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CH.APTER I 

INTRODUCTION 

The geometrical shape of most molecules is sufficiently elongated 

or asymmetric for the distribution of e.lectrons within the molecule 

to give rise to an anisotropic electrical polarizability at optical 

frequencies. In crystalline solids the ordering of such molecules with

in the solid gives rise to the birefringence pf the solid. In liquids 

not subject to any force fields there is a random orientation of the 

molecules of the. liquid. Thus although the individual molecules may 

be anisotropic, there is no net anisotropy for the liquid. However, 

if these anisotropic molecules can be given a preferential orientation 

by some means, the liquid will exhibit a net anisotropy. Many mole

cules may be oriented to some degree by electric, magnetic or hydro-

·dynamic fields, or combinations thereof. The optical anisotropy pro

duced by the partial orientation of molecules subject to hydrodynamic 

forces gives rise to the anisotropy of the index refraction of the 

fluid known as the Maxwell effect or flow birefringence. 

The optical and mechanical properties of macromolecules can be 

readily examined by means of flow birefringence, since most macromole

cules are either elongated rigid structures for which hydrodynamic flow 

of the solvent medium around the molecule will exert relatively large 

orienting forces on the.molecule, or elongated flexible or semi-flexible 

structures for which the hydrodynamic flow will not only produce 
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orientation of the molecule but will also deform it. 

In 1866 Maxwell noted that the state of strain in a fluid might be 

detectable by the modification of polarized light passed through the 

liquid. In 1873 (59) he published a description of the flow birefrin

gence exhibited by Canada balsam when subjected to the shearing forces 

produced by the motion of a spatula moving up and down in its own 

plane. The same yea,r Mach (58) recorded observations of flow birefrin

gence in metaphosphoric acid as well as Canada balsam. The following 

year Maxwell (60) described a concentric cylinder apparatus in which 

steady two-dimensional laminar flow could be obtained so that flow 

birefringence in liquids could be produced more readily. During the 

next few years.many investigators measured the flow birefringence of 

various materials and sought for an adequate theoretical analysis of 

the effect. Kundt (56) published one of the first theories of flow 

birefringence. In his treatment the birefringence was related to the 

stresses in the liquid. Many theories followed, but it was not until 

1928 when Raman ~nd Krishnan (74) published a theory based on the mo

lecular orientations produced by flow that significant agreement between 

theory and experiment was obtained. They assumed that the stress pro

duced by flow in a liquid in which rigid macromolecules are suspended 

exerts orienting forces on these molecules. The result of this assump

tion is that the birefringence should be proportional to solvent vis

cosity and the gradient of the flow velocity in the liquid, as had been 

observed experimentally. By the early 1930 1 s enough experimental evi

dence had been collected to indicate that there were differences be

tween the flow birefringence exhibited hy solutions containing sus

pended rigid particles and that exhibited by solutions of flexible or 



partially flexible macromolecules. Rigid particle theories have since 

been developed that des'cribe the experimental flow birefringence of 

3 

dilute solutions containing special shapes of such particles subject to 

steady flow (15). For e~ample, Boeder (2) treated the case of ellip-

saids of revolution with high axial ratio, a treatment later modified 

by Sadron (78), while Peterlin and Stuart (65, 68) and Kuhn (48) 

treated the general case of rigid ellipsoids of revolution. Scheraga, 

Edsall and Gadd (79) extended the work of Peterlin and Stuart to high 

velocity gradients. Cerf and Thurston (16) have considered the exten-

sion of the treatment of Peterlin and Stuart to the case of oscillatory 

£low. 

Description of the flow birefringence exhibited by solutions con-

taining flexible macromolecules has proved to be more difficult than 

for the rigid particle case since the macromolecule in solution will 

not only orient when the solution flows but will also deform, the 

amount and character of the deformation depending on the flexibility 
~ ; 

of the molecule being examined. Further, the dimensions of most poly-

mer chains are such that the effective diameter of such a chain is 

comparable to the diameter of the solvent molecules, so that considera-

tion of the interaction of the solvent and chain in terms of frictional 

forces may not apply. Hence the hydrodynamic equations for continuous 

media may not apply. Ft1rther, the statistical problem to be solved 

is complicated by the character of the deformation. Thus only simpli-

fied models of flexible macromolecules in solution have been studied in 

which the solvent is assumed to be a contin'uous medium. 

The first attempts at the description of the flow birefringence 

exhibited by dilute solutions of flexible chain macromolecules were 



those of Haller (31) and Kuhn (48). Haller considered a model of the 

chain consisting of a deformable sphere. In flow the sphere is dis

torted into an ellipsoidal shape due to the external stresses acting 
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on the sphere. He incorporated an internal viscosity in the sphere 

that gives rise to additional internal stresses. The birefringence 

exhibited by the deformed sphere is assumed to be proportional to the 

deformation of the sphere. Kuhn treated deformable elongated particles 

as well as the deformable sphere. 

Kuhn and Kuhn (51, 52) presented the first quant~tative treatments 

for dilute solutions of unbranched polymer chains that began with a 

two-dimensional treatment for a free-draining molecule, i.e., one in 

which the velocity of the solvent near a given region of the chain is 

unmodified by the other segments of the chain, using as a model of the 

polymer chain a dumbbell mode,1 consisting of two beads connected by a 

Hookean spring. The hydrodynamic interaction between the solvent and 

the model is assumed to occur at the beads. Theviscosity and flow 

birefringence of the solution is determined by the end-to-end vector 

for the dumbbell model. The most probable value of the end-to-end 

distance for the model is determined by analyzing the configurations 

of the chain using a subchain concept. The molecule is considered to 

be made up of f\l subchains, each subchain being sufficiently large that 

the end-to-end vectors of the subchains are randomly oriented with 

respect to each other. Thus the end-to-end vectors of the subchains 

for a freely flexing chain will obey random walk statistics. Kuhn and 

Kuhn (53, 54, 55) later incorporated internal viscosity to account for 

energy losses in the chain itself, as well as a variable draining con

dition. The birefringence properties were obtained using the segmental 



polarizability concept of Kuhn and Grun (SO). The dumbbell model is 

not applicable to oscillatory flow since only two relaxation times 

would be exhibited by the model, the relaxation time corresponding to 

the rotary diffusion constant for the dumbbell and the relaxation time 

for the spring subjected to viscous forces at its end points. Since a 

polymer molecule will interact hydrodynamically with the solvent 

throughout the molecule, it can exhibit many relaxation times, a fact 

which is evident from oscillatory flow birefringence and viscosity 

data (22, 29, 38, 92). 

Kramers (47) proposed and treated the so-called pearl necklace 

model of a flexible macromolecule in which the molecule is replaced 
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by a number of beads connected by massless linking rods, assuming that 

the hydrodynamic forces exerted on the chain are exerted on the beads 

only. He treated three cases in which the rods were assumed to have 

complete freedom of rotation at the bead joints, the rods were re

stricted to free rotation in a cone corresponding to the valence angle 

of the bonds in the polymer chain being modeled, and the rods were 

assumed to be restricted in their rotational freedom in the cone corre

sponding to rotation at the valence angle of the bonds. He also 

included interaction between adjacent links in the chain. 

Hermans (33, 35) carried out a three~dimensional treatment of the 

Kuhn and Kuhn theory applicable to small velocity gradients and free

draining molecules. He concluded that the hydrodynamic interaction 

between elements of the chain would have to be included in the various 

theories before a valid comparison of theories could be made. Copic 

(19, 20) treated the elastic dumbbell model of Kuhn and Kuhn incorp

orating the form birefringence as well as the intrinsic birefringence 
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of the chain and found that for steady flow the form effect can be 

significant if the solvent index of refraction is different from that 

of the polymer, and it would increase with increasing molecular weight. 

Tsvetkov (96,~ 97 ,,, 100) treated a model of the polymer chain con

sisting of a deformable ellipsoid of revolution with trapped solvent 

within the ellipsoid. The optical treatment is more complete than most 

others in that farm birefringence and 11microform11 birefringence, origi

nating in the interaction among neighboring chain elements, are in

cluded as well as the intrinsic birefringence of the chain. 

The various theories for flexible macromolecules mentioned thus 

far are applicable only to steady flow since the models do not pre

dict a spectrum of relaxation times as has been observed experimentally. 

Peterlin (66, 67) proposed a model of the linear polymer chain con

sisting of a chain of elastic dumbbells joined together to form a 

chain of beads and connecting Hookean springs. The treatment is a two

dimensional analy'sis incorporating variable hydrodynamic interaction 

as well as a simplified treatment of concentration dependence in which 

the shape of the molecules is assumed to be independent of concentra-· 

tion. All of the previous theories mention·ed assume sufficiently 

dilute solutions that the chain molecules do not interact with each 

other. 

Cerf (6, 7, 8, 9, 10, 11) treated a deformable sphere model of 

chain molecules assuming the sphere to be both permeable and imperme

able to the flowing solvent, incorporating internal viscosity and 

Brownian motio_ns of the chain. The optical birefringence is treated 

following the method of Boeder. He later noted that his treatment of 

the deformable sphere would lead to a spectrum of relaxation times (13). 
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Several review articles dealing with flow birefringence are to be found 

in the literature which review. the theoretical treatments of steady 

flow birefringence and present typical steady flow birefringence data 

for various rigid and flexible particles (15, 24, 41, · 98) ·" 

More recently the flow birefringence and viscosity exhibited by 

dilute solutions of flexible macromolecules have been treated utilizing 

more sophisticated models of the macromolecule and more detailed treat

ments of the role of Brownian motions. These treatments predict 

spectrums of relaxation times for the various models and thus permit 

a description of oscillatory flow behavior corresponding more nearly 

to the observed oscillatory flow birefringence and viscosity than the 

models described previously. Kirkwood and Riseman (46) treated a 

model chain consisting of a chain of rigid links joined together at 

an angle correspondlng to the valence angle of the molecule being 

modeled. They assume hindered rotation between links similar to the 

hindered rotation of the· bonds in the actual molecule. The entire link 

is assumed to interact with the solvent, much as a rigid body being 

forced through a continuous liquid medium, with the force exerted by 

the chain link on the fluid being characterizable by a friction co

efficient dependent on the character of the macromolecule being modeled. 

Hydrodynamic interaction between links of the model is also incorpo

rated. Kirkwood (44, 45) treated the same model in more detail, ob

taining expressions describing the diffusion of the model chain and 

the viscosity increment due to the presence of the chain for both 

steady and oscillatory flow. He also discussed the application of the 

theory to flow birefringence problems. 

Rouse (75) adopted a model of the flexible macromolecule in which 



the molecule is replaced by a chain 

. ,':::: 

.·\;.; 
·d 

•·. :.:( 
of·;identical beads connected by 

~ 
; 
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Hookean springs, assuming complete flexibility ~t the bead joints. 

Each bead-spring-bead segment of the model is assumed to correspond to 

a subchaiq of the molecule, the spring being connected between the 

beads located at the end points of the subchain. Thus the description 

of the subchain corresponds to that of an entire chain as given by 

Kuhn and Kuhn (51, 52). The beads are assumed to interact with the 

solvent much as a macroscopic sphere being forced through a flowing 

liquid interacts with that liquid. The behavior of the chain is 

analyzed for oscillatory as well as steady flow by a determination of 

the normal modes of the chain. The theory as given did not evaluate 

the flow birefringence of a solution of such chains, but did evaluate 

the viscosity of the solution for both steady and oscillatory flow, 

assuming no hydrodynamic interaction between the chain segments (free

draining chain). The chain is assumed to have N subchains. 

Cerf (12, 13, 14) adopted a model for the flexible macromolecule 

identical to that of Rouse except that he incorporated an internal 

viscosity for the chain to describe energy losses in the chain itself. 

The retarding force due to the internal viscosity was first introduced 

as being proportional to the difference in velocities of the end 

points of the subchain. Later, however, a specification of the in-

ternal viscosity was given in which an internal viscosity coefficient 

was associated with each of the normal modes of vibration of the chain. 

The flow birefringence for steady flow was evaluated using the optical 

treatment of Kuhn and Gran to describe the optical polarizability of 

the subchain. 

Zimm (103, 104) adopted the same model as that of Rouse and Cerf 
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except that he included hydrodynamic interaction between the beads in 

the model chain which Rouse did not, but did not include an internal 

viscosity as did Cerf. The mathematical treatment of the model is 

similar to that of Cerf. From the analysis of the normal modes of 

vibration of the chain, a differential equation of the distribution 

function is obtained that is applicable for oscillatory as well as 

steady flow. The birefringence is incorporated using the treatment of 

Kuhn and GrUn to describe the optical properties of the subchain. Ex

pressions are given for the flow birefringence and viscosity for oscil

latory or steady flow, and the relaxation time spectrum is evaluated 

for a chain having a large number of subchains N using the limiting 

hydrodynamic interaction conditions of free-draining and non-free

draining chains. The viscosity expression obtained by Zimm for the 

free-draining molecule agrees with that of Rouse if the latter is 

specialized to the case of large N The Zimm approach has alsobeen 

applied to branched or closed ring polymer chains (3). Tschoegl (94, 

95) has evaluated the viscosity expressions given by the Zimm theory 

for intermediate degrees of hydrodynamic interaction, and later in

corporated excluded volume effects as well. Again, the number of seg

ments N is assumed to be large. 

Oscillatory flow birefringence and viscoelasticity measurements 

for flexible macromolecules in solution have been carried out by vari

ous experimenters and compared with the Zimm and Rouse theories. Vis

coelasticity measurements have be~n performed on solutions of polyiso

butylene, polystyrene, polymethyl styrene and other linear chain poly

mer molecules by Ferry and co~workers and compared against the Zimm, 

Rouse and Tschoegl theories (22, 27, 29, 30, 38, 81) 0 Some steady 
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flow birefringence and viscosity measµrements on identical solutions 

have been carried out by Philippoff (71, 72) • Lamb and Matheson (57} have 

studied the viscoelastic properties of polystyrene in various solvents 

and compared the data with the predictions of the Rouse and Zimm 

theories. Cerf and Thurston examined the theoretical relationship 

between viscoelasticity and oscillatory flow birefringence as given 

by the Zimm theory and applied their results to measurements made on a 

solution of polystyrene (16). Recently oscillatory flow birefringence 

measurements for a polystyrene solution have been compared against the 

Zimm theory using the number of beads in the chain model as a theoreti

cal parameter (92). The results obtained demonstrated that the assump

tion of a large number of segments for the chain was not applicable 

for the polystyrene studied. Oscillatory flow birefringence has 

also been used as an indicator for the analysis of plane shear wave 

propagation and plane shear wave interference (80, 89, 91). 

The measurements presented in this study are measurements of the 

steady and oscillatory flow birefringence and steady flow viscosity of 

three solutions of polystyrenes of differing molecular weights in a 

viscous solvent. A reduction technique was applied to the data to 

permit an ex!mination of the frequency dependence of the oscillatory 

flow birefri.,ngence corresponding to a range in frequency of up to 

105 cps. These measurements were performed on a thin fluid layer 

apparatus described previously (90). 

The purposes of the study were first, to obtain measurements of 

the frequency dependence of the polystyrene solutions at various 

temperatures covering a sufficiently wide range in temperature and 

frequency to be able to examine the relaxation curves of the oscillatory 
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flow birefringence for these samples. Second, to compare the measured 

oscillatory flow birefringence against the theoretical birefringence 

given by the Zimm theory, using the number of chain segments and limit

ing degrees of hydrodynamic interaction as the variable parameters, 

as well as to compare the measurements with viscoelastic data for 

comparable solutions (;29). It is felt that these comparisons will be 

useful for an examination of the validity of certain aspects of the 

Zimm theory when applied to these polystyrene solutions. 

The oscillatory flow birefringence is a sensitive means for 

examination of the dynamics ot the motions of the polymer chains in 

solution. The effective frequency range covered for the measurements 

contained herein is sufficient to examine most of the relaxation curve 

for the oscillatory flow birefringence for the polystyrene-Aroclor 

solutions studied. Comparison of the Zimm theory and the flow bire

fringence data indicates that the Zimm theory does describe the char

acter of the oscillatory flow birefringence and that it is essential 

to consider the number of chain segments as a parameter for an adequate 

description of the oscillatory flow birefringence. 



CHAPTER II 

THEORY 

1. Optical Properties of Dilute Solutions of Unbranched Chain 
Molecules as Given by Kuhn and Grun 

The anisotropic character of the optical properties of a suspen-

sion of macromolecules in flow may be conveniently examined by measur-

ing the optical birefringence ~n flow exhibited by the suspension. 

The corresponding theoretical treatment of the optical properties of 

such a medium is usually based on a theoretical calculation of the 

electric moment per unit volume P or the polarizability per unit 

volume y The birefringence L'itn is then obtained from the cal-

culated P or '( using the relation between the index of refraction 

/f1. and the mean polarizability per molecule oC. of a medium con-

sisting of randomly oriented molecules given by the Lorentz-Lorenz 

formula (4). 

Consider the electric field in a liquid medium in which a mole-

cule /,, is surrounded by identical molecules, assuming an electro~ 

magnetic wave to be incident upon the medium. If the surrounding 

. 
molecules are evenly distributed around the molecule ,1.; , and if 

each molecule is assumed to react to an electromagnetic field as though 

it were an ideal dipole 9 then the electromagnetic field seen by any 
, 

one molecule ,A/ is that due to the incident electromagnetic wave 

plus that due to the other molecules (dipoles) in the solution. Since 

the molecules are assumed to have essentially random orientationss the 

12 
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molecules contained in a small sphere surrounding a given molecule may 

be considered to approximate a homogeneous, isotropic medium. Thus 

~ 

if ~ denotes the average electric dipole moment of one of these 

molecules, then for IYl,v- such molecules per unit volume the average 

-electric dipole moment per unit volume P of the medium is given by 

( II-1) 

__.... 
where 'J/ is the dielectric susceptibility of the medium and ~ is 

the incident electromagnetic wave. If the medium is assumed to be non-

magnetic so that the external and internal magnetic fields are the 

same, the propagation of the electromagnetic wave through the medium 

may be described by considering only the electric moment of the medium 

given by equation ( 11-1). If aiso the average electric dipole mome.nt 

field 

of a molecule is assumed to be proportional to the internal 
~/ 
£ acting on the molecule according to 

( II-2) 

where o( is the mean polarizability of the molecule, then the 
__.,,. 

average electric moment per unit volume P is given by 

01-3) 

Note that for any individual molecule the polarizability in equation 

( II-2) will be a tensor quantity since the molecule itself is not 

isotropic. However, since these molecules are assumed to have a 

random orientation, the mean po larizab i 1i ty c:;,(, is used. Thus o( 

will be a scalar quantity for random orientations of the molecules CO. 

The internal electric field acting on any given molecule may be 
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~ 

divided into two components, the incident electric field £: and the 

contributions arising from the dipole fields of the other molecules in 

the medium. Thus the internal field 
-/ £:1 acting on the molecule is 

given by 

(11-4) 

where 
II -th 

denotes the field of the .,.c. molecule (or dipole) at· 
• 

the site of j , and the swnmation is carried out over all molecules 

in the medium. For a linear electric dipole, the field is given by 

- ~ ii(t- Rj_dc) F,i - ~ 
R1R. 

( ll-5) 

-- J-1-;, where ?1. denotes the moment of the dipole, t" denotes time 

and R,,·t is given by 

( II-6) 

where and denote the locations of the 4' fl,, and 1-/lt, 
. -dipoles (4). If the moment -fl,, of a molecule may be considered to 

approximate a continuous function of position and time, and the number 

of molecules per unit volume may be considered to approximate a con-

tinuous function of position, then it can be shown from equations 

(11-4), (11-5) and (11-6) that 

(11-7) 

~ ~ 

where ~ denotes the contribution of the dipoles (4). If E is 

assumed to be a plane wave of wavelength sufficiently la~ge to subject 



15 

the volume under consideratioh to a field that is approximately constant 
' --=-

spatially, then for the volume element under consideration £:: will 

be of the .form 

(11-8) 

and it can be shown that 

-1 - -£ =.E +ffjCP ( 11-9) 

for the volume element considered (4). Assuming further that at opti-

cal frequencies the, dielectric constant € of the medium will be 

related to the index ·of refraction /YI by the Maxwell relation 

( 11-10) 

since E is related to ?J by 

11- E- I 
., - 'f7T / 

( 11-11) 

then from equations (11-1), (11-9), (11-10) and (11-11) the following 

important result can be obtained: 

/Y/7..- I 
/YI z. + .J.. ' (11-12) 

the Lorentz-Lorenz relation. A rigorous development of equation (11-

12) is presented in Chapter 2, section 2.4.2 of reference (4). From 

-1 
equations ( II-3) and ( 11-12) £ · may be written as 

p. (di~~) . (!llI) ' 
(111'2- I) :, • (11-13) 
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If the polarizability per unit volume /( of the medium is defined by 

( II- llJ.) 

then from equations (11-13) and (II-14) '( will be given by 

( II-15). 

Equation (Il-15) holds for rando~ly oriented anisotropic molecules 

subject to the additional assumptions regarding replacement of a mole-

cule by an ideal dipole, etc., as noted. To obtain an equation relat-

ing a small change in /J1 to a small change in '( equation (II-14) 

may be differentiated with respect to /J1 

(II-16) 

• 

So, for D.. '( small, 

(II-17) 

Thus if 6 '( may be calculated based on some theoretical model of 

a suspension of partially oriented macromolecules, the birefringence 

.6,(Y/ of the suspension may be approximated by equation (11-17) 

provided that 4 't is sufficiently small. For dilute solutions 

containing macromolecules, /YI is usually replaced by 111s , the 

solvent index of refraction, since /YI ~/'Y/ 5 for dilute solutions. 

Consider the optical anisotropy exhibited by a long chain macro-

molecule suspended in a solvent with randomly oriented molecules so 
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that the solvent can :be c"Onsidered to approximate a continuous medium. 

The optical anisotropy of the macromolecule will have two major con

tributors, the intrinsic anisotropy and the form anisotropy. The in

trinsic anisotropy arises from the electron distributions in the con

stituent elements of the molecule while the form anisotropy results 

from the modification of the electric field at a given point on the 

molecule by the other se$ffients of the molecule (19). Thus the form 

effect contribution can be appreciable when the molecule has a mean 

index of refraction that is different from that of the solvent. 

The long chain molecule is replaced by a suitable model for ease 

of calculation. The model used herein is that of Kuhn and Griln (50). 

The molecular chain is divided into N equal length segments or sub

chains, each subchain containing enough monomer units that the.vectors 

joining the end points of individual subchains are randomly oriented 

with respect to each other. Thus a freely flexing chain consisting of 

N subchains is formed, to which random walk statistics may be applied 

to analyze the configurations of the chain. The subchain concept thus 

permits an approximate determination of the configurations of chain 

molecules which are not freely flexing at the individual bonds of the 

chain, since the inclusion of enough of the partially flexible bonds 

in a subchain will cause the end-to-end vectors for neighboring sub

chains to assume random orientations with respect to each other. It 

is assumed that the subchains have no permanent dipole moment and that 

the macromolecule is sufficiently small with respect to the wavelength 

of the incident light that the isotropic field of the solvent seen by 

the molecular segments is essentially the same for all segments at any 

given instant of time. Also, the intrinsic polarizability of the 



subchain is considered to be describable by an ellipsoid of revolution 

having its principal axes along and normal to the vector joining the 

endpoints of the subchain. The principal values of the polarizability 

for the subchain are denoted by o<.. 1 o< 2., and o( 3 , where c,( 1 

is the polarizability corresponding to the direction of and 

0(2...:::: 
._!:,,. 

to A
.A., 

is the polarizability corresponding to directions normal 

The values of o<. 1 

_.;,,. 

o< 2.. and / AA'., I are assumed to be 

constant and independent of the orienting forces acting on the chain 

to produce the net optical anisotropy of the chain. Such an assumption 

is probably not valid for force fields exerting large forces on such a 

chain, since the chain would tend to stretch out to its maximum exten-

sion and thus to alter considerably the configurations of the subchains 

as we 11, 
........ 

The electric field r' c, 
,.<., 

' acting on the segment A.,t wi H be 

given by 

where 

,:solvent and 

. 
segment f 

/ii -"" 
+ f E,b. 

f:: I 1 
ft.!.. 

(11-18) 

is the isotropic internal field due to the presence of the 
_..:... 

E ,ij 
( 19) • 

is the field at the site of 
_..::,,. 

due to th,2J 

The fields E,;_i are responsible. fci:t' the 

called form birefringence 1 a birefringence that may exist when no 

intrinsic birefringence is present. has the same If the segment -j, 
~ 

average polarizability as that of the solvent~ th.en the field 0,. 
t 

is essentially that given by a substitution of solvent molecules at the 

location in the chain, plus a very small perturbing field due to 

the anisotropy of the polarizability of the chain segment i 
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Since the field produced by the randomly oriented solvent molecules -surrounding the chain has been given by the term £ 0 and the average 
,:z.... 

polarizability is proportional to /YI from equation (11-15), whenever 

the chain has the same average index of refraction as that of the 

solvent, the form birefringence will be negligible (19, 20, -98} •. The 
......::. 

COIJlponent f=. · is related to the dipole moment ,(,,t of the 

segment by the interaction tensor 

( 11-19) 

.. 
Thus the field at ,,(,, may be written as 

- ...::a. ,J_ 
£.: £ + z_ 77i_ ~ (11-20) 

"- o 'f' I ( q "r 
1' .J.J.. . 

from equations (II-18) and (11-19). If electrical saturation effects 

are negligible so that 

( ll-21) 

where • is the polarizability tensor for the segment ~ 

-=-then from equations (11-20) and (11-21) the dipole moment ~.I. 

of segment~ will be given by 

-= co<..c: E,, 

(11-22) 

Equation CII-22) is a system of 3 N equat.ions for the components of 

~ -jl,,~ which could be evaluated at any instant of time if the 

location and orientation .of all segments of the chain were known. 
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Since such information cannot be obtained, it is necessary to employ 
__:,. 

averaging techniques to obtain useful values for ~,,i. 

is regarded as being constant throughout the volume enclosing the macro-

molecule at any instant of time, 

(11-2.3) 

where the averaging is done over the possible configurations of the -chain. Consider a fun ct ion f ;(,, defined by 

.f. = £ [<«i -,;, a:'> - <«. T \ <-:;;;-."" J 
A.. J =-1 u V :Yew: ,l t ~ v- t / M7 6 

1 ~,l 

( Il-24) 

The addition and subtract ion of equations ( II-23) and ( Il-24) yields 

_.... ,J ~ 

_:::. rt < "- f. ( II 25) < ,t{),), 2 = < o(') ~ + ?- o<;. 714 0 (fA• )CW-+ ,l • -v- ,u;- ,1.., 4J.r t=-1 u u 

1 :;=.,/, 
Equation (11-24) may be rewritten by noting that 

( 11-26) 

Thus 

( 11-27) 

Or, 

( 11-28) 



Thus if is sufficiently near to its average value throughout 

the vagaries of chain motion that occur, the function will -be negligible. It is usually assumed that f ..l is negligible, 

although this may not be a good approximation for liquids (43). Thus 

the average dipole moment for the subchain is assumed to be given by 

For the freely flexing chain under equilibrium conditions where the 
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chain may be described in terms of random walk statistics, the follow~ 

ing approximation has been used (19) 

< n,.30) 

where the fi-rst term is ·che intrinsic anisotropy oe.mtribut:l.on and the 

second term the form effect contribution to ('~ )>~ 
• • Consider the field at the site of sub¢ha:l.n ,1.,, due to segment 1 . 

lf ~ • 
is suffieiently far from f the field of ~ at the site of 

ii 

); will approximate that of an ideal dipole loaatecl at the site of 

1 The held of ati ideal dipole immersed in a medium of index of 

is given by 

' 
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where /l, is the vector joining the dipole and the point of obserw'\-

_.:::. 7t -tion, /'>'1 is a unit vector directed along and ~ is the dipole 

moment of the dipole ( 39) • Thus from equation (ll-19) the interaction 

tensor will be given by 

( II-33) 

assuming the subchains of the chain can be considered to radiate as 

ideal dipoles. 

From equations (11-33) and (11-31) it is seen that an evaluation 

of the second term of equation (11-31) depends upon the knowledge of 

the distribution function of the chain. Such distribution functions 

are available for dilute suspensions of chains subjected to small non-

time varying flows (42 9 50), or to no flow. However, apparently no 

distribution functions for such chain molecules subject to small o:scil-

latory flows are available, although Zimm ( 109) has evaluated integrahi 

involving such a distribution function. Since the case of particular 

interest for the work presented herein is that of oscillatory flow 

in a solvent having an index of refraction within 0.1 of that of the 

polymer being studied, the form effect given by the second term of 

equation ( 11-31) is assumed negligible in the work to follow. Thus 

the optical anisotropy of the chain molecule is assumed to be due to 

only the intrinsic anisotropy o<· I.., 
characteristic of the subchain 

of the molecule. 

Neglecting the form effect, the average intrinsic polarizability 

of the whole molecule can be obtained by adding the appropriate com-

ponents of the intrinsic polarizability tensors for each of the 



subchains in the molecule to obtain the polarizability for the entire 

chain and then computing an average value. Or, one can compute the 

components of the average polarizability tensor for one subchain and 

multiply it by the number of subchains. The latter approach, that of 

II 
Kuhn and Grun (50) is presented here. Figure 1 shows the coordinate 

system chosen, in which the 2 direction coincides with the end-to

end vector :t; for the entire chain. The subchains characterized by 
~ 
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the vectors are not parallel to ~ , but have random orienta-
~ 

tions with respect to t_, and each other. One such subchain vector 
~ 

/I/; is shown in Figure 2. 

Consider the 1, 2, 3 principal axis coordinate system for the 
_.:::,,. 

vector ~ and its associated polarizability tensor o<;,,. given by 

(ll-34) 

The polarizability tensor o<.1, corresponding to the x)., ' Y,i. 

Z;, or the X y coordinate systems may be obtained 

from equation (11-34) as follows. Since is symmetric in the 

2, 3 plane, the orientation of the 2 and 3 axes are arbitrary so long 

as the 1, 2, 3 axes remain orthogonal. If axis 2 is chosen so that it 

lies in the plane of the -;!, 

""' 
and the 1 axis, then the 3 axis is in 

the X)., plane, forming an angle of ( 90°- ¢ ) with the X, 
,(, 

axis. Thus the direction cosines relating the coordinate 

systems, expressed in terms of the spherical coordinates fj and 

,fJ are as follows: 
a. = ,0.1,1 .. _ e ~~ ¢ 
01~ 
~ 2 X = 0-ci, e C,,,,4 •• ¢ 
j3x = ~ 1 ¢ 

<i I If : (k,,y·,@ t!JW/,, 
j1.y = CaQ. e9 ~¢ 

1::-Y-= - ~I 
01-35) 



Figure 1. Coordinate System for the Specification 
of the Spatial Configurations of the 
Chain Model of Kuhn and Grun. 
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Figure 2. Coordinate Systems for the Specification of the 
Orientation of the ,,l-,..1, Subchain of the 
Cha.in Model of Kuhn and Grt1n. 
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Thus the components of the polarizability tensor corresponding 

to the X , Y r. coordinate system are given by 

(°<'.'.xx\.= c<, 1,v.. i,x + o<, 1zx efZX + o(,,13x.1::n. 
= ( O(' I - o( 'Z. ) ~ 2 6) ~-~ .. .2· pf + o(_ '-

( o<. X Y )). :: ( c( YX Jl : o< 111>1.. '1 JY + e>(2. ~2.x 1 "LY -t- e>(z 1'3>< i3Y 

: (o( I- o<'2,) ~./·e Cb<:'J, ¢ ~ ¢ 

( 11-36) 

Average values of the are now obtained by evaluating 

, averaging over the orientations of the segments of 

the chain according to 

( 11-37) 

where d /IJ , the incremental number of chain elements, is to be 
~ 

exprei;;sed in terms of e and ¢ Since the end-to-end vector~ 

for the chain coincides with the ~ axis, the rotational symmetry fo 
....:.. 

the X , Y plane yielding ide;tica.1 values of ~ means that the 
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number of Jsubchains oriented at an angle Jd is independent of ~ 
_..::,. 

However, it is obvious that a variation in the magnitude of ~ will 

alter the distribution of the values of & For example, if the 
_:,,,. 

chain is stretched so that~ approaches the maximum value attainable~ 

then the angles c) will approach zero degrees. Hence the incremental 

number of chain elements is related to the angles & and ¢ by 

where F(s) is a function of ~ only. Combining equations 

(11-37) and (11-38)~ one obtains 

( Il-39) 

The application of equation (11-39) to equations (11-36) yields 

11 

( ~ ~ -=( c<yy 'l,;_-= J [<o<,-:,) -'*l& + <><J r{ e)dG 
&:o 

( II-40) 

Tr 

(«;.,.)l=J [<>< 1 ec,t-e+o(2 dhi 2 a] ({e) d& ( 11-40 

B::..o 

and 

(o1..'t-y). 
,{, 

( 11-42) 
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Note that from equation {11-42) the average polarizability tensor for 

, -tA 
the ,A., segment is diagonal in the X Y , i! coordinate 

system. Kuhn and Gran evaluated the function F ( e) of equation 

(11-39) assuming N large. They obtained 

'7~~ 
F(&J= ..L, ~.~~.e , 
.~~ 

( II-43) 

where ,& is the inverse Langevin function of ( A,//11/ t'I). Equation 

(11-40) may thus be evaluated as follows: 

( II-44) 

( II-45) 

Similarly, equation (11-41) yields 

[ 
rr -~~t) 

(c<ee~ = -tk fa, cJ-t;e .du,,~"'~ 
~ (J:f) 

.,,. -,4 C,n, dP l 
+ J ~.,.~~e ~ ~ "~J 

(; :() 

( Il-46) 

= (e>(,-o<-z.) [,.,. j(j-~)]+ o<z.. 
Equations ( II-45) and ( H.-46) may be simplified by the introduction of 

the Langevin function L ~) defined by 

( ll-47) 

ti 1t1 • 
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The function LCf) may be expanded in series form as 

. :3 s- 7 
L(l.3)-=4--~+~-~- f--- (II-48) 

,- (3 4-~ 91./.~ ~ • 

If p is sufficiently small, Ly-3) may be approximated by the 

first two terms of the series expansion. Applying equations (11-47) 

and 01-48) to equations (ll-45) and (II-46) assuming r-> <.o.6 yields 

the following: 

(II-49) 

~,+'2.0<7... 

3 
and 

(~~ ).; = (o<,-o<z) [t- ;;} Uf il + o< z.. 

C::! ~ I ~ ~~i- f- ~ ( o( I - o<. 2) 14 5 , 

The polarizability of the whole chain is equal to the product of the 

average segmental polarizability times the number of segments N. 
~ 

Hence if the polarizability of the chain along ~ is designated by 
...a 

Y1 and the polarizability normal to ,/,.,; is designated by '( z. 
then from equations (11-49) and (11-50) for~ < 0.6 one obtains 

v _ N ( _-;--) ~ f,/(C>{,+~o<.,_l + '"J tv'o<-o< )\6°"7¥.S-
o I - °'=ee: ,L - . '3 ~ ,' I z,- 01-51) 

and 



Thus the difference of the principal polarizabilities for small ,;C3 
given by 

30 

is 

( II-53) 

Equations (ll-51), (Il-52) and (11-53) may be written in terms of ..A., 
N and IAI using equations (11-47) and (II-48) assuming 

I to be sufficiently small that 

1->> ifs:- . ( 11-54) 

such that equation (11-54) holds, equation (II-53) becomes 

/j. '( ~ t (c< I- r:i<;z.) fv7-
. NIAT' • 

(II-55) 

Since equation ( Il-54) implies that 4 < <. tJ /A/ , the 

value of obtained for the average end-to~end distance of the 

chain £or small ~ may be used (50). Thus 

i-z. =N A2- (II-56) 

so that for ~ < < N I A I Ll t for the entire chain is 

given by 

( Il-5 7) 

assuming the number of subchains N to be large. 



2. The Vis<!'.oelasticity and Oscillatory Flow Birefringence of 
Unbranched Chain Molecules in Dilute So,lution, as: Given, by 
the Zimm Theory 

31 

Tt~ Qeha,.vio_r of: fle*:Lble, linear pc:rlyme'L" molecules suspended, in a 

v,is~:O-J.l:P. ~~<tium ha,;s, been analyzed by Zimm, ffcn; dilute solutions which 

ar.e, sul:>jected; to_ s_inusoidally t.ime varying velocity gradients, using: as 

a. m,pdel for- ~he polymex- a chain, of identical beads joined by identical 

· Hooke.an springs ( 103). Th,e __ t,::eatment inc:ludes forces- on, the beads due 

to Br,ownian- motion, as well as those due to hydrodynamic. inter-actions 

the mot,ions of the chain is converted trr a solvable form by a coordi-

n~te transfprmation: to an appropriate set, of normal coordinates. The 

comp,tex viscos.ity and flow birefringence,\expressions are .obtained for 

the model for the case-in which tqe solution is,subjected to a-sinu-

soidally time varying velocity gradient, assuming a model chain in 

whic_):1- hydrodynamic interaction is -either vanish.:i.p,gly small or very 

large. It sho1,1ld _be noted,that _ internal viscosity in·-the joints of. 

the model and.intermediate degrees of hydrodynamic interaction are not 

con~ id.e1;ecl,. 

The,mc:,del of.·the linear polymer:cha:tn adopted by Zimm·,consists of' 

N., identical segqients joining,N + I identical beads with ·complete·· 

flexibility at each bead (no internal viscosity) so that .. adjacent seg ... 

m~nts ._have .. a random .angl.llar distribution with :respect .to ·each other~ 

Tht,1$, ran_dom.,wa lk .stat istias may_ b,e -app 1 ied to the .model unless ·the 

cl):airi,is-su,bJected to large orienting ,forces (70), Thus,- if the 

d i!stan.c.e ,b~tween any two adj~,c:en_t beads. in the chain.de denoted by· j , 
the ,·p!.01?1:1.b:f,litY function .. WC€) . for the di'stribut.ion ·of the 1ensth·· 

of, _the segt!!ent is as.sumed/to be -rgaussian. -in character. That is, 
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_ 3f.. "2.. 

we 1.) = a e e< ~""' 
( Il-58) 

I 'Z,. 
where QJ A "Z- ' is the average value of ,K.. J.x , l.y and ,/z are 

the X Y and Z components of ) , and ti. is a constant. 

The probability function of equation (11-58) implies that the segments 

in the chain model are equivalent to Hookean springs, so that the 

chain model becomes one of identical beads and identical connecting 

springs as shown in Figure 3. 

Kuhn has shown that the replacement of a section of- a linear 

polymer molecule by a Hookean spring is probably a fairly accurate 

representation of the behavior of the molecule when sufficiently 

small external forces are applied (50, 51, 55). Since a-real polymer 

chain does not have complete freedom between monomer units, but is 

restricted to certain bond angles, .etc., random walk statt-stics can be 

applied only to sections (or subchains) ·of the chain which contain a 

sufficiently large number of monomer units that neighboring sections 

will have random angular distributions with respect to each other (51, 

55). For a molecule made up of a large number of subchains having 

such random orientations, Kuhn obtained a distribution function 

for the end-to-end distance W(t) of the chain of the form 

3~'2. 

where a1 

-~ 
W(~) - a.'e 

l)Z 
is a constant and ~ is the average value of 

(Il-59) 

If one assumes that the polymer molecule is replaced by a Hookean 
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Figure 3. Coordinate System for the Specification of 
the Spatial Configurations of the Bead 
and Spring Chain Model of Zimm. 
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spring of force constant k with endpoints coinciding with the end-

points of the polymer, the potential energy of the spring will be given 

by 

V= ( 11-60) 

Thus if Boltzmann statistics are applicable, the Boltzmann probability 

function 

w (11-61) 

when combined with equation (11-3) yields 

( 11-62) 

where Jt. is Boltzmann's constant and T is the absolute temperature. 

Thus if I< is given by 

k = 3'-. T < 11-63) 

1;J 
equation (11-S) and equation (11-2) are identical. If one furthei 

assumes that the molecule may be subdivided into submolecules that 

likewise obey random walk statistics, then the submolecule of length 

~ may likewise be replaced by a spring of mean force constant 

so that the probability function for the submolecule length 1. will 

be 

wC.e) 
( ll-65) 
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which is identical in form to equation (11-58). Thus the submolecule 

of the polymer molecule behaves as though there were a Hookean spring 

joining its end points, having a mean force constant given by equa-

tion (11-64), so that the entire molecule consisting of N submolecules 

may be approximated by considering the N submolecules to be replaced 

by N such springs. 

The analysis of the behavior of the spring and bead model of 

Figure 3 can be simplified by noting that if the springs are assumed 

to have zero length when no stretching force is applied, then the 

spring of force constant joining the j,fA and the 
I fh 

1 
beads is equivalent to three separate Hookean springs oriented along 

the X ' 'I and ? coordinate axes, having the same force 

constant I< Thus the single segment of the model or the entire 

model may be analyzed by considering its projections upon the axes of 

the chosen coordinate system. Thus the complicated 3-dimensional 

array of springs and beads may be simplified by reducing it to three 

1-dimensional arrays lying along the coordinate axes. 

For mathematical simplicity, the chain model is assumed to be 

suspended in a continuous viscous liquid which can interact with the 

chain through the beads only, although such an assumption obviously 

does not correspond to the behavior of a real polymer molecule for 

which all regions of the molecule can interact with the liquid. The 

interaction of the bead and the fluid is assumed to be such that a 
_:i,. 

force ~ having components is 

exerted on the liquid by the bead when the bead is moving with a 
..:. 

velocity Ar having components l'!.rx which is . 
different from the velocity which the fluid would have at 1 if the 



bead were absent. Thus 

where 1 

(1-= 1(><1- ~i) 
Fyi == f (Yt - llyef) 

~ ? = -j ( z, - A/ij ) 

is a friction constant and 

are the components of the velocity that the fluid would have if the 
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'flt f bead were absent. Thus the force that the bead exerts on the 

fluid is assumed to be proportional to the velocity of the bead rela-

tive to the surrounding fluid much like the Stokes law force exerted 

on a viscous fluid when a macroscopic sphere is forced through the 

fluid. -F-rom Stokes law, the force exerted on a fluid by a moving 

sphere has components 

(II-67) 

where ll is the radius of the sphere and ,% is the fluid vis-

cosity. Thus to a first approximation the friction factor ~ char-

acteristic of a polymer chain segment might be expected to be directly 

proportional to the solvent viscosity, and to have essentially the 

same variation with temperature that 11 , (S would have, although its 

magnitude would not be expected to be given by equation (II-67). 

There are two separate forces which are assumed to act on the 

beads, the restoring forces of the spring elements in the chain model 

and the forces due to Brownian motion in the solution. From equation 
_:::,. 

·fh 
( II-64), the restoring force ~ acting on the 1 bead due 

Cf-') • • ( J+ I) to the springs from to 1 and 1 to will have 
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components given by 

( 11- 68) 

The forces associated with the Brownian motion of the chain are 

introduced by noting that the average Brownian motion for a random 

walk process has been shown to obey the standard differential equation 

for diffusion (17). Thus if the distribution function J/J(X Y ~ X---. 'r 0/ o I 0) I 

--- -; 2NpiJ1J~ gives the probability of finding each bead f 
between X,j and and and and 

21 -+ d 2f , then since probability is directly proportional to 

concentration, the application of Fick's law to l/) yields an aver-
~ 

;=;, • 
age Brownian force acting on the bead t having components 

Fajx ~fY Pet~ given by 

( 11-69) 

Thus from equations ( II- 68) and ( 11-·69) the total average force acting 

bead is given by 

.J'-T( tt, _ I,,( ) ,,i = o t-2, 0 I 'J 'if' J 

( 11-70) 

and 
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Hydrodynamic interaction between the various segments of the chain is 

introduced through the velocity 
-1 

of equation (II-66). 
-;;;1 

t !1lj 
·i if the ifA the velocity that the fluid would have at the site of 

bead were absent, is different from the velocity ~ that would 

exist at the site of f if all forces due to the presence of the 

remainder of the chain were absent. The interaction of the chain seg-

ments by way of the suspending fluid is assumed to be given by the 

approximate form of the Oseen interaction tensor given by Kirkwood and 

Riseman (46). From equation (11-66), the force exerted on the liquid 

by the bead 1 has X '/ and i3 components given by 

j { IA,; - ~~ ) tt = >< y -c 
. q ~t ' ) ) . 

(11-66) 

From the work of Oseen (5) the fluid velocity at a point located by a 
_.:,,. 

vector R from a given point p> is modified by the application -of a force F at the point P The velocity of flow of the fluid 

is assumed to be small, and the force is assumed to vary sufficiently 

slowly with time t that 

t > ( II-71) 

where/ is the density of the fluid and ~ is the time between the 

instant of application of the force and the moment being considered. 
---lo. 

For such quasi-static conditions, the perturbing velocity ~f- is 

given by -T(R) F 

= I [;+ RR/Rz.]F 
'8171/s 

( 11-72) 
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if f( is sufficiently small that R >) R 3 • rrR) is a 

hydrodynamic interaction tensor and ~S is the viscosity of the 

suspending fluid (5, 34, 46). Thus T( R) expressed in dyadic form 

is given by 

f (R) = [1 + RR/R~] . ( II-73) 

Since the hydrodynamic interactions to be considered are interactions 

within the model chain, the values of f?. will be less than 10·4 cm. 

Thus from equation (II-71), assuming f ~ /.If 'EJlllcc. and 

poise, the minimum value of ~S encountered in the work presented here

in, t; must be greater than 3.5 x 10-6 seconds, so that for frequen-

cies greater than approximately 1 x 105 cps equation (II-71.) may not 

be valid. 

Let denote the vector joining the locations of the two 
, 

beads f Since it is only possible to specify an average 

value for the vector denoted by < Rf'-.~ 
is used in equation (Il-72). This is equivalent to replacing the 

interaction tensor describing the influence of bead J_ at 
• 

the site of bead f by its average value, if it is further assumed 

that the chain model will have a gaussian distribution function de-

scribing the vectors for the entire chain, and that such a 

distribution function will apply for all motions of the polymer chain 

being considered. Thus Kirkwood and Riseman obtain 

( Il-74) 

Further, if the extension of the model is not approaching the maximum 

extension of the chain, 
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(11-75) 

where is the average distance between two beads in the chain 

model. Combining equations (ll-74) and (II-75), one obtains 

Thus, making the assumptions noted above, the perturbing velocity 
ii 

at f caused by the bead /e will be approximated by 

(II-77) 

. 
from equation (II-72). 

I 
The velocity ~ at the site of f will 

be given by N __:.. 

~I a:::_ 
~ f D < lik ><t<r ~ ~ + 1 

jfll 
c n..:.7a) 

i'\.- ~ + ( t: '"-,l(~s1fr J t. ( /ef-~1-k)~ -
~ 

11'A 
where ~ is the force exerted by the ~+A bead on the sus-

pending fluid. 

The equation of motion--actually an equation of average motion, 

since equations (11-64) and (Il-69) involve averages of the motions of 

the chain due to Brownian forces--may now be obtained. Assuming that 
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the mass of a bead is sufficiently small that inertial forces may be 

neglected for the frequencies of interest, the force exerted on the 
, 

liquid by the bead ~ is equal to the force exerted on the bead by 

the linking springs and the Brownian motions. Hence, from equations 

(II-66) and (II-70) 

.. ' 

1 < u -flr'. 1 ) == -JiT ~ < R4 "'l :.... UT( 11 _. tl,_,) 11 =X, \I~ N U,J 'o U.11 J.2- Al ,,,. ' ) 7) • 

• u, Solving equations (II-79) for 
/ Alitj from equation (II-78) one obtains 

N-1 . 

~ = ~o- I> ~~t/1) - cr(t(()-11,)-J i i;;A[P ~(~c/1) 
o{.(() '=' : ~tt~ 

A¢t 

and inserting values for 

+ Ir (-~-IN~ -11,t+I )] -JT.0 [D)~~!2 + (11,-u,~ 

-.Jr r.P ~,"1 tpl + ~ (u. - u )] 
~NL"' ~ W.N N M-1 

( II-80) 
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where 'T J) -=- T (II-81) 

and 

a-- 34.:r 
- ~ iz • ( Il-82) 

It is mathematically convenient to introduce a matrix notation to indi-

cate the method of solution of equation ( II-80). Let the ( N+I) 
dimensional column vectors l( 

' !1Ji ' F; and d be defined -cu 
as 

P. 1 u., 
u. I 

;; /,/-=X)Y,~; ( II-83.) 
I 
I 

IJ.11 

~ ( ~-i ::: Nf' 
IVu// 

,1,1=X)Y,r 1 
( II-84) 

Fu.) 
~= 

Ft11 I)== X, Y>c, ( II-85) 
I / I 

and 
Fi;/,/ 

L 
~ lie> 

d -
~ ( II-80) m tl=X,Y)~• ru- . 

' . 
fu;; 

Also, define square symmetric matrices A and H of order (fl)+/) 

as I -/ 0 0 - --- 0 
-I ~ -I 0 - - -- Q 

0 -I ~ -I - - - . 0 

A= 0 -I :2.. - - - . 0 ( II- 87) 
0 

I I I 
I I I 
I I I 

(!)---/ :L-1 0 t) 0 

0 0 0 0 - - -()-/ I 
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and 
:fT;, 1-r;;z -- - fTaw 

fl7"o I 17;2 - -- 1-r.. 
I Ii/ 

II= :f T;.o JT;, I :fT;w 
( 11-88) 

• ... • • • 
• • • • 

-Jr,jo ~ I 11;J,- ---
Making use of equations (11~83) through (11-88), the differential 

equations of motion (11-80) may be written as 

)<.=~~~~-DH· ("°k)kf- cr--11·~· X 

Y-= k ~ ~Y - 'J) H· (-fy-)h p- er fl,A ·'I 
~t 

~; ~ -: ~ - .l) ,¥. (-h; J~f - er h'·A·? 

where the dot between matrices indicates matrix multiplication. 

( 11-89) 

Since the distribution function (/ may be considered to be a 

probability function describing the probability of finding the chain 

with a given configuration, the probability ~ of finding the chain 

in a volume element d"'r' -=Jx.cJ.x,---· d~iJ located at x~,Y.,)---'2.t,1 
in the ( 3 ,J + "3) dimensional space is given by 

( 11-90), 

Thus the variation of P with time will be given by 

~p - ( 11-9 0 

~t • 

Assuming that there are no sources or sinks for the creation or 

destruction of the chain, the entire change of ~ with time is given 
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by the influx and· efflux of the chain from the volume element d7 . 

Thus the diV~rgen~e th~cire~'yields the etjuatiori of ~ontinuity 

( ll-92) 

where ,1;-" is the velocity matrix given by 

( ~ X ) ( 6 Y) (cit}-/II == ~+ + -rt + cjt- J - ( 11-93) 

• 

Since the divergence operator in matrix notation is 

l ( ~ )T (~ )T d T dw-=rx+w+(~), ( ll-94) 

where -,- indicates the transpose of the indicated matrix, equation 

(11-92), the equation of continuity, may be written as 

( 11-95) 

Combining equations ( II-89) and ( 11-95) one obtains the desired dif-

ferential equation for ljJ : *" == z.. [-(*)f~-t/)(fu)7:~ +1>(~-r:f/·(11-) 
. . IJ. =X)Y, -2-

t o-({Jj)f fl. lJ-tl-1-r:rp (ti/)7:ll·A·tl}., 
( II-96) 
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Equation (ll-96) contains product terms that are not diagonal matrices 

in the X , Y 2 coordinate system. However, an appropriate 

transformation of coordinates can be performed such that the product 

terms will produce diagonalized matrices and hence simplify the mathe-

matical analysis of the problem. This normal coordinate transformation 

is constructed from the characteristic vectors of the matrix ( f/•A) . 

Note that although fl and A are both symmetric matrices, ( II• A) 

is not symmetric. 

If the eigenvectors and eigenvalues of (/I-A) are denoted 

by o<.-p., and respectively, then the eigenvalue equation 

of ( H• It) is 

( II- 97) 

This set of equations may be written in matrix form. Let the eigen-

vectors be the ( ft}-+ I ) columns of the[(tV+t)X ( I\J+!)] 

matrix O{ defined by 

ex'. Oo 

Q= o<..~, 
o(O'Z 

o1.., () 

o< II 

04( I?.. 

ol • -2o 

o<. " " '2 I 

o<. 'Z. 1." • 

" " " 

• o<: Alo 

• o( NI 

• c:,( IJ z. 
" 

,../ ,..,; .J • • • o(N 11 
"\ 0 ,J loo'\. I tJ """2. w IV 

( II- 98) 

where denotes the JfA f th · t '( component o e eigenvec or 

/)-/ q Let ~ be the inverse of so that 

Q~- 1=Q-'q =I (II-99) 

where I is the unit matrix. If a diagonal matrix _/\._ is defined 

by 
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Ao o o o · · • o 
o >. 1 o o • • • 0 
o o :l.2 o • • • 0 _/\_ = 
C) ~ q ~.3· •• 9 ( II-100) 
• 
O O O O • • • iN 

then the family of equations (11-9]) may be written as 

( II-101) 

The matrix (l-l·A) may now be diagonalized by a similarity 

transformation if the are all distinct 

Multiplying equation ( II-101) from the left by 

( II-102) 

where ../\_ 

values Af" 
is the diagonal matrix having as elements the eigen-

Similarly, if all of the eigenvalues are distinct, 

,'4 is diagonalized by 

( II.; 103) 

where /'1 has nonzero values ,l{,tf/,! on the diagonal only, and If 
is diagonalized by 

( II-104) 

where N has nonzero diagonal elements -i)"f' only. Thus the matrix 

C{ may be used to obtain the desired diagonal forms in equation 

(Il-96), (36). 

The normal coordinates adopted by Zimm are those given by the 
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transform matrix Q of equation ( 11- lOQ). Thus if the normal coordi-

nates are denoted by j , '7 , £ , one has 

and, 

X=Q.g 
Y= Q7/ 
~=~rf 

g =~-'>< 
~= 6{' y 
t-= Q-1l. 

Partial derivatives will transform according .to 

and 

{Q-ITL 
TI" 

It is necessary to state the velocities Ali( 

(11-106) 

( ll.-107) 

explicitly in order 

to transform equation (II-96) to normal coordinate form. Assume lami-

nar flow with a velocity gradient such that the velocity gradient is 

essentially constant over a domain of molecular dimensions. That is, 

the shear wavelength at the driving frequency must be large 

with respect to the dimensions of the molecule. Thus for a given 

solution viscosity there will be an upper frequency limit set by the 

assumption of a constant velocity gradient acting on the molecule. 

The velocity is assumed to be given by 

and ~,= t ~, 
~f-= Nat= 0 

(11-108) 
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where the velocity gradient i is a harmonic function of time with 

radian frequency u) , related to the frequency i' 
(;J:::. ~7, 1 . Thus O' is given by 

Lwt 
~: ~o e . 

in cps by 

( 11-109) 

The insertion of equations (11-108) into equation (11-96) yields 

M.. -(~(~ + Z:. [ DCiu")1:" H·(*) 
~-t U=Y..; y>? . 

+ <r(~)-r; 1/·A·tt fa-JP{ fu:{;.M ·tt]. m-uo > 

From equations ( 11-106 ) , ( 11-!07), and ( 11-!08), 

and 

Thus the equation for {ti 

ti= X; Y, 2 

t(",:,. f, ') Jf. 

(II-Ill) 

( 11-112) 

in normal coordinate form becomes after 
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· .. Or, writing equation 01-113) ih terms of the matrix elements, 

the desired solutions to equation (11-114) are obtained by assuming a 

solution· of the .forni 

· .. · .. ·1;· .. · ~ . .h'/ . 

. · //) = . £_ ~ 1 
. Y' . . . . () /II:=~ . 

(11-115) 

with · f}o = / and · 

.. [ <*){ f r<xt-~~/t<1 :-~4 ,t,. ( ~1• - ~,+S'-JJJ 
~ = e ·. ·. · · a-~" · · · ·· · ~11-116) 

.. from equation (II-.58). Equation (II-116') becomes· 

. .·. ·. ·. . . {C~>[f ,u~<s; +~+M;il} · . . · e . . -fJ'=I ·. · . . . 01-117) !ft ·.. . ... . . . . . . . 

. when written in tl:le normal coordinate system. Thus 

: t ·."' -{f ),,«f' t/;, J!; j uf = ~ f, t( • (II-US) 

Equating the coefficients of r in equation ( Il-114) making use of 

equations (lt-115), (II-II7) and (II-Il8). yields the set of equations 
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(II-119) 
. . . . . . 

. . ~· ·(ou. dztf,h ~ . I// d(/)IYIJ . 
+ ~ . ·. '?' d tt-z.. - <T /\f ~ d t(/. j M~I-
. l.l=3)1[)Jf . P . . . . fV , 

Zimm obtained as a solution for f, 
l'1. . . . . 

1h •·::. 'i_ C~ <£,P Jfp ( II-120) 
YI f=I. ··. 

where 

CII-12U 

It is possible to obtain any Pm from e.quations ( II-120) and 

ClI-121) using equation (II-119). However,.Zimm obtained instead 
. . . . . . . . 

certain integrals that wbuld pE!rmit a simpler evaluation of the visco-' 
. . 

elastic and flow birefringence properties o:f the chain inodel without 

actually solving for f · .·itself. S.ince (/I. is a probability 

function, it is normalized so that 

( ll-122) 

Or, converting to the normal coordinate system,· since the volume ele

ment cltf' is given by 

ClI-123) 
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where j is the Jacobian of the coordinate system S 77 ' Jf 
equation ( 11-122) yields 

Jj--j rhtr = jJ--j y, .rd?.,, - -d Jf11 = 1. ( 11-124) 

Al.I. SPACE . 

Or, 

(11-125) 

111..t. SPACE 

From equation ( IJ.- 125) and the boundary condit.ion that If must vanish 

at infinity Zimm obtained the following important result: 

+~· 

I Jj--j i Hf' t/ d ~ ---· et Jf11 ( 11-126) 
-=o 

'r D/[;t,p a-(:,_ er At'+ .l wLJ. 
The transient term containing e-.;; cr-~, t has been omitted in 

equation (11- 126), 

The soluti~n viscosity ~ay n6w be evaluated, Th~ intrinsic vis-

cosity [7l] of the so1ution may be computed using the method .of 

Burgers (5) together with the· calculated veiocity perturbation of the 

flow velocity of the s6lvent due to the presenc~ of the flexible chain 

tn the solution as obtained by Kirkwood and Riseman (44, 46). 

Kirkwood and Riseman evaluated the velocity perturbation of the flow 

for a model chain consisting of a random coi-1 model consisting of 

rigid links joined together at the proper bond angle for the macro-

molecule being modeled. The rotation around each bond at the valence 

angl~ is assumed to be hindered. The interaction of the solvent and 
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the chain is assumed to be the s.ame as that given by equations (II-66) 

where the force now denotes the force on an entire link~ not on a bead 

as for the Zimm model. The hydrodynamic interaction among the chain 

elements is assumed to follow the quasi-static expression of equation 

(ll-73), subject to the assumptions noted previously. The solvent is 

assumed to be in a state of quasi-stationary two-dimensional laminar 

flow between plane parallel boundaries. If a polymer molecule is 

introduced into the solvent and allowed to reach an equ:1,.1.ibrium 

state in the fluid, the center of gravity of the molecule- will move 

with a mean velocity equal to that of the local velocity of the 

solvent. Also, since the particle is assumed to be in equilibrium, 

the mean external angular velocity of the overall chain with respect 

to the fluid is assumed to be such that the average hydrodynamic 

torques applied to the chain must be zero, where the averages are over 

a complete rotation of the coil, Also, the internal torques, i.e., 

the torques exerted on a segment of the model by the other segments, 

when summed over all segments and averaged over a complete rotation 

must be equal to zero, so that the average internal velocity must be 

zero. 
__:,. 
• 

"' 
Thus if t is 

_.a, 

and It_ 

the velocity gradient and the unit vectors 

define a right handed coordinate system X 

Y ~ with its origin at the center of gravity of the molecule, 

. 
the solvent velocity at the location of segment f with the 

chain removed from the solvent will be given by 

( ll-127) 

where /?~,l is the 2 component of the vector locating the seg

ment 1 , assuming that the solvent is flowing in the )( direction 

. -, 
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and c is the direction normal to the plane parallel boundaries. The 

condition of zero average external torque is fulfilled if the coil is 

assigned an average angular velocity in the - 2 direction of 

( ~/:2.) . 
'11, 

I 

--':::o, ( • " a ) 
Thus the average velocity tLj. = K,f, y1) 't'"/ 

element of the chain is assumed to be given by 

for the 

(11-12~) 

Thus from equation (11-78) and (11-127) the forces exerted on the 
, 

fluid by the segment ,f are given by 

-':>. 

The velocity perturbation at some point located by the vector R 
..,..-. 

where R is large compared to the linear dimensions of the chain, 

may be obtained from the quasi-static velocity perturbation expressions 

of Oseen as given by Burgers (5). For 
~ 

velocity ~ generated by the forces 

~ 

R large, the perturbing 
-=-

ff yields 

<~~: -( :~~\5)(R~R~)R ( 11-130) 

with 

( U-131) 

where the averages are over the internal configurations of the chain 

(44). It should be noted that equation ( 11-,131) differs from the 
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erroneous expression given by Kirkwood and Riseman (46) but agrees with 

the corrected expression given later by Kirkwood (44). 

The effect of the average perturbing velocity <~"fV~ on 

the viscosity exhibited by the solvent is obtained following the 

method of Burgers (5). The motions are assumed to be sufficiently 

slow and the dimensions sufficiently small that inertial effects 

associated with either chain or solvent motions may be neglected. The 

solvent is assumed to be in a state of laminar flow with streamlines 

in the X direction and a velocity gradient '3" in the z! direction, 

and the number of chains per unit volume is assumed to be sufficiently 

small that no appreciable interaction between chains can occur. Thus 

the net average perturbation velocity will be given by the superposi-

tion of the average perturbation velocities for all of the chains in 

the solution. The presence of the chain also disturbs the value of 

the velocity gradient, but the total effect over a plane~-:. ~I 

that is infinite in extent in the X and Y directions, is zero. 

' 

Thus the average frictional force per unit area (shear stress) acting 

on the plane ~ = /v I , is unchanged by the presence of the chain. --- . From equation ( II-130) the X , y and i! components of ~ are 

given by 

( II-132) 

(II-133) 
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and 

( ll-134) 
• 

Thus on the surface ·~ =~I , the inj:egral of the velocity compo-

nent AJ::r;x , using cylindrical coordinates, gives the following: 

+otJ' +- oO 

!Vx's J _ = J. j ~xdx d'I 
. ~-A, r 

I ><= -..,() V ' A ,=--~ 

Repeat irig the same procedure for ///py , one obtains· 

( ll-136) 

Similarly, 

o. 
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Thus there is only an )( component to the sum of the perturbing 

velocity contributions over the plane r =~ I If the same pro-

cedure is followed for the plane r = - ~z.. ' one obtains: 

(11-138) 

and 

(11-139) 

Thus the sums of the velocity perturbations on the planes ~: +.,1,,1 

and ~ = - 4 2- do not depend on the location of the chain between the 

planes as long as the chain is removed sufficiently far from the planes 

for the perturbed velocity expressions of (11-132), (11-133) and 

(11-134) to hold on these planes. 

Consider a dilute solution of these chains having 4'111r particles 

per unit volume, all sufficiently remote from the planes 'i!-: ,l, 1 

and ~ =-.d.., that equations (11-135) and (11-138) are valid. For 

the infinite volume confined between these planes the sum of the per

turbing velocities on a given plane ~7oT will be given by It/is for 

the given plane per particle, times the number of particles., where 

+""' +oQ 

/ll;nr = 117t1r !Vis J J ( ~, -+1.,z..) J.~ J. y 
X:. -oO Y• - o6 

+...o + c,O 

A.,v-(i, -1-lz. )Alxs J J dx tiY • 
-t-=--r:A y~-o1, 

( 11-140) 
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Thus the average value of over the plane r'-= -4 1 

or r= - ~z. is 

ltJ:: = ~s • l'll11r( ~, + ~2) X-rd'T"' • 
(11-141) 

Since the solvent is assumed to be in two-dimensional l.amina:r flow with 

no chains present in the solution, the velocity of the solvent is 

constant in any given plane for which 'z= is constant. Thus if the --velocity of the solvent with all cha ins rem.oved is given as /Ir, at 

~' -- - -~-:. and ~ at ~ -=-i, where tif', and v-;_ z. ' I 

X ~ 
have components only, then the average velocities /1.,J on the planes 

with the chains present will .be given by 

( 11-142) 

and 

( 11-143) 

Thus the difference in the mean velocities at the two planes will be 

given by 

( 11-144) 

Since the velocity is assumed to increase linearly with ~ , the 

velocity gradient Cj.eft between the two planes will be given by 
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Thus since the average shear stresses acting on the planes 'i! = k 1 

and i! : - ~2- are not altered by the presence of the chains, the 

viscosity exhibited by the solution will be different from that of the 

solvent. If the solution viscosity is denoted by '1( , then 

From ( II-145) the ratio ( ~/ 1-eff) will be given by 

_$:_ -
~eff - (!-

I ~ 
G -J111q') 

11$ 

( Il-146) 

( Il-147) 

assuming that ( G- f mN-/7/s )J;(Gf ///~If 5)z. , as would be expected 

for dilute solutions. 

Thus from equations (II-146) and (II-147) the intrinsic viscosity 

of the solution will be given by 

( II-148) 

where C. is the solution concentration in grams of solute per unit 

volume of the solution. Thus since t1'14r is given by 

,ml'!r = /V~ C J 
/v/ 

(II-149) 
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where t/a. is Avogadro's number and /'1 is the gram molecular weight 

of the molecule, equation (11-148) may be written as 

( 11-150) .. 

Inserting G from equation (11-131) into equation (11-150) one 

obtains 

~- (11-151) 

K;irkwood (44) later evaluated the intrinsic viscosity for oscil-

latory flow using a treatment in which the average hydrodynamic torques 

are equated not to zero, but to the rotatory diffusional torques due to 

Brownian motions. He found that the specification of given 

by (11-128) is not sufficiently accurate to include the Brownian 

motions properly. After a more detailed calculation he found that the 

expressions for ['7] and G were not altered, although the 

quantity ( i_~.--e;_) would be, so that equation 01-151) is 
f:=" 1- r / a.,u 

applicable to oscillatory shears as long as the frequencies are suf-

ficiently small so as to approximate the quasi-static restriction on 

the Oseen force equations (see equation 11-71). 

From equations (11-70), (11-85), and (11-87) the forces 

written in matrix form are 

~t 

( 11-152) 
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which from equat'ions ( 11-81) and ( 11-82) may be written as 

F -==- A. T( t x\ tw/- Ii.To-//-X 
X ) 1) • 

( 11-153) 

Thus, for example, the integral 

since the integration of the first term of ~ 

r/J =O .!3.t infinity. Consider the quantity 

will equal zero since 
tJ 

(z.. ci ~·2 -
~=a a t ~ 

Introducing the normal coordinates of equation (11-106) one obtains: 

<z T"~ ~= ( (~-i?:- Fx b 
= < J,OT Oi T. Fx >a4"" 

= -&Tcr (~T/JT:A-X~ 
l> '"1 . 't:tAr 

= - ~ic:r <J.f "f ~~A-ti·~ 4'-, 

C 11-156) 

Or, writing equation (11-156) using matrix elements and equation 

(11-103), 
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Frpm equation 01- 126) , equation ( II- 15 7) yields 

•• (II-158) 

The insertion of equation (11-158) in equation (11-151) yields 

(Il,-159) 
• 

If the ~-th 1 ,)...J d fi d -, re axation time 1 ~. is e ne as 

. - _ ... / __ 
~- !l_(jA-p- ' (II-160) 

the intrinsic viscosity for a dilute solution of chains subject to 

oscillatory velocity gradients may be written as 

( 11-161) 

Thus the viscoelastic properties of dilute solutions of linear chain 

molecules for which the bead and spring model is adequate will be 
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given by equation (II-161) for small velocity gradients, provid~ng the 

eigenvalues of the eigenvalue equat;Lon, equation (II-97), are 

known. Zimm evaluated the A~ assuming N to be large for the 

chain under consideration, so that the eigenvectors r:;(.~ of equa

tion OI-97) may be replaced by a continuous function c( (~) 

~ ..J.. 
o(,f-': (7)2.o<_(~) (II-162) 

where 

A-=l~)-IJ (II-163) 

relates the index 't2' with the variable ..a., Similarly, let 

( II-164) 

I 

relate the index A,, to the variable fl In a similar way the 

matrix operators A and H can be approximated by integral trans .. 

form operators for N large. Making use of equations (II-162), 

( ll-163) and the integral transform operators for A and fl the 

eigenvalue equation (II-97) yields the following equation: 

(II-165) 

subject to the boundary condition 

( II-166) 
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and where ~ i.s gi.ven by 

• (11-167) 

From equations ( Il-78), ( II-66) and ( 11-80) it can be seen that the 

~ ~/ ~) 
factor ,Iv is a measure of the quantity ( ~ - AJJ. and hence of 

the alteration of the velocity of the solvent inside the region occu-

pied by the chain due to the interaction of the chain and the solvent. 

is vanishingly small, the solvent will flow with a velocity 

equal to that expected when the hydrodynamic interaction force term is 

negligible, and the chain will exhibit the so-called free-draining 

condition. If ~ is large, the solvent internal to the region occu-

pie~ by the chain will move as if it is subject to forces originating 

mostly in the motions of other segments of the chain, the so-called 

,pn-free-draining condition. Equation (11-165) has been evaluated by 

Zimm for these two limiting draining conditions. For ~ << I 
the free-draining condition, the solution of (11-165) for f\J large 

yields 

i. < < I (II-168) 

For ,l >) J , the non-free-draining condition, 

I 
)_f ( II-169) 
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where the are numbers.that have been evaluated, by Zimm, Roe 

and Epstein for N large ( 105) • Values of 
. I A -f' for -'f ranging 

from O to 7 are given in Table I. 

TABLE I 

NON-FREE-DRAINING EIGENVALUES 
FOR LARGE N 

\~ 

0 0 
1 4.04 
2 12.79 
3 24. 20-
4 37.90 
5 53.50 
6 70.70 
7 89.40 

For -f' - greater than 7, the 

asymptotic formula ( 109) 

can be obtained from the 

'2- ~ . . 

.,,-f a ( I - ~~~), 12> 7. (U-170) 

For reasons of mathematical simplicity the values of AfJ' obtained 

from equations (II-i68), (11-169), (II-170) and Table I were used for 

all theoretical computations in the work presented herein although the 

number of segments is not considered to be large for all cases con-

side red. That the use of these approximate values of f1l' is reason-

able can be seen by"noting that Rouse has given an expression for AfJ 
for the free-draining case that is valid for any N (69, 75). He 
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obtains: 

"'A - If . 2 [-£,,- ] f - ~ -~(AJ+I) 
(ll-170 

• 

If the argument in equation (II-171) is sufficiently small, the sine 

may be rep laced by the argument. Thus if -(b is such that 1J' < ~ 
then 

(ll-172) 

which is identical to equation ( ll-168) of Zimm. For -f' < ~ the 

approximate expression (11-172) is within 3% of the exact expression 

(ll-171), while for -11< J:L the two equations provide values of -v- lo 

that are within 1% of each other. Thus except for small values of t..J, 

the major effect of the use of the approximate expressions (Il-172) will 

be to alter slightly the high frequency end of the viscosity versus 

frequency curve obtained from equation (11-161). Since the free-

oraining and non-free-draining approximate Afb of Zimm are not 

drastically different, it is assumed that for the non-free-draining 

case the exact values of would also not be much different 

from those given by Tableland the asymptotic fprmula equation 

( Il-170). 

The intrinsic birefringence exhibited by a dilute solution of the 

bead and spring chain model subject to oscillatory velocity gradients 

may now be evaluated. From the analysis of the intrinsic polarizabil-

II 
' ity of a flexible unbranched molecule as evaluated by Kuhn and Grun 

(see the previous section), the intrinsic polarizability tensor 

associated with any one of the subchains of the Zimm model should be of 
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the form obtained by Kuhn and Gr&'n for an entire chain, since the Zimm 

~ubchain is assumed to have a gaussian distribution function. Thus 

the intrinsic polarizability tensor will have its principal axis ... 
system oriented such that the..lt_direction of Figure 1 is parallel to 

the major axis of the ellipsoid describing the polarizability of the 

subchain. From equations (Il-51), (II-52), (Il-55), (II-56), and 

( II-57) 

(II-173) 

( II-174) 

where Y,.t and ~'2.l are the polarizabilities of the subchain 

associated with directions along and normal to the vector joining the 

end points of the subchain~ -p and 'r are constants depending on 

the constitution of the system and lt is the length of the segment 

The polarizability tensor for the whole molecµle is assumed to be 

equal to the sum of the polarizability tensors for the separate sub-

chains, so that no optical interaction between subchains is included. 

The polarizability tensors for the various subchains are referred to 

the )( , Y ~ coordinate system and added, making use of the 

matrix notation. The average values of the elements of the resultant 

intrinsic polarizability tensor are computed, and the principal polar-

izabilities of the averaged intrinsic polarizability tensor are ex-

tracted to obtain the magnitude of the birefringence of the solution. 
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Consider the j/"n subchain, having the vector z.; joining 

its endpoints as shown in Figure 4 •. Since the principal polarizabili.

ties car-responding to the 1, 2, 3 coordinate system are the '{,,L and 

¥2.l of equations (II-173) and (II-174), the elements of the 

polarizability tensor 't,t associated with the 

. coordinate system and hence with the X Y coordinate 

system may be obtained using the equations (Il-35) arid (II .. 36). 'I;hus 

the elements of the polarizability tensor ~ for the X 

i! system 

( Yx~).l ( YxY),i ( Yxi!-u 
~ - ( Yw )..,: ('lyy)t ('ty2-)~ 

( Y~x )i ( 't 2 y )-i ( 'ti! ~)l 
are given by 

(Yxi!),t =( '(i!)(k.: (~- Y,)~ e CctG 8 ~ / 

( Yy.J1. = ( ~YL = ( Y,-'(z) ..,, ~e/Jk ¢. 

Note that '( J, is a symmetric tensor in the X ,. 'I 

y 

Cll-175) 

( 11-176) 

(11-177) 

(II-178) 

(11-179) 

(II-180) 

(II-181) 

coordinate system. .From Figure 4 the angles S and ¢ are related 
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to the magnitude .it of the end-to-end vector 2: by the 

following: 

' L). -~t.7"- (II-182) 

(Il-183) 

( II-184) 

( 11-185) 

where )xi Jyi., and 1-r:.;,, are the X , y and 

2 components of J.;,, . Combining equations ( II- 176) through 

(II-181) with equations (11-182) through (11-185) one obtains: 

( II·d86) 

( 11-187) 

(11-188) 

(II.,189) 

( 11-190) 

(11-191) 



Figure 4. Coordinate Systems for the Specific~tion 
of the Polarizability of a Zimm Sub .. 
chain. 

69 
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Introducing equations (ll-173) and (II .. 174) into equations (11-186) ~nd 

summing over all N subchains, one obtains 

·. ~ ·~ .. 

. ( ~ll)ToT ~/(fxx),: = N-f'-f k J./" 
~= 

f z. 2. 2,. 2-+ 3q. X6 +zx, +2xt+2x3+ · ··· +t:K Xw-, CII-192) 
'2,., 

+ X fl - -<XI X () - o< )( 2. X 1 - 2 X3X 2. 

- ~ X 'I- '><3 - .. .. " ~ ~ ')( V X ij .. , 1 
• 

The bracketed quantity f} in equation (11-192) may be simplified by 

not irig that.from equations ( Il-83) and ( 11-87) 

Thus equation (11-192) becomes 

Similarly, the other elements of the polarizabil:j.ty tensor for the 

~ntire chain will be given by 

N -z. . 

(Yyy).n,i:= N--f-j, t-i f,,; + Sf ( Y fr1 .. Y), c 11-19s> 

tJ '2- T c ~~) = tJ..a _ q__) 1.J + 34_ c~. A - ~), (11-196) 
roT. ,- (T E1 r 

( Y~y h-.T: (Y~o-r.'"' .3f (x ,;-A· Y ): J~(y"r,4-x) I {II-197) 
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(11-198) 

Thus the average :i,.ntrinsic polarizabiUty tensor r for the entire 

chain expressed in the X , Y , 'Z coordinate system is given by 

<Y"fA-x~<Yr:A·Y~ <y"f,4 .. zk- (11-200) 

(iI°A. x:>~ (er A-~~ <~i:-A·r.~. 

where :t:: is the unity matrix. Only the second term of equation 

(ll-200) is of importance here since th:i,.s term represents the anise-

tropic part of r Assuming that the light ray incident upon the 

medium is travelling along the Y axis, the second row and column of 

r may be omitted to obtain the trace of the tensor on the X 

~ · plane and thus the intersection of the polarizability ellipsoid 

and the X , t plane (4). Thus consider the tensor r. / 
obtained from the anisotropic part of (11-200) by setting the second 

row and column equal to zero. 
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Since r/ is a symmetric tensor,. it can be diagonalized by choosing 
\ 

a new coordih1;Lte system rotated about the Y axis by an angle 'X.. 

For· a tensor A 
<U-202) 

in the principal axis coordinate system 1, 2, the rotation of the 1, 2 

coordinate system about the Y a~is by an angle :X yields tensor 

elements given by 

A 

where V is a rotator matrix ( 18). 

(II-204) 

Thus from equation (II-203) it is possible to evaluate~ and the 

principal axis tensor elements A, and Az. from the X , ~ 

coordinate system tensor elements. Thus from equation (II-203) it is 

seen that 

(II-205) 

and 

( II-206) 



Equation (11-206) may be further simplified by the substitution of 

,:t('.ll'2. from equation (Il-205) in (II-206). Thus 

,rl Applying equation (11-207) to the polarizability tensor 1 · of 

equation (11-201) one obtains for the magnitude of the difference of 
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/ . 

the polarizabilities .-.Ll. r ', . along :the, principal axes the following: 

From equation (11-152), (11-153), (11-154), (11-155), and (11-156), 

Or, introducing equation (11-151), 

( II-210) 
• 

I 
Thus from equations (II-208) and (Il-210) the difference ~ f'1 of the 

intrinsic polarizabilities along the principal axes is given by 
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where ?(. is the so-called extinction angle. From equation (II-17), 

the birefringence ~ l?1 will be proportional to the numb~r of 

chains per unit volume times , assuming that the number 

of chains is sufficiently small to avoid optical interaction between 

the chains. Thus since the number of chains per unit volume t11c will 

be given by 

(Il-212) 

the birefringence due to the intrinsic anisotropy of the subchains will 

be given by 

( 11-213) 

where C, is the solution concentration in grams of solute per unit 

volume of solution, r is an optical constant characteristic of 

the chain~solvent system given by 

(Il-214) 

where /11.s is the solvent index of refraction Lsee equations (11-17), 

(11-34), (11-173), and (11-17421. For sufficiently small velocity 
J_ 

gradients, the factor [ ~"2.(2Z.) + tJ z. of equation ( Il-213) is 

essentially equal to 1. Thus, combining equations (11-213) and (11-161) 

the oscillatory flow birefringence will be given by 
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!( tJ. ~(~) 1/1 ~-· _t -
± '? -ff;i-1 J.-r L A.,lv(/+,iw 7f') 

-p=-1 r 

( II-215) 

assuming that Cj- is sufficiently small that 

{ II-216) 

where Af' and are given by equations {II-160), {II-168), 

and (II-169) and Lu is the radian frequency of the velocity gradient 

in the solution. It should be noted that equation (II-213) differs 

from the erroneous expression contained in the original paper by Zimm; 

( 103), but does agree with the zero frequency birefringence expressions 

given by Copic for the elastic dumbbell model and by Tsvetkov for the 

Zimm model ( 19, ·9s),. ·1., 

3. Analysis of the Frequency and Temperature Dependence of the 
Viscoelasticity and Flow Birefringence Expressions Given by 
the Zimm Theory 

The viscoelasticity and oscillatory flow birefringence expressions 

of equations (II-161) and (II-215) involve the factors C, 

N Q/ and 0 The analysis of the 

polymer molecule in terms of the freely flexing chain as given by Kuhn 

I) '2-. 
and Kuhn (49, 50, 51, 55) indicates that ,o- should be approximately 

independent of temperature. The Zimm model of the polymer assumes that 

N Cl.I is independent of temperature and frequency while ~ is 

assumed to be independent of frequency. From equation (Il-214) the 

temperature dependence of ~ ~ will probably be governed by the 
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temperature dependence of the solvent index of refraction. Thus for 

many solute-solvent combinations Cf1 will be essentially independent 

of temperature. Similarly, the concentration C. will be independent 

of frequency and only weakly dependent on temperature for most solu-

tions. From equation (11-66) :f is assumed to be frequency inde-

pendent while from equations (11-66) and (ll-67) a reasonable assump-

tion concerning the temperature dependence of :f would appear to 

be that ;f follows the temperature dependence of ~$ That is, 

(11-217) 

where the subscript r is used to denote quantities at a reference 

temperature ""f"r Nonsubscripted quantities denote values at any 

other temperature -r From equations (11-168), (11-169), (11-170) 

and Tab le l the A,f are independent of both frequency and tempera-

b' ture, in view of the constancy of ;(r and N and the assumed 

temperature dependence of -:f 

equation (11-160) the factor 

given by equation (11-217). From 

----r~ is independent of frequency but 

dependent on temperature. The ratio ( r;'"'f/~ ) is independent of 

temperature, however, since from equations (11-160), (11-168), (11-169) 

and Table I 

( 11-218) 

so that 

( 11-219) 
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and 

( 11-220) 

Equations (11-161) and (11-215) may be written in a more conven-

ient form by defining a temperature dependent quantity a, by 

(11-221) 

where I "f" is the value at some temperature T and ~r is 

the value at the reference temperature i-r Thus from equations 

(11-160) and (11-218) 

( 11-222) 

Or, if the assumption concerning the temperature dependence of ::f 

given by equation (11-217) is valid, 

(11-223) 

viscosity [~] 

to obtain the quantity ( 1{w; - ,j S ) 

The intrinsic of equation (11-161) may be used 

for dilute solutions 

where , where 

( 11-224) 

denotes the complex viscosity coefficient (26). From equations ( 11-151) 

and ( ll- 16 1) 
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(II-225) • 

Inserting equation (11-218) into (11-220), the frequency dependence of 

the viscosity is given by 

From equation ( Il-226), the zero frequency viscosity wi 11 be given by 

Computation of the theore"tical variation of viscosity with frequency 

is simplified by considering the ratio 

equations (11-226) and (11-227) 

(?'.j* -?1s) 

( ?[o - ?'/.s ) 
• Thus from 

(11-228) 

so that C:n*'-!ls) may be computed as a function of w---rl 
(?1,e,-7'/s) 

using values of ('!~/ ')"j') from equations ( 11-219) and ( 11-220). 
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The magnitude and the angle defined by 

( II-229) 

may be obtained from equations (11-224) and (11-228). One obtains: 

and, 

·. N .co 
~ ('r'fl'Y,) 

A(=~ _w_"1--:_,--ltJ,F---..!~-[_1_+_tu_'2....,,_, z._c~_~_l_r._)7._] __ _ 

~ CT:e/tY.) 
L [1 + w2 1;- 2 ( ~;,,, )'Z,J 
--(Z = I 

( Il-230) 

• ( II-231) 

The temperature dependence of the viscosity may be obtained from 

equations (11-226), (11-227) and (11-222). It is convenient to form 

the ratio of ( 11.- - t/ s) at temperature T and (7t0-715 )r 
at temperature -r-r . One obtains: 

( II-232) 
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The zero frequency temperature dependence of the viscosity is obtained 

from equation (II-232) as 

so then for a solution for which the Zimm theory is applicable, 

(II-234) 

and 

(II-235) 

from equation (II-222). Equation ( II-232) may be written in terms of ~: and Jt11, • Thus 
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and 1. ( 1"'~/~ ) .,_ 

~ I= ~I _w_a_,_~...,..v-_fJ_=_, _D_+_w_~_r_'2,._r,._r"'J,._(?;_t_l~ri_, )_'2,._.,.._ (ll-237) 

17 · ~ C "Y:f'(tY, ) 

L CZ., r w2a.;-,,; (',~!~ )2
] 

'11' = I " 

• 

As is seen from equations (Il-236) and (Il-237), plotting 

yields universal · /ff :"#:fr ·(~<~r) an~ Pi v•r·~· d~ar 
curves to which any /iJt=.M. or ~?7 

(f, -e- !f s ) ! I 
versus frequency f 

curve may be fitted for a given temperature, provided that 

(Cr/~ ) ( T~ / T) and ¢ 1 are known. Or, given a 

sufficient set of curves for various I ft: ~:ii and '7 fJ1/; 
"universal curves" of equation ( II-236) and .( II-237) temperatures, the 

may be constructed. This procedure is the basis for the reduced para~ 

meter method of data handling developed by Ferry (26). Note that the 

"universal curves" obtained as above are the frequency response curves 

and versus f 

Tr 
I 

and f 11 .. • ver:s . f 
to obtain the .1 ?i: f :? , 
curves for T = Tr- • 

at Thus curves of 

given by equations (Il-230) and (I!-231) 

I. cajt - . ?ts) I 
(7Jo - 7/ s ) 

can be superimposed 

for the temperature 

various 

The theoretical frequency and temperature dependence of the oscil-

latory flow birefringence may be examined conveniently in terms of a 

complex oscillatory flow birefringence coefficient ~'It defined as 

(ll-238) 

where the sign is selected in accordance with the specified coordinate 

system (90, 92). From equations (ll-215), (Il-238) and (Il-218) 
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is given as 

( II.:239) 

for dilute 1;,olutions (C4 c) subjected to velocity gradients suf-

ficiently small that equation (II-216) is satisfied. The low frequency 

limit for s~ is defined as 

(II-240) 

so that as W approaches zero S0 is given by 

( Il-241) 

from equation (II-239). 'rhus the limiting angle &Q is either O 

degrees or 180 degrees depending on the sign of the optical factor 

and the coordinate system specified. It is convenient for purposes of 

computat.ion of the theoretical frequency dependence of the flow hire-

fringence to form the ratio ( s* /SI!)) 
( Il-241). Thus 

[I+ ,L tv ,; ( 'r'p/"r, ) ] 

from equations (11-239) and 

( Il-242) 

• 
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and ( t) - eo) may be evaluated from equations ( Il-238), 

(11-241) and (11-242). One obtains: 

and 

01-244) 

Calculations of ( SM/ Sft?I) ) and ( &- fio) versus W 1 1 were 

performed on a digital computer and are shown in Figures 5 and 6 for 

free-draining molecules and in Figures 7 and 8 for non-free-draining 

molecules, using values of N of 1, 3, 10, 20, 30, 40, 50, 100 and 

400. The values of ('r".p/'Y,) used for the computations were obtained 

from equations (Il-219), (Il-220) and (Il-170) and Table I. 

The temperature dependence of the oscillatory flow birefringence 

is conveniently examined by introducing the quantity QT given by 

equation (11-222). Thus from equations (11-239) and (11-241) 



Figure 5. (SM ls,..,.,o) Versus w'Y, for 
Free-draining Model Chains Using 
the Number of Cha.in Segments N as 
the Variable Parameter. 
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Figure 6. { & - &0 ) Versus W 'Y, for Free
draining Model Chains Using the Nµmber 
of Chain Segments N as the Variable 
Parameter. 
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Figure 7. ( S,vi / S,.,, 0 ) Versus W'Y, for Non
free-draining Model Chains, Using the 
Number of Chain Segments N as the 
Variable 1,'arameter. 
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Figure 8. (B ~ 6 0 ) Versus lU 7, for Non-
free-draining Model Chains, Using the 
Number of Chain Segments N as the 
Variable Parameter. 
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• ( II-245) 

Thus from equations (Il-238) and (11-245) L SM/SMor)and (~- ~er) 
are given by 

and 

( ll-247) 

• 

lf the frequency of the velocity gradiept is denoted by f , then it 

is seen that by plotting ( ;r1. )(L)(~-) versus -F aT and 
11or ;r1 T 



( r; - ~r ) versus 

var~ous (_§a_) versus 
SMo 

one obtains a superposition of 

versus -F curves 
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obtained at various temperatures, similar to the superposition obtained 

for the viscosity from equations (11-236) and (11-237). The resultant 

curve obtained by the superposition of the various and 

curves is identical to that obtained from equations 

01-243) and ( II-244) for I: Tr Thus by plotting the quantities 

noted above the frequency dependence curve for the oscillatory flow 

birefringence corresponding to 1= l Y' may be obtained by a super-

position of frequency response curves taken at several temperatures. 

Ex~erimentally this reduction procedure is quite valuable if it is 

applicable to the material being studied, since if varies 

rapidly with temperature, one can obtain the frequency dependence curve 

for a wide range in without having to cover a wide range 

in W 

An important re~ult of equation (11-245) is obtained by setting 

W =a Thus, 

=-(L.)(~) a ir Cr T 
( II-248) 

so that the factor may be obtained from zero frequency bite-

fringence values. For materials for which j/ and C. are essential

ly independent of temperature, C<.-; can be obtained from the zero 

frequency birefringence values only. 

The close relationship between the complex viscosity and the 

oscillatory flow birefringence predicted by the Zimm theory can be 

seen by a comparison of equations (11-228) and (11-242), (11-230) and 
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(11-243) and (11-231) and (11-244), One obtains 

t>(1 -r/s) 
(~o-7ls) 

( Il-249) 

so that 

(Il-250) 

and 

(Il-251) 

Thus Figures 5, 6, 7, and 8 also describe the frequency dependence of 

the viscosity as is seen from equations (Il-250) and (Il-251). From 

equations (11-232) and (11-245) the temperature dependence of the 

viscosity and the birefringence are related by 

( 11-252) 
• 

4. The Flow Birefringence Exhibited by a Simple Multiple Component 
System 

Assume that an incident light ray is propagating along the Y 
axis so that the anisotropic part of the polarizability for a single 

component system is given qy a symmetric polarizability tensor of the 

form of equation (11-201), The relation between the components of 

such a tensor expressed in the )< y coordinate system 

and the components of the same tensor expressed in the principal axis 
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system is given by equations (11-202) through (11-207). Similar sym-

metric polarizability tensors are obtained for rigid particles (4). 

Consider two such symmetric polarizability tensors A and 8 ex-

pressed in the X ' 
y ,Z coordinate ~ystem as 

A :;;: ( a 11 a,4) 
( II-253) ~z, qz:z. 

and 

Ir,, ~') B=-
t-2., / fr2-z.. 

(Il-254) 

the elements of which can be related to their principal axis system 

elements by equation$ (Il-202), (11-203) and (11-204). Let the rota-

tion angle (extinction angles for flow birefringence) between the X 

or ~ axis and the corresponding principal axis be denoted by ~ 

for tensor~ and for tensor B If two components giving 

rise to such polarizability tensors are present in a solution~ and the 

components are sufficiently isolated from each other that neither 

polarizability tensor is modified by the presence of the other compo

nent, the po larizab il ity tensor C for the system wi 11 be given by 

the sum of the tensors for the components. Thus from equation (11-252) 

and (11-253) C:. will be given by 

(
c,, 

C = A +B :: 
C.z, 

C,'.j = 
C. . 
z 

(Il-255) 

' 
which is also a symmetric tensor. Thus if the principal polarizabili-

ties for the principal axis systems are given by C/.1 , Clz. ~ 
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A C and 
Uz.. ' I c 2 respectively, then from equation (11-203) 

the polarizability tensor ~ when written in terms of principal 

polarizabilities is equal to 

C= t ( II- 256) 

Thus if ?le, denotes the rotation angle between the X ' r 
axes and the principal axis system, then from equation (11-205) 

~(~Zc) == (a.,-a?.) ~(-"<l,4) +( Pri-t-2-)4h-t(:z'Xs) c n-257) 

(a.1-q2) ~(2:tA)+ ( i;-~)~ ('Z't.,a) 

and from equation ( II-206) ( C1 -C,) will be given by 

( c , - C7..) =- E a.1-<:1 z.) Co1.(z:tPJI"( 6-1 -t-J e... tz:Z sil ,_ 
z ( Il-258) 

+ Ea.,-az)k(.:1-ZA) + (~-~ )dk(2~.B~ • 
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Equations (11-257) and (11~258) may be generalized readily to a system 

composed of N components all assumed to be noninteracting so that 

the individual polarizability tensors will add according to equation 

( 11-255). If ( C 1 - C, ) is denoted by A '( ~ and the difference 

of the principal polarizabilities of the A,tJ, component by A ¥z 1 

then from a generalization of equations (11-257) and (11-258) one 

obtains 

(11-259) 

,i=I 

and 

where denotes the angle between the X or ~ axis and the 

principal axis system for the component. Since from equa-

tion (11-17) the ~ 'l,l are proportional to the birefringence 6111,.i 

which in turn is proportional to the optical retardation 6,4 given by 

(11-261) 

where L is the length of fluid traversed by the light ray, the 

quantities and of equations (11-259) and (11-260) 

may be rep laced by either A IYI ~ and ~ 171(., or b,L and be, . 
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Equations (Il-259) and (II-260) describe the vector addition of N --vectors A Y.,.l all contained in the given X , i! plane, 

each oriented at an angle -=<, X,t with respect to either the X or 

~ coordinate line in the plane. This is illustrated for a two-

component system in Figure 9. Thus it is possible to compute the 

.. 
birefringence and extinction angle for a given component ~ from the 

measured birefringence and extinction angle for the total solution by 

performing a vector subtraction, provided the values of the birefrin-

gence and extinction angles for the other components of the system.are 

known. 

Sadron has obtained equations (Il-259) and (Il-260) by working out 

the polarizabilities of the components of a system of suspended parti-

cles oriented by flow, assuming that the particles were noninteracting 

(dilute solutions), and also obtained experimental verification of 

these expressions (76, 77). These same expressions have been used to 

correct birefringence measurements for the solvent birefringence con-

tribution when the solvent itself showed appreciable birefringence (70, 

71, 92). For a dilute solution in which each solute molecule may be 

considered to be surrounded by only solvent material, one can probably 

consider a small volume element surrounding the solute molecule to be 

the region subject .to the influence of the molecule. Thus one might 

argue that the polarizability characterizing the small volwne element 

~s independen~ of the polarizability of the surrounding solvent, so 

that the two polarizabilities could be separated using equations 

(11-259) and (11-260). However, in the present work, the polarizabil-

ity of interest is that of the molecule in a nonbirefringent solyent 

having a mean index of refraction equal to that of the weakly 
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'2, :z. ~ Q, 
(A~~= (sum of X. ComponentsJ + (sum' of c Components) 

= [ ~,1 m" e-o<z,:J: ['f 1J.rn,1. 4hr 2 -x.~ 

Figure 9. Illustration of the Vector Addition of the 
Optical Birefringences A 1'11.,t; exhibited 
by Optically Non-interacting Components 
of a Two~component System to Obtain the 
Birefringence ~ /YIT"T of the System. 

"2-



WO 

birefringent solvent. The polarizability of the small volume element 

containing both solvent and the solute molecule might be different 

from that of the molecule when immersed in a nonbirefringent solvent 

of the same mean refractive index, especially when the solvent con

tained in the small volume element contributes a birefringence compar

able to that of th~ molecule. Since the birefringence of the solute 

molecule will be decreasing with frequency, possibly as given by 

equation (11-239), the difference between the molecular birefringence 

and the molecule plus birefringent solvent birefringence may become 

significant at high frequencies, even though the solvent contribution 

is initially insignificant at low frequency. Further, since the sol

vent and the molecule are intimately related in the small volume 

element, the birefringence of the solvent and the molecule probably 

cannot be separated by means of equations (11-259) and (11-260), but 

likely follows a much more complex additive process. For the work 

contained herein it is assumed that the birefringence contribution of 

such a birefringent solvent may be removed from the solution bire

fringence by a vector subtraction according to equations (11-259) and 

(Il-260). 



CHAPTER III 

EXPERIMENTAL METHODS 

Measurements of the flow birefringence of three polystyrene solu-

tions have been carried out using two different flow conditions, 

sinusoidally time varying velocity gradients and non-time varying 

(steady flow or zero frequency) velocity gradients. Two different 

types of apparatus were used to generate these differing velocity 

gradient conditions; a closely spaced plane and reflector system for 

the time varying gradient measurements, and a coaxial cylinder 

(Couette) system for the non-time varying gradient measurements. 

L The Closely Spaced Oscillating Plane and Fixed Reflector System 

Since the flow birefringence measurement involves the determina-

t ion of both. the birefringence produced by the fluid in shear and the 

velocity gradient inducing the birefringence, for accurate flow bire-

fringence determinations it is essential that the velocity gradients 

used be known precisely. One method for producing a known and simple 

velocity gradient condition for sinusoidally time varying flow is the 

closely spaced oscillating plane and reflector system (80, 90). Figure 

10 illustrates such a system, The surface of the plane which is 

oscillating sinusoidally in the X direction is located at Z;; _ I) 

with the surface of the fixed reflecting plane at 2 = () The 

region between the planes is filled with the test solution. If the 

velocity of motion gPL.. of the plane oscillating with angular 
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Figure 10. Arrangement of the Optical Elements of 
the Optical Transmission System of 
the Closely Spaced Oscillating Plane 
and Fixed Reflector System. 
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frequency w is given by the real part of 

. 'wt" 
§PL:::. £0 

eL (111-1) 

and the planes extend far enough in the X y plane to approxi-

mate planes of infinite extent, then the shear wave field generated in 

the viscoelastic test solution between the planes will be such that the 

velocity gradient <}- generated at any point ?! in the region will 

be given by the real part of 

( 111-2) 

where Ys =y65 - ~ o( s is the comp lex shear wave propagation constant 

for the medium. Ys is related to the complex viscosity coeffic-

ient 

( 111-3) 

by 

"2- • 
~ = -~we:. 
s ?/,; ( 111-4) 

where ;tJ denotes the density of the medium. For a viscoelastic 

medium /J may range from O degrees, corresponding to purely 

viscous behavior, to 90 degrees, corresponding to purely elastic 

behavior, 

The shear wavelength As for a freely propagating plane shear 

wave propagating in the viscoelastic medium is given by 
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The velocity gradient given by equation (Ill-2) reduces to the impor-

tant limiting value 'jc when the ratio ( D/.A.s) approaches zero. 

' Lwt: 
- CLc. =-JL e a . D 

(lll-6) 

Thus for an infinitesimal gap width the velocity grc;tdient 1-c is 

constant throughout the gap and is 180 degrees out of phase with the 

oscillating plane velocity. The maximum variation of the magnitude 

. and phase of the velocity gradient for a given value of ( [)/>._5 ) as 

given by equation (111-2) occurs when the medium is purely viscous. 

For a viscous medium and ( D/°A5) ratio of 1/20, i will differ from 

~C by at most 0.5% in magnitude and 2.8 degrees in phase. Hence 

if (D/'A 5 ) c;:an be maintained sufficiently small, equation (Ill-6) 

may be taken as the relation between the plane velocity and the veloc-

ity gradient in the test medium. 

Figure 10 also illustrates the optical system used to measure the 

flow birefringence of the solution. A monochromatic beam of right 

circularly polarized light is incident on the solution being examined. 

The flow birefringence induced by the shearing action of the driving 

plane modifies the polarization state of the light so that the light 

beam emerges from the fluid elliptically polarized. A polarizing 

prism employed as an analyzer transmits a plane polarized component 

of the elliptically polarized beam to a photomultiplier tube which 

responds to the intensity of this transmitted plane polarized component. 

Such a system for the detection of small flow birefringence has been 

analyzed in detail in the literature (88, 91). 

To analyze the optical system quantitatively, consider the 
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following. A solution which exhibits flow biref;ringence has two 
I 

.....::. 
orthogonal preferred directions, denoted by the un;l.t vectors I[ I and -/A2 of Figure 10, such that a plane polarized light ray having an 

~ 

electric vector polarization direction parallel to either IA I or -U-z. will pass through the solution with its polarization state 

unaltered. However, in general, these directions will vary as the 
~ 

velQcity gradient is varied, usually exhibiting an orientation of U, 
~ ~ 

such that U. 1 and IA'l. make an angle of 45° to· the streamline 

direction only for velocity gradients approaching zero. For the. 

oscillatory shear measurements presented herein the velocity gradients 

used were kept sufficiently small that u> 
' 

and were 

essentially at 45° to the streamline direction throughout the entire 

cycle of motion of the moving plane ,as is indicated in Figure 10. The 
..;.::. 

electric vector E of the incident cir9ularly polarized light -beam may be res.olved into components along the directions IA' and 

Thus is given by the real part of 

(III-7) 

where );=- ~-1 
r and ;l.s the propagation constant 

for the electromagnetic wave in free space. It is assumed herein that 
__,. 

the propagation of the U1 and -/,(. z. components of the electric 

vector through the b:l.refringent solution of thickness L in the '/ 

direction can be described by the propagation constants "K,;1 and 'X.~ 

given by 

(Ill-8) 
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where /;lo is the attenuation factor and the phase factor 

of the propagation constant, related to the optical wavelengths in the 

solution by 

( III-9) 

• 

Thus it is assumed that the space rate of attenuation of the two com-

ponents will be identical (no dichroism). Neglecting complicating 

features having to do with transmission through the interfaces at the 

entering and exiting fluid surfaces (25), the transmitted electric 

..:::. I 
vector f= exiting from the fluid layer is given by 

(III-10) 

The analyzer, which consists of a plane polarizer with transmission 
_::. 

direction in the direction of the unit vector ll , will transmit 

the component of the electric vector 
~, 
E given by 

( III-11) 

where 

(III-12) 

If the transmitted electric vector is incident on a photomultiplier 

tube, then the photomultiplier output current T is proportional to 

the product of and its complex conjugate ( 90). 
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Or, combining {III-12) and (111-13), 

r = ::z;, { 1-r-< C&<I., c if-J6) 4k( t--:fJ·~ c m-14) 

C: •4h1[( lf0 ,-~•z)IJ} 
where ~ is a constant current determined by and 

the photomultiplier sensitivity. Since the inde~ of refraction of a 

,medium is defined as the ratio of the propagation velocity of the 

electromagnetic wave in free space to the propagation velocity of the 

wave in the medium, the quantity (J1~1- J.,f0 '2.)L of equation (111-14) 

may be related to the indices of refraction /11 1 and //72, of the 

fluid associated with the it" I and directions. Thus from 

(111-8) and (111-9) 

(111-15) 

where ~OI and A.oz. are the wavelengths ir:i the solution of the -- ~ components of the electromagnetic wave in the u., and 

directions, ~ and ,1/'"z.. are the propagation velocities of these 

same two components in the solution, and and G are the 

wavelength and propagation velocity of the components in free space. 

lf the relative retardation ~ is defined as 
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~ = /jm L = (1112.-m,) L (lll-16) 

the insertion of (111-16) and (111-15) in (111-14) yields 

r,: ~ [ / -~ 08<1, ( ifi:- '1fi ),oi,., ( -Y--f )~( ""f! )} • ( lll-17) 

Two analyzer orientations of particular interest are the orientations 

f = O degrees and 11{ = C::,t) degrees. For these orien

tations, equation (111-17) reduces to 

L =-I r1 + .6t41 ( ~1ft )} 'P: ()o . () l I A.o 
(111-18) 

and 

If the retardation 6 is restricted to sufficiently small values 

that 

t1,..; {111-20) -

equations (111-18) and (111-19) reduce to 

r =I r I .. ~ ;; rr~ l - 't=,/' 0 < ...,.. Aa 
(111-21) 
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and 

( Ill-22) 

These relations ~re good to within related experimental accuracies if 

6 is less than 1/12 of the optical wavelength As was 

noted in the previous chapter, the shear induced birefringence and the 

velocity gradient producing it will, in general, be out of phase, the 

phase difference being a function of the frequency of the driving 

plane motion. The complex mechano-optic constant .:5'f!:. used herein 

to characterize the flow birefringence A/n = l?1z.-l?11 at a given 

velocity gradient ~ has been defined by equation ( II-238). Using 

complex representation, 

(III-23) 

-+ (/J1z.-m,) --
f 

for the coordinate system of Figure 10, where l"t'l,z. and: /11"11 are 

the indices of refraction corresponding to the directions ~ and U1 , 

respectively. This relation thus specifies the relative magnitudes of 

and 't through SM , and their relative phasing 

through /i Combining equation (II1~23) with equations (lll-6J and 

(III-16) yields an expression for the complex retardation for 

sma11 values of ( D/'A. s) for the coordinate system of Figure 10. 
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( lll-24) 

The photocurrent generated by the retardation may be evaluated by the 

insertion of the real part of (111-20) in (111-18) and (111-19). Or, 

if the ~agnitude of the retardation is less than 1/12 the optical wave-

length, the pbotocurrent may be evaluated from ( U.l-20), ( 111-21) and 

( lll-22) retaining the complex notation. Thus for / &/ < "-e/12. the 

photocurrent obtained for the cases y: 0 degrees and f[r = '7() 

degrees are given by the real parts of 

and 

S L e1 i(wt+e) 
Mp ;s6 e } 

(lll-26) 

-

All measurements presented herein were made under conditions such that 

equations (111-25) and (111-26) would apply. From equations (111-24) 

and (111-25) it is seen that the pbotocurrent is composed of a constant 



112 

term of magnitude J:~ which is independent of the birefringence of 

the medium, and a time varying component of magnitude -:J:1 varying 

at the driving frequency (A) From either ( 111-24) or ( 111-26) SM, 

the magnitude of s~ 
J 

may be obtained readily from measurements of 

the constant and the time varying components of T and the plane 

velocity according to the relation 

). (111-27) 

The angle f7 may be evaluated readily from measurements of the phase 

angle between the plane velocity and the birefringence~ as is seen from 

equations (111-1), (111-24) and (111-25). The phase angle between the 

driving plane velocity and the photocurrent will be a for the case 

y:. C?tJ degrees or will be {) + /~O degrees for the case 

Y = O degrees. 

Figure 11 presents a simplified block diagram of the closely 

spaced plane and reflector system used for the sinusoidally time vary-

ing birefringence measurements. The oscillating plane and reflector 

ar~ located in the fluid cell FC. Three driving planes were used, a 

narrow black glass plane, a wide brass plane, and a wide bla~k glass 

plane. The wide glass and brass planes have dimensions of 0.750" x 

1.1" in directions parallel to the light ray propagation direction and 

the plane displacement respectively, and are made so that the part of 

the plane that is immersed in the test solution is 0.125" thick. The 

narrow black glass plane has corresponding dimensions of 0.153" x 

0.375" x 0.125" . The narrow black glass plane was used to reduce the 

mechanical loading when the solution under test exhibited a high 



Figure 11. Diagram of the Closely Spaced Oscillating 
Plane and Reflector System Showing the 
Light Source LS, the Diffuser D, the 
Slit S, the Lens L, the Interference 
Filter IF, the Pol~rizer P, the Quarter 
Wave Plate ()../If) , the Fluid Cell FC, 
the Analyzer A, the Photomultiplier PM, 
the Steel Mass M, and the Drive Head DH 
Containing the Velocity Monitor VM, the 
Electrodynamic Driver DR and the Dis
placement Monitor DM. 



r--------------------------r-------r------, 
I I I 

DH 

A 
L- PM 

I I I 
I I 

WAVE 
ANALYZER 

PHASE 
METER 

I I 
I I 

0 
DUAL TRACE 

OSCILLOSCOPE' · 

I I I 
I ·r-----L---·-- ---L- - - - - ___ _. 

I 
I • 

1 I C 1 - - -, 

FC 

M 

I 
I 

__ ...J 

). p 
4 IF L SD LS 

.... .... 
~ 



115 

viscosity. The plane is mechanically attached to the shaft of the 

driving head DH but is thermally isolated from it by a Delrin insula

tor. The fixed brass reflector has a reflecting surface of 0.750" x 

0.750" in directions parallel to the light ray propagation direction 

and the plane displacement. The gap between the plane and reflector 

may be varied from 0.0" to 0.100" by repositioning the reflector. The 

gap widths are determined by feeler gauges placed between the reflector 

and plane, or by measurement of the distance between scribed lines on 

the edges of the reflector and plane using a traveling microscope. 

There is an uncertainty in gap width of somewhat less than 0.001" for 

feeler gauge measurements and of less than 0.0002" for the traveling 

microscope measurements. Thus for materials with a viscosity requiring 

the use of gaps of less than O ,002" to maintain the desired ( D/A.s) 

ratio as well as an adequate optical retardation at the higher frequen

cies it is necessary to make additional measurements at lower frequen

cies using a wider gap width, so that the smaller gap width may be 

determined by a comparison of the data. The reflector is mounted on a 

brass plate which also supports the fluid cell. The plate is attached 

mechanically to the driving head DH but is insulated from it by a 

Delrin spacer between the plate and the driving head. The fluid cell 

is equipped with passages for the circulation of liquid from a constant 

temperature circulator so that the cell, the plane and reflector combi

nation, and the brass mounting plate achieve essentially the same 

temperature as the test fluid. The temperature of the reflector is 

monitored by measuring the resistance of a thermistor imbedded in the 

reflector near the reflecting surface1 using a Wheatstone bridge and 

galvanometer. Temperature changes of the reflector of± 0.02°c can be 
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detected readily for temperatures between -s0 c and +go0 c, the tempera

ture limits attainable using a Haake constant temperature circulator. 

The driving head DH houses an electrodynamic driver, an electrodynamic 

velocity monitor, and a capacitive displacement monitor for measure

ments at low frequencies. Below 0.1 cps the velocity monitor output 

voltage is too small to be usable, so the plane motion must be monitored 

by the displacement monitor. The moving elements of these systems as 

well as the oscillating plane are attached to a common shaft which is 

held by a wire suspension system. The driving head is capable of 

attaining displacements of up to 1/4 inch peak to peak for frequencies 

near the fundamental resonance frequency of the system, and is usable 

for frequencies from 0.01 cps to approximately 1,000 cps. The driving 

current is supplied by a Hewlett-Packard low frequency oscillator 

driving a DC coupled Kron Hite 10 watt amplifier. The driving head is 

supported above the optical bench as shown,and is coupled to a 150-lb 

steel mass M to reduce motions of the overall system.. A flexible 

aluminum plate suspension below the steel m~ss is used to provide 

additional isolation from mechanical room noise. 

The optical bench is also attached to the mass M. A tungsten pro~ 

jection lamp L.. S , diffuser D and vertical slit S serve as 

the light source for the system. T~e adjustable slit :5 is oriented 

~ertically. The lens L forms an image of !$ in the gap between 

the plane and reflector approximately 0.5" from· the entering surfaces 

of the plane and reflector, to avoid reflections from the metal walls 

of the gap. The lens is equipped with a variable aperture stop so that 

the light beam may be kept away from the plane and reflector walls for 

gap widths greater than 0.010 11 , if desired. However, no difference in 
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the birefringence measurements for lighting conditions in which the 

light beam is allowed to strike the entering edges of the gap by open.; 

ing the lens stop and for conditions in which the light beam does not 

strike the entering edges has been detected. Since the transmitted 

light intensity is increased appreciably for the wide beam illumination 

condition, it was used for the measurements presented here. The light 

beam is rendered semi-monochromatic by the use of an interference 

0 
filter IF having its transmission peak at 5790 A. The Glan-Thompson 

prism polarizer P and quarter wave plate )...,I~ combination produces 

the right circular polarization state of the light that illuminates 

the fluid cell. A second Glan-Thompson prism is used as the analyzer 

A to transmit the desired plane polarized component of the light 

emerging from the fluid to a photomultiplier tube PM. The output 

voltages from the velocity or displacement monitors and the photomulti-

plier tube are analyzed by means of a Hewlett-Packard model 302A wave 

analyzer for the measurement of the magnitudes of the respective 

voltages, and aPhazor Model 210AB phase meter for the measurement of 

relative phasing of the signals, for frequencies above 15 cps. For 

frequencies less than 15 cps, the output voltages are displayed on a 

Tektronix type 564 storage oscilloscope, so that the magnitudes and 

relative phasing of the signals may be determined visually from the 

stored oscilloscope traces. 

Two measurement procedures were used to measure the oscillatory 

flow birefringence. Since the light beam is sufficiently large to 

fill the entire gap at the entering i,ide, any lateral plane motion 

causing a variation in the gap during the cycle of motion results in a 

modulation of the light beam. Such modulation is emphasized as the 
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gap width is decreased. If the modulation is at the driving frequency, 

it can produce an appreciable error if it amounts to as little as 5 

percent of the birefringence signal. Hence before making any measure-

ments, the analyzing prism was removed and the photomultiplier output 

analyzed to determine if an appreciable driving frequency component 

due to improper plane motion was present. If the modulation was 

negligible, the analyzer was replaced withi7° set equal to 45 degrees so 
,...a 

that the behavior of the preferential directions corresponding to t/1 

and of Figure 10 could be examined. Since the analysis pre-

sented is valid only for and at 45 degrees to the 

streamline direction throughout the entire cycle of motion, the driving 

plane velocity was reduced until no variation of the photomultiplier 

output could be observed on the oscilloscope. The corresponding dis-

placement or velocity monitor output was noted, the test being carried 

out for all frequencies at which the birefringence measurement was to 

be made. Having thus determined the maximum plane velocities to be 

used at the various frequencies at which birefringence measurements 

were to be made, the analyzer was set to -p- = 90 degrees· and the drsive 

level adjusted to provide an appropriate plane velocity. Theri the 

magnitude and relative phasing of the photomultiplier and velocity or 

displacement monitor outputs were determined, using the wave analyzer 

and phase meter where possible, and the oscilloscope for frequencies 

below the limits of the other instruments. 

A second measurement procedure was used if appreciable modulation 

of the light beam at the driving frequency due to improper plane motion 

was detected. Such a modulation may be treated by considering the 

photocurrent expressions in equations (111-25) and (111-26) to have a 
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f.) 
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( 111-28) 

where ~ is some constant less than 1. The insertion of (111-28) 

into (111-26) and (111-25) yields the following photocurrentt 

expressions: 

(_ III -'29) 

-A~ (wt+G)-M~(2wt+~ +/)? 
. ~ J 

and 

where 

Only the driving frequency component and the .constant component of the 

photocurrent are of interest. If the driving frequency component of 

the photocurrent "given · by equations ( 111-29) and ( III-30) is denoted 

by , then 



120 

( lll-32) 

and 

I II I, -P-== 1tJ" = 0 c~ ~(wt+11>+A M(wt+eil. (lll-33) 

Either the birefringence or the modulation component of the photocur-

rent may be recovered by the subtraction or addition of (111-32) and 

(Ill-33). 

( III-34) 

and, 

(Ill-35) 

For {e and A small, as is the case for the measurements pre-

sented herein, the constant term in (111-29) is essentially equal to 

that in (111-30) so that 

L I 0:: I- hj ~(&-/)~I+ '-A C,n(e-f}) 
0 e><. ;z. • 

( III-36) 

Thus a measurement of the constant and driving frequency components of 

the photocurrent and the relative phasing of the driving frequency 

components of the photocurrent with respect to either the velocity or 
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displacement monitor outputs for "'iJ!" equal to 0 degrees and 9o 

degrees will permit the determination of either the birefringence or 

the modulation component of the photocurrent by making phazor plots of 

'/ and 
-1- I Jk=- 9o 0 Z;ff-=o 0 

and forming the vector 

sum and difference given by equations (111-34) and (111-35). As is 

indicated by the equations, the vector difference will yield a vector 

corresponding to twice the birefringence component, while the vector 

sum will yield a vector corresponding to twice the modulation component:.. 

Figure 12 illustrates such a phazor plot. Thus the measurement pro-

cedure for the case of appreciable intensity modulation due to improper 

plane motion is to note the maximum drive levels to be used to avoid -deviation of t/2 from 45 degrees to the streamline 

direction by examining the photocurrent for -fJt ==- 45"' degrees~ 

noting the drive level at which the photocurrent takes on an additional 
___::,. 

modulation due to the variation of 1.11 and Then, having 

determined the maximum plane velocities to be used at each frequency 

at which measurements are to be made, measurements of the magnitude 

and relative phasing of the photocurrent and the velocity or displace-

ment monitor output are made as before, except that instead of making 

measurements for ~= Cjo degrees only, measurements are made for 

both 1/!" = C) degrees, and ff= C/ 0 degrees at each fre-

quency. The appropriate birefringence component is then extracted by 

the vector subtraction given by equation (111-34). 

The velocity monitor as well as the photomultiplier circuit was 

found to be sensitive to electrical loading especially at frequencies 

above 200 cps. The velocity monitor was found to be sensitive to 

mechanical loading also. Hence to check the equipmens measurements of 



+,L 

\ 
\ 

122 

\ I, f='lrl 

Figure 12. Illustration of the Determination of the Modulation 
and Birefringence Components· 4 M'O'J) and 

Ii 8/ REF. · $ of th: Ph?tomultip lier Current 
From the Meassured Values of I, "f"=a' and 

-:J:,;r-:,oo'" 
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c and /l"J versus frequency were made for materials for which ._;)/VI C7 

it was felt that the relaxation times should be sufficiently short that 

should be constant and (!;. be either 0 or -180 degrees 

throughout the frequency range of the instrument. The materials used 

were Aroclors 1248 and 1254, and Oronite polybutene N-18. The velocity 

monitor was found to have a phase error of less than 5 degrees for 

frequencies to 800 cps,provided the mechanical loading was kept suf-

ficiently small. From 250 cps to 15 cps the phase error was less than 

3 degrees. The magnitude of the velocity monitor output was proper up 

to 1,000 cps. 

The closely spaced plane and reflector system can detect a bire-

fringence of 5 x 10- 9 with a probable error of 5%. Thus 

using a gap width of approximately .0015", the narrowest gap width 

feasible with the tungsten light source, the system will measure values 

of down to s,..1 ,::::::: 1ii11 sec. 

2. The Coaxial Cylinder System 

The concentric cylinder apparatus used for the measurement of the 

shear induced birefringence of the polystyrene solutions in steady 

flow is capable of covering a range of velocity gradients corresponding 

to those obtainable for the oscillatory flow birefringence measurements 

as made on the thin fluid layer system described in the previous sec-

tion. The maximum and minimum velocity gradients are approximately 640 

per second and 1 per second, respectively. The apparatus is of the 

rotating outer cylinder design, having inner and outer cylinders of 

5.00 centimeter axial length and diameters of 2.000 inches and 2.060 

inches, respectively. Thus the sheared medium is confined to an 

annular ring of thickness 0.030 inches. The light beam used to analyze 
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· the flow birefringence of the medium propagates through the annular 

ring in a direction parallel to the axes of the cylinders, so that if 

end effects are neglected, the beam may be considered to traverse 5.00 

centimeters of the sheared medium. 

The optical birefringence of the medium under test is analyzed by 

means of a Senarmont compensator scheme (40). Figure 13 shows the 

elements of the optical system, and the coordinate system ad,9?ted for 

the specification of the flow birefringence exhibited by the sheared 

medium. As for the oscillatory flow experiment, the -1- X direction is 

taken to be the streamline direction at the observation point P, with 

the direction of propagation of the light ray in the + '/ direction. 

The+ 2 axis is directed inward along a radial line as shown in 

the figure. As for the thin fluid layer system, the intersection of 

the i! axis and the euter ( rotating) cylinder is designated as the 

point i! = D J) being the gap width, with the intersec-

tion of the 'i! axis and the inner cylinder being designated as the 

point Z = O . In shear, the medium contained in the gap becomes 

optically birefringent. The birefringence is characterized herein by 

the sign of the difference A/n of the indices of refraction 11'?2. 

and m, corresponding to the preferential directions in the 

medium specified by the unit vectors and of Figure 

13, and the angle ~ between U, and the streamline direction 

( + X axis). Since for certain mixtures of solutions the preferen-

tial directions may move from one quandrant of the~,)( plane to 

another, for the work presented herein the vector ~ is taken to 

be the vector describing the orientation of the preferred direction to 

be found in the 2 X quadrant defined by vectors in the-~ and 



Figure 13. Arrangement of the Optical Elements of 
the Optical Transmission System of 
the Coaxial Cylinder System. 
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+ X directions as shown in the figure. Thus the angle ?(. is 

such that 

( Ill-37) 

and the sign of the difference of the indices of refraction ~117 

given by 

(III-38) 

is such that it may change sign during the course of an experiment. 

To analyze the operation of the Senarmont compensator quantitat-

ively, consider Figure 13. A monochromatic light ray having a free 

space wavelength Ad propagating in the +Y direction passes 

through the polarizer p The electric vector of the light ray 

transmitted by the polarizer is given by 

( Ill-39) 

_... 
where tip is a unit vector describing the transmission direction 

of the polarizer and is the free space propagation constant 

for the electromagnetic wave. is related to the free space 

wavelength by 

( III-40) 
• 

The plane polarized ray proceeds to the birefringent fluid. Neglect-

ing complicating effects associated with the propagation of the ray at 

the fluid interfaces (25), the propagation of the ray may be treated 

by considering the components of the ray having polarization directions 
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corresponding to the unit vectors ~ and ~ to have associated 

complex propagation constants ,, and ':Z. (91). If the 
~ 

polarizer transmission direction described by the unit vector lip is 
~ ~ 

adjusted so that it makes a 45 degree angle with I,// and llz. as 

shown in the figure, then 

( III-41) 

Thus the electric vector entering the fluid may be written as 

[ = Ji (zt:+ itz..)eL{ldt-~Y) 
• 

( III-42) 

The electromagnetic wave propagation constan,ts ~I and ~Z.. 

characterizing the medium are, in gen,eral, cQlllplex. 

( III-43) 

where LO ' fiok is the phase factor of the pr9pagation constant and 

is the attenuation constant for the medium being considered. 

is related to the electromagnetic wavelength }..0 ;.,, for 
, 

the component ,l, in the medium and thus to the corresponding index· of 

refraction 11'/A by 

( III-44) 

• 
-:. 

It is assumed that the two components of ~ will show the same 

space rate of attenuation when passing through the birefringent medium 

(no dichroism), so that 
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( 111-4.S) 

Thus the electric vector £" I emerging from the fluid layer of thick

ness L is given by 

_::.El_ EM ;~ ;e;J/(J,L -~Jf~zj -A,L . .l,(lt)t-'Yo Y) - - v e + 11 e e e 'f'2:'" I Vl 2 • ( II 1-46) 

The ray next encounters the quarter wave plate, assumed to have negligi-

ble absorption, which is oriented with its fast axis parallel to the 

polarizer axis. Thus the fast and slow axes have the directions 
_:::,. 

specified by the orthogonal unit vectors tf..p -and I/ ~a of Figure 

13. Again~ the propagation of the ray through the plate may be analyzed 

--==-1 -in terms of the components of the vector E along Up and 
__:::.. 

ti~ Thus upon entering the plate the electric vector is 

given by 

{I= ~M [ u; ( e-J.Jf.,1:i. ;U,L) 
( 111-47) 

+ tt: c e,;, x.2L ei .Y.1 L TI e:"-\f <wt-'f,,;) 

Equation (111-47) may be simplified by the use of the following: 

-lJ(01 L -l.JfoiL 
e +e = ~CJf(),L)+Ck-~2 L) (111-43) 

-.l ~Jfa,L)+~(Jfa2.L~ 
= ~ ~[t(ia1-Jfo2)L] e-~~(Jfoi+"Mcz)L] 



and~ 

-i,"' 2L -L.(1 L e - C: = ~( Wen.L)-- ~( J,f 01 L) 
• (111-49) 

-"h ~( Jfd2 L)-4#1 ( ~"1 L)] 

= ~&>!.[{ ( Jf,,-lf.~) L] e°.l[1(Jf.,+Jl-.)L+~]. 
Thus from equation ( lll-48) and ( lll-49) equation (IJ.I-47) may be 

written as ( lll-50) 

f 1 =£,.,{Up c,.,{i( lf.rJf.,)L]-7(. dn{l (Jf.,-Jf.z)L] e-tf} 
• e~L .(;'[tHt-r_ Y-f(Jfo,+Jfo-z)/J e . 

The passage of the ray through the quarter wave plate produces a spat-

ial retardation between the components of one quarter wavelength. 

Thus if the phasing of the faster component is altered by an angle ¢ 

upon passage through the plate~ then the phasing of the slower compo-

nent is altered by an amount (/+-f) 
exiting from the quarter wave plate is given by 

_..:::., 

• Thus the ray £ 7/ 

f/ = f,,, {~ e,,,{f(l,,-Jf.z.)L]-lt ~{t(JfcrH.,)§e"1 

e-;ll~L ~ [uJt- ~ Y- i ( £0 ,+ )f~z)L - ~] . e 
(lll-51) 

E11 [ zz; ~&( l,1 - Jfo2 )L] f t1; 4wl[t(Jf~,-Jto2) Q], 
,a-,,tl,,L ,i[IJ.Jt-- 'tY-f(df0 ,-ricz)L-rJ] .. ..._ e 

• 
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Hence the ray emerging from the quarter wave plate is plane polarized, 

having a polarization direction that is dependent on the magnitude and 

sign of (Jfo1- Jfo2.) The polarization direction of £ 11 may 

be specified by the angle 
eJ / 
r;;;;, of Figure 13. Thus 

so that 

k,[10fo,Jez)L] 
<!4fj( Jfo 1 -Jfo:1.) LJ 

( 111-52) 

( 111-53) 

/11=0,/ 2 ---· ) J I • 

If the optical retardation a produced by the sheared medium is 

measured in radians, then it is related to the difference between the 

indices of .refq1.ction of the medium by 

( 111-54) 

Thus from equations ( 111-44) and ( 111-54) the real parts 'Jt()L of the 

propagation constants for the medium are related to the optical retar·- · 

dation ~ by 

(111-55) 
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Thus from equations (111-53) and (111-55) 

( lll-56) 

"° I where r:7 is measured in radians, so that the magnitude and the 

s;i.gn of b ' and hence of L::i,. m , may be determined by measuring 

the polarization direction of the plane polarized ray emerging from the 

quarter wave plate. A positive angle corresponds to a negative 

value of and vice versa. As is shown in Figure 13, the 

orientation of the plane polarized ray exiting from the quarter wave 

plate is determined by rotating a plane polarizing prism analyzer until 

no light is transmitted through the analyzer. The analyzer is thus 

oriented so that its transmission direction is orthogonal to the polar-

ization direction of and hence is at an angle ( &~ ~) 
~ 

to u. p Figure 14 illustrates the principle of operation of 

the Senarmont compensator in simplified form. 

The velocity gradients produced in a medium sheared in a concen-

tric cylinder apparatus have been analyzed in detail in the literature 

(24, 32). The velocity gradient ~ at a point 

defined herein as 

• 

P in the gap is 

( lll-57) 

where S is the velocity of the fluid at the point and the coordinate 

system is that shown in Figure 13. This specification of the velocity 

gradient is identical to that ~sed for the o~cillatory measuremenis 

already discussed. From equation (111-57) the. velocity gradient 



Figure 14. Diagram Illustrating the Principle of 
Operation of the Senarmont Compensator. 

A. 

B. 

c. 

Plane polarize.2.,. light i12'.ident on the 
fluid layer. U. 1 and U2. are the 
principal directions of the polariza
bility tensor for the fluid. wt:=.{ . 
Elliptically polarized light entering 
the (')../q.) plate after passage through 
the fluid layer with retardation ~ 
assuming th~the slow axis of the fluid 
i~ in the U.1 direct ion and that there 
is no attenuation on passage_.through the 
fluid. W -C = (1f?'.2) . E is con
fined to the box indicated, and will 
touch all four sides_.)f the box during 
one period unless £ is plane 
polarized. The ellipse drawn il.llistrates 
the mot ion of the end point of E dur
ing o~cycle corresponding to the values 
of £'~ and ~ drawn in the 
f . I '<t. 1-gure. 

Plane polarized light leaving the ( ').../lj.) 
plate assuming that the slow axis of the 
plate is along the + f axis. wt"=£ . 
The transmitted ~ is plane polarized 
and...;-s oriented at an angle fi"' _. to the 

f' vector. Note that the / EI ._f...s 
given by /g"/:(c,-,/v£)0-~i+jJ-Cn.ip::.£M 
so that the maximum value of ~ lies on 
the circle for all values of ~ • 
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£" = Eu., -1- Eu-z. = E;, + £1 
= [!t 51!1. ~cwt 1+ ') 

~ 

+ U:. E.t!l- ~ wt1] ff . 
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generated at the point p in a concentric cylinder system with 

rotating outer cylinder is given by (32) 

(Ill-58) 

where JL is the angular velocity of the rotating outer cylinder, 

is the radius of the outer cylinder and is the 

radius of the inner cylinder. Note that the velocity gradient defined 

as above wi 11 always be negative in sign. If the gap width {): Ro Rl 

is sufficiently small that ])<< F? l , then equation (111-58) 

yields a constant value for the velocity gradient given by 

(Ill-59) 
'Ro _(2_ ;'I.; - ( le· - ~) S2. ..t> - lD __ _ 

For the apparatus described, the magnitude of the velocity gradient 

will vary about 6 percent over the 0.030'' gap. The use of the approxi-

mation expression ( Ill-59) with ( 'Rt - ~ ) = II 
/ .. 015 yields a 

value for ~ that is wj_thin 1 percent of the exact value obtained 

at the same point using equation (111-58). All gradient values listed 

II 
in this work were. computed from equation < IIl-59) using (Rl - e )=f,015, 

D:::: t),. o3o 11 and values of -""2.. computed from measurements of the 

period of rotation of the inner cylinder. 

The mechano-optic constant 5 11 was defined for oscillatory flow 

(W~ O) by equation ( Il-238) and for steady flow ( u) =o) by equation 

(11-240). For the coordinate system of Figure 13, 

I uJ=t) -
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Thus from equations (111-56) and (111-57), 

so that may be computed from the measured values of and 

Since the velocity gradient CJ, is always negative, the 

sign of S0 

positive, c}() 

is opposite to that of , so that for.4('Y/ 

is ± 180 degrees and for 6 /17 negative, ~D is O 

degrees. For the polystyrene solutions studied, 4rYI is positive~ 

so that giving a() ::: ± 180 degrees. 

Figure 15 shows a simplified block diagram of the concentric 

cylinder apparatus. A super pressure mercury arc lamp serves as the 

light source 5 Lens LI is used to reduce the effective source 

size seen by lens and to produce a small pencil of light to be 

interrupted by the chopper assemblyLC,. Lens forms an image 

of the. image formed by LI in the gap between the concentric cylin-

ders contained in the head fl The beam size in the gap converges 

from approximately 0.014" at the entering edge of the gap to 0.010 11 at 

the focus and then diverges to approximately 0.012 11 , assuming an 

aperture setting of f-32 for lens The front surfaced mirror 

M may be adjusted to send the light beam through the gap parallel 

to the cylinder axes. The beam shifter BS is used to displace the 

beam without altering its propagation direction. The polarizer F' 
analyzer A and quarter wave plate ty"l.,L are mounted on a rotat-

ing arm assembly R H which can be moved so that the polarizer 

transmission axis may be rotated approximately 50 degrees either side 



Figure 15. Diagram of the Coaxial Cylinder System 
Showing the Light Source S, the Lens 
L, the Light Chopper Assembly LC, the 
Leris L2 , the Beam Shifter BS, the 
Mirror M, the Polarizer P, the Rotating 
Handle RH of the Vertical Optical Bench, 
the Analyzer A, the Quarter .Wave Plate 
( A/1/-) , the Air Bearing AB, the 

Torsion Fiber W, the Interference Filter 
IF, the Photomultiplier PM, the Drive 
Head H, the Temperature Control Coils C 
and the Insulating Spacers IS and I. 
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of the streamline direction in the gap. The polarizer and analyzer are 

Glan Thompson polarizing prisms. A scale mounted on the polarizer 

reads the angle X. directly. The( ¥If-} plate ( '>w at s Pt!J() A) 
j 

is a mica plate sandwiched between optical glass, and is attached to 

the rotating arm assembly so that the fast direction of the plate is 

parallel to the polarizer transmission direction for all arm positions. 

The analyzer may be rotated separately from the arm assembly, and is 

L:J I equipped with scales to read the angle ~ in degrees between the 

normal to its transmission direction and the polarizer transmission 

I c) of Figure 13. The analyzer direction corresponding to the angle 
0 

is followed by a 5800 A second order interference filter!F that can be 

removed to improve the setting accuracy for measurement of the angle 

X The transm;i.tted intensity may be detected by a photomulti- · 

plier assembiyf/1, or by eye, using a telescope to view the liquid in 

the gap. The photomultiplier output is fed to an amplifier providing 

either 20 or 40 db gain which feeds the vertical amplifier of an 

oscilloscope. With chopping rates of near 2bo per second this detect-

ion scheme readily detects optical retardations of less than 0.01 

degrees, although the dials used to measure and are accu-

rate to only* 0.1 degree. 

The driving head H consists of the concentric cylinders, the 

precision angular contact ball bearings which position the rotating 

outer cylinder and the air bearing-torsion wire assembly used for vis-

cosity measurements. Since the outer cylinder is rotating, the entire 

bottom of this cylinder is made of a Schott optical glass, number 

SFS-09PF. Residual retardations in the glass are sufficiently small to 

be almost undetectable. The upper window is made from selected 
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microscope cover glass and likewise has almost undetectable residual 

birefringence. The sides of the driving head are surrounded by cooling 

coils in which flows an ethylene glycol solution from a constant temp

erature circulator. The head is mounted on spacers IS made of Delrin 

to insulate it from the steel supporting bench. The temperature of the 

head may be varied from about -5°c to +90°c. The measurement of the 

fluid temperature is accomplished by measuring the resistance of a 

thermistor imbedded in the inner cylinder near the outer surface of 

the cylinder. 

The outer cylinder is rotated by means of a belt and pulley system 

as shown in Figure 2. The driving motor is a reversible 1/15 horse 

power motor equipped with a variable speed control. This motor-pulley 

arrangement will generate usable velocity gradients from about 1 to 

640 per second. The velocity gradients are determined from measure

ments of the time T required for. 1/20 of a complete rotation of the 

moving cylinder, as obtained by feeding the output of a photodetector~ 

mounted behind an illuminated slotted chopping ring attached to the 

rotating cylinder,to a counter. Thus from equation (111-59) and the 

stated dimensions of the cylinder the velocity gradient at the center 

of the gap is related to the time interval by 

( Ill-62) -
where j has units of sec- 1 · if T is meaeured in seconds. 

The method of measurement of the flow birefringence is to deterQ 

mine the angle -X, by rotating the crossed polarizer-analyzer system 

by moving the rotating handle until no light is transmitted through the 

analyzer, then to set the polarizer transmission direction to 
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('X.+·%), as indicated in Figure 12, followed by a rotation of the 

analyzer only, until a minimum transmitted intensity is obtained. From 

the angle 6)/ read on the analyzer dial the magnitude and sign of 

are obtained, while the time interval measurement yields the 

magnitude of the velocity gradient from equation (111-62). From 

equation (111-56) A .ht . ,i/ 
c..J r,, is re lated to · ci, by 

( III-63) 

for e1 measured in degrees, with A. 0 = 5800 ~ and L = 5 .00 cm. 

The interference filter may be removed for the extinction angle 

/1!1 I 
measurement, but should be inserted for the measurement of c;r 

., 

The calibration of the extinction angle dial is accomplished by repeat-

edly reversing the rotation direction of the cylinder, resetting the 

scales until the same value of 1'.:, is obtained for both directions of 

rotation. The calibration of the analyzer scale is accomplished by 

removing the driving head and quarter wave plate and setting the 

prisms for extinction. The analyzer scale should indicate O degrees 

with the prisms crossed. It should be noted that for fluids exhibiting 

dichroism the value obtained for L::./rJ from equation 011-56) will be 

erroneous. 

The coaxial cylinder system may also be used to measure the steady 

flow viscosity. As is shown in Figure 15, the inner cylinder is sus

pended on a torsion wire :V/ held by a superstructure attached to the 

top plate of the system. An air bearing AB centers the inner cylinder 

and provides an almost frictionless guide for the shaft extending 

upward from the cylinder. Thus when the outer cylinder is rotated, the 

viscous drag on the inner cylinder due to the viscosity of the liquid 



in the gap causes it to rotate through a small angle. The angle of 

rotation depends on the viscosity of the medium in the gap, the 
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torsion constant of the wire and the rotation rate of the outer cylin

der. The measurement of the angle of rotation is accomplished by 

detecting a change in the electrical capacitance of two metal plates 

separated by a narrow air gap. The plates are mounted so that the 

rotation of the·inner cylinder alters the engagement of the plates, 

thus producing a change in capacitance. The capacitance of the plates 

is in the charging circuit of a transistorized unijunction relaxation 

oscillator so that a change in capacitance producei a change in fre

quency of the oscillator which is then measured by a counter. A micro

meter screw is utilized to calibrate the oscillator by rotating the 

inner cylinder thro1,1gh a known angle. Thus if the torsion constant of 

the wire is known, the viscosity may be determined by measuring the 

oscillator frequency change and the velocity gradient as described 

previously. The torsion fibers used are made from tempered beryllium 

copper and have diameters ranging from O .o 16 inch to O. 125 inch. The 

fibers were calibra.ted by using liquids of known viscosity; namely, 

distilled water for the smaller and a glycerol solution for the larger 

fibers. Utilizing the velocity gradient range capability of the 

instrument as well as the range of torsion fiber constants, one can 

measure viscosities from less than 1 centipoise to approximately 800 

poises to within 6 percent, the uncertainty being due largely to speed 

variations of the drive motor. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

1. Preparation of Solutions 

Oscillatory flow birefringence measurements as well as steady flow 

birefringence and viscosity measurements have been carried out for 

three different polystyrene solutions containing different molecular 

weights of polystyrene, using the same viscous solvent, Aroclor 1248, 

lot KD-507, a chlorinated biphenyl manufactured by and obtained from 

the Organic Chemicals Division of the Monsanto Chemical Corporation. 

The Aroclor 1248, lot KD-507, has. a density of 1.44 gm/cc at 2s0 c, a 

viscosity of 2.24 poises at 25°c and a molecular weight of approxi-

mately 292. The polystyrene.samples obtained from Dr. H. W. McCormick 

of the Dow Chemical Company were as follows; polystyrene Sl02, having 

a weight average molecular weight of 82,000; polystyrene Slll, having 

a weight average molecular weight .of 239,000; polystyrene Sl3, having 

a weight average molecular weight of 968,000. The polystyrene samples 

were fairly sharp fractions, especially the lower molecular weight 

samples, as indicated by the ratios of weight average molecular 

weight ~ to number average molecular weight ~ of 1.51 for the 

Sl3 sample, 1.08 for the Slll sample and 1.05 for the Sl02 sample. 

The polystyrene samples were put into solution by combining the de-

sired amount of the solid polystyrene and Aroclor 1248 in a glass 

bottle, then placing the bottle in a thermostatted oven for 

1'44 
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approximately three weeks at a temperature of 65°C. Occasionally the 

contents of the bottle were stirred gently using a glass rod. After the 

solutions had been heated for three weeks, the bottles were removed 

from the oven and stored in a dark cabinet in an air conditioned room. 

The solutions were prepared in different concentrations in an attempt 

to obtain a convenient level of birefringence for each solution. The 

Sl02 was prepared, as a 4 percent solution, the Slll as a 2 percent so• 

lution and the S13 as a 1 percent solution, where the concentration 

figure given, denoted by C,\N , designates the ratio of the weight 

of the polymer to the total weight of the final solution, in percent. 

These concentrations give a mass of polymer per unit volume of solu

tion of 5.70 x 10· 2 gm/cm3 for the Sl02 solution, 2.86 x 10-2 gm/cm3 

for the Slll solution and 1.44 gm/cm3 for the S13 solution. Another 

solution of 2 percent polystyrene Slll in Aroclor 1248 obtained from 

Dr. W. Philippoff of the Essa Research and Engineering Company has 

been studied previously.in this laboratory. No significant difference 

between the oscillatory flow birefringence exhibited by this solution 

and that exhibited by the solution prepared in our laboratory for the 

present study could be detected, indicating that the preparation 

techniques employed yielded equivalent solutions. Measurements of the 

steady flow birefringence and viscosity as well as oscillatory flow 

birefringence of solutions of Slll in Aroclor 1248 have been reported 

previously (72, 92). Viscosity measurements for solutions subjected 

to oscillatory shear have also been given for solutions of $111 in 

toluene, methyl ethyl ketone and cyclohexane and .for solutions of S102 

and Slll in Aroclor 1248 (29, 57). 

Polystyrene is obtained from the polymerization of the monomer 
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styrene. Styrene has a molecular weight of 104.14, a density of 0.9074 

gm/cc at 20°c and an index of refraction of 1.546 for the Sodium D 

line at 20°c (74). The styrene molecule is one of the arene family, a 

family of compounds that contain both aliphatic and aromatic elements. 

The chemical structure is indicated below, where the ring structure 

is the phenyl ring C6H5 (63). 

0 
The phenyl ring is thought to have a width of about 6 A and a thickness 

0 

of 3.7 A (28). An anionic polymerization procedure was used for the 

.Preparation of the polystyrene samples Sl02, Slll, and Sl3. The 

anionic procedure apparently produces sharper molecular weight frac-

tions for polystyrene than other polymerization techniques (1, 85, 87). 

The polystyrene molecule obtained by fbh:i!s polymerization procedure is· 

usually of the atactic form in which the phenyl group is arranged 

randomly about the carbon chain backbone as shown below. 

H ~ ! . ·l 

*~~/i~v/~~-Y,A~r . 
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The distance between the centers of the carbon atoms of the chain 

backbone for a hydrocarbon of the form CNH2N have been determined as 

1.55 i (51, 84). From a compilation of light scattering, X-ray scatter-

ing and viscosity data, the distance between alternate carbon atoms 

0 
in such a chain is thought to be 2.54 A, and the valence bond angle to 

be 110 degrees (5, 84). Denbigh (23) gives values for the principal 

polarizabilities along and normal to a C-C bond as 18.8 x 10 25 cm3 and 

0.2 x 10 25 cm3 respectively. The rotation about a carbon bond at the 

valence angle is hindered even for the relatively simple CNH2N hydro-

carbons. There are three potential energy maxima and minima for one 

complete rotation, the potential energy difference between a maximum 

and a minimum being on the order of 3 x 103 calories per mole (84). 

Since polystyrene differs from the CNH 2N hydrocarbons due to the large 

phenyl group extending in a direction normal to the backbone, and the 
0 

width of the phenyl group is approximately 6 A, the phenyl groups can 

be expected to interfere with each other sufficiently to further re-

strict the rotation of the C-C bonds in the chain backbone (28). Alsoj 

the close proximity of the phenyl groups may modify the distance 

between alternate carbon atoms in the chain backbone. The "diameter" · 

of the atactic polystyrene chain has been estimated to be greater than 
0 0 

6 A and less than 15 A (5, 23). Typical values given for the valence 

bond angle for atactic polystyrene range from 110 degrees to 120 de-

grees (1, 28, 61, 85, 87). Dielectric measurements for solutions of 

atactic polystyrenes indicate that the polymer chain is fairly rigid, 

apparently due to the interference of the bulky phenyl side groups 

(21). Kuhn and Kuhn (55) calculated the difference between maximum 

potential energy values for rotation about a carbon bond as 1.14 x 104 
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calories per mole, a value almost 4 times that attributed to. the CNH2N 

chain, again indicatin~ that the chain is fai.rly stiff. Thus it would 

seem reasonable that several C-C bonds in the chain backbone of poly-

styrene would need to be incorporated in a Zimm subchain in order to 

approximate a random coil model for the chain. Atactic polystyrene 

in the solid form exhibits an index of refraction between 1.59 and 1.60 

0 
for the Sodium D line (5893 A) and a density f = 1.06 gm/cc at 

2s0 c <73). 

An isotactic form of polystyrene has been obtained by Natta and 

co-workers by the addition of a special catalyst (64). The isotactic 

form is a more ordered chain in which the phenyl group~ are oriented 

predominantly on one side of the chain as shown below. 

1 ~. . ~ ~ 

---t~1/t~r/!~1/t--
. ' 

. 
) ,. 

The isotactic form will form crystallites in the pure polymer state, 

while the atactic form will not, and it apparently forms a more rigid 

chain structure than that of the atactic form (I, 28, 61, 85, 87). 

The atactic form cannot be altered to the isotactic form by rotation 

of the chain carbon atoms (63, 64). The glass transition temperature 

for isotactic polystyrene is between 80 and 100°c (73). 

Aroclor 1248 is listed by the manufacturer, Monsanto Chemical 

Company, as being a chlorinated polyphenyl having a molecular weight 

of approximately 292 (62). Other literature lists the Aroclor 1248 
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as an industrial grade chlorinated biphenyl (22, 29, 38, 72). Thus it 

would £:1.ppear that the Aroclor 1248 is a biphenyl st_ructure, having 4 

chlorine atoms substituted for hydrogen atoms on the phenyl structures. 

Since the location of the chlorine atoms on the structure is unknown, 

and the material is an industrial grade product, it is difficult to 

speculate on the hindrance to rotation of the C-C bond joining the 

phenyl structures, as well as the orientation of the two structures 

relative to each other.,j. One of several possible structures is shown 

below. 

H H e-L 
I 

CL 

-1-1 

Such a structure would have a molecular. weight of 292~ It would appear 

that the dimensions of a styrene molecule are probably somewhat smaller 

than those of the Aroclor molecule. 

The end-to-end length for dilute solutions of atactic polystyrene 

molecules in various solvents has been estimated from light and x~ray 

scattering data as well as from viscosity data. It would appear that 

for temperatures near room temperature, in nonflowing solutions using 

solvents such as cyclohexane, decalin or benzene, the S102 molecule 

( f'lfw ~ i~, (JOO) could be expected to exhibit an end-to-end · 

length of 2.1 to 2.7 X 102 1, while the S13 molecule (Prw~c:u,~ood) 
2 0 would exhibit a length of between 7 .2 and 7 .8 x 10 A (73). 

The optical polarizability (ot.. 1-o<.z.) for one link of a Zimm 
.,;. 

subchain of the polystyrene chain has been evaluated by Tsvetkov for 
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polystyrene in bromoform ('98..). He found (o{ 1-o(z.):-l.45 x 10-23 

cm3 for atactic and -2.24 x 10·23 cm3 for isotactic polystyrene. 

Other experimenters have 1 isted values for. ( o<. 1 -c( '2. ) in various 

solvents, but the values apparently were not corrected for the form 

birefringence contribution, which in most cases was large (50, 51, 54). 

Since the major contribution to the polarizability of the polystyrene 

in steady flow is that of the phenyl side group which has its largest 

principal polarizability in the direction of the C-C bond linking the 

phenyl group to the chain backbone·, the sign of (o< 1 -o<.'Z.) will be 

negative. The larger value·of '(o<. 1 ;;...o(-z.} for the isotactic poly

styrene is attributed to the higher degree ·of ordering of the phenyl 

groups ( ·9s). The phenyl· side group.· is usually assumed to have an 

anisotropy of polarizabiUty approximately equal to that of benzene, 

which is 60 x 10- 25 cm3 •. Since the chain backbone of the polystyrene 

chain should have·a molecular polarizability near that of a C-C bond, 

18·.6 x 10- 25 cm3, the excess polarizability for a· section of the poly.;. 

styrene chain should be normal to the chain giving a negative value 

of (23, 99). Also, since the value of (o<. 1- -<'2.) 

for the link' of a Zimm subchain as given by Tsvetkov is so large, 

there must be several monomer units per link C ·99 ) • From the polari-

zability values listed above, the number of monomers per link would 

appear to be greater than :3. Tsvetkov calculated the rotational free

dom to be expected for various side groups of various polymer chains 

C 98 ) • He indicates that the phenyl group of the polystyrene molecule 

has less rotational freedom than side groups in many other polymers, 

the -isotactic fonri, having less:freedom of rotation than the atactic 

form, and hence the largest values of The value 
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of has been found to be relatively independent of 

the solvent matei;-ial for several polymer solute-solvent combinations. 

However, there are notable exceptions (98). For some polymeric 

systems, the change of intrinsic anisotropy with solvent is thought to 

be caused by a change in the interaction between the side groups and 

the solvent (98). 

Tsvetkov has analyzed the form effect for solutions of polystyrene 

in butanone, dioxane, toluene, benzene and bromoform, as well as for 

polymethyl methactylate in benzene and polybutadiene in benzene ( 97). 

From the measurements presented therein, it appears that the form bi

refringence is negligible when the difference between the solvent mean 

index of refraction and the mean polymer index of refraction is less 

than O .1. For the polystyrene-Aroclor 1248 solutions studied herein 

the difference between polymer and solvent indices of refraction are 

as follows: -0.03 at 2s0 c, -0.01 at 65°C, and -0.1 at o.o0 c. So, 

except at temperatures near o0 c, the form effect should be insignifi

cant, and even at o0 c the contribution should be small, probably less 

than 3 percent of the steady flow birefringence. Thus the form effect 

has been neglected for the work presented herein. ·It is possible, 

however, that at high frequencies where the polymer birefringence con

tribution will be small the form effect may be significant, especially 

·at temperatures near o0 c. 

There is considerable evidence indicating that polystyrene when in 

solution is a molecular dispersion of the solute and not some micellu; 

lar dispersion •. For example, the viscosity increment of solutions of 

polystyrene appears to be relatively independent of solvent and 

temperature (5). Further, measurements of the partial specific 
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volume in various solvents are essentially that of the pure polymer 

(82). Sedimentation velocity data also indicates that the polymer is 

unchanged by the solvent (83). Measurements of the factor(-~ -' ) ""- , - "'ol 

have been made for pure polystyrene using the theoretical treatment 

given by Kuhn and GrJh for rubberlike materials subjected to simple 

elongation (SO, 93). This treatment incorporates the same model for 

an individual polymer· ·chain as was presented in Chapter II. That is, 

for small extensions, 

( IV-1) 

• 

It is further assumed that there is a gaussian structural network 

containing N such chains whose end-to-end:' vectors in the unstrained 

state are randomly oriented so that no net birefringence is exhibited. 

When the material is deformed, it is assumed that the components of 

the end-to-end vectors for the chains are changed by the same ratio 

as the corresponding dimensions of the bulk material, giving rise to 

a net anisotropy. Summing the contributions of all of the chains in 

the network gives the total polarizability of the whole network. If 

/ 1 and ~2. are the principal polarizabilities along and normal 

to the direction of extension respectively, they·obtain: 

CIV-2) 

where A is the extension ratio for the material. The stress in 

the gaussian net~ork is given as 



Thus 

where C 

((n, -/l'lz.) = C ," ' 

is the stress optic coefficient given by 

c-~.,,-. 
- 4S-~T 
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( IV-3) 

< Iv.:.4) 

OV-5) 

and /YI is the mean index of refraction of the material. Applying 

equations (IV-4) and (IV-5} to measured values of birefringence and 

stress, Tsvetkov obtained for atactic polystyrene (o<,~o<z) 

= •l.22 x 10· 23 cm3 , a value within 15 percent of the value of(o<. ,-~z.) 

obtained from solution measurements ( ·97). Assuming that the theoreti-

cal treatment is applicable, it would appear that the polymer chain is 

not modified appreciably, as far as optical properties of the link of 

the chain are concerned, by putting it in solution. 

The Aroclor 1248 used as the solvent for the polystyrene solutions 

studied exhibits a significant amount of flow birefringence. However, 

the large viscosity exhibited by the Aroclor 1248 is needed to obtain 

coverage of the relaxing region of the oscillatory flow birefringence 

in view of the frequency capabilities of the equipment as presented in 

Chapter III. Thus the use of the Aroclor as solvent was considered 

essential in spite of the birefringence complication. As was noted in 

connection with equations ( 11-259) and ( ll-260), the optical properties 

of the solutions must be corrected for the solvent birefringence in 



154 

order to examine the optical properties of the polystyrene chain. 

Further, the nature of the correction to be applied is subject to some 

question. However, for the work contained herein the vector subtrac-

tion method of equations (11-259) and (11-260) will be applied. Thus 

for the oscillatory flow birefringence measurements in which the 

extinction angle~ for the solution as well as for the pure 

Aroclor did not deviate appreciably from 45 degrees, the correction 

for the solvent birefringence is given by 

OV-6) 

Measurement of s*'° versus f for the Aroclor 1248 shows that for 

temperatures above -s0 c and frequencies below 1000 cps is·zero 

degrees and SM is independent of frequency and equal to SM 0 

Since the .$~ versus .f. measurements do not show any deviation 

from the steady flow value $0 , the Aroclor viscosity for similar 

temperature and frequency conditions is probably equal to the steady 

flow viscosity. It is assumed in the following analysis of the 

oscillatory flow birefringence measurements that both and 

for the Aroclor 1248 are equal. to the va.lues obtained from steady flow 

measurements. 

2. Mea.f:!hlrement s 

Figures 16 · through 21 present measured values of S,;r and ti) 

versus f obtained at various temperatures for the Sl02, Slll and 

S13 polystyrene solutions respectively. The measurements were obtained 

using the closely spaced oscillating plane and reflector system dis-

cussed in Chapter II. All measurements were made at sufficiently 



Figure 16. 51'1'1 Versus f for the 4% Solution 
of Polystyrene S102 in Aroclor 1248 at 
Various Temperatures, for an Optical 

· Wavelength of 5790 i. 
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Figure 17. tJ Versus "t for the 4% Solution of 
Polystyrene S102 in Aroclor 1248 at 
Various Temperature6, for an Optical 
Wavelength of 5790 A •. 
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Figure 18. SM Versus .f for the 2% Solution 
of Polystyrene Slll in Aroclor 1248 at 
Various Temperature8, for an Optical 
Wavelength of 5790 A. 
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Figure 19. 6) Versus t' for the 2% Solution 
of ~olystyren~ ~111 in Aroclor 1248 at 
Various Temperatures, for an Optical 
Wavelength of 5790 i. 
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Figt1re 20. SM Versus f 
of Polystyrene S13 in 
Various Temperature8, 
Wavelength of 5790 A. 

for the 1% Solution 
Aroclor. 1248 at 
for an Optical 
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Figure 21. 9 Versus f for the 1% Solution 
of Polystyrene S13 in Aroclor 1248 at 
Various Temperature8 , for an Optical 
Wavelength of 5790 A. 
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small velocity gradients that no deviation of the extinction angle fran 

45 degrees could be detected. The maximum gradients used for the 

measurements contained herein were less than 80 - 1 sec •• Extinction 

angle modulation was detectable at increasingly lower velocity gradi-

ents as the molecular weight was increased. The data points shown in 

the figures are the measured values of SM and e before any 

correction for the solvent birefringence was performed. The dashed 

lines indicate the values of SM and e calculated for the polymer 

molecules only by performing the correction for the solvent birefrin-

gence contribution to the measured birefringence given by equation 

( lV-6). '* Since except at the highest frequencies the real part of S 

measured for the solution is of opposit:~' sign to that of Aroclor 1248, 

the values of obtained by correction for the solvent bire-

fringence are for the most part larger than the uncorrected values. 

The correction is especially significant at high frequencies and low 

temperatures where the measured values of for the solution 

are decreasing rapidly, so that the constant value S 0 for the 

solvent used in the correction is becoming more and more significant. 

For the S13 sample, the highest frequencies at which measurements could 

be performed for T = -0 .3°C yielded values of for the 

solution of the same order of magnitude as the solvent 

Thus in view of the uncertainty as to applicability of the correction 

procedure applied as noted in the discussion of equations (11~259) and 

( II- 260), the corrected values of S,.,,, and (:J may not be charac-

teristic of the chain only, and hence may not represent accurately the 

dynamics of the polymer chain, especially for high frequencies and low 

temperatures. However, the correction appears to be in the right 
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direction since, for example, the measured phase angles for S13 of 

Figure 21 exceed -320 degrees before correction, and are reduced to 

less than the theoretical limit of -270 degrees after correction. 

Also, from Figure 20, the corrected SM curve corresponding to 

measurements of :::,"'- versus .f at -0.3°C corresponds more closely 

to the theoretical curves than does the uncorrected curve. The sig-

nificance of the correction for the solvent birefringence was one of 

the primary reasons for not using more dilute solutions. 

Figure 22 presents values of S O · versus temperature -for the 

solvent Aroclor 1248, lot KD-507. The measurements were made on the 

coaxial cylinder system discussed in Chapter III. These values of 

were used to obtain the corrected and e curves (dashed 

lines) of Figures 16 through 21. Figure 23 presents corresponding 

values of ?/o versus temperature for Aroclor 1248 obtained on the 

same coaxial cylinder system. Figure 24 presents values of ( So /s('J.,.) 
which have been corrected for the Aroclor birefringence contribution, 

obtained from measurements of S0 versus temperature using the 

coaxial cylinder system. is the value of s~. at the 

reference temperature fr = 25 .o0 c. From equation ( ll-248) it is 

seen that from the dilute solution theory (So I Soy.) is equal to aT 
if qi and C are not temperature dependent. For the work con-

tained herein all values of were obtained from equation 

( ll-248) assuming 'fl and C. to be essentially temperature inde

pendent. The following section indicates that the assumption regard

ing 'jf is reasonably accurate. And, since the concentration varia

tion is proportional to the density, (C/cr) is less than 1.01 for 

temperatures between o0 c and so0 c (62). The corrected S0 r values 



Figure 22. So Versus Temperature for Aroclor 
1248, lot KD-SOJ, for an Optical Wave
length of 5800 A~ 
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Figure 23. 'Y/ 0 Versus Temperature for Aroc lor 
1248; lot KD~507. · 
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··-Figure . 24. ( So/ S0 r ') _ Versus Temperature for 
the Solutions of Polystyrene Sl02 (4%), 
S 111 ( 2%), <,lnd S13 ( 1%) in Aroclor 1248, 
ar,tj (?'/$ tr/7/.,r T) Versus Tempera
ture for Aroclor 1248~ 
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in Figure 24 are as follows: Sor =~1.93 x 10-8 sec. for the Sl02 

solution, S0 .,. = -1.32 x 10-8 sec. for the Slll· solution and Sc:,r 

= -2.38 x 10-8 sec. for the S13 solution. Also shown on Figure 24 is a 

plot of (?fsTr/1J.sr T) versus r , which, according to the dilute 

solution theory will be equal to if the assumed temperature 

dependence of the friction factor from equations (Il-217) and (11-222) 

is valid. Figure 25 presents measured values of ?/o versus temp-

erature for the S102, Slll and S13 solutions. The measurements were 

made on the concentric cylinder apparatus using velocity gradients 

comparable to those used for the ,S0 measurements where possible. 

Figures 26 through 31 present curves of ( SM/a_i ) . versus 

f(tr and (; versus r /} T "'tT 

tions, obtained from the values of 

for the S102, Slll and S13 solu

a_T' given by ( $0 1 Sor-) from 

Figure 24 and values of SM and G) versus 't from Figures 16 

through 21. The values of a ·T used for the various temperatures 

and solutions are noted on the corresponding (5,..,,/ttr) curves. Note 

that this shifting of data is the reduction scheme discussed in connec-

tion with equations ( ll-245) and ( ll-246) ~ Bracket:l.ng theoretical 

curves for dilute solutions of non-free-draining molecules (see Figures 

7 and 8) are also shown .on Figures 26 through 31. The· free-draining 

_theoretical curves did not match any of the data. Theoretical non-

free-draining curves were fitted to the experimental data weighting the 

. lower frequencies more he~vily sirice, as has been noted, the solvent 

birefringence correction is probably more iikely to be in error for 

large values of , and the experimental ~ versus t aT 
curves do appear to have too great a slope for the largest values of 

ta, Lines are drawn through each set of (SM la;) and 



· Figure 25. !/o Versus Temperature for the Solu
tions of Polystyrene S102 (4%), Slll 
(2%) and S13 (1%) in Aroclor 1248. 
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. Figure 26. (S11 /ar) Versus . f aT for the 4% 
Solutton of Polystyrene S102 in Aroclor 
1248. The Theoretical Curves Shown for 
Non-free-draining Model ehains Having 
Values of N pf 10 and 40 were Obtained· 
Using 1,r = 5 .85 x 10-4 sec. and 
· Sor = -2.Ql x 10- 8 seC. The Refer-

ence Temperature is 2s.0°c. 
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Figure 27. tJ Versus f t:Z'T' for the 4% Solution 
of Polystyrene S102 in Aroclor 1248. 
Theoretic;al Curves Shown for Non-free-

. draining Model Chains Having Values of N 
of 10 and 40 Were Obtained Using 1i'r = 
5 .85 x 10-4 sec. and &o · = · -180 degrees. 
The Reference Temperature is 2s.0°c. 
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Figure 2$. (s,..., I tl.r) Versus f aT for the 
2% Solution of Polystyrene Slll in 
Arodor 1248. The Theoretical Curves 
Shown for Non-free-draining Model Chains 
Having Values of N of 30 and 100 Were 
Obtained Using 1"'j r = 2 .65 x 10-3 sec. 
and Sar= -1.40 x 10-8 sec. The Ref
erence Temperature is 2s.0°c. 
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Figure 29. !J Versus t' Qr for the 2% Solution 
of Polystyrene Slll in Aroclor 1248. 
The Theoretical Curves Shown for Non
free-draining Model Chains Having Values 
of N of 30 and 100 Were Obtained 
Using '?tr = 2.65 x 10-3 sec. and 

8 0 ~ -180 degrees. The Reference 
Temperature is 2S.0°C. 
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Figure 30. (S,.,,/ct;) Versus ta.,. for the 1% 
Solution of Polystyrene Sl3 in Aroclor 
1248. The Theoretical Curves Shown for 
Non-free-draining Model Chains Having . 
Values of N · of SO and 400 Were Ob
tained Using ,i~ = S.85 x 10- 2 sec. 
and S()r = -2.17 x 10·8 sec. The 
Reference Temperature is 2s.0°c. 
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Figure 31. e Versus fa,- :for the 1% Solution 
of Polystyrene Sl3 in Aroclor 1248 •. The 
Theoretical Curves Shown for Non-free
draining Model Chains Having Values of N 
of 50 and 400 Were Obtained Using '1"j r = 
5. 85 ~ 10- 2 sec~ and (;;0 = - 180° • The 
Reference Temperature is 25.0°C, 
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(:r versus data points corresponding to a single tempera-

ture to illustrate the degree of matching among the various curves 

upon reduction. From Figures 26 and 27 for the 4 percent polystyrene 

Sl02 solution it is seen that from the comparison of the theoretical 

and experimental curves the number of subchains /\I for the 4 percent 

S102 solution lies between 10 and 50. A best fit value of IV for 

values of 

5 .85 X 10-4 

+aT< 5 x 103 cps is 

sec., = -180 degrees and 

using 'tr= 
= -2.01 X 10 .. 8 

sec. In view of the possible experimental phase error of± 3 degrees 

associated with each set of data, the reduction of the (ii, versus 

f aT. data for S102 as shown in Figure 27 appears to be sat;i.s

factory. The corresponding (SM /aT) data also appears to reduce 

satisfactorily although each set of data for a given temperature seems 

to show a slight upturn at the high frequency end of the curve. 

Fig1,1:res 28 and 29 present ( S,-,i/ t:Z.T) and ·. 9 versus .fa,. 
curves obt:ained for ·the 2 percent polystyrene Slll solution •. Again, a 

comparison with the theoretical curves of Figures 5 through 8 indicates 

that ( SM/ar) and (:, for the 2 percent Slll solution correspond 

~ost nearly to the theoretical non-free-draining curves. Bracketing 

theoretical curves for N = 30 and N · = 100 are shown. For f aT 
less than 2 x 103 cps the best £.it value for N is N~ 60, using 

1"ir = 2.65 X 10-3 sec., ee> == -180 degrees and Sor=-1.40 X 

10-8 sec. The (SM/a.r) and 9 versus +a,.. data appears to 

follow the reduction scheme.. However, the experimental curves for 

large do not follow the indicated theoretical curves, 

but appear to tend toward theoretical curves fo.r larger N 

Figures 30 and 31 present the ( SM lar) and e versus taT 
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curves obtained for the 1 pe~cent polystyrene S13 solution. Comparison 

of the theoretical curves and the experimental data indicates that the 

measured values of (SM/ a,.,.) and (; for the S13 solution do not 

fit the theoretical dilute solution curves for either non-free-draining 

or free-draining chains, but may correspond to curves characteristic 

of some intermediate degree of hydrodynamic interaction. The theoreti-

cal non-free-draining curves come nearest to fitting the experimental 

data. Thus from a comparison of the theoretical and experimental 

curves of ( St,11 / a_,) and f) versus ('a 
"t T /'I lies between 100 

and 400, as indicated by the bracketing theoretical non-free-draining 

curves, with an approximate best fit for ·N ·~ 100 using 

5.85 x 10-2 sec., 6i, = -180 degrees and -5;,r =-2.17 x 10-8 sec. The 

reduction procedure appears to be applicable. Again, the experimental 

curves in the region of large tend .toward theoretical 

curves for larger values of fv than are indicated by the small f Glr 

end of these curves. 

Figure 32 presents measured values of the index of refraction for 

Aroclor 1248, lot KD-507, determined for an optical wavelength corre
o 

sponding to the. sodium D line (5,890 A) using an Abbe refractometer. 

The probable error in the absolute magnitude of the measured values of 

the index of refraction is± 0.0015. Thus from Figure ~2, extrapolat.:. 
'2. . 

ing M. to o0 c, the factor [(m/·+.:i) //l?s] of equation (11-214)~ 

does not vary from [(t?is'Z. + o2..).;t / n'l.s] r. 
temperatures from o0 c to 50°c. 

3. Discussion of Results 

by more than 0.03 for 

In the previous section the measured values of flow birefringence 

for the solutions of S102, Slll and S13 in Aroclor 1248 were matched 

·~ 



Figure 32. Index of Refraction~ Versus Temp
erature for Aroclor 1248, lot KD-507 
for an optical wavelength corresponQ
ing to the sodium D line (5890 A). 
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to the theoretical curves of flow birefringence versus frequency 

obtained for dilute solutions of the model chains for which. C is 
' . 

approaching zero;:, The polystyrene solutions on which measurements were 

made cannot be consi~ered to be dilute. However as is seen from 

Figures 26 throu&h 31 the character of the experimental curves does 

correspond to that of the theoretical curves. Corresponding measure-

ments of the viscoelastic properties of polystyrene solutions have 

been made at various cohcentrations •. The measured frequency dependence 

of the viscosity when compared with a modified Zimm theory, in which 

intermediate degrees of hydrodynamic interaction can be incorporated 

for infinite N ' has shown that the longest relaxation time ,,r 
is shifted to larger values as the concentrat,ion is increased. Also, 

for a given molecul~r weight~ the hydrodynamic·· interac·tion seems to 
. ' 

decrease with increasing concentration (29, 38). Peterlin ((67, 98) 

has proposed a theory treating the concentration dependence of flow 

birefringence and viscosity for small velocity gradients in which the 

hydrodynamic forces acting on the chain molecule are assumed to 
. I 

increas~., with increasing conc'entration to the same· extent as does the 
/ 

reduc·ed viscosity [J ]Rl:1>, 
defined by 

['Y(J,m~ ~ • 
Thus the ratio of So to C'~er:.·7{s) is given by 

- 47r 
-4SAT 

( IV-7) 

) 
(IV-8) 

for 45 degrees, which is the same result as is obtained 
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from equations ( II-227), ( II-229) and ( II-214) for dilute solutions. 

Experimental verification of relation (IV-8) has been obtained by 

Tsvetkov (98) for both atactic and isotactic polystyrenes of various 

molecular weights and concentrations in bromoform. Thus although no 

exact description of the effects of finite concentration on the flow 

birefringence and viscosity is available, it appears that the calcu

lated optical factor (~ 1-o<.-z) as obtained from concentrated solu-

tion measurements may equal the difference in principal polarizabili

ties for the subchain link. _ Ji'Ul"the:t> ;t~e,.°'~~apes of the (S~/i::T~) and I) 

versus curves will probably vary as concentration is varied. 

The variation of the value of with concentration has been 

observed in oscillatory flow birefringence measurements made in this 

laboratory. "'ln view of the above, the experimental measurements con-

tained he~ein will pe analyzeict,- in terms of the dilutfa solution Zimm 

theory since adequate experimental and theoretical information concern-

ing concentration 8ependence is not available. 

Figure 33 presents plots of (??0-7'ls)lt11o-1\s)r- versus tempera

ture for the S102, Slll and S13 solutions as well as a plot of ('f/str/s'r) 
versus temperature for Aroclor 1248, lot KD-507. From equations (II-

233) and (11-222) 

(IV-9) 

and from the assumed relation between the friction factor and the-

solvent viscosity given by equations (II-217) and (Il-223) 

~r= 
OV-10) 

• 



Figure. 33. (1jo-?t$)/(?7,•l1s)r Versus 'l'empera-
ture for the Sol~tions of Polystyrene 
S102 (4%), .. Slll (2%) and S13 ( 1%) in 
Aroclor 1248, and (1J~/~sr) Versus 
Temperature for Aroclor 1248. 
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Thus from equations ( JV-,9) and ( IV-10) and Figure 33 it is seen that 

the assumed temperature dependence relation between :f and 7'/s 
given by equation (11-217) is valid for the polystyrene solutions 

studied for temperatures below about 35°c. Above 35oc the curves 

deviate appreciably. The deviation may be due t9 the finite concen-

tration of the solutions or to the internal viscosity of the polymer 

molecule. 

Figure 34 presents a plot of the longest relaxation time ~r 

versus weight average molecular weight Mw for values of 1"i r 
S,w 

determined from the matching of experime~tal and theoretical 
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versus f ClT curves as shown in Figures 26 through 31, as well 

as values obtained from steady flow viscosity measurements. From 

equations (11-227) and (11-160) ~, , 1r _ is given by 

ty,'r ( lV-11) 
. C f'4 ~-rl (~/">';) 

f:J. 

Values of N obtained from the theoretical and experimental curve 

fitting of Figures 26 through 31 were used together with the (7".,./'1,) 
ratios for the non-free-draining_molecule.given by equations (11-220), 

( II-170) and Table l to obtain ',,r from the 7/, and 7/.s 
values of Figures 23 and 25. As is seen from the figure, the values 

of obtained from the steady flow viscosity measurements are 

consistently lower than the values obtained froin the s* measure-

ments. The reason for such a discrepancy is not apparent, although 

it is possible that finite concentration affects the entire relaxation 

time spectrum in a different manner than it affects some of the 



Figure 34. The Longest Relaxation Time ~r Versus· 
Weight Average Molecular. Weight ~ • 
Also Shown are Lines Representing the 
Theoretical Slopes Represe~tiQg the 
Variation of "'71r With Mc,'_:' for 
Free~draining and Non-free-draining 
Model Chains. The Reference Tempera
ture is 2s.0°c. 
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oscillatory flow relaxation times. However, the same trends are noted 

for both sets of ,-z.. -fJ 
Assuming that <r and ~ are not 

functions of the molecular weight for the samples being considered, 

it is seen from equati6n (11-160), (II-168) and (II-169) that ~ 
I I 

will increase with molecular weight such that 

~ "2. M1.., 
'1 oe. N oC I,, << I ' (IV-12) 

and 

( IV;...13) 

Lines corresponding to these limiting slopes are shown on Figure 34. 

From. the figure it appears that the values of 1, Y' obtained for 

the S102 and Slll solutions correspond to the non~free~draining slope, 

while the values obtained for the S13 solution seem to indicate that 

it may be more nearly free-draining. This tendency was noted previous-

ly in connection with the shape of the· 6 versus f a.r curve of 

Figure 31. A similar tendency has been noted in the viscoelastic 

properties of the comparable polystyrene samples of identical concen-

tration by Ferry and co-workers (29). Table II presents the values of 

'11r and L obtained by Ferry and co.;workers from the measured 

viscoelastic properties of solutions of S102 and Slll, as well as the 

values obtained herein. The values of '11r and ~- obt~ined by 

them for a 1 percent solution of a polystyrene in Aroclor 1248 having -Mw ~ 106 is also listed for .comparison with the. values ob-

tained herein for the S13 solution. The viscoelastic measurements and 

the oscillatory flow birefringence measurements appear to be in · 



Solution 
Designation 

Sl02 

Slll 

S13 

MDP-2 
Data from 
Ref. 29 

TABLE II 

A SUMMARY OF FACTORS DERIVED BY THE APPLICATION OF THE ZIMM THEORY 
TO THE FLOW BIREFRINGENCE AND VISCOSITY DATA FOR SOLUTIONS 

OF POLYSTYRENE Sl02, Slll AND S13 IN AROCLOR 1248 

~w C,, rr;Y' rr(r "if' 
Mw at 25°c at 25°c from s~ from 1'l,, from 

(wt, %) (gm/cc) Data Data Ref. 29 
(sec.) (sec.) (sec.) 

82,000 4.00% 5. 70 X 10-2 5.85 X 10-4 4.03 X 10-4 5 0 89 X 10-4 

239,000. 2.00% 2.86 X 10- 2 2,65 X 10-3 1,37 X 10-3 2 0 32:x 10-3 

968,000 1.00% 1.43 X 10-2 5,8 X 10-2 1.40 X 10-2 

1,000,000 1.0% 1.44 X 10'"'2 5.01 X 10-2 

N' 
0 
N 



• 
Solution 
Designation 

Sl02 

Slll 

Sl3 

MDP-2 
Data from 
Ref. 29 

N 

· 04 20 
(between 10 

.and 50)· 

~ 60 
(between 30 

and 100) 

-.J 100 
(between 50 

and 400) 

*See Reference 29 

TABLE II (continued) 

{'f t,?)r ( o<,-o<2)r 
l..cm3) (cm3) 

-5 .. 67 X 10- 23 -1.53 x 10- 23 

~6 .18 X 10- 23 . -1.66 X 10- 23 . 

-8.63 X 10-23 -2.33 X 10-23 

Draining 
Condit.ion 

J. >> 1 . 
(i,~oO)* 

4>>1 · 
(t~/~())* 

Intermediate, 
but- nearer 

to It,>) I 

( '- e:!. / 5 )* 

No.· of 
Monomers 
Per Zimm 
Subchain 

3·9 

38 

93 

"' 0, 
w 



agreement as to the. value of If r 

interact ion factor ~ 

and the trend of the hydrodynamic 

The optical factors and 
1,-z.. . Cf V may be 

evaluated from the . ~d measurements of 

Figures 23, 24, and 25. From equations (11-227), (11-241) and (11-214), 

(IV-14) 

and 

assuming that thet;'e is no appreciable form birefringence. Table II 

lists the values of 

inserting the measured values of 

and ( o(.. I - o<z.) r calculated by 

S0 r- , ?'/or. and ?'/sr in equa-

tions (IV-14) and OV-15). Note that the values obtained for 

( o<.. 1 -o<.,) r for the solutions of S102 and Slll correspond fairly 

well to the value given by Tsvetkov ( (o( 1- o<z.) :=-1.45 X 10-23 cm3) 

for a tactic polystyrenes in bromoform. However, the ( C>( I - o(2) r 
for the S13 solution agrees more nearly with the value listed by 

Tsvetkov for the isotactic form of polystyrene = 
-2.24 x 10- 23 cm3 ) (98). Also, the values of (c,( 1-o<.-:z)robtained 

for the Sl02 and Slll solutions are not identical although the small 

difference could be due to experimental error. Thus it is possible 

that either the factor for polystyrene in Aroclor 

1248 may not follow the simple concentration dependence followed by 

polystyrene in bromoform or the polystyrene S13 may be an isotactic 
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polystyrene and the S102 and Slll samples atactic polystyrene (98). 

The form birefringence which has been neglected in the Zimm treatment 

of flow birefringence apparently would not account for the increased 

value of (o< 1- o<2.)r for the S13 solution since although the form 

birefringence should increase with molecular weight it should be a 

positive quantity (19; 98). 

Tab le III lists values of ( Q( 1- °'--z.) for three temperatures, 

10°c, 2s0 c and'4o0 c, for the three polystyrene samples, to demonstrate 

the temperature dependence of the subchain segment aniaotropy (o<. 1-o<2) • 

The variation of (o<. 1 - o('Z.) for Sl02 and Slll is sufficiently small 

that to within experimental error the ( $0 / Sor ) ratios of 

Figure 24 are equal to aT as has been assumed herein. The S13 

data indicates that this assumption is valid for it also, except perhaps 

at the lowest temperatures. However, this solution was quite viscous 

at low temperature, so that heating effects in the gap of the concen~ 

tric cylinder apparatus might have given a value for 'Y/o 
too small. 

that is 

The conclusion that the ( S0 / Sr;Y') ratio should give adequate 

values of aT is supporte<;l by the curve of [(11s/1/sr)(TVr ~ 
of Figure 24. Since ('lf.s/11.sr) was shown to exhibit the 

same temperature dependence as ( 0 1 
o- s)r 

below 35°c in Figure 33, ("fls/7l5r (Tr/T) 

for temperatures 

should be equal to a,-
below T = 35°c. From Figure 24 it is seen that ( So I s() '(' ) does 

match (7lsl7lsr) (Tr/,) below 35°c for all three polymer solu;. 

tions, so that ( So /Sdr) should be equal to a,- , and the 

temperature dependences. ~of <jf and 

for all three solutions. 

C are apparently negligible 
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TABLE III 

THE VARIATION OF sAr~~~) AND (G(1-o<2.) WITH TEMPERATURE 
FOR SOLUTIONS OF 01 STYRENES S 10 2 , S 111 AND S 13 

IN AROCLOR 1248 

-r Sa 
(o<\- o('2) Polystyrene 

(~o-1ls) 
{0~) (sec./poise) ( cm3) 

Sample 

10 -1.32 X 10-9 .. 1.38 X 10~23 Sl02 

-1..56 X 10-9 -1.64 X 10-23 Slll 

-2 ~87 X 10-9 -3.01 X 1023 S13 

25 -1.38 X 10-9 -1.53 X 10·23 Sl02 

• l .jQ X 10-9 -1.66 X 10-23 Slll 

-2 .11 X 10-9 -2 .33 X 10-23 S 13 

40 .. -.1.27 X 10-9 -1.49 X 10-23 Sl02 

-1.47 X 10-9 ,-.1.72 X 10-23 Slll 

-1.92 X 10-9 -2, 24 X 10-23 Sl3 
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Table II presents a summary of the data obtained from the bire

fringence and steady flow viscosity measurements for the polystyrene 

solutions. The table also lists values of 'l,r and k obtained by 

Ferry and co-workers from viscoelastic measurements (29). Also shown 

is the number of monomers per subchain computed from the best fit 

values of !\J obtained from the oscillatory flow birefringence 

measurements. The value obtained for the S13 solution would indicate 

that the S13 molecule is more rigid than the S102 and Slll molecules, 

the value of N obtained is too small by a factor of two, polydis

persity effects are significantly altering the shapes of the curves, 

or the effects of finite concentration are more pronounced for this 

sample. If the S13 sample is an isotactic sample, the chain could be 

more rigid (61, 85) •. However, the value of N may be incorrect, 

since no adequate match between the theoretical and experimental curves 

could be obtained for this solution. It should be noted that the 

( Mw/MN ) value for S13 is larger than for S102 or Slll, indicat

ing that the polydispersity of the S13 sample is greater. 



CHAPTER V 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY 

1. Conclusions 

The oscillatory flow birefringence exhibited by· a solution con·;.· : 

taining polymer molecules in suspension is a sensitive indicator of the 

dynamics of the motions of such molecules in an oscillatory flow field. 

The data obtained for the polystyrene Sl02, Slll and Sl3 solutions 

studied indicates that there is a definite spectrum of relaxation times 

associated with the oscillatory £lo~ birefringence of the polystyrene 

molecule~ Thus any model used as the foundation for a theoretical 

treatment of the birefringence must exhibit such a spectrumof relaxa-

tion times. Models such as the elastic dumbbell (Sl, 52) and the 

deformable sphere ( 31, 48, 97, 98, 1:00' ) would not be adequate.. The 

elastic sphere treatment by Cerf (13) does, however, predict such a 
" i 

spectrum of relaxation times. The bead and springmodels of Rouse (75), 

Cerf ( 12, 13, 14) and Zimm ( 10:3, 104) appear to be particularly amena-

bJe · to the·treatment of oscillatory flow-birefringence from the 

standpoint of the relaxation time spectrum predicted by the normal 

vibrational modes of the chain. 

The measured frequency and temperature dependence of the oscilla-

tory flow birefringence of the Sl02, Slll and Sl3 polystyrene solutions 

does exhibit the general character of the theoretical flow birefrin· 

gence predictions of the Zimm theory as presented herein, although the 

208 
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theory incorporates assumptions that may well be violated, such as 

small forces being exerted on the model chain by the fluid and by the 

chain on the fluid, quasi-static force conditions and equilibrium 

chain configurations for the treatment of the hydrodynamic interaction 

within the model chain, subchains obeying random walk (gaussian) 

statistics, a Stokes law type of interaction between the solvent and 

the subchain acting on the end points (beads) of the subchains only, 

no internal energy losses in the chain (internal Viscosity), no optical 

interaction between the subchains, and a solution sufficiently dilute 

that there will beno mechanical or optical interaction among the 

chains in solution. 

Since most polymer molecules exhibit some t~pe of hindrance to 

rotation at the valence bond angle in the polymer chain, and such bonds 

may have several different potential energy maxima and minima, the 

rotation from one minimum to another can mean an apparent dissipation 

of energy in the chain so that an effective internal viscosity will 

appear for the chain (1, 28, 61, 63, 85)~ Cerf (12, 13, 14) states 

that the internal viscosity may play a more important role than the 

hydrodynamic interaction between segments in the chain. Thus the 

assumption of no internal viscosity seems questionable. The assumpt,ion 

of no optical interaction between segments may be an approximation to 

the physical situation, since neighboring segments which are separated 

by small distances may influence the local electric field acting on 

each other,(39). The bead and spring model of Zimm assumes a Stokes 

law type of hydrodynamic interaction between the model beads and a 

continuous solvent. Since the Aroclor solvent molecules are of a 

size comparable to the styrene monomer units contained in the whole 



210 

polystyrene molecule it is surprising that the oscillatory flow bire

fringence predictions based on the Zimm model correspond to the ob

served birefringence for the polystyrene solutions (28). 

Tha analysis of the oscillatory flow birefringence data for the 

polystyrene solutions in terms of the dilute solution Zimm theory 

shows that the reduction procedure discussed in connection with equa

tions (ll-246) and (Il-247) may be used effectively to examine experi

mentally relaxation processes corresponding to frequencies not directly 

attainable because of the frequency limitations of the equipment. Alsq 

the correction of the birefringence data for the contribution of the 

birefringent Aroclor solvent used appears to be proper except possibly 

for the highest frequencies and lowest temperatures at which measure

ments could be made, since the corrected data appears to have the 

prbper frequency dependence, the reduction procedure works adequately 

and the values of (o<. 1 -o(2.) seem reasonable. The high frequency

low temperature discrepancy may be due to a decreasing contribution of 

the large phenyl side groups of the polystyrene chain with increasing 

frequency, since these large groups may have some freedom of movement 

about the chain backbone (102) and hence may not be following the 

chain motions at high frequency, resulting in ·a smaller value of aniso

tropy (of. 1- o<.z. ) associated with a link of the subchain. Or, the 

discrepancy may be due to a small form birefringence which is unde

tectable at lower frequencies, but which introduces a small positive 

value of optical anisotropy that is significant at high frequency. 

Another possible source of the high frequency discrepancy is the 

presence of a small amount of some contaminating material in the 

solution that exhibits a positive anisotropy. The applicability of the 
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reduction procedure indicates that the value of ar given by the 

I ) t '2,. 
(S0 Sor ratio is adequate and that and N are at most 

weakly dependent on temperature. N also appears to be essentially 

independent of f a.T for the range of frequencies covered, although 

as the high frequency end of the relaxation curve is approached motions 

within the subchain itself would be expected to become significant, 

thus altering the value of IV 

The steady flow viscosity versus temperature measurements for the 

polystyrene solutions and the Aroclor solvent indicate that the temper-

ature dependence of the friction factor -:J associated with the 

hydrodynamic interaction between the model bead and the solvent does 

follow the temperature dependence of the solvent viscosity for tempera-

tures less than 35°c, as would be predicted by a Stokes law type of 

interaction between the bead and the solvent, in spite of the compari-

ble dimensions of the Aroclor molecules and the monomeric units of the 

polystyrene chain. Above 35°C the temperature dependence of the fric-

tion factor apparently increases, an effect that may be due to either 

the internal viscosity of the polymer or the finite concentration of 

the solution. 

The steady flow viscosity and birefringence measurements indicate 

a.~ I that the optical factor 0 is a weak function of temperature and 

the oscillatory birefringence measurements indicate no appreciable 

dependence of tf1 on frequen~y; although for sufficiently high 

frequencies where motions within the subchain should become significant 

j/ would probably exhibit a dependence on frequency. The values of 

obtained herein for the Sl02 and Slll 

polystyrene samples in Aroclor 1248 agree with the values obtained by 
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Tsvetkov <97, 98) for various atactic polystyrenes in bromoform and 

show a reasonable agreement as well w·ith· solid polystyrene (oi 1- o( 2 ) 

values. The value of (o< 1- o(, )r obtained for the Sl3 sample 

agrees well with the value'given by Tsvetkov for isotactic polystyrenes 

in bromoform~ The agreement between the values of ( Ci( 1 - o{z.) r 

obtained herein and those· -of Tsvetkov which are corrected for farm 

birefringence indicates that the form birefringence :is probably negli-

gible for these solutions as was assumed; except possibly for the data 

corresponding to large values of fa.,- . The largervalue 

of {o< 1 -o<2 )r obtained for the S13 sample probably is not due 

to form birefringeni:::e, since apparently form birefringence,always ex-

hibits a positive anisotropy(l9, 20, 91, 98). The values of 

(c< 1 - o<,) r obtained he-~ein are, as follows: 

•1.53 x 10- 23 cm3 for polystyrene Sl02, ·. (o(., -o('2.) r: = .;,.1.66 x 10;.23 

cm3 for polystyrene Slll, and (o<, -~-z.)r = ~2.33 X 10'.'" 23 cm3 for 
.. j •," 

polystyrene S13.. The treatment of the optical anisotropy of the poly-

" ' mer chain given by Kuhn· and Grun (SO) which is used in the Zimm theory 

appears to be adequate fo.r the polystyrene-Aroclor solutions in view 

of the agreement between the theoret-ical and experimental versus 

curves. 

A comparison of the theoretical free-draining and non-free-dra'in-

ing oscillatory birefri~gence curves of Figures 5 through 8 indicates 

that for values of N between 20_ and 100 the variation of ( 8- (:;0 ) 

with N is as large as the variation with limiting hydrodynamic 

interact ion condition. 'Thus a good .de script ion of the birefringence 

properties of the chain model will involve a treatment in terms of a 

variable hydrodynamic interaction parameter -I,., . as well-as a variable 
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number of chain segments f\/ Also, the random coil subchain con-

cept applied to polymer chains to obtain the bead and Hookean spring 

model will break down for sufficiently low molecular weights since 

the polymer chain will not be sufficiently long to approximate a random 

coil, but will have a sufficient number of bonds of limited flexibility 

to combine characteristics of both flexible and rigid molecules. 

From a best fit matching of the theoretical dilute solution 

oscillatory birefringence curves of'Figures 5 through 8 and the experi

mental oscillatory birefringence curves of Figures 26 through 31 it is. 

seen that the experimental curves do not correspond to the theoretical 

free-draining curves for any of the polystyrene samples. A best fit 

matching of the theoretical non-free-draining curves and the experi

mental data yields the following: For the 4 percent solution of poly-

styrene Sl02, N is between 10 and 50, with a best fit value of 

N ~ 20; for the 2 percent solution of polystyrene Slll, N is 

between 30 and 100, with a best fit value of N~ 60; for the 1 

percent solution of polystyrene S13, N is between 50 and 400, with 

a best fit value of N ~ 100. The number of monomer units per Zimm 

subchain given by the weight average molecular weight divided by the 

best fit value of the number of subchains N times the monomeric 

molecular weight are 38 monomer units, 39 monomer units and 93 monomer 

units for the Sl02, Slll and S13 samples respectively. The large 

number of monomer units obtained for the S13 polymer may indicate a 

. more rigid chain structure, an incorrect value of N due to the in• 

adequate match between theoretical and experimental curves for this' 

sample, or some effect of the relatively high solution concentration. 

Values of the longest relaxation time at T;: 2s .o0 c 



obtained by the best fit matching o:f · the theoretical curves and the 

experimental data are as follows: 't,r ·= 5.85 x 10-4 sec.· for the 

Sl02 solution, '1,r·· = 6.25 x ·10-3 sec. for the Slll solution, and 

1,r = 5.8 x 10- 2 sec. for the Sl3 solution. These values of 
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show a tendency toward a more nearly free-draining hydrodynamic inter-

action condition with increasing molecular weight. A similar tendency 

has been noted from viscoelastic measurements, and the values of ~r 
obtained are in good agreement with those obtained herein (29.). Values 

of · "'ti Y' computed from.the steady flow viscosity data for these 

solutions are consistently smaller. The trend toward a more nearly 

free-draining condition with increasing molecular weight is also indi-

cated by the G). versus faT curve for Sl3 (Figure 31>, which 

exhibits a curve shape intermediate to those of the theoretical free-

draining and non'-free-draining chains. 

The large value of the number of monomer units per subchain and· 

the larger value for (o<. 1- o( 'Z )r obtained for the S13 polymer might 

indicate that this sample is an isotactic polystyrene, whereas the Sl02 

and Slll samples are probably atactic polystyrenes. However, since the 

effects of fin it~ concentration $1':'e not known, the observed values of 

·and N for the Sl3 solu.tion may be due to finite 

concentration effects instead. 

2. Suggestions for Further Study 

The need for consideration of both the number of subchains and the 

hydrodynamic interaction condition demonstrated by the present study 

points to the need for an extension of the Zimm theory to intermediate 

degrees of hydrodynamic interaction for a finite number of segments N . 

Such an extension has been performed by Tschoegl (94) for the case of 
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an infinite number of subchains. Also,_ adequate theoretical treatment 

of the concentration dependence of the oscillatory flow birefringence, 

and companion measurements demonstrating the influence of finite con-

centration are needed. 

An extension of the frequency capabilities of the apparatus to 

higher frequencies to permit an experimental examination of the upper 

end of the oscillatory birefringence relaxation curve, a region that as 

of yet is not defined, is needed. Calculation of values of Ap for 

finite N for the non-free-draining case when combined with the A~ 
for finite N given by Rouse for the free-draining case would help 

resolve the theoretical predictions of the Zimm theory for the same 

region for smau N <10, 1s). 

The use of a viscous but nonbirefringent solvent for polystyrene 

solutions having a viscosity comparable to that of the_Aroclor 1248 

used herein would be helpful in determining the role of the solvent 

birefringence in these measurements and the validity of the solvent 

birefringence correction procedure employed herein. Measurements of 

the oscillatory flow birefringence for sufficiently low molecular 

·weights of polystyrene that the chain size approaches the size of the 

gaussian subchain noted herein would clarify the applicability of the 

subchain concept to real macromolecules. 

The effects of polydispersity should be studied both.experiment-: 

ally and theoretically, since the presence of widely different molecu~ 

lar weight polymer molecules can alter the shapes of the experimental 

birefringence curves appreciably. Also, the study of other flexible 

macromolecules to broaden the experimental $tudy of the oscillatory 

flow birefringence exhibited by_flexible macromolecules would be useful 
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In particular, naturally occurring polymer molecules which tend to be 

more monodisperse than molecules prepared by chemical synthesis might 

help to resolve the effect of polydispersity (98). 
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