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NOMENCLATURE

a angle between wall and normal-tc-wave (Figure 10)
A(x,y,t) blurring term coefficient for x-direction

b angle between wall and normal-to-wave (Figure 10)
B(xyy,t) blurring term coefficient for y-direction

c speed of sound

Cl”ca = = ey Cn disturbance regions of a reflected wave

ng°Dpv defined on page 10

e fluid energy per unit volume

£ defined on page 55

£(z) arnalytic function defined on page 41

o defined on page 55

h diagonal of finite mesh

g finite mesh spacing in X-direction

hy ' finite mesh spacing in y=direction

H height of the wall

k mesh number in x=direction

K time parameters defined on page 59

constant defined on page 42

K; Ka time parameters defined on page 59

L mesh number in y=direction

L length of the wall

m coefficient of acocustic velocity variation with
altitude

viii



M Mach number
n time plane number
direction normal te a wall
P pressure perturbation defined on page 3k

D1 sPo3P59PLs oy defined on page 48

pigprgpnpgpnb defined on page 75
P pressure
point on a wall
AP defined on page 75
APO pressure rise across sonic boom shock wave at
ground level
G defined on page 57
r special coordinate defined on page 36
r(x,y) defined on page 3k
R a reference point
the radial distance of a point from the origin
of a disturbance circle
s special coordinate defined on page 36
S defined on page 10
S(t)QS(tO) defined on page 35
t time variable
At time interval between arrival of bow and tail
shock waves of a sonic boom
T°ATir defined on page 11
Tin defined on page 66
Koy cartesian coordinates
Xy 0¥y cartesian coordinates defined on page 44 (Figure 12)
X,Y,2 cartesian coordinates defined on page 11 (Figure 5)



Y defined on page 11

c
z a complex variable defined on page 41
u x=component of velocity

v y=ceomponent of velocity

v flight velocity

velocity perpendicular to a shock wave

W a complex variable defined on page 42
o blurring term defined on page 59
B blurring term defined on page 59

Mach angle or incident wave angle measured from
the horizontal

Y specific heat ratio
0 angle between the wall axis and the Y-axis (Figure 5)

variable angle (Figure 9)

ew wave angle (Figure 18k2
A defined on page 42

g defined in Appendix

P density

defined on page 41
p defined on page 42
T time increment
time at which pressure disturbance wave was emitted
@® general perturbation variable
& angle between the wall and the X,Y plane (Figure 5)
half-angle of a wall or corner (Figure 9)
% wave angle (Figure 19)

X finite difference net diagonal angle



¥ ray angle (Figure 9)
12837 defined in Appendix
W defined on page 42

blurring parameter

Superscripts

n time plane number

x x=direction

N y=direction

ot positive

- negative

Subscripts

0 in undisturbed atmosphere

1 behind incident shock wave

2 behind reflected shock wave

¢ at point ¢

d at point d, the origin of the disturbance ray

e at ground level

i incident wave

k x net point location

1 y net point location

P at point P on the wall

e reflected wave

t at the tropopause, or at the time a ray passed the
tropopause

v at the vertex of the shock cone

xi



CHAPTER I
INTRODUCTION

The prospect of commercial flight at supersonic speeds served for
the last decade as a stimulus to aeronautical research in the United
States and abroad. Several complex problems such as configurations,
propulsion, stability and control, and structures are involved in the
supersonic transport design., But at present the problem of sonic
booms, the shock waves that are generated by supersonic aircraft and
extended from the flight altitude to the ground, is of utmost im-
portance and 1s indeed the main obstacle to feasible operation of the
supersonic transport. In addition to complaints of the unpleasant
noise, several instances of structural damage have been recorded in
thé past decade.

To investigate the people's reaction and the property damage
caused by sonic booms, the Federal Aviation Agency conducted a sixX~
month series of tests from February 3 to July 30, 1964, in which
Air Force jets simulating future S8Ts carried out supersonic flights
over Oklahoma City eight times a day in various atmospheric and flight
conditions. Of the total 12,558 complaints received, 8,335 alleged
damage tb property.

In view of the proposed SST program, and thes conclusions that
were drawn from the sonic boom tests conducted in Oklahoma City,

analytical methods are needed to predict the structural response and



damage to an arbitrary structure when it is subjected to typical sonic
boom type inputs. The pressure wave, striking the ground when a super-
sonic aircraft passes, is the result of a conical pressure field pulled
along by the aircraft. 8Shock waves, which are popularly known as sonic
booms, extend outward and backward from the nose and tail regions of
the plane as shown in Figure 1. Between the two shocks, the expansion
around the convex body produces a gradual pressure drop. The general
shape of the pressure profile on a region of a flat, open ground is
ghown in Figure 2. The resulting N-wave is not, however, the pressure
history felt by a wall., The wall receives the N.wave plus a wave
reflected from the ground and from any other nearby surfaces. . The
displacement in time of these two waves is ATiro The resulting change
in wave shape should have a significant effect on those parts of the
structure having certain natural frequencies. A few possibilities are
shown in Figure 3. In case (a) the overpressure would be doubled,

and in cases (b), and (c), four nearly equally spaced pulses would
cause a vibration of large amplitude in structural members having a
natural frequency near that of pulses.

Not much theoretical work has been done in the area of wave/
structure interaction in the past. Zumwalt (1) pointed out the im-
portance of time intervals between the bow and tail shock waves, in
causing structural damage. Lowery (1) identified the various vi-
brational modes of both structural panels and cavities which are likely
to be excited for sonic boom wave inputs. Recently, a few investi-
gators, Simpson (2), Whitehouse (3), and Reddy (4), have developed
analytical methods to estimate the response of cavities and panels

for sonic boom type inputs. These investigations can be applied to
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(a) Wall Position Near the Ground: AT, = 0

T
- ATir —

(b) Intermediate Wall Height Position: AT, . = At/2

(¢) Very High Wall Position: ATir =2 At

Figure 3. A Few Incident and Ground Reflected Sonic Boom Waves



predict the structural response of a structure for a given pressure=

time history on the structure due to the passage of a sonic boom wave.

For evaluation of the structural response due to the passage of the

sonic boom, it is necessary to predict the pressure-time history on

the structure including the effecty, of the diffractions and reflections

caused by the corners of the structure on the original sonic boom wave.

The present investigation can be divided into three phases:
Three methods, ranging from a simple, highly idealized model

to a rather realistic, but complex, analysis, were developed to
estimate the time-of-arrival of an incident wave and its re-
flection on a structure. The applicability and the validity

of the three methods were investigated for several flight
altitude and Mach number ranges. In this, only plane walls
facing the aircraft were considered, so that wave diffractions
and reflections by walls were eliminated.

Two-dimensional analytical and numerical solutions using a super-
position and mesh-field computation with Rusanov's (5) blurring
techniques, respectively, were developed to predict the effects
of diffraction and reflection of sonic boom waves by corners and
walls.

The analyses developed in phases 1 and 2, were applied to a
particular problem: The window, on the north wall and under a
roof canopy of the Kinney Shoe Store, which was broken during

a sonic boom test in Oklahoma City.

IBM 1620 and IBM 7040 computers were used to perform the compu-

tations.

The techniques developed here make possible the prediction of



the pressure-time history on wall due to sonic booms when the wave
reflections and diffractions by the walls are essentially two-
dimensional. The numerical method is directly extendable to permit

three-dimensional solutions with no geometric limitations.



CHAPTER IT
LITERATURE REVIEW

Literature reviewed for this investigation may be divided into
three categories. The first category is the literature in which the
general equations were developed to predict the time history of a
sonic boom bow wave., The second category is the literature in which
analytical methods were developed for the problem of diffraction and
reflection of weak shock waves by corners of structures. The third
category is the literature in which numerical solutions were sought
for problems associated with shock wave phenomensa.,

Randall (6) derived the equations of the ballistic wave and its
ray-lines in an inhomogenous atmosphere assuming thé speed of sound
decreases linearly with altitude up to the tropopause. He justified
the assumption of the linear speed of sound variation in view of its
close approximation to the I. C. A. O. Standard atmosphere. Lansing
applied Randall's work to the problem of determining the location of

the shock wave produced by a maneuvering aircraft.

(7

Tyler and Walker (8, 9, 10) conducted a thorough literature survey

of the analytical methods of shock diffracfion and reflection problems.

Busemann (11) conceived the general idea of the conical flow field,
that is, a flow in which all fluid properties are uniform on rays

through a common vertex. DBusemann pointed out the frequent existence

of conical fields in supersonic flow.. In conical fieldsy, the governing



equations for the velocity components or pressure distribution can be
reduced to a Laplace equation of two independent variables. The pro-
pagation of plane discontinuities was investigated by Luneberg (12)

in electromagnetic theory and by Keller (13) in acoustics. In both
these investigations, it was found that the discontinuity surface
satisfied a first order differential equation, the "elconal equation
in a homogenocus mediay and that the magnitude of the discontinuity
varied in a simple manner as the surface moved. Keller and Blank (14)
obtained solutions, for the problems of diffraction and reflection of
pulses by wedges and corners, as explicit closed expressions in terms
of elementary functions., They accomplished this work, utilizing the
investigafions of Luneberg and Keller to convert the initial-boundary
value problem into a characteristic-boundsry value problem in xXyt-space
and applying Busemann's conical flow concept.

Von Neumann (15) conducted extensive research in both analytical
and experimental investigations of oblique~shock reflection. He de-
veloped a mathematical analysis to evaluate the upper limits of
Uregular reflection as a functicn of shock strength and discussed the
physical phenomena of "Mach" reflection. Ting (16) studied the problem
of a weak shock hitting a two-dimensional rectangular barrier. The
solutions were sought to satisfy all boundary conditions at suitably
divided time intervals for two structuresy, a very thin barrier, and
a rectangular barrier of finite width. A few reflected wave patterns
were shown for the two structures mentioned above., Whitham (17) pre-
sented a method for treating the propagation and ultimate decay of the
shocks by éxplosions and by bodies in supersonic flight., Ting (18), as

an extension to his earlier work (16), solved the problem of the



diffraction of a two-dimensional disturbance by a convex right angle
corner by a method which permits final results to be obtained con-
veniently. The analysis was applied to the two-dimensional unsteady
flow field associated with the diffraction of a weak shock by a
rectangular barrier and also to the equivalent three dimensional
steady supersonic flow field“produced by the interference of wings
and prismatic bodies of rectangular cross section. Filippov (19)
considered the problem of a diffraction of a plane weak shock wave
at contours of arbitrary shapes. Filippov treated the plane un-
steady problem of diffraction as an auxiliary three-dimensional steady
problem, where the third ccordinate is proporticnal to the time. The
problems were linearized in the whole region of the diffraction field
and this assumption was justified since it fails to be valid in only
small regions of the diffracted flow field and for very short durations.
The literature review of the numerical methods for shock wave
problems would constitute a text book by itself., For this reason,
literature of these methods is omitted here. The interested reader
may refer to the works of Tyler and Walker (8, 9, 10) who presented
a detailed discussion of the numerical methods. Howevery a brief
discussion is given in Chapter V, while deriving finite difference

equations.



CHAPTER III
COMPUTATION OF SONIC BOOM WAVE ARRIVAL TIMES ON A WALL

The purpose of this section is to develop a method for estimating
the time of arrival of incident and reflected sonic boom waves at any
point on & building wall facing the flight track. To determine the
time of arrival between bow and tail waves and their reflections, the
geometric relations between wall and wave must be known for a given
aircraft altitude, direction, and speed. Three methods, ranging from
highly idealized to rather realistic analyses, were attempted. The
assumptions made here were (a) that no wind effects are present, and
(b) that the somic booms are produced by an aircraft in steady, level
flight.

The coordipate axis system for an arbitrarily oriented plane wall
is shown in Figure 4 and the model of a conical wave intersecting the
wall is shown in Figure 5. Special notation which is used in this
Chapter is as follows:

D‘v horizontal distance between the vertex of the sonic boom and
g its ground intersection point, g.

D v horizontal distance between a wall point, P, and the vertex of
p the sonic boom wave, at the instant P is intersected by the
incident wave.

m coefficient of acoustic velocity variation with altitudeo

S projected distance of the wave from the flight path in the Y2
plane (see Figure 5).

10
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T time for a wave to pass a point after the aircraft passes the
coordinate origin (subscripts indicate incident or reflected
wave; second subscript indicates the point).

ATir time interval between the arrival of the incident and reflected
waves at a point, P, on a wall.

X coordinate axis,; horizontal and along the flight track on the

ground.
Y coordinate axis, horizontal and perpendicular to the flight

track on ‘the ‘ground.

Y distance along the Y-axis to the nearest corner point, ¢, of
the wall on the ground.

Z coordinate axis, vertical.
B Mach angle or incident wave angle measured from the horizontal.
0 angle between the wall and the Y-axis, medsured clockwise from

the Y-axis in the horizontal plane.

T time at which a pressure disturbance wave was emitted.

® angle between the wall and the horizontal (XY) plane.
Method I

An approximate method was developed to predict the arrival times:
of incident and reflected sonic boom waves on a plane wall., The
simplifying assumption made here was that the spe;d of sound of the
conical wave is constant and equal to that at ground level. The wave
then can be considered to be conical if the aircraft is in steady,
level flight.

The bow and tail waves are assumed to have been produced by an
aircraft in steady, level flight at altitude Zv’ flying with a velocity
V parallel to the X-axis (see Figure 5). The horizontal distance of
the effective vertex of the cone from a fixed origin "O", at the time

the wave passes a given location on the wall, can be estimated. This



1k

distance is designated as Xvo For a known geometry and forward speed
of the aircraft, the arrival time of an incident wave on a plane wall

can then be computed from the geometric relations shown in Figure 5:

XV
4 (3-1)
. V 9
*p
X :(kp + Dpv>, (3-2)
X = (T -T) ten o+ [2E (3-3)
p  p ¢ n “p \cos © * -
J%i ¥ (szzp)a
DpV = tan B o (B“L")
The above four equations can be combined to give the time the
incident wave reaches P:
3 2
N Y 4+ (% =Z )
1 [cot &) ’J D vV p
T, = vv(Ymec) tan 6 + Zp Tos 9> + T ¢ (3=5)

b

where the time Ti is referenced to the passing of the aircraft over
»
the origin, O.
The time interval between the incident and reflected waves passing

P is twice the time interval from P to the ground directly beneath:

AT, =2 (7. =T, ) 3 (3=6)
1r 1 1
1Y g P
where T = iQ(X +D ) (3=7)
ig vV ''p gv' ?

T o+ 2z
D = mngn-nagg o ' (3=8)

gv tan

Equations (3=1), (3=2), (3=4), (3-6), (3=7); and (3-8) are combined
and simplified:

2
ATirp = (ng - Dpv) N (3-9)



2 . / 2
ATirp = g cot B {YYZ + ZZ - NYZ + (ZV - Zp)j . (3=10)

The time of arrival of the incident wave, Ti y and the time

Y
interval between incident and reflected waves, ATir s @t any point P

is thus given in terms of the location of the pointpand the velocity
and altitude of the aircraft, Ti and ATir values for a large number
of points, Py, on a wall give a clgar picturg of the time=history of
the incident and reflected waves for a wall which is struck by an
undisturbed wave, This does not, of coursey; apply to a wall which
would be in the “shadow',

ATir plays an important role in the structural response. From
Equation 1?3@10)g it can be seen that this time interval increases with

height of the wall point above ground level and decreases as the offset

distance from the flight track increases.
Method II

A more exact method, based on the ballistic wave analysis of
references (6) and (7), was developed. In this, the speed of sound
was assumed to decrease linearly with altitude up to the tropopause
(assumed as 36,000 feet), and to be comstant at 972 ft/sec above the
tropopause,

c=c¢_ =mZ ., (3=11)
g
For Cy = 1116 ft/sec and m = 0,004 ft/sec-ft, the speed of sound is

« found to be very near that of the standard atmosphere (see Figure 6).

Flight Altitudes Below the Tropopause

The shape of the wave fromts produced by a point disturbance was
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obtained by finding the system of surfaces which are orthogonal to rays
from that point. By following that disturbance as it propagates from
a point along a given ray, it is possible to relate the shape of the
wave fronts to the growth of these fronts. 1In an atmosphere in which
the sonic speed decreases linearly with altitude, the disturbance front

coordinates (X,Y,Z) are given by:

2

x=-x)* + (v-1)° + [2-2 + f% (cosh mt-1)] = F—%) sink® mt.
(3-12)

The coordinates are as shown in Figure 5; except that, for a non-
constant-temperature atmosphere, the ray and wave lines are not
straight. In Equation (3-12), t is the time since the disturbance
was initiated. For a fixed coordinate system as shown in Figure 5,
the disturbance origin, point d, becomes & functiom of time. Then at
time t, the position of the wave front (X,Y,Z) emitted by the aircraft
at an earlier time T is given by:

C

4 3
+ - Lcosh m(t»T)»lJ) =

. |
C
. ..%) sinh m(t=t), (3<13)

(X=X d)a + (Y=Y d)a + (z.az

where c4 = cg - mZd, and Xd, Y

The envelope of this system of wave fronts is obtained by elimi-

q° and Zd are functions of 7T,

nating T between Equation (3-13) and its partial derivative with

respect to T. This differentiation gives

C

. o _ d r
- 2 (X»Xd) id -2 (Yqu) Yd =.2 (zazd + o [cosh m(t-T)~1]

Zd+Zd [cosh m(t-T)=1] + ¢

4 sinh m(t:T% =

[
-2 -% sinh m(t-1) [c, cosh m(t-t) + &, simh m(t-7)] . (3-14)
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For steady, level flight:

¥4

i

0 (by coordinate system), Zd = constant = ng

O'u (3“‘15)

Cq = Cyv Xd = Ve ¥, = 04 2

a a a”

Equations (3-14) and (3-15) are combined and simplified to give

[#]
(X=X ,) = '1\171' (zmzv - "‘x"ff) sinh m(t=T). (3-16)

Equations (3~13), (3-15), and (3-16) are combined and simplified:

1 Cv 2 s 2c c
= @mz - u-q cosh m(t=T) + —m FQZ = “XJ cosh m(t=T)
M v o om m v m
c_ R G2
+Y«?+(@Z w_,_\z,) 1.1 . V) =0 . (3-17)
v m W m

The roots of equation (3=17) are contained in

Mc
cosh m{t=T) = M - - mv + V/P= i?
=
v.oom

MC 2 c 2
{ml - (z=z==-‘£) - P
m v m
(3=18)

values, the (+) sign applies before the inner

For positive Z and Zd

bracket in Bquation (3-18).
For given values of Y = ng Z = ZP,,.ZV9 and M values, (t=T) can be
calculated by Equation (3~18). The time of arrival of an incident

wave is then given by:

1

Ti ] vﬂ(Xp + DpV)
p
(X =X.)
_ 1 cot & p T d
= v»(YmeC2 tan 9 + Zp ——a| + (th)p - <7 o (3=19)

For this linearly-varying-speed=of=sound atmosphere, the time

. . .
interval between incident and reflected waves is
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2
pr, = V’(ng =)
P
2 .
= ([(t=T) Vo (X=X )] = [{ter) ¥ o(X X . -2
7 L( 'r)p ( . d)] L¢ f)g ( . dg)] (3=20)

The (xgmxdg) term can be obtained from Equation (3~16): one can solve
Bquation (3=18) for (t=T) with Y=Y =Y and Z =2 = O.
g g p g
As in the first method, values of Ti and ATir can thus be
I

computed from geometric relations and flight and atmospheric ine

formation.,

Flight Altitudes Above the Tropopause

An explicit solution is not possible for a given offset distance
from the flight track. A method will be proposéd, however, which will
permit the computation of local positions and arrival times of the
wave,

For Zv =32 =z Ztg where Zt is the alfitude of the tropopause, the
speed of sound is assumed to be constant. The disturbance envelope at

time t for a point disturbance emitted by the aircraft at T is a cone:
. N 2 2 2 2
= < e = b=T ° ol
(X Xd) + (¥ Yd) + (2 Zd) 4 (t=T) (3=21)

Differentiation of Equation (3-21) with respect to Z, and recognition

of the identies for steady, level flight,

a d v 74 v d d d d
gives
¢ (t=T)
(X=X ) = —os o (3-22)
Bauations (3=21) and (3=22) are combined and the result is
¥ o+ (22 F = & (=1 1 -3 (3-23)
v v N
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Differentiation of Bquation (3-23) with respect to Z, and recognition
of the orthogonal property between any ray and the disturbance

envelope, gives

oY

3% ray = constant = (3=2k)

Y
L=t °

v
When the tropopause conditioms, Y = Ytq and 2 = Ztg are substituted

into Bquations (3-23) and (3-24), the resulting expressions are

th + (ztmzv)2 = ci, (tt.;r)a (\.m «]? 0 (3=25)
I
and '
Y
Y t
- = 7 o ' (3‘“26)
JZ lray Ztc v ‘

For Zt 2 7% 2 0, the cone is Ywarped" by the temperature gradients
and no exact analysis is available. For local wave positions and
arrival times, however, it is sufficient to consider only the ray
which reaches the given point. If the ray at the tropopause plane is
considered to be a point disturbance; the previously developed equations
will describe its path. Then the location of the wave can be found as
a function of time, working point=by-point with a ray tracing procedure.

The equation for the disturbance envelope at time t of a point

disturbance emitted at time tt at the tropopause plane is

Mc EJ Mc |\ c, . 2
Cosh M(tmt,) = M = t + E‘_: %[ t - (Z“=Z - RE)] = (YuYt) ©
t ¢ m W ( m ’ t nm

-2~ 2] (3-27)

Bquation (3-27) can be solved as before, except that now the
value of Yt is not known. An iterative method must be used:
1. A value is assumed for Yto

oY .
2, tt and 5%\ ray at the tropopause are calculated by Equations (3-25)
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and (3.26),

The slope is assumed to be constant for a selected Z interval:

.
Y, = % B2 (3-28)
7 =2, =05, (3-29)

(t=tt) is calculated from Equation (3-27) by the techniques
explained earlier, The new=wave slopes are-calculated as follows:
From Equation (3-17), %%=can be evaluated for the disturbance
envelope which is everywhere perpendicular to the rays. PFor a

point disturbance at the point (xt,Y Z_), Equation (3-17) is

t‘ﬂ
differentiated with respect to Z, after replacing Y with YaYt,

and the resulting expression is

C
2 ty .2 . oY
= @mztm “;ﬂ sintf m(tet,) + 2(Y=Y,) Spl i
I\ .
envel.
Ct °t
+-2(zzztg(ﬂﬁ) +2 == cosh m(tet,) = 0 . (3=30)

Since the disturbance and the ray are orthogonal,

3Y| .1
dist. Shlray ~ 7 7 °
envel.

oY

Y2 (3-31)

Equations (3-30) and (3=31) are simplified, and the result is

R .
%%sray = (Yth) [?gztg :%3 F + Slnhﬁam(tmtt)} +xi%Acosh m(t=ttﬂ '

(3-32)
Steps 3 and L4 are repeated until the desired Z value is obtained.
If the computed Y does not‘give the desired location Yp’ a new Yt
is selected and the procedure is repeated till the desired value

is obtained.

When the desired Y location is obtained to sufficient accuracy,
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the T, value is computed by Equation (3=19) with the new

intervals:

(61) = (5pem) o+ (o) (3-33)
and

(xpmxd) = (xpmxt) + (X=Xy) (3=34)

For the proper ¥, value, Equations (3=33) and (3-34) can be

solved from Equations (3-25), (3=27), (3-16), and the relation,
c
%
(Xtﬂxd) = ua’(ttmT)p o (3=35)

For the g location, steps 1 through 5 must be performed again,
with all p subscripts replaced by g. ng can now be found with

(taT)g and (Xan g) as was done for p in step 6.

d

ATir is computed with Equation (3=9).

1Y
With an IBM 1620 computer and 500 feet intervals for Z, about 70

seconds was reguired for each complete iteration for a 50,000 foot

altitude.

This method is considered to be the most accurate prediction

method available without specific meteorological information along

the wave path for each flight,

Method III

A third method was developed which attempted to reduce the come

puter time of Method II without sacrificing too much accuracy. The

ay

simplifying assumption added was that == of the ray was constant at

dé

the value of the flight altitude, while the linear variation of speed

of sound with altitude below the tropopause was retained. The time .of

arrival of an incident wave is then given by:



b
1. 1 ds

S is the projected distance of the wave from the flight path in the YZ

plane (see Figure 5), and

as = \/(dYE +af) =-azv1+ (ﬂ)e . (3-37)

dz

Flight Altitudes Below the Tropopause

The assumptions and geometry give the following:

J B A’
v -]
dS = = dZ /1 + e . (3-38)

and

1

_ c
J/f 1) V(P -)

From Bquations (3=3), (3-=36), (3-37), and (3-38), the time interval

tan B =

o

from aircraft passage over the origing O, until wave arrival at point

P can be calculated:

7T \2 vaa .
) --i[x + 1+ [l J = dc]
i Vip 3 =7 ‘ mc

P v ¢

2
Y

1 cot By, 1 P

T {(YP:JYC) tan 6 + ZP (COS ﬂ+ =Lt (Z wz)

3
4

i

=)
V =c V%zméi + V 1n

c
_ —el W2 (3=39)
p vV + Vvﬂmd; Cv i
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. T %
T =& [(Y <Y ) tan 6 + 7 (SO é{] i ha R
lg v p ¢ p \cos

i +1Veac2 o]
JP e - UQE;Ci +V in = £ .
& ‘ v +/V2mcz v

Equations (3=39), (3=6), and (3-40), permit T, and ATir to be
Y b

(3=540)

computed.

Flight Altitudes Above the Tropopause

The assumption of constant ig eliminates the iterative solution

which was required in Method II. The time of arrival of an incident

wave be expressed as

S
1 p dS 1 t p 48
Tip“Tf”[XpJ’f tanﬁ]“\'f’:x +I LaI-I -r tanBJ ° (3-1)
0

In view of the assumptions,

¢ = constant in the region Z_ 27z= Zt 9

Y, Y
- SRR
T = constant s g
t v P v

the integral terms in equation (3-%1) become

S
t Z =7 Y
as v t . 3 t
g tan B cv' VVQWCV N1 ZtaZv v ; (3-h2)

and

‘ - 5
D / vV + szac c
i? 2 l 1 + Ay nc Veac? + V 1ln - V-EE o

ta E
£ P %y Y vV + ngm

i

é

ne—

(3=43)
Equations (3=4l}9 (3=42), and (3-43) are combined and the resulting

expressions for Ti and Ti are:
b g
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b4 2 7 =2
T . [cot @) J_A/ D v 't
Ti = g {E&PNYC) tan 8 + dp &;ﬁ??{] + v:&l + i -
Y P Vv v
VR o c? Vﬁaﬁ_ v V o+ VR=c® ¢
VVB@C?T + - D e o + ?Ilﬂ 1n  [e== v ?,2. $ (3=]+l+)
V + /V=C v
P
and -
Y @7 =7
1 ) . [cot @ﬂ 1,/ P v Ot z
Tl = w\? EYPSY > tan g + Lp (m + eV_= l + -Z-w =Cv
g P v
o (3=45)

From Equations (3-44), (3-6), and (3=45>°'Ti and ATir can.be computed.
b ®
Method I1I is much more straight forward for computation than
Method IIL, but the assumption of constant ray angle places its accuracy

in doubt. - Therefore, a nymber of typical cases were computed by the

three methods to provide a comparison of the results.
Computed Results by the Three Methods and Observations

In order to compare the three methods, computations were performed
for a vertical wall location of 100 feet above ground level. The
ground level was assumed to be at sea level, and flight altitudes of
70,000, 36,000, and 20,000 feet were used. For flight Mach numbers of
1.5, 2.0, and 3.0 and offset distamnces, Yp@ frem O to 70,000 feet, the
three methods gave values of incident wave arrival time, Ti g and time
interval betwgen incident and reflected waves, ATir . The Eesults are
plotted in Figures 7 and 8. ?

For small offset distances, the three methods give almost identi- .

cal results. The differences are greatest at low Mach numbers and



large YD values., Method I, the conical wave analysis, gives the
poorest accuracy, if it is assumed that Method II is the most exact of
the three. Method II1I, which is comsiderably easier to calculate,
appears to be nearly equivalent to Method II, and is the ome rec-
commended for use.

The computation methods developed in this Chapter provide a
means of establishing geometric relationships between an incident
sonic boom bow wave and its ground reflection and a plane wall. This
knowledge can be used as the starting point for further computations

of the whole sonic boom wave pattern as it proceeds around, over, or

past a complete structure.
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CHAPTER IV

DIFFRACTION AND REFLECTION OF SONIC BOOM

WAVES - ANALYTICAL METHOD

The preceding chapter presented three methods for predicting the
wave histories of walls which were hit directly by 2 sonic boom wave,
For walls which are in the VYshadow"” or which receive the reflected
effects of nearby walls or cormers, a further déveloPment is required.
4s an example, the broken window in the Kinney Shoe Store, whose
solution is presented in Chapiter VI, was both in the shadow region and
beneath an overhanging canopy. In the time intervsl between bow and
tail shock waves, there was sufficient time for about twenty wave
reflections between the ground and the overhanging rocf., It is
obviously hopeless to attempt to predict the pressure history on the
window without reliance om a computer programmed analysis to include
both wave input and proper boundary conditions. In this section, an
analytical solution for diffraction and reflection of weak pulises or
weak shocks, developed by Keller and Blank (1k), is described. This
solution is then extended to a sonic boom problem by making use of
weak shock refiection prianciples.

Sonic booms may be considered to acﬁ as acoustic waves, or plane
weak pulses, since they ars weak shock waves. In Reference 14, the
diffracticn and reflection of an incident plane pulse by wedges and

corners were treated and explicit, closed=form expressions were



obtained in terms of elementary functions. For this geometry the
sclution is "conical® and independent of "radial" distance in the xyt
space, This allows separation into appropriate ccordinates, as is
done in Busemann's conical flow method which is widely used in super-
sonic aercdynamics. The propagation of plane discontimmities was
investigated by Luneberg (12) in electromagnetic theory, and by Keller
(13) in acoustics. It was found in both cases that the discontinuity
surface satisfies a first order differential equation, the eicomnal
equation, in a homogenocus media, and that the magnitude of the dis-
coutimuity varies in a simple manner. Making use of these resulis,
Blank and Keller (14) converted the initial-boundary value problem
into a characteristic=boundary value problem in xyt space znd then
used the comical flow method to obtain the solution. A similar pro-
cedure will be followed here.

A solution is scught to the acoustic wave equation in the two-

dimensional geometry of Figure 9: (subscripts represent differentiation)

1

Pex * Pyy Ce Py for ¢ £ 6 s 2m (4=1)
where -
P-B
PEPE"
8 = arctan y/x .

By definition, the half-plane at 0 = * ¢ form either a wedge or a
corner, depending oun whether ¢ is less or greater than 9000

The solution to be comsidered will have jump discontinuities on
a certain moving surface representing a shock wave, say r(x,y) = ct.
It is required that r should satisfy the eiconal eguation:

™ o+ =), (h=2)
X y



Figure 9. Incident Wave on a Wedge
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This implies that the surface can be counstructed by Huygen's principle,
i.e., that it moves with velocity ¢ along its normal, amnd that it is
reflected from the wall in accordance to the simple reflection law. A
further assumption is that the reflected discontinuity value is twice
the incident discontinuity value for a rigid wall. The orthogonal
trajectories of a family of discontinuity surfaces S(t) are straight
lines called "rays". -The set of rays through a small closed curve on
a discontinuity surface is called a "tube". The areas of the tubes

at S(to) and at 8(t), are denoted by dSO and dS respectively. Also,
the pressure discontinuities at S(to) and S(t) are denoted as p, and

p respectively. Theun, for plane geometry, the magnitudes of the

discontinuities must vary inversely as /dS :

i P
1im Qfm)a 2 (4-3)
ase0 35, P

Equation (4=3) permits p to be computed from p, on the same ray, once
the geometry of the discontinuity surfaces are known.

In Figure 9, the ray direction is normal to the discontinuity
plané and is positive im the direction of motion. The angle between
the ray direction and the x axis is §, and it is always positive. It
follows from Bquation (4=2) that a plane discontinuity surface moves
parallel to itself with velocity ¢ along its normal and from Equation
(b=3) that a pressure jump, p = 1, across the wave does not change.
This situation pontinues until the wave front reaches the wedge. Then
reflected and diffracted discontinuity surfaces may originate. These
surfaces can be obtained from the configuration at the instant of
contact. Then the incident plane progresses te itself, and one

(for ¥ 2 2) or two (for § < @) reflected plane discontinuity surfaces,
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plus a cylindrical surface with the wedge as its axis, are produced as
shown in Figures 10a and 10b,

The pressure jump across the origiral plane is unchanged and the
jump across the reflected wave is equal to that of the incident wave,
meking p = 2. The pressure jump across the cylindrical wave is zero,
however, since all rays reaching it come from the axis where dSO
vanishes, Thus, p is not discontinucus across the cylinder. The
value of p everywhere outside the cylinder is known (either 0y 1, or 2).
Since %i’ﬁ 0 on the wedge and p is continucus across the circular arc,
the values on the boundary are known. From these values it is
possible to determine the p values within the cylinder.

The wave patterns are self-similar with respect to time, and so
can be representedain‘g%’and %’?coordinates9 as in Figures lla and 1ib,
Solutions are to be sought inside the circle along radial lines from
the origin, A set of special coordinates in xzyt space will be used
for this solution, which follows the method of Keller and Blank (14).

The coordinates are

[EE . (2 PIF

AR

ct
s = %n’g (4ot}
& = arctan y/x .

The boundary of the circle is given by r = 0 and s = «, Then Equation
(4=1) becomes

=0 . (4=5)

(PFp )+ L= Fip I+ Pgag

1= &

In accordance with the assumption of similarity, p = pls,0), Equation

(4~5) becomes

(1 - SEJPSJS + : i Pgg = 0 © (4=6)

%o
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Incident
Wave

Reflected
Wave

(a) ¥ 23 (One Reflected Wave)

Figure 10. Diagram of a Plane Wave Intersectihg a Wedge



(b)

¥ < & (Two Reflected Waves)

Figure 10. (continued)
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Figure 11,
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Complex Plane Wedge/Shock Representation
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If p is defined as

i
SN

then Bquation (4-6) reduces to a Laplace eguation:

P %-5 (p %%) +§g§ . (4-8)

The solution to Equation (4-8) may be written in the form

p=Im £(z) , (4=9)

where f(z) is an analytic function of the complex variable, z = pel‘e o

.
Lettering R = (& + ya>ﬁ , and combining Equations (4-4) and (4-7),

gives
ie _ x + iy

—r
ct + (cB42 - BB)”°

(4=10)

and

o = R . (4-11)

ct + (cBt® - Ra)’/E

The cone R £ ¢t is thus mapped into the unit circle p £ 1. The
problem has been reduced to that of finding the function which is
analytic in an appropriate sector of the unit circle with the pre-=
scribed imaginary part of the boundary.

The values of p on the boundary of the circle in Figure 10a, for

y 2% , are

p=0Oonp=1l, 22£6=<%+a,
p=lonp=1l, $+a<@s21-2% Db,

(4=12)
p=2onp=1l, 2M=9% b <0 22179, '

.%% =0on0sp<l, 9=2Cand =228,

For Figure 10b, where ¥ < @, the boundary values are
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pxa.onpxlv @s9§<§+a9
p=lonp=1, ®+a<6<€2n-2% Db,
(4=13)
p=Zonp=l, 2M= % = b <0 £ 207 = &
%%)z Oonospsl, 6= &and 6=2m-29¢,

In order to solve for p, the exterior wedge will be mapped from

the z plane ontc the upper half of the w plane by the transformation

W = pleiw = (eaiéz)h . (b1h)
where

R .
201~ 87
If the value for z is substituted in Bquation (4=14), the resulting
relations are

pp=p yw=Me-®) =A(6-m) +T . (4=15)

The circular sector in which p is te be determined becomes a semi-
circle in the w plane with %%': O on the diameter (into which the sides
of the wedge transform). By the reflection principle éne may extend
p into the whole plane, and obtain a boundary value problem in the unit
circle as shown in Figure 11.

The next step is the determination o¢f a harmonic function p with
piecewise constant boundary values. The solution of the problem may
be obtained as the sum of the solutions, each of which takes on a
specifled constant value on the arc of the circle and is zerc on all
other arcs., If wp > W with wp - &3 < 27 and p is a constant, K, on
the arc Wy 2 w =2 @ and p = Oy then p can be shown in take the form

{Reference 14)

p:% [arg (%}%%%%%% mﬁg...%_&] . (4-16)
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and in terms of real variables it becomes

. 2 (B )y
ke (1-}) sin[252)
= ;farctan s T e . (5-17)
(1+P1)COSG§%?@% = 2plcos(ww nm?fiﬁ

The arctangent is taken im the interval between O and 7., The solutions
may then be written explicitly as follows:

Case 1, € ¢ < g’” ¢

A
p=1 - L arctan =(1-p" ") cos A(¥-m) J
m (l+pzk)sin A f=11) = Zszin A(8-11)
(4-18)
+ & arctan -1 K)COS ACy+m)
i (1+pak)sin A(y+) = 2pksin A(BetT)
Case 24 0 £ ¢ 5 @
1 (1= Mcos A(y-m)
p = 1 + = arctan [ T =0 ..2c08 wf;
" (1+6% “Ysin A(y-m) - 2p"sin A(8-m)
(4=19)

2 A
+ = arctan [ akg(lmp Jcos k(¢f§) ] .
bL(1+g" M sin A(§+m) ~ 2p7sin A(0-T)

Application to a Sonic Boom Wave Incident on a Building

Using Equations (4-18) or (4-19), one can compute the pressure
distribution in a circular arc of radius ct surrounding a corner of a
structure struck by 2 sonic boom wave., The c¢ircle defines the region
in which the wave is diffracted and reflected due to the presence of
the cerner,

Let: t = time elapsed since the wave hit the corner of the structure,

H = height of the structure.
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Then, if ct > H, the circular sector has reached the ground and has
been reflected; the previous formulae cannot be applied directly.
Sonic boom waves are always associated with incident bow and tail
waves with an expansion region in between them (the Y"N" wave). In
addition; both bow and taill waves have ground-reflected waves. The
pressure distribution of a sonic boom can be computed aswthe algebraic
sum of the pressure distributions of each of these elements: bow wave
(incident and reflected), expansion wave region; and tajil wave
(incident and reflected)., A few multiple reflected disturbance
regions of a sonic boom wave past a righﬂ angled corner are shown in
Figure 12, For this casey, § = 0 and ¢ = %»0 So Equation (4=19) may
be used to compute the pressure distribution of a diffracted incident
wave at point (Xl”yl) in the neighborhood of the corner. Pressure
distributioen at any time is a function of the height of the point
above ground level and the geometry of the reflected disturbance
regions.

In the interval O € ct ng (Figure 12a), plxsy;) = O, 1,

or 2; the value depends on the wave location at the time,

In the interval JEE? + ylg < ct s /klz + (ZHmyl)zg (Figure 12b),

p{xlgyl) can be computed from the equation for disturbance C onlyo'

1

Thus, Pys the pressure disturbance at p due te 019 is computed by

means of
= arctan ( - - 2 2 = .
© = arctan (¥ xl) &, and R ,/Xl + V. 5P =Py
In the interval JX]? +-(2Hwyl)2 < ¢t € 2H + 4;;5‘;‘5;5 .

(Figure 12¢), pix ) can be computed by treating the point as

1°71

affected by Cl and its ground reflected disturbance 029 where C2

is treated as a mirror image of Cl;
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() Phase I: O < ct s«/xla +y°

Ground Level

v

(b) Phase II: ’\/xl2 + yla < ct < ’\/xla + (2H - yl)2

Figure 12. “Wave Reflection by a building
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Ground Level

(¢) Phase III: Vxle + (2H - yl)2 < ¢t < 2H +ngla + yla-

Figure 12, (continued)
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Figure 12.
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{continued)
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pZ(Xlgyl) = pl(xlg 2H=yl)o
pab(xlgyl) is the pressure at the boundary of the region C,,
which may be calculated as the boundary pressure of Cl with
f = arctan [(EHuyl)/Xl] -8,
Then:
PG ayy) = 2y (3 ayy) + Rp(xp7y) = iy (kg

where

for Pys R = /§7?7:3§? and © = arctan (yl Xl) - &,

1
for Pso R = x® + (ZHmyl)9 and 9 = arctan [(zﬂayl)/kl] -8,

for py, R = ct ang 6 = arctan [(2H=y1)/k1] -8,

In the interval ¢x1? + y12 + 2H < ¢t € 2H + JXIZ + (20 - ylé) 0

(Figure 124), p(x ) is affected by the regions of C C,, and C

19y1 lu 3°

An exact method would be to compute the boundary values on C3§7 with the

assumption that it is affected by regions C, and 02 for %=S ) 5‘21 and

_ 1
C. only for il €3 g fal and then to find an exact solution for the
1 ©f N -Em’ E T 9 T 14 b X

pressure at ¥ consistent with these boundary conditions. This

1°%1
methed is very difficult, if indeed possible, because it requires
satisfying variable boundary conditions involving complex expressions.

The influence of region C, is small compared to that of C, and C..

3 1 2

It is therefore suggested that an easier, and perhaps fairly accurate,

method is to assume that the influence of region C_, on the point is

3

due to a weak normal shock of strength equal to the difference of

5m . .
pz(ogctw2H) and pz(Oﬂ,&ﬁ? + ylé} at §— . Then p(xlgyl) is the sum of

the pressures due to C., C., and C

10 2 3t
. ] . . . N oA~ B

- p,(0, ct-2H) ,
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where

for p ., B ::,/xlg + y1§ and 8 = arctan(yl/xl) -3,

for p,s B = Jxlf ¥ zZHayl)g and § = arctan[(szyl)/le= %,

for R=ctand 8 = arctan[(2H=y1)le= &

PZb 1
for pa(Og,/xlz + yl?)9 R = 2H +\f§;?7?3E? and 6 = T,
for p,(0y ct-2H), R = ct and 8 = m .

This simplification was not used, however, in this study, and its

effect on accuracy is therefore not known.

In the interval /klz + (EHmyl)2 + 20 < ct § bH + x® - yla .

plx ) is computed as affected by regioms C., C,, C,, and Cps with

191 1* 20 V3
the first three itreated as in the previous time interval. For Pl 04
can be considered as the ground reflection of C30

By the use of a digital computery this process can be extended
to large numbers of reflection and the pressure distributions can be
predicted as functions of time for given wall geometries and wave

incident angles. The method developed in this chapter will be applied

to the Kinney Shoe Sftore geometry in Chapter VI.



CHAPTER V

DIFFRACTION AND REFLECTION OF SONIC BOOM

WAVES -~ NUMERICAL METHOD

The analytical method described earlier has several limitations.
Firstly, for the solution of any particular problem of sonic boom wave
interaction with a structure, it is necessary to visualize the shock
wave patterns around the structure, which may be difficult in certain
cases of complicated structures. Secondly, this method is useful only
in a two=dimensional case and cannot be extended to three-dimensional
problems. In this section, a numerical method has been developed so
that more general sonic boom wave/structure interaction problems can
be handled.

Tyler (8) and Walker (10) obtained numerical solutions for two=-
dimensional and axisymmetric problems associated with shock wave
phenomena utilizing Rusanov's (5) difference technique in which
dissipative” terms were used to obtain a numerically stable solution

for shock diffraction.
Governing Equations

The conservation forms of the general flow egquations for a
two-dimensional case for a plane flow, derived in Reference (8)

by assuming the fluid to be an inviscid and ideal gas, are:

50
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Contimuity,

3 . d(pu) _ 3(pv) A

strex o Tyt 0 (51
z=Momentum,

FEL & (o) + 3 (puv) = 0 (5-2)
y=Momentum,

%%EZA~+f%§ (P+pu®) + %§,(puv) = 0 3 (5=3)
Energy,

%%°+ %z (e+P)u + %§:(e+P)v =0 . (5=4)
The fluid energy, e, is defined as

RUICHE SR . (5-5)

Definitions for the above equations are

p = density,

u = X=component of velocity,
v = y=component of velsocity,
P = pressure,

¥ = ratio of specific heats,
t - time,

X,y = space coordinates.
If Equation (5-1) is substituted into Equations (5=2) and (5=3), the

resulting momentum equations are,

x=Momentum,

3u du du 1 3P _ .

«3‘?+u§=§?+v-§§+?-—=§wog (5“‘6)
y=Momentum,
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If Equations (5-=1), (5=5), (5-6), and (5-7) are substituted into

Equaticn (5-4), the resulting energy equation is,

3P 3P P du . dvy _ .
_5‘_t_+.u.8§,+v§_y.+'yp (—aﬂj{ﬂ"l‘?;)n‘—-On (5"'8)

Sonic Boom Wave Approximations Applied to Conservation Laws

In Figure 13, a shock wave making an angle 9 with the x axis is

shown. Von Neumann (15) and (20) derived equations relating the

J
,f .
Vi
Py
Uy, \
Vi P
CO o
P Q
u
[8]
v
(o]
6

—m X

Figure 13, Geometry of a Shock Wave

downstream-to-upstream properties of a weak shock wave; these are:

c, 2(&=1)
Vl = ; (5‘9)
/2xL(y+DE + (v-1)]
- vr1E + (y=1)7 -
Pr = P [TV E T TR (5-10)
where V - velocity in the direction perpendicular to the shock wave,

& « shock strength, Pi/P_ ,

0 = refers to conditions upstream of the shock wave,
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1 = refers to conditions downstream of the shock wave,
YP
and p T e

Velocity components in Figure 13, are
23 = Vi sin ©

(5-12)

Vy cos 6 ,

53

Vi
For a typical sonic boom wave, the values for 6, o Po” and P are

assumed as

6 = &5°,
¢, = 1100 ft/sec,
P_ = 2000 psf,
(5-13)

AP = 1 psfy,
Pl = 2001 p5f9
E = %L=z 1.0005 .

o

For the above § value, Equations (5-9), and (5-10) can be approxi=

mated as,
c (&-1)
Vy ¥ e (5-14)
Py %’po = constant . (5-15)

If the values in Egquation (5-13) for Gwcov and PO are substituted in
Equatioms (5-11), (5-12), (5-14), and (5-15), the resulting values are

P1 = pg = 0.002315 slugs/ft°

Vy = 0.393 ft/sec

, (5-16)
1 = 0.281 ft/sec
vy = 0.281 ft/sec .

Now, the orders of magnitudes for various terms in Equations (5-6),

(5-7), and (5-8) are evaluated here :
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du _du _ av _ v
558 TS - ey - 0 [10°]

da _ _du _ dv _ _ Ov w‘ 0
u-gsgzmv%ﬂgwuggng'g;wotloj

%g:%%zo[mo]
(5-17)
13 13P 3
-p-g;gm?g;zo[lo]
du av
YP == = VP 53 = o [10°]

%%:Bv P o[ a’P]mo[:l.oa’].,

Comparison of the orders of the magnitudes of various terms in

Equation (5-17), Equations (5-6), {5-7), and (5-8) leads to these

approximatiéns:

x-Momentum,

du 1 3P _ '

T +F$—- 0 . (5=18)
y=Momentum,

%‘%+%§§zo (5-19)
Energy,

P du . ovy _

R (ax-i--s?) =0 . ~ (5-20)

For reduction of the energy Equation (5m20) to a more general form,
which will be presented later, two terms9 Yu-gm g and Yv=gnvwere added
to it. This is permissible since comparison of the orders of the
magnitudes of these two terms with the other terms in the energy
equation indicate that this will change the equation by a negligible

amount. The modified energy eguation is

Loy @ %5 v} (5-21)
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Equations (5=18), (5-19), and (5-21) are the conservation laws
after the proper approximations of a typical sonic boom wave are
included.

With the assumption of constant y and p, the flow Equations (5-18),
{5=19), and {5-21) may be writtem as a single equation:

K Y

where f§ F‘x9 and F' are treated as three component vectors:

e (5“‘2—3)

Finite Difference Equations

The Equétion (5-22) was sclved gumerically by the method of finite
differences. Tyler (8) discussed im detail the properties of con-
servation laws applied to a gas dynamics problem and has made a brief
survey of several difference techniques developed to solve problems
associated with shock wave-phenomena. The concept of a weak solution,
which has been discussed in mathematical journals (21), (22), and (23),
allows the solution to be discontinuous. Therefore, a weak solution
may have jump discontinuities and hence it can be used to solve problems
associated with shock wave phenomena. A method of obtaining physically
relevant weak solutions for the conservation equations has been
described in (24}, (25), and (26). Von Neumann and Richtmeyer (24 )
suggested that the inviscid flow equations should be altered by adding
dissipative terms so that the surfaces of discontinuity would be

"plurred" into regions where all the flow variables would be continuous,
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but repidly changing. In view of the similarity of its effect to that
of viscosity in accomplishing the blurring process, this method is
known as the method of artificial viscosity. Since the time of
Von Neumann's work, most of the significant theories are based on
the blurring technique. Tyler and Walker have applied a difference
technique developed by Rusanov (5).

The addition of blurring terms to the general partial differ-
ential Equation (5-22) results in the expression:

d>  art  3FY 3 37 . 2 df
et e e penng] s 5 Peareg] (>-2%)

where A(x,¥,%t) and B(x,y,t) are the blurring terms whose values are
obtained from the stability analysis in Appendix, Von Neumann and

Richtﬁeyer (24} have given four requirements that must be satisfied
in the selection of the blurring terms:

1. The equation with blurring terms must possess sclutions

without discontinuities.

2o The thickness of the shock must be of the same order as the

lengfh &x, and Ay in the numerical calculations.

3, The effect of the blurring terms must be negligible

outside the shock regioun.

L, The Rankine=Hugonict equations must be satisfied across

the shock region.

The finite difference eqguation corresponding to the partial
difference Equation (5-24) is obtained by using forward differences
for time derivatives, and central differences for first-order space
derivatives. Use of a scheme like-this permits evaluation of the

values of f, at any instant explicitly from the values f, FX9 and FV



at the preceding time.

The finite difference net notation is shown in Figure 14. The
rectangular net has steps Ax=h; , Ay=hg, and At=T in the (x,y,t) space.
The angle ¥ is the angle ?etween hy and h where

no= (? + %) (5-25)
At some net intersection, a quantity q with coordinates (khy ,4fhg ,nT)
is denoted by q§g£° For purposes of discussion, n is referred as
the nth time plane,

One can see that the form of the difference equations will vary
depending upon the location of the net point in the flow field. Thus9
the difference equations for met points lying entirely within the
flow field, "field points", will be different from the difference
equations for the net points lying on walls and on flow plane
boundaries, "boundary points'. This difference is due to the reguire-
ment of satisfying the boundary points, and their lack of surrounding

points.
Difference Equations for Field Points

With the use of the difference techniques and the difference net
notation discussed above, the complete difference approximation to the

general partial differential Equation (5-2%) may be written as

ntl _ n T X 2 o1 J J &
fk,-z - fkgf' - §h1 [ka“'lgﬂ’ - Fk‘=19'2] - ih@ I%kv’e’““l - Fkﬂ’g’+1:|
+ I [a (£ o f ) =A 4 (£ ,-f )| B (5-26)
2 [[kikob Tkl L T Tkd L PTkof T Tk=l,4
T n
* ;§’|%k9£f% By ge1 = T 0) - B, 02 Y fk,ﬂmlﬂ :



’,‘4

X = tan Do
1
Lk
~h = (h§ + h3)*
(k-1,4:1) (k, £41) (k+1,2+1)

(91,1&)
(91,)@-1) : '(9; 4-1) 9&1,1)

Figure 14, Finite Difference Net Notation
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Equation (5-26) may be simplified by defining

OT

Tl? 9

T

T

Aﬁ - 12 o (5-27)
0T T BT Tked ?

B0 . g .n

ko4~ 2T Bkgﬂ ’

Klﬁ

i

Kp

and Equation (5-26) is then written as

n+l n

Ky [ox x 1 _ KRy y "
ka, = fk,,ﬁ, -z hk+l_9ﬂ: - Fk=1,,fa] T2 El:qm:‘l., - Fkgzwﬂ

n
1
+ ‘EE}@%J] (fk+19£ - fk:,,ﬂ) - akcgsgﬂ (fkgﬂ - fkmlﬂzﬂ (5=28)

n
1 ]
* ?Ek?f&%s (fkgml - fk,,z> - Bk,,zmg- (fk,,z - fkeﬂmlil °

A new parzmeter K is defined as

1
K= +EF . (5=29)
From Equations (5-27) and (5-29), K may be expressed as
.2 2>
Kﬁmmmga—m"hlfh]@ T
by by

The geometry of the Figure 1l and Bquations (5-25), (5=27), and (5=30),

(5-30)

permit Ky amd Kz to be expressed as
Ky = K sin ¥, Kz = K cos ¥ . (5=31)

In Appendix stability analysis is performed to evaluate the

n
ko2

conservation laws, in a mawner similar to that of Rusanov. The needed

required values of @ and B;: ) for the difference egquations of the
g

- n n ] o
values for akgﬂ and Bkgﬂ are found to be

_ , s B
aszuoz Kwe sin’ ¥

i

(5-32)

B |, = B = Kwe cos X ,

kgz

i
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whereas the inequality
Ofwss$1, (5=33)
must be satisfied.
The time increment between any two successive time steps is given

by

K < . {5=34)

Boundary Points on Walls

Walker (10) discussed in detail the possible boundary conditions
that can be applied for points lying on walls or planes of symmetry.
Walker considered three possible methods:

1. Ideal boundary conditions that must exist at the boundary

in question are forcefully imposed on the boundary. Strict
usage of this condition, without due regard for the physical
problem, can lead toc errameous results.

2. Either ferward or backward differences for the appropriate
space derivatives are applied to the boundary points. This
method iz not sufficient to satisfy the complete set of
realistic boundary conditions at the wall.

3, A reflection technique, discussed by Burstein (27), assumes
that the points adjacent to plane walls are imaged by virtual
points that lie within the wall, In the present analysis,
this method has been applied because of its merits explained
below.

For & wall parallel to the x-axis such as that shown in Figure 15,

the relations of the variables at the field point (k,4+1l) to the



variables at the virtual point (k,£-1) are:

Pk9£+1 = kagwl »
Yot T Mk 4=l (5-35)

ot T kg1t

This representation allows boundary points to be treated by central
differences in the same way as the field points. Thus, for a wall
parallel to the x-axis the difference Equation (5-26) can be modified
by using the conditions of Bquation (5=35).

For a net point lying on a wall parallel to the y-axis the
relations of the variables at the field point (k+1l,4) to the
variables at the virtual point (k-1,4) are

P

P10 Fan 0 0

Yot 0 T Mee1 g (5-36)

Vialol © Vk+l,h °

and the difference equation can be obtained by using the conditions of
BEquation (5=36) in Equation (5-26).

The advantage of the image point method for treating boundary
polnts is that it is not necessary to dictate the values of deri-
vatives at a surface and it allows the derivatives to assume whatever
the boundary coaditions are not imposed in such a manner that they
negate the possibility of certain phenomenon occurring in the vicinity

of a wall.
Boundary Points on a Flow Plane

For any finite difference solution, the *flow plane’ corresponds
the boundery of the finite difference net, The net poimts on k = 1,

k=k ,and =4 in Figure 16 are the boundary points on the
max max



(k,4+1)

O

(k-=1,4) (k,4) (k+1, £)

TS T T

(i, 2-1)
®

(Imaginary Imaege Point)

Figure 15. Image Point Principle for wall Point
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Figure 16. Boundary Points on a Flow Plane
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flow plane,

There is no general technigue for handling the points on the flow
plane boundaries, FEach particular problem has to be treated separately
and proper boundary conditions to represent the physical problem should
be imposed.

The method developed in this chapter will be used in the succeeding
chapter to compute pressure~time histories for the Kinmey Shoe Store
geometry. This will permit a direct comparison to be made between

the analytical and numerical results.



CHAPTER VI

PRESSURE-TIME HISTORY OF A SONIC BOOM WAVE ACTING ON WINDOW

IN A BUILDING

During the seriles of sonic boom test flights conducted in the
Oklahoma City area during 1964, an 8' x 10° x‘%v plate glass window
in the north wall of the Kinney Shoe Store, a single-story commercial
building, was broken with the occurrence of one of the sonic booms.
This particular sonic boom cccurred at about 1:20 p.m. on May, 1964,
and was produced by an F-101 aircraft at 37,742 feet altitude on a
scheduled steady-state course at a sgheduled‘speed of Mach number 1.4,
Orientation and distance of aircraft course with respect to the
building are showr in Figure 17. In this chapter the methods de=
veloped in Chapters III, IV, and V will be applied to this building,
and te the window region in particular, for the flight conditions

wnich produced the breakage.
Conversion of Wave Time-Histories into Wave Geometry

For the Kinuney Shoe Store, the predicted pesition of the wave
relative to the building was needed, as well as the time-of=trrival
of the waves at specific locations. The wave geometry was estimated
from the computed time values as described below.

To determine the angle between wave and wall in a horizontal

plane, two points on the wall in the horizontal plane, such as the

6L
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North

Flight Altitude = 37,742 Feet Above the Ground
Flight Mach Number = 1,40

5o
5
e
$7 N\
8 = 120°
I,Broken Window “111.5°¢

] )
24.5'  10.0"

70!

o e L ket i s N

100*

Figure 17. Geometry Used in the Arrival Time Computations
for the Kiwmney Shoe Store
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lower corners of a building, were selected and the Ti values computed
using one of the methods described inm Chapter IITI. With reference to
Figure 18, the distance between these two selected points is L, and
the point having the smaller y-coordinate is point 1 and the larger is
point 25 xy is the horizontal plane. It can be shown, by use of the
law of sines, that the wave angle is
tan Bw = tan 6 = %(TfL2 - Til) sec 8 . (6-1)

Similarly, two points were cheoser on a vertical liney; such as the
upper and lower corner points of the corner of a building, with the
upper designated as 3 and the_lower as 4. A vertical plane containing
points 3 and 4 and perpendicﬁiar to the wave line on the ground
{(i.e., at an angle BW + 900 from the y-axis) was as shown in Figufe 19,
Then, for a wall height H, the wave angle in the vertical plane was

¢ =g (T, - T5) . (6=2)

These relations were applied to the Kimmey Shoe Store conditions.
For this, the flight path geometry is shown in Figure 17, and
L =70 feet, H = 12.75 feet. Values of (TizaTil) and (TiquiB) were
computed by the Method II of Chapter III, and were found to be 0.0031
and 0,0038 seconds, respectively. These values, in combination with
Equations {6=1) and {(6-2), gave wave angles 6, and & of 26.8° and
70&09 respectively. The resulting wave-bullding relationship is
shown in Figure 20. Some wave-time positions are depicted in Figure 21,
in which TiR is the time for a wave to pass a point after it has passed
the reference point, the south-west corner at the ground level.

From test data for the F=101 aircraft at the flight Mach number,

altitude and y=distance, the bow=to=tail wave time interval was

estimated to be 0,135 seconds and the incident ground overpressure to
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Figure 18, “Wave in the Horizontal Plane
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Figure 19. Wave in the Vertical Plane



Figure 20,

Geometric Relationship of Building and Wave
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Arrival Times of Incident Wave of Sonic Boom Wave on
Kinney Shoe Store
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be 1.65 psf (Reference 1), Upon computing the incident-to-reflected
wave time interval, ATirﬁ for 6.0 and 12.75 feet heights, the pressure

histories on the west wall were predicted as shown in Figure 22,

Pressure History on the Window of the Kinney

Shoe Store = Analytical Method

Figure 23 depicts the window on the north wall of the Kinney Shoe
Store, under the roof overhang, that was broken during the seventh
flight of a F-101 aircraft on May 17, 196k, The position of the sonic
boom wave for the particnlar conditions was determined in the previous
section and is shown in Figure 23%. For the two-dimensional analysis,
the wave was assumed to be paralilel to the west wall, neglecting the
3020 angle that was estimated in the previous aralysis. As shown in
Figures 2ha and 24b, the incident and reflected waves (with the bow
wave considered only as a2 step input at present) were diffracted by
the roof overhang and reflected by the ground and roof overhang. The
sonic boom wave was considered as a twe=dimensional wave and the
effects of the north edge of the roof overhang and south-extending west
wall were neglected. The wave=history for the window and for some of
the pcints on the north-west cdrner were estimated by the analytical
method developed in Chapter IV, including the effects of the reflected
disturbance regiouns oh the rigid walls (the ground and the roof over
hang). - The x and y axes were selected as shown in Figure 23, For this
particular geometry, & = 0O, and ¢ = 19,9, If these values are sub-
stituted into Equatioms (4=14) and (4-18), the resulting expressions

are
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Sonic Boom Wave Pressure Histories on the Kinney
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_ T .1
T o) D¢

) 1 = (1-p) cos ({=m) n
p=l- = arctan [;l+p) Sin %{wzﬂ) w & P sin.%(ewﬂzl

[ ~ (1-p) cos %($+ﬂ> ‘]
(1+p) sin g(y+m) « 2/p sin L{6-m) ’

1
+ = arctan
o

(6-3)

Equation (6-3) can be simplified to become

(1-p) sin &

p=1 «~%ﬂarctan [ 7 5
(1"‘{3) cOB 5 = 2\/5 coSs 5

(1-p) sin A
I 1. (6-4)

1+p) cos = + 2/¢ cos‘g

1 ,
+ e AYCTEN
m (

A computer method was developed for the wave history at any point
X,y in the coordinate system shown in Figures 23 and 2k.  The time
t = O corresponds to the condition at which the incident wave of the
sonic boom has reached the origin of the chosen coordinate axes (west
edge of the roof overhang). The special notation used in this method

is expanded as follows:

c disturbance region.
P=P, _
P g5 dimensioniess overpressure at the point x,y due teo

170 the sonic hoon.
b; P at the point x,y at any time ti due to the incident wave.
P. P at the point x,y at auny time ti due to the reflected wave.

pﬂp p at the point x,y at any time ti due to the disturbance
B region Gno

49 p at any time t, . at the boundary of the disturbance region
nb
at the angle eng
AP = P“Poo overpressure at the point x,y at any time ti due to
the sonic booms
)
R, = (xB+y®)2, the distance of the point x,y from the origin "0V,



76

.
Rn = (z?+yi} 2, the distance of the point X,y from the origin of

the disturbance region Cno

ti time elapsed since the incident wave passed over the origin
HOH o
tr time elapsed since the reflected wave passed over the

origin ¥OY, g
v, = (0=1)H + y, if n is odd,

= pH =y, if n is even; y coordinate of the disturbance region

Y
]

-
Iy

8 = arctan (uﬁ s inclination of the point x,y in the vertical

plane {positive-in clockwise direction from the x-axis).

With reference to Figure 28, a relation between ti and tr is

established asg

£ o=t o 2H tan \b cOos 111 = t, - <8 tan \‘I (6@5)
r 1 c L C

The pressure history at the point x,y due to the passage of a
sonic boom is a function of the geometry of the incident and re-
flected waves and the several disturbance regions at any time tio
Computational procedure is presented below to predict the overpressure
due to the incident and reflected waves. At any time tig the over=
pressure at the point x,y is the algebraic sum of the overpressures

due to the incident and reflected waves.
Computation of Overpressure Due to the Incident Wave

Condition 1: cti <R

1
(a) If 91 £ Y p; = 0 .
(b) If 8 > ¥;
=6
ot (6-6)
> e
for oS . Rl9 Py 1
1
cti
and for =z = < ng Py = 0.
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Condition 2 cti > Rl“ n was computed for

Rn < cti s Rn+l H (6-7)
where
R, = GEPR (6-8)
and
¥, = (n=1)H + y, if n is odd,
= ol ~y, if n is even. (6=9)

Then p; was the algebraic sum of the overpressures contributed by the

regions Clig CZig aaaaaaa v an 1)1 and C_.. 8o,

Py = Pyy ¥ Py *Pyy tomowm === =Dy gy * Py (6-10)
where

Pj ¥ Pypyo
and for n > 1,

Pni ® Popi ~ Pubi

Prpi was computed from Equation (6-4) and the values for p and 6 as

follows:
Rn
0 = - 9 (6*11)
R+ /(F& - R)
n i n
A
0 = 6 = arctan (m;) . (6-12)
n %

Prbi depends on the value of en and the value is always O or 1 or 2
depending on the geometry of the point in consideration. In this
particular case, it was always 1. Hence,

Pors: =1 (6=13)

At any time t., p, was computed by Equations (6=7) to (6=13).
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Computation of Overpressures Due to the Reflected Wave

For any time ti9 the tr value was computed from Equation (6=5).

Condition 1: ctr SR

1
ctr
oy = . o
If x m+ytan\b, pI“ 0.
et
If x < SIG +y tan § , and
ctr
= =
@ B 2oy Rl
ctr
(0} Ry <o =l and 6. € ¥ 5 p =2,
ct

o]

r
< > = o
(e) Rl cos z$=615 » and el \ T 1

Condition 2: ctr > R., n was computed such that

1
< . =]
R <ct $R . (6=14)
Then r. was the algebraic sum of the overpressure contributed by the

regions € Cop g ==mmomoa, G(npl)rg and Cnr° P, was computed by the

1r® “2r
same procedure of Condition 2 of the incident wave after replacing
ti by tr and changing the subscripts "i" to '"r" in the overpressure

terms.
Computational Technique for an N-Wave

A sonic boom ordinarily will have a shape similar to an N=wave,
The time ianterval, At, between the bow and tail waves of the secnic
boom that caused the broken window has been estimated from related
test data to be G.135 seconds. An Newave can be treated as two shocks
of equal strength (pi =P, = %APO) with a series of expansion waves
between them. An ﬁfﬁave of strength pg = 1.0 and p. = 1.0 at bow and

tail waves separated by 0.135 seconds was assumed. Then 135 small
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expansion waves were assumed of strength p; =P, = 2/135, each separated
by a time interval of 0.001 secounds, Overpressure at any time ti was
then the algebraic sum of all the overpressures due to all the step
waves, effective at that time. The input to the region beneath the
canopy was thus an N-wave of 0.5 psf incident pressure for an unit
overpressure sonic boom wave and a period of 0.135 seconds. The
resulting pressure at any point considered the reflection/diffraction

effects and the height of the point.
Computations and Results of the Analytical Method

The pressure distribution due to the subject sonic boom was
computed at six points, A through F, as shown in Figure 25, on the
north wall of the Kinney Shoe Store. Computer programs were written
both for a step input and for an Ne-wave utilizing the technique
described above, About 15 minutes were required to obtain the pressure
history of each point from ti = 0 to 0.16 seconds on an IBM 70%0
computer for an N-wave,

In Figures 26 and 27, the pressure distribution at points A through
F are plotted for a step input wave and for an Newave respectively.
The dotted lines represent the input waves if there were no corner or

overhang effects.

Pressure History on the Window of the Kiuney Shoe

Store - Numerical Method

The finite difference net (I40 x 23) used is shown in Figure 28.
The roof overhang was treated as a thin wall of negligible thickness,

located between the two rows of net points £ = 9 and £ = 10, starting
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Broken window_\ Roof Overhang
6']? A‘\__—‘C 4"
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" &

Figure 25, The Chosen Six Points on the North Wall of the Kinney Shoe
Store for Overpressure Computations
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from k = 40 and extending to k ax 140, The objective was to estimate
the pressure history at the same six points computed earlier by the
analytical method, & through F, shown ian Figure 28. A much larger
field than necessary was chosen to reduce the errors that might be
introduced at the flow plane boundaries, k = kmaxﬂ L =1, and £ = ﬂmax’
due to the inability of the boundary conditiouns to reypresent the
physical boundaries. The shock wave angle, @wg was again taken as
’700109 from the previous analysis. The mesh angle, ¥, was assumed

to be the same as @w so that the initial shock wave progressed the same

number of net points ir both x and y directions.
Difference Equations for Field Points

Difference equaticns for field points were writtem for u,v, and P,
with 's and 's treated as comstants., Equations (5-22) and (5-23),

were then

n+l _ on K no, o

= 1 - g -2 @
Ykt T Y8 T N (Pml,,z P, t? 3l gt g U g

Sy gt g getn "
T R 441 R 21" R 8

Vn+l T Ké (P =P )
0,8 % ey T B ey 441 kg A

n

)Il

0

+ *4V k1,4 kel P oA

+ E&v +v v, 8
A " RS T "S5 Rl O A (6=15)

YP
n+tl n o L n A
Py b = Peoa - “E”’E%<uk+19£°“kmlgz) * KQ(ngi+lavkgﬁ=l>]

§

n B, n
* %{Pk+l A kul " z) * ?*Pk9£+1+Pk,zu1=2Pk,£) ’

where Po = abtmospheric pressure, Py = atmospheric density.
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Boundary Cenditions

For the net points on the ground (£ = 1), the difference Equations

(6-15) were modified by using the boundary conditions,

on )
Praen T R e o
n _ . _
Yhodel Tk 441 ° (6-16)

n n

Vkodal = 7 Vkgpel °
For the net points adjacent to the roof overhang (see Figure 29), the
difference equations were modified for the following boundary
conditions:

For £ = 9y k = 40 to 139:

n I
Pkgz+1 - Pkgz ’
n n
B (6=17)
uk9£+1 kod °
s e o gt
kod+l T ko4 °

n _5h

Pkgzal - Pkgz o

n n

Yo da1 T Pigh 0 (6-18)
Vn = A'

kod=l = 7 Tkod °

Equations (6-16) to (6=18) were derived with the reflection technique

described in Chapter V.
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Flow Plane Boundary Points

For the net points at £ = 1: (left boundary)

n+l " 5
Peg = 580
“kn:lz = 5,(8) (6-19)
n+l .
Ve, 4 " f3(t) s

fl(t), £,(t), and fB(t) are functions of shock wave position at time t,
assuming that the roof overhang's influence is negligible. To justify
this assumption, a large field was chosen.

For the net points at £ = zmax: (top boundary)

n+l  _n+l
quz - Pk9£=l ’

n+l _  n+l

U g = U g 0 (6=20)
vn+1 N vn+l

kod = Tkod=1 °

These conditions force the incident and reflected ghocks to become
straight and parallel to the y~axis at the top boundary. Inr spite of
its inability to represent the proper physical conditions, this proved
to be better than any other possible method, such‘as extrapolation,
The criteria for selection of upper and right boundary representations
was that waves incident on the boundary should be reflected as little
as possible.

For the net points at k = k (right boundary)

max’
n+l _ _n
Pt = Pt e
un+l . .n Vn+1 - (6-21)
Kok~ Vkelgd ? Kok = Vkel,d °



The following numerical values were used in the computations:

At

w

i

o}

83" F .

constant = ¢_ = 1142.8 ft/sec .

2000 psf .

constant = po = 0,002145 slugs/ft® .
hy =Dy cot & = 0.5%30 feet .

hy = 1.5 feet .

1/c = 0.,000875 seconds.

i

by /T = K sin X = 0.000824 seconds.

hg /7

T = 0,000447 seconds.

K cos ¥ = 0.,000297 seconds.

fl

lD

Kwe sint ¥ = sin® ¥ = 0.884,

i

Kwe cos ¥ = cosf ¥ = 0,11k.

B

Computations and Results of the Numerical Method

Computer programs were written for both a step input with

incident=plus~reflected wave strength of 1 psf, and for an N=wave

95

having bow=to=tail wave time interval of 0.135 seconds and a strength

of 1 psf. The initial conditions assumed for the step input in

regions (0),

(1), and (2) of Figure 28, were:

t

i

£

2000 psf -

0.

0.

2001 pst -

3&%;:£Ql sin Y .
o
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vl = nigl—-gi&-)m cOoSs X°

Py, = 2002 psft.

[

'ua 2U.2 °

Va:Oo

The N-wave was treated the same way as in the previous analysis
except that here 302 expansions waves were taken so that they were
spread by a distance of one field point width in the x~direction.
Initial conditions in region (0) were the same as above, but in regions
(1) and (2) algebraic sums of the incident and reflected compression
and expansion waves were considered,

Pressure histories for the six points, A through F; were computed
by interpolation of the adjacent field points for both a step input
and an N-wave. On an IBM 7040 computer, about 60 minutes were required
to compute the pressure history for the field of 3220 points from © to
0.18 seconds (415 time planes), printing the values for the six points
at each 0,001 seconds interval. The programs were quite simple and it
took only 2.7 milli-seconds for each point-time plane.

As a check on the validity and the applicability of the numerical
method, the results were plotted and compared with the results obtained
by the analytical method. In Figures 30 and 31, the pressure dis-
tribution at points A through F are shown for a step input and for an
Newave respectively. The dotted lines represent the results of the

analytical method. As can be seen, the agreement is very good.
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Discussion of the Results

For a two=dimensional analysis, both analytical and numerical
methods produced essentially the same results. To test the validity
of the results, point F was located in such a way that one can
intutively reason that the roof overhang effects are negligible at
this point. In Figures 26, 27, 30, and 31, pressure distribution for
point F by both analytical and numerical methods was almost the same
as the pressure distribution if the roof overhang were removed. These
results indicate the validity of both the methods. The analytical
method rests on solid physical and mathematical foundations. The
primery objective in trying the numerical method was to investigate its
applicability to a sonic boom wave problem. If one looks at the
results for points A through F in Figures 30 and 31, the comparison
of the numerical and analytical methods was excellent excepting that
the numerical method smoothens out the peak overpressures. Of course,
this is to be expected in this numerical technique due to the addition
of the blurring terms. Solutions were sought for smaller values of the
blurring terms but they were umstable in the shock regions. Thus, one
must be prepared to sacrifice some accuracy to apply the numerical
method. But unlike the amalytical method, the numerical technique can
be extended fo é three=dimensional problem which will be of great use
in sonic boom wave/structure interaction problems. Due to the
simplicity of the weak wave equatioms involved the computation time
would be much less than in the case of a strong shock wave problem

such as those reported in References (8) and (10).



CHAPTER VII
CONCLUSIONS AND RECCOMMENDATIONS
Conclusions

Three methods were presented in Chapter III for calculating the
time=of-arrival of an incident wave and the time interval between
incident and reflected waves for a wall facing the wave. These gave
almost identical results for small offset distances (10,000 feet or
less) from the flight track. The differences in results were greatest
at low Mach numbers and large offset distances(up to 70,000 feet).

The conical wave analysis (Method I) deviated most greatly from the
other two. Method II, which assumed an atmosphere with a realis£ic
linear variation of acoustic velocity with altitude up to the tropo=-
pause, is recommended for problems where shock wave angles are to be
found accurately. Method III, which made the simplifying assumption
of comstant ray angle projection in the vertical plane normal to the
flight path, and used the linear variation of acoustic velocity as in
Method II, is considered to be the most practical method. That is, it
achieves mearly the same result as the more exact method; but with
considerably less computation time. This method is proposed to provide
a means of computing incident wave time relationships when wind effects
are not significant.

For a two-dimensional analysis to predict the pressure<history
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of a sonic boom wave diffracted and reflected by corners and walls,
both analytical and numerical methods were developed., The numerical
method compared well with the analytical method excepting that %he
numerical method smoothemned the peak overpressures, Boundaries do
present considerable difficulties in the numerical method and it is
very important to apply boundary conditions counsistent with the
physical problem in consideration. The analytical method rests on

firm physical and mathematical foundations. The numerical method is
therefore concluded to be a flexible, practical technique for computing
the multiple reflection and diffraction problems generally associated

with sonic boom interactions with structures.
Recommendations for Future Work

Since most sonic boom interactions are three-dimensional in nature,
the numerical method should be extended to three dimensions. No
special difficulty is anticipated in this except for increased com=
plexity and the need for a large capacity computer. On the IBM 7040
computer with a storage capacity of 32,000 storage positions, flow
fields of about 3600 points, such as (20 x 15 x 12), (20 x 20 x 9),
and (15 x 15 x 16), can be handled.

Several interesting problems should be attempted by the two and
three dimensional numerical methods, including those corresponding to
any test data which may become available. At present Dr. G. W. Zumwalt,
Prof., L. J. Fila, and the author are working at Oklahoma State Uni-=
versity in a Y"Sonic Beom' research project sponsored by National
Aeronautics and Space Administration. Studies of the propagation of

disturbances, such as gusts, in a sonic boom wave and the wave shape
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changes inhthe vicinity of the aircraft, are being undertaken. The
author believes that the numerical method developed in this study and
be effectively used in these studies.

In this work sonic boom waves were assumed to be produced by
aircraft in level flight. The equations of the method (Method II)
which assumes an atmosphere with a linear variation of acoustic
velocity can be modified to apply to sonic boom waves produced by
aircraft in maneuvering flights to predict the time-of-arrival of an
incident wave and the time interval between incident and reflected
waves for a wall facing the wave,

Another numerical approach may be possible. For a weak wave,
the conservation laws can be combined into a single equation, a Laplace
equation for pressure with second order derivatives in time and as
well as space derivatives. Proper stability study should be under=
taken to attempt to solve this equation numerically in the presence
of weak shocks. If it is possible to handle sonic boom wave problems
with this single equation, much.larger fields can be handled since

only three variables (Pn=1, P4, Pn+l) have to be stored in computer

+
programs instead of the six variables (P", Pn+l', u, ul l, vn, vn+l)
that are to be stored iun the method developed here. However, solid-

wall boundaries appear to present difficulties which may be insur-

mountable,
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APPENDIX
STABILITY ANALYSIS OF THE DIFFERENCE EQUATIONS

No general method has been developed to determine stability re-
quirements for the non-linear difference equatioﬁs derived in Chapter V.
For any difference method, it is necessary to determine the conditions
that are to be met to assure that a perturbation will not increase withe
out bound with increasing time. Richtmeyer (28) has concluded that
even for a first order non=linear system, there exists no rigorous
analysis whereby stability criteria can be determined. The common
approach is to linearize the equations and apply the general methods
for stability of linear equations (29, p. 223). Here, a stability
study for the plane gecmetry flow case for a sonic boom wave is made
by applying the Fourier technique developed by Rusanov (5) and applied
by Tyler (8) and Walker (10).

The stability analysis is performed by first allowing the depgpdent
variables u; v, and p to change slightly and assuming p and Yy to be
constants in the general difference Equation (5-28). The effect of the

variation on the equation is investigated by introducing a general per-

n+1l

turbation variable ¢. A change in mﬁ+% will cause a variation in fk )
9 ¢

and the resulting change,

n+l _ df . n+l  df K dF

. n
02 ® Tp “P, 0 T cpé‘PkE =5 %10 " 1l -

Ko aFy
2 49

L5 af 3 , n
(6% go1 = 8% g1 ) tgg (6% g = 0% g+ 6% g )
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g (1)

is obtained assuming that the functiomnal values of some terms are

independent of position; for example:

b X X )
N S

o1, P,z R g 99

dF
o (2)

The next step is to express the perturbation term éyp as a product of
its initial value and its wave components. In equation form, this is
written as

nilihefiad 552 (3)

6p;9£ = §
where 6:4)? )1 is the initial perturbation value, and ¥; and {p are any
real numbers. The value of & dictates the condition for stability. In
order to satisfy the stability condition for Equation (1), the propa-
gated error 5@&92 must be bounded. Hence, e in Equation (3) must be
convergent, and thus should satisfy the condition

]gg g 1. (&)

If Equation (3) is substituted into Equation (1), the resulting

expression is

X v
af oy OF . . s g OF
(g‘“-‘l)‘d?; + :E..Kl dCP Sin 11!1 + 1K2 S1ln lm «a(—me
.2 0 .2 Vs 4f|_
+2E¥81n =§—+Bsm2 =-§-2 --,d‘-ao., (5)

After substitution of the values for the expressioms fy FX, and
¥ from Equatioun (5»23\g\the derivatives in Equation (5) are expressed

as
4du

af (gx dr
do  do (’ . do
dpP
dep.
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Equation (5) represents a system of three simultaneous equations and
the expressions for the derivatives are obtained from Equation (6).
The three simultaneous equations are written as

a . . 1 dap .2 B - du
(§~l)-&1é+ iK; sin § ‘5’?1’&5* Eav sirf =% + 28 sid” gz.:l.aan 0

dv . . 1 dp - A b : zrjég dv _
(g_l)ﬁﬁ + iKy sin {, 5wt 20 sin® 5+ + 2p sin® o - 0

(7)

dP . . du dpP . . dv dap
(gml)a}; + lKl sin \lJi E{P EE + yu -afq-; + le sin \1‘3 EP -(-ina + YV %]

+ Eoz sin""'%l‘+28 sirf %—g-]%—_—o .

For a sonic boom case, the velocities u, and v are negligible.
Hence by the comparison of the orders of magnitudes of various terms
in expression (7), the terms containing u, and v can be neglected
and the derivatives are eliminated by solving the three equations

simultaneously. The resulting expression is

2

lE-1 + 2 o sin® 'fg;—+ 28 sirf %3*-]0 + & [ sir® 4§, + K2 sin® Y] =0 ,

) ' ' (8)
where

P
¢ = speed of sound = 5

Equation (8) in combination with Equation (4) is used to establish the
stability criteria and, unfortunately, no simple solution is available
due to its complexity. Therefore € is evaluated as the angles {3

and yp assume large and small values. For large values of §; and g,

q’lm%"‘:ﬂv (9)
Equation (8) is reduced to

gzsl..-.Z(CY+B)° (lo)
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If Equation (&) is imposed on Equation (10), the result is
Do +B8B <1, (11)

For small angles of §; and ¥, they become

¥ = sin Yy Iy = sin Yy (12)
and Equation (8) is approximated by
ol | Bya)\® 2 (.2 32 ,2
(gs -1 + n§L.+ ?%EJ +& R+ . (13)

The roots of Equation (13) are

E =12 (aff +B) +V =@ (8 § + K5 ) . (1)

From Equation (14), the real and imaginary parts are found to be

il

R(E) =1 =1 (@ +pif) (15)

and

i

HE) =+ (€ 2 + KB ) . (16)

From Equations (15) and (16):

8. 2 = [R(E® + 1(E)°]
‘ 2 , b s , 4
=le-afl =Bz +of 4 +p ta 17
5
v KR
By expressing inequality (4) as
1= ﬂésl? 20 (18)
Equation (17) reduces to
off +B 2F (] | + K @), (19)

1
Where ¢1+ and ¢24 terms are neglected in view of the small angles

assumption. Letting
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Sl L2} == , and sin 6 = Kgmjg sy (20)
K 4 +82 BF 2 +18 Bl

reduces Equation (19) to

cos 6 =

o cos® @ +Bsir?9
et Ka

If Equation (5-31) is substituted into inequality (21), the resulting

=22, (21)

exXpression is

.2
o cos® 9 LBsin® 8 b 2

. (22)
sirf X cos? Y
Inequality (11) can be written as
o + B = Kuwc (23)
so0 long as
0 $Kuc €1, (24)

Any expression for @ and B can be chosen in Equation (24) as long

as inequality (24) is satisfied. Therefore with

o = Kwe sin® ¥
(25)
B = Kwe cos® ¥ ,
Equation (22) is expressed as
Kwe (cos® 0 + sin? 0) 2 K& &2
(26)
Kwe = K2 &
Inequalities (24) and (26) are combined to yield
K® ® S Kwc€1. 27)

The time step K can be evaluated from Equation (27) and the maximum
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time step that can be used in the computations is

. (28)

For a sonic boom wave, assuming ¢ as a constant, Equation (28) reduces
to

K== , (29)

This is the value used in the computations described in Chapter VI.
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