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CHAPTER I
INTRODUCTION

The dynamics of acoustical or mechano=acoustical systems have been
the object of ﬁhe attention of engineers and scientists for the last
few years. Hany structures may behave as multiple acoustical resonators
coupled together and exposed to acoustical excitation pressures.
Typical structures which coanstitute coupled multiple acoustical
resonators are domestic buildings with several rooms, connecting
passage ways, doors and windows. In some cases the windows, with
distributed mass and elasticity, coupled to a simple Helwmheltz resonator
behave as a multiple dynamic system with mechanical and acoustical
elements coupled together., The pressure response measurements made
inside a sonic boom test house and Kinney shoe store at Oklahoma City,
Oklahoﬁa (Figure 1), indicate that there is a considerable amount of
damping in such structures, Because of this mechanism of energy dissi-
patien, the pressure oscillations are not present for a long span of
time., This shows the need for the consideratiom of damping in the .
response analysis of acoustic systems.

It has been a great cencern to many investigafors whether sonic
booms will be acceptable to people. This important factor depends
on the strength of the sonic boem and the structural response to
finite duration excitaticm pressures like those of sonic booms.

Whether the result of dynamic effect or not, the unintentional pressure
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magnifications inside the buildings are the undesirable environments
to be tolerated. These increased pressures can be the primary cause
of damage to the structural components such as the windows and the
doors in the buildings.

It is impoertant to note that structural damage is simply an
instantaneous consequence of the dynamic response of multiple acoustical
resonators to transient excitation; the inadvertent discomfort of
people due to pressure magnifications in buildings exposed to exci-
tatien pressures, such as blast pressures, gusts produced by storms,
and noise gemerated by rocket launchings, is alse substantial.

These considerations lead to a marked need for an understanding
of the dynamic response of acoustical or mechano-acoustical systems
to various types of pressures or force excitations. Recognition,
isolation, and understanding of the parameters pertinent to the

phenomenon of the system can provide a sound basis for design concepts.,
Definition of the Problem

The total energy of a conservative system remaias constant at all
times. In the case of a dynamic system with multiple degrees-of=~freedom
this energy is distributéd among the different ﬁatural modes and amoang
various elements.

In a multiple acoustical resonator, the pressure magnification
in each of the cavities or the magnification of the particle displace-
ments at the mecks depends on the type of coupling and the wvarious
system parameters. The fellowing are the important system parameters
which affect the response of acoustical networks:

1. Conductivities of various necks,



2, Relative volumes of the cavities, and

3. Damping in the system.,

A double acoustical resonater consisting of two enclosed volumes,
Vi and V5, and two necks, Ny and Ny (Figure 2), is very common among
the existing structures (4). When this system is excited with:
transient pressures on neck N;, the pressures inside the cavities
may be higher than the excitation pressures due to the dynamic effect
of the system, 1f there is no dissipation of energy, and the two
natural frequencies are nearly equal, the pressure oscillations will
exhibit the beating phenomenon due to transfer of energy from one
resonator to the other.

It is neceésary to investigate the factors influencing the
pressure magnification and the effect of various system parameters

of a coupled resonator to a finite duration and aperiodic excitation.

il

Figure 2., Double Acoustical Resonator



Purpose and Scope of the Study

In general, any acoustical system is a continuous dynamic system.
Under certain restrictions in a case like the acoustical resomator,
it is possible to approximate the continuous system by lumping the
parameters so that the response problem is amenable to mathematical
treatment. It has been proven in the literature (3, 16) that the
lumped parameter model is a goed approximation for the Helmholtz
resonator  if the largest dimension is very small compared to the wave
length in the steady state case. Also, Simpson (4) has established
that the frequency limitations necessary for the 1umpedvparamet§r
assumption are less severe in the case of transient response of
Helmholtz resonator than in steady state response. The lumped paraﬁeter
approximation is wvalid even in the case of the acoustical network showm
in Figure 3 provided that the largest dimension of any component is

small compared to the wave length at resonance.,

||

Figure 3, Acoustical Network



The purpose of this study is to investigate the pressure magnifi-
cation and the response of double acoustical resonators coupled together
fer finite duration transient pressure excitations like N=-shaped, saw
tooth and sine pulse waves. The study consists of both theoretical and
experimental phases. The results of this investigation are helpful in
better understanding the mechanism of energy feedback in a coupled
acoustical system subjected to transient excitations and thereby
permitting the determination of the effect of the system parameters
such as frequencies and damping on maximum pressures in the cavities.,
The other important application is in the area of dynamic response of
various structures in excitation pressures like sonic booms, blast
pressures, wind gusts, noise produced by rocket launchings, and random
excitation,

The scope of the theoretical study consisted of deriving the
differential equations of motion and solving for the natural fre-
quencies of the double acoustical resonator. The transfer function of
the system has been derived using the Laplace Transformation notation.
Response of the system in both the frequency and time domain has been
investigated for transient excitétions such as finite duration pressure
1oadings. Numerical techniques and high speed digital computers have
been used in computing and investigating the transient response., An
attempt was made to use the techniques of analog ceomputers to:soive
for the response., Equivalent viscous damping was assumed in the
analytical treatment to approximate the various damping mechanisms in
thevsystem. The following major asspmptions were made in the mathe-
matical treatment of the problem:

1. The wave length corresponding to the natural frequency



is 16 or more times greater than the largest dimension
of the resonator;

2, The pressure at all points inside the cavity is the

same; and

3, All the walls of the resomator are rigid.

The principal object of the experimental investigation was to
substantiate the validity of the assumptions made in deriving the
mathematical model, Therefore, the scope of the experimental phase
of the study was to design and build a double acoustical resonator
with rigid walls, satisfying frequency limitations for the 1umped
parameter assumption, to excite it with transient pressure pulses,
and to measure the pressure response in both cavities of the resonator
as a function of time, The plane wave tube in the acoustical labora=~
tory was used as an acoustical delay line to excite the resonator with
firite duration transient excitation pressures. Instrumentation was
developed to produce the excitation pressure pulses and to measure and

record the input pressure and pressure response in both the cavities,



CHAPTER IIL
PREVIOUS INVESTIGATIONS

The primary investigation has been done in the area of acoustical
networks from the stand point of musical tones and acoustical wave
filters, The‘acoustical resonators used by Helmholtz (16) in his
research on the quality of musical notes were almost completely
closed vessels with an aperture (Figure 4) and were used t§ intensify
effect of a simple tone preduced in the neighborhood of the resomator.
This intemsification is the result of vibrations of the air enclosed
by the resonmator. Rayleigh (2) solved for the steady state response
of a vessel containing air, which communicates with the external
atmosphere by a narrow aperture or a neck. He assumed that the kinetic
energy of the air due to its veleocity can be neglected except in the
vicinity of the neck or aperture. The potential energy can be calcu~
lated by treating the density&of the air in the interior of the vessel
as being uniform, These assumptions are valid if the space through
which the kinetic energy is sensible is reasonably small in comparison
with the length of the wave,

The stiffness of a Helmholtz resonator depends on the volume of the
cavity and areas of the necks, and the modes of the Vibration are depen-
dent on the inertia of the air in the vicinity of all the apertures.
Thus the fundémental frequency of a Helmholtz resonator with more

than one neck is different from that of the simple resonator. When two



or more interconnected vessels communicate with each othér, and with
externallair, then the inertia of the.air in a cénnecting passage is

as great as that of the channel which communicates with the external
air. By assuming lumped parameters, the system is treated as a finite,
multidegree~of~freedom system. Many investigators (1, 3, 6, 7) have
attempted to solve for the steady state response of multiple resonators
with application to wave filters, but véry little work has been done

in the field of transient response.

Simpson (4) has investigated the transient response of a simple
Helmholtz resomator for a sonic boom type of excitation. He estab-
lished the validity of the lumped parameter description of am undamped
acoustical resonator for the tramsient pressure excitations, and has.
shown theoretically that the frequency limitations necessary in the
transient response of a Helmholtz resonator are less severe than those

associated with the steady state response.

NECKS

Figure 4. Simple acoustical Resonators used by
Helmholtz (Spherical Cavities)
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Rayleigh (2) described briefly the method to obtain the differ-
ential equations for the particle motion of two acoustical resonators
coupled together and derived expressions for the natural frequencies
of a particﬁlar configuration, McGinnis and Albert (1) have investi~
gated an analytical method to obtain the equations of motion and
natural frequencies of different configurations of multiple Helmholtz
resonators assuming lumped parameters. They compared the theoretically
obtained frequencies with the experimental results and found them to
be in good agreement. Paris (9) in 1925 investigated the double Helm-
holtz resonator with a particular interest to the designing of a sensi-
tive acoustical receiver used to measure the sound amplitudes., He
found that increased magnification can be obtained by the use of an
acoustical system with double resonance., He demonstrated the influence
ef loose coupling and tight coupling on pressure response of the
system. In his analytical work, he took into account the damping due
to viscosity and radiation.

Chfistiah (11) examined the response of an undamped multiple res-
onator for steady state sinusoidal excitation and free vibrations. He
derived a functional relationship of coupling parameters of a double
acoustical resonator.

Olson (3) derived expressions for the frequency response spectrum
of the multiple resonators which behave as low pass, high pass, band
pass, and band eliminatien wave filters. He used the analogy of
electrical filters and the impedance meﬁhed to derive attenuation
expressions. No explanation was given for the energy transfer from cne
resenator to the other through coupling. He indicated that the simple

Helmholtz resonator can be treated as a single degree of freedom system
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even for transient cases.

Ingles (21) investigated the effect of the pressure (at the
equilibrium cpndition) on the response spectrum ©f Helmholtz resonator
formed by two cavities and a neck. In this form of Helmholtz resonator,
the variation in pressure changes beih the mass of air in the neck and
the volume of the air in the cavities, Thus, the resonant frequency
of the system varies with the pressure. He also investigated the
effect of temperature on the resonant frequency.

Morse (5) discussed a statically coupled mechanical system with
two degrees~of=freedom, but mention has not been made about the
transient response of coupled dynamic system.

Wein (10) examined different kinds of coupling in a two degrees-
of-freedom system. He developed a relation showing the effect of
various coupling parameters on free vibrations of the system.

Andrews Associates (18) in their final report on ''The Studies of
Structural Response to Sonic Booms" analyzed a simple oscillator for am
N-wave excitation and found tﬁat the structure can be arrested from
oscillations if the relationship between the natural period and duration
of the pulse is at a critical value, For an N~wave, the maximax re-
sponse is 2,05 times the static. response.

Jacobsen and Ayre (3) have solved for the maxim;x response of an
undamped simple mechanical oscillator for different types of tramsient
excltation forces. The maximax response is defined as the maximum
absolute displacement, velocity_or acceleration of the oscillator
occurring at any time as a result of the action of the forcing function.
They also stated that the transient response of an undamped two degrees=

i

of-freedom mechanical system can be solved by a classical solution of
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simultaneous differential equations for particular cases; but the con-
ditions for maximax response are not discussed.

Ormondroyd and Den Hartog (28) have given a design criterion for a
vibration absorber. They discussed the conditions under which only
smaller mass will have a considerable displacement when the bigger mass
of the two degrees-of-freedom is driven by a steady state harmonic force.
The effect of damping has also been included in their discussion.

Kryter (33) has done laboratory investigation on the relative
noisiness and loudness of sonic booms having different wave fronts, the
reactions of people to booms as an auditory experience, and their
startling reactions to acoustic stimuli, The following statement is
one of the conclusions from his investigations: 'The sound heard in
a house subjected to sonic booms are judged to be noisier or more un-
wanted than the sonic boom heard outdoors, probably because of rattles
and other secondary sounds that result from vibration of the house."
After this study, it appears that the pressure inside the house can be
much higher for certain configurations due to dynamic acoustic effects

rather than to rattles and vibrations of the house itself.



CHAPTER IIL
MATHEMATICAL MODEL

The response of a double acoustical resonator to transient exci-
tation, as represented by an electrical or mechanical analog, depends
on the frequency limitations, dimensions of the system, and the

mechanism of damping in the system.
Limitations of Lumped Parameters for Acoustical Resonators

The assumption of a 1umped parameter model for the acoustical
system depends mainly on the critical dimension, which is defined as
the largest dimension of the system (4).

In many cases the various elements of the acoustié structures
are small in dimension compared with the wave ieﬁgth bf sound. When
this restriction is fulfilled, the behavior of sound or pressure pulse
in the structure is analogous te the behavior of electric current in a
circuit with lumped elements or to the behavior of the displacemgnt in 
a mechanical system wiﬁh lumped parameters. When the dimensions of the
elements of the structure are not small relative to thé wave length,
the electric analog is a transmiésion line and the mechanical analog is
an elastic continuous system.

In the case of a simple Helmholtz resenator‘(Figure 4), the
velocity attained by the airlwithin the volume is diminutive when

compared to the velocity attained by the air particles in the neck of

13
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the resonator, If the neck or constriction is very small as compared

to the wave length, the compressibility of air in that part is negli-
gible, The air in the constriction has a total mass of Algpy s

where A is the cross sectional area and be is the effective length of
the neck. The effective length has to be used in the analysis to
include mass of the air beyond the ends of constriction which moves
along with the air in the neck, Thus, the kinetic energy is due only

to the motion of the effective mass of air in the neck and the potential
energy iLs only due to the compression and expansion of the air in the
cavity of the system.

The correction factor to be added to the actual length of the
neck depends on the wave length and shape of the neck. This has been
derived in the literature (2, 5) by considering impedaﬁce of the open
end of the tube. For a circular cross section, if the open end is
fifted with a flange that is wide compared tc the wave length, the

approximate value of specific acoustic impedance at the open end is

given by,
2 2 :
po B o 8, R »
Zﬂ =" Jc +iw 3 for wave length, X> 8t R, and
i é"p c2
S IO
Zp=po CtOW R for wave 1ength,k< 8t R;

where R = radius of the tube.

Open tubes having cross sectional parameters much smaller than the
wave length are, therefore, nearly as successful Hoarders of energy as
closed tubes, for only a small percent of the stored energy can be
radiated away in a period of one oscillation. From the above equations

it is apparent that the reactive term is mass load equal to mass of air,



8p0R/3n, for small cross sectional area of the neck. When there is no
flange on the end of the tube or when the flange dimension is negli-
gible, the reactance is reduced to some extent in magnitude changing
from 8p°R/3n to approximately O.6p°R. Therefore, the correction
factor, ¢, to be used for the effective length of the neck should be

in between the limits O.GpOR and 8p°R/3n.
Consideration of Damping in Acoustical Resonators

Energy dissipation would be inevitable in any physical dynamic
system. It is necessary to understand the various mechanisms of
losses in order to incorporate damping in the response analysis,

In acoustical systems the significant damping is due to: 1) viscosity
and heat conduction, 2) anomalous gaseous absorption due to thermal
relaxation, and 3) mechanical wall vibrations.

Energy dissipation due to friction in the neck is a function of
the exposed area and the roughness of the neck. This dissipation can
be reduced by making the surface of thg neck smooth, In general,
dissipation of energy due to radiation is more important when compared
to that of friction in the neck, provided the resonator is so situated
that it can-radiate. However, when the aperture of resonator is small
or the length of the neck is long enough, then the dissipation due to
friction is predominant. If the walls are rigid enough, then the
losses due to the vibrations of the walls can be relinquished. At low
frequencies, where there is little thermal relaxation, the energy loss
due to thermal relaxation can be neglected. Therefore, for a resonator
with rigid walls at low frequencies, the losses that are sizeable are

those due to radiation and friction in the neck.
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The damping ccefficient due to radiation of the resonator is

derived by Crandall (17) and is given as,

2
cR=%%;
where
p, = mass density of air/unit volume,
@ = driving frequency in radians/second,
c = velocity of sound, and

Cp = damping coefficient, energy/unit volume velocity.

Damping due to friction at the walls is given by the complex
function,

o=l g @D W
where b= viscosity coefficient nf the fluid.

The imaginary quantitxJ‘powp/Z is in phase with the acceleration;
therefore, it has the nature of a mass reactance. This gives the
effect of virtﬁally ihcreasing the mass density of air which corresponds
to lowering of the natural frequency of a vibrating system by leading
it with added mass. However, this may be taken into consideration
equally well by adding the correction factor to the length of the
neck to obtain the effective length.

The equivalent viscous damping coefficient for the resonator has

been derived (31) by using the criterion of equivalent energy dissi-

pation per cycle:

Coy =Cnaw X Y, o ' 2)

where
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n = the power of the velocity for which the actual damping
coefficient is proportional, and
X = the maximum amplitude.

Pressure Response of Double Acoustical Resonators

The critical dimension of the resonator is assumed to be very
small when compared to the wave length corresponding to the matural
frequencies of the system. Since the temperature gradients are
small and the process of compression and rarification are rapid, it
is reasonable to assume the process of compression and expansion in
the cavities (Figure 2) is adiabatic; therefore, the pressure and

the volume are related to each other by the relation,
Y
PV = constant. (3

Differentiation of equation (3) yields the expression for a change
in pressure as,
YP : '
dP = - _V_?. dv; %)
where Po is the original pressure.
Assuming that the air in the necks behave as masses and that in

the enclosed volumes as springs, the mechanical analog can be derived

as shown in Figure 5. If X and x, are the displacements of masses

2
M; and My (air masses at necks N, and NZ)’ respectively, then the

forces acting on each of the masses are given below:
Force on neck Ny:

2
Inertia force = po £e1 A1 §E§ .



- Z
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Figure 5. Equivalent Mechanical System for Double
. * Acoustical Resonator ‘
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Restoring force due to volume, Vl -A dp _ng Al(Alxl-Azxz),
2 Xm

Dissipating force due to damping = clA1 gl and

External force = P_A_; and 5)

11

Force on neck'Nz:
, 2,
Inertia forcg'f'99zélél ih;z .

Restoring force due to volume, Vi =X%% A2(A2x2 - Alxl),
YPo
Restoring force due to volume, Vé = Vo Az(Azxz),

Dissipating force due to damping = c2A2 3¢ t°¢ (Az ac

1 dt) A, , and
External force = PoA, . ®)

By Newtonian force balance on air masses of each of the necks,

the fbllowing’simultaneous differential equations of motion may be

obtained,
2 - dx
d = 1 dx o B - v,
=P A s (7a)
and 1 '
9 ‘
d x } dx2 dx1 i 2 9%,
Poleaty T2 t S1fp [A2 T3t T A @] tiFAy G
Y2 Yp, 2

The equations of motion may be reduced to the following form by
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dividing equation (7a) by A, and equation (7y) by A, and replacing
. . 2
PY by its equivalent P,C o

2

po[’el . . . Poc
o X, +c (X - X2) + v (X, - X) =P , and
(8)
2 2
pozez *e L] - ) . ch poc

where

P4
]

1 Alxl = volume displacement at neck Nl’

Azx2 = volume displacement at neck N

>
N
]

2’

g
fl

external pressure on neck Nl, and

P2 = external pressure on neck N,.
The transformation of linear simultaneous differential equations (8)
into complex frequency domain by the Laplace transformation with zero

initial conditions, yields the following simultaneous algebraic

equations:
2 , 2
Poler 2 Poc P [
—_—— g 4+ c.8 + . X (s) - |c,8 + X5(s) = P, (8)
[Al 1 v, 1 TV 2 1
and

2

p L p c p.c | p.cC
) e2 2 fo) "0 K i ‘O
[—-—-—-—AZ s + (cl +cy) 8 + v + v, ] XZ(S). [cls+ v, } .

X, (s) =P, (s).
1 R (9

The solution of these equations gives the response of the system

in complex frequency domain as,
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Poted [2 2 ﬂ
P1(s) - |5 + 2p, (52 + §12)Ws + Dy + Do

X1(s) = X
Poreq [ %
B, (s) e 28 124t By ’
+ T A -~
and Pz(s) po'ee1 [SZ + of P, + p12:,
' A
Xz(s) = 1
A
oze2 '

, Y 2
+.P ( ———— ( +
R g e e (10)

A

wherse ,

Pyy D, aTe the‘uncoupled'ﬁatural'frequenéies;-

§12 is the eouplingffrequenoy,‘and

A = characteristic determinant of equations (9)(Appendix A).
Response in the time domain can be obtained by factoring the complex
expressions of equation (10) by partial fractions and transforming
from complex frequency domain using inverse Lapiace transformation.

The excitation pressure on neck N2, Pz(t) is éssumed to be zero.
Then equation (10) simplifies to

P
P, (s) -9%'2-2' [82 vy (B, +8)) s+ D, + p122]
X1(S) = - R ?

and

(11)

The response solution is obtained for two important types of

transient excitation pressures on neck N1:‘bne dycle of sine wave and
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a wave made of straight lines with finite duration and finite number

of discontinuities.

Case 1. Respohse of double acoustical resonator for an excitation of
one cycle of sine wave:
This excitation pressure can be illustrated graphically as in

Figure 6 and expressed mathematically as,

1

P, (t) = A, Sin wt, for 0 <t << 5
_ : 1
P,(t) = 0, for t< 0 and t> 7= ; and
P,(t) = 0, for all t. (12)
{L
P, (t)
A

¢/

S
T =2y

]

Figure 6. Excitation Pressure of Sine Pulse on
Neck N1 ' ' '

The volume displacementiresponse of the system which may be

obtained by inverse Laplace transformation are (Appendix A),

A w b, o2t _ .

X, (t) = > i [a; Cos wt + o= Sin wt + == (91 Sin bt +§, Cos bt)
A
ct

+ Ea— (qﬁ Sin dt + ', Cos dt)Jv u(t) —‘[a1 Cos @(t-T)
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b‘l ‘ ea(t-—'r) _ _
+ 5 Sin w(t - 7) + = (@1 Sin b(t - 7) + 8,Cos a(t=r))
Lt =7) |
+ = (\IJ1Sin a(t = 1) + ¥, Cos At = eNJuw (t -7 ,.
and
Aowzp,lz \ ' 'b2 ea;t _
X5 (%) - —5:[6—2-—— i [a, Cos wt + o Sin ot + = (§3>Sln:bt +8.fos bt)
A5
ct

+ (\113Sin dt + ¥ Cos dt)] u (t). - [a2 Cos w(t - T)

b, C eeom)

+ 5—2— sinw(t - 1) + S (2, Sin b(t - 1) + 8,Cos b(t-r))
ICEE D) (13)
+ — (~If3 Sin d (t,-7T) +~114 Cos d(t — 7)) Ju(t-7)> i

where the vcoefficients ay ,..b,' g seesescssssesssasey \113, \114 are given
by equations (15)in Appendix A.
The ',pxesé};;;'eg in the ;'ca\vritie:s may be expressed in terms of volume

displacements from equations (12) as,

2
OC .
P, = T (X, - X,) , and
9002
P = X 3
27V, 2

These pressures oa.ri be normalized with respect to the amplitude
of the ‘excitation’ pressure ‘AO,{ and can be derived as a fu.';lction of
-uncoupled frequencies,lp.] and Pos coupling frequency p1'2;- and the
damping factors§ 11 5 as (Appendix 4),

P > at ' ‘

N ’ : ! ‘e DN 3
=P [Ax Cos wt + By Sinwt + =~ (ers;n bﬁ + D Cos bt

A

L
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ct
[ .
+ == (B, Sin dt + F_ Cos at)] u(t) - [Ax Cos w(t - T)

ea(t -T)
+ B, Sin o(t - T) + = (CX Sin b(t - 1) + D Cos b(t-71))
ec(t - T)
+ — (B. sin d(t = 7) + F_ Cos d(t - 7))] u(t-1)
X X
.and
P b at
2 2 2 e X
KO- = p12 Py m2 [a2 Cos wt + T Sin wt + eT. (§3 Sin bt+§4Cosbt)
ot
+ = (‘113 Sin dt + ‘114 Cos dt)] u(t) - [a2 Cos w(t - 7T)
52 ea(t - 'l') ‘
+ == Sin w(t - 1) + = (§3 Sin b(t - 1) + g,Cos b(t~-1))
ec(‘t -T)
# == (% Sin a(t - 1) + & Cos a(t - 7)) Ju(t-7)s; (14)
WheI.-eb
‘ 2
Ay =8y =23, P15
B = (b, = by Dyo2)
x @ ‘1 2 Pia /s
2
2
‘ 2
By =¥ - % py,7y end
2
Fo=% - p,°% (15)

In equations (12) and (14) the unit functionsu(f and u(t -7)
indicate that the response expressions are valid for only >0 and
(t = 7)>0, respectively, which should be taken into account in

evaluating pressures in the cavities at any time.
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Since from this analysis it is rather difficult to understand the
effect of variocus system parameters on the response, the analysis of
the pressure response of the undamped system subject to an excitation
pressure of sine pulse will predict the parameters involved. These

pressures can be written as (Appendix A),

P 1’1‘2 |
= 5 5 > 5 [az Sin pt + bZ Sin p+t + c, Sin p_t] .
0 (@ -p )@ -p)

u(t) = [a, Sinw(t ~7) + b, Sinp (t -7) + ¢, Sinp_ -

(t =) u(t -7)}, and

(16)
2 2
y P Py : , . '
= [Sin @t + by, Sinp,_ t + o, Sin p_tJu(t)

0 (o - P+2)(w2 -p.%)

[Sinw(t - ¢) + by Sin p+(t -T) + cy Sin p_(t - T)]u(t-?T)‘ ;

where
— 2
8z = 8¢ T 8 Py s
2
bZ = bx - by Pis s and
2
c_=0C

z x~ % P12
When the frequency of driving pressure, w, is the same as one of
the coupled natural frequencies of the system, P, OT D_, the denominator
of equation (16) will be zero, which indicates that the pressures in
the cavities may be infinite. But at these conditions, the numerator
also becomes zero which makes the response mathematically indeterminate
and leads to the use of the L'Hospital rule to find the pressure

response. Since these expressions are complex functions of the un-
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coupled frequencies, Py and Pos and of the coupling frequency, Pyos of
the system, i1t is more convenient to establish the response by
numerical techniques than by applying mathematical techniques to the

Tresponse expressions.

Case 2: Response of double acoustical resonator for an excitation
pressure made up of straight lines with finite number of discontinuties:
This excitation pressure can be illuétrated.graphically és in

Figure 7 and can be expressed mathematically as follows:

n
= o - - H
Pi() = 3 [ epy (-7 u( - ), (17)
where
n = number of discontinuities on time axis,
@, = pressure Jump at time, 1t = T and
Bi = change in slope of pressure at time, % = T
P, ()
)
i
' t .
i ¢ /
! '
] ] >
i ) 7
™ T2 k! "y TIME
' |

Figure 7. Excitation Pressure Made Up of Straight
‘ Lines ‘ -
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Laplace transform of P1(t) is,

n
Py(s) = ;15 Zegs Bl it (18)

i

[

The excitation pressure on neck N

Pz(t) = 0, and hence P2-(s) = 0.

The volume displacement response of the system for the excitation

pressure of the type described in Figure 7 is (Appendix A),

1 n ea(t/— Tl)
X (%) = a,. +b,.(t - T.) +=— .
1 po£e1 iz1 | 1i 11 i b
A
c(t - 71.)
i e 1
[QH Sin b(t - ) + §,, Cos b(t - 'ri)] + —_
[\Irﬁ Sin a(t - 1) + ¥, Cos d(t - 7,)] u(t~ Ti)' , and
2 ’ :
(4) =l 3 (b= gy » 82T
X, (% a,. + b, (t = 1.) + F——_—™—— .
2N Polen 521 2i 2i i b
Ay

G(t_— Ti) .

. =]
Cos b(t - Ti):l + )

,[63.1 Sin b(t - ;) + &

[%,; sin a(t = 7;) + ¥, Cos a(t - 7)]pult - 1.). (19)

The pressures in the cavities can be expressed in terms of volume

displacements as follows:

Sk A (X, - %) ="p," iz_:1 By by (b =my) + S



[y Sin b(t - Ti) +d_; Cos b(t - Ti)] + T
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eC(t - Ti) .

[ey; Sind(t - 7;) + £, Cos a(t - v;.)]p u(t - 7,), and

c n a(t - 7.)
0 2 2 e i’ o,
Pp=g—Hy =D Py I qap + (b -my)+ )
2 1=1 .
o ec(t - Ti)
[§3i Sin b(t - T,) + §4i Cos bt - ¢i)j + —
[@31 Sin d(t - ;) + g, Cos At = 7,00 u(t = 7,) ; (20)
where
~ 2
Ggi T 1 T Bpj Py
- 2
Pri = Pgg ~ Poy Pyp o
_ ‘ 2
Cxi T %11 7 C21 Pq2
. o
ey = dyp T dpg Pyps
o 2 d
Cxi ¥ 1 7 G2y Pqp 0 BB
2
fxi =11 ~ T3 Pyp -
These respénse ex@reSsions can be evaluated in the time domain for

given uncoupled, . undamped natural frequencies, coupling frequency and

the damping factors.

»Tranémission'of Energy From One Resonator to the Other

In the case of a dynamic system with more than one degree-of-

freedom or

maltiple oscillators tightiy coupled together, the feedback

energy from thé driven system to the driver cannot be neglected. For
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illustration, in the case of two oscillators coupled together, both
oscillators are on an equal footing, each is affected by the other.
In the cage of an undamped system subjected to transient excitation
force of finite duration, the total energy of the system computed at
the end of thé forced era should remain constant for the rest of the
periods Hoﬁ;ver, the absolute maximum displacement (pressure in
acoustical gystem) may occur in the residual era depending on the
system parameters. The absolute displacements of masses or absolute
pressures in the cavities of acoustical systems depends on the type
of transient excitation force or pressure, the manner by which it is
Oapélied aﬁdxthe system parameters. If the excitation pressure is
applied on neck N, of the acoustical resonator (Pigure 3), it is
natural to expect that the pressure build up in bavity V1 is faster
when compared to that in the cavity V2. However, the maiimum pressure
amplitude .can be in either one of the cavities depending on the
_dimensions of the necks aﬁd'cavities.

Qne can anticipate the beating phenomenon in the residuai era fdr
the system With two degrees—of-freedom. In the case of mechanical
elemen%é coupled with acoustical elements forming a dynamic systém with
multiple degrees-of-freedom, the beating phenomenon exists both in
pressure oscillations and the displacement oscillations of mechanical
masses.

"When a mechanical system with twoidegrees-of—freedom'ié sﬁbjeoted
to finiﬁg duration driving force, both masses will have initial dis-
placements and velocities at the eﬁd'of the forced‘eré; With these
initial conditions, the diéblacement response in the residual era is

the-summatidn of two harmonic motions with the natural frequencies of
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the system. When these two frequencies are different from each other,
then the combination of these two motions is not harmonic. If the
amplitude of this response varies periodically, then this phenomenon

is khoun as the beating effect.
Merits and Demerits of Analog Computer

The analog computer solution of simultaneous differential equafions
is of a continuous form. Accuracy depends on the various elements of
the analog computer. It is rather arduous in some cases, to make the
system stable for the system of undamped physical systems. The indi-
vidual elements of the system can be varied very conveniently and the
response can be studied. It is well suited for the solution of the
differential equations for particular configuration with numerical
values. To study the effect of all the possible parameters, is rather
tedious, particularly to study the maximax response of the dynamic
system with multiple degrees—of-freedom. For example,bin the éipfes—
sion for the pressure response of the dduble acoustical resonator, for
excitation pressure of one cycle of sine Wave,bit is necessary to study
the effect of two uncoupled freguencies and the coupling frequency on
the maximax response. Since the analog form of the solution is in the
time domain, iﬁ is necessary to solve for different combinations:of
coefficients of tﬁe differgntial equations in order to solve for maximax
response. It is time consuming to study the maximax response for all
the possible variables éf the system. .Also one should be extremely
careful in selecting the numerical values for~the parameters, so that

the critical point will not be missed.



CHAPTER IV
. THEORETICAL RESULTS

The pressures in the cavities of the system of the multiple acoﬁti—
cal resonator are functiohs of various system parameters such as.un-
coupled natural frequénsiés, coupling frequencies, and damping factors
and the excitation:pressures. The coupling frequencies are defined
as the frequencies which couple two ressnators. It is not possible
to study the behavior of pressure response byvthe mathematical tresta
ment of equation (14), for it is an thremelx complicated function of
sysfem parameters and external pressure GXCifatioh. Also, since these
expressions are functions of several variables, it is rather difficulf
to fiﬁd the absolute maximum pressures in the.tiﬁe.d@main by applying
the mathematical treétment. To represent the response'spestra‘of the
system, it’is necessary to_use a Tesponse suffsce instead of a response
curve,

Before discussing the responsé of double acoustical resonators
subjected to transient excitations, it is desirable to know the
minimum number of independent parameters that gffect the response.
The Tresponse pressures ;n the cavities, when excited by a finite

duration pressure, are the functions of the conductivities of the necks,

volumes of the cavities and the period of excitation pressure. However,

from the discussion in Chapter III, it is apparent that theﬁé“are fivé‘

independent parameters to represent the system, namely, Pqs §2’ Pﬂ2’

31
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51, and 52;.'The two parameters, amplitude and duration, represents
the transient excitation pressure. It is desirable to use normalized
system parameters to present the response spectra. The frequencies
may be normalized by miltiplying them by the period of excitation.
Pressures'mayvbe normalized by dividing by the amplitude of the exci-
tation pressure. The choice and number of parameters necesSary_to
represent the system response are discussed in the next section by

examining the governing equations.
Governing Equations

The pressure reéponse expressions are simpler in the case of the
undamped’ system as compared to the damped system. Thus it is easier
to understand the dynamic behavior of‘the system by discussing the
undamped system exposed to external pressures. |

The following are the expressions from Appendix A for the pressure
response Qf an undamped double acoustical resonator in the forced era
( O 'vt' T) for d one cycle sine wave pressure excitaﬁion of amplitude
Ao and period T:

2

i P
Yo @%-22 0 -2

P

[az Sin ot + bz Sin p+t

+c, Sin‘p_t] , and : (21)

2 2
Py Py Py

% 02 -5, 0° - 00)

. . . - '! .
[Sin ot + by Sin p+t + cy Sin p - t} 3

where p+and p_ are two undamped natural frequencies of the system and

are given by equation (18) in Appendix A as,
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(0.2 4 p.2
2 \Pq Po

2 2 2 2.2 2 2
2

(22)

2 2 2 2 2 2\2 2 2
2 (p/| + p2 + p/|2 ) - '\/(P1 - p2 - p/|2 ) + 4P/| P/|2
2

From these equations it appears that the pressure response can be
reduced to a function of three variables; namely, two natural fre-
quencies and the period of the excitation pressure, but the coefficients
a9 bz, ¢ s o o a o s °cy, are functions of D1y Poy Pys and @, and
cannot be reduced to a function of only coupled frequencies and ® .
Thus, the pertinent parameters for invesfigating the response are the
uncoupled frequencies and the type of excitation pressure. It is of
interest to note that the pressure response is not an implicit function

.of the elements of the systems, such as the volumes of cavities and

conductivities or dimensions of the necks.
 Uncoupled and Coupled Frequencies of the System

The coupled frequencies, D, énd p_ are functions of three variables
P11 Doy and Dqoe FPor the double acoustical resonator the frequencies
Py and p, are defined as the frequencies of each of the resohators when
the othér resonator is absent. The coupling frequency is defined as

the frequency of the'system when the neck N, is closed and the cavity

1

V2 is removed. The following expressions for the frequencies‘are

obtained from equations (7),

P A1
= ?
1 V11e1,
Ay
Py, =C s and
2 v21e2
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_ ]Az
Pio =Ny 1 . (23)

17e2

These frequencies are tabulated in Table I for buildings that
can be idealized as double acoustical resonators. In this analysis
the combination of two rooms with two doors open and all windows
closed, as shown in Figure 8, is considered. For various values of
areas of the door openings, volumes of the rooms, and keéping the
actual length of the necks (doors) as six inches, the frequencies
are oalcﬁlated.

Therequations (22) can be solved for uncoupled frequencies as

functions of Py P_ and Pio resulting in,

2 2 2 2 2 2\12 2 2
> @+ -1, iwfi[p12 -+ ) -4, 0",
2

and

2

2 2 o . «/-"; 5 R
o e+ -, ) s e, - (" v )] - dp "

Two combinations of P, and p, are obtained for given values of
P,y P_ and Pyoe For each set of.p1 and Ps values the pressure. response
is different and hence p+ and p_ capnot be the pertinent system para-
meters to represent the response.

The pressures in the cavities were computed in time domain and
plotted in Figure G for a short period sine pulse excitation. This
illustrates the beating phenomgndn,of double acousticél.resonator which

was discussed in Chapter ITI..
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N

L I,
Door Door

Rigid Walls

Pigure 8, Building Structure That Can be Idealized as
a Double Acoustical Resonator

Damped Acoustical Resonator

As it is stated infChaptergIII, incorporation of damping makes
the system more complicated to analyze. In this investigation.it is
assumed that the damping due to various mechanisms can be reduced to
'equiVaient viscous daﬁpingvﬁhich is a linear funétion of volume dis-
placement. The governing pressure responée equation for the excitation
pressures of one c¢ycle of sine pulse and the pressures made up of
straight lines with finite discontinuities like finite duration N-waves
and saw tooth waves are;

For sine pulses

P at
1 2 r . e .
_Ao =Dpy” W (A Cos wt + B Sinewt + = (cx Sin bt + D_Cos bt)

ct ,
e .
+ = (B, Sin dt + F_ Cos dt)] u(t) - [4, Cos w(t - 7)



TABLE I

NATURAL FREQUENCY OF TYPICAL ACOUSTIC STRUCTURES

A A, v v, £ £, £,
@D @D @D @D ) o) (eps)
15 15 1000 1000 11.10 11.08 11,10
30 15 1000 1000 13.40 11,08  11.10
15 30 1000 1000 11,10  13.40  13.40
30 30 1000 1000 13,40  13.40  13.40
15 15 19000 1000 2.54  11.08 2,54
30 15 19000 1000 3,08  11.08 2.54
15 30 19000 1000 2.54  13.43 3.08
30 30 19000 1000 3.08 13.43 3,08
15 15 1000 19000 11.10 2.5  11.10
30 15 1000 15000 13.43 2.54  11.10
15 30, 1000 15000 11.10 3,10  13.40
30 30 1000 19000 13.40 3,10  13.40
15 15 19000 19000 2.54 2,54 2.54
30 15 19000 19000 3.08 2.54 2,54
15 30 19000 19000 2,54 3.08 3,08

30 30 19000 19000 3.08 3.08 3.08
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Figure 9. Pressure Bea‘tin’gs in a Double Acoustical
) Resonator o
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) ea'(JG B T) .
+ B, Sin w(t - 1) + = (cX Sinb (¢t - 1) + D, Cos b(t-7))
WCICIER ) .
+—— (B, 8in d(t - 7) + F Cos at -] ut-7)% ,
and
P | b at
Kf- = p12 p22 ) [a2 Cos wt + -32 Sin wt + g-b— (§3Sin bt -'rQACos. bt)
ect
+ =5 (\If3 Sin dt + \114 Cos dt)] u(t) - [a2 Cos w(t - T)
b2 ea(‘t - T)
+ == Sin w(t - 7) + = (<1»3 Sin b(t - 1) +§4Cos b(t-T))
ec(“b—'r) |
A (\I!3Sin a(t-7) + ¥, Cos d(t-1))] u(t-7)y; ° (24a)
and

For ‘pfessures with straight lines:

P, = p, i§1 ay; + bxi(t -q) + = [o,;Sin b(t - 'ri)
et - 'ri)
+ 3 [exi Sin d(t - -ri)
+ Cos a(t - 7,)] pu(t - 7,),
and
ea(t - Ti) .
P, = an + bzi(t - 'rl) + = [<I'3iSJ.n b(t - 'ri)
ot -7, .
+ T [‘1131 Sin da(t - 'I'i)
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+ gy Cos d(t - -ri)j alt - ) . (24)

These equations do not lend themselves to immediate conclusions
as to the interactions of the system parameters due to complexity of
the expressions. These expressions are computed numerically for dif-
ferent values of Pqs Poy Pyos 51, §2, and period and typevof excita-
tion. The FORTRAN computer programs are written in such a way that
the pressures in the cavities are computed in time domain for stated
values of system parameters and the period of excitgtion pressures,
and the printout is the maximum pressufe that can occur in a giveh
interval of time (Appendix C).

The response spectra of the transient response of the system are
plotted in the frequency domain in Figures 10 to 18 for a sine pulse
type excitation pressure. The system parameters used to represent
responses are the frequencies of uncoupled resonators and damping
factors. Since there are five system parameters in addition to.the
period of excitation, it is not possibie fo étﬁdy the effect of each
parameter on the response either from equations or from one repre-—
sentative curve. Hence, the results are presented in several figures
such that the effect of two.parameters'can be studied in each of the
fiéﬁres. Figures 19a and 19b are the pressure response spectra of the
same system for saw tooth and N-wave type excitations.

The frequencies are non-dimensionalized with respect to the fre-
guencies cérresponding to the period of excitation pressures. The
pressures in the cavities are normalized with respect to the amplitude
of the excitation pressures and thus correspond to pressu¥e magnifi—

cations., In these figures P1 and P2 are the response pressures and
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§1 and g, are the damping factors in the cavities V1 and Vz, respec—

tively. The uncoupled frequencies are represented by’f1 énd f2, and
coupling frequency by f12.: Ao and T are the amplitude and the period
of the excitation pressures.

From these spectra, it is not possible to conclude the critical
circumstances under which the pressure magnification in the cavities
will be maximum. However, by studying the numerical values of the
maximum response for various values of frequencies and period of
excitation pressures, it appears that the pressures will be magnified
t0 a maximum possible value (maximax) whenever two natural frequencies
are close to each other and also they are equal to both uncoupled
frequencies and frequency of excitation. Ideally, this occurs when
the two nafural frequencies,'p+ and p_, are equal; however, this
cannot happen because of the presence éf the coupling term in the
system.

A physical-éxplanation for these large magnifications_can be -
given in %he following Way: when two natural periods are equal, fhe
plugs of air in the necks will attempt to move with the same frequency.
If the two uncoupled natural pefiods are equal té the natural periods,
then even a small amplitude of excitation pressure with the same period
will reinforcé the motion of air particles in the necks, thereby in-
creasing the displacement magnification to a large extent.

Figures 10 and 11 illustrate the effect of the frequencies, f, and
f2 on pressure response in‘the cavity V2, for an undamped system of
double acoustical resonator. In Figure 10, the maximum pressure re-
sponse in V2 to variable uncoupled frequency :E‘1 of cavity V1, with

selected parametriec values of uncoupled freqﬁency f2_of<cavity_V2, is
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showm. 1In Figure 11, the maximum response pressure P2 to variable
frequency of cavity V2, with selected parametric values of frequency
f1 of cavity V1, is presented. In both these figures the other para-
meters of the system are held constant. The excitation pressure is a
sine pulse with a period of 0.05 seconds, damping factors, §1 and §2
in the cavities are held zero, and the coupling frequency of the
system, f12 retains a constant value of 2 cps. For each frequency
f2 in Figure 10, and f1 in Figure 11, the maximum response curve shows
the expected two humps of a two degree-of-freedom system. The family
of curves is also a representative of classical dynamic absorber
problem. As an illustration, as the difference between the uncoupled
frequencies, f1 and f2 increases, the maximum response pressure P2
diminishes. As the difference between the uncoupled frequencies and
the exeitation frequency incréases, fhe humps diminish and spread
farther apart. When the difference is small the merging of the two
humps reinforce each other to present a maximax response condition.
This is shéwn by drawingvthe dotted envelops to the larger peak values.
Figures 12 and 13 demonstrate the effect of uncoupled frequencies
of the system and the coupling frequency on response pressure in cavity
V2° In Figure 12, the maximum pressure response in cavity V2 to
variable frequency f1, with selected parametric values of coupling
frequency f12, is presented. The frequéency of cavity V2, ié held con-
stant at 20 cps. In Figure 13, the maximum preésure in cavity V2,
to variable uncoupled frequency, f2, is shown for different values of

coupling frequency f The uncoupled frequency f1, of the cavity

12°
V1, is held constant at 20 cps. The other parameters of the system

are held constant in these two figures;: The damping factors are kept
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at zero. The excitation pressure is a sine pulse with a period of

0,05 seconds. The maximax response pressure occurs when the fre-
quencies of both the resonators are close together. As alrsady

stated in the earlier part of this section, it is clear from these
figureg that the pressure magnification in theHCavityﬁvz, would ‘increase
as the coupling frequency f12, decreased. As the differencé between
either of the natural periods, 1/f,I or 1/f2, and the period of excita~
tion pressure increases, the influence of f12 reduces, as can be seen
in these figures for larger values of f1 or f2.

Figure 14 is the description of the effect of coupling frequency
f12 on the_maximum response préssure in cavity V2, for different
parametric values of f1 and f2. The damping factors, 51 and 52, are
kept at zero., The excitation pressure is a sine pulse with a period
of 0.05 seconds. As illustrated in Figures 12 and 13, these curves
also indicate that the maximum pressure in the cavity V2 will increase
as the coupligg frequené&.decreases. It can be obsgrved from this
figure that tﬁe preésure P2 is greatér when fhe frequencies of two
resonators are equal. This‘can also be seen from Figures 10 and 11.

Figgres 15a gnd 15b are the pressure Tesponse spectra of cavity
. V1 for a double acoustical resonator system. The excitation pressure
is a sine pulse with a period of 0.05 seconds. In Figure 15a, the
maximum response pressure'in cavity=V1, with two selected parametric
" values of frequency foy is shown. The coupling frequency f12, is
held constant and equal to 2 cps. These curves show that the influence

in

of frequency f27 of the cavity fV2, on the maximum pressure P1

cavity V1 is very small, In Figure 15b the maximum pressure resﬁonse*

in cavity V1 to variable frequency f1, with selected values of coupling
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frequency f1

constant at 20 cps. These curves indicate that the effect of coupling

o1 is shown, The frequency f, of the cavity V, is held

frequency on the respbnse pressure in‘cavity'Vq.f”From these two
figures it can be observed that theifrequency f2 éf cavity V2, and
tﬁe coupling frequency f12, have very small influence on the pressure
P1 in_caﬁity V1 so long as the difference between the frequency f1
and the excitation frequency'correspondihg to the period, T, is large.

Figufe 16a is an iilustration of the effect of the frecuency f2
on the pressure magnification‘in cavity V1. In this figure the
variation of pressure P2 is shown as the frequency f2 varies for two
parametric values of frequency fi of cavityiv1'{ Thé damping
factofs, §1_and §2 are zero and the coupling frequency f12 is kept
constant at 2 cps. The’éxcitaﬁion pressure is a sine pulse with a
period éf 0.05 seconds. From the curves in this figure it can be
inferred that the variation of frequency of cavity V2 does not affect
the pressure in: the cavitwaT. The significant effect of f2 can be
seen:méinl&'Wﬂéh'thé péiibd'bfveXEifatiOﬁ is‘verj’ciase.to fhe natural
period 1/f, of cavity Vo

In Figure 16b, the maximum pressure magnifiqation in V1 to the
éoupling frequency F12 is shown for two parametric values of frequency
f1 of cavity size V1. The damping factors are zero and the frequency
f2 is held constant at 20 cps. The excitation pressure is a sine
pulse with a period of 0.05 secpnds. From this figpre it_is not pos-
sible to conclude the general effect of the system éarameters on the
response pressures in cavity V,. However, from Figures 16a and 16D
it can be observed that the frequency f1.and coﬁpling frequehcy £

12

are the system pdrameters.that affect the pressure magnification in
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cavity V1.

In Figures 17, 18a, and 18b, the maximum pressure response in
cavity Yz to frequency f1, with the parametric values of f2’ is shown
for a démped double acoustical resonator. The coupling frequency f12
is kept constant at 2 cps. The excitation pressure is a sine pulse?
with a period of 0.05 seconds. But the damping factors are different
in these thfee,figures: In Figure 17, the damping factors,§1 and§2
are 0.05; In Figures 18a and 18b, these damping factors are 0.1 and
- 0.15, respectively. In these three figures the general trend of the
maximax pressure reSponse is the same as discussed earlier and given
in Figure 10. However, comparison of thésé figures with Figure 10
indicates the effect of damping. It can be observed from these two
v figures that the maximum pressure magnification in cavity V2, may be
reduced to about three by inoorporating the damping factors 51 and
§2 equal to 0.1 in ﬁhe system. |

Figures.19a'and 19b.are the maiimum pressure response spectra

which illustrate the effect of frequencies f and f, on the pressure

1
in cavity V2. The damping factors §1 and §2 of the cavities are held
constant at 0.1. The coupling frequency in both the cases is kept at
2 cps. The variation of maximum pressure to'frequency f1 with
selected parametric values of frequ‘ency,f2 of cavity V2 is shown. In
Figure 19a, the excitation pressure is a saw tooth wave with ampli-
tude of unity and period of 0,05 seconds. In Figure 19b, the excita-—
tion pressure is an N-wave W%th a ﬁeriod of 0.05 seconds and amplitude
of unity. 'The general trend and behavior of the curves is the same as

illustrated in Figure 18a, which is the response spectra of the system

for a sine pulse type'éxcitétién. Comparison of these three figures
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shows that the maximax pressure response will be greater for the excita-
tion of a sine pulse,lwhen the other parameters‘are held same.

From the pfessure response spectra of the double acoustical reso-
nator to an excitation pressure of one sine pulse, it is apparent that
the uncoupled'naturai”frequency f2 has little effect on the pressure
in»cavity V1. Thé prime controlling parameters of this response
pressure are f1, f12 and the period of excitation pressure. However,
the pressure in the cavity.Vz_is affected by both the frequencies f1
and f2. The coupling frequency f12 has a considerable effect on the
pressures in both the cavities when the normalized frgquencies,rf1T
and sz?‘gre close to unity. The damping factor of 0.1 reduces the
maximax ?ressufe magnification in the cavities from 16.7 to 5.1 as
can be seen by comparing Figures 10 and 18a. From Figure 14, it
appéars that the pressure magnification in cavity»V2 can be as high
as 18 for a system having a coupling frequéncy of 2 cps, uncoupled
frequencies f1 = f2 = 30 cps, and damping factors §1 = §2 = 0. However,
these values are not the highest possible maximax pressures, since in
certain cases where the system is tuned properly by varying the
systém parameters and the peribd of excitation pressures, these
pressures can be magnified theoretically to the order of abouf 50.“
Since in physical systems the damping is inevitable and the coupling
'is limited, the highest actual maximax magnifications would be of

the order of about 15.

Mechanical System

In certain cases, an acoustical system coupled to a mechanical

system can be idealized to a simple mechanical system. The physical
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and mathematical models of this type of system are shown in Figure 20C.
With the assumption of no dissipation of energy in the system, the

following equations of motion may be derived:

Wz, + (ky + k) % = kx, = Fy (1)
and
Hyx, + (k, + k) x, = kx, = Fp(t) 3 (25)

where F1(t) and F,(t) are the external forces acting on masses M,
and Mz, respectively. The response solution discussed in this chapter
can be extended to this system since the differential equations (25)
are of the same type as equations (8). |

The displacement response spectra of the system shown.in Figure 20
are plotted for a particular configuration in Figures 21 to 23. The
system parameters selected for this study are that of a typicai
commercial building of a large size warehouse, and the sOnicfboom g
L-type of excltatlon pressure with a period of O 135 seconds. The
effect of one uncoupled frequency f1 Wwas studled keeplng the other
two frequencies constant for three kinds of application of excitation
force of one sine pulse: 1) exrernal forcelonly on one mass, 2) ex—
ternal force on both the masses in the same direction (in phaee),
and 3) external force on both the masses in opposite direction to each

other (phase opposition). The response displacemeht, X,y Was

st1'rffsf{ is defined as the

statie- dlsplacement of" mass M ; ‘when a static force Bquals to the ampli-

normalized with respect to displacement, x

tude of - ex01tat10n force F is. applaed on mass M1 whlle mass. M2 is: held
statlonary. Slmllarly, the dlsplacement X2 is normallzed Wlth regpect

to statlcrdlsplacement xst These normaligzing quantltles are given by,
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F
x S ,
st1 k1 + kc
7
- I
stz k2 + ko

In many practical cases the excitation pressures such as sonic
booms and blastings would be on all external sides of buildings which
can be idealized as the force écting on both the masses in opposite
directions. -

Figure 21 is the displacement response of the mechanical system
when only one mass is excited with transient force of a sine pulse.
The displacement of mass M2, which is not excited by the external

force, is much less than that of the mass M Both the modes of the

g0
system are excited and the maximax of X and X, ocour at f1 equals
8.3 and 8.8, respectively.

Figure 22 is the displacement magnifications plotted when both
the masses are excited with. the force of sine pulses in the opposite
vdirectiona In this case, primarily the second mode of the system is
excited. The.displacements Xy and X, are maximum when the frequency
f1 equals T.4 and 8.2, respectively. TFigure 23 is the displacement
response when both the masses are excited with forces of sine pulses
in the same direction. In this case the system is excited mainly with

its first mode. The maximum displacements x, and X, occur at

1
f, equals 6.9 and 8.9, respectively.
When both the masses of the system are excited by the forces in

the opposite direction as in Figure 22, the potential energy would be

stored in. all the three springs: But when the forces are applied in
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the same direction as in Figure 23, the potential egérgy‘would‘be stored
esgentially in springs k1 and k2. Therefore, the system can store more
energy in the first case than in the second case for a given force and
in a given interval of time. The displacement magnifications aré

large in the first case. In a proﬁérly tuned system, the displacements
can be large enough to damage the structures. However, the presence

of damping reduces the dispiacements(to some exteﬁt, as discussed in

the previous section.



CHAPTER V
EXPERIMENTAL MODEL AND INSTRUMENTATION

In order to substantiate the theory established and verify the
validity of the assumptions made in the previous chapters, it was
necessary to build an experimental model of a double acoustical
resonator and devise an apparatus capable of producing appropriate
finite duration pressures whose shape, amplitude, and time duration
were within the limits which permit easy study. A small scale model
of two resonators coupled through the neck was built so that the

system parameters could be changed easily.
Description of the Model

The test resonator which was used to study the response of the
double acoustical resonator in the laboratory consisted of two cylin-
drical tubes with cylindrical necks made up of plexiglass. The two
resonators were of different sizes as shown in Figure 24. A photograph
of this assembled model is shown in Figure 25. The dimensions of the
model were dictated by the frequencies of the excitation pressures.

The diameters of the necks were mainly dictated by the coupling fre-
quency. To have a small value of coupling frequency, it was desirable
to have a smaller cross sectional area and larger length for the neck,
Nz, which coupled the two resonators. It was essential to have a large

volume for cavity Vi and small volume for V, for both of the uncoupled
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Figure

Figure 25, Test Resonator Assembly

26. Test Resonator lMounted in Wooden Frame
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frequencies to be of the same order of magnitude, since the cross
sectional area of neck, Ny, is small. The inside diameters of the
cavities were 11,75 inches and 4.25 inches. The length of the larger
resonator could be varied from zero to 24 inches and the smaller one
from zero to 12 inches by varying the positions of the respective
pistons. The necks were threaded to the pistons so that these could

be replaced easily by the cylindrical necks of the required dimensions.
By changing the volumes of the cavities and dimensions of the necks,

the system parameters P1s Pys and p12 could be easily varied. Holes,
measuring 5/16 of an inch, were drilled on the walls to install Altec
microphones to measure the pressures inside the cavities. The cavities
were sealed by using 1/16 inch felt on the circumference of the pistonms.
The resonators were mounted in a wooden framework as shown in Figure 26,
which served two purposes, 1) as a reinforcement to make the walls rigid,

and 2) as a stand for the resonator system while testing.
Simulation of Finite Duration Transient Pressures

The plane wave tube which was available in the Oklahoma State Uni-
versity Acoustic Laboratory was used as an acoustic delay line to pro-
duce transient pressures which were used as excitation pressures on the
system. This apparatus had a cross sectional area of about 14 inches
square and was 32 feet long. A photograph of this tube is shown in
Figure 27. To have a plane wave at the test end of the tube, the length
had to be much larger than either of the cross sectional dimensions and
at the input end it needed to be driven in an evenly distributed manner.
The first requirement was satisfied by the available dimensions of the

tube, and the second requirement was accomplished by driving with a
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Figure 27. Plane Wave Tube

Figure 28. Resonator Arranged with
Plane Wave Tube
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14 inch loud speaker, as shown in Figure 27.

A low frequency function generator which was capable of producing
sine, triangular, or square wave signals from 0.02 cps to 1000 cps was
used, The voltage signal from the function generator was fed to the
Tone Burst generator which was a coherent gate and served to convert
the signal from steady state to a transient of required duration. The
signal from the gate, after being amplified, was fed to the loud speaker,
as shown in the upper part of Figure 29. The pressure pulses produced
by the loud speaker driven by gated signals were sent through the plane

wave tube to the test end.
Testing and Instrumentation

The loud speaker produced good transients in the frequency range
from 15 to 300 cycles per second. The microphone (Altec, 21 BR 150)
response was flat for frequencies above 10 cycles per second. Test
resonators with natural frequencies from 20 to 50 cycles per second,
which were described earlier in this chapter, are compatible with these
requirements. The plane wave tube was long enough so that the reflected
wave took a long time to travel and to affect the response of the system.

The block diagram of the instrumentation used to measure and record
the pressures is shown in Figure 29. The arrangement of the resonator
with the plane wave tube is shown in Figure 28. The three factory-
calibrated microphones were arranged at the end of the plane wave tube,
as shown in Figure 31, to compare the sensitivities.

The excitation pressure and the response pressures in the two
cavities were measured through microphones (Altec, 21 BR 150) and

recorded through a C.E.C. oscillograph and also viewed on an oscillo~-
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Figure 30. Arrangement of the Resonator
to Test the Effect of Loading

Due to the Impedance of the
Plane Wave Tube
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scope screen., Since the output impedance of the microphone power supply
was much larger than the input impedance of the oscillograph, it was
necessary to build an impedance match network. The sensitivity of the
galvanometers were adjusted through the matching network so that all

the channels had the same deflection for the same voltage signals in

the frequency range of 20 to 60 cycles per second.

The effect of impedance of the plane wave tube on the response of
the resonator was checked experimentally by measuring the response
pressures when the model was about one foot away from the test end of
the tube, as shown in Figure 30. These measurements were not much
different from the pressures measured in the cavities with the test end
closed as in Figure 28 and excited with the same type of pressure.

Since the cross-sectional area of the plane wave tube was large compared
to that of the neck, there was a little effect of the tube on the
response of the resonator. However, the impedance of the tube did
affect the excitation pressures produced by the loud speaker. Very
distinct sine pulses could be produced when the end of the tube was

closed except for the neck of the resonator.



CHAPTER VI
EXPERIMENTAL PROCEDURE AND RESULTS

The test model and the instrumentation described in Chabter V were
used to test the theoretical response of the system of the double
acoustical resonator in time domain. The laboratory testing also
yielded a better understanding of the physical parameters and damping
mechanism of the system and the general validity of the theoretical

assumptions made in the analysis.
Natural Frequency and Damping Measurements

The natural frequencies of the two uncoupled resonators were
measured by two methods: 1) by exciting the resonator with a short
duration transient pulse and observing or recording the free relaxation
pressure oscillations in the cavities; and, 2) by sweeping the steady
state excitation pressure and observing the maximum pressure magnifi-
cation., Both of these methods give the same values of natural fre-
quencies. The damped natural frequency, py, is a function of undamped

natural frequency, p, and the damping factor € and is given as,

pyzV1-€p - (26)

Since the damping factor is of the order of 0.05, py and p are
approximately equal,

The undamped natural frequencies were estimated from equation (23).

T2
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The end correction for the neck was taken as 0.785 R for each end of
the neck assuming an infinite baffle termination. This end correction
seems to be a little high, and resulted in calculated frequencies a
little low when compared with the experimentally evaluated values. For
each set-up two values were taken, one while sweeping the frequency

from low values to high and another while decreasing. Generally, the
difference was only two to three percent. Table II gives the comparison
of measured natural frequencies, when the joints of the resonator were
sealed to the theoretically determined values for different volumes of
the cavities.

When the joints of the resonator were not sealed well, the measured
frequencies were higher than that of the theoretically estimated values.
The air motion through the small holes has the effect of increasing the
area of the neck. Since the natural frequency is proportional to the
square root of the area of the neck, the presence of air leaks would
result in higher measured frequencies.

The damping characteristics are readily evaluated from the free
vibration tests., These test procedures consisted of exciting the
resonator with a transient pressure pulse of short duration and observing
the free pressure oscillations in the residual era. Many types of pulses
were tried to excite the resonator with no control maintained over the
pulse shape or period. The free pressure oscillation records always
displayed the smooth decay curves of a typical simple oscillator.
Figures 32 and 33 are typical traces of pressure signals obtained by
exciting with a sudden impulse by waving a hand across the neck of the
resonator. The damping factors measured from the logarithmic decrement

of free oscillations were in the range of 0.05 to 0.065. For a smaller
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THEORETICAL AND EXPERIMENTAL NATURAL FREQUENCIES OF RESONATORS

Cavity diameter = 11.75 inches

Neck diameter =— 1 inch
Neck length — 1% inch
Length of the cavity Calculated frequency Experimentally
inches cps determined frequency
cps
21.5 27.6 27.8
20.5 28,3 28.5
19.5 29.0 30.0
18.5 29.8 30.2
17.5 30.6 30.5
16.5 31.6 32,0
15.5 32.6 33.2
14.5 33.7 34.3
13.5 34.8 35.5
cavity diameter — 4,25 inches
Neck diameter — 0.5 inch
Neck length — 6 inches
13.25 27.4 28.6
12,25 28.6 29.8
11.25 29.8 31,2
10.25 31.2 32,2
9.25 32,8 33.9
8.25 34.8 35.7
7.5 36.4 37.0
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Figure 32. Free Pressure Oscillations in the Resonator
of 11.75 inches Diameter, (Neck: 1 inch
Diameter and 1.25 inches Length)

Figure 33. Free Pressure Oscillations in the Resonator
of 4.25 inches Diameter, (Neck: 0.5 inches
Diameter and 6 inches Length)
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resonator with a longer neck, the damping was found to be slightly
higher. Damping could also be estimated from steady state tests by
measuring the amplitudes near resonance. The results were in close
agreement with those obtained from the transient or free vibration tests.
These tests were conducted also to establish the mechanism of
damping and the response due to higher modes. The energy dissipation
could be due to the following reasons: 1) wall vibrations, 2) leakage
through the felt which is used for sealing purposes, and 3) friction and
reradiation through the necks, Since the 11.75 inch resonator had a
wall of thickness 1/16 inch, it was suspected that wall vibrations
might be the main cause of energy dissipation. These free vibration
tests were conducted before and after stiffening the resonator both with
circumferential and longitudinal reinforcements. The damping measure-
ments from these tests indicated that the energy dissipation was not
due to wall vibrations. To establish the damping due to leak through
the felt, all the leaks were sealed well with a calking compound and
tested for damping factor. It was found that the energy was not dis-
sipated through the felt because there were no leaks even without the
calking compound applied. From these tests it was inferred that the
damping is only due to friction and reradiation through the necks.
One could also conclude from these tests that the higher mode fre-
quencies of the resonator were not present since the amplitude of
these higher modes did not appear in the transient response oscillations,

as is apparent from Figures 32 and 33.

Pressure Responses in Time Domain

The best method to establish the validity of the assumptions made



17

in the theoretical study is to test the model for the similated excita-
tion pressures and compare the theoretical results with the measured
values. This was done by measuring the response of the double acousti-
cal resonator system in the time domain for the transient pressure of
one sine pulse. This study was performed for several configurations of
the system, all of which showed excellent agreement between the recorded
traces and analytically predicted response results. These results
further demonstrated the relatively minor importance of higher mode
responses, The analysis was made in obtaining theoretical response
curves by using an excitation pressure of one cycle of an ideal sine
wave and straight line approximation. The calculated values of un-
coupled natural frequencies and coupling frequency and measured values
of damping factors were used to define the resonator system. The equa=-
tions of motion were derived as discussed in Chapter II1 and solved for
the response using Laplace transformation techniques and a digital
computer. The pressure response in the cavities as a function of

complex frequencies is given by,

Pl(s) = GAl(s) * Pp(s) + Ggy(s) - PB(s)

where Gp1, Gp2, Gy and Gpp are the transfer functions of the system
and are defined as functions of uncoupled natural frequencies and
damping factors; P, (s) and PB(s) are the external pressures applied on
necks Ny and Ny, respectively. In the present analysis there is no
external pressure on neck N,, thus, in equation 27) PB(s) is equal to

zero. The correction factors for the neck length were taken as 1,57 R,
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where R is the radius of the neck.

Figure 34 shows the comparison between the experimentally measured
and theoretically computed pressures in cavity V,, Also, the excitation
pressure at the test end of the plane wave tube (very close to reso-
nator neck Nl) and an ideal sine pulse are plotted in the same figure.

A damping factor, §; = §5 = 0.06, was used in the computation. There
is a very close agreement between the measured and the theoretical
pressures in the forced era. There is a discrepancy in the residual
era, since the measured or actual external pressure was not exactly
the same as that of the ideal pressure assumed in computations. Figure
35 shows the measured response and excitation pressures, computed
response, and an ideal excitation pressure of sine pulse.

Figure 36 is the pressure recording inside the cavities and the
excitation pressure. The trace of excitation pressure was obtained
with the microphone placed close to the neck, Nl’ of the resonator at
the test end of the plane wave tube. The response traces were obtained
with the microphones fixed through the side walls of the resonator.

The amplitude of pressure in Vz is larger than that of Vi.

These pressures were compared with the theoretically calculated
pressure responses in the cavities. Figure 37 gives the comparison
between the measured pressures in the cavities and the computed values
by assuming the excitation pressure as a sine pulse., The agreement
between theory and experiment is excellent in the forced era. In the
residual era they deviate. This is because of the difference between
the actual and ideal pressure pulses as shown in Figure 37. Figure 38
is the computed response to an idealized wave of straight lines. These

results are compared with the measured values. The trend of the
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responses of both calculated and measured pressures are the same, but
the absolute values are not in agreement. This may be due to the
shape of the measured excitation pressure being quite different from
the idealized excitation pressure.

The study of this particular time response indicates that the
assuﬁptionsvmade in the mathematical model are valid., The higher modes .
are not important in the response analysis. Thus, the results obtained

in the theoretical analysis may be accepted.



CHAPIER VII

CONCLUSIONS AND RECOMMENDATIONS

The conclusions drawn as a comsequence of this investigation may

be divided into two groups depending on the phase of the investigation,

L.

The following deductions have been attained from the experimental

investigation:

1.

3.

Se

The lumped parameter representafion of coupled acoustical
resonators is adequate for the response analysis,

The presence of air leaks will have a large effect on the
natural frequencies and on the response of the system.

In actual physical systems such as buildings, it is rather
difficult to estimate the amount of leakage and damping;
and thus, it is necessary to uée the measured estimates of
natural frequencies and damping factors in the respomse
analysis.

The assumptions made in the'dérivation of the mathematical
model are valid.

_Thé damping of a resonator with rigid walls is due probably
to the friction and re-radiation at the necks,

In a physical system the higher mode respeonse is not
important, since the small amount of damping present in

the system reduces the amplitude of higher modes in a short

time,

85
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II. From the theoretical analysis and response spectra, the following

conclusions have been attained:

1.

3.

The pressure magnification of a double acoustical resonator
can be as large as 50 when the undamped system is tuned
properly and the coupling frequency is very small. However,
gince in a physical system the damping is inevitable and the
coupling frequency is limited by the elements of the system,
the pressures can only be magnified to the order of about 15,
The éressure oscillations associated with acoustic response

in the structure may possibly act as a secondary source
driving other properly tuned elements of the system to large
amplitudes.

Mathematical modeling by use of lumped parameters is an
excellent method, which is amenable for the transient response
analysis.

If the walls are rigid such that there is no contribution of
response dué te wall vibrations, the response can be predicted
analytically within four percent, by using measured values for
damping.,

From this analysis, it is possible to predict the response of
double acoustical resonators to any type of finite duratiomn
transient excitation pressures which can either be approxi-
mated by straight lines or sine pulses.

The damage to the acoustic structures exposed to transient
pressures can be reduced by incorporating damping. A damping
factor of about 0.l reduces the maximax pressures by about

three times.
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7. The two uncoupled frequencies of the system are parameters
which affect the response of the cavity of the resonator
which is excited by external pressure.

8. The uncoupled natural frequency relatéd to the resonator
excited with external pressure is the parameter which
mainly affects the response of this cavity.

9. Pressure magnifications can be reduced te about unity by
designing the structures in such a way that the natural
frequencies are apart from each other and also apart from

the frequency of excitation pressure.
Suggestions for Future Study

It is recommended that further study be conducted in the area of
dynamic response of mechano~acoustic structures in transient conditions.
It appears that the transient respomse of the acoustical systems by
lumped parameter representation is more fruitful; however, in certain
cases where lumped parameters may not fulfill the requirements, it
would be advantageous to explore the continuous systems.

Specifically the following recommendations are made for further
study in this area:

1. The conclusions stated concerning the mechanism of damping

in the resonator are primarily based on experimental tests,

It would be useful if additional effort would be put on
mathematical amalysis. It apﬁears that the damping due to
various mechanisms can be separated and analyzed as a function

of system parameters.
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5.
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The influence of non=-rigid wall vibrations on the response
of the system should be investigated., These wall vibrations
might cause dissipation of energy in the system.

It is necessary to determine the influence of higher mode
response for larger resonators where the critical dimension
is not less than 16 times the wave length corresponding teo
the natural frequency, From the experimental study of this
investigation, it seems that this restriction is not strictly
necessary.

There are many acoustical structures which may not be
idealized to the system of the double acoustical resonator.
Hence, it is worthwhile to analyze the multiple coupled
resonators with three or more degrees of freedom.

The study of the response of continuous mechanical systems
such as windows and ceilings coupled to an acoustical
resonator needs to be investigated.

The correction factors for neck lengths of Helmholtz
resonator, as a functiom of dimensions of the necks and of

the flanges at the ends of the neck needs to be examined.
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APPENDIX A
RESPONSE SOLUTION OF THE DOUBLE ACOUSTICAL RESONATOR

The equations of motion for the system of double acoustical reso-
nator shown in Figure 2 are derived in complex frequency domain in

Chapter III as,

3 - 2
po’ze1 2 poc o°
L s” + o8 + ~v;— X1(s)‘— c,s + T, Xz(s) = P1(s) s
o 4 \ 0 02 0 c2 0 C2
o e2 2- 0 0 0
i, s + (c1 +c,) 8 + T, + A Xz(s) ~ {eys + v,
X1(S) =

Fplede (M)

The characteristic determiﬁant of this equation is

2
Poﬂel + c,8 + Pl c,S + Po?
A ° 1577y B v
1 1 5 1
A= ‘
r 27 | | |®
poC p L v
- C48 + o e2 2 2 1.4
] 1 v, ] i, s + (c1 + 02)s P o° V1-+VE .
This equation can be simplified to
P 2? ? '
o ’ei’e2 4 | 3 2 2
b=TE, '+ 2(pE, +pEq FEyp) 5T+ (07t

92



2 2 | 2 2
+ Dy, *+ 40P EE,) 8T+ 2D, (8,0, + €50 )8 + DD, 5(3)

where the damping factors gq, §2 and §12 are defined as,

Solution of equation (1) for volume displacements, X1(s) and Xz(s),

are,
polen | 2 > >
£ (s) L ° 20,85 + 8 )8 + 2y + Py
X, (s) = -
Pt e 2
-+..‘ YPZ(AS) A1 | [2§1p1“s + p1 ]
T , and
Pole1 | 2 2
B(e) i, [s + 2592y + 2y }
, Xpls) = ' N
4 X
o el 2 =1
A
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For the excitation pressures of one cycle of sine wave (Figure 6)

.on neck, N1, and no excitation on neck, N2, the equation@@ can be

reduced to,
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-
AW [s° + gy s+gll1-e ]
X1(s) = ") ; ‘ _ y and
: _QKEl,(sz + wz) [%4 + B3s3 + stz + B;s + B;]
1 .
(5)
_T
Awp 2[h s+ 1][1 -¢ %]
o) 1 1
€2 4 3 2
—-—-—Az (s +w)l:s +B3s +st +B1S+BJ
where
g =25 (5 +845),
2 2
€, = Po T Pyps
_ : (5a)
By = 2 p48) + PRy + Ppfyon |
' 2 2 2 .
By =Dy * Py *Pyp *APPFE Sy
By = 2pyp, [§,P, +E,P ],
2 2
B, =Py Py, and
h1 = Eil
Py

Equation (5) may be transformed into time domain from the complex

frequency domain by the technique of partial fractions. It is neces-
sary to find the roots of the characteristic equation (3). The

characteristic equation,

&t 4 3333 + stz +3Bs+3B , (7)

is a fourth degree, linear polynomial equatiqn. For a stable system,
the real parts of the roots of this equation should be negative. |
With this assumption, the equation can have one of the following
three combinations of the roots:

1. All four of the roots may be complexvﬁjﬂlnegative.reai part,
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2. A1l of the roots may pe real negative numbers, and

3. Two roots may be complex and two may be real negative numbers.
If the system has to have at least some roots with pure real numbers,
the response of the system is not osciliatory, but it is overdamped.
Assuming that the system has an oscillatory motion for which the roots
of the characteristic equatiqn must be of the form a + jb where a and
b are real numbers and j = th—.

If the roots of the polynomial equation are a + jb and ¢ + jd,

the following identity can be written:

N B3s3 + 3252 + Bys + B = [s =(a+jb)][s -(a=-jb)]
[s ~(c+jd)]Ls =(c~ja)] (8)
= [(s-2)2+b2][(s~c)2+a%] .

Equation (5) can be reduced to the following form by utilizing the
identity (8),

-Ts
] , and

_ ( ) A w [52 + g5 + gO][1 ~ e
X S = ~ " N "
TRt (62 40 D)[(s - 2)2 + 2I[(s - o)? + a2

(9)
aw (h1s +.1)V(1-e"rs)

o e2 ‘(52 +q32)[(s - a)2 + b2][(s ; 0)2 + d2] .

The following expressions may be obtained by factoring the right
hand side of equation (9) in terms of partial fractions, so that
each term can be reduced to known form:

2
s + g8 + &, a,s + b1

(2 + D) (s - 2)2 4 °1(s - )P + a2] &2 4w
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c1s + d.1 e1s + f1

+ , and
(s - a)2 + b2 (s - 0)2 + a2

+

h1sv+ 1 a28+b2

(s2 + ) (s - )2 + b2][(s - 0)2 + d2] o2 +w 2

oS + d2 e2s + f2

. (10)

+ P

(s - a)2 + b (s - c)2 +d
When the right side of equation (10)is reduced to a common denom-
‘dinator and the numerators of both sides of the equations are equated,

the following will result:

H

s2 + g8 + g, (a1s + b1)[(s - a)2 + sz[(s - c)2 + d2]

+

(o, + a)ls” + %10 (s - ¢) + a°]

(egs + £)[s% + 0®I[(s - a)° + v°] , ana (1)

+

s + b = (a8 + by)[(s = a)% + b7 (s - 0) + d°]
+ (eps + ay)(s° + 0%)[ (s _ )%+ a8
.+ (ezs + fz)(s2 +(02)[(s - a)2 + b2] .

The equations (11) can be simplified and the like powers of s
on both sides are equated to obtain the two sets of simultaneous
squations (12) and (13) written in matrix form.

Equations (5) can be rewritten in the following form, by

utilizing equations (9) and (11) and the solution of equations
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(12) and (13):

AW a,s + b ¢c,s +d e,s + f
A el b B LA B L |
! Pote1 |82 + w2 (s = a)° + b2 (s =c) +4d
- .
1
~Ts
(1-e ) , and (14)
% (s) Aén ays + b2 . Co8 + d2 . €58 + f2
= 2 L]
2 Poter | 52 + (s - a)2 + b2 (s - c)2 + a°
A2 '
T

Inverse Laplace transformation of functions of the type,

c1s + d1

(s - a)2 + b

2

ig discussed below.
A function #(s) is defined as,
@(s) = C48 + d1,
then
®(a + jb) = 01(a + jb) + d.
This identity may be reduced to the following form:
@1 + J@z = cja + d1_+ Jc1b.

The real and imaginary parts of both sides are equated to obtain the

following equations:

%

]

1 cqa + d1 y and

3 =
5 c1b .

Solution of these two equations yield the following expressions,
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Q2
¢ =% » amd
=% _2%
dy =% -3 %o
Hence
s +d 2-2- + (% éQ) ®
°1 1 b8 1 7% 2 %2 (s-a)
(s—a)2+b2 (s—a)2+b2 b (s—a)2+b2
PR
b (s—a)2+b2
The inverse transfqrmation is as follows:
c.s + d '
;1A - e® 145,24 5.2 sin(bt +0),
2 2 ‘ b 1 2
(s-a)+0D
where
]
tan e=§‘g .

1

‘Equations (14) may be transformed to time domain and written as,

" by S T
X, (t) = 5= d[a) Cos wt + F Sinwt + 5= (/ 2,7+ 2,7 .

po‘ze‘l
A
ect . 2 2
Sin (bt -8,)) +=— 4 ¥.“ +¥ “ sin (at - 9,))Ju(s)
1 d 1 2 - 2
X b1 ea(t —T)
- |:a.,I Cos w(t - T) + - Sinw(t -T) + R

2

(/8,2 + 8,7 sin (b(t -7) =0.)) + _ef%:_) e e,
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Sin (a(t - 1) = 8,))Ju(t - 7) % , and (15)
Aw b . at
. / 2
X, (%) =5§;3';' [a, Cos wt +E>-g Sin wt + 2= 632+§4 .
)

ct

Sin (bt - 93)) + -‘?-d— W \Ir32 +\I/42 Sin (dt - 64))] u(t)

bg . ea(t *'T)
",[a2 Cosw(t-‘rv)+w-31.nw(t—cr)+“.b .
s ot s
(\/@32+542 Sin (b(t—T)—93)5}+-eE—(\/\Il3 +-\Il4 .

Sin (a(t -7) ~#,))] u(t -7)} ;

where
e1=‘ban'_1§*12' , §3=02a+d2,
.‘Il §3=02b,
92="ba.n_1\17‘:lz's ¥, =0+ 1, ,
: \I/2=e1d,
93 = 'ba,n-1§-§'- , \I’3 = e, 0 + f,, and
‘I’4= exd .

9, = ta,n"'1¥—§~ .

The volume displacements Xj(' t) and X, (t-) at necks N, and
NZ’ respectively, can be evaluated using numerical techniques.'

If there is no energy dissipation_ (damping) in the system of‘
double acoustical resonator, thg characteristic determinant may be

simplified to
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922’!' 2
A=—Eﬁéﬁth+a>@2+a%h (17)

where p, and p_ are two undamped, odupled natural frequencies of the

system and are given by

0.2 402422y 4 f(0.2 - 5.2 _p 22 2 2
2 Py *DPy *+ Dy, Py — Py =Py ) + 4D DPy,
p+,= - 2 . b
(18)
and
(0,2 + 0,7 + D 2)—J( R T S
p 2 _ 21 2 12 Py 2 12 1 P12
- = 2

The volume displacement response for excitation pressure of one
cycle of sine wave on neck N1 of the system can be expressed as a

function of natural frequencies, P+ and P_, as follows:

(o AW (s + p22 + p122)(1 -8
X = ’ d
° po‘ee1 (s + W )(s +p, )(s p_2) -

A1 .
X000 - s (1= T) ' (19)

s
£e1 e2 ( + wz)(s2 + p+2)(52 + P_2)
Ak ’

The expressions in equations (19) may be factored by partial

fractions and can be simplified to

Am a,s +b c,s + d e, s+ 7T

1 1 1 1 1 1 ~Ts
X(s) TT 5 5+ 5+3 5 (1-e ),
el s +w s +D, .8 +DP_
and

® a,s+b cAS+d es+°f .

X (S) = 2 2+ 2 2+ 2 2 (1 - e—TS); (20)
2 p2 4 2 2 2 2 2
¢ el’e2]ls +w s +p+_ S +Dp_
A
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where
a1=c1=e1=a2=02a32203
2, 2 _ 02
b, -2 TPi2 T
2, 2, 2
g .22 TP1p Tey
15 T 2y, @ 5y !
CRES JD Lt JRES T
2 2\ (2 2y 2.2y Ay 2 2 2
g2 @ 20" - 6 ") - (0,4 - 2, N @,% + 1,7 +07)
4 Ay, 2 2y, 2 2 | ”
" -2,V =2 0" - p,")
| 2 2 2
= (w4 _Pa4)(P2 + P12 - p1 )
| 2 . 2y, 2 2 d
w* - 2,0 -2 .96 % - 5,%)
b 1

2% 2 20/ 2 2
(6" ~ 0%)(p_" ~ )

(* - 3.4
fp = AT TRy e
B, =0 " -0 "~ ")
1
d = o
2 =7 2 3
(0, - o )(pprw)

Transformation of equation (20) into time domain yields

A
0

X, (t) = [ & bm w} + b Sin ;?*t

P o‘ze”e

A,

+ ¢ Sin put]u(t) - [a sinw(t ~7) + b Sinﬂqu(t -)

RO RO TR

+ ¢ Sin p_(t ~7)]u(t ~7)> , and
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>
p e
Ao V1
X,(t) = 5 25 ' s [Sin wt + b Sin p_t
o el’eZ ( 2 2)( 2 - 2) J A
FWY A
192
+ o Sin p_ tu(t) ~ [Sin o(+ - 1) + hY Sin p+(t - 1)
+ ey Sinp (4 ~7)]u(t =7} 5 (21)

where the ccoefficients are defined as

2 2 2
Px = P2 * P m® o

2 2 2y.2 2
(p" + 2" =2 ) -5 o

‘b =
x 2 2y . !
(" -5 o,
2 2y, 2 2y, 2 24 2 2 2
- Ve -2 ) ) = D 4 py e )(pfmpf)
= R .
-, )" -2, I,
2 2 2
@ -2 N 4y, - 0,7) w
- S ‘ .
@° + p;)(:pf ~ pf)pu
2 2
(@ —p "o
b o= and
3 L2 .2 ! .
T -, ),
(o - p+4) ®
‘f\ —
I R N 2 :
T, - )@+ o

Because of gbsence of the damping in the system the volume dise
placement equations (21) are very much simpler as compared to the
equations (13). From these equations, the effect of undamped natural

frequencies on the response can be evaluatsd.
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Excitation Pressure Made up of Straight Lines on I\Teck.I\T1

and No Pressure on Neck N2

The excitation pressure P1(t) is defined in Chapter III as

SORIEIRTHCEE NI RS (22)
where )
n = number of discontinuities of P1(t) on time axis,
o; = Jjump inLPressure, P1(t) at t;me, t = TSy
Bi = change in slope of pressure at time, t = T and

u(t-»Ti)= unit step function such that P(t) multiplied by u(t - Ti)
will have a value of zero for t T, and P(t) in the region
t T, .
1

The Laplace transform of P1(t) is

Ms

P1(s) = :% ; [ais + Bi] i, ;(23)

1

i

The excitation pressure on neck Nz,

i

Py(t) =0, and hence Pz(s) =0 .

The expressions for the volume displacement response of the
system may be reduced to the following form after substitution of
equation (23) in equation (4):

: n
2 : ~T.8
.(s + g8 +g.) i§1 (s + B,) CRE

et 28,530
; .

x1(s) = , and

> s + B°]

2
s f B1

2 o T.8
{(h,s+1) T (@.s +B.)e 1
2y (1 ) i=1( 1 1) | (24)

-e

X (S) = ‘
2 pof'e2 s2 [s4 3

A

4+ B.,s™ + B

3 5 s+ Bo],

2
_s. + B1
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where the coefficient of s in the denominator is defined by the
equation (5a).
For the stable oscillatory response of the system, equation (24)

can be reduced to the following form after utilizing equation (8)

n
' T
(s2 + g5 + go) z Qyis + Bi) e i°
~i=1 ' and

X1(S)=poJe ) ‘ > 2 2
_-TH_e—lS [(s - a)% + p°I[(s = 0)® + &7]

p12 (ys + 1) ;1 (‘ais +8;) e 18
X2(S) = : 1= ; (25)
3—3—’-&-‘2-% s* [(s - 2)% + p2][(s - ¢)° + d]
2

where (a + jb) and (¢ + jd) are the roots of polynomial equation (8).
These equations can be expanded in terms of the partial

fractions as follows:

2
(5% + gys + g )@ s +a,) s+ b, . cis + dy
7L (s - a)% + v2][(s = ) + d] 52 (s - a)% + b
e.s + .
+ - 1» ] and
(s - 0)2 + a°
(hys + 1)@ s +B;) hys 4B . C.s + D,
s2[(s - a)2 + b2][(s - 0)2 + d2] 32 (s - a)2 N b2
Eis + Fi
+ . (26)
(s - 0)2 + a°

The right side of this equation is reduced to a common denomin-

ator, and the like powers of s on both sides of the equation are
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equated to obtain the foilowing two sets of simultaneous matrir

equations, (27) and (23)._ |
Solution of these equations for the co-efficients is utilized

along with equation (26) to reduce the response equation inis the

following form:

( 1 n a;s + bi cis + di
X, (s) = z +
! Pofer i=f 52 (s - a)2 + b2
Ay
&5 * Ty -T.8
+ : - e 1 ,.a.nd
S (s-c)? 4 d?
2
P n |A.s + B, C.s + D,
1 i i i® i
X, (s) +— PN +
220 T ten g &2 (s - a)2 + b2
A2 '
) Eis + F. —
+ ‘ ; 5| e Ti% . (29)
(s-¢)" +a

Transformation of the equations (29) into time domain by inverse

transformation yields the following equations:

a(t - T,)
1 e i
X1(t) = _ ay + bi(t - Ti) + —
Poer ‘

A

[& Cos b(t - ;) + §1vSin b(t - T;)

ec(t -T)
d

+ ['%,Cos d(tl— ™) + Q%Sin d(t - 7,)]p , and
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X, (%) p12 2t~ Ty)
1) = : (- T.) 4 e
5 W Ay + B, (t-7,) + =

A,

[53 Sin b(t - 7,) + §4 Cos b(t - 7.)]

ec(t -T;)
 B— 5@3 Sin a(t - 7,) + ¥, Cos a(t - 7;)1p (30)

§1 = c.a + di ’

&, = c;b ,

@H = e;C + fi '

ﬁ@ = e;d ,

§3 = Cja + D1 '

8, = C;b,

QB = B;c + Fi y and

$f?
I
=1
rey



2(a + c)

a2+bz+c'j

' +d2+4ac

~2(a + ¢)

2[a(02 + d2) —[a.2+b2+c

; c(a?-szjj ; d2?+4ac]

(a2 + v2) -

(02 + dzj

—2[a(c® +4°)

+Mc(aq2 +b2)]

(a2 + b2 -

(02 + dzj

2c

-b

@7

601



2(a +.c)

a,2+b2+02

+ d2 + Jac

~2[a(c?+a?)

+‘c(a2.+ bz)]

(a2 + bz) .

(02 + d2)

1 -2¢c
-2(a + ¢) -2
a,2 + b2 + 02 0
+ d:2 +4ac
—2[3,(02 + d2) 0

+ o(a?+1%)]

(a2 + b2) . 0

(02 +‘d2)

2a

(28)

oLi



APPENDIX B
CALIBRATIONS AND LIST OF MAJOR INSTRUMENTATION

Three Altec condenser microphones, Tektronic dual beam oscil-
loscope, and C.E.C. oscillograph were used to measure aﬁd record the
pressures., All the microphones were calibrated at the factory and
the sensitivities are given by manufacturers as -54.5 DB (reference
1 volt per dyme per centimeter) for the frequencies of 10 to 4000
cycles per second. Conversion of these sensitivities into pressures
gives 1,095 psf/volt. A test was conducted by arranging all ££e
three microphones at the test end of the plane wave tube as shown in
Figure 31 and measuring the responses forvsteady state pressures.

It was found that there was a slight difference in the sensitivities.
Table III shows the relative sensitivities at various fregqguencies.
However; while recording invthe oscillograph the sensitivities of all
' thev%hree channels were pqmpensated by adjusting the matching network
sobthat all the response traces are to‘the same scale.  They wéfe not
calibrated for the absolute sensitivities, since that was not
necessary for this investigation.

| The amplitude calibration was checked with the internal square
wave calibrator of the scope and found to be satisfactory. In short,
the cal_ibrations of the recording instrumentation was satisfactory

for the relative pressure response measurements.

111
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TABLE ITI

RELATIVE SENSITIVITIES OF MICROPHONES

Frequency Microphone Microphone Microphone
cps #1 #2 #3
20 0.50 0.51 0.50
30 0.49 0.52 0.50
40 0.54 0.58 057
50 0.56 0.56 0.55
60 0.45 0.48 0.47
70 0.62 0.66 1 0.63
80 0.38 0.40 0.39
90 0.81 0.87 0.84
100 0.34 0.37 0.36
110 0.71 0.76 0.73
120 0.37 0.40 0.40
130 ' 0.31 | 0.3 0.32
140 0.62 0.65 0.66
150 0.30 0,31 0.30
160 0.75 0.80 0.77
170 0.28 0.31 0.30
180 0.35 0.36 0.36
190 | 0.34 0.35 | 0.35

200 0.24 ‘ 0.25 - 0.24
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List of Major Instrumentation

Microphone System: Model 21BR150 condenser microphones; 1654 bases;

Nodel 526B power supply; manufacturer - Altec Lansing Corporation.

Dual Beam Oscilloscope: MNodel 502; manufacturer - Tektronix; serial

number -~ 022893,

Low Frequency Function Generator: Model 2024; manufacturer -

Hewlett-Packard; serial number - 037-09559.

Tone Burst Generator: Type 1396-A; manufacturer - General Radio

Company; serial number 354.
Power Amplifier: Model MC75; manufacturer - McIntosh.

Oscillograph: Model 5-124; manufacturer — Consolidated Eleotrodynamics

Corporation; serial number 6307.



APPZRDIX C

FLOW DIAGRAM OF COMPUTER PROGRAM FOR THE MAXIMAX RESPONSE
OF DOUBLE ACOUSTICAL RESONATOR

Read the initial and the
final vslues of the
system paransters, I
and the excitation
pressure

!

Compute the coefficients of
the polynomial equation, Increment
(3) in Appendix A, and the

golve for the complex roots "~ | parameter

Solve the coefficients of
the partial fractions by
solving the simultaneous
algebraic equations (12),
(13), (27) and (28)

Creater than

the final wvalue

Solve for the response pressures
in the time domain using the
equations (14) and (20)

~% check and store the maximax
pressures in the cavities

Increament
the time

Print the system
parameters and
maximax pressures

Py
Less than the ,//’If

period of \\E;?e
excitation pressur

period of excitation

pressure

14
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