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CHAPTER I 

INTRODUCTION 

It was Henri Coanda who, in 1932, described a fluid flow phe­

nomenon which stimulated the relatively recent development of fluid 

control devices without moving mechanical parts. Called the Coanda 

effect, the phenomenon involves the tendency of a fluid stream 

emerging into a space with a wall located near the stream to attach 

to the wall and to remain attached if no outside disturbance is 

imposed. In 1959, a group of scientists and engineers of the 

U.S. Army's Diamond Ordnance Fuze Laboratories (now Harry Diamond 

Laboratories) invented the so called "fluid amplifier." Since then 

there has been an almost explosive increase in activity on this 

class of fluid devices. In addition to performing flow switching 

and amplification, these fluid devices having no moving mechanical 

parts can be used to perform logic and computation functions, even 

in an adverse environment. The term "Fluidics" has received general 

acceptance for describing fluid control components and systems con­

taining fluid elements with no moving mechanical parts. 

At present the designs of fluid amplifiers rely almos t totally 

on experimental trial and error methods. It would be very desirable 

to devise an analytical procedure for predicting the performance 

characteristics of every element in the control system based on the 

fundamental flow processes involved. 
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Many investigators have put forth considerable effort to find 

a method to predict the velocity and pressure distributions in 

fluid control components. Some empirical velocity distribution 

equations for different jet mixing models have been derived; however, 

the prediction of pressure distributions within these devices has 

been over-simplified and often ignored. 

It is well known that the laminar flow of a viscous fluid can 

2 

be treated with the Navier-Stokes equation. Due to the non-linear 

nature of the equation, only a few closed form exact solutions have 

been obtained. Since the high speed electronic computer became 

available, considerable progress has been made in numerical integration 

of non-linear differential equations. 

The main objective of this study was to examine the possibility 

of applying an explicit numerical technique introduced by Rusanov (45) 

to integrate the simplified flow equations for a low speed, two-. 

dimensional, turbulent jet issuing into a partially confined space. 

The geometrical arrangement selected is not exactly identical to the 

one used in most fluid control devices; however, it models the first 

important section o! a proportional fluid amplifier. If the flow 

characteristics of this geometrical arrangement can be successfully 

predicted by means of numerical techniques, there should not be 

any difficulty in doing the same for the other cases. 

Evaluation of this numerical technique was carried out with the 

aid of an IBM 7040 computer. Jet velocities of 100, 200, 250, 300 

and 2270 fps at the nozzle exit were used in the computation. 

Experimental results for a nozzle exit velocity of 200 fps were 

obtained for comparison with the computed results. 



CHAPTER II 

LITERATURE SURVEY 

After Prandtl introduced the mixing length theory, the theoretical 

study of jet mixing was greatly stimulated. Tollmien (50) made use 

of Prandtl 9 s turbulent shear hypothesis, 

l ou,ou ,. = pPP - -oy oy ' (2-1) 

in the study of the free jet boundary, Fig. l(b), and the free jet, 

Fig. l(a). By assuming constant pressure and replacing the viscosity 

terms by the turbulent shear stresses in the equation of motion i.n 

the x-direction, the following is obtained 

(2-2) 

Tollmien assumed that the mixing length is a function of x (the 

direction of the mean flow) only and is proportional to the distance 

from the point where the mixing starts. This relation may be written 

as 

where a1 is a constant found experimentally to be a1 = 0.0174. With 

the aid of the stream function and the boundary conditions at the 

centerline and at the edge of the jet Tollmien was able to write 

u and v in terms of x and T\ (T) = y/x). From the solution of the 
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differential equation obtained by substituting equations (2-1) and 

(2-3) in equation (2-2) he was able to predict the velocity distri-

butions of the jeto By neglecting P(v' l' in the equation of motion 

in y-direction, he derived equations for predicting jet centerline 

pressure. It was also pointed out that the centerline velocity of 

a free jet is inversely proportional to the square root of x (i.e., 

u - x-%), where xis measured from the point where mixing first 
C 

extends to the centerlineo 

Forthmann (18) extended the work of Tollmien by carrying out a 

series of experiments to study the jet mixing in the configurations 

shown in Figs. l(a), (g) and (h)o 

4 

From the experimental data on free turbulent flows, Reichardt (41) 

found that the velocity profiles of free jet boundaries, Fig. l(b), 

and free jets, Fig. l(a), could be represented successfully 'by the 

Gaussian error function. From the fact that one form of the solutions 

of the one-dimensional heat conduction equation is the Gaussian error 

function, he introduced his inductive theory of turbulence. For 

frictionless, constant pressure, incompressible flow, the time-

average equation of motion in x-direction can be written as 

Upon introducing an empirical "law of momentum transfern 

a7 
uv e - A(X) 0-:, 

(2-4) 

(2-5) 

and combining this with equation (2-\), Reichardt obtained the equation 

o7f ( ) 02J (2-6) -r-=t.X -
ox al 



where A(x) is called the "momentum transfer length." The solution 

of equation (2-6) may be written as 

where 82 is a constant, 11 = y/b(x), and 

r + 00 

b(x) -
J 0 ( ;J dy. 

If equation (2-7) is substituted in the expression of b(x) and 

integrated, the constant 82 in equation (2-7) can be obtained 

(ioeo, ~ = TT/8). 

(2-7) 

As mentioned in Schlichting (48), Gortler built upon Prandtl's 

second hypothesis, 

( ) OU 
T = pe X oy· (2-8) 

where e(x) is the virtual or apparent kinematic viscosity, to study 

the free jet boundary and the free jet. Assuming a frictionless, 

constant pressure flow and introducing equation (2=8) into the 

equation of motion in the x-direction, following differential 

equation is obtained: 

(2-9) 

For a free jet G'ortler made use of the relations th.at the width of 

the jet is proportional to the distance x (i.e., b- x) and the jet 

centerline velocity is inversely proportional to the square root of 

the distance x (i.e., u - x-12). He expressed the apparent kinematic 
C 

viscosity in the following form: 

5 
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€ = 83 b(x) X , (2- 10) 

whare as i s a constant. 

If the continuity equation is integrated with the aid of the 

stream function and substituted in equation (2-9), the velocity 

profi le equat ion can be obtained from the solution of equation (2- 9). 

That is 

u = u sech2 1) , 
C C 

(2-11) 

where 

= (J 1. 
X 

and 

(J ( U X) ~ 
= 0.5 + (2-12) 

The value of the constant a was determined experimentally by Reichardt, 

who found that CJ = 7.67. 

Al bertson, et al. (4) studied low speed free jets, Fig. l(a), 

both analytically and experimentally. They determined the velocity 

distribution and the volume, momentum, and energy flux ratios with 

respect t o those of the nozzle exit in fully devel oped and half- jet 

regions. In the fully developed regions, the longitudinal component 

o! velocity varies according to the Gaussian error function, the 

volume-flux ratio is proportional to x-~, the momentum-flux ratio 

-* remains constant, and the energy-flux ratio is proportional to x • 

They also indicated that the length o! the jet potential core extends 

about 5.2 nozzle widths from the nozzle exit, whereas Miller and 

Comings (34) said it is about 7 nozzle widths. 

Miller and Comings (34) found that the free jet mixing deviated 

appreciably from isobaric and the deviations were closely related to 



the local turbulent stresseso This relation, as proposed by 

Townsend (5l)v can be represented by following relation: 

p + ptv 0~ :,:; p 0 

a (2-13) 

Despite this finding, they showed that Reichardt 0 s simple error curve, 

equation (2-7) describes the velocity profile besto The velocity 

profile equation proposed by Gortler, equation (2-11) was compared 

with their experimental results. The distributions of p, (u 0 )a, 

(v~)2 and Tare presented in their reporto 

Ginevskii (24) proposed a different approach to solve for the 

velocity distributions of jncompressible, fully developed jets and 

wakes in the presence of longitudinal pressure gradients. He 

assumed a polynomial to represent the tangential stress as follows: 

2 
+By+By" 

1 2 

The coefficients B, B, B are determined by utilizing the boundary 
o 1 a 

conditions at the axis and the edges of the jet in the x-direction 

equa.tion of motion, 

OU OU dp OT 
pu rx + pv oy + di = ay (2-15) 

and combining the relations thus obtained with equation (2-14)0 

7 

The tangential stress so obtained is not connected with any assumptions 

regarding the mechanism of turbulenceo By combining equation (2-14) 

with Prandtlvs formula for tangential stress, equation (2-1) 9 a new 

differential equation is obtainedo For the case of mixing of a jet 

with a uniform stream 9 this differential equation was integrated 

with the aid of the boundary conditions at the jet centerline and the 



external flow where the Bernoulliqs equation is valido The longitudi~ 

nal pressure gradient term is not included in the velocity distri-

lmt.ion equation so obtained~ indicating that the exist~mce of the 

longitudinal pressure gradient in the region of the jet mixing does 

not have any influence on the shape of the velocity profile. The 

work of Ginevskii has been applied in the work of Zumwalt and Ruo (56) 

for the case of constant pressure gradient mixing of a jet with a 

uniform stream 9 Fig. l(c). 

Pai (38) proposed a method to predict the velocity profiles 

of the constant pressure, compressible turbulent mixing of a jet 

with a uniform streamj Fig. l(c)j and the mixing of two uniform 

streamsj Fig. l(d). By using the method of small perturbations and 

the turbulent shear stress relation in equation (2-S)'i he reduced 

the equation of motion in the x-direction into a form similar to 

equation (2-6), that is, a form of the well-known equation of heat 

conduction. An exact solution was obtained by successive approx:i-

mations sta.rting with the solution of a small perturbationo The 

velocity distribution can be expressed in terms of Gaussian error 

integralso 

By using Paiu s small perturbation method and the appare:nt 

kinematic viscosity relatio:n in the form of equation (2,~10), 

Korst,; et alo (29) investigated the free jet boundary under constant 

pressureo They found that the velocity profile can be represented by 

u 
u = -;, (1 + er:f' 'fl) 'I 

where u == free stream velocity and 11 = a y/xo According to the a. 

exper~nental results, a is approximately equal to 12 for an 

8 
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incompressible flowo 

Crane and Pack (16) and Crane (17) combined the equations for 

laminar and turbulent flows into one by introducing a coefficient of 

eddy kinematic viscosity in the turbulent flow case. They started 

with the stream function for laminar, incompressible flow, which 

yields a velocity distribution equation in the form of equation (2-11), 

and expanded it in a series in terms of the square of Mach number to 

include the effect of compressibility and large temperature differences 

for compressible flow caseso They pointed out that the net effect 

of compressibility is, respectively, to decrease and to increase the 

mixing width of laminar and turbulent free jetso The velocity profile 

for mixing of' two uniform streams is tabulated in (l?). For this 

case, the higher the Mach number the narrower the mixing region and 

the dimensionless velocity profile is same as that obtai.ned in 

incompressible flow. The value of a is found to be 12.7 for zero 

Mach numbero 

It has been shown by Ma.ydew and Reed (33) that Crane's velocity 

profile for the half-jet .fi'ts extremely well with their measured 

velocity profil.·e for an axi-symmetric compressible free jet. 

Olson and Miller (37) conducted a great number of experiments 

on two-dimensional, turbulent, compressible (Mach number ranging from 

o.66 to 2o0) free jets, wall jets, and reattaching jets, respectively, 

as shown in Figs. l(a), l(g) and l(f). Gorresponding theoretical 

investigations provided analytical models for those three types of 

jet flows, procedures for predicting the velocity profile develop­

ment characteristics for free jets and wall jets, and a procedure 

for predicting the reattachment location and mean pressure in the 
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separ ation bubbl e for raattaching jets. Constant excha.nga co-

ef f icient mixi ng theory was used in both half-jet and fully 

developed jet regions for the free jet and wall jet. The correlation 

bet ween theory and experiment was very good . The velocity profiles 

were represent ed adequately by a form similar to equation (2 Q7), 

the Gaussian mean velocity dis~ribution which was derived originally 

for an incompressible flow. A method for predicting the centerline 

velocity decay for the free jet and the wall jet was also presented. 

Sawyer (46), (47) and Bourque and Newman (8) carried out a 

series of experiments on the two-dimensional, incompressible, 

turbulent jet reattaching to a parallel and an inclined plate. By 

a simple analysis they were able to predict the mean pressure in the 

separati on bubble and the location of jet reattachment. Though the 

jet i s curved, no appreciable velocity deviation from that of a plane 

jet in the fully developed region was observed. Bourque and Newman (8) 

i ndicated that the flow becomes independent of the length of the platP­

and the Reynolds number when they are sufficiently large. The re-

attachment of a jet does not occur below a certain minimum Reynolds 

number; increasing the Reynolds number will cause the reatt achment 

point to move nearer to the nozzle, but it becomes independent of 

Reynolds number above a value of approximately 104, the minimum value 

being approximately 103• Abbott and Kline (1) made a similar 

conclusion about the Reynolds number effect on the jet reattachment 

from their extensive experiments on the water tableo 

Analytical studies of jet mixing yield equati ons cont ainjng 

one or more constants which must be determined experimentally; the 

resulti ng equati ons for predicting velocity profiles and t he turbulent 



shear stresses are then empiricalo One of those constants is the 

jet spreading parameter, Oo This parameter is a measure of the rate 

of increase of the width of the mixing zone in the downstream 

direction and its value is inversely proportional to the rate o! 

increase of jet widtho 

According to Tollmien's experimental results, a = 12; Crane 

found it to be l2o7• Maydew and Reed (33) used an axi-symmetri c 

free jet to investigate the change of the a value with respect 

t o Mach number. By using Crane's velocity profile, they concluded 

that for subsonic flow the value o! a is 11.0 and somewhat higher 

for supersonic flow. Zumwalt and Tang (57) suggested the functional 

forms shown in equations (3-14) to estimate the value o! a for the 

error function velocity profile. 

Channapragada (10) took into account the temperature ratio 

between the mixing fluids and presented a formula to evaluate a in 

terms of Mach number. Bauer (6) used the error function velocity 

distribution, equation (2-16), for the jet boundary case and 

Prandtl's mixing length theory for both laminar and turbulent 

compressible mixing. He formulated the expressions for a for 

laminar and turbulent mixing with the aid of Tollmien°s experimental 

results. 

Mueller and Olson (35), using their experimental results (37) 

and the Gaussian distribution of velocity, studied the spreading 

parameters of the outer and inner mixing zones of the compressible 

reattaching jeto For subsonic flow the value of a for the outer 

mixing zone was about the same as that of the free jet but it was 

slightly higher for the inner mixing zone; for the region downstream 

11 
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of reattachment a i s about twice as large as for t he free jet mixing . 

Roshko (44) used a 42 x 36 inch subsonic wind tunnel to conduct 

an experimental study of the flow over a cavity. The cavity opening 

was 4 x 32 i nch and i t s depth was varied from Oto JO inches . He used 

a 75 fps flow velocit;y for most of his experiments but 210 f ps was also 

used for the purpose of comparison. He observed that the pressures 

in the cavities with larger L/H1 ratio, see Fig. l(k), were higher 

than those with smaller L/H1 ratio. He also observed that the jet 

would no longer reattach to the cavity floor if t he L/H1 ratio 

became less than 10. The general cavity pressure distribution 

observed was characterized by a low pressure near the cent er of t he 

walls and floor and a high pressure at the corners. An intermittent 

pressure change which occurred at the center of the cavity for the 

1.15 < L/H1 < 2.0 and L/H1 < 0.5 ranges was also reported. 

Charwat, et al. (14), (15), conducted an experimental study of 

both supersonic (Mach number 2 to 4) and subsonic boundary jets over 

rectangul ar caviti es (L/H1 from 1 to 15) in a 3 x 3 inch wi nd t unnel. 

Based on whether the flow reattached to the cavity floor or not, 

they classified a supersonic flow over a cavity in a solid boundary 

as one of two kinds. A long cavity, where there are two distinct 

separated regions, one behind the backward facing step and one 

ahead of the forward facing step, is called a 11 closed" cavity. A 

short cavity , where the jet does not reattach to the cavity floor, 

is called an "open'' cavity. They also showed that the pressure 

di s t ributions in t he "open" cavity floor were quj t e uniform in the 

small L/H1 cavity with a pressure minimum near the center. For the 

large L/H1 cavity, the minimum moved towards the separation step 



and the pressure gradient along the cavity floor increased as the 

recompression step was approached. The pressure distribution on the 

recompression face near the floor was fairly uniform but exhibited 

a gradient at the outer edge of the step. Generally, the higher 

the L/H1 ratio , t he higher the pressure on the recompression face . 

For subsonic flow, the cavity floor pressure distribution was very 

similar to that for supersonic flow. 

Fox (20) also conducted an experimental study of the turbulent 

subsonic flow (ltO to foo fps) in transverse cavities (L/H1 from 

0 . 25 t o lo 75) adjacent to a free stream in a 6 x 9 inch wind tmmel. 

Cavities spanned the 6-inch widt h of the tunnel. Based on his 

pressure distribution measurements, he found that for L/H1 ~ 1.25 

and L/H1 ~ 1.75 the gradual change of pressure on the cavity walls 

was similar to those results obtained by ot her investiga,tors 9 but 

for the cavity with L/H1 near 1.50, the pressure changed abruptly 

and no agreement with others 0 results was found. He stated that 

this might be caused by the influence of the difference i n the 

boundary layer thickness ahead of the cavities. 

Tani, et al. (49) also showed that the maximum pressure on the 

face of the recompression step was at the top edge when L/H1 <1.4, 

but when L/H1 > 1.4 it was slightly below the top edge. 

13 

Since high speed electronic computers became availabl e, numerical 

methods have been used to solve the N~vier-Stokes equations for 

certain laminar flow problems which cannot be solved by closed form 

analytical methodso 

Kawaguti (28) solved a laminar, steady, viscous fluid flow in 

a channel with a step, Fig. l(h) and (i), numerically. He assumed 
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the fluid velocity on the solid boundaries was zero and the flow in the 

channel far from the step was two-dimensional Poiseulle flow. He used 

central differences to transform the equations of motion into difference 

form and used IJ.x/~y = 2.0. He pointed out that it became more difficult 

to integrate the equation for the case with a forward facing step than 

for the case with a backward facing step as the Reynolds number in­

creased. Velocity distributions, streamlines and equivorticity lines 

were also shown in the report. 

Fromm (23) proposed a method to calculate the flow properties in 

terms of stream function and vorticity. Time was advanced through 

the use of a finite difference approximation of the Helmholtz vor­

ticity equation and the stream function was evaluated by a finite 

difference approximation of Poisson's equation by using the new vor­

ticities obtained. Before advancing in time, the stream function was 

evaluated by a method of successive approximations over the whole 

field. A periodic end boundary method was used in the sample cal­

culation of a viscous incompressible flow between two parallel flat 

plates with one obstacle. The vortex street in the wake of the 

obstacle was clearly representedo The pressure distribution was 

evaluated with an equation in the form of Poisson's equation obtained 

by combining the partial derivatives of the x-momentum equation with 

respect to x and they-momentum equation with respect toy. He 

pointed out that calculation of pressure distributions directly from 

either of the momentum equations had not been successful. 

Walker (55), in the course of investigating the interaction of 

a moving shock wave with a turbulent mixing region, by means of a 

numerical technique developed by Rusanov (45), was able to calculate 
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a supersonic (Mach number= 2oO), two-dimensional, free jet mixing in 

a double off-set confined space, Fig. l(j). The continuity, momentum 

and energy equations in difference form were used to calculate density, 

velocities and pressure, respectively, at every net point in the field. 

Since the equations are time dependent it was necessary to carry out 

the computation until a near steady state was attained. In addition 

to the turbulent stresses, "blurring" terms were added to the govern­

ing equations to make a discontinuities in the fluid properties act 

as rapidly changing continuous ones. The velocity distributions in 

the fully developed region agreed very well with the Gaussian profile. 

Constant pressure lines in the flow field were also shown. Numerical 

stability of the technique was also discussed. 

In solving fluid flow problems, there are usually two possible 

methods for describing the motion of fluids. First, the method of 

Euler, which describes the motions of fluids with reference to a 

fixed point of space and specifies at each instant of time the 

density, pressure, velocity, etc., of the fluid particle which 

happens to be at that point. Secondly, the method of Lagrange, 

which describes the history of individual fluid particles and specifies 

at each instant of time the location, density, pressure, velocity, 

etc., of the individual fluid particles of fixed identityo 

In most problems Eulerian method proves to be more convenient 

in describing the fluid motion than the Lagrangian method; many 

investigators prefer to use the Eulerian method. However, when the 

Eulerian method is used to treat multi-specie flow problems numerically, 

it is difficult to keep track of the material interfaces as they move 

through an Eulerian mesh if the thin shells of the fluid move distances 
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many times greater than their original thickness. In order to attain 

good resolution, a large number of Eulerian mesh points may be neededo 

If the Lagrangian method were used alone, one might encounter a 

different kind of difficulty if the physical situation involved slip 

surfaces or other severe distortions of the original mesh. To over­

come these difficulties, Harlow (26), Noh (36), and Frank and 

Lazarus (22) have proposed several combined Eulerian-Lagrangian 

methods. Some sample calculations of time-dependent, two-dimensional, 

compressible, inviscid, laminar flow past a rigid disk and over a 

rigid step have been successfully shown. For turbulent flow, 'the 

above methods do not seem to be generally useful at present; however 

they do appear to be very promising. 
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Figure I. Typical Jet Mixing Configurations 
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(k) Cavity Flow (1) Ejector 

Figure 1. (Continued) 



CHAPTER III 

DERIVATION OF THE GOVERNING EQUATIONS 

To represent a compressible flow, one needs the equation of 

continuity, the equations of motion and the equation of energy. 

The derivation of these fundamental equations is readily available 

from any standard fluid mechanics text book. For a turbulent flow 

with high Reynolds number the effect of molecular transport is 

negligible compared with the effect of turbulent transport. I! the 

terms including the viscosity effect in the basic hydrodynamic 

equations are dropped, and it is further assumed that there are no 

body forces, one obtains the following equations for a two-

dimensional, inviscid fluid flow. 

Continuity: 
op a c ) a at + ax pu + ay (pv) = 0 

x-Momentum: 

%r' (pu) + &c (pu2 + p) + ~ (pvu) = 0 

y-Momentum: 

o o o 
at· (pv) + ox (puv) + dy (p../4 + p) = o 

Energy: 

~: + %i' [ (e + p)u J + ~ [ (e + p)v] = 0 , 

where 

e= P +.e:.(u2 +v2). 
y - l C. 

19 . 

(3-1) 

(3-2) 
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EquatioLs (3-1) may be written in conservation form as discussed 

by Tyler (52)o The following general equation results: 

of oFX oFY 
at+ ex + oy = o, (3-3) 

where 

p pu pv 

pu p~ + p pvu 
f = FX = FY= C3-4) 

pv puv pv9 + p 

e (e + p)u (e + p)v • 

Derivation of Governing Equations for Turbulent Flow 

In the study of turbulence, Reynolds rules of averages are often 

adopted to carry out the averaging procedure, not only on single 

quantities but also on products of quantities. These rules, according 

to Fai (40), are as follows: 

Rule 1: f + g = f+ g 

Rule 2: cf = cf (c = constant) 

Rule 3: fg = fg (3-5) 

Rule 4: Lim f = Lim f (f = sequence of function)~ 
n n n 

where f and g are scalar functions and the bar refers to the time 

average value. 

Let the instantaneous fluid properties in the turbulent flow 

field be represented by the relation f = f + f'. The prime quantity 

denotes the fluctuating term and 

- l Jto + t 
f=-

t ; to -
fdt. 
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-From Rule 3 in equations (3-5), if g = 1, then f = fo If this 

relation and Rule 1 are applied to the relation f = 7 + f', it is 

seen that the time average of the fluctuating component, 7•, is 

identical to zero. But it must be noted that the time average of 

the product of fluctuating components is not necessarily zeroo 

By using the above relations, the basic fluid properties for 

turbulent flow can be written in the following form: 

p = p + P' u = u + u' , 

p = p + P' V = V + v• , (3-6) 

e = e + e' • 

If the above relations are substituted into equations (3-1) the 

following set of equations are obtained (see Appendix A for detailed 

derivation), 

Continuity: 

o - o (--) o ( --) atp+~ pu +ay pv =O 

(3-7) 
x-Momentum: 

~t (p u) 
0 

+-ox . 
y-Momentum: 

~ (-p v) + ~ r--:-P u v + -P iiiviJ + .!... r':"P ? + -P + -P ? ]= o ot ox LP oy Lµ 

Energy: 

~: + ~ [Ce+ p)ii' + p ii' Cu? + p' v (u'v')] 

+ ~y [Ce+ p)v + ri' v <~ + p' u(u•vt)J = o , 

where 

e= P + P2 [? +? + <~ + <'v'i"'?J. 
y - 1 

(3-8) 
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·In place of viscous effects, turbulent effects appear in t he 

momentum equations in equations (3-7). The effects of turbulence 

also appear in the energy equation. Schlichting (48) showed that 

those terms can be interpreted as components of a stress tensor due 

to the turbulent velocity components in two-dimensional flow and 

they can be represented by 

= ( 
p ( u' )la p uivi") (3-9) 
p u'v' p(~ 

They are often known as "apparent stresses of turbulent flow" or 

"Reynolds stresses". According to Schlichting (48), Boussinesq was 

first to introduce the idea of apparent kinematic viscosity, e, which 

is analogous to the kinematic viscosity, v. Similar to the shearing 

stress in laminar flow case, the representation of turbulent shearing 

stress may be written as 

- -( ) ou 
Tt = p € X oy 0 (2-8) 

In Prandtl's momentum transfer theory, the apparent kinemat i c 

viscosity , e , is proportional t o the slope of the mean velocity, 

du/dy. This can be seen by comparing equations (2-1) and (2-8). At 

the jet centerline where du/dy = O, according to equation (2-8), e i s 

also equal to zero; this is incorrect. However, in analogy with 

Stokes' law, by simply replacingµ by pe, the Reynolds stresses can 

be expressed in the following form 

- - (ou) a. =2pe ~ 
1 oX , 

1 

(3-10) 

(ou. ou. ) .,. . . =pe ~+~ 
1J oX, oX. • 

J 1 

(3-11) 
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Thus, the complete tensor of apparent turbulent stress for two= 

dimensional flow can be written by substituting equations (3-10) 

and (3-11) into equation (3-9); yielding 

(
- OU - (OU av)) (-~ 2p - p - + - p ( u I r ax oy ax 

e = -
-(au av) - ov --p - + - 2p - p U' V' oy ax oy 

where e, according to Pai (39), can be represented by 

ux 
- a e =- (3-13) 

2CJ2 

in which, ua is the velocity of the free stream adjacent to the 

mixing zone, xis the distance from the point where mixing starts, 

and CJ is the jet spreading parameter used in equation (2-16)0 The 

values of CJ can be obtained from the following relationship as 

suggested by Zumwalt and Tang (57): 

CJ = 11.0 for C2 < 0.23 a 

CJ = 47.1 c2 
a for 

2 
ca> 0.23 

(O < M < 1.23) a 

( M > L23) 9 a 

where C is Crocco number and is represented by a 

If the relations in equation (3-12) are substituted into 

equations (3-7) and those equations written in the general con-

servation form of equation (3-3), equations (3-4) become 

r 
p -

f = p u --p V 

le 

(3-14) 
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where 

r= 

-e = 

p u 

--2 - -- Ou pu +p-2pe~ 

--- --(ou ov) puv-pe ay+ax 

(- ~- --- ou ---(ou -av) e + PJU - 2 p U 6: rx - p V 6 ay + rx 

--p V 

- - - - - ( ou ov) pvu-pe -+-
"dy .ox 

--a - 2 -- o"v. 
p V + p - p e ?,y 

In order to write equations (3-l.5) in a dimensionless form, 

(3-1.5) 

(3-16) 

;1! 
the pressure -p and density -p at the nozzle exit, a = {-P /p- ) noz noz noz noz• 9 

he= Ay and ha/a will be used as references to normalize, respectively, 

pressure, density, velocity, distance and time. They are 

p* = 11 p* p u* u 
= = -

Pnoz Pnoz a 

v* V· x* X y* = i; (3-17) =- = ii; a 

t* ta 
= 'E; 

where the superscript* represents the dimensionless quantity of 
' 

each corresponding variable. After substituting equations (3-17) 
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into equations (3-15) and making some rearrangements, one can obtain 

a set of equations identical to equations (3-15) in dimensionless 

form and the superscript* can be dropped. It is important to note 

that if one wants to obtain an exactly identical set of equations in 

both dimensional and dimensionless form, no other reference velocity 

can be used than the square root of the quotient of the reference 

pressure and reference density. 

Derivation of Governing Finite Difference Equations 

The governing equations derived in previous sections are non-

linear partial differential equations and are to be solved by a 

numerical method. In solving inviscid flow problems involving 

sudden changes of fluid properties in the flow field, von Neumann (54) 

altered the inviscid flow equations by adding artificial viscosity 

terms, so called "blurring" terms, to make discontinuities of the 

fluid properties become continuous ones in the course of computation. 

A method with the concept of "blurring" introduced by Rusanov (45) 

was adopted in this study. If the blurring terms are added to the 

general first order, non-linear partial differential equation in 

conservation form, that is equation (3-3), the following equation 

is obtained: 

of or ?,# o [ of l o [ of J - + - + - = - A(x,y,t) -J + - B(x,y,t) - • ot ox oy ox ox oy oy (3-18) 

In writing equation (3-18) in a difference form, forward differences 

are used for the time derivative and central differences for the 

spatial derivatives, so that the new f value can be evaluated 

explicitly from the old values off, rand#. 



A rectangular net with steps 6x = h1 and 6y = ha as shown in 

Fig. 2 is used and the time increment is denoted by T• Any quantity 

fat point (m,J,) and then~ time plane or time step is designated 

'n by f .,. After writing equation (3-18) in difference form and m, x, 

rearranging, the following explicit equation is obtained: 

1 [ n [. n fn+ = fn - !..... Fx - yx ] . !..... FY - FY J 
m, .t m, .t 2h 1 m+l, .t m-1, .t - 2h2 m, .t+l m, .t-1 

26 

[ 
n 

+ !..... A 1L (f - f .,) - A -tt. (f - f )] m+,~,.t m+l,.t m,x, m-,~,t m,J, m-1,J, h/a 

n 
+ L.. rB 1t.<r - r ) - B 1L<r -hs2 ~m,t+,~ m,J,+l m,t m,.t-,~ m,1. 

f jl 
m,.e.-1'J • 

(3-19) 

Rusanov (45) simplified equation (3-19) by assuming 

and 

where 

An 
h! n = °2'- a . m, J., T m,t 

Bn ~ n ... 
= 2T sm,t m, .t (3-20) 

(LP + I! )}11 
K I a = 'r 

h1ha 

n = wK (w + c)n J, sin2 O! X m, J, m, 

n = wK (w + c)n J, cot! X • sm,J, m, 

(3-21) 

The blurring parameter w is related to Kand (w + c)n., by the m, x, 

stability condition 

r [(w + c)n .,]2 ~wK (w + c)n n :s;l ' (3-22) m,x, m,x, 

which, according to Rusanov, must be satisfied for all (m,J,). The 

quantity K(w + c)n J, in equation (3-22) is the Courant number at m, 
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X = tan -1 

h = 

(m-1, L+l) 

0 

0 
(m-1 1 .t) 

0 
(m-1, L-1) 

(h/ 

h:a 
hi 

* 2 
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0 

(m, J,) 

0 
(m, L-1) 

Figure 2. Net Point Notatior 
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point (m,t) of the DYi time plane and is designated by an n • 
m' x, 

represents the maximum allowable Courant number in the flow f ield 

under consideration at the D!h tjme plane, then 

28 

a~= K (w + c)n , (3-23) max 

n where 0 0 is a measure of the time increment. If the blurring 

parameter w is chosen according to the relation 

n 1 
0 0 ~ W ~ n , (3-24) 

Oo 

the condition of equation (3-22) is automatically satisfied. Equation 

(:-24), however, is for the inviscid fluid flow case. It was 

mentioned by Walker (55) that the lowest acceptable value of w is 

about one-tenth of the value calculated from equation (3-24) for 

a turbulent supersonic jet mixing case. In general, the value of 

(w + c)n differs slightly from time plane to time plane and has max 

to be evaluated in every time plane computation to determine the 

maximum allowable time increment for the following time step. 

Walker found this change to be very small, even in a supersonic 

flow field; this suggests that a constant time step be used at 

all time. 

In the case of a low speed flow, which is the case of interest 

in this study, the speed of sound, c, is considerably greater than 

the fluid velocity and stays fairly constant throughout the field 

since the temperature in the flow field does not change significantly. 

The quantity (w + c) in the flow field under consideration at any 

time may be regarded as a constant. Thus, a constant time incre-

ment, T, is used. By the same reasoning, A(x,y,t) and B(x,y,t) in 

equation (3-18) or equation (3-19) also can be considered as 



constants. If the relation of K with cr~ and (w + c)n is found max 

from equation (3-23) and substituted in equations (3-21), the 

n n 
expressions for am,.t and Sm,.t' respectively, become 

Notice that the superscript n and subscripts m,.t are discarded 

(3-25) 

because the values of a and Sare no longer dependent on space and 

time due to the assumption made above. By substituting equations 

(3-25) into equations (3-20) and introducing the simplified ex-

pressions for A and B into equation (3-19), the general explicit 

difference equation assumes the following form: 

+ (fm, t+l - 2fm, .t + fm, .t-l ) corf x] . 
(3-26 ) 

This general difference equation is valid for the net points 

lying inside the flow field, i.e., the ''interior points". 

Representation of Field and Boundary Points 

The general difference equation for a two-dimensional, turbulent 

jet flow, equation (3-26), can be used directly for the interior 

points of the flow field if the net point in question has only those 

neighboring points shown in Fig. 2. All quantities needed to 

estimate the value of the right hand side of equation (3-26) are 

29 
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readily available from the computed results of the previous time 

plane. Whereas for those points on the solid boundary or the edge 

of the flow field under study, equation (3-26) has to be modified 

slightly or some quantities which are not available from the previous 

time plane computation have to be assumed according to the boundary 

conditions. For those points on the solid wall or the plane of 

symmetry, the following conditions are assumed 

op ~ aN' = dN' = o, 

ou oN = 0 and v = 0 for boundary parallel to x-axis, 

ov aN = 0 and u = 0 for boundary parallel to y-axis, 

where N denotes the direction normal to the boundary under consider-

at ion. 

The relationship of the interior net point to its neighboring 

points is shown in Fig. 2. The representations of those points on 

the different walls are illustrated in Fig. 3. The method used i s 

based upon a reflection technique suggested by Burstein (9). This 

considers the boundary as a mirror; the image o! any interior 

point has essentially the same properties as the object interior 

point except the direction perpendicular to the mirror is opposi te 

in sense. Besides the relation of a point to its neighboring points 

shown in Fig. 2, other representations, such as shown in Figs. 7(a), 

(c), and (d), are also used. If the relation shown in Fig. 7(d) is 

used, the representations o! the boundary points have to be modified 

accordingly. 
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t) ~ ct () ~ ct 
(m-1,.t+l) it+l) (m+l, .t+l) (m-1, .t+l) (mil) (m+l,.t+l) 

() ct () () 
(m-1,.t) (m, .t) (m+l, t) (m-1, .t) (m, .t) (m+l, t) 

() ~ () () ~ () 

(m-1, .t-1) ~.t-1) (m+l,.t-1) (m-1, .t-1) (m, .t-1) (m+l,.t-1) 

' ~ 

(a) (b) 

p (m-1, .t+l) = p(m+l, .t+l) p(m+l,.t+l) = p (m-1, .t+l) 
u(m-1,t+l) = -u(m+l,.t+l) u(m+l, J.+l) = -u(m-1,t+l) 
v(m-1,.t+l) = v(m+l, .t+l)· v(m+l,.t+l) = v(m-1,.t+l) 
p(m-1,.t+l) = p(m+l,.t+l) p(m+l,t+l) = p(m-1, .t+l) 

p(m-1,.t) = p(m+l,.t) p(m+l, .t) = p(m-l,.t) 
u(m-1, .t) = -u(m+l,.t) u(m+l,.t) = -u(m-1,.t) 
v(m-1, .t) = v(m+l, .t) v(m+l,.t) = v(m-1,.t) 
p(m-1,.t) = p(m+l, J,) p(m+l,.t) = p(m-1,.t) 

p(m-1,.t-l) = p(m+l,t-1) p(m+l,.t-1) = p(m-1,.t-1) 
u(m-1,.t-l) = -u(m+l,.t-1) u(m+l,.t-1) = -u(m-1,.t-1) 
v(m-1,.t-l) = v(m+l,.t-1) v(m+l,.t-1) = v(m-1,.t-l) 
p(m-1,.t-1) = p(m+l,.t-1) p(m+l,.t-1) = p(m-1,.t-1) 

Figure 3. Representation ·or Soli d Boundary Points 
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Figure 3. (Continued) 
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= p(m+l,.t+l) 

= p(m-1,.t-l) 
= -u(m-1, ..t-l) -. ···~ .. ,,r 
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= p(m-1, .e .. ;i_) 
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V 

(4-1) 

-.a - - av· J' V +p-2edV 
y - - -- - - - av - - du av L (e + p)v - 2 v e ay - u e(ay + "ax) , 

and 

-e (4-2) 

Although equations (4-1) are said to be valid for incompressible 

flow, it must be borne in mind that the fluid still has to obey the 

perfect gas law, otherwise the specific energy cannot be represented 

by equation (3-2). 

There are four equations in (4-1) but the number of unknowns is 

three; therefore, only three equations from (4-1) or some cor-

responding supplementary equations are needed to compute the 

necessary properties ii, v, and p. If the general difference 

equation form, as given in equation (3-26), is used, it is 

necessary to select the last three equations in (4-1). Generally, 

for incompressible flow only the continuity and the two momentum 

equations are needed. Other possible combinations of three-

equation sets are listed in Table I. 

In the early stages of this study, the expression used for 

the turbulent shearing stresses was the same as that used by 

Walker (55). In analogy to equation (2-8) 9 he wrote 

OU. 
-- J ,.iJ' = p e ~· 

oXi 
(4-3) 
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TABLE I 

SELECTIONS OF THREE-EQUATION SET 

2 3 4 5 6 7 

M M M M M M 
X X X X X X 

C C M C M C 
y y 

E M Dp = 0 ~= 0 "p = -Q -Ip= - ~ y Dt Dt 

momentum equation in x~direction 

momentum equation in y-direction 

continuity equation 

energy equation 

equation (4-11) 

equation (4-15) 



and if j = i, T .. = a . • If this relation is used in place of 
11 1 

equations (3-10) and (3-11) to represent the turbulent shearing 

and normal stresses, one obtains a set of equations similar to 

equations (4-1) as follows: 

and 

f 

= 

= 

-e 

0 

-u 

-V 

-e 

-u 

-2 - - oU 
u +P-e~ 

-- -ov 
VU - e -oX ... 

- - .... - U - V ( - -) (e + p)u - e u L + v L · ax ax 

-V 

-·.-·- - nu 
UV - e -oY 

-a - - :::iv 
V +p-e~ 

oY 

ce + i')'v - ; (u ~ + v ~) 
oY '?IY 

In place of the forms shown in equations (4-4), the momentum 

and energy equations may be written in following forms: 
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(4-4) 

(4-5) 

x-Momentum: (4-6) 
aU + [-?\U ll -o2u] [-oV -aU -o2VJ : Q 
0 t 2u ~ + aX - e a:x.2 + U ~ + V ay - e ~ 
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y-Momentum: 

av [- av - au - o2 vJ [ - ov op - oavJ at + u ox + v ~x - e o:x.2 + 2v °?iy + oY - e oY2 = O (4-7) 

Energy: 

~: + (e + p) * + u ~x <e + p) - e[u f; + v :2; + (*r + (*J2] 
(4-8) 

+ (*)2+(~J2J = 0 

or 

* + h (<e + p)uJ + ~ (<e + 'ii)vJ 

(4-9) 

Equations (4-6) through (4-9) were also used in some of the compu-

tations, but the general difference equation !or the equations in 

conservation form, equation (3-26), cannot be used directly. A 

difference equation was written for each individual equation. 

Representation of Initial Conditions 

A two-dimensional, low speed, turbulent jet issuing from a 

nozzle into a cavity was considered. The general configuration of 

the cavity is shown in Fig. 4. All the properties of the fluid at 

the nozzle were held constant. In Fig. 4, region(!) was assumed 

initially to have the same velocity as the nozzle exit and regions (g) 

was assumed to be stationary; the dimensionless pressure was 

' assumed to be unity in whole flow field. The representation' of the 
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initial conditions was immaterial because the asymptotic values of 

the computed results were mainly dependent on the boundary conditions 

specified. However, a better representation of initial conditions 

may shorten the computation time. The initial conditions of some 

sample points are shown i.n Fig. 5; those points without velocity 

vectors are stationary. 

Representations of Some Special Boundary Conditions 

In addition to the boundary conditions shown in Fig. 3, there 

are still some other boundaries which need special treatment, such 

as the corner points and the field boundary points. Some special 

boundary points are shown in Fig. 4. 

The relationship between a point on the solid boundary and its 

surrounding points is shown in Fig. 3. At those points on the solid 

walls the flow may be considered either slipping or stagnating on the 

walls. Slip flow was allowed on walls IJ, LM and OQ in Fi.g. 4. 

Both slipping flow and stagnating flow on walls AC and FG were 

considered. The velocity at corner points Hand K was assumed to 

be zero. The corner point N was considered as one of the field 

points, this was done so that the fluid would not be forced to 

stagnate at the corner point N. Because of the cavity, the main jet 

will bend toward the cavity and the stagnation point may change 

according to the geometry. 
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For those points on the field boundaries, AU and QT in Fig. 4, 

the general technique cannot be applied due to the lack of information 

of the surrounding points. Some special method has to be used to 

provide the best estimated information on those boundaries, so that 
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the computation can be continued. Four methods were triedi namely: 

1) linearly extrapolating from two nearby points, 2) assuming the 

property of the flow is identical to the next point inside the 

field for the same time plane, 3) assuming the property of the flow 

is identical to the next point inside the field for the previous 

time plane, and 4) averaging the first and the second methods. If 

the property of a point on the field boundary QT is desi.gna ted by 

f 
m' f,' 

the above methods can be written in following forms: 

1. fn = 2fn fn 
m,J, m-1, -~- m-2,J, 

2. fn = fn 
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m, f, m-1,?, (4-10) 
fn fn-1 3. = m, f, m-1,.t 

4. fn = l ~n + (2fn - fn )] 
m,..e 2 m-1,f. m-1,p, m-2, 9, 

For the points on the boundary AU, similar relations can be written 

by interchanging the indices m and~. If the computation is 

continued to such a point that steady state is established, it 

would be hoped that all methods in equations (4-10) would give the 

same results. However, since the flow is subsonic, boundary 

influences propagate throughout the field and the results prior to 

steady-state are not the same for the various relations in equa-

tions ( 4-10). 

Walker (55) found that the blurring was too great at small 

values of x and suggested a method to reduce this excessive blurring 

by forcing the velocity at points, C, V, F and W (see Fig. 4) to 

be zero. Because of the representation of the initial conditions of 

the flow field, Walker also suggested that triple values be assigned 

to all properties along DS and ER to retard the rate of the artificial 



blurringo The relation of the triple-value points to the other net 

points is shown in Fig. 5. For the net point above a triple-value 

point, the upper value was used and for the net point below it, the 

lower value was used in computations. The triple-value net point 

was treated as a triple point in the computations but the middle 

value was used to represent the properties of the fluid at that 

particular point. 

In free jet mixing, there exists a potential core which usually 

extends 5 to 7 nozzle widths from the nozzle exit. In some cases of 

this numerical study, the potential core was simulated by holding 

the velocity of a few points near the nozzle identical to that of 

the nozzle exit at all time. One of such cases is shown in Fig. 6. 

The velocities of tho~e points with velocity vectors shown, were 

held constant and the rest of the points were allowed to vary 

according to the equations used. In this way the rate of decay 

of jet centerline velocity is retarded. Instead of assuming some 

artificial potential core near the nozzle exit, different values of 

the blurring coefficient w were also tried for the first three 

columns to retard the blurring rate of the jet. 

An Early Attempt to Solve for u, v and p 

Selection of Equations 

As mentioned previously, three independent equations are needed 

to solve for u, v and pin an incompressible flow field. In addition 

to the continuity, momentum and energy equations, another equation 

which may be used to solve for p explicitly was derived by combining 
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the momentum equations and the energy equation (see Appendix B for 

the derivation), that is 

(4-11) 

The possible combinations of the three-equation set are listed in 

Table I. Sets 1 through 5 were tried in this part of study. 

Evaluation of Apparent Kinematic Viscosity 

The apparent kinematic viscosity, e, is assumed to be independent 

of y and can be estimated by equation (3-13). The value of u in a , 

equation (3-13) is the free stream velocity for half-jet mixing. For 

a full jet, it has been common practice to use the maximum velocity 

in the velocity profile at a given x distance as u, whereas for a a 

mixing of two streams ua may be represented by u - u . ; e.g., max lll.Ln 

see Schlichting (48). The value of x in equation (3-13) is not 

always measured from the nozzle exit because it is not necessary that 

the mixing starts at the nozzle exit. 

The value of ua was first set equal to the nozzle exit velocity, 

unoz' because the maximum velocity at any section in the flow field 

under consideration should not be very different from that of the 

nozzle exit; secondly, the local maximum velocity, w , was used; max 

and thirdly, the local maximum x-component velocity, u , was used max 

because they-component velocity was known to be small at the 

location of the maximum velocity. These assumptions can be expressed 

in the following forms: 

(4-12) 
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w X 
e max = 

2r! 
(4-13) 

U X 
i" max = (4-14) 

2a2 

The results of computations showed that there is little 

difference among these choices. 

Methods of Taking Finite Differences 

In general, the method of central differences yields better 

accuracy than either backward or forward differences. Here, the 

forward difference was used to evaluate the derivatives with respect 

to time. For the space derivative terms, central, backward and 

forward difference methods were all usedo 

Depending on the number of the neighboring points around the 

point (m,.t) under consideration, different methods may be used for 

expressing the space derivative terms in equations (4-4), (4-6), 

(4-?), (4-8) and (4-9) in difference formo The net point relations 

are shown in Figo 7, and the space derivatives in di.fference form 

are listed in Table II. 

If the relation of the neighboring points used in the computation 

is like the one shown in Fig. 7(d), the treatment of the solid wall 

and field boundaries has to be slightly modified. On the solid wall 

boundary, (m-2,.t) and (m+2,.t) were considered as images of each 

other if the point (m,.t) was on the vertical wall, and (m,.t-2) and 

(m,.t+2) were images of each other if point (m,.t) is on the horizontal 

wallo For a point on the field boundary, methods similar to those 
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TABLE II 

FOUR METHODS OF REPRESENTING DERIVATIVES BY FINITE DIFFERENCES 

Derivative Figure ?(a) 
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shown in equations (4-10) were used, except for method 3. If method 3 

were to be used, it would require storage of the data of three con­

secutive time planes in the computer memory. This, in turn, would 

reduce the available storage locations and the number of net points 

in the flow field would have to be reduced. 

Methods ot Computation 

The computation was carried out columnwise and always started 

from the lower left corner. A field layout similar to that of 

Fig. 13 was used. The first time plane computation was based on 

the assumed initial conditions. Thereafter the computed values for 

a given time plane were used to compute the values for the following 

time plane. A rectangular field was defined in the computer program 

rather than the actual field shape, as shown in Fig. 13. No 

computation was required for ·those points inside the solid wall 

because the fluid properties at those points were preassigned to 

be zero. In most cases, a Ax/6y = 2 mesh spacing was used. The 

field size was 32 columns by 41 rows or 35 columns by 55 rows, 

depending on the cavity dimensions. 

If any computed pressure was abo~e or below the limits given 

(normally! 50% of the nozzle pressure), the job would be terminated 

automatically. The last set of the computed values was stored on a 

magnetic tape which could be used as the input if it was found 

necessary to do further computation. 

In general, ii was computed first, then v, and then p. As can 

be seen in Table I, the momentum equation in x-direction was always 

used for solving ii. If the energy equation was used to solve for p 



according to equation (4-5), u and v values had to be known at every 

point in the field before p could be computed because the velocity 

gradients had to be evaluated in the same time plane. For this 

case, the computation o! each time plane was accomplished by going 

through the field twice. Alternately, one computation was sufficient 

if backward differences were used to evaluate the velocity gradients 

either by assuming both u and v were zero on the vertical walls of 

the nozzle exit plane or by approximating the velocity gradient 

terms at the net points in the first column with the values of the 

previous time plane. When the continuity equation was used to solve 

for v, backward differences were used to write the continuity 

equation in difference form. Evaluation of v !or each net point in 

the first column was made by either assuming zero velocity on the 

walls or, as an approximation, the values computed in the previous 

time plane. 

Although the equations used in the computation and the output 

data were in dimensionless form, the input data such as the nozzle 

exit velocity, temperature and gas constant of the fluid, width of 

nozzle, dimension o! the cavity, 6x and the reference length ~y were 

all entered with physical dimensions; conve~sion to dimensionless 

!arm was accomplished within the program. 

Results and Findings 
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In this part o! the study, mainly equation set 1 in Table I was 

used. That is, momentum equations were used in the x and y directions 

to solve for u and v, respectively, and the energy equation was used 

to solve for p. The continuity equation was only used implicitly in 



these equations. 

Different methods of representing the governing equations in 

difference form and the boundary conditions, and imposing different 

constraints near the nozzle exit were tried, but it was found that 

the value of the blurring parameter w had the most influence on 

the computed results. If a smali w value was used, the computation 

became unstable for all methods of representing equation set 1 in 

difference form, neighboring pointst triple-value points, artificial 

potential core, etc. With a large value of w, stability was main­

tained but excessive blurring resulted; eventually large sinks were 

created in the flow field. The stability of the computation depends 

almost exclusively on the selection of the values of wand cr 0 • The 

estimated effect of wand 00 on solution stability is shown in 

Fig. 80 

When the representation of the initial conditions of the triple­

value net points (see Fig. 5) was used, the triple values would 

become essentially identical in the region some distance from the 

nozzle after a period of computation time. For those triple-value 

points near the nozzle 1 there was no convergence to a single value 

because the triple-value at the nozzle exit was constrained at all 

time; however, there was a tendency to approach the middle value. 

From the nozzle plane to the following column, the values of the 

triple-value point changed considerably, especially the upper and 

lower values. The higher value decreased and the lower value 

increased, this, in turn, caused some difference in pressure among 

the triple values. When the zero·velocity constraint at net points 

V and Win Fig. 4 was applied, the pressure at these points increased 
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to some extent, thereby causing a higher pressure increase near the 

nozzle than would occur without this constraint. These jumps in 

pressure are not favorable to the computation. If the jump is 

large, the resulting pressure pulse can propagate throughtout the 

field as the computation proceeds; this pulse may be amplified or 

damped depending on the other conditions and the values of wand 

a0 used. 
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Instead of imposing the constraints mentioned above, an artificial 

potential core was added to some of the computations (e.g. see Fig. 6)0 

A large value of w must be used to keep the computation stable; 

however this causes the jet centerline velocity to decrease too 

rapidly, especially near the nozzle. The pressure of the net point 

downstream of the last point of the artificial potential core had an 

unusually high pressure rise due to the sudden decrease in velocity. 

This pressure jump may have the same effect as mentioned in the 

preceding paragraph. Without the assumption of an artificial 

potential core, the rate of jet velocity decay was the highest in 

the region near the nozzle. In order to retard the rate of jet 

velocity decay near the nozzle, smaller values of w were used on 

the second and the third columns than for the rest- of the field. 

But then instability set in very quickly. The use of larger w values 

in the second and the third columns did not improve the results. 

Methods of estimating the field boundary conditions used are 

shown in equations (4-10). The first method tended to enlarge the 

existing gradient; the third one tended to create a suction effect 

if the product of flow velocity and time increment did not match 

the space increment; the fourth one slightly reduced the enlargement 
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effect of the first method. Consequently, more time planes are 

required to obtain a steady state result using the time dependent 

method if instability is to be avoided. The second method in 

equations (4-10) was found to be most satisfactory. It helped to 

suppress the end effect and to force the solution to reach an 

asymptotic value faster than with the other methods. 

In general, a large w value was required to stabilize the 

computation; this also created sinks in the computation field and 

the mass rate of flow decreased steadily as the computation continued. 

For this reason, equation sets 2 and 3 in Table I were tried with the 

hope that the mass rate of flow might be conserved. However, these 

approaches were not successful either; instability resulted even 

earlier. The results obtained with equation set 4 were similar to 

those of equation set l. Although a larger w value was used in 

equation set 5 in the computation, the results were not stable. 

No noticeable difference was found from the alternate use of 

equations (4-12), (4-13) or (4-14) to evaluate the apparent 

kinematic viscosity. 

Solving for p by Iteration 

It was realized that for an incompressible flow, any pressure 

in the flow field would influence the whole field and it might be 

preferable to use an iteration method to find the pressure at every 

net point by using the known velocities u and v. The numerical 

method thus becomes implicit rather th.an explicit. Fromm (23) 

suggested this method and used it in a study of the wake structure 

of an incompressible, viscous fluid flow behind an obstacle. The 
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equation used to iterate for the pressure was obtained by differ-

entiating the x- and y-momentum equations with respect to x and Y• 

respectively• and then combining the results. Since the iteration 

was to be done on a fixed time plane, the time derivative terms 

were ignored. The necessary equation for an incompressible turbulent 

flow is as follows (see Appendix C for derivation): 

(4-15) 

where 

a2 [-- -]· + 2 ~ u v + u'v' • oxoy (4-16) 

The initial condition used was similar to the one shown in 

Fig. 4, but no triple-value and zero velocity constraints were 

imposed.. No artificial potential core was added. The points 
. . 

'originally represented by triple values were represented initia.liy 

by a singl.e value, namely, one-half of the nozzle exit velocity (see 

Figo 14). Blurring terms were dropped completely. Turbulent shearing 

stresses were estimated according to equations (3-9) and (3-11), and 

the turbulent normal stresses a1 were neglected because the ou./ox. 
1 l. 

terms were assumed to be small. Evaluation of the apparent kinematic 

visoosityewas modified by using a different origin of the turbulent 

jet mixing. Miller and Comings (34) found that the starting point 

of the turbulent jet mixing is about 1.572 nozzle widths upstream 

from the nozzle exit planeo The value of ua in equation (3-13) was 

represented by (ii - u in). Because of the reverse flow in the max m · 
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cavity, the jet mixing was considered to be similar to the mixing 

of two streams. The apparent kinematic viscosity was correspondingly 

expressed by 

e = _!,_ (u - u ) • ( L 572 W + x) 9 ac:1 max min 
(4-17) 

where Wis the nozzle width. 

The neighboring net point relation as shown in Fig 7(b) was 

used. In order to use central differences to write the simplified 

momentum equa.tioru: 1 in equations (4-1) and equations (4-15) .,. 

in difference form, the properties at (m + ~, J, + ~) 9{.m + ~, J, - ~), 

(m - ~, t. + 1,?) and (m - ~. J, - ~) points were approximatEtd by the 

following relations 

f = (f J, + ·.fm,.t+l + f + fm+l,.e)/4 m+~, t+J1? · m, m+l,.t+l 

f - .(f t + f + f + fm,t-1)/4 .r-,· m+~,t-~ - m, m+l,.t m+l,.t-1 

f . = (f t + fm-19.t + f + fm,.t+l)/4 m-~.1,+~ ... m, m-1,..e.+1 
t ;-
m-*,.t-~ -

. If 

·' m,.t + fm,t-l + f . ·.. + 
m-l,.t-1 fm-l,..e.)/4 • 

The space derivative terms appearing in equations (4-1) (i.e~ t 

second order derivatives), were written in difference form by 

considering (m+~9 t), (m~~,.t), (m,i~~) and (m,.t-~) as reference 

(4-18) 

the 

points rather than (m+l9 .t), (m-1,t), (m,l+l) and (m,.t-1), respectively. 

These terms a.re listed in Table • III. 

Backward differences were used to write the continuity equation 

in difference form when it was used to solve for v. As before, 

forward differences were used for the time derivative terms. 

The flow .field considered in this example is shown in Fig. 13. 

Square mesh spacing with bx = ll.y = ;-0.15625 inches was used, and ,the 

nozzle width was 0.62.5 inches. The separation step and the recom-



TABLE III 

FIFTH METHOD OF REPRESEN'l'ING DERIVATIVES BY FINITE DIFFERENCES 

Derivative 

arl 
ax "1t-.. m,h+1.: 

ofl 
ax m,J,-~ 

0 

ofl 
ay m-%,.t 

ofj 
ay m,..e.+~ 

clfl 
ay m,L-%! 

Finite Difference 

1 
- (f " - f ") 6x m+l,h m,h 

1 . . . . 
- (f . 1L - f . ) Ay m+~,t+}2 m+~,.t-% 

l 
- (f . - f ) Ay m-%,J,+% m-%,L-% 

1 ( - f J, - f ") Ay m, +l m,.,{/ 

1 
- (f - f ) Ay m,J, m,L-1 
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pression step heights were respectively 4 and 3 nozzle widths, and 

the cavity length was 10 nozzle widths. The nozzle exit velocity 

was 200 fps and the reference velocity was 958.23 fps (=acoustic 

velocity/Iv). 

The evaluation of u and v was identical to that used previously. 

Pressure was computed by the procedure discussed below. After 

computing u and vat each new time plane• the value of Q was 

computed according to equation (4-16) with the (u1j 2 terms neglected 

and the ii'i'vi term expressed in the form shown in equation (3-11). 

After all u, v and Q values for every point in the field were computed• 

the pressure at each point in the field was estimated from equation 

(C-6), the difference form of equation (4-15). Before proceeding to 

the new time plane, the pressure at every net point was iterated 

by the same method until the difference between the old and new 

values at every point was smaller than a specified limito After 

this ,condition :was satisfied at every net, point, a set of new u ia.,nd 

v values was computed based on the latest values of pressure; the 

entire procedure was then repeated. 

The dimensionless pressure at the nozzle exit was held at unity. 

With equation set 6 in Table I and C'o = 0.5, for the first 300 time 

planes less than 6 iterations al.ways sa-tis!ied the given limits of 

± 0.00001 between two iterations. The rate of the u velocity decay 

on the nozzle centerline is plotted in Fig. 9. The disturbance& 

built up from the end of the field and were moving upstream with 

increasing strength at the end as the computation continued. Thus 

the representation of the field boundary by the second equation of 

equations (4-10) is not valid here. At the 300~ time plane, the 
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pressure was still very close to 1 except for those points in the 

vicinity of the disturbed region. The pressure in the cavity was, 

in general, smaller than that in the region of the open side. 

Predictions of the velocity field showing reverse flow in the cavity 

and the p1·essure distribution on the cavity walls were not very 

successful. 

With equation set 7 in Table I, the computation became 

unstable at an early time plane. It can be concluded that use of 

the continuity equation to solve for vis not a good technique in 

the methods of this study. 

The Later Attempts to Solve for u, v and p 

This part of the study was done after the computations shown 

in Chapter V were completed. In this way, the results of compu­

tations basfl.d on,incompressible and compressible flow a-ssumptions 

could be compared. The method of computation was identical to the 

similar one discussed in Chapter V. The field of computation was 

identical to the one shown in Fig. 13. The nozzle exit velocity 

was 200 fps and the values of m and 00 were, respectively, 0.10 and 

0.15. The computed results of the velocity profiles at the 2000~ 

time plane are plotted in Fig. 10. It is seen that the jet center­

line stays almost horizontal in spite of the existence of the cavi,ty, 

and the jet centerline velocity decay is too great; at the 2000fu 

time plane, the maximum jet velocity at 12 nozzle widths downstream 

of the nozzle is only about 33% of the nozzle exit velocity instead 

of 78%, as found in a typical experiment. The strength of the 

reverse flow in the cavity is unusually low, and they-component 
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velocity is negligibly small everywhere in the field. 

The relation of the nozzle centerline x-component velocity 

change to the time plane of computation is shown in Fig. 11. The 

velocity converges slowly to an asymptotic value. However, the 

velocity near the nozzle has started to recover, but it decreases 

steadily in the downstream region. 

The computed pressure throughout the field is not very 

different from the pressure at the nozzle exit, that is, unity. 

The pressure fluctµates from point to point in the fourth decimal 

place. Consequently, the constant pressure lines are not plotted; 

however, the average pressures in the cavity and in the open side 

are shown in Fig. 12. The solid line shows the average pressures 

on the open side (simple average of values from 22nd to 37~ rows) 

and the broken line shows those in the cavity (simple average of 

values from 1st to 16fu rows). The values of pressure from the 17fu 

to 21st rows were not taken into·. account because this region was 

considered as the dividing zone of the cavity and the open side. 

Up to about'4 nozzle widths downstream from the nozzle, the average 

pressure in the cavity is slightly lower.than that of the open side, 

whereas from 4 to 10 nozzle widths, the trend is reversed. 

With an IBM 7040 computer system, it took about 27 seconds 

to compute one time plane with a flow field size of 48 columns by 

39 rows. With an on-line printer printing out every 100 time 

planes, an average of 47.31 minutes was required to compute 100 

time planes. 
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CHAPTER V 

NUMERICAL SOLUTION OF THE GOVERNING FINITE 

DIFFERENCE EQUATIONS FOR COMPRESSIBLE FLOW 

In Chapter IV, attempts were made to solve the flow character-

istics of a low velocity, incompressible, plane, turbulent jet 

issuing from a nozzle over a cavity by means of the numerical 

technique. It was felt that the mass rate of flow was not conserved 

and it might be necessary to include continuity equation explicitly 

in the computation with the hope that this shortcoming could be 

overcome. In order to use the continuity equation in the computation, 
.. 

the density p has to be allowed to change, which makes the flow a 

compressible one. Even though the flow speed is still low, the 

above allowan<re is permissible. The governing equations derived in 

Chapter III, equations (3-15), can be applied directly here. The 

basic method used in this chapter is identical to that in Chapter IV. 

The basic programming logic is presented in Appendix D. 

Description of the Methods Used 

The methods used in this chapter were generally similar to 

those used in Chapter IV. The representation of the initial 

conditions was similar to that shown in Fig. 4. The representation 

of triple-value net points was also similar but the density had to 

be adjusted according to the velocities assigned to each of the 
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triple points. Pressure at the nozzle exit was held constant at all 

time and the densities at the triple-value net points there were 

adjusted by assuming all fluid issuing from the nozzle had the same 

total energy and the products of densities and temperatures of the 

three points were equal. This means that at the lower value of 

velocities the density must.be lower also. The initial density of 

regions@ in 'Fig." 4 was adju~ted by ass~ing the·. t,mperature of 

those regions was the stagnation temperature of the fluid from the 

nozzle. 

After several computations, it was found that the value of ro 

had to be large to keep the computation stable, but this, in turn, 

increased the rate of je·t centerline velocity decay. The addition 

of a blurring term in the continuity equation caused an apparent 

"loss" in mass rate of flow. In an attempt to eliminate the compu-

ta.tional "leakage n, the blurring term. was dropped from the continuity 

equation but retained in the remaining equations. However, the 

computation became unstable quite early. When the blurring term 

wa.£ eliminated from the energy equation, the results were not 

favorable either. 

_ .. In order to see the effects of the blurring term and the 

turbui"ent shearing stress on the results of the computation, the 
' 

value of the turbulent shearing stress was artificially increased 

or decreased by the multiplication factors of 20, 10, 5, and O. 

It was found that the relation of wand cro to the stability of 

computation was unaffected by the change of the a.mount of the 

turbulent shearing stress. However, with a higher multiplication 
' 

factor, the jet spread slightly faster. This showed that the 
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turbulent shearing stress appeared to have the same effect as the 

blurring term on the jet mixing, but of much smaller magnitude. 

In addition to the assigned velocities at the triple-value net 

points shown in Fig. 5, two other combinations of nozzle-exit 

velocities were also tried. With a combination of assigned velocities 

of 0.2 u , 0.5 u , o.8 u , the jet spread faster than with the noz noz noz 

combination 0.0 u , 0.5 u , 1.0 u (see Fig. 5). Similarly, noz noz noz 

the one using 0.5 u , 0.5 u , 0.5 u combination had the noz noz noz 

greatest jet spread rate. The selection of the velocity combination 

of the triple-value net point did not seem to have any influence on 

the stability of computation. 

The method of taking finite differences did not significantly 

affect the computed results, regardless whether Fig. 7(b) or Fig. 7(d) 

was chosen to represent the relation of the point (m,t) with its 

neighboring points. The finite differences were taken according to 

each corresponding column in Table II. When the finite differences 

were taken according to the method shown in Table III, the rate of 

jet spread was found to be slightly greater than that of the other 

two methods tried. 

It should be noted that the representation of the turbulent 

normal stress, 01 , as described by equation (3-12), that is, 

--(au) -~ O'i = 2 p e ~ i = - p \.Ui/2 , 

may not be valid. Physically the turbulent normal stress can be 

either positive or negative depending on the value of(~)., and 
1 

the quantity p Tu'.'fY3 is always positive. If the relation in 
1 

equation (5-1) is used, the turbulent normal stress ca.n only be 

(5-1) 



negative. In order to determine if the p ruD'2 terms could be 
l. 
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neglected, the values of 'p"Gi'n2were estimated by following relations: 
1 

p(u152 = 2 -- (~) p € oX . 
1 

(5-2) 

p~ = 2"pe" 1~11 (5-3) 

(5-4) 

No significant difference in the computed results was observed regard-

less which relation was used. Though the differences were very small, 

equation (5-3) gave the lowest and equation (5-4) the highest rate of 

jet spread. From this exploratory computation it was decided to 

neglect the p (u1)~ terms completely in the computation to save 

computer time. 

Neglecting the turbulent normal stress, the governing equations 

become: 

~ + L ('p 'u) + L c; v) = o ot ox oY 

(5-5) 

oe o [/'-::' -::'\- - - - ( ~u av) l - + - \e + pJu - p v e - + -at ox oY ox _ 



69 

and 

p 1r-- -- -1· 
e = y - 1 + 2 ,_P u2 + p v2 _;• (5-6) 

Computed Results for the Subsonic Flow Case 

The geometrical arrangement of the cavity used in this chapter 

was similar to Case 1 of Fig. 27. If a square mesh of 6X = 6y ,_ 

0.15625 inches is used, the flow field under consideration can be 

represented by a net point field as shown in Fig. 13. The data used 

in the computations are listed in Table Dl and the nozzle exit 

velocity was represented by the relation shown in Fig. 14. The 

procedure of computation is presented in Appendix D. Equations (5-5) 

and (5-6) were used in this example. The apparent kinematic viscosity 

was evaluated with equation (4-17) and the finite differences were 

taken according to the relation shown in Table III. The relation 

between the point under consideration and its neighboring points 

was established as shown in Fig. ?(b). 

The value of w was OolO at the beginning and was reduced to 

0.05 after computing 1119 time planes in this example; this reduced 

the excessive blurring effect. The computed velocity profiles at 

the 2000~ time plane are plotted in Fig. 15. By comparing the 

velocity profiles plotted in Figs. 10 and 15, almost the same 

conclusions can be made for this example as for the example shown 

in Fig. 10. Fig. 16 shows the x-component velocity distributions 

at the 1000~ time plane for both incompressible and compressible 

cases under the same conditions. It is concluded that the compu-

tation method is more significantly affected by the presence of the 
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Figure 14. Velocity Distribution 
at the Nozzle Exit 
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blurring terms than the assumption of incompressible or compressible 

flow. 

The computed pressure over the field was in general very close 

to the nozzle pressure, that is, the reference pressure. Due to 

fluctuations from point to point in the fourth decimal place it 

was not meaningful to plot the pressure distribution; some average 

pressures are shown in Fig. 17. The average pressure was estimated 

by a method similar to the one shown in Fig. 12. In Fig. 17, the 

average pressure in the cavity is always lower than that of the 

open side and the average pressure gradient in the x-direction is 

far greater than the ones shown in Fig. 12. The difference between 

Figs. 12 and 17 might be due to the different w values used in the 

computations. 

With print-out every one hundred time planes it took about 

58.42 minutes with an IBM 7040 system to perform these computations. 

Solving for p by Iteration 

As in one of the examples in Chapter IV, an iteration method 

was also used to solve for p for the compressible flow case. The 

method and the governing equations were identical except for the 

inclusion of the continuity equation. Density was obtained from 

the continuity equation, x- and y-component velocities were solved 

for using the x- and y-momentum equations respectively, and pressure 

was computed according to equations (4-15) and (C-5) by iteration. 

The rate of nozzle centerline x-component velocity decay is plotted 

in Fig. 18. A comparison of Figs. 9 and 18 shows a stronger 

disturbance at the nozzle exit and a weaker one at th~ downstream 

74 



!!.avg 
Pnoz 

1.006 

1.004 

1.002 

1.000 

0.998 

0.996 

X -w 
. o 2 4 6 8 ·10 

-

-+ ,~ 
+-

I 

' 
-' 

';" t-- ~ H 
-

r --c:r--o-- cavity 

~ open side 

I H I 

' 
I 

I 
. I 

I I 

' I I 

5 10 15 20 25 30 35 40 
m 

Figure 17. Average Pressure in the Cavity and the Open Side of the Low Speed 
Compressible Flow Case 

T 

-- -
-

~ - -~ 

45 

12 

~ 

'- _ ! l 

50 

-.,J 
\J1 



JL 
a 

0 .2 

0.1 

0.0 

0 2 4 6 

- -- .. 

- - . - . 

Row 19 in Figure 13 

u = 200 fps noz 

Oo = 0.5 

I I ' 

I 5 10 15 20 25 

m 

X 
w 

---

-
-

I 

I 

8 

- - -

30 35 

10 12 

n.me Plane -

- 0 

-
100 

I 

- 150 

200 

250 

40 45 50 

Figure 18. Decay of Nozzle Centerline x-Component Velocity of a Subsonic Compressible 
Jet Computed by the Iteration Method 

-...J 
O'I 



end for the present example. Except for this difference, the same 

conclusions drawn for the previous example can be equally applied 

here. Similar to the preceding example in this chapter, the addition 

of the continuity equation to the set of governing equations gave 

no improvement. 

Computed Results for the Supersonic Flow Case 

Because the prediction of velocity and pressure distributions 

of the low speed jet by the methods described above were not 

successful, a supersonic flow jet mixing problem with the same 

geometrical arrangement as for the subsonic flow case was solved 

for comparison. The data used for the computation are shown in 

Table IV, the representation of the nozzle exit velocity is shown 

in Fig. 14, and the net point field is shown in Fig. 13. The method 

of computation is exactly identical to the one used for the subsonic 

flow case. The velosity and pressure distributions of the computed 

results of the 1000~ time plane are plotted respectively in Figs. 19 

and 20. At the 1000~ time plane, the computed values have not yet 

reached their asymptotic values but are converging slowly. 

Fig. 19 shows clearly the entrainment of fluid from the open 

side of the cavity and a fairly strong reverse flow in the cavity 

itself. The jet bends toward the cavity first and then outward. 

The jet reattaches to the upper part of the recompression step, as 

can be seen from the high concentration of constant pressure lines 

near the downstream upper corner in Fig. 20. The local low pressure 

in the cavity is located near the center of the cavity and the trend 

of the pressure distribution on the cavity walls is similar to that 
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measured by Charwat, et alo (14) for a different cavity and jet 

arrangement (see Fig.l(k)). The application of this method in 

the solution of the supersonic flow jet mixing problem looks 

fairly promising. 

About 58.68 minutes were required to compute 100 time planes 

and one print-out of the results. 
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CHAPTER VI 

EXPERIMENTAL STUDY 

The major objective of this experimental study was to obtain 

qualitative information about the partially confined, two-dimensional, 

turbulent jet, so that comparison between the computed and experi­

mental results can be madeo The experimental apparatus, however, 

was so designed that it can be used to study a wide variety of 

jet flow problems such as the effects of side walls, receivers, 

receiver-diffusers and cavities on the main jet and the flow 

characteristics in these elements. 

Description of General Apparatus 

A 3-hp, 1 to 7 ratio variable drive motor was connected 

directly to a blower. The supply air pressure was adjusted by 

regulating the motor speed. The output of the blower was passed 

through a 6-inch flexible hose to a plenum chamber. A schematic 

drawing of the test setup is shown in Fig. 21. 

The first section of the plenum chamber was a 6 to 12 inch 

conical diffuser with a 18-degree included angle. This was followed 

by five 12-inch diameter cylindrical sections. According to the 

original designer, K. N. Reid (42), the first section contained in 

succession, 4 inches of fiberglas 9 3 inches of rubberized packing 

material, and approximately 5000 paper soda straws. A taut 30 mesh 
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copper wire screen was soldered to the rear end of the first section. 

This was followed by three intermediate, 5-inch long cylinders each 

with a taut 30 mesh copper wire screen soldered to its rear end. 

After this, a final 20-inch long section of cylinder followed. The 

downstream end of this last section was joined to the nozzle assembly. 

The supply air pressure and temperature were measured 16 inches 

upstream of the nozzle assembly. Having passed through this plenum 

chamber, the supply flow entering the nozzle could be considered 

to be uniform and steady. 

The nozzle assembly is shown in Fig. 22. It consisted of a 

nozzle block (W' aluminum stock) with a rectangular opening and two 

sliding plates (}1?11 aluminum stock). The nozzle height was fixed 

at 5 inches and the maximum opening of the nozzle was~ inches. 

A 34-inch deep, 5-inch wide groove was cut horizontally across 

the nozzle block on one side and 3 x 5-inch rectangular opening was 

cut at the middle of the groove. Four sides of the opening were 

ground to an angle of 45-degree on the upstream side and polished. 

This design served to reduce the possible disturbance caused by 

the area reduction from the plenum chamber to the nozzle opening. 

One end of each of the nozzle sliding plates (12" x 511 ) was rounded 

off with an ~inch radius circular arc and polished. Four slots 

were made on the nozzle sliding plates, so that they could be 

fastened to the grooves of the nozzle block. The nozzle plates 

could be adjusted to give a maximum nozzle opening of~ inches. 

Two rows of screw holes on the face of the sliding plates were 

made for the purpose of the addition of side walls or a cavity 

assembly with different separation offsets and angles. The maximum 
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allowable offset from the tip of the nozzle plate was 10 inches. A 

small amount of silicon grease was spread over the groove as a sealant 

before the nozzle plates were fitted to it. 

The bottom plate of the flow channel was a 24-inch wide, 57-inch 

long, 34-inch thick aluminum plate and was extended to a total length 

of 12 feet, 3 inches. One end of the bottom plate was attached 

to the nozzle block. The whole span of the bottom plate was set on 

ten adjustable supports. The top plate of the flow channel was not 

a single piece. Several different lengths of 3/8-inch thick plexiglas 

pieces, ranging from 2 to 20 inches, were made, so that, a probe 

traverse unit could be placed at the desired location to make velocity 

profile measurement. In addition to these, one extra long piece 

(6 ft) was made to cover the unused part of the flow channel. All 

plexiglas pieces were 24 inches in width, excluding the flanges. 

Tr.ose pieces, including the probe traverse unit, were joined together 

with threaded rods and nuts. One end of the assembled top plate 

was fastened to the nozzle block. 

Depending on the kind of experiment to be made, different 

means of support for the top plate were used. The height of all 

the side walls, receivers, diffuser and cavity assembly was 5 inches. 

Different test geometries could be easily set up on the bottom plate 

and the whole assembly covered with the top plate. The resulting 

flow channel was sandwiched between a series of parallel bar clamps, 

as can be seen from the Figs. 23 and 26. 

On the bottom plate of the flow channel, there were 204 pressure 

taps with a high concentration near the nozzle exit. The holes were 

made with a No. 54 drill (0.055" diameter) and an 1-inch long No. 17 



Figure 23. Photograph of Apparatus and Test Section 
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(Oeo59r1 O.D.) stainless steel hypodermic tubing was driven into 

each holeo After insertion of the hypodermic tubing, each hole was 

checked carefully at the face of the bottom plate and made as 

uniform as possible by a hand drill if the hole was not round. 

Clear plastic spray was applied around the hypodermic tubings 

from the other side of the bottom plate to eliminate possible 

clearance between the hole and tubingo Leakage was thoroughly 

checked and elimina.tedo Depending on the region of interest in 

the flow field, 147 pressure taps could be selected and 

connected to a tiltable 50-tube manometero The unused taps were 

pluggedo 

In order to make this 50-tube manometer applicable for a greater 

number of pressure measn.irements 9 a guillotine switch system was 

constructedo This made it possible to measure up to 147 pressure 

readings without changing the pressure tap cormections. One tube 

among the 50 tubes was left open to the atmosphere for reference. 

The guillotine switch system consisted of a. three,=way adapter and 

three sets of guillotines { see Fig o 2LJ·) " Th* manometer boa.rd could 
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be tilted to any desired angle from Oto 90 degr$~s; three pre-fixed 

positions were provided to give multiplication ratios of 1:2 9 1:49 a.nd 

1: 5. Two additional incli.ned manometers were used with the pi tot-

s ta. tic probe. 

The probe traverse unit included a base pla:te (26n x 4. 15/16n 

x 3/8n), two guiding pieces and a sliding probe carrier (46 1/2" 

x 2 5/811 x 3/411 ) a:nd a probe carrier advancing gea.r unit which 

consisted of a worm (single t.hrea.d)g worm gear (30 teeth) 9 pinion 

(12 teeth) and rack (2 feet) 9 all of 24 pitcho A slot 9 Jli-,inch in 
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Figure 24. Photogr aphs of the 50-Tube Tiltable Manometer 



width and 201/2-inches in length was milled from the base plate so that 

the probe could travel across the flow channel. An 0-ring groove 

was cut around the slot and a 1/8-inch 0-ring was la.id in the groove; 

a small amount of silicon grease was applied to the 0-ring to aid in 

sealing. 

A rectangular groove was milled on one side of each of the 

guiding pieces and the two sides of the sliding probe carrier were 

milled to match them. The rectangular groove of one of the guiding 

pieces was deeper than needed to match the probe carrier. This 

space was provided so that the rack could be mounted on the probe 

carrier. At the mid-way point of the probe carrier, a hole with 

a 3/8-inch normal pipe thread was made to enable one to use different 

kinds of probes, such as pitot-static probes, directional probes 

and hot-wire probes, all w:i.th t he same traverse unit. Worm gears 

driving a rack-and-pinion were assembled at the end of the rear 

guiding piece and the rack was fastened to the downstream edge of 

the probe carrier, see Fig. 25. The worm gear and pinion were 

mounted on the same shaft (3/1611 diameter). Each revolution of 

the worm made the probe travel 0.0523 inches. 

For velocity distribution measurements, a DISA (DISA ELEKTRONIK 

A/S, Herlev, Denmark) Constant Temperature Anemometer, Type 55A01, 

and a pitot-static probe (0.06011 diameter, United Sensor & Control 

Corp,, No. PAA-5-J) was used. 

Procedure and Results 

The nozzle opening was set at 5/8-inch (i.e., a nozzle aspect 

ratio of 8) throughout the tests. Due to the size of the probe, it 
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Figure 25. Photograph of Gear Assembly 
for Probe Traverse Unit 

(u) (b) 

Figure 26. Photographs of Test Section 
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was preferable to use a bigger nozzle opening. On the other hand, 

it was desirable to have a smaller nozzle opening from the viewpoint 

of obtaining two-dimensional flow. With an aspect ratio of 8, the 

flow was no longer two-dimensional but it had been found, according 

to some previous experiments conducted for the study of jet reattach-

ment, that the deviation from two-dimensional flow was still within 

the tolerance of engineering accuracy. 

Due to the configuration of the flow field of this study, shown 

in Fig. 27, the flow directions varied. In most cases there was 

a reverse flow in the cavity. The orientation of the hot-wire probe 

was difficult since it had to be placed in the flow field with its 

axis perpendicular to the flow direction. Before the calibration of 

the hot-wire probe was made, the hot-wire anemometer was calibrated 

according to the instruction manual supplied by the manufacturer. 

A DISA miniature hot-wire probe type 55A25 (45 mm long), with 

type 55A21 (91 mm long) probe support, was calibrated by comparing 

measurements with the hot-wire probe and a pitot-static probe, at 

a location 0.5 inches away from the nozzle and 2.5 inches from the 

flow channel bottom plate. 

Nozzle openings of 5/8 inches and 1 inch were used for the 

hot-wire probe calibration. A warm up period was allowed before any 

data were taken. The estimated error in the calibration was 7% of 

full scale. The air velocity was calculated from following equation 
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u = 2.94528 j(Ep) T fps, (6-1) noz 

where ~pis the difference between total a.nd static pressure in inches 

of water and Tis absolute temperature in degrees Rankine. The 

pressure at the point of measurement was assumed equal to the 
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atmospheric pressure and the temperature was assumed to be stagnation 

temperature as measured in the plenum chamber. 

Calibration data for the hot-wire probe are plotted in Fig . 28 . 

The best straight line fit of the data in the range of the flow 

velocities used was found to be 
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D2 - D0 2 = 6.4795 "u:°· 48 (6-2) 

The configuration of the test setup is shown in Fig. 27. All 

dimensions except H1 were held constant for all tests. H1 for 

case 1 and case 2 were 2 1/2 inches and 3 3/4 inches respectively. 

For every setup, two different supply pressures, 9 inches and 

1 3/4 inches of water, were used. In addition to those pressure 

taps on the bottom plate of the flow channel, some more pressure 

taps were made along the middle plane of the walls of the cavity 

assembly. Typical pressure distributions are shown in Figs. 3l(a) 

and (b). 

The wire of the hot-wire probe was placed at the middle plane 

of the flow channel, that is 2 1/2 inches from the bottom plate. 

To measure x-component velocity, the wire of the probe was placed 

in parallel with the y-axis, and it was placed in parallel with 

the x-axis for y-component velocity measurements. The walls of the 

cavity assembly were actually used as a reference for measurements. 

Hot-wire readings in the region of the vortex in the cavity were 

quite unstable, indicating th.at the flow in the cavity was not 

actually very stable. However, the average readings were taken 

from the anemometer to compute the average velocity. 

The measured y-component of velocity was not used to plot 

the velocity distribution because the calibration curve was not 
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satisfactory due to the fact that they-component velocity was 

always low. The hot-wire anemometer could not give accurate measure 

of v when it was much less than u9 locally. Attempts were made to 

compensate for the u effect, but this could not be done with precision. 

The approximate flow direction was found by placing a sharp 

edged, 1/32-inch thick, flat aluminum sheet cut to fit the flow 

field in the same plane as the probe wire had been. As can be 

seen in Figs. 29, about a 1/4-inch apace existed between the contour 

of the cavity walls and the edges of the plate to eliminate possible 

three dimensional effects near the walls. The plate was supported 

by three piano wires through the pressure taps on the cavity wall 

and the open side was supported at four locations by C-clamps. 

A thin layer of lampblack and kerosene mixture was uniformly painted 

on the surface of the plate and the top plate was replaced in position. 

The blower was turned on for 5 to 10 minutes, depending on the 

supply pressure, to form a steady flow pattern. Typical flow 

patterns are shown in Figs. 29. These pictures were taken with the 

top plate removed and a transparency with 1/2-inch grid lines placed 

on the plate. Figs. 29 (a) and (b) are the flow patterns for the 

same geometry (H1 = 2.511 ) and for supply pressures of 9 inches and 

1.75 inches of water, respectively. Figs. 29 (c) and (d) are for a 

geometry having H1 = 3.75 inches and for supply pressures of 9 inches 

and 1.75 inches of water, respectively. 

It is seen that a small difference in supply pressure does 

not actually change the flow pattern but a difference in geometry 

has considerable effect. With a separation step of 2.5 inches, the 

main jet reattached to the upper portion of the vertical wall at the 



(n) H1 = 2.5", Supply Pressure = 9" Water 

(b) H1 = 2.5", Suppl~- Prs .ssurc = 1.75" 1:Jutcr 

Figure 29. Typica l Flow Patterns 
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(c) H1 = 3.7Y, Supply Prur;sur c = 9" i-Jc1. t c:l'.' 

(d) H1 = 3.75", Supply Pressure = 1.75" Wa t er 

Figure 29. (Continued) 



end of the cavity. With a separation step of 3.75 inches, the jet 

reattached to the horizontal wall near the corner of the recompression 

step. The difference in the formation of reverse flow in the cavity 

also can be seen in Figs. 29. 

The velocity profiles shown in Figs. 30 (a) and (b) were 

determined from the x-component velocities as measured with the 

hot-wire probe and the flow angles as measured from the flow 

pattern pictures for the cases shown in Figs. 29 (a) and (c). 

The estimated pressure distributions for the same geometries are 

shown in Figs. 31 (a) and (b). 

In general, high pressure regions were located at the upper 

and lower corners of the recompression step and low pressure regions 

were located at the central portion of the horizontal wall in the 

cavity and the vertical wall of the recompression step. Low pressure 

also existed in the location of the vortex center; this is not shown 

in the figures due to the lack of data. Besides those few particular 

regions, the pressure was atmospheric. Both pressure and velocity 

distributions some distance downstream of the recompression step 

became similar. 
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CRA.PTER VII 

COMPARISON OF MEASURED AND COMPUTED RESULTS 

The measured velocity profiles plotted in F:igo 30 (a.) and 

the computed v@locity profiles plotted in Figso 10 and 15 are all. 

for the same geometry and flow conditions (nozzle exit velocity of 

200 fps). Compari.so:n o:f th@ measured and computed velocity profi.les 

shows that the rate o.f jet centerline velocity decay was ex:c(!!!ssive 

for the computed profiles. At 11 rwzzle widths downstream, the 

x-comporumt cen.terlirte velocity was experimentally 78% of th~ nozzle 

ex:Lt velocitYt wherM.s the c:ornpu.ted Vt:Jlocity show~d only about 3491L 

Prediction of the; reverse !low in the c:a.vity was :not succesed:ul; 

experiment showed a .fairly strong r~circul.a.ti.on o:f :f'luid in the 

cavityo The computE!Jd velocity prof:iles were almost unaf±'ected by 

th® cavity. 

F'or low jet v·i.elocitiee, the pressure d:istri'but::l.on in the f'low 

field was practically atmospheric: as can be seen in the constant 

pressure lines plotted in Figo 31 (a)o .. The accumulated truncation 

and round-off error of the computer solution might have exceeded 

the actual change of the pressure in the field under consideration. 

The velocity profiles computed for the supersonic flow jet 

case (Figo 19) show a similari.ty to the measured profiles with the 

200 fps jet (Fig. 30 (a)). The jet centerline velocity at 11 nozzle 

widths downstream from the nozzle for this case is about 66% 9 which 
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is closer to reality. The recirculation in the cavity is also strong-

er for this computed case. The computed pressure distributions associ-

ated with the supersonic flow jet and the measured pressure distri-

butions associated with the low speed jet of 200 fps are also similar, 

as shown in Figs. 20 and 31 (a). These results suggest the use of a 

higher value than the actual velocity for computation and then a suit-

able reduction of the computed results for the actual case being 

considered. 

An order of magnitude analysis is carried out below to explain 

why the supersonic flow computed results compared better with actual 

measurements than did those for the subsonic case. The governing 

equations, equations (3-15) and the general difference equation• 

equation (3~26) are rewritten here for convenience: 

f 

-p 

--p V 
..... 
e 

pu 
_ _a - ..- Ou 
p u + p - 2p e ax 

= --- --(oii ov) puv-peay+di 

- - --- du ---tau ov ( e + p) U - 2p U e ax - p V e \°ay + ~ t 

p V - -- - -(ou ov) pvu-peay+ax 

= --""1 -- Ov 
p V + p - 2p e ey 

(- ~- -- dV ---/au ov) 
e + pJV - 2p V oy - p U e ~oy + dX t 

(3-15) 



and 

+ (f . n l - 2f n + f n 1) m9 .ic,+. m9 .l'..I m,N-
.2 cos 

mesh will be taken for convenience" The time increment 'i can be 

expressed in following form: 

For a square m$Sh the dimensionless ht a.nd ~ a.re identical a.nd 

equal to l; equation (7-1) becomes 

'i ::,; __ o: .... p __ 

n. (w + c) 

If equation (7-2) is substituted in equation (3-26), 

+ W [(f l n - 2! n + f l n) m+ , .I'., . m v ;c, m= v .I'., 

+ ( f n l = 2f n + f n -1 )] }n 
m9 .1v+ IDg.l'.I ID 9 .x,= 
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(3-26) 

(7-1) 

(7-2) 

(7-3) 

If the dimensionless density and pressure are considered to be 

order of 1 as used in the computation and the velocity of 200 fps has 



a dimensionless value of approximately 0.2, then the specific energy 

will have a dimensionless value of approximately 2.5. For this low 

speed jet flow case 9 the orders of magnitude of the terms inf are 

always one order higher than those of F.X and FY in equations (3-15) 9 

with the exception of the pressure terms in the momentum equations. 

If the x-momentum equation is taken as an example, every individual 

term in equations (7-3) can be written as follows with the order of 

magnitude indicated directly below every quantity, 

(- -)n+l P U n m,.x, 
0.2 
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(7-4) 

F'x 
m+l~i, 

l!.,x 
· m-lg.l 

f 
m+l 9 .t 2f m,.t + f 

ID·-1 9 .l 

f 
m9 i+l 

2f + m, J, 
f 
m,.t-1 

U X 

(*1L1.i [--- a 
== p u + p - P···-

<r 
o.o4 1 0.02 

U X (t)] [--· - a 
- p u" + p - p-

~ m-1 9 .t 
OoOI+ 1 Oo02 

"[p VU -

o.o4 

a- ou ov U X ( - -\] 

p 2rJ2 dy + c)X ) ID g .t+ 1 

Oo02 

[ U X (...,- -)~ - - - - a cu av 
- p-vu-P·-··- dV+dX 

2,:;2 Y m9 l-1 

o.o4 0.02 

<- (p u) - 2(p u) f, + (P u)m-lll J, ' m+-1 9 J, · mil 

0.2 o.4 0.2 
(7=6) 

c- (p ?') ID9 .l+l 2(p u) J, + (p u)m9 t-.l m, 
0.2 o.4 0.2 
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In the above equations 9 the apparent kinematic viscosity was replaced 

by equation (3-13) 9 and u and v were considered to have same order a 

of magnitude as the nozzle exit velocity; the value of CJ was of order 

10 and x was considered to have a value of 50 9 which is about the 

maximum value considered in the computation (see Figo 13)o 

From equations (7-5), one can see that even a slight change in 

pressure will have a large effect whereas the turbulent stress 

terms contribute almost nothing. In the x-momentum equation the 

terms containing pu are of major interest among those found in 

equations (7-4), (7-5) and (7-6). The quantities containing pu 

in equations (7-6) are 5 times greater than those in equations (7-5). 

For this low speed jet, the value of 1/(w + c) is about 0.7 and 

even if the value of w is chosen to be 0.15v the effect of blurri~g 

terms will have an effect equal to the momentum terms and the 

blurring terms outweigh all the turbulent effectso 

On the other hand if the order of magni.tude of u is more 

than 1 9 Le. 9 eupersonic: 9 e·very term in equat:tons (7-4) 9 (7 .... 5) a.nd 

(7.~6) will hsLYe same order of magnitude except the tu:i:·bulent ert:ress 

terms. For this cas& 9 t;he ef:f'ect of bl:ur:ring terms will. not surpa.ss 

that of' the true momentum of fluid :flow to divE!rt the descript:ton 

of the flow from the orig:i.nal governing equa.tio!lSo Th:is appea.rs to 

be the reason why the computed results for the superson:i.c flow case 

presented in Chaphr V described the flow better than the low 

velocity jet flow caseo 



CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS ,. 

As shown by Walker (55), the time dependent, explicit numerical 

technique showed promise for solving the steady state flow character-

isticis of a plane 9 turbulent, supersonic, bounded jet. From the 

reemlts of Walker and the example shown in Cahpter V, one can see 

that this numerical method describes the physical flow phenomenon 

nicely for a supersonic flow case. For a low speed flow ease this 

The res·ul.ts of this etudy showed that :t:n a euperaoni.c jet the 

t-urbulent shea:dng stresses a.re la:r'ge imough to repla.ce the artificial. 

blurring hrms usiiid to stabilize th!! computation. Walker show~d that 

thew value needed :for a tu.rbule:nt 7 supereot.tic flow jet wa~ about 

one-tenth of the value required for inviscid flowo This indicated 

tha.t the shea:dng stresaea a.lone would be almost sufficient to ma.ke 

the computation stable. It is always desirable to use a small value 

of blurring parameter 9 m9 to reduce the effect of the artificial 

viscosity, but thew valu@ B®lected must prevent instabilityo 

In the present study 9 for subsonic jets 9 when thew value 

selected was held constant and the value of time in.crement 9 1' 9 

changed, no differences occurred in the computed results so long as 

the T values selected were below a certain limito For the subsonic 

case, the order of magnitude of the velocity was one order lower 
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than that of the density and the energy and the turbulent shearing 

stresses were always small. Because of thisg the stability of 

computation depended mainly on the artificial viscosity 9 i.eo 9 a 

high w valueo With a large w value 9 the artificial viscosity term 

became very significant and this 9 in most cases 9 would change the 

original meaning of the governing equations of the flow and make the 

accurate description of the physical flow phenomenon practically 

impossible. This is clearly seen from the high rate of the jet 

centerline velocity decay. 

Several attempts were made to non-dimensionalize the governing 

equations so that the velocity of the low speed jet would have the 

same order of magnitude as the other dimensionless flow properties, 

but it; was found that there was only one self-consistent method to 

nor1-dirnensionalize the governing equations" That is 9 the reference 

velocity used to non-dimensionalize the velocity terms in the 

gcYV®:r.nin.g equation~ ha,$ to be the square :toot of the :ra.tio of t,he 

reference press11.re a.nd the reference density" 

The method of evaluation of the fluid properties at the net 

points on the field boundary is extremely critical for @. low speed 

jetv because the asymptotic results depend strongly on the boundary 

values specified,, If the representation of the field boundary 

employed is not proper 9 computation insta'b:ility may result. The 

representation of the net points on the solid boundary is not so 

critical as those on the field boundary and the reflection technique 

employed proved to be successfulo With slip flow on the sol:i.d wallll 

the computed results yielded a better v-elocity distribution near 

the wall than that for non=slip flow. 
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The imposing of constraints near the nozzle 9 such as the use of 

triple-value net points to retard the artificial blurring, or the 

use of zero velocity net points near the nozzle exit to force the 

110 

jet separation not to occur too close to the nozzle, was not beneficial. 

Even the addition of an artificial jet potential core was not 

effective in lowering the rate of jet centerline velocity decay. 

Moreover, if a local pressure jump occurred due to the addition of 

any of such constraint, it caused instability under some unfavorable 

combinations of computation parameters. 

In this study, the limits of application of the time dependent, 

explicit numerical technique for solving steady state two-dimensional, 

turbulent, bounded jet problems have been shown. For low velocity 

jets, the application of this method to describe the physical flow 

phenomenon is limited due to high artificial viscosity terms required 

in the computation for stability. Several problem areas have been 

defined and explored for this type of application. 

The following recommendations are made for further study in 

this field: 

1. For the treatment of low velocity jet mixing problems, 

a different form of blurring term should be devised if 

the numerical technique discussed in this study is to 

be employed. 

2. It would be desirable to conduct a few sample compu­

tations of supersonic jet flow problems for which 

reliable experimental data are readily available for 

comparison and determine the lower limit of velocity 

where this method ceases to yield acceptable results. 



3o Further investigation of the representation of the double 

image point is needed if the reflection technique is to 

be employed to treat the net points 011 the convex corner 

of a solid boundaryo 
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4o Only two-dimensional flow cases have been considered in 

this study9 however 9 the analysis should be equally 

applicable to axi-symmetric and three~dimensional 

supersonic flow problemso Three-dimensional flow cases 

should be explored because the fl.ow :in most fluid 

amplifiers (fluidic devices) is actually three-d:i.mensionalo 

5o The study of the mixing of two jets having different 

thermodynamic properties would also be of great interest. 
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APPENDIX A 

DERIVATION OF GOVERNING EQUATIONS FOR '.I'URBULENT li'LOW 

The governing equat:ions for turbulent f'l.ow are derived from the 

basic equations~ equat.ions (3-1) 9 with the aid of equations (3-6) and 

the rules of averaging 9 equat:ions (3-5). The general procedure 

followed in this Appendix is: 

1. Express each fluid property appearing in equa.tions (3-l) 

as the sum of its average value and the fluctuating 

compone:nt. 

2. Take the t.'.i.m$ SNera.ge c,f. every resuHin.g qua .. n.·b:ity" 

:,. Sub~1i't:i'tute th.em into equat.i.on.s (3 ... 1,) to replace e.iii,c:h 

ind:tvi.dua.l co:r:r·es:pond:i.ri.g term. 

In addition to the t:imie di u Ei.nd v for velocity oompon.ent:$ i.n 

x and y directions~ respectivelyv a general form o:f velocity 9 

ui or uj t al.so will be used to rep:r.ese:n.t either ve1.::ici.ty component 

dep,1mding o:n thee direction m:1der consideration" 

Continu:i.ty and Momentum Equations 

The terms appearing in the continuity and the momentum 

equations are p9 p 9 pu 9 pv 9 Pu2 9 p·v2 and puvo These can be written 

in following forms 9 

(A-1) 
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p :: (p + pU) ::: p (A-2) 

=pu+piui i i (A-3) 

Since the problem of interest here is a low velocity flow and 

no sudden pressure or density changes are involved 0 the terms con-

taining density fluction p0 as noted by Pai (39) can be negleotedo 

Also 9 in accordance with van Driest (53) 9 the product of three 

fluctuating components = the triple correlation - ma.y be neglecbdo 

After this simplification9 equations (A-3) and (A-4), respectively, 

become 

(A ... ;5) 

(A-6) 

With the above relations 9 the continuity and the momentill'.ll equations 

for turbulent flow can be written as follows: 

Continuity: 

a - o c-- o -~ 3t p + ax p u) + oy (p V) :,; 0 

.x-Momentum: 

o c-~ o [--2 - -c~J o r--- --J at p UJ + ox . .P u + p + p uV r + ay Lp V u + p uVvU r: 0 

y-Momentum: 

o c-~ o ~-- --J o r--s - -c~J at p VJ + ax LP u V + p uWvV + ay LP r + p + p vv r "" 0 0 
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Energy Equation 

Fluid energy per unit volume, is defined as 

e = pC v T + ~ ( r} + v:a ) • (A-?) 

If the fluid under study is considered to be a perfect gas, then, 

equation (A-?) can be represented as 

e = P + P (~ + vR) 
'V - l ~ 

(A-8) 

If the instantaneous values of p, p, u and v in equations (3-6) are 

substituted in the right hand side o! equation (A-8) and the time 

average is taken, the expression tore becomes: 

• = 'V ~ 1 <i> + P, ) + } <p' + P, ) • r <ii + u, )' + c'v + v, )2 J 

this yields 

• = P · + i w 'ii° + P? + pCu'i';T + "p<'vT';T J. 
'V - l c:. 

(A-10) 

The terma appearing in the energy equation of (3-1) are e 9 eu 9 

ev, pu and pv. They can be written in following forms~ 

eu1. = (e + e' ) 0 (u. + U?) = e U. + ei'uT 
1 1 1 1 

::: (p + pV) 0 (U. + un = p U. + pVu? 
1 1 1 1 

(A-11) 

(A-12) 

In order to express eu1 in terms of the known quantities, evuv 1 must 
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be expanded further o If the fluid energy is written i.n the form 

according to the relation in equation (3-6) 11 the fluctuating component 

of e can be expressed as 

If the relations in equations (3-6) are substituted into the right 

hand side of equation (A-8) and the result is subtracted from 

equation (A-9) with the higher order terms neglected 9 the expression 

for the fluctuating component of e becomes: 

- p ("ii'v?' ... p (vT?" J • (A-13) 

l:f u and v in equation (A,-13) are reprEH':iented respectiv@ly by u. and 
J. 

u, 9 th~ expression of ~1 U! in equation (A-11) can be obtai:ri.ed by 
J 1 

rrrul tiplyi:ng both sid~s oi' ®CJ.Ul.;i:cion (A,'"13) by u i e,nd taking; th~ . ~ -

·=-·· ·-··. ~·f;l -. p 1 u~ + 1.L p 1 u 1.)o 
:1, J J 

(A~l4) 

As before 11 all the terms contain:lng either pv or p~ in equations 

(A-12)~ (A-13) and (A-14) can be nl!lglected and equations (A-11) and 

(A-12) respectively become 

(A-15) 

PU. ::,;_ p U. o 
·- 1. l 

(A-16) 

With these relations~ the e:n®rgy equatton for turbulent flow 
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can be written as 

+ ~ c<'e + p) v + i5' vc'v'i'7 + P u"<~) J = o • 

In addition to the relations in equations (3-6) 9 van Drit!!st (53) 

has suggested that (pu) and (pv) can also be considered as fluid 

properties. If this reasoning is used in the derivation of the 

governing equations for turbulent flow, a slightly different set 

of the governing equations can be obtained. The difference, however, 

can be eliminated by a simple assumption which converts the resulting 

equations to a form identical to those derived earlier, a.nd sum-

marized below. 

Summary of the Equations 

Continuity d.·.-.P:. + _o_. (-p·· .. ~u..... ?J (- ~ o· 
UJ + '=;:"'"'.··:;;_ p VI tt: . M OX Ou 

:it-Momentum ~t. (p u.) + £...[ p-;1 + p + p(u 0) 2 J + ~[p vu+ p u·o1,v] :::0 
o ox · oy 

y-Mome:ntum tt, C'p ii·) + ~[ p' u v + p ,io-ifi. J + ~C p "# + p + 'p(v'vyf'1o 

(.A ~,·,)· 
, -~J..1 

Energy 

+ ~ [(i + p)v + p v(v'qjl + p u(u"fv""r')] r- 0 



APPENDIX B 

DERIVATION OF EQUATION~= 0 

The continuity and momentum eq·uations .for a two-dimensional, 

inviscid, incompressible flow can be written as 

(B-1) 

(B-2) 

ov o o 1 a~ !f + oi. (UV) + ?Jy ( r) + p ~ : 0 0 (B-3) 

If equations (Bw2) and (B-3) are separately multiplied by u and v and 

( au oil'). u op v op 
+ UV ?Jy + '3i + p ax + p a'y :=: 0 o 

1 [a o ~ + p ~ (pu) + 'Sy (pv)J ,::: 0 0 (B-4) 

Equation (B=4) was derived for an incompressible flow but it 

may also be regarded as the relation applicable to compressible flow 
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with small variation of density so that the density can be con-

sid.ered as consta:nt o 

If equation (3-2) is substituted into the energy equation 

of equations (3-1) 9 it follows that 

~ [ y : i + ~ ( u2 + v2 )] + tx [ ~p~ 1 + ¥ ( uS + v2 ~ 

+ b [4 P: 1 + ¥ < u2 + va 8 = 0 • (B-5) 

Again9 if th• density is approximated as a constant, the above 

equation can be rew:ritten as 

[.. 'ou ov J J. on y [ o ( ) o ( '):, 
p u at + v at + y .:. l !f + y : l -ax'. pu + ey · pv ~ 

+ ~ %x: [u<.ua + ~ )] + ! ~ [v(ul + vi)] 

or (B-6) 

.After th.8 rel.atione in equ.ttions (3-6) are applied a:nd ti.In$ a:verages 

taken, equation (B-7) becomes~ 

· ~ + L ( .... p ".':'\u + 1- (-p -u) 0 ot ox ui oy =. • (B-8) 

Equation (B=8) is only an approximation;; it was derived under 
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the ass•.unption that the density variation of a compressible fluid is 

so small that it may be regarded as a constanto Since equation (B-8) 

is already in conservation form~ the general difference equation, 

equati.on (3-26) 0 can be applied directlyo 



APPENDIX C 

DERIVATION OF EQUATION '\fp = Q 

Since the iteration process for determining pressure is carried 

out at a fixed time 9 the time derivative term can be ignoredo 

Then, the 'basic moment.um equa.tion.s ca.n be written as 

~ ( puill + p) + ~ ( puv) = 0 (0 ... 1) 

~ ( puv) + t ( pv8 + p ) :o O • (C-2) 

Di.ff'erentiat~lng equat:i.ons (C~,l) a.:nd (C .. 2) by x and Yt :reepMtively9 

e.nd combi.ning them, yields 

If the same method applied in Appendix A is used to write 

equation (C-3) in form applicable to a turbulent flow case, the 

following results 

- o2 - 0~ - -
t:Pp = a?" P + V P = - Q .. 

where 
- 32 c- ~:a - ~-J a2 c- -:a J Q = a?' p u + p(uv J + "'a;;r p v + p(~ 

"a2 r--- -·- J + 2 axay LP u v· + p uVvV 0 
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(C-.3) 

(C-4) 

(C-5) 
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For an incompressible flow case, the density in equation (C-5) is 

regarded as a constanto If equation (C-5) is to be regarded as a 

dimensionless equation, the density becomes unityo 

If a square mesh is used 9 equation (C-4) can be written. in a 

difference form as follows: 

or (C-6) 

Equation (C=6) was used in the iteration proc@ss for determining 

pressure in the examples in Chapters IV and Vo 



APPENDIX D 

PROGRAMMING LOGIC 

The general procf!dure of computation followed the order listed 

below unless it was directed to another step by a ''go to11 o The 

computer program was written in FORTRAN IV language and an IBM 7040 

computer was used for execution of the program. The size of the 

field was 48 columns by 39 rows. 

Q) Read: W .. H1 9 Hft .. L. /:ix .. 6y 9 Yt R .. -p* · -p* (or p* p*. ) 
• ""· • • • max' min' max 9 min ' 

T u -p* er o: Ul · noz 9 ·noz' · noz 9 · 9 o 9 • 

~ Read: time plane interval for print out, initial time plane 

number, maximum time plane number 9 branching indecies 

!or Read or Not Read the initial data from the tap@ 

a:n.d for Write or N'ot Write th.Iii last set of data on 

the ta.pt!to 

@ :ru,a.d~ t:rom tape - all the va.lueis Ills read :i:n@ ... if !'JO 

comma.nded in@ • 

© Readt from ta.pe ... mm1ber of the la.st time plane o:t the 

previous computation as the :r:t:umb«ir of the in.Hi.al 

tirn$ plan~ of this com;p·utation; the n.e:x·t tirne plane 

nu.mber fol' print out - if so commanded in.@ o 

@ Print: aLl the important input data inG)and@orQ)and® o 

@ Calculate: 

x = tan=1 (~y/f:sJr.) 
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a a::: /3202 FT -
noz 

u* = u /a noz noz· 

l::.y* - LO 
C'o ( frx* ) ( !::.y*) 

~ 
u + ./3202 y RTnoz ft ~ 

no z a - -~ 6x* )' + ( !J.y* )SJ 

Cz) Define: the flow field in terms of net points by dividing 

all cavity dimensions by 6y. 

@ Read: from tape - ~ ~ ~ ~ identification number of every 

point in the field of the final results of previous 

computation - if so commanded and go to~. 

@ Define: the identification number of every point in the field 

according to the nature of the r·el.ation of the point 

to its neighboring points, and the initial. conditions. 

~ Start: general computation - oolumnwise throughout the fieldo 

@ :find the proper value of ti~ and evaluate ? for the 

column under con.si.deration. 

® compute the :f'l.uid properties of tht n.ew ti.me pla.ne 

of every point in the field in the column under 

consideration. 

Co:r1tinui ty 

x-Momentum 

y-Momentum -:--,i, -p*v·-- v* 

Energy 'i* --p" 
@ if p* (or p'? is not within the limits imposed 9 

go to @ o 
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@) if the computation has not covered every column 

in the field, go to @ • 

QJ) Define: new property matrices with the newly computed 

values .. 

@ Check: if print out is not the time specified in@or@or 

@), go to®. 

, ~ Print: all the properties, p'; ii"; v~ p*in the field according 

to the format specified. 

~ Define: the next print out time plane number. 

~ Check: if the current time plane is greater or equal to the 

the maximum time plane number specified in@, go to @. 

~ Define: the number of the new time plane by adding 1, 

go to@. 

~ Check: if it is commanded to store final data on tape as 

specified in@, go to @. 

@ Stop 

@ Write: on tape 

® Wt H1 t ~ t L, Ax:, Ay, Yt -,,. 
Rt Pmax' 

-~., 
Pmin' (or P:a.x• 

-* ) T ii -* Pmin • · noz• noz' Pnoz' (J t O'o t Wo 

@ number of' the final time plane; number·of next 

print out time plane as defined :tn@. 

@ p•g uf vt p·~a.nd identification num'beir of 0'11'4l!ry 

point in ·the field. 

@9 Frint: message of the completion of the job. 

@ Stop 

@ Print: proper mHsage and computed resultei of the previous 

time pla.n~. 
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© Stop. 
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