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PREFACE 

The subject of induced drag is one that is both 

intriguing and frustrating to an aerodynamicist. It is the 

penalty that must be paid for producing lift using a wing 

having a finite span. Induced drag is drag that would be 

present even in a perfect (inviscid) fluid. Also present 

is the trailing vortex which produces the induced drag. 

It was desired to determine whether it was possible 

to combine the swirling of a propeller slipstream with the 

trailing wing vortex in ways such that the wing loading 

would be affected and the induced drag either increased 

or decreased. This paper reports the results of a wind 

tunnel testing program designed to examine this idea. 
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CHAPTER I 

INTRODUCTION 

The use of a wing, having a finite span 9 to produce 

lift results in three penalties which would not exist if 

the lifting surface had an infinite span. These three 

penalties are~ 

1. Decrease in lift near the wing tips (and, 

therefore, a lower CL of the wing at any 

angle of attack and a lower CL ). 
max 

2o Increase in wing drag by the amount of 

the induced drag. 

3o Creation of downwash behind the wing 

surfaces) which is not 

constant, but is a function of the wing 

lift coefficient. 

'rhis fact has long been recognizedo At the turn of 

the century 9 Lanchester postulated the type of flow that 

a real finite span wing would experience. His sketches 

predicted the formation and shedding of vortices which 

wrap up into large-scale vortices trailing downstream from 

each wing tip. Ji"'igure l is a reproduction of his sketehes 

published in Aerodynamics (27). 

1 
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Prandtl first discussed the problem of the three-

dimensional flow over a wing of finite span in 1911 and 

published his treatment of the problem in 1918. The 

Prandtl wing theory is the basis for most of the work 

which has been done to date on the finite-span lifting 

wing. 

Not only have the problems been long recognized, but 

the history of the attempts to improve the effectiveness 

of a finite lifting wing predates the Wright brother 0 s 

first powered flight. Pope (37) reports that Lanchester 

3 

secured a patent in 1897 covering the use of end-plates on 

wings! 

The principal objectives of various schemes to alter 

the flow around finite-span wings are: 

a) The increase of wing lift (i.e., increase 

CL and CL). 
max ~ 

b) The decrease of wing drag (by reduction 

of induced drag). 

The maximum lift coefficient of the wing is always 

less than the maximum coefficient of lift of the wing 

sections in two-dimensional flow. The reason for this 

difference is that the loss of lift near the wing tips 

causes the maximum lift coefficient of sections near the 

tips to be less than if the flow were two-dimensional. 

Also, the stall of the wing effectively begins when some 

portion of the wing stalls; that is, there is separation 



locally at some point on the airfoil. Although most of 

the wing may be unstalled, the wing CL will not continue 

to increase as ex, increases after a portion of the wing 

stallso 

It is, however, the induced drag which, in the past, 

has been the target of most of the improvement devices. 

The induced drag varies inversely with the square of the 

wingspan for a given wing loading. It is at low speeds 

that the induced drag is particularly important. At the 

4 

velocity for maximum range of an airplane the induced drag 

is equal in magnitude to the skin friction drag of the 

wing and airplane. At speeds less than this speed the 

induced drag is greater than the drag of the rest of the 

airplaneo 

Included among the desirable traits for an airplane 

wing are: 

a) High CL 
max 

b) Low values of induced drag (for takeoff 

and climb). 

c) High value of induced drag (for approach 

and landing). 

The physical span of an aircraft wing is limited by prac-

tical considerations. As mentioned above, the earliest 

( and the most often repeated) approach to the goal of 

making a wing perform as though the span were greater 9 has 

been the modification of wingtip geometry (e.go, through 

the use of end-plates, tip-bodies, etc.). In this paper 9 
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these methods are examined in Chapter II and shown to be 

inferior. However, it is possible to attain many of the 

desired wing traits by the use of rotating propellers at 

the wingtips. This application of energy to the flow 

field through the use of mechanical rotors is the subject 

of the experimental program reported in this paper. These 

experiments are examined in detail in Chapters III and IV. 



CHAPTER II 

EVALUATION OF END-PLATES 

It could be said that an infinite-span wing would not 

be necessary if it were possible to force the air to 

behave as though the span were infinite; i.e., if it were 

possible to maintain two-dimensional flow over the three­

dimensional wing. The (apparently) obvious approach to 

this objective is through the use of end-plates. 

Conventional End-Plates 

In 1927, Remke (21) reported a systematic investiga­

tion of the effect of end-plates on the drag of wings. 

Remke reached the following. conclusions: 

Calculations show that the induced drag 
of monoplanes and multiplanes may be decreased 
by attaching end-plates to the ends of the 
wing. The frictional drag of the end-plates 
may be calculated approximately. The reduc­
tion of the induced drag exceeds the additional 
frictional drag due to the end-plates at all 
but the small values of lift. For given dimen­
sions of wings and end-plates the reduction of 
drag less the friction of drag of the end-­
plates varies directly as the square of the 
absolute lift coefficient. The average reduc­
tion of drag decreases as the aspect ratio . 
decreases. Calculations and experiments agree 
quite satisfactorily for single wings equipped 
with end-plates. 

Wind tunnel tests show that the coefficients 
used in calculating. a frictional drag of the 

6 



end-plates may be reduced by fairing the end­
plates. The shape of the end...:plate determines 
to some extent the reduction of induced drag •.• 

Recent experiments have shown that much 
higher lift coefficients can be obtained than 
have been the case up to now with the conven­
tional airfoils •.• 

7 

Although these conclusions seem favorable to the idea 

of attaching end-plates to the wing, the period following 

the publication of this report was not marked by the appli-

cation of end-plates to aircraft wings. The key sentence 

in the conclusions is the one which states that the reduc-

tion of the induced drag exceeds the additional frictional 

drag due to the end-plates in §:11 but the small .Y§:lues of 

the lift. It is at these "small values of the lift" 

(actually, at small values of lift coefficient) that the 

airplane flies at high speed. This fact means that the 

additions of end-plates to the wing will limit the high 

speed performance of the aircraft. 

The models reported on by Hemke were rather small 

(four inches chord) and the Reynolds Number of the tests 9 

al though not stated in the report 3 were probably q:;ui te low. 

In order to determine whether Hemke 0 s conclusions were 

valid, a brief wind tunnel investigation was conducted. 

This test and all of the powered model testing 9 

reported in the following chapters., were performed in the 

Walter H. Beech Memorial Wind Tunnel on the campus of 

Wichita State University. This wind tunnel is a horizon-

tal, single-return, closed-throat tunnel. A plan of the 

tunnel is shown in Figure 2. 
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The test section is 7 feet by 10 feet with corner 

fillets which reduce the cross-sectional area to 68 square 

feet. The test section is 12 feet long. The tunnel is 

powered by a 1500 horsepower motor, and the speed is 

varied by controlling the propeller pitch. The six 

component pyramidal balance is mounted below the test sec­

tion floor. The balance readings, together with angles of 

attack and yaw, test section dynamic pressure, ambient 

pressure and temperature and run number are recorded by an 

on-line card punch. Because the mounting of the reflection 

plane model of the wing required that the wing be rotated 

90 degrees from the conventional position, the wing lift 

was measured by the side-force balance, the pitching 

moment of wing was measured by the yawing moment balance, 

and drag was measured by the drag balance. On1y these 

three components were measured. 

The end-plate test program consisted of a reflection­

plane wing model (referred to as the auxiliary model) 

tested in the wind tunnel in the following configurations~ 

1. The basic constant-chord wing with a plain 

square wingtip. 

2. The wing with a round end-plate. 

3. The wing with an oval end-plate.· 

The model details are sketched in Figure 3, and Figure 4 

shows the model under test in the wind tunnel. The model 

is a plastic-foam model with a wooden span and covered 

with fiberglas. 
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The effective Reynolds Number of the test was 

1. 6 X 106 • 

The addition of end-plates to a wing should have two 

principal effects: 

1. Decrease in induced drag. 

2. Increase in lift at any angle of attack 

(greater than angle of zero lift) result-

ing in increased slope of the lift curve 

and increased CL 
max 

These effects can be seen in Figures 5 and 6. 

The basic wing has the dimensions: 

Span= 80 inches 

Chord= 18 inches 

Area= 1440 square inches 

Aspect Ratio= 4.44 

The characteristics of the wing in the three configura-

tions tested are summarized in Table I. 

It will also be noted that the basic wing has a lower 

total drag than the wing with round end-plates in the 

range of CL from Oto 0.2 and a lower drag than with oval 

end-plate in the range O <CL< 0.3. 

As expected, the end-plates improved the induced drag 

characteristics of the wing, increasing the effective 

aspect ratio. The increased CL will result in decreas-
max 

ing the minimum flight speed. It is necessary to examine 

whether this method of accomplishing these ends is an 

efficient one. If, instead of putting end-plates on the 
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Wing Characteristic 

Lift-Curve Slope 

CL 
max 

V. /(V ) 
min min b i wi as c ng 

CD equation 

e w 

Eff. Aspect Ratio= Ae w 

CD at CL= 1 

TABLE I 

Sill'IMARY OF CHARACTERISTICS OF AUXILIARY MODEL 

Basic Wing With Round End-Plate 

0.072 per deg 0.0815 

1.185 1.249 

1.0 0.97 

2 CD = 0.011 + o.,0987cL 2 
CD = 0.0159 + 0.0?64CL 

0.725 0.938 

3.23 4.17 

0.109 0.092 

With Oval End=Plate 

0.0815 

1.229 

0.98 

2 CD = 0.0188 + 0.0784c1 

0.914 

4.06 

0.098 

I-' 
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wing 3 the same area were added to the wing by extending 

the wing span, the following results would obtain (Prime 

indicates extended span wing): 

Round end-plate area= 214 sq. in. (each) 

Semispan increment= 11.89 in. 

A ' = (b8 '.) 2 = (103.2§.l_ 1868 = 5.77 

If it is assumed that this extended span wing would 

have the same span efficiency factor as the basic wing, 

16 

i.e., ew = 0.725, then the effective aspect ratio would be 

(A'e) = 5.77 (.725) = 4.19. Then the drag equation would w 

be: 

CD = .011 + .076Cl. 

These calculations show that if, instead of install-

ing the round end-plate, the same area were added to the 

wingtip in the form of an extension of the span 9 the 

result would be an effective aspect ratio almost exactly 
. 

the same as that resulting from the end-plate. The coef-

ficient of drag of the extended wing will be less than 

that of the basic wing with round end plates at any given 

The drag of the two wings have been compared on the 

basis of same flight velocities or on the basis of the 

same wing-loading (gross weight of extended wing airplane 

is increased). In each case, the drag of the extended 
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wing is less than that of the wing plus end-plates. 

Calculations may be repeated for the oval end-plate: 

Oval end-plate area= 190.7 square inches 

Extended wing area= 1821.4 square inches 

A'= 5.625, A'e = 4.08 (compared to 4.06 w 

with oval end-plate) 

Again, it can be seen that extension of the basic wing 

results in lower drag coefficient. The extended wing has 

less drag. 

Full airplane model tests with rectangular and end­

plates were previously conducted in the same wind tunnel 

at an effective Reynold's Number of 1,840,000. Three of 

the configurations tested are shown in Figure 7. These 

tests were reported by Morris (33) and the results are 

reproduced in Figure 8. It can be seen that only at the 

high lift coefficients is the drag of the wing with end­

plates lower than that of the basic wing (in this case, 

CL> 0.7). 

These results confirm the conclusions reached by 

Riley ( 42): 

Substantial increases may be obtained in 
the maximum lift-drag ratio of wing-body 
combinations or complete airplanes, for which 
the total drag. of the components other than 
the wing is large relative to the wing drag, 
by the use of appropriately designed end­
plates. Except possibly for the smaller end­
plates area, however, the increases obtained 
are not likely to be as large as those which 
would be obtained by utilizing the end-plate 
area as a simple addition to the wing span, 



·Figure 7. Goodyear Racer Being Tested 
With End-Plates 
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thus increasing the wing geometric aspect 
ratio. 

The maximum lift coefficient of the wing 
experienced an increase when the end-plates 
were added. The rate of increase, however, 
decreased with increasing end-plate area. 

Similarly, Hoerner (22) stated: 

Basically, the end-plates have at least 
the drag of a pair of added wingtip extensions 
(having the same area). Any such added area 
naturally produces more lift for the same 
price of viscous drag. Practical application 
of end-plates in airplanes and/or guided 
missiles, therefore, seems to be restricted 
to such designs where the plates can also be 
utilized for stabilizing or control purposes. 
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Garbell (15) has discussed these cases of using wing-

tip fins instead of centrally-located vertical fins. 

For most of the history of flight, the major emphasis 

has been on increasing the cruise and top-speed flight 

velocities. These flight regimes are at low value of lift 

coefficient. It is logical, then, that end-plates have 

not been built onto aircraft for the reasons stated aboveo 

However, in recent years, increasing interest in STOL air-

craft has made it reasonable to consider schemes which 

might sacrifice high-speed performance to attain low-speed 

capability. It was this attitude which led Lowry and 

Vogler (28) to investigate the use of end-plates on wings 

equipped with jet flaps and for Morris and Ten Eyck (34) 

to consider the combination of end-plates and circulation 

control to improve the landing and take-off distances of a 

reconnaissance-type airplane. 

The Morris and Ten Eyck analysis determined the 
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effects of wing aspect ratio, end-plates, and circulation 

control on the distances to land and take-off over a 50 

foot obstacle. Assumed conditions included: 

Gross Weight 2100 pounds 

Standard sea-level atmsophere 
Runway friction coefficient: 

{0.06 for take-off 
. 0.40 for landing 

Maximum CL for take-off: No c.c., 29° flap: 2.24 

With circulation control: 

4.0 

Maximum CL for landing: No C.C., 60° flap: 2.0 

With circulation control: 

Wing area 174 square feet 

Taper ratio 

Two types of end-plates: 

(1) End-plates of 9% S were added to 

wingtip. 

(2) Wingtip turned up at each end so that 

turned-up area was 9% of remaining 

area. 

Equivalent parasite drag coefficient 0.028 

Addition of end-plates increased e by 400~. 

The results of this analysis are shown graphically in 

Figures 9 and 10. Examination of these figures leads to 

the following conclusions: 

1. Addition of end-plates would not shorten 

landing distance. 
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2. End-plates used in conjunction with circu­

lation control would decrease take-off 

distance. 

3. The area used in forming end-plates 

could be used to better advantage in the 

form of increased wing area. 
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The reason for the degradation of the landing per­

formance with end-plates is that the decrease in D/L pro­

duces a flatter approach (i.e. , smaller angle of glide, Y ), 

as shown in Figure 11. 

The approach angle · is Y = arc tan (DLF). In the 

final approach for minimum landing distance, Fis negligi­

ble so that Y = arc tan~- Since landing distance is the 

distance from a 50-foot obstacle to the aircraft stopped 

position, the angle of approach has a marked effect on 

landing distance. It is desirable for D/L to be.large for 

landing. Figure 12 illustrates the effect .of D/L on the 

landing distance. 

Variable-Geometry End-Plates 

These opposing D/L requirements for take-off and 

landing led Clements (6 and 7) to devise variable­

geometry end-plates for the purpose of controlling CD, 
1. 

(and, thus, D/L) to increase the angle of glide for land-

ing and to decrease the take-off roll. It was his idea 

that, by making the end-plates of symmetrical airfoils 

with hinged sections, the induced drag could be increased 
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for approach flight or could be reduced for take-off and 

climb. Clements used the model shown in Figure 13. Both 

the angle of incidence of the symmetrical-airfoil end-

plates and the angle of deflection of the end-plate flaps 

could be varied (inboard or outboard). These deflection 

angles are shown in Figure 14. 

Clements' reasoning was a bit vague. 

The portion of the end-plate above the 
wing is deflected to give a reduced pressure 
on the inboard side of the plate, and the por­
tion below the wing is deflected to give an 
increased pressure on the inboard side. In 
this way the force distribution of the wing is 
extended. The vortex flow of the wing tip is 
replaced by the vortex flow of the plates, or, 
in effect, the wing aspect ratio is increased. 

If, on the other hand, an increase in drag 
is. desired, the end-plates are deflected in a 
manner opposite that described above. The end­
plates will not supplement the wing lift dis­
tribution. The induced drag will not be reduced 
and will perhaps be increased because of a more 
rapidly diminishing lift distribution in the 
region of the end plates (7). 

A more rigorous analysis of end-plate action may be 

considered. The following visualization of the vortex 

pattern was suggested by Mangler (29). Figure 15 shows 

the lifting wing represented by a horseshoe vortexo The 

downwash velocity at any station (on the span) at a dis­
K tance y1 inboard of the wingtip is w = 
Y1 

The presence of end-plates on the wing will change 

the pattern of the horseshoe vortex to that of Figure 16. 

If the end-plates are symmetric (2h high), the strength 

of each of the trailing vortices will be one-half the 

strength of the bound vortex. Then, the downwash velocity 
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at the station of distance y1 inboard of the wing tip is: 

w' = w" = K/2 = 
r 

K 
2Vy12 + h2. 

we = -V ( w, )2 + ( w" 52 Y K2 + K'_· z ____ _ 
= I 4(y1 2 + h2 ) 4(y1 2 + h2 ) 

K 

= -v 2 ( y 1 2 + h2 ) 

(The subscript e refers to the case with end-plates.) 

D'. 
DI. 

ie w 
1 w e 

L' = v ; IT = Va a 

For a given L': 

D. I 

i e 
. L' 

D. I 

L' 
IT:' 

1 

i e Y 
~ = ------------· 

1 f2 V Y1 l! + h2 

D. I 

K Y1 

V2 Vy1 2 + h2 T 

1 
= 

f2 V 1 + ( h/Y1 )2 

This ratio, 1 e/D'. is always smaller than 1.0. 
1 

Note 

that as the height, h, of the end-plates increases, the 

value of D.' decreases. The limiting case is, of course, 
1 e ..• 

that of infinite end-plates ( h _.co) in which case the in-

duced drag approaches zero. This flow is, then, two-

dimensional. 

In the consideration of a vortex sheet instead of a 

single vortex filament, the reasoning is identical since 

the result of each trailing vortex filament within the 
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sheet is the same as that of the single vortex. Thus, the 

cumulative effect of all the vortices in the vortex sheet 

will have the same trend. The presence of a neutral end­

plate decreases the induced drag. 

The symmetrical airfoil (or a thin flat plate) will 

produce side-forces directed inboard on the end-plate 

above the wing and outboard below the wing. Examination 

of the pressure field tends to confirm this conclusion 

(see Figure 17). 

cross flow 
-~-

siole -t:~rce 
p< Po. 

-p > Po. 

\__A 
cross I/ow 

Figure 17. Side Forces on Neutral End-'Plates 

It will be noted that these sideforces are in the direc-

tion specified by Clements (7) for the reduction of wing 

induced drag. 

Figure 18 contrasts the downwash pattern for an 
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elliptically-loaded wing (a) with wings in which the lift 

had been shifted outboard (b) or inboard (c). For ease in 

visualization, these wings have been approximated, in each 

case, by a finite number of trailing vortices. At any 

spanwise station,. the downwash due to a single trailing 

vortex may be obtained by integrating the Biot-Savart 

equation from O to 00 , giving w = -4 r . Then the downwash 
n n 

at the station due to all the trailing vortices is 

~
00 r ; n is the spanwise distance to the trailing . 1 4 n n. 
l= l 
vortex. 

Shifting the trailing vortex strength outboard de-

creases the inboard downwash and decreases the average 

downwash velocity. The spanwise position of the rolled-up 

vortex will also move outboard. The decrease in average 

downwash velocity causes a corresponding decrease in the 

induced drag. Shifting the load inboard increases the 

average downwash, :increases the induced drag, and moves the 

rolled-up vortex inboard. These statements may be 

summarized: 

Direction of 

Wingloading_Shift 

Inboard 

Outboard 

Average 
Down wash 
Veloci!;y 

Increases 

Decreases 

Vortex Induced 

Span Drag 

Decreases Increases 
·. 

Increases Decreases 

This shifting of lift distribution may be done in a 

variety of ways: 

Wing twist - (wash-in and wash-out) 

Changing of airfoil section 



Flap deflection. 

It is well-known that wash-out (decreasing the angle of 

attack toward the tip) increases the drag of a wing. 
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As stated above, Clements proposed shifting the lift 

distribution (and, thus affecting the induced drag) by 

using adjustable end-plates. His model is shown in 

Figure 13. It consisted of an aspect ratio 5 wing of 

Clark-Y section equipped with full-span slots and full­

span 30% chord slotted flaps. In all tests, the flaps 

were deflected 50 degrees because Clements was particular­

ly interested in the landing and take-off configurations 

(high CL). The end-plates had an NACA 0012 section and 

were equipped with 30% chord plain flaps. The end-plates 

had a square planform; the end-plate chord equaled the 

wing chord and the end-plates extended one-half chord 

above the wing and one-half chord below the wing. 

The incidence of the end-plates was varied by 

rotating the end-plate above a vertical axis through the 

end-plate quarter-chord. Also the end-plate flaps were 

deflected. The sign convention is shown in Figure 14. 

The tests were performed at a Reynolds Number of 350,000. 

Several values of end-plate and flap deflections were 

investigated. The results of the best combinations are 

presented in Figure 19. Values abstracted from these 

results are given in Table II. 
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TABLE II. 

CANTED ADJUSTABLE END-PLATES 

C L CD CM dCM/dC 

Wing alone 1.4 0.308 8.2 -0.246 -0.068 

End-Plate and end-plate 
flap neutral 1.4 0.284 7.4 -0.149 -0.101 

End-Plate deflected -5° 
end-plate flap neutral 1.4 0.269 6.0 -0.205 -0.060 

End-Plate neutral, 
end-plate flap at +30° 1.4 0.345 8.3 -0.128 -0.148 

Examination of these results gives credence to Clements' 

statement that "Canted Adjustable End..,.Plates can be used 

to control the drag of wings. The drag can be increased 

or decreased depending upon the end-plate or end-plate 

flap deflection" (7). This method of constructing end-

plates appears quite promising. 
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L 

However, analysis of the results, in the same manner 

as employed for the standard end-plates previously, shows 

that the canted adjustable plates are not as good as they 

appear to be. Data from Figure 19 were used in plotting. 

CD vs CL2 in Figure 20. The principal results are tabu­

lated in Table III. Also included in Table III are re-

sults for an "Extended Wing" which resulted from extending 

the span of the wing, instead of.using end-plates, by 
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Configuration 

Basic Wing 

Wing with Neutral 
End-Plates 

"Best Take-off" 
Configuration 

"Best Landing" 
Configuration 

Extended Wing . 
(no end-plates) 

Extended Wing 
+ Drag Brake. 

TABLE III 

SUM1'1ARY OF WING PERFORMANCE WITH CLEMENTS' 
CANTED ADJUSTABLE END-PLATES 

CL CD Equation ew Effective 
max Aspect Ratio 

1.97 CD = 0 .155 + 0. 077CL2 0.828 4.14 

· 2.01 CD= 0.167 + o.059cL2 1.08 5.40 

2.055 CD= 0.158 + 0.058CL2 1.09 5.46 

2.0 CD= 0.239 + o.055cL2 1.162 5.81 

1.97 CD= 0.155 + o.055cL2 0.82 5.64 

1.97 CD= .0.239 + .055CL2 0.82 5.64 

D/L at CL= 1 

0.234 

0.225 

0.212 

0.28 

. o. 200 

0.294 

\)J 
(X) 
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adding the same area to the wingtips. The actual aspect 

ratio of this extended wing wo~ld be 7.0. The last con­

.figuration in Table III is the extended wing combined with 

a retractable flat""'.plate drag brake, having an area of 

about 7% of the wing area. 

Table III shows that this higher:--aspect-ratio­

extended-wing with the drag brake retracted would produce 

lower drag than the "Best take--off Configuration" for 

take-off and climb. With the drag brake extended, the 

drag of the "Best Landing. Configurationlt is exceeded. 

Thus, it appears that even with this most promising 

of the various arrangements of end-plates, the additional 

area could have been used more effectively in the form of 

extensions of the wing lifting surface. Improvements in 

effective aspect ratio must come from other schemes, such 

as the use of wingtip rotors described in the next 

chapters. 



CHAPTER III 

WINGTIP-MOUNTED PROPELLERS 

As reviewed in the ·previous chapter, a myriad of 

fixed and variable-goemetry end-plates have been proposed 

but with little effectiveness. The exception to this 

statement is the combination of end-plates with some meth­

od of circulation-control producing high values of CL, 

particularly when forced to use wings of low geometric 

aspect ratio. 

Rather than continue to manipulate wing geometry to 

approach two-dimensional flow it would seem logical to use 

some energy source for the task of directing the flow. 

The most obvious source of energy is the main aircraft 

powerplant. This paper will be restricted to propeller­

driven aircraft -- the propellers being driven by piston 

engines or by gas turbines. 

The purpose is to determine whether the engine-driven 

propellers which propel the aircraft can, at the same time, 

be used to control the wing loading and the downwash and 

drag of the wing. 

Objectives and Proposed Solution 

The objectives, previously set forth, of controlling 

4-0 



the wing loading and the downwash are: 

a) High CL 
max 

b) Low values of induced drag (for take-off 

and climb). 

c) High values of induc.ed drag (for approach 

and landing). 
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To these highly desirable.characteristics should be added 

the requirements that the system for attaining these ends 

should: 

1. Add no weight or structural penalty. 

2. Add no additional profile drag increment. 

3. Add no complexity to the control of the 

aircraft. 

These requirements can be met by placing the propel­

lers which propel the aircraft at the wingtips. The 

engines would be mounted in pods, or nacelles, fitted to 

the ends of the wing. 

Possible advantages of such an arrangement include: 

1. The rotational component·of the propeller 

slip-stream is available for amplifying or 

attenuating the wing vortex system. This 

component has, heretofore, been considered 

the result of lost energy. 

2. The propellers are necessary for propulsion 

of the aircraft~ i.e., this is not a case 

of adding a piece of equipment or structure; 



rather, it is a case of locating it to 

best advantage. 

3. Placing the engines and propellers at the 

wing-tips will relieve the wing shear and 

bending-moments and could result in a 

lighter structure. 

4. Placing the engines at the wingtips and the 

fuel in the outboard parts of the wings 

would greatly improve the safety and chances 

for crew survival in cases of crash landing. 

Possible disadvantages of this arrangement include: 

1. Difficulty (or impossibility) of trimming 

the aircraft for one-engine-out operation. 

2. Production of .aero-elastic problems created 

by the changing of the torsional moment of 

inertia of the wing and the interaction of 

bending and torsional modes of flutter or 

vibration. 

The main objective of this paper is to report the 

results of an experimental program designed to test and 

evaluate the effectiveness of this scheme. 

Experimental Investigation 
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The test program consisted of wind tunnel testing of 

a wing, with and without propellers mounted at the tip of 

the wing. These propellers were powered by a motor con­

tained within a streamlined pod at the wingtip. 



Model Description 

The wing tested is a tapered wing with an aspect 

ratio of about 8. The dimensions of the model are given 

in Table IV and Figure 21 is a sketch of the model. 

In order to provide a periptery not influenced by the 

tunnel walls, the test was a reflection-plane test. The 

reflection-plane was the floor of the tunnel test section 

as shown in Figures 22 and 23. The wing model that was 

tested is a hollow, cast magnesium wing having an unbroken 

taper in thickness ratio and in planform. The wingtip, 

ailerons, flaps and inserts are mahogany. The model was 

mounted with no dihedral and with the vertical quarter­

chord line collinear with the balance centerline. Figures 

22(a) and 23(a) show the wing with standard plain tip in­

stalled in the tunnel. 

In addition to the plain tip, the model was tested 

with a wingtip pod. The purpose of the pod is to house an 

electric motor which serves as drive for the propeller and 

impeller. The pod is a streamlined body of revolution 

19! inches long with a fineness ratio of 4.6. 

22(c) shows the pod with a dummy spinner nose. 

Figure 

The 

spinners of the propeller and the impeller have the same 

contour. 

It was planned to use two propellers in the tests -­

one of standard conformation and of relatively high effi­

ciency (high ratio of axial velocity to angular velocity) 

and the other having fairly high rotational velocity 



TABLE IV 

MODEL PHYSICAL DIMENSIONS 

Semi-area 

Semi-span 

Aspect Ratio 

Mean aerodynamic chord 

Airfoil sections 

Root 

Tip 

Twist 

Flap chord 

Flap span 

Aileron chord 

Aileron span 

Win~ Pod 

Length 

Maximum diameter 

Frontal area 

Planform area 

Wing semi-span, including pod 

3.992 sq. ft. 

4.011 ft. 

8.06 

0.995 ft. 

NACA 23018 

NACA 23012 

None 

25% chord 

62. 5% span 

30% chord 

25% span 

19! in. 

4! in. 

14.2 sq. in. 

40.5 sq. in. 

4.302 ft. 

Wing aspect ratio, including pod 8.78 
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(b) Four-Blade Propeller 

(a) Plain Tip 

(c) Dummy Spinner 

; 
1 Figure 22. 

(d) Impeller 

Reflection Plane Wing With Various 
Tip Configurations 
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Figure 23. Various Test Configurations of Model 
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compared to the axial velocity. The purpose in using this 

second propeller was to obtain data bearing on the obser­

vations of Lippisch1 • He stated that a limitation to the 

use of a propeller in affecting the wing trailing vortex 

was the efficiency of the propeller -- about 80% of the 

energy provides axial acceleration of the air and only 

about 20% is available to produce rotation with which to 

supplement or to counteract the trailing vortex and the 

attendant downwash pattern. 

Some years ago, the writer tested, for the Beech 

Aircraft Corporation, a propeller invented by Tom Quick. 

This Quick propeller was an impeller similar to that shown 

in Figures 22(d) and 23(d). Quick maintained that the air 

would be thrown radially outward producing at the nose of 

the impeller a region of pressure that would be lower than 

that which existed on the rear portion of the streamlined 

housing, producing thrust. The tests indicated that the 

device does produce thrust, but the propulsive efficiency 

peaks at less than fifty per cent. This type of propeller 

was chosen to serve as the inefficient propeller for these 

tests. The Quick propeller will be referred to as the 

impelleE_ and the f(Dur-bladed propeller will be called the 

12.£.QJQ.eller. 

1Alexander Lippisch. Kenneth Razak, in 1965, report­
ed to the writer a conversation on the subject which he 
had with the famous designer of the German rocket propelled 
fighter. At that time (about 1956) Lippisch was engaged 
in O.N.R. sponsored research in V/STOL aircraft. 



The impeller is shown on the wing in Figures 22(d) 

and 23(d); the propeller is shown in Figures 22(b) and 

23(b). They are compared in Figure 24. 
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The impeller has the same basic contour as the pro­

peller spinner. Added to that contour are twelve radial 

blades having a maximum depth of one inch giving an over­

all impeller diameter of 5.25 inches. Figure 26 is a 

drawing of the impeller~ 

The blade planform and blade sections of the four­

blade propeller are shown in Figure 27. This propeller is 

a right-hand rotation propeller. The pitch angle of the 

propeller blades was arbitrarily set at 15.5° (at r/R = 6Cf/o) 

using the jig shown in Figure 25. This angle corresponds 

to a very low pitch. Propeller activity factor is about 

90 per blade and the total propeller diameter is 15 incheso 

The motor installation is shown in Figure 28. The 

motor is a synchronous motor rated at 10 horsepower at 

12,000 r.p.m. and is three inches in diameter and six 

inches long. The power source is a variable frequency 

(0 to 400 cycles/sec.) generator; the frequency of the 

generated power is varied to change the motor speed. 

Speed is monitored by beating an induced signal from a 

loop on the motor shaft against a known input. Figure 29 

shows the motor controls including the signal generator, 

oscilloscope, and TV monitor. As shown in Figure 28, the 

power leads and tachometer wires, as well as the cooling­

water tubing and t~ermo-couple leads were carried to the 
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Figure 24 . Impeller and Prope ller 

Figure 25. Propeller on Pitch- Angle J i g 
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Figur e 28 . Motor Installation 

Figure 29 . Motor Instrumentation 
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motor through the hollow wing. 

Downstream of the wing, a tuft grid was mounted for 

the observation of the flow field direction. This grid is 

shown in Figures 22 (a, b, and c), and in Figure 23(a) the 

remotely-operated camera can be seen upstream of the tunnel 

propeller (the camera hood has been removed and is on the 

floor). 

In order to correct the values of lift, drag, and 

pitching moment observed during the power-on tests, the 

lift, drag, and moment produced by the propellers was de­

termined using the propeller mount shown in Figure 30. 

The dynamic tare was found using the dummy spinner as 

shown in Figure 30(a). The propellers were operated as 

shown in Figures 30(b and c). In each case, the mount was 

rotated through the same angles of attack as those at 

which the wing had been tested. The propeller speeds were 

the same as during the wing tests. 

Test Program 

The test program included the following types of 

tests and model configurations. 

Test Method: 

1. Photographs of tuft-grid downstream of the 

model. 

2. Balance measurement of three-components 

(lift, drag, and pitching moment) through 
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range of angles of attack from -10° to 

+26 °. 

56 

The tuft grid pictures were take.n at nominal angles 

of attack of 12° and 0°. The flap deflections were either 

0 or 40°. These angles were chosen from preliminary bal­

ance tests which indicated that the angle of zero lift of 

the basic wing was approximately zero and at~= 12° the 

CL was about 1.0. 

Model Configurations: 

1. Wing with plain tip (Figure 22(a) and 23(a)). 

2. Wing with pod and dummy spinner (Figure 22(c)). 

3. Wing with pod and impeller (Figures 22(d) and 

23(d)). 

a) Impeller stationary 

b) Impeller turning in the same 

direction as the wing trailing 

vortex (two speeds) 

c) Impeller turning in the counter­

vortex direction (two speeds) 

4. Wing with pod and propeller (Figures 22(b) 

and 23(b and c)). 

a) Propeller stationary (two positions) 

b) Propeller windmilling (counter­

vortex direction) 

c) Propeller turning counter-vortex at 

greater than windmilling speed 
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d) Propeller turning counter-vortex 

at less than windmilling speed 

5. Post-mount with pod (full range of cr) 

a) Dummy spinner (Figure 30(a)) 

b) Impeller (pro- and counter-vortex) 

(Figure 30(c)) 

c) Propeller (3 speeds) (Figure 20(b)) 

The coordinate system adopted for the test is shown 

in Figure 31. 

Results of the Test Prog~am 

Since the experimental results, when presented 

graphically, are quite bulky, only those figures of pri­

mary importance are included in the body of this paper; 

other results may be found in the Appendix. 

Tuft-Grid Results 
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In order to interpret the results of the tuft grid 

survey, 140 of the pictures were printed. Figure 32 shows 

example pictures. These pictures show the flow field in 

the Y-Z plane at various distances downstream of the model 

trailing-edge (at the tip). All pictures were taken at a 

tunnel dynamic pressure of 10 psf. It is apparent that 

the position of the wingtip vortex core and the flap out­

board core can be estimated. 

Since the pictures were taken with the grid located 

at various positions, ranging from x = 6 inches to 
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Fiqure 32. Examples of Tuft-Grid Photographs . (a) Wing with Plain Tip , a = 12°, x = 12 in. 
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(b) Pod and Dummy Spinner, 

a = 12°, of= 40°, X = 48 in. 

(c) Plain Tip 

a = 12°, of= 40°, X = 12 in. 

Figure 32 (~ont.). Examples of Tuft-Grid Photographs 
0, 
0 



(d) N = 175 rps. (e) N = 122.5 rps. (f) N = 50 rps. 

Figure 32 (cont.). Examples of Tuft-Grid Photographs: Wing with propeller, Counter-

Vortex Rotation, = 12°, +" 
4 0 °, X = 48 in, 

C 
f··" 



(g) Impeller Stationary (h) N=l75 r ps, counter- vortex 

Figure 32 (concluded). Examples of Tuft- Grid Photographs . Wing With Impeller, 
a = 1 2~ Of= 0 °, X = 48 in. 

0) 
f\) 



x = 96 inches, it is possible to estimate the trajectory 

of the trailing vortex core as it rolls-up. Figure 33 

shows the trajectories of three trailing vortices in the 

X-Y plane. The model configuration is the wing with the 

impeller installed at the tip;~= 12°, 6f = 0°. With no 

rotation of the impeller, the vortex-spari is 101 inches; 

counter-vortex rotation shifts the vortex outboard to a 

vortex-span of 107 inches; vortex-direction rotation re­

duces the vortex-span to 89 inches. Figure 34 shows these 

trajectories in the X-Y plane and Figure 35 shows them in 

the Y-Z plane. 

A similar graph is shown in Figure 36 which is the 

X-Y plane showing the trajectory of the vortex core as 

affected by the propeller rotation. The largest lateral 

shift of the trajectory was produced by the rotation of 

the propeller at less than windmill speed. 

Figure 37 shows the position of the center of the 

vortex core at a distance of one-half wingspan downstream 

of the trailing-edge for most of the configurations tested. 

The wing was at an angle of attack of 12° and with the 

flaps deflected 40°. The following results can be 

detected: 

a) Adding the pod moves the trailing vortex 

outboard compared to the wing with a 

standard tip. 

b) Counter-vortex rotation of the impeller 

and counter-vortex rotation of the 
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propeller (at greater than windmilling 

speed) moves the vortex outboard. 

c) Vortex rotation of the impeller and 

counter-vortex rotation of the propel­

ler at less than windmill speed causes 

the vortex to move inboard. 

d) The tip configuration and rotor rotation 

have little discernible effect on the 

position of the flap outboard vortex. 

e) In the range of rotational speeds in­

volved, the propeller produces greater 

shift of the trailing vortex than does 

the impeller. 
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The effect of rotation of the two types of propellers 

is further illustrated in Figure 38. It can be seen that 

as rotation becomes more strongly a counter-vortex rota­

tion the vortex moves outboard. As the rotation becomes 

mbre strongly vortex-directed, the trailing vortex moves 

inboard. The vortex tends to remain in the plane of the 

wing with the impeller, but there is a shift in the z­

direction with the propeller. 

Results of the Force and Moment Measurements 

The data from the balance system was reduced using 

the 1620 digital computer. Some of these answers were· 

manually plotted and the remainder were plotted using a 

Calcomp on-line plotter controlled by the 1620. 
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The reflection-plane test results are compared with 

the full-model test in Figure 39. The complete wing test 

data are from reference 12. It is believed that there is 

satisfactory agreement of the data. 

Another preliminary test was made to determine 

whether the proximity of the tuft grid to the wing would 

affect the wing lift. In run 105, the grid was only 1 

foot downstream of the wing trailing-edge at the outboard 

tip. In run 108, the grid was 4 feet·downstream. These 

runs are compared in Figure 40. This plot is a computer 

plot. Except for a bad point near the stall, the two runs 

show excellent -agreement. Run 102 is also plotted in 

Figure 40 showing the effect of changing the Reynolds 

Number from 1.2 x 106 to 6.7 x 106 • 

All of the subsequent wing tests were at a Reynolds 

Number of 6.7 x 105 • This Reynolds Number resulted from a 

tunnel dynamic pressure of 10 pounds/sq. ft. (about 100 

ft./sec. velocity) which was dictated by two requirements: 

1. The behaviour of the tufts was better at 

less than 10 psf. dynamic pressure (also, 

the replacement rate for tufts was less 

than at higher speeds). 

2. The windmilling speed of the propeller 

increases as speed increases. It was 

desirable to have a speed low enough so 

that the. propeller could be operated at 

greater than, as well as less than, 
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windmill speed. The·maximum operating 

spee·d of the propeller motor is 200 r.p.s. 
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The results of the· reduction of the balance. readings 

are presented graphically in the following forms: 

CL vs. a. and CL vs. C 
l'\;4 

(not corrected for thrust) 

CL vs. CD' ex.' C 
Mc/4 

(corrected for thrust) 

CD vs. Cl (corrected for thrust) 

The data were reduced both with and without tunnel-wall 

corrections. Sine.a the results were to be correlated with 

the tuft-grid pictures, it was decided to use the results 

uncorrected for tunnel boundary. As stated previously, 

the correction for thrust consisted of determining the 

lift, drag, and pitching moment due to the thrust of the 

propeller and impeller as functions of angle of attack 

(see Figure 30). These values were then subtracted from 

those measured during the powered tests. 

Figure 40 is an example of CL vs a.. The complete set 

is given in Appendix B, as are the CL vs C curves. 
Mc/4 

Figure 41 is an example of a complete wing polar: 

CL vs CD, ex., and CM . . The complete set of these curves 
. c/4 

are in the Appendix. The figures which resulted from pow-

ered runs have been corrected for the direct effects of 

thrust. 

Figure 42 is· an example of a CD vs CL2 graph. The 

plots for the remaining runs are presented in the Appendix. 
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The principal results have been abstracted from these 

curves and are tabulated in Table V. 

The most interesting of these results are shown 

graphically in Figures 43 and 44. · In each of these 

figures, the abscissa is the counter-vortex rotational 

speed of the rotor above windmill speed. In the case of 

the propeller, windmill speed is about 120 r.p.s., so that 

the propeller curve is plotted for the range 40 r.p.s. to 

175 r.p.s. (counter-vortex). In the case of the impeller, 

the windmill speed is zero; the negative speeds are, then, . 
rotation in the vortex-direction and the positive speeds 

are rotation in the counter-vortex direction. 

Figure 43 shows a very pronounced relationship be­

tween impeller or propeller speed and the effective aspect 

ratio~. Effective aspect ratio, Ae is defined: . . w 

From the plots of CD vs Cr} , 

d CD 
d C 2 

L 
= m = 1 

Ae • 
1t w 

(Note: It is assumed that the 
d CD 

graph is a straight line, 

i.e., m = d C 2 = constant.) 
L 

Effective aspect ratio= 1 
n m 

The relation between CL and rotor speed is less 
· max 

obvious and less conclusive; see Figures 44 and 45. 
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TABLE V 

SUMMARY OF WING CHARACTERISTICS 

Rotation CL CL 2 

of Direction N not max not ex. coro for 
Cn = CD +mCL 

Effo Aspect COI'o for p 
(ropoSo) coro thrust coro thrust (cor. for Ratio= Ae 

thrust) w 

Plain Wi~ 

0 None lo22 - .083 - .012 + .0477CL 2 6.67 
40 None L80 - ~08 - :052 + o042CL2 7.48 

Pod with Dummi Spinner 

0 None lo25 - 0078 - • 013 + o o493cL 2 6 .. 45 

40 None. 1.80 - .093 - .05$ + .0357CL 2 8.91 

Impeller 

0 None 1.25 .085 .085 .013 + .0503CL 2 6.32 

0 Vortex 50 1.26 L215 .072 .015 + .0517CL 2 6.15 

0 Vortex 175 1.25 1.27 .083 .0125 + .0595CL2 5.34 
0 Counter Vor. 50 L22 1.19 .085 ~015 + :0307cL 2 10.35 

0 Counter Voro 175 1.31 1.26 .08 0 + .017CL2 18.7 

4-Bladed Propeller 

0 Counter Voro 50 Oo95 0.19 008 0072 .032 + .0795cl 4.o 

0 Counter Vor. 119 L2 1.22 .085 .08 .012 + .0555cl 5.73 
0 Counter Vor. 175 L,325 1.265 .10 0086 - 0 013 + 0 03150{ 10.1 

-.....J 
\.0 
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CHAPTER IV 

ANALYSIS OF RESULTS 

The principal results expected from the experimental 

program are: 

1. Alteration of the flow field downstream of 

the wing. This changed flow field would be 

identified by changes in the downwash and by 

altered trajectories of the core of the 

trailing vortex. 

2. Changes in the wing loading, resulting in 

changed lift-curve slope and CL • 
max 

3. Changes in wing drag, chiefly in the in-

duced portion of the drag. 

Vortex Trajectories 

Figures 33 through 37 show the changes in the posi­

tion of the core of the trailing vortex caused by rotation 

of the impeller and of the propeller. The chief effect is 

the change in the vortex span which is apparent in Figures 

33 and 36. It can be·seen that the change in vortex span 

is not the result of bending of the flow downstream of the 

wing. Rather, the shift apparently occurs upstream of the 

82 
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first grid position. This fact indicates that the vortex 

span is the result of the distribution of strength in the 

shed vortex sheet. 

Table VI summarizes the vortex span and the effective 

aspect ratio for the various configurations tested. 

TABLE VI 

VORTEX SPAN AND EFFECTIVE ASPECT RATIO 

Configuration Eff. Aspect Ratio 
A· ew 

Dummy Spinner, No Propeller 6.45 

Stationary Impeller 6.32 

Impeller, Counter-Vortex 
Rotation, N = 175 r.p.s. 10.35 

Impeller, Vortex-Rotation 
N - 175 r.p.s. 5.34 

Propeller, Windmilling, 
N = 175 r.p.s. 5.73 

Propeller, Counter-Vortex 
Rotation, N = 175 r.p.s. 10.1 

Propeller, N = 50 r.p.s~ 4.0 

Vortex Span 
bv, ft. 

8.25 

8.42 

8.93 

7.42. 

8.33 

8.42 

7.42 

In an attempt to determine a relationship between 

effective aspect ratio and the vortex span, these quanti-. 

ties are graphed in Figure 46. A curve has been fit to 
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the data; the equation of this curve is: 

The validity of this equation is suspect because of the 

relatively large scatter of the data. However, it can be 

seen that there is an increase of vortex span as the ef­

fective aspect ratio increases. 

It will be noticed, from Figures 34 and 35, that the 

vortex (no power) leaves the wing at the level (in the z­

direction) of the trailing-edge of the wing, while with 

power (either direction) it is lower; i.e., roughly at the 

level of the tip of the pod. Figures 35 and 37 indicate 

that the propeller produces a greater vertical shift of 

the vortex core than does the impeller. This result 

agrees with the larger changes in effective aspect ratio 

caused by the four-bladed propeller. 

The cause of both of these effects is the axial 

component of propeller/impeller slipstream. This axial 

velocity is higher than the stream velocity. At the 12 

degree angle of attack, the axial velocity has a component 

in the z-direction of Vss sin 12° (equals 0.208Vss). This 

component moves the initial point of the vortex down. 

Also, the component will be larger for the propeller than 

for the impeller because the propeller has a higher 

slipstream velocity, Vss· 
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Effects of Power on Lift and Drag 

It would be expected that the addition of thrust 

power to a wing, producing a slipstream over the wing, 

would result in. a higher indicated lift coefficient at any 

given angle of attack and in a higher maximum lift coeffi­

cient. With reference to Figure 47, it may be reasoned 

that: 

(C ) 
L calculated 

L 
= qa S ; 

where, L is lift developed by . ss 
the portion of the wing in the 

slipstream (Sp). Lres is lift 

developed by the rest of the 

wing (Sres). 

L = CL qss 8p + CL qa 8res 
actual actual 

The number within the brackets is always greater than 

1 for a thrusting propeller. The apparent CL' i.e., 

CL , is larger than the CL actually being developed by 
calc 

the wing. Note that this apparent, or effective, CL does 
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not include any vertical component of the propeller thrust. 

As an example of this effect, data have been extracted 

from references 12 and 13 on the RM-9 airplane. This air­

plane was equipped with the same wing as the wing of this 

test, except that it was equipped with four engine na­

celles, two on each wing. A sketch of the model is shown 

in Figure 48. Some effects of power are listed in Table 

VII. 

TABLE VII 

RM-9 WITH 60 DEG. FLAPS, NO TAIL 

Configuration 

No Propellers 

Propellers 1 and 2 only, Tc= .82 

Propellers 3 and 4 only, Tc= .82 

All Propellers, Tc~ .82 

0.93 

1.33 

1.47 

1.80 

Re= 7.3 x 106 , Direct Thrust Effects Removed 

1.77 

2.38 

2.50 

3.40 

These data confirm the earlier statement, i.e., that 

the CL in a slipstream is higher than without·a slipstream, 

even without including any lift component of the thrust. 

They also confirm.the known fact that it is better to turn 
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the propellers in the direction opposite to the direction 

of the vortices being shed. Propellers 1 and 2 turn the 

same direction as the shed vorticity of the port wing; 

propellers 3 and 4 turn in the direction opposite to that 

of the shed vorticity of the starboard wing. The 6CL due 

to the propeller action is apparently .only partly due to 

increased slipstream velocity. It is also due to the 

amplification or attenuation of wing lift due to interac-

tion of the rotating propeller slipstream with the wing. 

Figures 44 and 45 indicate a similar effect with a 

single impeller or propeller mounted at the wingtip, i.e., 

as the counter-vortex speed of the rotor increases, the 

value of CL increases. Figure 45 indicates that cor-
max 

recting CL for thrust produces negligible change in 
max 

CL • 
max 

It is apparent that direction of rotation of the 

propeller, and also the spanwise position of the propeller 

affect the wing performance. In order to analyze these 

effects, additional data were abstracted from reference 

54. The advantage of using these data is that both the 

wing and propeller used in the current test are the same 

as those used on the Rl"l-9 (54). However, the propeller 

pitch was different (15.5 deg. in present test, 19 deg. on 

RM-9). 

It was possible to calculate, from the tunnel tests, 

the thrust characteristics of the propeller and of the 

impeller. These are shown in Figures 49 and 50. Thrust 
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. Thrust Thrust 
coefficient ma;y be defined as CT= PN2d:.r or Tc= p V2d2' 

Tc is used in Figures 49 and 50 2 

chiefly for comparison with values from reference 54. It 

will be noticed that the operational range of J = ;d for 

the impeller is considerably above that of the propeller. 

The curves for the.propeller are extended into the nega­

tive thrust region, for this range corresponds to the 

rotational speeds less than windmill speed. Also in 

Figure 50, there is a graph of the thrust coefficient 

curve for the propeller at the blade angle used in the 

RM-9 tests. 

Most of the RM-9 powered data is reported at T0 = .82 

or Tc= .44. The T0 = .44 was developed at a rotational 

speed of approximately 188 r.p.s. This combination was 

the nearest to the Tc R:$ .65 and N = 175 r.p.s. in this 

test. 

Lift curve data was abstracted from Figures 9 and 10 

of reference 54 for the RM-9 wing, body and nacelles 

combination with 6f = O. The data were corrected to the 

cases of single propeller operation and these corrected 

curves are platted in Figures 51 and 52. The effect of 

propeller position on the lift and drag of the wing is 

tabulated in Table VIII. The values of effective aspect 

ratio., lift-curve slope 1 and D/L at CL= 1.0 from Table 

VIII are plotted in Figure 53. 

Figure 53 illustrates, very well, the effects of 

spanwise position of the propeller on the wing 



TABLE VIII 

EFFECT OF PROPELLER POSITION ON WING CHARACTERISTICS 

Propeller Position Direction 
of Rotation CL 

Reflection Plane Wing, 6f = 0 

No Propeller (with Pod) None 

. ..L-Tip, b/2 - 1.0 * 

Tip, ~ = loO Counter-
Vortex 

RM=9 Model - Wing, Body9 Nacelles 9 Of= 0 
--

No Propeller (with Nacelles) None 

No. 1 9 b72 g 0.66 Vortex 

No. 2 9 ~ ~ 0.31 Vortex 

No. 3~ ~ = 0.31 Counter= 
Vortex 

No. 4, ~ = o.66 Counter= 
Vortex 

O'. 

dCL 
=·-

do. 
CD Equation 

0.078 CD= ;013 + .o493cL2 

0.072 2 
CD= .032 + .0795CL 

0.086 
. 2 

CD= .013 + .0313CL 

0.0785 2 
CD= .,018 + .0483CL 

0.0825 CD= .02 + .o8cL 
2 

0.0825 2 
CD= .025 + .0583CL 

0.0831 CD= .016 + .o633CL 
2 

0.0788 2 
CD= .009 + .0508CL 

*Counter=vortex rotation 9 but at negative thrust and N less than windmill speed. 

Ae 
w 

6.45 

4.o 

10.1 

6.58 

3.98 

5.46 

5.03 

6.26 

D/L at CL= 1.0 

0.062 

0.112 

0.018 

0.,066 

0.10 

0.083 

0.079 

0.060 

'° \.N 
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performance. In each case listed, there is only one pro­

peller operating; it is operating at the spanwise position 

listed. All points plotted in Figure 53 correspond to 

N = 175 or 188 r.p.s. and TC = .42 or .• 65, except the ones 

corresponding to the left-hand wingtip Cb72 = -1.0). 

These points are for the propeller turning in the counter­

vortex direct.ion at less than windmill speed and at nega­

tive thrust (speed is about 70 r.p.s. less than windmill 

speed, and TC~ -0.8). 

In considering the effect of wing lift characteris­

tics, distinction must be made between the two effects of 

power: 

1. Increased slipstream velocity. 

2. Rotation of slipstream. 

The effects of (1) were discussed above; i.e., as the 

slipstream velocity increases, the wing CL increases (at 

any given a). The effect of (2) is that the wing is 

experiencing a lower angle of attack in one portion of the 
r 

slipstream and a higher angle of attack in the other 

portion. 

The effect of these two factors is sketched in Figure 

54. It will be noted that experimental data from r.efer­

ence 15 confirms this analysis. More recent data in 

reference 16 indicates the same effects. The result of 

(2) is that the effects of the 6a and -6a due to slip-

stream practically cancel for the propeller located 

inboard. However, when the propeller is near or at the 
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tip, so that part of the slipstream is beyond the wingtip, 

the effects do not cancel. If the propeller at the tip is 

turning in the vortex-direction so that the propeller 

blades move down in front of the wing, there is a decrease 

in lift of the wing; the effect is like washout. If the 

wingtip propeller is turning in the counter-vortex direc-

tion, so that the propeller is moving up in front of the 

wing, there is an increase in the lift of the wing; the 

effect is like washin. For this reason, the effect of 

propeller location on lift is practically confined to 

locations near the wingtips (see CL in Figure 53). 
a, 

The most notable effects of propeller spanwise posi-

tion are those involving drag.· Figure 53 shows a marked 

increase in effective aspect ratio as a counter-vortex 

turning propeller is moved toward the wingtip (4.6 with 

propeller on centerline;. 9.1 at wingtip). The effective 

aspect ratio decreases as a pro-vortex turning propeller 

is moved toward the wingtip. There is a corresponding 

effect on drag. 

Table V and Figure 43 summarize the effective aspect 

ratio and the induced drag due to wingtip-mounted impeller 

or propeller. The values tabulated and plotted were 

obtained by fitting straight lines to the graphs of 

The equation of the line is CD = CD + m CL2 , 

p 

The change in the induced drag due to a wingtip rotor 
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may be explained by Figure 55. In the case of the vortex­

direction rotation, the downwash due to the rotor combines 

with the wing downwash to produce greater downwashat tlie 

wing and an increase in the induced drag. Figure 55 also 

shows that a counter-vortex rotation of the rotor.produces 
. . ·. . .· . . 

a smaller downwash at the wing, and a smaller induced drag. 

In terms of the. trai1i:p_g vortex strength, the vortex-

direction turning rotor may be called a "vortex source", 

while the co11n.ter-vortex turning rotor may be called a 

"vortex sink". 2 These functions are the results of the 

rotating vortex sheet downstream of the propeller which 

are superimposed on the shed vortex sheet of the wing. 

The wing vortex sheet is thus attenuated or amplified. It 

is possible to conceive of counter-vortex rotating propel­

lers distributed along a wing of sufficient strength to 

absorb completely the vortices shed by the wing, resulting 

in infinite effective aspect ratio. 

It will be noticed, in Table V, that in some cases 

there is a decrease of para.site drag accompanying the 

applications of power. There may be some error in cor­

recting for direct thrust effects. T.here is also some 

II cleaning-up" 'of wing flow and nacelle flow due to the 

propeller slipstream. Similar effects are rioted in refer­

ences 54 and 5. .The effect is more pronounced with the . 

211 vortex source'i and "vortex Sink" were used in this 
sense by Maurice Roy, Director of the O.N.E~R.A. •See his 
article in reference 51. 
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. . 
propeller than with the impeller (probably due to the 

higher slipstream velocity of the propeller). 

Effect on Aircraft Performance 

In order to provide an example of the effects of 

wingtip propellers on aircraft performance, a hypothetical 

aircraft has been modified. The aircraft is an anti­

submarine warfare (ASW) aircraft~ It is a mid-wing, twin 

engine monoplane with fully retractable landing gear. The 

chief specifications are: 

Wingspan 

Gross Weight 

Power Loading 

Wing Loading 

Wing Area 

Aspect Ratio 

Engines: 2 P. and W. R-2800-CB16 

Propellers: 13 ft., 4 blades 

80 

40,000 

8.34 

50.2 

796.5 

8.0 

ft. 

lb. 

lb. 

lb. 

sq. ft. 

Additional specifications are contained in reference 39, 

which contains a detailed description of the design and 

performance of the airplane. 

The drag equation for the airplane was predicted to 

be cD = 0.0188 + o.0378CL2 • 

If the engine nacelles and propellers·were moved to 

the wingtips with each propeller turning in the counter-

vortex direction, it is reasonable to expect, from the 
. . . 

results cited·earlier,·that the drag equation would be 
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altered to: 

CD~ 0.018 + 0.022 Cl (Full Throttle). 

The power required, at sea-level, has been calculated 

using these two equations; these curves are plotted in 

Figure 56. In addition, a part-throttle power-required 

curve has been plotted in Figure 56. The basis of this 

curve is that the effective aspect-ratio is a function of 

TC. This curve was used to determine the endurance and 

range improvement using the Brequet formulas. The changes 

in sea-level performance resulting from the wingtip pro­

pellers are listed in Table IX. 

TABLE IX 

PERFORMANCE COMPARISON FOR ASW AIRCRAFT 

Performance Item ASW With Wingtip % Change 
as Designed Propellers 

Velocities 

Max. Vel. 262 knots 270.5 knots 3.4% 
For Max. Range 143.8 .knots 139 knots 
For Max. Endur. 108.2 knots 97 knots 
For Best R.C. 142 knots 137 knots 

Best Rate of Climb 1562 fpm. 1750 fpm. 12°,h 

Best .Angle of Climb 8.4 deg. 9.7 deg. 15.4% 

Max. Range 1 unit 1.165 units 16.5% 

Max. Endurance 1 .unit 1.27 units 27% 
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It will be noted that this configuration is particu­

larly suited to aircraft of thi.s type -- long range and 

patrol aircraft. A 16.5% increase in range and.a 27% 

increase in endurance are significant improvements. 

The disadvantage of this design change is the problem 

of trim and control for one-engine-out flight. There will 

be a weight penalty due to the necessity of adding an 

oversize vertical tail. The alternative is the weight and 

complexity of cross shafting or some other method of in­

suring no inequality of power to the two propellers. 

Another, and more feasible, design configuration 

would be to adopt a four-engine design with two engines at 

the wingtips and two engines inboard. 

Generalized Results 

In order to increase the usefulness of the results of 

this investigation, an attempt has been made to generalize 

them by examining the relationship between the strength of 

the vortex of the propeller and that of the wing vortex, 

together with the concept of the propeller acting as a 

vortex sink (or source) with respect to shed vortex sheet. 

Each blade of a propeller sheds a vortex sheet. This 

helical vortex sheet combines with those of the· other 

blades to produce a trailing vortex system consisting of 

two parts....; a cylindrical vortex sheet encasing the slip­

stream and a vortex collinear with the propeller axis of 

rotation. The cylindrical vortex sheet may be considered 
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to be composed of ring vortices; the result of these 

vortices is tl:+at the slipstream velocity is greater than 

freestream velocity. The axial vortex produces the rota­

tion of the slipstream core. 

The angular velocity, according to Konig (26), is 
_8~_!_· . 

2 a; Q; where Q = 2nN and a' - 7 1 + a Nd. The maximum 
16 _3L tangential velocity is Vt . 

max 
= ~ 1 + a V. Measurements 

indicate that, instead of this maximum tangential velocity 

occurring at the propeller tip, it occurs at r/R = 0 .4-. 

Vt falls to approximately zero at r/R = 1. 

There is, then, a trailing vortex system superimposed 

on the wing trailing vortex system. Schaffer (4-4-) has 

shown that the vortices will combine to strengthen the 

trailing vortex (if they have the same sense) or to de­

crease the strength (if·they have opposite sense). 

For a given.diameter, the vortex strength of a pro­

peller will be proportional to the blade lift and, 

therefore, to the propeller thrust. 

circulation (i.e., vortex strength of the wing) is pro­

portional to the wing lift. 

r 
--12£212..!. 
rwing 

T TC P/2 .V2 d2 

= L = CL P /2 V2 d2 :::, 

T d2 
C 
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This ratio has been used to examine 6CD/CL and 

Figure 57 shows the dependence of .6CD/CD on 

There appears to be a functional relation and a 

single curve has been fit to the data. 

Data for the impeller is also plotted in Figure 57. 

As would be expected, these data do not fit the propeller 

data for the reason that the rotation of the slipstream of 

the impeller is a direct function of N, rather than of 

thrust. 

Figure 58 shows the relation between ~CL/CL and 
T d2 C . 

CL S/2 " 
It is not clear that there is as strong depend-

ehce of ~CL on the parameter. It does appear that ~CL is 
TCd2 

roughly proportional to~~ 

It is felt that the strong dependence of span effi­
A 

ciency factor, e = Ae' on the positioning of the propeller 

'on the wing, as shown in Figure 53~ is a general result. 

Although the wing is common to all tests, the nacelle 

shapes are all different, and some tests are with full-

wing and fuselage and others are from a reflection-plane 

wing test without fuselage. The agreement of the values 

is good. 

A similar 

various values 

.6CDi 
parameter~ 02, 

d L 
of Nb, where N 

has been ev~luated for 

is the difference between 

rotor speed and windmilling speed. It was found that, ~ 
, I 

d I ; (.6CD. / CL2 ) varies with the cube root of (N b). This re~ 
l 

lation is shown graphically in Figure 59. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

The traditional method of simulating higher aspect 

ratio has been examined; i.e., the use of end-plates. A 

new method, that of using mechanical rotors at the wing­

tips, has been proposed and tested. The principal conclu-

sions are: 

1. End-plates are not effective in obtaining 

the desired effect; i.e., increasing 

effective aspect ratio and decreasing 

induced drag. 

2. The use of propellers mounted at the 

wingtips can produce simultaneous lift 

increase and drag decrease. The frac-

tional changes in both drag coefficient 

and lift coefficient are functions of 
T d2 

C 
C S • 

L 

The detailed results of the investigation include the 

following: 

1. End-plates increase the effective aspect 

ratio of the wing. They function by 

shifting the wing-loading (more lift 
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toward the tip) and by decreasing the 

downwash. 

2. For STOL aircraft, in which operation · 

at high CL is important, end-plates 

are ef;f'ective in decreasi:ng take-off 

distance but they do not.decrease l$?1d­

ing distance. In som.e .eases their use 

will increase landing distance. 

3. It is more effective to use the same 

airfoil area· as an extension of the · ·· 

wingspan than it is to use it in the 

form of end-plates. 

4. Energy may be employed to affect the 

· wing's flow field and lift distribution 
' 

by mounting the aircraft's propellers 

at the wingtips. 

5. Use of a rotor turning in the direction 

opposite to that of the wing's trailing 

vortex shifts the core of the trailing 

vortex outboard and downward. 

6. Use of a pro-vortex turning rotor (ox, 

counter-vortex propeller turning at 

less than windmill ·speed) moves the core 

of the trailing vortex inboard. 

7. Wingtip configuration and/or rotor r9ta­

tion have. little. effect on the posi tlon 

of the vortex trailing.from the outboard 
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end of a deflected flap. 

8. There is a mutual dependence between 

vortex span and effective aspect ratio. 

As one increases, · the other does also. 

Actual functional relation is not yet 

clearly defined. 

9. Effect of power on CL is mainly due to 

higher slipstream velocity for inboard 

propellers. However, for propellers at 

the wingtips, the effect is chiefly due 

to the altered angle of attack in, and 

adjacent to, the slipstream as well as 

to increased slipstream dynamic pressure. 

10. A counter-vortex turning propeller de­

creases wing drag. (mainly, induced drag); 

a vorte~-turning propeller increases drag. 

The rotor at the tip serves as a trailing 

vortex sink (counter-vortex) or source 

· (vortex). 

11. The effectiveness of the propeller in 

affecting the lift and drag increases as 

it is moved outboard toward the wingtip. 

12. Counter-vortex propellers at the wingtips 

improve an aircraft's climb and cruise 

performance compared to conventional 

positioning. 

The following recommendations are made for further 
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work in this field: 

1. · It would be desirable to obtain more 

data on the relation between vortex· 

span and effective aspect ratio. 

Additional experimental work using a 

rotating or non...,.rotating vorticity 

meter is needed. 

2. It would be.interesting to see whether 

a wingtip jet, with variable .amounts 

of vorticity, would have similar 

effects.to those found with the 

propellers. 

3. Additional data with wings of different 

aspect ratio, taper ratio, and d/b 

would help establish the relation be-
~CD TC d2 

tween er- and c-s-· 
D - L 

114 



SELECTED BIBLIOGRAPHY 

1. Betz, A. Behaviour of Vortex Systems.. NACA Technical 
Memorandum 713, Washington, June, 1933. 

2. Betz, A. '' How Originates a Vortex in a Slightly 
Viscous Fluid?" Naturwissenschaften, Vol. 37, 
No. 9, PP• 193-196, 1950. Translated by 
F. Wagner and publisb,ed as UWER65, University of 
Wichita, Wichita, Kansas, July, 1952. 

3. Bird, John D. "Visualization of Flow Fields by Use 
of a Tuft Grid Technique," Journal of the Aero­
nautical Sciences, Vol. 19, No. 7, JulY,1952. 

4. Bird, J. D., and D. R. Riley. Some ~xperiments .21! 
Visualization of~ Fielci's13ehind Low Aspect 
Ratio Wi1~ ~rifeans of a Tuft Grid. NACA 
Technica . ote 2674, \:lashington~y, 1952. 

5. Brenckmann, M. E. "Experimental Investigation of the 
Aerodynamics of a Wing in a Slipstream,!' Journal 
of the Aeronautical Sciences, Vol. 25, No. 5, 
p7 324, May, 1958.- Also published as U.T.I.A. 
Tech. Note 11, Toronto, April, 1957, 

6. Clements, Harry R. "An Investigation of Canted 
Adjustable End:-Plates for the Control of Drag." 
J.'1. S. thesis, University of Wichi.ta, April, 1954. 

7. Clements, Harry R. "Canted Adjustable End-Plates for 
the Control of Drag," Aeronaugcal Engineering 
~ie~, Vol. 14, No.?, July, 1955 •. 

8. Davidson, Marvin. "Information .t'or Users of the 
Walter H. Beech Low-Speed Wind Tunnel," Aero­
nautical Engineering Department, Wichita State 
University, Wichita, July, 1966. 

9 •. Dommasch, D, O., s. S. Sherby, and T. F. Connolly. 

10. 

Airplane AerodynamicE!, 3rd ed. · New York: 
P1 tman Publishing Corp., 1961, 

Durand, W. F. :A Proof of the ~eorem Re,arding the 
Distribution of Lilt Over the span or Minimum 
Induced Dra3.--N~Report~9, ashington,:L92~ 

115 



11. 

12. · 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

Eisenbuth, J. J., and· B. W. McCormick. "An Observa­
tion on the Vortex System of Dual-Rotation 
Propellers," Readers Forum ~- Journal of the 
Aeronautical Sciences, June, 1953. -

Ellis, N. D. ! Computer §.tudy of i! Wing in i! Sli:Q­
stream. UTIAS Technical. Note 101, Institute for 
Aerospace Studies, University of Toronto, 
February, 1967 ~ · 

Fage, A. ,. and F. C. Johansen. "The Structure of 
Vortex Sheets," Philosophical Magazine, S. 7, 
Vol. 5, No. 28, February, 1928. 

Franke,· A., and F. Weining. The Effec-t of the Slip­
stream .Q.!! an Airplane Wing. NACA Technical 
Memorandum 920, November, 1939. 

Gar bell, Maurice A~ "Theoretical Principles of Wing­
Tip Fins for Tailless Airplanes and Their Prac­
tical Application," Journal of the Aeronautical 
Sciences, Vol. 13, No. 10, October, 1946. 

Gillis, C. L., E. C. Polhamus, and J. L. Gray. 
Charts for Determining Jet-Boundary Corrections 
for Complete Models in 2 ~ 10 Closed Rectangular 
Wind Tunnels. NACA Wartime Report L-123 · 
(ARRL5G31), Washington, 1945. 

Glauert, H. The Elements of Aerofoil and Airscrew 
Theory. Cambridge University Press, 1926. 

Goldstein, S. , ed. · Modern Developments in Fluid 
Dynamics, Vol. II. New York: Dove~Publica­
tions, Inc~, 1965. 

Graham, E. W., P. A. Lagerstrom, R. M. Licher, _and 
B. J. Beane. '.'A Preliminary Theoretical Inves­
tigation of the Effects of Propeller Slipstream 
on Wing Lift." Report No. S M-14991, Santa 
Monica, California: Douglas Aircraft Co., 

.November, 1953. 

Hamelet, Jean H. "Opposite Propeller Rotation-;...Shall 
it be Inboard or Outboard?" Aviation, May, 1943. 

21. Hemke, Paul E.. Drag of Wings With End Plates. NACA 
Report 267, Washington, 1927. 

22. Hoerner, S. F. Fluid-Dynamic Drag, publ. by author, 
New Jersey, 1958. 



· .. 117 

23. Hopkins, E. J., S. J. Keating, and A. Bondettini. 
Photographic Evid~ of Streamwise Arrays of 

· . Vortices i_g Boundary-Layer Flow. NASA Technical 
Note D-328, Washington, 1962. 

24. · Hopkins, E. J., and N •. 'E. Sorensen. "A Device for 
Vortex,...Core Measurements,." Journal of the Aero­
nautical Sciences, Vol. 23, No. 4, p. 396,-­
April, 1956. 

25. von Karman, T}).e ad.ore. Aero dynamics , Ithaca, N. Y. : 
Cornell University Press,·1954. 

26. Koning, C. "Influence of the Propeller on Other 
Parts of the Airplane Structure., " Aerodynamic 
Theory, Vol. IV (W. F. Durand, ed.), Berlin: 
Julius Springer, 1935. 

27. Lanchester, F. W. Aerodynamics. London: . Archibald 
Constable and Co., 1907. 

28. Lowry, J. G, and R. D. Vogler. Wind Tunnel Investiga­
tion at Low Speeds to Determine th~ Effect of 
Aspecs Ratio~ End Plates QQ ~ Rectangular 
Wing. ith Jet Flaps Defle~ §2 Degrees~ NACA 
Technical Note 3863, Washingt.on, 1956. 

29. Mangler, W. The Lift Distribution of Wings With End 
Plates. ·NACA Technical Memorandum 856, 
Washington, April, 1938. 

30. May, D. M. "The Development of a Vortex Meter. " 
Thesis, Pennsylvania State University, Univer-
sity Park, Pa., June, 1964. · 

31. Millikan, C. B. 
New York: 

Aerodyg_amics of the Airplane. 
John Wiley and Sons, 1941. 

32. von Mises, Richard. Theory of Flight. New York: 
McGraw-Hill Book Co., 1945. 

33. 

34. 

Morris, P. E. Th,ree Dimensional·~ Tunnel Tes1·to 
Determine the Effect of End Plates on Induced 
Drag. UWAR 29, University of Wichita,Wichita, 
Kansas, October, 1950. 

Morris, P. E. and V. TenEyck. An Analysis of th~ 
Effects of End Plates and C;irculation Control 
for DiffererrtAspect Ratios on tp.e Take-Off and 
Landig_g Distances of .§f! L-19 ~ Airplane. . . .. 
UWER 50, Universityof Wichita., Wichita, Kansas, 
November, 1951 •. · 



35. 

36. 

37. 

38. 

39. 

40. 

41. 

44. 

45. 

118 

Munk, M. M.. Note on Vortices and on Their Relation 
to the LiftofAirfoils. NACATechnical Note 
184-;-washington, 1924. 

Polhamus, E. C. · Jet-Boundary-Induced-Upwash Veloci­
ties for Swept Reflection-Plane Models Mounted 
Vertically in 1= !2z 10-foot, Closed, Rectangular 
Wind Tunnels. NACA Technical Note 1752, 
November, 1948. 

Pope, Alan. Basic Wing and Airfoil Theor;y:. · New York: 
McGraw-Hill Book Company, 1951. ·· · 

Pope, A., and J. J. Harper. Low-Speed Wind Tunnel 
Testing. New York: John Wiley and Sons, 1966. 

Razak, Kenneth. An Analysis of~ Effects of 
Boundary-Layer-Control and Propeller Configura­
tion 2.!l the Performance of~ AS~~~ Airplane • 

.. UWES No. 155, University of Wichita, Wichita, 
Kansas, August, 1954. 

Razak, K., and M. H. Snyder. A Review of the Plan­
form Effects Q!! the Low-Speed Aerodynamic 
Characteristics of .'!!:iangul.@£. ~ Modified 
Triangular Wings~ NASA Contractor Report 421, 
Washington, April, 1966. 

Rethorst, S. "Lift on a Wing in a Propeller Slip­
stream as Related to Low Speed Flight," Aero­
nautical Engineerigg Review, Vol. 15, No. 10, 
pp. 42-48, October, 1956. 

Riley, D.R. Wind-Tunnel Investigation and Analysis 
of the Effects of End Plates on the Aerodynamic 
Characteristics of an Unswept Ying. NACA 
Technical Note 2440, Washington, August, 1951. 

Robinson, R. G., and W. H. Herrnstein. Wing-Nacelle­
Propeller Interference for Wings of Various 
Spans. Force and Pressure Tests. NACA Report 
569, Washington, 1936. 

Schaffer, Allan. "A Study of Vortex Cancellation," 
Journal of _1he AeroL§.:2.§;~ Sciences, Vol. 27, 
No. 3, P. 193, March, 1960. 

Schrenk, 0 ~ Model ~eriments on the Forces and .·. 
Moments Acting on~ End Plate Fitted to.§i Wing~ 
NACA Technical Memorandum 855, Washington,. 
April, 1938. . . 



46. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

119 

Sherman, Albert. "An Integrator for Evaluating the 
Downwash From a Span-Loading Curve," Journal of 
the Aeronautical Sciences, Vol. 5, No. 4, pp.-

·148-150, February, 1938. .. . 

Sivells, J.C., and 0. J. Deters. Jet-Boundary and 
Planform Corrections for Partial-Span Models 
With Reflection Plane, End Plate, or No End 
'.Plate in a Closed Circular Wind Tunne'f:" NACA 
Report~43, Washington, 194~ 

Smelt, R., and H. Davies.· Estimation of Increase in 
· Lift due 1£ Slipstream. Aeronautical Research 

Council, R. and M. 1788, London, 1937. 

Smith, D. R .. L. Flu.id Mechanics. 'tbhd-cm: · J .• 
Houghton, 1960. 

Snyder, M. H. ! Non-Rotating Vortici.:!!Y Meter, AR66-3, 
Wichita State University, Wichita, Kansas, 1966. 

Snyder, M. H., ed. On the Theory of ~elta Wing~, 
AR66.;.4, Wichita State University, Wichita, 
Kansas, 1966. 

Sprei ter, J. R. , and A. H. Sacks. "The Rolling up of 
the Trailing Vortex Sheet and its Effect on the 
Downwash Behind Wings." Institute of the Aero­
nautical Sciences, J.8th Annual Meeting., January, 
1950, Preprint No. 250. Also published in the 
Journal of the Aeronautical Sciences, Vol. 18, 
No. 1, pp":° 21-32, January, 1951. 

Stalter, J. L. Investigation of the Basic Aero-
·dynamic Characteristics of .§:"c'ircu1atioa 
Control, Research Model. UWER 187, pt. 1, 
University of Wichita, Wichita, Kansas, December, 
1956. 

Stalter, J. L., and R. K. Wattson. Effects of Power 
_Q£ the Aerodynamic Characteristics of ~"""circula­
tion Control, Research Model. UWER 187, p. 2, 
University of Wichita, Wichita, Kansas, March, 
1957. . 

Swanson, R. S., and T. A. Toll. Jet-Boundary Correc­
tions fo_£ Reflection-~~ Models i!]; Rectangular 
Wind Tunnels, NACA Report 770, Washington, 1943. 

56. Theodorsen, Theodore. Theory of Propellers. New 
York: McGraw-Hill Book Company, 1948. 



57. 

58. 

T20 

Truitt, Robert W. "Comments on Vortex~Core Measure­
ments,'' Journal of the Aeronautical Sciences, 
Readers' Forum-; Vol~3, No~ 9, September, 1956. 

Wentz, w. H.:, and M. c. McMs.hon •.. An Experimental 
Investigation·of' lli Flow Fields About Delta and 

· Double-Delta Wings at ~ow Speeds. Report AR65-2, 
Wichita State University, August, 19.65. · 



APPENDIX 

RESULTS OF EXPERIMENTAL PROGRAM 

·This appendix presents results of the experimental 

program additional to those presented·in Chapters III and 

IV. 

Tuft Grid Survey 

In order to interpret the results of.the tuft grid 

survey, 140 of the pictures were printed. Examples are 

shown in Figures 60 and 61. Figure 60 illustrates how 

clearly the position of both the tip vortex and the flap 

outboard vortex may be.located. 

Figure 61 illustrates the tracing of the· vortex 

trajectory. In this figure the impeller is mounted on the 

wing. In the left co.lumn of pictures (a, d, g, · j, and m), 

the impeller is turning at 175 r.p.s. in the vortex direc­

tion. In the center.column of pictures (b, e, h, k, and 

n), the impeller is. stationa:ry~ In the right column of 

pictures (c, ·. f, i, 1, · and o) · the impeller is turning at 

175 r.p.s. in the counter-vortex direction ... 

Performance Calculations 

.The power required for the ASW airplane, with and 

.. 121. 



without modification, was calculated using the 1620 

computer. The results are listed in Tables X and XI.-
. ' 

Table XII tabulates the significant values for power 

12:2 

required for part-throttle operation. The improvement in 

induced drag is a function of power. Thus, in level 

flight, it is a function of flight speed (e.g., at 

V = 100 ft./sec., CD. ~ .026 CL2 ; at V = 300 ft./sec., 
1. 

CD. ~ .029 CL2 ). The computer program for the parabolic 
1. 

drag airplane was used repeatedly at various values of m 

to obtain the part-throttle power required curve. 

Figure 85 is the sea-level climb performance curve 

for the aircraft. 

B?.lance Measurements 

The balance data taken during the test program were 

reduced using the 1620 computer. The reduced data in 

coefficient form were read-out in two forms -- corrected 

for tunnel boundary and uncorrected. Since changes due to 

power were of primary interest (rather than absolute 

values) and since the changes were to be coordinated with 

flow field data, it was decided to use the. uncorrected 

answers throughout. 

The answers were also corrected to remove the· 

apparent lift, drag, and pitching moment due to thrust. 

The graphical presentation of the coefficients is 

done two ways. Most of the answers uncorrected-for 

thurst were plotted using the 1620 computer and a Calcomp 
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plotter. In addition, the data which were manually cor­

rected for thrust were manually plotted. 



124 

TABLE X 

POWER REQUIRED• ASW AIRPLANE 

CD= e0JS8+ e0378(CL**2>• AREA= 796e5SQeFTe 

SEA-LEVEL ALTITUDE 40,000 LB Se GROSS WEIGHT 

(/\ 

VEL VEL LIFT coe:F DRAG PWR REQ 
FT/SEC KNOTS POUNDS HP 

so.oo 29e6 16e901 25600e13 2327e28 
75.00 44e4 7e51l 11458~ 17 1562.47 

100.00 59e2 4e225 6566.87 1193.97 
125.00 74e0 2e704 4366e97 992,49 
150.00 0a.e le877 3239e94 ·aa3e62 
175,.00 103e6 1 e379 2631e20 837e20 
200.00 !18e4 le056 "2309el0 839e67 
22s.oo 133e3 e834 .' 2162.97 

\ 
884.85 

250.00 148el e676 V 2134e52 970e24 ·,. 
275e00 162e9 e558 '2190.70 1095.35 
3Q0e00 J77e7 •469. 2311 e 59 1260e86 
325e00 192e5 e400 2484e65 1468e20 
350.00 207.3 ' e344 2701.65 1719e23. 
375e00 222.1 .300 2957e00 2016el3 
400e00 236e9 e264 3246e80 2361.30 
425e00 251.a e233 3568e26 2757.29 
450.00 ·266•6 .208 3919e36 ,3206,75 
475,00 281 •4 e 187 4298.57 3712e40 
500~00 296e2 el69 4704e76 4277,05 
s2s.oo 311 eO el53 5137e05 4903.54 
550.00 325.8 <» 139 5594.-74 ' 5594.74 
575e00 340e6 •127 6077e31 6353e55 
600.00 355e4 • 117 6584e33 7182.90. 
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TABLE XI 

POWER REQUIRED, MODIFIED ASIA/ AIRPLANE 

CD = .01ao+ •0220(CL**2>, AREA = 796•5S0•FT• 

SEA-LEVEL ALTITUDE 40,000 Las. GROSS WEIGHT 

VEL VEL" LIFT COEF DRAG PWR REQ 
FT/SEC KNOTS POUNDS HP 

50e00 29•6 16e901 14916e25 1356.02 
75.00 44e4 7e511 6706e36 914e50 

lOOeOO 59•2 4e225 3888.80 707.05 
125e00 74e0 2e704 2646•02 601.36 
150.00 as.a 1 e877 2036.01 555e27 
175e00 t03e6 le379 1736e01 552e36 
200e00 118e4 l e056 1611.18 585.88 
225e00 133e3 .834 1597.12 653e37 

.250e00 148el e676 1659e91 754e50 
275.00 162e9 e558 1780e30 890e 15 
300e00 t77e7 .469 1946.71 1061.84 
325e00 192e5 e400 215le83 1271.54 
350.00 207e3 e344 2390e88. 1521.47 
375.00 222.1 e300 2660e60 1814.04 
400.00 236e9 e264 -2958e72 2151 • 79 
42s.oo 251 eS e233 3283,62 2537e34 
450.00 266e6 0208 3634~12 2973.37 
475e00 201.4 e 187 4009.34 3462e61 
soo.oo 29602 e 169 4408e61 4007.83 

. 525.00 311.0 e 153 4831.42 4611.81 
550.00 325e8 e 139 5277e37 5277037 
575e00 340e6 e 127 5746•15 6007.34 
600 .• 00 355•4 e 117 6237e5l 6804e56 
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TABLE XI I 

PART-THROTTLE POWER• MODIFIED ASW AIRPLANE 

SEA-LEVEL ALTITUDE 40,000 LBS, GROSS WEIGHT 

VEL 
FT/SEC 

VEL 
KNOTS 

LIFT COEF DRAG 
POUNDS 

CD= •0180+ e0150<CL**2>, AREA= 796.SSQ•FT, 

500,00 
525,00 

·550.00 

co 

75.00 
100.00 
125,00 
375.00 
400,00 
425,00 

= 

296s2 
311,0 
325,8 

.0100+ 

44e4 
59.2 
74.0 

222.1 
236e9 
25108 

e 169 
e 153 
e 139 

e0260<CL**2>~ 

7,511 
4.225 
2,704 

e300 
e264 
19233 

AREA 

4361 e29 
4788e50 
5238,26 

= 796e5SQeFTe 

7908e27 
4564,88 
3078,71 
2708e68 
3000.97 
3321e05 

CD= e0t80+ e0290(CL**2>• AREA= 796e5SQ,FTe 

200.00 118e4 i e056 1906e96 

225e00 133,3 e834 !830.83 
250e00 148,1 e676 1849e21 
275.00 162e9 e558 1936.75 
300e00 177•7 e469 2078• 17 

PWR REO 
HP 

3964e81 
4570e84 
5238,26 

1078 .. 40 
829.97 
699,70 

1846e82 
2182e53 
2566.27 

693,44 
748.97 
840e55 
968e37 

1133e54 



Figure 60. Basic Wing With Plane Ti p , a 1 2 • , 6f 40 o, X 1 21'1 

'· ' ~ 

1--' 
I'\) 
----.] 



a 

d 

g 
Pro-vortex 

6 ,, 
x :: 

x =24" 

b 

e 

h 
Stationary 

Figure 61. Impe ller , N = 175 r.p.s ., a 

1 ?.8 

C 

f 

i 
Counter-vortex 

0 



j X =96in. 

m x=120in. 

Pro-vortex 

k 

n 
Stationary 

Figure 61. (Continued) 
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Figure 620 CL vs a., Basic Wing 
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ol 

109 Dummy Spinner. _ 
124 Stationary Propeller, 2 Blades Aligned with 

the Wing. 
125 Stationary Propeller, Blades 45° to Wing. 

Figure 63. Dummy Spinner 
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o/.. ( D gre s) 
/0 /S" 2'0 2.S-

Wing. Pod, and Impeller, 8f. = 0. 

A 
B 
C 
D 
E 

No Rotation -- Runs 114 and 123. 
Vortex-Direction Rotation, N = 50 r.p.s.)117 

• " " , N = 175r.p.s. 
Counter-Vortex Rotation, N = 50 r.p.s.] un 123 

" " " , N = 175" r 

]'igure 64 o Impeller 9 6f = O°' 
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Wing with Pod, 

109 - Dummy Spinner 

126 - Propeller, N 

129 - II N = 

130 ..,. II N = 

Figure 65. 

\ 

o( f Oe .) 

/0 / 20 ?5" 

of= o. 

119 r. p. s. (windmilling), 

175 r.p.s. 

50 r.p.s. 

Propeller, of - Oc 
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107 -- Wing with St~ndard Tip. 
110 -- Wing, Pod, Dununy Spinner. 

Figure 66. Basic Wing and Pod, of= 40° 
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A 

Vortex-Direction Rotation. 

A No Rotation 
B N = 50 r.p.s. 
C N = 175 r.p.s. 

/ /5" 
o<. 

20 
( 

Figure 67. CL vs a, Impeller, Vortex Rotation 

135 



ol 
/0 20 eg. 

Wing, Pod, and Impeller, of= 40°, Counter-Vortex 
Rotation. 

A - No Rotation 
B - N = 50 r.p.s. 
C - N = 50 r.p.s. D -.N = 175 r.p.s. 

Figure 68. CL vs ex, Impeller, Counter-Vortex 
Rotation 
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/o 20 LJeg, 

oC. 
110 -- Dununy- Spinner 
131a Windmilling Propeller, N = 120 r.p.s. 
131b - Propeller, N = 175 r.p.s. 
131c - • ., N = 100 r.~p-i 1 .. 

Figure 69. CL vs ex., Propeller~ of == 40° 
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Basic Wing, Standard Tip, of= 0 

Runs 105 & 108 -- Eff. Re= 6.7 x 10 5 • 

Run 102 -- Ef:f. Re= 1.2 x 10 6 • 

Figure 70. CL vs CM ~ Basic Wing 
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o. s al 

A - No Rotation: Runs 114, 123. 

B - Vortex-Direction Rotation, N = 5 0 rps. ( 117) 

C - Vortex-Dir. Rotation, N = 175 rps.(117). 

D - Counter-Vortex Rotation, N = 50 rps.(123) 

E - Counter-Vortex Rotation, N = 175 rps. 

Figure 7lo CL vs CM , Impeller, of = 0° 
.uc/4 
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109 Dummy Spinner 
126 Windmilling Propeller, N = 119 r.p.s. 
129 Propeller, N = 175 r.p.s. 
130 " , N = 50 r.p.s. 

Figure 72. CL vs CM ~ Pr ope 1ler ~ 6f -- 0° 
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-0, 0 -o. 0 

107 -- Wing with Standard Tip. 

110 -- Wing with Dummy Pod. 

]"'igure 73. CL vs CM ~ Basic Wing and 
c/4 

Pod 9 of "'" 40° 
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C 

1----ft---.l'-+--l-*---+--,'-~--1----1 Vortex Di rectiori 
Rotation 

A No Rotation. 

B N = 50 r.p.s. 

1----1---~·~---+----+-,'--l'+-'i------1 C N = 175 r.p.s. 

A 

Wing, Pod, and Impeller. 

Figure 74. CL vs CM . , Impeller, Vortex 
c/4 

Rotation 
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C L 
0 = 40° 

f 

A: No Rotation 

B: N=50rps. (runl20) 

Ci N~50rps. (runl21) 

D: N=l75 rps. 

Counter-Vortex 
1-~--:H--t-~-1-~~-1--+...;:>.--1--~~-J Rotation. 

-0 I 

Mc 

Wing, Pod, and Impeller. 

Figure 75. CL vs CM , Impeller~ Counter-Vortex 
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Rotation 



Wing, Pod, 

Propeller. 

0 = 40° f 

110: Dununy Sinner 
1~-t---,,--j~-+~~-1----,~.L-1----,~~ 
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l3/b 
131a: Windmilling Pro­

peller, N=120. 

t-----,--t+-1++--t-,-~-+--.'-+-+-1-~~~ 131b: N = 175 r.p.s. 
13/C 131c: N = 100 r.p.s. 

13/a 

0.2 

Figure 76. CL vs Cl'1 1 Propeller~ 5f = 40° 
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-·-0- Vortex Rotation, N = 50 rps. 

--0- Vortex Rotation, N = 175 rps. 

-··-0- Counter-Vortex Rot. N = 50 rps. 

····--A- Counter-vortex Rot. N = 175 rps. 
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Figure 79. Wing Characteristics, Impeller, Corrected for Thrust 
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L 
Basic Wing, Standard Tip, &f = 0°. 

5 2 105 & 108: Eff. Re= 6.7 x 10 , Cn=.012+.0477CL 
6 · 2 102: Eff. Re= 1.2 x 10 , Co=.014+.047CL 

Figure 8l(a). Drag Polar, Basic Wing 
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