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CHAPTER I 

INTRODUCTION 

The dynamics of acoustical 0r mechano•acoustical systems have been 

the object of the attentien of engineers and scientists for the last 

few years. MaEty structures may behave as multiple acoustical resonators 

coupled together and exposed to acoustical excitation pressures •. 

Typical structures which constitute coupled multiple acoustical 

resonators are domestic buildings with several rooms, connecting 

passage ways~ doors an.d windows. In some cases the windows, with 

distributed mass and elasticity, coupled to a simple Helmholtz resonator 

behave as a multiple dynamic system with mechanical and aceustical 

elements coupled together. The pressure response measurements made 

inside a sonic boom test house and Kinney shoe store at Oklahoma City, 

Oklahoma. (Figure l)t indicate that there is a considerable amount of 

damping in such structures. Because of this mechanism of energy dissi• 

pation.t the pressure oscillations are net present for a long span of 

time. This shows the need for the consideration of damping in the. 

response analysis of acoustic systems. 

It has been a great concern te many investigators whether sonic 

booms will be acceptable to peeple. This important factor depends 

on the strength of the sonic boom and the structural response to 

finite duration excitation pressures like those of sonic booms. 

Whether the result of dynamic effect or not, the unintentional pressure 

1 
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magnifications inside the buildings are the undesirable environments 

to be tolerated. These increased pressures can be the primary cause 

of damage to the structural components such as the. windows and the 

doors in the buildings. 

3 

It is important to note that structural damage is simply an 

instantaneous consequence of the dynamic response of multiple acoustical 

resonators to transient excitation; the inadvertent discomfort of 

people due to pressure magnifications in buildings exposed to exci~ 

tation pressures, such as blast pressures, gusts produced by storms, 

and noise generated by rocket launchings, is also substantial. 

These considerations lead to a marked need for an understanding 

of the dynamic response of acoustical or mechano-acoustieal systems 

to various types of pressures or force excitations. Recognition, 

isolation, and understanding of the parameters· pertinent to the 

phenomenon of the system can provide a sound basis for design concepts. 

Definition of the Problem 

The total energy of a conservative system remains constant at all 

times~ In the case of a dynamic system with multiple degrees-of-freedom 

this energy is distributed among the different natural modes and among 

various elements. 

In a multiple acoustical resonator, the pressure magnification 

in each of the cavities or the magnification of the particle displace

ments at the necks depends on the type of coupling and the various 

system parameters.· The following are the important system parameters 

which affect the 'response ef aceustical networks: 

1. Conductivities of various necks, 
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2. Relative volumes of the cavities, and 

3. Damping in the system. 

A double acoustical resonator consisting of two enclosed volumes, 

V1 and v2 t and two necks, N1 and N2 (Figure 2), is very common among 

the existing structures (4). When this system is excited with· 

transient pressures on neck N1, the pressures inside the cavities 

may be higher than the excitation pressures due to the dynamic effect 

of the system. If there is no dissipation of energy, and the two 

natural frequencies are nearly equalt the pressure oscillations will 

exhibit the beating phenomenon due to transfer of energy from one 

resonator to the other. 

It is necessary to investigate the factors influencing the 

pressure magnification and the effect of various system parameters 

of a coupled resonator to a finite duration and aperiodic excitation. 

,_ V1 v2 '.N, l'f 
- - - ---- -2-· -· 

....... 

Figure 2. Double Acoustical Resonator 

I. 

I 



Purpose and Scope of the Study 

In general, any acoustical system is a continuous dynamic system. 

Under certain restrictions in a case like the acoustical resonator, 

it is possible to approximate the continuous system by lumping the 

parameters so that the response problem is amenable to mathematical 

treatment. It has been proven in the literature (3, 16) that the 

lumped parameter model is a good approximation for the Helmholtz 

resonator.if the largest dimension is very small compared to the wave 

length in the steady state case. Also, Simpson (4) has established 

5 

that the frequency limitations necessary for the lumped paramet~r 

assumption are less severe in the case of transient response of 

Helmholtz resonator than in steady state response. The lumped parameter 

approximation is valid even in the case of the acoustical network shown 

in Figure 3 provided that the largest dimension of any component is 

small compared to the wave length at resonance. 

Figure 3. Acoustical Network 
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The purpose of this study is to investigate the pressure magnifi-

cation and the response of double acoustical resonators coupled together 

fer finite duration transient pressure excitations like N-shaped, saw 

tooth and sine pulse waves. The study consists of both theoretical and 

experimental phases. The results of this investigation are helpful in 

better understanding the mechanism of energy feedback in a coupled 

acoustical system subjected to transient excitations and thereby 

permitting the determination of the effect of the system parameters 

such as frequencies and damping on maximum pressures in the cavities. 

The other important application is in the area of dynamic response of 

various structures in excitation pressures like sonic booms, blast 

pressures, wind gusts, noise produced by rocket launchings, and random 

excitation. 

The scope of the theoretical study consisted of deriving the 

differential equations of motion and solving for the natural £re• 

quencies of the double acoustical resonator. The transfer function of 

the system has been derived using the Laplace Transformation notation. 

Response of the system in both the frequency and time domain has been 

investigated for .transient excitations such as finite duration pressure 
"' 

loadings. Numerical techniques and high speed digital computers have 

been used in computing and investigating the transient response. Ari 

attempt was made to use the techniques of analog computers to .solve 

for the response. Equivalent viscous damping was assumed in the 

analytical treatment to approximate the various damping mechanisms in 

the system. The following major assumptions were made in the ma.the• 

matical treatment of the problem: 

1. The wave length corresponding to the natural frequency 



is 16 or more times greater than the largest dimension 

of the resonator; 

2. The pressure at all points inside the cavity is the 

same; and 

3. All the walls of the resonator are rigid. 

The principal object ef the experimental investigation was to 

substantiate the validity of the assumptions made in deriving the 

mathematical model. Therefore, the scope of the experimental phase 

of the study was to design and build a double acoustical resonator 

with rigid walls, satisfying frequency limitations for the lumped 

parameter assumption, to excite it with transient pressure pulses, 

7 

and to measure the pressure response in both cavities of the resonator 

as a function of time. The plane wave tube in the acoustical labora• 

tory was used as an acoustical delay line to excite the resonator with 

finite duration transient excitation pressures. Instrumentation was 

developed to produce the excitation pressure pulses and to measure and 

record the input pressure and pressure response in both the cavities. 



CHAPTER II 

PREVIOUS INVESTIGATIONS 

The primary investigation has been done in the area of acoustical 

networks from the stand point of musical tones and acoustical wave 

filters. The acoustical resonators used by Helmholtz (16) in his 

research on the quality of musical notes were almost completely 

closed vessels with an aperture (Figure 4) and were used to intensify 

effect of a simple tone produced in the neighborhood of the resonator. 

This intensification is the result of vibrations of the air enclosed 

by the resonator. Rayleigh (2) solved for the steady state response 

of a vessel containing air, which connnunicates with the external 

atmosphere by a narrow aperture or a neck. He assumed that the kinetic 

energy of the air due to its velocity can be neglected except in the 

vicinity of the neck or apert~re. The potential energy can be calcu

lated by treating the density' of the air in the interior of the vessel 

as being uniform. These assumptions are valid if the space through 

which the kinetic energy is sensible is reasonably small in comparison 

with the length o.f the wave. 

The stiffness of a Helmholtz resonator depends on the volume of the 

ca,,ity and areas of the necks, and the modes of the Vibration are depen

dent on the inertia of the air in the vicinity of all the apertures. 

Thus the fundamental frequency of a Hel~holtz resonator with more 

than one neck is different from that of the simple resonator. When twa 

8 



or more interconnected vessels communicate with each other, and with 

external air, then the inertia of t:he .. air in a connecting passage is· 

as great as that of the channel which communicates with the external 

9 

air. By assuming lumped parameters, the system is treated as a finite, 

multidegree•of-freedom system.. Many investigators (1, 3, 6, 7) have 

attempted to solve for the steady state response of multiple resonat9rs 

with application to wave filters, but very little work has been done 

in the field of transient response. 

Simpson (4) has investigated the transient response of a simple 

Helmholtz resonator for a sonic boom type of excitation. He estab-

lished the validity of the lumped parameter description of an undamped 

acoustical resonator £or the transient pressure excitations, and has 

shown theoretically that the frequency limitations necessary in the 

transient response of a Helmholtz resonator are less severe than those 

associated with the steady state response. 

NECKS 

Figure 4. Simple acoustical Resonators used by 
Helmholtz (Spherical Cavities) 



Rayleigh (2) described briefly the method to obtain the differ

ential equations for the particle motion of two acoustical resonators 

coupled together and derived expressions for the natural frequencies 

10 

of a particular configuration. McGinnis and Albert (1) have investi

gated an analytical method to obtain the equations of motion and 

natural frequencies of different configurations of multiple Helmholtz 

resonators assuming lumped parameters. They compared the theoretically 

obtained frequencies with the experimental results and found them to 

be in good agreement. Paris (9) in 1925 investigated the double Helm

holtz resonator with a particular interest to the designing of a sensi

tive acoustical receiver used to measure the sound amplitudes. He 

found that increased magnification can be obtained by the use of an 

acoustical system with double resonance. He demonstrated the influence 

of loose coupling and tight coupling on pressure response of the 

system. In his analytical work, he took into account the damping due 

to viscosity and·radiation. 

Christian (11) examined the response of an undamped multiple res

onator for steady state sinusoidal excitation and free vibrations. He 

derived a functional relationship of coupling parameters of a double 

acoustical resonator. 

Olson (3) derived expressions for the frequency response spectrum 

of the multiple resonators which behave as low passt high pass, band 

pass, and band elimination wave filters. He used the analogy of 

electrical filters and the impedance me.thod to derive attenuation 

expressions. No explanation was given for the energy transfer from one 

resonator to the other through coupling. He indicated that the simple 

Helmholtz resonator can be treated as a single degree of freedom system 
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even for transient cases. 

Ingles (21) investigated the effect of the pressure (at the 

equilibrium c~ndition) on the response spectrum of Helmholtz resonator 

formed by two cavities and a neck. In this form of Helmholtz resonator, 

the variation.in pressure changes both the mass of air in the neck and 

the volume of the air in the cavities. Thus, the resonant frequency 

of the system varies with the pressure. He also investigated the 

effect of temperature on the resonant frequency. 

Morse (5) discussed a statically coupled mechanical system with 

two degrees-of-freedom, but mention has not been made about the 

transient response of coupled dynamic system. 

Wein (10) examined different kinds of coupling in a two degrees• 

of-freedom system. He developed a relation showing the effect of 

various coupling parameters on free vibrations of the system. 

Andrews Associates (18) in their final report on 11The Studies of 

Structural Response to Sonic Booins 11 analyzed a simple oscillator for an 

N-wave excitation and found that the structure can be arrested from 

oscillations if the relationship between the natural period and duration 

of the pulse is at a critical value. For an N•wave, the maximax re

sponse is 2.05 times the static.response. 

Jacobsen and Ayre (3) have solved for the maximax response of an 

undamped simple mechanical oscillator for different types of transient 

excitation forces. The maximax response is defined as the maximum 

absolute displacement, velocity or acceleration of the oscillator 

occurring at any time as a result of the action of the forcing function. 

They also stated that the transient response of an undamped two degrees-

of-freedom mechanical system can be solved by a classical solutio~ of 
\ 
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simultaneous differential equations for particular cases; but the con

ditions for maximax response are not discussed. 

Ormondroyd and Den Hartog (28) have given a design criterion for a 

vibration absorber. They discussed the conditions under which only 

smaller mass will have a considerable displacement when the bigger mass 

of the two degrees-of-freedom is driven by a steady state harmonic force. 

The effect of damping has also been included in their discussion. 

Kryter (33) has done laboratory investigation on the relative 

noisiness and loudness of sonic booms having different wave fronts, the 

reactions of people to booms as an auditory experience, and their 

startling reactions to acoustic stimuli. The following statement is 

one of the conclusions from his investigations: "The sound heard in 

a house subjected to sonic booms are judged to be noisier or more un

wanted than the sonic boom heard outdoors, probably because of rattles 

and other secondary sounds that result from vibration of the house." 

After this study, it appears that the pressure inside the house can be 

much higher for certain configurations due to dynamic acoustic effects 

rather than to rattles and vibrations of the house itself. 



CHAPTER III 

MATHEMAl1CAL MODEL 

The response of a double acoustical resonator to transient exci-

tation, as represented by an electrical or mechanical analog, depends 

on the frequency limitations, dimensions of the system, and the 

mechanism of damping in the system. 

Limitations of Lumped Parameters for Aceustical Resonators 

The assumption of a lumped parameter model for the acoustical 

system depends mainly on the critical dimension, which is defined as 

the largest dimension of the system (4). 

In many cases the various elements of the acoustic structures 

are small in dimension compared with the wave length of sound. When 

this restriction is fulfilled,. the behavior of sound or pressure pulse 

in the structure is analogous to the behavior of electric current in a 

circuit with lumped elements or to the behavior of the displacement in 

a mechanical system with lumped parameters. When the dimensions of the 

elements of the structure are not small relative to the wave length, 

the electric analog is a transmission line and the mechanical analog is 

an elastic continuous system. 
--· 

In the case of a simple Helmholtz resonator (Figure 4), the 

velocity attained by the air.within the volume is diminutive when 

compared to the velocity attained by the air particles in the neck of 

13 
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the resonator. If the neck or constriction is very small as compared 

to the wave length, the compressibility of air in that part is negli-

gible. The air in the constriction has a total mass of Ale.Po , · 

where A is the cross sectional area and te is the effective length of 

the neck. The effec~ive length has to be used in the analysis to 

include mass of the air beyond the ends of constriction which moves 

along with the air in the neck. Thus, the kinetic energy is due only 

to the motion of the effective mass of air in the neck a-nd the potential 

energy is only due to the compression and expansion of the air in the 

cavity of the system. 

The correction factor to be added to the actual length of the 

neck depends on the wave length and shape of the neck. This has been 

derived in the literature (2, 5) by considering impedance of the open 

end of the tube. For a circular cross section, if the open end is 

fitted with a flange that is wide compared to the wave length, the 

approximate value bf specific acoustic impedance at the open end is 

given by, 
2 2 

Po R w 
zt = 2c 

1 
Z_e =::' p 0 c + w 

+jw 

where R = radius of the tube. 

for wave length, \>; 8n R, and 

for wave length, A< 8n R; 

Open tubes having cross sectional parameters much smaller than the 

wave length are, therefore, nearly as successful hoarders of energy as 

closed tubes, for only a small percent of the stored energy can be 

radiated away in a period of one oscillation. From the above equations 

it is apparent that the reactive term is mass load equal to mass of air, 
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8p 0 R/3rr, for small cross sectional area of the neck. When there is no 

flange on the end of the tube or when the flange dimension is negli~ 

gible, the reactance is reduced to some extent in magnitude changing 

from 8p 0R/3rr to approximately 0.6p 0R. Therefore, the correction 

factor» a, to be used for the effective length of the neck should be 

in between the limits 0.6p Rand 8p R/3rr. 
0 0 

Consideration of Damping in Acoustical Resonators 

Energy dissipation would be inevitable in any physical dynamic 

system. It is necessary to understand the various mechanisms of 

losses in order to incorporate damping in the response analysis. 

In acoustical systems the significant damping is due to: 1) viscosity 

and heat conduction, 2) anomalous gaseous absorption due to thermal 

relaxation, and 3) mechanical wall vibrations. 

Energy dissipation due to friction in the neck is a function of 

the exposed area and the roughness of the neck. This dissipation can 

be reduced by making the surface of the neck smooth. In general, 

dissipation of energy due to radiation is more important when compared 

to that of friction in the neck, provided the resonator is so situated 

that it can radiate. However, when the aperture of resonator is small 

or the length of the neck is long enough, then the dissipation due to 

friction is predominant. If the walls are rigid enough, then the 

losses due to the vibrations of the walls can be relinquished. At low 

frequencies, where there is little thermal relaxation, the energy loss 

due to thermal relaxatian can be neglected. Therefore, for a resanator 

with rigid walls at l0w fre(luencies, the losses that are sizeable are 

those due to radiation and friction in the neck. 



The damping coefficient due to radiation of the resonator is 

derived by Crandall (17) and is given as, 

. 
' 

where 

p = mass density of air/unit volume, 
0 

w = driving frequency in radians/second, 

c = velocity of sound, and 

~ = damping coeffici.ent, energy/unit volume velocity. 

Damping due to friction at the walls is given by the complex 

function, 
ro-; 

C = ,J :.22.,:_ F_ 
(1 + j) 

where~= viscosity coefficient. oft.he fluid. 
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(1) 

The imaginary quantity/ p ~/2 is in phase with the acceleration; 
'\. 0 

therefore, it has the nature of a mass reactance. This gives the 

effect of virtually increasing the mass density of air which corresponds 

to lowering of the natural frequency of a vibrating system by loading 

it with added mass. However, this may be taken into consideration 

equally well by adding the. correction factor to the length of the 

neck to obtain the effective length. 

The equivalent viscous damping coefficient for the resonator has 

been derived (31) by using the criterion of equivalent energy dissi-

pation per cycle: 

n-1 n-1 
Ceq = Cn w X Y n , (2) 

where 



n = the power of the velocity far which the actual damping 
coefficient is proportional, and 

X= the maximum amplitude. 

Pressure Response of Double Acoustical Resonators 

The critical dimension of the resonator is assumed to be very 

small when compared to the wave length corresponding to the natural 

frequencies of the system. Since the temperature gradients are 

small and the process of compression and rarification are rapid, it 

is reasonable to assume the process of compression and expansion in 

the cavities (Figure 2) is adiabatic; therefore, the pressure and 

the volume are related to each other by the relation, 

y 
PV = constant. (3) 

Differentiation of equation (3) yields the expression for a change 

in pressure as, 

YPo 
.dP = - V dY; (4) 

where P0 is the original pressure. 

Assuming that the air in the necks behave as masses and that in 
• 

the enclosed volumes as springs, the mechanical analog can be derived 

as shown in Figure 5. If x1 and x2 are the displacements of masses 

M1 and M2 (air masses at necks N1 and N2), respectively, .then the 

forces acting on each of the masses are given below: 

Force on neck N1: . 

2 
Inertia force= p0 tel A1 :t2, 

17 



·Pi(t) 
N1. 

F1{t) 

Figure 5. 
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2 
Dissipating force due to damping = c1A1 

Force on neck N2: 

Inertia force =: 'p~.tel~~ ~~2 , 

dx1 
- , and 

dt 

Restoring force due to volume, v1 =';~ A2 (A2x 2 - A1x 1), 

YPo 
Restoring force due to volume, v2 = v2 ,A2 (A2x2), 

(5) 

(6) 

By Newtonian force balance on air masses of each of the necks, 

the following simultaneous differential equations of motion may be 

obtained, 

and 

(7b) 

The equations of motion may be reduced to the following form by 
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dividing equation (7a) by A1 and equation (7b) by A2 and replacing 

PY by its equivalent p c2 , 
0 0 

2 
p J, 1 ~. • • EJt... o e X + c1 (X1 - X2) + Vl (Xl - X2) = pl Al 1 

2 2 
• • P oJ,e2 •• • 

A2 Xi + c2X2 + cl (X2 - X1) 
e.o;__ 

+ V2 
~ 

X2 + V1 

where 

x1 = A1x1 = volume displacement at neck N1, 

x2 = A2x2 = volume displacement at n~ck N2, 

P1 = external pressure on neck N1, and 

.P2 ·= external pressure on neck N2• 

, and 

(8) 

(X2 - Xl) = p2 

The transformation of linear simultaneous differential equations (8) 

into complex frequency domain by the Laplace transformation with zero 

initial conditions, yields the following simultaneous algebraic 

equations: 

and 

(9) 

The solution of these equations gives the response of the system 

in camplex frequency domain as, 

. 
' 



and 

where 

:P 1 (s) 
Pol.e2 

~2 + 2p2 (s;2 + S:12).:s + P22 + P12~ 
X1(s) A2 

= 
/.). 

P2 (s) 
PoNe1 ~ . j 
. A, 11'1+ P1 

+ A 

P2(s) Pi·e1 r2 + 2~ + P1 j 1P1 
x2(s) = A1 

/.). 

. Pote2 2 + p1 (s) . A, , (2s1P1 s + P1 ) 
. ! . ·- .. ·2 ... 

A 

p1, p2 are the' uncoupled ri.aturai frequencies, -

p12 is the 0ouplli:ng!frequen9;y, and 

( 10) 

I.).= characteristic determinant of equations (9)(Appendix A). 

Response in the time domain can be obtained by factoring the complex 

expressions of equation (10) by partial fractions and transforming 

from complex frequency domain using inverse Laplace transformation. 
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The excitation pressure on neck N2, P2(t) is assumed to be zeroo 

Then equation (10) simplifies to 

and 

pi (s) p~:2 [ s2 + 2p2 ( 52 + 512) s +. P/ + P1/] 
X1(s) = 

• ( 11) 

The response solution is obtained for two important types of 

transient excitation :pressures on neck N1: one dyole of 1;1ine wave and 



a wave made of straight lines with finite duration and finite number 

of discontinuities. 

Case 1. Response of double acoustical resonator for an excitation of 

one cycle of sine wave: 

This excitation pressure can be illustrated graphically as in 

Figure 6 and expressed mathematicaily as, 

P1(t) = AO Sin wt, 1 
for O < t ~ 2ITw 

P1(t) = o, for t < O and t>...L 
2TTW 

P2(t) = o, for all t. 

1 
1' =2TTW 

Figure 6. Excitation Pressure of Sine Pulse on 
Neck N1 

and 

(12) 

The volume displacement response of the system which may be 

obtained by inverse Laplace transformation are (Appendix A), 

22 

b 1 6 at 
+ w Sin wt + T ( t 1 Sin' bt + t 2 Cos bt) 

eot 
+ d (w1 Sin dt + w2 Cos dt)J u(t) - [a1 Cos w(t-T) 
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b1 ea(t--r) 
+ w Sin w(t - +) + b (11 Sin b(t - -r) + t 2Cos d(t"1")) 

and 

c(t· - T) . l 
+ e d (,i;1Sin d(t - r) + ,i;2 Cos d(t - r))] u (t - T1 , 

A 2 2 { ' b 't w P1 i 2 ' . x2 (t) = ~ z , [ a2 Cos wt + w Sin wt + e b.. ( i f~in,;bt + t. Cos bt) 
o e2 · . · . 4 · 
A . 

2 

ot 
+ ed ('M'3Sin dt; 'M'4 Cos dt)] u (t}: ,... [a2 Cos w(t - T) 

b a(t-T) 
+ f Sin w(t - T) + e b (t3 Sin b(t - T) + t 4Cos b(t--r )) 

0 .. T · (t -·,·) ·1 (13) 
+ e d · (+3 Sin d (t .. :- T) + 'M'4 Cos d(t - T ))Ju(t--r) i · 

where the coefficients a 1 , . b1 , •••••••••••••••••• , f{3 , 'M' 4 are given 

by equations(15)in Appendix A. 

·:- 1.1~~ l)~6~$#~!3 · in tt1e, ;~~v~ti~s ,nui.y b~ e:icpress~d ~n ,te;ms ~f v,olwne 

displacements from equations (12) as, 

P 2 
0 ' 

P1 = + (X1 -X2) , and 
' 12 

p C 
0 

P2 = v;- X2 • 

These pressures oi;m. be normalized with respect to the amplitude 

of the 1exoitatiori'presslll'e A0, 1 and can be derived as a function of 

· unc~upled' frequencies,, p1 and p2, coupling frequency p12, and the 

damping factors S 1 , r~ as (Appendix A), 
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ect 
+ ~d (E Sindt+ F Cos dt)J u(t) - [A Cos w(t - T) 

X X X 

a(t - T) 
+ Bx Sin w(t - T) + e b (C Sin b(t - ,-) + D Cos b(t-,-)) X . X 

(E Sin d(t - ,-) + F Cos d(t - ,-))] u(t-,-i 
X X J 

and 

ct 
+ ed (w3 Sindt+ w4 Cos dt)J u(t) - [a2 Cos w(t - ,-) 

b2 a(t - ,-) 
+ w Sin ~t - ,-) + e b (t3 Sin b(t - ,-) + t 4Cos b(t-,-)) 

c(t -T) ~ 
+ • d ( 'V_J Sin d(t - T) + ,r,4 Cos d(t ~ T))]u(t-T)f ( 14) 

where 

( 15) 

In equations (12) and ( 14) the unit functions u(i and u( t - ,. ) 

indicate that the response expressions are valid for only t > 0 and 

(t - T)>O, respectively, which shoulcibe taken into account in 

evaluating pressures in the cavities at any time. 
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Since from this analysis it is rather difficult to understand the 

effect of various system parameters on the response, the analysis of 

the pressure response of the undamped system subject to an excitation 

pressure of sine pulse will predict the parameters involved. These 

pressures can be written as (Appendix A), 

P,: 2 2 {caz Sin wt+ bz Sin p+t + CZ Sin p_t] • 
- P+ ) (w - P_ ) 

and 

( 16) 

: 2 = _2 __ P_1 _2 2_P_2_2_2 __ , -2-{ [ Sin wt + b 

O (w - P+ ) (w - P_ ) Y 
Sin p t + c Sin p_t]u(t) + y 

- [Sin m(t - T) + by Sin p+(t - T) + oy Sin p_(t. - T )]u(t ~T )} ; 

where 

2 
az = a - ay P12 t X 

b b by P12 
2 and = - ' z X 

2 
CZ = C - Cy p12 • X 

When the frequency of driving pressure, w, is the same as one of 

the coupled natural frequencies of the system, p+ or p_, the denominator 

of equation (16) will be zero, which indicates that the pressures in 

the cavities may be infinite. But at these conditions, the numerator 

also becomes zero which makes the response mathematically indeterminate 

and leads to the use of the L'Hospital rule to find the pressure 

response. Since these expressions are complex functions of the un-
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coupled frequencies, p1 and p2, and of the coupling frequency, p12, of 

the system, it is more convenient to establish the response by 

numerical techniques than by applying mathematical techniques to the 

response expressions. 

Case 2: Response of double acoustical resonator for an excitation 

pressure made up of straight lines with finite number of discontinuties: 

This excitation pressure can be illustrated graphically as in 

Figure 1 and can be expressed mathematically as follows: 

n 
P1 ( t) = I; [a , + l3 , ( t - T • ) ] U ( t - T . ) ; . 1 1 1 1 1 

l= 

where 

n = number of discontinuities on time axis, 

a i = pressure jump at time, t =Ti, and 

13 i = change in slope of pressure at time, t = Ti • 

p (t 
1 

Figure 7. Excitation Pressure Made Up of Straight 
L,ines 

(17) 



Laplace transform of P1(t) is, 

The ~xcitation pressure on neck N2, 

-1'. s e J. 

P2 (t) = o, and hence P2(s) = o. 
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• (18) 

The volume displacement response of the system for the excitation 

pressure of the type described in Figure 7 is (Appendix A), 

~ {a1 . + b 1 . ( t -
. 1 J. J. 
J.= 

a(t. - T.) 
) e J. 

'l'i + b .• 

c(t--r.) 
[11i Sin b(t - T) + t 2i Cos b(t - Ti)] + e d J,. • 

. [>It,J'. Sin d(t - Ti) + ,r,2i .Cos d(t - Ti)l(t- Til , and 

·~ .{a2 . + b 2 . {t - T.) 
i=1 1 1 . 1 

a(t ~ T.) e J. 
+ b • 

[,t.3· Sin d(t - T.) + '1'4· Cos· d(t..;. T.)Jl u(t - T.). (19) 
J. . J. J. J. IJ J. 

The pressures in the cavities can be expressed in terms of volume 

displacements as follows: 
2 

Po0 ' 
p 1 = V- (X1 - X2) 

1 

I . ( ) e . J. 2 h { a.(t - T.) 
= ··p1 . !: .. a. , + b . t - .T . + . b • 

. i= 1 . XJ. . . XJ. J. : 



a(t - T,) 
) e i 

- Ti + b 

c(t-'1'.) 
[t3. Sin b(t - T.) + t4. Cos b(t - T.)J + e d 1 

l. l. l. l. 
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• 

• 

['11.3: Sin d(t - -r.) + ,q,4. Cos d(t - -r.)Jl u(t - -r.) 
1 . 1 l. l. 1 l. 

(20) 

where 

2 
axi = a1i - a2i P12' 

. 2 
b. = b1. - b2. P12' Xl. l. l. 

C . 
Xl. 

e . 
Xl. 

. 2 
= d11 - d2i P12' 

2 
= e1i - e2i P12' and 

These response expressions can be eyaluated in the time domain for 

given uncoupled,.undamped natural frequencies, coupling frequency and 

the damping factors. 

· Transmission of Eln~rgy From One Resonator to the other 

In the case of a dynamic system· with more than one degree-of

freedom.or multiple oscillators tightly coupled together, the feedback 

energy from the driven system to the driver cannot be neglected. For 
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illustration, in the case of two oscillators coupled together, both 

oscillators a.re on an equal footing, each is affected by the other. 

In the case of an undamped system subjected to transient excitation 

force of finite duration, the total energy of the system computed at 

the end of the forced era should remain constant for the rest of the 

period. However, the absolute maximum displacement (pressure in 

acoustical system) may occur·in the residual era depending on the 
. . 

system pa;rameterso The absolute displacements of masses or absolute 

pressures·in the cavities of·acoustical systems depends on the type 

of transient excitation force or pressure, the manner by which it is 

.applied and the system parameters. If the excitation pressure is 

applied on neck N1 of the acoustical resonator (Figure 3), it is 

natural to expect that the pressure build up in cavity v1 is faster 

when compared to that in the cavity v2• However, the maximum pressure 

amplitude can be in either one of the cavities.depending on t:tie 

dimensions of the necks and cavities. 

One can anticipate the beating phenomenon in the residual era for 

the system with two degrees-of...;;freedom. In the case of mechanical 

elements coupled with acoustic,al elements forming a dynamic system with 

multiple degrees-of-freedom, the beating phenomenon exists both in 

:pressure osoillat'ions and the displacement oscillations of mechanical 

masseE?• 

"When a mechanical system with two degrees-of-freedom is supjected 

to fini.te duration driving force, both masses will have initial dis

placements and velocities at the end of the forced era. With these 
:, 

initial conditions, the displacement response in the residual era is 

· the summaticm of two harmonic· motions with the natural frequencies of 
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the system. When these two frequencies are different from each other, 

then the combination of these two motions is not harmonic. If the 

amplitude of this response varies periodically, then this phenomenon 

is kno"Wn as the beating effect. 

Merits and Demerits of Analog Computer 

The analog computer solution of simultaneous differential equations 

is of a continuous form. Accuracy depends on the various elements of 

the analog computer. It is rather arduous in some cases, to make the 

system stable for the system of undamped physical systems. The indi-

vidual elements of the system can be varied very conveniently and the 

response can be studied. It is well suited for the solution of the 

differential equations for particular configuration with numerical 

values. To study the effect of all the possible parameters, is rather 

tedious, particularly to study the maximax response of ihe dynamic 

system with multiple degrees-of-freedom.· For example, in the expres-

sion for the pressure response of the double acoustical resonator, for 

excitation pressure of one cycle of sine wave, it is necessary to study 

the ·effect of two uncoupled frequencies and the coupling frequency on 

the maximax response. Since the analog form of the solution is in the 

time domain, it is necessary to solve for different combinations of 

coefficients of the differ~ntial equations in order to solve for maximax 
·,. . ' 

respons,e. It is time consuming to study the maximax response for all 

the possible variables of the system. Also one should be extremely 

careful in selecting the numerical values for· ,the parameters, so that 

the critical point will not be missed. 



CHAPTER IV 

THEORETICAL RESULTS 

The pressures in the cavities of the system of the multiple acouti-

cal resonator are functions of various system parameters such as.un-

coupled natural frequencies, coupling frequencies, and damping factors 

and the excitation pressures. The coupling frequencies are defined 

as the frequencies which couple two resonators. It is not possible 

to study the behavior of pressure response by the mathematical treat--

ment of equation (14), for it is an extremel~ complicated function of 

system parameters and external pressure excitation. Also, since these 

expressions are .functions of several variables, it_' is rather difficult 

to find the absolute maximum pressures in the time domain by applying 

the mathematical treatment. To represent the response spectra of the 

system, it is necessary to use a response surface instead of a response 

curve. 

Before discussing the response of double acoustical resonators 

subjected to transient exci,tatj.ons, it is desirable to know the 

minimum number of independent parameters that affect the response. 

The response pressures in the cavities, when excited by a finite 

duration pressure, are the functions of the conductivities of the necks, 

volumes of the cavities and the period of excitation pres~we. However, 
''.1"•''' 

... ' ' 

from the discussion in Chapter III, it is apparent that th~r:e: are five · 

independent parameters to represent the system, namely, p1, f:2 1 P12 , 

31 
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s1 , and s2• The two parameters, amplitude and duration, represents 

the transient excitation pressure. It is desirable to use normalized 

system parameters to present the response spectra. The frequencies 

may be normalized by multiplying them by the period of excitation. 

Pressures may be normalized by dividing by the amplitude of the exci-

tation pressure. The choice and number of parameters necessary to 

represent the system response are discussed in the next section by 

examining the governing equations. 

Governing Equations 

The pressure response expressions are simpler in the case of the 

undamped system as compared to the damped system. Thus it is ei'lsier 

to understand the dynamic behavi.or of the system by discussing the 

undamped system exposed to external pressures. 

The following are the expressions from Appendix A for the pressure 

response of> an undamped double acoustical resonator in the forced era 

( 0 t 'T') for a one cycle sine wave pressure excitation of amplitude 

A and period 'T': 
0 

2 
P1 

- _.,,.2--·-2---2 ........ ·--2,,,.... 
Ao (w -p )(w -p·) 

+ -

+ cz Sin p_t] and 

2 2 

[a Sin wt + b Sin p t z . z + 

(21) 

p2 P1 P2 
-A = -.,,..2----.,,..2--...,.2-. [Sin wt + b Sin P+· t + c Sin p - t] 

o (Di - p 2) (w · - p_ ) Y Y 
' + 

where p and p are two undamped natural frequencies of the system and 
+ -

are given by equation (18) in Appendix A as, 
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(22) 

2 
P_ 

From these equations it appears that the pressure response can be 

reduced to a function of three variables; namely, two natural fre-

quencies and the period of the excitation pressure, but the coefficients 

az 1 bz, • • • • • • • ~ cy, are functions of p1, p2, p12 and w, and 

cannot be reduced to a function of only coupled frequencies and w. 

Thus, the pertinent parameters for investigating the response are the 

uncoupled frequencies and the type of excitation pressure. It is of 

interest to note that the pressure response is not an implicit function 

. of the elements of the systems, such as the volumes of cavities and 

conductivities or dimensions of the necks. 

Uncoupled and Coupled Frequencies of the System 

The coupled frequencies, p+ and p_ are functions of three variables 

P1, P2, and p12• For the double acoustical resonator the frequencies 

p1 and p2 are defined as the frequencies of each of the resonators when 

the other resonator is absent. The coupling frequency is defined as 

the frequency of the system when the neck N1 is closed and the cavity 

v2 is removed. The following expressions for the frequencies are 

obtained from equations 



(23) 

These frequencies are tabulated in Table I for buildings that 

can be idealized as double acoustical resonators. In this analysis 

the combination of two rooms with two doors open and all windows 

closed, as shown in Figure 8,is considered. For various values of 
( 

areas of the door openings, volumes of the rooms, and keeping the 

actual length of the necks (doors) as six inches, the frequencies 

are calculated. 

The equations (22) can be solved for uncoupled frequencies as 

functions of P+' p_ and p12 resulting in, 

and 

2 
= 

= 

(p+2 + P_2 - P122) ~J [P1/-:- (p+2 + P_2)]2 - 4P+2 P_2' 

2 

(p+2+ P_2 - P122) + j[p122 - (p+2 + P....;2)}~ - 4P+2 P_2 

2 

Two combinations of p1 aµd p2 are obtained for given values of 

34 

p+' p_ and p12• For each set of p1 and p2 values the pressure response 

is different and hence p+ and p_ cannot be the pertinent system para

meters to represent the response. 

The pressures in the cavities were computed in time domain and 

plotted in Figure 9, for a short period sine pulse excitation. This 

illustrates the beati:p.g phenomenon of double acoustical resonator which 

was discussed in Chapter III. 



.. 

v1 
' v2 

Door Door -

Rigid Walls 

Figure 8. Building Structure That Can be Idealized as 
a Double Acoustical Resonator 

Damped Acoustical Resonator 

As it is stated in··· Chapter .,III, incorporation of damping makes 

the system more complicated to analyze. In this investigation it is 

assumed t.hat the damping due· to various mechanisms can be :t>educed to 

equivalent viscous damping which is.a linear function of volume dis-
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placement. The governing pressure response equation for the excitation 

pressures of one cycle of sine pulse and the pressures made up of 

straight lines with finite discontinuities like finite duration N-waves 

and saw tooth waves a.re; 

For sine pulse: 

a.t 
Bx Sine mt + e b (ex Sin bt + DxCos bt) 

ct 
+ ed (Ex Sindt+ Fx Cos dt)J u(t) - [Ax Cos w(t - T) 
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TABLE I 

NATURAL ~UENCY OF TYPICAL ACOUSTIC STRUCTURES 

Al A2 V1 v2 f1 f2 f12 
. 2 
(ft) (ft2) (ft3) (ft3) (cps) (cps) (cps) 

15 15 .1000 1000 11.10 11.08 11.10 

30 15 1000 1000 13.40 11.08 11.10 

15 ·30 1000 1000 11.10 13.40 13.40 

30 30 1000 1000 13.40 13.40 13.40 

15 15 19000 1000 2.54 11.08 2.54 

30 15 19000 1000 3.08 11.08 2.54 

15 30 19000 1000 2.54 13.43 3.08 

30 30 19000 1000 3.08 13.43 3.08 

15 15 1000 19000 11.10 2.54 11.10 

30 15 1000· 19000 13.43 2.54 11.10 
.. 

15 30. 1000 19000 11.10 3.10 13.40 

30 30 1000 19000 13.40 3.10 13.40 

15 15 19000 19000 2.54 2.54 2.54' 

30 15 19000 19000 3.08 2.54 2.54. 

15 30 19000 19000 2.54 3.08 3.08 

30 30 19000 19000 3.08 3.08 3.08 
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a(t - T) 
+ Bx Sin w( t - 'I') + e b ( ex Sin b ( t - ,. ) + DxCos b ( t - T)) . 

; e d (E Sin d(t - '1') + F Cos d(t - T))] u(t - T) , 
c(t-T) } 

X X 

and 

p2 2 2 f b2 at 
- - p p m [a Cos wt + - Sin wt + ~ (~ Sin bt +t Cos bt) A-1 2 2 w b 3 4 · 

0 

ct 
+ ed Cw3 Sindt+ '114 Cos dt)J u(t) - [a2 Cos w(t - ,.) 

b2 a(t - T) 
+ w Sin w(t - T) + e b (t3 Sin b(t - •r) + t 4Cos b(t-'!' )) 

('1r3Sin d(t-T) + '1r4Cos d(t-T))] u(t-TJ; 
c(t-T) e 

(24a) d 

and 
,. 

For pressures with straight lines: 

and 

2 n { . a( t - T.) 
P1 = p 1 ~ a.+ b .(t - ~) + e b 1 [cx1.Sin b(t - T1,) 

i=1 Xl Xl . 
' . 

c(t-T.) 
+ d . . Cos b ( t - T , ) J + e . d . 1 [ e . Sin d ( t - T 1. ) 

Xl· l Xl 

+ fxi Cos d(t - Ti)] }u(t - Ti), 

.. P2 = ,p1
2 P/ ; ·{a2 . + b 2 . (t - T.) 

i=1 . 1 1 1 

c(t-T.) 
+ t 4i Cos b ( t - Ti) J + e d 1 

a(t - T,) e 1 
+ b [t 3 .Sin b(t - T.) 

l l 

['113 . Sin d( t - T . ) 
l l 
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+ %i Cos d(t - T )~ u(t, - Ti) (24b) 

These equations do not lend themselves to immediate conclusions 

as to the interactions of the system parameters due to complexity of 

the expressions. These expressions are computed numerically for dif

ferent values of p1, p2, p12, ~ 1, s 2, and period and type of exci ta

tion. The FORTRAN computer programs are written in such a way that 

the pressures in the cavities are computed in time domain for stated 

values of system parameters and the period of excitation pressures, 

and the printout is the maximum pressure that can occur in a given 

interval of time (Appendix c). 

The response spectra of the transient response of the system are 

plotted in the frequency domain in Figures 10 to 18 for a sine pulse 

type excitation pressure. The system parameters used to represent 

responses are the frequencies of uncoupled resonators and damping 

factors. Since there are five system parameters in addition to the 

period of excitation, it is not possible to study the effect of each 

parameter on the response either from equations or from one repre

sentative curve. Hence, the results are presented in several figures 

such that the effect of two parameters can be studied in each of the 

figures. Figures 19a and 19b are the pressure response spectra of the 

same system for saw tooth and N-wave type excitations. 

The frequencies are non-dimensionalized with respect to the fre~ 

quencies corresponding to the period of excitation pressures. The 

pressures in the cavities are normalized with respect to the amplitude 

of the excitation pressures and thus correspond to pressure magnifi

cations. In these figures P1 and P2 are the response pressures and 
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g1 and g2 are the damping factors in the cavities v1 and v2, respec

tively. The uncoupled frequencies are represented by f 1 and f 2, and 

coupling frequency by f 12.: A0 and Tare the amplitude and the period 

of the excitation pressures. 

From these spectra, it is not possible to conclude the critical 

circumstances under which the pressure magnification in the cavities 

will be maximum. However, by studying the numerical values of the 

maximum response for various values of frequencies and period of 

excitation pressures, it appears that the pressures will be magnified 

to a maximum possible value (maximax) whenever two natural frequencies 

are close to each other and also they are equal to both uncoupled 

frequencies and.frequency of excitation. Ideally, this occurs when 

the two natural frequencies, P+ and p_, are equal; however, this 

cannot happen because of the presen~e of the coupling term in the 

system. 

A physical explanation for these large magnifications can be 

given in the following way: when two natural periods are equal, the 

plugs of air in the necks will attempt to move with the f!lame frequency. 

If the two uncoupled natural periods are equal to the natural periods, 

then even a small amplitude of excitation pressure with the same period 

will reinforce the motion of air particles in the necks, thereby in

creasing the displacement magnification to a large extent. 

Figures 10 and 11 illustrate the effect of the frequencies, f 1 and 

f 2 on pressure response in the cavity v2, for an undamped system of 

double acoustical resonator. In Figure 10, the maximum pressure re

sponse in v2 to variable uncoupled :frequency f 1 of cavity v1, with 

selected parametric values. of uncoupled frequency f 2 of. cavity V 2, is 
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shown. In Figure 11, the maximum response pressure P2 to variable 

frequency of cavity v2, with selected parametric values of frequency 

f 1 of cavity v1, is presented. In both these figures the other para

meters of the system are held.constant. The excitation pressure is a 

sine pulse with a period of 0.05 seconds, damping factors, s1 and s2 

in the cavities are held zero, and the coupling frequency of the 

system, r 12 retains a constant value of 2 cps. For each frequency 

f 2 in Figure 10, and f 1 in Figure 11, the ma.J_t:imum response curve shows 

the expected two humps of a two degree-of-freedom system. The family 

of curves is also a representative of classical dynamic absorber 

problem. As an illustration, as the difference between the uncoupled 

frequencies, f 1 and f 2 increases, the maximum response pressure P2 

diminishes. As the difference between the uncoupled frequencies and 

the excitation frequency increases, the humps diminish and,spread 

farther apart. When the difference is small the merging of the two 

humps reinforce each other to present~ maximax response condition. 

This is shown by drawing the dotted envelope to the larger peak values. 

Figures 12 and 13 demonstrate the effect of uncoupled frequencies 

of the system and the coupling frequency on response pressure in cavity 

v2• In Figure 12, the maximum pressure response in cavity v2 to 

variable frequency r 1, with selected paramet~io values of coupling 

frequency f 12 , is presented. The frequency of cavity v2, is held con

stant at 20 ops. In Figure 13, the maximum pressure in cavity v2 , 

to variable uncoupled frequency, r 2, is shown for different values of 

coupling frequency f 12• The uncoupled frequency f 1, of the cavity 

v1, is held constant at 20 cps. The other parameters of the syst'em 
., 

are held constant in these two figures.- The damping factors are kept 
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at zero. The excitation pressure is a sine pulse with a period of 

0.05 seconds. The maximax response pressure occurs Jvhen the fre-

quencies of both the resonators are close together. As already 

stated in the earlier part of this section, it is clear from these 

figures that the pressure magnification i.n the cavity v2, would ·increase 
,. {! 

as the coupling frequency f 12, decreased. As the difference between 

either of the natural periods, 1/f1 or 1/f2, and the period of excita-

tion pressure increases, the influence of f 12 reduces, as can be seen 

in these figures for larger values of f 1 or f 2• 

Figure 14 is the de:scription of the effect of coupling frequency 

f 12 on the maximum response pressure in cavity v2, for different 

parametric values of f 1 and f 2• The damping factors, s1 and s2, are 

kept at zero. The excitation pressure is a sine pulse with a period 

of 0.05 seconds. As illustrated in Figures 12 and 13, these curves 

also indicate that the maximum. pressure in the cavity v2 will increase 

as the coupling frequency decreases. It can be observed from this 
' 

figure that the pressure P2 is greater when the frequencies of two 

resonators are equal. This can also be seen from Figures 10 and 11. 

Figures 15a and 15b are the pressure response spectra of cavity 

v1 for. a double acoustical resonator system. The excitation pressure 

is a sine pulse with a period of 0.05 seconds. In Figure 15a, the 

maximum response pressure in cavity v1, with two selected parametric 

values of frequency f 2, is shown. The coupling frequency f 12 , is 

b' held constant and equl3,l to 2 ops. These curves show that the influence 

of frequency f 2 , of the oavi ty V 2, on the maximum pressure P 1 in 

cavity v1 is very small. In Figure 15b the maximum pressure response· 

in cavity v1 to variable frequency f 1, with selected values of coupling 
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frequency f 12, is shown. The frequency f 2 of the cavity v2 is:held 

constant at 20 cps. These curves indicate that the effect of coupling 

frequency on the response pressure in cavity v1. ,-·From these two 

figures it can be observed that the frequency f 2 of cavity v2, and 

the coupling frequency f 12, have very small influence on the pressure 

P 1 in oavi ty V 1 so long as the diff erenc:e between the fre,quency f 1 

and the excitation frequency corresponding to the period, T, is large. 

Figure 16a is an illustration of the effect of the frequency f 2 

on the pressure magnification in cavity v1• In this figure the 

variation of pressure P2 is shovm as the frequency f 2 varies for two 

parametric values of frequency f 1 of oav,i:f;y :v1 •. The damping 

factors, s1 and s2 are zero and the coupling frequency f 12 is kept 

constant at 2 cps. The excitation pressure is a sine pulse with a 

period of 0.05 seconds.· From the curves in this figure it can be 

inferred that the variation of frequency of cavity v2 does not affect 

the pressure iri:_the cav~ty:V1• ,,iT~e _signif'ioant effect of f 2 can be· 

seen m.i.:i.nly ~hen. the>period of e:x:cit~tion is,l:ery close to the natural 

period 1/f2 of cavity v2. 

In Figure 1.6b, the maximum pressure magnification. i.n v1 to the 

coupling frequency F12 is shown for two parametric values of frequency 

f 1 of oavi.ty size V 1 • The damping factors are zero and the frequency 

f 2 is held constant at 20 ops. The excitation pressure is a sine 

pulse with_ a period of 0.05 seconds. From this figure it is not pos-
. ! . . 

sible to conclude the general effect of the system parameters on the 

response pressures in oavi,ty v1• However, from Figures 16a and 16b 

it can be observed that the fr~qu.eri.oy :r1· and coupling frequency f 12 

a.re the system parameters that affect the pressure magnification in 



44 

cavity v1• 

In Figures 17, 18a, and 18b, the maximum pressure response in 

cavity f2 to frequency f 1, with the parametric values of f 2, is shown 

for a damped double acoustical resonator. The coupling frequency f 12 

is kept constant at 2 cps. The excitation pressure is a sine pulse 

with a period of 0.05 seconds. But the damping factors are different 

in these three figures: In Figure 17, the damping factors, s 1 and s 2 
,-,'·· 

are Oo05; In Figures 18a and 18b, these damping factors are 0.1 and 

0.15, respectively. In these three figures the general trend of the 

maximax pressure response is the same as discussed earlier and given 

in Figure 10. However, comparison of these figures with Figure 10 

indicates tha effect of damping. It can be observed from these two 

figures that the maximum pressure magnification in cavity v2, may be 

reduced to about three by incorporating the damping factors s1 and 

~2 equal to 0.1 in the system. 

Figures 19a and 19b are the maximum pressure response spectra 

which illustrate the effect of frequencies f 1 and f 2 on the pressure 

in cavity v2• The damping factors s1 and s2 of the cavities are held 

constant at 0.1. The coupling frequency in both the oases is kept at 

2 cps. The variation of maximum pressure to frequency f 1 with 

selected parametric values of frequency r2 of cavity v2 is shown. In 

Figure 19a, the excitation pressure is a saw tooth wave with ampli-

tude of unity and period of 0.05 seconds. In Figure 19b, the excita-

tion pressure is an N-wave with a period of 0.05 seconds and amplitude 

of unity. · The general trend and behavior of the curves. is.the same as 

illustrated in Figure 18a, which is the response spectra of the system 
,· 

for a sine pulse type ·e:x:cit.ation. Comparison of these three figures 
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shows that the maximax pressure response will be greater for the excita

tion of a sine pulse, when the other parameters· are held same. 

From the pressure response spectra of the double acoustical reso

nator to an excitation pressure of one sine pulse, it is apparent that 

the uncoupled natural ·frequency f 2 has little effect on the pressure 

in cavity v1• The prime controlling parameters of this response 

pressure are f 1, f 12 and the period of excitation pressure. However, 

the pressure in the cavity v2 is affected by both the frequencies f 1 

and f 2• The coupling frequency f 12 has a considerable effect on the 

pressures in both the cavities·when the normalized fr~quencies, .f1-r 

and f 2 -r, .are close to unity. The damping factor of 0.1 reduces the 

maxima.x pressure magnification in the cavities from 16.7 to 5.1 as 

can be seen by comparing Figures 10 and 18a.. From Figure 14, it 

appears that the pressure magnification in cavity v2 can be as high 

as 18 for a sy$tem having a coupling frequency of 2 cps, uncoupled 

frequencies f 1 = f 2 = 30 cps, and damping factors ~1 = ~2 = O. However, 

these values are not the highest possible maximax pressures, since in 

certain oases where the system is tuned properly by varying the 

system parameters and the period of excitation pressures, these 

pressures can.be magnified theoretically to the order of about 50. 

Since in physical systems the damping is inevitable and the coupling 

is limited, the highest actual maxtmax magnifications would be of 

the order of about 15. 

Mechanical System 

In certain cases, an acoustical system coupled to a mechanical 

system can be idealized to a simple mechanical system. The physical 
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and mathematical models of this type of system are shown in Figure 20. 

With the assumption of no dissipation of energy in the system, the 

following equations of motion may be derived: 

and 

(25) 

where F1 (t) and F2 (t) a.re the external forces acting on masses M1 

and IVI2 , respectively. .The response solution 4iscussed in this chapter, 

can be extended to this system since the differential equations (?5) 

a.re of the same type as equations (8). 

The displacement l.'esponse spectra of the system shown in Figure ·20 

a.re plotted for. a particular configuration in Figures 21 to 23. The 

system parametel.'s sel_eoted fol.' this !3tudy a.re that of a typical 

commercial building of a large size warehouse, and the sonic .boom . 

-ty:pe of 'excitation pressure witha period o_f b.135· seconds. The 

effect of one uncoupled frequency r1 was studied, keeping the other 

two frequencies constant for three kinds of application of e:x:ci tatic>n 
-

force of one sine pulse: 1) extel.'nal fol.'ce only on one mass, 2) ex-

tel.'nal force on both the masses in the same direction (in phase), 

and 3) external force on both the masses in opposite direction to ea.oh 

othel.' (phase.opposition). The response displacement, :x:1 , was 

nol.'malized with l.'espect to displacerµent I xst • · :xst' :: is define~ as the 
1 .. ,. . 1 . 

static, d;i.spla,d~iilent, of.<.:fua.ssi ~\ f::w~:. a;: static f'o:N:~~:: :~qua,l·":t:o the ampli-

tude cif • .e;teitat,~on. f o:roe ·: Fb: 'is -· a};lp_l.ied.,.01;1:' .m;~s )\ jfh:lle mass. M2. ·tis Jeid 

:stat~()nazjr_~ . ,·: S.iini.1a.rly, the:. di~plaoement .'x:2 is .nol.'m.~~:zed wi ~h. respect 

to ;t~tt~/.~is1>laceinent X t •·. Thes~; normalizing qua.nti tie's a.re give·n PY, 
.~. 2 



In many practical cases the excitation pressures such as sonic 

booms and blastings would be on all external sides of buildings which 

can be idealized as the force acting on both the masses in opposite 

directions., 

Figure 21 is the displacement response of the mechanical system 

when only one mass is excited with.transient force of a sine pulse. 

The displacement of mass M2, which is not excited by the external 

force, is much less than that of the mass M1• Both the modes of the 

system are excited and the maximax of x1 and x2 occur at f 1 equals 

8.3 and 8.8, respectively. 

Figure 22 is the displacement magnifications plotted when both 

the masses are excited with th.e force of sine pulses in the opposite 

directiono In this case, primarily the second mode of the system is 

excited. The displacements x1 and x2 are maximum when the frequency 

f 1 equals 7.4 and 8.2, :respectively. Figure 23 is the displacement 

response when both the masses are excited with forces of sine pulses 

in the same direction. In this case the system is excited mainly with 

its first mode. The maximum displacements x1 and x2 occur at 

f 1 equals 6.9 and 8.9, respectively. 

When both the masses .of the system are exci.ted by the forces in 

the opposite direction as in Figure 22, the potential energy would be 

stored i~ all the three springs. But when the forces are applied in 
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the same direction as in Figure 23, the potential energy would be stored 

essentially in springs k1 and k2• Therefore, the system can store more 

energy in the first case than in the second case for a given force and 

in a given interval of time. The displacement magnifications are 

large in the first case. In a properly tuned system, the displacements 

can be large enough to damage the structures. However, the presence 

of damping reduces the displacements to some extent, as discussed in 

the previous section. 



EXPERIMENTAL MODEL AND INSTRUMENTATION 

In order to substantiate the theory established and verify the 

validity of the assumptions made in the previous chapters, it was 

necessary to build an experimental model of a double acoustical 

resonator and devise an apparatus capable of producing appropriate 

finite duration pressures whose shape, amplitude, and time duration 

were within the limits which permit easy study. A small scale model 

of two resonators coupled through the neck was built so that the 

system parameters could be changed easily. 

Description of the Model 

The test resonator which was used to study the response of the 

double acoustical resonator in the laboratory consisted of two cylin

drical tubes with cylindrical necks made up of plexiglass. The two 

resonators were of different sizes as shown in Figure 24. A photograph 

of this assembled model is shown in Figure 25. The dimensions of the 

model were dictated by the frequencies of the excitation pressures. 

The diameters of the necks were mainly dictated by the coupling fre

quency . To have a small value of coupling frequency, it was desirable 

to have a smaller cross sectional area and larger length for the neck, 

N2, which coupled the two resonators. It was essential to have a large 

volume for cavity V1 and small volume for v2 for both of the uncoupled 
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Figure 25. Test Resonator Assembly 

Figure 26 . Test Resonator Mounted in Wooden Frame 
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frequencies to be of the same order of magnitude, since the cross 

sectional area of neck, N2, is small. The inside diameters of the 

cavities were 11.75 inches and 4.25 inches. The length of the larger 

resonator could be varied from zero to 24 inches and the smaller one 

from zero to 12 inches by varying the positions of the respective 

pistons. The necks were threaded to the pistons so that these could 

be replaced easily by the cylindrical necks of the required dimensions. 

By changing the volumes of the cavities and dimensions of the necks, 

the system parameters p1, p2, and p12 could be easily varied. Holes, 

measuring 5/16 of an inch, were drilled on the walls to install Altec 

microphones to measure the pressures inside the cavities. The cavities 

were sealed by using 1/16 inch felt on the circumference of the pistons. 

The resonators were mounted in a wooden framework as shown in Figure 26, 

which served two purposes, 1) as a reinforcement to make the walls rigid, 

and 2) as a stand for the resonator system while testing. 

Simulation of Finite Duration Transient Pressures 

The plane wave tube which was available in the Oklahoma. State Uni

versity Acoustic Laboratory was used as an acoustic delay line to pro

duce transient pressures which were used as excitation pressures on the 

system. This apparatus had a cross sectional area of about 14 inches 

square and was 32 feet long. A photograph of this tube is shown in 

Figure 27. To have a plane wave at the test end of the tube, the length 

had to be much larger than either of the cross sectional dimensions and 

at the input end it needed to be driven in an evenly distributed manner. 

The first requirement was satisfied by the available dimensions of the 

tube, and the second requirement was accomplished by driving with a 



Figure 27. Plane Wave Tube 

Figure 28. Resonator Arranged with 
Plane Wave Tube 

67 



68 

14 inch loud speaker, as shown in Figure 27. 

A low frequency function generator which was capable of producing 

sine, triangular, or square wave signals from 0.02 cps to 1000 cps was 

used. The voltage signal from the function generator was fed to the 

Tone Burst generator which was a coherent gate and served to convert 

the signal from steady state to a transient of required duration. The 

signal from the gate, after being amplified,was fed to the loud speaker, 

as shown in the upper part of Figure 29. The pressure pulses produced 

by the loud speaker driven by gated signals were sent through the plane 

wave tube to the test end. 

Testing and Instrumentation 

The loud speaker produced good transients in the frequency range 

from 15 to 300 cycles per second. The microphone (Altec, 21 BR 150) 

response was flat for frequencies above 10 cycles per second. Test 

resonators with natural frequencies from 20 to 50 cycles per second, 

which were described earlier in this chapter, are compatible with these 

requirements. The plane wave tube was long enough so that the reflected 

wave took a long time t~ travel and to affect the response of the system. 

The block diagram of the instrumentation used to measure and record 

the pressures is shown in Figur~29. The arrangement of the resonator 

with the plane wave tube is shown in Figure 28. The three factory

calibrated microphones were arranged at the end of the plane wave tube, 

as shown in Figure 3~ to compare the sensitivities. 

The excitation pressure and the response pressures in the two 

cavities were measured through microphones (Altec, 21 BR 150) and 

recorded through a C.E.C. oscillograph and also viewed on an oscillo-
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Figure 30. 

Figure 31. 

Arrangement of the Resonator 
to Test the Effect of Loading 
Due to the Impedance of the 
Plane Wave Tube 

Arrangement of Microphones with 
Plane Wave Tube for Comparative 
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scope . screen. Since the output impedance of the microphone power supply 

was much larger than the input impedance of the oscillograph, it was 

necessary to build an impedance match network. The sensitivity of the 

galvanometers were adjusted through the matching network so that all 

the channels had the same deflection for the same voltage signals in 

the frequency range of 20 to 60 cycles per second. 

The effect of impedance of the plane wave tube on the response of 

the resonator was checked experimentally by measuring the response 

pressures when the model was about one foot away from the test end of 

t he tube, as shown in Figure 30 . These measurements were not much 

different from the pressures measured in the cavities with the test end 

closed as in Figure 28 and excited with the same type of pressure. 

Since the cross-sectional area of the plane wave tube was large compared 

to that of the neck, there was a little effect of the tube on the 

response of the resonator. However, the impedance of the tube did 

affect the excitation pressures produced by the loud speaker. Very 

distinct sine pulses could be produced when the end of the tube was 

closed except for the neck of the resonator. 



CHAPTER VI 

EXPERIMENTAL PROCEDURE AND RESULTS 

The test model and the instrumentation described in Chapter V were 

used to test the theoretical response of the system of the double 

acoustical resonator in time domain. The laboratory testing also 

yielded a better understanding of the physical parameters and damping 

mechanism of the system and the general validity of the theoretical 

assumptions made in the analysis. 

Natural Frequency and Damping Measurements 

The natural frequencies of the two uncoupled resonators were 

measured by two methods: 1) by exciting the resonator with a short 

duration transient pulse and observing or recording the free relaxation 

pressure oscillations in the cavities; and, 2) by sweeping the steady 

state excitation pressure and observing the maximum pressure magnifi

cation. Both of these methods give the same values of natural fre

quencies. The damped natural frequency, Pd, is a function of undamped 

natural frequency, p, and the damping factor g and is given as, 

pd :0 p • (26) 

Since the damping factor is of the order of 0.05, Pa and pare 

approximately equal. 

The undamped natural frequencies were estimated from equation (23). 
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The end correction for the neck was taken as 0.785 R for each end of 

the neck assuming an infinite baffle termination. This end correction 

seems to be a little high, and resulted in calculated frequencies a 

little low when compared with the experimentally evaluated values. For 

each set-up two values were taken, one while sweeping the frequency 

from low values to high and another while decreasing. Generally, the 

difference was only two to three percent. Table II gives the comparison 

of measured natural frequencies, when the joints of the resonator were 

sealed to the theoretically determined values for different volumes of 

the cavities. 

When the joints of the resonator were not sealed well, the measured 

frequencies were higher than that of the theoretically estimated values. 

The a ir motion through the small holes has the effect of increasing the 

area of the neck. Since the natural frequency is proportional to t he 

square root of the area of the neck, the presence of air leaks would 

result in higher measured frequencies. 

The damping characteristics are readily evaluated from the free 

vibration tests. These test procedures consisted of exciting the 

resonator with a transient pressure pulse of short duration and observing 

the free pressure oscillations in the residual era. Many types of pulses 

were tried to excite the resonator with no control maintained over the 

pulse shape or period. The free pressure oscillation records always 

displayed the smooth decay curves of a typical simple oscillator. 

Figures 32 and 33 are typical traces of pressure signals obtained by 

exciting with a sudden impulse by waving a hand across the neck of the 

resonator. The damping factors measured from the logarithmic decrement 

of free oscillations were in the range of 0.05 to 0.065. For a smaller 



TABLE II 

THEORETICAL AND EXPERIMENTAL NATURAL FREQUENCIES OF RESONATORS 

Cavity diameter -- 11.75 inches 
Neck diameter -- 1 inch 
Neck length -- 1\ .inch 

' 

Length of the cavity Calculated frequency Experiment!lllY 
inches cps determined frequency 

cps 

21.5 27.6 27.8 

20.5 28.3 28.5 

19.5 29.0 30.0 

18.5 29.8 30.2 

17.5 30.6 30.5 

16.5 31.6 32.0 

15.5 32.6 33.2 

14.5 33.7 34.3 

13.5 34.8 35.5 

cavity diameter - 4.25 inches 
Neck diameter - 0.5 inch 
Neck length 6 inches 

13.25 27.4 28.6 

12.25 28.6 29.8 

11.25 29.8 31.2 

10.25 31.2 32.2 

9.25 32.8 33.9 

8.25 34.8 35.7 

7.5 36,4 37,0 
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Figure 32. Free Pressure Oscillations in the Resonator 
of 11.75 inches Diameter, (Neck: 1 inch 
.Diameter and 1. 25 inches Length) 

Figure 33. Free Pressure Oscillations in the Resonator 
of 4.25 inches Diameter, (Neck: 0.5 inchef 
Diameter and 6 inches Length) 
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resonator with a longer neck, the damping was found to be slightly 

higher. Damping could also be estimated from steady state tests by 

measuring the amplitudes near resonance. The results were in close 

agreement with those obtained from the transient or free vibration te~t~. 

These tests were conducted also to establish the mechanism of 

damping and the response due to higher modes. The energy dissipation 

could be due to the following reasons: 1) wall vibrations, 2) leakage 

through the felt which is used for sealing purposes, and 3) friction and 

reradiation through the necks. Since the 11.75 inch resonator had a 

wall of thickness 1/16 inch, it was suspected that wall vibrations 

might be the main cause of energy dissipation. These free vibration 

tests were conducted before and after stiffening the resonator both with 

circumferential and longitudinal reinforcements. The damping measure

ments from these tests indicated that the energy dissipation was not 

due to wall vibrations. To establish the damping due to leak through 

the felt, all the leaks were sealed well with a calkirig comp9und .and 

tested for damping factor . It was found that the energy was not dis

sipated through the felt because there were no leaks even without the 

calking compound applied. From these tests it was inferred that the 

damping is only due to friction and reradiation through the necks. 

One could also conclude from these tests that the higher mode fre

quencies of the resonator were not present since the amplitude of 

these higher modes did not appear in the transient response oscillations, 

as is apparent from Figures 32 and 33. 

Pressure Responses in Time Domain 

The best method to establish the validity of the assumptions made 
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in the theoretical study is to test the model for the similated excita

tion pressures and compare the theoretical results with the measured 

values. This was done by measuring the response of the double acousti

cal resonator system in the time domain for the transient pressure of 

one sine pulse. This study was performed for several configurations of 

the system, all of which showed excellent agreement between the recorded 

traces and analytically predicted response results. These results 

further demonstrated the relatively minor importance of higher mode 

responses. The analysis was made in obtaining theoretical response 

curves by using an excitation pressure of one cycle of an ideal sine 

wave and straight line approximation. The calculated values of un

coupled natural frequencies and coupling frequency and measured values 

of damping factors were used to define the resonator system. The equa

tions of motion were derived as discussed in Chapter III and solved for 

the response using Laplace transformation techniques and a digital 

computer. The pressure response in the cavities as a function of 

complex frequencies is given by, 

P1 (s) = GAl(s) • PA(s) + GBl(s) • PB(s) 

(27) 

where GA1, GA2, GBl and GB2 are the transfer functions of the system 

and are defined as functions of uncoupled natural frequencies and 

damping factors; PA(s) and PB(s) are the external pressures applied on 

necks N1 and N2, respectively. In the present analysis there is no 

external pressure on neck N2, thus, in equation (27) PB(s) is equal to 

zero. The correction factors for the neck length were taken as 1.57 R, 
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where R is the radius of the neck. 

Figure 34 shows the comparison between the experimentally measured 

and theoretically computed pressures in cavity v1• Also, the excitation 

pressure at the test end of the plane wave tube (very close to reso-

nator neck N1) and an ideal sine pulse are plotted in the same figure. 

A damping factor, s1: s2 = 0.06, was used in the computation. There 

is a very close agreement between the measured and the theoretical 

pressures in the forced era. There is a discrepancy in the residual 

er a , since the measured or actual external pressure was not exactly 

t he same as that of the ideal pressure assumed in computations. Figure 

35 shows the measured response and excitation pressures, computed 

response, and an ideal excitation pressure of sine pulse. 

Figure 36 is the pressure recording inside the cavities and the 

excitation pressure. The trace of excitation pressure was obtained 

with the microphone placed close to the neck, N1, of the resonator at 

the test end of the plane wave tube. The response traces were obtained 

with the microphones fixed through the side walls of the resonator. 

The amplitude of pressure in v2 is larger than that of v1• 

These pressures were compared with the theoretically calculated 

pressure responses in the cavities. Figure 37 gives the comparison 

between the measured pressures in the cavities and the computed values 

by assuming the excitation pressure as a sine pulse. The agreement 

between theory and experiment is excellent in the forced era. In the 

residual era they deviate. This is because of the difference between 

the actual and ideal pressure pulses as shown in Figure 37. Figure 38 

i s the computed response to an idealized wave of straight lines. These 

results are compared with the measured values. The trend of the 



-
(/) 

0.. 

w 
et: 
=> 
(/) 
(/) 

w 
et: 
0.. 

6.--.--.,-.---,-.--...,.....---,-.--....,....---.-.---,..----,.~--,.--.--,--.--...-.--...-.--..,.....--...,.....--.--.--.--.--.--.--._ 

4i--~-;-~--t-~---t--~-t-~--t~~--~;-~--t-~---t--~-t-~--t1--~-t--~-t-----1 

f 1 = 33. I 56 
f2 = 35. 662 
t,2 = 9. 354 
€, = €2= 0.06 

;r-cALCULATED PRE~SURE FOR SINE PULSE 
2 

0 

-I 

I~ I I Mt-M~ASU~ED 
1
PRE~SURE

1 

L/f~~ I i /If '~ I ,..,,J,(_[\ 1 1 /r-,,, 

'\II~ I I \ 1-7~ -~ I 1<,,,J/ I I', 
\U I 

I 

'U, 
\ I ,..,, 

---~--LrMEASURED EXCITATION PRESSURE VT\ 
1,,---

~I I l\-12 
,, 

~ ""-I.._ I --t----. --+-

Figure 34. Pressure Response in Cavity v1 

-..J 
\.0 



V) 

a.. 

-w 

6 

4 

2 

a: 0 
:::i 
U) 
U) 
w 
a: 
a.. 

-2 

-4 

f1 = 33. 156 
fz = 35.66 2 
f12 : 9.354 

t1 "t2 "0.06 

~ 

j \\ 
l/1 ~ .-6 \ 

. I 

1 

\ 
\ 
I\ 

\\ 
V \ \\ 

~ ~ 

l' 

f\ 
f \ 

t 
l 
I ., 
I 
I 

J 
I 
I 
\ 
I 
l 
\ 
I 
.\-
l 
'I 

I .·. 

! 
I 
I 
I 
I 
I 
I 
I 

ij ..... --_ .... 
,.-

'·r\_ THEORETICAL 

-6 

I I I 
0 .02 .04 .06 

·. 

(\ 
//\ 1 
~ MEASURED. PRESSURE , 'v I I I I 

\ , ____ I· I ·1 , CALCULATED PRESSURE FOR SINE PULSE 
I \ .. 
I 
I r, 
I I \ 
I \ I \ 

I \ \ I \ I \ l,i.-,, I. \ \ 
I \ . 

\ 
., ,, , \ 

I ., , ' i,' ....... I \ . I 
I \ I 

, __ , 
. . 

. 
I \ 

I 

I I 

I I 
I ! 
I ; r I 
\ I 
I i 
\/ 

I 

·-~I--.. v- MEASURED EXCITATION PRESSURE 

- ---
\V -
EXCITATION PRESSURE ( SINE PULSE) 

I I I I I I. I 

.08 .10 .12 .14 .16 

TIME, SECONDS 

Figure 35. Pressure Response in Cavity v2 

18 

():) 
0 



81 

I ~· 

I I I I I I I . 1 · 1 · I 

r r\ irRESPONSE PRESSURE IN CAVITY V2 

I :\ . . I~ ~ . . ~ r,.._ - . ~ \ 
I 

\ V \ V 
\ 

. , . 

-
(/) 
a. 

r 
\ \ k 

...... RESPONSE PRESSURE IN CAVITY V1 

) V !'\.. - ----· '---,I 

II 

' V 
V r--V 

\. I 

V ~ -~ I 
1-EXCITATION PRESSURE 

[\ ~I/ !'..... --' 

\ [7 

l/ ~ ,. 
~ 

32 11 = I SECOND 

Figure 36. Time Response Measurements 



Cl) 

0.. 

8 

6 

4 

2 

. f1·:; 32.6 
f2 = 34.8 
f,2 = 9.22 
e, = e2= o.os 
l" = O.Otf' 

{EXCITATION 
. PRESSURE 

I 
. J I'\ 

: I --~ ~·\ 

r-RESPONSE 

J PRESSURE IN. :'2 
I 

.r,r I ! ' 
RESPONSE: 
PRESSUR.E IN v, 

j f' _.·· 1 f. 

' .. 

·-· 1 
r\ 

.. 
w 
a:· 0 
:::, 

~" 
,'r~ ~\ \' - ' V '· \ 

Cl) 
(/) 
w 
0::: . 
0.. 

-:2 

-4 

-6 

-8 
0 

I 

'\\ i I \ J ·l -~ '"'! ~' ., 
V ' ~ 

.. 

" x~ 
,J 

\ I 

\ ' \ ., / .IJ ' 

• - MEASURED PRESSURE IN V2 FROM. FIG. '3-0 
x· • MEASURED PRESSURE IN V1 FROM FIG . 

,•-, . 
. -~' \;:;. 

'. 

·.02 .04· .. 06 .08 

TIME, S[:CONDS 

82 

. 

\ 
~ 

0 

.10 



3 
•- MEASURED PRESSURE IN V2 FROM FIG. '3G 
x - MEASURED PRESSURE· 1N V1 FROM FIG. 36. 

f = 32.6 . I . 

2 . f2 = 34.8·. 
f,2 = 9.22 l ~PRESSURE IN CAVITY Vz 

(, =(2 = 0.06 JI /'\ "'' 
J . ' /. \ ( \r -PRESSURE IN CAVITY V1 

/"', ~-(./) 

0.: 

w 
a:: 0 
:::) 

I~ ~ ~. \ I \ ~ L1 ~ 1· \ I 
~ 

; 

r--. . 

'\ t V n I ,...__ __,_/ \ I !\. J / ;A' CF) 
CF) 

I \~ ~ \ 

\ / \_ I 
-

i\ 

\ JI '\ -
w 
a:: 
0.. 

-I 

\ • I . ~EXCITATION PRESSURE IDEALIZED AS 
STRAIGHT LINES FROM FIG. '.F5 

J 
-2 

-3 

0 .02 .04 .06 .08 .10 .12 .14 .16 

TIME, SECONDS 

Figu.re 380 Response Pressure~ by Straight·Line.A:pproximation 

~ 
~ 

\ 

.18 

~ 



responses of both calculated and measured pressures are the same, but 

the absolute values are not in agreement. This may be due to the 

shape of the measured excitation pressure being quite different from 

the idealized excitation pressure. 
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The study of this particular time response indicates that the 

assumptions made in the mathematical model are valid. The higher modes. 

are not important in the response analysis. Thus, the results obtained 

in the theoretical analysis may be accepted. 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

The conclusions drawn as a consequence of this investigation may 

be divided into two groups depending on the phase of the investigation. 

I. The following deductions have been attained from the experimental 

investigation: 

1. The lumped parameter representation of coupled acoustical 

resonators is adequate for the response analysis. 

2. The presence of air leaks will have a large effect on the 

natural frequencies and on the response of the system. 

3. In actual physical systems such as buildings, it is rather 

difficult to estimate the amount of leakage and damping; 

and thus, it is necessary to use the measured estimates of 

natural frequencies and damping factors in the response 

analysis. 

4. The assumptions made in the derivation of the mathematical 

model are valid. 

s. The damping of a resonator with rigid walls is due probably 

to the friction and re-radiation at the necks. 

6. In a physical system the higher mode response is not 

important, since the small amount of damping present in 

the system reduces the amplitude of higher modes in a short 

time. 
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II. From the theoretical analysis and response spectra, the following 

conclusions have been attained: 

1. The pressure magnification of a double acoustical resonator 

can be as large as 50 when the undamped system is tuned 

properly and the coupling frequency is very small. However, 

since in a physical system the damping is inevitable and the 

coupling frequency is limited by the elements of the system, 

the pressures can only be magnified to the order of about 15. 

2. The pressure oscillations associated with acoustic response 

in the structure may possibly act as a secondary source 

driving other properly tuned elements of the system to large 

amplitudes. 

3. Mathematical modeling by use of lumped parameters is an 

excellent method, which is amenable for the transient response 

analysis. 

4. If the walls are rigid such that there is no contribution of 

response due to wall vibrations, the response can be predicted 

analytically within four percent, by using measured values for 

damping. 

5. From this analysis, it is possible to predict the response of 

double acoustical resonators to any type of finite duration 

transient excitation pressures which can either be approxi

mated by straight lines or sine pulses. 

6. The damage to the acoustic structures exposed to transient 

pressures can be reduced by incorporating damping. A damping 

factor of about 0.1 reduces the maximax pressures by about 

three times. 



7. The two uncoupled frequencies of the system are parameters 

which affect the response of the cavity of the resonator 

which is e.~cited by external pressure. 

8. The uncoupled natural frequency related to the resonator 

excited with external pressure is the parameter which 

mainly affects the response of this cavity. 

9. Pressure magnifications can be reduced to about unity by 

designing the structures in such a way that the natural 

frequencies are apart from each other and also apart from 

the frequency of excitation pressure. 

Suggestions for Future Study 
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It is recommended that further study be conducted in the area of 

dynamic response of mechano-acoustic structures in transient conditions. 

It appears that the transient response of the acoustical systems by 

lumped parameter representation is more fruitful; however, in certain 

cases where lumped parameters may not fulfill the requirements, it 

would be advantageous to explore the continuous systems. 

Specifically the following recommendations are made for further 

study in this area: 

1. The conclusions stated concerning the mechanism of damping 

in the resonator are primarily based on experimental tests. 

It would be useful if additional effort would be put on 

mathematical analysis. It appears that the damping due to 

various mechanisms can be separated and analyzed as a function 

of system parameters. 
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2. The influence of non-rigid wall vibrations on the response 

of the system should be investigated. These wall vibrations 

might cause dissipation of energy in the system. 

3. It is necessary to determine the influence of higher mode 

response for larger resonators where the critical dimension 

is not less than 16 times the wave length corresponding to 

the natural frequency. From the experimental study of this 

investigation, it seems that this restriction is not strictly 

necessary. 

4. There are many acoustical structures which may not be 

idealized to the system of the double acoustical resonator. 

Hence, it is worthwhile to analyze the multiple coupled 

resonators with three or more degrees of freedom. 

5. · The study of the response of continuous mechanical systems 

such as windows and ceilings coupled to an acoustical 

resonator needs to be investigated. 

6. The correction factors for neck lengths of Helmholtz 

resonator, as a function of dimensions of the necks and of 

the flanges at the ends of the neck needs to be examined. 
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APPENDIX A 

RESPONSE SOLUTION OF THE DOUBLE ACOUSTICAL RESONATOR 

The equations of motion for the system of double acoustical reso-

nator shown in Figure 2 are derived in complex frequency domain in 

Chapter III as, 

x1 (s) - [c1s + P (J~(s) = P1 (s) 2 
s + 

2 21 p C p C 

+ 02) s + ~ + ~ 
" 1 2 

X2(s) - [c1s+ p(1 · 
( 1) 

The characteristic determinant of this equation is 

p i, . 2 p 02 
o ei o · 

s + 01S + -V-
A, . 1 

6. = (2) 

This equation can be simplified to 
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where the damping factors I; 1 , I; 2 and I; 1 2 are defined as, 

01 
~1 = ---

2M1p1 

I; - c2 and 
2 - 2M2p 2 ' 

Solution of equation (1) for volume displacements, x1(s) and x2(s), 

are, 

P() Po.te2[2 1i ) 2 2] 
1 s A2 s + 2P 2 \S 2 + I; 1 2 s + p 2 + p 1.2 

x1 (s) = ----------------
!::. 

I::,. 
and 

( ) Pct e1 [ 2 i=- 2] 
P2 s A L + 2":>1P1 + P1 

. X2(s) = __ . ___ 1_-=----------
6 

Po.ee1 2 [21;1 J + p () n ~p1 s + 1 1 s A1 ·"'1 

------- • (4) 
!::,. 
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For the excitation pressures of one cycle of sine wave (Figure 6) 

. on neck, N1, and no excitation on neck, N2, the equation(4) can be 

reduced.to, 
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and 

(5) 

A0w p12[h1s + 1][1 - e-TsJ 
X2 (s) = -----------------

p t/2 (/ + u>2) ~4 + B3s3 + B2s2 + B1 s + B~ 

where 

g1 = 2P2 (s2 + s 12), 

2 2 
go= P2 + P12' 

B3 = 2 P1 S1 + P2S 2 + P2S12' 
(5a) 

. 2 2 2 
B2 = P1 + P2 + P12 + 4P1P2~1S2, 

B1 = 2P1P2 [sl2 + s2P1], 
2 2 B0 = p1 p2 , and 

h1 = 2s1 

P1 

Equation (5) may be transformed into time domain from the complex 

frequency domain by the technique of partial fractions. It is neces-

sary to find the roots of the characteristic equation (3). The 

characteristic equation, 

is a fourth degree, linear polynomial equation. For a stable system, 

the real parts of the roots of this equation should be negative. 

With this assumption, the equation can have one of the following 

three combinations of the roots: 

1. All four of the roots may be complex with negative, real part, 
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2. All of the roots may be real negative numbers, and 

3. Two roots may be complex and two may be real negative numbers. 

If the system has to have at least some roots with pure real numbers, 

the response of the system is not oscillatory, but it is overdamped. 

Assuming that the system has an oscillatory motion for which the roots 

of the characteristic equation must be of the form a± jb where a and 

b are real numbers and j = J"-::i. 
If the roots of the polynomial equation a.re a± jb and c + jd, 

the following identity can be written: 

s4 + B3s3 + B2s 2 + B1 s + B0 = [s -(a+ jb)][s -(a- jb)] 

[s -(c + jd)][s -(o - jd)] (8) 

= [(s-a/+b2][(s-c/+d2] • 

Equation (5) can be reduced to the following form by utilizing the 

identity (8), 

, 2 . · · -Ts·. 
[s + g1 s + g0 ][ 1 - e ] 
~.,.....~~~~~----~~~~~.,.....~~, and 

2 2 · · 2' . 2 · 2 2 
(s · + w )[ (s - a) ·+ b ][ (s - o) + d J 

(9) 

2 2 2 2 2 2 (s + w )[ (s - a) + b ][ (s - o) + d ] • 

The following expressions may be obtained by factoring the right 

hand side of equation (9) in terms of partial f'ractions, so that 

each term can be reduced to known form: 



h1s + 1 a2s + b2 

(s2 + w2)[ (s - a) 2 + b2][ (s - ~)2 + d2] = s 2 +W 2. 

( 10) 

When the right side of equation (10)is reduced to a common denom-

inator and the numerators of both sides of the equations are equated, 

the following will result: 

( ')[ 2 2][ ( ) 2 · 2] +. e1s+ f 1 s + w s - a + b , and ( 11) 

2 2 2 2 
+ (e2s + d2)(s + w )[(s - c) + d J 

2 2 2 2 + (e2s + f 2)(s +m )[(s - a) + b J 

The equations (11) oan be simplified and the like :powers of s 

on both sides are equated to obtain the two· sets of simultaneous 

equations (t1.2) -~d ·(13) written in matrix form. 

Equations (5) can be rewritten in the following form, by 

. utilizing equations . (9) and ( 11) and the solution of equations 



1 0 1 0 

2(a. + o) -1 2o -1 

2 2 -2(a. +·o) 2 2 2 
-2o (a+ c) + b 0 + d + (I) 

- 2 
+d +2ao 

· 2 2 
2[a(o + d) -[(a+ o) 

2 2 
2w 0 

2 2 · -(o · + d 

-· · 2 2 
+ o(a + b )] : b2 + cl + w2) 

+ 2ac] 

2 2 
(a + b ) • 

· 2 2 2 2 2 2 
-2[a(o. +d ) w (o +d) · -2ow 

· 2 2 
(o + d) 

- · 2 2 
+ o(a + b )] 

0 
2 2 . (a + b ) • 0 

2 2 2 
~ · (o + d ) 

(02 + d2) 

1 

2a. 

2 . b2 2 a + + w 

2 
2 w a 

w2(a.2 + b2) 

0 

0 

-1 

-2a. 

-(a2 + b21 

+ w2) 

I 
2 

-2aw I 

w2{a2+b2)1 

a.11 I o 

b11 Io 

011 Io 

I d1 I l-1 

I 11 
I e11 I g1 

Ir 1j I go 

I c12) 

'° -.1 



1 0 1 0 1 0 . a2 0 

2(a + c) -1 2o -1 2a. -1 b 21 I o 

2 2 
(a+ o) + b -2( a+ o) 

2 2 2 
O +d +CD -2c 

2 2 ·2 
a +b +CD -2a c 21 I o 

+ d 2 + 2ao 
I I I = . . 

( 13) 
-

[ 2 2 2 2 2 2 2 2 21 I d21 I 0 2 a(o + d) -[(a+o) 2m o -(o + d 2CD a. -(a + b 

- 2 2· 
+ c(a .+b )] ~ b2 + d2 2 

+ CD ) + CD2) 

+ 2ao] 

2 2 2 2 CD2(o2 + d2) 2 CD2(a2 + b2) 2 I e2I I h1 
(a + b )• -2[a(c +d ) -20CD -2ao I 
(02 + d2) 

. - 2 2 
+c(a +b )] 

0 
2 2 

(a + b ) • 0 CD2(c2 + d2) 0 
2 2 2 

w ( a + b )I · I f 2 1 I 1 

(02 + d2) 

'& 



( 1 2 ) and ( 1 3 ) : 

( -Ts) 
1 - e • 

Inverse Laplace tI'ansformation of functions of the type, 

2 2 (s - a) + b 

is discussed below. 

A function ~(s) is defined as, 

then 

~(a+ jb) = c1 (a + jb) + d. 

This identity may be reduced to the following form: 

~1 + j~2 = c1a + d1 + jc1b. 

The real and imaginary parts of both sides are equated to obtain the 

following equations: 

~1 = c1a + d1 , and 

~2 = 01 b • 

Solution of these two equations yield the following expressions, 
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d1 = '1 - .§!: i b 2· 

Hence 

01 s + d1 
= 

(s - a/ + b 2 

12 a - s + (i - - i ) b 1 b . 2 
2 2 (s ~ a) + b 

1 2 (s - a) 
= "1;"" (s - a) 2 + b 2 

~ b 
+ b 2 2 • 

(s - a) + b 

The inverse transformation is as follows: 

where 

-1 
L [

0 1 s + d1 ~ _ at 
2 2 - e 

(s - a) + b 

'2 
tan e = r . 

1 
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Equations ( 14) may be transformed to time domain and written as, 

b1 ea(t -T) 
- [ a1 . Gos w ( t - T) + w Sin w ( t - T) + - 0-. -- • 
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( 15) 

Cos wt + ; 2 Sin wt + e~t (J t 3 2 + t 4 
2 

ct -----
Sin (bt -9 3)) + ed (J w32 +w4

2 Sin (dt-9 4))] u(t) 

b 2 ea(t --r) 
- [a2 Cos w (t - T) + w Sin w(t - T) + · b • 

"I 2 . 2 ct J. · 2 2 
cv W 3 + I 4 Sin (b( t - T ) - 9 3 ).~ + e d ( '1t 3 + '¥ 4 • 

where 

Sin (d(t - <) - t 4))] u(t - < )) 

-1 t2 
9 1 = tan' r , 

1 
t 3 = c2 a + d2 , 

t 3 = c2b , 
VI 

9 .· -1 2 
2 = tan 'ifr , 

1 

-1 t 4 
9 3 = tan · r , 

3 

'1t 
9 4 = tan··1 ~ , 

3 

w.1 = e1c t f1 , 

'11 2 = e1 d , 

VI 3 = e2c + r 2 , and 

The volume displacements x1 ( t) and x2 (t·) at necks N1 and 

N2, respectively, can be evaluated using numerical techniques. 

If there is no energy dissipation (damping) in the system of 

double acoustical resonator, the characteristic determinant maJ7 be 

simplified to 
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(17) 

where P+ and p_ a.re two undamped, coupled natural frequencies of the 

system and a.re given by 

and 

2 
p = +, 

( 18) 

The volume displacement response for excitation pressure of one 

cycle of sine wave on neck N1 of the system can be expressed as a 

function of natural frequencies, P and P, as follows: + . -

AW 
0 

( 2 2 2) ( -Ts) s + P2 + p 12 1 - e 

2 2 2 . 2 2 2 
(s + w ) (s + P+ ) (s + p_ ) 

1 and 

2 2 2 2 2 2 
(s + w ) (s . + P+ ) (s + p_ ) 

( 19) 

The. expressions in equations (19) maJT be factored by partial 

fractions and can be simplified to 

and 

AW 
0 

. -Ts) 
- e ; (20) 
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where 

4 . 4 2 2 2 
- (w - P - )(p 2 + P 1 2 - P 1 ) 

.. · r 4 . 4) r 2 .. 2) (p 2 ~) 
\W ~ p \W - p - p + - - ' + 

d2 = (· 2 2) ( 2 · 2) 0 

p -w P =P + . + -

1 

Transformation of equation (20) into time domain yields 

x1 ( t) = J, Ao { [ a Sin wt + b Sin p t 
p 1 2 2 2 2 X :X :+ o e (W - P )(w - P ~) . .. . . . . 

A1 + - . 

+ c x _Sin p _ t Ju ( t) - [ a.:x: Sin w ( t - 'f' ) + \c Sin ~ + ( t - 'I' ) 

+ oxSin,P_(t -r)Ju(t -Tl}, and 



+ c Sin p t]u(t) - [Sin m(t = -r) + b Sin p (t - f) 
y - y + 

+ C Sin p ( t = T )] u( t - ,. >} y = 

where the coefficients are defined as 

(p 2 + P 2 p·. 2) (w2 ·p 2) "' 
b 2 12 - + - - w 
x=-2 2 · - --

0 == 
X 

(p_ - p+ ) 1\ 

( 2 2) f .. 2 2) ( 2 2) w -P w -P P =P =· + = = + 
2 -2 . 2· 2~ 

( w + p ) (p = p )p 
+ =. + -

(w4 _ P 4) w 
+ 

c~,. = -(-2----. -2-) c'"""""'2 ___ 2,...)--
p + - P_ w + l\ :P_ 
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(21) 

Because of absence of the damping in the system the volume dis-

placement equations (21) are very much simpler as compared to the 

equa·tions ( 15). From these equations 9 the effect of undamped natural 

frequencies on the response can be evaluated. 
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Excitation Pressure Made up of Straight Lines on Neck N1 

and No Pressure on Neck N2 

The excitation pressure P1(t) is defined in Chapter III as 

n 
P1 ( t) = !: [a . + 13 . ( t - T . ) ] u ( t - ,- . ) 

. 1 1 1 1 1 1= 
where 

n = number of discontinuities of P1 (t) on time axis, 

ai = jump in.pressure, P1(t) at t~me, t =Ti, 
'"·!·"" 

13i = change in slope of pressure at time, t =Ti, and 

(22) 

u(t-T. )= unit step function such that P(t) multiplied by u(t - 'I'.) 
. 1 . 1 

will have a value of zero fort T. and P(t) in the region 
1 . 

t T. 
1 

The Laplace transform of P1 (t) is 

1 n 
p1 (s) = 2 .:E 

s 1=1 
[a. s + 13. J 

1 1 

_,. .s 
e 1 

The excitation pressure on ne~k N2, 

and hence 

The expressions for the volume displacement response of the 

(23) 

system may be reduced to the following form after substitution of 

equat;on (23) in equation (4): 
-T.S e 1 

and 

(24) 
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where the coefficient of sin the denominator is defined by the 

equation (5a). 

For the stable oscillat~ry response of the system, equation (24) 

can be reduced to the following form after utilizing equation (8) 
n 

( s2 + g1 s + g ) I: (a . s ; f3 . ) e -'r is 
. 0 . i=1 J. J. 

X1 (s) = ---------eo-------
P ole1 s2 [(s - a/+ b2][(s -· c)2 + d2] 

A1 

, and 

(25) 

where (a+ jb) and (c + jd) are the roots of polynomial equation (8). - - . 

These equations can be expanded in terms of the partial 

fractions as follows: 

e.s + f. 
J. J. 

+ 2 2 and 
(s - c) + d 

A.s + B. 
J. J. 

2 
s 

C.s + D. 
J. J. +---~-~ 

(s - a/ + b2 2 .. 2 2 2 2 = 
s [(s - a) + b J[(s - c) + d J 

E.s + F. 
+ J. J. 

2 2 • 
(s - c) + d 

(26) 

The right side of this equation is reduced to a common denomin-

ator, and the like powers of ~ on both s_ides of the equation are 



equated to o.otain the following two sets of simultaneous matriY 

equations,(27) and (28). 

Solution of these equations for the co-efficients is utilized 

along with equation (26) to reduce the response equation ini<:; the 

following form: 
. l < 

n 
I: 

i=1 
[

a.s + b. 
1 1 

2 
s 

c.s + d. 
1 1 +------

(s - a) 2 + b2 

e.s+f. ~ 1 1 -T.S 
+ . 2 2 e 1 

(s - C) + d · 

C.s + D. 
1 1 n tA.s+]. 

~ 1 1 
I., 2 + 

i=1 s 
2 2 (s - a) + b 

E. s + F. J ,I 1 1 
+ . -·-. 2 2 

(s - c) + d • 

-T,S 
e 1 

, . and 

(29) 

Transformation of the equations (29) into time domain by inverse 

transformation yields the following equations: 

e(t - T.) e 1 

d [~Cos d(t - Ti) + >l'JSin d(t - Ti)]} , and 



where 

11 = oia + di t 

'2 = cib, 

w1 = e.c + f. , 
1 1 

'112 = eid, 

t 3 = C.a + D. , 
1 . 1 

14 = Cib' 

w3 = Eic + Fi , and 

·(14· = E.d •· 
1 

a(t - T.) 
(t - Ti)+ e b 1 
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;(30) 



1 0 1 

2(a + c) -1 2c 

2 2 2 -2(a + c) d2 a + b + C 

2 
+ d + 4ac 

2 2 
2[a(c + d ) 

2 2 2 
-[a +b + C 0 

·- 2 2-
+ c(a + b )] 

-· 2 .. ] 
+ d +4ac 

2 . 2 
(a + b ) 0 -2[a(c2 + d2) 0 

2 2-
(c + d ) 

... 2 2 
+ c(a + b )] 

0 
2 2 (a + b) • 0 

(c2 + d2) 

0 1 0 

1 -2a 1 

-2c b2 -2a 

-d2 0 -b2 

0 0 0 

0 0 ·O 

I 
I 

I 

ai 0 

bi I I 0 

Ci 11 0\ 

I d · I r .a . +a . l. l. l. l. 

I I I 

I e · I r a. +a.a. l. Ol. l. 

f. 
l. aof:\ 

I 
(21) 

....... 
0 
\.0 



1 0 1 

2(a + c) 1 -2c 

2 2 2 
a +b +o -2(a + c) -d2 

2 
+ d +4ac 

2 2 
-2[a(c + d ) 

2 2 2 
a +b +o 0 

- 2 2 
+c(a+b)] 

2 . 
+ d +4ap 

2 2 (a + b ) • 2 2 -2[a(o +d ) 0 

(02 + d2) + o(a2 + 'b2)] 

0 ( 2 2) a + b • 0 
2 · 2 

(o + d) 

0 1 0 

-1 2a 1 

-2c b2 -2a 

d2 0 b2 

0 o. 0 

0 0 0 

I I 

I I 

A. 
1 

Bil I 

Ci I I 

0 

0 

0 

Di I t"01'l' i 

II 
Ei I l0 1a i+a.,~ 

Fi 11 ai 

(28) 

~ 

~ 

0 



APPENDIX B 

CALIBRATIONS AND LIST OF MAJOR INSTRUMENTATION 

Three Altec condenser microphones, Tektronic dual beam oscil

loscope, and C.E.C. oscillograph were used to measure and record the 

pressures. All the microphones were calibrated at the factory and 

the sensitivities are given by manufacturers as -54.5 DB (reference 

1 volt per dyne per centimeter) for the frequencies of 10 to 4000 

cycles per second. Conversion of these sensitivities into pressures 

gives 1.095 psf/volt. A.test was conducted by arranging all the 

three microphones at the test end of the plane wave tube as shown in 

Figure31 and measuring the responses for steady state pressures. 

It was found that there was a slight difference in the sensitivities. 

Table III shows the relative sensitivities at various frequencies. 

However, while recording in the oscillograph the sensitivities of all 

the three channels were 5}¢mpensated by adjusting the matching network 

so that all the response traces are to the same scale. They were not 

calibrated for the absolute sensitivities, since that was not 

necessary for this investigation. 

The ampli tud.e calibration was checked with the. internal square 

wave calibrator of the scope and found to be satisfactory. In short, 

the cali~rations of the recording instrumentation was satisfactory 

for the relative pressure respon~e measurements. 
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TABLE III 

RELATIVE SENSITIVITIES OF MICROPHONES 

Frequency Microphone Microphone Microphone 
cps #1 #2 #3 

20 0.50 0.51 0.50 

30 0.49 0.52 0.50 

40 0.54 0.58 0.57 

50 0.56 0.56 0.55 

60 0.45 0.48 0.47 

70 0.62 o.66 o.63 

80 0.38 0.40 0.39 

90 0.81 o.87 0.84 

100 0.34 0.37 0.36 

110 0.71 0.76 0.73 

120 0.37 0.40 0.40 

130 0.31 0.34 0.32 

140 0.62 0.65 o.66 

150 0.30 0.31 0.30 

160 0.75 0.80 0.77 

170 0.28 0.31 0.30 

180 0.35 0.36 0.36 

190 0.34 0.35 0.35 

200 0.24 0.25 0.24 
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List of Major Instrumentation 

Microphone System: Model 21BR150 condenser microphones; 165A bases; 

Model 526B power supply; manufacturer - Altec Lansing Corporation. 

Dual Beam Oscilloscope: Model 502; manufacturer - Tektronix; serial 

number - 022893. 

Low Frequency Function Generator: Model 202A; manufacturer -

Hewlett-Packard; serial number - 037-09559. 

Tone :Burst Generator: Type 1396-A; manufacturer - General Radio 

Company; serial number 354. 

Power Amplifier: Model MC75; manufacturer - McIntosh. 

Oscillograph: Model 5-124; manufacturer - Consolidated Electrodynamics 

. Corporation; serial number 6307. 



,,,ao1x c 

FLOW DIAGRAM or COMl'U'tft PIOCIWt ,oa THI NAXIMU USPONSI 

01 DOUBLE ACOUStlCAL USOHA'fOR 

· Read the initial and the 
final value, of tbe 
1y1tem par-..t•r•, 
and the excitation 

preuure 

Compute the coefficient, of 
the polynomial equation, 

( 3 ) in Appendix A, and 
solve for the complex root• 

Solve the coefficient, of 
the partial fraction, by 
solving the 1imultaneou1 
algebraic equation, (12), 
(13), (27) and (28) 

Solve for the responae pre11ure1 
in the time domain uoing the 
equationa (14) and (20) 
check and store the maxi.max 
pressures in the cavitie1 

Increment 
the time 

lncr••nt ..,._.,. the 
parameter 

Less than the 
period of 
excitation preaaur 

Print the syatem 
parameters and 

a maxi.max pressures 
period of excitation 
preeeure 
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