THE EXISTENCE CRITERIA OF ONE-GENERAL

CONSTRAINT. MECHANISMS

By
ATMARAM HARILAL SONI

Bachelor of Science
University of Bombay
Bombay, :India
1957

Bachelor of Science
University of Michigan
Ann Arbor,-Michigan
1959

-Master of Science
University of Michigan
‘Ann-Arbor, Michigan
1961

Submitted to the faculty of the Graduate College
of the Oklahoma: State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
‘May, 1967



THE EXISTENCE CRITERIA OF ONE-GENERAL

CONSTRAINT MECHANISMS

Thesis Approved:

igiii_k)(lckatqblaiidfr14&$u

/'Z ihesis Advisen
A

%wé% M

Dean of the Graduate College

660171

ii

OKLAHOMA
STATE UniversiTy
LIBRARY

JAN 18 1988



ACKNOWLEDGMENTS

The author wishes to take this opportunity to express his
sincere gratitude to Dr. Lee Harrisberger who assumed the respon-
sibility of thesis adviser and secured the National Science
Foundation Research Grant to support this study.

Special thanks are extended to Dr. Richard Lowery and Dr. Karl
Reid for their helpful suggestions given during the conduct of
this research. Thanks are due also to Dr., Dale D. Grosvenor for
serving on the advisory committee.

The author is very grateful to the National Science Foundation
and the U.S. Army Research Grant for providing the financial
support which made this higher study possible,

Every individual considers himself fortunate to be associated
with a group of people who are directly responsible for his
success. To these men one could only express his sincere gratitude
for their ever=living interests of the human growth. The author
wishes to take this opportunity to thank among these people Dr. Lee
Harrisberger, Dr. William J. Schull, Dr. Robert E. Little, and
Rev. Father M.M. Balaguer.

The author desires to express his appreciation for the undying
support of his mother, Maniben', his brother Ramaniklal and his wife
Rama. Thanks are due to the author's wife Ila for her patience,
encouragement and understanding.

Mrs. Betty Stewart is thanked for typing the final manuscript.

iii



TABLE OF CONTENTS

Chapter Page
A ANTRODUCERONG S0 o o 0 o e Danesi e dtie 3 Bete el st Gaviis Wi hw 1
1T /CLASSIFLCATIONZOF MECHANISMS: : i o o' ¢ s.5. 6 wia o 5 5 8
Classification of Pairs and Pair Mechanisms . . . . 8
Gribler's Theory of Determining the Degrees of
Mobility of a Spatial Kinematic [2,3] . . . . . . 12
Malytcheff's Mobility Crlterion [ s o 15
Artobolevski, Dobrovol'ski's Criterion [21 22] i 18
Kolchin's Approach to Construct an Extended
Structural Classification of Mechanisms . . . . . 19
Moroshkin's Criterion [32]. ol SRR R 23
Sharikov's Criterion [33] . gty T 24
Vionea and Atanasiu's Crlterion [3&] - 28
Dimentberg's Theory of Passive Constraints [46 47]. 29
Similarities in the Criteria of General
Constraints . . . B o T T e 2 5 37
Nature of One General Constraint. e R 38
Scope of One General Constraint Domain. . . . . . . 39

III. THEORY OF IDENTIFYING THE EXISTENCE OF GENERAL

[6l0 4 (i 00 B g 0 S R R S -6 4 I, ST Tl B 3 P e 43
Development of the Theory of Identifying the
Existence of General Constraints. . . . S~ 44
Coefficient Matrix [M] for the Spherical Pour=:
Link Mechanism. . . L 63
Coefficient Matrix [M] for a Plane Four-Link
Mechanism . . . i, e R Ry e e 64
Coefficient Matrix [M] for the Plane Slider-
Grafk-Mechapdam:, ., v« wiospe o i 24 3 G les &) o & 70
Coefficient Matrix [M] for the 7R Space Mechanism . 71
Coefficient Matrix [M] for the Six-Link 6R Space
Mechanism . . TR AR R R i 72
CoEfﬁicient Hatrix [M] for the 4R Bennett Mechanism
6 v ; 80
Coefficfent Matrix [M] for the SR Goldberg Space
Mechanism . . . e alats . SR s 82
Estimation of the DiSplacement Parameters g e " 83
Technical Problems Associated With the Iterative
T T e R Ry, & K S e ol 91

iv



Chapter

Iv.

THE SIX-LINK MECHANISM .

Parameters of the Six-Link Mechanism. .
Parametric Study of the Six-~Link. .
Variation in Franke's "Wirbelkette" . . . ...
Variation in the Bricard's Articulated
Six<Link Mechanism. . . e .
Relationship Between the Franke s Six- Llnk
and Bricard's Kink-Link Mechanism . .. .

The Existence Criteria of the Six-Link Mechanlsm.

V. THE SCOPE OF ONE GENERAL CONSTRAINT. . . ... , .
Substitution of the Prism Pair.
Substitution of the Helical Pair.
Substitution of the Torus Pair. e e
Substitution of the Cylinder Pair ... . . .
Substitution of the Spheric Pair. . . . .
Other Class Three Kinematic Pairs .
VI. SUMMARY AND CONCLUSILONS.
BIBLIOGRAPHY. .
APPENDICES. e e e e e e

A,
B.

ALGEBRA OF DUAL NUMBERS AND DUAL VECTORS.. . . . ,

COMPUTER PROGRAM

.

-

‘Page

94
97
98
101

135

v, 138

144
154
155
166
171
171
187
188
193
207
211

211
215



Table

IT.

i 4 10

IvV.

VI.

VII.

VIII.

IX.

X1

XII.

XIII.

LIST OF TABLES

Classification of Kinematic Palrs . . « « o w6 » w'is

Classification of Mechanisms Based on the
Number of General Constralntse. ... .. « s o o v & 5

Clasgification of Mechanisms into Families and
Series as Proposed by Kolchin . « « o o o ¢ v ¢ ¢ &

Classification of Mechanisms Based on the
Classical Theory of Screws, . . & s & 2 5 » & s o o

Apparent Correlation Between the Different
Mobikity Criteria . o« ¢ o9 v & o 6 % o 0 & 4 »

Types and Kinds of Single Degree of Freedom Kinematic
Chains Having One General Constraint. . . . . . . .

Estimation of the 6, (i > 2) for 6, = 60 of the
Articulated Bricard Mechanism . . . +. « . « ¢ « « &

Variation of the Twist Angles in the
Fraake's WirBelkeEtte!'s . . «:lol v ol wime @ o s

Variation of the Twist Angles and Kinematic
Links in the Franke's Six~Link Mechanism. . . . . .

Variation of the Twist Angles, Kinematic Links
and Kink-Links of the Franke's Six-Link Mechanism .

Variation of the Bricard's Articulated
Six"Link Mechanism. . . . . . . . . . - . - 0 . . .

Relationship Between Franke's and Bricard's
SIx=EinleaMechoniem. o . » s @ o o = m e e e e

Displacement Analysis of Yang's and
UiCkerls RCCC Mechanism.-.-...-......_. AP N B EE e

vi

Page

10

20

22

27

36

41

90

103

113

124

136

141

180



LIST OF FIGURES

Figure Page

10.

11.

12,

13.
14,

]-5'

16.

17.

RRCC MechaniSm . + ¢ o &« 4 4 o 6ve o o o o o o o o o o« o o 31
Kinematic NOtatioRS. o « & & &+ & o o o & o o o o o o o » » 48
Franke's "Wirbelkette" . . . . . ¢« v ¢« ¢ ¢ v ¢ ¢ o o o o o 13
Bricard's Articulated Six-Link Mechanism . . . . « . « + 74
Sarrus' Six~Link Mechanism . . . . . . . 4 o ¢ o ¢ & o ¢ s 75

(a) Mechanisms (F=1)., . . & ¢ v ¢ ¢ ¢« v o« « « ¢ o « « « - 110
(b) Structures (F=0). . . . v ¢« ¢« v ¢« v ¢« o ¢« v o ¢« o o o« 111

Degenerate Forms of Franke's Six-Link Chains . . . . . . . 118

Apparent Relationships Between the Kink~Links
and Kinematic Links. . + & ¢ o o o o & o o o 0 o o o o . 134

Relationship Between the Franke's and Bricard's
SiX-Link Mechanism . . . . . . . . . . . . . . ¢ o . . . 139

Displacement Analysis of the Synthesized
6R Mechanism . . &« & o ¢ & « o o o o o o o o o o o o« o+ o« 151

Displacement Analysis of the Synthesized
Kink-Link 6R Mechanism . . . « « « ¢+ « ¢« ¢« ¢« + &« & o o o 152

Substitution -of a Prism Pair in the
Sarrus! Mechanism. « o+ « ¢ ¢« ¢ o ¢ ¢ ¢« ¢« o o o o o » « « 161

Displacement Analysis of RRRRRP Mechanism, . . . . . . . . 162
Displacement Analysis of RRRRPP Mechanism, . . . . . . . . 164

Substitution of a Helical Pair in the Sarrus' v
MechanisSm. ... ..ccoeievnenecococenene-0cere o s o s« o o o o - 169

Displacement Analysis of the RRRRRH Mechanism. . . . . . . 170

Degenerate Franke's Six-Link Mechanism that is
Equivalent to RSLRRR Mechanism . + &« v &« ¢ &+ o o ¢ « o « 172

vii



Figure Page
18. Displacement Analysis of RSLRRR Mechanism, . , . « . « . & 173
19, Franke's Equivalent Mechanisms ., . . . . « « & & + o« o o o 175

20, Yang's and Uicker's RCCC Mechanism , . . . & « + o « o ¢ & 179

21, Possible Types of One General Constraint
Mechanisms with a Cylinder Pair., . . . . + ¢ ¢ o & & o = 182

22, Displacement Analysis of the RRRRC Mechanism . . . . . . . 183
23, Possible Types of Mechanism With Two Cylinder Pairs. . . . 185
24, Displacement Analysis of the RRCC Mechanism. . . . . . . . 186
25. RRRS Mechanism . . . & ¢ & ¢« 4 4 ¢ & « o o o ¢ o o o o o » 189

26. Displacement Analysis of the RRRS Mechanism
Shown in Figure 25a., . . . . v o ¢ v & ¢« @ & v 4« e s e s 190

viii



-LIST OF SYMBOLS

ith kinematic link

Kutzbach's ‘parameter

Degrees of freedom of kth class
Degrees of freedom of mechanisms
Degrees of freedom of chain
Number of active constraints
Number of passive constraints

Unit matrix

‘Number of general constraints

Coefficient matrix of differential

displacement
Number of links

Null matrix

Number of rotating. freedoms

‘Number of translation freedoms

Number of helical freedoms
Number of class k pairs
Operator matrix

Rank of a matrix

ith kink link

Screw matrix of rotation and
translation

Number of constraints

Number of loops

ix



ith twist angles

Dual angle

ith angular displacement parameter
Translation about x axis
Translation about y axis
Translation about z axis

Dual operator

Rotation about x axis

Rotation about y axis

Rotation about z axis



CHAPTER I
INTRODUCTION

In the principal areas of research in the science of mechanisms,
the vast domain of space mechanisms with or without general constraints
‘is virtually unexplored. The formation and application of the different
concepts utilized in the areas of type synthesis and classification of
mechanisms only magnify the awareness of the lack of knowledge of the
constrained or unconstrained space mechanism domain. An examination of
this domain within the limits of the current existence criteria, dis-
closes the work of many distinguished kinematicians and mathematicians.

-Most of the literature on the theory of classification of space
mechanisms ~shows a primary concern for the adaptation of suitable mathe-
matical relationships for defining and determining the degrees of
mobility of a space mechanism. The most notable efforts include the
adaptation of the kinematic notations of the kinematic pairs. The pre~
liminary thoughts concerning the definition of kinematic pairs and
their classification were given by Rankine in his bodk, "Machinery and
Millwork'", published in 1869. Hoﬁever, a systematic approach was pro-
posed by Reuleaux [:l]"1 in 1876. Reuleaux introduced the concept of the

lower and higher pairs and classified the existing pairs accordingly.

1Numbers-in small brackets refer to similarly numbered references
in the bibliography.



He then demonstrated a synthesis technique for constructing a kinematic
chain using the kinematic pairs.

During this period when Grubler, Bricard, Alt, and Kutzbach were
concerned about the theoretical approach to the determination of the
degree of mobility of a spatial kinematic chain, two Russian kinemati-
cians, Assur and Malytcheff, also were developing new concepts and
approaches to this subject. Assur [13] developed the concept of the
open chain and utilized this concept for structure classification. It
is noted in the Russian and Rumanian literature that A, P. Malytcheff
[14] had derived one of Kutzbach's mobility relationships in 1923.
Nevertheless, neither Kutzbach nor Malytcheff were able to provide
sufficient theoretical justification for the existence of the so-called
"paradoxial mechanisms, that is, the Bennett mechanism [6], the Goldberg
mechanism [15], or the Bricard six-link mechanism [5], which defied all
the known criteria for mobility. It should be noted, however, that it
was Kutzbach's mobility relationship that led Kraus [16], [17], [18],
[19] in 1940 and Macmillan [20] in 1956 to propose a number synthesis
theory for space mechanisms as well as for plane mechanisms.

To account for the existence of the paradoxial mechanisms,
Artobolevski [21] and Dobrovol'ski [22] introduced the concept of the
general constraints. That is, some mechanisms must contain certain
geometric conditions in addition to the constraints imposed by the
kinematic pairs in order to obtain mobility. They therefore modified
the Malytcheff mobility criterion by introducing a new parameter

signifying the existence of the general constraints in the space mecha-

nisms,



Although a rational procedure for determining the existence of the
general constraints was not provided by Artobolevski and Dobrovol'ski,
several number synthesis approaches based on this concept of general
constraints have been proposed by other kinematicians. Among these are
Popov [23], Pisarev [24], [25], Lifshits [26], and Bugaievski, Bogdan
and Pelecudi [27]. All of these number-synthesis techniques simply in-
volve the different possible interpretations of the structural relation-
ship of Artobolevski and Dobrovol'ski.

Though Reuleaux had already established some of the fundamental
concepts of space mechanisms, most of the early work was focused on the
planar mechanisms. In 1883 Grashof proposed the mobility criteria for
the planar four-link chain. In the same year Grubler proposed another
approach for a synthesis technique suited especially for four or more
links. Two mathematicians Chebychev (1869) and Sylvester (1874) pro-
posed an approach similar to that of Grubler. In their approach, the
development of the classification theory proceeds from the number of
degrees of freedom permitted by the kinematic pairs connecting successive
links and leads to the degree of freedom of the chain.

Grubler [2], [3], [4], who proposed a criterion to determine the
degree of mobility of the planar chain, in 1917 extended his theory to
the spatial kinematic chain with revolute pairs. But, Bricard [5]
pointed out the weakness of this mobility criterion by claiming that
the criterion did not justify the existence of Bennett's four-link
four-revolute mechanisms [6] and Bricard's six-link six-revolute space
mechanism [7]. However, Alt [8] in 1928 was able to establish with

the help of Grilbler's criterion that for a constrained motion the total



number of degrees of freedom of the pairs must be seven. Based on this
evaluation, Alt then proposed that there are three types of four-link

and four types of three-link Sp;;e mechanisms. Thus, it was indirectly
established that the pairs can be substituted for links and vice-versa.

In 1928, Kutzbach in his first paper [9] established an analogy
between a hydraulic press and a mechanical kinematic chain to propose a
scheme to determine the degrees of mobility of a kinematic chain having
‘pairs other than the revoiute pairs. However, this theory had its
‘limitations. In 1933 [10], he established a mathematical relationship
for the degree of mobility of a spatial kinematic chain and in 1937
presented his theory for the degree of mobility of a kinematic chain
with pairs having passive degrees of freedom:[11], [127.

Kolchin [28], however, has introduced a seemingly contradictory
concept of passive constraints and proposed that mechanisms can possess
both passive as well as general cqnstraints, thus implying that general
constraints alone are not sufficient to define mobility. |

This introduction of thé>passive constraint concept was an attempt
to account for the existencerdf the so-called paradoxial mechanisms.
However, it is another indicétion of the apparent weakness of all the
foregoing mobility criteria; that:is, none have presented a means for
identifying the geometric conditions that determine the general con-
straints.

In order to shed new 1iéht on-the idea of general constraints,
Moroshkin [32] completely ignored the theories of Kutzbach, Artobolevski
and Dobrovol'ski, and Kolchin. vHe»proposed an analytical scheme based

on the number of closed loops of the kinematic chain and the number of



independent transformation equations. Thus, the degrees of freedom of
the entire chain becomes a function not only of the number and class of
the kinematic pairs but of the rank r of the transformation matrix.
Although Moroshkin's technique is cumbersome and has not been fully
applied, it suggests another parameter analogous to the general con-
straints.

Sharikov [33] introduced the classical theory of screws to define
the existence of constraints_in-spéce mechanisms. He developed the con-
cept of the reciprocal screw to account for the degrees of freedom and
the nature of the general motion of the chain. The approach provides a
theoretical justification for the existence of the paradoxial mechanisms
and the number of reciprocal'Screws-is-correlated with the parameters
in previous theories that define the number of general constraints,

An analogous approach for justifying the -existence of the para-
doxial mechanisms was developed by Vionea and Atanasiu-[34]. Their
technique also involves the theory of classical screws and establishes
‘that the rank Q of the matrix of the coefficients of the unknowns in a
system of equations describing the angular velocities of the relative
helicoidal movements is analogous to the general constraint parameter.

Summarizing briefly, the major effort . in type and number synthesis
of the planar and spatial mechanisms is confined to the following:

(1) Classification of the-kinematic pairs and pair-mechanisms.

(2) DPevelopment of suitable mobility criteria and the general

classification of the mechénisms.

(3) Developments of rational procedures to evaluate the number

of general and passive constraints,



The progressive development that took place in the past century is

neither exhaustive nor sufficient enough to regard it as-a.significant

contribution. .Yet the field of classification of mechanisms and number

synthesis has created sufficient academic interest to pursue a number

of studies of the existence criteria of thousands of mechanisms with or

without any general constraints. The present study is an:investigation

of the existence criteria of the one general constraint mechanism.

However, there are a number of objectives that must be met in under-

taking such a study:

(1

(2)

The development of a suitable mathematical model is necessary
to identify the existence of the general or passive con-~
straints and the-class of the mechanism. An ideal mathe-
matical model is not only needed to define the existence

and the class or tﬁe faﬁily of the mechanism but it also
must define the mobility region,.dead centers and the limit
positions.

The development of the existence criteria relating the kine-
matic parameters of the representative mechanism is of vital
importance in identifying ail the mechanisms in a given
family. It is recognized that a closure condition must be
known for each family of mechanisms. Any random combination
of the kinematic paraméters~such as the ‘kinematic link, the
kink-link or the skew angles.is not expected to yield a
mechanism. In the present study of the existence criteria

of one-general constraint mechanisms, the six-link, six-~

‘revolute mechanism appears to be a representative mechanism

for obtaining the closure conditions.



(3) The development of a method of substituting various classes
of kinematic pairs for the revolute pairs will then be ex;
pected to identify the additional mechanisms of the same
family. Once the closure conditions relating the kinematic
parameters are obtained for a representative mechanism, stuch
as the six-revolute, sixflink mechanism, then the other mecha-
nism of the same family can be obtained by substituting kine-
matic pairs either of the same class or of the different
class.

These objectives place an extremely severe requirement on the
development of the efficient mathematical model. In the following
chapter the works of some of the outstanding German and Russian kine-
maticians have been explored. The remaining chapters discuss the re-

sults of the principal objectives discussed above.



CHAPTER 11
CLASSIFICATION :OF ‘MECHANISMS
Classification of Pairs and Pair Mechanisms

The kinematic pairs of a mechanism are the pairs of contacting
elements of two joining links. A minimum of one point contact is ré-
quired, and, therefore, each pair of elements, depending on their geo-
metric shape, has a maximum of five-degrees of freedom. That is,
theoretically they may at most permit rotation about three coordinate
axes or may permit translation along three .coordinate axes and rotation
about two coordinate axes. However, one degree of freedom of trans-
lation is destroyed on an axis normal to the surface because of the
contact, and, therefore, with five degrees of. freedom the pair can
permit rotation about three coordinate axes and translation along two
coordinate axes. Clearly, with one point contact one constraint is im-
posed and the degree of freedom of the pair is reduced by one. When an
element, otherwise free in space, makes two point contact, it auto-
matically introduces two constraints on its motion and as a. consequence
two degrees of freedom are destroyed. -

A pair may have the maximum of five and minimum of one point con-
tact. - Correspondingly, the pair may have the maximum of five and mini-

mum of one degree of freedom.



The classificétion of pairs may follow from any one of the facFors
described above. That 'is, the pairs may be classified according to the
number of points of contact it makes, according to its number of degrees
of freedom, or according to the number of constraints imposed on.it.

The Russian kinematicians prefer to classify the pairs accordiqg
to the number of constraints-imposed on the pair. - There-are five '
classes of pairs as the pair can have the maximum of five and minimum
of one constraint. -Class I pair will impose one constraint, class II
pair will impose two constraints, class III pair will impose three con-
straints, etc. Thus, based on the number of constraints, a pair may be
classified into any one of the five classes.

The German kinematicians Kraus [16] and-Altman [38] prefer to
classify the pairs based on the number of points of contact. There are
five classes of pairs as the pair can have the maximum of five and mini-
mum of a one point contact. Thus, class I pairs have a one point c6n~
tact, class II pairs have a two point contact, class II pairs have
three point contact, etc. Thus, using Kraus and Altman's approach, a
pair may be classified into any one of the five classes. =

The English literature lists the approach shown by Harrisberger

[297, .who suggested the classification of pairs by their number of
degrees of freedom. Here again, there are five classes of pairs as the
pair can have the maximum of five and minimum of one degree of freedom.
Thus, class I pairs have one degree of freedom, class 'IIL pairs have two
degrees of freedom, class IIL pairs have three degrees of freedom, etc.

The classification of pairs as shown by Harrisberger is presented

in Table I. The number of freedoms of rotation, translatian, and



TABLE I

CLASSIFICATION OF KINEMATIC PAIRS

Degrees Degrees Number Type Type Contact
of of Class Type A
Class Freedom Constraint of Symbol Number Symbol Name of Classifi-
£ e Point~Contact yu RTH ym Content cation
100 R Revolute Surface Lower
I 1 5 5 p 010 P Prism Surface Lower
1 001 H Helix Surface Lower
200 T Torus Line Higher
110 [ Cylinder Surface Lower
II 2 L L P 101 Ty Torus-helix Line Higher
2
020 - - - -
o1l1 - - - -
300 S Sphere Surface " Lower
210 Sg Sphere-slotted Line Higher
cylinder
) 201 Say Sphere-slotted Line Higher
mr > 3 3 Py SH helix
120 PL Plane Surface Lower
021 - - - -
011 - - - -
310 S¢ Sphere-Groove Line Higher
301 Sau Sphere-Grooved Line Higher
w b 2 2 P, helix
: 220 ¢ Cylinder-plane Line Higher
P
121 - - - -
211 - - - -
320 S - Sphere-plane Point i
v 5 1 1 P, 221 P - . Higher
311 - - -

01
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helical motion of each "type' of pair in Table I are -described by the

three digit number

NpBlyNy
where NR = number of rotating freedoms
NT = number of translation freedoms
’NH = mnumber of helical freedoms.

-Each type of pair, within a class, is determined by the particular
pair of basic geometric shapes which define the manner of practical con-
-struction of the pair to achieve the defined function. Therefore,. it is
convenient to identify pair type by the letter symbols shown in Table I
which define the fundahental geometric shape of the known physically
realizable paired elements.

Note in Table I, the;e are -eight types of pairs for which physically
realizable geometric shapes are unknown. It is possible that the
relative motion between two links described by the unknown pair types
could be achieved by "péir mechanisms'; that is, a combination of
several pair elements which would allow the desired relative motion.
‘For example, a Hooke's joint is a pair mechanism which functions as a
class-IIT pair of the 300 type.

Table I is based on an observation that a pair can have a maximum
of three freedoms of rotation about mutually perpendicular axes, a
maximum of two freedoms of translation along two mutually perpendicular
axes in a plané'perpendicﬁlarvto thé common normal, and one freedom of
helical motion along an ;xis. -Theoretically, one would expect a pair

to perform these independent translations and three independent helical
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type of motion. However, physically realizable shapes of the pairs
producing such motion are unknown. As of now, such motions are anti-

cipated only from the pair mechanisms.

Gribler's Theory of Determining. the Degrees of Mobility

of a Spatial Kinematic Chain L2, 3]

The classification of pairs leads immediately to the classification
of kinematic chains and to the determination of their degrees of free-
dom for movability. -Six independent parameters are required to define
the position of a link in space: for instance, three parameters define
the position of any éoint'in the body, two more give the direction of
a line fixed in the body and the sixth defines the rotation of the body
about this line. Alternately stated, a link in space has six degrees
of freedom. With n free links, 6n degrees of freedom are possible.
However, if these links are connected:in any particular manner, peri
mitting motion at each joint, then the number of degrées of freedom of
the chain of these n 'links is reduced. -The reduction in the degrees
of freedom of the links is dependent upon the class and number of kine-
matic pairs that are used to connect the links. -For class I pairs,
there are five constraints imposed on the freedom of the link; when
class 1II pairs are used, four constraints are imposed on the freedom of
the links, etc. Thus, the total remaining freedoms of the kinematic
chain would be

-FC = 6n - (total number of constraints imposed by (2.1)
all the pairs).
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If n number of links is connected by g number of pairs, thereby
imposing u;, uz, . . ... u_ , ug number 6f constraints, then Equation

(2.1) becomes

g
F, = 6n- ) u (2.2)
=1
8
Po= e ) 67 (2.3)
C " .
k=1

where fk designates the number of degrees of freedom of the kth pair

and can be obtained from

When one of the links-is fixed, six degrees of freedom of the chain are
destroyed and the number of degrees of freedom of the kinematic chain

is given by

. g v
F = 6n - 2: (6 ~ fk) -6
k=1
or
g
F = 6(n-g-1)+ z fk (2.4)
k=1

‘Equation (2.4) provides a tool to determine the degrees of mobility of
a spatial kinematic chain. Grubler's relationship for determining the
degrees of mobility of a spatial kinematic chain having all revolute

pairs (with one degree of freedom) can be obtained by considering

Al

'ka = g in Equation (2.4). For a constrained Grubler's spatial chain,

.

i.e., F=1 andefk = g, Equation (2.4) becomes
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5 -6n+7 = 0 (2.5)
The values g and n, satisfying Equation (2.5) can be obtained from

7 + 6\ : (2.6)

e
L]

-and

=]
]

7 + 5\ (2.7)

where A =0, 1, 2, .... k.

The different values of A  specify the number of supplementary moving
polygons. When A = 0, we get g =7, and n = 7, i.e., the kinematic
chain of constrainted motion has a magimum of seven links connected by
seven class 1 pairs.N

Alt, who was aware of Grubler's finding, pointed out that the
kinematic -chain with higher pairs can be constructed. This may be done
be removing some of the links and substituting higher pairs for these
‘links in such a manner that the sum of the degrees of freedom of all
the pairs is seven. Thus; he showed that there are three different
kinds of four-link and four different kinds of three-link kinematic
chains, all of which have ka = -7,

Harrisberger'[29] extended this principle of substituting links
for pairs and pairs for links. The process of substitution may proceed
in a manner so that either the number of pairs or the number of links
‘increases or decreases; but, the sum of the degrees of freedom of all
the pairs of the kinematic chains must remain ‘invariant. The simplest
possible chain apﬁéars to be the one with seven links connected by the
seven class I pairs. As there are three different types of class I

pairs, one can obtain 36 different kinds -of mechanisms having seven
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links connected by seven pairs of the class I. From the 7p; chain, we
can remove two class I pairs (p;) and substitute one class II pair (pz).
Thus, we have a six-link chain, five of thch are connected by the class
‘"I pairs and the sixth link is connected by a élaSS’II pair. There again,
one can obtain 63 different kinds of mechanisﬁs as there are three
different types of ciaSS‘I pairs and three different types of class II
pairs. Proceeding in this manner, substituting links for appropriate
pairs, we obtain aitogether thirteen different types and four hundred
and thirty-five different kinds of mechanisms all of which are con-
‘strained and have seven.as the sum of the degrees of freedom of all the-

pairs.
Malytcheff's Mobility Criterion [14]

This criterion for determining the degrees of mebility of space
mechanisms considers ‘the number of kinematic pairs and the number of
links of a closed kinematic chain. The proposed criterion is based on
the fact that a rigid link free in space can be-subjected to six

~different types of motion, consisting of threé independent translations
and three - independent rotations about an,afbitrary set of three rec-
tangular coordinate axes. Therefore, a link free‘in space ‘has six
degrees of freedom. For n Llinks of a kinematic chain, a total of

6n degrees of freedom is possible. In a mechanism, however, one link
.. 1s always kept fixed énd therefore only a total of 6(n-1) degrees of
freedom is possible. When the links are paired by any of the pairs
among -the five classes of pairs, as sﬁggested by Harrisberger 293,

each pair will destroy one or more of the freedom of relative motion
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of the links. Therefore, for a mechanism the total number of degrees

-of freedom can be determined by

F = 6([‘1-1) - 5P1 - 4[)2 - 3P3 - 2p4 - ].Ps (2.8)
where F = ‘degrees of freedom of the mechanisms with n links
P = number of class k pairs where k =1, 2,‘3, 4, 5.

Kutzbach's Criterion to Determine the Degrees of

Mobility of a Spatial Kinematic Chain [11, 12]

Kutzbach [11] described the mobility equation in a somewhat
different manner. He stated that the degrees of freedom of a kinematic
chain are dependent upon its type of motion. Thus, he expressed the

mobility equation as

'F = b(n:-1) -'Zuk (2.9)
:where b = degrees of motion, (b = 6 for space motion and b = 3
for a plane motion)
n = number of links of the kinematic chain
-Zuk = the total number of constraints imposed by the pairs.

When the kinematic chain is operating in a plane, b takes the value
of three. When, however; the same chain 'is operating in space, b
takes the value of six. He also stated that the number of constraints
‘imposed by the pairs also changes correspondingly. The relationship
describing the degrees of motion (b), the degrees of freedom of the
pairs (fk), and the number of constraints (uk) imposed on the pairs

is given by
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f 4+u = b (2.10)

Substituting Equation (2,10), Equation (2.9) becomes

F = b(n-1) - Z(b - fk) (2.11)

In his latter publication, Kutzbach [12] introduced the concept of

active constraints and redefined the relationship described by Equation

(2.10) as
u + hw = b (2.12)
-where hw = number of active constraints

Substituting Equation (2.12), Equation (2.11) becomes

F = bmn=-1) - =(b - hw) (2.13)

The number of active constraints must be computed for each pair.
Kutzbach illustrated the use of hw by considering an example of the
spatial four-link mechanism RSSR. The coupler of this mechanism is
connected to the input and the follower-link using fhe two spherical
pairs. Due to this special'connection of this mechanism, the coupler
is able to rotate freely aBout its own axis, thereby introducing an
idle constraint. -Since each spheric pair has tﬂfee constraints on its
motion, the two spherical»pairs, together, are expected to have a total
of six constraints. However, due to the specigl connectivity, an idle
constraint of one degrée is induced on the mechanism. Thus the para-
meter hw for the two spheric pairs is expected to take a value of

seven.
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Artobolevski, Dobrovol'ski's Criterion [21, 22]

These authors introduced the concept of general constraints and
modified the mobility criterion of Malytcheff by introducing the re-

lationship

F = (6-m)(n-1) -Z(6 -m - k)py (2.14)

where m represents the number of general constraints.

A space mechanism can have a minimum of zero and a maximum of four
general constraints. The existence of one or more general constraint,
i.e., (m> 0), imposes a restriction on the general motion of the
mechanism and in turn on the geometrical configuration of the mecha-
nism.- Thus, the existence of one general constraint provides a
mechanism having a specific orientation of the axes of its pairs and
having a general motion consisting of either three rotations and two
translations or two rotations and three translations along a set of
three cartesian coordinates.

Based on this concept of general constraints, Artobolevski and
Dobrovol'ski proposed a scheme for classifying the existing mechanisms.
A kinematic chain can be classified into any one of the five classes
which correspond to the five different values of the general constraints,
The "zero family' mechanisms consist of a group of mechanisms which
have ne general constraints, i.e., m = 0; the first family mechanisms
consist of a group of mechanisms which have one general constraint, etc.
Observe that the mobility equations derived by Kutzbach and Malytcheff

correspond to the value of m = 0.
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The mechanisms which do not belong to the zero family obey
different mobility relationships. These mobility relationships are
tabulated in Table -II. Notice that the mechanisms with higher values
of general constraints ‘do not permit chains containing pairs of higher
classes. For example, family I does not permit mechanisms with class
'V pairs, family II does not permit mechanisms with class V and class
IV pairs, etc.

The family I mechanisms have one general constraint. That is,
the mechanisms have a motion capability which may consist of three
rotations and two translations or two rotations and three -translations.
The family II mechanisms with two general constraints have three rota-
tions and one translation, two rotations and two translations, or one
rotation and three translations. The family III mechanisms with three
general constraints have three rotations, two rotations, and one trans-
lation, one rotation and two translations, or three translations.
Finally, the family IV mechanisms with four general constraint have two

rotations, or one rotation-and one translation.

Kolchin's Appfoach»to Construct an Extended

Structural Classification of Mechanisms

Artobolevski and Dobrovol'ski:introduced the concept of the general
constraipts,in‘the7mechanism\s° Based on this concept, discussed
earlier, these kinematicians then proposed the five well-known families
of mechanisms. Kolchin, however, has prSposed that amoné the prede-
fined general constraints, there are other types of constraints which

remain inactive or unoperational in the movement of the mechanisms.



TABLE 1I.

CLASSIFICATION OF MECHANISMS BASED ON THE NUMBER OF GENERAL CONSTRAINTS.

Family Number of Paossible Permitted Classes Mobility Example of
General Type of Pairs Relationship Mechanism
Constraints of Motion
0 0 3R, 3T P1s Pas Pas Pas Ps Fo = 6(n-1)-5p; =4py-3py : RSCR
~2py-Ps
I 1 3R, 2T; P1s Pas Pgs P4 F;, = 5(n=1)~4p,~-3py-2ps~py Bricard's Six-Bar
2R, 3T
I 2 3R, IT; 2R, 2T; P1s Pps Da F, = 4(n~=1)~-3p; -2ps-ps Goldberg's
1R, 3T Five-Bar
I1I 3 3R; 2R, 1T; Pys Ps Fz = 3(n-1)-2p,-py Plane four-bar,
1R, 2T; 3T Spherical mecha-
nism, Bennett's
mechanism
v 4 2R; 1R, 1T; - P, Fg = 2(n-1)-p, Differential Screw
2T

0¢
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He named these inactive or unoperational constraints as the 'passive' or
"{dle" constraints and designated them by a symbol H, where 'H can be

obtained from Equation (2.15)

F = 6N - %(6 - kK)p, + mz (2.15)
m k
or
Fm = 'Fo + mz (2.16)
or
Fm = Fo + H (2.17)

where H i mz, and z denotes the number of closed loops in-a kine-
-matic chain.

Because m can take values 0,1, 2, 3, or 4, H/z can also take
the same values. However, Kolchin has proposed that, depending on the
nature of the passive constraints,

(a) H/z can be greater than m

(b) H/z can be equal to 'm

(c) "H/z can be less than m.

Based on these different values of the-ratio H/z, Kolchin divided
further the five families of mechanisms into series. This division of
families into series is based on the relationship given by

6 - H/z
Com

0, 1, 2, 3, or &4

where ‘m

H/z 0, 1, 2, 3, or 4
The classification scheme propesed by Kolchin is given in Table

ITI. Observe that each family of mechanisms is subdivided into series.



TABLE III

CLASSTFICATION OF MECHANISMS INTO FAMILIES AND

SERIES AS PROPOSED BY KOLCHIN

General
Constraints

» . Description Zero First | Second | Third Fourth | Description
Passive Family | Family ! Family | Family } Family
Constraings
Series 0 Basic H = mz :::EZE:::\\Qii\\\‘ 6/2 6/3 6/4 Unlimited
‘Series 1 . 5/0 5/1 5/2 5/3 5/4 Mechanisms
Limited \\\\\\\\\\\\\\%\\\
- Series 2 MechaniSms< A%D 4/1 &\\ﬁii\\\\\\&ii\\\ e H < mz
Series 3 H > mz 3/0 3/1 3/2 \\\Eii\\\\\\zii\\\w
-Series & - 2/0 2/1 2/2 2/3 2/4 Basic H = mz
: s \\\\\\
- Type of 3R, 3T. 3R, 2T; |3R, 1T; {3R; 2R, |2R; IR,
‘Motion 2R, 3T. 2R, 2T; }1T; 1R, }|1T; 2T.
- ) 1R, 3T. |2T; 3T
Space Mechanisms | P2 |Plan
pace Mechanism Plane e

(44
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Thus, series -one in each family does not have any passive constraints;
the series two has one passive constraint, etc. The diagonal elements
of this classification table have their number of passive constraints
equal to the number of general constraints. These diagonal elements
represent what is called the basic mechanisms. The series with H/z > m
are considered to represent the special mechanisms. Finally, the
series with H/z < m are considered to represent the unlimited mecha-
nisms.

All the zero family mechanisms are characterizied to have the
motion with three components of rotation and three components of trans-
lation. The groups'of mechanisms with one general constraint, i.e., of
family one, are characterized to have motion with either three components
of rotation and two components of translation or two components of
rotation and three components of translation.

Very little is known of the passive constraint. Kolchin, however,
attempted to make a distinction between the passive and general con-
straints by suggesting that the existence 0of the passive constraints
imposes a restriction only on the geometrical configuration of the
mechanism and not on the general motion of the mechanism. Clearly,
Kolchin's theory of passive constraints runs into an apparent contra-
diction with the theory of general constraints proposed by Artobolevski

and Dobrovol'ski.
. Moroshkin's. Criterion [32]

This approach is-based on the number of closed loops of a system

of kinematic chain ‘A and the number of independent transformation
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equations, Accordingly, . if ¢ 1is the total number of kinematic pairs
and n -is the total number of links, then the number of closed:loops
‘can .be given as

z = q - 1. (2.18)

Furthermore, if Py ‘be the number of kinematic pairs of class 'k
belonging to the system of chain '\, then the equation of kinematic
pairs determine 6p. .Euler coordinates al"‘a6p of the system ‘A as
a function of the

N = Ikp (2.19)
’ k

Lagrangian coordinates Qa---9,- The latter are related by the trans-
formation equations. For each of the z Aindependent simple closed
loops of A, there are twelve transformation equations. Thus, qlo.aqn
obey 'K = 12(q - n) equations. However, Moroshkin claims  that the

number of independent equations cannet be greater than 6z and, there-

fore, the degrees of freedom of the entire chain can be given by
F = Z kpk - T (2.20)

where r 1is the rank of the number of independent transformation

equations.
Sharikov's:Criterion [33]

This was the first method to introduce the classical theory of
screws to define the existence of constraints in the space -mechanisms.
A classical screw is an axis of translation and rotation. If a

rigid body is acted upon by a force and a cduple about screw ‘B and as
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a result of this action, the body displace$ and rotates about screw o,

then the work done on the body can be expressed as

W = A { (pa + pB) cos 6 - d sin'8 } (2.21)
where A = constant
Py = pitch of the screw ¢
Pg = pitch of the screw B
® = angle between the screws @ and .B
and d = the common normal between .the screws « and .B.

I1f, however, the body remains ‘in equilibrium, then according to the
principle of virtual velocities, the work done in small displacement

against the external forces must be zero, i.e.,
(pa + pB) cos 8 - dsin® = 0 (2.22)

The screws '@ and P which satisfy the above relationship are called
reciprocal screws.

According to the proposed approach of Sharikov, a kinematic chain
is translated into a system of ;lassical screws, This system of classi-
cal screws:is then examined for gn absence or presence of one or more
number of reciprocal screws. The determination of the reciprocal screws,
however, utilizes the methods of descriptive geometry.

The theory of classical screws proposes the five families of
mechanisms 'similar to those proposed by Artobolevski and Dobrovol'ski.
According to the theory, the motion of a body can be considered in
general as composed of screw motion, that is, the motion .consisting of

independent rotation .and translation. The existence of six components
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of motion, three rotations and threeAtraﬁslatiohs, can be represented
by a maximum ef six classical screws. An:absence -or presence of one

or more number of classical screws: creates correspondingly the existence
-of one or more number of reciprocal screws. Then, when the number of
classical screws 'is -six, the number of reciprocal screws is zero,

When, however, the number of the classical screws is five, then there
exists one reciprocal screw. Similarly, there exists two reciprocal
screws corresponding to four classical éérews.

The existence of the number of reciprocal screws establishes the
basis of the classification of mechanisms. The zero family mechanisms
are characterized to have zero number of reciprocal screws; the family
one mechanisms are characterized by the -existence of one reciprocal
screw, etc.

Sharikov's classification scheme is presented in Table ‘IV. Exami-
‘nation of the different possible combinations of the orientation of the
‘classical screws or pairs shows certain patterns. For example, the
zero family mechanisms need no specific orientation of the axes of the
pairs. Family I mechanisms are proposed to have axes of the pairs
‘intersecting by three into two points either'at.a finite or at in-
finite distance. The family TII mechanisms afe_composed of three sub-
families -and the axes of the pairs generate two hyperboleids with two
common generators.

It should be remarked that thié'proposed classification scheme is
by no means exhaustive since mechanisms are known to exist outside the

classification of families and sub-families.



TABLE IV

CLASSIFICATION OF MECHANISMé_BASED ON THE CLASSICAL THEORY OF SCREWS

Family Number of ‘Examples of Geometrical Locus of
Reciprocal Mechanisms the -Axes of Pairs
Screws
0 0 7R Spatial. Chain ‘Arbitrary location in space
I 1 6R -Bricard: Mechanisms Two bundles of lines, three. in
each, with centers located at a
K finite or infinitely extended
distance
IT 2 5R Goldberg's Mechanism Two hyperboloids with two common
producers
III 3 4R Bennett's Mechanism Surface of hyperboloid
4R Spherical Mechanism Bundle of lines with center
located at a finite distance
4R Plane Mechanism Bundle of parallel lines
4P Space Mechanism ‘Pairs located arbitrarily on an
infinitely extended plane
v 4 ‘Plane Mechanism with Parallel lines, located on an
sliding pairs infinitely extended plane

Lz
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Vionea and Atanasiu's Criterion [34 ]

This is also an approach based on the -classical screws. -Accord-

ingly a set of homogeneous coordinates wu,, v , w,, 1,, m,, n, of a
i PR S RO O |

helicoidal screw movement 'is defined. If j is the number of screws
situated on the curve I} and "4 the number of kinematic parameters
of a closed chain and if w;, wg,.o,wr,‘wj+l.,;w£ are ‘the angular
velocities of the possible relative helicoidal movements, then
according to the theory of composition of relative mavements, a

system .0of linear and homogeneous ‘in wl,_wg,a,awj equations can be

obtained. These equations are:

Wiug +Foe..... cestwu, = 0
1 Uy %4

WV, * ereennosintwv, = 0
1V1 I

Wwy + oeenen. LFww, = 0
t 3]

i (2.23)

u-)ll + 065000 a6 0 b +w' . = o

Wymy + oo +wm, = 0
1My i3

wny +.....00:...+w.,n, = 0
10 575

If Q is the rank of the matrix of the coefficients of the unknowns,

then degrees of freedom of the kinematic chain are given by

F =% kp_-7Q (2.24)

The proposed approach of Vionea and-Atanasiu suggests a possible
classification of mechanisms into. five families. When the rank Q of
the matrix of the coefficients of the unknown is six, then the mechanism

satisfying this matrix belongs to the zero family. Similarly, when
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Q takes the value five, then the mechanism under consideration belongs
to the family one.

It should be remarked that the proposed approach has been applied
to investigate the existence criteria of the family III mechanisms.
Furthermore, due to the analytical nature of the mathematical method,

a number synthesis of the space mechanism becomes virtually impossible.
“Dimentberg's Theory of Passive Constraints [46,47]

This approach is an alternative of finding the existence of general
constraints. - Accordingly, the method of determining the passive or
general constraints is based on a philosophy that under the influence
of the passive constraints the space mechanism, such as an RRRRRC, will
cease to function in the form in which it is described, but instead it
will operate as an RRRRRR mechanism. Thus, the existence of passive
constraints has imposed some geometrical requirement on the configufa-
tion of RRRRRC mechanisms, and this requirement has, in turn, made the
cylindric pair function like a revolute pair. Let ©8g and .Sz be the
angular and linear displacement at the cylindric pair. Then the condi-
tion of passive constraints is described by

dSg

55: = 0 (2;25)

where ©; 1is the input angular displacement of the mechanism RRRRRC.
Dimentberg applied the dual number algebra to study the conditions
of passive constraints. - However, the theory of dual number algebra

was developed by A. P. Kotelnikoff in 1895 [48].
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To demonstrate the practicality of this tool, let us consider an
example of imposing one passive coupling on a mechanism selected from
the zero family. Consider, for instance, a mechanism shown in Figure 1,
and schematically described as R-C-C=C. At the joint 1 we have a
revolute pair. The joints 2, 3, and 4 consist of the cylindric pairs.
Let &, Bg, Yo, and.8y be the 'skew angles of the axes 2, 3, 4, and 1,
and @, B, vy, & be the common normals between the.joints 1-2, 2-3, 3&4,
and 4-1, Let'{;, g, {iy and s be the unit vectors associated with

the axes 1, 2, 3, 4, such that

G + Gz = Cos @ (2.26)

Qg * Uy = Cos B (2.27)

g Gy = Cos vy (2.28)

and g Gy = Cos & (2.29)
where @ = gy + 0o (2.30)
B = By +0B (2.31)

N = Yo tO v (2.32)

-and 6 = &85 +0 6 (2.33)

The joints 2, 3, and 4 are capable of accepting-one passive
coupling. Let us consider a. case -where one passive coupling is intro-
duced in the joint 3; that is, after the passive coupling of one trans-
lation . is . introduced, the paif at the joint 3 operates as if it is a
revolute pair.

However, relationship between the '5 the input at the. joint 1 and
% the output at the joint 3‘needs to be derived before introducing the

passive coupling at this joint. This relationship can be derived in a

following manner.
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\I ‘gl |

Ree ¢ RRCC Mechanism

RRCC Mechanism disconnected at the joint
2 and the links @, and B, are folded
as shown.

Figure 1., RRCC Mechanism
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Let us disconnect the mechanism at joint 2 and rotate the links 1-2
and 3-2 around the axes 1 and 3 so that they are superimposed respect-
ively on the links 1-4 and 3-4., -After this, rotate link 1-2 about axis
1 by an angle~$ = g and link 3-2 about an axis 3 by a Dual angle
% =%o + X1 so that the unit vectors u'; and u', of the axes 2' and 2"
form the same Dual angle with axis 4 after rotation. If this condition
is fulfilled, then without vérying~$ and’i, it is possible to super-
impose these axes by giving the motion (helical) in the joint 4. Thus,
the two unit vectors d'z and 'y become one and the same unit vector.

i

Let the vectors of final rotations bel;3 and*ﬁéY where

<>
[

X
=Yy +0Y) =tan:1/2§ =tan 1/2 X5 + © % (1 + tan® 39)

Yo + 555 (1 + ¥%)

According to the two rotations of Ug, about axes 1 and 3, we get

~ 1 - ~ A ~ ~ > ~ ~ ~
Ty = [(l = 8°%) G + 20y - G2) uid® + 2(8; xGy) QJ (2.34)
-
1 +7%
and
A 1 - " A ~ PRpS . T
i'y = —=—— [(l - Y®) Gy + 2(s - Ug) 0a¥2 + 2(4g x:Gg) Y] (2.35)
2
1 +¥Y
Equations (2.34) and‘(2.35) are however related by one conditions,
i.e.,
G'g ‘ 164 =‘l,:1“2 e -G4 (2.36)
Equation (2.36) can be solved using the following relationships
ng -'G4 = Cos (8 -&)
or Gg -y = Cos (y -'B)
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o)
fin
c>
'S
]
o>

Cos

uz * ugqg = Cos'y

Gy - (41 x Ug) 0 the unit vectors are

!
o

Qg » (g x Ug) = ‘linearly dependent

The resulting expression can be written as

{cos B+ - cos(8 - &) + Cos( +3) - Cos( +4) )

+ Cos(é -‘Q) - Cos(s - &) + Cos(B - - Cos(g +8) =0

Equation (2.37) can be briefly expressed as

(3 +45%) ¥ + (B +3B &%) =0 (2.38)

where @ = agp +.0a; Cos(By + o) - Cos(8y - )

+o [=(By +v1) Sin (By +¥o) + (61 - @) Sin(8 - ap)]
A= Ao + 0A; = Cos(Bg + Yp) - Cos(8, + )

+ [‘ (B, +"Y1) Sin(Bo +'Yo) + (8, +a1‘)"Sin(6o +'a0)]
?ﬂ = by +ob; = Cos(By -"Yg) -~ Cos (&, --a@)

+o [- (By - v1) Sin(Bg - Yo) + (81 - @) Sin(8; - )]

B = B, + 0B,

Cos(Bg - Yo) - Cos(8y + Op)

+c [_ (Bl Yl) Sin(Bo “"Yo) + (614+‘Q’1) Sin(éo +‘&’o),:|

~

Equation (2.38) is the relationship between the-input rotation &
at the joint .1 and the output rotation Y at the joint 3. It should be
noted, however, that joint 1 consists of a revolute pair and therefore

g = 8. When the condition of passive coupling is forced at the . joint
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"3, we haver§ = Yy. Therefore, for the condition of passive coupling,

we have

A

(4 +A 35°) Y2 + b +B 3° =0 (2.39)

Separating the real and imaginary part of Equation (2.39), we get

I
O

(ap + Ap §©2)‘Yoz + (bg + Bg @oa) (2.40)

and s
(a; + A, @oz) Yo2 + (by + By 347)

1
O

(2.41)

Equation (2.40) and (2.41) must be solved simultaneously. This

condition can be expressed in the form of determinant.

ag + Ay 3" be + By -

=0 2.42
a; +4A; @oe by + B, @02 ¢ )

(3 + Ay 367 )(by + By &%) - (o + By &%) (a1 + Ay 8°) = 0 (2.43)
Rearranging the above equation, we get

2
(BgBy ~ BoA1) 80" + (agBy + Agby - bgAy - Byar) 3

+ (aobl = boal) =0 <2044)

This fourth degree_poiynomial must be equated to zero identically, that
.is, all the coefficients of this polynomial must be equated to zero.

Thus, we have

AgBy - BoA; = 0 (2.45)
aOBl +erbl - bOAl - B@al =0 (2“46>
and aobl = boal = O '(2947)

First, consider Equation (2.46). Substituting the corresponding

quantities for ay, By, Ag, by, etc., we get



apBy + Agby - boAy - Boay =

[Cos(Bg + Vo) - Cos(8y - 2p)1l- (By - vi) Sin(By - Yo)

+ (8, + @) Sin(bg + %) ] + [Cos(By + yo) - Cos(8y + )] X

[~ By - w) Sin(By - Yo) + (81 - %) Sin(8y - %) ]

- [Cos(Bg - o) - Cos(8y - o) IL- (By + vy) Sin(By + o)

+ (8; + ) Sin(8y +-25)] - [Cos(Bg - o) - Cos(8, + &) ] X

[- By +v1) Sin(Bg + vp) + (8; - @) Sin(8, - o) ]

Clearly, this equation satisfies identically.

sider the other conditions given by Equations (2.45) and (2.47).

we get

Therefore,

[COS(BQ +‘Yb) - COS(@O "ao)][(Bl "Vl) Siﬂ(Bo - Yo)

= (8, - ) Sin(8y - )] - [Cos(By - yo) - Cos(8y - )] X

[(Bg + vo) Sin(By + vp) - (&7 - @3) Sin(éo "ao)] = 0

and

[Cos(By + vo) - Cos(8g - %) ](B1 - v1) Sin(By - vo)

0

35

(2.48)

let us con-

- (8; + @) Sin(%s + ao)] - [Cos(BO - Yo).m'Cos(éo +-ag)] x
[(B1 +v1) Sin(B, + o) - (&, + @) Sin(éy + ¥)] = O
Rearranging Equations (2.49) and (2.50) we get
Sin By Sin.vys By Cos B, Sin vy, + 3 Cos v, Sin.Bg
Sin 0 Sin-6,  &; Cos 84 Sin @y + @; Cos @g Sin 4
and
Sin By Sin Y, By Sin vyy Cos yy + 'y Sin By Cos Bg
Sin @y Sin &y 6; Sin @, Cos @y + @ Sin &, Cos b,

Thus,

(2.49)

(2.50)

(2.51)

(2.52)



TABLE 'V

APPARENT CORRELATEON BETWEEN THE DIFFERENT MOBILITY CRITERIA

Artobolevski and Dobrovol'ski's

Criterion Sharikov'sCriterion Vionea and Atanasiu’s Criterion
Kolchin's Moroshkin's
Rutzbach's’ General The possible component's number of number of Number of Geometrical locus of the Parameter Q Eneemble's of
parameter Constraints of .the general motion passive independent Teciprocal axes of screws with the rank straight lines
b m R = rotation; constraints transformation screws either zero pitch (revolute of the
T = translation when equations pairslor infinite pitch watrix of
s o (prismstic pair) the screws
Aok
6 ] 3R, 3T ] 6 0 Arbitrary location im space 6
5* 1 3R, 2T; 2R, 3T 1 5 1 Two bundles of lines, with Sm
centers located at 2 finite
or infinitely extended dis-
tance
* 33
4 2 3R, 1T; 2R, 2T; 1R, 3T 2 & 2 Two hyperboloids with two &4
common producers
3 3 3R; 2R, IT; 1R, 2T; 3T 3 3 3 (2} Surface of hyperboloid 3 {a) generators of
e.g., 4R Becnett mechanism the same family
of a ruled quad-
{b) Bundles of lines with ric surface
ceater located &t & fipite b £
distance, e.g., 4R spheri- {b) generators o
cal mechenisn 4
i of a hyperbolic
(c)} Bundle of parallel paraboloid
;::::;’i;g-. 4% plane (¢) three straight
lines at infinity
(d) Pairs located arbi- or the ensemble
trarily on sn infinitely of all the lines
extended plane, e.g., at infinity
4P space mechanism
(8) ensemble of
81l coplanar
lines
(e) Ster of con-
current lines,
etc.
2 4 2R; 1R, 1T; 2T 4 2 4 Parallel lines located (a) the planar

on an infinite extended
plene, e.g., plane mech-
anism with 6liding peir

cone of straight
lines concurrent
in O and coplanar

(b) Two straight
lines parsllel
and situated in

*
These values were not proposed by Kutzbach.

sk
R > m or B < m contradicts the proposed concept of general constraints.

Vionea and Atanasiu did not investigate the ensembles of straight lines for these values.

9¢
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Equations (2.51) and (2.52) represent the necessary conditions for
having. one passive pair at the joint 3.

However, there is one objection to this method of finding the
conditions of passive or general constraints because it is also able to
generate mechanisms which are characterized by more than one general
constraint. Apart from this, if one were to study the constraint con-
ditions on mechanisms such as RRRCC or RRRRRC, the mathematics involved
requires the examination of the roots of a determinant equations having

an order as high as thirty-two.

-Similarities in the Criteria of General Constraints

All of the proposed mobility criteria have a correlation with one
another. - In Table V it can be seen that the Kutzbach parameter b, which
defines the total freedom possible, correlates with Moroshkin's para-
meter ¥, which is the rank of the independent transformation equations,
and with Vionea and Atanasiu's parameter Q, which is the rank of the
matrix of the coefficients associated with the classical screws. Table
V also shows that Artobolevski and Dobrovol'ski's parameter m, which
designates the number of general constraints, is analogous to Sharikov's
parameter S, which is the number of reciprocal screws. Furthermore,
‘Kutzbach's parameter b, Moroshkin's parameter r, Vionea and Atanasiu's
parameter Q, Artobolevski and Dobrovol'ski's parameter m and Sharikov's
parameter 5 are -inter-related. This relationship can be expressed in
terms of two parameters A and B where B = Q =r =b, and B =S = m, so

that these parameters :satisfy the condition

A+B =256 (2.53)
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Thus, each of these mobility criteria establish similar relation-
ships between the freedom of the mechanism and the parameter defining
the general constraints. The only exception among the studies-is the
proposal by Kolchin [28]. His contention that there are passive con-
-gtraints or passive freedom conditions that can exist other than, or
in addition to, the conditions defined as general constraints appears
to contradict all of the other theories. Since each of the above
-criterion arrive at similar conclusions from totally different paths,
it raises some doubt that Kolchin's parameter H is valid. However,
until general constraints are defined, there is no way to refute the
possibility of other ''special'' constraints in addition to ''general

constraints.
Nature of One General Constraint

The concept of general constraints suggests that there are certain
specific geometrical conditions which must be imposed on a kinematic
chain if it is to have one degree of freedom. According to the mobility
criterion of Artobolevski and Dobrovol'ski, a six-link six-revolute
kinematic chain can have one degree of freedom if it has one general
constraint. The exact nature of this one general constraint is not
completely known although'Artobolevski [21] and Dobrovol'ski [22],
Altman [35], [36], [37], [38], [39], Franke [40], Sharikov [33], and
Vionea and Atanasiu [34] have each contributed some views about it.
Artobolevski and Dobrovol'ski proposed that the one general constraint
is defined by a specific orientation of the axes of the pairs. They

contend that the condition for mobility of the six-link six-revolute

1
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mechanism is determined when one set of three revolute axes intersect
at a common finitely located point and the remaining three revolute
axes  intersect at a second finitely located point. Franke, Vionea and
Atanasiu also established the same conditions for -the one general con-
straint as Artobolevski and Dobrovol'ski. However, Altman and Sharikov
pointed out that the two intersection points could be located at a
finite or at infinite distance.

Ironically, this criterion of intersections of axes fails to
account for several six-link mechanisms which are known to function
with one degree of freedom. For example,-Sarrus's2 six-link mechanism
{417 has its six axes intersecting by pairs at three distinct points.
The articulated six-link mechanism of Bricard [7] and Ladopoulou [42]
have every combination of two of the axes intersecting in six different
points. Thus, the criteria of intersecting axes is neither necessary
nor sufficient to describe the nature of one general constraints for a

six=link six~-revolute mechanism.
Scope of One General Constraint Domain

When there are no general constraints (m=0), the Artobolevski-
Dobrovol'ski mobility criterion reduces to the Malytcheff criterion.
Harrisberger3 [29] showed that there are 13 different types and 435
different kinds of single-loop, single degree of freedom space chains

which do not have general constraints. In a similar manner it is

2. . ,
The name '"Sarrus' is spelled quite often as ''Sarrut'.

3

Reference [29] is in error due to the omission of one type of
chain described by the combination lp; + lpy + lp, and various counting
errors.
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possible to survey the one- general constraint domain to determine the
types ‘and kinds of chains that could exist.

The existence of.one-general constraint is specified in the
Artobolevski equation when parameter m equals 1. Consequently, the
mobility criterion of Artobolevski for all mechanisms having one general
constraint . is

F=5(n-1) - 4py - 3ps - 2ps - lpa (2.54)

Observe that the existence of one general constraint eliminates all
kinematic pairs having five degrees of freedom. A maximum of six links
is possible only when the class I pairs are employed in the synthesis
of a kinematic chain. The six :1inks may include a variety of combina-
tions of both the kinematic-link and the kink-~link components.
Similarly, when class I and class II pairs are used, the number of
permissible links.is five. That is, the kinematic chain contains four
class I pairs and one class I pair. Continuing in this manner, one can
obtain two types of four-link chains containing either two class I pairs
and two class II pairs or three class I pairs and one class III pair.
According to the classification of kinematic pairs of Harrisberger
[29], there are three types of class I pairs, three types of class IL
pairs, four types of class III pairs, and three types of class IV
pairs. Thus,.in the one general constraint domain, there are 28 kinds
of chains with six links, 45 kinds of chains with five links, 76 kinds
‘of chains with four links, etc. Table VI is a.summary of a survey of
the types and kinds of single degree .of freedom, single-loop chains
‘requiring one general constraint for mobility. Observe that there are

eight different types of chains and 212 different kinds. It should also



TABLE VI

TYPES AND KINDS OF SINGLE DEGREE OF FREEDOM KINEMATIC
CHAINS HAVING ONE GENERAL CONSTRAINT

No.
Ll.:kl Type No. Kinds

6 6p, 28 6R, 6P, 6H, SR + [1P, 1H), 4R + [2P, 2H, 1P +
1H], 3R + [3P, 3H, 2P + 1H, 1P + 2H], 2R +
(4P, 4R, 3P + 1H, 2P + 2H, 1P + 3H], IR + [5P,
5H, 4P + 1H, 3P + 2H, 2P + 3H, 1P + 4H], 5P +
IH, 4P + 2H, 3P + 3H, 2P + 4H, P + 5H

5 4py + lpg 45 4R + [1c, 17, 17,7, 3R + (1P, 4] + [1c, 1T,
1T,], 2R + [2P, 2H, IP + 1] + [1c, 1T, 1],
1T + [3P, 3H, 2P + 1H, 1P + 2H] + [1C, 1T, rrH],
(4P, 4H, 3P + 1H, 2P + 2H, 1P + 3H] + [1C, IT,
1T, )

4 2p, + 2p, 36 2R + [2¢, 2T, 2Ty, 1C + 1T, 1C + 1T, IT +17,],
1R + [1P, 1H] + [2¢c, 2T, 2T, 1C + IT, IC +
1T, 1T +17,.], [2P, 28, 1P + 1H] + (2¢, 2T,
2T, 1C 41T, 1C + 1T, IT +17,]

4 3p, + lpy 40 3R + [18, 1sg, 18g,s 12, ], 2R + [1P + 1H] +
[1s, 185, 18, 1rL]. 1R + [2P, 2H, 1H + 1P] +
(18, 185, 18g,, 1P, ], [3P, 3H, 2P + 1H, 1P +
20] + [18, 185, 185, 1P, ]

3 2p, + 1lpg 18 2R + [1sc, 1800 lcP], 1R + [1P, 1H] + [“‘c'
180 1cp], (2p, 24, 1P + 1H] + (1S, 18,00
1cP] :

3 1p; + lp; + 1p, 36 IR + [1c, IT, 1T, ] + [18, 18, 185, 1P, ],
(12, 1] + [1c, 17, 17,] + (18, 18, 185,
e, ]

3 3py 3 3c, 3T, 3T,

2 lpy + lp, 6 (160, 1%, 1]+ [“"c' 18,0 lcp]

Total B types and 212 kinds
The following abbreviations are used
R = Revolute; P = Priem; H = Helix
T = Torus; C = Cylinder; TH' Torus-helix
8 = Sphere; Sa- Sphere Slotted I’L- Plane
Helix;
SG- Sphere Groove; sGH = Sphere Grooved Gp- Cylinder-plane

Helix;
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be noted that each of the mechanisms from this group could possibly
have up to six kinematic inversions, but there is no assurance that
each of them.would also have a single degree of freedom.

Although the mobility criterion for one general constraint indi-
cates that in addition to the six-link six-revolute mechanism there are
more than 200 other mechanisms that have one general constraint, physi-
cal models of most of these mechanisms are not known since we know
nothing of the geometric conditions which create the general con-
strainté. We have no way of knowing how to assemble these mechanisms

so they will have constrained mobility, except by trial and error.



CHAPTER III

THEORY OF IDENTIFYING THE EXISTENCE OF

GENERAL CONSTRAINTS

The examination of the number of existing theories makes us aware
of the complexity of the problem in identifying and determining the
degrees of motion of kinematic chains. These problems become more
involved when the chains having more than four physical links are under
consideration. The explicit governing conditions that identify the
existence of one or two general constraints are, therefore, not readily
obtainable with the approaches examined in the previous chapter. For
instance, the approaches suggested by Vionea and Atanasiu and Sharikov
are primarily of analytical nature; that is, the application of either
of these approsches is expected to point out an existence or non=
existence of a mechanism. Although the approach suggested by Dimentberg
promises an explicit governing condition, the mathematics of determining
the one general constraint condition requires the examination of the
roots of a determinant equation of order thirty-tow. Such mathematical
approaches 'of examining the roots of the higher order determinant equa-
tions may be expected to lead to all types of erroneous results.

The classical theories defining the degrees of mobility predicts
thpusands of mechanisms having general constraints whose value varies

from a minimum of zero to a maximum of four. However, all of the

43
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governing conditions that define a spatial kinematic chain as a mecha-
nism are not known. It is generally believed that such governing
conditions are relatively simple for the unconstrained mechanisms and
that they become more complex for the mechanisms having one or more
general constraints. It should be noted, however, that even these
-simple governing conditions are not known. Thus, some of the funda-
mental problems, such as the maximum number of permissible sliding or
helical pairs in a spatial mechanism, remain to be solved. However,
among these fundamental problems the one of considerable importance is
that of examining the governing conditions defining one or more general
constraints., Under the ideal situation, this examination of the
governing conditions of the general constraints:.is expected to reveal,
(a) the closure condition for a chain, that is, a set of
parameters associated with each link in order to form a
closed kinematic chain configuration,
(b) the mobility of the chain when one of the links is fixed,
(3) the limit positions and the dead center of the mechanism.
In the sections to follow, a general theory of examining the

existence oOr nonexistence of a general constraint is developed.

Development of the Theory of Identifying the

Existence -of General Constraints

Under the ideal condition, a true space mechanism is expected to
have a general motion consisting of three rotations (wxngy, wz) and

three translations (TX, T » TZ), along a set of three independent axes

y

X, ¥, and z. The underlying philosophy of the one general constraint
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then would state that for some specific geometric configuration of a
chain the total number of components of its general motion is either
‘three rotatipns (wx, wy,vwz) and two translations, such as (TX, Ty),
(TX, TZ) or'(Ty, TZ), or two rotatiens, such as (wx, wy), (wy, wé)’ or
(wx, wz) and three translations (TX,-Ty, TZ).

With a starting assumption of the six-components of the general
motion, one is expected to set up six simultaneous independent equa-
tions relating the six parameters of the general motion wx,-wy,awz,
«TX,rTy, T, It is possible to arrive at this set of six equations by
considering the physical significance of the general constraints. - For
instance, according to F. M. Dimentberg, the existence of one general
constraint is expected to impose a condition on a cylinder pair of a
mechanism described by a combination RRRRRC. -Observe that the first
revolute pair R is the input pair and the cylinder pair C is the output
pair. The imposed condition of one general constraint on the cylinder

pair can be described mathematically as

dSq

Eg; = 0 (3.1)

where Sg is the translation permitted by the cylinder pair and ©; is
-the rotation.at the input pair. Note that this relationship, given by
Equation (3.1), is expected to be true for a total possible range of ©;.

Integration of Equation (3.1) with respect to ©; results in

Sg = constant (3.2)

The physical interpretation of the Equation (3.2) suggests that

the cylinder pair -is made passive .-for its translatiomal movement; that
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is, the activity of the cylinder pair is confined to a pure rotation.
This condition of restraining the cylinder pair to a pure rotation will
then describe the mechanism RRRRRC as a RRRRRR mechanism. Thus, the
existence of the condition given by Equation (3.1) in a mechanism such
as -the 6R mechanism describes the existence of one general constraint.
Similarly, the existence of two simultaneous conditions similar to that
of Equation (3.1) in.a mechanism RRRCC induces the existence -of two
general constraints and the resulting mechanism can be described as a
RRRRR mechanism.

The general mathematical tool that lends itself to induce the
mathematical conditions given either by Equation (3.1) or Equatién (3.2)
and also abide by the general philosophy of the general constraints -is
the three~by-three screw matrix. This three-by-three screw matrix is
composed of a product of two three-by-three dual matrices both de-
-scribing a rotation and translation of a rigid body, one about the x
axis and the other describing about the z axis. Thus, the resultant
product of these two three-by-three dual matrices is expected to
describe a rotation and translation of a free body about some third

instantaneous axis called a screw axis. This screw matrix is given by

Cos 0, - Sin 6. Cos @, Sin 8, Sin @,
i i i i i
T.(8) = | Sin @, Cos 6, Cos @, - Cos §, Sin @, (3.3)
i i i i i i
0 Sin @, Cos @,
: i i J

where'éi and-&i are the "dual angles' where (see Appendix A)

8

, 8, +a s,
i i i

>

Q\
]

¢, +0 a,
‘L 1
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where a;, o, Gi, and Si are the physical parameters associated with a
link of a kinematic chain. These parameters a;s ai, ei, and Si and
their relationships to one another are shown in Figure 2. Observe
that the parameter a, represents the kinematic link of a chain, ai
the twist angles between the axes, Gi the angle between the kinematic
link and’Si the offset distance along the axis between the two common
perpendiculars of the two connected links. This distance can be
physically interpreted as a kink in the kinematic link.

According to the mobility criteria, when the mechanism has no

general constraints, i.e., m = 0, it can be shown that
2 kpk = 7 (3.4)

Thus, when all the pairs are the revolute pairs, i.e., k = 1, then the
total required number of links are seven. Thus, corresponding to the
seven links of a closed chain, seven screw mafrices are feq;ired to

describe the motion of this mechanism, However, because the chain - is

a closed loop, the seven screw matrices are related. This relationship

is described by

0Ty T MTe ITe T MTg ATy 1 = [I] (3.5)

where the matrix [I] is the unit matrix. Observe that each of the

matrices [T, ] involve a,, «,, s., and 8,.
i i i i

i
In order to check for the mobility of a kinematic chain, displace-

ment analysis of the mechanism of this kinematic chain must be possible.

The displacement analysis of a mechanism is performed by determining

the displacements of all the follower and coupler links by giving any

arbitrary displacement to any one of the links and naming that link as



i=1,i, & i+ ARE SUCCESSIVE PAIRS IN A KINEMATIC LOOP
Z;= CHARACTERISTIC MOTION AXIS FOR PAIR i
X;= COMMON PERPENDICULAR BETWEEN Z;4| AND Z;

Y;®= AXIS TO FORM RIGHT-HANDED CARTESIAN SYSTEM,X;Y;Z;
(POSITIVE SENSE BASED ON CHOSEN ORIENITATIONS OF Xi¢ Zi)

a,= LENGTH OF COMMON PERPENDICULAR FROM Z; TO Zj,

(POSITIVE SENSE IS CCW ABOUT POSITIV
© = ANGLE FROM POSITVE X; TO POSITIVE X,
(POSITIVE SENSE IS CCW ABOUT POSITIVE Z; )
S = DISTANCE ALONG Z; FROM X; TO X4
(POSITVE SENSE IS THAT OF POSITIVE Z; )

Figure 2. Kinematic Notations

o;* ANGLE FROM POSITIVE Z; TO POSITIVE Zjy,
Xi+))

48
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the input link. In a single-loop mechanism, one of the links connected
to the fixed link of a mechanism can be an input link. Then the other
link connected to the fixed link becomes a follower and the intermediate
links become the coupler links.

Let the input link of the 7R mechanism be displaced through an
angle 8 such that the coupler and the follower links experience a
differential displacement in their original positions described by

8z, 93, 94, 65, O and 6,. In this event the matrices ETi]’ (i =2 2)

must accommocdate this change. Thus
Ty To (05 + d65)T5(05 + dO5)To (0, + dOL)Tg (65 + d0g) .... =1 (3.6)

Using the Taylor series expansion and neglecting all the higher order

terms, the matrix Ti(ei + d@i) yields the following result

. . . ATMO.) -
T(6, +d.) = T(8,) +—==— db, (3.7)
i i i i
3 6,
i
Thus, Equation (3.6) becomes
FCOSfe. -Sin 8, Cos a. Sin 6. Sin @, |
i i i i i
Sin . 0, Cos 0, CosJ&, - «Cos 8, Sin «,
“ . i i X i i i
T(8, + a6 = in .
( i d i) 0 Sin ai Cos ai (3.8)
-Sin 9, «Cos B, Cos «, Cos 0, Sin -
i i i i dei
+ Cos 6, ~8in .6, Cos «, "Sin 6, Sin.
i i i i
0 0 0

Observe, however, that the second part of the Equation (3.8) is a pro-
duct of an operator matrix [P] with the original matrix [Ti] where the

operator matrix [P] is defined as



0 -1 0
p] = |1 0 0 _ (3.9)
0 0 0
Thus, the product [P][T] gives
0 -1 O] |cos®,  -Sin ®, Cos @,  Sin 8, Sin @,
i i i i i
‘IpT] =|1 0o o0} |sin 8, Cos 8, Cos @, -Cos ©, Sin @,
i i i i i
0 0] 0 0 Sin ©, Cos @,
i i
«Sinve, -Cos 0, Cos «, Cos 6., Sin «.
i i i i i
= Cos 8, -Sin 6, Cos «, Sin 8. Sin «
i i i i i
0 0 0

Rewriting in terms of the operator matrix, Equation (3.6) becomes

[

T(6, + d8,) T. + PT, d8.
1 1 1 1 1

(3.10)
=[1 +-Pdei] T,
Substituting for each of the T(ei + dei),‘Equation (3.6) yields,
Ty (I + Pd6g)Ts (I + PdOy)Ta(L + Pd® )T, (I + PdOg)Tg X
4
(3.11)

(I + PdOg)Tg(I + Pdd,)T, = I

Expanding the above equation with the assumption that dfz;, d6;,....,

~

d8, are-small in magnitude, Equation (3.11) simplifies to the following:

[T1TaTaTeTeTgTy ] + [Ty PToToT4TsTg T, Jd8, + [T ToPTaT4TgTgTy JdOs +
+ [T T3 TgPT4TgTgTy JdO, + [T, ToTaTyPTgTgT, Jdbg + (3.12)

-+ [T1T5TaT4TsPTgT, Jdg + [T,TT3T4TsTPT, ]d8, = [1]
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Let .
(] = [T1T2T3T4T5T5T7] (3.13)
[Qz] = [TlPTaTaT4T5TsT7] (3.14)
[Qg] = [T ToPTaT,TTeT, ) (3.15)
[Qu] = [TiToTaPT,T5TaT, ] (3.16)
[Qg] = [T1TaT,T4PT5TgT, ] (3.17)
[Qgl = [T,T3TT,T5PTT, ] (3.18)
and
[Q,] = [T1ToTsT4TgTePT, ] (3.19)

Then Equation(3.12) can be written as
[Q, ] + [Qg Jde; +‘[Q3]d93 +'[Q4]d94 +”[Q5]d95 +‘EQs]dee +"[Q7]d97 =1

or 7 '

) [o,18, = [1] - [q] (3.20)
i=2

Equation (3.20) appears to be relatively simple in the form shown here.
However, it is apparent simplicity is destroyed if the nature of the
screw matrix [Ti] is-taken into consideration. Observe that each of the
terms in the [Ti] matrix is a dual quantity. Thus, using the dual

angle algebra and expanding each of the terms, after substituting

= : ! = 9 i S i . o °
Cos ei Cos (Gi + o si) Cos ; ~ 0 s; Sin 6, (3.21)
Sin 6, =Sin (6, + o s8,) = Sin'8, + o s. Cos 6, (3.22)
i i i i i i
"Sin @, = Sin (&, + 0 a,) = Sin‘a. + o a, Cos '@, (3.23)
i i i i i i
Cos ai = Cos (ai + 0o ai) ='Cos-cvi -0 a; Sin a (3.24)
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the screw matrixv[Ti] decomposes into two matrices as follows

Cos 9, -Cos @, 'Sin .9, Sin @, Sin 9,
i i i i i
[T.] = |Sin 8, Cos &, Cos 6, -Sin @, Cos 9,
i i i i i i
0 - Sin @, Cos @,
i i

(3.25)

~5.85in®. a.Sinw.Sin®., - s.CosH,Cosa&, a, Cos®,SinB, + s.CosH . Sin. |
i i i i i i i i i i i i i i
+C s.CosB, =-a . Sin®,Cos®, - 5:5inb,Cos®, ~-a,Cos®,CosbB, + s.Sin&, Sinb,
i i i i i i i i i i i i i i

0 a,Cosw, -=a,Sing.
i i i i

1.7 =1[r.] +o0lp,] (3.26)

where [Ri] represents the real part and [Di] represents the dual part
of the matrix [Ti]. Observe that the real matrix [Ri] represents a
pure rotation. Furthermore, the real matrix [Ri] is an orthogonal
matrix but the dual part matrix [Di] does not have the same property.
In view of the existing property of the screw matrix [Ti]’
described by Equation (3.26), the Equations (3.15) to (3.19) need to

be simplified. For instance, consider Equation (3.13) which gives
'[Qi] = [Ty ToTaTaTsTg Ty ] (3.13)
Substituting [Ti] = [Ri] +‘0[Di], Equation (3.13) becomes

[Q1] = [R; + oDy ][Ry + oDy J[Rs + oDa J[Ry + oDy J[Rg + oDg ] x

[Rg + oDg J[R, + oD, ] (3.27)



Simplifying the above relationship, keeping in mind that ° = 0,

get
[Q] = [RyR RgR4R5RgR, ] + 0 |- [D;RzR3R4RsReR, ] +]

[R, DzRgR RsReR, ] +
[RyRe2DgR4RsRgR, ] +
| [R1R2R3D4R5RgR, ] +
“[RyRgRgR4D5RR, ] +

[R;RgRgR4RsDgR., ] +

L[R1R2R3R4R5R5D7]

Similarly, each of the matrices Qi(3X3) can be simplified. Thus,

[Qz] = [TyPToT5T4TsTg ] = [RyPRzRR4RsRg] + .tDlPR2R3R4R5ReR7]
[(R1PD;R;R4RsRgR, ]
[R;PRzD3R4R5RgR, ]
[RyPRyRyD4RgR4R, ]
[R;PRy;RgR,DReR, |

[R;PRgRgR4R5DgR, ]

| [R) PRgRgR4R5Rg D, ]

' T

we

(3.

(3.

[Ry D;PR3R4R5RgR., ]
[RyRz PDaR4RgRsR,, ]
[RyRaPR3D4RsRgR, ]
[R1RaPR3R4DgReR, ]
[RyRgPRgR4R5 DR,

;£R1R2PR3R4R5R5D7]

(3

53

28)

29)

.30)
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[Qq] = [Ty TaTaPT,TgTeT, ] = [R;RRaPR4RReR, ] + @ r[DleRaPR4R5RéR7] +]
|[R1DgRgPR4RsRgR, ] +
[R,RsDsPR RgRgR, ] +
[RiR;R3PDRgRGR, ] +
[RiRgR3PR.DsRR, | +

s
[R1RaR3PR4Rg DGR, ]

+-

[R1RzR3PR4RsRg D, ]

(3.31)

"2
[Qs] = [TyT3TaT4PTsTeT, ] = [RiRoRgR4PRgRgR, ] + o |[DyRyRgR4PRsRgR, ]

te

+

[RiDzRaR4PRgRGR,, ]
(RyR;DgR4PRgReR, ] +
[RiRaR3D,PRgRGR, ] +

[R;R3RaR4PDgRgR, | +

+-

J[R1RyR3R4 PR DR, ]

{R;RzRgR4PRgRg D, ]

(3.32)

~
[Qg] = [T;ToTaT4TePTT, ] = [RiRyRgR4R5PRgR, | + 0 |[D;RoR3R RgPRgR, ] +

[RyD;R3R4R5PRSR, ]

-+

[RyR2DgR4RsPRgR, ] +

[R1RzR3D4R5PRGR, ] +

+-

‘[R1RgRgR4D5PRgR,, |

[R1ReRaR4RsPDgR,, ] +

£R1R3R3R4R5PR6D7]

(3.33)
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+y

[Q, 1 = [Ty ToTaT4TsTePT, ] = [RiRzRgR4R5R5PR, ] + @ ﬁleReRaR4R5RePR7]
(RyDzRsReRsRgPR, ] +
[R;R;DzR4RsR PR, ] +
{RyRzR3D4R5Rg PR,y | +
[Ry1ReRaR4DsRgPR, ] +

_[R1R2R3R4R5R6PD7]

(3.34)

Observe that'[Qi] matrices have been decomposed into a set of real
matrices and dual part matrices. Denoting the real and dual part com-

ponents of [Qi] by [Ai] and [Bi] we obtain
[Qi] = [A‘i] + c[B;l]

Thus, for i = 2,
-{Az] = [R1PRyR3R4RgRg ] (3.35)

and » =
[D;PRoRgR4RsRgR, ] + [RiPDaRsR4R5RgR, ] +

[Bz] = {[RyPRgDaR4RsRgR, ] + [R; PRyRaDy RgRgR, ] + (3.36)

[R;PRRgR4DsRgR, ] + [Ry PRyRgR4RgDgR, 1 +

[Ry PRzR3R4R5RgD, ] J

Observe that the matrices‘[Ri],‘[Di], and. [P] have each three rows and
three columns. Therefore, the product matrices [Ai] and [Bi] must also
have three rows and three columns.

Using this notation, Equation (3.20) can be rewritten as

7
Z [Ai + -cyB_i]dei = [1] - [A; + 0B ] (3.37)

i=2
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7 ~ A
E:[Ai]dei to i}LBijdei 2= [1] "[Alj - o[B8, ] (3.38)

i=2 i=2

Recall that each of the dual angle Gi can be written as

Gi =:ei +-csi (3.39)

Differentiating both the sides, we get

A~

d6, =db, +-ad s, (3.40)
i i i

Observe, however, that if Sy is not a variable, then

d8, = d8, (3.41)

1 1 -

The case in which s, becomes -variable is the one in ﬁhich a kinematic
chain has a cylinder pair. For the seven-link mechanism to move with
one degree of freedom, all the kinematic pairs are the revolute pairs,
and therefore, all the si are of constant values. Thus, Equation (3039)'w

becomes

7 7
ZL%M%4wrZ-BQwiaﬂﬂ-[h]~cBJ (3.42)

i=2 i=2
Separating the real aﬁd dual part of the Equation (3.42), we get a set

of two-equations which are

§ [a,Jeo, =017 - [as] (3.4)
i=2

and

) [3,Ja0, = - [5,] (3.44)
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Since each of the [Ai] andthi] have three rows and three columns,
thereby having nine elements, Equations (3.43) and (3.44) together
represent a set of eighteen equations in six unknowns dbz, d6,, d6,,
d6g, d9g, and dO,. Corresponding to these six unknowns, therefore, a
minimum of six independent equations must exist in order that the
kinematic chain of 7R moves with one degree of freedom when onejof
the links is fixed. The following .is the procedure to obtain a set of
six independent equations from the set of these eighteen equations.

Recall that [P] is an anti-symmetric matrix. Because of this pro-

perty, the product matrix
t
[c] = [z][r](z] (3.45)

. . t . .
is also anti-symmetric, where [2] is a transpose of any matrix [Z].

-Now, consider any one of the-matriceS'[Qi] given by Equations (3.13)
to (3.19), say [Qz] then

[Qa] = [T;PToTaTaTsTs ] (3.46)

Let [ﬂ]nl be the inverse of [T;]. Then Equation (3.46) can be rewritten

as

[Qz] = [T,PILT, ~'7; J[ToTa T, T TeT, ] (3.47)

-1
(Qg] = [T,PT; " ]J[T,TaT3T4T5TaT, ] (3.48)
Observe, however, that from Equation (3.5)

[T, TaTaT,TsTgT, ] = [I]

and therefore,

[Qz] = [T;PT, 1] | (3.49)
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Lf the screw matrix were to describe only pure rotation, then from the
definition it is known that the screw matrix is an orthogonal matrix.
Therefore,

-1 t

(1,177 = [1,] (3.50)
Thus, Equation (3.49) can be rewritten as
t

[Qz] = [TyPT, ] (3.51)

Comparing the two equations, (3.51) and (3.45), we deduce that the matrix

[Q2] must be an anti-symmetric matrix, i.e.,

0 912 913
[Q2] = -qlz 0 q23 (3.52)
“dy3 93 0

Clearly, Equation (3.52) suggests that out of the nine elements
only three elements are independent under a complete closure condition.

That is, when

[Ty TeTaTaTsTeT, ] = [I]

However, since [Qg] decomposes into the real and the dual components,
there are altogether twelve independent elements available to obtain
the set of simultaneous relationships in d?i described by the Equations

(3.43) and (3.44). Thus, Equation (3.52) can be written as

912 413
[QB] = "qlz 0 q23

"4y3 ~433

]
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i.e.,
0 315 853 P11 Pip Py
;] = -a;, 0 a5 | + o by, oy Dyg (3.53)
-a;3 "ayy O L-b13 “byg b33J

It can be seen that the similar relationships can be derived for the
product matriceS»[Qi] where -1 takes the value one through seven.
Observe that all the diagonal elements of each of the real part matrices
are zero, but the diagonal elements of the matrix.[Qi] may not-be zero.
This is due to the fact that dual part matrix is not an orthogonal
matrix. These elements, however, do become zero under special con-
ditions. These governing special conditions are yet not known.

The problem of obtaining the number of independent equations from
the set of twelve equations becomes complicated. However, the principle
of transference as proposed by A. P, Kotelnikoff [48] is applied.
Accordingly, the number of independent equations obtained from real
part and from dual part matrices must be the same. Since there are
only off-diagonal elements contributing the three independent equations
from the real part matrix, then the application of the "principle of
transference' suggests that there are three independent dual part
equations obtained from the off-diagonal elements of the dual part of
the matrix [Qija

Thus, each of [Ai] and.[Bi],of Equations (3.43) and (3.44) under
the closure condition contributes three -elements to form a set of six
independent equations. Furthermore, these contributed elements -of
[Ai] and.[Bi] are, in fact, the off-diagonal elements. Therefore,

-Equations (3.43) and (3.44) may be written as
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-] (3.54)

[

B ds -[B

ik 9% ) k] (3.55)

[
N

i
where j and k denote respectively the rows and columns of the ith
matrix. Equations (3.54) and (3.55) can be futher modified if we
consider the conditions under which they are derived. Recall that

these equations are the result of the assumption that a closure con-

dition for a kinematic chain is achieved. Under this assumption
[Qu] = [Ty ToTaTaTsTgT, ] = [1] (3.56)
=-[Alji] +-c'[BjR] (3.57)

‘Since the unit matrix [I] is a real matrix, then equating the real and

the dual parts we get

1

(A, ..]

ik -[1] (3.58)

and

L 1 =[n] (3.59)

Bljk
where the matrix [N] is the null matrix. Equation (3.58) indicates that
all the off-diagonal elements of the matrix [Aljk] are zero., Further-
more, - Equation (3.59) indicates that all the elements of the matrix
'[Eljkj are zero. Consequently, Equations (3.54) and (3.55) become a

set of six simudltaneous homogeneous equations. These equations ‘may

be written in the matrix form as
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~a212 4312 4412 az192 319 a712“ rde, ] [0

2213 314 2,13 514 g3 3,14 9, 0

223 %323 %23 %23 %23 dp3 | | 4] | O
P12 b312 b412 LESD) beio b,1o @ | Tl o (3.60)

Pr1z P31z Pars Psiz Peiz Pyiz | | 9% 0

b223 b323 b423 b523 b623 b723 c197.J _ OJ

i.e.,

[]La07 = [o] (3.61)

where the matrix [M] is the coefficient of the differentials of the
angular displacements of the links 2, 3, 4, 5, 6, and 7, and the column
matrix [A®] is the differential displacements. When the closure con~
dition is obtained after giving a differential displacement to these
links, the angular positions-9,, 05, 04, 065, 65, and 6, of these links
are -described by their corresponding exact values. Consequently, the
column matrix [A®] must consist of a null vector in ordef to satisfy
Equation (3.60). The coefficient matrix»[M], however, remains non-
singular. Since there are six independent rows, the rank of this métrix
must be six.

The coefficient matrix [M] plays a significant role in answering
some of the basic issues related to the mobility of a kinematic chain.
Observe that this matrix has six rows and six columns. These six
columns correspond to the six unknown dependent displacements. In
general, the number of columns of the coefficients matrix and the number
of dependent displacements of a single~loop mechanism are related.

This relationship can be expressed as
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Number -of columns = (Total number of linear and. angular

displacements) - 1 (3.62)

The above relationship stems out clearly from the fact that in a
mechanism a kinematic pair of one degree of freedom is used for the
input motion and the motion at the other kinematic pair is simply
dependent on the motion of the input pair. Thus, in the 7R chain
8, is the angular motion at the input pair and the angular motions 6y,
B3, 04, 65, 85, and 8, are simply dependent on the input motion.

The application of Equation (3.62) suggests that in the -six-link
Bricard mechanism, where all the kinematic pairs are the revolute
pairs, the number of columns of the coefficient matrix [M] is five.

-Similarly, the Goldberg five-link and the Bennett four-link mechanism
will have, respectively, four and three columns in the coefficient
matrix.[M],

The rows of the coefficient matrix, however, exhibit altogether
different properties. These properties appear to correlate with the
basic concept of the general constraints. The number of independent
rows that can be obtained for a mechanismis entirely dependent upon
the specific configuration of the mechanism.

Observe that the total number of rows are six and that they are
not related in any manner with either the total number of links or the
total number of kinematic pairs of a mechanism. Note that the first
three rows in the matrix [M] are obtained from the real part of the

'[Qi] matrix and that the last three rows are obtained from the dual”
part of the‘matrix»[Qi]. It has been observed, however,. that it is

the specific geometric configuration of the mechanism that decides on
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the number of independent real and dual rows of the coefficient matrix

L]

Coefficient Matrix .[M] for the Spherical

Four-Link Mechanism

A specific configuration does exist wherein all the dual com-

ponents assume zero values. That 1is,

Q>
1

o + 0(0) (3.63)

and

>

.
It

8, + 0(0) (3.64)

Such a configuration can be described on a sphere, for instance, the
spherical four-link mechanism. In this case, all the three equations
obtained from the dual components of the matriceS‘[Qi] are zero, thus
leaving only the first three real row vectors in the coefficient matrix
[M]. Since there are four revolute 'pairs, the application of Equation
(3.62) suggests that there are only three columns in the matrix (M].
Thus, for a spherical four-link mechanism the coefficient matrix.[M] is
expected to take the following form:

— . -

812 831y 3, 0 0 0
3513 8313 233 0 0 0
(] ) =
spherical 4R 3593 394 3,93 0 0 0 (3.65)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0O 0 O
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Clearly, the rank of the coefficient matrix.[M] for a. spherical
four-1link mechanism is three. Theoretically, the components of the
general motion of a spherical mechanism are the three rotations about
three non-planar axes. The existence of three real part equations is
due to the existence of only the real part in the dual angles'& and é.
As a result of this condition, only pure rotations are accomplished.

These pure rotation components are then described by the existence

of the three real part row vectors.

Coefficient Matrix [M] for a Plane

Four-Link ‘Mechanism

‘Another classical example that can be considered to study the
correlation of the number of real and dual rows of the coefficient
matrix with the components is that of the general motion of a plane
mechanism which can be describedlby one rotation and two translations,
a consequence of having all the axes of the revolute pairs parallel.
Accordingly, three independent equations can be expected from the co~
efficient matrix [M]. Furthermore, due to the general motion of one
rotation and two translations, it can be predicted that out of the
three rows of the coefficient matrix‘[M], one row must consist of the
elements from the real part of the matrices [Qi] and two rows must
consist of elements from the dual part of the matriceS'[Qi].

It should be remarked, however, that such a set of equations
cannot be intuitively established. For this reason, a numerical
example -is considered. The following are the parameters of any arbi-
trarily selected four-link plane-mechanism for which the closure con-

ditions are known.



al = 4, a_.a = 4, aa = [l-, dg =

Oll = 0, 012 = 0, aa = 0, 014 =

9, = 30, 0, = 126.76, 05 = 86.67, 8, =

sy =0 sg =0 .85 = 0 Sq =

The coefficient matrix [M] then becomes
-1.0 -1.0 -1.0 0 0 0
0 0 0 0 0 0
' ° = 0 0 0
[M]el= 30 0 0 0

0 0 0 0 0 0
-3.4641 0.2115 2.000 0 0 0
-2,000 -3.5778 0 0 0 0

| _

116.56

65

Real part

Dual part

The second set of closure conditions can be described by the following

angular displacements of the links,

9, = 60, 6

The coefficient matrix [M] then takes the following form

(Mg

1=

60

-1 -1 -1 0 0 0]
0 0 0 0 0 0
0 0 0 0O 0 o0
0 0 0 0 0 o0

2.0 1.9639 2.0 0 0 0

-3.4641 -3.9998 0.0 O O 0 |

112.30, 85 = 97.18, O, = 90.51

Real

Dual

The third set of closure conditions can be described by the following

angular displacements of the links,

8, = 90, 8, = 97.42, .85 = 112.02, .8, = 60.55
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The coefficient matrix EM] then takes the following form

-1.0 -1.0 -1.0 0 0 O
0 0 0 0 O Real
[Mlg _ g0°=| 0 0 0 0o 0 0
0 0 0 0 o0 oO
3.9664 2.0 0 0 O Dual
-4.0 -3.4832 0.0 0 0 O
L .
Observe that in each of the three matrlceS'[M]el= 30°,[M]el= 60°>
and [M]e _ 90°there is a striking resemblence in the nature of the real
1=

part row vectors. -The first row vector of the real part of these
matrices is identical and the other two real part row vectors are, in
fact, the null vectors. Furthermore, the dual part first row vector
is also a null vector in each of these matrices. -The last two dual
part row vectors, however, exhibit different properties.

The invariant nature of the real part first row vector indicates
that the row vectors can be expected to represent the instantaneous

screw axes of rotations. In a plane mechanism there exists one axis
|

i

about which the mechanism executes a rotation and there exists two axes
along which the mechanism executes two translations, and the axis of
rotation is normal to the plane of translation. The invariant nature

of the first row vector of the real part of the matrix M) directly
relates to this concept of the axis of rotation. The first dual part
row vector then indicates that the translation does not take place along
this axis. Furthermore, the existence of the last two dual part row
vectors explains the existence of the two instantaneous -axes along

which the mechanism executes two translations.
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Finally, the last two real part null vectors establish a further
support. in viewing the coefficient matrix [(M] as the matrix of the
instantaneous screw axes.

The orientation of the screw axes varies as the input displacement,
0, , takes different values. However, the screw axes can be rotated
into a position where orientation is independent of the different
values of the input displacement. This process of rotation of the
screw axes then involves finding the Eigen values and the Eigen vectors
of a real matrix. For instance, consider the matrix EF] composed of

the -last two dual part row vectors of the matrix [M]e _4§0°. Then
15 ¥

-3.4641 0.2115 2.0
{r] =
-2.0 -3.5778 0

Now consider the product matrix [F][F]t which is

¢ ~-3.4641 0.2115 2.0 -3.4641 -2.0
[FF-] =
-2.0 -3.5778 0 0.2115 -3.5778
2.0 0

16.42298 6,17149

6.17149 16.80064

Normalizing the product matrix [FFt],we get

y 1.0 6.17149

[FFC]= [ 16-42298 x 16.80065
6. 17149

| 16.42298 x 16.80065

1.0
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1.0 0.37153

[FF°] =
0.37153 1.0

The process of finding the Eigen values-and the Eigen vector then

requires solving the linear equations having the form

1.0 -\ 0.37153 | [ x;

0.37153 1.0 - A | | %2

where A is called the Eigen value and the column matrix [Xl

]is called
Xa

the Eigen vector. The Eigen values are found by solving for the roots

of the determinant

1.0 - A 0.37153

n
o

0.37153 1.0 -

., (1.0 =) (1.0 --)) - (0.37153)%

I
]

=
t]

i.e., A\® -2\ +0.86197 = 0
Solution of the above equation gives two distinct roots

A = 0.62845

and

\g = 1.37155

The Eigen vector corresponding to A, and Ay are

0.37155 x, 1)

1]
]

+0.37153 x5 1)

0.37155 x;, %) - 0.37153 xg %)

It
]

The solution of these equations gives the two Eigen vectors which are



_Xl(l)_

and

_X-l (2) 7
(2)

X2
— -~

The principal axes of these vectors

(L//2, - 1//2)

and

-Thus, for 6, = 30: the

direction cosines are

69

are

(N2, 1//2)

mechanism has three translational axes whose

(6; =30)

(0, 0, 0)
(o, 1M2, - 1//2)
(o, 1M2, 1/2)

Similar computation of the Eigen values and the Eigen vectors for

B; = 60 and 8; = 90 gives the following set of translational axes whose

direction cosines are

(o0, 0, 0)

(0, M2, -1M2) | (8 =60")
(0, 1N2, 1//2)

and

(o0, 0, 0)

(0, V2, -1M2) [ (8 =90°)
(0, 1NM2, 1//2)

Examination of the three sets of the direction cosines of the

Eigen vectors of the last two

dual part row vectors points out their
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invariant characteristic, thus identifying their existence in the co-
efficient matrix [M] as the instantaneous screw. axes.
Similar computations of the real part row vectors provide the three

-invariant vectors whose direction cosines ‘are

Observe that the above equation states that there is only one real axis
about which rotation takes place. Furthermore, this axis is normal to
the plane of the axes of translation since it satisfies the orthogona-
lity conditions.  This normality condition of the rotation axes to the
plane of translational axes satisfies identically the theory of the

plane motion.

Coefficient Matrix [M] for the Plane

Slider-Crank Mechanism

The coefficient matrix’[M] for a plane slider-crank mechanism with

the following kinematic parameters

‘ay = 0, Oy = 0, Qg = 90, 0yp = =90
a; = 3, dg = 4, ag = 0, ag = 0
0, = 143, 6 =-196.203, 4 = 53.203, 84 =0

~1.397621

8y = 0, -8p ='0, Sg =0 Sg

takes the following form
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-1.0 -1.0 o 0 0 0

0 0 o 0 0 0

(m] By =l o0 0 O 0 0 0
{Plame}el= 1430 0 0 0 0 0 0
2.39597 0 1.0 0 0 0

-1.805445 1.397621 0 O 0 O

Note that the plane slider-crank mechanism also has three com-

ponents of general motion. -These are one rotation and two translations.

l

Coefficient Matrix [M] for the 7R Space Mechanism

In the 7R mechanism, the number of unknown displacements to be
obtained are -six for every input displacement.  -Correspondingly, the
number of columns of the coefficient matrix are six due to the six un-
knowns., Thus, the rank of the coefficient matrix is six. For this
reason, one can expect the matrix.[M] to consist of six non-
vanishing row vectors, three real part row vectors from the matrices
[Ai] and three dual part row vectors from the matricesv[Bi]. For in-

stance, consider the following parameters of the seven link mechanism:

o

a; =0 @ =-90" s, =0 8, =270
ag = 0 @ = 90" sg = 2.0" 6 = 270
ag =2.0" g = -90° sz = 4.0" 8 =270
ag =0 @ =90 Sg = 0 6, = 90°
ag = 2.0" @ = -90°  sg =2.0" 8 =0

ag = 0 o = 90 sg = 0 8 = 90"
ay, = 2.0" @ =-90" s, =2.0" 8, =0

The coefficient matrix [M] under the complete closure condition becomes
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0.000 -0,003 -1.000 0.003 ~-1,000 0.000—
0.000 1,000 .-0.003 0.000 0.000 -1.000
-1.000 0.000 0.003 1.000 0.003 0.000
0.000 -2.000 -0.012 -4.000 -0.006 -2.000
0.000 -0.006 -0.000 -0,006 2.000 0,000

L_-O.OOO 0.000 -4.000 0.012 -2.,000 0.000

[M]61= 270°

(7R mechanism)

Observe that the six row vectors of the coefficient matrix.[M] of the
/R mechanism are independent. Corresponding to these three real part
vectors, which represent the -screw axes of rotations, three Eigen
vectors can be determined. Similarly, corresponding to the three
dual part vectors, which represent the screw axes of translations,

three Eigen vectors can be determined.

Coefficient Matrix [M] for the Six-Link

6R Space -Mechanism

The existing literature on the classification of mechanisms
describes three elementary models of the six-link six-~revolute mecha-
nism. These elementary models are shown in Figures:3, 4, and 5. The
six-link mechanism shown in Figure 3 is called Franke's 'wirbelkette''.
According to the kinematic notations, all its kinematic links are
equal, i.e., a;, = constant; all the kink-links ‘are zero, i.e., s, = 0;
and the absolute values of the twist angles are 900, i.e., Iqi' =90".

‘Let us assume the following values of its parameters.
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Franke's "Wirbelkette

Note that all the kinematic=-links

are Zzero,

Figure 3.



Figure 4. Bricard's Articulated Six=Link Mechanism,
Note that all the kinematic-links are
ZETr 0.

74
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garrus’' Six-Link Mechanism

Figure 5.
Note that two of the kinematic-links and

two of the kink=-links are of zero length.
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90

270"

270

90°

270

°

270

The coefficient matrix .[M] for the Franke's 'wirbelkette' then becomes

0.0 0.0 -1.0 0.0 0.0 0.0]
0 1.0 0.0 0.0 1.0 0.0
Mlg 90 =]1.0 0.0 .0 1.0 0.0 0.0
(Franke's 6R) |-5.0 0.0 0.0 0.0 5.0 0.0
.0 0.0 5.0 -5.0 0.0 0.0
| 0.0 5.0 -5.0 0.0 0.0 0.0

Observe that the last column of the coefficient matrix [M]e Y is
: 1=

filled with the elements having zero values. Thus, the rank of this

matrix is five. -However, there does exist three Eigen vectors describing

the rotations of the six-link mechanism. The principal axes are

(1, 0, 0)°
(o0, 1, 0) (the principal axes of rotations)
(o0, 0, 1)

Observe that there are three distinct dual part row vectors. Corre-
sponding to these row vectors there exists three Eigen vectors de-
scribing the possible translations of the six-link mechanism. The

principal axes are
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(1, 0, 0)
(o, 1NMN2, - 1//2) (the principal axes of

(o, 1M2, 1//2) translations)

The possible existence of these three vectors of translation will be
discussed later.
The six-link mechanism shown in Figure 4 is called the Bricard's
articulated six-link. According to the kinematic notations, all its
)
kinematic links have zero value, i.e., a, = 0; all the kink-links are

of equal lengths, i.e., s, = constant; and all the values of twist

angles are -90 . ‘Let us assume the following numerical values for these

‘parameters,
a, =0 o =-90 s =4" 8 =60
ag =0  ap =-90" sy = 4" 8 = 26.89°
ag =0 O3 =-90"  sg =4&" @3 = 251.31°
a, =0 ag =-90 sa = 4" 8, =60.0°
ag = 0 o = -90  sg =4" 85 =26.89°
ag =0 g = -90"  sg = 4" 85 =251.31

The coefficient matrix [M] for this articulated six-link then becomes

[ 0.0000 0.8918 0.4286 -0.3204 0.000  0.07]

0.5000 -0.3918 0.8918  0.0000 -1.000

(Ml _ go° = | 0.8661 0.2262 -0.1449  -0.9473  0.000
L=

0.0000 -1.8097 3.9590  3.7892 0,000
(Articulated | 5 ,0/1 _3.9942 -1.8097 0.0000  0.000
six-1ink) .

2.0000 0.2164 0.5714 -1.2815  0.000
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Note that in both Franke's six-link and Bricard's articulated six-
‘link there are three distinct principal axes of rotation and three
principal axes of translation. Recall that such a situation is examined
in the case of the 7R mechanism, for which the coefficient matrix [M]
has nonvanishing six-row vectors and nonvanishing six-column vectors.
The existence of nonvanishing - six~column vectors determines the rank
of the coefficient matrix:[M]. Since the rank of the coefficient
matrix of the six~link mechanism is five, only five of the six-row
vectors can be utilized for the determination of the principal axes of
translation and rotation. Accordingly, one of the row vectors of the
coefficient matrix .[M] of any six-link mechanism cannot contribute any
independent relationship other than what has been established by the
other five row vectors. -Correspondingly, the principal axis that
corresponds to such a row vector does not perform either a rotation or
a translation. That is, one principal axis is simply made passive. In
general, one can expect either a principal axis of rotation or a prin-
-cipal axis of translation to become passive for the six-link kinematic
‘chain in order that it can exist as a one degree of freedom mechanism.
Fortunately, however, due to the nature-of axes of rotation, whenever
a rotation axis of the six-link :is made passive the real part row
vector of the coefficient matrix vanishes, thus leaving five nonvan-
.ishingbrow‘vecpors and five nonvanishing column vectors in the co-
efficient matrix [M] with five unknowns. The mechanism that satisfies
such a condition of having one of the-real part vanishing row vector
is called the Sarrus' six-1link mechanism, shown -in Figure -5.

The concept of the existence of the number of passive axes of

translation or the vanishing axes of rotation correlates with  Sharikov's
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concept of the reciprocal screw. Recall that according to this concept,
a.six-link mechanism has one reciprocal screw (axis) about which either
the six-link mechanism does not- have -either a rotation or translation.
-Since there are three principal axes of translations, any one of these
three axes can become passive in order that a six-link chain exists

as a mechanism. This possibility of passivity of the principal axes
then correspondingly establishes-a criterion for the existence of the
different kinds of six-link mechanisms. Regardless of the further
subdivision based on which of the principal axes became passive, the
principal divisions of the six~link mechanism are the following:

(a) six-link mechanisms having three principal axes of rotation
and two principal axes of translation,

(b) six-link mechanisms having two principal axes of rotation
and thfee principal axes of translation, e.g., Sarrus'
six=-link mechanism, Note that one of the ‘principal axes
of rotation in the Sarrus' mechanism becomes a null axis.

The Sarrus' mechanism has the following kinematic parameters:

a, =3 o =0" s; = 2.0" 6, = 170"
apg =2 o =0 's3 = 0.0 6, = 20"
ag =0 & =-90  s5.= -2.00" 65 = 350
ag =3 Q=0 s4 = 2.00" 8, =170
ag =3 05 =0 ss = 0.0 65 = 20
ag =0 05 =-90"  sg =-2.0" 8 =350

The coefficient matrix [M] for the Sarrus' mechanism then takes the

following form:
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-1.000 -1.000 0.000 0.000 0.000  0.000
0.000 0.000 -1.000 -1.000 -1.000  0.000
(M. - 17¢° -| 0.000 0.000 0.000 0.000 0.000  0.000
0.000 0.000 -5.909 -2.594 0.000  0.000
(Sarrus’ Six-Bar) | ) 95, 5989 0.000 0.000 0.000  0.000
0,521 0.000 0.000 0.000 0.521  0.000

Observe that one row vector of rotation is a null vector. The following

are the principal axes of rotatioms.

Principal axes of rotations

Since there are three dual part row vectors, three principal axes of
translation must exist correspondingly. Thus, the total components of

general motion are five, viz., two rotations and three translations.

Coefficient Matrix [M] for the 4R Bennett Mechanism .[6]

This 'paradoxical' four-link four-revolute space mechanism was dis-
covered by a mathematician named Bennett in 1903. The orientations of
the axes of the revolute pairs are related to the corresponding :link
“lengths. Thus, for the mobility of the Bennett mechanism, the follow-
-ing conditions must be satisfied:

(1) Opposite link lengths are equal, that ‘is,

a; = ag and ag = a,

(2) Opposite twist angles are equal, that is,

o =@ and Oy = Q4
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and
(3) The adjacent twist angles and link lengths must satisfy the

relationship
4 az

— * .
sin o sin o
For the computation of the coefficient matrix, let us assume-the

following values of these parameters:

a; =8 o =90" s, =0 8, =60

ag =4 ag =30 sy =0 6, =216.8698
ag =8 s =90 s3 =0 05 =-60.0

ag =4 @, =30 s, =0 0, =-216.8698

The coefficient matrix [M] for these set of parametric values takes the

following form:

[ 0.0 -0.40 -0.866025 0.0 0.0 0]
-0.50 -0.6928 0.500 0.0 0.0 0
[M]el= 60" = -0.866 -0.50 0 0.0 0.0 0
7.999 4.7569 2.0 0.0 0.0 0
0.0 -2.40 3.4641 0.0 0.0 0
0 0 0 0.0 0.0 0

Since there are three unknown angular displacement parameters, the
rank of the coefficient matrix [M] of the Bennett mechanism must be
three. Observe, however, that we have five nonvanishing row vectors
in the coefficient matrix. -Since the mechanism is neither a plane four=-
link nor a spherical four-link mechanism, the general motion of this
Bennett mechanism must be two rotations and one translation. Conse-
quently, the coefficient matrix [M] has one passive rotation and one

‘passive translation vector.
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Coefficient Matrix [M] for the 5R Goldberg Space Mechanism

The Goldberg five-link five-revolute space mechanism was discovered

by M. Goldberg in 1943.

-This mechanism was constructed by combining

two Bennett mechanisms in series.

A typical set of parametric values

of the Goldberg mechanism can.be as follows:

ay =

dg =

g =

dg =

The coefficient matrix [M] corresponding.

o

takes the following form:

[M]el: 300 =

-Since there are only four

sponding to every assumed

the coefficient matrix is

90

60

90

= 30

30

. 824
.566
.019
.197
.330
264

°

o

o

8y

Sz

Sa

Sq

Sg

.540
.796
.272
.374
.676
.891

o W = O O O

to these-

. 866
.500
.00
.999
464
.00

o O O O o o

o O o O o o

(-]

30

(-]
197.589

(=]
'310.204

o
149.996

[~
32.209

parametric values then

o O O O O O
o O © O O o

i

unknown angular displacement parameters corre-

input displacement parameter, the rank of

four

Furthermore, due to the three non-

vanishing real part row vectors, the mechanism is expected to indicate

the existence of two passive screw axes of translations. Thus, the

Goldberg mechanism 'is expected to have three active screw axes of

rotations and one active axes of translations.
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Estimation of the Displacement Parameters

The displacement parameters for a given angular or linear displace-
ment need to be estimated in order to arrive at the coefficient matrix
(M]. Thus, for instance,.in the 7R mechanism, for every input angular
displacement 0;, six angular displacements 6z, 65, 8,, 05, 84, and 6,
need to be estimated. In general, parameters such as a;, o, and s
are normally not known, especially when one is searching for a combina-
tion of parameters that will give a closure condition for different
input displacements. Therefore, any random combination of these para-
meters is likely to generate either structures or a configuration which
tends to remain open-ended. ‘Under these circumstances it is difficult
to arrive at a unique solution of the displacement parameters for every
assumed input Qisplacement. Thus, the estimation of the displacement
parameters requires that a complete closure condition of the kinematic
chain be calculated for every position. To accomplish this, the diago-
nal elements of both the dual and real part matrices of the product
matrix [Qi] need to be considered simultaneously with the off diagonal
elements of the coefficient matrix [M]. Thus, Equations (3.43) and
(3.44) are required to retain the diagonal and one side of the off-
diagonal elements. -Since there are three diagonal elements in the
matrices [Ai] and [Bi], the total number of equations obtained from
these two sets of matrices are twelve. These equations may be expressed

in a matrix form as follows:
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811 %311 %11 3s11 %11 2711 | . i (1 -2
%12 312 %12 %12 %12 %712 e T 312
%213 313 %13 %13 %613 %713 , T 2113
3222 %322 %22 322 %622 %722 L -a;99
2223 %323 %423 %523 %623 %723 o T 2123
%233 %333 %33 %533 %633 %733 * L-ap
Pr11 P311 Parr Psii Perr Priz e " P (3.66)
Pr12 P312 Parz Psiz Pe1z Pyio ) " P
P13 P313 Pa13 Ps13 P13 P73 o - b3
P22 P32z Paoa Psoa Pepp Pyap ° vY)
P23 P323 P23 Pszz Pgr3z Pyos o " Po3
233 P333 Pu3z P53z Pe3z Pyas ’ | " P33
i.e.,
(ulfae] = [v] (3.67)

where the matrix [U] represents the coefficient of the diagonal and
off-diagonal elements of the matriceS'[Ai] and [Bi] ( i > 2) and the
column matrix [V] represents the diagonal and off-diagonal elements of
the matrices [A1] and [Bl]. The above 'set of twelve equations has
only six'unknowns d®;, déy, db,, dbg, d6s, and db,. Therefore, the
rank of the matrix [U] must be six. The estimation of these unknowns
then must proceed in a manner similar ‘to that being used by the
-"least-square technique'. -Accordingly, multiplying both sides of

Equation (3.67) by a transpose of matrix .[U], we get

[wI*[ullae] = [WILv] (3.68)
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Let‘[W] = [UJt[U] and let [W]_l be the. inverse of [W]. Then multi-

plying both sides of Equation (3.68) by [W]_l, we get

w1 twiree] = 1 Hultv) (3.69)
But

w1 twl = [1) (3.70)

where the matrix [I] is the unit matrix. Therefore, Equation (3.69)

becomes

e8] = Wl u3trv] (3.71)

Thus, the unknown column matrix [A®] is evaluated using the rela-
tionship given by Equation (3.71). If for a given combination of a;s
'ai’ and Sso the input link of a mechanism is rotated from an initial
position 6, to 8y, the corresponding values of Qi(i > 2) will change
under a complete closure condition of the mechanism. However, the
final angular positions of the follower links are obtained by assuming
their initial values and computing their exact values by an iterative
procedure. At each iteration, successive values of dGi are calculated
using the relationship given by Equation (3.71). These computed values
of dei are then added to the previous values of Qi(i > 2). Thus, if
Gi(i > 2) are initial values and dei are calculated values, then new

assumed values:Gi(i > 2) can be obtained from
6/ =6, +dd,  (for i =2 2) (3.72)

Thus, at each iteration, new values of:Qi(i > 2) are estimated until
these values obtain a stability, in which case the process of iteration

achieves a convergence, and the differential displacements dei vanish
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at the final stage of iteration. However, such convergence is only
possible when the assumed combination of a;, %, and s; satisfies the
requirements of closure conditions and the closed kinematic chain is
a mechanism when-one of the links-is fixed. Observe that when a
complete convergence occurs and all the Gi's obtain. their exact
values satisfying the closure condition then all the diagonal co-
efficients of the matrices [Ai] are zero. Consequently, the co-
efficient matrix‘[M] can be obtained from the coefficient matrix [U].
Furthermore, under the complete closure conditions, the column matrix
.[V] becomes a column matrix of null vector. The number of active
screw axes of rotations and translations will then decide the class
of the mechanism.

Let us consider a numerical example .to illustrate the technique
of estimating the dependent angular parameters. For instance, consider
the Bricard's articulated six-link mechanism which does not obey any
of the existing hypotheses for the one general constraint. The follow-

ing are the parametric values of this mechanism:

ap =0 o =-90 sy = 4"
ag =0 g = -90° sg = 4"
ag =0 a3 =-90  s5 = 4"
ag =0 0oy =-90 54 = 4"
ag =0 @ =-90" 5 =4"
ag =0 0 =-90"  sg = 4"

Let the input angular displacement Si = 60 and let us assume the

following unknown angular displacements, i.e., let



6, =

338",

65 = 305,

94=

99°

g =338, and 65 = 291 .
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With these values the coefficient matrix [U] and the matrix [V] can be

computed.

[udg,

60 "

.00038
.02297
49947
. 03979

0.86511

. 04057
.45666
.18216
.45974
.05205
.99910
.32384

.79421
46257

0.34665

. 78504
.22323
.00808
.85655
.08421
. 70608
.32735
.57144
.33249

.263224
.17506
.36309
.30293
. 86300
.00688
.04138
.91310
.94536
.37091
.21535
.85001

~-0.306753
0.22113
-0.79912
-0.28433
~0.48077
0.04289
-3.15446
1.46848
1.33646
~2.46200
0.55244
-0.10881

The column matrix-[V] takes the following form:

[v]91= 60° =

48445
.85597
.03896
.48502
.02435
.00105
.23389
0.11724
.51919
.19897
.77333
.00140

0.

03896

0.0000

.51555

0.00000

.85686
.00077
.51919
. 00000
.23389
.00000
.14156
.91871

o O O O O O O O O O O o

.0000 |
.0000
.0000
. 0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
10000 |

Thus,. the coefficient matrix‘[U] takes the following form:




Then the matrix [W] can be obtained as

[ 17.31716
12.81069
-7.41445
-5.3397

1.07046

Wl = [w]lu] =

The product of the two matrices [U]t[V] is given by

[v1flv] = 3.

Finally, thée column matrix [A®] can be

12.81069
21.07862
3.27365
7.
-0.36823

follows:

-7.41445

3.27365
28.43566
21.12174
-0.16785

61788

.45688
022613
46706
1.23375
0.12886

[a8] = (w1 Hultiv]

Thus,

La8]

(in radians)

[ 0.407059
-0. 611801
= |-0.033670
0.443092
-0.515712 |

21.

21

.33974  1.07046 |
61881 -0.36822
12174 -0.16785
.36713  1.33498
.33497 2.18985

88

the matrix

computed from the relationship

(3.71)

The estimated ei then can be computed by adding the computed

differential displacements to the assumed values, i.e.,

Gi ='Gi(assumed) +-dei(computed)

Thus
.92/

05
64

361.3227
269.94635
97.07085
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363.3872
261.45188

it

Og
H

The coefficient matriX»[U] and its transpose are recomputed with the
‘corresponding values of G{ and 6, = 600. Then, another set of dGi are
computed. At every stage of the iteration, these values of differential
displacement become smaller and smaller if the closure condition bf the
mechanism for this particular value of €, = 60" exists. The rate at
which the convergence occurs depends upon how close the assumed values
are. An example of this convergence is shown in Table VII.

Observe that at each successive iteration, the column matrix [AG]
approaches to a column null matrix. At the same time the unknown dis-
-placementS'Gi arrive steadily at their true values which corresponds to
the input displacement 6;. “At the last iteration when the column matrix
[A8] becomes a column null matrix, all those row vectors of the coeffi-
cient matrix [U], which correspond to the diagonal elements of the
matrices [Ai]’ also become null vectors. -Consequently, the coefficient
matrix :[U] degenerates into the coefficient matrix [M]. For the mecha-
nism under consideration, this coefficient matrix .[M] has been examined
earlier,

Note that when a complefe'convergence is established the diagonal
elements of the matrix [Bi] may or may not become zero. This existence
of the diagonal elements in [Bi] matrices is due to its non-orthogonal
property. -In some-special cases, however, this matrix does become

orthogonal, and in turn the diagonal elements reduce to zero.



TABLE VII
ESTIMATION OF THE 6, (i > 2) for 8, = 60° OF THE

ARTICULATED BRICARD MECHANISM

Iteration (48] Estimated.ei (i > 2)

1 0.235266 "85 = 374.8025
-0.286395 85 = 253.5371

~0.442558 8, = 71.7141

0.272505 8 = 379.0006

-0.175539 0g = 251.3942

2 0.19000 0y = 385.6891
=0.04150 65 = 251.1591

-0.20063 B, = 60.2184

0.13593 85 = 386.7894

-0.04239 0g = 248.9649

3 0.021056 6, = 386.9855
0.002763 65 = 251.3174

-0.003898 8, = 59.9951

0.002132 6 = 386.9115

0.040381 Bg = 251.2786

4 0.000059 6, = 386.8989
~0.000056 85 = 251.3142

0.00008% 0, = 59.9999

-0.000220 0 = 386.8989

0.000622 0g = 251.3142

5 0.00000 6, = 386.8989
0.00000 8s = 251.3142

0.00000 6, = 60.0000

0.00000 9y = 386.8989

0.00000 0g = 251.3142
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Technical Problems Associated With the Iterative Method

The development of the numerical method is based on the expansion
of each of the terms of the screw matrix [Ti] according to the Taylor
series expansion. Since all the higher order terms are neglected in
this expansion, the process of convergence demands the values of the
unknown displacement parameters to be assumed too close to their true
values. With larger deviations of the assumed values, the number of
iterations required for the convergence is large. 1In general, it has
been observed that on an average every ten degree deviation of the
assumed value requires one iteration. However, if a closure condition
exists for a mechanism, the method does arrive at the solution regard-
less of the‘maximum deviation between the assumed and the exact values
of the displacement parameters.

It should be noted, however, that the method of estimation of these
unknowns is based on the least-square technique. This technique -is cap-
able of producing the exact answer when it exists as well as the answer
wherein the deviation becomes minimum., In both the instances, the con-
vergence is guaranteed. However, in solving the problems pertaining to
the estimation of the unknown displacement parameters of a mechanism,
the estimated parameter must satisfy the closure conditions; that is,
the row vectors of the matrix [U)] corresponding to diagonal elements of
the matrices»[Ai] must become null vectors.

This type of convergence, where the row vectors of the matrix [Ui]
corresponds to diagonal elements of the matrix [Ai] do not become null
vectors, are in some cases due to an incorrect sign associated with the

parameters of a mechanism,
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The condition of a. dead-center of a mechanism does represent a
closure condition of the mechanism. Therefore, whenever a dead-center
is found for the mechanism, the method of estimating unknown parameters
should converge. -However, the coefficient matrix [M] of the mechanism
becomes singular. Thus, the singularity of matrix does not permit the
system to converge and the unknown parameter will never obtain a. stable
solution.

The limit position of a mechanism is recognized as if the mechanism
does not form a close chain. Thus, the closure conditions are never
satisfied. In this event this iterative procedure produces a divergent
system. The unique solution of the unknown displacement parameters is
therefore not possible.

-Finally, if for some combination of the paramters, the kinematic
chain becomes a structure, then the coefficient matrix [M] becomes
singular. However, since the procedure of estimating the displacement
parameter is based on an initial assumed value, the coefficient matrix
(U] does not have -singularity. As the number of iteration increases,
the non-singular matrix [U] becomes unstable and the system of indepen-
dent equations representing the coefficient matrix [v] becomes divergent.
The nature of the divergent matrix can be detected at the earlier stages
of the.iterat’J:ve-procedure° +If either the determinant of the matrix
[W] is extremely large or the determinant of the matrix [W]ml is ex~
tremely small, then the system in most cases becomes divergent at the
later stage. It is also advisable to examine at every iteration the

difference matrix [L] given by
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(L] = [wl - [w iyt

If the difference matrix [L] has elements which represent "finite"
quantities, then the original matrix [w] is in general a singular
matrix. For further complex problems in detecting the singularity

of the approximate matrix reference (497 must be consulted.



CHAPTER IV
THE SIX-LINK MECHANISM

The -development of the theory of determining the existence or
nonexistence of one or more general constraints makes it possible to
examine the characteristic performance of the nature of general con-
straints. The present investigation is, however, confined to the
examination of the nature of one general constraint.

‘According to the theory developed . in the last chapter, the exist-
-ence of one general constraint degenerates the six-by-six coefficient
matrix [M] into a five-by-five non-singular matrix. The existence of
the numerical real part row vectors corresponds to the number;of rota-
tion components of the general motion. -If, however, all the real part
row vectors are nonvanishing, then there does exist one passive dual
part row vector. - If, however, one real part row vector is a null vector,
then all the threel dual part row vectors must be active because the
rank of the coefficient matrix [M] cannot otherwise be five.

The procedure of arriving at the coefficient matrix»[M];is, however,
numerical. This numerical technique operates with the coefficient
matrix [U] and in turn with the product matrix [W]. -If the rank of the
product matrix is six, the rank of the coefficient matrix [M]‘is six.

If the rank of the product matrix [W] is five, then the rank»of the co-

efficient matrix [M] is five, in which case the mechanism giving such a

94
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coefficient matrix [M] has one general constraint. Note, however, that
since the numerical method is iterative and the product matrix.[W] is
computed initially with the approximate information of the dependent
displacement parameters, the product matrix.[W] will diverge under the
condition of its-singularity and therefore the determinant of the pro-
duct matrix either becomes extremely large or extremely small. . Both

of these properties are attributed to the singularity of the product
matrix [W]. Thus, what is expected to happen to the product matrix
,[W] according to the theory is translated in terms of divergence and
convergence -of the product matrix [W].

-The method of determining the existence of the six~link mechanism,
therefore, becomes of analytical nature. A set of twenty-four parametric
values of a six~-link chain are assumed. The product matrix [W] is com-
puted with the specified value of the input displacement ©; and the
approximate values of the dependent angular displacements 83, 65, 64, 65
and 65. The exact values of the dependent displacements are computed
using the iterative procedure and with the assumption that the rank of
the product matrix [W],is five. The successive iterations of the pro-
~duct matrix [W] are expected to lead to any one of the following three
results:

1. exact convergence
2. pseudo convergence

3. divergence

The exact convergence of the system can be identified by the fact
that the column matrix [V] degenerates into column null vector. -Conse~

quently, the dependent displacement parameters achieve their exact
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values ‘corresponding to the complete closure condition of the chain
-specified by the input displacement parameter.

- 8ince the convergence of the product matrix [W] is arrived with
the assumption that the rank of the matrix.[W]‘is five, and since the
computed- dependent displacement parameters do satisfy the complete
closure condition, the assumed six-link chain yields a six-link mech-
anism.

The pseudo convergence ‘and the divergence of the product matrix
.[W] are somewhat related. The pseudo convergence :is quite often en-
countered either because the closure conditions are examined in the
region past beyond the limit position but relatively close to. it or
because of the. inexact information of one of the parameters, for in-
stance, a kinematic-link of the six-link chain.

In either of these cases, there is an element of doubt concerning
the existence of the six~link mechanism and therefore a second closure
condition must be examined.

- The divergence of the product matrix [W] indicates that closure
conditions are being examined in the region of a limit position or that
the six-1link chain is a structure. -Thus, the divergence of the product
matrix requires the examination of a second set of closure conditions.

"Whenever an exact convergence .of the product matrix:[W] is estab-
lished for an artibtrarily selected kinematic parameter of a six-link
chain, it can then be deduced that such a chain is expected to yield
a six-link mechanism. However, for a complete assurance and as a part
of a good practice, a six-link chain is tested for a second independent
complete closure condition once the first closure conditions are estab-

lished.
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.The first closure conditiops are, however, difficult to achieve.
The following approach is adopted in the present investigation of a
six=-1ink chain. At the first attempt, six closure conditions corre-
sponding to the six input angular positions, -6, =0, 60 , 120°,.180°,
2400, 300°, are examined. If a complete closure condition is achieved
at any one of the positions, then the chain is tested for a second
independent closure condition. If, however, a complete closure con-
dition does not exist in the previous investigation, then a second set

of the six input angular positions, 8; = 30 , 90°, 150 , 210, 270,
3300, is examined for the closure conditions. Lf successful results
were not obtained with the second set of the-input angular positions,

°

then a third set of twelve input angular positions, 8; = 15°, 456, 75,
1057, 1357, 165 , 195 ,.225 ,.285 , 315 , 345 , are tested for the
complete closure conditions. If after trying these three sets a com-

‘plete closure condition is not obtained, then the six-link chain is

pronounced as a .structure.
Parameters of the Six-Link Mechanism

According to the kinematic notation of Denavit and Hartenberg‘[43],
the following are the twenty-four parameters associated with the six-
link mechanism.

(1) The kinematic links: There are six parametric values of the
kinematic links. These are denoted by a;, ag, asz, a4, ag, and ag. -The
numerical values of these parameters are conventionally kept positive.

(2) The twist angles: There are six parametric values of twist

angles. These angles measure the degree of skewness in the orientation
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of two successive kinematic pairs. The twist angles can take either a
positive or a negative value.

(3) The angular displacements: There are six parametric values
of the angular displaceﬁents. These are 0,, 05, 05, 6,,:05, and 65.

In a mechanism when one of the linké adjacent to the fixed link:.is given
an angular displacement '8;, then the values of the other angular dis-
placements ‘65, 85, 64, 05, and 65 are dependent on the input displace-
ment. Thus, any arbitrary value of 0; can be assumed and corresponding
-values -of 65, 65, 0,4, 65, and B must be determined.

-(4) The kink~links: There are six parametric values of the kink-
link components. These links are the off-set distance between the two
kinematic links, and are-denoted by s;, sz, Sz, S4, Sg, and sg. The
values of these parameters can be either positive or negative.

From the twenty-four parameters described above,.there are only
eighteen parameters that govern the closure condition and mobility of
the six-link mechanism. Once it .is established that the 6R chain is a
mechanism, then the dependent displacement parametérs can be evaluated

for the different values of the.input displacements.
Parametric Study of the Six-Link

- It has been examined that there are eighteen parameters of the six-
link mechanism, twelve of which can assume either positive or negative
signs in order -to build a closed kinematic chain. Thus, when the
associated signs are taken into consideration, .the total number of
parametric -values that need consideration is thirty. If a thorough
study of these parameters is planned without giving any other consider-

ations, then the present investigation of examining the governing
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conditions would nearly involve, with a first degree of approximation,
a combination of thirty factorial parametric values. On the other hand,
if higher percentages of these thirty factorial parametric values of
the six-link do yield the six-link mechanism, then any random set of
these eighteen parameters should also yield a six-link mechanism.
However, in &iew.of the fact that there are only three elementary
models of the six-link mechanism that are known to exist and that more
than a hundred kinematicians have wondered about their existence, . such
a plan of studying the thirty factorial combinations not only proves to
be impractical but also proves to be unintelligent. Thus, the problem
of studying these parameters of the six-link mechanism is more complex
and it needs a more careful thinking, planning, observing every avail-
able information on hand, analyzing every existing combination that
defines the existence of the six-link mechanism, and interpreting every
available information in a manner that a new set of combinations of
these parameters would yield a new six-link mechanism.

The problem of determining the governing conditions of the exist-
-ence of the six~link mechanism is somewhat analogous to the problem .of
determining a location of a particular city in the map of the world,
especially when the-latitude and the longitude was difficult to obtain.
‘Perhaps, one intelligent way to get around to this problem is to in-
‘quire -into its possible existence in the south or the north of the hemi-
sphere. "After dividing the world into two halves, perhaps one may
divide the proper half into another half by inquiring whether this
particular city exists ‘in the east or the west. Thus, proceeding in

this manner and examining every answer to every question asked,. it is
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‘possible to locate the particular city on the map of the world, pro-

vided, of course, there does exist a source which is capable of giving

the correct answer to every question.

The analogy of locating a city on the map of the world and deter-

mining the governing conditions then suggests that only those combina-

tions ‘should be examined which contributes new information. The

existence of the three different six~link mechanisms provides a good

start for such an investigation., These three mechanisms are:

(1)

(2)

(3)

Franke's ''wirbelkette'. This mechanism has twist angles as
follows:
o =90 @ = -90 @ =--90

o ° °

oy = 90 g 90 g = 90

All the kinematic links are equal, that is,

a; = ag =ag = a, = ag = ag

and all the kink-links are zero, that is,

The mechanism is shown in Figure 3.

Sarrus' six-link mechanism. 'In this mechanism, four of the
twist angles are zero; two of the twist angles are of ~90°
value., Two kinematic links and two kink-links are zero.

The mechanism is shown in Figure 5.

Bricard's articulated six=link mechanism. In this mechanism,
all the kinematic links have zero values; all the kink~links
are positive and equal and all the twist angles are of -90°

value.
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‘The existence of these three-six-link mechanisms provides-a good
start for exploring the other possible combinations of the: parametric
values. -In the following section, these mechanisms are investigated
with a wide variety of combinations and permutations of the parametric

values.

Variation in Franke's '"Wirbelkette''

Variation in the Twist Angles

" There are primarily six types of variations that can be studied
with the twist angles and with their appropriate signs. The first type
of variation: is concerned with the different possible values of twist
angles. -For instance, in the Franke's 'wirbelkette' the twist angles

1 to 6 have the following pattern:
-90°, -90°, -90°, 907, 907, 90" .

The first three twist angles have a negative sign and the last three
have a positive sign associated with their values. The absolute values
of the twist angles are, however, equal. Following the same pattern,

the other possible values of the twist angles can be investigated. Thus,

for instance, the twist angles 1 to 6 may have values such as

-80°, -80°, -80°, 80, 80, 80°
-70°, -70°, -70°, 70°, 70°, 70°
etc.
The method developed in the last chapter can now be utilized to

‘examine the possible existence of a.six-link mechanism ‘having a.set of

six twist angles similar to those described above and the other
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parameters are the same as those of Franke's mechanism. That is, all
the kinematic links are equal and.all the kink-links are zero.

-The results of this investigation are presented in Table VIIL.
The results of the first nine sets of combinations indicate that

Franke's six-1link mechanism exists with the twist angles given by a set

-, -o, =0, o, o, o (4.1)

Observe that. in Table VIII we have not aftempted to examine any set in
which the twist angles have zero value. Therefore,.it must be noted
that in the above set o, # 0. The limit values of o, will be examined
-at a later stage. - Observe that in Table VIII, each set is examined for
a minimum of two input angular displacements.

The second type of variation in the Franke's six-link mechanism is
described by sets 10-18., -Observe that the twist angles 1l and 4, 2 and
5, and 3 and 6 have the same absolute values but opposite signs. ' The
sign permutation is followed in the same manner as that of the original
Franke's ‘six-1link mechanism. Furthermore, note that in each of these
seven :sets the twist angles are given different values. The examination
of this second variation in the twist angles indicates that Franke's

mechanism exists with the twist angles given by a.set
-, =B, -y, o, B, v (4.2)

Here again, the lower limits of @,.B, and vy are not .examined. Note that
a minimum of two closure conditions are reported for each set of com-
binations.

The third type of wvariation .that. is considered .in Table VIII is

the cyclic permutation of the-last three twist -angles. Accordingly,
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TABLE VIII
VARIATION OF THE TWIST ANGLES IN'THE FRANKE'S '"WIRBELKETTE"

Sets 1 2 R Y S 6

Bi S5e v S5e <5. S5e . 5e 5e
di =90, -90. .7 =90, 90 90. ’ 906 .
1 Bi O ‘O O n O : O i O
ei 900_ . 270 270, 90 270."\ 270,
120, O 240, Oe 2406 ° Oe
5e 5 5e .\'5n 5e 5e -
. "'80. ~-8Q0. -804 80, 80. 800
) 0. O 0. 0e . 0O 0.
60, © 250413 277424 98442 277e24 250413
30, 24247 330,92 112439 300492 242427
S5e 54 ' 5¢ - >5g ] ) 5e ' S5e
. "70. "70- "700 709 - 700 . 70.
3 ) 0. . O : 0. O 09 O
o 60, 249, 263,05 88466 263405 2494
30, 242,05 . 280.01 ' 107647 ) 280401 24206
S5e 5¢ . S5e . S5e S5e Se
=60 =60, - =60, 60, 60, ’ 60,
4 O ' ] O 0s . O Os _b . O« '
60, 247.38 254,418 80442 254,18 247438
30. 241473 - 265.69 103, 265469 241473
5, 5 -~ 5¢ . . 5, 5. - 5,
. ~50 ~504 =50, 50 50 50,
5 : " O ‘0_9 0 Os. - Oe- O
604 245454 248452 - 73473 245453 245454
300 241473 - 265469 103, 265469 241473
5e 5e X : 5e 5a Se
=40, ~40s - ~40s 40, 40, 40,
6 . Qe Qs Qe Qe Oe - De
. 30, 240494 249435 95486 249435 240094
60, 243,74 " 244487 < 68654 . 244,87 243474
54 - 5a . 50 5- . ) 50 "50
‘ =30+ - =30 . =30, 30. " 30, 30
7 : D © 0 0, 06 - O - D
: ' 30 240456 244492 93431 - 244,92 240456

60e - 242418 242452 64469 2642452 | 242418
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TABLE VIIL (continued)

Sets T 2 3 s 5 6

ai ‘B ) 5e ' - _5- 5 5 . 5
ai =20 ~20, _ =20, . .20 20, 206
8 ) si O O« Oe . O Oe Qe ‘
o 30, 240426 242408 91447 242408 240426
60, 240,99 241405 62404 241405 240099
50 5. : 54 ) 5e 5e "B,
. =10 =10, ~=10, 10e 10, 106
9’ S Qe " 0es . O O O Qs
30 240,06 240451 90437 240451 240407
60, 240,425 240425 60451 240425 240425
5¢ 5e 5¢ - 5 S5¢ 5a
: 7120. "120. ‘120.' 120. 1209‘ 1200
10 o Qe . Os O Oe Qe Ooe :
; . 30, 118,26 265469 256499 265469 118026
60, T 112,61 254418 279458 254018 112662
54 5 54 54 5% . Se
~160, =160, =160, 160, : 160, 160
11 ‘ Os (VI O Oe : O O
60, 119 241405 297.95 " 241405 ‘119
90, 117496 240,28 328447 240,28 11796
5e S5e 5 T 5 C . B
’ «90e ] ~80, ~T70. "90. 80, 706
12 . O O Qs ’ O O Oe
. 30, 235,38 316423 110425 283,03 249426
604 241436 289,95 95418 261454 260485
56 ) Be 5 B, 54 5o
=80 “70 ‘ =60, 80 700 60
13 O O O 0. ’ O O
30, 232,42 - 295,55 . 104467 . 260,467 253447
60, 237477 276486 84415 246436 263468
5, T 5, 5 - : 5 - 5
~ =704 =604 =50 " 70 60, 50
14 O O O O O D
306 . 229428 282.80 9874 244476 257.83

60, 233430 270458 7440 236402 265499



Sets

15

16

17

18

19

- 20 .

21

DOm RS
R

5e
-60,-
O
60,
30,

604

TABLE VIII (continued)

2

5
-50
O :
227476

S5»
"30.
O
211,10
210,01

5
~20,
O
190,85
192499

Y
=80,
O
241436
235,38

B
=80,
0o
246,58

238444

S,
~80.,
O
243.81
255,408

S5¢
-204
Oe
298,433
278495

5¢
'101
Oe
321.68

" 294433

5e
"\70.
O
289495

316423

56
«70,

Qe

278493
302475

5
"70.
0,
286469
266462

Se
50
O
67476
5684

5
404

41406
50671

5
30,
0.

24et1 .

34,434

5e

90,

O
95418
110425

5

704

O
110025
121424

5

80

Qe
109.53
91465

5

30

O
208422

211,449

-

204

O
192,02
19643

5

B0,

Oe
261454

283403

284448

5

704

O
290498
27016

105

6

5a-
40e

Qe
268481

‘S

304

O
269.83
272.97

5
20,

0o

298424
280465

5e

10.

(V)

323e47
305426

5

70,

Oe
260485
249426

5

80

Oe
247448
239,424

e

90

O
248464
262420



Sets

22

23

24

25

- om RE
=k el

TABLE VIII (continued)

5¢ -
=80
O

235,15

240,97

S5e
-70.
O

289,98

3020471
‘279.11

Se

80
Os
118405

10657

54

O
288450

267457

‘54

704
O

| 284449
262458

5
90,
O

283415

261487

106

6

5e
70
Qe .

233,11

101442

5
90,
0o

242074

253492

5.

80

Oe
253,85
268448

5,
70
O
241438
249 ¢4t
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the values of the first three angles and their signs are kept unchanged
while the last three twist angles are permuted cyclically in the above

combination. Thus, the following combination will result:

=, 'B’.'Y’ aa'B"Y (4.3)
-, ‘B’ “Ys Y, a;”B - (4°4)
-, “69 _Ya‘Ba Y, & '(445)

These are the only three independent permutations that can be obtained.
A set of representative values of the sets described by Equations (4.3),
(4.4), and (4.5) are tabulated as the sets 19, 20, and 21 in Table VIII,
The other possible values of o, B, and vy are not considered because of
the findings described by the first two primary types of variationms.
Note again that the complete closure conditions exist for these types
of variation.

The fourth type of variation that is considered in Table VIII is
the case in which the two adjacent twist angles are equal in the magni-

tude but opposite in sign. Such a combination can be described as

-, o, =B, B, <y, v (4.6)

Set 22 in Table VIII describes such a permutation of the representative
values of the twist angles. Observe that complete closure conditions
are obtained for this combination. Thus, the combination given by
Equation (4.6) describes six-link mechanisms heretofore unknown.

The combination given by Equation (4.5) suggests to investigate a

combination such as

-¢, st’“Ys'Y,'B, o4 (4°7)
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and permute again cyclically the last three twist angles. -Such a per-
mutation yields
-, -B, -y, @, v, B (4.8)

-Q, ‘B: -Ya'B:,aa Y (4-9)

Sets 23, 24, and 25 in Table VIII describe the representative values of
these combinations of the twist angles. Observe there are closure con-
ditions in these sets. Thus, the permutation .of the type described by
‘Equations (4.1) to (4.9) are the different variations of the Franke's
six-link mechanism. Note that in these twenty-three sets of combina-
tions, all the kinematic links of the six-link mechanism are equal and
that all the -kink-1links components are zero.

-The successful findings of the above results should not mislead
the reader. Even with extreme care and precautions, it may still be
possible to arrive at a wrong conclusion. For instance, the cyclic per-
mutation of the combination given either by 'Equation (4.2) or by (4.7)
does not lead to the conclusion that the cyclic permutation of the com-
bination given by Equation (4.6) is possible. - Some of the possible

permutations of this equation can be described as

-0, =B, @, B, -v, v
-a, =B, o, =y, B, v
-, =B, B, o, =v, vy
-, =B, B, =v, @, vy
Note that the closure conditions are not possible for these permutations,

thus indicating that the six-link mechanism does not exist for these

cases.
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The existence and nonexistence of the six-link mechanism is shown
schematically in Figure 6. .Observe that there is a definite order of
the permutation of the signs of the twist angles. Note that either
three positive .or negative signs associated with the twist angles
appear successively or alternately.

The importance of the signs associated with Franke's six-link
mechanism must be recognized. According to the kinematic notations,
jthere.does exist a choice of selecting the direction of the z axes,
and therefore, the twist angles may be represented according to the
~individual's choice. However, it has been observed that the Franke's
"six-link mechanism does not exist as a six-link mechanism when all the
twist angles have positive .values, that is, when the combinations such
as o, o, o, o, @, @& or «,-B, vy, a, B,y exist.

Finally, with the present sign convention of the twist angles, and

with their apparent relationship such as
@ +B +y] =|a+p +v |
it may appear that a six-link mechanism exists for a combination

Uy, =Qg, =@, Og, -0y, Ug

where

o o + o] = oy +ag o

However, the present investigation suggests that a six-link chain yields
Al

a structure rather than a mechanism.
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Figure 6(b). Structures (F = 0')‘
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]

1)

Figuie 6(a). Mechanisms (F
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Variation in the Kinematic-Link Lengths

The study of the variation of the kinematic-link in the Franke's
:
six=-1link mechanism provides a wide variety of mechanisms. In the pre-
vious:sections on the study of the variation of twist angles, the
parametric values of the kinematic-links were kept invariant. All the
kink-1links were assumed to be of zero values.

-This section is devoted to the study of the relationship between
the kinematic link and the twist angles of the six-link mechanisms
which are similar to construction to Franke's '"wirbelkette'.

Reqall that all the kinematic-link lengths of the Franke's mecha-
nism are equal and have nonzero values. If one of the kinematic-link
lengths is assumed to have a zero value, then the mechanism does not
assemble into a closed chain. -If, however, the opposite .link lengths
are assumed to have zero values, then a closed configuration of the
mechanism can be accomplished. The results of this investigation are
presented in Table IX. Observe that the sets 1, 2, 3, 4, 5, and 6 indi-
cate two distinctly different closure conditions of these mechanisms.
The results of this investigation can be summarized by the following

combinations.

(4.10)
0, a, a, 0, a, a
o, -0, -0, O, O, O
a, 0, a, a, 0, a (4.11)
-, -0, -, o, O, .o

(4.12)
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TABLE- IX

VARIATION OF THE TWIST ANGLES,AND KINEMATIC LINKS
IN THE FRANKE'S SIX-LINK MECHANISM

Sets 1 2 3 4 5 6
ai O Se 5e Oe 5e Se
Q’i =90 . -90. -90, 90, 90, 9_00
1 Si O Oe O O O Oe
ei 30, 210e 306487 149,99 329,99 306487
60, 240, 278421 119,99 299,99 278,21
5e Qe 5¢ ° 5e Oe 5e
: -90." -90 -90. 90 90 90
/2 * Qe Oe Qe ) Os " Qe
' 30. 15454 195,54 - 329499 195454 15454
60, 324473 215426 604 215426 324473
5 5. Oe 5e 5e . Oe
) =90 -90, -90e . 90, 90, 90
3 Oe Oa - 0. . . Qe X Os Qo
: 30 306486 329,99 149,99 306486 .-209699
60, 234492. 26340 122,07 301 447 262474
O 56 54 - 0. 5e 5e
“80, -80. . =80, 80 ~ 80s - 80s
4 O ‘0-- . Ow ‘O O R O»
30 . 262489 301.88 122,32 263,19 230431
60, 249,45 258,460 97634 277.07 258455
5e . ) 5 Oe : Se 5 Qe
~80. ~80, . -80, 80 - 80e 80«
5 O Oe O» Qe O O
: 30, 195,64 339.0 29499 340402 19564
60, 258457 277,21 9745 277421 258495
5e Oa 5e 56 O Se
~80 “80. "800 80, 80,- 80
6 . Oe O Oe . Oe Oe Oe
30, . 195464 339,03 3040 339,0 195464
60, 216466 311.88 5999 311.88 (216966
1. Se 6o 3e 20 ) Te
=90 =90, "90. 90 90 90
7 0. " O Oe Oe O Oe
) 304 - 208477 321.06 130421 341,463 286426

60, 21757 293405 109.77 325493 272449



Sets

10

11

12

13

14

o R M
Ll ol ol

=90,

O
30
60,

=90
Os
30,
60,

1,
=80,
Oe
30,
60.

2e
~80,

30,
60

1,
‘800
o

30.

60

60

TARLE IX (continued)

2

3.
~90,
O
246434
36040

4o
"90»
O
243426

S5e
~B80,
O
215461
224409

3e
~80,
Oe
273435
341493

-80.
0.
262,98

234,01

3

Te
~90,
Os
309,13
20644

6o
=90,
Oe

289.07

253.86

1133499
194,28 -

5.

80

0%
134,19

10
90

10
80

136459

179499

5

4o

90,

Oe
314459
146644

3e

90,

O
299,71

26

80,

Oe
305424
297472

143488

3.

80,

O
241036

114

Oe
283464

To

80

O
275480
265498

4o
B0

251629
172453

30
80

0.
279611

le

90

O
359099

1,

80

O
288e45



Setg

15

16

17

18

19

20

21

o0 R o
He b b s

bGo
=G0,
Oe
306
90.

=90 -

O
30,
90,

=90,
.

30,
60,4

60,

by
=90
O
30
90,

4,
=90

30.
90.0

TABLE IX (continued)

5
=80,
O
238,12
251,76

4o

90,

Oe
99,87
256428

54
-80.
O
252432
27040

249,38

5e
~80,
O
248430
277,29

3

6o
-70.
O
309.80
269406

6e
"'70.
Oe
268492
ZQZ-II

6
-70.
O
295472
267432

267414
244,09

6o
=70,
O«
310404
265455

117,83

Se

80,

Oe
11294
243448

272486
244465

6o
~70,
0s
21475
111e11

5e

80

0.
267414
244,409

251439

6o

70

Oe
272446
232456

115

6e

70

Qe
257427
27914

4o

90.

O
254428
325407

5

80

Oe
250459
265433

6o

70,

O
124443
234439

4

90,

0.
252432
270414

299473



Sets

22

oo RM
[l el o

90,
Oe

30,
90,

TABLE IX (continued)

-80.
O
93,31
273.46

80,

O
37456
103.53

4

6o
=70
Oe
121,98
232414

706

Oe
46431
115,86

116

6

b4e

90,

Oe
11124
253015
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If three of the kinematic-link lengths are assumed to have zero
values, then the mechanism becomes a structure. I1f, however, four of
the kinematic-link lengths are assumed to have zero values, then the
mechanism becomes a two-link chain and therefore it behaves as a kine-
matic pair. These results are summarized schematically in Figure 7.

The fact that the opposite link lengths can become zero and that
with a minimum of four kinematic links the mechanism does operate with
one degree of freedom leads to an investigation of the sum of the first
and last three link lengths. This investigation can be described by

the combination

-, -0, -o, @, @, O
(4.13)
a; +ag + azg = ag + ag + ag

where a;, ag, ag, ag, ag, and ag are kinematic-link lengths. The sets
7, 8, 9, 10, 11, and 12 of Table IX describe the variations given by
Equation (4.13). Note that this type of variation does promise a six-
link mechanism.

The combination described by Equation (4.13) suggests an investi-
gation of the possibilities described by Equation (4.14) which is

-, -o, -o, o, o, «

(4.14)

=2 2 = =2 =
day + dg + dg = a4 + dg 4+ aaa

where a;, ag, ag, a4, ag, and ag are the kinematic-link lengths. Sets
13 and 14 represent the parametric values of the combination given by
the above equation. Note that this type of combination does provide a
mechanism. The results of the above investigation provides an obvious

general form of the combination, such as
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(d)

Figure 7. Degenerate Forms of Franke's
Six~Link Chains.
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-, -Q, =@, o, O, O

k k k

K K (4.15)
a; +ay +azy =ag +ag + ag

where k can take the values other than zero,

The different variations studied. by the combinations described by
the Equations (4.10), (4.11), (4.12), (4.13), (4.14), and (4.15) do
not consider the variations of the possible different values of the
twist angles. The results of the previous section can be utilized.
Consider, for instance, the set of combinations of the twist angles

described by Equation (4.2) which is

=o, "B: =Y, &, 83 Y (4-2)

Some of the possible sets of kinematic links which can be combined
with the above variations are
a, a, a, a, a, a

and
41, @z, ag, 41 ag as

Consider, for instance, the following simultaneous variations of

the kinematic-link and the twist angles

o “B} =Y, U, B> Y
(4.16)

41, ag, asg, 21, 4z, ds

Equation (4.16) indicates that for the six-link mechanism under consi-
deration the first and the fourth, the second and the fifth, and the
third and the sixth two of three kinematic parameters, the kinematic
link and. the twist angles are the same. The third parameter, the kink-
link, is assumed to be zero for each of the links.

Set 15 in Table IX is the result of an investigation of this type

of combination. Note that this combination does yield a mechanism.
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However, . in view of the results of the previous section, the permuta-

tions of the twist angles provide two more sets of combinations. These

are
-o, 'B} =Ys B"Ya o«
(4.17)
a;, a8z, a8z, d2 383, 41
ad
-Q, "B; “Ys Y, ¥, B
(4.18)

a4y, dg, ag, 8a, a1, 4

The parametric values of Equation (4.17) and (4.18) are described by
the sets 16 and 17 in Table IX. Observe that these types of combina-
tions do yiéld a six-link mechanism.

The -existence of the six-1link mechanism described by the combina-
tions given by Equations (4.16), (4.17), and (4.18) leads us to consider

the similar combinations such as

-a, o, *B, B’ Ys Y

(4.19)
4, a4, 8, a8z, ag, 4g
-, ‘BS =Ys YS'BS o4
(4.20)
a, dg, a3, ag, dg, a4
-, iaa iYB’B’ o, -y
‘81, 8g, d3, a8z, 81, ag (4.21)
-, ’Bs =Ys &5 Y, B
A4.22)

41, adg, 43, 4, ag, ag
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The parametric values of Equations (4.19), (4.20), (4.21), and (4.22)
are described by the sets 18, 19, 20, and 21.. Observe that in each of
these cases, the six-link chain does exist as a mechanism.

It should be remarked that the order in which the signs appear
with the twist angle is extremely important. The negative signs may
appear either with the first three or the last three twist angles for
the cases described by Equations (4.16), (4.17), (4.18), (4.20), (4.21),
and (4.22). For the case described by Equation (4.19), the negative
signs appear with the first, third, and fifth or with the second,
fourth, and sixth twist angles. For instance, the combination de-
scribed by Equation (4.19) can be described equally well by the
following combination

@, =B, B, =v, v, -«

(4.23)

a,, dg, ag, ag, ag, a

A numerical case of this type of combination is illustrated by set 22.
Observe, again, that whenever a cyclic symmetry is observed, a six-link
space chain appears to yield a six-link mechanism.

It should be remarked that a six-link chain having the following
combination

~o, =B, -v, @,.B, v
aj, 8z, ag, a4, ag, dg

where a; + a; + ag = a, + ag + ag does not yield a six-link mechanism.

The same type of results were obtained in the other similar combina-

tions and the permutations of the combination.
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Variation in the Kink-Links of the Franke's Six-Link Mechanism

The present section is devoted to a study of the existence and
nonexistence of the kink-link components in the Franke's six-link
mechanism. In the case of Franke's original mechanism, all the kink-
link components have zero values, (see Figure 3). -From the geometry
of the figure, however, it appears that at least one closure condition
can be achieved if all the kink-links are made equal in length and

measured along the z axes, Thus, the six kink-link components are

-S8ince the first closure condition is obtained by visualizing
geometrically, it becomes necessary to examine a closure condition at
the second input angular displacement. The combination of a six~link
chain under consideration can be described by the following combina-

tion of the twist angles, kinematic~links and kink-links.

0, e, -0, O, O, O
a, a, a, - a, a, a, (4.23)
s, 8, 8§, =§, =8, =8
The paramettic combinations described by Equation (4.23) can be
rewritten to have the following form
SO, e, =0, O, O, O
a1, ag, ag, a;, ag, dg (4.24)
81, 83, 83, *8y,, =83, =83
This type of combination indicates that the six-link chain under con-

sideration has its kink-1links equal in magnitude but opposite in sigus.
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The numerical values of this type of combinatioﬂ are tabulated in
Table X. Observe that sets 1, 2, 3, 4, 5, 6, and 7 consider different
values of the twist angles.

The different closure conditions obtained for these sets of values
indicate that the combinations described by Equation (4.24) yield a
six~1link mechanism.

It has been observed that the Franke's mechanism can exist without
any kink-links, In fact, 1t has been shown that this mechanism can
exist even when two of the opposite kinematlc-links have zero magni-
tude. Therefore, 1t can be predicted that a six-link chain i8s ex-
pected to exist as a mechanism with the following combinatiogs in

which two of the opposite links are of zero length.

-, =0, -0, ¥, O, O
0, a, a, 0, a, a (4.25)
81, Bg, 83, =81,-83, -84
The compariscn of the two types of combinations glven by Equations
(4.10) and (4.24) indicates that the above combination 1is expected to

yleld a six-link mechanism. The above combination can be further

medified to the following
-0, -0, -, ¥, O, «
0, a, a, 0, a, a (4.26)

81, Sas-ob 81, 8p, 0

-, -0, -0, O, &, O
0, a, a, 0, a, a (4.27)

0» 03 Sa, 03 O: ~83



Sets

TABLE X

VARIATION OF THE TWIST ANGLES, KINEMATIC LINKS AND
KINK-LINKS OF THE FRANKE'S. SIX-LINK MECHANISM

1

bo
-90.
1.
60,0
90,

4o
-80e
60a
90,

'S

=70

1
604
90.

60,
90,

=30
le
60,
90,

=20
1.
60,
90,

2

5e
-90,
2
232422
270,

5e
=70,
ry
240.88
273410

5¢
=50,
2

245495

248425

244484
239425

5
=30,
2s
243402
235411

5
=20
2e
241438
234.77

249,25

6e
“500

.3

247,73
245485

242447

4

b4e

90
)
102427
90

80
~1la
93464
69466

be
704
<1l
85426
57469

50
=]le
170872
54488

b

40
=1ls
66403
57¢46

4
30
=1e
62498

" 58691

204
-1le
6le19
58621

S

5
90,
-2

311466

270

5e

80,
-2
292.82
244,56

5

"~ 70,

=2

276,92

235417

5
50
~2

251494
232498

5a

404
=24
246449
234420

5

304
=2
243422
235443

5

20,
-2
241631
236416

124

90,
-3
256448
270

6e

80,
=3
250492
21214

Se

70s
“36
247458
270434

6e

50
«“34
244482
254461

6e

40
=3,
243454
246435

6

30
=3
242622
240407

e

20
=3
241.07
236421
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TABLE X (continued)

Sets 1 2 3 : 4 ‘ 5 6
a O 5 5 Qe 5e 5
ot ~90. ~90, ~90, "90, 904 90.
8 si 1, 2 O -1l ~2 Oe
91» 30, 17689 332,72 15040 31040 332,72
i 604 219,20 284449 119499 320479 284449
o. 5. 5. ’ o. 5. 5°
-90. -90. =90, 90, 90, 90
9. O O le O . O -1le .
30. 208,63 307.23 143,58 323456 307429
60 241429 280492 11638 296435 280.91
O 5e 5a O ) 5 5
=90, -90, ~90, 90 90, 90
10 . le . O Oe : -1. (VI O
' . - 30, 199,10 314468 149,99 340,89 314468
60, 233,410 280421 119499 306,89 280421
O 5 He " O 5 5e
=90 ~90., ~90, 90 s 90, 90
11 0. le O. O ~“1ls Oe
. 30, 200,02 314,40 149,99 339.97 31440
60, 234426 279.87 119,99 305473 279.87
Oe O 5e Os Oe 5e
“90 ~90, ~90, 90 90, 90
12 - le O 00 "'1. 0- Oe
30, 24740 220466 15040 ~  193.0 220466
60, 338,19 249443 120.0- = 201480 249443
O Oe 5e ) O« Os 5e
=904 =90, =90, 90 90, 90+
13 N ¢ O le. Os . O «1ls
30, 164486 317468 304 15413 222632
604 . '
Oe Oe ) o‘c O O Oe
- ~90e '90. "90o 90. 90. 90.
14 3. 3, 3. -3 -3 -3
90, 2704 270, 90 270 270,

120. 307439 267410 52460 24040 293463
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15

16

17

18

19

20

21

o QR
e e Fe e

~90,

O
=90
-3
30,

604

604

Os
=90+
3
60,
90,

TABLE X (continued)

0.
-80.

228485

0

-80 []
2s’
214,58
208,89

O
=80
20 .
225,02

220642

0.
90,
e

Oe
=80s
29
13140

229408

169,97

3

O,
-70.
3.
321.79

Os
~T70,
3.
331425

283,68

Oe’
~-80.
=2

124428

Os -
~70.
le
297,76
275.80

O
=704
e
58466
313484

0s
;‘909
0s )
160409
270

O
50,
-1l
7940

Oe

80,
-2
357.58
44453

70
-3
88456
9707

80,
2
35e44

90
-3

109489
9647

80
)
0el194
91451

Os
90,
“3,
390.0
90

.3

Oe

80,

-2
274499

Oa

704
-3,
110,97
318,71

Oe
90,
-1l

303.38 -

289,34

0o

~T70
~1ls

261,91

O

70
~1,
297.15
269496

Oe

90,
=3
266472
274%75

Os

90
=4,
131.81
270,

126

6

Oe

70
~30
235047

Oe
90
=1lae

144446

221487

Qe

80s
—2s
219,09
254420

O
70

"1

191481

O

B0,

~2
25534
269,98

O«

70
=1le
23690
233429

Oe
90

19969
270,



Sets

22

23

~-90e.
3e
60,
90,

=90
Oe
90.

TABLE X (continued)

~-90.
0.
281,68
270,

'“90.
bGe

311.82
270,

90,
=3
30060
90

Oe
90.
Qe
78431
270

O
90.
-3
270

127

0
90.
-l
48,18
270

90
~4
270
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0, a, a, 0, a, a (4.28)
0, Sz, O’ 0, =Sz, 0

and

-a, ~o, -, o, o, .o
0, a, a, 0, a, a (4.29)

S15 O, O, -831, O, 0

These combinations, (4.26), (4.27), (4.28), and (4.29), are
described by considering the appropriate numerical values associated
with sets 8, 9, 10, and 11 of Table X. Observe that in each of these
combinations, a kinematic chain of six-links yields a six-link mecha-
nism.

The importance of the exlstence of the kink-links is realized
when four of the six kinematic links of a six-link chain have zero
link length. For instance, consider the following combinations of

the kinematic-links and kink-links.

-, -, -0, O, O, O
0, 0, a, 0, 0, a (4.30)

81, 0, O; =871, o: 0

-, -Q, -, O, O, O
0, 0, a, 0, 0, a (4.31)

O’ 8a, o: O, =8z, 0

-, -0, -0, o, o, Q
0, 0, a, 0, 0, a (4.32)

0, 0, 83, 0, O, ~Sa
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Sets 12 and 13 are examples of the combinations described by the
Equations (4.30), (4.31), and (4.32). Observe that the existence of the
two opposite kink-links with a minimum of two opposite equal kinematic-
links yields a mechanism. It should be noted here that these mechanisms
have four physical links. - The vanishing of the four kinematic-links
and four kink-links places two revolute pairs-at the two opposite
vertices of the six-link mechanism. -Consequently,.such a combination
of two revolute pairs can be replaced by substituting the kinematic
pairs having two degrees of freedom. For instance, the two intersect-
-ing revolute pairs can be substituted By a kinematic pair having
rotations about two independent axes, viz., a slotted sphere.

The different variations of the kinematic-link and the kink-links
and their impérténce in constructing a six-link mechanism lead to the
problem of examining the existence of a six-link chain having all the
kinematic-links of zero length and all the kink-links are of finite

length. Consider, for instance, the following combinations

-0, -0, =0, O, O, &

0, 0, 0, 0, 0, O (4.33)

Observe that in the above combination, all the twist angles and the
kink-links are equal. The numerical values of this combination are
given in set 14, Table X. Note that the four closure conditions are
obtained for this type of the six-link chain. Thus, a six kink-1link
mechanism having all the kinematic=-links of zero length exists°

If we examine all the previous kink-links combinations, we observe

that all six twist angles are equal in magnitude. - The study of the
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variation of twist angles and the kinematic-link, therefore, suggests

the examination of the following combinations:

and

Sy,

515

S1»

S1,

-, 'B: =Y, &, B: Y
0, 0, 0, 0, 0, O

Sz, S3, =51, ~Sg2, -S3

-, 'B, =Y Bs Ys o

0, 0, 0, 0, 0, O

Sg, -S3; -Sg, =Sz, =8

-, _B’ =Y, Y, @ B

0, 0, 0, 0, 0, O

Sz, Sg, ~Sgz, =S, -~Sg

-a, -B, “Ys Y B, @

0, 0, 0, 0, 0, O

Sz, Sa, ~Sg, =Sz, -8

-, _B: _YS‘B’ o, Y
0, 0,0,0,0,0

Sz, Sz, =S, =8y, ~Sg

-, "Bs =Y, %, Y, B

0, 0, 0, 0, 0, O

Sg, Sz, =81, =Sz, -8

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)
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-@, ., 'B:'B: =YY

0, 0, 0, 0, 0, O ‘ (4.40)

S31, =83, Sz, =Sz, 83, =S3

Equations (4.34), (4.35), (4.36), (4.37), (4.38), (4.39), and
(4.40) represent the seven characteristic permutations of the twist
angles. Observe, however, that the kink-links, their magnitude and
signs, are also permuted correspondingly. The examination of the sets
15 through 20 in Table X proves that the above combinations do yield a
six kink-link mechanism.

The limiting conditions under which a kink-link chain can be
assembled to form a six or less number of kink-link mechanism can be

investigated by considering the following combinations:

-a, -0, -0, o, o, o
0, 0, 0, 0, 0, 0 (4.41)

S1, Sz, 03 =81, =Sz, 0

-, -0, -0, O, o, O
0, 0, 0, 0, 0, O (4.42)

S15 0: Sa, =S5y, 0: =Sg

-0, -0, -0, o, o, o
0, 0, 0, 0, 0, O (4.43)

0, Sa, Sa> 0, =Sz, ~Sg

Sets 21, 22, and 23 of Table X show the results of this investiga-

tion. Observe that the successful results obtained for these
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combinations indicate that two of the opposite kinks can be assumed to
have a zero kink-link. -Consequently, the six kink-1link mechanism re-
duces to a four kink-link mechénism, having two revolute pairs at the
opposite vertex. Note that these kinemaéic pairs are connected by a
kink-link and kinematic-links, both having a zero 1éngth. Therefore,
such a combination of the two intersecting revolute pairs can be sub-
stituted by a kinematic pair having two independent rotations, for
instance, the slotted sphere.

It should be noted that a minimum of four kink-links must exist in
a mechanism having all the kinematic-links bf zero length.

The striking similarities in the beha?ior of the kink-links and
the kinematic-links in building the six-link mechanism immediately
lead to the‘problem of examining the existence of the six-link mechanism

having the following combination

-a,. -, =o, o, o, o
0, 0, 0, 0, 0, 0
81, Sz, Sz, ~S¢, =Sy, ~Sg

where the six kink-links are related as follows

Note that the kink-links chain, having the above combination,
yields a structure rather than a mechanism. Thus, the kink-links and
the kinematic-links are playing their independent role at this stage
of the combination. Though these two types of parameters, the kink-
links and kinematic-links, help build a kinematic chain, they do not

seem to be related to each other when mobility of the six-link chain
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is the major issue. For instance, consider the following apparent
relationship between the kink-links and the kinematic-links of the
Franke's six-link.

Figure 8 shows the Franke's six-link having the various combinations
of the kink-links. and the kinematic-links. Suppose along axis zj
(Figure 8a) we introduce a kink-link of length s; and make the corre-
sponding change in the kinematic-link ag so that one complete closure
condition is known. Thus, the kinematic-link az will be alfered in its

length to ag ' (Figure 8b) given by the following relationship.

/
8p " = ag +.9;

If a similar change is made along the zy axis and in the kinematic-link
ag (Figure 8c) so that

aal = dag +'Sa

Similar changes between the kink-links and kinematic-links will yield

the relationship

If such changes are made.in the kinematic-links to accommodate the
existence of the kink-link and if such a kinematic chain is examined for
a closure condition, then the product matrix [W] becomes divergent.
Thus, the apparent simple relationship known to be giving a closed chain
does not yield the closure condition. Therefore, such a closed chain
must be a structure.

The above investigation of this simple relationship leads to a
conclusion that both the kinematic-links and kink-links play their inde-

pendent role when the mobility of a close chain is the principal issue.
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(b) | (¢)

Figure 8. Apparent Relationships Between the Kink-Links
and Kinematic Links.
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It appears that they are both rather related to the twist angles of a

chain.

Variation in the Bricard's Articulated

Six-Link Mechanism

The Bricard articulated six-link mechanism is defined by the

following kinematic parameters.

0, 0, 0, 0, 0, 0 : (4. 4L)

Observe that all the twist angles are equal, all the kinematic-links
are of zero length, and all the kink-links are of equal length.

It should be noted that Bricard's six-link mechanism -is similar
in construction to the Franke's kink-link mechanism. In fact, all the
results obtained for the Franke's mechanism are similar to those ob-
tained for this Bricard mechanism. The difference, however, exists in
the signs of the twist angles and in the signs of the kink-links.

‘The general notations to describe the Bricard's kink-link six-link

mechanism can be expressed as

0, 0, 0, 0, 0, O (4.45)

Sets 1, 2, and 3 of Table XI show numerical examples -satisfying
the conditions described by Equation (4.45). These conditions may be

generalized as was done in the Franke's mechanism by the following
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" TABLE XI

VARIATION OF THE BRICARD'S ARTICULATED SIX-LINK MECHANISM

Sets 1 2 3 4 5 6
Zi O, Oe O : O . O Oe .
i ~90e -90, =90, "909.» =90, «90,
1 gi 40 49» 4o . 4o 4o 40
i 90, "0 270, . 90, O . 2700
60, 26489 ‘ 251,31 60 ~ 26689 251631
Oa Oe O O Qe Oe
. ~80e ) "800 ‘ "aou -80e "‘800, =80
' . " b, ’ 4o . beo ' 4e 4o 4a
9C,’ 338,70 300644, 90600 338,70 300644
60, 20.88 270417 6040 20,83 270617
O, Os O 0O Oe 0o
=70« =70 ~70. «706 =70 =706
3 b4y e ) 4o be ) 4o 4o
604" 357472 302471 60,0 357472 302471
120, 5724 304.,07 118452 57436 299496
O O Oe O O. "' 0
~80 «“70e =60, ~80, ' ~T70e 600
4 be 5 6 © b - b
60, 349459 - 295.34 60, 349,59 295434
120 52457 294,461 119458 52457 294461
56 : 5 50 S5 5 ‘ 5s
. =90+ "‘90. "‘900 -90. ) “900/ =904
5 b4 be by ' be b4e 4o
60, 281.27 130644 6040 281426 130e¢44
90, 102,68 269499 89499 102068_ 26999
Se Os Os 5e Oe f Os
0', =90 "909 Os =90, «90s
6 e Os 3% 3 : O e
1606 200, 245411 . 16040 200, 245411
180 180, 241492 18040 18040 241493
5. 0. 0. 5’ 0. 03
O -‘90. _900 O -90. =90
7 3. 0. 40 3 Ou 40
160 200, 245,11 160, 200, 245611

180, 180, 241492 1806 180, 241092
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-, ~B, =Y, O, -B, =Y
0, 0,0,0,0,0 (4. 46)

8y, Sz, Sz, S1, Sz, 83

Set 4 of Table XI shows that the condition given by Equation (4.46)
does yield the Bricard kink~link mechanism. The permutation of twist
angles along with the kink-links in the above equation is possible.
Such permutation will yield the similar conditions described by
Equations (4.34) to (4.39). The Bricard articulated mechanism does
exist under these conditions.

In the variational study of Franke's six-link mechanism, a general
model was obtained by introducing the kink-links. Thus,. the existence
of the kink-links in Franke's -six-link mechanism then yields a six-link
mechanism with all eighteen parameters., Similarly, a general model of
Bricard's articulated six-link mechanism can be obtained if the mecha-

nism exists with the following conditions

-0, eQ, O, =0, =®, =O

a, a, a, a, a, a (4.47)

The numerical illustration shown in the set 5 suggests that the
general model described by Equation (4.47) is possible from the Bricard
mechanism.

The general model described by Equation (4.47) does exist.in some
of the limiting cases; when two of the opposite kinematic links are of
non-zero but of equal values in their length and two of the opposite
kink-links are zero. Such a six-link mechanism can be described by the

following combination

3y
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a, 0, 0, a, 0, O (4.48)

Sets 6 and 7 show that the above combination does yield a six-link
mechanism which is generated from Bricard's articulated mechanism.

A limited investigation was made of the Bricard mechanism primarily
because of the observation that it is similar in construction to the
Franke's mechanism and was found to be giving similar conditions for
the existence of the mechanism. The only difference between the two
mechanisms is in the signs of the twist angles. Observe that all the
twist angles are either of positive or negative values in the case of
Bricard's mechanism. However, in the Franke's kink-1link mechanism
either the first three or the alternate three twist angles are negative

values. The other three twist angles are always positive.

Relationship Between the Franke's Six-Link

and Bricard's Kink<Link Mechanism

The ‘similar behavior of the Franke's kink-link mechanism and the
Bricard's articulated mechanism indicates a possible relationship
between these two mechanisms. Such a relationship becomes ‘more obvious
when the geometry of the Franke's six-link mechanism.is considered.
When all the kink-links are zero, then two pairs of three-alternate
axes intersect in two finitely located points -as shown in Figure 9a.
When the same mechanism-.is reconstructed so that the two finitely
located points of intersection now :lie at infinity, then the kinematic

notations become
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W

6 "5

17

(b)

Figure 9. Relationship Between the
Franke's and Bricard's
Six-Liink Mechanism.
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a, a, 0,a, a, 0 (4.49)

The second case of Franke's six-link mechanism having the two points
intersecting at infinity is shown in Figure 9b where @ = 90°.

-Set 1 of Table XII shows that the combination described by
Equation (4.49) yields a six-link mechanism. The examination of the
kinematic notations of the mechanism shown in Figure 9b indicates
clearly that this mechanism is one of the degenerate cases of the com-
bination described by the general model of the Bricard six-link mecha-
nism given by Equation (4.47).

The mechanism considered in set 1 is especially suitable for
studying the limiting values of twist angles. A six-link mechanism
exists when two of the opposite twist angles are zero. For such a
mechanism, the existence of kink-link becomes essential. The kinematic
notations of such mechanisms can be -described by the following combina-~

tion.

a, a, 0, a, a, O (4.50)

It has been noted earlier that a six-link mechanism exists with a minimum
of four kink-links or four kinematic-~links. Thus, the condition de-
-scribed by Equation (4.50) can be rewritten to take into account the
absolute minimum requirements for a six-link mechanism. Such a com-

bination of the kinematic parameters can be described by the following.
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RELATIONSHIP BETWEEN FRANKE'S AND BRICARD'S SIX-LINK MECHANISM -

Sets

oo R®
e e

=90
~bo

140,
160.

90,
-3
30,
60,

3.

=90,

65446
37476

3

‘0.

20,
80'.

3,
O

20,0
B8040

3
O
O

2040

8040

-3

(419

© 2040

80,0

-3

O
20,
80,0 -

" ~90,

b4e
40,
20,

O
0.

339.0.

99.74

Oe
-30,
~2
350,
320,

"'80.
-2
350,
32040

Os
=704
=2
35060
32040

"40. ‘

-2
35040
320,.0

O.
~30,
-2
350.0
320.0

~904
=4

220,
200,

Oe

90
-3
2140
254443

© 17040

14040

5

3.
~90.
O,
294454

322474

8040

3.

O,
2040
8040

6

0,
~90.
4o

320
340

O

O

3
230
294417

O
=90,
=2
350
320

Oe
~80.
-2 :
35040
42040

«T70e
=24
35Ce0

32040

=40
Ly
35040
32040

" Oe
" =30,

-2
3500
32040
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10

Do Qe
P e e B

TABLE

3.
Oe
O
204
B0.0

34
e
20,
80,0
3e
Os

2040
80.0

XII (continued)

O
"20-
=2
35040
32040

-80,
~2
35040
32040

3
“80;
wby
35040
3204,0

170.0
220,

3s

'O

17040
22040

34
O
Ca
2040
8040
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Oe
~20e
=24
35040
32040

~80.
-2
35040
4040

«“80e
LN
35060
4040
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-0, -, 0, -0, -@, O
0, 0, 0, 0, 0, O (4.51)

-s, 0, s, -5, 0, s

Since it does not really matter in the above combination-if the
twist angles are taken to be of positive values, set 2 in Table XII
‘shows ‘the illustrative example of such a degenerate case.

In the above example, only two of the opposite twist angles assume
zero value. The second limiting case can be considered in which four
of the twist angles assume zero values. However, in such a case a
minimum of two kinematic-links must exist in order to obtain a mecha-
nism.

The existing literature on the six-link mechanism cites a case of
such a six-link mechanism in which four of the twist angles assume zero

values. The mechanism can be described by the following combinations.

0, 0, -&, 0, 0, -a

a, a, 0, a, a, 0 (4.52)

The more general combinations are:
0, 0, -&, 0, 0, -«
ay, ag, az, ay, ag, ag (4.53)
S1, Sz, -(sy+sz), sz, Sz, (-sgt+sg)
Sets 3-10 are the mechanisms described by the combinations given by

Equations§$4.52) and (4.53).
R
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The Existence Criteria of the Six-Link Mechanism

In the previous:section the different conditions under which a
six-1ink mechanism exists were examined. The literature on the six=-link
‘mechanism has emphasized that the existence of this mechanism is -either
due to a symmetry about a plane or line or due to the "ad-hoc" criterion
of the intersectibn of a pair of three axes into two points, located at
a finite distance or at infinity., While such criteria are able to
justify the existence of some of the mechanisms examined in the previous
chapter they fail to account for the exilstence of the others.

The mathematics of the general constraints- suggests that a six-link
mechanism exists because of its-specific geometry which in turn is re-
sponsible for producing a general motion consisting of either three
rotations and two translations or two rotations and three translations.
Existence criteria such as these do not help to build six-link mecha-
nisms though they do provide a necessary and sufficient mathematical
reason for their existence,

Note that such a mathematical criteria is translated from the
specific geometry of the mechanism. The Bennett mechanism, which is
noted to have three general constraints and the geometry that helps to

build the mechanism is given by

a1 = ag, az = ag
@ = Ug, Qp = O
and
a1 a2
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where a;,. ag, ag, a4 and &, . %, @y, ¥ are the kinematic-links and-the

twist angles. Goldberg [15] was able to provide a similar geometrical

relationship to build the five-link mechanism. Therefore, it is not

too unrealistic to expect a set of mathematical relationships that will

help build a six-1link mechanism.

The findings of the previous section may be briefly summarized as

-follows:

(1)

(2)

(3)

When all the twist angles are equal, Franke's six-link

mechanism exists provided

ay <+ ag + ag = aa + dg + dg (4.53)
a? +af + ag = ad + af + ag (4.54)

A similar relationship does not exist between the kink-links
and the twist angles,
When the twist angles are different, then the kinematic=links

and the kink-links must observe the following relationships:

a, E-aj 1=1, 2, 3 (4.55)
= 13 j=b, 5,6 e
ldll = ldjl (4,56)
where
8, = o +oa (4.57)
A » ] )
d; = o, +od (4.58)

The following are the seven basic permutations of the twist

angles

-0, -B: =Y, @, Ba Y (4'59)

-Q, _Bs _Ya'Ba Y, @ (4a60)
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-, =B, -v, vy, @, B (4.61)
~o, @, =B, .B, -y, v _ (4.62)
-, =B, -v, vy, B, « (4.63)
-a, -B, ;y,<B, Y (4.64)
-a, _B,‘;y, @, vy, B (4.65)

(4) The 6R mechanism exists either with a minimum of four opposite
kinematic-links or with a minimum of four opposite kink-links.
The mechanism also exists with a minimum of two opposite
kinematic-1links and two opposite kink-links.

(5) The kinematic-link lengths are always positive.

(6) The kink-links may be either positive or negative. A definite
relationship between the twist angles and the signs of the
kink-link does not seem to exist. There is, however, a rule-
of~thumb which follows: The signs of the kink-links may be
taken as opposite to the signs of the twist angles.

(7) The limiting case of the six-link mechanisms have the opposite
twist angles of zero values. A minimum of four opposite
twist angles may assume a zero value. When the twist angles
assume zero values, then the six~link mechanism degenerates.
When the twist angles are assumed to be of zero value, then
corresponding adjustment is required to assume finite kink=-
links.

The seven points described above appear to be the governing condi-

tions and are extremely useful in building an empirical relationship
between the twist angles, kinematic-links and kink-links of a six-link

mechanism. It should be remarked that, in general, there is still no
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rational way of obtaining such a relationship. The present investiga-
tion on the six-link mechanism has relied heavily on all the possible
available information regarding mathematical relationships between the
‘kinematic parameters of the six~-link mechanism. Perhaps the most
important contribution that has been made in this area was by F. M.
Dimentberg‘[46, 47] and Michael Goldberg‘[15].

Goldberg contends -that the six-link mechanism must be related to
the Bennett mechanism and Dimentberg derived a relationship for a four-
link mechanism having one constraint. However, such a relation appears

to take a form described below.

£y (a,@) + f3(a,®) £y (@) £ (@)
= (4.66)
fs(a,a) + f4(a,) £a () £4()

If the information contributed by Goldberg and Dimentberg were
‘placed together, then it is possible to generalize nearly a hundred
functions, all of which may claim to be governing the conditions of the
existence of the six-link mechanism. Simply by the process of trial and
error and by the process of elimination, it is possible to arrive at
satisfactory results.

The empirical conditions that appear to govern the - existence of a

six-link mechanism is given by the following:

¥ +op +tag| = |, tog + o (4.67)
a; Cosec @; + ag Cosec @3 + a, Cosec Ug Cosec @; Cosec .05 . Cosec @5
= %
a4 Cosec @g + ag Cosec 0 + ag Cosec Qg Cosec @ Cosec & Cosec og

(4.68)
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Equation (4.68) may be written to take a more general form such

as
k k k _

a; Cosec '@ + ag Cosec ¥y + az Cosec '@g Cosec @, Cosec ¢y Cosec 0y

X i Kk =*

a, Cosec @, + ag Cosec ¥ + ag Cosec &g ~Cosec &, Cosec &g Cosec @g

(4.69)

where k.2 0. The present investigation has examined the case where
‘either k=1, or k =2.

The relationship between the kink-links and the twist angles is

given by
|4, | = |aj| for i=1,2,3  (4.70)
j=4,5,6

where

-di = o, ?-cdi (4.71)
and

d, =+ 0o, Fad, (4.72)

J J J

It should be noted that an empirical relationship similar to
Equation (4.68) does exist for the kink-link six-link mechanism. How-
ever, the empirical relationship needs to be modified because it is
noted earlier that the summation law in Equation (4.53) and (4.54)
does not exist for the kink-links. Such a modified relationship is

given by

Cosec '@, Cosec o Cosec g
di Cosec.ozi =+ d, Cosec @,
Cosec ‘@4 Cosec o Cosec g 1

(4.72)

The following points must be observed before constructing the six-

link mechanism. In order to construct a -Franke's six-link mechanism,



Equations (4.67) and (4.68) must be satisfied simultaneously.

Further~

more, three of the twist angles must have negative values, and only

cyclic and symmetric permutations are possible.-

also for the kink-link six-link mechanism.

The use of these empirical relationships is illustrated by consi-

dering the following sets of computed values:

twist angles:
kinematic-link:

kink-1link:

-80°, -80°, -80°, 80, 80 ,.80°

4!’1’ A4u’ 4|‘i’ 4u’ 4n’ 41‘!

4", 4.0270", 3.97792", 0", o", O"

o, 0, 0, O, 0, O

o o o L]

-80—03 "84°’ -76 , 80 , 80 , 80
4", 4.05978", 3.96094™, 4™, 4" 4"

o, 0°, 0°, o, 0°, o

-80°, -86, -74°, 80", 80", 80

4", 4.09798", 3.94888", 4", 4", 4"

0, 0, o, 0, 0, O

-80°, 288", -76°, 80", 80", 80

11

4, 4.14188", 3.94162", 4", 4", 4'

1 3] 1

4", 4.19202", 3.93920", 4", 4", 4

Similar rules hold

V)

(2)

(3)

(4)

(5)

(6)
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Figure 10 shows the displacement analysis of the six-link mechanism
described by combination 6. The kinematic-links were obtained from the
degenerate form of Equation (4.68):

Cosec @, Cosec 0 Cosec U4

[- ag Cosec 0y
~Cosec oy Cosec ag Cosec og

]

ag Cosec Oy

Cosec @, Cosec oy Cosec 0g
[- ag Cosec Qg
Cosec a4 Cosec ag Cosec og~

i

ag Cosec Qg4

Other permutations described earlier are also expected to yield
six~link mechanisms. For instance, consider the following combination

of twist angles.

-80 , -8 , -75 , 80 , 80 , 80
a;, dag, aa:'a4a‘a5> ag (7)

0, 0, 0, 0, 0, 0

We need to find the magnitude of the kinematic-link which gives a six-

link mechanism. Let

32 aq

Sin oz  Sin aj

(4.68) gives,

and let be an additional condition. Then Equation

4.094165

a3

-3.969802

Il

ag

The displacement analysis of this mechanism can be carried out similarly

as shown in Figure 11.
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The kink-link six-link mechanism can be similarly constructed
using the relationship given by Equation (4.72). However, the mobility
region decreases considerably and therefore it is advisable to use
Equations (4.70) in order to build an useful mechanism. Figure 11
shows the displacement analysis of a kink-link mechanism.

It should be noted that whenever the kinematic~links are computed
by the empirical equation then the remainder of the computation of the
displacement analysis should be carried out using double-precision
calculations or else the displacement parameters may not be accurate
in the third and fourth decimal places. The column matrix [V] then,
on an average, takes the form that resembles nearly ideal conditions:
For instance, the column matrix [V] for case 6 takes the following form

when 0, = 100 at the final stage of iteration:
| 0.000000 7]
-0.000005
0.000193
(v, = 100" = | 0-000000

Case 6 0.000162
0.000000
0.000000
-0.000054
0.000026
-0.000000
0.000026
|~0.000000

Under the complete ideal condition it must become a column null vector.

The difference is due to lack of precision in the computation.



CHAPTER V
"THE SCOPE OF ONE GENERAL CONSTRAINT

In the previous chapter the nature of one general constraint was
examined. This study of one general constraint was centered around the
very basic issues that define the mobility of a six-link chain. This
study disclosed the relationships bethen the kinematic parameters  of
the ‘six-link six-revolute mechanism. The six-link mechanism, however,

'represents just one of the many other undiscovered mechanisms having
one general constraint. According to the mobility criteria one general
constraint, there-is a possibility of the existence of nearly two
hundred mechanisms having a wide variety of number of kinematic-links,
kink-links, twist angles, and kinematic pairs having one or more number
of degrees of freedom. Table VI shows the different types and kinds of
chains which are likely to generate mechanisms if proper conditions of
their existence are known.

One possible interpretation of the problem of determining the
other types of mechanisms, such as RRRRRP, RRRRRH, RRRRC, etc., is to
‘plan a study similar to the one conducted in the last chapter for the
six~link mechanism. -Fortunately, however, there does exist an alternate
approach by which the existence of the other types of mechanisms can be
formulated. This alternate approach involves relating the revolute
pairs with the other kinematic pairs, such as the prism pair, the

helical pair, the cylinder pair, et. al.

154
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Substitution of the Prism Pair

‘In Table I there are three class I pairs each having one degree of
freedom. These are the revolute pairs, the prism pair, and the helical

pair. Each of these pairs are described symbolically as

= s
6 90 + 0 o (5.1)

~

where -6 represents the dual rotation. Observe that the dual rotation

8 has two parameterS"GO and So' The revolute pair is described by the

above dual notation when the parameter s, is assumed to be a constant.
The prism pair is also described using this dual notation when the

parameter 90 is assumed to be a constant. -In each of these cases, the

axis of the rotation and the axis of translation are the same.
Differentiating both the sides of Equation (5.1) with respect to

time t, we get

6 = b, +o éo (5.2).
Let é = then éo =1& X Q
then
W= +-0(w0 X y) (5.3)

Observe that Equation (5.3) provides a physical interpretation to
Equation (5.1). The real part of this equation represents a rotation
and the dual part represents the translation. Furthermore, the dual
part of Equation (5.3) indicates that the axis of rotation must be
normal to the plane of translationm.

This physical interpretation of Equation (5.1) suggests a possible
orientation of the axis of the prism pair to be substituted for a given

revolute pair of a kinematic chain.
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Thus, according to the interpretation of Equation (5.3), the axis
of the substituting prism pair must be normal to the axis of the revo-
lute pair. For instance, consider the plane four-link mechanism in
which there are four revolute pairs. One of these pairs can be substi-
tuted by a prism pair whose-axis of translation must be normal to the
axis of the revolute pair. -Such a substitution of a revolute pair by
a prism pair yields a plane slider-crank mechanism.

In the case of the 7R spatial mechanism, theoretically, there is
a possibility of replacing all the seven revolute pairs by seven prism
pairs. However, such a kinematic chain of seven prism pairs cannot be
expected to have a general motion consisting of three rotations and
three translations. Therefore, it becomes necessary to determine the
maximum possible number of prism pairs permissible in a kinematic chain
having a general motion consisting of three rotations and three trans-

lations. For this purpose, consider Equation (3.37) in which

7
Z [51 + 0B, ] dd, =[1] - [A; +0B;] (3.37)

i=2

Consider, for instance, that the seventh revolute pair -is to be
substituted by a prism:pair. Then the above equation may be rewritten

as

6

EZEAi +~oBi] dei +»[A7 +.0B, ] d8, =-[1] --[A; + By] (5.4)

i=2
where

8, =6, +0os, (5.5)

‘Since 's,.is the only variable in a prism pair, then
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~

8, = o d 8, (5.6)

Substituting Equation (5.7), Equation (5.4) becomes

6
) s, + o83 a0, + (A, + 0B o ds,T=l1]-[A +aB] (5.7)

i=2
Noting that G° = 0, the above equation simplifies to the following:

6 6
YA, +o )8 la, +[a]ds, =[1]-.[a +B] (5.8)

i=2 i=2

Consequently, the coefficient matrix (M] takes the following form:

(21 %312 %12 %512 %12 O |
813 %313 %13 %513 %13 O
8523 9323 343 %523 %3 O
Mlggp = br12 P31 Ph12 Psiz Pe1z 3712 -9
P213 P313 P13 Psi3 Pe13 @713
L}’223 323 P23 Psz3 Pz 2723

Observe that the last column consists of three elements having
zero values. These three elements are in turn the last elements of the
three real-part row-vectors. Furthermore, the last elements of the
three dual-part row-vectors are the-same as those of the last elements
of the three real-part row-vectors representing the 7R mechanism. Thus,
in case of the mechanism RRRRRRP, the first three elements of the last
column of the coefficient matrix [M] representing the 7R mechanism are
displaced by three rows.

- If a mechanism represented by a combination RRRRRPP were to be

described by the coefficient matrix'[M], then it takes the following form
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—5212 4312 %12 %12 O 0 ]
813 2313 213 %13 O o
e, = 3503 323 %23 853 O 0 10
5212 P312 Pa12 Psi2 %612 %712
5213 P313 P413 Psiz F13 2713
P223 "323 P423 P52z %623 37231

Observe again that the existence of a prism pair reduces the length
of the real-part row-vectors. In the case of 6R + 1P mechanisms, the
real-part row-vector consists of five elements; and in the present case
where the mechanism has two prism pairs, the real-part row-vectors each
have four non-zero elements.

In a space mechanism with zero general constraints, the general
motion consists -of three rotations and three translations. It has been
shown in.Chapter ILILI that the three real-part row-vectors of the co-
efficient matrix [M] represent the three rotations and the three dual-
part row-vectors of the coefficient matrix [M] represent the three
translations. Thus, the coefficient matrix [M] divides itself into
two sub-matrices, each having three rows and six columns. Since there
are three independent rotations and translations, the rank of each of
these sub-matrices must be three. Equations (5.9) and (5.10) show that
the existence of the prism pair in a mechanism reduces the size of the
real-part sub-matrix of [M]. With one prism pair, this real part sub-
matrix has three rows and five columns; with two prism pairs, the sub-
matrix has three rows and four columns. Since the rank of this sub-

matrix is three for a zero family mechanism, the sub-matrix must have a
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minimum of three rows and three columns. That is, the coefficient

matrix [M] may take the following form in the limit conditions.

a2 %312 %12 O 0 0 ]
413 2313 313 O 0 0
(M1 imic = | 223 2323 43 O 0 0 (5.11)
Pr12 P312 Pa12 312 %12 2712
Pr13 P313 P413 3513 %613 2713
23 P3p3 Puo3 3533 8633 3723

The limiting case described by Equation (5.11) corresponds to a
mechanism having four turning pairs and three sliding pairs,. i.e., the
mechanism having the combination RRRRFPPP.

Since in a mechanism the input displacement .is. independent of the
dependent displacements and the coefficient matrix [M] is independent
of the input displacement, a prism pair can be employed to give the
displacement to the other dependent links, Therefore, a maximum of a
four prism pair can be employed in a 7R mechanism to substitute four
turning pairs, provided one of the prism pair -is employed for the input
displacement. Such mechanisms may be described by combinations PPRRPPP,
PRPRPRP, etc.

Note, however, that if a prism pair is not employed as the input
pair and if the turning pair is the input pair, then the maximum
number of prism pairs that can be employed to: substitute the turning
pairs in the 7R mechanism must be three. .The coefficient matrix‘[M]

N

will become singular for the case RRRPPPP,
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.It must be noted that in the above derivation of Equation (5.11)
the orientation of the axes of the three turning pairs must be such
that the real part sub-matrix of three rows and three columns must be
nonsingular. Furthermore, the existence of the prism pairs must not
produce two or more identical columns in the dual part sub-matrix of
the coefficient matrix [M]. If such a case exists, then the coefficient
matrix [M] will become singular.

Fortunately, however, the problems associated with the orientation
of the axes of the kinematic pairs in a mechanism with zero
general constraints are not as complex as they are for the mechanisms
having one-or more general constraints. Consequently, the problem .of
substituting the prism pairs for the revolute pairs needs a careful
consideration. For instance, consider the Sarrus' six-link six-revolute
mechanism shown in Figure 12a. Note that in the Sarrus' six-link mecha-
nism the axes of the turning pairs 6, 1, and 2 are parallel and that
the axes of the turning pairs 3, 4, and 5 are parallel. If it is de-
sired to substitute the turning pair at the joint 6 by a prism pair,
then the prism pair at this  joint must be in a plane normal to the axis
of the turning pair at the joint 6. This resulting mechanism RRRRRP is
shown in Figure 12b, The displacement analysis of this mechanism-is
shown in Figure ‘13. .Observe that the mechanism is a rocker-rocker type.
That is, the.input crank does not make a total rotation of 360 .

The Sarrus' mechanism is also capable of having a second prism
pair. 1In Figure 12b the prism pair at the joint 6 is substituted so
that its axis lies parallel to the axes of the turning pairs 4 and 5.

Similarly, the revolute pair at the joint 5 of the Sarrus' mechanism
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Figure 12. Substitution of a Prism Pair
in the Sarrus' Mechanism.
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can be substituted by a prism pair in such a manner that its axis of
translation lies parallel to the axes of the turning pairs at the
joints 1 and 2. The resulting Sarrus' mechanism with two prism pairs
.is shown .in Figure 12c. The displacement analysis of this mechanism
is ‘shown-in Figure 14, The mechanism :is a space mechanism having two
slider pairs. Figure 14 shows that the mechanism has dead-centers at
6, = 0 and 6, = 180" .

It has been noted earlier that the Sarrus' mechanism has a general
motion of two rotations and three translations. Therefore, one is led
to believe that a maximum of three prism pairs can be substituted for
three turning pairs. This assumption would have Been true if the
mechanism under consideration were to belong to a family having no
constraints., However, the solution of this problem becomes relatively
simple if we examine the coefficient matrix [M] of the Sarrus' mecha-
nism.

The coefficient matrix [M] for the Sarrus' mechanism having six

turning pairs takes the following form -for 8, = 170°.
-1.0  -1.0 0.0 0.0 0.0 0.0 [
0 0 -1.0 -1.0 -1.0 0.0
[M]91= 170 = | © 0 0 0 0 0
6R 0 0 -5.90884 =-2.9544 O 0.0
2.9544 5.9088 0.0 0.0 0 0.0
-0.5209 0.0 0.0 0.5209 O 0
- -

When one of the revolute pairs is substituted for a prism pair
as in the case-of Figure 12b, the coefficient matrix,[M] for this

mechanism RRRRRP takes the following form for 6; = 170 .
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-1.0 0.0 0.0 0.0 0.0 0,0_1
0 -1.0 -1.0 -1.0 © 0
[M]el= 170° = 0 0 0 0 0 0
R.P 0 -2.9544 --1,9772 -1.0 O 0
2.9544 0.0 0.0 0.0 -1.0 ©
L:0.52094 0.0 -0.2123 0.0 0.0 O

Observe that the sixth column of both the matrices is a null
vector. This is due to the fact that the mechanism has a total of six
kinematic pairs. However, the fifth column of both the matrices are
different. This is because the second case pertains to the mechanism
having a prism pair, Note that the first three elements of the fifth
column of coefficient matrix [M] representing the 6R Sarrus mechanism
appear to be displaced downward by three rows in the coefficient matrix
(M] representing the RRRRRP mechanism. Observe that the substitution
of the prism pair for revolute pairs does not alter the general motion
of the mechanism. The coefficient matrix of the mechanism RRRRRP has
the same number of nonvanishing real and dual row-vectors as those for
RRRRRR mechanism. That is, the mechanism has two rotations and three
translations.

For the mechanism RRRRPP shown in Figure 12c, the coefficient

matrix takes the following form.

-1 0 0 0 0 0
0 1 1 0 0 0
[y _ 0 - |0 0 0 0 0 0
0 -1.9696 0 0 -1 o0
RaPBp
-1.96961 0 0 1 0 0
t:?.347296 -2.0 -2.3473 O 0 ?J
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Here again the effect of introducing the prism pair results in a
displacement of the first three elements of the columns 4 and 5 by
three rows. Note that the existence of the two prism pairs does not
alter the general motion of the mechanism; that is, the mechanism has
a general motion of two rotations and three translations.

If a third prism pair ‘is to be substituted for a turning pair,
it can be introduced either at the joint 3 or 4 of Figure 12c¢., Lt
can be seen from the above coefficient matrix that such an introduction
of a prism pair is expected to retain the two rotation components of
the general motion. However, since the introduction of the prism pair
displaces the elements of the corresponding column by three rows, the
resulting coefficient matrix [M]RSP3 will have two identical columns
and, therefore, will become singular. Thus, a maximum of only two prism

pairs can be introduced in the Sarrus' mechanism.
Substitution of the Helical Pair

The problem of substituting the helical pair for a revolute pair

brings ‘us back to consider Equation (5.1) which is

A

§=86_+qgs_ (5.1)

The helical pair is capable of executing a rotation and a trans-
lation about the same axis. However, the rotation and the translation

are related. This relationship is given by

-constant # 0 (5.12)

‘Observe that the helical pair has' the essential feature of the

turning pair as well as those of the prism pair. That is, whenever a
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helical pair is employed to substitute for a turning pair, the axis of
the helical pair must lie in a plane where the mechanism executes a
rotation and a translation simultaneously. For instance, consider the
plane four-link mechanism examined in Chapter III. It has been noted
there that the plane four-link mechanism Has one rotation and two trans-
lations. Furthermore, the axis of rotation is normal to the plane of
translation. Since the mechanism does not have the axis of rotation
lying in the plane of translation, the turning pairs cannot be substi-
tuted by a helical pair.

In case of a zero family mechanism having three rotations and
three translations for its general motions, the requirements for the
substitution of helical pairs are met more readily, However, since
the substituted helical pair allows translatory motion in addition to
the rotary motion of the revolute pair, it must satisfy the requirements
specified for the prism pairs. Furthermore, since only one of the
variables -can be kept independent and if translation is kept independent,
then the coefficient matrizx [M] takes the same form as that shown -in

Equation (5.9) for the RgH mechanism. Thus, the coefficient matrix will

becomg‘
(302 2312 %12 %s12 %1z O
813 %313 %13 %13 %13 °
(Mlpw = |%223 2323 %23 2523 %23 O (5.13)
br12 P312 P12 Psiz Pein 3712
213 P313 Pa13 Psiz Peiz 3713
P223 P323 D423 Pspz Pea3z dy23
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In view of this development regarding the nature of the helical
pair, it can be concluded that the maximum number of permissible
helical pairs in a zero family mechanism is three.

Because of the specific orientation of the axes of the turning
pairs in the six-link mechanism, the problems involved are as complex
as those involved in substituting the prism pair. The Sarrus' mecha-
nism again presents a good example to illustrate thevprocedure of sub-
stituting a helical palr in the six-link mechanism., In Figure:15a
the Sarrus' six-link mechanism with the six turning paifs is shown.
The helical pair 1s substituted at the joint 6 of the 6R mechanism.
This substitution of the helical pair requires that the axis of heli-
cal pair be parallel to the axes of the turning:pair at the joints 3,
4, or 5.

The displacement analysis of the mechanism RgH is shown in Figure
16. Note that the relationship between 85, the output rotation of the
helical pairs, and ©;, the input rotation, must be similar to that
between sz, the output translation of the helical pair, and 8, the
input rotation. This apparent similarity stems from the fact that the

rotation and translation produced by the helical pair must satisfy the

‘relationship
dbg4
EE; = A = constant
i.e.,
66 = A ‘Se
or 0g = A[B £(8,)]
or 8 =K £(8;)

where K = AB.
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(a)

Sarrus' Six=~link Mechanism

(b)

RRRRRH Mechanism

Figure 15, Substitution of a Helical
Pair in the Sarrus'
Mechanism,
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The kinematic parameters of the mechanism are:

@ 0, =90, 0, 0, 0, =90°
a: 3H’ oil’ 1H’ 1"’ 111’ Oll
8: _2"’ _12", 3”’ olI, 0”, Sé*

*Note that for the computation of the output at the helical
palr, one of two parameters 8 and sy can be computed. In
the above displacement analysis, 84 18 computed for evety
8,, and 65 may be computed using

GBEKSG

where K is related to the pitch of the helical pair. Since
8y differs from sg by a constant, its relationship with 8,
is simlar to that of sg.

Figure 16. Displacement Analysis of the RRRRRH Mechanism
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Substitution of the Torus-Pair

The function of the torus pair in a kinematic chain.is to provide
two rotations in a skew plane. In the . torus pair, however, this is
achieved by placing two revolute pairs at an angle of 90" and separating
the two pairs by a common normal which in turn is the kinematic link.

Franke's 'six-link mechanism is best suited to illustrate the use
of the torus pair since all the skew angles of this mechanism are 90°
and all the six turning pairs are separated by six kinematic links.

-The limiting case of the torus pair is the case where the kinematic
link between the two revolute pairs goes to zero. -In this case the
torus pair degenerates -into the slotted-sphere palr. The existence of
a slotted-sphere type of pair permits two rotations about the two inde-
pendent intersecting axes. -In Figure 17 is shown the mechanilsm which
is degenerated from the Franke kink~link six-link mechanism. Observe
that two of the opposite links are zero. Furthermore, two of the
opposite kink-links are made zero. The kinematic pair of slotted. sphere
can be introduced at the joints 2, 3, and 5, 6. The displacement

analysis of this mechanism is shown in Figure 18.
Substitution of the Cylinder Pair

The function of the cylinder pair 1is to produce two degrees of
motion consisting of a rotation and a translation along the same axis.
The rotation of the cylinder pair is:independent of its translation.
This function of the cylinder pair can be described by"EQuation (5.1)

which is

9 = : S
) 90 + o o (5.1)
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Figure 17.

R

- —o"
5
IR
2§
3 “EQUIVALENT TO
A SLOTTED SPHERIC
PAIR.

Degenerate Franke's Six-Link Mechanism that is
Equivalent to RSLRRR Mechanism. .
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The kinematic parameters of the mechanism are:

@ -90°, -90°, -90°, 90°, 90", 90"

af ' oI Rl gL B ISR
8: 1II’ 2", 0’ "“1“, -_2", 0

Figure 18. Displacement Analysis of RSLRRR Mechanism
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The substitution of a cylinder pair in a kinematic chain will
require two turning pairs. The first turning pair may be retained in
its original position to produce the rotation of the cylinder pair.
Then the second turning pair must substitute for the translatory motion
of ‘the cylinder pair. That is, a prism pair must be substituted for
the second revolute pair 'in such a manner that the axis of translation
also becomes the axis of rotation of the first turning pair.

It has been shown earlier that the prism pair can be substituted
for a revolute pair in a kinematic chain provided the axis of the prism
pair ‘is normal to the axis of the revolute pair. Since the cylinder
‘pair requires the axis of the rotation and the axis of the translation
to be the same, then either of the axes of the two revolute pairs
which are to be replaced by a cylinder pair must intersect at right
angles or must be along the two 90° skew lines.

Thus, the requirements of replacing two revolute pairs by the
cylinder pair are the same as those for the torus pair even though  the
kinematic behavior of these pairs are different. The torus pair is
required to execute two rotations and the cylinder pair is required to
execute a rotation and a translation. Therefore, the coefficient
matrix [M] for a mechanism having a cylinder pair is different from
that of a mechanism having a torus pair.

This concept of substituting a cylinder pair for two turning pairs
whose axes are skew by 90" was somewhat vaguely mentioned by Franke,
‘who sﬁggested the two equivalent mechanisms shown -in Figure 19,

The characteristic behavior of the coefficient matrix [M] can be

studied by considering Equation (3.37) which .is
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5

(a) ¢))
7R Mechanism RCCC Mechanism

Figure 19. Franke's Equivalent Mechanisms.
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i (4, + o8] ab, = [1] - [A, + 0B, ] (3.37)

Ji=2

equation pertains to a mechanism having seven turning
of the turning pairs are replaced by a cylinder pair,
number of kinematic pairs are six instead of seven.

above ‘equation can be rewritten as

6
}:[Ai +‘cBi] déi»a (1] - [A, + oB,] (5.14)

i=2

"If the above equation describes a mechanism RRRRRC where the out-

put is a rotation and translation, then

and

8, = db, + o(0) (5.15)
b, = By +0(0) (5.16)
6, = do, + o(0) (5.17)
8 = dog + o(0) (5.18)
A6, = df, + o d Sg (5.19)

Equation (5.19) is different from the others because it describes

the differential displacement of the cylinder pair of the mechanism

RRRRRC. Using the above relationships and noting that o = 0, Equation
g P g s &q

(5.14) is simplified to the following:

i=2

6
iEAinei + olAgldsg + o z[Bi]dei = [1] - [, + 0B, ] (5.20)

i=2
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The coefficient matrix.[M] for the RRRRRC mechanism then  takes

the following form:

2510 %312 %12 %s12 %12 O |
813 2313 %13 %513 %13 O
[M]RSC 12223 %323 %23 %53 %3 O G20
a1z P312 Pa12 Psi2 Pe1z %612
P13 P313 P413 Psi3 Pe1z %613
[3223 323 Pu23 P53 Peaz 623

- 'Equation (5.21) describes the RRRRRC mechanism and appears to be
similar to Equation (5.9) which describes RRRRRRP mechanism. The
difference in these two equations :is due to the fact that -in a cylinder
pair the rotation and the translation are along the same axis. Thus,
the last ‘three -elements of the sixth column are the same as the first
three elements of the fifth column.

If, however, a space mechanism-has two cylinder pairs, for example

the RRRCC mechanism, then the coefficient matrix .[MJ] takes the following

form:

12 %312 %12 %12 O 0

413 2313 2,13 2513 O 0

a a a, . a 0 0]

[M]Raca = 223 323 “423 “523 (5.22)

bo12 P312 Phiz Psiz 3412 @1

5213 P313 P12 Ps13 %13 2513

12223 P323 P23 Psaz %23 %523
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Here again the two equatiomns, (5.22) and (5.10), appear to be
‘similar in form.. The difference is that the cylinder pair has a trans-
lation along the axis of rotation,

‘Finally, the coefficient matrix [M] for a space mechanism without

general constraints, the RCCC, takes the following form:

_ )
412 2312 212 ° 0‘ 0
413 4313 313 O 0 0
a a a 0 0 0
= .2
[M]RCCC 223 323 %423 (5.23)
P12 P312 Pa1z 212 312 %12
b213 P313 Pais 8213 3313 3413
bya3 P323 Pha3 3223 8333 493

The above coefficient matrix is the limiting conditions for the
maximum number of cylinder pairs that can exist in a space mechanism
with no general constraints. Further modification of this matrix yields
a singularity condition.

The displaéement analysis of the RCCC mechanism has béen performed
.in many different ways using the different analytical techniques. - How-
ever, Ulcker, Denavit and Hartenberg [50] were among the first ones to
carr; out numerical analysis of a particular RCCC mechanism shown -in
‘Figure 20. These results were confirmed by A. T. Yang [51], who applied
the dual quaternions for obtaining the explicit displacement relation-
-ships.

The method developed in the present work is applied to this parti-
cular RCCC mechanism. The results of the displacement analysis are
tabulated in Table XIIL., Note that these results confirm the investi-

gatlon carried out both by Ulicker and Yang.
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TABLE XIII

DISPLACEMENT ANALYSIS OF YANG'S AND

UICKER'S RCCC MECHANISM

0, O, Sg

0 144,209377 ~0.115081
20 131.899738 ~0.920543
40 116.674592 -1.770566
60 101.194976 -2.248310
80 87.219700 -2,259417
100 75.723766 -1.888758
120 67.559073 ~1.262205
140 64.213796 -0.529173
160 68.596581 0.011077
180 83.700148 ~0.173163
200 105.329823 ~0.842910
220 124.052093 -1.085719
240 136.989077 -0.937881
260 145.467159 ~-0.663168
280 150. 868462 -0.367654
300 153.853981 ~0.084375
320 154.370251 0.150238
340 151.599628 0.220370
360 144.209385 ~0.115081

180
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The substitution of a cylinder pair for the two revolute pairs in
a mechanism having one general constraint presents the same problem as
the one for substituting a prism pair. The coefficient matrix (M] for
each six-revolute mechanism must be examined before and after the sub-
stitution of a cylinder pair. The existence of a cylinder pair must
not change the characteristic components of the general motion.

For example, consider the mechanism shown in Figure 12b. Here one
prism pair is substituted for the turning pair at the joint 6 of the
six-link mechanism of Figure 12a, The axis of the substituted prism
palr is parallel to the axils of the revolute pailrs at the joints 3, 4,
and 5. Since the axes of rotation and translation are parallel, any
of the turning pailrs can be combined with the prism pair so that the
resultant pair is a cylindet pair. Thus, from Figure 12b there is a
possibility of obtaining three different mechanisms having one cylinder
pair and four revolute pairs. These three mechanisms are shown in
Figures 2la, 21b, and 2l¢ and can be schematically described as RRRRC,
RRRCR, and RRCRR mechanisms. Figure 22 shows the displacement analysis
of the RRRRC mechanism. The coefficient matrix [M] for this mechanism

takes the following form for

8, = 100
1.0 0.0 0.0 0.0 0.0 0.0
0 -1.0 -1.0 -1.0 0.0 0.0
(M] =1 0.0 0.0 0.0 0.0 0.0 0.0
R.C . } i
By~ 100 0.0 0.69459 -3.4729 0.0 0.0 0.0
0.69459 0.0 0.0 0.0 -1.0 0.0
Lj3,93923 0.0 1.96961 0.0 0.0 0.0
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2\

12 (a)

RRRRC Mechanism

T\

Ui T 8.

RRRCR Mechanism RRCRR Mechanism

Figure 21. Possible Types of One General Constraint
Mechanisms with a Cylinder Pair.
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The kinematic parameters of the mechanism are:

@: 0, =90°, 0, 0, =90
a: 4", o, 2", 2", O

s: 3", -3", 2", 0, sg

Figure 22. Displacement Analysis of the RRRRC Mechanism
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Observe that in the above matrix there are five distinct inde-
pendent equations. -The analyses of this matrix shows that the RRRRC
mechanism has two rotations and three-translations as-its general
motion. This mechanism was recently reported by Harrisberger and Soni

[52].

-In the RRRRC mechanism, two of the fevolute pairs at the joint
2 and 3 can be replaced to give the RCRC mechanism as shown in Figure
23a. ‘In the case of RRRCR mechanism, Figure 21b, the two revolute
pairs at the joint 2 and 3 can be replaced by a cylinder pair to
yield the RCCR mechanism as shown in Figure 23b.

-Figure 24 shows the dilsplacement analysis of the mechanism RRCC.

The coefficient matrix [MJ] for this mechanism takes the following form

for 8, = 270°

0 0 -1.0 0 0 0|
0 0 0 0 0 0
M] = |-1.0 -1.0 0 0 0

RaCy .
6 = 270 0 0 0 1.0 O
-3.0 3.0 0 0 0
0 0 -1.0 0

The examination of the coefficient matrix shows that the substitu-
tion of two cylinder pairs does not change the components of the general
motion. That is, the RRCC mechanism has two rotations and three trans-

lations for its general motion.
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(a)

RRCC Mechanism

(b)

RCRC Mechanism

Figure 23. Possible Types of Mechanisms
With Two Cylinder Pairs
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The kinematic parameters of the mechanism are:

© -]

@: =90, 0, <90, O
a: 0, 3", o, 3"

s: =3, 3, 83, Sg

Figure 24. Displacement Analysis of the RRCC Mechanism
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- Substitution of the Spheric Pair

The spheric pair belongs to the class three pairs and is capable
of having three degrees of freedom defined by three independent rota-
tions. Thus, the spheric pair can be represented by the dual vector

as follows.

9 . -
15k= (85 ej, 8,) + c(0) (5.24)

where ‘1, j, and k are the unit vectors associated with the three inde-
pendent axes of rotation.

From the definition of the spheric pair, it is clear that a
spheric pair can be substituted for three revolute pairs proQided the
three axes of these revolute pairs are not coplanar. Note that the
existence of the spheric pair in a mechanism dogs not change the form
of the coefficient matrix [M]. This is due to the fact that the
existence of the spheric pair is a special case in which the three
nonplanar axes of the revolute pair are intersecting in a finitely
located point. Note that the criterion of intersection of these three
axes forces the removal of two of the adjacent kinematic links. Thus,

_the coefficient matrix [M] for the 7R mechanism and the coefficient
matrix [M] for the RRRRS mechanism basically differ by these two
physical constant representing the two removed kinematic-links.

-The substitution of the spheric pair in the zero-family mechanism
does not present any problem. -However, the family one mechanism must
be examined carefully before a spheric pair is used to substitute the
three revolute pairs. For instance, the Sarrus' mechanism is not

capable of accepting a spheric pair because of not having the three
\
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‘revolute pair axes :intersecting in a finitely located point. On the

other hand, Franke's 'wirbelkette' is a representative example to

illustrate the substitution of the spheric pair for the three.inter-
)

‘secting revolute pairs.

In Figure 25a the degenerate form of a general Franke's six-link
mechanism is shown. The' general six-link mechanism has: six nonzero
kinematic-links and six nonzero kink-links. The degenerate form shown
in Figure 25a is obtained by removiné four of the kinematic links and
two of the kink-links. Observe that this mechanism has two joints
3 and 6 at which three axes of the revolute pairs intersect in two
finitely. located points. Thus, either the revolute pairs at the joint
1, 6, and 5 or at the joints 2, 3, and 5 can be replaced by a spheric

pair. The displacement analysis of the mechanism shown in Figure 25b,

obtained from Figure 25a, is shown in Figure 26.
Other Class Three Kinematic Pairs

Besides the spheric pair, there are three other kinematic pairs in
the class three pairs. These are the slotted sphere-cylinder pair,
the slotted sphere-helix pair, and the plane pair.

The slotted sphere-cylinder kinematic pair has three degrees of
freedom described by two rotations and one translation. Thus, this

kinematic pair can be represented mathematically as

ij (ei, ej) +-c(si) (5.25)

or

13 (eislej) + o(sj) (5.26)
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3
(a)

Degeneral Form of General Model of
Six-Link Mechanism Capable of
Accepting a Spherical Pair Either
at the Joint 6 or at the Joint 3.

(b)
Equivalent RRRS Mechanism

Figure 25. RRRS Mechanism
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The kinematic parameters of the mechanism are:

Figure 26.

-] ° o o

-90°, -90°, =907, 90, 90, 90
4", 0, 0, 4", 0, 0
3!! O 3" _3" 0 _3”

Displacement Analysis of the RRRS Mechanism- Shown
in Figure 25a.



191

From the definition of the slotted-cylinder pair, it is clear that

the RRRRS , mechanism, where S repfesents the slotted-cylinder pair, is

C C
mathematically equivalent to either a RRRRRC mechanism or RRRRRRP mecha-
nism where the axis of the prism pair is parallel to the axis of the
preceding revolute pair.

The sphere-helix pair has three degrees of freedom described by
two rotational and one helical movements. This pailr can be described
mathematically as

~

eijk = (Gi, Bj, ek) +-d(Sk) (5.27)

where i, j, and k are the three unit ortogonal vectors and

= constant. (5.28)

Here again the definition of the sphere-helix pair indicates that the

RRRRRRH mechanism is mathematically equivalent to the RRRRS, mechanism

H
where SH represents the sphere~helix pair.

The plane-kinematic pair has three degrees of freedom described
by one rotation and two translations. This pair can be described mathe-
matically as

~

;5 = (8)) * ol ) (5.29)

The mathematical definition of the plane kinematic pair. indicates
that the RRRRRPP mechanism, where the axes of the two prism pairs are
intersecting, is mathematically equivalent to the RRRRl?L mechanism where
'PL represents the plane kinematic pair.

Lt should be remarked that the problems involved in substituting

the slotted.sphere-cylinder pair, the sphere-helix pair, and the plane
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-pair are similar to those involved in .substituting either a prism pair
or the cylinder pair. - Since each of these cases are considered in
great length-in the previous section, it does not seem necessary to
reconsider them again.

The present discussion has considered the substitution of the
lower class kinematic pairs only primarily because these pairs are
capable of transmitting higher forces. The higher pairs, especially
of class four and five, demand extremely severe requirements in order
to be substituted for the revolute pairs. Furthermore, these kinematic
pairs are more complex in structure and geometry than the basic ele-
mentary pairs such as the revolute pair, the prism pair, and the

cylinder pair.



CHAPTER VI
SUMMARY AND CONCLUSIONS

The present investigation is a step in an attempt to open the
mysteries of general constraints and passive freedom. However, before
such a step can be taken .it is necessary to examine the state of the
art. Several leading kinematicians have made observations on the
nature of the ‘general constraints and accordingly have proposed
schemes to identify the existence of the general or passive constraints,
Since these observations were limited to the schemes proposed by these
kinematicians, they only provided a partial solution to the existing
dilemma of identifying the existence of general constraints.

While each of these criteria may prove to be necessary, none
were found to be sufficient. - Consequently, those who observed the
state of this art rgexamined their own proposed criteria and came up
with the new ones. For instance,.Kutzbach proposed in 1932 a mathe-
matical relationship which was reviewed in 1936. The mobility criteria
of Malytcheff was reviewed by Artobolevski and Dobrovol'ski. Kolchin,
however, was able to make some-of his own observations, and as a con-
sequence, the mobility criteria of Artobolevski and Dobrovol'ski was
modified by introducing an extra parameter called the passive con=-

straints.

193
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While these kinematicians have modified the mobility criteria
from one form to another and have introduced new parameters, none have
presented a rational procedure to determine their existence. Therefore,
a reader is always 'left to a choice of selecting the form of the mobility
criteria. However, until a rational. procedure is discovered, the
number synthesis or the type synthesis of the space mechanism virtually
remains unexplored.

The need for establishing the rational procedure of identifying
and determining the number of generai constraints -or passive constraints
was recognized years ago. Recently,' Sharikov, one of the former students
of Artobolevski, attempted to introduce a method based on the classical
theory of screws. The method, however, utilizes descriptive geometry
and, therefore, has its limitation. A rigorous mathematical approach to
determine the existence of the general constraint is suggested by the
two Rumanians, Vionea and Atanansiu. .Unfortunately, their investiga-
tion does not proceed beyond the family of mechanisms having less than
three general constraints.

The survey of the existing literature points out the striking
correlation between the existing mobility criteria as shown in Table V.
All the existing approaches, except for the Kolchin's approach, classi-
fies the mechanisms into the five families of mechanisms. The zero
family mechanisms have no specific constraints regarding the orienta-
tion of the axes of the kinematic pairs. The family one mechanisms
have one general constraint; that is, the orientation of the axes of
the kinematic pairs must observe a specific law or laws. Such laws

are neither sufficient nor necessary for the existence of a mechanism
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having one general constraint. For instance, Sharikov's classical
theory of screws has hypothesized that the six-link six-revolute mecha-
nism exists if a pair of three axes intersects in two distinct points
"located either at a finite or at infinite distance. The articulated
six-link mechanism of Bricard then becomes an exception to such
hypothesis.

Clearly, one is led to conclude that either there was something
misleading in the method of investigating the nature of one general
constraint or the classical theory of screws does not provide a proper
mathematical model,

The study of the nature of one general constraint may also have
been conducted by the method proposed by F. M. Dimentberg. However,
the proposed method leads to an examination of the root of a polynomial
of order thirty-two. Clearly, such an .investigation might lead to all
types of erroneous-results.

A need for a rational procedure to study the number of general
constraints in a mechanism was recognized. Chapter III of the present
investigation is completely devoted to the development of the theory
of identifying the existence of general constraints.

- The ‘method of investigating the existence of general constraints
concentrates -on examining the rank of a coefficient matrix [M]° . This
matrix [M] is obtained by giving a differential displacement to the
screw matrices describing the closure condition of a space mechanism.
The differential displacement provides a set of twelve -simultaneous
non-homogeneous equations. When a complete closure condition for a
mechanism -is established, the matrix representing the twelve simul-

taneous linear equations degenerates to yield the coefficient matrix [M].



196

If for a given mechanism the rank of this coefficient matrix.[M]
is six, then the mechanism under consideration is free from any general
constraints. - If, however, the rank of the coefficient matrix [M] is
five, then the mechanism under consideration has one general constraint,
If the rank of the coefficient matrix [M] is four, three, or two, then
correspondingly the mechanism under consideration has either two, three,
or four general constraints.

The most remarkable characteristic of the coefficient matrix.[M]
is that it comnsists of two types of equations which in turn describe
the instantaneous axes either of rotations or translations. For in-
‘stance, in case of a‘plane four-link four-revolute mechanism, the rank
of the coefficient matriX'[M] is three. -Furthermore, this matrix con-
sists of three equations, two of which describe the instantaneous axes
of translations and the other describes the instantaneous axis of
rotation. The principal axes of rotation and translation of this mecha-
nism are determined by computing the Eigen-vectors.

"maradoxical" mechanisms such as

The examination of the classical
the Bennett mechanism and Goldberg five-link mechanism revealed the
other properties of the [M] matrix. The rank of the coefficient matrix
:[M] in the case of the Bennett mechanism is three. Accordingly, this
matrix must consist of three nonvanishing equations. -Instead, the
coefficient matrix [M] has five nonvanishing equations. Since the
rank of the matrix is three, only three of the five equations  are
necessary to describe the Bennett mechanism. That is, two of the five

equations may conveniently be ignored. Since .the existence of these

two added equations does not contribute any new information to the
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coefficient matrix [M] and their withdrawal does not produce ‘any singu-
larity in the coefficient matrix .[M], these two additional equations are
regarded as passive. If the principal axes of rotations and transla-
tions are computed, then correspondingly there will be two passive axes
about which one rotation and one translation componeﬁt of the general
motion will be found to have zero values.

The existence and nonexistence-of one or more number of passive
equations in the coefficient matrix opens the door to a great many
number of basic questions related to the nature of general constraints.
Due to the analytical nature of the present method, it is not possible
to state the factors that control their existence. - Since theoretically
it is possible to expect a maximum of six compatible equations in t
unknowns where r also represents the rank of the coefficient matrix
.[M], then a maximum of 6-r and a minimum Of zero number Of passive axes
must correspondingly exist for a particular family of mechanisms.
Fufthermore,.since the family of the mechanism does not seem to depend
on the number of compatible equations, the information provided by the
existence of the passive axes must provide a new dimension to these
basic ‘issues -0f the nature and characteristic of the general constraint
mechanisms. The present investigation was, however,.- confined to the
study of the six~-link mechanism, and therefore, these questions are
purposely left aside for future studies.

The six-link six-revolute mechanism is noted to have one general
constraint because the rank of the coefficient matrix is five. -It has
been observed that the six-link mechanism can be classified into two

groups of mechanisms. This classification.is based on the components
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of the general motion. -The coefficient matrix has six equations in
five unknowns when the mechanism is describing three rotations and two
translations. However, the coefficient matrix has five equations in
five unknowns when the mechanism is describing two rotations and three
translations. Since the row vector describing rotation vanishes to
zero, it is concluded that for the case in which six equations exist
with five unknowns one of the row vectors describing translation must
be passive.

A mechanism may be subclassified depending upon the number and type
of passive axes it produces. For this purpose, however, an efficient
method of detecting the passivity must be formulated. The present
investigation was confined to the study of the one general constraint
mechanism, and therefore, no effort was made to develop an elegant and
efficient method for detecting which of the axes are passive. Instead,
the problem is considered td be of secondary importance for the present
investigation.

.The method of arriving at the coefficient matrix'[M] is -iterative.
A set of kinematic parameters, viz., the kinematic ‘link, the kink-links,
the type of pairs and twist angles between the two successive axes, is
expected to be known for a kinematic chain. Then for any assumed input
displacement, a complete closure condition is determined. ‘If a complete
closure condition exists for any arbitrarily selected input position,
then the kinematic chain is a mechanism. If the assumed parameters
were to yield a structure, then the iterative process does not converge,
even for the specific position where the chain forms a close configura-

‘tion. Whenever the iterative process does yield a complete convergence
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for an arbitrarily selected input parameter, then before announcing
this particular chain as a mechanism the chain is.invariably tested
for a second closure condition,

-There were, however, some technical problems associated with the
iterative process, especially when the product matrix.[W] was singular.
The singularity conditions exist in three situations. These situations
exist when the chain is either examined in the region beyond the limit
position, or the chain has a dead-center position. The singularity
condition also exists when the chain . is a structure. These cases were
‘handled very carefully by examining the complete region of mobility of
the chain. That is, a minimum of twelve independent closure conditions
were examined for the convergence of the product matrix:[W].

The method developed for identifying and determining the existence
of the general constraints also provided the answers for:the mobility
region of the mechanisms. The limit-position and dead-centers of.any
mechanism can be determined by the computer within a fraction of a
minute once the chain is determined to be a mechanism. -Thus, the
advantage of the developed method was recognized from the very early
stage of its development.

This method was used to examine the governing conditions under
which a six=-link six-revolute chain exists as a mechanism. The six~link
six-revolute chain was selected because it represented the family of
mechanisms having one general constraint. Furthermore, if the governing
conditions of this mechanism are once discovered, then the other mecha-
nisms -obtained by substituting .the other types of pairs can also be
discovered simply by relating the revolute pairs with the other kine-

-matic pairs.
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The most difficult part of the present investigation is involved
in making a proper decision. There are two ways in which a study can
be conducted to investigate the governing conditions of the six-link
mechanism. The six-link six-revolute mechanism is capable of having
eighteen parameters, twelve of which may have -either positive or
negative values. Therefore, .in order to arrive at an explicit governing
condition, the behavior of a total of thirty parameters must be studied,

If a total variational study of these parameters is planned, then
nearly thirty factorial six-link chains must be examined for the
closure conditions. The computation required for the six independent
closure conditions of a chain takes on an average of six and a half
minutes on the IBM 7040. Therefore, if such a procedure would have
been adopted to examine the governing conditions, then the present
investigation would not have come to an end in the present century.

In view of the above statements perhaps the procedure adopted in
the present investigation for examining the governing conditions of
the existence of the six-link mechanism can be more appreciated. The
procedure is based on an observation that three elementary types of the
six-1link mechanisms that could exist with a minimum of kinematic para-
meters are known. These are the Franke's six-link, the Bricard's
articulated six-link and Sarrus' six-link mechanism. Franke's six-link
mechanism has all kink-links of zero length, Bricard's articulated six-
link mechanism has all kinematic links of zero values, and the Sarrus'
mechanism is a combination of both the kink-links and the kinematic
links.

The adopted procedure for determining the governing conditions

then is centered around these three elementary models. A variational
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study was planned to vary the eighteen parameters in such a manner to
obtain the general and the degenerate cases :of the six-1link mechanism.
The present investigation examined nearly three hundred and fifty
different six-link chains. It should be noted that only one-fourth
of these chains generated a six-link mechanism.

The present investigation indicates that the existence of the
six-link mechanism is due to a mathematical equality rather than
physical symmetry. This mathematical equality takes into account the
permutations of the kinematic parameters.

One of the most interesting points that is observed in the investi-
gation of the six=~link mechanism is the relationship between the physi-
‘cal symmetry of the mechanism and its mobility region. The majority of
the six=-link mechanisms appear to be either of rocker-rocker type or
crank-rocker type. -The mobility region, however, may be enlarged if
the mechanism has a higher order of symmetry.

-The successful results obtained for the governing conditions of
the existence of a six=-link mechanism led to an investigation relating
the turning pairs to the other ‘kinematic pairs. This investigation,
however, was confined to relating only the lower pairs; that is, the
kinematic pairs such as the prism pair, the helical pair, the cylinder
pair, the torus pair, and the spherical pair.

According to the mobility criterion of one general constraint,
only the class five kinematic pairs are not permissible. However, the
mobility criterion does not take .into account the governing conditions
of one general constraint, and therefore, it can be predicted that all

the kinematic pairs from class one to class four need to be examined.
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The present: investigation is confined to the useful lower pairs only.
The other ‘lower kinematic pairs having a combination of a helical pair
and sphere, a cylinder and sphere are not considered primarily because
they demand extremely severe requirements in order to replace the
revolute pairs.

The problem becomes more complex when a mechanism of one general
constraint is under consideration. The six-link mechanism which has
been found to exist with a wide variety of combinations of kink-links
and kinematic links, however, appears to be more sultable for adopting
kinematic pair mechanisms rather than the kinematic pair. For instance,
the six-link mechanism can more readily accept the  Hookes-joint type
of pair mechanism than the spherical pair, even though the function of
both of these pairs is to produce three rotations.

The method of replacing the turning pairs by the other lower kine-
matic pairs having one, two, and three degrees of freedom is presented
in Chapter V. The existing dilemma concerning the maximum number of
prism pairs and helical pairs is resolved for the zero family space
mechanism. The coefficient matrix [M] shows that a zero family space
mechanism with a turning pair for an input displacement is capable of
having a maximum of three prism pairs. ‘A maximum of four prism pairs
can be permitted provided one of the prism pairs.is employed for the
input displacement. Similarly, a helical pair can be substituted for
a revolute 'pair.

The method of substituting other classes and types of pairs for
a revolute pair is suitable for the zero family mechanism only. .That

is, the method . is independent of the theory of the general constraints.
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Therefore, whenever one turninggpaig;is>;§p¥gceduby-the.others.the
resulting -chain. is expected to yield a mechanism. However, there is
no complete assurance that the resulting mechanism will still belong
to the same family as it did before the substitution. Therefore, at
each stage of substitution, the coefficient matrix must be examined
for a possible degeneration of a mechanism to a lower group.
The present investigation then can be briefly summarized as follows:
(1) A mathemat;cal procedure was developed to identify the number
of general constraints in a mechanism. The method also pro-
vides a complete displacement analysis of a mechanism, and
identifies the existence of dead-centers and limit-positions.
(2) A procedure -for the analysis of the six-link mechanism and
an existence criteria was developed.
- (3) A method was shown for substituting various types and kinds
of kinematic pairs for a revolute pair of a kinematic chain.
This development leads to the other types and kinds of
mechanisms belonging to the family of six-link mechanisms.
The outcome of the present investigation leads to the key that
opens the mysteries of the world of mechanisms with or without general
constraints. According to the mobility criterion, there -are five
families of mechanisms. The present investigation has simply consi-=
dered the mysteries of the mechanisms with one general constraint.
Similar studies are now possible to unlock the mysteries of mechanisms
either free from general constraint (m = 0) or having two, three or

four general constraints (m =2, 3, 4).



204

Harrisberggr'[29] had predicted, based on the available information
of the mobility criteria, the existence of nearly five hundred space
mechanisms free from any general constraints. Since the mobility
criteria are not capable of providing an insight to the closure con-
ditions of these mechanisms, a scientific study similar to the present
investigation must be planned to discover the existence criteria of
the zero family space mechanism. The present investigation indicates
that any random orientation of the kinematic pairs in the 7R mechanism
does not necessarily yield a space mechanism. Instead, it forecasts
a definite relationship between the twist angles, the kinematic link
and the kink-links.

Recently, an effort was made by Dobr janskyj and Freudenstein [53]
to extend the work of Harrisberger [29]. According to these authors,
pair inversion of Harrisberger's five hundred mechanisms produces nearly
four thousand mechanisms. However, Dobr janskyj and Freudenstein com-
pletely ignored the basic issues of the existence criteria. 1In view

i
of the established fact concerning the maximum number of prism pairs
and helical pairs, nearly half the mechanisms claimed by Dobr janskyj
and Freudenstein have no basis for existance as zero family space
mechanisms, and for the other half, closure conditions are unspecified.

The present investigation has presented a method of obtaining
other types and kinds of mechanisms described in Table VL. This table
must be revised with the proper modification of the pair inversions and
their corresponding existence criteria must be developed. It is ex-
‘pected that such a study will produce many useful mechanisms having

one general constraint.
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It has been observed that in the one general constraint domain, the
mechanisms having a higher order of symmetry appear to produce a con-
stant velocity output. The Cardan mechanism, for instance, has been
used over the century for obtaining a constant velocity output in a
skew plane. The present investigation has identified a large number of
mechanisms which are symmetric and. have a constant velocity output.

One unexplored area in the domain of one general constraint mecha-
nisms is an investigation of the coupler curves of the four-link
mechanisms and their coupler cognates since a proper existence criteria
is not known. The present investigation now makes it possible to ex-
plore this area. It appears that the next fruitful areas of research
are the following:

(1) Pair inversion study and the existence criteria of the

different types and kinds of mechanisms.

(2) Complete investigation of the symmetric mechanisms having
six, five, and four links and producing constant velocity
output.

(3) There are two types of cognates. These are Robert's cognates
and Soni's cognates [54]. The Robert's cognates are the
mechanisms which generate the same coupler curve as does
the source mechanism. The Soni cognates are the mechanisms
which generate the same output motion of the follower as does
the source mechanism. The importance of this type of research
hardly needs to be emphasized, especially when all the practi-
cal two-loop configurations can exist either with a coupler-

drive or with the follower-drive.
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(4) The mechanisms with two, three, and four general constraints
are virtually unknown, primarily because -all the necessary
and sufficient existence criteria are not known. -Once the
existence criteria are discovered by using the technique
deve loped in Chapter III, the studies proposed in points 1,

2, and 3 above may be organized to determine their practical
applicability.

(5) The three general constraint mechanisms appear to have a wide
variety of practical applicability. For instance, the four-
link plane mechanism and. its related multi-loop mechanisms
are used extensively in industry. The spherical four-link

)
mechanism having three rotations for its general motion are
being found to have a wide variety of practical application.
The Bennett mechanism, which also belongs to this group, can
be used to produce a constant velocity output in a skew plane.
Yet the application of this mechanism is virtually unexplored.

The present theory of identifying the existence of general con-
straints predicts the existence of the four-link mechanisms such as
"PPPP,-RPPP, and HPPP. The exact existence criteria of these mechanisms
are not known. However, it appears that these mechanisms are capable
of producing a translatory motion .in a skew plane. -That is, they are
space models of a plane slider-crank.

In view of the five areas of future research proposed, the outcome
of the present investigation appears to be '"a drop in a bucket". Yet,
it should be clear that it is the 'drop'' that promises the kinematicians
a journey into the mysterious world of space mechanisms just waiting to

be discovered.
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APPENDIX A

/AALGEBRA OF DUAL NUMBERS. AND DUAL VECTORS

The dual number is defined as

A

X = Xgo T 0%

where

Xo = real part

X1 = imaginary part
and 0'2 =0

Properties of Dual Numbers:

il
(@]
]
(@]

(1) x =0 when x4 ~and X

(2) % =y when x5 =7y, and x; =y

Addition and_Subtractionz

(3) 2 +75%

(xg + 0x1) + (yo + 0Oy1) (%9 + ¥o) + 0(xy + y1)

) % -

= (%o + 0x3) - (yo + Oyy) (%5 = ¥o) +0(xy - y1)

>
I

Multiplication and Division

(5) X§ = (%0 + 0y1)(yo + Oy1) = Xoyp + 0(x1¥p + Xo¥1)

X1 ¥y1
= Xg Yo 1+O(;‘:+;7:')
. X1 X1 Y1
) fg ) Xg + 0%y _ g (L + 0 ;:) ) f& (l + 0 ;T)(l -0 yT
y Yo T ov1 ( YI) Yo c s yl)2]
1l +g-— 1 - o (—
Yo Yo (yo
Xg X1 Y1
e
Yo . Xy Yo -
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X1 xi

a0 B _ . n tyn _.n n )
(7) % = (%9 + 0x) g (1 +o XO) xo{l + %1 O XO

n n 1 n n -1
Xg 11 + O ;; = Xq T 0n; Xq

(8) The expression of any function of -Dual numbers xqo + 0%, is
obtained using Taylor series expansion as

éf(ao)

£(x) = f(xg + ox1) = £(xg) + Ox1 ‘“3;;‘

Trigonometric and Exponential relationship:

'Lf we assign a dual angle x = x4 + 0x;, formed by two straight lines
of space, where x, is the normal angle between the unit vector axes of
the straight lines and x;is the shortest distance between the straight
lines, then the trigonometrical function of the dual angles can be ex-
pressed as

(9) Sin(x, % ox;) = Sin x4 Cos(ox;) * Cos x4 Sin (ox;)

= Sin x4 + Ox; Cos x4

(10) Cos (x¢ £ ox;) = Cos xo T ox; Sin x4

X1

. = F
(11) tan (xo £ oxy) tan xq. q E;;z‘;;-—
= tan %o = Ox; (1 + tan® Xg)
X1
L= X :F
(12) Cos (%o * ox1) = Cos xq cﬂgz;w*;;

= Cos xo T ox; (1 + Cos® xg)

(13) %o + 0%y = X0 TEL o Ko (1 + oxy)

X1 ' Xy
X9 X0

It should be noted that all identities of ordinary algebra and
trigonometry and also all formulas of differential and integral calculus

are maintained in the algebra of dual numbers.
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Let us consider a polynomial having dual numbers as the coefficient.

If the right hand side of this polynomial is equated to zero, then

~ N n-1 ~ n=2 ~ ~
ax +bn + ¢x +. . .88 +t=0
where 4 = ag +0ay, B =bg +0by, & =co +0cy, ..., L =ty +o0t,

However the property of the dual number requires that

(15) aoXon + boXon-l + . . . SpXp + to = 0, and
(16) n a°X°n~1 + (n - 1) b(_.,x(_-,nm2 +-(n -~ 2) C0X0n~3 + ... so] X1
+'[31Xon + bIXOHM1 + 6o SlXO + tl] = 0

Let us consider a special case of the complex quadratic
AN

ax° +bx +¢ =0 where X% = xp + Ox;
Then according to identities (15) and (16) we have
(17) agxe” + bgxe + cg = 0
(18) (2agxgy + by) x; + (alxoz + bixg +c1) =0

from where, we get

>“b° i /boe = 4aoCo

2aq

(19) %o =

> 1

20 e
( ) 1 ZaOXQ + bo

(alxoa + byxg + 1)

In order that the equation has real root, it is necessary that
x; = 0 and. at the same time x, must satisfy the two equations:

(21)  agxe® + bexp +cp = 0

(22) ayx,® + byxg +cy =0

(23) “That iS, (aocl “'aICo)z - (aobl - albo)(bocl = b1Co) =0
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This identity (23).is a necessary and sufficient condition for the
presence of real roots of the equation with complex ccdefficients. The

identity (23) can be " rewritten in the form of a determinant as

E
0 ag bg Cq
= (agey - alco)2 - (agbhy - aybg)(bgey - bycg) =0

ay bl Cy 0

0 a3 bl Cy

Dual Vector:
The dual vector is defined as
(24) A = ay + 0a

where a, is the real part and a; is the imaginary part of the dual

vector. Here again

The operation on complex vectors is formally not distinguished from
the operation on ordinary vectors.

The dual vector can be considered as a screw %hiéh'has two co@ébnéntsm
The real part of the dual vector can be considered.as the angular velo~\
city of a link about an axis and the imaginary part as the translatory
velocity along the same axis. Thus

(25) A =8 =W+ ot

0>
li

where screw

=
1l

angular velocity.



APPENDIX B
COMPUTER PROGRAM

The computer program listed on the following pages is based on
the method developed in the Chapter III. The program output consists
of the following:

(1) Initial input screw matrices

(2) Coefficient matrix.[M] at every stage of the iteration

(3) Inverse of the coefficient matrix

(4) Determinant of the coefficient matrix

(5) Estimated displacement parameters.

The program input consists of the following:

(1) Defining the type of mechanism

(2) Providing the exact values of the invariant kinematic

parameters

(3) 1Initial estimate of variant kinematic parameters
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O S$IBFTC DKNAME DECK

DIMENSION KSB(10),KSA(10),KYA(10),KYB(10)

2 DIMENSION ST(20)

3 DIMENSION TRB{6,6)

4 DIMENSION ARTX(38),ARTB(38),CTP(10)

5 DIMENSION AX(20),AY(20),Xi20),Y(20),A(10,3,3),8(10,3,3)

6 DIMENSION P(3,3)4D(1043,3),E(104343),BB(10,3,3)

1 DIMENSION AA(10,3,3),AM(12,6) ,AP(12,1),AT(6412),TX(6,6),TY(6,1)

10 DIMENSTON TB(6y6),DEY(6,41)

11 DIMENSION ATX(38),ATB(38)

12 6040 FORMAT(1HO34HY(T),5X,6F12.6)

13 6030 FORMAT(1HO,4HX(1)45X,6F12.6)

14 6020 FORMAT(1HO,5HAY(I),5X,6F12.6)

15 6010 FCRMAT(1HO,5HAX(I),5X,6F12.6)

16 6C00 FORMATI(1lH1,614,FL2.6)

17 6050 FORMAT(1HO,714)

20 2010 FORMATI(914,2F12.6)

21 3010 FORMAT (1214)

22 2C20 FORMAT(T7F10.6)

23 2030 FORMAT (7Fl10.6)

24 2130 FORMAT(1HL1,12HINPUT MATRIX)

25 2140 FORMAT(]H ,7F12.6)

26 2190 FORMAT(1HO,S5HDET.=F20.645X,3HIE=12)

27 2200 FORMAT(1HO,43HRH MATRIX, DEVIATIONS, AND ESTIMATED THETAS)

30 2210 FORMAT(LH ,3F12.61)

31 2220 FORMAT({1HO,10HITERATION=12)

32 5000 READ(542010)JMAX, IJAyKK,KM,ITT,JB,ICS,JJQS,1GE,DEL,DELX

44 READ(5,3010) LMN,(KSB(J),J=1,LMN), (KYB(J),J=1,LMN)

56 READ(5,3010)LPJy(KSA(J)sJ=14LPJ) s (KYA(J)yJ=1,LPJ)

10 WRITE(6,6050) LMN, (KSB(J)sJ=1,LMN)},(KYB(J),J=1y LMN)
101 WRITE( 6,6050) LPJ,y(KSA(J)sJ=14LPJ},(KYA(J),J=1,LPJ)
112 READ(5,2020) (AX(I),1=1,JMAX )

117 READ(5,2030)(AY(I),I=1,JMAX)
124 READ(5,2030)(X{I),1=1,JMAX)
131 READ(5,2030)(Y(1)sI=1yJMAX]
136 WRITE(6,6000)JMAX, TJAKKyKMy ITT,JB4DEL
137 WRITE(64,6010) (AX(I),I=14JMAX)
144 WRITE(6,6020) (AY(I),1=1,JMAX)
151 WRITE(6,6030)(X(I),I=1yJMAX)
156 WRITE(6,6040)(Y(1),01=14JMAX)
163 KT=0

164 DO 5 I=1,JMAX

165 X(I)1=X(1)#3.141592654/180.
166 AX{T)=AX(I)*#3.141592654/180.
167 5 ST(I)=AX(T) ;

171 DELX=DELX*3.,141592654/180.0
172 DO 8050 JKLT=1, JJQS

1 13 IF (JKLT.EQ.1) GO TO 777

176 X{1)=X{1)+DELX

1T 137 CONTINUE )

200 IT=0

201 2000 DO 10 1=1,JMAX

202 AX(T)=ST(1)

203 All,1,1)=COS(X(I))

204 AlL41,2)==(SIN(X(I)))={COSCAX(L)))
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205 ACL1,3)=SIN(X(I)) #(SINCAX(L)))
206 A(1+2,1)=SIN(XC(E))
207 Al1,2,2)=CAS(X(1))#COS(AX(I))
210 AL12243)==(COS{X(T))II=SINCAX(L))
211 A(1,3,1)=0.
212 Al1,3,2)=SIN(AX(]))
213 A(1,3,3)=COS(AX(L))
214 B(I,1,1)=-Y(I)=«SINIX(I))
215 B(Iyl, 2)=—Y(l)iCOS(AX(I))*COS(X([))+SIN(X(I))iSlN(AX([))iAY(I)
216 B(ls1,3)=Y([)eCOS(X{I))*SINCAX(I))+AY[T)*SINCX(I))*COS(AXET)) !
217 B(I,2,1)=Y(1)=COSI(X(I))
220 B(I42,2)==-Y(I)«SINCX(I})*COSLAX(I))-AY(T)*COSIX(I))I*SIN(AX(I))
221 Bil,2 .3)-Y(l)*SIN(X(l))*SlN(AX(I))-AY(I)*COS(X(I))* CCSAX(I))
222 B{I1,3,1)=0.
223 BIL43,2)=AY(I)=COS(AX(]))
224 BeI:333)=-AY({I)#SIN(AX{T))
225 10 - CONTINUE
227 P(ly1)=0.0
230 P(1,y2)==1.0
_ 231 P{1,3)=0.
232 P(2,1)=1.0
233 P12,2)=0,0
234 P(2,3)=0.
235 P(3,1)=0, -
236 P(3,2)=0.
237 P{3,3)=0.
240 DC 40 I=1,JMAX
241 DO 20 J=1,JIMAX
242 . D0 20 K=1,3
243 DO 20 L=1,3
244 IF(I1.EQ.J) GO TO 30 ‘
_241 D(JyK,yL)=A(J,K,yL)
250 G0 TO 20
251 30 D(JaK,L)=8 (T, KoL)
252 20 CONTINUE
256 DO 50 K=1,3
257 DO 50 J=1,3
260 50 E(I,K,J)=0.
263 MAX=JMAX~-1
264 DO 60 J=1,MAX
265 DO 70 K=1,3
266 CC 70 M=1,3
267 DO 70 L=1,3
2170 JM=J+1
271 70 ELI KyM)=ECL Ky MI+D(J4Ky L) #D{JIM,L4M)
215 [E(J.EOQ. (UMAX=1)) GO TO 60
300 CO 80 K=1,3
301 DO_8G M=1,3
302 80 D(JMeK s MIZE(T4K,yM)
305 DC 81 K=1,3
306 0O 81 M=1,3
307 81 E(I,KyM)=0,
312 60 CONTINUE
314_40 CONTINUE

316 DO 90 J=1,3
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317 CO 90 K=1,3

320 90 BB(1,J:K)=0.0

323 DO 100 K=1,3

324 DO_100 M=1,3

325 DO 100 [=1,JMAX

326 100 BB (lyKyMI=BB(L,K;,MI+E(T,K,M)
332 DO 120 J=1,JMAX

333 DO 120 K=1,3

334 DO 120 L=1,3

335 D(JsKsL)=Al{JsKyL)
336 120 CONTINUE

342 CO 130 K=1,3

343 DO 130 J=1,3

344 130 AA(14K,J)=0.

347 MAX=JMAX~-1

= AX

351 DO 150 K=1,3

352 DO 150 M=1,3

353 DC 150 L=1,3

354 JM=J+1

355 150 AACLyKsM)I=AA(L KyMI+DIJyK4L)#D(JIMy Ly M)
364 DO 160 K=1,3

365 DO 160 M=1,3

366 160 DIJMyKsM)=AA(LyKyM)
371 DO 161 K=1,3

372 DO 161 M=1,3
313161 AA(1,K,M)=0,

376 140 CONTINUE

400 DO 170 N=2,JMAX
401 DO 180 I=1,JMAX

402 MAX=JMAX+1
" 403 DO 190 J=1,MAX

404 DO 190 K=1,3

405 DO 190 L=1,3

406 IFtJ-N)210,220,230
407 210 IF(I1.EQ.JIGO TO 215
412 DiJyKsL)=AlJyK,yL)
413 GO TO 190

414 215 DIJyKoL)=BlJyKyL)
415 GC TO 190

416 220 DlJsKsL)=P(K,L)

417 GO TO 190

420 230 IF(J.EQ.(I+1)) GO TO 235
423 DlJuK!L”ﬂ‘J“‘l.K'L'
424 GO _TO 190

425 235 DiJyKyL)=B(J=1,KyL)
426 190 CONTINUE

432 DO 240 K=1,3

433 DO 240 J=1,3

434 240 E(I,JyK)=0.

437 DO 250 J=1,JMAX

440 DO 260 K=1,3

441 DO 260 M=1,3

442 DO 260 L=1,3
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443 JM=J+1

444 260 E(l:KsM)=E(TsKyMI+D(JsK,L)*D(JMyL,M)
450 IF(J.EQ.(JMAX))GO TO 250
453 DO 270 K=1.3

454 D0 270 M=1,3

455 2170 DUJMKaMI=E([sK M)

460 DO 271 K=1,3

461 D0 271 M=1,3 L
462 2171 ElI,KyM)=0.

465 250 CONTINUE

467 180 CONT INUE

471 DO 280 J=1,3

472 DO 280 K=1,3

473 280 BR(N,JK)I=0,

476 DO 290 K=1,3

47171 DO 290 M=1,3

500 DO 290 I=1,JMAX

501 290 BB(NsKyM)=BB(NsKMI+E(T,KyM)
505 170 CONTINUE

507 DO 300 N=2 ,JMAX

510 MAX=JMAX+1

511 00 310 J=1.MAX

512 DO 310 K=1,3

513 DO 310 L=1,3

514 IF(J=-N) 320 ,330,340
515 320 DlJsKelL)=AlJsKsL)

516 GO TO 310

517 330 DlJsK.L)=P(KsL)

520 GC TO 310

521 340 JL=J-1

522 D(JsKsL)=ATJLKeL)

523 310 CONTINUE

527 DC 350 K=1,3

530 PO 350 J=1,3

531 350 AA(N,J,K)=0.0

534 D0 360 J=1,JMAX

535 DO 370 K=1,3

536 DO 370 M=1,3

537 DO 370 L=1,3

540 JM=J+1

541 370 AAIN KyM)I=AAINyKyM)+DIJyKyL) =D (JIM, L4 M)
545 IF(J.EQ.JMAX) GO TO 360
550 DO 390 K=1,3

551 DC_390 M=1,3

552 390 DIJMyKeMI=AAINK4M)

555 DO 391 K=1,3

556 DO 391 M=1,3

557 391 AA(NyKyM)=0,

562 360 CONTINUE

564 300 CONTINUE

566 JMAN=IGE-TJA

567 DO 495 [=1,12

570 DO 495 J=1,6

571 495  AM(I,J)20.

574 J=1
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575 00 500 K=1,3
576 DO 520 N=Ky3
5717 DO 515 I=1,JMAN
600 IF(KK.EQ.0)GO TO 505
603 IF(K.EQ.1)GO0 TO 530
606 GO _TO 505
607 530 IF(N.EQ.2)G0 TO 540
612 GO TO 505
613 540  NaN+1

0 70 510
617 AM(Jy I=1)=AA(T,K,N)
620 GO _TO 515
621 510 IF(K.EQ.N) GO TO 516
624 GC TO 517 '
625 516 AP(J,1)= L.0 = AA(T4K4N)
626 GO _TO 515
627 517  AP(Jy1)==AALT,K,N)
630 515  CONTINUE
632 520 J=J+1
634 500 CONTINUE
636 DO 560 K=1,3
637 DO 570 N=K,3
640 DO 585 I1=1,7
641 IF(KM.EQ.0)G0 TO 600
644 IF(K.EQ.1)1GO TO 610
6417 60 _TO 600
650 610 IF(N.EQ.2)1G0O TO 620
653 GO _TO 600
654 620  N=N+1
655 600 _ IF(1.EQ.1) GO TO 605
660 IF (1.GT.JMAN) GO TO 590
663 GO _T0_580
664 605  AP(J,1)==BB(I,K,N)
665 GO TO 585
666 590 II=1-1
667 IF(ICS.EQ.1) GO TO 588
672 1J=1
673 GO TO 589
674 588 I1J=1-1JA
675 589  CONTINUE
676 AM(J, IT)=AATTJ,KsN)
6117 GO TO 585
700 580 AM(J,I-11=BB(1,K,N)
701 585 _ CONTINUE
703 570 J=J+1
705 560  CONTINUE
707 JA=J-1
710 WRITE(6,2130)
711 DO 561 I=1,JA
712 561 WRITE(642140) (AM(1,J),J=1,6)4APL 1,i)
720 CO 630 [=1,JA
721 DO 630 J=1,6
722 630 AT(Jy1)=AM(1,4J)
725 DC 640 1=1,6

726

DO 640 J=1,6
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127 640 TX(I4J)=0.

132 DO_650 I=1,J8
733 DO 650 M=1,48
134 DC 650 J=1,JA
735 650 TACT W M)=TXLL,M)+AT (T, J)wAM{J M)
141 ATX{1)=48
142 ATX(2)=J8
143 K=2
T44 CO »48 I=1,J48
1495 DO_648 J=1,J8
746 K=K+1
747 648 ATX(KI=TX{14J)
752 CALL INVERX{ATX,ATB+DET,IE)
153 KPI=JB=jB+2
154 I=1
155 J=L .
156 ARTX(1)=JB
1517 CARTXL2)=JB
760 DC 672 K=3,KPI1
161 TB(I1,J)=ATB(K)
162 ARTX(K)=ATB(K)
163 IF{J.EQ,JB) GO TQ 673
766 J=J+1 .
167 60 10 _6172
770 673 J=1
7171 I=1+1
172 672 CONTINUL
174 WRITE(652190)DET, IE
175 CALL INVERX(ARTX,ARTB,DER,IR)
176 =1
177 J=1
1000 Do 875 K=3,KPI
1001 TRB(T,J)=ARTB(K)
1002 IF{J.EQ.,JB) GO TO 873
1005 J=J+1
1006 GO_TQ 875
1007 873 J=1
1010 =1+]
1011 875 CONTINUE
1013 WRITE(652190) DER,IR
1014 b0 655 I=1,J48
1015 J=1
1016 655 TY(I,J)=0C.
1020 D0 660 1=1,J8
11021 J=1
1022 DO 660 M=1,JA
. 1023 660 TY(Td)=TY(I,J)+AT(I,M)%AP(M,J)
1026 DO 670 1=1,.J8
1027 J=1
1030 670 DEY(I,J)=0.
1632 DO 680 I=1,4B
1033 J=1
1034 DC 680 M=1,J8B

1035 680 DEY(I,J)=DEY(I,J}+TB(I M)*TY(M,J)

1040 DO 690 I=1,LMN
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1041 1QP=KSB(1)

1042 IQR=KYB(1)

1043 690  X{IGP)=X{IQP)+DEY(IQR,1)

1045 0O 691 I=1,L9J

1046 ICP=KSA(T)

1047 IQR=KYA(I)

1050 691 Y(IQP)=Y(IQP)+DEY(IQR, 1) ‘
1052 WRITE(6,2200)

1053 DO 661 I=1,J8

1054 J=1+1 ,

1055 CTP(J)=X{J)*180./3.141592654

1056 661  WRITE(6,2210)TY(I1+1),DEY{I,41),CTP(J)
1060 XFR=X(1)#180.7/3.141592654

1061 WRITE (6,6030)XFRy (X(I),1=2,JMAX)
1066 WRITE(6,6040)(Y (1), I=1,JMAX)

1073 IT=1T+1

1074 WRITE(6,2220) IT

1075 J=0

1076 DO 710 1=1,JB

1077 IF(ABS{DEY(1,1)).LE.DEL) GO TO 708
1102 60 TO 710

1103 708 J=J+1

1104 710  CONTINUE

1106 [F{J.EQ.JB) GO TO 8050

‘1111 IF(IT.GT.ITT) GO TO 8050

1114 GC_TO 2000

1115 8050 CONTINUE

1117 G0 TG 5000

1120 END
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0 $IBFTC INVERX
1 SUBROUTINE INVERX{A,B,DET,IF)
2 DIMENSION A(1),B(1)
3 DET = 1.0
4 N = A(1)
5 L1O = N#%2 + 2
6 DO 1 I = 1,L10
7 1 B(I) = 0.
11 B(l) = N
12 B{2) = N
13 L9 = N + 1
14 DO 2 I = 3,L10,L9
15 2 B(I) = 1.0
17 JK = N ~ 1
20 J = 3
21 N1l = 3
22 N2 = N + 2
23 JO = N -1
24 J2 = N + 3
25 Jba = 3 ) .
26 DO 300 L1 = 1,JK »
217 NR = (J + N = 2)1/(N + 1)
30 NR1 =" NR -
31 NRI = N - NR
32 JN1 = J + N
33 IF (NRI .LT. 1) GO TO 900
36 IF (NRI .GT. 1) GO TO 804
41 800 AMAX = ABS (A(J))
42 AMXA = ABS (A(JN1))
43 IF (AMAX .GE. AMXA) GO TO 900
46 801 N5 = J — NR + 1
47 N6 = NS + N ~ 1
50 IAD = N
51 802 DO 803 IT = N5,N6
52 IT6 = IT + IAD
53 ATEM = A(IT)
54 ALIT) = A(CLT6)
55 A(IT6) = ATEM
56 ATEM = B(IT)
57 BIIT) = B(IT6)
60 803 B(IT6) = ATEM
62 GO TO 900
63 804 Jll = J + N + 1
64 J10 = J + N
65 AMAX = ABS (A(J))
66 D0 807 IT = 1,NRI
67 AMXA = ABS (A(J10))
70 IF (AMAX .GF. AMXAYGO T0OQ 806
73 805 AMAX = AMXA
T4 NR1 = (J11 + N —- 2)/(N + 1)
75 806 J10 = J10 + N
16 807 J1l = J1l + N + 1
100 N5 = J - NR + 1
101 N6 = N5 + N - 1
102 ITEM = NR1 = NR
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103 IAD = [TEM=N
—104 IE_LIAD. . GTa O ) GO 1O 802
107 900 CONTINUE
110 DENOM = A(J)
111 IF (DENOM .EQ. 0.0) GO TO 51

114 50 IF (IAD .GT, O ) GO TO 701
117 700 DET = DET#DENOM

120 GO TO 702
121 701 DET = DET#*(-DENOM)
= 2
123 A(Jl) = A(J1)/DENOM
124 100 B8(J1) = BIJ1)/DENOM
126 J3 = J4
IS 1 | N3 = N2 + 1
130 N4 = N2 + N
131 DO 200 L = 1,0
132 AMULT = A(J2)
133 DO 101 J1 = N3,N4
134 A(J1) = A(JLl) = AMULT=A(J3)
135 BlJL) = B(J1) - AMULT=B(J3)
136 101 J3 =- 93 + 1
140 d2' = 2 % N
141 J3 = J4
142 N3 = N3 + N
143 200 N4 = N4 + N
145 Nl = N1 + N
146 N2 = N2 + N
147 JQ. = 40 -1
150 J=Jg +N+1
151 J2 = J + N
152 300 J4 = J4 + N
154 DENOM = A(J)
155 IF (DENOM .EQ. 0.0) GO TD 51
160 60 A(J) = A(J)/DENOM
161 DET = DET#DENOM
162 LE & J:=u N o]
163 DO 400 J1 = LT,J
164 400 B(J]1) = B{J1)/DENOM
166 JO = JK
161 J2 = J = N
170 Jb = J =N+ 1
171 N2 = J2 = N
172 DO 600 L1 = 1,JK .
173 J3 = J4
174 N3 = N2 + 1
115 N4y = N2 + N
176 DO 500 L = 1,J0
177 AMULT = ALJ2)
200 DO 401 J1 = N3,N4
201 Al(J1) = ALJLl) = AMULT=A(J3)
202 B(J1) = B(J1) = AMULT=B(J3)
203 401 J3 = 43 + ]
205 J3 = J4
206 J2 = J2 - N

207 N3 N3 = N
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210 500 N4 = N4 - N
212 N2 = N2 - N
213 Jo = Jo - 1
214 d = J - N =
215 J2 = J - N
216 600 J4 = J4 - N
220 1 = 1

221 703 RETURN

222 51 [E =0

223 GO 10 703
224 END
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