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CHAPTER I 

INTRODUCTION 

The prospect of commercial flight at supersonic speeds served for 

the last decade as a stimulus to aeronautical research in the United 

States and abroad. Several complex problems such as configurations, 

propulsion 9 stability and control, and structures are involved in the 

supersonic transport design. But at present the problem of sonic 

booms, the shock waves that are generated by supersonic aircraft and 

extended from the flight altitude to the ground, is of utmost im

portance and is indeed the main obstacle to feasible operation of the 

supersonic transporto In addition to complaints of the unpleasant 

noise 9 several instances of structural damage have been recorded in 

the past decadeo 

To investigate the people 1 s reaction and the property damage 

caused by sonic booms 9 the Federal Aviation Agency conducted a six

month series of tests from February 3 to July 30 9 1964, in which 

Air Force jets simulating future SSTs carried out supersonic flights 

over Oklahoma City eight times a day in various atmospheric and flight 

conditions. Of the total 12,558 complaints received, 8,335 alleged 

damage to property. 

In view of the proposed SST program, and the conclusions that 

were drawn from the sonic boom tests conducted in Oklahoma City, 

analytical methods are needed to predict the structural response and 

1 
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damage to an arbitrary structure when it is subjected to typical sonic 

boom type inputs. The pressure wave 9 striking the ground when a super-

sonic aircraft passes 9 is the result of a conical pressure field pulled 

along by the aircraft. Shock waves 9 which are popularly known as sonic 

booms 9 extend outward and backward from the nose and tail regions of 

the plane as shown in Figure 1. Between the two shocks, the expansion 

around the convex body produces a gradual pressure drop. The general 

shape of the pressure profile on a region of a flat, open ground is 

shown in Figure 2. The resulting N-wave is not 9 however 9 the pressure 

history felt by a wall. The wall receives the N-wave plus a wave 

reflected from the ground and from any other nearby surfaces •. The 

displacement in time of these two waves is ~T. • The resulting change 
1r 

in wave shape should have a significant effect on those parts of the 

structure having certain natural frequencies. A few possibilities are 

shown in Figure 3. In case (a) the overpressure would be doubled 9 

I 

and in cases (b) 9 and (c) 9 four nearly eq~ally spaced pulses would 

cause a vibration of large amplitude in structural members having a 

natural frequency near that of pulses. 

Not much theoretical work has been done in the area of wave/ 

structure interaction in the past. Zumwalt (1) pointed out the im-

portance of time intervals between the bow and tail shock waves 9 in 

causing structural damage. Lowery (1) identified the various vi-

brational modes of both structural panels and cavi,ties which are likely 

to be excited for sonic boom wave inputs. Recently 9 a few investi-

gators 9 Simpson (2)~ Whitehouse (3) 9 and Reddy (4) 9 have developed 

analytical methods to estimate the response of cavities and panels 

for sonic boom type inputs. These investigations can be applied to 
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Figure 2o Typical Pressure Wave of a Sonic Boom 
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(a) Wall Position Near the Ground: 

(b) Intermediate Wall Height Position: 

(c) Very High Wall Position: 

Figure 3. A Few Incident artd Ground Reflected Sonic BQo~ w._av_es 



predict the structural response of a structure for a given pressure

time history on the structure due to the passage of a sonic boom wave. 

For evaluation of the structural response due to the passage of the 

sonic boom, it is necessary to predict the pressure-time history on 

5 

the structure including the effect, of the diffractions and reflections 

caused by the corners of the structure on the original sonic boom wave. 

The present investigation can be divided into three phases: 

1. Three methods, ranging from a simple, highly idealized model 

to a rather realistic, but complex, analysis, were developed to 

estimate the time-of-arrival of an incident wave and its re

flection on a structure. The applicability and the validity 

of the three methods were investigated for several flight 

altitude and Mach number ranges. In this, only plane walls 

facing the aircraft were considered, so that wave diffractions 

and reflections by walls were eliminated. 

2. Two-dimensional analytical and numerical solutions using a super

position and mesh-field computation with Rusanov's (5) blurring 

techniques 9 respectively 9 were developed to predict the effects 

of diffraction and reflection of sonic boom waves by corners and 

walls. 

3. The analyses developed in phases 1 and 2, were applied to a 

particular problem: The window, on the north wall and under a 

roof canopy of the Kinney Shoe Store, which was broken during 

a sonic boom test in Oklahoma City. 

IBM 1620 and IBM 7040 computers were used to perform the compu

tations. 

The techniques developed here make possible the prediction of 



the pressure-time history on wall due to sonic booms when the wave 

reflections and diffractions by the walls are essentially two

dimensional. The numerical method is directly extendable to permit 

three-dimensional solutions with no geometric limitationso 

6 



CHAPTER II 

LITERATURE REVIEW 

Literature reviewed for this investigation may be divided into 

three categories. The first categ-0ry is the literature in which the 

general equations were developed to predict the time history of a 

sonic boom bow wave. The second category is the literature in which 

analytical methods were developed for the problem of diffraction and 

reflection of weak shock waves by corners of structures. The third 

category is the literature in which numerical solutions were sought 

for problems associated with shock wave phenomena. 

Randall (6) derived the equations of the ballistic wave and its 

ray-lines in an inhomogenous atmosphere assuming the speed of sound 

decreases linearly with altitude up to the tropopause. He justified 

the assumption of the linear speed of sound variation in view of its 

close approximation to the I. C. A. o. Standard atmosphere. Lansing (7) 

applied Randall's work to the problem of determining the location of 

the shock wave produced by a maneuvering aircraft. 

Tyler and Walker (8, 99 10) conducted a thorough literature survey 

of the analytical methods of shock diffraction and reflection problems. 

Busemann (11) conceived the general idea of the conical flow field, 

that is 9 a flow in which all fluid properties are uniform on rays 

through a common vertex. Busemann pointed out the frequent existence 

of conical fields in supersonic flow._ In conical fields, the governing 

7 



equations for the velocity components or pressure distribution can be 

reduced to a Laplace equation of two independent variables. The pro

pagation of plane discontinuities was investigated by Luneberg (12) 

8 

in electromagnetic theory and by Keller (13) in acoustics. In both 

these investigations 9 it was found that the discontinuity surface 

satisfied a first order differential equation 9 the 11 eiconal equation" 

in a homogenous media, and that the magnitude of the discontinuity 

varied in a simple manner as the surface moved. Keller and Blank (14) 

obtained solutions 9 for the problems of diffraction and reflection of 

pulses by wedges and corners 9 as explicit closed expressions in terms 

of elementary functions. They accomplished this work 9 utilizing the 

investigations of Luneberg and Keller to convert the initial-boundary 

value problem into a characteristic-boundc.ry value problem in xyt-space 

and applying Busemann°s conical flow concept. 

Von Neumann (15) conducted extensive research in both analytical 

and experimental investigations of oblique-shock reflection. He de.

veloped a mathematical analysis to evaluate the upper limits of 

11regular 11 reflection as a function of shock strength and discussed the 

physical phenomena of 11Mach'' reflection. Ting (16) studied the problem 

of a weak shock hitting a two-dimensional rectangular barrier. The 

solutions were sought to satisfy all boundary conditions at suitably 

divided time intervals for two structures 9 a very thin barrier, and 

a rectangular barrier of finite widtho A few reflected wave patterns 

were shown for the two structures mentioned aboveo Whitham (17) pre

sented a method for treating the propagation and ultimate decay of the 

shocks by explosions and by bodies in supersonic flighto Ting (18) 9 as 

an extension to his earlier work (16) 9 solved the problem of the 



diffraction of a two=dimensional disturbance by a convex right angle 

corner by a method which permits final results to be obtained con

veniently. The analysis was applied to the two-dimensional unsteady 

flow field associated with the diffraction of a weak shock by a 

rectangular barrier and also t~ the equivalent three dimensional 

steady supersonic flow field produced by the interference of wings 

and prismatic bodies of rectangular cross section. Filippov (19) 

considered the problem of a diffraction of a plane weak shock wave 

at contours of arbitrary shapes. Filippov treated the plane un-

9 

steady problem of diffraction as an auxiliary three-dimensional steady 

problem 9 where the third coordinate is proportional to the time. The 

problems were linearized in the whole region of the diffraction field 

and this assumption was justified since it fails to be valid in only 

small regions of the diffracted flow field and for very short durations. 

The literature review of the numerical methods for shock wave 

problems would constitute a text book by itself. For this reason, 

literature of these methods is omitted here. The interested reader 

may refer to the works of Tyler and Walker (8 9 99 10) who presented 

a detailed discussion of the numerical methods. However, a brief 

discussion is given in Chapter V, while deriving finite difference 

equations. 



CH.APTER III 

COMPUTATION OF SONIC BOOM WAVE ARRIVAL TIMES ON A WALL 

The purpose of this section is to develop a method for estimating 

the time of arrival of incident and reflected sonic boom waves at any 

point on a building wall facing the flight track. To determine the 

time of arrival between bow and tail waves and their reflections 9 the 

geometric relations between wall and wave must be known for a given 

aircraft altitude~ direction 9 and speed. Three methods~ ranging from 

highly idealized to rather realistic.ana1yses 9 were attempted. The 

assumptions made here were (a) that no wind effects are presentg and 

(b) that the sonic booms are produced by an aircraft in steady 9 level 

flight. 

The coordinate axis system for an arbitrarily oriented plane wall 

is shown in Figure 4 and the model of a conical wave intersecting the 

wall is shown in Figure 5. Special notation which is used in this 

Chapter is as follows: 

D gv 

D pv 

horizontal distance between the vertex of the sonic boom and 
its ground intersection point 9 go 

horizontal distance between a wall point~ P~ and the vertex of 
the sonic boom wave 9 at the instant Pis intersected by the 
incident wave. 

m coefficient of acoustic velocity variation with altitude. 

S projected di.stance of the wave from the flight path in the YZ 
plane (see Figure 5)o 
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Figure 5·0 Model for the Analysis of· a Conical Wave Intersecting 
a Plane, Rectangular, Sloping Wall 
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T 

b.T. 
1r 

p 

X 

y 

z 

e 

T 

time for a wave to pass a point after the aircraft passes the 
coordinate origin (subscripts indicate incident or reflected 
wave; second subscript indicates the point). 

time interval between the arrival of the incident and reflected 
waves at a point, P, on a wall. 

coordinate axis, horizontal and along the flight track on the 
ground .. 

coordinate axis, horizontal and perpendicular to the flight 
track -on ;t-he -ground. 

distance along the Y-axis to the nearest corner point, c, of 
the wall on the ground. 

coordinate axis, vertical. 

Mach angle or incident wave angle measured from the horizontale 

angle between the wall and the Y-axis, measured clockwise from 
the Y-axis in the horizontal plane. 

time at which a pressure disturbance wave was emitted. 

angle between the wall and the horizontal (XY) plane. 

Method I 

An approximate method was developed to predict the arrival times-

of incident and reflected sonic boom waves on a plane wall. The 

simplifying assumption made here was that the speeq of sound of the 

conical wave is constant and equal to that at ground level. The wave 

then can be considered to be conical if the aircraft is in steady9 

level flight. 

The bow and tail waves are assumed to have been produced by an 

aircraft in steady, level flight at altitude Zv' flying with a velocity 

V parallel to the X-axis (see Figure-5). The horizontal distance of 

the effective vertex of the cone from a fixed origin non 9 at the time 

the wave passes a given location on the wall, can be estimatedo This 
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distance is designated as X. For a known geometry and forward speed 
V 

of the aircraft 9 the arrival time of an incident wave on a plane wall 

can then be computed from the geometric relations shown in Figure 5: 

X 
T 

V 
:::: -- 9 

ip V 

X = (xP + D ) t 
V pv 

X (Y - y ) tan e + z ~cot ~) "" cos'tl 9 p p C p 

Jl + (Z =Z )2 

D ...,. . p V p 
pv -· ,w tan S 

The above four equations can be combined to give the time the 

incident wave reaches P: 

T. 
l 

p 

1 = - (Y =Y) tan e + Z 
V p C p 

Jl + (Z =Z )2 
+ p V p 

tan S 

(3-1) 

(3-2) 

(3-3) 

(3-4) 

(3-5) 

where the time T. is referenced to the passing of the aircraft over 
J_ 

p 
the origin9 0, 

The time interval between the incident and reflected waves passing 

Pis twice the time interval from P to the ground directly beneath: 

where 

b.T. 
ir 

p 

T. 
1 

g 

D gv 

"" 2 (T. 
J_ 
g 

""' T. ) 
l 

p 
(3-6) 

(3=7) 

0=8) 

Equations (3=1) 9 (3=2) 9 (3=4) 9 (3-6) 9 (3='?) 9 and (3=8) are combined 

and simplified: 

b.T. 
ir 

p 

2 
"" - (D = D ) il V gv pv (3-9) 
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(3-10) 

The time of arrival of the incident wave 9 T. 9 and the time 
J. 
p 

interval between incident and reflected waves, AT. 9 at any point P ir 
p 

is thus given in terms of the location of the point and the velocity 

and altitude of the aircrafto T. and AT. values for a large number 
1 ir 

p p 
of points, Pi on a wall give a clear picture of the time-history of 

the incident and reflected waves for a wall which is struck by an 

undisturbed waveo This does not, of course 9 apply to a wall which 

would be in the II shadow11 .. 

6T. plays an important role in the structural response. From 
ir 

p 
Equation (3=10) 9 it can be seen that this time interval increases with 

height of the wall point above ground level and decreases as the offset 

distance from the flight track increases. 

Method II 

A more exact method 9 based on the ballistic wave analysis of 

references (6) and (7) 9 was developedo In this 9 the speed of sound 

was assumed to decrease linearly with altitude up to the tropopause 

(assumed as 36 9000 feet), and to be constant at 972 ft/sec above the 

tropopause .. 

c = c - mZ. (3-11) 
g 

For c = 1116 ft/sec and m = 0.004 ft/sec-ft 9 the speed of sound is 
g 

,found to be very near that of the standard atmosphere (see Figure 6) .. 

!,light Altitudes Below the Tropopause 

The shape of the wave fronts produced by a point disturbance was 
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obtained by finding the system of surfaces which are orthogonal to rays 

from that pointo By following that disturbance as it propagates from 

a point along a given ray, it is possible to relate the shape of the 

wavi:3 fronts to the growth of these fronts. In an atmosphere in which 

the sonic speed decreases linearly with altitude, the disturbance front 

coordinates (X,Y,Z) are given by: 

(cash mt-1lf = f :f sin!I' mt. 

(3=12) 

The coordinates are as shown in Figure 5t1 except that 11 for a. non-

constant=temperature atmosphere, the ray and wave lines are not 

straight. In Equation (3-12), tis the time since the disturbance 

was initiated. For a fixed coordinate system as shown in Figure 5, 

the disturbance origin, point d, becomes a function of timeo Then at 

time t, the position of the wave front (X,Y,Z) emitted by the aircraft 

at an earlier time Tis given by: 

where cd = cg - mZd, and Xd, Yd, and Zd are functions of To 

The envelope of this system of wave fronts is obtained by elimi-

nating T between Equation (3-13) and its partial derivative with 

respect to To This differentiation gives 

[cosh m(t-T)-1]) - 2 (X-Xd) td - 2 (Y-Yd) yd - 2 (z-zd + C: 

\zd+Zd [cash m(t-T)-1] + Cd sinh m(t-•)) a 

Cd 
= 2 ~ sinh m(t-T) [cd cosh m(t=T) + Zd sinh m(t=T)] o (3-14) 
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For steadyi) level flight: 

yd = 0 (by coordinate sy,5tem) 9 zd ""'" constant = z v' 
0 • . 

Cd = C vi xd z Vt yd = oil zd -· o. (3-15) 

Equations (3-14) and (3=15) are combined and simplified to give 

(3-16) 

Equations (3=13) 9 (3-15) 11 and (3-16) are combined and simplified: 

( 1 ... ) ~cv)3 1 = - + 
~ m 

(3=17) 

The roots of equation (3-17) are contained in 

For positive Zand Zd values 11 the(+) sign applies before the inner 

bracket in Equation (3=18)" 

For given values of Y = Y 9 Z"" Z 9 Z ~ and M values~ (t='T) can be 
p p V 

calculated by Equation (3-18). The time of arrival of an incident 

wave is then given by: 

T. 
1 ·p 

1 = - (X + D ) 
V p pv 

1 P§l (Xp=Xd) =-v (Y -Y) tan e + Z, co + (t='T') =__,...,,.,.._ 
p C' p cos p V 

For this linearly=varying=speed-of-sound atmosphere 9 the time 

interval between incident and reflected waves' is 

(3-19) 



AT. 
ir 

p 
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"' 2 (D = D ) V gv pv 

""' 2v ([(t='f)p V = (X -X )] = [(t=·r) \T =(X -X )]) 0 

p d g g dg (3-20) 

The (Xg=Xdg) term can be obtained from Equation (3-·16); one can solve 

Equation (3-18) for (t=T) with Y = Y = Y and Z = Z = Oo 
g g p ~ 

As in the first method 9 values of T. and 6T. can thus be 
1 ir 

p p 
computed from geometric relations and flight and atmospheric in-

formation. 

~ Altitudes Above the Tr~~ 

An explicit solution is not possible for a given offset distance 

from the flight tracko A method will be proposed 9 however 9 which will 

permit the computation of local positions and arrival times of the 

wave. 

For Zv ~ Z ;;a: Zt 9 where Zt is the altitude of the tropopause 9 the 

speed of sound is assumed to be constant. The disturbance envelope at 

time t for a point disturbance emitted by the aircraft at~ is a cone: 

(3=21) 

Differentiation of Equation (3=21) with respect to Z9 and recognition 

of the identies for steady9 level fli.ght 11 

Q Q 0 

yd"" Og zd::: Zvg Cd= Cvg xd = Vg yd= Og zd = Ov and Cd - o, 

gives 
C ( t-T) 

(X=Xd) = __,vM""'· -- (3-22) 

Equations (3=21) and (3=22) are combined and the result is 

f (Z=Z )2 2 2 (1 - ;t) + "' C (t-'T) 
V V 
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Differentiation of Equation (3=23) with respect to Z9 and recognition 

of the orthogonal property between any ray and the disturbance 

envelope 9 gives 

oY\ az ray - constaµt 
y 

(3-24) 

When the tropopause conditions 9 Y z: Yt 9 and Z i,; Ztg are substituted 

into Equations (3=23) and (3=24) 9 the resulting expressions are 

ft + (Zt =Z)2 c:: c: ( tt=,- )2 ~= tl 9 (3-25) 

and 

(3=26) 

For Zt;;.: Z:;;;; 0 9 the cone is 11warpedn by the temperature gradients 

and no exact analysis is availableo For local wave positions and 
.... ~ 

arrival times 9 however 9 it is sufficient to consider only the ray 

which reaches the given pointo If the ray at the tropopause plane is 

considered to be a point disturbance 9 the previously developed equations 

will describe its patho Then the location of the wave can be found as 

a function of time 9 working point=by=point with a ray tracing procedure. 

The equation for the disturbance envelope at time t of a point 

disturbance emitted at time tt at the tropopause plane is 

(z-Zt- ~)"] - (Y-Yt1' 
(3=27) 

Equatior1 (3=·27) can be solved as before 9 except that now the 

value of Yt is not known. An iterative metho;d must be used: 

1. A value is assumed for Yto 

cl YI t t and 6Z' ray at the tropopause are calculated by Equations (3=25) 
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and (3=26)o 

3, The slope is assumed to be constant for a selected Z interval: 

(3-28) 

4, (t-tt) is calculated from Equation (3-27) by the techniques 

explained earlier. The new-wave slopes are calculated as follows: 

From Equation (3-17) ~ ¥z can be evaluated for the disturbance 

envelope which is everywhere perpendicular to the rays, For a 

point disturbance at the point (Xt 11 YtnZt) 9 Equation (3-17) is 

differentiated with respect to z, after replacing Y with Y-Yt 9 

and the resulting expression is 

C 

~ (z-z - ~) sinh2 m( t-tt) + 2(Y=Yt) ~ 
¥:If t m oZI disto 

envel. 

(3-30) 

Since the disturbance and the ray are orthogonal 9 

oYI oZ disto 
0Y1· 
dZ ray = - 1 0 (3-31) 

envelo 

Equations (3-30) and (3-31) are simplified 9 and the result is 

oYI "'CY-Y) dZ' ray t 
[f-zt_ ~) ~ + _s_i_nli-~~m=(~t~--t_t_)l + ~- cosh m(t-\rl 

(3-32) 

5. Steps 3 and 4 are repeated until the desired Z value is obtained. 

If the computed Y does not give the desired location Yp 9 a new Yt 

is selected and the procedure is repeated till the desired value 

is obtainedo 

6. When the desired Y location is obtained to sufficient accuracy 9 



the T. 
1. 

p 
value is computed by Equation (3-19) wi.th the new 

intervals: 
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(3-33) 

and 

(Xp-Xd)::: (Xp-Xt) + (Xt-Xd) " (3-34) 

For the pro~er Yt value 9 Equations (3-33) and (3-34) can be 

solved from Equations (3-25) 9 (3-27) 9 (3-16) 9 and the relation, 
ct 

(Xt-Xd) = "ni (tt-T)p (3-35) 

For the g location, steps 1 through 5 must be performed again 9 

with all p subscripts replaced by g. D gv can now be found with 

(t-T) and (X -Xd) as was done g g g for pin step 6. 

AT. is computed with Equation (3-9). ir 
p 

With an IBM 1620 computer and 500 feet intervals for Z9 about 70 

seconds was required for each complete iteration for a 50 9000 foot 

altitude. 

This method is considered to be the most accurate prediction 

method available without specific meteorological information along 

the wave path for each flight. 

Method III 

A third method was developed which attempted to reduce the com-

puter time of Method II without sacrificing too much accuracy. The 

simplifying assumption added was that~ of the ray was constant at 

the value of the flight altitude, while the linear variation of speed 

of sound with altitude below the tropopause was retainedo The time .of 

arrival of an incident wave is then given by: 



s 
T. = l. {X + D ) = l. G + Sp 

ip V p pv V [P o 
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dS J tan i3 
(3-36) 

Sis the projected distance of the wave from the flight path in the YZ 

plane (see Figure 5) 9 and 

= -

Flight Altitudes Below the Tropopause 

The assumptions and geometry give the following: 

and 

Y-Y 
¥zlray = constant = d 11 

V 

dS = .... dZ j1-. -+-(1:-~r-v_l",,,_ 9 

C:::: C = mZ 9 g 

1 
tan 13 s ~==-

/jf-1) 

y = 0 t 
V 

(3-37) 

(3-38) 

From Equations (3-3) 9 (3-36) 9 (3-37) 9 and (3-38) 9 the time interval 

from aircraft passage over the origin, 0 9 until wave arrival at point 

p can be calculated: 

T. = l [x + j + (~f C 

de] J~ -f-c2 
i V p me 
p p V C 

V 

= } ~Y -Y ) tan e + z p C p (~+~J+ cos mV · ·· (~· 

t :a 2 (V + ~ C )] w-!i - Ji" ~c + V ln · v -2 9 
-.JV mCP V V + ./V--~ CV 

. p 

(3-39) 



T. 
l. 

g 

Equations (3=39) 9 (3-6) 9 and (3=40) 9 permit T. 
l 

p 
computed a 

and b.T. 
ir 

p 
to be 
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(3-40) 

The assumption of constant~~ eliminates the iterative solution 

which was required in Method II. The time of arrival of an incident 

wave be expressed as 

dS 
$ 

d$ 
1 l S dS j Tip:::: V XP + ~P tan S "l [x V p + jt tan 

+ JP 
~ s tan 

0 t 

In view of theassumptions 9 

c "' constant in the region Zv :2: Z ~ Zt 9 

y 

"" constant :::: _P 
Z -Z 

p V 

the integral terms in equation (3=41) become 

s 
t dS 

J 'tan $ -
0 

and 

Z =Z J (y ):a V t t ---. f,P =C2 1 + ·~" 
C V V Zt-Z 

V V 

y 
+ ,.E 

Z -Z 
p V 

2 
[~ = ~v2=ca p V 

+ V ln 

BJ " (3-41) 

(3=42) 

Equations (3=41) 9 (3-42) 9 and (3=43) are combined and the resulting 

expressions for T. 
l 

p 
and T. 

l. 
g 

are~ 
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T. l 
~Y -Y) tan e + z ~cot 9iD +~Ji+ fz::zJ • ~z(t) =- cos~ 1 V p C p 

p 

.J1r-c2 -Jvs -c2 
-JV2=c2 V r + Vv'-c~ ~)] :e, V 0-44) +- + - ln 9 V m m m V+~ 

p 

and 

T. = Vl I( Y -Y ) tan 8 + Z 
i L P P g 

~
1 

2.tz z 
(cot 9i)\l + l,Ji +1.:.£)1· v= t 
cos eLl v z c 

p V 

'VV2-cra + ___ g..., ~ V ~+~ CJ~ ·V · V g 
---+-ln -

m m '!v +~ cv 
g 

(3-45) 
m 

From Equations (3-44) 9 C3-6) 9 and C3-45) 9 Ti and t:lJ\r can. be computedo 
p p 

Method III is much more straight forward for computation than 

Method II 9 but the assumption of constant ray angle places its accuracy 

in doubto - Therefore 9 a n~mber of typical cases were computed by the 

three methods to provide a comparison of the results. 

Computed Results by the Three Methods and Observations 

In order to compare the three methods 9 computations were performed 

for a vertical wall location of 100 feet above ground levelo The 

ground level was assumed to be at sea leve1 9 and flight altitudes of 

70 9000t 36 9000 9 and 20 9000 feet were used. For flight Mach numbers of 

L5 9 2.,0v and 3.0 and offset distances 11 Y 9 from Oto 709 000 feet 9 the 
p 

three methods gave values of incident wave arrival time 9 T. 9 and time 
1 

interval between incident and reflected waves, 6T. 
ir p 

plotted in Figures 7 and 8. 

p 
~ The results are 

For small offset distances 9 the three methods give almost identi-

cal results. The differences are greatest at low Mach numbers and 



large Y yalues., Method I 9 the conical wave analysis 9 gives the 
p 
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poorest a.ccuracy 9 if it is assumed that Method II is the most exact of 

the three~ Method III 9 which is considerably easier to calculate, 

appears to be nearly equivalent to Method II, and is the one rec-

commended for use. 

The computation methods developed in this Chapter provide a 

means of establishing geometric relationships between an incident 

sonic boom bow wave and its ground reflection and a plane wallo This 

knowledge can be used as the starting point for further computations 

of the whole sonic boom wave pattern as it proceeds around, over 9 or 

past a complete structure" 
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CHAPTER IV 

DIFFRACTION AND REFLECTION OF SONIC BOOM 

WAVES= ANALYTICAL METHOD 

The preceding chapter presented three methods for predicting the 

wave histories of walls which were hit directly by a sonic boom wave. 

For walls which are in the nshadown or which receive the reflected 

effects of nearby walls or corners 9 a further development is required. 

As an example 9 the broken window in the Kinney Shoe Store, whose 

solution is presented in Chapter VI 9 was both in the shadow region and 

beneath an overhanging.canopyo In the time interval 'between bow and 

tail shock wavesg there was sufficient time for about twenty wave 

reflections be"t;ween the ground and the overhanging roof. It is 

obviously hopeless to attempt to predict the pressure history on the 

window without reliance on a computer programmed analysis to include 

both wave input and proper boundary conditionso In this section9 an 

analytical solution for diffraction and reflection of weak pulses or 

weak shocksg developed by Keller and Blank (14) 9 is described. This 

solution is then extended to a sonic boom problem by making use of 

weak shock reflection principles. 

Sonic booms may be considered to act as acoustic waves 9 or plane 

weak pulses 9 since they are weak shock waves. In Reference 14 9 the 

diffraction and reflection of an incident plane pulse by wedges and 

corners were treated and explicit 9 closed=form expressions were 
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obtained in terms of elementary functionso For this geometry the 

solution is nconical" and independent of 11radial" distance in the xyt 

spaceo This allows separation into appropriate coordinates 9 as is 

done in Busemann°s conical flow method which is widely used in super-

sonic aerodynamics" The propagation of plane discontinuities was 

investigated by Luneberg (12) in electromagnetic theory 9 and by Keller 

(13) in acousticso It was found in both cases that the discontinuity 

surface satisfies a first order differential equation 9 the eiconal 

equation9 in a homogenous media 9 and that the magnitude of th~ dis-

continuity varies in a simple mannero Ma.king use of these results 9 

Blank and Keller (14) converted the initial-boundary value problem 

in.to a characteristic=boundary value problem in xyt space and then 

used the conical flow method to obtain the solution" A similar pro= 

cedure will be followed hereo 

A solution is sought to the acoustic wave equation in the two= 

dimensional geometry of Figure 9: (subscripts represent differentiation) 

where 
p = 1& 

p ~ P 1 ~P;. 

e o arctan y/x o 

for~~ 9 ~ 2TI = ~ 

By definition9 the half=plane at e :a:: + P form either a wedge or a 

0 corner 9 depending on whether ~ is less or greater than 90 o 

The solution to be considered 1roill have jump discontinuities on 

a certain moving surface representing a shock wave 9 say r(x 9y) c cto 

It is required that r should satisfy the eiconal equation: 
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y 

Figure 9. Incident Wave on a Wedge 
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This implies that the surface can be constructed by Huygenns principle 9 

ioe. 9 that it moves with velocity c along its normal 9 and that it is 

reflected from the wall in accordance to the simple reflection law. A 

further assumption is that .the reflected discontinuity value is twice 

the incident discontinuity value for a rigid wall. The orthogonal 

trajectories of a family of discontinuity surfaces S(t) are straight 

lines called "rays'''. -The set of rays through a small closed curve on 

a discontinuity surface is called a ''tubeu. The areas of the tubes 

at S(t) and at S(t) 9 are denoted by dS and dS respectively. Also 9 
0 0 

the pressure discontinuities at S(t) and S(t) are denoted asp and 
0 0 

p respectively •. Then9 for plane geometry9 the magnitudes of. the 

discontinuities must vary inversely as /aI!, 

Equation (4=·3) permits p to be computed from p0 on the same ray11 once 

the geometry of the discontinuity surface~ are known. 

In Figure 99 the ray direction is normal to the discontinuity 

plane and is positive in the direction of motion. The angle between 

the ray_directio:n and the x a.xis is ,V 9 and it is always positive., It 

follows from Equation (4-2) that a plarie discontinuity surface moves 

parallel to itself with velocity c along its normal and from Equation 

(4-3) that a pres~ure jump9 p = 1 9 across the wave does not changeo 

This situation ~ontinues until the wave front reaches the wedge. Then 

reflected and diffracted discontinuity surfaces may originate., These 

surfaces can be obtained from the configuration at the instant of 

contact. Then the incident plane progresses to itself 9 and one 

(for 1\T :..: ~) or two (for ,; < ~) reflected plane discontinuity surfaces, 
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plus a cylindrical surface with the wedge as its axis 9_ are produced as 

shown in Figures lOa and lOb_~ 

The pressure jump across the original plane is unchanged and the 

jump across the reflected wave is equal to that of the incident wave 9 

making p = 2o The pressure jump across the cylindrical wave is zero 9 

however 9 since all rays reaching it come from the axis where dS 
0 

vanisheso Thus 9 pis not discontinuous across the cylindero The 

value of p everywhere outside the cylinder is known (either 0 9 1 9 or 2)o 

Since~= O on the wedge and pis. continuous across the circular arc 9 on 
the values on the boundary are knowno From these values it is 

possible to determine the p values within ~he cylindero 

The wave patterns are self-similar with respect to time 9 and so 

can be represented.in -;rand fr, coordinates 9 as in Figures lla and llbo 

Solutions are to be sought inside the circle along radial lines from 

the origino A set of special coordinates in xyt space will be used 

for this solution9 which follows the method of Keller and Blank (l4)Q 

The coordinates are 
l 

r = [~t2 = (~ + /)Ji" 11 

ct 
s::: - 9 r 

e = arcta.n y/x o 

The boundary of the circle is given by r = 0 ands= ~o Then Equation 

(4-1) becomes 

(iRp) +[(l=Efil)p] + l Pee=Oo 
rr - ss l=Efil 

(4-5) 

In accordance with the assumption of similarity9 p ~ p(s 9 8)~ Equation 

(4=5) becomes 

[(1 = sS)p ] + _1 __ Pe-e 
s s l i3 

"" 0 0 



y 
ct 

(a) ~ ~ qi (On.e Reflected Wave) 

.Incident. 
Wave 

= 0 

F.igu:re 10. Dfagram of a Plane Wave Intersecting a Wedge 
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p = 1 

_..,.. __ .-. ________________________________ _.x 

ct 

p = 0 

(b) ~ < <Ji (Two Reflected waves) 

Figure 10, (conti~ued) 
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Figure 11. Complex Plane Wedge/Shoc:k Representation 
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If Pis defined as 

l., 

(s = 1\ ; 
p ,:: S + i'/ V 

then Equation (4-6) reduces to a Laplace equation: 

P a ( op) ?JP dO p~ +-
p ofil 

(4-8) 

The solution to Equation (4-8) may be written in the form 

p = Im f(z) 9 (4-9) 

i9 where f(z) is an analytic function of the complex variable 9 z = pe · 

Lettering R"' (~ + /)* g and combining Equations (4=4) and (4-7) 9 

gives 

i8 X + iy z "" pe = R2 ))'2 
9 

ct + (c2t:e = 

a:nd 

R 
p - R2 )% ct + (c2t2 = 

The cone R :!: ct is thus mapped into the unit circle p ~ lo The 

problem has been reduced to that of finding the function which is 

analytic i:n an appropriate sector of the unit circle with the pre= 

scribed imaginary part of the boundaryo 

The values of p on the boundary of the circle in Figure 10a 9 for 

p ~ 0 on p = 1~ ·~ ~ 8 ~~+a 9 

p ~ l on p = 1 9 ~+a< e ~ 2TI = ~ - b 9 

~ = 0 on OS p ~ 1 9 6 = i and 6: 2TI = ~ 

For Figure l0b 9 where 1jl <~~the boundary values are 
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p :,: 2 on p = le <Ji ~ e ~ <Ji + a {I 

p "" l on p = l9 <fl+ a< e ~ 2TI - <fl - b 9 

(4-13) 
p = 2 on p :e 1, 211' - i = b < 8 ~ 2TT - ~9 

~= 0 on o ~ p ~ 1, e = m . a,nd e = 2n - <Ji 

In order to solve for P, the exterior wedge will be mapped from 

the z plane onto the upper half of thew plane by the transformation 

(4-14) 

where 

A - . TT 
. = 2('!T = ¥} <> 

If the value for z is substituted in Equation (4-14) 9 the resulting 

relations are 

(4-15) 

The circular sector in which pis to be determined becomes a semi= 

circle in thew plane with~= 0 on the diameter (into which the sides 

of the wedge transform)o By the reflection principle one may extend 

pinto the whole plane 9 and obtain a boundary value problem in the unit 

circle as shown in Figure llo 

The next step is the determination of a harmonic function p with 

piecewise constant boundary valueso The solution of the problem may 

be obtained as the sum of the solutions 9 each of which takes on a 

specified constant value on the arc of the circle and is zero on all 

other arcs. If Ula > Wi with Ula = WJ. < 2n and p is a constant 9 K9 on 

the arc ~ :.: w ::? OJi and p :a: 0 9 then p can be shown in take the form 

(Reference 14) 

K 
P = n r: /w - exp( iW, )~ 

Larg \w = exp(iOJi) (4-16) 



and in terms of real variables it becomes 

(4-17) 

The arctangent is taken in the interval between O and TI. The solutions 

may then be written explicitly as follows: 

TI 
Case 1 9 ~ ~ w ~ ~ = ~ 9 

l [ -(l-P2 A)cos A.{ljr-TI) J p ::: 1 ... - arctan X . X · 
TI (l+p2 )sin X( 1\1-TI) - 2p sin A( 9-TI) 

p ~ 1 + .! arctan 
TI 

(1-p )cos A(1jr-TI) [ ;A j 

1 t -(1-p cos A(1\r+TI) [ :a A) J 
+ - arc an X X • 

TT ! (l+p2 )sin 11.(1jr+TI) - 2p sin Me-rr) 

9 

Application to a Sonic Boom Wave Incident on a Building 

(4-18) 

(4-19) 

Using Equations (4-18) or (4-19) 9 one can compute the pressure 

distribution in a circular arc of radius ct surrounding a corner of a 

structure struck by a sonic boom wave. The circle defines the region 

in which the wave is diffracted and reflected due to the presence of 

the corner. 

Let: t = time elapsed since the wave hit the corner of the structure,, 

H - height of the structure. 



Theu 9 if ct> H9 the circular sector has reached the ground and has 

been reflected; the previous formulae cannot be applied directly. 

Sonic boom waves are always associated w:l.th incident bow and tail 

waves with an expansion region. in between them ( the 11N'1 wave). In 

addition~ both bow and tail waves have ground-reflected waves. The 
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pressure distribution of a sonic boom can be computed as the algebraic 

sum of the pressure distributions of each of these elements: bow wave 

(incident and reflected), expansion wave regiong and tail wave 

(incident and reflected). A few multiple reflected disturbance 

regions of a sonic boom wave past a right angled corner are shown in 

Figure 12. For this case 9 ~ = 0 and~~ i. So Equation (4-19) may 

be used to compute the pressure distribution of a diffracted incident 

wave at point (x10 y1 ) in the neighborhood of the corner. Pressure 

distribution at any time is a function of the height of the point 

above ground level and the geometry of the reflected disturbance 

regions. 

In the interval O ~ ct ~Jx12 + y12 9 (Figure 12a) 9 p(x19 y1 ) ~ 0 9 1 9 

or 2, the value depends on the wave location at the time. 

In the interval Jxi2 + y12 <ct" /x.12 + (2H=y1)2 9 (Figure 12b)~ 

p(~ 9 y1) can be computed from the equation for disturbance c1 only~ 

Thus 9 p19 the pressure disturbance at p due to C19 is computed by 

means of 

e ·:: arctan (y1/x1) - ili 9 and R = /x{2 + y12 p = p1 

In the interval /x12 + (2H=y1)2 < ct ~ 2.H + /x12 + y{13 ~ 

(Figure 12c) 9 p(x19 y1) can be computed by treating the point as 

affected by c1 and- its ground reflected disturbance C29 where c2 

is treated as a mirror image of c1 : 



p "' 0 

H 

Ground Level 

(a) Phase I: 0 ~· ct ~ ~x{;a + Y{4 

H 

X 

Figure 12, 'wave Reflectfon by a building 
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H 

X Ground Level 

Figure 12. (co~tinued) 
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H 

(d) :Phase IV: 2H t- 1x 2 + y 2 < ct < 2H + ~x 2 + (2H - y )2 1 1 - 1 1 

Figure 12. (continued) 



p2(xlgyl) ~ pl(xl9 2H=yl)o 

p2b(x19 y1) is the pressure at the boundary of the region c2 , 

which may be calculated as the boundary pressure of c1 with 

e = arctan [(2H-y1)/~] - cp. 

Then: 

where 

for P1 , R = fxt + Ya 
l 

and e = arctan (y1/x1) - ill, 

for p2g R ~ ./xt + (2H-y1)2 and e = arctan [(2H-y1)/x1] 

for p2b, R = ct and 0 = arctan [(2H-y )/x] = ill l l Q 

- ill, 

In the interval /x12 + y12 + 2H < ct :S: 2H + /x12 + (2H = y1s) 9 

(Figure 12d) 9 p(x1 ,y1) is affected by the regions of c1, c2, and c3 o 

An exact method would be to compute the boundary values on c3, with the 

1T 5TT assumption that it is affected by regions cl and c2 for!{ :51: ill~~ and 

c1 only for f ~ iJl :ir: ~ 9 and then to find an exact solution for the 

pressure at x19 y1 consistent with these boundary conditions. This 

method is very difficult 9 if indeed possible 9 because it requires 

satisfying variable boundary conditions involving complex expressions. 

The influence of region c3 is small _compared to that of c1 and c2• 

It is therefore suggested that an easier 9 and perhaps fairly accurate 9 

method is to assume that the influence of region c39 on the point is 

due to a weak normal shock of strength equal to the difference of 

p2(0 9 ctm2H) and p2(o 9 Jx12 + y;:) at; o Then p(x1,y1) is the sum of 

the pressures due to c1, C29 and c3: 

p(Xl9yl): pl(Xl9yl) + p2(~,y1) = P2b(X1vY1) + p2(0,/xl2 + ylS) 



where 

for p19 R = /x12 + y12 and e::::: arctan(y1/x1) ~ ~ 7 

for p29 R = Jxt + (2H=y1 )2 and 9 = arctan[{2H-y1 )/x1_]= ~ , 

for p2b II R '"" ct and e - arc tan[ (2H=y 1 ) x1J- ii? 9 

for p2 (0 9/x{;a + y12 ) 9 R = 2H +./x{2 + y12 and 9 = TI 9 

for p2 (0 9 ct-2H),; R = ct and e =TT,. 

This simplification was not usedg however, in this study 9 and its 

effect on accuracy is therefore not knowno 

In the interval /x12 + (2H=y1)2 + 2H < ct :!': 4H + /x1 :a. + y1; 9 

p(x19 y1) is computed as affected by regions C19 C29 c39 and c 49 with 

the first three treated as in the previoµs time interval. For p49 C4 

can be considered as the ground reflection of c3o 

By the use of a digital computer 11 this process can be extended 

to large numbers of reflection and the pressure distributions can be 

predicted as functions of time for given wall geometries and wave 

incident angles" The method developed in this chapter will be applied 

to the Kinney Shoe Store geometry in Chapter VI. 



CHAPTER V 

DIFFRACTION AND REFLECTION OF SONIC BOOM 

WAVES - NUMERICAL METHOD 

The analytical method described earlier has several limitations. 

Firstly 9 for the solution of any particular problem of sonic boom wave 

interaction with a structure 9 it is necessa.ry to visualize the shock 

wave patterns around the structure, which may be difficult in certain 

cases of complicated structures. Secondly9 this method is useful only 

in a two-dimensional case and cannot be extended to three-dimensional 

problems. In this section9 a numerical method has been developed so 

that more general sonic boom wave/structure interaction problems can 

be handled. 

Tyler (8) and Walker (10) obtained numerical solutions for two

dimensional and axisymmetric problems associated with shock wave 

phenomena utilizing Rusanov's (5) difference technique in which 

11 dissipativen terms were used to obtain a numerically stable solution 

for shock diffraction. 

Governing Equations 

The conservation forms of the general flow equations for a 

two-dimensional case for a plane flow 9 derived in Reference (8) 

by assuming the fluid to be an inviscid and ideal gas 9 are: 
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Continuity 9 

op+ o(pu) 
at ax 

x-Momentum 9 

+ o(pv) = O 
oy 

o(pu) 
()t 

o o 
+ ax (P+pu2 ) + dy (puv) = O 

y-Momentum9 

o ( pv) o (P 2 ) o ( ) = o at + rx +pu + ay puv 

Energy 9 

op o o dt + ax (e+P)u + ay (e+P)v :e O 0 

The fluid energy 9 e 9 is defined as 

p(u2 + v2) P 
e = 2 + 'Y-1 • 

Definitions for the above equations are 

p - density 9 

u - x-component of velocity 9 

v = y-component of velocity 9 

P = pressure 9 

y - ratio of specific heats9 

x 9 y = space coordinates. 
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(5-1) 

(5-2) 

(5-3) 

(5-4) 

(~-5) 

If Equation (5-1) is substituted into Equations (-5-2) and (5-3) 9 the 

resulting momentum equations are 9 

x-Momentum, 

ou ou ou 1 oP 
'llf(T't + U ~X + V·- + - - := Q o oi;; ox . oy p ox ' 

y-Momentum 11 

(5-6) 

(5-7) 
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If Equations (5=1)w (5=5) 9 (5=6) 9 and (5=7) are substituted into 

Equation (5=4) 9 the resulting energy equation is 9 

ft + u ¥x + v * + yP (~ + ~) = 0 o 
(5-8) 

Sonic Boom Wave Approximations Applied to Conservation Laws 

In Figure 13 9 a shock wave making an angle e with the x axis is 

showno Von Neumann (15) and (20) derived equations relating the 

y 

p 
0 

po 

u 
0 

V 
0 

Figure 13., Geometry of a Shock W'ave 

downstrea.m=to=upstream properties of a weak shock wave; these are; 

(5=9) 

(5-10) 

where V = velocity in the direction perpendicular to the shock wave 9 

o = refers to conditions upstream of the shock wave 9 



and 

l!, = refers to conditions downstream of the shock wave 9 

'YP 
0 

po=~ 
ce 

0 

Velocity components in Figure 13 11 are 
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(5-12) 

]'or a typical sonic boom wave 9 the values for 6 9 c 9 P 9 and P are 
0 0 

assumed as 

C :::: 1100 ft/sec 9 
0 

p - 2000 psf, 
0 (5-13) 

t::J? """" 1 psf 9 

P1 - 2001 psf 9 

For the aboves value 9 Equations (5=9) 9 and (5-10) can be approxi= 

mated as 9 

C (s-1) 
0 

V, ~ ----
"' 'V 

(5=14) 

P1 :2:' p "" constant o 
0 

(5=15) 

If the values in Equation (5-13) for 8 9 c 9 and P are substituted in 
0 0 

Equations (5=11) 9 (5=12) u (5=1~-) 9 and (5-15) 11 the resulting values are 

P1 - Po~ 00002315 slugs/ft3 

V:i. - Oo393 ft/sec 

u1 ~ 0.281 ft/sec 

V1 - Oo28l ft/sec 

(5-16) 

Now 9 the orders of magnitudes for various terms in Equatio-ns (5-6) 9 

(5-7) 9 and (5-8) are evaluated here : 



OU OU QV ov 0 
U "3i ::,i V ~ = U dX : V dy c:: 0 [10 ) 

oP = ~ = 0 [lOo] ax ay 
(5-17) 

1 aP 1 oP O [ s J pax=pay= 10 

yP *' = yP * = 0 [103
] 

OU ov oP [ oPl [ 3] at = at = at = o f o:iJ = o io 0 

Comparison of the orders of the magnitudes of various terms in 

Equation (5=17), Equations (5-6) 9 (5-7), and (5-8) leads to these 

approximations: 

x-Momentum9 

(5=18) 

y-Momentum 9 

(5-19) 

Energy 9 * + yP (t + *) = 0 o 
(5-20) 

For reduction of the energy Equation (5-~9) to a more general form, 
,.,,,F' oP oP 

which will be presented later, two terms, yu ax, and yv di were added 

to ito This is permissible since compariso~ of the orders of the 

magnitudes of these two terms with the other t,erms in the energy 

equation indicate that this will change the equation by a negligible 

amounto The modified energy equation is 

oP fo o ~ 
at+ y Lax (Pu) + dy (Pv!J 0 (5-21) 
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Equations (5-18), (5-19), and (5-21) are the conservation laws 

after the proper approximations of a typical sonic boom wave are 

With the assumption of constant y and p 9 the flow Equations (5-18), 

(5-19) 9 and (5-21) may be written as a single equation: 

.2£ + ayK + oFY = 0 ~ 
ot rx ay · 

where f 9 i\ and FY are treated as three component vectors; 

u (P/p 0 

X 
0 ~ . 'P/p F = . := 0 f :::: V 

p '.yPu yPv 

Finite Difference Equations 

(5-22) 

(5-23) 

The Equation (5=22) was solved ,p;umerically by the method of finite 

differenceso Tyler (8) discussed in detail the properties of con-

servation laws applied to a gas dy:namics problem and has made a brief 

survey of several difference techniques developed to solve proplems 

associated with shock wave·: phenomenao The, concept of a weak solution9 

which has been discussed in mathematical journals (21) 9 (22) 9 and (23) 9 

allows the solution to be discontinuouso Therefore 9 a weak solution 

may have jump discontinuities and hence it can be used to solve problems 

associated with shock wave phenomenao A method of obtaining physically 

relevant weak solutions for the conservation equations has been 

described in (24) 11 (25) 9 and (26) o Von. Neumann and Richtmeyer {24) 

suggested that the inviscid flow equations should be altered by adding 

dissipative terms so that the surfaces of discontinuity w9uld be 

nblurredn into regions where all the flow variables would be continuous 9 



but rapidly ch.angingo IrJ. view of the similarity of its effect to that 

of viscosity in accomplishing the blurring process, this method is 

known as the method of artificial viscosityo Since the time of 

Von Neumann's work, most of the significant theories are based on 

the blurring techniqueo Tyler and Walker have applied a difference 

technique .developed by Rusanov (5)o 

The addition of blurring terms to the general partial differ-

ential Equation (5-22) results in the expression: 

(5-24) 

where A.(x,y 9 t) and B(x9y 9 t) are the blurring terms whose values are 

obtained from the stability analysis in Appendix. Von Neumann and 

Richtmeyer (24) have given four requirements that must be satisfied 

in the selection of the blurring terms: 

lo The equation with blurring terms must possess solutions 

without discontinuities. 

2o The thickness of the shock must be of the same order as the 
/ 

length b.x. 9 and ~yin the numerical calculationso 

3o The effect of the blurring terms must be negligible 

outside the shock regiono 

4o The Ra:nkine-Hugoniot equations must be satisfied across 

the shock regiono 

The finite difference eqUJ:t-tion corresponding to the partial 

difference Equation.(5-24) is obtained by using forward differences 

for time derivatives 9 and central differences for first-order space 

derivativeso Use of a scheme like·-this permits evaluatio~ of the 

X y val~es of f 9 at any instant explicitly from the values f 9 F 9 and F 
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at the preceding timeo 

The finite difference net notation is shown in Figure 14. The 

The angle Xis the angle between h1 and h where 
l 

h = ( hi 2 + ~ 2 )2 (5=25) 

At some net intersection9 a quantity q with coordinates (kh19 ihs 9n~) 

n is denoted by qk~ g, o For purpose_s of discussion 9 n is referred as 

the nth time plane. 

One can see that the form of the difference equations will vary 

depending upon the location of the net point in the flow field. Thus, 

the difference equations for net points lying entirely within the 

flow field 11 ''field points11 i will be different from the difference 

equations for the net points lying on walls and on flow plane 

boundaries~ ''boundary points11 ~ This difference· is due to the require-

ment of satisfying the boundary points 9 and their lack of surrounding 

pointso 

Difference Equations for Field Points 

With the use of the difference techniques and the difference net 

notation discussed above 9 the complete difference approximation to the 

general partial differential Equation (5=24) may be written as 

(5-26) 



y 

(k-1 •. 6H) 
0 

0 
(~-1, .t) 

0 
(k-1,.t-l) 

X == tan -l_ ..h.a. 
hi 

, . l. 
h = (hf +'h~) 2 

(k, .t+l). 

0 

0 
(k, t-·l.) 

(k+l,.t+l) 

, ha 

(lc+l, ~) 

'd+l, L) 

Figure 14. Finite Difference Net Notation 

X 
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and Equation (5=26) is then written as 

n 

+ ! ~k+}9.t (fk+lg.t = fkg.l) = Cl'k=}9t (fk9.t = fk=l~.e~ (5=28) 

A new parameter K is defined as 
l 

K~[~+K;Po 

From Equations (5-27) and (5=29) 9 K may be expressed as 
- li3 2 !. 

K = [JiL!_,Ea]!_, T o 

h1bs 
(5=30) 

The geometry of the Figure 14 and Equations (5=25) 9 (5=27) 9 and (5=30) 9 

permit K1 amd ~ to be expressed as 

(5=31) 

In Appendix stability ane.lysis is performed to evaluate the 

required values of Cl':'il .t a11d 13:
9

,e. for the difference equations of the 

conservation laws., in a manner similar to that of Rusanovo The needed 

n n 
values for ak t and !3k t are found to be 

\) g 

(5=32) 
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whereas the inequality 

(5-33) 

must be satisfiedo 

by 

The time increment between any two successive time steps is given 

1 K,-o 
C max 

(5-34) 

Boundary Points on Walls 

Walker (10) discussed in detail the possible boundary conditions 

that can be applied for points lyin~ on walls or planes of symmetry. 

Walker considered three possible methods: 

1. Ideal boundary conditions that must exist at the boundary 

in question are forcefully imposed on the boundary. Strict 

usage of this condition9 without due regard for the physical 

problem9 can .lead to erraneous results. 

2. Either forward or backward differences for the appropriate 

space derivatives are applied to the boundary points. This 

method is not sufficient to satisfy the complete set of 

realistic boundary conditions at the wall. 

3. A reflection technique 0 discussed by Burstein (~7) 9 assumes 

that the points adjacent to plane walls are imaged by virtual 

points that lie within the wallo In the present analysis, 

this method has been applied because of its merits explained 

below. 

For a wall parallel to the X=axis such as that shown in Figure 159 

the relations of the variables at the field point (k,l+l) to the 
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variables at the virtual point (k 9 l=l) are: 

pk 9l+1 = Pk,L=l 9 

~gl+l: ~9l=l g 

Vk9t+l: =Vkg.l=l 

(5=35) 

This representation allows boundary points to be treated by central 

differences in the same way as the field pointso Thus 9 for a wall 

parallel to the x=axis the difference Equation (5-26) can be modified 

by using the conditions of Equation (5=35)o 

For a net point lying on a wall parallel to the y-axis the 

relations of the variables at the field point (k+l 9 l) to the 

variables at the virtual point (k=l 9 l) are 

pk=lgl ~ pk+lgt g 

~=lg!: -~+l9t 9 

vk=l 9 ! = vk+l 9 l 9 

and the difference equation can be obtained by using the conditions of 

Equation (5=36) in Equation (5=26)o 

The advantage of the image point method for treating boundary 

points is that it is not necessary to dictate the values of deri= 

vatives at a surface and it allows the derivatives to assume whatever 

the boundary conditions are not imposed in such a manner that they 

negate the possibility of certain phenomenon occurring in the vicinity 

of a wallo 

Boundary Points on a Flow Plane 

For any finite difference solution9 the 11 flow planen corresponds 

the boundary of the finite difference neto The net points on k :a,; 1 9 

k = k 9 and t = t in Figure 16 are the boundary_points on the max max 
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flow planeo 

There is no general technique for handling the points on the flow 

plane boundarieso Each particular problem has to be treated separately 

and proper boundary conditions to represent the physical problem should 

be imposedo 

The method developed in this chapter will be used in the succeeding 

chapter to compute pressure-time histories for the Kinney Shoe Store 

geometryo This will permit a direct comparison to be made between 

the analytical and numerical resultso 



CHAPTER VI 

PRESSURE=TIME HISTORY OF A SONIC BOOM WAVE ACTING ON WtNDOW 

IN A BUILDING 

During the series of sonic boom test flights conducted in the 

l" Oklahoma City area during 19649 an 8v x 10v x 'Ii'.' plate glass window 

in the north wall of the Kinney Shoe Store 9 a single-story commercial 

building9 was broken with the occurrence of one of the sonic boomso 

This particular sonic boom occurred at about 1:20 porno on May, 19649 

and was produced by an F-101 aircraft at 37 9 742 feet altitude on a 

scheduled steady=state course at a scheduled speed of Mach number lo4o 

Orientation and distance of aircraft course with respect to the 

building are shown in Figure 17. In this chapter the methods de= 

veloped in Chapters III 9 IV 9 and V will be applied to this building9 

and to the window region in pa.rticular 9 for the flight conditions 

which produced the brea.kageo 

Conversion of Wave Time=Histories into Wave Geometry 

For the Kinney Shoe Store 9 the predicted position of the wave 

relative to the building was needed 9 as well as the time-of=arrival 

of the waves at specific locationso The wave geometrywas estimated 

from the computed time values as described belowo 

To determine the angle between wave and wall in a horizontal 

plane~ two points on the wall in the horizontal planei such as the 
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lower corners of a building 9 were selected and the T. values computed 
l. 

using one of the methods described in Chapter IIIo With reference to 

Figure 189 the distance between these two selected points is L9 and 

the point having the smaller y-coordinate is point land the larger is 

point 2; xy is the horizontal planeo It can be shown9 by use of the 

law of sines 9 that the wave angle is 

V 
tan ew = tan e = L (Ti2 - Til) sec e 0 (6-1) 

Similarly 9 two poixits were chosen on a vertical line, such as the 

upper and lower corner points of the corner of a building9 with the 

upper designated as 3 and the lower as 4o A vertical plane containing 

points 3 and 4 and perpendicular to the wave line on the ground 

(i.e. 9 at an angle e + 90° from the y-axis) was as shown in Figure 19. 
w 

Then~ for a wall height H9 the wave angle in the vertical plane was 

(6-2) 

These relations were applied to the Kinney Shoe Store conditions. 

For this 9 the flight path geometry is shown in Figure 179 and; 

L = 70 feet 9 H = 12.75 feet. Values of (T12=T11) and (T14-Ti3) were 

computed by the Method II of Chapter III 9 and were found to be 0.0031 

and 000038 seconds, respectively. These values 9 in combination with 

Equations (6=1) and (6=2) 9 gave wave angles e and t of 2608° and 
'W' 'W' 

0 70.1 9 respectively. The resulting wave=building relationship is 

shown in Figure 20. Some wave-time positions are depicted in Figure 21 9 

in which TiR is the time for a wave to pass a point after it has passed 

the reference point 9 the south=west corner at the ground level. 

From test data for the F=l01 aircraft at the flight Mach number 9 

altitude and y-distance 9 the bow=to-tail wave time interval was 

estimated to be 0.135 seconds and the incident ground overpressure to 
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Figure 20. Geometric Relationship of Building and Wave 
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be lo65 psf (Reference l)e Upon computing the incident=to=reflected 

wave time interval9 ~T. 9 for 600 and l2a75 feet heights 9 the pressure 
ll' 

histories on the west wall were predicted as shown in Figure 220 

Pressure History on the Window of the Kinney 

Shoe Store - Analytical Method 

Figure 23 depicts the window on the north wall of the Kinney Shoe 

Store 9 under the roof overhang 9 that was broken during the seventh 

flight of a F-101 aircraft on May l?, 19640 The position of the sonic 

boom wave for the particular conditions was determined in the previous 

section and is shown in Figure 230 For the two-dimensional analysis 9 

the wave was assumed to be parallel to the west wa.11 9 neglecting the 

3o2° angle that was estimated in the previous analysiso As shown in 

Figures 24a and 24b 9 the incident and reflected waves (with the bow 

wave considered only as a step input at_ present) were diffracted by 

the roof overhang and reflected by the ground and roof overhango The 

sonic boom wave was considered as a two=dimensional wave and the 

effects of the north edge of the roof overhang and south=extending west 

wall were neglectedo The wave=history for the window and for some of 

the points on the north-west corner were estimated by the analytical 

method developed in Chapter IV 9 including the effects of the reflected 

disturbance regions on the rigid walls (the ground and the roof over= 

hang)" - The x and y axes were . selected as shown in Figure 230 For this 

particular geometry 9 I= 0 9 and 'V = l9o9o If these values are sub= 

stituted into Equations (4-14) and (4=18) 9 the resulting expressions 

are 
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TT l 
A ::: 2(TT-91) = 2 11 

l 5 - (1-P) cos l(~n) fl p = l = -arctan /I"!!!""~~~_.,.,..,.._...,_..~ ............ --...-....-_.. ..... 
TI \l+p) sin f{~=TI} =~sin f(9~TI) 

(6-3) 

Equation (6-3) can be simplified to become 

·1 
p ~ l - - arctan 

TI 

1 
+ - arctan TT 

. v 
(1-p) sin 2 

Ec1+p) cos ! - 2/p 

(1-p) sin! 

t(l+p) cos ! + 2/p 

e] 
cos 2 

~J 0 

cos 2 
(6-4) 

A computer method was developed for the wave history at any point 

x 9 y in the coordinate system shown in Figures 23 and 240- The time 

ts O corresponds to the condition at which the incident wave of the 

sonic boom has reached the origin of the chosen coordinate axes (west 

edge of the roof overhang)o The special notation used in this method 

is expanded as follows: 

C disturbance regiono 

p=p 
0 dimensionless overpressure at the point x 9 y due to p = P1=Po 9 

the sonic boomo 

pi pat the point x 9 y at any time t. due to the incident waveo 
1 

Pr pat the point x 9y at any time ti due to the reflected waveo 

Pnp pat the point x 9y at any time ti due to the disturbance 
region C o 

n 

pnb pat any time t 1 at the boundary of the disturbance region 
at the angle e o n 

t;p = P=P 9 overpressure at the point x~y at any time t. due to 
0 the sonic boomo 1 

1 
R1 = (~ +y2 )i' 9 the distance of the point x 9 y from the origin 110" o 
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l 
R = (:xS+i) i 9 the distance of the point x9 y from the origin of 

n n the d. t b • C is ur ance region o 
n 

t. 
1 

time elapsed since the incident wave passed over the origin 
nono 

t 
r 

time elapsed since the reflected wave passed over the 
origin uono 

y ~ (n-l)H + y 9 if n is odd 9 n 

= nH - y 9 if n is even; y coordinate of the disturbance region 
G o 

n 

e = n 
/Yn\ 

arctan ic=, 9 inclination of the point x 9 y in the vertical 
plane (p8sitive-in clockwise direction from the x-axis)o 

With reference to Figure 28 9 a relation between t. and t is 
J.. r 

established as 

t = t. = 2H tan t cost""' t. _ 2H tan t 
r 1 C i C 

The pressure history at the point x 9y due to the passage of a 

sonic boom is a function of the geometry of the incident and re= 

fleeted waves and the several disturba..1t11.ce regions at any time t," 
l. 

(6-5) 

Computational procedure is presented bel~w to predict the overpressure 

due to the incident and reflected waveso At any time ti 9 the over

pressure at the point x 9 y is the algebraic sum of the overpressures 

due to the incident and reflected waves. 

Computation of Overpressure Due to the Incident Wave 

Condition 1: ct1 ~ R1 

(a) If e1 ~ ~; pi~ O. 

(b) u e1 > ;; 

for 
ct. 

1 >R 
cos (61=¥) 1 9 



Condition 2: ct.> R19 n was computed for 
1 

where 

and 

R <ct.~ R l; n 1. n+ 

y = (n=l)H + y 9 if n is odd 9 n 
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- nH =Y, if n is even. (6-9) 

Then p. was the algebraic sum of the overpressures coutributed by the 
1 

where 

P1i = plpi 9 

and for n > 1 9 

Pni ~ Pnpi = Pnbi 0 

p . was computed from Equation (6=4) and the values for p and e as np:i.. 

follows: 

\) 

e = e "" arcta~ (~) o n X 

P depends on the value of e and the value is always O or l or 2 
~i n 

depending on the geometry of the point in consideration. In this 

particular case 9 it was always lo Hence 9 

Pnbi ~ 1" (6=13) 

At any time t. 9 p. was computed by Equations (6=7) to (6=13)o 
1 1 



Computatiori of Overpressures Due to the Reflected Wave 

For a.ny time ti 1 the \. value was computed from Equation (6=5). 

Condition 1: ct .:s: Rl r ct 
If X ;;;: r 

case + y tan 
* Pr 

ct 
r If x < - + y tan V 9 and cos e 

ct 
(a) Rl ;;;: =-· r 

(i\i=e? Pr ,:; 

cos 

ct 
(b) Rl < r and e., - - <w=elr 9 cos .L 

ct 
(c) Rl 

r and el < cos~Cf=9iJ 9 

::::- 0 0 

1 9 

s: '¥ pr - 2 \) 

> '¥ ; pr = l 0 

Condition 2: ctr> R19 n was computed such that 

R < ct ~ R l .• n r n+ 

'I'he:n p was the algebraic sum of the overpressure contributed by the 
r 

P. was computed by the 
r 

same procedure of Condition 2 of the incident wave after replacing 

t. by t and changing the subscripts 11 i 11 to 11 r 11 in the overpressure 
J. r 

termso 

Computational TeclL~ique for an N=Wave 

A sonic boom ordinarily will have a shape similar to an N=wave. 

The time intervalg 6tg between the bow and tail waves of the sonic 

boom that caused the broken window has been estimated from related 

78 

test data to be Ool35 secondso An N=wave can be treated as two shocks 

of equal strength (p. = p = lb,P) with a series of expansion waves 
i r 2 o 

between them" .An N-wave of strength p. = LO and p = loO at bow and 
. i r 

tail waves separated by Ool35 seconds was assumedo Then 135 small 
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expansion waves were assumed of strength p. = p = 2/135 9 each separated 
1 r 

by a time interval of 0.001 seconds. Overpressure at any time t. was 
1 

then the algebraic sum of all the overpressures due to all the step 

waves, effective at that time. The input to the region beneath the 

canopy was thus an N-wave of 0.5 psf incident pressure for an unit 

overpressure sonic boom wave and a period of 0.135 seconds. The 

resulting pressure at any point considered the reflection/diffraction 

effects and the height of the point. 

Computations and Results of the Analytical Method 

The pressure distribution due to the subject sonic boom was 

computed at six points 9 A through'F 9 as shown in Figure 25, on the 

north wall of the Kinney Shoe Store. Computer programs were written 

both for a step input and for an N-wave utilizing the technique 

described above. About 15 minutes were required to obtain the pressure 

history of each point from t. = 0 to 0.16 seconds on an IBM 7040 
1 

computer for an N=wave. 

In Figures 26 and 27 9 the pressure distribution at points A through 

Fare plotted for a step input wave and for an N-wave respectively. 

The dotted lines represent the input waves if there were no corner or 

overhang effects. 

Pressure History on the Window of the Kinney Shoe 

Store= Numerical Method 

The finite difference net (140 x 23) used is shown in Figure 280 

The roof overhang was treated as a thin wall of negligible thickness 9 

located between the two rows of net points t = 9 and t = 109 starting 
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to k c:s 140" 'l'he objective was to estimate max -

the pressure history at the same six points computed earlier by the 

analytical method 9 A through F'g shown in Figure 280 A much larger 

field than necessary was chosen to reduce the errors that might be 

introduced at the flow plane boundaries 9 k ~ kmaxg l ~ 1 9 and l = lmax' 

due to the inability of the boundary conditions to represent the 

physical boundarieso The shock wave angle\) if! 9 was again taken as 
w 

7001° 9 from the previous analysiso The mesh angle 9 ')(9 was assumed 

to be the same c;1,s i.f!w so that the initial shock wave progressed the same 

number of riet points in both x: and y directionso 

Difference Equations for Field Points 

Difference equations for field points were written for u 9 v 9 and P 9 

with 0s and 0 s treated as consta:ntso Equations (5=22) and (5=23) 9 

were then 

where P = atmospheric pressure~ p = atmospheric densityo 
0 0 
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Boundary Conditions 

For the net points on the ground (..e, = 1) 9 the difference Equations 

(6-15) were modified by using the boundary conditions 9 

(6=16) 

For the net points adjacent to the roof overhang (see Figure 29) 9 the 

difference equations were modified for the following boundary 

conditions: 

pn 
kg1.+l 

Ea pl! 
kg! I) 

n n 
1\:v.e+l = pkv.l 9 

n n 
vk 9 i+l "=' = vk11.t 

For .e ;:a 109 k = 4o to 139: 

pn 
kv.l=l 

::=. Pn 
kg.£, 

g 

n n 
u = ~\).e j) k9t=l 

(6=18) 

n n 
V ~ = vk J, kg.t=l I) 

Equations (6=16) to (6=18) were derived with the reflection technique 

described in Chapter Vo 
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Flow Plane Boundary Points 

For the net points at .R, = l: (left boundary) 

(6-19) 

f 1(t), f2(t) 9 and f3(t) are functions of shock wave position at time t, 

assuming that the roof overhangfs influence is negligibleo To justify 

this assumptio:n 9 a large field was choseno 

For the net points at .R, = .R, (top boundary) max 

pn+l 
k9.l = 

pn+l 
k9t=l \I 

n+l n+l (6-20) Uk I, 
:,:: 

~11.l=l I) 
9 

n+l n+l 
vk .R, "" V 

9 . k91-=1 

These conditions force the incident and reflected shocks to be·come 

straight and parallel to the y=axis at the top boundaryo In spite of 

its inability to represent the proper physical conditions, this proved 

to be better than any other possible method 9 such as extrapolationo 

The criteria for selection of upper and right boundary representations 

was that waves incident on the boundary should be reflected as little 

as possible. 

For the net points at k = k max (right boundary) 

Pn+l 
k~.l 

.:::: Pn 
k=lg.l 

(6=21) 



The following numerical values were used in the computations: 

T = 83° F o 
0 

c =constant= c0 = 114208 ft/sec. 

P = 2000 psf 
0 

p =constant= p = 0.002145 slugs/ft3 • 
0 

= hg cot~ = 0.5430 feet. w 

~y = ~ = lo5 feet. 

K = 1/c = 0.000875 seconds. 

Ki = h1/T = K sin X = 00000824 seconds. 

Ka = h;/T = K cos-x = 00000297 seconds. 

At= T = 0.000447 seconds. 

W = lo 

c:x = Kwc sin2 X = sin2 'X. = o.884. 

S = Kwc corf 'X. = coef3 'X. = 00114. 

Computations and Results of the Numerical Method 

Computer programs were w-:rcitten for both a step input with 

incident=plus=reflected wave strength of l psf 9 and for an N-wave 

having bow=to-tail wave time interval of 0.135 seconds and a strength 

of 1 psf. The initial conditions assumed for the step input in 

regions (0) 9 (1) 9 and (2) of Figure 28 9 were: 

P = 2000 psf. 
0 

u = 0 0 

0 

V = 0 0 

0 

P1 = 2001 psf o 

= c(P1 -Pg) sin X. 
u1 Po 
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V1 = c(P;i. -Pg) cos X• Po 

Pa = 2002 psf. 

1.12 = 2u2 • 

V2 = o. 

The N-wave was treated the same way as in the previous analysis 

except that here 302 expansions waves were taken so that they were 

spread b;T a distance of one field point width in the x-direction. 

Initial conditions in region (0) were the same as above, but in regions 

(1) and (2) algebraic sums of the incident and reflected compression 

and expansion waves were considered. 

Pressure histories for the six points, A through F, were computed 

by interpolation of the adjacent field points for both a step input 

and an N-wave. On an IBM 7040 computer 9 about 60 minutes were required 

to compute the pressure history for the field of 3220 points from Oto 

0.18 seconds (415 time planes) 9 printing the values for the six points 

at each 0.001 seconds interval. The programs were quite simple and it 

took only 2.7 milli=seconds for each point-time plane. 

As a check on the validity and the applicability of the numerical 

method 9 the results were plotted and compared with the results obtained 

by the analytical method. In Figures 30 and 31 9 the pressure dis= 

tribution at points A through Fare shown for a step input and for an 

N=wave respectively. The dotted lines represent the results of the 

analytical method. As can be seen 9 the agreement is very good. 
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Discussion of the Results 

For a two-dimensional analysis 9 both analytical and numerical 

methods produced essentially the same results. To test the validity 

of the results, point F was located in such a way that one can 

intutively reason that the roof overhang effects are negligible at 
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this point. In Figures 26, 27 9 309 and 31, pressure distribution for 

point F by both analytical and numerical methods was almost the same 

as the pressure distribution if the roof overhang were removed. These 

results indicate the validity of both the methods. The analytical 

method rests on solid physical and mathematical foundations. The 

primary objective in trying the numerical method was to investigate its 

applicability to a sonic boom wave problem. If one looks at the 

results for points A through Fin Figures 30 and 31, the comparison 

of the numerical and analytical methods was excellent excepting that 

the numerical method smoothens out the peak overpressures. Of course, 

this is to be expected in this numerical technique due to the addition 

of the blurring terms. Solutions were sought for smaller values of the 

blurring terms but they were unstable in the shock regions. Thus, one 

must be prepared to sacrifice some accuracy to apply the numerical 

methodo But unlike the analytical method, the numerical technique can 

be extended to a three=dimensional problem which will be of great use 

in sonic boom wave/structure interaction problemso Due to the 

simplicity of the weak wave equations involved the computation time 

would be much less than in the case of a strong shock wave problem 

such as those reported in References (8) and (10). 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

Three methods were presented in Chapter III for calculating the 

time-of-arrival of an incident wave and the time interval between 

incident and reflected waves for a wall facing the wave. These gave 

almost identical results for small offset distances (10 9000 feet or 

less) from the flight track. The differences in results were greatest 

at low Mach numbers and large offset distances(up to 70 9000 feet). 

The conical wave analysis (Method I) deviated.most greatly from the 

other two. Method II 9 which assumed an atmosphere with a realistic 

linear variation of acoustic velocity with altitude up to the tropo

pa.use9 is recommended for problems where shock wave angles are to be 

found accurately. Method III, which made the simplifying assumption 

of constant ray angle projection in the vertical plane normal to the 

flight pa.th 9 and used the linear variation of acoustic velocity as in 

Method II 9 is considered to be the most practical method. That is 9 it 

achieves nearly the same result as the more exact method 9 but with 

consideraqly less computation time. This method is proposed to provide 

a means of computing incident wave time relationships when wind effects 

are not significant. 

For a two-dimensional analysis to predict the pressure-history 
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of a sonic boom wave diffracted and reflected by corners and walls, 

both analytical and numerical methods were developed. The numerical 

method compared well with the analytical method excepting that the 

numerical method smoothened the peak overpressureso Boundaries do 

present considerable difficulties in the numerical method and it is 

very important to apply boundary conditions consistent with the 

physical problem in consideration. The analytical method rests on 

111 

firm physical and mathematical foundations. The numerical method is 

therefore concluded to be a flexible, practical technique for computing 

the multiple reflection and diffraction problems generally associated 

with sonic boom interactions with structureso 

Recommendations for Future Work 

Since most sonic boom interactions are three-dimensional in nature 9 

the numerical method should be extended to three dimensions. No 

special difficulty is anticipated in this except for increased com

plexity and the need for a large capacity computer. On the IBM 7040 

computer with a storage capacity of 32 9000 storage positions, flow 

fields of about 3600 points 9 such as (20 x 15 x 12) 9 (20 x 20 x 9) 9 

and (15 x 15 x 16) 9 can be handled. 

Several interesting problems should be attempted by the two and 

three dimensional numerical methods, including those corresponding to 

any test data which may become available. At present Dr. Go W. Zumwalt, 

Prof. L. J. Fila, and the author are working at Oklahoma State Uni

versity in a "Sonic Boom11 research project sponsored by National 

Aeronautics and Space Administration. Studies of the propagation of 

disturbances, such as gusts, in a sonic boom wave and the wave shape 
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changes in the vicinity of the aircraft 9 are being undertaken •. The 

author believes that the numerical method developed in this study and 

be effectively used in these studies. 

In this work sonic boom waves were assumed to be produced by 

aircraft in level flight. The equations of the method (Method II) 

which assumes an atmosphere with a linear variation of acoustic 

velocity can be modified to apply to sonic boom waves produced by 

aircraft in maneuvering flights to predict the time-of-arrival of an 

incident wave and the time interval between incident and reflected 

waves for a wall facing the wave. 

Another nu~erical approach may be possible. For a weak wave, 

the conservation laws can be combined into a single equation, a Laplace 

equation for pressure with second order derivatives in time and as 

well as space derivatives. Proper stability study should be under-

taken to attempt to solve this equation numerically in the presence 

of weak shocks. If it is possible to handle sonic boom wave problems 

with this single equation, much larger fields can be handled since 

. b ( n=l pn n+l) d. only three var:ia les P 9 9 P · have to be store in computer 

· t d ft . . b (Pn. pn+l. un, un+l n n+l) programs ins ea o he six varia les • • 9 v 9 v 

that are to be stored in the method developed here. However 9 solid-

wall boundaries appear to present difficulties which may be insur-

mountable. 
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APPENDIX 

STABILITY ANALYSIS OF THE DIFFERENCE EQUATIONS 

No general method has been developed to determine stability re-

quirements for the non-linear difference equations derived in Chapter Vo 

For any difference method9 it is necessary to determine the conditions 

that are to be met to assure that a perturbation will not increase with-

out bound with increasing time. Richtmeyer (28) has concluded th.at 

even for a first order non-linear system, there exists no rigorous 

analysis whereby stability criteria can be determined. The common 

approach is to linearize the equations and apply the general methods 

for stability of linear equations (29 9 p. 223). Here 9 a stability 

study for the plane geometry flow case for a sonic boom wave is made 

by applying the Fourier technique developed by Rusanov (5) and applied 

by Tyler (8) and Walker (10). 

The stability analysis is performed by first allowing the dependent 

variables u 9 ,r 9 and p to change slightly and assuming p and "{ to be 

constants in the general difference Equation (5=28)u The effect of the 

variation on the equation is investigated by introducing a general per

turbation variable~. A change in cp~:~ will cause a variation inf::~ 

and the resulting change 9 

dfn+l _ ~ 0 n+l df O n K1 dr ( /3 
k,.t - dcp :pk9.t = dCp cpk9.e - 2 dq, :Pk+l,.t 
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(1) 

is obtained assuming that the functional values of some terms are 

independent of position; for example: 

dFX X dFX 
k+19.e dFk 9 1' k-lit # 

dcp 
:::: 

dq:t. J, 
"' dcpk-191' 

:::: dcp 
k+l,Y-

(2) 

The next step is to express the perturbation term ocp as a product of 

its initial value and its wave components. In equation form, this is 

written as 

o l = sn ei[k1V1 +t1lr2 J oifl~ .1 g 
. k9t • 

0 where 01.PJ. 1 is the initial perturbation value 9 and 1\11 and 1jl2 are any 
i) 

(3) 

real numbers. The value of s dictates the condition for stability. In 

order to satisfy the stability condition for Equation (1) 9 the propa

gated error o~:,;, must be bounded. Hence 9 Sn in Equation (3) must be 

convergent 9 and thus should satisfy the condition 

(4) 

If Equation (3) is substituted into Equation (1) 9 the resulting 

expression is 

( i=' 1 )df iK # ' ,I, .::1:r 
':.>=- "def + l dcp sin 'l'l + .Ll\.2 ,sin 

dFY ,,,. . 

'Ir.I dcp 

(5) 

After substitution of the v11lues for the expressions f 9 Fx9 and 

FY from Equation (5= 23) 9 · the derivatives in Equation (5) are expressed 

as 
, du dJ? 0 

dcp pdcp 

df dv dFX 
0 

dFY dP 
'\ (6) -= 

~ dcp = -· .- . pdcp ) 

dcp dcp 

dJ? 1 du dP dv dP 
cftp. y ..__ +~ y~ +vdcp/ dcp dcp 



Equation (5) represents a system of three simultaneous equations and 

the expressions for the derivatives are obtained from Equation (6). 

The three simultaneous equations are written as 

(1;-l)dd: + iK1 sin ljl1 l ~ + ~ sirP } + 2S sin2 I;., l ~ = O 
't' .. p dcp t 2 :J dtp 

dP 
(1;-1)-d. + 

qJ 
iK1 sin h lyP ~ + yu ~] + IB::i. . sin ljl2 [p i_d· : + yv -d~J l2 dcp dq, ··· ~ y T 

For a sonic boom case 9 the velocities u 9 and v are negligible. 

Hence by the comparison of the orders of magnitudes of various terms 

in expression (7) 9 the terms containing u 9 and v can be neglected 

and the derivatives are eliminated by solving the three equations 

simultaneously" The resulting expression is 

where 

c = speed of sound=~ 
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(7) 

Equation (8) in combination with Equation (4) is used to establish the 

stability criteria and 9 unfortunately 9 no simple solution is available 

due to its complexity" Therefore sis evaluated as the angles 1V1. 

and 'Vs assume large and small values. For large values of w1 and 1V; 9 

(9) 

Equation (8) is reduced to 

(10) 
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If Equation (4) is imposed on Equation (lO)i the result is 

(11) 

For small angles of 1jr1 and ijr2 9 they become 

1jr1 "" sin 1111 9 (12) 

and Equation (8) is approximated by 

(s6 m 1 + <_:~ + ~i) 2 + c2 (K~ ifi + K; 1jr:) o (13) 

The roots of Equation (13) are 

(14) 

From Equat:i.on (14) 9 the real and imaginary parts are found to be 

(15) 

and 

(16) 

From Equations (15) and (16): 

(17) 

By expressing inequality (4) as 

(18) 

Equation (17) reduces to 

(19) 

4 4 Where 1jr1 and 1jr2 terms are neglected in. view of the small angles 

assumptiono Letting 
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e K1 V1 
cos . : ----------v~ +~ ,;i, [Kf 

9 and sin 0 :: Ka ;, i 

[K~ V~ +_~ ti)° 
(20) 

reduces Equation (19) to 

ct cos' e 
~ 

S si~ e +---- (21) 

If Equation (5=31) is substituted into inequality (21) 9 the resulting 

expression is 

Ct cot:P e + s sin2 _e ~ K2 c2 • (22) 
sirP X cos2 X 

Inequality (11) can be written as 

et + 13 = Kwc (23) 

so long as 

0 lS: Kwc :!!I: 1 • (24) 

Any expression for a and Scan be chosen in Equation (24) as long 

as inequality (24) is satisfiedo Therefore with 

ot = Kwc sinl X 

(25) 
f3 = Kwc cos8 X 9 

Equation (22) is expressed as 

Kwc ( coi- e + sin2 e) ~ Ff' rJ 
(26) 

Inequalities (24) and (26) are combined to yield 

(27) 

The time step K can be evaluated from Equation (27) and the maximum 
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time step that can be used in the computations is 

For a 

to 

This 

1 
K =--- 0 

sonic 

K 

is the 

C max 

boom wave 9 

1 
=-

C 

value used 

(28) 

assuming c as a constant, Equation (28) reduces 

(29) 

in the computations described in Chapter VI. 
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