 

9 0.!334985E 02 
10 Oo2669969E 02 
26 o.lOOOOOC'E 02 
29-0.lOOOOOOE 02 
4J-0.!2B6BIIE 02 
42-0.!286Bl!E 02· 
11 0 o2669969E 02 
12 Ool334985E 02 
21 o .1 ooooooE 02 
30-0. J OODOOOE 02 
41-0ol2B6811E 02 
42-0.J286Bl!E. 02 
11 Ool334985E 02· 
12 Oo2669969E 02 
27 OoBOOOOOOE 01 
30'-0oBOOOOOOE 01 
47-o.5!47242E 01 
4B-0.5!47242E 01 
13 o.2669969E 02 
14 o.1334985E 02 
28 Ool400000E 02 
31 o.!400000E 02 
13 Q.J334985E 02 
14 Oo2669969E 02 

TABLE XXIII (Continued) 

DIMENSION A(ll, Bill, CCII 
COMMON KIN, KOUT 

100 FORMiTCIH0,14,41HMATR!CES NOT CONFORMAL FOR MULTIPLICAT!ON,14,2HX,14 
114,5HMULT,I4,2HX 14J 

MATCON • MATCON + I 
!COLA= A(!I 
IROWA = Al2J 
IROWB = Bill 
ICOLB • 6(21 
IFIICOLAoEQo!ROWBIGO TO 4 
WRITE <KOUT, 1001 MATCON, IROWA, !COLA, IROWB, ICOLB 
GO TO 6 

4 N = IROWA * ICOLB + 2 
DO 5 I= l,N 
CI I) = a.a 
IX= 3 
I = 3 
J = 3 
K • a 
KX = 3 
DO IO M = I , I ROWA 
DO 9 N -= 1, I COLB 
DO 8 NX= !, !COLA 
CIJI = C(JI +Alli* BIKI 
I I + IROWA 
K = K + ICOLB 
I= IX 
J = J+l 
KX =KX+l 
K = KX 
IX= IX+ 
I = IX 
K • 3 

10 KX =3 
6 C(l) • Al21 

C(21 = 6(21 
RETURN 
END 

SIBFTC MSM 
SUBROUTINE MSM <A,B,CI 
DIMENSION A<ll,B(IJ, CCII 
COMM)N KIN, KOUT 

100 FORMATIIHL,38HMATR!CES NOT CONFORMAL FOR SUBTRACTION,2X,6HIROWA•,I 
12,6LfIROWB=,I2J 

Jv! FOR~ATIIHL,38HMATRICES NOT CONFORMAL FOR SUBTRACT!ON,2X,6HJCOLA•,!2, 
12,6HJCOLB=,12) 

IFIAlll,NE,BllllGOT040 
!FIA121,~E.B1211GOT04! 
L =IF IX I A I 11 I* IF IX I A I 2 I I +2 
DO!Ol=3 ,L 

ID Clll•AIII-Blll 
Cl l l=BI 11 
Cl21=8!21 

20 RETURN 
40 WRITEIKOUT,lOOIAl!l,8111 

GO TO 20 
41 WRITEIKOUT,IOIIAl2l,B121 

GO TO 20 
END 

0 
51 51 

I I o.J348250E 02 
I-' 
\n 
O'\ 



APPENDIX D 

A DIGITAL COMPUTER PROGRAM FOR CALCULATING 

This digital computer program solves the twenty-one simultaneous 

equations described in Chapter II. Then, it reindexes the solution 

values such that for [GIMJ the selected redundant internal forces are 

zero and the remainder of the [GrMJ matrix is made up of the solution 

values. For [GIRJ, the selected redundant internal forces are set 

equal to v.nity with the solution values making up the remaining 

positions. 

The input to this program consists of the [coEF J and [coNsT] 

matrices, both of which are described in Chapter II, placed side-

by-side and listed as one large matrix. The solution matrix is found 

by the Gaussian elimination process and listed. The solution matrix is 

then broken apart and a zero matrix inserted at the appropriate loca

tions for the formation of [GIMJ. This process is repeated except that 

an identity matrix is inserted at the appropriate locations t,:; form 

The subroutines included in this program are as listed: 

1. The READ 3 Subroutine, which reads in all input data. 

2. The SOLVE Subroutine, which determines the solution 

values. 

3. The MOVE Subroutine, which breaks apart the solution 
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matrix for the insertion of the identity and zero 

matriceso 

4. The IDENT Subroutine~ which places the identity and 

zero matrices in the appropriate locations in the 

solution matrixo 

5. The PRINT 1 Subroutine~ which prints the final resultso 

A complete Fortran listing of the main program and the required 

subroutines are given in Table XXIV 0 



TABLE XXIV 

A F'ORTRAN PROGRAM FOR DE'l'ERMINING THE 
MATRICES [GIM] AND [GIR] 

$ID B-0001 STONE 
$JOB STONE 2527-40041 
$ lBJOB NAMEPR 
$ IBFTC MA IN NODE CK 

DIMENSION A INPUT { 1000 l ,OUTPUT ( 1000 l, IN f 21 l, J CTLR f 27 l, ICTLC C 36) ,SOL f 1000 l, 
lll 1000) ,TEMPI lOOOJ ,GIMflOOOJ 

DIMENSION 101121 
READ15,100)ID 

100 FORMAT I 12A6 l 
CALL READ3{A1NPUT,21,36l _ 
CALL SOLVEIAINPUT,OUTPUT,:N ,21,36> 
CALL PRINTlCAINPUT,6,21,36,0,0,0,0,0,lDl 
READ15,100)1D 
DOII=l,15 
JCTLCI I 1=1+21 
CALL MOVEIOUTPUT,SOL,21,36,2,21,15,0,ICTLCl 
CA-LL PR IN Tl l SOL,6 ,21, 15 ,O ,O,O,O, 0, I Dl 
0021=1,3 
ICTLRI I l=I 
0031=4,21 
ICTLR(l+6l=I 
0041=1,9 

4 ICTLCl!l=I 

$ IBFTC 

REA0{5,100JJD 
CALL MOVE£SOL,GIM,21,15,3,27,9,1CTLR,ICTLCl 
CALL PRINTlCGJM,6,27,9,0,0,0,0,0,IDl 
CALL PUNCH2{G!M,7,27,9l 
CALL IDENT!GIM,27) 
DOSI=l,6 
JCTLCC I >=1+3 
CALL MOVE(GIM,TEMP,27,27,2,27,6,0,ICTLC) 
ICTLRIJl=I 
ICTLRl2)=2 
ICTLRf31=3 
D06I=4,21 
ICTLRC !+61= I 
D07I=l,6 
JCTLCf!l=I+9 
CALL MOVEISOL,TEMP,27,15,3,27,6,JCTLR9ICTLCI 
READl5,JOOIID 
TEMP(26)=1.0 
TEMPC331=lo0 
TEMP I 40 l = l • 0 
TEMPC 47) =l•O 
TEMPC54)=1•0 
CALL PUNCH2 I TEMP, 7 ,27 ,6 l 
CALL PRINT! (TEMP, 6 ,27 ,6 ,0,0,0 ,O,O, I DI 
CALL EXIT 
ENO 

SUBROUTINE READ3 CA,IROW,ICOL) 
DIMENSIONA{l) 

C A SUBROUTINE OF THE MATRIX PACKAGE DECK WRITTEN BY BILL ACCOLA 
C THIS SUBROUTINE IS DESIGNED TO READ NONZERO ELEMENTS OF A MATRIX. 

1001 FORMATCI2,I8,Il0,El4•71 
2001 FORMATC6H ERROR,14,2161 

lUNT=5 
K.MAX =. I ROW* I COL 
DO 3 K=l ,KMAX 
AIKI = o.o 
REAOCIUNT,1001) ITM,I,J,Y 
JFCJTM.EQe9l RETURN 
JFCJ.LE.Ol GO TO 10 
IFC !.GT.IROWl GO TO 11 
IFCJ.LE.OJ GO TO 10 
IFIJ.GT.!COLl GO TO 11 
JKl = <J-ll*ICOL+J 
AIJKll • Y 
GO TO 5 

10 !ERR = 901 
GO TO 12 

11 !ERR = 902 
12 WRITE13,200IJ IERR,I,J 

GO TO 5 
END 

$JBFTC !DENT NODECK 
SUBROUTINE !DENT CA,IROWI 
DIMENSION Al ll 
ICOLCT=O 
INROW=l 
IELM=IROW4JROW 
DO 3 Icl,IELM 
ICOLCT=ICOLCT+l 
IFIJCOLCTeGT.JROWIGO TO 2 
Afil=O.O 
!Fl ICOLCToEao!NROWlAC I l=!,O 
GO TO 3 
ICOLCT=l 
INROW=!NROW+l 
GD TO l 
CONTINUE 
RF.TURN 
END 

$JBFTC PUNCH2 NODECK 
SUBROUTINE PUNCH2CA,JUNT,IROW,ICOLI 
DIMENSION Al ll 
ICOLCTcO 
INROW=l 
!ELM= !ROW* !COL 
DO 3 l=l,IELM 
ICOLCT=ICOLCT+l 
IFCICOLCT.GTo!COLlGO TO 2 
IFIAIIJ.EQeOeOIGO TO 3 
WRITECJUNT,2001) INROW,JCOLCT,ACII 
GO TO 3 
ICOLCT.._l 
INROW=INROW+l 
GO TO 1 

MP260010 
MP260020 
MP260030 
MP260040 
MP26005D 
MP260060 
MP2600?.0 
MP2600BO 
MP260090 
MP260100 
MP260ll0 
MP260120 
MP260130 
MP260140 
MP260150 
MP260l60 
MP260170 

r' 
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TABLE XXIV (Continued) 

CONTINUE 
WR !TE <I UNT ,2002 I 

2002 FORMATl1X,1H91 
2001 FOR.MATl6X,14,6X,14,El4,71 

RETURN 
END 

SIBFTC SOLV NODECK 
· SUBROUT !NE SOLVEIA,B, INTX, IROW,·ICOL I 
DIMENSION Alll,Blll,INTXCll 

C A SUBR.OUT!NE OF THE MATRIX ~ACKAGE DECK WRITT.EN BY BILL ACCOLA 
C SOLVE SIMULTA.NEOUS EQUATIONS- A IS INPUT MATRIX OF COEFFICIENTS AND 
C. SOLUTIONS AUGMENTED BIS .OUTPUT MATRIX OF IDENTITY AND UNKNOWNS 

· C AUGMENTED, 
. !ENT • IENT+l 

100 FORMAT119HKERROR 461 IN ENTRY,13,lOH OF SOLVE 
N•IROW*ICOL 
oO 1 .1e·1,"N· 
BC I l=AC 11 
LOOP=l 

11 I NROW•LOOP 
TEMP•-,999E+38 

21 !START• I INROW-1 l*ICOL+LOOP 
ISTOP•ISTART+IROW-LOOP 
NCOL•LOOP 
D03li•ISTART,ISTOP 
IFIBlll,LT,TEMPIGO TO 31 
T.EMP=BI 11 
I ROWHD• 1 NROW 
IHOLD•NCOL 

31 NCOL•NCOL+l 
I NROW• I NROW+l 
IFC INROW,LE,IROWIGO TO 21 
INTXILOOPl•IHOLD · 
!START•! IROWHD-ll*ICOL+l 
ISTOP•ISTART+ICOL-1 
ISUBB=ILDOP-ll*ICOt+l 
004ll=ISTART,ISTOP 
TEMP•B I I SUBB I 
Bl ISUBBl•BC 11 
isuee•ISUBB+l 

41 BCll•TEMP 
ISTOP•IIROW-ll*ICOL+IHOLD 
I SUBB=LOOP -
DOSll•IHOLD, I STOP, !COL 
TEMP•BCISUBBl 
B II SUBB 1 •B 11) 
·e11 l•TEMP 

51 ISUBB•ISUBB+ICOL 
NCOL•LOOP 
NROW•l 
l•INCOL-l l*ICOL+NCOL. 
J•l+ICOL 
IFIBll),EQ,O,OlGO TO 12 

MP240010 
MP240020 
MP240030 
MP240040 
MP240050 
.MP240060 
MP240070 
MP240080 
MP240090 
MP240100 
MP240110 
MP240120 
MP240130 
MP240140 
·MP240150 
MP240l60 
MP240170 
MP240180 
MP240190 
MP240200 
MP240210 
MP240220 
MP240230 
·MP240240 
MP240250 

·MP240260 
MP240270 
MP240280 
MP240290 
MP240300 
MP240310· 
MP240320 
MP240330 
MP240340 
MP240350 

. MP240360 
MP240370 
MP240380 
MP240390 
MP240400 
MP2404lO 
MP240420 
MP240430 
MP240440 
MP240450 
MP240460· 

STORE• lo/BIii 
00 3 L•l ,J 
IFIL,EQ,NCOL*ICOL+ll GO TO 4 

3 BILl•STORE*BILI 
4 8111•1. 
5 JFCJ.GT.NJJ•J-N 

STORE•BU) 
K•J+ICOL-NCOL 
M•I 
DO 6 l•J,K 
BILl•BILl~STORE*BIMI 
M=M+l 
IFINROW,EQ,!ROW-llGO TO 7 
NROW•NROW+l 
J•J+ICOL 

·GO TO 5 
7 IFILOOP,GE,!ROWIGO TO ·e 

LODP•LOOP+l 
GO TO 11 
LOOP•IROW 
NDIFF•ICOL-IROW-1 
. IHOLD• INTX C LOOP I 
!Fl IHOLD,EQ,LOOPIGO TO 111 
ISTART•LOOP•ICOL-NDIFF 
ISTOP•LOOP*ICOL 
ISUBB•IHOLD*ICOL-NDIFF 
0010.l •ISTART, ISTOP 
TEMP•BIII 
Blll•BIISUBBI. 
Bl ISUBBl•TEMP 

10 ISUBB•ISUBB+l 
111 LOOP•LOOP-1 

!F!LOOP,LE,O)RETURN 
GO TO 9-

12 WRITE16,100!1ENT 
RETURN . 
END 

SIBFTC MOVE NODECK,LIST . 
SUBROUTINE MOVE! A,B, IROWA, ICOLA, IDEL, IDROW, IDCOL, !CTLR; ICTLCl 
DIMENSION Alll,Blll,ICTLRlll,ICTLCll) 

2001 FORMATl1HK,5HERROR,14,9H IN ENTRY,I3,8H OF MOVE! 
IERR•lZO . 
IENT• IENT+l 
KDEL•IDEL+l 
ISWTCH•O 
ICDLCT•O 
INROW•l 
JK•O 
IFIIRDWA,EQ,OlGO TO 99 
!Fl ICOLA,EQ,O)GO TO 98 
!FIIDEL,GT,4!GO TO 97 
IF! IDEL-IDROW-IDCOL,EQ,IDELIGO TO' 30 
IELB•IDROW*IDCOL 
0099991 • l'o I ELB 

MP240470 
MP240480 
MP240490 
MP240500 
MP240510 
MP240520 
MP240530 
MP240540 
MP240550 
MP240560 
MP240570 
MP240580 
MP240590 
MP240600 
MP240610 
MP240620 
MP240630. 
MP240640 
MP240650 
MP240660 
MP240670 
MP240680 
MP240690 
MP240700 
MP240710 
MP240720 
MP240730 
MP240740 
MP240750 
MP240760 
MP240770 
MP240780 
MP240790 
MP240800 
MP240810 
MP240820 
IIP240830 
IIP070010. 
MP070010 
.MP070020 
.MP070030 
MP070040 
MP070050 
MP070060 
MP070070 
MP070080 
MP070090 
MP070100 
MP07.0ll0 
MP070120 
MP070130 
MP070140 
MP070150 
liP070160 

I-' 

°' 0 



ICOLCT=ICOLCT+l 
IF(lCOLCT.EQ.IDCOL+llGO TO 50 
GO TO 12,3,6,3,11! ,KDEL 
JK=I 
GO TO 20 

50 INROW=INROW+l 
ICOLCT=l 
GO TO 1 
IF!ICOLCT.NE.!JGO TO 5 
D04J~l, JRO'NA 
tF(J.EQ.ICTLR(INROWllGO TO 5 
CONTINUE 
GO TO 9999 
JK=(J-ll*ICOLA+ICOLCT 
JFl~UELeEOe4lGO TO 9 
GO TO 20 
D07 JJ= 1, I COLA 
IF!JJ.EQ.ICTLC! ICOLCTllGO TO 8 
CONTINUE 
GO TO 9999 
IFCKDEL .. EQe4lGO TO 10 
JK=IINROW-ll*ICOLA+JJ 
GO TO 20 
JKl=JK 
GO TO 6 

10 JK=JK+JJ-ICOLCT 
GO TO 20 

11 D012J=l,IROWA 
IF!ISWTCH.EQ.2JGO TO 17 
IFIJ,EQ,ICTLRCINROWl)GO TO 13 

17 lF(ISWTCH.GEe3lGO TO 15 
lFIJeEOeJCTLRIICOLCTJ)GO TO 14 
GO TO 12 

13 JKl=J 
ISWTCH=ISWTCH+2 
GO TO 17 

14 I SWTCH= I SWTCH+ 3 
JK2=J 

15 IFIISWTCH.EQo5lGO TO 16 
12 CONTINUE 

ISWTCH=O 
GO TO 9999 

16 JK= {JK1-1 l*ICOLA+JK2 
ISWTCH=O 

20 B(IJ=A!JKl 
9999 CONTINUE 

RETURN 
30 IF! IDEL,EQ,OJGO TO 1 

I ERR= I ERR+ 1 
97 I ERR= I ERR+l 
98 IERR=IERR+l 
99 IERR=IERR+l 

WRITE { 6,2001) !ERR, IENT 
RETURN 

TABLE XXIV (Continued) 

MP070170 
MP070 180 
MP070 190 
MP070200 
MP070210 
MP070220 
MP070230 
MP070240 
MP070250 
MP070260 
MP070270 
MP070280 
MP070290 
MP07030Q 
MP070310 " 
MP070320 
MP070330 
MP070340 
MP070350 
MP070360 
MP070370 
MP070 380 
MP070 390 
MP070400 
MP070410 
MP0/0420 
MP070430 
MP070440 
MP070450 
MP070460 
MP070470 
MP070480 
MP070490 
MP070500 
MP070510 
MP070520 
MP070530 
MP070540 
MP070550 
MP070560 
MP070570 
MP070580 
MP070590 
MP070600 
MP070610 
MP070620 
MP070630 
MP070640 
MP070650 
MP070660 
MP070670 
MP070680 
MP070690 
MP070700 

END 
$!BFTC PRINT! NODECK 

SUBROUTINE PRINTllA,IUNT,IROW,ICOL,lDEL,IDROW,IDCOL,ICTLR,ICTLC 
1, ID l 

DIMENSION AC 1), ICTLR Cl), JCTLCC l l, ID( 12 I ,Tl 10) 
A SUBROUTINE OF THE MATRIX PACKAGE DECK WRITTEN BY BILL ACCOLA 

C THIS SUBROUTINE IS DESIGNED TO PRINT A WITH TEN COLUMNS PER PAGE• 
2001 FORMAT(lHl,12A6,lOX,4HPAGE,l3l 

2002 FORMAT!lX,101121 
2003 FORMATl1X,I4,10El2.5l 

2004 FORMATl1HK,6HERROR ,13,lOH IN ENTRY ,12,IOH OF PRINTll 
!PG= 1 
JSTR = 1 
!ERR=903 
IENT=IENT+l 
JSTP2= IDCOL 
ISTP=IROW 
IF!IDEL-IDROW-IDCOL,EQ.IDELJGO TO 25 

10 KDEL= I DEL+l 
GO TO C17,23,ll,24,24l ,KDEL 

17 JSTP2=1COL 
1 JSTPl=ICOL 

GOT03 
11 IF{ IOCOL11EO.OJGO TO 99 

JSTPl=IDCOL 
3 JSTP = JSTR+9 

IF I Js TP. GT. JSTPl) JsTP=JS TPl 
WRITE{IUNT,2001) ID,IPG 
WRITE I IUNT,2002) (J,J=JSTR,JSTPl 
00301=1,ISTP 
DO 5 K=l,10 

5 TIKl = OeO 
GO TO Cl2,7,12,7,7l,KDEL 

12 I K=I 
GO TO 8 
IK=ICTLR! I J 
IFIIK.GT.JROWJGO TO 97 
JF(!KeLE.Ol GO TO 21 
JK=(JK-ll*ICOL 
DO 20 J=JSTR,JSTP 
GO TO ( 13,13,14,14,16) ,KOEL 

13 JK=J 
GO TO 18 

14 JK=ICTLC(JJ 
IF(JK.GTelCOLlGO TO 96 
GO TO 19 

16 JK=ICTLR(JJ 
JFIJK~GTeICOLlGO TO 96 

19 IFCJK.LEe0lGOT020 
18 IK!=IK+JK 
15 JK=J-JSTR+l 

T!JKJ=A!IKIJ 
20 CONTINUE 

21 IF(JSTP.GTelO)GO TO 22 

MP070710 

MP040010 
MP040020 
MP040030 
MP040040 
MP040050 
MP040060 
MP040070 
MP040080 
MP040090 
MP040100 
MP040110 
MP040120 
MP040130 
MP040l40 
MP040150 
MP040160 
MP040l70 
MP040180 
MP040190 
MP040200 
MP040210 
MP040220 
MP040230 
MP040240 
MP040250 
MP040260 
MP040270 
MP040280 
MP040290 
MP040300 
MP040310 
MP040320 
MP040330 
MP040340 
MP040350 
MP040360 
MP040370 
MP04038D 
MP040390 
MP040400 
MP040410 
MP040420 
MP040430 
MP040440 
MP040450 
MP040460 
MP04047D 
MP040480 
MP040490 
MP04050D 
MP040510 
MP040520 



TABLE XXIV ( Co·--t·1 n"ed) , LL ·-- U. 

WR I TE C 1 UNT, 2003 l I, { T ( J l , J= 1 ,.JS TP l MP040530 12 6 1.oooooooE+Oo 21S!MEQNSTAPFARDCI 

30 CONTINUE MP040540 12 I5-l.Dlll873E+Ol 21S!MEQNSTAPFARDC1 
!FtJSTP.Ea.JSTPZlRETURN MP040550 13 1 1.oooooooE+oo 2IS1MEQNSTAPFARDC1 
IF ( JSTP.EO• IDCOLJ RETURN MP040560 13 e-s. oooooooE+oo 21S!MEQNSTAPFARDC1 
IPG C JPG+l MP040570 13 16 1.oooooooE+oo 2IS1MECNSTAPFARDC1 

JSTR "" JSTP+l· MP040580 14 8 6e00000DOE+OD 21S1MECNSTAPFARDCI 

GO TO 3 MP040590 14 9-4. oooooooE+oo 21S1MECNSTAPFARDC! 

22 JSTP3=JsTP-t!PG-ll*10 MP040600 14 18 1.oooooooE+oo 21S1MECNSTAPFARDC1 
WRITE I lUNT,2003 i I, IT IJ l ,J=1,JSTP3 l MP040610 15 9 5,00000DOE+OO 21S1MEQNSTAPFARDC1 

GO TO 30 MP040620 15 20 i.oooooooE+oo 21S1MECNSTAPFARDC1 

23 I STP= !DROW MP040630 16 10 1.oooooooE+oo 21S1MECNSTAPFARDC1 
IF{ IDROW,EQ,OlGO TO 96 MP040640 16 11-s.oooooooE+Oo 21S1MECNSTAPFARDC1 

JSTP2= I COL MP040650 16 16-1,0000000E+OO 21S!MEQNSTAPFARDC1 
GOTO! MP040660 16 17 1. oooooooE+oo 21S!MEONSTAPFARDCI 

24 !STP=IDROW MP040670 17 11 6.0000000E+OO 21S1MEQNSTAPFARDC1 

G0T02 MP040680 17 12-4. OOOOOOOE+OO 21S!MEQNSTAPFARDC! 

25 !FIIDEL.Nf.OlGO TO 100 MP040690 17 10-1.oooooooE+oo 21S!MECNSTAPFARDCI 

GO TO 10 MP040700 17 19 l.OOOOOOOE+OO 21S!MEQNSTAPFARDCI 

96 IERR=!ERR+I MP040710 18 12 5.oooooooE+oo 21S1MEQNSTAPFARDCI 

97 !ERR=!ERR+l MP040720 18 20-1.oooooooE+oo 21S1MECNSTAPFARDC1 

98 I ERR= I ERR+ 1 MP040 730 18 21 1.oooooooE+oo 2IS1MEQNSTAPFARDC1 

99 IERR=IERR+l MP040740 19 13 1.oooooooE+Oo 2!S1MECNSTAPFARDC1 

100 I ERR= I ERR+! MP040750 19 14-5 • OOOOQOOE+OO 21SIME0NSTAPFAR0Cl 
WRITEC6.2004lIERR,IENT MP040760 19 11-1.oooooooE+oo 2IS1MEONSTAPFARDC1 
RETURN MP040770 20 14 6.0000000E+OO 21S1MEQNSrAPFARDCI 

END MP040780 20 15-4. DOOOOOOE+OO 21S1MEQNSfAPFARDC1 

$ENTRY 20 19-1. oooooooE+Oo 21SJMEONS1APFARDC1 
INPUT MATRIX 21 15-5. oooooooE+oo 21SIMECNS7APFARDC1 

1 1 1.oooooooE+oo 21S1MEQNSTAPFARDC1 21 21 1.oooooooE+oo 21S1ME0NSfAPFARDC1 
1 2-1.oooooooE+oo 21S1MECNSTAPFARDC1 3 22 l.Olll873E+OO 21SIMEONS.CORR-C,NST.RDC1 
l 7 l.Ol11873E+Ol 21S1MEQNSTAPFARDC1 4 30 lo0012385E+OO 21S!MEQNS,CORR-C~ST,RDC1 

2 1.oooooooE+oo 21SJMEQNSTAPFARDC1 4 31-1.oooooooE+oo 21SIMEQNS.CORR-CJNST,RDC1 
3-1. OOOOOOOE+OO 21 SI MEQNST APFARDC 1 4 32 1.oooooooc+oo 21S1MEONS.C0RR-CONST.RDC1 
a 1.0111e73E+o1 21S1MECNSTAPFARDC1 5 32-1. oooooooE+oo 21S!MEQNS,CORR-CUNST,RDCI 
3 1.oooooooE+oo 21 SI MEQNS T APF ARDC1 5 33 loOOOOOOOE+OO 21S1MEQNS,CORR-CONST,RDC1 
9 lo0lll873E+Ol 21 SI MEQNS T APFARDCl 6 23 lo0012385E+OO 21SIMEQNS,CORR-CONST,RDC1 

4 7-l,D012385E+01 21S1MECNSTAPFARDC1 6 33-1.oooooooE+oo 21S!MEQNS,CORR-CONST,RDC1 

4 10 1.0012385E+Ol 21S!MECNSTAPFARDC1 7 34-1-0000000E+OO 21S1MEQNS.CORR-C0NST•RDC1 
5 S-l.0012385E+Ol 21S1MEQNSTAPFARDC1 7 35 1.oooooooE+oo 21SIMEONS,CORR-CONST.RDC1 

5 11 le0012385E+Ol 21S!MEQNSTAPFARDCI 8 35-1 e OOOOOOOE+OO 21S1MEQNS,C0RR-CONST,RD(l 
9-l.0012385E+Ol 21S!MEQNSTAPFARDC1 8 36 1.oooooooE+oo 21S1MEQNS,CORR-CONST,RDC1 

12 1,0012385E+Ol 21 SI MEQNST APF AROCl 9 24 le00l2385E+D0 21S1MEQNS,CORR-CONST,RDC1 

10-1.0012385E+O 1 ~lSIMEQNSTAPFARDCl 9 36-1, OQOOOOOE+OO 21S1MEQNS,CORR-C0NST,RDC1 

13 1,D012385E+D1 21 SI MECNST APF ARDC1 12 25 lo0111873E+OO 21S1MEONS,CORR-CONST,RDC1 

ll-l,0012385E+Ol 21S1MECNSTAPFARDCI 13 30 2• 5000000E-02 21S!MEONS,CORR-CONST,RDC1 

14 1,0012385E+Ol 21 SI MEQNST APFARDC1 15 22 lo5000000E-Ol 21S1MEONS,C0RR-CONST,RDC1 
!2-lo00l2385E+Ol 21S!MECNSTAPFARDCI 15 23 2.5000000E-02 2IS1MEQNS,CORR-CONST,RDC1 
15 le00l23S5E+Ol 21S1MECNSTAPFARDC1 15 28 5.oooooooE-01 21S1MEONS,CORR-C0NST,RDC1 

10 4 1.oooooooE+oo 21S1MEQNSTAPFARDC1 15 29 lo OOOOOOOE+OO 21SIMEONS,CORR-CONST,RDC1 

10 5-1.oooooooE+oo 21S1MEQNSTAPFARDC1 16 30 2• 5000000E-02 2IS1MEONS.CORR-CONST,RDC1 

10 13-1,0111873E+Ol 21S1MECNSTAPFARDCI 18 23 2.5000000E-02 215 I MEQNS • CORR-CO-NST • RDCl 

11 s 1.oooooocE+oo 21S!MEQNS7APFARDC1 18 24-2• 5000QOOE-02 21S1MEONSoCORR-CONST,RDC1 

11 6-1. oooooooE +oo 21S1ME0NSIAPFARDC1 18 27-5. oo·oooooE-O 1 21S1MEQNSoCORR-C0NST,RDC1 

11 14-l,0111873E+Ol 21S!ME0NS7APFARDC1 18 28 5.oooooooE-Ol 2 lSI MEONS, CORR-CONST• RDC1 

j...! 
0\ 
f\) 



9 

21 
21 
21 
21 

SOLUTION MATRIX 
GIM FROM SOLUTIONS 
GIR FROM SOLUTIONS 
$ IBSYS 

24 2. 5000000E-02 
25 1.sooooooE-01 
26 1.oooooooE+oo 
21 s.oooooooE-01 

TABLE XXIV (Continued) 

21SIMEQNS,CORR-CINST,RDC1 
21SIMEQNS,CORR-CINST,RDC1 
21SIMEQNS,CORR-C>NST,RDC1 
215 IMEQNS,CORR-CC>NST ,RDC1 
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APPE:NDIX E 

TREATMENT OF EXPERIMEN'rAL DATA 

The experimental strain data were proeessed by the IBM 7040 Digital 

Computer. The ba.si: dat:a. oDtai.ned from the strain gages are reduc,:Kl to 

~.ra.lues per~ txn:it load fo~~ eacJ:1 of tr.Le load co11ditio:r1sa 

The stra,i:o. ·cs,Iws,s are obtained b:y- fiz1ding the most J'.'eliable linear 

relationship us::t:1g the least~,squares criterion. The method of least 

squares provides that the most probable furn:::t::Lon for a quantity obtained 

from a set of measarement:s is the funct:lor.c. which minimizes the sum c,f 

statistical sens(=-,, the equation of a l~_n.e gi vix:g the 91 best H fit to a SE":t 

of paired ,re-1:u"''"'· of two var:iable,s x and y is desiredo Predie~~ions of a 

'i'aluE' · cf y csu:1 then be 'based upon an assumed. o:c o'bserved value of Xo 

value and a co:r,respor1.di:1.g 1Ja.Tue lrJad cell 

rnir.i.lmiz'lng t-b.e s11n1 of scp1a:ces of 



The linear model can be solved for e1 to give 
n . n . ~ 

Lef = LCYi·-o< -f,XiJ·= Ico(+ Y,X;-y;)7: 
i=i 1=.1 i=1. 

A function of two -variables is minimized by taking the partial deriva= 

tive of the function with respect to each of the variables in turn and 

setting each derivative equal to zero. 

Thus, the first partial derivati'lre is 

or expressed differently9 it is 

1'lol+ PIX;= I Y;. 

The second partial de::t"il,'ative is 

or expressed differently 

The equatfons 

ci.11.+ ftix; =LY; l 

o[xi + ftLXT= IxiY;I 
a.re simultaneous for ot, and j3 • 

The two equations abcve can be solved for a and 13 to give 

(I v)(L xf) _ (I y,. x;) [I x,) 
. Ix~-('ixiJ2 



where: 

~ is defined as the least squares estimator of o(. 

I\ 
J3 is defined as the least squares estimator of fl· 

I=!. 
i-::..1. 

-x = mean of x1 1 s. 
A A 

166 

o( , now, is the intercept and ft is the slope of the "best II straight 
/\ 

line positioned among the data points. J3, then, is the unit strain per 

unit load cell load and is the ultimate objective of the above calcula

/\ 
tions. ,;;,(, the intercept~ is merely a function of the value at which 

the strain indicators are initially balanced or zeroed. See Figure 52. 

LOAD CELL '·i..OAD~ LB 

Figure 52. Typical Experimental Data 

Correlation of Experimental Data 

In the previous section? constants in a linear equation relating 

two variables? x and yj were determined by .~sing pairs of observations 
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(x19 yi) of these variables. The determination of these constants was 

based entirely upon the assumption that a linear relationship exists 

between x and y. This assumption is quite reasonable as the experimen

tal model is loaded only within its elastic range which implies Hookean 

stress-strain behavior. 

The situation may arise such that it is not known in advance 

whether the two variables x and y are related. Furthermore? if pairs 

of observations (x1 ~ yi) are taken as beforej the data may be scattered 

so widely because of experimental errors that it is not clear whether or 

not there is any relation between x and y. By representing the observa= 

tions (xi, yi) graphically~ a picture (Figure 53) similar to Figure 52 

might be obtained. Are x and y related~ or are they not? Is there any 

"correlation II between. x and y? 

There are an infinite variety of possible functional relationships 

between x and y. There is no general way of investigating all possible 

relationships but the simpler ones can be checked. The simplest one~ of 

course 9 is a linear equation.. Therefore 9 a reasonable place to begin i.s 

to ask whether. there is a linear relationship between x and yj Le.~ a 

91 1:1.ne ar correlaticm. 00 

This question can at least be answered partially by taking a 

special case of the method of least squares for two unknowneu A linear 

relationship between x and y can be assumed 

and the constants m and b can be determined from observations (x19 y1 ) 

in the same manner as in the previous section. In particular 9 
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~- ~~xr~~Ly} .. ,,,_ 11 2.X (2.X 2 .. 

The scattered points are represented by drawing the "best straight linen 

through them. Then, the expression for ei is 

ei = 111xi + b-Y1. 

e1 represents the vertical distance between the point (x1, y1 ) and the 

straight line described by the donstants m and b. In: this ease, the method 

of least squares minimizes the sum of the squares of the vertical dis-

tances between the point and the straight linee The line determined by 

this procedure is sometimes called the 09 line of regression of y on x. vv 

If there is no correlation at all between x and y, the sum of 

squares will be minimized by a horizontal line, or m = o. 

, , •· I 

• • 
' , • 

' • 

Figure 53. Scattering of Data Points 

There is no particular reason for writing the assumed relationship 

between .x and yin the form 



Y = "YYl.X + b. 
It could just as well have_ been written 

in which case the roles of x and y have been reversed. In this casej 

the error used in the method of least squares is given by 

e. = m"'v·+ L' - ><· I I O I, 

The method of least squares now minimizes the sum of the squares of the 

horizontal distance between the line 

X =. 'l'Yl'Y + b, 
and the points (x 1, y.1) representing the observations. The result is 

the line of regression of x on y. The expression form' would be 

Then m' is the reciprocal of m. 

If there is no correlation between x and y~ the method of least 

squares will give the value m' = o, a vertical line. If, on the other 

hand, all points lie exactly on the line, ioe•, the correlation is per-

feet, then the same line as the p:reyious one must result. Therefore, in 

the case of perfect. correlation, .1, = m or mm'= 1. If there is no cor= m 

relation between x and y, mm' :;: 0.- The product mm\ then, has something 

to do with the extent to which the variables x and y are correlated. 

It follows, then 9 that a 00 correlation coefficient, 10 R9 can be 

defined as: 
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Rewritten 9 R sometimes appears as 

R .. 

Thus, R = 1 means perfect: correlations and R ""' 0 means no correlatio1:to 

Consequently~ for imperfect correlation~ 0 ~ I RI ~ 1 • 
Suppose~ now~ that R has been cal.culated for a set of obserYationso 

How is this result interpreted? The int.erpret.ation of the correlation 

coefficient R is based on experience. The question is how large a value 

of R indicates a significant correlation between the variables x and y. 

Because of random fluctuations in the experimental data~ R would not be 

exactly equal to zero? even if the data were completely erroneous. 

similarly, p.ue to experimental fluctuations.J R would not be exact:ly 

equal to one. However, since the nature of the pro'blem dictates that a 

linear relationship exists and the expe,rimentaJ. errors are hopefully 

minimized~ then one should expect t.o get yalues in the neighborhood of' 

R = lo The criter:i.on used to determine whether the linear ,:,,:,r!.'.'Glation is 

substantial is to cor..s:ide1" the probability of obtaining a Yalue of R as 

large as possible purely by chance from the obser0rat:tor.s of two vari-

ables which are not related. Table XXV has 'been 1,!a.lculated to gige the 

probability of obtaining a given va.1:a.e of R for various numbers of pai!'S 

of observations (16). 

From Table XXV for ten observations? N equals ten. The probability 

Pis OolO of finding a correlation coefficient of 0.,549 or larger and a 

probability of 0.01 of finding R greater' than or eqtial to 0.765 if the 
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TABLE XXV 

CORRELATION COEFFICIENTS* 

Probability 

N 0.10 0.05 0.02 0.01 0.001 

3 0.988 0.997 0.999 1.000 1.000 

4 0.900 0.950 0.980 0.990 0.999 

5 0.805 0.878 · 0.934 0.959 0.992 

6 0.729 0.811 0.882 0.917 0.974 

7 0.669 0.754 0.833 o.874 0.951 

8 0.621 0.101 0.789 o.834 0.925 

10 0.549 0.632 0.716 0.765 0.872 

12 o.497 0.576 o.658 0,708 0,823 

15 0,441 0~514 0,592 o.641 0.760 

~o 0.378 0.444 0.516 0.561 o,.679 

*ThiJ> table· is· ada.pwd t.rom Table V of JI, Ypung, 
Statistical Treatment of Ex~rimental Data. ~ublished by 
McGraw;.:.Hill Book Company, Inc. , ··New· York. · 
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variables are not relatedo If~ for ten observationsj the correlation 

coefficient R = Oo9 9 there is reasonable assurance that this indi,cates 

a true correlation and not an accidento Conversely~ if R = Oo5 9 this 

would mean that the data were questionable since there is more than a 

ten per cent chance that this value would oc:cur for random datao A com=. 

monly used rule of thumb for interpreting values cf the correlation 

coefficient is to regard the correlation as significant if there is less 

than one chance in twenty~ P = o.05~ that the val11e will occur by chance 

(16). For any value of the correlation coefficient greater than the 

value given in the Table II for P = Oo05~ the experimental data should 

be regarded as showing a significant correlation. 

R, then, is a measure of how well the straight line based on~ and 

fl 91 fits 00 the data. But it is only a. measure of ·the 00 best fit 10 of a 

linear relationship to the exper.imental data and is in no way an indica= 

tion that the experimental data accurately ~"epresent ·the physical phe,~ 

nomenao It is merely an indication that a linear correlation exists 

between the variables x and yo 

Stress-Strain Relatioi!'l.s 

For the single legged axial st?."ai:n gage~ the stress-strain relat:i~n 

:ts: 

-Oa.ido.l = E" Eaxia.l , 

where: 

E = Modulus of elasti~ityo 

The development of stresses from strain values for the delta or ny00 

pattern rosette strain gage is as follcwso 
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From reference (17), the general equation for finding Ex_9 Ey and XY 
from E1 , E2 ~ and E3 is 

fi. = 00 

>----:__~--x ~z. =-12 0° 

i = 240° 

<b 
00 

12d' 

24-(f 

. SIN 24> CDSZtb 

0 1 
_.ff_ - ~ 2 
q- -t-

Figure 54. Leg Locations and Reading Sequence 

(cf. Figure 54). 

+ 'iv SIN e4>i) 

+ ¥-stN2tp2 ) 

By substituting in vaJ.ues o:f cos 2<.p and .si:n 2(!), e1~ c2 j and 87, be-oome 



If E , E • and Y are solved 
X Y' xy · 

and O become 
xy Ev-E 

" 1. ) 

For plane stress distribution for isotropic material obeying Hooke's 

law, the expression for C5 , a , and 't' are 
X y xy 

Vx = 1 ~ 9~ ( Ex + \7 Ey) > 

uy = l~\/z. (Q Ex+ Ey) > 
E v 

Txv :: 2.(1+v) 'xv J 

where~= Poisson's Ratio. 
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If ~, Ey' and Yx.y are substituted in terms of EH s:2, and e 3, ax' 

'"" , and 't' become '-' y xy 

Gx.-::; 3(i-v-.>[c3-V)E1 + 2 iJ(E'l. + E3 ) J) 

Uy= 3(!v2)[(3'i7-1)E1 + 2 ( Ez. + E3 )]) 

E c-E + E 1 
~y= (j_+iJ) ~ 3 j II 

The principle stresses are given by: 

Ox + a; + j_ -/( )'2. '2. v,..,AlC = 2 - -2 lUx - CTy +4Txy } 
MIN 



Data Reduction Computer Program 

A digital computer program has been developed to calculate the 

required stress results for each axial gage and "y" pattern rosette. 
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The strain data are copied onto the special data sheet shown in Table 

XXVI and then keypunched on IBM cards. All axial gage data are processed 

first followed by the rosette gage data. Each three sets of rosette 

gage data is used for the required calculations above. The p;r-ogram 

prints the test data in tabular form for each indicator. The correla

tion coefficient: and stress data are summarized at the end of the 

analy,sis to provide a more rapid analysis of the experimental results. 

The validity of the data is indicated by the correlation coefficient. A 

Fortran listing of the digital computer program is shown in Table XXVII. 



TABLE XXVI 

SAMPLE DATA SHEET 

OKLAHOMA STAT£ UNIVERSITY 
AEROSPACE LA BORATOR 'l 

SCH OOL OF M£C.HANICA J.. £Nt:ilNE£RTNq 
G. C. STONE E1<. 72e3 

TAP£RfD PANEL EX PER. DATA R[COROED B DAT£ T E<:ST NO._ l SP£CIAL co11n£NT5 : 

L OAD CONFl<;URATION NO. __ PUNCHED BY DAT£ 
P,\>JE:l. TY Pf;._ 
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OF_ 
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jl 
I I 
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TABLE XXVII 

AXIAL AND ROSETTE STRAIN GATE DATA 
REDUCTION PROGRAM 

SID B-0001 ACCOLA 
SIBJOB NA"IEPR 
SIBFTC DKNAME NODECK 

100 
101 
102 
104 

105 
106 
107 
109 
llO 
Ill 
112 
113 
114 
115 
116 
117 
118 
ll9 
120 

· 121 
122 
123 

11 

INTEGER GAGEl,GAGE2,GAGE3,GAGE4,CARDl,CAR02,TYPEl,TYPE2,TVPE3,TYPE4 
14 

DIMENSION ~1101 
DIMENSION AVE1l0l,1D14l 
FORMAT< ll, I3, 11,5El2, l,4A5 I 
FORMATl1HK,14HERROR IN CARDl,BHGAGE N0,,141 
FORMATllHK,l4HERROR IN CARD2,8HGAGE N0,,141 
FORMATl62HKSECOND GAGE OF THIS SET DOES NOT AGREE IN TYPE TO FIRST 

!GAGE., 14> 
FOR~ATllHll 
f0RMATC1HK,7X,BHGAGE NO.,I3,6H AXJAL,1X,4A5) 
FORMAT ( lHK, 7X ,BHGAGE NO., 13 ,8H ROSETTE, IX ,4A5) 
FORMATllH ,315X,El5,Bll 
FORM.\T C9HKSLOPE IS,El2,5 t5X, lt+HY- II\ITERCEPT IS,El0,3) 
FORMATll5H SIGMAIAXIALJ =,,l2,5,6HPS1/L8l 
FOR~ATlllH SIGMA<Xl =,El2,5,6HPSI/LB1 
FORMATlllH SIGMAIYl =,El2,5,6HPS1/LBJ 
FORMATl2X,9HTAUIXYl =,El2,5,6HPSI/LB1 
FORMATl13H SIGMA(MAXJ =,El2,5,6HPS1/L8l 
FORMATl13H SIGMAIMINJ =,El2,5,6HPSI/LB1 
FORMATlllH TAUIMAXJ =,El2,5,6HPSi/LRJ 
FORMAT<l4H PHl<SIGMAXl =,El2,5,7HDEGR1"ES1 
FORMAT(l4H PHI{TAUMAXI =,E12,5,7HDEGREES) 
FORMATll6H SIGMAITAUMAXl =,El2,5,6HP51/LBJ 
FORMATl26H CORRELATION COEFFICIENT •,F9,6J 
FORMATOFIO,Sl 
FORMAT(6H GFR =,F7,4J 
READl5,122JBEGIN,XINCR,GFR 
BEGIN=BEGIN/1000, 
XINCR=XINCR/1000, 
X.11 !•BEGIN 
SUMX=Xlll 
SUMXSQ=BEGIN*BEGlN 
00111=2,10 
X(ll=Xll-lJ+XINCR 
SUMX :sSUMX+X { I J 
SUMXSQ=SUMXSQ+X~ I l *XI I l 
SUMSQX=SUMX*SUMX 
DENCM=!O,*SUMXSO-SUMSOX 
XBAR•SUMX/10, 
NUMROS=O 
ICT=O 
E=10,6E+06 
TE-RM=E/2.683125 
CONTINUE 
XMXBSQ=O,O 
ICT=!CT+l 
READ< 5,100 l TYPEl ,GAG El ,CARDI, CAVE ( I J, I =1,5 >, ID 
IFl:ARDl,NE,lJGO TO 99 
READf5,100)TYPE2,GAGE2,CARD2,fAVEfI1,!z6,10J 
IFICARD2,NE,2lGO TO 98 
!F(<GAGE2,NE,GAGEll,OR,ITYPEl.NE,TYPE2JJGD TO 98 
JF((TYPEl.E0.3).AND.{NUMROS.EQ.OJJICT=4 
IF I !CT ,GE,4lWRI TE 16, 1051 
IF<ICT.GE.4JJCT=l 
SUMXY=0,0 
SIJMYcQ. 
SUMYSQ=0,0 
YMYBSQ=0,0 

D031=1,10 
AVE(IJ=AVE<IJ/1000. 
SUMXY=X(ll*AVE(IJ+SUMXY 
SUMY-=SUMY+AVEII1 
SUMYSQ=SUMYSO+AVElll*AVElll 
SQSUMY=SUMY*SUMY 
BETA•llO,*SUMXY-SUMX*SUMYl/DENOM 
BETA=BETA*GFR 
ALPHA=tSUMY/10,J-BETA*XBAR 
D04 I =l ,10 
XMXBSQ•XMXBSO+IIXIIJ-XBARl**2J 

4 YMY83Q=YMYSSQ+((AVE(I)-SUMY/l0•)**2J 
CCEFF•BETA*SORTIXMXBSQ/YMYBSQJ 
IFITYPEl,EQ,3lGO TO 50 
WRITE16,106JGAGEl,ID 
D051=!,10 
WRITEl6,l09l AVElll 
WRITE16,l!Ol8ETA,ALPHA 
WRITE16,123lGFR 
WRITE16,121JCCEFF 
S!GAXL•BETA*E 
WRITEl6,lll1SIGAXL 
GO TO l 

50 NUMROS=NUMROS+l 
WRITE16,107lGAGEl,ID 
D061=1,10 

6 WRITEC6,109l AVEIIJ 
WRITE16,llOlBETA,ALPHA 
WRIT~(6,123JGFR 
WRITEC6,lZlJCCEFF 
!FCNUMRQS.EQ.lJBETAl=BETA 
IFINUMROS.EQ,21BETA2=BETA 
1FtNUMROS,EQ,3JBETA3•BETA 
IFINUMROS,NE,3JGO TO I 
IFINUMROS,EQ,3JNUMROS=O 
SIGX=TERM*< 2 ,675*BETA l l+0,65-0* I BETA2+BETA3 l 
SIGY=TERM•l-,025*BETA1+2,*IBETAZ+~ETA311 
TAUXY•tE/l.325J*I-BETA2+BETA3J/1,732 
S-TMAX=I SIGX+SIGY J/2. . 
TAUMAX=SQRTll51GX-SIGYJ**2+4.*TAUXY•TAUXYJ/2. 
SIGMAX•STMAX+TAUMAX 
SIGMIN=STMAX-TAUMAX 
PSMAX•ATAN I 2o*TAUXYl<SIGX- SlGYI l /2. 
PTMAX•ATAN1-IS1GX-SIGYl/2,*TAUXYJ/2o 
WRITE16, ll2 JSIGX 
WRITE16,113JSIGY 
WRITE16,ll4JTAUXY 
WRITE16,ll51SIGMAX 
WRITE16,116l51GMIN 
WR!TE16,1171TAUMAX 
WRIT!16,1181PSMAX 
WRITE16,ll91PTMAX 
WRITEl6,120ISTMAX 
GO TO l 

99 WRITE16,1011 
GO TO l 

98 WRlTE16,l02l 
GO TO l 

97 WRITE16,104J 
GO TO l 
END . 

SENTRY 
I-' .,, 
,'j 



APPENDIX F 

LIST OF MAJOR INSTRUMENTATION 

Strain Indicator (4) 

Switch and Balance Unit (25) 

Switch and Balance Unit 

Switch and Balance Unit 

SR-4 Strain Indicator 

10~000-lb. Load Cell 

5,000-lb. Load Cell 

Dial Indicators (10) 

Calibration Uriit 
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Budd Model P350 

Budd Model SB-1 

BLH Type PSBA20 Model 3 

BLH Type 225 

BLH Type N 

BLH Type TJ3Gl 

BLH Type 1J3Gl 

Starrett No. 656-617 

BLH Model 625 



APPENDIX G 

CALIBRATION OF STRAIN GAGE SYSTEMS 

Once the strain gages are attached to the panel, it is not possible 

to attain a calibration by the use of a known strain situation. The 

strain gages are manufactured under carefully co~trolled conditions, 

and the gage factor for each lot of gages is within about± 0.27 per 

cent. The gage factor and the gage resistance make possible a simple 

method for calibrating the resistance strain gage system, This method 

consists of determining the system's response to the introduction of a 

specific small resistance change at the gage and of calculating the 

resulting equivalent strain. The resistance change is introduced by 

shunting a relatively high value precision resistor across the gage as 

shown in the following figure. 

11---
Figure 55. Strain Gage Bridge 

With Calibration 
Resistor 
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180 

The equivalent strain for the shunt resistor in parallel with the 

active gage is 

E= i ( l""a \ 
G F 1B + fs '") ' 

where GF = gage factor, 

r = gage resistance, ohms, 
g 

r = shunt resistance, ohms. s 

The Budd portable strain indicator systems were calibrated with a 

60K ohm resistor. The resistor was shunted across each active gage. 

Direct calibration of an external bridge input by using a known 

resistance assures maximum accuracy if the gage resistances are known 

accurately and load resistances are insignificant. The shunt calibra-

tion circuit is also helpful to ascertain the error caused by load 

resistance when long input leads are used. 

The maximum variation for any single gage was well within its 

required accuracy, and 70 per cent of gages were within 2 per cent of 

the calibration valueo Results from the calibration tests are shovm 

in the following table. 



Gage 

TABLE XXVIII 

TYPICAL INDICATOR READINGS DURING 
CALIBRATION TESTS 

Indicator Reading Indicator Reading 
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Net 
Number Zero Level With Shunt Resistor Change 

1004 2770 1757 1013 

1010 3757 2747 1010 

1014 -39 -1050 1011 

1017 795 -222 1017 

1022 1507 495 1012 

1040 362 ... 650 1012 

1058 -530 -1545 1015 

3073 8010 7005 1005 

3091 1806 800 1006 

2095 -216 -1227 1011 

Calibration of Load Recording Equipment 

A calibration of the load recording equipment was performed to 

determine the accuracy of the load application system. The BLH U-3Gl 

type load cells have strain gages with a gage factor of 2.0 and a 

resistance of 350 ohms. With a 60K0calibration resistor, the computed 

$train should be 2900. 

The calibration was performed from the zero reading for the 5000-

pound load cell of 11050. The 60K.Qresistor was shunted across each 

leg of the strain gage bridge, and the following records were obtained: 



Shunt Dial Readi;g;g Net Change 

pl to s1 13915 2865 

pl to S2 8240 2810 

p2 to s1 8180 2870 

p2 to s2 13860 2810 

The same procedure was used in calibrating the system for the 

10,000-pound load cello Again~ the gage factor of 2.0 and a gage 

resistance of 350 ohms provide a strain input of 2900. The 60KQ 

resistor was shunted across the four arms of the bridge 9 one arm at 

a time. The following records were obtained~ 

Shunt Dial Reading Net Change 

pl -J::o s1 13770 2870 

p2 to S2 .8100 2800 

p 
2 

to sl 8030 2870 

p2 to S . 2 13715 2815 

In general 9 a value of approximately 2800 to 2870 was obtained 

each leg of the strain gage bridge. This is a ~ariation of approx= 
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for 

imately three per cent or corresponds to a gage factor change of from 

2.00 to 2.07~ which might actually be the gage factor for the strain 

gages used in the load cell. 

The load indicator system was subsequently calibrated 'With a BLH 

Model 6~5 voltage divider unit. A-linear change in indicator reading 

was obtained for a linear change in MV/V inputo The load cells have a 

3MV/V full scale output which corresponds to 6000 units on the BLH SR=4 

indicator. 

As a further calibration of the complete load application system~ 

the testing facilities of' Rall iburton Oil Company~ Duncan 9 Oklahoma~ 



were utilized. 

The author is indebted to Mr. Elwin Seay, froject Engineer, 

Halliburton Oil Company, and.his,assistantf:l for their aid in·completing 

the tests. 

Both the 5000 LB and 10·,000 LB load cells were hooked into a hy-

draulic tes.ting maphine and corresponding readings were made from the 

B~H Strain Indicator at certain kno'wn load values. 

Typical load versus indicator readings are shown for the 5000 LB 

and 10,000 LB load cells in Tables XXIX and XXX. 

TABLE XXIX 

CALIBRATION OF 5000 LB BLH U-3Gl 
TYPE LOAD CELL 

Bridge Hookup: Full; Resistance Capacity: 350Q ;GF = .. 2.00;.Channel: •l 

Date: 

Known Load From 
Hydraulic Testing Machine (LB) 

0 

1,145 

2,170 

3,210 

4,255 

4~775 

26 May 66 

BLH Strain 
Indicator Reading 

13,370 

14,725 

15,940 

17,175 

18,400 

19,015 



TABLE XXX 

CALIBRATION OF 10,000 LB BLH U-3Gl 
TYPE LOAD CELL 
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Bridge Hookup: Full ; Resistance Capacity: 350 O;GF = 2. 00 ; Channel: 1 

Date: 

Known Load From 
Hydraulic Testing Machine (LB) 

0 

995 

2~995 

5,000 

9,500 

26 May 66 

BLH Strain 
Indicator Reading 

17,320 

17,910 

19,099 

20.,291 

21,491 

23,000 



APPENDIX H 

CALIBRATION OF DIAL INDICATORS 

The Starrett Dial Indicators were calibrated with the "0.05" thick 

size of Fonda Gage Blocks, Unit Set 845, Serial Number N-154, manufac-

tured by the Fonda Gage Company, Inc., Stamford, Conneticut. These 

blocks are rated at± .000008 in. accuracy. 

Typical readings before and after block insertion and the differ-

ence in readings are shown in Table XXXI. 

Dial Gage No. 

5 

6 

7 

8 

9 

10 

TABLE XXXI 

CALIBRATION OF STARREI'T DIAL INDICATORS 
USING A 11 0.05" THICK FONDA GAGE BLOCK 

Reading Before Rea.ding After 
Block Insertion Block Insertion 

0.1000 0.1506 

0.3140 0.3645 

0.0205 0.0706 

0.1500 0.2003 

0.1000 0.1503 

0.0400 0.0900 

The maximum error is 1.2 per cent. 
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Difference 

0.0506 

0.0505 

0.0501 

0.0503 

0.0503 

0.0500 
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