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PREFACE 

rhis document contains a description of the fluid flow properties 

near the leading-edge of a sharp flat plate. The work was undertaken 

on the basis of determining the characteristics of the fluid flow pro­

perties by use of a time-dependent, explicit finite-difference approxi­

mation of the momentum, energy, and continuity partial differential 

equations. The complete study included a numerical analysis of the 

leading-edge shock interaction with the viscous boundary layer and 

the interaction associated with an oblique shock wave incident on a 

laminar boundary layer a short distance downstream from the plate 

leading edge. 
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CHAPTER I 

INTRODUCTION 

One of the most fundamental problems encountered in the investi­

gation of supersonic flow over a solid boundary is the phenomenon 

produced by the interaction of shock waves and boundary layers. This 

phenomenon normally results from the interaction of an externally 

produced, oblique shock wave and a viscous boundary layer. Of equal 

importance is the phenomenon observed in hypersonic fluid flow ~hen 

the leading-edge shock wave and the viscous layer interact. 

In either case, the distribution of static pressure along the body 

surface is not a given datum of the problem but is determined by the 

interaction between the external fluid and the viscous layer. As the 

fluid flows through the shock wave, the increase in the static pressure 

in the external supersonic flow can be communicated upstream through 

the boundary layer, and the translation of this increase in pressure 

enhances the possibility of boundary layer separation. Consequently, 

there is always a probability that such a shock wave will cause boundary 

layer separation . Continuing analytical and experimental efforts are 

being made to provide a better understanding of the mechanisms associ­

ated with shock-induced flow separation and to e stablish the required 

criteria necessary for accurately predicting such a phenomenon. 

In spite of the long-time interest in the phenomenon of an inter­

action which is produced by introducing an oblique shock which is 

1 



2 

incident on the boundary layer, a satisfactory theoretical analysis 

does not yet exist. In some theoretical studies, a modified Karman­

Pohlhausen method is used as the basis of the analysis; in others, the 

two-moment method is often used, but difficulty is often encountered in 

patching together the preseparation and postseparation regions. Still 

other studies are based on the semiempirical approach in which a mixing 

or mass entrainment rate is used between the inviscid and viscid regions 

[lJ. 1 The use of any of these methods is undesirable when it is 

necessary to analyze a complete flow field which contains shock waves 

and boundary layers . This undesirability becomes obvious when it is 

remembered that use must be ~ade of an iteration process involving the 

usual Prandtl boundary layer equations , the inviscid method of charac­

teristics, and the analysis of the interaction which is produced by 

introducing an oblique shock which is incident on the boundary layer. 

This iteration becomes tedious and often complicated because the process 

must be continued until complete compatibility is obtained between the 

i nviscid fluid properties and the fluid properties at the outer edge 

of the boundary layer. 

The interaction between the leading-edge shock and the boundary 

layer has only recently become relatively important since it is normally 

associated with hypersonic flow and low-density gases. However, at high 

supersonic Mach numbers and low densities , a weak interaction is present 

in the stagnation point region . In this region, it is physically im­

possible to obtain experimental test data . Consequently , analytical 

1Numbers in small brackets refer to references in the bibliography. 
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methods must be devised to analyze the flow field of interest, and in 

the creation of these methods, major consideration must be given to the 

solution of such problems as slip flow, temperature jump, and, at 

hypersonic speeds, the possibility of free molecule flow in this region. 

The primary objective set for this investigation was the develop-

ment of a ~ethod for analyzing the complete flow field by using only 

one set of general equations. The region of primary interest wa$ ne~r 

the leading edge of a sharp flat plate where a weak interaction can 

exist between the bow shock and the laminar boundary layer. The con-

ditions of primary interest were the stated weak interaction between 

the leading-edge shock and the boundary layer, the interaction between 

an externally produced incident oblique shock and the leading-edge 

shock , and the interaction between the externally produced incident 

oblique shock and the laminar boundary layer. 

The steady-state nature of the flow field under investigation is 

such that the solution seems possible by use of the governing steady-

state equations. However, as Crocco [2] states, there exists a funda-

mental difference between the usual interpretation of the solution of 

such steady- state problems and the way nature establishes such a sol-

ution. What is generally considered as a steady- state phenomenon exists 

only as the asymptotic form of a time - dependent phenomenon, and the 

-customary steady-state solution is obtained without consideration of 

the transient phenomenon. Therefore, a logical solution of the general 

problem would be the determination of the asymptotic form of a time­

dependent initial value pr~blem. 

This investigation, as well as the recent investigation of other 

steady-state problems which have been solved by various scholars, has 
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·been based on an examination of the transient problem suggested by 

Crocco[2], and a time-dependent solution of a general set of governing 

equat.ian.s has been .sought. These e.q.uati.ons .are ea.si~r ,to ;solve ,:than 

the steady-state equations since the di:fferential, equat::lons applicable 

to the time-dependent problem are of a parabolic-hyperbol:Lc nature. , A 

forw~rd integration in time i~ allowed so that the· solution of .the 

· initial boundary value ·problem can be obta:Lned when the· initial con-

. ditions are known. The method of analysis ·was formulated by using the 

recent advances· i,n explicit, time-dependent, numerical 'techniques where-

by the nonlinear equations of motion and the conservation of mass and 

energy are solved by the appliJcation of the method of finite differences. 

' ' 

· A basic ·requirement for the governing equations was that they be valid 

i.n the inviscid flow field and the· Laminar boundary layer. Of equal 

.importance was the method used for solving .the governing equations; 

this method was particularly important in the region of shock discon-

tinuities where good resolution of the shock was·required. 

Two cas,es ·were considered in order to evaluate .the method of attack 

and the feasibility of using ,such a method in future· studies. . In· the 

first case, consideration was given only to the leading-edge·shock 

problem. In this case, the following flow conditions were assumed: 

M - 3.0 
0 

h = 100,000 ft 

T 418 R 
0 

po = 23,603 lb/ft: 2 

Po = 3. 2114 (10-5) lbf-s~c:a /ft4 

µ,o ·= 3.1501 (10- 7) lbf-sec/ft:a 

k 
0 

3.3475 (10-6) Btu/ft-sec- 0 R 



Pr = 0. 72 

Re/L = 3.06 (105) ft-l 

T 
w = Tad (adiabatic wall) 

In the second part of the study, consideration was given to the addition 

of an incident oblique shock to the flow field used in case 1. The 

combination of the two cases were considered sufficient for attaining 

the objective of analyzing the complete flow field by using only one 

set of equations. 



CHAPTER .. II 

·PHYSICAL DESCRIPTION .OF THE REGIONS OF'INTERACTION 

Interaction ·Ind;uced by._ the ·Boundary 'Layer 

The usual analytical approach to,the treatment of transport effects 

in fluid flow problems involves the use of the·thin boundary layer and 

thin shock approximations. In low-speed aerodynamics involving flow 

of air at normal densities around a body, the viscous dissipation and 

heat conduction are restricted to the thin boundary layer near th~ 

surface of the body, This boundary l~yer may.be in a laminar, turbu-

lent, or transitional state, and it can be considered separately from 

the outer or external inviscid flow, At hypersonic speeds, the leading-

edge shock wave can·be considered infinitesimally thin only as·long as 

the boundary layer thickness is small in comparison to the shock·layer 

thickness [3 J, 

The deceleration of the fluid by a shock wave or by viscous pro-

cesses in a boundary layer generally produces very high temperatures, 

One result of these high temperatures is an increase in the thickness· 

'" 

of the boundary layer, . This increased thickness of the boundary. layer 

results in an interaction between the·boundary layer and the inviscid 

flow field which Hayes andProbstein [3] call the·"boundary-layer in-

duced" interaction or "pressure'' interaction. 

6 
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·A schematic representation of the boundary-layer-induced inter-

action phenomenon is shown in Figure 1. In this type of flow, the 

growth of the boundary layer produces an outward deflection of a stream-

line (Figure 1) which amounts to a significant change in the "effective" 

shape of the body. Large induced pressures are transmitted into the 

external inviscid field along Mach lines, and the boundary layer 

generates an inviscid shock layer from the leading edge of the flat 

plate. The pressures govern the growth of the boundary layer; thus 

another term given for this type of interaction is ''Mach wave" inter-

action. This type of interaction is entirely due to the displacement 

effect of the boundary layer. Without the viscous effects, the flow 

field would remain undisturbed. 

The shock layer must contain an inviscid region of relatively 

cool, high-density flow outside the boundary layer. If the classical 

concept of the displacement thickness is used, the body boundary layer 

can be replaced by an equivalent or ·"effective" body in an inviscid 

flow field. This "effective" body is the original body thickened by 

the displacement thickness distribution c*(x). Hayes and Probstein 
~1 

[3] point out that, in hypersonic boundary layers, the density is very 

low and the approximation c(x) = c*(x) can be used. 

The "pressure" inter,ac t ion can be divided into two distinct regions 

called the strong and weak int erac tion zones [ 3] in t hose case s wher e 

the flow would b e uniform if the boundary layer were absent. The con-

cept of weak and strong interaction r egions has become popular in the ory 

r elat ed to hypersonic f low. I n this view, the weak int eraction region 

is characterized as the region where the effects produced by the self-

induc ed pressure gradient are perturbations superposed on an already 
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existing uniform flow. The strong interaction is characterized by the 

streamline inclination induced by the viscous layer. · In this type of 

flow, the pressure gradient and viscous stress gradient terms are of 

the same order of magnitude. In the flat plate case, the strong inter­

action zone is close to the leading edge while the weak interaction 

zone is farther downstream . 

Interactiori Between the Incident Shock 

and the Laminar Boundary ·Layer 

Lees and Reeves [i] have presented a typical flow model of · 

"subcritical" adiabatic flow in which the laminar boundary layer is 

separated and reattached. A schematic representation of the inter­

action region is shown in Figure 2. The viscous flow is considered 

"subcritical" in the sense that the pressure rise generated by the 

incident shock is communicated smoothly all the way upstream to the 

"initial" flat plate flow. Lees [4] has .shown that the overpressure 

existing on the plate surface (Figure 2) decays exponentially as a 

function of the distance upstream from the separation point. Therefore, 

upstream of the interaction region, initial conditions exist, and the 

positive pressure gradient produces no appreciable effect on the 

boundary layer. 

When flow is separat ed, the concept of a "dividing streamline " is 

used. This streamline originates at the point of separation and ends 

at the reattachment point (Figure 2). The viscous flow above this 

"dividing streamline " inc ludes all the fluid tn the boundary layer 

just upstream of the separation point. Below this streamline, a steady, 
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recirculatory flow. is t.rappe<l and forms a "separation bubble" between 

.. the· separation and reattachment points.· (Figure· 2). 

11 

Chapman, ,Kuehn, and Larson: [5 J .and Glick [6 J indicate· that there 

ex.ists a transfer of momentum from the external inviscid stream to· the 

viscous floW' above the dividing·streamline. This increase in the fluid 

momentum allows the velocity of the fluid along the dividing· streamline 

to·increase continuously in the downstream direction. Consequently, 

the·increase in fluid momentum will result in·reattachment since the 

flow is sufficient to overcome the additional pressure rise that will 

be experienced during the reattachment process. -As the viscous layer 

thickens downstream from the separation point, the positive pressure 

gradient steadily decreases until the "pressure plateau" ·is reached 

just upstream of the shock impingement point (Figure 2). In many.in­

stances,. this is considered as a separated region. in which the pressure 

is approximately constant. 

The subsonic portion of the viscous boundary· layer· cannot support 

a sudden pressure rise; therefore, the incident shock is reflected as 

an expansion fan that exactly cancels the pressure jump across the 

shock .. This reflection causes the flow at the outer edge of the 

viscous layer to be suddenly deflected toward the plate surface. The 

viscous layer is thereby squeezed against the plate· surface and is forced 

to turn as it flows downstream. -Thus the thickness of the viscous layer 

decreases, a deceleration of the viscous layer is realized, and a 

pressure. increase· is produced. 

As the flow proceeds downstream, more and more fluid is turned 

back until the velocity along the dividing-streamline is brought to rest 
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at the reattachment point (Figure 2). Downstream from the reattachment 

point, the fluid above the di vi ding. streamline forms a new boundary 

layer. Once the new boundary layer is formed, the boundary layer 

growth produces an interaction between the supersonic inviscid flow and 

the viscous boundary layer. 

Two facts have proved useful in analyzing the interaction region: 

1. Both upstream and downstream from the shock impingement 

point, there is a constant-pressure, undisturbed region 

which can be used to make a "localized" study of the inter­

action region. 

2. The ultimate pressure rise on the plate resulting from an 

incident oblique shock-boundary layer interaction is 

approximately the same as that obtained in the inviscid 

case. 

The above description of the two phenomena of interest is considered 

sufficient for clarifying the following mathematical description of 

these phenomena. 



CHAPTER III 

· LITERATURE REVIEW 

In deriving analytical methods for predicting the flow phenomenon 

associated with the incident shock-laminar boundary layer interaction_, 

. previous investigators have relied heavily on boundary., layer theories 

developed in the past. ·Lees and Reeves [1] andMitwally·[7] have 

·presented a thorough-review of these-analytical.methods and of the 

·ways in which the various boundary.·layer theories ·are used in obtaining 

. the final result. It is therefore not necessary to review. the material 

presented in references·[l] and:[7] ~ince these publications are 

·readily available. ,The various boundary-layer theories are presented 

in textbooks written bySchlichting.[8] and Meksyn [9]. 

-The method of finite-differences has received wide-spread attention 

in recent years and has become a major tool in solving complicated .in­

viscid fluid flow problems that involved shock dynamics which have 

previously remained unsolved. Tyler [10], Walker [11], and Walker and 

Tyler [12] have presented good reviews of the available literature on 

this subject. 

Investigators have only recently shown. interest in the application 

of the finite-difference numerical techniques to the viscous flow 

problem. One of the earliest pioneers in· this particular phase of 

boundary;layer analysis was Flligge~Lotz who,.incidently, .is still 

. actively engaged in these• studies. 

13 
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Unfortunately, the various numerical techniques now used in solving 

the boundary layer equations are not applicable when shock waves are 

present in the flow field. Therefore, numerical techniques used in the 

study of shock dynamics must also be considered when the incident shock­

boundary layer interaction problem is to be analyzed by means of the 

finite-difference method . For this reason the remaining portion of 

this chapter will be devoted to a discussion of the numerical techniques 

used in boundary layer analysis and the shock-dynamic studies not dis­

cussed in references [10], [11], and [12] . 

The boundary layer equations (conservation of mass , momentum, and 

energy) are normally expressed so that the dependent variables are the 

physical space coordinates and the independent variables are the 

velocity components, enthalpy, density, and viscosity . Flugge-Lotz 

and Baxter [13] present ~n explicit finite-difference technique based 

on an earlier work by Flugge-Lotz [14]. The two-dimensional boundary 

layer equations were reduced by using Crocco's transformation so that 

the shear stress (T) and enthalpy (h) become the dependent variables 

while the coordinate x and the tangential velocity (u) form the inde­

pendent variables . In reference [14], the numerical solutions of the 

cases studied were obtained by using the desk calculator. The apparent 

incentive for the work presented in reference [13] was the new popularity 

of the digital computer and the numerical stability difficulties ob­

served near the wall of the flat plate. Thus reference [13] was devoted 

to the development of the finite-difference technique, a stability 

analysis of the finite-difference solution of parabolic equations in 

general, and an analysis of the imposed restrictions . Some aspects of 
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the programming for the IBM 650 digital computer were also discussed. 

It should be noted that this type of finite-difference technique is not 

time dependent. Application of the method involves the use of initial 

boundary layer µrofiles as initial and boundary conditions. Finite­

difference methods are then used to establish boundary layer profiles 

at succeeding x locations downstream from the initial boundary. This 

method is commonly known as a marching technique. 

· In the follow-on work of reference [13], Baxter and FlUgge-Lotz 

[15] present the results obtained from some sixty examples which were 

computed by using the finite difference method of reference [13]. 

Numerous problems, involving variable pressure gradients and wall 

temperatures, were investigated. The wall conditions could not be de­

fined in a direct manner. A method of extrapolation from the computed 

interior points (above the wall) had to be used to obtain the wall 

conditions. Under certain conditions of favorable pressure gradient 

and heated walls, velocity overshoots occurred in the boundary layer. 

When a velocity overshoot was evident, a solution could not be obtained. 

In view of this difficulty of velocity overshoot and the resultant in­

stability in the numerical solution , the authors suggested that the 

difficulty could be overcome by solving the equations in their original 

form, i.e., in the physical plane. However, the profiles required for 

establishing starting conditions had to be initiated at some distance 

downstream from the leading edge. 

The influence of suction or blowing on a laminar boundary layer 

has been of interest to aerodynamicists for mor e than half a century. 

FlUgge-Lotz and Howe [16] have used the finite-difference technique 
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described in references [14] and [15] to study the case of a transverse 

velocity at the wall. Emphasis was placed on the formulation and 

application of the new boundary conditions at the wall. The results 

obtained from a number of computed examples are presented in this 

study. These results · include those obtained from examples of subsonic 

and supersonic flow over both hot and cold walls with and without 

pressure gradients . 

Flugge-Lotz and Yu (17] first attempted the use of the finite­

di fference method presented in reference [15] to study the problem of 

the interaction which occurs between the exterior inviscid flow and the 

laminar boundary layer. They found that the boundary ·layer equations 

written in Crocco's form are unusable for the interaction problem be­

cause of the velocity overshoot problem. The equations were used in 

their original form in the analysis of two-dimensional boundary ·layer 

flow over a flat plate subjected to a constant wall temperature with 

and without pressure variations. ·An explicit finite-difference scheme 

was used, and in one case , which involved a high Mach number and a 

heated wall , instabilities occurred in the region from the wall to a 

height (normal to the wall) of approximately one-fourth of the boundary 

layer thickness , In a majority of the cases studied in reference ·[l7], 

use of the difference scheme resulted in encountering instability in a 

narrow region next to the wall . The authors used simple approximation 

formulas -to evaluate the properties in this region of instability. 

Kramer and Lieberstein :(18] have solve es~entially the ·~ame 

equation~ as Baxter and Flugge-Lotz (15] by using an ·implicit finite ­

difference ·sch.eme . By using the · implicit method, . the stability problem 
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was eliminated; however, the step-size had to be sufficiently small to 

ensure convergence of th'e numerical solution to the exact solution. No 

comparison with known results is presented. 

FlUgge-Lotz and Blottner [19] present the development of two im­

plicit finite-difference schemes and the results obtained from use of 

these schemes in the analysis of compressible laminar boundary layer 

flow, including displacement thickness interactions . Results of their 

study indicated that perhaps the best finite-difference scheme to use 

is the Crank-Nicolson method (20]. The authors found it necessary to 

"stretch" the coordinate normal to the wall to obtain smooth profiles 

across the boundary layer. The Howarth-Dorodnitsyn transformation was 

used to stretch this coordinate. Again, as in the case of all the pre­

viously discus•ed methods~ the stagnation region could not be conaidered. 

Instead, starting profiles were used. In the case of supersonic flow, 

starting profiles were developed by using Low's method [21] while the 

method of Li and Nagamatsu [22] was used to obtain starting profiles in 

the analysis of hypersonic flow . 

Wu [23] used an explicit finite-difference scheme to solve the 

boundary layer equations in the physical plane. Wu [23] used the 

Howarth-Dorodnitsyn transformation to stretch the normal coordinate 

in order to improve the stability of the equations . FlUgge-Lotz and 

Blottner [19] state that Wu's transformed equations cannot be used to 

calculate the boundary layer in the presence of pressure gradients. 

Fannel~p and FlUgge-Lotz [24] use the finite-difference technique 

of reference [19] to predict the laminar boundary layer growth along a 

flat plate near the leading edge followed by a semi-infinite wavy wall. 
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An initial profile was given near the leading edge of the flat plate, 

and the step-wise finite-difference method was used to determine the 

behavior of the boundary layer. The method could not be used to obtain 

data at the separation point, and no attempt was made to analyze the 

separated region. 

Clutter and Smith [25] present an accurate and rapid method for 

the solution of the general compressible, steady, laminar boundary layer 

equations for plane or axisymmetric flow, including transverse curvature 

effects . The method of solution consists of replacing the partial 

derivatives, with respect to the flow direction, by finite differences 

while retaining the derivatives in a direction normal to the boundary 

so that the partial differential equations can be approximated by the 

use of ordinary differential equations . Calculated results obtained 

from a number of specific problems are presented and these results are 

compared to the results obtained by using other analytical methods . 

Smith and Clutter [26] extended the method described in reference 

[25] to include a compressible real gas subject to equilibrium dissoci­

ation . Smith and Jaffe [27] extended the method of references [25] 

and [26] for solving the non-equilibrium laminar boundary layer equations 

of a binary dissociating gas for two-dimensional or axisymmetric flow. 

Thommen [28] considered the time-dependent solution of the full 

Navier-Stokes equations for the particular case of low Reynolds number 

(250 per foot) flow to demonstrate the .applicability of a two-step 

technique for solution of the leading-edge shock-viscous interaction 

problem . For simplicity, he assumed a constant viscosity(~) so that 

the numerical calculations were somewhat simplified . Use of the 
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numerical . technique involved the calculation of the fluid properties at 

( Ax the half-step, i.e., the properties had to be evaluated at x + 2 , 

.AY. At) y+2 ,t+2 . These half-step properties were then used in the 

original equations to evaluate the fluid properties (x + 6x, y + ~y, 

A time-dependent, explicit finite-difference technique was recently 
. 

reported by Kurzrock and Mates [29]. The complete Navier-Stokes 

equations were considered in the physical plane, and solutions were 

sought for viscous shock tube flow and the interaction phenomenon 

occurring in hypersonic low-density flow over a flat plate . In the 

latter study, free-stream Mach numbers of 6, 8 and 20 were considered . 

A cooled plate surface was enforced and the origin of the coordinate 

system was located at the leading edge of the plate. Free-stream 

conditions were ·specified as initial and boundary conditions along the 

c olumn passing through the leading edge . No slip conditions were con-

sidered, and continuum flow conditions near the leading edge were 

assumed . 

Cole [30] used the time-dependent, explicit finite-difference 

method developed by Rusanov [31] .to solve the problem of the incident 

shock - laminar boundary layer interaction on an adiabatic flat plate. 

He was interested in working in the region far downstream from the 

leading-edge of the flat plate . His analysis was dependent on knowirig 

boundary layer initial . profiles it the starting point . Since the 

initial profiles are usually determined by use of approximate methods, 

they cannot be expected to satisfy the Navier-Stokes equations used. 

Consequently, in order to obtain suitable initial profiles, Cole was 
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forced to make repeated computer runs and constantly refine the initial 

profiles (while he retained the same boundary layer thickness) until the 

proper boundary layer growth rate was obtained. It is to be expected 

that no true similarity can be found between the assumed initial profile 

and the final profile obtained. The subsequent introduction of an ex­

ternal oblique shock incident on the boundary layer clearly produced 

flow separation, as was expected . It is not known if a comparison was 

made with experimental test data. 

Filler and Ludloff [32] developed techniques for the numerical 

solution of the time-dependent, one-dimensional equations of motion of 

a viscous, heat conducting fluid. Both explicit and implicit finite­

difference schemes were studied. The von Neumann stability analysis 

was used to predict the stability requirements . The formation of shock 

waves (by use of the explicit technique) was the same as that used by 

Lax [33]. In the case of the implicit method, an isentropic initial 

field was prescribed; this field consisted of two homogeneous states of 

different velocity, pressure, and density connected by a simple com­

pression wave. The development of the flow f~eld in time was then 

governed by the equations of motion. The authors were interested in 

the time required for the shock to form, the shack's final shape, and 

the entropy profiles developed. Results were presented for the case of 

both viscous and nonviscous flows. 

Gary [34] considered two finite-difference schemes for the solution 

of the inviscid Navier-Stokes equation in one space dimension. The 

f irst method was that us ed by Lax and Wendroff [35]. The second method 

was based on an approximate solution of the centered, implicit difference 
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equations; this is an' iterative method in which successive substitutions 

-· 
are used. The·· stability which· resulted from the use of the implicit 

method depended on the number of iterations per time-step~ i.e., 

stability is obtained if 3, 4, 7, 8, .... iterations are used per tim~-

step, and instability is obtained if 1, 2, 5, 6, .... iterations are 

used per time~step. Unfortunately, the computation of flow fields 

containing shock discontinuities could not be achieved by using the 

implicit method, even for the case of the weak shock. 

Thommen and D'Attores [36] considered the application of the Lax-

Wendroff conservation difference scheme [35] to steady, two- and 

three-dimensional supersonic flow fields. They found that use of the 

Lax-Wendroff scheme resulted in obtaining large oscillations near the 

tail end of shock waves so that it was impossible to interpret the re-

sults with any degree of accuracy. The authors modified the scheme 

slightly and obtained excellent damping throughout the shock region. 

Use of the -modified scheme produced larger truncation errors than those 

produced through use of fhe original Lax-Wendroff scheme, and the mesh 

.size had to be made slightly smaller to obtain numerical stability. 

An interesting report has recently been published by Welch, et al,, 

. [37]. This study contains a detailed description of a finite-difference 

technique called the Marker~and-Cell (MAC) technique. The complete 

incompressible Navier-Stokes equations are solved for the case of low-

velocity, viscous flow involving free surfaces and with· large-amplitude 

contortions in the field. The major features of the technique are the 

method by which the free-surface boundary conditions are satisfied and 

the fact that viscosity is not required as a stabilizer. This method 



appears promising for studying the fluid behavior in fluid amplifiers 

and possibly as a new method in the study of supersonic viscous flow 

problems. 
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The above review of the literature· indicates that no known· .investi­

gation has previously used the approach adopted in the present study 

for problems involving large Reynolds numbers. Kurzrock and:Mates·[29] 

used a time-dependent, .finite-difference method in an analysis in which 

the boundary conditions were·enforced at the plate leading edge. They 

did not approach the problem from the standpoint of allowing the con­

ditions and the· equations to converge to a solution at the leading edge. 



CHAPTER·IV 

'MATHEMATICAL ANALYSIS 

Governing: Equations 

· The ·partial differential equations which describe the flow .of a 

viscous, compressible fluid include the basic laws of conservation of 

mass, momentum, and energy. These conservation equations can be written 

·in various forms; and numerous approximations are often appliedso that 

simplified conservation equations· usually result. When a direct solu­

tion is sought by use of these equations, the particular form of the 

·equations is relatively unimportant since, in the case of a particular 

flow and given boundary conditions, the solution .is usually unique. 

However, when the conservation equations are to be·s0lved by.using 

a finite-difference technique, the numerical solution will depend on 

the particular form of the conservation equations and the finite-

difference approximations·which are used. 

· The choice of the best form of the differential equations is 

usually determined by knowing the·physical behavior of the system under 

study. As an example, when a normal shock discontinuity.is present in 

the flow field, it is known that the product of density and velocity 

remains constant through the shock while the gradients of density and 

velocity are very large. If the product of density and velocity, pu, 

. is considered as a dependent variable, then the derivative !x ( p:u) 

, 23 
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obtained by using the method of finite differences will, in general, be 

· smaller than the derivatives of the individual fluid properties obtained 

by use of the same method, -Larie gradients are eliminated by using the 

equations: in a· ''conservative" form, such as 

(1) 

This equation contains coefficients of unity; consequently, the space 

derivatives (in finite-difference forni) produce only moderate gradients. 

-It can usually be expected that the finite-difference approximations 

can be used to obtain more accurate results (and reduces the stability 

difficulties) when-the equations are·solved in the conservative form 

of Equation (1). 

The development of the general two-dimensional ideal gas equations 

for the conservation of mass, momentum, and energy is well documented, 

These-equations can be written in the aforementioned conservative form 

in terms of continuity, 

-. ..ae. . .Q.... - - .a.... . --
ot + ax (f:Ju) + ?}y (pv) ·= 0; (2) 

x-momentum, 

.a.... -- +~ --:a +p + .; -.) + 4:- <'pi:iv + .; . > O; ~E ( pu) ( pu ·= ·oX xx oY xy .(3) 

y-momentum, 

.a.. -- .. .a_ <~~v + .; ·> .a.... f;;2 . 
+ ·r .) O; - (pv)·+ - + - +p = 

ot ~ xy oY YY 
(4) 

energy, 

(5) 

O· ' 
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-where the sum of the internal and kinetic energy per unit volume is 

The shear stresses are defined as 

-0 .aii .?. ~) (6) ,.xx = ·-µ. - -·ox 3 ·a9: 

'Tyy = ,-µ (1 ~ - t~) 
and - -

,.xy = - (:ag + ~) µ, ay . ~ 

·Equations (2),. (3), (4), and (5) have to·be supplemented by use of the 

usual ideal gas equation of state 

The method of nondimensionalizing the conservation equations differs 

somewhat from the method normally used in boundary layer theory. The 

nondimensionalizing technique is desctibed in Appendix B. Use of this 

technique produces.the equations for continuity, 

]! +_a_ ( pu) + :a_ ( pv) = O; 
ot ~ oY (7) 

x..imomentum, 

= O· ' (8) 

y-momentum, 

.a... ) +·A- + a.. .':11.t (pv (puv + .). ,. ·) (19v:a + ·p +).. ,. .·) 
0 oX xy .ay yy 

= O; (9) 
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energy, 

· ~ + .a_ [<e +p)u - _,.., .a!. +-). (u,- + v,- >] ot . oX u oX . xx xy 
. (10) 

+:.a.. [<e+-p)v --o-.a'f. +..).(u,- +v,- .')] = o. 
_oY - __ ··oy xy yy 

The equation of state and the equation of shear stress become 

p = pT' (11) 

'Txx = - (i.a.t!_l.cY.) 
µ, - 3 · oX 3 · oY 

'Tyy = C 4 av 2,~) -µ, - - - -· 3oY 3oX' 

. 'Txy. = .. µ, C ~ +,.cY. ) • 
oY -ax 

If a central finite-difference technique is applied to the spatial 

-derivatives of Equations -(8), (9),, and (10), a 13-point network is re-

quired because of the presence of the second-order terms •. It is in-

teresting to note that Kurzrock and Mates-[29] report that the most 

accurate numerical results are always-obtained by differencing the 

equations in the completely conservative form. If the second-order 

terms are-isolated, Equi:ltions (7) through-(10) become 

· continuity, 

oP + .a_ ( ) + A...(r.1v) -ot · · oX - · pu oY I" 
0 (12) 

x-momentum, 

.a_ ( ) + L (p.u2 + -p) +'~ (pmt) ot pu _ox oY = ·(13) 
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y-momentum, 

.a_ .a_ ;a_ :a 
ot ( pv) + ox ( puv) + oY ( pv + -p) (14) 

energy, 

M. + .a_r(e + p).J+ ]._f(e + p)v J = ,.f . .a..(.a!.). + .a_(~)] 
ot oX L J oY L ~'L ox oX oY oY 

(15) 

- ... [ A.. (u + V"" . ) + .a_ (u,,. +;· V"" ) J · · 
·r. ·ox ,.xx 'xy oY 'xy · 'yy ' 

where 

and n - . '.'tA 
. - Pr (y - 1) . 

It -is observed that only a nine-point network is required in the use of 

the central finite-difference technique if 'the required differentiation 

· is carried out on the molecular transport terms. The use of this 

simplification reduces the numerical accuracy somewhat; however, as 

reported by Kurzrock and Mates· [29], the computation time can be reduced 

by as much as 45 percent. 

Equations· (12) through· (15) ·can.be represented as a single equation 

of the form 

(16) 

where f, Fx, FY, and Sare considered to be four component vectors. 

These can be represented as 

p pu 

f = pu Fx = 
pu:a +p 

pv PlfV 

e (e + p)u 
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pv 0 

FY puv s = s1 
pvci + p S2 

(e + ·p)v S3 

The vector Swill be referred to as the source vector which is used to 

describe the decrease in momentum caused by the viscous shear forces 

and the change in energy caused by heat conduction and dissipation. 

The components of the source vector, -S, are 

= ~ ( ~) +~( ~ + ~) [ 4 O'ii! Oa! 1 :::i.2,,u -::..11u :::i.,,u :::i.uv 

µ. 3 · oY + ax + 3 ax oY ax oY ox 

+ ~ ( !±. .QY. - 1 .a!:!)J 
oY 3 oY 3 ax 

2 2 2 'ii . 4 
+ l ( .g:_ + .g:) + 2 .a.Y. ~ - - ~ _ay] 

2 oX oY ox OY 3 oX oY 

+ .cl,. [ l_ ~ + l oV2 + V .Q!! ~ l_ u _ayJ + ~ [ l_ ;;w'ii 
ox 3 ax 2 oX oY 3 · oY oY 3 oY 

Equation (16) constitutes a system of four partial differential 

equations whose solutions are to be represented in two-dimensional 

space and in time . -Sufficient information ~ust be given both initially 

and during the course of the solution to ensure that the mathematical 
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model always approximates the physical model . These bits of information 

are respectively known as the initial conditions and the boundary con-

ditions. 

The initial conditions are usually well established and are unique 

to each particular problem. However, the boundary conditions can vary 

considerably from one problem to another and must be chosen for each 

particular problem so as to provide an adequate description of the type 

of flow under investigation. Because of the boundary conditions, the 

form of the difference equations will vary as a function of the place-

ment of the net point in the flow field . Thus, the difference equations 

used in describing points lying entirely within the field of flow, i . e., 

field points, will not be the same as the difference equations used in 

describing points lying either on walls or on planes of symmetry, i.e., 

boundary points . Therefore, the required number of finite-difference 

approximations of Equation (16) depends upon the flow-.field configuration 

of each particular problem. 

Finite -Difference Technique 

Since Equation (16) is reduced to the inviscid flow equations when 

large Reynold numbers (Re --+ co) are used, the differencing method employed 

is that developed b-y V. V. Rusanov [31] for the general, first-order, 

nonlinear, partial differential equation 

= 0 . 

. In this method, "artificial viscosity" terms are used to "smear" the 

properties in regions of shock liscontinuities so that they take on 
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characteristics similar to those produced by the regular fluid viscosity. 

In other words, this "artificial viscosity" is used to force the fluid 

properties to be continuous in th~ shock region although they may be 

rapidly changing. Consequently, the shoe£ region can be treated as a 

general field region in solving the equations. 

The addition of the artificial visco~ity terms to Equation (16) 

results in modifying the equation as follows: 

·.a.. [ .Qf]. ..a_ [ of] A(x,y,t) + B(x,y,t)-;-- +-s. oX oX. oY oY 
(17) 

The coefficients A(x,y,t) and B(x,y,t) represent the artificial vis-

cosity terms whose functional values are obtained from a stability 

analysis. The requirements necessary for the proper selection of these 

coefficients are those given by J. von Neumann [38]: 

1. The conservation equations, with the dissipation terms 

added, must be such t~at solutions without discontinuities 
,; 

can be obtained. 
.;; 

2. The thickness of the shock must be of the same order as 

the mesh spacing (D;x.,Ay) used in the numerical calculations. 

3. The effect of the artificial dissipation terms must be 

negligible outside the shock regions. 

4 .. The Rankine-Hugoniot equations must be applicable across 

shock layers. 

In the difference scheme applied to Equation (17), use is made of 

a forward difference in time and a central difference in space. The 

difference net is shown in Figure 3 where the increments of the in-

dependent variables (b,x, .. Ay,. tit) are denoted in. the difference scheme 
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Figure 3. Finite-Difference Net Notation 
I 
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. The subscript (m, i,) denotes the "node" or pivotal point at which 

the derivatives are to be evaluated, i.e., . (x = ml:J.l, y = l,h:,). The 

subscripts (m+l,l,), (m-1,1,), (m,l,+l), and (m,l,-1) denote the location 

of the neighboring !'nodes" relative to the pivotal node· (m, i,) .. The 

superscript n represents the nth time plane for which the fluid pro-

· perties are to be evaluated. Prom Figure 3,. it is seen that 

= h cos X 

h2 h sin X , 

and 

By the designation of 

and 

one obtains the expression~ 

K = .,. ' 

K sin X (18) 

K2 K cos X , 

where.,. is the time increment At. 

By the use of the notation previously described, the derivatives in 

Equation (17) will be approximated as 

fn+l _ fn 
m,l, m,l, of .- = at .,. 
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oFY. 
= ay 

1 [ Jn = - 2 A (f - f ) - A (f - f h1 ., m+\, J, m+ 1, J, m, J, m-\, J, m, J, m-1, J, ' 

and 

o of 1 .. Jn 
- (B .·-) = -:a [B 1 (f - f ) - B (f - f ) .. oy oy ha m,J,+"2 m,J,+l m,J, m,J,-\ m,J, m,J,-1 

The difference approximation of Equation (17) is then written as 

-FY . )n + ....i_ [A (f - f ) - A (f 
. m, J,-1 h1 a · m+\,J, m+l, J, · m, J, · m-\, J, · m, J, 

n 

-fm-1,;,).J + ~ [Bm,J,+\(fm,t+l - fm,J,) 

Jn 
- B . 1 ·(f - f •) . 

m,J,-"2 m,1, m,J,-1 

From the definitions 

hl :a 
An n 

2 ct m, J, m, J, 

ha a 
Bn n 

m, J, 2 . em, j, ., 

n n 
·~ (f - f ) · m+\,£ · m+l,J, m,J, (20) 



·'• X 

~m-\,.t 

·- 13 n ( f - f ) n 
' m, .e-\ m, J, m, .t-1 

I . the11 final difference approximation of Equation (19) then becomes 

= 

34 

(21) 

-FY )n +l ( X - X +. y - y )n 
m, .€,-1 2 Im+\, .e ~m-\, i, Im, .e~ ~m, .e-\ • 

n n 
Rusanov [31] obtained the expressions for et and 13 A by using the m, .e m, x, 

linear stability· qnalysis, i.e., 

and (22) 

13n 
m, .e = uJ.{(w + c)n A cos 2 X 

m, x, 

where 

w = 

and w is a damping parameter determined from :the stability analysis. 

·n 
The parameter w is related to Kand (w + e)m~t by the inequality 

(23) 

· which must be· satisfied for all (m, .€,). The quantity an = K(w + .c)n 
m., J, m, J, 

is the Courant number at the nodal point (m,.€,) in the nth .time plane. 

The maximum Courant number present in the field at time n can be 

designated as 
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n 
a = max a 

o m, J, 

so that the stability condition (Equation (23)) is satisfied for all n 

if 

and 

(;J 
0 

~ 1 (24a) 

1 
a s: w s: -

0 ao 
(24b) 

The numerical value of a and w may be established prior to any 
0 

calculations. Once the calculations have commenced, the value of K 

for each time plane can be determined from the relation 

K = 
(J 

0 

n 
max(w + c) ~ m, J(; 

(25) 

The value of T for each time plane can then be determined by use of 

Equation (18)o This operation and holding the parameters Cf and w con­
o 

stant throughout the calculations are sufficient to satisfy the stability 

criteria. 

Tyler [10] has shown the linear stability analysis used by Rusanov 

[31] in defining an acceptable set of inviscid conservation equations. 

Walker·[ll] attempted to extend the stability analysis for the more com-

plicated equations describing the turbulent jet mixing region where the 

turbulent shear stresses are much greater than those that occur in 

· laminar flow. The results obtained by Walker· [11 J for the limiting case 

of negligible turbulent stresses were identical to those presented by 

Rusanov [31]. However, in applying the method to a numerical analysis, 

Walker [11] found that the inequality (Equation (24b)) could be greatly 
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relaxed, i.e., much smaller w values could be used because of the sta-

bilizing effect of the turbulent shear stresses. 

The basic stability requirement used in this analysis is that 

developed by Rusanov [31] since Equation (16), as mentioned previously, 

can only be used to define phenomena related to an inviscid condition 

as the Reynolds number becomes very large. However, the stability 

analysis presented by Rusanov [31] is very brief and several major 

steps and basic assumptions have been omitted. The interested reader 

should refer to the works of Tyler [10] and Walker [11] for the com-

plete stability analysis. 

The final finite-difference approximation (Equation (21)) is a 

general equation which, in its present form, is not applicable through-

out the field of study. As mentioned previously, the required number 

of finite-difference approximations of Equation (16), and consequently 

Equation (21), depends upon the flow-field configuration of each parti-

cular problem. 

In order to obtain the variations of Equation (21) necessary for 

the present investigation , a basic lattice was constructed to describe 

the flow-field configuration (Figure 4). The field contained a total of 

1 , 920 nodal points in 40 rows and 48 columns. The sharp leading edge 

of the flat plate was chosen one-half mesh spacing from its nearest 

neighbor , as indicated in the figure. It will also be noted that the 

first row of nodal points (t=l) does not lie on the . line y = O. The 

open circles denote the regular mesh points while the full circles 

represent auxiliary points which are normally considered as part of 

the boundary conditions. 
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The extreme left boundary (m=l) represents the free-stream con.­

ditions. ·All fluid properties along th,is column remain constant 

throughout the calculating process and are therefore considered.as 

initial and boundary conditions •.. A,lthough the ·physical· location of 

the left boundary, is arbitrary, .. it is -advisable to place the boundary 

a conside.rab le distance upstream from the · leading edge because· a 

finite-difference technique cannot be-used to define a discrete 

attached shock. However, the difference technique can be used to 

establish gradients over several mesh widths and thus provide a repre-

sentation of a detached shock. Therefore, the left boundary should be 

located a sufficient distance upstream from the plate leading edge so 

that th,e fluid properties 1'.'emain unaltered by the phenomenon occurring 

near ·the ·leading edge. 

The upper boundary (.e,=40) presents no difficulty because the field 

is large· enough ·.so that the leading-edge· shock is completely contained 

within the flow field. On t!·he basis· of this condition, it can be 

implied that the fluid properties along the upper boundary remain un­

altered· and therefore represent the free-stream initial and boundary 

conditions. 

The extreme right column (m=48) is considered a "floating" boundary 

where the fluid properties are allowed to change with time. Kurzrock 

andMates [29] and Thommen [28] evaluated the fluid properties along 

this boundary (column) for each time plane by extrapolating from the 

·calculated upstream properties. When an.oblique shock crosses this 

boundary, certain difficulties can be encountered in using an extra­

. polatiori technique since the resulting gradients can be quite large 
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and erroneous and therefore produce undesired perturbations upstream. 

Such undesirable results have been obtained by Eaton [39]: To allevi-

ate these problems,. in this investigation all x-direction gradients 

along this boundary (column) were assigned a-value of zero. This is 

the method successfully used by Jackomis · [40], Tyler ·[10] and Walkei; 

-[11]. -In .order to meet this requirement, the properties were -redefined 

at the end of each time plane by the use of Equation (26): 

n+l 
r:>4s,;, 

-;, 

n+l 
P4s,1, 

n+l 
u48, J, 

n+l 
V 48, J, 

. .:.:., 

,;::: 

= 

= 

= 

n+l 
P4 7, i, 

n+l 
P47,;, 

n+l 
u47,i, 

n+l 
v47,i, 

' 

- (26) 

The actual numerical calculations are now limited to those nodal 

points lying completely within the flow field, i.e., the field points, 

and those points along the row J, = 1, for 1 < m < 48. Additional 

comments on the field point calculations are not required since it is 

obvious that Equation (21) is applicable for such points. Along the 

row. i, = 1 three different types of boundary conditions are imposed 

which require three additional modifications to the field point 

difference Equation (21) .. A discussion of each flow region, designated 

regions 1, 2, and 3, along the row J., = 1 follows, and a brief description 

of the application of the boundary conditions is presented. For brevity, 

Tables I and II contain a list of all the finite-difference approxi-

mations necessary for the field point calculations. Tabies III through 
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TABLE I 

fiNITE-DIFFERENCE APPROXIMATIONS .OF fiELD POINT 
PARTIAL DIFFERENTIAL TERMS 

Difference Approximation 

(Tm+l,.t - 2 Tm,.t + Tm+l,//Cflx) 2 

(Tm,.t+l - 2 T .t + T .t-l)/(flY) 2 m, m, 

cu:+1,.t - 2 u:a 
m,.t + u:a )/(b,X)a 

m-1,.t 

( :a -um, t+l 2 ua · m,.t + ua )/(flY)a m,.t-1 

Cv!t-1, .t - 2 va + v2 )/(flx) 2 
m,.t m-1,.t 

. (v!, .t+l - 2 va + v2 )/(t:J) 2 
m,.t m,.t-1 

. (um+l,.t+l - u m-1,.t+l ~ um+l,.t-1 + um-~,i-1)/4A xAy 
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TABLE II 

FINITE~DIFFERENCE APPROXIMATIONS OF FIELD POINT CONSERVATIVE TERMS 

Conservation 
·Equation 

Continuity 

Continuity 

X-Momentum 

X-Momentum 

Y-Momentum 

Y-Momentum 

Energy 

Energy 

Conservative· 
Term 

Fx - Fx 
m+l,1, m-1,.t 

FY - FY . 
m,.t+l m,.t-1 

Fx - Fx 
m+ 1, i, m-1, i, 

FY - FY 
m,i,+l · m,.t-1 

F - F m+ 1, J, m-1, 1, 

FY - FY 
m, 1,+l m, 1,-·1 

Fx - Fx 
· m+l,1, m-1,i, 

FY . - FY 
m, i,+l m, 1,-1 

··Difference Approximation 

P u - p u 
m+l,i, m+l,.t m-1,i, m-1,.t 

P V - p V m,i,+l m,i,+l m,i,-1 m,i,-1 

u2 + p - . u2 - p 
Pm+l,.t m+l,i, m+l,i, ·pm-1,.t m-1,.t m-1,.t 

p U . V - p U V 
m,.t+l m,.t+l m,.t+l m,1,-1 m,i,-1 m,.t-1 

p U V - p U V m+l,1, m+l,1, m+l,1, m-1,1, m-1,1, m-1,J, 

v2 v2 
Pm,i,+l m,1,+l - Pm,i,-1 m,J,-1 

(e + p )u - (e +p )u 
m+ 1 , 1, m- 1., J, m+ 1 , 1, m- 1, 1, m- 1, i, m -1 , 1, 

(e .+ p . )v - · (e + p . )v 
m,J,+l m,1,+l m,1,-1 m,t-1 m,1,-1 m,1.-1 +' 

I-' 
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VIII contain a list of the finite-difference approx,imations necessary 

for the three different types of boundary conditions imposed along the 

·row.J,;::: 1 in the·case,of a flow configuration.,similar to the one used 

in this investigation. 

Difference ·Equations Used in the'Analysis of Region 1 

If the noda 1 points· a long the row · J, ;::: 1 had been.placed a long the 

line y ;::: 0, the problem in region 1 could have been reduced to the 

problem related to the centerline (str.eamline) · ahead of an. infinitely 

thin flat plate. In such a flow· (Figure 5), all curvature .terms in 

the y_direction are forced to zero. An additional boundary condition 

of zero mass flow across the centerline allows the four relationships 

of interest to be defined as follows: 

;::: 

f:lm, J.+l 
;::: 

Pm, J,-1 ' 

.(27) 
u 

m, J.+l -- u 
m, J,-1 

V - ;::: -v 
m,J.+l m,J,-1 · 

When these relationships (Equation (27)) are applied to region 1 

(Figure 5),. it is obvious that 

pm i,-1 
. ' ·-

;::: p ,m, J, 

f:lm, J,-1 
;::: 

• f:) J, 
' m, 

· um, J,-1 
;::: -u (28) 

m, J, . ' 

and 

vm,t-1 
;::: --v -· ·m, J, 



( m-1, tel 
0 

0 
( m,L-1) 

· REGION I FLOW 

(m-1,l) 
---0--

0 
(m,L-1) 

( m+I, l) 
0 

t.----

CENTERLINE FLOW 

Figure 5. Comparison Between Region 1 Flow and Centerline Flow 
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Since all nodal points (m,t-1) i~ this region are out of the region of 

calculation, it is convenient to rewrite the field-point difference 

equation (Equation (21)) by using the relationships (Equation (28)) 

Thus all properties a.t (m,t-1) can be ·written in terms of their equiva­

lent values at (m., t). The new difference equation developed in this 

fashion is straightforward. Tables III and IV contain a list of all 

the finite~difference approximations necessary to calculate the fluid 

properties in this region. 

· Difference ·Equations Used in the Analysis of Region 2 

Region 2 is a most critical region since it is impossible to know 

exactly the behavior of the flow properties in this region. The un­

certainty encountered in this region and the questionable validity of 

the continuum equations for the solution of problems encountered near 

the stagnation point were the main reasons the leading·edge was chosen 

one-half mesh width from its nearest neighbor ... The selection of this 

position eliminated the stagnation point problem since all velocities 

along the ·row t = 1 are finite and nonzero. To represent the flow 

more accurately in th.is region, slip flow was used in a very simple 

and somewhat crude manner, i.e., a simple schedule was used (Figure 6) 

to provide maximum ·.slip at m = 11. A decreasing amount of slip was 

applied at each downstream nodal point until the no-slip condit\orr was 

reached at m = 15. The use of this approach prevented the occurrence 

of any large decrease in velocity at the first nodal point (m = 11) and 

subsequent abrupt decreases downstream. From Figure 6 it can be seen 

that the velocity profile near the plate surface is assumed to be linear. 
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TABLE III 

FINITE-DIFFERENCE APPROXIMATIONS OF REGION 1 
PARTIAL DIFFERENTIAL TERMS 

Difference Approximation 

Same as Field Point (Table I) 

Same as Field Point (Table I) 

Same as Field Point (Table I) 

Same as Field Point (Table I) 

Same as Field Point (Table I) 

Same as Field Point (Table I) 

Same as Field Point (Table I) 

Same as Field Point (Table I) 

Same as Field Point (Table I) 
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TABLE IV 

.. FINITE-DIFFERENCE APPROXIMATIONS OF REGION 1 CONSERVATIVE TERMS 

Conservation· 
Equation 

. Continuity 

Continuity 

X-Mornenturn 

X-Mornenturn 

Y-Mornenturn 

Y-Mornenturn 

Energy 

Energy 

Conservative 
Term 

Fx - Fx 
· rn+ 1, 1, m-1, 1, 

FY - FY 
rn, i,+l rn, 1,-1 

Fx - Fx 
rn+ 1 , 1, rn - 1 , l,. 

y y .; 
F - F rn,.R,+l rn,.R,-1 

Fx - Fx 
rn+l,.R, m-1,.R, 

FY - FY 
rn,J,+l m,J,-1 

Fx - Fx 
rn+ 1, J, m-1, 1, 

FY - FY 
m,J,+l m,.R,-1 

Difference,Approximation 

Sarne as Field Point (Table II) 

p V + p V m,i,+l m,J,+l m,.R, m,1, 

.Sarne as FieldPoint (Table II) 

p . U V + p U V rn,.R,+l rn,.R,+l rn,.R,+l rn,.R, rn,J, rn,J, 

Sarne as Field Point (Table II) 

a 2 p V + p - p V - p rn,1,+l m,1,+l m,.R,+l rn,1, rn,1, rn,1, 

Sarne as Field Point (Table II) 

(e + p )v + (e + p )v rn,1,+l m,i,+l rn,.R,+l m,1, m,1, m,1, .p­

°' 
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Figure 6. Slip Flow Approximation Near the Leading Edge of a Flat Plate 
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Once the x-component of velocity at J, = 2 has been calculated, then the 

x-component of velocity at. J, = 1 is known in terms of the assumed slip 

flow condition. Consequently, there is no necessity of solving the 

x-momentum equation. 

Although the slip flow condition is allowed, the zero mass transfer 

condition through the surface is enforced. It is assumed that the nodal 

spacing in the y-direction (IJ:.y) ,is small enough so that the velocity 

. profiles in this region can be represented in· linear form. · The 

y-component of velocity v.can be approximated as 

1 
V = - V m,l 3 m,2 

(29) 

which, by linear extrapolation, enforces the boundary condition 

vi = 0. y=O 

Consequently, the y-momentutn equation is unnecessary since vis approxi-

mated. 

No easy method of approximating the density and pressure is known; 

therefore, these values must be determined by using a modified version 

of Equation (21). Here again, approximations must be made-since no 

information is available on the gradients in this region. The method 

used in obtc;1ining these approximations :is· such that all curvature terms 

are forced to zero; consequently, the gradients are linear and are 

functions of the properties at (m, J,) and .(m, J,+l). Since the slip con-

dition is· allowed, the properties at (m, J,~l) are defined .by use of the 

following relationships: 
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Pm, 1,-1 = 2p - Pm,£,+l m, 1, 

· Pm, 1,-1 = 2p - p m, 1, . m, 1,+l 

(30) 
u = 2u - u 

m,1,-1 m, 1, m,£,+l 

V = -v m, 1,-1 m, 1, 

After Equation (21) has been modified by insertion of the above relation-

ships, it can be used to determine the n-ew values of density and 

pressure. in this region. Tables V and VI contain lists of all the re-

quired finite-difference approximations necessary for these calculations. 

Difference Equations Used in the Analysis of Region 3 

Region 3 represents the usual boundary layer region where the no-

slip condition is applied. As mentioned previously, it is assumed that 

. l::,y is sufficiently small so that the velocity profiles in the region 

near the plate surface can be considered as being linear. Thus the 

condition represented by Equation (29) ,is assumed in this region as 

well as the conditions represented by Equation (31)j i.e., 

1 
u = m, 1 3 

u 
m,2 

l (31) 

vm l = -v 
' 

3 m,2 

As in the solution presented in Region 2, only the continuity and energy 

equations must be solved since the velocity components are assumed. 

The x-component of velocity gradient in the y-direction is not 

known, but it must be determined for each time plane. To preserve 

this gradient at y = 0 and apply the gradients in the finite difference 
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TABLE V 

FINITE-DIFFERENCE APPROXIMATIONS OF UGION 2 
PARTIAL DIFFERENTIAL TERMS 

Difference Approximation 

Same ae Field Poi~t (Table I) 

Same a• Field Point (Table I) 

(v L+l + v l)/2Ay m. m. 

Same as Field Point (Table I) 

2Cum. tum,t+l -
ua m.t)/Ay 

Same as Field Point (Table I) 

a · a 
(vm.t+l - vm.t)/2Ay 

Same as Field Point (Table I) 

0.0 

Same as Field Point (Table I) 

0.0 

Same as Field Point (Table I) 

o.o 

Same as Field Point (Table I) 

(2u2 .i1 - 4u • u t+l + 2u3 t)/(Ay) 2 
m. ,vr m. 11, m. m. 

Same a1 Field Point (Table I) 

so 



TABLE VI 

FINITE-DIFFERENCE APPROXIMATIONS OF REGION 2 CONSERVATIVE TERMS 

Conservation 
Equation 

Continuity 

Continuity 

X-Momentum 

X-Momentum 

Y-Momentum 

Y-Momentum 

Energy 

Energy 

Conservative 
Term 

Fx - Fx 
m+l,J., m-1,J., 

FY _ FY . 
m,J.,+l m,J.,-1 

Fx - Fx 
m+ 1, J, m-1, A, 

FY _ FY 
m,i,+1 m,J.,-1 

Fx . - Fx 
m+l, i, m-1, J, 

FY - FY 
m, i,+1 m, i,-1 

Fx - Fx 
m+l, J., m-1, J, 

FY - FY 
m,J.,+l m,J.,-1 

Difference Approximation 

Same as Field Point (Table II) 

p v + (2 p - A )v m,i,+1 m,J.,+l m,J., m,J,+l m,i, 

Not Needed 

Not Needed 

Not Needed 

Not Needed 

Same as Field Point {Table II} 

(em,J,+l + Pm,J,+l)vm,J,+l 

[(2um,J, - um,J.,+1)2 

+ \(2 Pm, t - . Pm, J.,+1) 

+ v2 nJvm J, 
m, JC, ' 

Vl 
...... 
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calculations, it is necessary to require the condition 

u = u m, J,-1 - m, J, • 
. (32) 

Again, to obtain the zero mass flux through the plate surface, the 

following identity is required: 

- V m, i, (33) 

The adiabatic wall condition is applied in this region in order to 

satisfy the boundary condition: 

~~ iy=O = O • 

In the nondimensional form, the temperature is determined by the equation 

of state, 
T 

m, i, = 

The image technique used by Burstein [41] is applied to the properties 

p and p so that 

= (34a) 

and 

Pm, i,-1 .(34b) 

After Equation (21) has been fuodified by inserting the conditions repre-

sented by Equations (32), (33), (34a), and (34b), it can be used for 

the analysis of region 3. All the necessary finite-difference approxi-

mations necessary for solving the continuity and energy equations in 

this region are presented in Tables VII and VIII. The assumptions, 

the technique, and the equations de,$cribed in this chapter are those 

used to obtain a solution of the problem considered in this study. 



Term 

ou/ox 

ou/oy 
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ov/oy 

TABLE VII 

FINITE-DIFFERENCE APPROXIMATIONS OF REGION 3 
.PARTIAL DIFFERENTIAL TERMS 

Difference Approximation 

Same as Field Point (Table I) 

Same a~ Field Point (Table I) 

Same as Field Point (Table I) 

Same as Field Point (Table I) 

(va "-'-1 - Va .)/2/J.y m,Hr m,~ 

Same as Field Point (Table I) 

0.0 

Same as Field Point (Table I) 

0.0 

Same as Field Point (Table I) 

Same as Field Point (Table I) 

· Same as Field Point (Table I) 

(v!,t+l Va .)/(!J.y)2 
m,~ 
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TABLE VIII 

FINITE-DIFFERENCE APPROXIMATIONS OF REGION 3-CONSERVATIVE TERMS 

Conservation 
·Equation 

Continuity 

Continuity 

_X-Momentum 

X-Momentum 

Y-Momentum 

Y-Momentum 

Energy 

Energy 

Conservative 
Term 

Fx - Fx 
m+l,J, m-1,J, 

FY - FY 
m, J,+1 m, J,-1 

Fx - Fx 
m+l,J, m,l,J, 

FY - FY 
m, J,+l m, J,-1 

Fx- - Fx 
m+l,J, m-1,J, 

FY - FY 
m,t+l m,.t-1 

Fx - Fx 
m+l,J, m-1,J, 

FY - FY 
m,J,+l m,J,-1 

Difference Approximation 

Same as Field Point (Table II) 

p V + p V m,t+l m,J,+l m,t m,J, 

Not Needed 

Not Needed 

Not Needed 

Not Needed 

Same as Field-Point (Table II) 

(em,t+l +pm,t+l)vm,t+l + (em,t + Pm,J,)vm,J, u, 
+:'" 



CHAPTER V 

-PRESE;NTATION•OF RESULTS 

Equation (17) represents the system of nonlinear, partial differ­

ential equations which were used to determine the characteristics of 

the general flow field near the sharp leading-edge of a flat plate. 

The finite-difference approximations and assumptions used in this 

effort are described in Chapter IV. 

The complete study included two cases of· interest. Case I,in­

yolved the development of the leading-edge shock wave and the laminar 

boundary layer. Ca~e 2 was an extension of Case 1, achieved by intio­

ducing an.externally produced oblique shock which was incident just 

aft of the leading-edge of the flat plate. 

Re.sults Obtained in Case LStudy 

The basic lattice used is that shown in Figure 4... The. field con­

tains· 1600 nodal points of interest in 40 rows and 40 columns. The 

·plate was·accelerated instantaneously to a constant velocity of Mach 

3.0. The free-stream fluid properties were the atmospheric properties 

existing at a flight altitude of 100,000 feet. This particular flight 

condition was chosen for three reasons: 

1. A laminar boundary· layer can be expected even during. the 

process of.separation and reattachment. 
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2. The boundary layer can be expected to grow rapidly near the 

leading edge and introduce the possibility of an interaction 

between th·e leading-edge ·Shock wave and the laminar boundary 

layer. 

3. The stability of the numerical technique is strongly dependent 

on the Reynolds number (observe Equations (13), (14), and 

(15)). Thus numerical stability and·the requirement for 

less artificial dissipation can be more easily obtained by 

use of a low Reynolds number. 

The nondimensional properties used as initial input and fixed boundary 

conditions were 

u 3.5496 
0 

t::,,x = 0.001666 

V ·= 0.0 .t::,,y = 0.000833 
0 

po = 1. 0 R = 3.06(105) .e 

p = 1. 0 p = o. 72 
0 r 

<Jo = 0.5 µ. = (T). 76 

Ul = 0,3 L = 1 ft 

The small size of the mesh was necessary to obtain a good repre-

sent at ion of the boundary layer. In other words, if the boundary layer 

growth on a given airfoil is to be determined, the boundary layer can 

be expected to be thin compared to the physical dimensions of the air-

foil. In the analysis of a thin boundary layer, several nodes must be 

used; consequently, the Ay must also be physically small. To obtain a 

good resolution of the shock and to satisfy the von Neumann requirement, 

the magnitude of b:,x has to be of the same order as !::,.y. The requirement 

for a small Ax and !::,.y and the limited storage capacity of the digital 
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computer resulted in a restriction of the size of the flow field that 

could be used. Consequently, only a small region near the leading edge 

could be analyzed . 

The constant static pressure ratio lines which occur in the flow 

field are shown in Figure 7. The leading-edge shock wave is completely 

contained within two mesh widths, and the · shock appears to be attached 

at the leading edge. The shock angle in this region is approximately 

42 degrees . The constant pressure ratio lines indicate that the shock 

is highly curved in this region, and such a curvature of the shock in 

this region indicates a viscous interaction which is normally neglected 

in thin boundary layer analysis. Such observations are not abnormal, 

however, in wind tunnel tests conducted in the past. Reference 5 con­

tains a shadowgraph taken during wind tunnel tests where the test con­

ditions were similar to those used in this investigation. Examination 

of this shadowgraph clearly indicates a curved shock near the leading 

edge. 

As the fluid particles pass through the highly curved shock near 

the leading edge, an unusual pressure distribution just downstream can 

be expected. The numerical calculations in this investigation bear out 

this anticipation. This local high-pressure region is shown in Figure 

7. Downstream from the high pressure region, the pressure is observed 

to decay rapidly. Following along with this reduction in pressur e , a 

favorable pressure gradient is introduced in conjunction with the dimi ­

nution in the strength of the shock. A shock wave angl e of 24 degrees 

was measured near the downstream vertical boundary (m = 40). The 

curvature of the shock near this boundary indicates that the shock 
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strength would continue to decrease gradually if the field of calcu­

lation could be extended. The calculated shock angle of 24 degrees 

which occurs in the free stream is in good agreement with the measured 

23 degrees observed in Reference 5. It is worth noting that, if the 

concept of thin boundary layer theory had been used, a leading-edge 

Mach wave of 19.6 degrees would be predicted. It should also be noted 

that (1) such theory does not include a consideration of the pressure 

variations downstream from the leading edge and (2) these variations 

could significantly alter the boundary layer growth characteristics in 

this region. In other words, the possibility of similarity is question­

able. 

The point of maximum pressure ratio was 4.45, calculated at the 

coordinate (0.03, 0.005), The physical location of this high pressure 

region is not conducive to testing; therefore, the accuracy of the cal­

culated maximum pressure is unknown. However, the accuracy of the 

numerical technique can be fairly easily checked in terms of satisfying 

the Rankine~Hugoniot relations. As an example, use of the numerical 

technique results in prediction of a shock angle of 42 degrees and a 

pressure ratio across the shock of 4. 45. For the same Mach number and 

shock angle, use of the Rankine-Hugoniot relations results in a pre~ 

diction of a pressure ratio of 4.52. Therefore, the pressure ratios 

are in agreement within 2 percent. 

The calculated pressure ratio variation along the row immediately 

above the plate surface (y = 0.005 inch) is shown in Figure 8. A 

pressure increase through the shock wave is clearly :indicated. The 

decrease in pressure in the direction downstream of the shock wave 
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follows the pattern obtained by Kurzrock and Mates [29 J in hypersonic 

flow. This trend is also observed in Thommen's [28] results for the 

case of low Reynolds number flow. An undershoot in pressure occurs 

just upstream of the shock wave and is preceded by rapidly damped 

oscillations. This phenomenon has been observed by Thommen.[28] and 

Eaton·[39]. Kurzrock and Mates observed no·such phenomenon since 

their calculations were initiated at the plate leading edge where the 

properties are·specified as boundary conditions and remain constant 

throughout the calculations. The magnitude of the pressure undershoot 

appears to depend on the viscosity (artificial, real, or a combination 

of both) and the mesh dimension ratio~ 
.uY 

Eaton [39] had to use a 

large value of w to prevent the pressure from becoming negative. 

Thommen [28] reduced the mesh dimension ratio to unity and completely 

eliminated the undershoot problem, but the flow problem considered by 

Thommen:[28] involved the consideration of a very low Reynolds number; 

conse~uently, the presence of a good real-viscosity influence was 

assured in this region. 

The calculated skin-friction coefficient,-cfJ Re 
·x,o 

is also 

shown in Figure 8 for the no-slip flow region downstream from the 

leading-edge of the plate, Analysis of the phenomenon .indicates that 

the boundary layer has not reached its normal growth pattern, Le., the 

skin-friction coefficient is rapidly growing as a function of downstream 

distance rather than reaching a maximum value and remaining constant 

regardless of downstream distance thereafter. Further discussion of 

the boundary layer growth pattern will be subsequently presented in 

this section. 



The trend toward increase in the skin-friction coefficient as a 

function of distance. indicates that, . if the field of calculation were 

extended an additiona_l one-half inch, the coefficient would approach 

the-value of 0.61 given by Shapiro [42] fQr the case of similar flow 
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conditions. However, the limited storage capacity of the computer did 

not permit such extended calculations. The behavior of the calculated 

skin-friction coefficient follows the trend shown by Kurzrock and Mates 

[29] for the case hypersonic flow, i.e., an initial rapid increase as 

a function-of downstream distance. 

The calculated pressure ratio distributions are shown in Figure 9 

at various downstream locations. The peak pressure ratio obtained in 

each curve provides· an indication of the presence of the shock wave. 

At x = 0.09 inch, the shock is still strong and therefore intro~uce­

a large pressure gradient,~, in the boundary layer. Farther down­

stream, at x = 0.390 inch, _the shock was weakened considerably; conse-

1 1 1 i . . d' EE. · 1 d d b quent y, t ie resu t pg pres.sure gra 1.ent, dy , 1.s great y re uce , ut 

it has not reached t·he zero value normally expected in boundary layer 

theory. The surface pressures are shown to decrease as a function of 

distance, and a continuing reduction is indicated as a function of down-

stream distance (Figure 9). 

The nondimensional tangential velocity profiles near the leading 

edge are shown in·Figure · 10. The initial velocity profiles (Curves A 

and B) indicate that the leading-edge shock does not interact with the 

boundary layer within the first two calculation p.oints • (x ~ 0. 03 inch). 

This lack of interaction is perhaps due to the initially large _shock 

angle in this region.· Velocity overshoots are also observed near·the 
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leading edge . The viscous interaction is more pronounced in curves C, 

D, and E, as indicated by the location of the point of inflection in 

the velocity profiles. The edge of the boundary layer cannot be defined 

in this region since the inflection points are associated with the re­

duction in velocity of the fluid particles as they pass through the 

established shock wave. The only conclusion that can be stated about 

the boundary layer in this region is that it has not developed suf­

ficiently to be adequately defined . 

Additional nondimensional velocity profiles and corresponding non­

dimensional temperature profiles at various x locations are shown in 

Figures 11 through 15. The velocity and temperature profiles at 

x = 0.09 inch again indicate that the boundary layer has not yet fully 

developed. The surface temperature is high as a result of the rapid . 

decrease in velocity observed in the region x < 0.09 inch. For example, 

the maximum temperature ratio was observed to be 4.27 at x = 0.07 inch. 

At x = 0.09 inch, the temperature ratio has decreased to 3.35, but it 

has not yet reached the expected constant adiabatic wall temperature . 

The data in Figures 12 through 15 indicate that the boundary layer 

is completely developed, i . e ., a velocity at the edge of the boundary 

layer can be defined for each curve. It is also observed that the 

boundary layer edge velocity increases with downstream distance. This 

trend indicates a weakening shock wave and the corollary fact that the 

velocity of the inviscid flow field between the shock wave and the 

boundary layer is gradually approaching the free-stream velocity. At 

the same time, the thickness of the inviscid flow field is growing as 

a function of distance from the leading edge, and the boundary layer 

growth rate is decreasing. 



62 

The velocity distribution'plotted in terms of the similarity para­

meter,· 11, is shown in Figure 16 for the station location x = 0.490 inch. 

The velocity at the outer edge of the boundary layer is again seen tu 

be less than that of the free-stream velocity. A preliminary check at 

the station location x = 0.390 inch indicated that similarity had not 

yet been obtained. 

There is a strong similarity in the behavior of the boundary layer 

thickness distribution calculated as a function of the downstream dis­

tance from the leading edge and that observed in the shadowgraph shown 

in Reference 5. During the later stages of this investigation, it be­

came evident that an exact agreement with other theoretical methods 

would be very unlikely because of four factors: 

1. The use of the artificial dissipation term (w) would make 

the·viscous effects become more influential and thus make 

the boundary layer grow at a faster rate than that predicted 

by the use of other theoretical methods. 

2. The decision to allow slip flow near the plate leading edge 

automatically resulted in the introduction of a high temper­

ature region (temperature. jump) downstream from the leading­

edge shock. The associated fluid viscosity would also be 

very influential in this region (i.e., .it would result in 

a rapid rate of initial boundary layer growth). 

3, The proper convergence .of the finite-difference technique in 

the region very near the plate leading edge is strongly 

dependent on the incremental distance Ay (i.e., Ay should 

be sufficiently small in order to establish the boundary 



layer thickness one node downstream from the leading edge). 

The.computer·storage capacitylimits the·size ·Of AY if the 

region of study is to be of any.significant size and the von 

Neumann requirement is to be satisfied. Thus· if .. Ay is not 

sufficiently small, as was·the case in this study, proper 

convergence cannot be expected near the plate leading edge. 

A rapid initial boundary layer growth rate can be expected 

near the-leading edge and this, unfortunately, will in­

fluence the boundary layer thickness distribution at ~11 

streamwise locations downstream. 

·4, The locally high-pressure region immediately.downstream from 

the leading~edge shock should have some. influence on the 

initial growth .rate ,of the boundary layer . 
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. Use of the above factors ·resulted in a wedge type of boundary ·layer 

growth near the plate leading edge similar to that proposed by Oguchi 

[43] for hypersonic flow. This type of boundary layer behavior near 

the leading edge is also ,indicated in the shadowgraphs in Reference 5. 

This rapid rate of initial boundary layer growth (o~ x) must produce a 

thick boundary layer_fa;r downstream from the plate leading edge. The 

calculated boundary layer thickness at x = 0.490 inch is two times the 

thickness predicted by use of the method of Van Driest [44]. However, 

a comparison of the growth rate downstream from x = 0.090 inch (the 

downstream limit of the wedge-type of boundary layer) indicates that 

the rate of the boundary layer growth is approximately the same as 

that predicted by use of the Van Driest method [44 ]. 

As shown· in Figures• 12 through· 15, the· surface temperature ratio 

has stabilized to a value of 2.90. Therefore, the wall temperature ·is 
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greater than the ad,iabatic wall temperature. . In this· investigation, the 

recovery factor is found to be 1. 055 rather than the ,usual. square root 

of the,Prandtl number assumed in adiabatic laminar flat plate flow. 

A .marked similarity does exist between the temperature profile and velo­

city profile at each x location, i,e., the thermal boundary layer and 

the viscous boundary layer are coincident. 

In order to test ·the conservation of mass, the mass flux was in­

tegrated from th~·plate surface to the upper ·boundary at the position 

x = 0.490 inch. 'l;'he results of this calculation are-shown in Figure 17 

and the error observed in the mass flux was found to be 0.08 percent. 

The· loss· in tot.al .p.res.$ure will normally. be large in· the viscous 

boundary layer. Calculations based on local fluid properties at the 

station x = 0.490 inch indicate a minimum total pressure·recovery ratio 

of 0.0357 at the plate surface (Figure 18). From the figure, the total 

pressure recovery is observed to take place ·.in a normal manner. In the 

inviscid region between.the edge of the boundary layer and the weakened 

shock wave, the total pressure-is changing slightly as a result of the 

smearing process used·. in the numerical solution. The incident angle 

of the shock at this location is estimated to be 24 degrees. Inviscid 

theory and thin-shock approximations can be used to predict a.total 

pressure·ratio across the shock as being 0.995. ·If the calculated total 

pressure ratios in the inviscid flow region are averaged, a value.of 

0.9458 is obtained. If this value is compared with the inviscid total 

pressure recovery, then the method of calculations · is in error by 

approximately-5 percent .. The error can most probably.be attributed to 

the smearing of the-shock in this region. 
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Results Obtained in the Case 2 Study 

The basic lattice used in this portion of the investigation is 

that shown in Figure 4. The free-stream properties were the same as 

those used in Case 1. A strong external incident shock wave was in-

traduced on the upper boundary(!= 40) at x = 0.010 inch (m = 11). 

The shock strength was equivalent to the turning of the inviscid 

freestream (M = 3.0) through a 25-degree turning angle. The static 
0 

pressure ratio across the incident shock was 4.925. The nondimension-

alized fluid properties downstream of the incident shock were 

p = 4.925 

p = 2.795 

u = 2.4347 

V = 1.1354 

The incident shock wave was assumed to be formed within one mesh 

width (6x) on the upper surface between m = 10 and m = 11. The fluid 

properties upstream of m = 11 on the upper boundary were those of the 

freestream while those properties from the nodal points (11, 40) to 

(27, 40) were those given above. Points (28, 40) to (48, 40) were ex-

trapolated from below to permit reflected influences to penetrate the 

upper boundary. 

The calculated pressure field is shown in Figure 19 as a series of 

constant pressure ratio lines. Figure 19 contains several interesting 

features which should be discussed and analyzed in some detail. These 

include 

1. The leading-edge shock wave 

2. The incident shock wave 
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3. The incident shock as it transforms into a bifurcated shock 

with the two branches extending into the viscous layer 

4. A local high-pressure region immediately downstream from the 

bifurcated shock 

5. Expansion waves in the flow field downstream from the shock­

·impingement point 

6. The formation of a compression shock downstream from the 

shock-impingement point. 
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In Chapter II it was mentioned that the interaction phenomenon is 

only a local phenomenon and has no influence on the fluid flow upstream 

of the interaction region. A comparison of Figures 19 and 7 revealed 

that the leading-edge shock waves are identical. All fluid properties 

near the leading edge are identical, and a check of the nondimenslonal 

velocity at m = 15 (x = 0.09 inch) indicates that the profiles are 

identical. 

On the basis of inviscid theory, the calculated angle. of the in­

cident shock wave was found to be 44.15 degrees. -Measurements based 

on the finite-difference method of analysis indicate that the incident 

shock angle is 43.5 degrees. The data in Figure 19 also ·Show fair 

resolution of the incident shock in the inviscid flow region. These 

data also provide a good representation of the shock-shock interaction 

region, In this region, analysis of the constant pressure ratio lines 

·indicates that the incident shock continues downward toward the plate 

surface. However, the shock strength increases (note the closeness of 

the· isobars), and the shock is approaching a normal position with re-

spect to the·plate surface. As the incident shock approaches the normal 
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position, the constant pressure ratio lines form two distinct legs which 

clearly indicate that the incident shock has become a bifurcated shock. 

The .front leg extends forward and downward until it approaches the 

plate surface. Because of the subsonic portion of the flow in the 

boundary layer, the leg cannot penetrate down to the surface. The 

constant pressure lines in the subsonic portion then become approxi­

mately normal to the plate surface. The rear leg extends downstream 

and downward a much shorter distance than the forward leg. This 

difference is attributed to the existence of the flow separation region 

and its low-velocity recirculatory motion which cannot support the 

pressure gradients. Thus the pressure lines are approximately normal 

in this low-velocity region and the rear leg loses its identity. 

The existence of the bifurcated shock is not unexpected. Fage 

and Sargent [45] have reported on this phenomenon. They have defined 

the branche s of the bifurcated shock as continuous compression regions. 

This definition constitutes an adequate description of the phenomenon 

defined by using the numerical technique. 

As the stem of the bifurcated shock approaches a normal position , 

a high-pressure bubble is formed immediately downstream of the stem. 

This is a local region, and the pressure of such a region can only be 

assessed in a speculative fashion since the flow pattern is quite com­

plicated. However, the data in Figure 19 clearly indicate a curvatur e 

of the shock stem. The strength of the shock is changing, and at one 

point, the shock strength approaches that of a normal shock. This 

local effect produces t he high-pressure bubble, but ther e is a f ollowing 

gradual collapse because of the expansion waves existing on the under 

side of the high-pressure bubble. 
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The maximum calculated pressure ratio in the bubble was 12 . 7. In 

terms of inviscid flow theory and normal shock relations, a pressure 

ratio of 10.33 would be predicted on the basis of the free-stream Mach 

number of 3.0. Results of this comparison indicate that the calculated 

pressure ratio is apparently high by 22.9 percent. However, a leading­

edge shock has to exist upstream so that the pressure ahead of the stem 

is not that of the free stream. The pressure ratio has to be larger 

than the free-stream pressure ratio of unity and the local Mach number 

smaller than that of the free-stream Mach number. To demonstrate the 

need for this requirement, properties were selected at a point immedi­

ately upstream of the stem . At this point, the pressure ratio was 2.031, 

and the local Mach number was 2.39. From the normal shock relations, 

the static pressure ratid acro~s the shock was found to be 6 . 497. Thus 

the maximum pressure ratio in the bubble would be 2.031 x 6.497 = 13.2. 

On the basis of this reasoning, the calculated pressure ratio. is low 

by 3. 8 percent. 

The constant pressure ratio lines also indicate the presence of a 

compression shock downstream of the shock-impingement point. This shock 

i s produced by the compression waves first formed in the boundary layer. 

Within the boundary layer, these waves are almost normal (Figure 19) 

and then bend quite rapidly and become close together; this latter 

action is an indication of an increasing pressure gradient . At the 

en!i of the field of calculation, the compression shock has almost 

coalesced with the weakened leading-edge shock to form a single shock 

wave . 
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The computed results shown in Figure 19 are beneficial in deter­

mining a flow model which describes the shock phenomena associated with 

this investigation. The model is shown in Figure 20. Unlike the flow 

model shown in Figure 2, the boundary layer is not shown since it is 

difficult to estimate, with any degree of confidence, the exact loca­

tion of the outer edge. Instead, tangential velocity profiles in the 

separation flow region are shown in Figure 21. 

It is also of interest to observe the fluid particle flow di­

rections in the separated flow region. The velocity vectors are plotted 

for a portion of the field which includes the separated flow .region. 

This plot is shown in Figure 22. The recirculatory region is clearly 

observed and is seen to contain very low velocity fluid. The separa­

tion point is at m = 20 (x = 0.190) and the reattachment point is at 

m = 34 (x = 0.470). The velocity vectors indicate a large amount of 

mass entrainment above the separated region (note the rapid turning of 

the velocity vectors in the upper left-hand corner). Farther down-

. stream, the velocity vectors indicate that the flow has smoothed out 

and reattachment has occurred. At this point, the velocity vectors in­

dicate that a small amount of mass flux is still being fed into the 

boundary layer; thus the downstream boundary layer is still being com­

pressed and has not attained its ultimate form. 

The static pressure ratio distribution along the row y = 0.005 

inch is shown in Figure 23. The initial increase in the pressure ratio 

near the leading edge is foll9wed by a decrease identical to that shown 

in Figure ~. However, the influence of the adverse pressure gradient 

is felt at x = 0,11 inch from the leading edge; consequently, the 
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pressure ratio reaches a minimum and then begins to rise once more. A 

plateau pressure is approached downstream of separation and is followed 

by another rapid increase in pressure in the reattachment region. The 

pressure ratio is seen to level out only at the far downstream boundary 

at a value of 13,16. This pressure is close to that obtained in the 

local high-p~essure region discussed previously. 

The incident shock strength is such that a Mach reflection must 

occur. This reflection eliminates the possibility of comparing the 

downstream surface static pressure with the inviscid case of an inci­

dent and reflection shock. . If the free-stream flow is allowed to pass 

through a normal shock, then, on the basis of inviscid flow theory, 

the downstream pressure ratio will be·l0.33, Such a comparison would 

indicate a 22.9 percent difference. However, the flow field at the ex­

treme right boundary has not completely reached steady equilibrium. . It 

is expected that, if the field of calculation had been extended, a peak 

maximum pressure ratio would have been reached and a suosequent re­

duction in pressure would follow the peak. This phenomenon is normally 

observed in testing which involves regions far removed from the stagna­

tion region. 

-The density distribution is shown in Figure 24 in the form of 

constant-density ratio lines. The trends are observed to parallel the 

constant-pressure ratio lines in Figure 18, except in the region neat 

the plate surface. In the separated flow region, the· density, ratio and 

the pressure ratio are seen to vary in a similar fashion. This simi­

larity is to be expected since the separated region contains low-energy 

air at an almost constant temperature. Upstream of separation and 
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downstream of reattachment, the density ratio tends·to flatten out and 

appear parallel to the wall., Results of interferometric studies in­

volving weak shocks,[42] show the identical behavior when flowsepara­

tion is not present. 

The results demonstrate the ultimate potential of the finite­

difference technique used in this investigation. Convergence of the 

governing equations to the proper solution requires a larger number of 

nodal points than used.in this investigation. However, the new gener­

ation digital computer with its increased storage capacity will allevi­

ate such a problem. 

It is hoped that the results presented in this section will lead 

to a re-examination of past assumptions related to the efficiency and 

accuracy of thin boundary layer theory in applications near the plate 

leading edge. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Coriclusions 

The primary objective of this investigation was to develop a method 

whereby the shock-laminar boundary layer interaction phenomenon could 

be described by using one set of general finite difference equations. 

The laminar viscous effects were well represented, even though '~rtifi­

cial viscosity'' terms, required for numerical stability, were present. 

The analysis included three interaction phenomena: the leading-edge 

shock ~~ith the boundary layer; the leading-edge shock with the incident 

shock; and the incident shock with the laminar boundary layer. The pre­

cise accuracy of the method of analysis cannot be determined because 

test data are not available in the region of interest. However, the nu­

merical results appear reasonable, and they represent an acceptable 

prediction of the behavior of the fluid flow and shock forms as they 

are normally observed in regi9ns other than that near the leading edge. 

A principal difficulty which was overcome was the treatment of the 

leading edge problem. The stagnation region has long been a difficult 

region to analyze, particularly when the method of finite differences 

is used. The selection of a slip-flow schedule near the leading edge 

and the location of the first tow of nodal points (~ above the plate 
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· surface) completely eliminated the stagnation point and the related 

problems in this region. 
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Results of the numerical computations indicate an interaction phe­

nomenon between the·leading-edge shock and the viscous layer. This 

phenomenon is normally associated with hypersonic flow. Indications 

are that the interaction does not occur at the leading'.edge but rather 

a. short. distance downstream. On the basis of hypersonic theory,· this 

shift downstream indicates a weak interaction phenomenon. Another 

· important conclusion is that the method can be used to predict the 

behavior of the strong incident shock as it intersects the leading~edge 

shock and proceeds down toward the·plate ·Surface. As the incident 

shock penetrates the boundary layer, it approaches a normal position 

and then branches to form two distinct shock legs. The appearance of 

the shock is identical to that of the bifurcated shock often observed 

in experimental testing. The author knows of no other analytical method 

which can be used to predict such behavior. 

Flow separation and reattachment were also observed in the numeri­

cal computations. The fluid circulation is clearly observed since 

this method of analysis can be used to predict all the fluid properties, 

.including the velocity components. A local high-pressure region 

occurred behind the stem of the bifurcated shock. Such a region can be 

expected since the incident shock approaches a normal position locally. 

The computations were also valuable in describing the shock phe­

nomenon by means of a flow model for a strong shock. The resulting 

flow model agrees quite well with the often-used models for weak in­

cident shock-boundary layer interaction with flow separation and re­

attachment. 
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Recommendations 

The results of this investigation indicate that the meth.o.d holds 

g~eat promise for analyzing many complicated viscid-inviscid flow field 

problems . On the basis of the findings in th.is investigation, the 

following recommendations are made: 

1. An extensive investigation should be initiated in order to 

obtain quantitative experimental data near tlhe l.eading edge 

of a sharp flat plate. The physical dimensi~ns are suGh that 

only analytical methods are available for describing the flow 

field at the present time. The validity of 6he thin shock, 

thin boundary layer approxi~ation are questionable at high 

supersonic and moderate density conditions where the hyper­

sonic approximations are invalid. 

2. The use of the artificial ~iscosity enhances numerical sta~ 

bility and allows calculations through shock waves. It 

also influenc~s the convergence to a fi~~l soldtion which 

may or may not represent the physical phenomenon. A thorough 

study sh.ould be initiateci in an effort to detetmine more con­

cretely the required relationship betwe~n the mesh siie 

spacing, the artificial viscosity, and the physical vis­

cosity required for assurance of the proper convergence. 

3 . The results -0f this analysis indicate the great potential 

.'of the method. It is therefore recommended that the method 

be applied to problems of a similar nature where experimental 

data are ~vail~ble. The method should also be extended to 

other flow configurations, such as wedges, plate-wedge combin­

ations, and axisymmetric bodies. 
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APPENDIX A 

_PLOTTED COMPUTER.RESULTS 

The results of the numerical computation required in this study 

are presented in graphical form in this appendix. All computations 

were performed on the Oklahoma State University computing center· IBM 

7040 digital computer. The estimated time required to calculate the 

new fluid properties at one node (per time plane) was 0.032 seconds, 

The Case 1 study required 400 time planes (5.7 hours computing time) 

to approach the steady-state solution. Case 2 required 700 time planes 

(12 hours of computing time) for the steady-state solution to be 

reached. 

79 



0.40 

0.36 

0.32 

0.28 

0.24 

0.20 

y 
0.16 

0.12 

0.08 

0.04 

0 
-0.06 0 0.06 0.12 0.18 0.24 0.30 0.36 0.42 

X 

Figure 7. Constant Pressure Lines for Case 1 

0.48 0.54 

00 
0 



P/P0 

5.0 0.50 

0.45 

4.0 0.40 

0.55 

P/ff> 

3.0 0.50 

0.215 

2.0 0.20 

0.115 

1.0 0.10 

0.015 

0 0 

-0.20 -0.16 -0.12 -0.08 -0.04 0.0 0.04 0.08 OJ2 0.18 0.20 0.24 0,28 0.152 0.58 0.40 0.44 0.48 0.152 0.158 

X 

Figure 8. Pressure Distribution Along Row i = 1 and Plate Skin Friction 
Distribution for Case 1 

c,v-rr;;;, 

co 
I-' 



82 

.40 ..-----+------+-----~-----+------+------+------+-----. 

CURVE X 
.36 A 0.09 

8 0.19 
C 0.29 

.32 D 0.39 
E 0.49 

.28 

.24 

.20 

y 

.16 

.12 

.08 

.04 

0 

1.0 1.4 1.8 2.2 2.55 

NONDIMENSIONAL PRESSURE P 

Figure 9. Pressure Profiles at Different Positions X for C~se 1 



.12 ,--------+-------+-------+--------+-------+--------+-------+--------

.10 

.08 

Y .06 

.04 

.02 

0 
0 

CURVE X 

A 
8 
C 

D 
E 

.5 

0.01 
0.03 
0.05 
0.07 
0.09 

1.0 1.5 2.0 
I J 

2.5 3.0 

Figure 10. Tangential Velocity Profiles Near Plate Leading Edge 
for Case 1 

3.5 4.0 

00 
lw 



84 

.40..------+------+-----....... -----+-------I--~--+------..._ __ __ 

.36 

.32 

.28 

.24 

Y .20 

.16 

.12 

.08 

.04 

0 

T 

0 .5 1.0 1.5 2.0 

T,U 

2.5 

u 

3.0 3.5 

Figure 11. Temperature and Tangential Velocity Prpfile at X = 0.090 
for Case 1 ' 



85 

.40 ~----1------1----~i-------t~-----t------t-----+.,---, 

.36 

.32 T u 

.28 

.24 

y .20 

.16 

.12 

.08 

.04 

0 
0 .5 1.0 1.5 2.0 2.5 3.0 3.!5 

T,U 

Figure 12. Temperature and Tangential Velocity Profile at x· = 0.190, 
for Case 1 



86 

.40----~i----""""4-----+------+------+------+-----+T---, 

.36 

.32· T u 

.28 

.24 

y .20 

.16 

.12 

.08 

.04 

0 
0 .5 1.0 1.5 2.0 2.5 3.0 3.5 

T,U 

Figure 13. Temperature and Tangential Velocity Profile at X = 0.290 
for Case 1 



.36 

.32 T u 

.28 

.24 

Y .20 

.16 

.12 

.08 

.04 

0 
0 .s 1.0 1.5 2.0 2.5 3.0 3.5 

T. IJ 

Figure 14. Temperature and Tangential Velocity Profile at X = 0.390 
for Case 1 

87 



.36 

.32 

.28 

.24 

Y .20 

.16 

.12 

.08 

.04 

0 
0 

T 

.5 1.0 1.5 2.0 

T,U 

2.5 3.0 3.5 

Figure 15. Temperature and Tangential Velocity Profile at X = 0.490 
for Case 1 

88 



1.00 ,-+---+----11---+--+----+--+-+---+--+--+----+---+--1---+---'--

0.80 

0.60 

U/Uo 

0.40 

0.20 

0 
0 2 4 6 8 10 12 14 16 

n 

Figure 16. Velocity Distribution at X = 0.490 for Case 1 
()0 
\0 



0.36 

0.32 

0.28 

Y 0.20 

0.16 

0.12 

0.08 

0 
0 0.40 0.80 1.20 1.60 2.00 2.40 

(MA~~ FLUX BELOW Y) X 103rJ LBF-SEC/FT 

Figure 17. Integrated Mass Flux at X = 0.490 for Case 1 

2.80 3.20 

\0 
0 



· 91 

.40 

.36 

.32 

.28 

.24 

Y .20 

.16 

.12 

.08 

.04 

0 
0 .20 .40 .60 .80 1.00 1.20 1.40 

P,- I 'i-o 

Figure 18. Total Pressure Ratio at X = 0.490 for Case 1 



Q40.-------------------+--+-_______________ ----+--t--t---r--r-+-+---+---+---+---+---+,--t--+--+--+--+---+--, 

0.36 

0.32 

0.28 

0.24 

0.20 
y 

0.16 

0.12 

0.08 

0.04 

0 
-0.04 0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 

X 

Figure 19. Constant Pressure Lines for Case 2 
\0 
N 



Mo 

~ 
0a 

~1';-

.s''Y, 
OC' 

1-

/// / / / / / // 

///// // ,,// /// 

~ / / / / / 

e:i,o~ 
~<t,C:J 

CJO~~ 
~,o / / / / e:, ,,,,/ ~~ /,;,// // // ~~~// 

.,.,-,~"- /;/ ,,,, /,,,,.,,o";,,,/ 
~~~ // / / '(,.i-'<J>/ 

~'<' ////// / ~ ,,,,,.,,.. / / // 
// .,:::,,.-,:_,- / ./ / 
,y/_,././ 
-::::---

0cl· 
C:J~ 

()~<t, 
~~ 

'N'~ di \,,<t,t;,:. 

Figure 20. Flow Model for Strong Incident Shock-Laminar Boundary Interaction 
Near Leading Edge of Flat Plate 

oCJ+­
e:i~ 

\0 
t.,J 



o.2o~~il'-+--T-11~,-T~T1~,-,~-r~-~r----+------.,------;-~,,-,----i----_,_,...__,__., 

0.16 

0.12 

y 

0.08 

0.04 

0 

0.17 0.21 0.25 0.29 0.33 0.37 0.41 0.45 0.49 0.53 

x: 

Figure 21. Tangential Velocity Profiles in Flow Separation Region for Case 2 

,-......+------
0 I 2 

SCALE 

\0 
+:'-



95 

@ m ~ N ~ ~ ~ 
0. o~ o~ ~ o oq o o 

0 d d 

>-



P/F:, 

14 --~~~1--~~--+~~~--~~~--~~~--~~~---~-"--~I--~~--
12 

10 

8 

6 

4 

2 

0 
0 0.10 0.20 

FLOW SEPARATION 

0.30 0.40 

X 

0.50 0.60 

Figure 23. Pressure Distribution Along Row t = 1 for Case 2 

0.70 0.80 

I.O 
O"\ 



Q40~---;;~-+--+-______ --+---+--+--+---___________________ --+ ___ -+--+-------+---t-----+--+--+------+--+---+--

0.36 

0:32 

0.28 

0.24 

0.20 
y 

0.16 

0.12 

0.08 

0.04 

0 
-0.04 0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 

X 

Figure 24. Constant Density Lines for Case 2 
\0 
....... 



APPENDIX B 

·NONDIMENSIONALIZ.ING THE CONSERVATION EQUATIONS 

The method used for nondimensionalizing .the conservation equations 

represents somewhat of a devi~tion from the standard nondimensionalizing. 

technique used in boundary layer theory. The reference conditions used 

are those conditions which exist in the free stream, and they are de-

noted by the subscript "o". The bar (~)·is used to indicate the dimen-

sional quantity, and Lis used to refer to a characteristic length, 

The nondimensionalized thermodynamic properties, distances, and time 

are giv~n in Equations B-1: 

p = E.... 
po 

T 
T 

·= 
To 

-
p L 

Po 

= 

y 

X. 

L 

y 
L 

k 

t 

= L 
R 

0 

(B-1) 

The velocities are nondimensionalized by assigning the Mach numbers 

the same values in terms of the dimensional quantities as the Mach 

numbers in terms of nondimensional values; for ex.ample, 

M 
u 

C 
and .M .!:!. 

C 

Since c is the local speed of sound and is defined by 
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c = {Sii' and ,.j ;- C = ~ .J ;-

the equality (Equdtion B-2) can be written as 

= _!!_ 

~ .J p--

. By the use of the thermodynamic relations (Equations B-1), 

Consequently, ,Equation B-2 can be rewritten as 

u = 

or 

u 

u 

{J; GK 
.J ~-.J ~ 0 

ii = 

fi 
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Therefore, the nondimensionalized x-component and y-component of velo-

city are written as 

u = _u_ 
and V = .]¥ . (B-3) 

IF 
. 

Po . Po 

Other useful relationships in the nondimensio'nalizing of the space and 

time derivatives are 

-= 1£ 
-L ex ' 

l _g_ 
= L ·-oy ' . (B-4) 



1 JFo .a_ = I . -:- ot · Po 

Continuity Equation 
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The application of the relations represented by Equations B·l, B-3, 

and B-4 to Equation 2 results in 

= 0 • 

The above equ.1tion can be simplified to give the desired nondimension~ 

alized continuity equation: 

~ +.a_ (pu) +.2- (pv) = 0. ot ox oy (7). 

Momentum Equations 

The shear stresses which occur in the momentum and energy equations 

are first nondimensionalized by using Equations B·l, B .. 3, and B-4. 

The shear stress Equations 6 become 

-
,.xx 

. (B-5) 

and 

fi - µ, 0 ,gy_ . .m!. 
- L [- µ, ( o + ~.)] ,, 

p0 - Y Oh 

The nondimensional shear stresses can be represented as 
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= 

and 

= 

. so that Equation B-5 can be written as 

,.xx 

. (B-6) 

and 

ilo fiPo = - - ·T • L r,0 xy 

X-Momentum ·Equation 

When relations represented by Equations B-1, B-3, B-4, and B-6 

are applied to Equation.3, 

Po O . · 1 ~ [- _ µ.o·ff:Po ]. - . ...._ ( pu) + - ~ p p u +p p +- --L ot Lox o o L ·p 'T"xx 
. 0 

,! ... 

1 o l- P.o rr:; J + L ~ po P uv + L ~ 'fa ,. xy = O • 

. (B-7) 

When each term .in Equation B-f is divided byJ~0 ), the coefficient of 

the shear stresses appears as 

or 



When the Reynolds number (Re) is defined as 

Re -
U L -

o Po 

the coefficient of the shear stresses can be reduced to ,, 
i 

- u 
JY Mo,JY µ.o 0 

·= = 

tJ i> 0 

= 

. ReP1: 
Re 

Po 
Po 

The following identity is used for simplification: 

. Consequently, Equation B-7 becomes 

Mo.~0 
.Re 

Y-Momentum Equation 
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(8) 

Equation 4 is nondimensionalized in a fashion similar to that used 

in simplifying Equation 3 so that the final nondimensionalized y-tnomentum . 

equation is 

Energy Equation 

·The energy (e) has been previously defined as the sum of the in-

ternal and kinetic energy per unit volume. -In equation form, 



.In the case of ideal gas, the above equation can be rewritten as 

or 

where 

e ·= 

e 

p .£ :a :a 
y - 1 + 2 (u + V ) ' 

= p e 
0 
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(B-8) 

Similarly, the nondimensional expression for (e + ·p) can be written as 

<e + p) = Po (e + p) . 

The energy equation (Equation 5) can now be nondimensionalized by using 

the same procedure used in the case of the momentum equations .. If 

the procedure is followed through, each term in the energy equation 

Po Ji-o can be divided,, by 1 -::- . Once this division is accomplished, the 
: . Po 

energy equation appears as 

~ + ~ [ce + p)u 
k k i 
0-1¥:0 : +•A. 

L p 
o Po . 

(u-r xx + V'T' xy~ 

k k T 
+ .a_ [<e + p)v - o o 

oY - fipo 
L p -:--

o Po 

(B-9) 

+·1 (u'T' + VT )] = 0. xy yy 
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The coefficient of ·the temperature gradient terms can be simplified by - -
. .µ.ocp 

introducing the Prandtl number (Pr) which is Pr= le and by assuming 
0 

a constant thermal conductivity throughout the field so that k = 1. 

In the final form, the coefficient can·be represented as O where 

'2 = 
k T 

0 0 

L p ff: oJ f;, 
= Pr Re (y - 1) · (B-10) 

When Equation B-10 is s.ubstituted into Equ1:1tion B-9, the final non-

dimensionalized energy equation becomes 

(10) 

+ ~ [<e +p)v - 0,gf_+.).. (u'!' .+V'i )] = 0, 
Y - oY xy yy 
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