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NOMENCLATURE

& reference velocity, defined on page 24

8y 48g 48g constants

A(x,y,t) blurring term coefficient for x-direction
b(x) width of jet mixing zone

B(xyy,t) blurring term coefficient for y-direction

B, ¢B) ¢Bs constants

c speed of sound

Ca Crocco number of adjacent stream, defined on page 23
CV specific heat at constant volume

D D.C. voltage reading from anemometer

e fluid energy per unit volume

£ - fluid property or a scalar function

P functional relation defined on page 20

7 functional relation defined on page 20

g fluid property or & scalar function

h diagonal length of finite difference net

hy finite difference net spacing in x-direction

hp finite difference net spacing in y-direction

H height of the separation step

Hp height of the recompression step

K time parameter defined on page 26

4 net point number in y-direction (also, mixing length in

Chapter II)



e(x)

A(x)

cavity length

net point number in x-direction

Mach number

Mach number of adjacent stream

time plane number

distance in normal direction

pressure

atmospheric pressure

pressure difference of pitot-static probe
defined on page 55

gas constant

time

absolute temperature

velocity component in x-direction
velocity of adjacent velocity

velocity component in y-direction
velocity modulus, (f + +° %

nozzle width

carteslen coordinates

finite difference net spacing in x-direction
finite difference net spacing in y-direction
blurring term defined on page 26

blurring term defined on page 26

ratio of specific heats

apparent kinematic visgosity

dimensionless coordinate, see pages 3, 5, 6

momentum transfer length
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Subseripts

min

noz

dynamic viscosity

kinematic viscosity

density

jet spreading parameter

turbulent normal stress in i-direction
maximum allowable Courant number

time increment (also, turbulent shearing stress in
Chapter II)

tangential shearing stresses

turbulent shearing stress

shearing stress in the y-direction on a plane per-
pendicular to x-axis or in the x-dlrection on a
plane perpendicular to y-axis

finite difference net diagonal angle (Figure 2)

blurring parsmeter

centerline

denotes direction

¥y net point location
x net point location
reference condition
y=direction
y-direction

maximum

minimum

nozzle condition

xii



Superscripts

- time average

' fluctuating component
* dimensionless quantity
n time plane number
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CHAPTER I

INTRODUCTION

It was Henri Coanda who, in 1932, described a fluid flow phe-
nomenon which stimulated the relatively recent development of fluid
control devices without moving mechanical parts. Called the Coanda
effect, the phenomenon involves the tendency of a fluid stream
emerging into a space with a wall located near the stream to attach
to the wall and to remain attached if no outside disturbance is
imposed. In 1959, a group of scientists and engineers of the
U. S. Army's Diamond Ordnance Fuze Laboratories (now Harry Diamond
Laboratories) invented the so called "fluid amplifier." Since then
there has been an almost explosive increase in activity on this
class of fluid devices. In addition to performing flow switching
and amplification, these fluid devices having no moving mechanical
parts can be used to perform logic and computation functions, even
in an adverse environment. The term "Fluidics" has received general
acceptance for describing fluid control components and systems con-
taining fluid elements with no moving mechanical parts.

At present the designs of fluid amplifiers rely almost totally
on experimental trial and error methods. It would be very desirable
to devise an analytical procedure for predicting the performance
characteristics of every element in the control system based on the

fundamental flow processes involved.



Many investigators have put forth considerable effort to find
a method to predict the velocity and pressure distributions in
fluid control components. Some empirical velocity distribution
equations for different jet mixing models have been derived; however,
the prediction of pressure distributions within these devices has
been over-simplified and often ignored.

It is well known that the laminar flow of a viscous fluid can
be treated with the Navier-Stokes equation. Due to the non-linear
nature of the equation, only a few closed form exact solutions have
been obtained. Since the high speed electronic computer became
available, considerable progress has been made in numerical integration
of non-linear differential equations.

The main objective of this study was to examine the possibility
of applying an explicit numerical technique introduced by Rusanov (45)
to integrate the simplified flow equations for a low speed, two-
dimensional, turbulent jet issuing into a partially confined space.
The geometrical arrangement selected is not exactly identical to the
one used in most fluid control devices; however, it models the first
important section of a proportional fluid amplifier. If the flow
characteristics of this geometrical arrangement can be successfully
predicted by means of numerical techniques, there should not be
any difficulty in doing the same for the other cases.

Evaluation of this numerical technique was carried out with the
aid of an IBM 7040 computer. Jet velocities of 100, 200, 250, 300
and 2270 fps at the nozzle exit were used in the computation.
Experimental results for a nozzle exit velocity of 200 fps were

obtained for comparison with the computed results.



CHAPTER II

LITERATURE SURVEY

After Prandtl introduced the mixing length theory, the theoretical
study of jet mixing was greatly stimulated. Tollmien (50) made use

of Prandtl®s turbulent shear hypothesis,

du | du
= 2 | ——— e -
T p L 37 | 37 ° (2-1)

in the study of the free jet boundary, Fig. 1(b), and the free jet,
Fig. 1(a). By assuming constant pressure and replacing the viscosity
terms by the turbulent shear stresses in the equation of motion in

the x-direction, the following is obtained

3u du _ 12
UV 3y = 35y L (2-2)

Tollmien assumed that the mixing length is a function of x (the
direction of the mean flow) only and is proportional to the distance
from the point where the mixing starts. This relation may be written
as

b= ax , (2-3)

where a, is a constant found experimentally to be a, = 0.0174. With
the aid of the stream function and the boundary conditions at the
centerline and at the edge of the jet Tollmien was able to write

1 and vin terms of x and N (N = y/x). From the solution of the



differential equation obtained by substituting equations (2-1) and
(2-3) in equation (2-2) he was able to predict the velocity distri-
butions of the jet. By neglecting pz;?sga in the equation of motion
in y-direction, he derived equations for predicting jet centerline
pressure. It was also pointed out that the centerline velocity of

a free jet is inversely proportional to the square root of x (i.e.,
U, -x"%), where x is measured from the point where mixing first
extends to the centerline,

F8rthmann (18) extended the work of Tollmien by carrying out a
series of experiments to study the jet mixing in the configurations
shown in Figs. 1(a), (g) and (h).

From the experimental data on free turbulent flows, Reichardt (41)
found that the velocity profiles of free jet boundaries, Fig. 1(b),
and free jets, Fig. l(é)q could be represented successfully by the
Gaussian error function. From the fact that one form of the solutiouns
of the one-dimensional heat conduction equation is the Gaussian error
function, he introduced his inductive theory of turbulence. For
frictionless, constant pressure, lncompressible flow, the time-

average equation of motion in x-direction can be written as

%iu5+%2uv =0 , (2-4)

Upon introducing an empirical "law of momentum transfer"

— il
T = - A(x) 31;— (2-5)

and combining this with equation (2.-%), Reichardt obtained the equation

S _ ®F (2.6
'5“}-{- = a(x) 3 -6)



where A{x) is called the "momentum transfer length." The solution

of equation (2-6) may be written as

_ - 2
u = U, € 22l

) (2-7)

where a; is a constant, T = y/b(x), and
2

e =
b(x) = (Ji-) dy .

J 0 1"‘
1e

If equation (2-7) is substituted in the expression of b(x) and
integrated, the constant a, in equation (2-7) can be obtained
(icecy, 85 = m/8),

As mentioned in Schlichting (48), G8rtler built upon Prandtl's

second hypothesis,
) .
T = pe(x) -5% , (2.8)

where e(x) is the virtual or apparent kinematic viscosity, to study
the free jet boundary and the free jet. Assuming a frictionless,
constant pressure flow and introducing equation (2-8) into the
equation of motion in the x-direction, following differential

equation is obtained:

<
Swy Su-o%u (2-9)

For a free jet Gortler made use of the relations that the width of
the jet is proportional to the distance x (i.e., b~ x) and the jet
centerline velocity is inversely proportional to the square root of

.,

the distance x (i.e., u ~x He expressed the apparent kinematic

viscosity in the following form:



€ =8 b(x) x, (2-10)
where ag is a constant.
If the continuity equation is integrated with the aid of the
stream function and substituted in equation (2-9), the velocity

profile equation can be obtained from the solution of equation (2-9).

That is

u = u sect® 1 , (2-11)
where

=g L

Ll gl

and
u X %
0 =0.5|— (2-12)

The value of the constant o was determined experimentally by Reichardt,
who found that o = 7.67.

Albertson, et al. (4) studied low speed free jets, Fig. 1(a),
both analytically and experimentally. They determined the velocity
distribution and the volume, momentum, and energy flux ratios with
respect to those of the nozzle exit in fully developed and half-jet
regions. In the fully developed regions, the longitudinal component
of velocity varies according to the Gaussian error function, the

Yo

volume-flux ratio is proportional to x '~, the momentum-flux ratio

remains constant, and the energy-flux ratio is proportional to x;%.
They also indicated that the length of the jet potential core extends
about 5.2 nozzle widths from the nozzle exit, whereas Miller and
Comings (34) said it is about 7 nozzle widths.

Miller and Comings (34) found that the free jet mixing deviated

appreciably from isobaric and the deviations were closely related to



the local turbulent stresses. This relation, as proposed by

Townsend {51), can be represented by following relation:

=1, - (2-13)

Despite this finding, they showed that Reichardt's simple error curve,
equation (2-7) describes the velocity profile best. The velocity

profile equation proposed by G&rtler, equation (2-11) was compared

with their experimental results. The distributions of p, u®)?,
?;;;; and v are presented in their report.

Ginevskii (24) proposed a different approach to solve for the
velocity distributions of incompressible, fully developed jets and

wakes in the presence of longitudinal pressure gradients. He

assumed a polynomial to represent the tangential stress as follows:
T=B +By+3B y? o (2-1%)
(o] 1 -4

The coefficients B B , B are determined by utilizing the boundary
o 1 2
conditions at the axis and the edges of the jet in the x-direction

equation of motion,

Ju du dp
U3 TPV T ”5""” (2-15)

and combining the relations thus obtained with equation (2-14).

The tangential stress so cbtalned is not connected with any assumptions
regarding the mechanism of turbulence. By combining equation {2-1%)
with Prandtl's formula for tangential stress, equation (2-1), a new
differential equation is obtained. For the case of mixing of a jJet
with a uniform stream, this differential equation was integrated

with the aid of the boundary conditions at the jet centerline and the



exterpal flow where the Bernoulli's equation is valid. The longitudi-
nal pressure gradient term is not included in the velecity distri-
bution equation so obtained; indicating that the existeznce of the
longitudinal pressure gradient in the region of the Jjet mixing does
not have any influence on the shape of the velccity profile. The
work of Ginevskii has been applied in the work of Zumwalt and Ruo (56)
for the case of constant pressure gradient mixing of a jet with a
uniform stream, Fig. 1(¢).

Pai (38) proposed a method to predict the velocity profiles
of the constant pressure, compressible turbulent mixing of a jet
with a uniform stream, Fig. 1(¢), and the mixing of two uniform
streams, Fig. 1(d). By using the method of small perturbations and
the turbulent shear stress relation in equation (2-~8), he reduced
the equation of motion in the x~direction into a form similar to
equation (2-6), that is, a form of the well-known equation of heat
conduction. An exact solution was obtained by successive approxi-
mations startiaog with the solution of a small perturbation. The
velocity disbribution can be expressed in terms of Gaussian error
integrals,

By using Pai's =small perturbation method and the apparent
kinematic viscosity relation in the form of equation (2-10),
Korst, et al. (29) investigated the free jet boundary under constant
pressure., They found that the velocity profile can be represented by

u
u :u-% (L+erf ), (2-16)

where U, o= free stream veloccity and N = 0 y/x. According to the

experimental results, 0 is approximately equal to 12 for an



incompressible flow.,

Crane and Pack (16) and Crane (17) combined the equations for
laminar and turbulent flows into one by introducing a coefficient of
eddy kinematic viscosity in the turbulent flow case. They started
with the stream function for laminar, incompressible flow, which
yields a velocity distribution equation in the form of equation (2-11),
and expanded it in a series in terms of the square of Mach number to
include the effect of compressibility and large temperature differences
for compressible flow cases, They pointed out that the net effect
of compressibility is, respectively, to decrease and to increase the
mixing width of laminar aﬁd turbulent free jets. The velocity profile
for mixing of two uniform streams is tabulated in (17). For this
case, the higher the Mach number the narrower the mixing region and
the dimensionless velocity profile is same as that obtained in
incompressible flow., The value of ¢ is found to be 12.7 for zero
Mach number.

It has been shown by Maydew and Reed (33) that Crane's velocity
profile for the half-jet fits extremely well with their measured
velocity profile for an axi-symmetric compressible free jet.

Olson and Miller (37) conducted a great number of experiments
on two-dimensional, turbulent, compressible (Mach number ranging from
0.66 to 2.0) free jets, wall jets, and reattaching jets, respectively,
as shown in Figs. 1(a), 1(g) and 1(f). Corresponding theoretical
investigations provided analytical models for those three types of
jet flows, procedures for predicting the velocity profile develop-
ment characteristics for free jets and wall jets, and a procedure

for predicting the reattachment location and mean pressure in the
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separation bubble for reattaching jets. Constant exchange co-
efficient mixing theory was used in both half-jet and fully
developed jet regions for the free jet and wall jet. The correlation
between theory and experiment was very goocd. The velocity profiles
were represented adequately by a form similar to equation (2-7),
the Gaussian mean velocity distribution which was derived originally
for an incompressible flow. A method for predicting the centerline
velocity decay for the free jet and the wall jet was also presented.
Sawyer (46), (47) and Bourque and Newman (8) carried out a
series of experiments on the two-dimensional, incompressible,
turbulent jet reattaching to a parallel and an inclined plate., By
a simple analysis they were able to predict the mean pressure in the
separation bubble and the location of jet reattachment. Though the
jet is curved, no appreciable velocity deviation from that of a plane
jet in the fully developed region was observed. Bourque and Newman (8)
indicated that the flow becomes independent of the length of the plate
and the Reynolds number when they are sufficiently large. The re-
attachment of a jet does not occur below a certain minimum Reynolds
number; increasing the Reynolds number will cause the reattachment
point to move nearer to the nozzle, but it becomes independent of
Reynolds number above a value of approximately 104, the minimum value
being approximately 10°. Abbott and Kline (1) made a similar
conclusion about the Reynolds number effect on the jet reattachment
from their extensive experiments on the water table.
Analytical studies of jet mixing yield equations containing
one or more constants which must be determined experimentally: the

resulting equations for predicting velocity profiles and the turbulent



shear stresses are then empirical. One of those constants is the
jet spreading parameter, o. This parameter is a measure of the rate
of increase of the width of the mixing zone in the downstream
direction and its value is inversely proportional to the rate of
increase of jet width.

According to Tollmien's experimental results, ¢ = 12; Crane
found it to be 12.7. Maydew and Reed (33) used an axi-symmetric
free jet to investigate the change of the 0 value with respect
to Mach number. By using Crane's velocity profile, they concluded
that for subsonic flow the value of 0 is 11.0 and somewhat higher
for supersonic flow. Zumwalt and Tang (57) suggested the functional
forms shown in equations (3-14) to estimate the value of o for the
error function velocity profile.

Channapragada (10) took into account the temperature ratio
between the mixing fluids and presented a formula to evaluate o in
terms of Mach number. Bauer (6) used the error function velocity
distribution, equation (2-16), for the jet boundary case and
Prandtl's mixing length theory for both laminar and turbulent
compressible mixing. He formulated the expressions for ¢ for
laminar and turbulent mixing with the aid of Tollmien's experimental
results.

Mueller and Olson (35), using their experimental results (37)
and the Gaussian distribution of velocity, studied the spreading
parameters of the outer and inner mixing zones of the compressible
reattaching jet. For subsonic flow the value of o for the outer
mixing zone was about the same as that of the free jet but it was

slightly higher for the inner mixing zone; for the region downstream

11
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of reattachment o is about twice as large as for the free jet mixing.

Roshko (44) used a 42 x 36 inch subsonic wind tunnel to conduct
an experimental study of the flow over a cavity. The cavity opening
was 4 x 32 inch and its depth was varied from O to 10 inches. He used
a 75 fps flow velocity for most of his experiments but 210 fps was also
used for the purpose of comparison. He observed that the pressures
in the cavities with larger L/H, ratio, see Fig. 1(k), were higher
than those with smaller L/H, ratio. He also observed that the jet
would no longer reattach to the cavity-floor if the L/H, ratio
became less than 10. The general cavity pressure distribution
observed was characterized by a iow pressure near the center of the
walls and floor and a high pressure at the corners. An intermittent
pressure change which occurred at the center of the cavity for the
1.15 <L/H; <2.0 and L/H, < 0.5 ranges was also reported.

Charwat, et al. (14), (15), conducted an experimental study of
both supersonic (Mach number 2 to 4) and subsonic boundary jets over
rectangular cavities (L/H, from 1 to 15) in a 3 x 3 inch wind tunnel.
Based on whether the flow reattached to the cavity floor or not,
they classified a supersonic flow over a cavity in a solid boundary
as one of two kinds. A long cavity, where there are two distinct
separated regions, one behind the backward facing step and one
ahead of the forward facing step, is called a "closed" cavity. A
short cavity, where the jet does not reattach to the cavity floor,
is called an "open" cavity. They also showed that the pressure
distributions in the '"open" cavity floor were quite uniform in the
small L/H, cavity with a pressure minimum near the center. For the

large L/H, cavity, the minimum moved towards the separation step



and the pressure gradient along the cavity floor increased as the
recompression step was approached. The pressure distribution on the
recompression face near the floor was fairly uniform but exhibited
a gradient at the outer edge of the step. Generally, the higher

the L/H, ratio, the higher the pressure on the recompression face.
For subsonic flow, the cavity floor pressure distribution was very
similar to that for supersonic flow.

Fox (20) also conducted an experimental study of the turbulent
subsonic flow (1€ 0 to €CO fps) in transverse cavities (L/H, from
0.25 to 1.75) adjacent to a free stream in a 6 x 9 inch wind tunnel.
Cavities spanned the 6-inch width of the tunnel., Based on his
pressure distribution measurements, he found that for L/H, < 1.25
and L/H; = 1.75 the gradual change of pressure on the cavity walls
was similar to those results obtained by other investigators, but
for the cavity with L/H, near 1.50, the pressure changed abruptly
and no agreement with others' results was found. He stated that
this might be caused by the influence of the difference in the
boundary layer thickness ahead of the cavities.

Tani, et al. (49) also showed that the meximum pressure on the
face of the recompression step was at the top edge when L/H, < 1.4,

but when L/H, > 1.4 it was slightly below the top edge.

15

Since high speed electronic computers became available, numerical

methods have been used to solve the Navier-Stokes equations for
certain laminar flow problems which cannot be solved by ¢ losed form
analytical methods.

Kawaguti (28) solved a laminar, steady, viscous fluid flow in

a channel with a step, Fig. 1(h) and (i), numerically. He assumed
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the fluid velocity on the solid boundaries was zero and the flow in the
channel far from the step was two-dimensional Poiseulle flow. He used
central differences to transform the equations of motion into difference
form and used Ax/Ay = 2.0. He pointed out that it became more difficult
to integrate the equation for the case with a forward facing step than
for the case with a backward facing step as the Reynolds number in-
creased. Velocity distributions, streamlines and equivorticity lines
were also shown in the report.

Fromm (23) proposed a method to calculate the flow properties in
terms of stream function and vorticity. Time was advanced through
the use of a finite difference approximation of the Helmholtz vor-
ticity equation and the stream function was evaluated by a finite
difference approximation of Poisson’s equation by using the new vor-
ticities obtained. Before advancing in time, the stream function was
evaluated by a method of successive approximations over the whole
field. A periodic end boundary method was used in the sample cal-
culation of a viscous incompressible flow between two parallel flat
plates with one obstacle., The vortex street in the wake of the
obstacle was clearly represented. The pressure distribution was
evaluated with an equation in the form of Poisson’s equation obtained
by combining the partial derivatives of the x-momentum equation with
respect to x and the y-momentum equation with respect to y. He
pointed out that calculation of pressure distributions directly from
either of the momentum equations had not been successful.

Walker (55), in the course of investigating the interaction of
a moving shock wave with a turbulent mixing region, by means of a

numerical technique developed by Rusanov (45), was able to calculate
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a supersonic (Mach number = 2,0), two-dimensional, free jet mixing in
a double off-set confined space, Fig. 1(j). The continuity, momentum
and energy equations in difference form were used to calculate density,
velocities and pressure, respectively, at every net point in the field.
Since the equations are time dependent it was necessary to carry out
the computation until a near steady state was attained. In addition
to the turbulent stresses, "blurring" terms were added to the governw
ing equations to make a discontinuities in the fluid properties act

as rapidly changing continuous ones. The velocity distributions in
the fully developed region agreed very well with the Gaussian profile,
Constant pressure lines in the flow field were also shown. Numerical
stability of the technique was also discussed,

In solving fluid flow problems, there are usuelly two possible
methods for describing the motion of fluids. First, the method of
Euler, which describes the motions of fluids with reference to a
fixed point of space and specifies at each instant of time the
density, pressure, velocity, etc., of the fluid particle which
happens to be at that point. Secondly, the method of Lagrange,
which describes the history of individual fluid particles and specifies
at each instant of time the location, density, pressure, velocity,
etc., of the individual fluid particles of fixed identity.

In most problems Eulerian method proves to be more convenlent
in describing the fluid motion than the Lagrangian method; many
investigators prefer to use the Eulerian method. However; when the
Eulerian method is used to treat multi-specie flow problems numerically,
it is difficult to keep track of the material interfaces as they move

through an Eulerian mesh if the thin shells of the fluid move distances



16

many times greéter than their original thickness., In order to attain
good resolution, a large number of Eulerian mesh points may be needed.
If the Lagrangian method were used alone, one might encounter a
different kind of difficulty if the physical situation involved slip
surfaces or other severe distortions of the original mesh. To over=-
come these difficulties, Harlow (26), Noh (36), and Frank and

Lazarus (22) have proposed several combined Eulerian-lagrangian
methods, Some sample calculatlons of time-dependent, two-dimensional,
compressible, inviscid, laminar flow past a rigid disk and over a
rigid step have heen successfully shown. For turbulent flow, ‘the
above methods do not seem to be generally useful at present; however

they do appear to be very promising.
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(¢c) Jet and a Uniform Stream (d) Two Uniform Streams

(e) Reattaching Stream (f) Reattaching Jet

Figure 1. Typical Jet Mixing Configurations
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(g) Wall Jet (h) - Backward Facing Step

(1) Forward Facing Step (j) Double Off-Set Jet
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Figure 1. (Continued)



CHAPTER III

DERIVATION OF THE GOVERNING EQUATIONS

To represent a compressible flow, one needs the equation of
continuity, the equations of motion and the equation of energy.
The derivation of these fundamental equations is readily available
from any standard fluid mechanics text book, TFor a turbulent flow
with high Reynolds number the effect of molecular transport is
negligible compared with the effect of turbulent transport. If the
terms including the viscosity effect in the basic hydrodynamic
equations are dropped, and it is further assumed that there are no
body forces, one obtains the following equations for a two-
dimensional, inviscid fluid flow.

Continuity:

3P , 3 o) =
S-t-+-a-}z(pu) +-a“y'(pv) =0

x-Momentum:

N o)
%¥ (pu) + %; (p® + p) * 53 (pvu) = O

y-Momentum:

(3-1)
ST v + 55 un) + 3= (0F + ) =0
Energy:
-g%+%c- [(e+p)u]+%§ [(e+ p)v] =0,
where
e =z f T+ %»(u? + v2) . (3-2)

19
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Equatiorns (3-1) may be written in conservation form as discussed

by Tyler (52). The following general equation results:

3f  aF%  JdFY

TP Ty O (3-3)
where
p pu pv 1
pu p + p ) pvu
f= FX = Y o= (3-4)
pv puv pve + p
Le 1 | (e + Plu| , (e + P)v| .

Derivation of Governing Equations for Turbulent Flow

In the study of turbulence, Reynolds rules of averages are often
adopted to carry out the averaging procedure, not only on single
quantities but also on products of quantities. These rules, according

to Pai (40), are as follows:

Rule 1: f+g = ? +8

Rule 2: et = ¢f (¢ = constant)

Rule 3: :f:; = Tg (3-5)
Rule b4: f?ﬁ_?; = Lim £ (fn = sequence of function),

where f and g are scalar functions and the bar refers to the time
average value.

Let the instantaneous fluid properties in the turbulent flow
field be represented by the relation f = ¥ + f'. The prime quaentity

denotes the fluctuating term and
t, +

=_1
T = E-uf" o
t - -

<]
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From Rule 3 in equations (3-5), if g = 1, then ? = £, If this
relation and Rule 1 are applied to the relation f = T + f'. it is
seen that the time average of the fluctuating component, T s 1is
identical to zero. But it must be noted that the time average of
the product of fluctuating components is not necessarily zero.

By using the above relations, the basic fluid properties for
turbulent flow can be written in the following form:

p=p+p , u=u+u',

(3-6)

1]
<l
+
<

pP=D+ D v
e=¢€+ e' ,
If the above relations are substituted into equations (3-1) the

following set of equations are obtained (see Appendix A for detailed

derivation),
Continuity:
¢ 3 =, Q3 (—=— d —_——
_a'_t'p+§'}_c'(p u)+'§§( pv) =0

(3-7)

T+ TR LT T BT
-a-rtf(pu)+s-£ [pu + p+ p ut ]+ay[pvu+pu"vﬂj~0
y—-Mofnentum:
S T+ FET+ T TV I+ = (FR +T+F 720
ot ax Yy
Energy:

£+§;[(€+§)E+E'€(W + 3T @]

+§-§ [C+Pv+pv ()2 +pu(uv)] =0,
where

‘a':Y?l +E@ R GR o+ R (3-8)
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In place of viscous effects, turbulent effects appear in the
momentum equations in equations (3-7). The effects of turbulence
also appear in the energy equation. Schlichting (48) showed that
those terms can be interpreted as components of a stress tensor due
to the turbulent velocity components in two-dimensional flow and

they can be represented by

o T P @2 puv'
AR - ot 2 (3-9)
Tyt L]
Ty Oy puv' p (v .

They are often known as "apparent stresses of turbulent flow" or
"Reynolds stresses'. According to Schlichting (48), Boussinesq was
first to introduce the idea of apparent kinematic viscosity, €, which
is analogous to the kinematic viscosity, v. Similar to the shearing
stress in laminar flow case, the representation of turbulent shearing
stress may be written as -

T, =TT 2 (2-8)

In Prandtl's momentum transfer theory, the apparent kinematic
viscosity, e, is proportional to the slope of the mean velocity,
du/dy. This can be seen by comparing equations (2-1) and (2-8). At
the jet centerline where du/dy = O, according to equation (2-8), ¢ is
also equal to zero; this is incorrect. However, in analogy with
Stokes' law, by simply replacing p by p €, the Reynolds stresses can

be expressed in the following form

il

Ui =2p € (33—6)1 (3-10)
___(eiﬁi_ aE.)

Toy ™ PUE) 5;%- ‘ (3-11)

3 a
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Thus, the complete tensor of apparent turbulent stress for two-
dimensional flow can be written by substituting equations (3-10)

and (3-11) into equation (3-9); yielding

, —du = (U . W =TT 5T
% Txy P35z P ('B—y ¥ ‘a':Z) p(ar P \
= € _ _ = - (3-12)
SE, T 57 | s 5 )
"xy %y A Pt Pl

where ¢, according to Pai (39), can be represented by

ux
a

T =

20°

) (3-13)

in which, Ea is the velocity of the free stream adjacent to the
mixing zone, x is the distance from the poiﬁt where mixing starts,
and 0 is the jet spreading parameter used in equation (2-16). The
values of 0o can be obtained from the following relationship as

suggested by Zumwalt and Tang (57):

Q
¢}

11.0 for c; <0.23 (0 <M < 1.23)

(3-14%)
k7.1 G2 for di > 0.23 (M >1.23),

H

c

where Ca is Crocco number and is represented by

If the relations in equation (3-12) are substituted into
equations (3-7) and those equations written in the general con-

servation form of equation (3-3), equations (3-4) become

)
H
ol o] o} o
<l =1
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aﬁv_az(£+ﬁ'> (3-15)

PV
= == [3u 3V
pPVvu-pe (-g-i'!'-gi')
w7 _
-_—— = - =23V
pVv +p-2pe€E Y3
— —==03V —=—=—(3u_ 3V
—2 —— v —
—(e + pu Pvess-puce (ay + BX>J ,
where e = Yp_l+%{ﬁa+?re~2?(-g-l§+-g—:%>}o (3-16)

In order to write equations (3-15) in a dimensionless form,

1
the pressure Proz and dgnsity Proz at the nozzle exit, a = (pnoz/ noz)’

hg = Ay and hp/a will be used as references to normalize, respectively,

pressure, density, velocity, distance and time. They are

.I;-* = E_———- ’ E-* = -E—-—— . u* = —E— s
b P a
noz noz
— v X
¥ = 2 N x* = -h—;- ’ y* = -}yg ’ (3_17)
ta
¥ = e
hz b

where the superscript * represents the dimensionless quantity of

each corresponding variable. After substituting equations (3-17)
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into equations (3-15) and making some rearrangements, one can obtain
a set of equations identical to equations (3-15) in dimensionless
form and the superscript * can be dropped. It is important to note
that if one wants to obtain an exactly identical set of equations in
both dimensional and dimensionless form, no other reference velocity
can be used than the square root of the quotient of the reference

pressure and reference density.

Derivation of Governing Finite Difference Equations

The governing equations derived in previous sections are non-
linear partial differential equations and are to be solved by a
numerical method. In solving inviscid flow problems involving
sudden changes of fluid properties in the flow field, von Neumann (54)
altered the inviscid flow equations by adding artificial viscosity
terms, so called "blurring" terms, to make discontinuities of the
fluid properties become continuous ones in the course of computation.
A method with the concept of "blurring" introduced by Rusanov (45)
was adopted in this study. If the blurring terms are added to the
general first order, non-linear partial differential equation in

conservation form, that is equation (3-3), the following equation

is obtained:
3t F 3P _d ) D ot
ﬁ + EJ?- + Ty- B -a? [A(x,y.t) 5;J + ‘g; [B(Idﬁt) 3';] . (3—18)

In writing equation (3-18) in a difference form, forward differences
are used for the time derivative and central differences for the
spatial derivatives, so that the new f value can be evaluated

explicitly from the old values of £, F. and P,
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A rectangular net with steps Ax = h) and Ay = h; as shown in
Fig. 2 is used and the time increment is denoted by T. Any quantity

f at point (m,%) and the nt time plane or time step is designated
n

by fm,!?,"

After writing equation (3-18) in difference form and

rearranging, the following explicit equation is obtained:

n ‘ n
AL B 1 [Fx - FX ] I [FY - FY
m, % m,{ 2Zh,; | m+l,L m-1, 4 h, m, 4+1 m, 4-1

n
T
T la - - - }
* b, [ m+le, 4 (fm+1,£ fm,z) Am—%,z(fm,z ?m—l,g)
. n
* B, [?m,z+%(fm,z+1 - fm,z) - Bm,ﬁ-%(fm,L_ fm,z-lj] .
) (3-19)
Rusanov (45) simplified equation (3-19) by assuming
A" i
m, 4 27 °’m,z
Iﬁ
n 2 .n
Bm,z o1 Bm,z ’ (3-20)
(# + @)
and K T e T
hy by ’
n _ n 2
where g = WK (w + c)m’z sin® y
(3-21)
n _ n 2
Bp,g =K (w + c)m,z cos® X .
The blurring parameter w is related to K and (w + c)g g by the
| 9
stability condition
n -2 n
K [(w+ c)m,!,] <uK (w + c)m’z <1, (3-22)

which, according to Rusanov, must be satisfied for all (m,%4). The

quantity K(w + c)g P in equation (3-22) is the Courant number at
9
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Figure 2., Net Point Notatior
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point (m,2) of the n# time plane and is designated by oz If o)

zd
9
represents the maximum allowable Courant number in the flow field

under consideration at the nt time plane, then
of =K (w + c)i&x ) (3-23)

where cf is a measure of the time increment. If the blurring

parameter w is chosen according to the relation

Op <0 5 -%— ' (3-24)
Oo

the condition of equation (3-22) is automatically satisfied. Equation
(2-2L4), however, is for the inviscid fluid flow case. It was
mentioned by Walker (55) that the lowest acceptable value of w is
about one-tenth of the value calculated from equation (3-24) for
a turbulent supersonic jet mixing case. In general, the value of
(w + C)Eax differs slightly from time plane to time plane and has
to be evaluated in every time plane computation to determine the
maximum allowable time increment for the following time step.
Walker found this change to be very small, even in a supersonic
flow field; this suggests that a constant time step be used at
all time.

In the case of a low speed flow, which is the case of interest
in this study, the speed of sound, ¢, is considerably greater than
the fluid velocity and stays fairly constant throughout the field
since the temperature in the flow field does not change significantly.
The quantity (w + ¢) in the flow field under consideration at any
time may be regarded as a constant. Thus, a constant time incre-

ment, T, is used. By the same reasoning, A(x,y,t) and B(x,y,t) in

equation (3-18) or equation (3-19) also can be considered as



constants. If the relation of K with op and (w + c);ax is found
from equation (3-23) and substituted in equations (3-21), the

n
expressions for o

n .
) and Bm,z' respectively, become

wo, sirf x

]
I

(3-25)
= wo, CO8° X .

s ]
I

Notice that the superscript n and subscripts m,f are discarded
because the values of ¢ and B are no longer dependent on space and
time due to the assumption made above. By substituting equations
(3-25) into equations (3-20) and introducing the simplified ex-
pressions for A and B into equation (3-19), the general explicit

difference equation assumes the following form:

fn+1 £0 T [ b4

T J y
m,4 = ‘my2 " Zh; [F e 1]

F - &
m+l, 4 m-l,z] T Zhy L mys+l T Tmy -

1 2
+ =00, Bfm+l.£ - 2fm,z - fm-l,z) sin® ¥

- (fm,z+l - 2fm‘£ - fm,z-l) cos® x] ;
(3-26)
This general difference equation is valid for the net points

lying inside the flow field, i.e., the "interior points".
Representation of Field and Boundary Points

The general difference equation for a two-dimensional, turbulent
jet flow, equation (3-26), can be used directly for the interior
points of the flow field if the net point in question has only those
neighboring points shown in Fig. 2. All quantities needed to

estimate the value of the right hand side of equation (3-26) are

29
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readily available from the computed results of the previous time
plane. Whereas for those points on the solid boundary or the edge

of the flow field under study, equation (3-26) has to be modified
slightly or some quantities which are not available from the previous
time plane computation have to be assumed according to the boundary
conditions. For those points on the solid wall or the plane of

symmetry, the following conditions are assumed

F-5-o

W = O and v = 0 for boundary parallel to x-axis,
%§-= O and u = 0 for boundary parallel to y-axis,

where N denotes the direction normal to the boundary under consider-
ation,

The relationship of the interior net point to its neighboring
points is shown in Fig. 2. The representations of those points on
the different walls are illustrated in Fig. 3. The method used is
based upon a reflection technique suggested by Burstein (9). This
considers the boundary as a mirror; the image of any interior
point has essentially the same properties as the object interior
point except the direction perpendicular to the mirror is opposite
in sense. Besides the relation of a point to its neighboring points
shown in Fig. 2, other representations, such as shown in Figs. 7(a),
(¢), and (d), are also used. If the relation shown in Fig. 7(d) is
used, the representations of the boundary points have to be modified

accordingly.
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TT-FR L
T A dy  ox (k-1)
v +p-2 E'%%
e — — =03V ——=[d 3V
_(e + PV -2V E 5% -u €(§§-+ 5%)J'
and
- > 1| = -2 — [d3u ¥V
e =V-§—T+§-[U. + v - 2¢ (3-{4‘-5?)} . (4-2)

Although equations (4-1) are said to be valid for incompressible
flow, it must be borne in mind that the fluid still has to obey the
perfect gas law, otherwise the specific energy cannot be represented
by equation (3-2).

There are four equations in (4-1) but the number of unknowns is
three; therefore, only three equations from (4-1) or some cor-
responding supplementary equations are needed to compute the
necessary properties u, v, and p. If the general difference
equation form, as given in equation (3-26), is used, it is
necessary to select the last three equations in (4-1). Generally,
for incompressible flow only the continuity and the two momentum
equations are needed. Other possible combinations of three-~
equation sets are listed in Table I.

In the early stages of this study, the expression used for
the turbulent shearing stresses was the same as that used by

Walker (55). In analogy to equation (2-8), he wrote

du,

- -
Tij =p € 55, (4-3)



TABLE I

SELECTIONS OF THREE-EQUATION SET

Equation Set

Variable

Tl M. M, MM M M M
X X X X X p'e X
7l M C ¢ M c M ¢
J y y
—n+l Dp _ Dp _ -_ = - =
P E B M =0 =0 ¥7=-§ V¥p=-73
NOTATION:
Mx momentum equation in x-direction
My momentum equation in y-direction
c continuity equation
E energy equation
%B =0 equation (4-11)
t
#5=-7 equation (4-15)
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and if j = i, Ty =05 If this relation is used in place of
equations (3-10) and (3-11) to represent the turbulent shearing
and normal stresses, one obtains a set of equations similar to

equations (4-1) as follows:

0
¢ = u
v
e
)
-2 — -— a—
= 2 U FP-exy
sT.3
Vu-g¢g 3%
s 3u-7 (. 72
-(e + pu - ¢ <u =3+ vax—
(LaLt)
v
—= —=3u
u v € 37
Fy =
- = —3av
+ - —
VTR T ey
B A a?)
+ - S pea
_(e P)V € (u 3 M Ay /| ’
and
s ooE . ifeewos(E )

In place of the forms shown in equations (4-4), the momentum
and energy equations may be writtén in following forms:
x-Momentum: _ _ _ _ _ (4-6)

§E+ [2—.@.-4-@.?-_—.@.2_5] + [—g—+—§£-—ﬁ] = 0
3t T LT ax T T €3 A T Y
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y=Momentum:

T RE.vE ). (FE.Eo72T).

st t [u Sst v % €3 + | 2v 3y - e5yEl 0 (4=7)
Energy

3 . = L =3 PU, = 2T (TP (avﬂ
at+(e+'§) +ua(e+—)—e{ axe+ a:e*(é'i)*'é?{

(4-8)

+ (e+p)—+v—(e+—)-e[_%za:+v'gff2-‘z+(g;) (g;)J 0

or
2. L G+ DT+ & [+ PV

SRR T

au
+ ( y + J (4-9)

Equations (4-6) through (4-9) were also used in some of the compu-
tations, but the general difference equation for the equations in
conservation form, equation (3-26), cannot be used directly. A

difference equation was written for each individual equation.
Representation of Initial Conditions

A two-dimensional, low speed, turbulent jet issuing from a
nozzle into a cavity was considered. The general configuration of
the cavity is shown in Fig. 4. All the properties of the fluid at
the nozzle were held constant. In Fig. 4, region () was assumed
initially to have the same velocity as the nozzle exit and regions QD
was assumed to be stationary; the dimensionless pressure was

assumed to be unity in whole flow field. The representation/of the
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initial conditions was immaterial because the asymptotic values of
the computed results were mainly dependent on the boundary conditions
specified. However, a better representation of initial conditions
may shorten the computation time. The initial conditions of some
sample points are shown in F'ig. 5; those points without velocity

vectors are stationary.

Representations of Some Special Boundary Conditions

In addition to the boundary conditions shown in Fig. 3, there
are still some other boundaries which need special treatment, such
as the corner points and the field boundary peints., Some special
boundary points are shown in Fig, 4.

The relationship between a point on the solid boundary and its
surrounding points is shown in Fig. 3. At those points on the solid
walls the flow may be considered either slipping or stagnating on the
walls., Slip flow was allowed on walls 1J, LM and OQ in Fig. 4.

Both slipping flow and stagnating flow on walls AC and FG were
considered. The velocity at corner points H and K was assumed to

be zerco, The corner point N was considered as one of the field
points, this was done so that the fluid would not be forced to
stagnate at the corner point N. Because of the cavity, the main jet
wlll bend toward the cavity and the stagnation point may change
according to the geometry.

For those points on the field boundaries, AU and QT in Fig. 4,
the general technique caunnct be applied due to the lack of information
of the surrounding points. Some special method has to be used to

provide the best estimated information on those boundaries, sc that
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the computation can be continued. Four methods were tried, namely:
1) linearly extrapolating from two nearby points, 2) assuming the
property of the flow is identical to the next point inside the
field for the same time plane, 3) assuming the property of the flow
is identical to the next point inside the field for the previous
time plane, and 4) averaging the first and the second methods. If
the property of a point on the field boundary QT is designated by

fm It the above methods can be written in following forms:
T A

n n n
1. f = 2F - T
m, 4 m-1,¢ m-a,z
5 n _ ¢h
Ea L Trrll:ia ) (4-10)
. f =
3 m, 2 m-1,0
n 1(n n n
e fm,/l " Elifm—l,z ¥ (me-l,a - fm-Z,‘a)] )

For the points on the boundary AU, similar relations can be written
by interchanging the indices m and g. If the computation is
continued to such a point that steady state is established, it
would be hoped that all methods in equations (4-10) would give the
same results. However, since the flow is subsonic, boundary
influences propagate throughout the field and the results prior to
steady-state are not the same for the various relations in equa-
tions (4-10).

Walker (55) found that the blurring was too great at small
values of x and suggested a method to reduce this excessive blurring
by forcing the velocity at points, C, V, F and W (see Fig. &%) to
be zero. Because of the representation of the initial conditions of
the flow field, Walker also suggested that triple values be assigned

to all properties along DS and ER to retard the rate of the artificial
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blurring. The relation of the triple-value points to the other net
points is shown in Fig. 5. For the net point above a triple-value
point, the upper value was used and for the net point below it, the
lower value was used in computations. The triple-value net point
was treated as a triple point in the computations but the middle
value was used to represent the properties of the fluid at that
particular point.

In free jet mixing, there exists a potential core which usually
extends 5 to 7 nozzle widths from the nozzle exit. In some cases of
this numerical study, the potential core was simulated by holding
the velocity of a few points near the nozzle identical to that of
the nozzle exit at all time. One of such cases is shown in Fig. 6.
The velocities of those points with velocity vectors shown, were
held constant and the rest of the points were allowed to vary
according to the equations used. In this way the rate of decay
of jet centerline velocity is retarded. Instead of assuming some
artificial potential core near the nozzle exit, different values of
the blurring coefficient @ were also tried for the first three

columns to retard the blurring rate of the jet.

An Early Attempt to Solve for u, v and p

Selection of Equations

As mentioned previously, three independent equations are needed
to solve for u, v and p in an incompressible flow field. In addition
to the continuity, momentum and energy equations, another equation

which may be used to solve for p explicitly was derived by combining
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the momentum equations and the energy equation (see Appendix B for

the derivation), that is

%{i:%%+%?(§‘ﬁ‘)+%§(3?)=o. (4-11)

The possible combinations of the three-equation set are listed in

Table I. Sets 1 through 5 were tried in this part of study.

Evaluation of Apparent Kinematic Viscosity

The apparent kinematic viscosity, ¢, is assumed to be independent
of y and can be estimated by equation (3-13). The value of u, in
equation (3-13) is the free stream velocity for half-jet mixing. For
a full jet, it has been common practice to use the maximum velocity
in the velocity profile at a given x distance as Ug s whereas for a
mixing of two streams u, may be represented by E;ax - GLin; e.8.,
see Schlichting (48). The value of x in equation (3-13) is not
always measured from the nozzle exit because it is not necessary that
the mixing starts at the nozzle exit.

The value of u, was first set equal to the nozzle exit velocity,
Egoz, because the maximum velocity at any section in the flow field
under consideration should not be very different from that of the
nozzle exit; secondly, the local maximum velocity, ;;ax' was used;
and thirdly, the local maximum x-component velocity, E;ax' was used
because the y-component velocity was known to be small at the

location of the maximum velocity. These assumptions can be expressed

in the following forms:

u p .o
noz

T = e (4-12)
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_ w axX

€ = -g;;—— (4-13)

= . lmax” (4-14)
20°

The results of computations showed that there is little

difference among these choices.

Methods of Taking Finite Differences

In general, the method of central differences yields better
accuracy than either backward or forward differences. Here, the
forward difference was used to evaluate the derivatives with respect
to time. For the space derivative terms, central, backward and
forward difference methods were all used.

Depending on the number of the neighboring points around the
point (m,£) under consideration, different methods may be used for
expressing the space derivative terms in equafions (k-kt), (4-6),
(k-7), (4-8) and (4-9) in difference form. The net point relations
are shown in Fig. 7, and the space derivatives in difference form
are listed in Table II.

If the relation of the neighboring points used in the computation
is like the one shown in Fig. 7(d), the treatment of the solid wall
and field boundaries has to be slightly modified. On the solid wall
boundary, (m-2,4) and (m+2,4) were considered as images of each
other if the point (m,£) was on the vertical wall, and (m,£4-2) and
(my,4+2) were images of each other if point (m,4) is on the horizontal

wall., For a point on the field boundary, methods similar to those
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FOUR METHODS OF REPRESENTING DERIVATIVES BY FINITE DIFFERENCES

TABLE II

Derivative | Figure 7(a) Figure 7(b) Figure 7(¢) Figure 7(4)
af 1, 1
= (f -f ) = (f -1 L - 1

% a1, 4 X ml, 2 T Tm, s X “tmel, s m,!,) X (fm+1,z fm,z) 20a%) .(fm+2,z" fm.z)
af| 1 \ 1 L - ) 1l (¢ -
ﬁlm-l,z RN S WY % Unye = T, e ox myf o Tm-ly0 206x) “Tmyp T m—2_,z.)
3f 1 Lo - s . 1 (s -
£ e 5T T, 1~ Tme1, g0’ 5% faet e~ oo L N R S
a Lo e | R e e R SO
5% 241 . 2= Yme, -1 T fmen,e-1 AX “Tm,8-1 m-1, 4-1 AX m+l, 4«1 Tmel, -1
af 1 e -t ) 1 (s -t .
55 wl.t 5T (fm+1,1,+1 - fm+1,,z-1) Ay Tm+l,f+1 m+l, L 2(8y) ( m+l, 4+1 m+l.1,-l)
3t 1 c ) L (s -t ) 1 (¢ s )
37 ml.s E(A_y)- 1,441 - -1, -1 Ay Tm-l,2 m-1, g-1 Z(Ay5 m-1, 4+1 m-1l,4=1
3f 1 1, L -1 ) L (s vy
Wim,ge1 | &Y (£, 441 = T, 5 o1 =T,y by “mygl - Tmid 207 Fngeez T, s)
3 1 1 ' L¢ -« ) 1l (s _¢
55 naed 5 (fm.z fm,z—l) = (fm.l, - fm,},—l) Ay Tm,2 m, 2-1 2(Ay) m.4 m.z-z)
e l_ (¢ ~25 o+ f . ) 2 (s cor vt )| T U - Yagt faa,s) (s 2f
o _— (AxF “m+l,t = “Tm,t m-1,2 | Tax)7 ‘“mel, g m,f - m-lfz ) ! ' m-1.4 ax)2 m+l, ¢ e W fm-l.z)
¥*r 1 . 1 : ‘ 1.

. £ -2t 4+ f ) £ -2t - f - 1 -
3 m, L Gyl myael m2 " Tmyt-l | TR Umaasl m, L m,!,—l) Gy (fm,1,+1 me,.z * fm,!,-l) 053 & (fm.!,+1 me.z * fm.!,—l)

8h



k9

shown in equations (4-10) were used, except for method 3. If method 3
were to be used, it would require storage of the data of three con-
secutive time planes in the computer memory. This, in turn, would
reduce the available storage locations and the number of net points

in the flow field would have to be reduced.

Methods of Computation

The computation was carried out columnwise and always started
from the lower left corner. A field layout similar to that of
Fig. 13 was used, The first time plane computation was based on
the assumed initial conditlons. Thereafter the computed values for
a given time plane were used to compute the values for the following
time plane. A rectangular field was defined in the computer program
rather than the actual field shape, as shown in Fig. 13, No
computation was required for those poihts inside the solid wall
because the fluid properties at those points were preassigned to
be zero. In most cases, a Ax/Ay = 2 mesh spacing was used. The
field size was 32 columns by 41 rows or 35 columns by 55 rows,
depending on the cavity dimensions.,

If any computed pressure was above or below the limits given
(normally + 50% of the nozzle pressure), the job would be terminated
automatically., The last set of the computed values was stored on a
magnetic tape which could be used as the input if it was found
necessary to do further computation.

In general, U was computed first, then v, and then p. As can
be seen in Table I, the momentum equation in x-direction was always

used for solving U. If the energy equation was used to solve for p



according to equation (4-5), U and Vv values had to be known at every
point in the field before p could be computed because the velocity
gradients had to be evaluated in the same time plane. For this
case, the computation of each time plane was accomplished by going
through the field twice. Alternately, one computation was sufficient
if backward differences were used to evaluate the velocity gradients
either by assuming both U and v were zero on the vertical walls of
the nozzle exit plane or by approximating the velocity gradient
terms at the net points in the first column with the values of the
previous time plane. When the continuity equation was used to solve
for v, backward differences were used to write the continuity
equation in difference form. Evaluation of v for each net point in
the first column was made by either assuming zero velocity on the
walls or, as an approximation, the values computed in the previous
time plane.,

Although the equations used in the computation and the output
data were in dimensionless form, the input data such as the nozzle
exit velocity, temperature and gas constant of the fluid, width of
nozzle, dimension of the cavity, Ax and the reference length Ay were
all entered with physical dimensions; conversion to dimensionless

form was accomplished within the program.

Results and Findingg

In this part of the study, mainly equation set 1 in Table I was
used. That is, momentum equations were used in the x and y directions
to solve for u and v, respectively, and the energy equation was used

to solve for p. The continuity equation was only used implicitly in



these equations.

Different methods of representing the governing equations in
difference form and the boundary conditions, and imposing different
constraints near the nozzle exit were tried, but it was found that
the value of the blurring parameter w had the most influence on
the computed results. If a small ®w value was used, the computation
became unstable for all methods of representing equation set 1 in
difference form, neighboring points, triple-value points, artificial
potential core, etc. With a large value of w, stability was main-
tained but excessive blurring resulted; eventually large sinks were
created in the flow field. The stability of the computation depends
almost exclusively on the selection of the values of w and 0o. The
estimated effect of w and ¢, on solution stability is shown in
Fig. 8.

When the representation of the initial conditions of the triple-
value net points (see Fig. 5) was used, the triple values would
become essentially identical in the region some distance from the
nozzle after a period of computation time. For those triple-value
points near the nozzle, there was no convergence to a single value
because the triple-value at the nozzle exit was constrained at all
time; however, there was a tendency to approach the middle value.
From the nozzle plane to the following column, the values of the
triple-value point changed considerably, especially thevupper and
lower values. The higher value decreased and the lower value
increased, this, in turn, caused some difference in pressure among
the triple values. When the zero velocity constraint at net points

V and W in Fig. 4 was applied, the pressure at these points increased

51
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to some extent, thereby causing a higher pressure increase near the
nozzle than would occur without this constraint, These jumps in
pressure are not favorable to the computation. If the jump is
large, the resulting pressure pulse can propagate throughtout the
field as the computation proceeds; this pulse may be amplified or
damped depending on the other conditions and the values of w and

0, used.

53

Instead of imposing the constraints mentioned above, an artificial

potential core was added to some of the computations (e.g. see Fig. 6).

A large value of w must be used to keep the computation stable;
however this causes the jet centerline velocity to decrease too
rapidly, especially near the nozzle. The pressure of the net point
downstream of the last point of the artificial potential core had an
unusually high pressure rise due to the sudden decrease in velocity.
This pressure jump may have the same effect as mentioned in the
preceding paragraph. Without the assumption of an artificial
potential core, the rate of jet velocity decay was the highest in
the region near the nozzle. In order to retard the rate of jet
velocity decay near the nozzle, smaller values of W were used on
the second and the third columns than for the rest. of the field.
But then instability set in very quickly. The use of larger W values
in the second and the third columns did not improve the results.
Methods of estimating the field boundary conditions used are
shown in equations (4-10). The first method tended to enlarge the
existing gradient; the third one tended to create a suction effect
if the product of flow velocity and time increment did not match

the space increment; the fourth one slightly reduced the enlargement
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effect of the first method. Consequently, more time planes are
required to obtain a steady state result using the time dependent
method if instability is to be avoided. The second method in
equations (4-10) was found to be most satisfactory. It helped to
suppress the end effect and to force the solution to reach an
asymptotic value faster than with the other methods.

In general, a large W value was required to stabilize the
computation; this also created sinks in the computation field and
the mass rate of flow decreased steadily as the computation continued.
For this reason, equation sets 2 and 3 in Table I were tried with the
hope that the mass rate of flow might be conserved. However, these
approaches were not successful either; instability resulted even
earlier. The results obtained with equation set 4 were similar to
those of equation set 1. Although a larger W value was used in
equation set 5 in the computation, the results were not stable.

No noticeable difference was found from the alternate use of
equations (4-12), (4-13) or (4-14) to evaluate the apparent

kinematic viscosity.
Solving for p by Iteration

It was realized that for an incompressible flow, any pressure
in the flow field would influence the whole field and it might be
preferable to use an iteration method to find the pressure at every
net point by using the known velocities u and V. The numerical
method thus becomes implicit rather than explicit. Fromm (23)
suggested this method and used it in a study of the wake structure

of an incompressible, viscous fluid flow behind an obstacle. The
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equation used to iterate for the pressure was obtained by differ-
entiating the x- and y-momentum equations with respect to x and y,
respectively, and then combining the results. Since the iteration
was to be done on a fixed time plane, the time derivative terms

were ignored. The necessary equation for an incompressible turbulent

flow is as follows (see Appendix C for derivation):

—— Dt =D =-7Qq s (4-15).

where

G = al [(’ﬁ)2 + W] + iai;— [("7)?*“ W]
2P oy

.2 gj.ﬁ 7T (4-16)

The initial condition used was similar to the one shown in
Fig. 4, but no triple-value and zero velocity constraints were
imposed. No artificial potential core was added. The points
'originally represented by triple values were.répreéented initially
by a single value, namely, one-half of the nozzle exit velocity (see
Fig. 14)., Blurring terms were dropped completely. Turbulent shearing
stresses were estimated according to equations (3-9) and (3-11), and
the turbulent normal.stresses 0, were neglected because the Sﬁi/axi
terms were assumed to be small. Evaluation of the apparent kinematic
viscosity € was modified by using a different origin of the turbulent
jet mixing., Miller and Comings (34) found that the starting point
of the turbulent jet mixing is about 1.572 nozzle widths upstream
from the nozzle exit plane. The value of u in equation (3-13) was

represented by (umax - umin)' Because of the reverse flow in the
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cavity, the jet mixing was considered to be similar to the mixing
of two streams. The apparent kinematic viscosity was correspondingly

expressed by

- 1 - -
€ = ;;; (umax - umin) « (1.572 W + %), (4-17)

where W is the nozzle width.

The neighboring net point relation as shown in Fig 7(b) was
used. In order to use central differences to write the simplified
momentum equations.in equations (4-1) and equations (4-15) ¥
in difference form, the properties at (m + %, £ + %) ,(m + %, 4 - %),
(m - %, £ +7%) and (m - %, £ - %) points were approximated by the

following relations

fm#%,l#z = &fm,z * fm,£+l * fm+l,2+l * fm+l,,1?,)/L+
fm# oA T '(fm,ﬂ * fm+l,£ * fm+1,£-l * fm.,,l,--l)/L+ (4-18)
fm-%,z#a\?. (fm,z * fm—l,.@ * fm-l,£+1 * fm,z+l)/4

Tateytp = Tmpt * Tmya1 ¥ Tan, a1t faon, 0/

The space derivative terms appearing inﬂequations (4=1) (i.e., the
second order derivatives), were written in difference form by
considering (m+¥2y £)y (metzyd), (m,ﬂ#%) and (m,2-}%) as reference
points rather than (m+l,%), (m-1,2), (m,4+l) and (m,£-1), respectively.,
These terms are listed in Table IIT,

Backward differences were used to write the continuity equation
in difference form when it was used to solve for v. As before,
forward differences were used for the time derivative terms,

The flow field considered in this example is shown in Fig. 13.

Square mesh spacing with Ax = Ay =.0.15625 inches was used, and the

nozzle width was 0.625 inches. The separation step and the recom-
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- TABLE III

FIFTH METHOD OF REPRESENTING DERIVATIVES BY FINITE DIFFERENCES

Derivative Finite Difference
of 1

— (£ -f )
B;m#}/z,,e Ax Tmilyd my 4
af 1
df 1
% m, L Bx (fm+%,ﬂ+% - fm-%,ﬁ#%)
of 2;_(f _ 5 )
B; m,ﬂ—% Ax m+1/2, 2"‘12 m"'VZ, -~
af _ . . 1 - R

) ' Ty',(:m#/z, % T fm+%_,.@-1z).

af] _ 1
e T Catyten ™ Tnte, 8
of 1
= = (f -f )
of 1

— - f
3y m, -5 Ay (fm,!, my =1




pression step heights were respectively 4 and 3 nozzle widths, and
the cavity length was 10 nozzle widths. The nozzle exit velocity
was 200 fps and the reference velocity was 958.23 fps ( = acoustic
velocity//Y).

The evaluation of U and v was identical to that used previously.
Pressure was computed by the procedure discussed helow. After
computing U and Vv at each new time plane, the value of Q was
computed according to equation (4-16) with the Tﬁzjz'terms neglected

and the u'v' term expressed in the form shown in equation (3-11).

58

After all u, v and Q values for every point in the field were computed,

the pressure at each point in the field was estimated from equation
(C-6), the difference form of equation (4-15). Before proceeding to
the new time plane, the pressure at every net point was iterated
by the same method until the difference between the old and new
values at every point was smaller than a specified limit. After
~ this 66ndition was satisfied at every net point, a set of new u and
Vv values was computed based on the latest values of pressure; the
entire procedure was then repeated,

The dimensionless pressure at the nozzle exit was held at unity.
With equation set 6 in Table I and 0, = 0.5, for the first 300 time
planes less than 6 iterations always satisfied the given limits of
+ 0.00001 between two iterations. The rate of the W velocity decay
on the nozzle centerline is plotted in Fig. 9. The disturbances
built up from the end of the field and were moving upstream with
increasing strength at the end as the computation continued. Thus
the representation of the field boundary by the second equation of

equations (4-10) is not valid here. At the 300% time plane, the
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pressure was still very close to 1 except for those points in the
vicinity of the disturbed region. The pressure in the cavity was,
in general, smaller than that in the region of the open side.
Predictions of the velocity field showing reverse flow in the cavity
and the pressure distribution on the cavity walls were not very
successful.

With equation set 7 in Table I, the computation became
unstable at an early time plane. It can be concluded that use of
the continuity equation to solve for v is not a good technique in

the methods of this study.
The Later Attempts to Solve for u, v and p

This part of the study was done after the computations shown
in Chapter V were completed. In this way, the results of compu-
tations based on. incompressible and compressible flow assumptions
could be compared. The method of computation.was'idgntical to the
similar one discussed in Chapter V. The field of computation was
identical to thé one shown in Fig. 13. The nozzle exit velocity
was 200 fps and the values of w and O, were, respectively, 0.10 and
0.15. The computed results of the velocity profiles at the 2000t
time plane are plotted in Fig. 10. It is seen that the jet center-
line stays almost horizontal in spite of the existence of the cavity,
and the jet centerline velocity décay is too great; at the 2000t
time plane, the maximum jet velocity at 12 nozzle widths downstream
of the nozzle is only about 33% of the nozzle exit velocity instead
of 78%, as found in a typical experiment. The strength of the

reverse flow in the cavity is unusually low, and the y-component
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velocity is negligibly small everywhere in the field.

The relation of the nozzle centerline x~component velocity
change to the time plane of computation is shown in Fig. 11, The
velocity converges slowly to an asymptotic value. However, the
velocity near the nozzle has started to recover, but it decreases
steadily in the downstream region.

The computed pressure throughout the field is not‘very
different from the pressure at the nozzle exit, that is, unity.
The pressure fluctuates from point to point in the fourth decimal
place. Consequently, the constant pressure lines are not plotted;
however, the average pressures in the cavity and in the open side
are shown in Fig. 12. The solid line shows the average pressures
on the open side (simple average of valués from 22nd to 37% rows)
and the broken line shows those in the cavity (simple average of
values from lst to 16% rows). The values of pressure from the 17t
to 218t rows were not taken iﬁto;account because this region‘was
considered as the dividing zone of the cavity and the open side,

Up to about 4 nozzle widths downstream from the nozzle, the average

pressure in the cavity is slightly lower than that of the open side,

whereas from 4 to 10 nozzle widths, the trend is reversed.

With an IBM 7040 computer system, it took about 27 seconds
to coméute one time plane with a flow field size of 48 columns by
39 rows. With an on-line printer printing out every 100 time
planes, an average of 47,31 minutes was required to compute 100

time planes.
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CHAPTER V

NUMERICAL SOLUTION OF THE GOVERNING FINITE

DIFFERENCE EQUATIONS FOR COMPRESSIBLE FLOW

In Chapter IV, attempts were made to solve the flow character-
istics of a low velocity, incompressible, plane, turbulent jet
issuing from a nozzle over a cavity by means of the numerical
technique. It was felt that the mass rate of flow was not conserved
and it might be necessary to include continuity equation explicitly
in the computation with the hope that this shortcoming could be
overcome. In order to use the continuity equation in the computation,
the density'a has to be allowed to change, which makes the flow a
compressible one. Even though the flow speed is still low, the
above allowance is permissible. The governing equations derived ih
Chapter III, equations (3-15), can be applied directly here. The
- basic method used in this chapter is identical to that in Chapter IV.

The basic programming logic is presented in Appendix D.
Description of the Methods Used

The methods used in this chapter were generally similar to
those used in Chapter IV. The representation of the initial
conditions was similar to that shown in Fig. 4. The representation |
of triple-value net points was alsoc similar but the density had to

be adjusted according to the velocities assigned to each of the
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triple points. Pressure at the nozzle exit was held constant at all
time and the densities at the triple-~value net points there were
adjusted by assuming all fluid issuing from the nozzle had the same
total energy and the products of densities and temperatures of the
three points were ehual. This means that at the lower value of
velocities the density must be lower also, The initial density of
regionS(:)in'Fig{'h was adjﬁsféd‘by aséﬁﬁingfthéTfﬁmpérétureAdf
those regions was the stagnation temperature of the fluid from the
nozzle.,

After several computations, it was found that the value of @
had to be large to kéep the computatioﬁ stable, but this, in turn,
increased the rate of jet centerline velocity decay. The addition
of a blurring term in the continuity equation caused an apparent
"loss" in mass rate of flow. In an attempt to eliminate the compu-
tational "leakage ", the blurring term was dropped from the continuity
equation but retained in the remaining equations. However, the
computation became unstable quite early. When the blurring term
was eliminated from the energy equation, the results were not
favqrable either,

~In order to see the effects of the blurring term and the
turbélent shearing stress on the results of the computation, the
value of the turbulent shearing stress was artificially increased
or decreased by the multiplieation factors of 20, 10, 5, and O.
It was found that the relation of w and g, to the stability of
computation was unaffected by the change of the amount of the
turbulent shearing stress, However, with a higher multiplication

factor, the jet spread slightly faster. This sﬁowed that the
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turbulent shearing stress appeared to have the same effect as the
blurring term on the jet mixing, but of much smaller magnitude.

In addition to the assigned velocities at the triple-value net
points shown in Fig. 5, two other combinations of nozzle-exit
velocities were also tried. With a combination of assigned velocities

of 0.2 1 ,a5%

, 0.8 u___, the jet spread faster than with the
noz oz noz

combination 0.0 w___, 0.5 1
ol no

oz » 10w o (see Fig. 5). Similarly,

2

the one using 0.5 U oat 0.5 oozt 0.5 unoz combination had the

Z Z

greatest jet spread rate. The selection of the velocity combination
of the triple-value net point did not seem to have any influence on
the stability of computation.

The method of taking finite differences did not significantly
affect the computed results, regardless whether Fig. 7(b) or Fig. 7(d)
was chosen to represent the relation of the point (m,£) with its
neighboring points. The finite differences were taken according to
each corresponding column in Table II. When the finite diffefences
were taken according to the method shown in Table III, the rate.og
jet spread was found to be slightly greater than that of the other
two methods tried.

It should be noted that the representation of the turbulent

normal stress, 041 38 described by equation (3-12), that is,

=25 ¢ EEE =« 5 (ul)2
Gi =2 p € (ax)i = - u;._ N (5—1)
may not be valid. Physically the turbulent normal stress can be
either positive or negative depending on the value of (%%) , and
i

the quantity E'(uiih is always positive. If the relation in

equation (5-1) is used, the turbulent normal stress can only be
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negative. In order to determine if the E'Zu§52terms could be

neglected, the values of ) Zu]!.F were estimated by following relations:

s = 257 () (-2
e

PRCIC FiR (5-3)

o (u)2 = o. (5-4)

No significant difference in the computed results was observed regard-
less which relation was used. Though the differences were very small,
equation (5-3) gave the lowest and equation (5-4) the highest rate of
jet spread. TFrom this exploratory computation it was decided to
neglect the E'TGETEIterms completely in the computation to save
computer time.

Neglecting the turbulent normal stress, the governing equations

become:

23 ST LA (D) -
+§£(pu)+-a—§(pv)-0

[o%4 02
‘-'-
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and

S |

e =

%[‘5‘2 el (5-6)

vy - 1
Computed Results for the Subsonic Flow Case

The geometrical arrangement of the cavity used in this chapter
was similar to Case 1 of Fig, 27. If a square mesh of Ax = Ay =
0.15625 inches is used, the flow field under consideration can be
represented by a net point field as shown in Fig. 13. The data used
in the computations are listed in Table IV and the nozzle exit
velocity was represented by the relation shown in Fig. 14. The
procedure of computation is presented in Appendix D. Equations (5-5)
and (5-6) were used in this example., The apparent kinematic viscosity
was evaluated with equation (4-17) and the finite differences were
taken according to the relation shown in Table III. The relation
between the point under consideration and its neighboring points
was established as shown in Fig. 7(b).

The value of w was 0.10 at the beginning and was reduced to
0.05 after computing 1119 time planes in this example; this reduced
the excessive blurring effect. The computed velocity profiles at
the 2000t time plane are plotted in Fig. 15. By comparing the
velocity profiles plotted in Figs. 10 and 15, almost the same
conclusions can be made for this example as for the example shown
in Fig. 10. Fig. 16 shows the x-component velocity distributions
at the 1000% time plane for both incompressible and compressible
cases under the same conditions. It is concluded that the compu-~

tation method is more significantly affected by the presence of the
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TABLE IV

FIXED VALUES FOR THE COMPUTATIONS

Subsonic Flow Case Supersonic Flow Case

qhoéfps) 200.0 2270,0
v (fps) 0.0 0.0

noz
a (fps) 958,23 958.23
TnoéoR) 535.0 535.00
S
Pl 1.0 1.0
pnéz 1.0 1.0
o, 0.9954029 0.6667467

1/Zunoz
Y 1.4 1.4

1b, -~ ft

R Ejirjj;ﬁi 53.3 53.3
g 11.0 29.3
g 0.15 0.5

o .
w 0,10 (0.05) 0.2

V.
s /%E ey
~ 003 Uy,
O >
© “noz
O—
7 0.5 Ynoz

: 7}

Figure 14. Velocity Distribution
at the Nozzle Exit
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blurring terms than the assumption of incompressible or compressible
flow.

The computed pressure over the field was in general very close
to the nozzle pressure, that is, the reference pressure. Due to
fluctuations from point to point in the fourth decimal place it
was not meaningful to plot the pressure distribution; some average
pressures are shown in Fig. 17. The average pressure was estimated
by a method similar to the one shown in Fig. 12. In Fig. 17, the
average pressure in the cavity is always lower than that of the
open side and the average pressure gradient in the x-direction is
far greater than the ones shown in Fig. 12. The difference between
Figs. 12 and 17 might be due to the different @ values used in the
computations.

With print-out every one hundred time planes it took about

58.42 minutes with an IBM 7040 system to perform these computations.
Solving for p by Iteration

As in one of the examples in Chapter IV, an iteration method
was also used to solve for p for the compressible flow case. The
method and the governing equations were identical except for the
inclusion of the continuity equation. Density was obtained from
the continuity equation, x- and y-component velocities were solved
for using the x- and y-momentum equations respectively, and pressure
was computed according to equations (4-15) and (C-5) by iteration.
The rate of nozzle centerline x-component velocity decay is plotted
in Fig. 18. A comparison of Figs. 9 and 18 shows a stronger

disturbance at the nozzle exit and a weaker one at the downstream
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end for the present example. Except for this difference, the same
conclusions drawn for the previous example can be equally applied
here. Similar to the preceding example in this chapter, the addition
of the continuity equation to the set of governing equations gave

no improvement,

Computed Results for the Supersonic Flow Case

Because the prediction of velocity and pressure distributions
of the low speed jet by the methods described above were not
successful, a supersonic flow jet mixing problem with the same
geometrical arrangement as for the subsonic flow case was solved
for comparison., The data used for the computation are shown in
Table IV, the representation of the nozzle exit velocity is shown
in Fig. 1%, and the net point field is shown in Fig. 13. The method
of computation is exactly identical to the one used for the subsonic
flow case. The velosity and pressure distributions of the computed
results of the 1000t time plane are plotted respectively in Figs. 19
and 20. At the 1000% time plane, the computed values have not yet
reached their asymptotic values but are converging slowly.

Fig. 19 shows clearly the entrainment of fluid from the open
side of the cavity and a fairly strong reverse flow in the cavity
itself. The jet bends toward the cavity first and then outward.

The jet reattaches to the upper part of the recompression step, as
can be seen from the high concentration of constant pressure lines
near the downstream upper corner in Fig. 20. The local low pressure
in the cavity is located near the center of the cavity and the trend

of the pressure distribution on the cavity walls is similar to that
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measured by Charwat, et al. (ik) for a different cavity and jet
arrangement (see Fig.1(k)). The application of this method in
the solution of the supersonic flow jet mixing problem looks
fairly promising.

About 58.68 minutes were required to compute 100 time planes

and one print-out of the results.



CHAPTER VI
EXPERIMENTAL STUDY

The major objective of this experimental study was to obtain
qualitative information about the partially confined, two-dimensional,
turbulent jet, so that comparison between the computed and experi-
mental results can be made. The experimental apparatus, however,
was so designed that it can be used. to study a wide variety of
jet flow problems such as the effects of side walls, receilvers,
receiver-diffusers and cavities on the main jet and the flow

characteristics in these elements.
Description of General Apparatus

A 3-hpy 1 to 7 ratio variable drive motor was connected
directly to a blower. The supply air pressure was adjusted by
regulating the motor speed. The output of the blower was passed
through a 6-inch flexible hose to a plenum chamber. A schematic
drawing of the test setup is shown in Fig. 21.

The first section of the plenum chamber was a 6 to 12 inch
conical diffuser with a 18-degree included angle. This was followed
by five l2~-inch diameter cylindrical sections. According to the
original designer, K. N. Reid (k2), the first section contained in
succession, 4 inches of fiberglas, 3 inches of rubberized packing

material, and approximately 5000 paper soda straws. A taut 30 mesh
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copper wire screen was soldered to the rear end of the first section.
This was followed by three intermediate, 5-inch long cylinders each
with a taut 30 mesh copper wire screen soldered to its rear end.
After this, a final 20-inch long section of cylinder followed. The
downstream end of this last section was joined to the nozzle assembly.
The supply air pressure and temperature were measured 16 inches
upstream of the nozzle assembly. Having passed through this plenum
chamber, the supply flow entering the nozzle could be considered

to be uniform and steady.

The nozzle assembly is shown in Fig. 22. It consisted of a
nozzle block (%" aluminum stock) with a rectangular opening and two
sliding plates (%" aluminum stock). The nozzle height was fixed
at 5 inches and the maximum opening of the nozzle was 2J2 inches.

A %~-inch deep, 5-inch wide groove was cut horizontally across
the nozzle block on one side and 3 x 5-inch rectangular opening was
cut at the middle of the groove. Four sides of the opening were
ground to an angle of 45-degree on the upstream side and polished.
This design served to reduce the possible disturbance caused by
the area reduction from the plenum chamber to the nozzle opening.
One end of each of the nozzle sliding plates (12" x 5") was rounded
off with an >-inch radius circular arc and polished. Four slots
were made on the nozzle sliding plates, so that they could be
fastened to the grooves of the nozzle block. The nozzle plates
could be adjusted to give a maximum nozzle opening of 2} inches.
Two rows of screw holes on the face of the sliding plates were
made for the purpose of the addition of side walls or a cavity

assembly with different separation offsets and angles. The maximum
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allowable offset from the tip of the nozzle plate was 10 inches. A
small amount of silicon grease was spread over the groove as a sealant
before the nozzle plates were fitted to it.

The bottom plate of the flow channel was a 24-inch wide, 57-inch
long, ¥%~inch thick aluminum plate and was extended to a total length
of 12 feet, 3 inches, One end of the bottom plate was attached
to the nozzle block. The whole span of the bottom plate was set on
ten adjustable supports. The top plate of the flow channel was not
a single piece. Several different lengths of 3/8-inch thick plexiglas
pieces, ranging from 2 to 20 inches, were made, so that, a probe
traverse unit could be placed at the desired location to make velocity
profile measurement. In addition to these, one extra long piece
(6 ft) was made to cover the unused part of the flow channel. All
plexiglas pieces were 24 inches in width, excluding the flanges.

Trose pieces, including the probe traverse unit, were joined together
with threaded rods and nuts. One end of the assembled top plate
was fastened to the nozzle block.

Depending on the kind of experiment to be made, different
means of support for the top plate were used. The height of all
the side walls, receivers, diffuser and cavity assembly was 5 inches.
Different test geometries could be easily set up on the bottom plate
and the whole assembly covered with the top plate. The resulting
flow channel was sandwiched between a series of parallel bar clamps,
as can be seen from the Figs. 23 and 26.

On the bottom plate of the flow channel, there were 204 pressure
taps with a high concentration near the nozzle exit. The holes were

made with a No. 54 drill (0.055" diameter) and an l-inch long No. 17



Figure 23.

Photograph of Apparatus and

Test Section
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(0.059%" 0.D.) stainliess steel hypodermic tubing was driven into
each hole. After insertion of the hypodermic tubing, each hcle was
checked carefully at the face of the bottom plate and made as
uniform as possible by & hand drill if the hole was not round.
Clear plastic spray was applied around the hypodermic tubings
from the other side of the bottom piate to eliminate possible
clearance between the hole and tubing. Leakage was thoroughly
checked and eliminated. Depending on the region of interest in
the flow field, 147 pressure taps could be selected and
connected to a tiltable 50-tube manometer. The unused taps were
plugged.

In order to make this 50-tube manometer applicable for a greater
number of pressure measurements, a guillotine switch system was
constructed. This made it possible to measure up to 147 pressure
readings without changing the pressure tap commections. One tube
among the 50 tubes was left opern to the atmosphere for reference.
The guillotine switch system cousisted of a three-way adapter and
three sets of guillotines (see Fig. 24}, The mancmeter board could
be tilted to any desired angle from ¢ to 90 degreessy three pre-fixed
positions were provided to give multiplication ratics of 1:2, 1l:4, and
1:5. Two additional inclined manometers were used with the pitot-
static probe.

The probe traverse unit included o hase plate (26" x 4 15/16"

x 3/8"), two guiding pieces and a siiding probe carrier (46 1/2¢
x 2 5/8" x 3/41) and a probe carrier advancing gear unit which
consisted of a worm (single thread), worm gear {30 teeth), pinion

(12 teeth) and rack (2 feet), all of 24 pitch. A slot, ¥%-inch in



Figure 24.

(a) (b)

(c)

Photographs of the 50-Tube Tiltable Manometer
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width and 20)>~inches in length was milled from the base plate so that
the probe could travel across the flow channel. An O-ring groove
was cut around the slot and a 1/8-inch O-ring was laid in the groove;
a small amount of silicon grease was applied to the O-ring to aid in
sealing.

A rectangular groove was milled on one side of each of the
guiding pieces and the two sides of the sliding probe carrier were
milled to match them. The rectangular groove of one of the guiding
pieces was deeper than needed to match the probe carrier. This
space was provided so that the rack could be mounted on the probe
carrier., At the mid-way point of the probe carrier, a hole with
a 3/8-inch normal pipe thread was made to enable one to use different
kinds of probes, such as pitot-static probes, directional probes
and hot-wire probes, all with the same traverse unit. Worm gears
driving a rack-and-pinion were assembled at the end of the rear
guiding piece and the rack was fastened to the downstream edge of
the probe carrier, see Fig. 25. The worm gear and pinion were
mounted on the same shaft (3/16" diameter). Each revolution of
the worm made the probe travel 0.0523 inches.,

For velocity distribution measurements, a DISA (DISA ELEKTRONIK
A/S, Herlev, Denmark) Constant Temperature Anemometer, Type 55A01,
and a pitot-static probe (0.060" diameter, United Sensor & Control

Corp., No. PAA-5-J) was used.

Procedure and Results

The nozzle opening was set at 5/8-inch (i.e., a nozzle aspect

ratio of 8) throughout the tests. Due to the size of the probe, it



Figure 25. Photograph of Gear Assembly
for Probe Traversc Unit

(a) (b)

Figure 26. Photographs of Tecst Section
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was preferable to use a bigger nozzle opening. On the other hand,

it was desirable to have a smaller nozzle opening from the viewpoint
of obtaining two-dimensional flow. With an aspect ratio of 8, the
flow was no longer two-dimensional but it had been found, according
to some previous experiments conducted for the study of jet reattach-
ment, that the deviation from two-dimensional flow was still within
the tolerance of engineering accuracy.

Due to the configuration of the flow field of this study, shown
in Fig. 27, the flow directions varied. In most cases there was
a reverse flow in the cavity. The orientation of the hot-wire probe
was difficult since it had to be placed in the flow field with its
axis perpendicular to the flow direction. Before the calibration of
the hot-wire probe was made, the hot-wire anemometer was calibrated
according to the instruction manual supplied by the manufacturer,

A DISA miniature hot-wire probe type 55425 (45 mm long), with
type 55A21 (91 mm long) probe support, was calibrated by comparing
measurements with the hot-wire probe and a pitot-static probe, at
a location 0.5 inches away from the nozzle and 2.5 inches from the
flow channel bottom plate.

Nozzle openings of 5/8 inches and 1 inch were used for the
hot-wire probe calibration. A warm up period was allowed before any
data were taken. The estimated error in the calibration was 7% of
full scale. The air velocity was calculated from following equation

Vs ® 2.94528 /TBp) T fps , (6-1)
where Ap is the difference between total and static pressure in inches
of water and T is absolute temperature in degrees Rankine. The

pressure at the point of measurement was assumed equal to the
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atmospheric pressure and the temperature was assumed to be stagnation
temperature as measured in the plenum chamber.

Calibration data for the hot-wire probe are plotted in Fig. 28.
The best straight line fit of the data in the range of the flow
velocities used was found to be

D? - D,® = 6.4795 o (6=2)

The configuration of the test setup is shown in Fig. 27. All
dimensions except H; were held constant for all tests. H, for
case 1 and case 2 were 2 1/2 inches and 3 3/4 inches respectively.
For every setup, two different supply pressures, 9 inches and
1 3/4 inches of water, were used. In addition to those pressure
taps on the bottom plate of the flow channel, some more pressure
taps were made along the middle plane of the walls of the cavity
assembly. Typical pressure distributions are shown in Figs. 31(a)
and (b).

The wire of the hot-wire probe was placed at the middle plane
of the flow channel, that is 2 1/2 inches from the bottom plate.
To measure x-component velocity, the wire of the probe was placed
in parallel with the y-axis, and it was placed in parallel with
the x-axis for y-component velocity measurements. The walls of the
cavity assembly were actually used as a reference for measurements.,
Hot-wire readings in the region of the vortex in the cavity were
quite unstable, indicating that the flow in the cavity was not
actually very stable. However, the average readings were taken
from the anemometer to compute the average velocity.

The measured y-component of velocity was not used to plot

the velocity distribution because the calibration curve was not
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satisfactory due to the fact that the y-component velocity was
always low. The hot-wire anemometer could not give accurate measure
of ¥ when it was much less than u, locally. Attempts were made to
compensate for the U effect, but this could not be done with precision.

The approximate flow direction was found by placing a sharp
edged, 1/32-inch thick, flat aluminum sheet cut to fit the flow
field in the same plane as the probe wire had been. As can be
seen in Figs. 29, about a 1/4-inch space existed between the contour
of the cavity walls and the edges of the plate to eliminate possible
three dimensional effects near the walls. The plate was supported
by three piano wires through the pressure taps on the cavity wall
and the open side was supported at four locations by C-clamps.
A thin layer of lampblack and kerosene mixture was uniformly painted
on the surface of the plate and the top plate was replaced in position.
The blower was turned on for 5 to 10 minutes, depending on the
supply pressure, to form a steady flow pattern. Typical flow
patterns are shown in Figs. 29, These pictures were taken with the
top plate removed and a transparency with 1/2-inch grid lines placed
on the plate. Figs. 29 (a) and (b) are the flow patterns for the
same geometry (H; = 2,5") and for supply pressures of 9 inches and
1.75 inches of water, respectively. Figs. 29 (c¢) and (d) are for a
geometry having H, = 3.75 inches and for supply pressures of 9 inches
and 1.75 inches of water, respectively.

It is seen that a small difference in supply pressure does
not actually change the flow pattern but a difference in gecmetry
has considerable effect. With a separation step of 2.5 inches, the

main jet reattached to the upper portion of the vertical wall at the
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end of the cavity. With a separation step of 3,75 inches, the jet
reattached to the horizontal wall near the corner of the recompression
step. The difference in the formation of reverse flow in the cavity
also can be seen in Figs. 29.

The velocity profiles shown in Figs. 30 (a) and (b) were
determined from the x-component velocities as measured with the
hot-wire probe and the flow angles as measured from the flow
pattern pictures for the cases shown in Figs. 29 (a) and (c).

The estimated pressure distributions for the same geometries are
shown in Figs. 31 (a) and (b).

In general, high pressure regions were located at the upper
and lower corners of the recompression step and low pressure regions
were located at the central portion of the horizontal wall in the
cavity and the vertical wall of the recompression step. Low pressure
also existed in the location of the vortex center; this is not shown
in the figures due to the lack of data. Besides those few particular
regions, the pressure was atmospheric. Both pressure and velocity
distributions some distance downstream of the recompression step

became similar.
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CHAPTER VII
COMPARISON OF MEASURED AND COMPUTED RESULTS

The measured velocity profiles plotted in Fig. 30 (a) and
the computed velocity profiles plotted in Figs. 10 and 15 are all.
for the same geometry and flow conditions (nozzle exit velocity of
200 fps). Comparison of the measured and computed velocity profiles
shows that the rate of jet centerline velocity decay was excessive
for the computed profiles. At 11 nozzle widths downstream, the
x-component centerline velocity was experimentally 78% of the nozzle
exit velocity, whereas the computed velocity showed only about 34%.
Prediction of the reverse flow in the cavity was not successful;
experiment showed a fairly strong recirculation of fluid in the
cavity., The computed velocity profiles were almost unaffected by
the cavity.

For low jet velocitles the pressure distribution in the flow
field was practically atmospheric ag can be seen in the counstant
pressure lines plotted in Fig. 31 (a)... The accumulated truncation
and round-off errcr of the computer solution might have exceeded
the actual change of the pressure in the field under consideration.

The velocity profiles computed for the supersonic flow jet
case (Fig. 19) show a similarity to the measured profiles with the
200 fps jet (Fig. 30 (a)). The jet centerline velocity at 11 nozzle

widths downstream from the nozzle for this case is about 66%, which
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is closer to reality. The recirculation in the cavity is also strong-
er for this computed case. The computed pressure distributions associ-
ated with the supersonic flow jet and the measured pressure distri-
butions assoclated with the low speed jet of 200 fps are also similar,
as shown in Figs. 20 and 31 (a). These results suggest the use of a
higher value than the actual velocity for computation and then a suit-
able reduction of the computed results for the actual case being
considered,

An order of magnitude analysis is carried out below to explain
why the supersonic flow computed results compared better with actual
nmeasurements than did those for the subsonic case. The governing
equations, equations (3-15) and the general difference equation,

equation (3-26) are rewritten here for convenience:
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and
n+l n T X X n
fm,ﬂ - fmgz T 2n, [Fm+1,£ - mel,z ]
n
T s Vi
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(3-26)
1 2
q 4 - 2 - 2
2% [(fm+l,£ fm,£ + imal,z) sin X

n
. 2
+ (fm,£+l - 2fm,£ + fm,ﬂ-l) cog X 1 .

Here, all qualities will be regarded as dimensionless and a square
mesh will be taken for convenience., The time increment T can be
expressed in following form:

o, (1) ()

(7-1)
- - 7
T (s C)(hiz N hzz)ﬁ' .
For & square mesh the dimensionless hy and Iy are identical and
equal to 1; equation (7-1) becomes
T S e % o (7-2)
2w+ ¢)
If equaticn (7-2) is substituted in equation (3=26),
a+l o on G 1 X b (oY -
im,ﬂ - fm,ﬂ - /?f{{w + c) E(Fm+l°£ - mel,ﬂ) * ‘Fm,£+1mrm9£@l)j
e [(fm+1°£ ”vzfmvﬂ * fmulgﬁ) (7.3)

n
* (fm92+1 - mevﬂ + fmgﬁml)] } °

If the dimensionless density and pressure are considered to be

order of 1 as used in the computation and the velocity of 200 fps has



a dimensionless value of approximately 0.2, then the specific energy

will have a dimensionless value of approximately 2.5. For this low

speed jet flow case, the orders of magnitude of the terms in f are

always one order higher than those of ¥ and F¥ in equations (3-15),
with the exception of the pressure terms in the momentum eguations.
If the x-momentum egquation is taken as an example, every individual

term in equations (7-3) can be written as follows with the order of

magnitude indicated directly below every quantity,

n+l (5 -E)n+1
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n the above eguations, the apparent kinematic viscosity was replaced
by equation (3-13), and'ﬁ; and v were considered to have same order
of magnitude as the nozzle exit velocity; the value of 0 was of order
10 and x was considered to have a value of 50, which is about the
maximum value considered in the computation (see Fig. 13).

From equations (7-5), one can see that even a slight change in
pressure will have a large effect whereas the turbulent stress
terms contribute almost nothing. In the x-momentum equation the
terms containing p U are of major interest among those found in
equations (7-4), (7-5) and (7-6). The quantities containing p u
in equations (7-6) are 5 times greater than those in equations (7-5),
For this low speed jet, the value of 1/(w + c¢) is about 0.7 and
even if the value of w is chosen to be 0.15, the effect of blurring
terms will have an effect equal to the momentum terms and the
blurring terms outwelgh all the turbulent effects,

On the other hand if the order of magnitude of U is more
then 1, i.e., supersonic, every term in equations (7-4), (7.5) and
(7-6) will have mame order of magnitude except the turbulent stress
terms, For this case, the effect of blurring terms will net surpass
that of the true momentum of fluild flow to divert the description
of the flow from the original governing equations., This apﬁears o
be the reason why the computed results for the supersonic flow case
presented in Chapter V described the flow better than the low

velocity jet flow case.



CHAPTER VIIX
CONCLUSIONS AND RECOMMENDATTIONS

As shown by Walker (55), the time dependent, explicit numerical
technique showed promise for solving the steady state flow character-
istics of a plane, turbulent, supersonic, bounded jet. From the
results of Walker and the example shown in Cahpter V, one can see
that this numerical method describes the physical flow phenomenon
nicely for a supersonic flow case. For & low speed flow case this
method was not successful,

The results of this atudy showed that in a supersonic jet the
turbulent shearing stresses are large enough to replace the artificisl
blurring terms used to stabilize the computation. Walker showed that
the w value needed for a turbulent,; supersonic flow jet wag about
one-tenth of the value required for inviscid flow. This indicated
that the shearing stresses alone would be almost sufficient to make
the computation stable, It is always desirable to use a small value
of blurring parameter, w, to reduce the effect of the artificial
viscosity, but the ® value selected must prevent instability.

In the present study, for subsonic Jets, when the w value
selected was held constant and the value of time increment, T,
changed, no differences occurred in the computed results so long as
the T values selected were below a certain iimit. For the subsonic

case, the order of magnitude of the velocity was one order lower
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than that of the density and the energy and the turbulent shearing
stresses were always small. Because of this; the stability of
computation depended mainly on the artificial viscosity, i.e., a
high w value., With a large ® value, the artificial viscesity term
became very significant and this, in most cases, would change the
original meaning of the governing equations of the flow and make the
accurate description of the physical flow phenomenon practically
impossible. This is clearly seen from the high rate of the jet
centerline velocity decay.

Several attempts were made to non-dimensionalize the governing
equations so that the velocity of the low speed jet would have the
same order of magnitude as the other dimensionless flow properties,
but 1t was found that there was only one self-consistent method to
non-dimensionalize the governing equations. That is, the reference
velocity used to non-dimensionalize the velocity terms in the
governing equations has to be the square root of the ratio of the
reference pressure and the reference deusity.

The method of evaluation of the fluid properties at the net
points on the field boundary is extremely critical for a low gpeed
jet, because the asymptotic results depend strongly on the boundary
values specified. If the representation of the field boundary
employed is not proper, computation instability may resnlt. The
representation of the net points on the solid boundary is not so
critical as those on the field boundary and the reflection technique
employed proved to be successful. With slip flow on the solid wally
the computed results yielded a better velocity distribution near

the wall than that for non-slip flow.
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The imposing of constraints near the nozzle, such as the use of
triple-value net points to retard the artificial blurring, or the
use of zero velocity net points near the nozzle exit to force the
jet separation not to occur tco close to the nozzle, was not beneficial.
Even the addition of an artificial jet potential core was not
effective in lowering the rate of jet centerline velocity decay.
Moreover, if a local pressure jump occurred due to the addition of
any of such constraint, it caused instability under some unfavorable
combinations of computation parameters.

In this study, the limits of application of the time dependent,
explicit numerical technique for solving steady state two-dimensional,
turbulent, bounded jet problems have been shown. For low velocity
jets, the application of this method to describe the physical flow
phenomenon is limited due to high artificial viscosity terms required
in the computation for stability. Several problem areas have been
defined and explored for this type of application.

The following recommendations are made for further study in
this field:

1. For the treatment of low velocity jet mixing problems,

a different form of blurring term should be devised if
the numerical technique discussed in this study is to
be employed.

2. It would be desirable to conduct a few sample compu-

tations of supersonic jet flow problems for which
reliable experimental data are readily available for
comparison and determine the lower limit of velocity

where this method ceases to yield acceptable results.
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FPurther iunvestigation of the represeutation of the double
image point is needed if the reflection technique is to
be employed to treat the net points on the convex corner
of a solid boundary.

Only two-dimensional flow cases have been considered in
this study; however, the analysis should be equally
applicable to axi-symmetric and three-dimensional
gupersonic flow problems. Three-dimensional flow cases
should be explored because the flow in most fluid
amplifiers (fluidic devices) is actually three-dimensional.,
The study of the mixing of two jets having different

thermodynamic properties would also be of great lnterest.
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APPENDIX A
DERIVATION OF GOVERNING EQUATIONS FOR TURBULENT FLOW

The governing eguations for turbulent flow are derived from the
basic equations, equations (3-1), with the aid of equations (3-6) and
the rules of averaging, equations (3-5). The general procedure
followed in this Appendix is:

1. Express each fluid property appearing in equations (3-1)
as the sum of its average value and the fluctuating
component.

2, Take the time average of every resulting quentity.

3 Subastitute them into equations (3=1) to replace each
individual corresponding term.

In addition to the use of u and v for velocity components in
x and y directions, respectively, a general form of velocity,
u, or ujg also will be used to represent either velocity component

depending on the direction nnder consideration.
Continuity and Momentum Bquations

The terms appearing in the centinuity and the momentum
equations are p, p, Pu, Pv, Puf"’.J pv® and puv. These can be written

in following forms,

P=(p+p') = P (A-1)
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P = (o+p) =7 (A-2)
puy = (P + pr) o (u +ui) z'é’Ei"+ pTuy (4-3)
pu,u, = (p+ p') ¢ (u, +ul) - (u, + ul)

= Pu, U, + p Ulut + u, prut + u u! + pfu? u° A=l
Pruy uy + poujuy +uy prul jpip § o (A=)

Since the problem of interest here is a low velocity flow and
no sudden pressure or density changes are involved, the terms con-
taining density fluction p' as noted by Pai (39) can be neglected.
Also, in accordance with van Driest (53), the product of three
fluctuating components . the triple correlation - may be neglected.

After this simplification, equations (A-3) and (A-L), respectively,

becone
puy = P Uy (4-5)
o, = P ;¢ Wl . (4-6)
P 17 P i ) P J

With the above relations, the continuity and the momentum equations

for turbulent flow can be written as follows:

Continuity:
3 = d = D e e
—gp+—a=;c~\pu)+53;(pv) 0
x-Momentum
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Energy Equation
Fluid energy per unit volume, is defined as

e = pC_T +§ f + v3®) . (A-7)

If the fluid under study is consldered to be a perfect gas, then,

equation (A-7) can be represented as

e=._12._Y_1+.g(If+va). (A-8)

If the instantaneous values of p, p, u and v in equations (3-6) are
substituted in the right hand side of equation (A-8) and the time

average is taken, the expression for e becomes:

1

ST G+ g Fee)  [@au)® + (Frvi)?]
color ZER4TTE + FEF + FEIE 4+ R

L2UFUT 42T RN L (A-9)

And again, if the terms containing (p'u’) and (p'v') are neglected,

this yields

e = ) + %{—p-ﬁe + PV +pU)® + PFF 1. (A-10)

The terms appearing in the emergy equation of (3-1) are e, eu,

av,'pu and pv. They can be written in following forms:

eu, = (e +e') « (W, +ut) =eu, + e'u’ (A-11)
i i i i i
= (5 1) . 1) = 5 T 0 -1
pug (p + p*) (u:.L + ui) pu, +pul . (A-12)

In order to express eu, in terms of the known quantities, e"u“i must



be expanded further. If the fluid ensrgy is written in the form
according to the relation in equation (3-6), the fluctuating component
of e can be expressed as

el =€ - e ,
If the relations in equations (3-6) are substituted into the right
hand side of equation (A~8) and the result is subtracted from
equation (A-9) with the higher order terms neglected, the expression

for the fluctuvating component of e becomes:

+puu +PVV +UpU + T PV - T pial

-~V PV o+ %ﬁhﬂa+awﬁ+pﬁ?+m?

p@E@F - 7 1. (A-13)

If v and v in equation (A-13) are represented respectively by uy and
u;s the expression of ETEE in equation (A-11) can be obtained by
multiplying both sides of equation (A-13) by u} end taking the
average, thus

1 LT D CRRTEI  Gaa I m Eaaa ) —nﬁ

i G o Cst i ’i N m‘ﬁ L O 4G
— p'ul + p u lul + 0 u, utu’ + <= (u, o4+ g, pvul),
v =1 L L R P J 7i7] 2 ( 3 Py 3 P J)

etul =
i i

(A-14)

As before,; all the terms containing either p' or p' in equations
(A-12), (A-13) and (A-1k) can be neglected and equations (A-11) and

(A-12) respectively become

T T L TS eI -
ey = € uy + p i(uiiE +p uj(uiuj) (A-15)
PU, =P U, . (A-16)

With these relations, the energy equation for turbulent flow



can be written as

%% + %—u [T+ DT + 7 o@E@T + 3 V(v

-
oy

e+ PTv+pvET® + pu(@vn)] =0 .

In addition to the relations in equations (3-6), van Driest (53)
has suggested that (pu) and (pv) can also be considered as fluid
properties. If this reasoning is used in the derivation of the
governing equations for turbulent flow, a slightly different set
of the governing equations can be obtained. The difference,; however,
can be eliminated by a simple assumption which converts the resulting

equations to a form identical to those derived earlier, and sum-

marized below.

Summery of the Eguations

Continuity : %%- (D W) o+ e (D ¥) =0

x-Momentum : %{ W+ %—Y 5T 4 P+ P 1+ ?Yﬁ-‘-f-; + P UV ] =0
. F, o i, D i i Gamiz e i . .- il a0 i K §

y-Momentum : %E {p v) + %,“TF uv+pulvt 1+ %f[ P v + p+ p(vi )2 Lo

{h-17)

Energy %% + %; e + “5)3’ + P ouT® + P ?(u“{r”)]

+ S— (@ + D)V + P YT + P ulaivi) ]



APPENDIX B

DERTVATION OF EQUATION %% =0

The continuity and momentum equations for a two-dimensional,

inviscid, incompressible flow can be written as

du _ dv  _

=3y T (B-1)
Bu_a 2 lap~
st +\§E (u®) + 55 (uv) tEsx T 0 (B-2)
dv D 5 13p _ .
TS (uv) + P_-(v )+ tEs T 0 s (B-3)

If equations (B-2) and (B-%) are separately multiplied by u and v and

combined, following equation results

[oou av] IO T I BN LA au
[ Sttvap tugy () +v 5y (V) + 00 5o v v o

The above equation can be combined with equation (B-l) and rewritten
in following form:

24, o ov] . l’[ O (P +v®) +v g—w(u? + vﬂﬂ

3T VR 3%
179 N ] - L
+ 5 [ax (pu) + S5 (pv)| = 0, (B-lt)

Bquation (B-4) wazs derived for an incompressible flow but it

may also be regarded as the relation applicable to compressible flow

§=
no
N



with small variation of density so that the density can be cone-
sidered as constant.
If equation (3-.2) is substituted into the energy equation

of equations (3-1), it follows that

3 P PR 2 B[Ypu s s
EE'[‘ — 5 (& + v i} *ElyoT Y (u® + v ﬂ

+§Ty[;fpjl .gicuewz)] =0 . (B-5)

Again, if the densify is approximated as a constant,; the above

equation can be rewritten as

o LR v B vy F o o)
+-—% g—}? Eu(,ug + v‘*)} + %%—- Ev(uﬁ vﬂ)] =0

or (B~6)

au X BV} A w”lw 18 . vy 1 [ ;ii-w.}
7171 V= p‘"aT“Lywlp (pu)+{,__y(pv)_

1.8 R IO ”@-] y
> [u Y (W +v2) + v 55 (WP + ¢ ) = 0 .,

If equation (B-4) is subtracted from equation (B-6) and every term

divided by the common constant, the following results

[5) I . o
%? toay (pu) + g2 (pv) = 0. (B-7)

After the relations in equations (3-6) are applied and time averages
taken, equation (B-7) becomes:

Bp ) e e ;
=5t 8 kpw)+§§(pu)uo 0 {B-8)

Equation (B-8) is only an approximation: it was derived under
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the assumption that the density variation of a compressible fluid is
so small that it may be regarded as a constant, Since equation (B-8)
is already in conservation form, the general difference eguation,

equation (3-26), can be applied directly.



APPENDIX C
DERIVATION OF EQUATION ¥p = §

Since the iteration process for determining pressure is carried
out at a fixed time, the time derivative term can be ignored.

Then, the basic momentum equations can be written as
g (00 +p) + 5= (pur) =0 (C1)

%; (puv) +—2~§ (pv® + p) =0 . (C-2)

Diffeventiating equations (C.l) and (C.2) by x and y, respectively,

snd combinlng them, ylelds

33 2 a2 s
%@? p o+ %;ﬁ-? + ng (pu?) + S-m(pv?) + 2 2de {puv) =
or (C=3)
2 2
%;{‘EP*'%S]?P l:“"‘:f (puf) +v—-3]-gﬂ(pv2) +2 (puv)]

If the same method applied in Appendix A is used to write
equation (C-3%) in form applicable to a turbulent flow case, the
following results

¥p

it

¥ e7+%7--17, (C-t)
E o
where
32

e cn 2

Q== lou + p(ut® J+—=§g— B‘?Bwu‘ﬁ"(vv_i?]

+2.--a§- m“-:?+pu”v“ 1. {C~5)



For an incompressible flow case, the density in equation (C-5) is
regarded as a coanstant., If egquation (C-5) is to be regarded as a
dimensicnliess equation, the density becomes unity.

If a squnare mesh is used, equation (C-4) can be writtez in a

difference form as follows:

l Y oy e >y oy o
ZAﬂz[leﬂ'*%phz+IhJﬂf*%hm1“l@mzjW”Q

or

- 1 - - - - -
P, o T TUEY)? EPm+l.,£ * Pr1,4 * pm,£+l * P, 81 +Q

Bguation (C-6) was used in the iteration process for determining

pressure in the examples in Chapters IV and V.

(C=6)



APPENDIX D
PRCGRAMMING LOGIC

The general procedure of computation followed the order listed
below unless it was directed to another step by & 'go toV. The
computer program was written in FORTRAN IV language and an IBM 7040
computer was used for execution of the program. The size of the

field was 48 columns by 39 rows.

pE. 4 (or p*

(L Read: W, Hy, Hay Ly 0%, Byy Yy Ry P2 5y s LB

max? s

u T O, O
" Ynoz? Pnoz? Yo

s W

' Tnoz

(:) Read: time plane interval for print out, initial time plane
number, maximum time plane number, branching indecies
‘for Read or Not Read the initial data from the tape
and for Write or Not Write the last set of data on
the tape.

3 Read: from tape - all the values as read m(@~ if w0
commanded ino

Read: from tape - number of the last time plane of the
previous computation as the number of the initial
time plane of this computation: the next time plane
number for print out -~ if so commanded in(§>u

@) Print: 2.1 the important input data inand@or@and@o

(:) Calculate:
y = tan™t (Ay/hx)
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a = J32.2 PT_
A A2 P("noz
W o=u /a
noz now
Ax* = Ax/Ay
Ly* = 1.0
0, (Ax*) (Ay*)
T =
- 1z
u + V32,2 v RT
noz . noz .EAX*)Q + (Ay*)e]

(:> Define: the flow field in terms of net points by dividing
all cavity dimensions by Ay.

Read: from tape - p; U, Vv, P, identification number of every
point in the field of the final results of previous
computation -~ if so commanded and go to @) o

(:) Define: the identification numbér of every point in the field
according to the nature of the relatlon of the point
to its neighboring points, and the initial conditions.

@) Start: general combut&tion -~ columnwise throughout the field.
@ find the proper value of E& and evaluate € for the

eolumn upnder consideration.
® compute the fluid properties of the new time plane
of every point in the field in the column under
consideration.
Continuity —-
x-Momentum —e pF We— 0¥
y-Momentum —— ¥ -— v*
Energy — T
© if p* (or ) is not within the limits imposed,

go to 2 .



129

@ if the computation has not covered every column
in the field, go to @ .

Define: new property matrices with the newly computed
values.

Check: if print out is not the time specified in(@)or(Wor
@:% go to @) .

Print: all the properties, p: u; vi p*in the field according
to the format specified.

Define: the next print out time plane number,

Check: if the current time plane is greater or equal to the
the maximum time plane number specified in<:l go %o @2.

Define: the number of the new time plane by adding 1,
go to @)»

Check: if it is commanded to store final data on tape as
specified in<:>,go to Q:>,

Stop

®® ® ® 6066 © ©® 6

Write: on tape

(or p*

Wy Hyy Hay L, Axy Ayy ¥y R, -5‘-* max?

b1
max® Pmin?

o T u o O, 0., W
pmin>’ noz? “noz?! Puozt Wy Yor P

® number of the final time plane; number of next
print out time plane as defined in.QD,
® T} uf vi prand identification number of every
point in the field.
Print: message of the completion of the job.
Stop
Print: proper message and computed results of the previous

time plane.
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