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CHAPTER I 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

Introduction 

The study of the real numbers has held the interest of man for 

thousands of years. From the time of Pytha~oras it has been known that 

not all points on a line can be represented by the ratio of two 

integers.. This fact wa.s the impetus for extending the rati.onal number 

system. The new numbers were named the irrationals and the:i.r presence 

allowed one to say that each point on a line can be denoted by a unique 

number. This · number is called a real number and it wi.11 be e:i.ther 

rational or i.rrationa.l. 

A study of the real numbers can be done by consi.dering thei:r 

decimal representation. This gives rise to many i.nterest,ing questions 

about the digits used to form their representations. For example} 

1/4 = .25, but can it be expressed as an infinite decimal other than 

.25000° 0 •? Also, .333° • • can be expressed as· l/3Y ·but can the real 

numbers .5363636° 0 0 and .12345° 0 0 be expressed in ·tb.e form of a ratio 

between two integers? If so, how? 

The study of representing the integers in bases other than base 

ten is one of the distincti.ve charact;eristics o:f "modern" elementary 

mathematics programs found in schools today. If the quest:i.on is asked.J 

"Why is this studied?," the answer is usually given that it helps the 

student understand the concept of place valueo The place value concept 

1 
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is used to study the rationals as well as integers. Therefo:re, it is 

logical to ask what affect does the base of the numeration system have 

on the rational 's 11basima1111 representation. For example, 1/3 = .333 ••• 

in base ten, but 1/3 = .25 in base twelve. Notice that in one base the 

basimal was an infinite repeating one, but in the other it terminated. 

Why? 

Another example of the type of questions asked concerning recurring 

decimals is why does the decimal representation of 1/7 have~ period of 

six digits and 1/11 has only a two digit period instead of the maximum 

possibility of ten? 

Statement of the Problem 

A teacher is reluctant to introduce concepts in which he has had 

little or no preparation. In his experience as an undergraduate, the 

secondary teacher finds that the vast majority of his course work is a t 

such a level that it is not applicable to the teaching level he will 

encounter. If the prospective. t _eacher is fortunate enough to have had 
, , 

a number theory course, he will have some material at his disposal that 

can be adapted for use by his future students. I. A • . Barnett [ 6 ] of 

the University of Cincinatti stated his opinion quite strongly in the 

American ·Ma.thema.tical Monthly by saying that a course in" ••• the theory 

of numbers should be required not only of all mathematics majors, but 

also of all prospective teachers of elementary-school arithmetic as well 

as teachers of high-school algebra and geometry." He started his 

,' .. -

1 The author will use the word "basimal" when r eferring to a numeral 
from a general base system and wili use the word "decimal" when 
referring to a numeral from the base ten system of numeration. 



article by quoting from Hardy's essay ''A Mathematician's Apology": 

"The elementary theory of numbers should be one of the 
very best subjects for early mathematical instruction. It 
demands very little previous knowledge; its subJect matter 
is tangible and familiar; the processes of reasoning which 
it employs are simple, general and few; and it is unique 
among the mathematical sciences in its appeal to natural 
human curiosity. A month's intelligent instruction in the 
theory of numbers ought to be twice as instructive, twice 
as useful, and at least ten times as entertaining as the 
same amount of Calculus for Engineers." 

3 

The purpose of this paper is not to write a text bqpk, but to take 

one facet of the real numbers, that of recurring decimals, and develop 

material / that could be used in a seminar at the college senior level. 

The intention is to bring together in one volume certain material that 

has been written on the subject and topics related to it so the stud.ent 

could have the experience of "usi~1g" his mathematical knowledge. The 

level or difficulty should increase as the reader progresses through the 

paper. It is expected that many Junior and senior high school students, 

as well as their teachers, will be able to comprehend much of the mate-

rial of this paper. 

Procedure 

A.survey and analysis of the published results concerning recurring 

decimals and related topics was ma'de. The M!:l.thematical Review , bibli-

ographies of textbooks and bibliographies of published papers served as 

primary tools for locating source papers. The material was analyzed and 

is presented in an expository manner. The material is also organi.zed in 

an increasing sequence of difficulty. Chapter II provides an introduc-

tion to recurring decimals and is intended for the junior high school 

reader. Chapter III points out many of the properties that recurring 

decimals possess. Although a few topics of elementary number theory are 
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used, the explanation should be clear to the better senior high student. 

Chapters IV, V, and part of VI should be understandable to the conscien-

tious college undergraduate. The remainder of Chapter VI is for the 

student possessing the mathematical maturity of a beginning graduate 

student. 

Scope and Limitations 

The published material concerning recurring decimals and related 

topics is quite extensive, but very uncorrelated. The writer could find 

no record of the subJect being correlated for the various audiences 

mentioned above. The paper, therefore, will be limited by the level of 

the intended readers of this paper. 

It was the intent of the writer to write a paper which was self-

contained with respect to the mathematical background '.tf the different 

level of readers. For example, some of the elementary results depend 

on the properties of congruences; therefore, a listing of these 

properties will be given along with a reference as to where the proofs 

ma.y be found. 

While the development of the material in the paper did not follow 

·the historical development of the subJeet, the wr:1-ter has made an 
.. 

effort to show how the subJect has evolved. 

Expected Outcomes 

It is expected that as a result of reading this paper an individual 

will become aware of how a topic in ma.thematics grows as mathematicians 

continue to find the reasons behind the phenomena within the topic. It 

is also expected that Junior and senior high school teachers will find 
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material that can be used as enrichment in their courses and that 

students studying elementary number theory will be able to understand 

how the basic theorems of the course can be used to prove theorems about 

recurring decimals. Finally, it is hoped that this material will 

stimulate the reader's interest in mathematics. 



CHAP.rER II 

ELEMENTARY INTRODUCTION TO REC~ING DECIMALS 

The Division Algorithm and Rational Numbers 

Since the system of rational numbers is used throughout the paper, 

·- it seems wise to review some definitions and basic properties of this 

system. Also, since the division algorithm is alluded to later on in 

the paper, it will be d:i.scussed at this point. 

1 Theorem 2.A. (The Division Algorithm) For any two positive integers 

a and b, there exist unique non-negative (positive or zero) integers q 

and r with O < r < b such that a= bq + r. 

The following examples should give the reader a feeling for the 

division algorithm. 

(1) a= 19, b = 5 implies q = 3, r = 4 since 19 = 5•3 + 4. 

(2) a= 57, b = 12 implies q = 4, r = 9 since 57 ~ 12•4 + 9. 

(3) a::: 13, b = 17 implies q = o., r ""13 since 13 ""'17.0 + 13. 

(4) a= 36, b = 9 implies q = 4, r = 0 since 36 = 9.4 + o. 

1 . . 
The theorems in this paper will be numbered by chapter where the 

chapter number 1$ followed by either a number or a letter. Those with 
a number are considered a main part of the paper and will be proved. 
Those with a letter are background material from number theory and their 
proofs can be found in most standard textbooks on the subject. 

6 



7 

The reader will note that the third example can be generalized such 

that i:f,a < b then q = 0 and r = a. Also, it should be noted that the 

division algorithm as stated above,is not as general as found in most 

textbooks. The condition that a and b be positive integers can be 

weakened such that they could be any integer, and as a result q could 
I 

be any integer and O ::5_ r < lbl. (i.e., a= -17, b = 4 implies q = -5» 

r = 3 since -17 = 4 • (-5) + 3). For the purpose of this paper it will 

not be necessary to consider the more general conditions. 

It is the division algorithm that makes the process of division of 

one positive integer by another a unique process. All of the following 

examples are mathematically correct, but only one of them can be accept-

ed if division is to be unique. 

57 
7jli-Oo 

35 
50 
49 
1 

400 == 7•56 + 8 400 = 7 •57 + ',,l 400 = 7•54 + 22 

It is the second example which satisfies the division algorithm. 

Therefore, it is the one ta.ken as the unique answer to 400 divided by 7. 

The study of rational numbers is very broad, and several excellent 

books hl3.ve been written for the neophyte mathematics studentsJ such as 

Ni~en [24 ] and Rademacher [ 20] • Only those definitions, theorems,~ and 

properties which relate directly to the topic of this paper will be 

discussed. 

Definiti.on 2.l. A positive rational number is an ordered pair (i.e., 

(a, b)) of positive integers. 
.i 

This ordered pair is usually expressed as 

a/b where a is called the numerator and-~ is called the denominator. 
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The expression a/bis usually referred to as the rational fraction form 

or the fractional form of the rational number. 

Definition 2.2. The rational numbers a/band c/d a.re said to b~ equia-

lent if and only if ad= be. 

Definition 2.3. ·A rational number is said to be in lowest terms if and 

only if the numerator and denominator have no co!l)l7lon divis.or other than 

l. When a gene;~l _rational number is referred td in the form a/b, it 

will be understood to be in. lowest terms. 

One of-the most common interpretations of rational numbers .is that 

in which the ordered pair represents a quotient, i.e.' a/b = a. + b,o 

This interpretation follows from the definition of division since 

a = b•(a/b). 

Terminating and Non-terminating-. Decimals 

The r~der is probably familiar with decimal notation for represent,.. 

ing rational numbers, but for completeness of the topic it should be 

reviewed in light of the first section of this chapter. 

Definition 2.4. The terminating decimal·~~···~ is equal to tte 

-rational number whose numerator is the positive fnteger ~ ~.o •<\t, 
where the d1 1 s are the digits of the integer, and the denominator is 

100 ••• 0 (k zeros) or lOk. 

It follows from this definition that since 1/8 = 125/1000 then 

1/8 = .125. Now this terminating decimal representation could also be 

found by.interpreting 1/8 to mean l?' 8 and use the stand.a.rd algorithm 

for decimal d.ivis-ion. 



For example, 

.125 
8)1.000 

8 
-m5' 

16 
To 

40 
·-

9 

37 37•25 925 A second example is 400 = 400•25 = 10000 = .0925 and 

.0925 
400)37.0000 

36··00 
1 000 

800 
2000 
2000 

' -
Now consider the fraction 4/7. Does there exist a positive integer K 

such that 7•K = 100 ••• O? Since 100 ••• o == 10n = (2•5t "" 2n5n, there 

does not exist a K such that 7•K = 2n5n. This implies that 1+/7 cannot 

be e~ressed as a termini;ting decimal. How is this fa.ct reflected when 

the algorithm for division is used? 

.57142857• • • 
· 7 )4 • 00000000 • • • 

35 
~ 

49 
10 

7 
30 
28 
'20 

14 
tio 
56 
-~ 

35 
50 
49 
1 



The reader has noted that the division process o:f the example 

~ppea.rs no~ to terminate, (i.e., a remainder of zero has riot been 

obtained), but continue~ indefinitely. Recalling the division algo-. -

10 

rithm, it is seen that the set of possible remainder's when dividing by 

7 is (o, l, 2, 3, 4, 5, 6}. In the example above, the remainders 

appeared in the :following order: 4, 5, l, -3, 2 1 6, 4 ,· 5, l, o •. o ~ The 

fact that the remainders repeat a:ppea.rs to have a. bearing on whether or 

not the decimal representation of the rational number is terminating. 
' 

This will be the case, and. more will be said later in this chapter about 

this example. 

The discussion has been leading to the following theorem.: 

Theorem ~.l. The rational numb,r a/b has a terminating de~imal expan

sion if and only if the integer b has no prime factors other than 2 or 

Proof: First it will be assumed that a/b has a terminating decimal 

expansion and then show that b has no prime factors other than 2 or 5. 

From Definition 2.4, it follows that 
. . . . ~ . . . 

JJ.la.2 ••• d ,i., l2 •• 0 d. 
~ = ·~'2· • .~n =, , J.On, n = .i.2n•5~ ~ 

Now if this fraction is not in lowest terms, :the reducing of it to 

lowest terms will not alter .the fact that b will not have any prime 

fact.ors. other than 2 or 5. This completes the proof in the oply i:f' 
:or.-- -

direqtion. ''.~,>:;'. 

For the if part ~ssume b has no prime :factors other than 2 or 5. --
That is, b is equal to a positive integer of the :form 2m.,n. Be:for$ ,. 

continuing with the proof, consider the example ! = 7453 = 7453: · 
b 12500 2~•55 ° 
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To convert this to a decimal, simply change it to a.fraction which has 

a denominator that is a power of 10. This can be achieved by multiply

ing both numerator and denominator b? 25: 

.59624. 

,This argument can be generalized from this special case in the follow-

ing way. m n Suppose that bis of the form 2 ·5, where m and n are 

positive integers or zero. Now, from the law of trichotomy for non-

negative integers,. one of the three cases, n = m., n < m, and n > m, 

, · . m n m m m / · ;· m must hold. When n = m then 2 ~,5 · = 2 •5 = 10, therefore, ab= a 10, 

and the terminating decimal is found by inserting the decimal poin~ in 

· ,the correct place.· The. second case where n < m is handled by multiply-

· m-n ,ing both numerator and denominator of the fraction by 5 : 

m-n , m-n. · Since m - n is positive., 5 is an integer·, and so a•5 is also an 

integer, say c. 
. m 

Hence the fra..ction can be written a/b = c/10 and the 

terminating decimal can now be written. The case where n > m is 

simil~rly handled. 

The following examples are given to illustrate the technique of 

the pr.oof..._ 
·:f' 



1 Recurring Decimals 

Rational fractions can now be separated into two types, i.e., 

12 

those with terminating decimals and those with infinite decimals. It 

will now be established that each such infinite decimal has a repeating 

pattern. For example: 3/ll = .. 272727• • •, and 1~79/3300 = .59969696 00 •. 

For convenience, the notation of placing a dot over the first and last 

digit of the set of digits which are repeated will be used to denote a 
• .~ ~ 0 0 

recurring decimal: 3/ll = .27, 1979/3300 = .5996, 1/3 = .:;, 41/333 = .. 
• • 

.123, etc. A second stand.a.rd notation is the placing of a bar over the 

set of digits which are repeating: 3/11 = .27, 1979/3300 = .5995', 

1/3 = .3, 41/333 = .123, etc. The :writer has elected to use the first 

notation since it is more convenient when the repeating part is quite 

large. One more word .on terminology is needed at this point. The 

. repeating part is re:f'erred to as the "period" or "repetendi-0 of the 

recurring decimal. The writer has elected to use the word "period'~ for 

the repeating part. 

Recalling the example of where the decimal expansion of 4/7 was 

:found, it was noted, the set of possfble remainders was (o, l.9 2, 3, 4, 

5, 6}. In the actual division process, the rema.1.nders occurred in the 

order 5, 1, 3, 2, 6, 4 and then started to repeat. Therefore, the 

quotient also started to repeat.. The possible remainder O could not 

occur in the process of finding a recurring decimal, since this would 

terminate the process • 
• 

Since 5/6 = .83, it is noted that first, the period is only one 

1 The author has elected to use the term recurring instead of 
periodic or repeating. 
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digit _in size; and second, the period did not start immediately in the 

. place to the right of the decimal. point. This example illustrates ·the 

fa.ct that not all possible renia.i:nders. are u.sed before a repeat takes 

place. Al.so, since this example has a non-repeating pa.rt, it would not 

be a "pure" recurring, dec,imaL, (A "pure" recurring decimal is one whose 

period starts in the place immediately to the right of the decimal 

point). 
"':·~ .. 

' Considering the _general case, a/b, the set of ·possible remainders 
' ·. '../' ;1:'~:f.: ' ' -:::<. ,, '' · .. 

due to the divis;_on algorithm is {o, 1, 2, ;, .. ~;"b - 2, b - 1}., and ,., 
so a recurrence of the division process. is certain, unless the remain-., 

. 1 •'l,-

p.~ zero occurs. and. the process terminates. ~h~n. the division· ~,:recess 

recurs, a cycle is started and the result is a recurring decimal. 

The above argument is half' of the proof to the following: 

···, 
Theorem 2~?. Any rational fraction a/bis expressible as a terminating 

decimal or an infinite recurring decimal; conversely, any decimal which 

is either terminating or infinite recurring can be expressed in the 

form a/b. 

The converse deais with two types of decimals) terminating and 

infinite recurring. The terminating decimals were ta.ken ca.re of by 

Theorem 2.1. Before the re,:!urring decimals are considered, it wouldlbe 

wise to look at the method in one particular case and then generalize 

the method to fit any case. 
• • 

Consider the infinite recurring decimal x = .7;426. Now the object 

will be to multiply both members of the equation first by one number and 

then by another; these numbers will be chosen so that the difference of 

the two products will be an integer. In this example the numbers 105 



and 102 will serve the purpose .because 

105•x = 100,ooo•x = 73426.426 
2 ·. 

and 10 •x = lOO•x = 
so that the difference is 99900•x = 73353. Therefore, 

73353 24451 
X = 99900 = 33300 

which exhibits the fact that xis a rational number. 

In the generalization of this method it will be shown that the 

5 2 . · numbers 10 and 10 were not ''pulled out of the hat" but were chosen 

systematically. Now any recurring decimal between O and 1 can be 

written in the form 

(l) • • 
x = .a1a2 ••• asb1b2 ••• bt' 

14 

where a1 , a.2, a6 represent the s consecutive digits in the non-repeati~ 

part and b1 , b2 .o., bt represent the t digits in the period. (In the 

above example s ::: 2, t = 3; a1 = 7, a2 = 3, b1 = 4)) \~ = 2, and b2 = 6). 
. s+t s 

Now x is multiplied first by 10 , then by 10 , and then the differ-

ence is found; i.e., 

Therefore, 

which shows x to be rational, since both the numerator and denominator 

a.re integers. 

An alternate method, which is similar to the process used in 
. . k . 

Theorem 2.2, is to multiply.the number by 10, where k is the number of 



15 -

digits in the period, and then subtract the number from this product. 

For example, consider .3562; 

99x = 35.27 
35.27 3527 

X = 99 = 9900 

Note, the difference did not result in an integer. Therefore, it was 

necessary to multiply both numerator and denominator by 100, so that 

they both will be integers • 

Theorem 2.3. Any rational number of the form a/b, where a and bare in 

lowest terms and a< b, is equal to a pure recurring decimal if and onl;r 

if band 10 have no common factors. 

Proof: Assume a/b is equal to a pure recurring decimal., ;d,.e., 

Then using the algebraic process from Theorem 2.2, it is seen tha,t.:i 

/:a rc12 ••• f4t a . ::J., .. · • 
b =. 99 ••• 9 

Since a/bis in lowest terms, there exists an integer h such that 

bh = 99 ••• 9 (t digits). Now 99 ... 9 is not divisible by 2 or 5, there

fore b is not divisible by 2 or 5. , This implies b and 10 have no 

common factor. :This completes the proof in one direction. The proof 

going in the other direction will be done by contradiction. Assume a/b 

is~ equal to a pure recurring decimal, i.e., 

a • • 
b = .a1a2···asblb2···bt 

Ther~fore, lOsa 
---S-- = ala2 ••.as 

(3) 



Let a1a2 •.•• as and b1b2 ••• bt equal the integers h and k respectively. 

Equation (3) becomes 

' 

or 

Reducing the fractions of their 2 and 5 factors gives, 

a h 1 k' 
-=-+ 
b 2u5v 2m5n(99 ••• 9) 

Adding the fractions gives 

(4) 

16 

where xis the larger of u and m and y is the larger of v and n •. Also, 

m' = x-m, n' = y-n, u' = x-u, anq. v' = x-v. It should be noted that 

either m' = 0 or u' = 0 and either n' = 0 or, v' = o. Now,in reducing 
. 

the right-hand side of (4), it is seen that 2 does not divide the 

numerator, since 2 divides one of the terms but not the other. 

Similarly, 5 does not divide the numerator. Therefore, in,.reductng the 

fraction to a/b,, the factors 2x and 5Y will remain in the denominator~ 

This implies band 10 have a common factor. This is the contradiction 

needed. 

Since the remainder of the paper will be concerned with pure 

recurring decimals, a general rational number of the form a/b will be 

assumed to be in lowest terms and b and 10 have no common factors. 

Corollary 2.4. Every pure recurring decimal is equal to the .. fra.ction 

whose numerator is formed by the period and the denominator is composed 

of as many 9's as there are digits in the period. 
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Proof: If x is a pure recurring decimal then s = 0 in (1). This 

implies that (2) becomes 

(t digits) 

which is precisely what the corollary states. 

This theorem can be used to convert any infinite recurring decima.l 

to its fractional equivalent, provided the recurring decimal is first 

changed to a pure recurring decimal. For example; 

X = •7~26 

102 7-:i: 4"2' 6. _ 7-:i: 426 _ 73·999 + 426 = 73· (1000-1) + 426 
X = P - .,1 + 999 - 999 .. 999 

(73000 - 73) + 426 72927 + 426 73353 
X = 99900 = 99900 = 99900° 

It is interestin;g to note that while the method of Theorem 2.2 is 

neither new nor difficult, it did not appear in elementary textbooks 

until Just recently. A second method found in most college algebra 

textbooks, which have a section on geometric progressions, is as 

follows: 

X = •7,3426 = •73 + o0042~ = .73 + 426(.0000i) 

73 426 • • 73 426 ~1 1 ] = 100 ,+ 100< .OOl) = 100 + 100 3 + :-::5' + • 0 • 

O 10 . 

73 426 l 1000 73 426 1 
= 100 + 100 • 1-1 1000 = 190 + 100 • 999 

73•999 + 426 73353 24451 
= 100•999 = 99900 = 33300 

While this method gives a good example of an application for infinite 

geometric progressions, it does not lend itself to use by a student who 

has not had a course comparable to college algebra~ 



Terminating Decimals Written as Recurring Decimals 

So far, in this chapter it has been established that some rational 

numbers can be expressed as terminating decimals, whereas other rational 

numbers become infinite or non-terminating decimals. Curiously enough, 

every terminating decimal (except zero) can be expressed in a non-

terminating form. Of course, this can be done in a very obvious way 

when .75 is written as .75000° 0 •, i.e., with an infinite succession of 

zeros. But, apart from this obvious process, there is another way that 

is a little surprising and certainly more interesting. 

Consider the following: 1/9 = .111•••, 2/9 = .222•••, 3/9 = 1/3 = 

.333••• and so on until 8/9 = .888•••. If the inductive process is 

carried one more step the strange-looking result is 

(1) 9/9 = 1 = .999• • •. 

Now equation (1) can be shown to be true by use of the method 

found in Theorem 2.2. 

X = •999• 0 0 

• implies lOx = 9.9 

• 
X = .9 

9x = 9 

Thus equation (1) is true. 

This result a.llows any terminating decimal to be written as an 

infinite recurring decimal as illustrated by the following example • 

• 376 = .375 + .001(1) 

= .375 + .001( .999 00 .) 

= .375 + .000999··· 

= .375999 ••• 

Conversely, if a:n infinite recurring decimal has a period of tlie 
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single digit 9, then it can be converted to a terminating decimal as 

illustrated by the following example: . 

• 439 = .43 + .009 = .43 + .01(.9) = .43 + .01 = .44 

The uniqueness of the aecima.1 representation of a given rational 

number depends on a choice of notation. For, in addition to writing 

.44 as .43999•••, it could also be written as .440, .4400, .4400•• 0 • 

These, however, are such trivial variations of .44 itself, that they 

would not be consiqered as different representations. It will be the 

practice of the wri'ter to use .439 as the infinite decimal representa

tion of .44 instead of .440 throughout most of the thesis, but will use 

the alternate notation whenever it will be expedient. 

Recurring Decimals in Other Bases 

Recall the process for changing l/2 to its decimal representation, 

that is, multiply both numerator and denominator by 5 such that 

Therefore, .5 can be interpreted ~s 5 divided by 10, but 10 

implies one base in the decimal numeration system. This would mean 

that .5 implies 5 is di~ided by one base. 

Consider the question: What is the basima.l representation of 1/2 

in base eight? ln order to answer this a person needs to find the 

number that, when multiplied by 2, will give one base .for the product. 

In this case it ;ould be four since [2•4 = lO]eight· Therefore, the 

answer to the question would be found as follows; 

[l/2 = 1•4/2•4 = 4/10 = .4]eight 

Applying the same type of reasoning.it is found that 
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If a person attempts to change l/2 in base five to its equivalent basi-

mal representation, he will have difficulty since there does not exist 

an integer that when multiplied by two will give the base. This would 

imply that (1/2)five would have an infinite recurring basimal represen

tation in any odd base. 

Reflecting on Theorem 2.1, it can be seen that the numbers two and 

five are :f'ac.tors of the base ten. ~f the base of the numeration system 

had been six instead of ten then the factors of, "b'' would have to be 

two and three ih order for the theorem to hold in base six. Therefore, 

base twelve would imply :factors of 2 and 3, but base eight would imply 

only the factor 2. 

Now consider some of the recurring decimals in base ten and their 

representation in other bases .• 

~tn = ~ twelve = ~ • } = io = -~ twelve 

Hence, [. 333 ···]ten = [.4]twelve· 

~] ™ [1 4
2 

14 J 
- ten = 9 twelve = b2 • 42 = 102 = 014J twelve 

Hence, ' [ .111 •. 0 ]t ::: ( .14 ]t l en we ~e 

It should be obvious by now, that while some recurring decimals :Ln 

base ten become terminating basimals in base twelve not all o:f them 

will. For example, 1/11 = .090909• • • in base ten, but it becomes 

.111••• in base twelve. Before illustrating this example.? the author 

needs to define what symbols will be used to denote ten and eleven in 

base twelve. The author's choice is ."trn for ten and "e" for eleven. 

feJ1:~i l .. ;J 
twelve 

[~ "" .lll •··]twelve 



Also the terminating decimal [.2]t = [.2497]t 1 as illustrated en i we ve 

below; 

.2497 
5)1.0000 

t 
~;-

l8 ·-w 
39 
30 
2e 
1 twelve 

' ~ . ·] - = .24 97 twelve 

A statement is frequently made that a. base of twelve, i.e., the 
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duodecimal system, would have ma.de a better numeration system than base 
,, 

ten. What would: be the reasoning b.ehind such a. statement? One of the 
. . ' 

strongest arguments is based on the :Bi"itish system of measure. The 

parts of a foot could be denoted quite simply as 

[l inch = .1 foot ]twelve 

[2 inches = .2 foot ]twelve 
• • 
• • .. 

(9 inches ... •9 :f'oot]twelve 

[t inches = • t foot] twelve 

[e inches = .e foot]t 1 we ve 

[10 inches = 1.0 foot]t 1 we ve 

Also, their monetary system of pence a.nd shilling lends itself to the 
. . 

duodecimal system, since twelve pence is a shilling. 

From a straight mathemat*cal viewpoint the fact that twelve is an 

"abundant" number, i.e., it has more divisors than any number less than 
.,. 

it gives rise to more fractions less than :one, that would have a term~ 

inating basimal representation. Other examples of abundant numbers a.re 
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24, 36, 60, 120, and 360. The number 144, which would be one base 

squared, Just misses abundancy, being excelled by 120. Compared with 

144, the number 100 is relatively poverty-s'!;iric.ken in this respect--

which is why the metric system is said to be a poor one by some people 

[ 1 ] . 

Another interesting example is to compare tne conversion of sixty-

fourths in decimals to their representation in duodecimals. 

Fraction Decimal Duodecimal 

25/64 .390625 .483 

27/64 .421875 .509 

29/64 .453125 .553 

31/64 .484375 .599 

·33/64 .515625 .623 

In light of Theorem 2.1, the reader would expect the basimal represen-

tation to go from six digits to three, since twelve contains two 
' 

factors of 2. 

It is interesting to note that, according to Aitken . [ 1 ] , 11 • • • the 

decimal system might be rated at about 65 or less, if we assign 100 to 

the duodecimal.'' 

To carry the discussion a step further, why not use 60 for the 
I 

base? It is an abundant number and also has 5 as a divisor! The 

obvious reason being the operational tables would be prohibitive in 
\ 

size. Certainly, the more prime factors of the base, the more rational 

numbers with terminating basimal representation. The 11 utopia.1t base 

would be the integer that is the product of "all" primes. If this were 

possible then "all" rationals would have a terminating basimal 

representationt 



Consider now the method of Theorem 2.2 in light of some base other 

than ten. For example, the following process is done in base eight. 

X = •3~2 
(103)x = 362. 62 

lOx = 3.62 

(1000-lO)x = 357 

770x = 357 

X = 357/770 

The method of Corollary 2.4 would be as follows: 

X = .362 
lOx = 3.62 = 3 + 62/77 = (3•77 + 62)/77 

X = (275 + 62)/770 :: 357/770 

It is the author's hope that the reader can now see how theory 

developed.in base ten can be generalized to any base. · For the most 

part, the remainder of this paper will be written with the understand

ing tha.t the base is ten. It will be noted if the base is other than 

ten. 

Historical Notes 

It is interesting to note that while the facts from the theorems 

in this chapter are well known, their orj.gin in priD)t has been document

ed by L. E. Dickson [12]. ill.s three volume work on the history of the 

theory of numbers is very complete in giving the original source of 

proofs. Unfortunately, the author was unable to obtain copies of all 

the original works since they were pub+ished during the eighteenth and 

nineteenth centuries in Europe. However, the proofs have been, for the 

most part, modernized and pu"plished in English d1,1ring the last fifty 

years. The author has footnoted those proofs which are not commonly 
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;,found in books and will give Dickson• s reference 'to the original proof 

of the properties of recurring decimals disc~ssed in this paper. 

The facts of Theorem 2.2 were first noted by John Wallis in 1685. 

The fact that a pure recurring decimal is equal to the period divided 

by 99 ••• 9 where the period bask digits and there are k digits 9 was 

noted by John Robertson in 1768. The technique used in the example 

following Corollary 2.4 was noted by J. H. Lambert ten years before 

Robertson's proof. A. Fi1kel in 1785 published a paper conce~~);pg 
·.1=r •.. _,:. 

recurring decimals in other bases. 



CHAPrER'III 

FUNDAMENTAL PROPERTIES OF RECURRING DF.CI~ 
. ' ' 

· . Topics from Elementary Number Theory 
' 

In this chapter the reader ~ill find it necessary to ha.v~ some 

knowledge of congruences and the Euler ¢'~function. The writer has 
\ 

given definitions, theorem~, and some examples to enabl-ethe reader to 

understand how congruences and the Euler ¢-function are used in the 

remainder of· the chapter. 

Defi.niti<;>n 3.1. If m is positive and m divides (a-b), then a is said 

to be congruent to b modulo m and is written a = b (mod m). 

For example, 23 a 7 (mod 8), 9 a ~3 (mod 4)o If a is divided by 

m to obtain q and r such that" a == mq + r with. _o ~ r < m, then m divides 

(a:.r) and a a r (mod m). Therefore, a number is congruent., modulo m, 

to its remainder when it is divided by m. 

Definition 3.2. If a= nq + r with o ~ r < m, then r is called the 

least ·residue of a modulo m. 

Definition 3.3. The set of integers o, l, 2, •o•, m - 1 is called the 

lea.st residue system modulo m. Any set of m integers, no two of which 

are congruent modulo m, is called a complete residµe system modulo m. 

Theorertl ;.A. !f a a b (mod m), then 
' ' 

( 1 ) , a + c a b + c ( mod m), and 

25 
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(ii) ac a be (mod m) for any integer c. 

' 
Theorem 3.B. If as b (mod m), then ans bn (mod m) for any positive 

integer n. 

Definition 3.4. If dis the largest common divisor of a and b, it is 

called the greatest common divisor of a and band is denoted by (a,b). 

Definitio,n 3.5. · If (a, b) = 1, then a and b are said to be relatively 

prime or coprime. 

Definition 3.6. The number of positive integers, not exceeding m, 

which are relatively prime to ·m is designated by the function ¢(m). 

¢(m) is called the Euler ¢-function after its originator, Leonard 

Euler (1707-1783). 

Definition 3.7. Any set of ¢(m) integers which are relatively prime to 

m and which are mutually incongruent (no two are congruent), modulo m, 

is called a reduced residue system modulo m. 

According to these definitions ¢(12) = 4, and [1, 5, 7, 11}, 

(-11, 17, -5, 35} are reduced residue systems modulo 12. Also, 

¢(1) = 1, ¢(3) = 2, and ¢(7) = 6. Also, ¢(p) = p - 1, since all 

positive integers less than the prime pare relatively prime top. 

Theorem 3.c. (The Euler-Fermat Theorem). If (a, m) = l, then 

a¢(m) ~ 1 (mod m). 

·~ , 

Theorem 3.D. If pis prime, p does not divide a, and p - l is the 

smallest positive value of e such that ae • 1 (mod p), then 

a, a2, ••• , ap-l form a 'reduced residue system modulo p. 
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Now, consider the example where a= 10 and p = 23. 

10 • 10 (mod 23) 

102 • 100 = 4•23 + 8 implies 102 = 8 (mod 23) 

103 • 80 a 11 (mod 23) 

104 • 82 !I 18 • -5 ·:(mod 23) 

105 • 88 • -4 (mod 23) 1014 5! 12 5 -11 (mod 23) 

106 B -40 B 6 (mod 23) 10l5 II -18 • 5 (mod 23) 

107 B -32 E -9 (mod 23) 101.6 • 22 s 4 (mod 23) 

108 I! 48 a 2 (mod 23) 10l7 B 40 a -6 (mod 23) 

109 a 20 a -3 (mod 23) 1018 a -14 • 9 (mod 23) 

1010 a -30 • -7 (mod 23) 1019 !!I 44 s -2 (mod 23) 

1011. -24 • -1 (mod 23) 1020. -20 !!! 3 (mod 23) 

1012 !!I 36 e -10 (mod 23) 1021. 30 • 7 (mod 23) 

1013 !I 15 • -8 (mod 23) 1022 I! 2 (-1) • 1 (mod 23) 

Thus, 10, 102 22 since , ... , 10 form a reduced residue system modulo 23, 

each of the numbers in the set 

(10, 8, 11,-5,-4, 6,-9, 2,-3,-7,-1,-10,-8,-11, 5, 4,-6, 9,-2, 3, 7, 1} 

is mutually incongruent modulo 23 and there are ¢(23) = 22 elements in 

the set . 

Definition 3.6. If k is the least positive integer such that 

nk • 1 (mod r), then it is said that n belongs to~ exponent~ 

modulo r. 

Note from the definition and the example above, it can be said 

that 10 belongs to the exponent 22 modulo 23, since r = 23, and 

k = r - l = 22. But the following example shows that the value of k 

does not have to be r - 1. Consider the powers of 2 modulo 7. · 



2 s 2, 22 s 4, 23 a 1, 24 a 2, 25 s 4, 26 a 1, 27 e 2, •••• 

h Note, that 2 pelongs to 3 modulo 7 and in general, 2 a 1 (mod 7) 

implies 3 divides h. This example motivates the following theorem. 

Theorem 3lE. h If n belongs to k modulo rand n al (mod r), then k 

divides h. 
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The reader will note that when the Euler-Fermat theorem is applied 

to Theorem 3.E, the following corollary results. 

Corollary ;.F. (1) If n belongs to k modulo r, then k divides ¢(r). 

(ii) If n belongs to k modulo p where pis a prime, then k divides p-1. 

~ ) 2 3 ¢(r) Corollary 3.G. If q belongs to ~(r mod r, then q, q, q, ••• , q 
. .~ 

form.a reduced residue system modulo r. 

2 Theorem 3.H. If q, q, 

2 modulo p, then q + q + 

... ' 
••• 

qp-l forms a reduced residue system 

P-1 + q = 0 modulo P• 

The reader will note in the example after Theorem 3.D, where 

... J J+ll 
q = 10 and p = 23, that 10 = -10 · (mod 23) for j = 1, 2, ... , lL 

Therefore, 

c:orollary 3.r. If q belongs to h, modulo p, where p is ai:i odd prime, 

and r 0 , .r1 , ••• , rh-l' a.re the least positive residues of go, g1, n•, 

h-1 0 l ' h-1 
g , then r 0 + r1 + ••• + rh-l a g + g + ••• + g 

e (gh - 1)/ (g - l) 

a O (mod p). 



Consider the example where q = 2 and p = 7: 
0 1 2 ~ 

2 !I!! 1, 2 a 2, 2 e 4, 2..., a 1 (mod 7). 

Therefore, 1 + 2 + 4 • 1 + 2 + 22 

a (23 - 1)/(2 - 1) (mod 7) 

a O (mod 7) 

Theorem. .:,.J. Integers a and bare relatively prime, i.e., (a., b) = 1 

if and only if there exists integers x and y such that l =ax+ by. 

It should be rioted that, since the above theorem is an if and only 

if theorem, l =ax+ by implies (a, b) =land (x, y) = 1, or 

(a, y) =land (x, b) = 1. 

Theorem 3.K. If m belongs to h modulo rand belongs to k modulo s, and 

if (r, s) = 1, then m belongs to [h, k]1 modulo rs. 

The following properties of the ~-f'unction will be needed. 

( ) · d.( ) d.( n) n n-1 n-1( ) Theorem ;3.1. i p p = p - 1, and p p = p - p = p p - 1 , 

where p is prime. (ii) ¢(pq) = (p - l)(q - 1), where p and q are 

d;;stinct primes. (iii) ¢(n) = n(l - 1/p)(l - 1/q) ••• (l - 1/r), where 

ab C n· = p q ••• r and P, q, ••• , r are ·.Prime and a, b, •• • , c are positive 

integers. 

Example: Let n = 504 = 23 • 32 • 7, then 

¢(504) = 23. 32 • 7(1 - 1/2)(1 - 1/3)(~ - 1/7) 

= 22 • 3(1)(2)(6) = 144 

1[h, k] denotes the least common multiple of hand k. 
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The Period of m/n 

The two main obJectives of this section will be first, to explain 

how the number of digits in the period of m/n can be found without 

actually finding the period and secondly, to show- that this number 

depends only on the denominator and not the nume~ator. The material 

introduced in the last section will be used in the explanation. 

~heorem 3.1. Two fractions m/n and r/n produce the same mantissa 

(pure),~ decimal part) if and only if m • r (mod n). 

Proof: Assume m Er (mod n) then n divides (m - r) by definition. 

Therefore, (m - r)/n is an integer which implies that the mantissae· of 

m/n and r/n are the same. Now assume that m/n and r/n have the same 

mantissa, i.e., 

But m r 
- - - = n n 

m-r -- = h - k n 

where h - k is an integer. Therefore, n divides (m - r), which implies 

m • r ( mod -~) • 

Far example, 31/7 and 3/7 differ by an integer, and therefore, 

31 a 3 (mod 7). This implies the mantissae of 31/7 and 3/7 are the 

same, namely, .42857i. 

Consider the question of the number of ,different mantissae for a 

given denominator n. Now, if m/n is a fraction where mis greater than 

n, then by the division algorithm there exists an integer r such that 

0 < r < n and m • r (mod n). Now, consider r/n, where r < n. How many 

fractions can be formed under this condition? The answer is (n - 1). 
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But how many of them are in lowest terms? Recalling the definition of 

¢(n), it is found that ¢(n) of them will be in lowest terms. The 

original question can now be answered by ¢(n). 

Corollary 3.2. There are ¢(n) different mantissae for the same 

denominator n. 

As an example consider n = 6. ¢(6) = 2, since (1, 5} are the only 

numbers less than 6 and relatively prime to 6. 

1/6 = .lb 5/6 = .83 . 
Therefore, .16 and .83 are the mantissae associated with a denominator 

of 6. 
. . 

As a second example consider n = 21, and hence 1/21 = .o47619 

is a mantissa. The positive integers less than 21 and relatively 

prime to 21 are l, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20. Therefore, 

there are ¢(21) = 12 different mantissae for the denominator. 

Now, consider the question of the periodicity of non-terminating 

decimals. The determination of the number of digits in the period. by 

actual division is frequently a long process. Using the theorems on 

number congruences from the previous section, this question is quickly 

answered. 

k It is known that the multiplying of m/n by 10 will move the 

decimal point k places to the right. If k is so chosen that lOk e 1 

k :(mod n), then the mantissa will not change, i.e., m/n and 10 ·m/n will 

differ by an integer. 

10km m m(lOk - 1) - - = n n n 

m(nq) k 
1 (mod n), = ; since 10 e n 

= mq, which is an integer. 
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From the example found immediately after Theorem 3.D., it was 

22 ( ) · found that 10 e 1 mod 23 and 22 was the smallest exponent such that 

10 to that power was congruent to 1. Therefore, 10 belongs .to 22 

modulo 23, 

Now, the decimal expansion of m/23, m < 23, will be a pure recur-

ring decimal, and its mantissa will be the same as the mantissa of 

1022 • m/23. Therefore, the number of digits in the period will have to 

be 22. 

The above can be generalized to the following two theorems: . 

Theorem 3.3. 10 belongs to k modulo the prime p (p '/, 2 or 5), it':and 

only if the period of the decimal expansion of 1/p has k digits. 

Proof: Assume 10 belongs to k modulo p, then 10k e 1 (mod p). 

Therefore, lOk /p and 1/p have the same mantissa by Theorem. 3 .1. This 

implies the period for 1/p has k digits. To complete .the,proof, 

assume 1/p has a period of k digits. That is, 

1/p = ·<1i~·. ·<\· 
Tb.erefore, lOk/p = [d1~···'1c] + ·~~··•'1c, 
where [<1id2 •• ·'1c] denotes a k-digit integer. 

Now, k· 
10 /p - 1/p =. [~~···'1c] = q (integer), 

or 
k . 

10. - 1 = pq 

k which implies 10 e 1 (mod p). Now, k is the least power of 10 such 

that this congruency is true, for a~sume there exists an integer h < k. 

such that lOh a 1 (mod p). Tb.is .implies lOh/p and 1/p have the same 
' . . 

mantissa by Theorem 3.i. · But the mantissa for 1/p is di". ·°ii<\i+i • u°lt 
h/ . • and the mantissa for 10 p is ~+l ·.·~di .. ·~. Therefore, 

[~ · · ·°i1~+1 · · ·'1t1 = Ctii+1: • ·~~ • • ·'1i] 



implies~= <ii+l' ~ = <ii+2, ••• ,~=~,since each side of the 

equation is an integer. But this vould make the period 1/p have 

h digits instead of k digits which contradicts the hypothesis. 

Therefore, 10 belongs to k modulo p. 

Theorem 3.4. [ 15 ] The number of digits, k, in the period of m/n 

depends upon n alone, and not upon the value of m. 

k Proof: Assume 10 belongs to k modulo n, i.e., 10 al (mod n). 

k Therefore, 10 •m/n and m/n have the same mantissa. This implies the 

period has k digits. But k depends only upon n, since 1c/J(n) s 1 by 

Euler-Fermat Theorem (Theorem 3.c.), and k divides ¢(n) by Theorem 3.D. 

Theorem 3.3. explains why m/7 has the maximum number of digits 6, 

since 10 belongs to 6 modulo 7. 
l 2 . 3 · 4 5 6 10 a 3, 10 e 2, 10 a 6, 10 a 4, 10 e 5, 10 el (mod 7). 

Considering m/ll, it is found that 10 belongs to 2 modulo 11. 

101 e lO, 102 e 1 (mod ll) 

Note, 2 divides ¢(11), since ¢(11) = 10. Therefore, the period of m/11 

will have only 2 digits and not1the maximum possible of 11. 

i 

Periods with Matimum Number of Digits 

Consider the question, when will the period of m/n have the maxi-
' 

mum number of digits n - l? Now, p(n) = n - 1 implies n is prime, 
I 

' ' 1 · 
since by Theorem 3.L., p(p) = p - l, th~refore, ioP- e l 1 (mod. p). 

But does 10 · belong to p - 1 modulo p? Not necessarily, as shown above 

when p == 11.. 

The problem of finding those values of p such that 10 belongs to 

p - 1 modulo p is not an easy one and will be deferred until Chapter IV. 



Those prime~ ttp" less than 100, whose reciprocals result in. 

periods with p - 1 digits are 7, 17, 19, 23, 29, 47, 59, 61, 97. 

A complete listing of such primes less than 13,710 can be found in 

Appendix A, 

The Period Length of 1/n 

It will be advantageous at this point to define the k-:function: 

k(n) = k, where k is the number of digits in the period of the 

decimal expansion of 1/n. 

For example, k(3) = 1, k(7) = 6, k(ll) = 2, k(l7) = 16. 

Now, from the proof .of Theorem 3.3, it is seen that k(n) divides 

¢(n) or q•k(n) = ¢(n) •. If n is prime, then p(n) = n - 11 but k(n) may 

or may not be n - 1. This was illustrated for the cases where n = 7 

and n =,11. Assuming the :function value, k(p), is known ,for any.prime 

p, how would this affect k(n), where n is composite?. The theorems of 

this section will answer this question. 

Consider the case where n = a•b, a and b distinct primes, e.g., 

· n = 21 = 7•3• From division, it 1~ found that 1/21 = .o47619; 

therefore, k(2l) = 6. But k(7) =' 6 and k(3) = 1, so how are these 

three numbers related? Consider a second example, say, n = 707. 

From division, it is found that 1/707 = ,001414427157; therefore, 

k(707) = 12. But k(lOl) = 4, since 1/101 = .0099, and k(7) = 6, so how 
l ' 

are these three numbers related? In the first example k(7)•k(3) = k(2l)J: 

but in the second example k(7) •k.(101) f: k(707), so k(a) •k(b) f: k(ab) in 

general. The reader has pl!obably realized that 12 = [6, liil and 

6 = [6, l]. These examples motivate the following theorem. 

Theorem 3.5. [16 1 If m and n a.re primes other than 2 or 5, such that 



k(m) = ·a and k(n) = b, then k(mn) = [a,b]. 

Proof: k(m) = a and k(n) = b implies 

lOa a 1 (mod m) and 10b s l (mod n) 

.by Theorem 3.3. ~om Theorem 3.K, it follows, that 

lO[a,b] a 1 (mod mn), 
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where [a,b] is the least power of 10 that is congruent to 1 modulo mn. 

That is, 10 belongs to [a,b] modulo mn. Therefore, by_Theo7em 3.1, 

lO[a,b]/mn and 1/mn have the same mantissa. This implies k(mn) = [a,b]. 

The next case to consider is n = pa, where p is prime. It will be 

instructive to first look at the special case of a.= 2. 

Lemiµa 3.6. If lOt s l(mod p), where.t = uv, then 

(1) (lOv)O + (lov,1 + ••• + (lOv)(u-l) = O (mod p), ·and 

(2) (lOv)O + (lov)1 + ••• + (lOv)(p-2) e O (mod p). 

Proof: The first conclusion is a direct application of Corollary 3.I, 

where q = lOv, h = u. Now, (lOv)O a (lov,Cp-l) a 1dte 1 (modp) 

changes (l) and (2) to 

(3) (lOV) + (l0v)2 + ••• + (lOV)U = 0 (mod p) 

••• + (lOv)(p-l) • O (mod p). 

Since t divides (p - l), then (p - l) = wt = wuv. Therefore, the left

hand side of equation (4) can be written as follows: 

(5) [(lOV) + (l0V)2 + ••• + (lOV)U] + 

[(lOv)(u+l) + (lOv)(u+2):+ ••• + (lov)2u] + ••• + 

[ (lOV) (wuv-u+l) + (lOV) (wu.v-u+:2) + ... + (lOV)WUV], • ' I ~· 
where each of the sums inside the brackets will be congruent to zero 

modulo p, since each sum is just equation (3) multiplied by some power 



· ( V U ( of 10 ) • Therefore, equation 5) is congruent to zero modulo p • 

. Theorem 3.7. [ 5 ] If p is a prime, not 2 or 5, and k(p) = t, then 

( 2) 2-b b k p = t •p , where b :'.:: 2, and p is the highest power of p dividing 

t t I b ) 10 - l, i.e., ((10 - l) p, p = l. 

Proof: 2 ( ) t (p-l )t Assume k(p ) = T, and let F t = l + 10 + ••• + 10 • 

But lOt s l (mod p), therefore, 

F(t) S l + l + •• • + l = p(l) = 0 (lllod p) • 

Now,F(t) is the sum of an infinite geometric progression, and is equal 

_pt ·t 
to (llr - 1)/ (10 - 1). Therefore 

(l) 10Pt - 1.~· (1ot .- l)F(t) s o· (mod p2 ), 

since lOt a 1 (mo·d p) and F(t) e O (mod p), implies lOt - 1 = rp and 

t 2 
F(t) = sp, or (10 - l)F(t) = rsp. Now,. (1) implies that Tis pt, or 

a divisor of pt, and .since pis prime, T =tor pv, where vis t, or a 

divisor oft. If v < t, then 

l + lOv + 102v + ••• + lO(p-2 )v = (lO(p-l)v _1)/(lOv- 1) a O (modp). 

. V 
The reasons for the above step are, first, 10 is note 1 (mod p), 

since 10 belongs tot modulo p, and second, the conditions of Lemma ;.6. 

are satisfied. Therefore, lO(p-l)v s 1 (mod p), which gives, 

F(v) e lO(p-l)v a 1 (mod p). Now., lOpv - l = (lOv - l}F(v), and 

~ 2 . 
therefore 10 is not e ,O (mod p ) • Consequently, v is not < t and 

2-b T =tor pt, i.e., .T = t•p , b = l or 2. 

a Returning to the general case n = p, the theorem is as follows: 

Theorem 3.8. [ 19 ] If p is a prime, not 2 or 5, and k(p) = t, then 

k(pn) n-b b t = t•p , where p is the highest power of p dividing 10 - 1 and 

b < n. 
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The following examples illustrate the theorem. 
- 2 l 

(I) p = ; implies t = l and b = 2, since 3 . divides 10 - l, but 

3~ does not divide 101 - 1. Therefore, k(243) = k(35) = 

1•35-2 = 33 = 27. 

(II) p = 7 implies t = 6 and b = l, since T divides 106 - 1, 

2 6 6 but 7 does not divide 10 - l, (i.e., 10 el (mod 7), but 

106 ~ l (mod 49)). Therefore, k(343) = k(73) = 6•73-l = 

6•49 = 294. 

(III) p = 13 implies t = 6 and b = l, since 106 s l (mod 13), and 
6 _ 2 2-1 . 10 y. 1 (mod 169). Ther~fore., k(13) = 6·13 = 78. 

. 2 
The o:nl.y known cases in which k(p) = t·are when p = 3 or 487. 

The groundwo;k i~ compl1::te now for handling the most general case 

where 

. ~~ ~ . . . 
Theorem 3.9. If n = pl p2 •••Pr where p1p2 ••• pr are distinct primes, 

·, I 

~ . ~ ~ ~ 
then if k(p1 ) = s1, k(p2 ) ·= s1, ~(.p2 ) = s2, • • • ., k(pr ) = sr., 

k(n) = !,~1.,,s2, •••,~ sr.]' i.e., the least -common multiple of' 
-' 

The proof of. the theorem would _follow from repeated applications 

of Theorem 3.K. 

Cyclic Pr.operties of Recurring Decima.is 

. ' . . . 

Returning to the example of 1/7 = ~142857, the remaining sevenths 

can be found in two different ways.· First, since 1/7 = .i42857; then 
• .• • 0 

10/7 = 1.428571, .and subtracting l gives -,/7 = .428571; then 
• • • q 

30/7 = 4.285714 and subtracting 4 gives 2/7 = .285714; then 
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20/7 = 2.857142 and subtracting 2 gives 6/7 = .857142; then 

60/7 = 8.571428'a.nd subtracting 8 gives 4/7 = .571428; then 

40/7 = 5.71428 and subtracting 5 gives 5/7 = o'714285; then . . ~ . 
50/7 = 7.142857 and subtracting 7 gives 1/7 = .142857. Thus,cyclic 

permutation of the a.ix-figure period of 1/7 gives 1/7, 3/7, 2/7, 6/7, 
~-. 

4/7, 5/7 where each numerator is the residue, modulo 7, of ten ti!nes 11B 

predecessor, i.e.;= 1•10, 2 5 ;•10, 6 = 2•10, 4 e 6•10, 5 e 4•10 

1 e 5•10 (mod 7). 
th ···. 

If a represents the r numerator, the situation 
r 

can be generalized by 

ar+l e lOar (mod n), r = 1, 2, ••• , k, 

where k belongs to 10 modulo n. The numer~iiors in the example above 

form what ma.y be referred to as a "cycle'' of numbers. 

Seconc:Uy, reconsider the example from Chapter II where the decimal 

expansion of l/7 was found by the division process. 

0.142857 
7)1.00 ••• 

0 
1 O 

7 
30 

28 
20 
14 
~ 

56 
Li-0 

35 
50 
49 
-r . 

• 

The following can be noted; (i) The ''initial .. remainder l recurs later, 

and then the process will start to repeat, giving a recurring decimal; 

(ii) 2/7 is found by starting with the remainder 2, and so obtain the 

same continuous cycle of figures but starting at another point, and 



similarly for 3/7, 4/7, · • • •; (iii) each r•sta.rting number", it. e., 

numerator, is cong~ent to 10 times the previous one. 
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An interesting point that can be made at this time is any remain-

der is determi~ed by its predecessor. Assume the remainder a has two 

different predecessors a' and a", therefore, 

lOa 1 • a (mod p) and l0a'1 • a (mod p) ~ 

This implies lOa' - a = rp, and 1oa" - a = sp. 

Therefore, lO(a' - a") = (r - s) p, but p does not divide 10; p divides 

(a• - a") •. Now, a' and a"/.< p implies a' .. a" = o. Thus, any remain

der .determines its predecessor uniquely, and hence, tracing backward 

• • 
from the two equals from the decimal group, anything like _.;8371371 is 

impossible since 3 cannot follow 'both 8 and,l. So a/pis a pure 

recurring decimal. 

Consider the example 1/13: 

.• 076923 
13)1.000 

0 rw 
91 
90 
78 
:mo 
117 

30 
26 
""1'ro' 

39 
17 

• 

It is seen that only si'x of the possible 12 remainders occur, and the 

cyclic permutat;to:n.ot the period.076923 give the six fractions 1/13, 

10/13, 9/l"f>, 12/l'!J, 3/13, and '4/l3o . Now, any one of the six mis~ing 

numerators can be used when dividing by 13 to obtain the other six 

digit group which forms the periods. 
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For exam;ple, divide 2 by 13: 
.15384 

13)2.000 ••• 
1 3' 
--;;o 

65 
'-;a 

39 
110 
lo4-
t>O 

52 -so 
78 
T. 

• .. 
!he reader will note that· no remainder could occur in both divisions, 

.since their predecessors would be equal also, a.nd so on. 

· For p = 13, it was found that two six-figure periods are formed 

and ,the two sets of numerators corresponding to them form two six.-

member cycles. 
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The different cycles of n~m.erators found so far were generated .by 
... 

the division process. This was _not necessary, since ar+l a lO•ar 

(mod·p). Thus,for p.= 4i, the cycle containing 1, the unity cycle, 

will be: l; 10, since 10 s lO•l (mod 41); l.8, since 18 s 10•10 

(mod 41); 16, .since 16 s 10•18 (mod 41); 37, since 37 e 10•16 (mod 4i). 

Since ls 10•37 (mod 41), 37 is the last numerator in the unity cycleo 

Bo 1/4i, 10/41, 18/41, 16/41, and 37/41 are given by cyclic permutation 

of a :f'ive-digit per;tod which has. not been found. 

The ab.eve results are not too s~prising when consi_dered in light 

of the material introduced in the earlier sections of this chap;ter. 

For it can be shown that 10 belongs to 5 modulo 41.. Thus., a !!! ·1050a 

(mod 41) ~d the cycle of numerators will repeat after five steps. 

Summarizing, it is found that if 10 belongs to k modulo p, then: 

(i) each o:f' the fractions l/p, 2/p, 3/P, ••• , (p-l)/p is given by a 
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k digit period; (ii) k of these fractions are given by cycl~c permuta

tion of one k digit period; and (iii) since no number can occur in more 

than one cycle, there will be (p-1)/k = c (say) cycles. Thus, 

p = 7 106 = l (mod 7) d = 6 C = 1 

p = 13 
6 10 • 1,(mod 13) d = 6 C = 2 

p = 41 105 s L (mod 41) d = 5 C = 8 

p = 3 101 El (mod_ 3) d = 1 

A complete listing of primes~ 13,709 and their corresponding 

c-values can be found in Appendix A. 

While the discussion to this point has dealt with prime denomina-

tors, it should be pointed out that this is. not necessary. For consid-
• ' ' 0 

er p = 77, then 1/77 = .012987 and ¢(77) = 60 .. Thus., there is found 

~(77)/k(77) = 60/6 = 10 cycles. The unity cycle will be 

(1, 10, 23, 76, 67, 54). A second cycle could be found by finding the 

residues of 10r•2, (r = o, 1, .... , 5) modulo 77. In the next selection 

p wi~l be taken to be any composite relatively prime to 10. 

Properties of Remainders and Digits 

The proofs of the theorems in this section were based on the 

article by '.Batty [ 1 ]. 

In the previous section it was noted that a 1 s lO•a (mod p) or r+ r 
10a = a 1 + hp, r = l, 2, •• • , k. The reader will find that h = d , r ,,r+ r 

. th 
i. e. , the digit found in the r pla.c e of the period. Thus, the 

relationship between the remainder and digits can be generalized by 

(1) lOa = d p + a 1, r = 1, 2, ... , k r r r+ 

• • 
· An. interesting property is illustrated by considering 1/7 = .i42857. 
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_Its cycle of remainders was shown to be (1, 3, 2, 6, 4, 5}. Now, the 

sum of the digits is 27 or 3•9 while the sum of the remainders is 21 or 

3•7. The reader will note that one sum is a multiple of 7 and the 

other the same multiple of 9. Is this a property of only primes with 

maximum period lengths? Checking 1/13, it was found that 1/13 =.076923 

and the cycle of remainders was (1, 10, 9, 12, 3, 4}. Therefore, the 

sum of the digits is 27 or 3·9 and the sum of the remainders is 39 or 

3•13. These examplei:i motivate the following theorem: 

Theorem 3.10. If pis not a. multiple of 3, the·sum of all remainders 

in a cycle is a multiple of p, and the sum of the corresponding digits 

is the same multiple of .9. Thus, 
k k 

s~l as = pH, -~l <1i. = p:a' 

where~ is an integer. 

Proof: Summing the equations (1) gives: 

k k 
~ lOa. = t (d p + a ) r=l r r=l r r+l 

(2) k k k 
10 Ea =.p t d + rE=·1ar+l' r;:::l r r;;J. r 

But ak+l = a1 , since k(p) = k. Therefore, 

k k 
r:1ar = r~1a.r+l' 

and substituting this result into. (2), it becomes 

(3) 

k 
If pis not a multiple of 3, then p divides Ea 

r=l r 
Now, substitute this result into (::31) giving 

k 
9PH = p t 1 d • 

r= r 

k 
or E a.· = pH. 

r=l r 



Thus, 

and the proof is complete. 

k 
9H = I: d , 

r=l r 

Further, if k(p) = p - l then a is an element of (1, 2, 3, •••, 
r 

p - l}, and 
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k ,' 
I: a . ,;: 1 + .. 2 + • • • + (p - l) 

r=l r 
(not necessarily in this order) 

= i •p. (p - 1). 

Theref9re, H = i· (p - 1) = ik(p) • 

The following result concerning subsets of (a } and ( d } will be r r 

used in Theorem 3.12. 

Lemma 3.11. If m, n are any complementary divisors of k = k(p), ioe;, 

mn ~ k(p), and if (P; lOm- 1) = 1, then for r = l, 2, ••• , m, 

(4) 

(5) 

n-1 
I: a = h p 

s.=O r+sm r 

n-1 
I: d = 10h - h 1' s=O r+sm r r+ 

where h is an integer satisfying 1 < h < n~l, ~nd h 1 = h1 • 
r -- r- m+ 

:aefore proving the lemma; it would be instructive to consider a 

few examples: 

(A) If m = 1 then n == k and (4) ,a.nd (5) become 

k-1 k-1 
s~oar+s = hrp and s~odr+s = 10hr - hr+lo 

. These equations are the sarne· as those of Theorem 3.10, where 

H = h = h 1' • The reason being the sums are over the same 
r r+ 

sets, but the starting points are d:i,.'i'ferent. 

If k is p:rime, this is the only case. 
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(B) Assume p = 31, then k(31) = 15, since 1/31 =.032258064516129. 

The unity cycle of remainders is 

1, 10, 7, 8, 18, 25, 2, 20, 14, 16, 5, 19, 4, 9, 28 

Taking m = 5, n = 3, gives 

2 
E a1 5 · = 1 + 25 + 5 = 31 

S=O + s 

2 
E a2 5 = 10 + 2 + 19 = 31 

's=o + s 

·2 
E a 3 5 = 7 + 20 + 4 = 31 S=O + s 

2 
E0a4 5 = 8 + 14 + 9 = 31 

S= + S 

2 
E a5 5 . .. = 18 + 16 + 28 = 62 

S=O + s 

2 
E cL 5 = O + 8 + l = 9 

s~o-l+ s . 

2 d 6 s~O 2+5s = 3 + 0 + = 9 

~ d~ 5 = 2 + 6 + 1 = 9 
s=O J+ s . 

2 
E d4+5s = 2 + 4 + 2 = 8 

s=O 

~ d5 5 = 5 + 5 + 9 = 19 
S=O + S 

Interchanging m and n gives 

4 
E a2 3 = 10 + 18 + 20 + 5 + 9 = 62 (h2 = 2) 

s=O + 5 



4 
s~o~+3s = 3 + 5 + 6 + 1 + 2 = 17 = 10h2 - h3 

-. •, 

Proof of,Lemma 3.11: 

10k - 1 = lOmn - 1 = (10m - l)(lO(n-l)m + ooo + l) 

Since k(p) = k implies 10 belongs to k modulo p, then p divides 

(10k - 1) but not (10m - 1). Thus, if p and (10m - 1) are coprime, 

n-1 sm n..:l sm it follows that p divides E 10 and, therefore., also a O L; 1.0 • 
s=O r s=O 

m . 
Now, (2) gives 10 a = a . (mod p), since the cyclic property of the r r+m 

· remainder allows starting at any remainder. Therefore, 

and 

a = a r r 

m 10 a s a r r+m 

102m _ 
a = a r r+2m 

0 

• 

(mod p) 

(mod p) 

(mod p) 

lO(n-l)ma ~ a 
r r+(n-l)m 

(mod p ), 

n-110sm n-l 
a • E = E a r S=O . s=O r+sm 

(mod p), 

for l ~ r ~ m. Since p divides the left-hand memberJ it also divides 

the right-hand member, i.e. 



(6) 

for some integer hr• 

(7) 

n:l 
i; a = h s=O r+sm · rp' 

Also, since O < a < p, 
r 

l<h <n-l. 
... r -

Now, equation (6) gives 

and. 

Therefore, 

n...J. t lOa = 10h P, s=O r+sm r 

n_-1 h 
;i,;a = • s=O r+l+sm r+lp 

n-l(lOa ) . - a . = s~O r+sm r+l+sm 
(lOh .. , h 1 )p. 

r r+. 

Substituting from equation .(l) gives 

=~dr+sJ> = (10hr - hr+l )p 

,or di vi ding out the p 

(8) nt:d = lOh - h 1, 1 <_· r <_ m, s=O r+sm · r r+ 

where hm+l = h1• 
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The relations of Lemma 3.11 will now be used to prove the follow ... 

ing: 

Theorem 3.12. If Mis the greatest (proper) divisor of k, such that 

1d4 - l, pare ·coprime1 then for any cycles of remainders of p, 'the 

value of H as defined by ~heorem :;.10 sa.t.isfies the inequa.11 ty 
. \. 

M < H < k - M. 

Proof: If k is conu,osite, any divisor m (satisfying the coprime CC?n

ditions of Lemma 3.11) may be used to separate the set Ca } into m 
r~;: 

subsets, each of k/m. terms; and for the corresponding set (kr} gives ' 

l ~hr~ k/m - l (see (7)). Summing over them sets giv~s 



m 
m < :Eh < k - m. 

r=l r -

But ~ h = H, since summing (6) over r = 1, 2, ••• , m gives 
r=l r 

m (n-1 ) m "'""'"a = :EhP "" "" r+sm r=l s=O r=l r 

or ~ a = ~hp. r r r=l r=l 

With Theorem 3.10, this implies f h = H. Therefore, m < H < k - m. 
r=l r 

Since H satisfies this inequality for each m, 

(9) M ~ H ~ k - M, 

where Mis the greatest (proper) divisor of k. 

If H has its least value of.' M, then in (h }Meach h has its l east 
r r . 

value, unity; thus, with k = NM, equations (4) arid (5) become 

(10) N-1 :E ar+sM = p 
s=O 

(11) N-ld 9 
s&o r+sM = 

Similarly, if H has its gr eatest value k - M, each h in the set 
r 

Corollary 3.13. If p and 1ofk - 1 are coprime, then 

(12) H = i•k 

(13) 

(14) 

Proof: When k is even, the greatest (proper) divisor of k is t•k. So 

M = fk forces (9) to become ik ~ H ~ k ~ ik, which implies H = i k. 



Now, M = fk implies N = 2. Therefore, (10) and (11) become 

a + a._.__l. k = p, and d + d i k = 9° r ~-rs!"· r r+~· 
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Now, two remainders with sump and two digits with sum 9 may be 

called complementary; equations (J,.3) and , (14) state that corresponding 

remainders and digits in the two half-periods are complementary. 

Periods exhibiting these complementary properties will be said to 

belong to the class "c". A period of class "c" is necessarily of even 

length; a f'urther condition, which is sufficient, is that p and 

1oi·k - 1 are coprime. These conditions depend only on p; therefore, 

if one period of pis of class "C" so are all periods. In such a case 

it is said that pis of class "c". It follows from the definitions of 

k, that all primes or powers of prime with even period are of class ''c". 
~ 

In particular, all primes "p" such tha°15 k(p) =. p - 1 are of this class 

a ' a a and also those prime powers p for which k(p) = ¢(p ), since 

¢(pa)= pa-l(p-1), which is even for prime p > 2. 

The complementary property of the digits in the half-periods gives 

at once: 

' 
Corollary 3.14. The sum of the two half-periods of a decimal in class 

, ik "c'' is 99 ••• 9 (i•k digits), or 10 - l. 

The following examples illustrate the above corollari~s: 

(C) p = 11, k = 2 

l · 10 • • 2 • • 9 • • 3 . • • 8 • • IT =.09:, IT =.90; IT =.-18, IT =.81; 11 =.27, 11 =.72; 

4 •• 7 •• 5 · •• 6 •• 
IT ~.36, IT =.63; II =.45, IT= 54,. 

This example can be simplified as below where remainders can be 

thought of as numerators. 
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Remainders 1 - 10 2 - 9 3 - 8 4 - 7 5 - 6 
Periods 0 9 1 8 2 7 3 6 4 5 

(D) p = 13, k = 6 

R.emainders 1 - 10 - 9 - 12 - 3 - 4 2 - 1 - 5 - 11 - 6 - 8 

(E) 

Periods 0 7 6 9 2 3 l 5 3 8 4 6 

p = 49, k = 42 

Remainders 
Periods 

l - 10 - 2 - 20 - 4 - 40 - 8 - 31 - 16 - 13 - 32 -
0 2 0 4 0 8 l 6 3 2 

26 - 15 - 3 - 30 - 6 - 11 - 12 - 22 - 24 - 44 -
5 3 O 6 l 2 2 \ 4 8 

48 - 39 - 47 - 29 - 45 - 9 · - 41 - 18 - 33 - . 36 -
9 7 9 5 9 l 8 3 6 7 

6 

17 - 23 - 34 , - 46 - 19 - 4 3 - 38 - 37 - 27 - ' 25 - 5 
3 4 6 9 3 8 7 7 5 5 l 

An example to show k even is not suf'ficient is·,. as follows: 

(F) p = 39, k = 6 

Remainders l - 10 - 22 - 25 - 16 - 4 
. Periods O 2 5 6 4 1 

2 - 20 - 5 - · 11 - 32 - 8 
O 5 l 2 8 2 

1 - 31 - 37 - 19 - 34 - 28 
1 7 9 4 8 7 

14 - 23 - 35 - 38 - 29 - l 7 
3 5 . 8 9 7 4 

Now, (13) and (14) . fail to hold, since (39, 103 - 1) = 3. This is 

a contradiction to the suffic}ent condition of Corollary 3.13. 

1I'he characteristic features of a period of class "C" are that k is 

even and the complementary remainder p - a occurs t·k stages af'ter a 
r r 

in the division process. 

th Conversely, it is seen that if the remainder at, s.ay, the m stage 

is p - a1 then th~ c?rresponding digit is·' 9 - ~, and the proc~ss 

qontinues with each of the first m remainders and each of the first m 
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digits replaced by its complement, until the remainder a1 recurs after 

a further m stages. Thus, k = 2m, and the period has two complementary 

halves. 

It is interesting to note that the above statement can be proved 

[ 9 ] without, the use of material from this section. Assume 
I 

(a) 

Then, 

a 
= •. (9 - a.._ )(9 - d2) ••• (9 d ) + -2:_ 10-m 

-.I. m , P ' 

since 1 - 10-m = .99 ••• 9 (m digits). Thus, 

p-a 
--2:. 10-m -- 00 0(9 ' . . .. p 

so (a) becomes 

~ ~ · ~ P = • <\ d2 • • • d m ( 9 - ~ .)( 9 - d2 ) ••• ( 9 - dm) + P 10 , 

( ) ( )th ' where 9 - di is the digit in the n + i decimal place .• Hence, 

· the statement above holds • · 

If the remainder p - a1 d:oe~ .. not occur at any stage, then a1 and 

p ~ a1 belong to distinct cycles of remainders, the periods for ~ /p 

and ·(p - a1 )/p ar~ distinct, and c~rresponding digits in each are 

complementary, the sum being . 9 = l. The various periods s eparate into 

complementary pairs; the number of these periods , fJ(p )/k, is therefore 

ev.en . 

Summarizing t hese results: 

A necessary condition for p to be of class "C" is that k is even. 

A sufficient conditi on i s that 1oi·k - 1 i s an integer prime to· p. 

Another sufficient condition is that ¢(p)/k is odd. 
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If pis not of class "c", its periods form complementary pairs. 

' i·k If k is even, a necessary condition is that 10 ·. - 1 has a common 

factor with p; another ,necessary condition in this ·case is that p(p) is 

a multiple of 4. 

Examples are: 

' (G) p = 41, ¢(41) = 40; k(41) = 5 
' ' . 

r 
' 

Remainders 
Periods 

l - 10 - 18 · - 16 - 37 
o 2 4 3 9 

3 - 30 - 13 - 7 - ,29 . 
O 7 3 1 7 

6 - 19 - 26 - 14 - 1 7 
1 4 6 3 4 

' 
5 - 9 - 8 - 39 - 21 
1 2 1 9 5 

40 - 31 - 23 - ,25 ,- 4 
9 7 5 6 o 

38 - 11 - 28 - 34 ' - 12 
9 2 6 ' 8 2 

. 35 - 22 - 15 - 27 - 24 
8 5 3 6 5 , 

36 - 32 - 33 - 2 - 20 
8 7 8 o 4 

The reader will note: (i) Corresponding entries in the two columns are 
' 

complementary. (ii) The H-values from Theorem 3.10 are 2 in the firs t 

column and 3 in the second column. (iii) The sum of a period with its 
' , · 

complementary period is 9k and the ·sum of their .corresponding remaindem 

is pk; thus the two values of H for the pairs are complementary wi th 

sum k. 

(H) p = 21, ¢(21) = 12, k(2l) = 6 

Remainders l - 10 - 16 - 13 - 4 - 19 
Periods O . 4 7 _6 1 9 

20 - 11 - 5 - 8 - 1 7 - 2 
9' 5 2 3, 8 o 

I 

The reader will note that each of the observations above for p = 41 
. . . \ 

hol9- for p. = 2i_. except the H - values are both 3. Now, p = 41 failed 

-, to be in class "c." since p(4l) = ~O which is a~ multiple ·of 4 and also 

k(41) = 5 is not even·. p = 21 failed since (21, 103 - l ) = 3. 

To close out this . section, a generalization of Corollary 3.14 is 
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giv~n= 

· Theorem 3.15·.; lf k is composite with a divisor m, then 

sm • ~~····dm + dm+ldm+2· .. ~m + ••• + ·~-rn+i•••t\ 

. ,·· . . m · .. 
is a multiple of 10 - 1. . . 

Proof:· 
rri·.;.l ' 

S • 10 (d.. + .d ·1 + • • • + a_ l) + ••• + . m · J. · m+ -lt-m+ 

1 ' O ', 
10 (~-1 + °"2m.~ + ••• + t\-1) + 10 (~ + d2m· +, ••• + \:) 

By usiµg (5) each sum changes to 

Sm = 1om-l (1or;_ - · h2 ) + lOm~~ (10h2 - h3). + •• • + 

lO(lOh l _, h ) + (10h - hl' ) 
m- .m · m 

. m. xm-1 m;.J. . · m--2 
== 10 .n1 - lu · h2 + 10 ~ - 10 h; + • • • + 

102h , ._ 10h .+ 1011 - h_. · .m-.i. . m m · -""J. 

= (lOm - l )r;_ 

Similarly, if the digits are grouped cyclica..lly sta.tting at d , the .· . . ·. . r . 

sum is ~lOm - 1 )hr. 

Example.a are: 

(I) p = .,i,. ¢(3;) = 30, k(:31) = 15. Periods are: 

(1) '032258o64516129, (H = 6) 

s3 =. ?32 + 258 + o64 + 516 + 129 = 103 - l, 

s5 = 03225 +·8o645 + 16129 = 105 - l • 

. (2) 9677419'5483870, (H = 9) 

s3 = 2(10;5 - l), 

s, = 105 - 1. 



(J) p = 43, ¢(43), = 42, k(43) · = 21. Periods are: 

(1) 02325581395)488372093·, (H = 10) • 

3 s3 = 3(10 - 1), 

S = 107 - 1. 
7 

(2) 976744186o465116279o6, (H = 11). 

s3 = 4(103 - l), 

87 = 2(107 - 1). 
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This chapter has by no means exhausted all the .properties of 

recurri~· decimals, but only those which the writer fel~ were "basic". 

The remainder of the chapter will relate the theory developed in the 

chapter to bases other than ten and the history of the theory will be 

traced. 

Basimals as Applied to This Chapter 

The first section of the chapter will hold true regardless of the 

base system of numeration. For example, consider the definition of· 
' ' 

congruence; if m. divides a - b using base ten numeration, then it will 

in any base. The example 23 • 7 (mod ,8) wi.11 become 35 • ll (mod 12) 

in the base six system of numeration. 

rhe theory d~eloped in the &econd section was not completely 

independent of the base system of numeration • . An inte~esting example 

to consider in another ~ase .is Theorem 3.3. This was the theorem that 

exp+ained why k(7) = 6. Now, if the base had been twelve, then the 

''lo" in the theorem would have been the numeral for the number twelve. 

~h~refore, the question becomes, "To what power does 10 (twelv~) 

belong modulo 7?". (The following congruences are in base twelve.) 



(1) 10 • 5, 1o2 • 4, 103 • 6, 104 • 2, 1a5 • 3, 106 • 1 (mod .. 7). 

This implies .that k(7) = 6 for base twelve as well as base_ ten. · 'nle 

division process to find the period of i/7 in base twelve would be as 

follows: 

(2) 
.186t35 

7)1.00 ••• 
7 ·~ 

50 
48 
'"1i-O 

36 
tic 
· 5t 
· 20 
19 
~ 

2e 
T. 

The questi_on, "Is k(7) = 6 true for any basirnal?", could be· asked by . . 

t~e reader· at this_ t _im_~. The answer is no, as shown by the following : 

~ 

Six belongs to two modu.l.o,seven which in base six would be expressed as 

thus, 

102 • ' 1 (mod 11), 

[k(ll) = 2]six· 

.. '• 

·From the· division process the period is found to be 

(3) 

- .. 
• 05 

ll)l.00 ... 
0 

l 00 
55 
i. 

Since 8 • l (mod 7), then in the base of eight the congruence would be 

10 • l (mod 7) and 10 (eight) belongs to one modulo 7. This implies 

k(7) = L From the division process the period is found to be . 
• 1 

(4) 7)1':o 
7 

--r.. 
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The periods in the two examples lead to an interesting generaliza-

tion when compared with the analogous situation in base ten. In (3) , 

the period was found for the reciprocal of the number which was one 

more than the base. The digits of the period were zero and one less _._ 

than the base. The reader will recall that in base ten 1/11 = .69 

and this is identical to the conditions of (3). Can this observation 

be shown to be true in general? The question is answered by the 

follO"!.ing theorem.:. , 

.. 
Theorem 3.16. If bis the base of the system of numeration, then 

1/(b+1) = .o(b:1). 

Proof: 1 1 b-1 b-1 -=-----·-=-= b+l b+l b-1 b2-l 
(b-l)· .. 21 

b -1 

2 
Now, 1/(b - 1) can be expressed as an infinite geometric 

progression as.- follows: 
2 4 6 

.. b 2 -l) ,,.1~_1 ..... / ....... P _·_+_1_,_/_b_+__.1/_b__,,+_ .... _._. 

l ~:l/b2 

l/b2 

~/b2 - 1/b 4 

l/b4 

1/b 4 - l/b6 

l/b6• 

' 2 4 6 
Thus, 1/ (b+l) = (b-1) • ["l/b + 1/b + 1/b + ••• ] which implies 

1/ (b+1) .... o(b:1). 

The reader will observe the generalization of (4) leads to the 

following: 

.. 
Theorem 3.17. If bis the base of the system of numeration, then 

1/(b-l) 
. 

= .1. 



. Proof: Now 1/ (1:>-1) can be expressed as an infinite geometric 

progression as follows: 

b-1)1 

4 
l/b - l/b2 

l/b2 

l/b2 - ',l/b3 

1ib3. 

... 

Thus, · 1/ (b-1) =. 1/b + l/b2 + ~l/b3 + . ••• wh~ch implies 1/ (b-1) :; .i. 

Since on3:-y the functi?n values of the k-:function are dependent on 

the base and not the final results, the Theorems 3.5, 3.7, and 3.8 
• I ' 

will still hold with the following modifications : '(1) p is a prime 

which does not .divide the base. (11) "J.O" remains in the th~orems, 

but is interpreted as the numeral for the new base. Theorem 3.9 is 

true regardless of the base •. 

The cyclic properties of recurring decimals are independent of the 

base system. The reader should, by just looking at (2), be able to 

write the period-of any of the sevenths '.. in base ·twel-ve. The result 

concerning the number o:f .cycles is still t?'Ue •. Consider in base six 

the :following: 10 • lO•l, 1 • 10•10 (~od 11). 

Thus, d = 2 and c = (ll-1)/2 = 3. 

The generalization of Theorem 3•1;0 to any basimal would be to 

replace the "9" by "b-l. 11 where b is the base, and to replace the "3'' 
..., } ... 

' 
by "any divisor of b-1"... As an example consider in base twelve the 

' ·~ 

reciprocal of seven , (see (2)). The period t~ 1/7 = .i86t35 and the 

.cycle of remainders i~. t,J., 5, 4, "' 6, 2, 3). Therefore, 



6 
I: d = 1 + 8 + 6 + t + 3 + 5 = 29 = e•3 

~=ls ' 
and 

6 = 1 + 5 + 4 + 6 + 2 + 3 = 19 7•3 Ea = s s=l 

It is seen that, since (7, 103 - 1) = 1, the Cor.ol,lary 3.13 is 
satisfied: 1. + 6 = 5 + 2 - = 4 + 3 = 1 

1 + ~= 8 + 3 = ~ + 5 = e. 

Corol1ary 3.13 is generalized .by replacing the 9' s by b-1. ·· The 
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discussion on class "C·" primes carries ·through with only the 9' s 

replaced by b-1 1. Theorem 3.15 is tru.e regardless of the base, since 

its proof depends only on place value. 
r 

The reader. ·· should by now see the "obvious" c~es necessary in 

going from one base to another. 

Historical Notes .. 

Whil.e the results of Theorem 3.3 Jere known before 18.00, tht 

theorem was proved for the first ~ime by C. F. G~uss in 1801. Theorem 

3.5 was first noted in 1771 by Jea_n Bernoulli, but .was not proved in 

the general form until 1875 by T. Muir. 

The history of Theorem 3.8 is interesting due to the presence of 

the case for the prime 487. ' Bernoulli was the first person to make the 

false assertion by overlooking 487. Thibau;Lt's formul._ation of the 

·. prob).em ~n 1843 was correct, but it was proved. by E. Prouhet in 1846. 
' -

The first person to find the case of 487 was E. Depmarest in 1852. 

Although w. '-shanks was familiar with Deomarest's work, he still ' 

erroneously stated the theorem in 1874. He corrected his error in ', 

1877. 
' . 2 . 

J. W. L. Glaisher gave the full period of 1/487 in 1878. 



Bernoulli in his article in 1771 also _noted that if the period of 
.. 

1/p has p-1 digits then the period of q/p will be a cyclic p_ermuta.tion 

of the digits. 

rt· is interesting to note that Dicksons_ gives no reference to 

T?,eorem 3.10 even in stated form, but W. H. Hudson in 1864 did note 

P-1 -
that if k(p) = ·P-1 then iE di= 9(p-l)/2. Lemma 3.11 in a modified 

=l 
form was illustrated by E. Midy in 1836. The digital properties of 

the class "c'' periods were noted by several different authors starting 

with H. Goodwyn in 1802. 'The first reference to the proof of these 

properties was in 1851·'by P. Lafitte. · In 1874 P. Mansion gave a 

"detailed" proof of d + d _,_J,_ = ·9· 
r r~k 



CHA.Pl'ER IV 

GENERAL PROPERTID3 OF RECURRING DECIMAU:i 

Primes with Maximum Periods for Their aeciproca.ls 

The extensive amount of material available on the subJeet of 

recurring decimals is lacking in the discussion of primes with maximum 

periods for their rec~proca.ls. Hardy and Wright [17] list the first six 

primes _ with this property and prefaced their remarks by saying " ••• very 

little is known about them". ; 
~ 

Two writers who have considered this type of prime are Ayyangar and 

Kaprekar [ 4 ] • The following three theorems are attributed to themo 

Theorem 4.1 • . If N = p~lp~ ••• p:r where the pi 's are prime integers and _ 

the ai's are positive integers, then the factors of N other than N 

itself are factors of at least one of the r integers: 

N N -, 
11. 

. . . , P/ 
Proof: Consi'\er any factor of N other than itself, it has to be the 

form 

. . 
where at least one of the bi's, say, bh' is such that bh ~ ~ - 1. 

Therefore, this number is a facto~ of N/ph. 

Theorem 4.2. A necessary and sufficient set of conditions that q is a 

prime with a maximum number of digits in its period is that 

59 
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10(~-l)/p ~. l (mod q) for all prime factors p of q-1. 

Proof: The conditions are necessary since if. lO(q-l)/p • 1 (mod q) then 

k{q) S (q-1)/p by the definition of the k-function. But this contra

dicts the hypothesis of k(q) = q-1. To prove the sufficiency of the 
. t 

conditions, assume that 10 • 1 (mod q) where t is some proper factor of 

q-1. Now, by Theorem 4.1, it is known that tis a factor of some 

number of the form (q-1)/p. Therefore, lO(q-l)/p • 1 which implies 

k(q) < q-1. But this contradicts the hypothesis k(q) = q-1. 

Iyer [18] stated a "theorem'' without proof which was similar to 

the one above, but he considered only the one case where p = 2. Later, 
i 

Ayyangar [ 3] pointed out that Iyer was in error but he neglected to 

give a counterexample. Before looking at a counterexample let us state 

the "theorem": 

A prime number of the form l + 2m, where 2m is any 
integer other than a power of ~o,. has a reciprocal with 
a maximum recurring period provided that 1cm • -1 
(mod (1+2m)) • 

. The "theorem" is necessary but not suff~~ient since, if 10 belongs 

to 2m modulo (1+2m), then 10m r l, but 10m • -1 modulo (l+2m). To show 

the theorem ts not sufficient, let the prime -(2m+l) be 73, then m = 36 . 

From Appendix A it is found that the period for 1/73 has 8 digits or 10 

belongs to 8 modulo 73. This implies 108 •land 104 • -1 (mod 73). 

Hence, 1036 • -1 (mod 73'). Now~ 'the prime 73 does not satisfy·' Theorem 

4.2, since 10(73-l)/3 • 1024 • l (mod 73). 

The next theorem gives necessary and sufficient conditions for 

ab primes of the form q = 1 + 2 3, of which 73 is one. 



. b 
Theorem 4.3. If q is a prime of the form 1 + 2a3 (a, b > 0) and 

lO(q-l)/G • t (mod q) where ltl· < q/2, then a necessary and sufficient 

set of conditions that 1/q has the maximum recurring period·~f (q-1) 

digits is 

(1) . It!, 1 and t 2 • t - 1 (mod q). 

Proof: (Note: All congruences in the proof are for modulo q.) The 

conditions are ~~~essary since, assume k(q) = q - 1 then t 6 • 1. This 

implies 

Hence, 

Thus, 

t 6 - 1 • o. 

(t3 - 1)(t3 + 1) • o. 

t3 • 1 or t 3 • -1, 

because (t3 - 1)(t3 + 1) = hq for some integer h, implies q divides 

(t3 - 1) or (t3 + 1) since q is prime. Now, t 3 , l since this would 

contradict the hypothesis, therefore t3 • -1 or t3 + l • o. But 

t3 + l = (t + l)(t2 - t + l) gives t • -1 or t 2 • t - l. The first 

congruence-would contradict the. ~ypothesis , therefore, the condittons 

(1) are necessary. 

It remains to show that if (l) holds then k(q) = q - 1. By the 

6 · q-i way t is defined, . . t . • · 10 11 l. If 10 does not belong to q - 1 then 

10 has to belong to some factor of q - l by Corollary ;.F. From 

Theorem 4.1, it can be said that this factor has to be a factor of 
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(q - 1)/2 or (q - 1)/3• This implies lO(q-l)/ 2 • 1 or 10(~-l)/3 • 1. 

But lO(q-l)/2 • t3 and lO(q-l)/3 • t 2 • Hence, t 2 • 1 or t3 ~ l which is 

the same as It I• 1 or t 3 - l • o. ltl • 1 contradicts (1). Does 

t 3 - 1 • O imply t 2 .,. t - 1? 

t3 - 1 • (t - 1)(t2 + t + l) = o, implies 

t . • 1 or t 2 + t + 1 • o. 
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Now, t ~ 1 contradicts (1) and t 2 • -t - 1 implies t 2 , t-1 since, if 

t 2 • -t - 1 • t-1,then t • 0 which is impossible. So the answer to the 

question is yes, and the conditions are sufficient. 

Ayyangar, in the same article in which he pointed out Iyer•s error, 

also gave a theorem which generalized Theorem 4.; to cover all primes. 

ao ~i a2 ar 
Theorem 4.4. If q = 1 + 2 p1 P2 ···Pr, P = P1P2 ···Pr' 

Q . = (p1 -l)(p2-1) ••• (pr-1) and 10(q-l)/2P • t (mod q), ~here q, p1, p2, 

••• , p are odd primes, then a necessary and sufficient condition for q 
r 

to be a prime with a maximum recurring period for 1/q is that t satis-

fies a cyclotomic congruence equation of degree Q and order 2P. 

He neglected to give a proof of the theorem, but said it followed 

immediately from his criterion set forth in his previous article 

(Theorem 4.;). The writer is of the opinion that this may be true if 

the reader has studied "cyclotomic congruence equations". The writer 

had not until he encountered this theorem. The writer found the topic 

in several advanced abstract algebra boolq;. Unfortunately, the explana-

tion about them assumes a knowledge in "Galois" and "splitting field". 

Consequently, the writer has elected .to discuss the theorem intuitively 

and show how to apply it. 

Since t , is defined as lO(q-l)(2P, then ,it is s~en that 

t 2P = lOq-l • 1 (mod q). h The question is whether or not t al (mod q) 

where h divides 2P. This is where the cyclotomic equation comes i nto 

use as pointed out in the theorem. 

Before considering an example it will be necessary to define the 



Definition 4.1. The Mobius function is defined by the following 

equations: 

µ.(1) = 1, 

µ.(n) = (-l)r if n = p1p2 ••• pr' 

where the pi's are distince primes, 

2 µ.(n) = 0 if p divides n for any prime p. 

Van der Waerden [35] showed the cyclotomic polynomials of order h 

are given by 

F ( ) _ ,r ( d l) (h/ d) 
h X - dlh X -

" where djh means the product over all the divisors of h. 

For the first example consider the special case covered by Theorem 

ab 4.3. Thus q = 1 + 2 3 implies P = 3, Q = 2, and 

F ( ) _ ,r ( d 1)µ(6/d) 
6 X - dj6 X -

= (x-1?(6)(x2 - ll(3)(x3-1t<2)(x6-1)"~(l) 

(x-l)(x6-1) x3 +1 2 
= 2 3 = X + l = X - X + 1. 

(x -l)(x -- 1) 

Hence, t • lO(q-l)/6 (mod q) has to satisfy the second degree cycloto-

mic congruence equation 

x2 - x + l • 0 (mod q). 

This is the s_ame congruence equation given in (1). It is said that 

when t satisfies the cyclotomic congruence equation then tis a "2Fth 

root of unity"1 modulo q, but is not a "Dth root o:t' unity" modulo~q, 

1x is said to be an "nth root of unity" modulo q if and only if 
xn • 1 (mod q). 



ab where Dis any propir divisor of 2P. In the case of q s 1 + 2 3 this 

means t 6 • 1 (mod q), but t 2 ~ 1 and t 3 ; 1 (mod q). 
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a b C As the second example, let q = 1 + 2 3 5. Thus, P = 3·5 = 15 and 

Q = 2•4 = 8. 

F (x) = ,cl (xd- l)µ.(30/d) 
30 d 30 

(x2 - l)(x3 - l)(x5 - l)(x30 - 1) 
= (x - l)(x6 - l)(x10 -l)(xl5 _ 1) 

(x + l)(x15+ 1) x16+ x15+ x + 1 
= (x3+ l)(x5 + 1) = x8 + x5 + x3+ 1 

8 7 5 4 3 = X + X - X - X - X + X + 1. 

Hence, fort= lO(q-l)/3o (mod q) , 1/ q will have a maximum number of 

digits in its period or not according as t satisfies or does not satisfy 

the cyclotomic congruence equation 

x 8 + x 7 - x5 - x 4 - x3 + x + 1 • 0 ( mod q) • 

Before discussing the next theorem it is necessary to introduce 

material ,from number theory . 

Definition 4.2. If q belongs to p(r) _~~dulo r, then q is called a primi-

tive root modulo r. 

Theorem 4.A. [36] An integer n has primitive roots if and only if it 

is 2, 4, pm, or 2pm, where pis an odd prime. 
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Theorem 4.B. (70] If n is a primitive root of the odd prime P, and if 

pl 2 m n· - a l {mod p ), then n is a. primitive root of p., for any positive 

exponent m. 

Rao [27], after observing .A;yyanger's results and using the above 

properties, proved the following three results: 

Theorem 4.5. If n is an odd number with ~ maximum recurring period '/J(n) 

m .. , 
~or 1/n, then n must be of the form p , · where m .~ .. l arrd p is a prime 

other than 5. 

Proof: 'From Theorem 3.3 it is seen that if 10 belongs to a modulo n, 

then the recurring period consists of e digits. If e = p{n) then the 

recurring period is the maximum number of digits. ;tt follows that the 

recurring period of l/n is a maximum when 10 is primitive root of n. 

But from Theorem 4.A it is known that there exist primitive roots of a 

- m m , · 
number only when it is 2, 4, 2p or p , where p is an odd prime. Since 

-. m 
n is odd, it follows that n must be of the form p. pf. 5, since 

k(5n) = 1 and not '/J(5n). 

Corollary 4.6. Every number of the form pm (p is an odd prime other 

than 5, an.d m ~ 1) which_ has 10 for a. primitive root has a maximum 

recurring period. 

Theorem 4.7. There are infinitely many odd numbers whose reciprocals 

have the maximum recurring period. 

- Proof: It :is known that ·10 belongs to 6 modulo 7, but 106 ; l {mod 72 ). 

Consequently, by Theorem 4.B, it can be said that 10, is a primitive root -

of 7m, for any positive integer m. Hence, the theorem is proved. 



. Tbe obvious question to ask after Theorem 4. 7 is: "Are there 

infinitely many odd primes p such that k(p) = p - l?,. In checking 

Appendix A, ·it is found that among.the first 150 odd primes there are 

53 pri111.es whose reciprocals have .the maximum.recurring period. The 
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writer could find no record of this ques.tion being answered. Rao said 
•. 

that he :f'elt that it was ye~, but he was unable to prove it. 

The Conditions for d = a 
r r 

On evaluating tl;le reciprocal of a prime number, one ott·en finds · 

that a digit in the quotient is the same as a corresponding remainder, 

i.e., d = a • F<>r primes 19 and 29, the above property results 9 r r · 
times. It is possible to give necessary conditions for this property. 

From the Divisi.on Algorithm it :follows. that: 

(l) 
lOa a 

.r-l = d + ...!..~ O < d < 9; O < a < p. 
p r p - r- r 

If d = a , then (1) becomes r r 

(2) lOa 1 = (p+l)a. r- . r 

From (2) it is possible to deduce the following theorerfl: 

Theorem 4.8. [;1] (i) For primes of the form p = lOn + s, where 

s = l, 3, 7. Thend = a only i:f' a = 5 has a. solution. (ii) For r r r 

primes of the form p = lOn + 9, d = a =bis possible for all values r · r 

of b; (l ~ b ~ 9), except for those values of b for which ar-l = b(n+l) 

does not have integral solutions • 

Proof: (1) Substituting p = lOn + s into (2) gives 

lOa -l = (lOn + s + l )a , or r r 

(3) 5ar-l = (;n·+ d)ar, where 2d = s + 1, d = 1, 2, 4~ 



Now, the left-hand side of (3) is divisible by 5, hence (5n + d)ar is 

divisible by 5. Since 5 does not divide (5n + d), then 5 divides a. · or . r . 
' 

a. = 5h. Bu.t O < a = d < 9 implies that b = 1 or a = 5. It ·1s 
r r r - r 

noted that when k(p) = p-1 then d = a = 5 only once, since a takes on 
r r r 

all values between l and.p-1 one and only one time. 

(ii) Substituting p = lOn + 9 into (2) gives 

lOa -1 = (lOn + lO )a , ··or r r 

(4) a 1 = (n + l)a. r- r 

Therefore, for all values of ar-1 which are divisible by (n+l), equation 

(4) .has integral solutions. Hence, d = a = b, (l < b < 9) except for 
.,. r r - -

those values of b-for which a 1 = b(n+l.) does ,not have integre;l 
r-

solutions. 

Coroitaey-4.-9. (31] For pri!p.eS er! the form- p ·::= lOn + 9, dr = a.r = b f.or 

f!Very b such that l < b < 9, where k(p) = p-1. - -

Proof: If k(p) = p-l, th~ ar takes on all values between l and (p .. l) 

inclusive. Hence, d = a = b tor f!Very b such that l < b < 9. 
. r r - -

:Below are given two examples to illustrate the properties discussed 

above. 

(1) For p = 17, k(l7) = 16 and from Theorem 4 • .8(1) there exists 

only one pair d = a = 5. r r This is shown in the table given. below .. 

r 1 2 3 4 5 6 7 8 9 lO ll 12 13 14 15 16 

d 0 5 8 8 2 3 2 r 2 9 4 l l 7 6 4 7 

a 10 15 14 4 6 9 r 116 7 2 3 13 ll 8 12 l 

(ii) For p = 19, k(l9) = 18 and from Theorem 4.8(11) there exist 

exactly 9 pairs d = a = b where l < b < 9. 
r r - -
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r l 2 3 4 5 6 7 8 9 10 ll 12 13 14 15 16 17 18 

d ·o 1 2 6 3 l 5 7 8 9 4 1 3 6 8 4 2 l r - - .... -
a 10 5 12 6 21115 17 18 9 14 7.13 16 8 4 2 l r- .- -. - -, 

Rao [27] made an interesting observation about Dal.jet. Singh',s 
' 

results::, namely, for .those numbers of the form pm such that k(pm) = 

'/J(pm.), the conclus:tonsof Corollary 4.9 still hold with slight modifica ... 

tion. The simplest example to illustrate his observation is· for 

m 2 4 P = 7 = 9. 

r 1 2 3 4 5 6'" 7 8 910 111213 14 

d 0 2 0 4 0 8 ,,l 6 3 2 6 5 2 0 r 

a 10 2 20 4 40 ~ 3116 13 32 26 15 2 30 r 

r 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

dr §. l 2 2 4 4 8 9 7 9 5 2 l 8 

a 6 1112 22 24 44 48 39 47 29 45 94118 r - . 

r 29 30 31 32 33 34- 35 36 37 38 39 40 41 42 

<1z. 3 6 7 ; 4 6 9 3 s 7 1 5 L 1 

ar 33 ;6 17 23 '4·46 19 43 :,8 37 27 25. 1 ~ 

In this particular case, there exists exactly 8 pairs dr = ar: = b 

where b takes all values from l to 9 except the value 7. This should be 

the case since 7 is .not prime to T. For al.l other values of p and pm 

that are of the form lOn + g·· and have 10 for a primitive root, there 

exists exactly 9 cases in which d • a = b and l < b < 9. By Theorem 
. r r - -

4. 7, it follows that there are infini tel.y many numbers' of t~e' fqrm ·· 

, · 4h-2 
lOn + 9 having the property stated above, becaus>e 7 a 9 (mod 10) 

·"!or all ·pos:l,tive intege.rij h~ 



The Frequency of Digits 

In Chapter III, it was shown that the period length for m/n 

depended only on n, and if k(n) = k;· then there exists (n-1)/k, = c 

distinct cycles of numerators or remainders, and with each cycle there 

was a "distinct" period. By a "distinct'' period, it is meant that any 

cyclic permutation of the digits of a period gives the same "distinct" 

period. Schiller [ 3~ stated and proved a theorem and corollary about 

the frequency with which a given digit appears in the collection of 

distinct periods for a given prime. 

Theorem 4.10. Consider the collection of distinct periods of any prime. 

It; td is the total number of times the digit d appears in these periods, 

then ltd - td, I '.:: 1, for d I cf. 

This means simply that, as far as possible, every digit appears 

Just as often as any other digit. 

Proof: Consider the set of all m such that m /p gives the same s s 

distinct period for s = 1, 2, ••• , k{p). . Now, each digit in a distinct 

period will appear once in the first place after the decimal point. 

This "first" digit; say d, is found by solving the equation 

lOms = dp + r, for O < r < p. From Chapter III, it is known that k(p) 

divides p-1 and the total number of digits used in all distinct periods 

is p-1. The question nap ~esolves itself into the following: For each 

d (o < d < 9), how many m's exist over all the dist:t:nct periods so 
- - s 

that both the equation and the condition on rare satisfied? 

If the distinct period associated with a numerator mis not 

important, then the subscripts will not be used. In order for the 
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condition on r to be satisfied, the following inequalities must hold: 

(1) dp < 10m < (d + l)p. 

Also if m' is the least such m, and m• +td is the greatest such m, then 

dp < lOm' < lO(m' + td) < (d + l)p. 

Hence, 

(2) dp + lOtd < (d + l)p, and p > lOtd 

On the other hand, since m• is the least m, and m• + td is the 

greatest, 

Therefore, 

(3) 

lO(m' + td + 1) > (d + l)p, and lO(m' - 1) < dp. 

lO(m' + td + 1) > (d + l~p > lO(m' - l) + p, and 

lO(td + 2) > p. 

Finally, (2) and (3) result in 

(4) p/10 > td > p/10 - 2. 

Now, all the integers between m' and m0 + td satisfy (1), therefore the 

total number of m's would be td + 1. The reader will note that (4) 

implies td can have two possible va.lues. Therefore, let td = h or 

h + l for the two possible values. Since td did not depend on d, then 

for any two d 1s, say d and d', ltd - td,I S 1. 

Corollary 4.11. If p = 10n + r, then (11 - r) digits appear n times, 

and (r - 1) digits appear n + 1 times. 

Proof: The set of all digits can be partitioned into two sets, one 

containing those that appear h times and the other containing those that 

appear h + 1 times. If there a.re x distinct digits in the first set, 



then there would be 10 - x distinct digits in the second set. The 

total number of digits in all the distinct periods is p-1. Thus, 

p - 1 = xh + (10 - x) (h + 1), or 

10n + r - 1 = xh + lPh - xh + 10 - x, or 

(5) lOn + r = 10h + (11 - x). 
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Since l < r :S 9 and 1 :S x :S 9, equation (5) implies n = h; r., = 11 - x or 

x = 11 - rand 10 - x = r - 1. Hence, the conclusion follows. 

Schiller defined "deficient" and "excessive'' digits by saying that 

the digits wbich appear n times are deficient and those which appear 

n + 1 times are excessive. 

If p = lOn + 1, then the corollary says that all digits are 

deficient. For the remaining cases it is found that r = 3 implies two 

excessive digits; r = 7 implies four deficient digits; r = 9 implies two 

deficient digits. Can these excessive and deficient digits be 

identified? By working with (1), the answer is seen to be yes. 

Considering the case r = 3, the reader will note that ford= 3, 

10(3n) + 9 < lOrn < 10(4n + 1) + 2 implies m = 3n + 1, 3n + 2, 

4n+l. Therefore, m can haven+ 1 values which implies d = 3 is 

excessive. Ford= 9, 10(9n + ~) + 7 < lOm < 10(10n +;)implies 

4n., 

m = 9n + 3, 9n·+ 4, ••• , 'lOn + l, 10n + 2. Therefore, m can haven 

values which implies d = 9 is deficient. Listed below are all of the 

inequalities for each of the digits. 

d = o, o < lOm < 10n + 3, implies. 0 is deficient; 

d = 1, 10n + 3 < lOm < 20n + 6, implies 1 is deficient; 

d = 2, 20n + 6 < lOm < 30n + 9, implies 2 is deficient; 

d = 3, 30n + 9 < lOm < 4on +l2, implies 3 is excessive; 

d = 4, 40n +12 < lOm < 50n +15, implies 4 is deficient; 
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d = 5, 50n + 15 < lOm < 6on + 18, implies 5 is deficient; 

d = 6, 6on + 18 < 10m < 70n + 21, implies 6 is excessive; 

d = 7, 70n + 21 < lOm <Son+ 24, implies 7 is deficient; 

d = 8, Son+ 24 < lOm < 90n + 27, implies 81 is deficient; 

· d = 9, 90n + 27 < lOm <lOOn + 30, implies 9 is deficient; 

In general, it is seen that an excessive digit occurs whenever the 

constant terms differ in the second digit and the first digit of the 

larger number is not zero. 

The cases of r = 7 an~ 9 follow similarly and for r = 7 it is found 

that o, 3, 6, and 9 are deficient; for r = 9 it is found that O and 9 

a.re deficient. 

Four eJtamples which illustrate the corollary and the observation 

about which digits are excessive or deficient are as follows: 

(A) For the case r g 1 consider p = 31, the two distinct periods 

are 

.032258064516129; 096774193548387. 

The reader will note that each digit appears n = 3 times. 

(B) For the case r = 3 consider p = 73, the nine distinct 

periods are 

01369863; 02739726; 04109589; 05479452; 06849315; 

08219178; 12328767; 16438356; 24657534. 

It is seen that the digits 3 and 6 appear eight times and 

the other appear 7 times. 

(C) For the case r = 7 consider p = 47, the one distinct period is 

0212765957446808510638297872;40425531914893617. 

The digits o, 3, 6, 9 appear four times and 1, 21 4, 5, 7, 8 

appear five times. 



73 

(D) For the case r = 9 consider p = 29, the one distinct period is 

The digits o, 9 appear twice and the others appear three times. 

,,Other Properties of Recurring Decimals 

The theorems of this section are not necessarily interrelated, but 

Just show more·properties of recurring decimals. 

Theorem 4.12. If k(n) = 2m, then 

1 A+l 
- = 
n lOm + 1 ' 

where A is the first half of the period. 

Proof: By Corollary 2.4, 

l . [ala2. • .amblb2. • .bm] 
- = 
n . 102m - l 

(1) 

Now, 

by Corollary 3.14. This implies (l) can be changed as follows: 

= 

= 

l0m[a1a2 ••• am] + (10m - l) - [a1a2 ... am] 

(lOm + 1)(1om - 1) 

(10m - l)([a1a2 .uam] + 1) 

(10m + 1)(1o'11 - 1) 



According to, Dickson., A. Ricke proved this theorem in 1887. 

Uma.nsky [34] used Theorem 4.12 in proving th,e following .theorem: 

Theorem 4.13. If A and B are the first and second halves, respectively, 

of the period for 1/p, where pis prime and k(p) = 2m, then 

B p - 2 
x=P-l+ A.• 

Proof: From Theorem 4.12 it is seen that 

1 (A + 1) - = ., 
p lOm + 1 

10m + 1 
or P = A + 1 • 

Corollary 3.14 gives A + B = 10m - 1. 

Therefore, A+ B + 2 = 10m + 1. 

··A+B+2 · By substitution, p = A+ l , or Al>+ p =A+ B + 2. 

Hence., B = A(p - 1) + (p - 2)., or 

B ( ) p - 2 x= P-l + X • 

Examples: 1/7 = .i42857 implies 857/142 = 6 + 5/142. 1/13 = .076925 

implies 923/076 = 12 + 11/076. 

Theorem 4 .14. If (n,10) = 1, then there exists a number n • such that 

every digit in the product nn• is 1. 

Proof: Case Ii Assume (n, ;) = 1. Now, by Corollary 2.4 

l [~~···<\tl - = ., or 
n lOk - l 
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Since 9 d!vides 10k - 1 and (n, 3) = 1, then 9 divides[~~···~]. 

Hence, 

where 

Case II; Assume (n, 3) = 3. Now, 

Hence, 11 ••• l(k digits) = n[~~···~l = nn'. 

For example, n = 41 implies n' = 271, since 

1 24;6 gives 
Irr = 106 - 1 ' 

99999 = 41•2439, or 

11111 = 41• 271. 

To illustrate the second case, let n = 123, then 

1 1 • . • 
9.123 = I1o7' = .00090;;42366757, or 

1015 - 1 = 9•123•90;;42;66757. 

. Hence, u ... 1(15 digits)= 123•903;42366757 • 

Rollett (29] gave the following list of factors of' 11 ••• l(k digits), 

k = 2 to 21 



11 = 11 

111 = 3•37 

1,111 = 11•101 

11,111 = 41 •271 

111,lll = 3·7·11•13·37 

1,111,111 = 239.4649 

11,111,111 = 11•73•101•137 

111,111,111 = 32 ·37·333667 

1,111,111,111 = 11•41•271•9091 

11,111,111,111 = 21649•513239 

111,111,111,111 = 3•7•11•13•37•101•9901 

1,111,111,111,111 =·53•79•265371653 

11,111,111,111,111 = 11•239•4649.909091 

111,111,111,111,111 = 3•31•37·41•271•2906161 

1,111,111,111,111,111 = 11•17·73•101•137·5882353 

11,111,111,111,111,111 = 2071723.5363222357 

111,111,111,111,111,111 = 32•7•11•12•19•37•52579•333667 

1,111,111,lll,111,lll,lll = a prime 

11,111,111,111,111,111,111 = 11°41·101•271·3541•9091•27961 

111,111,111,111,111,111,111 = 3 • 37 .4 3·• 239 •1933 °4649 °10838689 
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This table can be used to find the k-function values for the prime 

factors used, and also the periods for the reciprocals of the primes. 

For example, 

(2) 

implies 

111,111 = 3·7·11•13•37 

1 .· 3•11•13•37 9•3•11•13·37 
7 = 111,111 = 999,999 

1 142,857 ·4 • 
7 = 999,999 = •1 2857 • 
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Also, (2) implies that k(3), k(7), k(ll), k(13) and k(37) are less than, 

or equal to six. NO'J, since 73 appears for the first time as a factor 

in 11,111,lll, and it is the. smallest prime that appears at this time, 

then 73 is.the smallest prime which has period length of 8. 
. . 

Using the sS,llie type of reasoning :for each line above, the following 

table [29] is constructed where p is the smallest prime such that 
n 

k(p) = n. n . 

n p n Pn n Pn n 

l 3 9 333,667 17 2.,071,723 

2 ll 10 9,091 18 19 

3 37 11 21,649 19 (1019- 1)/9 

4 101 12 9,901 20 3,541 

5 41 13 53 · 21 43 

6 7 14 909,091 · 22. 23 

7 239 15 31 23 ? 

8 73 16 5,882,353 



CHAPI'ER V 

TECHNIQUES FOR FINDING THE PERIOD 

Multiplying to Find the Period 

'.l'he problem of finding the period of certain primes is quite minor 

if k(p) is small. The procedure to use in this case is the standard 

division process. The reader is aware that the k-function values 

follow no set pattern. Fqr example, consider the twin primes 269 and 

271. From the appendix it is found that k(269) = 268, but k(27l) = 5. 

Now, the first method discussed uses the standard division 

process. If the process is continued until a "small" remainder r 1 is 

found, then l/n = q1 + r 1/n. 

obtaining 

2 
r2 = rl. 

2 
r1/n = r 1q1 + r 1/n. 

2 If r1 > n, then let 

Multiply each side of· this equation by r 1 , 

2 If r 1 < n, then let q2 = r1q1 and 

ri/n = t + r 2/n and q2 = r 1q1 + t. Either 

case results in a new equation r1/n = ~ + r 2/n. This process of 

multiplying by r 1 can be repeated as many times as necessary. The 

period of l/n is the digits of q1 , q2, q3, ••• taken in succession 

until the digits start to repeat. 

As an illustration of the method consider 1/29. Long division 

gives the first of these equations and the others are obtained by 

successive multiplication of each side by 8. 



l 8 
29 = .0344829 

8 6 
28" = .2758~ 

82 .6 · 19 
29 or 229 = 2.2068929 

s3 19 7 
29 or 1729 = 17 .6551729 

s4 7 . . 27 
29 or 14129 = 141.2413729 

s5 27 13 
29 or 112~ = 1129.9310~ 

There;f'ore, the period f'or 1/29 is 

.o34482758q~o689655172413793i. 

In actual practice the left side of ea.ch equation would be entirely 

omitted, as would also tht;? numbers 2, 1.7, 141., and 1129 that precede 

the decimal point. In this abridged form the calculation for l/49 

would be 

.020408163265~ 

.061224489795~ 

.183673469387~ 

.5510204081.632~ 

Hence, the period for 1/49 is 

.02o4o8163265306122448979591.83673469387755i, 

since tl1,e digits started to repeat after the ''55111 in the fourth line. 
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It is interesting to note that Nygaard [25] appliedthis technique to 

find the period for 1./487. His q1 turns out to have 45 digits and r 1 is 

5. 
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This method was also discussed by Glaisher [13), in 1879. He 

points out an i _nteresting observation of what happens when the remainder 

is 2 or 5. For example; 

iI° = • 0163934426229~ (1) 

and the remainder of the period " ••• can be obtained by halving the 

figures from the conunencement." 

Hence, 

~ = .01639344262291 

10819672131147 

15409836065573 

17704918032786 

(2) 

(3) 

(4) 

(5) 

(6) 

(Note: The superscript l's are the remainders from previous lines.) 

Glaisher made no attempt to explain why the aJ:>ove example works. The 

explanation should prove to be instructive for the reader. From (1) it 

is seen that 

~ = ~.~ = }<0.1639344262295~) 

= £·0819672131147~ 

~ = }·~ = }(o.819672131147502g~) 
= £.4098360655737~~i 

(7) 

(8') 
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~ = ~.~ = ~(4.098360655737501~£0) 

(9) 

~ = ~. 6~io = ~(20.491803278687506gf0) 

= 10.245901639)43753~i5 (10) 

. The reader will note that the "integral" part of (7) is added to the 

last digit 6~ (1), and the integral part of (8) is added to the last 

di~i t of ( 7), and the pattern continues through (10). Tnis allows the 

process to continue from part to part as shown in lines (2) through (6). 

(Note: It is the digits which are und,rlined that are affected by the 

"carry over" from r1ri being greater than . ~.) 

An interesting and simpler examplf is 1/19. Since 

l 5 
~ = .o~, 

the period for 1/19 can be found as follows: . 

1/19 = .05126311151~8914~316842i. 

The superscript l's are the remainders from the division process in the 

previous digit. 

When a remainder of 50 is found as with 1/199, the process become~ 

multiply by 100 and divide by 2. This results in taking two digits at 

a time as shown below: 

The work Nygaard went to in finding th~ period for 487 could 

certainly have been simplified by the use of Glaisher's method, since 

it is mu~h easier and faster to divide by two than multiplying by five. 



Finding the Period from "Right-to-Left" 

In this section it is necessary to recall the relation between~ 

prime "p" and the di's and ai•s found in the division process used to 

determine, the period o:f' p, 1. e., 
(1) lOe. - d p = a 1 • r r r+ 

.The first case to consider is when p = 10n - 1. Assume. k(p) = k, 

therefore, ~+l = 1 and 

(2) 

Hence, 

(3) 

lOak - <it(lOn-1) = 1, or 

lO(ak - n<it) + '1t = 1 

<1it s 1 (mod 10). 

Since O ::: '1t ::: 9, then \: = L Let t 1 = ak - n<it, or 

(4) 

By the division algorithm, the next equation would be 

Hence, 

(6) 

1oak-l - '1t-i (10n - 1) = ~ 

10(~-l - n'1t-l) + '1t-l = ak • 

<it-1 • 8k' (mod. 10) and 

Consider the general equation 

1°8k .. J - '1t-J (lOn - l) .. = ak-J+l' or 

Hence, 

(7) '1t-J s ak-J+l (mod 10), and 
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(8) 

The reader will note that once .<\: and t 1 are determined :from (2) 

and (3), then the process can be started. It is continued by equations 

(4), (5), (6), (7), and (8). I:f' k is not known, .the process can be 

continued until the digits start to repeat. Since ·k < p - 1, the 

process never needs to be more than p -1 steps long. 

As an example to illustrate this process consider p = 29 = 3•10-1. 

Hence, n = 3 and<\:= 1 implies 

Therefore, 

Tbere:f'ore, 

<\:;.J. a 3•1 (mod 10), or 

<\:_1 = 3 and t 1 = o. 

~~2 • 3•3 + 0 (mod 10), implies 

~-2 = 9 and t 2 =.O. 

<\-, • 3•9 + O (mod 10), implies 

<\:_3 = 7 and t 3 = 2. 

d.it-4 111 3·7 + 2 (mod 10), implies 

<\-4 = 3 and t 4 = 2, and so on. 

The process can be shortened further to ·where the process would be as 

:follows: 

1/29 = ..• 01; 14 24e22112, 186220262e191615,21 r24112, 2193i 

Th~ superscripts are the t J-values which are not zero and are added to 

the product ~<\-J to give <\-(J+l)• 

This process works equal.ly well for composites as well as primes. 

The reader will note the fact that. "p" is a prime was not used. 

Considering the process for 39, n = 4, <\=land 



•2 2 1 • 1/39 = .o 2 5 641. 

The case of p = lOn - l was pointed out by Chartres b.o] and two 

months later Toy (32 ] discussed the other case, of p = lOn + 7, 

p = lOn + 3, and p = lOn + 1. for the case p = 10n - l, it was seen 
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that ~ = 1 and n was the .multiplier used to generate the digits. To7, 

without any explanation, gave the 'ic~s and multipliers for the other 

three cases. The remainder of this section will be devoted to explain-

ing Toy's observation. 

Let p {not necessarily prime) be lOn + 7. Hence (l) becomes 

1oak - Pc\= 1, or loak ... <ic(lOn + ~) = 1. 

(12) 

This implies 

10(~ - n~) = 7~ + 1 

7~ + 1 a O (~~d 10). 

S:l,nce ~ is an integer and O :S ~ :S 9,, ~t can,ibe conclµded that ·<it ~ 7. 

Substituting this result back into (12) gives 

lO(ak - 7n) = 49 + l, or 

~.= 7n + 5• 

The explanation from this point on follows the process for p = lOn - l, 

and ~ = 7n. + 5 w.ill be the multiplier for this case. As an example, 

consider 1/17 = .0588235294117647. Hence., n = l and ak = 12 and the 

remaining digits are found from the following congruences modulo 10: 

'ic-1 • ak·~ a 12•7, implies °k-l = 4 and t 1 = 8. 

'1t-e !ii 8k'1t-l + t 1 a 12 •4 + 8 implies '1t-2 = 6 and t 2 = 5. 

'\:_3 a 8kdit-2 + t 2 a 12°6 + 5 implies ~-3 = 7 and t 3 ... 7. 

For p = lOn + 3, equation (l) becomes, 

l~ - ~(lOn + 3) = l, or 



This implies 3~ +la O (mod 10), and~= 3. Substituting this 

result into (13) gives, 

10(91c - 3n) = 10, or 

a = 3n + 1. 
k 

Hence, for the case p = 10n + 3 ~he last digit is 3 and the multiplier 

is 3n + 1. For example, p = 13 gives n = l and 91c = 4 and the following 

congruences modulo 10: 

«1it-l • 4·3, implies «1it-l = 2 and t 1 = l. 

<\:-a a 4•2 + 11 implies ~-2 = 9 and t 2 = o. 

~-3 a 4·9 + o, implies~-;= 6 and t 3 = ;. 

\:-4 • 4·6 + ;, implies <\-4 = 7 and t 4 = 2. 

<\_5 a 4•7 + 2, implies ~-5 = O and t 5 = ;. 

<\_6 • 4•0 + ;, imp,lies <\_6 = 3 and t 6 = o. 

<\_7 • 4•; + o, implies the process can stop, since 

<\_7 = ~-l and steps wouid start to repeat. Hence, 

1/13 = .(>7692:3. 
For the last case p = 10n + 1, equation (1) becomes, 

(14) 

108k - <it(lOn + l) = l 

10(8k - n<\t) =\:+lo 

Tllis implies,<\+ 111 O (mod o), and\:= 9. Substituting this result 

into (14) gives 

lO(ak - 9n) = 10, or 

8k = 9n + lo 



Hence, for this case the multiplier is 9n + 1. The following is the 

process for p = 21:. 

~-l • 19•9 implies <\:-l = 1 and t 1 = 17 

~-2 a 19•1 + 17 implies ~-2 = 6 and t 2 = 3 

~-3 • 19•6 + 3 implies ~-3 = 7 and t 3 = 11 

t\-4 a 19•7 + 11 implies ~-4 = 4 and t 4 = 14 

~-, a 19·4 + 14 implies ~-5 = O and t 5 = 9 

~-6 a 19•0 + 9 implies ~-6 = 9 and t 6 = O 

~-7 a 19•9 + O implies '1t-7 =~-land the process stops. 

Therefore, 1/21 = .o47619. 
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Two observations can now be made. First, if a person is concerned 

with only pure recurring decimals, then the four cases discussed are the 

only cases possible. Second, the process can be used for numerators 

different than 1 by using the same multiplier. For example, 2/13 

implies 

Hence, 

1~ - ~ (10n + 3) = 2, or 

10(91c - nd.it) = 3\; + 2. 

3~ + 2 a O (mod 10), and~= 6. 

The multiplier for 13 was 4 and 

2/13 = .i152318246. 
In conclusion, it can be said that this "right-to-left" method can 

be used to convert any rational numbe~ of the form a/b where (b,10) = 1. 

Secondly, the process is good in any base, since it was based on modulo 

."lo".; where "10" is one base. 
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••.:eose" Numbers 

' 
R. C. Das [u] in an article in thJ American Mathematical Monthly 

gave an explanation of a method for finding the period of the fraction 

1/m. He credits N. C. Bose Ma.Jumdar for the method and names one of the 

numbers in the method after Bose. The reader will note that Bose• s · 

method is precisely the process described in the previous section, but 

Das• ~lanation is .different :f'rom .the author• s .. 

The first term defined is the "End Number" • It is the smallest 

integer e such that when multiplied by m gives a number ending in 9 .. 

The "Bose Number b" is defined by the equation 

(l) 

Bose's method consists of writing the End Number e1 , multiplying it 

by the Bose Number b, and placing the last digit of the product before 

el, calling it e2 and carrying over the remaining digits, multiplying 

e2 by b and adding the number carried over and writing the last digit of 

this sum e3, and so on, until the digits rec~r. 

'!'he reader will note that (l) of this section, comes directly from 

(1) of the previous section, where e1 =~and b = ak. From the 

illustration for p = 21, it was found tllat ~ = 19 =band~= 9 = e1 

and the period :for lf ?1 is found by Bose's m:et~od as follows: 

. Write down the End Number 9 :first, multiply this 9 by 
the Bose Number ·19 and obtain 171. Place i before 9 and 
carry 17; multiply this l by the.Bose Number 19 and add 17, 
obtaining 36 •. Plac,e, 6 before l and carry 3; multiply this 
by 19 and adding 3 gives 117. Place 7 before 6 and carry 
11 and so on. Continue the process until the·'·numbers recur. 
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The reader will note that the amount carried each time is precisely the 

same as the "t" used in the last section. 

Das, in his explanation, does not go "backward" in the division 

process as the writer has done, but considers the entire period at one 

time. 

Suppose k(m) = k and 

1 [ ~ek-1 • • .e2el] 

iii = lOk - l 
• 

(2) 1/m = r/(lOk - l), and 

(3) 2 k-1 
r. = e1 + 10e2 + 10 e3+ • • • + 10 ek. 

Then Bose's method indicates that the successive digits of r (counting 

from the right toward the left) may be obtained as follows: the first 

· digit is e1; the first two digits of e1 + 10be1 give the first two 

digits of r; the first t~ee digits· e1 + l0be1 + 102t,e2 give the ;irst 

·three digits of r; and in general the first 1 digits o:f' e1 + 10be1 + 
2_ . 1-1_ 

l0oe2 + ••• + 10 ~ei-1 a.re the first i digits of r, i = 2, 3, ••• , k. 

For example, m = 21, 21•9 = 189 = 10•19-l; e1 = 9, b = 19. Then 

10•19•9 is 1710 
. 9 

rrr9" showing e2 is l. 

2 
10 •19•1 is 1900 

1710 
.9 
~ showing e3 1.s 6. 

103.19•6 is 114000 
1900 
1710 

9 
117619 showing e4 is 7. 



This can be condensed into the form 

9 
1710 = 10~·19•9 
1900 = lO •19•1 

114000 = 10,·19•6 
1330000 = 10,19.7 
7600000 = 10 ·19·4 

d476i9 = r, so l/21 is .047619, 

since k(21) = 6. The process can be continued until the digits start to 

repeat if k(m) is not known. 

To prove the soundness of the procedure, it must be shown that 

e1 + 10be1 + lO~e2_ + ••• + lOi.-lbei e r (mod 101 ), i = 2, 3, ... , k. 

Eliminating m from (1) and (2), gives·. 

(lOb - l)r = (lOk - l) e1 , or 

k . 
lObr - r = 10 e1 - e1 • 

Then, multiplying (3) by lOb and substituting it for lObr gives 

10be1 + lO~e2 + • • • + lO~ek - r = 10ke1 - e1 • 

Thus, e1 + l0be1 + lO~e2+ ;· •• + 101 -~e1 _1 - r 

k i i+L k.. = 10 e1 - 10 be1 - 10 oei+l - • • • - lO~li>ek, 

or e1 + l0be1 + lO~e2 + ••• + 101 -~e1 _1 a r (mod 101 ), i = 2,3,oo•, 

k. 

Das ma.de the same observat-.ion as the write_p' when· he pointed out 

that the process can still be used when the nume.ratol' has a value other 

th~. one. The same Bose number b can be used, but the value for 

e1 ('1c) has to be changed. The reader can see that if 

l ek. • .el 

iii = 10k - 1' 
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then 
[ I . t ] n ek. • .el 

-=····,and 
m 10k - 1 

n'1. • ei (mod 10). Therefore, the "End number" for n/m is congruent, 

modulo 10, to n times the l'End number" for 1/m • 

. B. Misra. [13] showed how the "Bose and End numbers", developed by 

Das, could be used in a different way to find the period for the frac

tion 1/m. His me~hod consists of dividing the end ilumber e1 by b, 

giving rise to a qi:16tient q1 and a remainder r 1 • Then q1 is placed 

after r 1 , and the number lOrl + ql so :f'(:i'rmed is divided by b, givi-ng 

rise to a quotient ~ and a remainder r 2 • The process is repeated. 

As an example to illustrate the method, c,onsider m'.= 123. Since 

3•123 = (37•10) - 1, then b = 37 and e1 = 3. Dividing 3 by 37 and 
.. ,t 

continuing the pr~cess as indicated above, gives 

37)3 
0 

(0 o 8 l 3 

t t t t t rl-+~ +-ql o 9.1 q2 q3 q4 q5 

r2-+r~ +-~ 

r ... -,m ~q 
3 37 3 

·;' r4 ... m +- q4 
lll 

r 5 -+ --0-3 +- q5 . (The process repeats after this step.) 

. . .. 
Hence, l/123 = .oo813. 

~isra Justified his method of using the B:>se and end numbers to 

·find the period .for .1/m with the _following theorem: 

Tbeor• 5!1• · (1) Continuation after k steps of the above process will 

cause the quotients q1, q2, ••• , qk (o ~ qi ~ 9) to repeat in the same 

order; and (:1) [q1q2 ••• qk] is the period of the recurring decimal for 

l/m, i.e., [q1~ ••• qk] = [~d2 ••• 'it]• 



Proof: The process as it is described gives rise to the following 

equations 

• 
(4) • 

• 

Multiplying the k equations (4) by 10k, lOk-l, ••• , 10 respectively 

and ad~ng gives 

k k-1 k k-1 2 
10 e1 +10 q1 + ... +lOq-k-l +10r1 +10 r 2 + •oo +lOrk-l 

Now, this equation can be simplified by removing like terms from both 

sides and substituting 

[ . ] k~ k~ 
q1q2·· 0 qk = 10 ql + lO q2 + ••• + qk. 

Thus, k 10 e1 + [q1q2 ••• qk] - qk = l0b[q1q2 ..... qk] + 10rk9 or 

10ke1 = (lob - l)[q1q2 ••• qk] + (lOrk + qk). 

Subtract e1 from both sides and us_ing (1.) gives 

(5) (10k - 1) e1 - e1m[q1q2 .90qk] = (lOrk + qk) - e. 

The equation (5) shows e1 divides (lOrk + qk). Let se1 = lOrk + qko 

Now, dividing the equation (5) by e1m and using Corollary 2.4 gives 

Equation (6) implies that m divides s-1 and, if it can be shown that 

s Sm, thens= 1 and, consequently, 

91 
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The latter relation would.establish the second part of the theorem and 

. s = 1 implies that rk = O anA qk = e1 • As a consequence of these values 

th for rk and qk the process will repeat after the k step. So, if it. 

can ·)>e establishE:ld that ·s S m, then the. theorem will be proved. 

To show thats< m, it will be necessary to develop some intermed---
iate inequalities. First, by the way e1 was defined, it is seen that 

(a) 1::: e1 S 9. 

Thus, 1 < m S e1m::: 9m < lOm - 1. 

Since e1m = lOb - l, then lOb - 1 < lOm - 1 orb< m. This implies 

(b) l ::5 b S m • 1, 

since band mare integers. Fr~m the division algorithm, it is known 

.that 

(c) 0 S ri ::: b - l (all 1). 

Since Ej_ = bq1 + r1 , it can be concluded that ql :'.5 e,_,s 9. Now, if 

. q1 S 9, th~n multiplying (c) by 10 and adding qi to both sides gives, 

From (4) it is seen that lOri +qi'= bqi+l + ri+l' therefore, 

This result implies, bqi 1 < lOb - 1,. si,nce r 1 1 > o. Now, the only way 
+ - + -

that this result can hold is for qi+l S 9. This completes the steps 

necessary to say qi! 9 for all i by induction, i.e., qi S 9 then 

~+l ·S 9. Consider the case i = k, then (d) becomes 

(e) lOrk,+ qk' :E lOb - 1. 

Since equation (5) showed that e1 divides lOr~ + qk' thens was defined 

to be that number such that se1 = lOrk + qk • 
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Thus, (e) becomes se1 ~ a1m or s ~ m. 

Misra completes his method by snowing the argument for, the cas'e 

when the numerator is some value other than one. The proof is similar . ' 

't~ the case jU:st completed and the result is ~ogous to Das. method. 

Fi,nding the Period as Part of Another Number 

D.R. Kaprekar [20] gave a method for finding the.period of a 

recurring decimal by looking at the last "few" digits of a eertaintype 

of product. The reader will notice that the method uses some of the 

same principles as "Bose numbers". Also, this method gives another 

explanation of the "right-to-left'' method discussed earlier in this 

chapter. 

It will be necessary to prove a theorem that 'is used in the method •. 

Theorem 5.2. Let N be a number having a zero as its las.t digit. '!'hen 

in the product 

Z = {N - l){l + ;N + ff"·+ 

the last (r+l) digits will be nines. 

• ... +.r>, 

· Proof: Since (1 + N + if + ••• + rf) is a geometric progressi9n, its 

sum is {rf+l - 1)/{N-l). Therefore, 

Z = . {N - l )(1 + N + Ir + • • • + rf) beco~es, 

z = (N 1 ) cr+1 _ 1 > _.r+1 · , 1, - • () = r, - • N - l · 

But N = lO•b implies Z has 9's for its· last (r+l) digits, since 

if'+l - 1 = lOr+~r+l - 1 •. 

. As an illustration let ·w = 140, then 

139(1 + 140 + 1402 + 1403 + 1404 ) ~ 50722499999 
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which has 91 s for the last five digits. 

As an exampl~ to motivate the general method consider the fraction 

1/7. It is first necessary to find the least number e1 such that 

7e1 + 1 is divisible by 10. (It is the same as the "End number" 

discribed earlier.) It is seen that e1 = 7 and N = 50. By Theorem 5.2, 

it is known that the last (r+l) digits in 

5or+l - 1 = 49(1 + 50 + 502 + ••• + 5or) 

must be nines. By Corollary 2.4, it is seen that 106 - l is divisible 

by 7. Therefore, the recurring portion in the fraction 1/7 will be the 

last 6 digits in 

r+l 
50 7 - 1 = 7(1 + 50.+ 502 + ••• + 5or) 

for r > 6. 
. .;. 

This conclusion is verified by the following remarks. If 

the left~hand side of the equation is written as 

50r+l _ l -
1 . = [~ ~d;-· .• ~], 

then 

Now, the left-band side has nine's in at ·least the first (r+l) digits 

which implies that 

·1·[~-5~-4~-;~-2~-l~] = 999999, or 

1 [~-5~-4~-3~-2<\i-1 ~] • 
7 = . .· 999999 

Therefore, [~-5~-4t\-;~-2°b.;.ldb] = 142857. Taking r = 6 and working 

out the multiplication 7(1 + 50 + 502 + ••• + 506 ) gives 



7 
350 

17500 
875000 

43750000 
2187500000 

109275000000 

101507142857 
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Hence, the recurring portion of 1/7 is 142857. If the value of r has 

not been determined and the process is continued indif1nitely, then the 

period 142857 is repeated. again and again. 

For the general case, let p be any odd prime other tban.5 and e1 

be the least integer such t~at N = .e1p + 1 is divisible by 10. Then the 

number 

If+l - 1 == (N - 1) (l + N + Ir + • • • + Jr) 

= e1p(l + N + '1!f + ••• + ~) 

is divisible by p and the la.st r+l digits are nines due to Theor~ 5.2. 

Hence, if r ~ p - 1, the last p - l digits in e1 (1 + N +Pr+ ••• + ii') 
are such that multiplication by p yields all nine's for the p-1 digits. 

This implies that the p-1 digits will either be the actual period of 

_ 1/p or will contain the period a whole number of times. 

Tbe value of e1 will change as the unit's digit of the prime 

changes. The number e1 will be 9, 3, 7, 1 according as the prime ends 

.. in l, ~' 7, or 9. For the prime 19, e1 ' is l and N is 20. Hence, the 

last 18 digits in 

(1) l • (l + 20 + 202 + 20' + • .. ) 

will be the period for 1/19. It is ·noted that the sum in (1) can be 

found by starting with the first digit "l" and multiplying it by 2 and 

this product gives the second digit. Then multiply the second digit by 



2 and this product gives the third digit. If the process is continued, 

it has.the same effect as finq.ing the period by the "right-to-left" 

I 

method described earlier. 

The last three sections are interrelated but each of the writers , 

has taken a different approach to the problem of finding the· period. 

' 2 
Finding the Period of (l/m) from 1/m 

D. R. Ka.prekar [19] gave a technique for finding the period of (l/m}2 

from 1/m •. Assume k.(m) = k and R = [cli_ d2 .oo\:], then 

Hence, 

Now, expressing ~2 as P + Q gives 
. 10 - l lOk - 1 

1 p Q. 
;(2- = 10k - l + (10k - 1)2 

P•lO-k Q•l0~:2k 

= 1 - 10-k + (1, - l0-k)2 

= P 0 lO-k(l - 10-k)-l + Q•l0-:2k(l - 10-k)-2 

-k( ..;.k -2k ) -2k( · -k -2k ) = P•lO . l + 10 + 10 + ••• + Q•lO 1 + 2•10 + 3•10 +000 

= P•lO-k + (P + Q)l0-2k + (P + 2Q)l0-3k + •••• 

In practice., Theorem :,.8 indicates that the process continues until 

k or kp of the digits are determined. For example, let m = 11, then 

k(ll) ;. 2 and b of Theorem 3.8 is l. Thus, k(112 ) = k(l2l) = 2•112 -1 

= 22. Now, m = ll gives R = 9, P = O, and Q = 81. 



1/112 = 81°10-4 + 162010-6 + 324°16-8 + ••• 

= .0081 
.000162 
.00000243 
.0000000324 
.000000000405 
.ooooooooooo486 
.0000000000000567 
.000000000000000648 
.00000000000000000729 
.0000000000000000000810 
.00000000000000000000Q891 
.00000000000000000000000972 
.0000000000000000000000001053 

= · 008264462809917355'37190082; • • 
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A second interesting example is 1/81 or 1/92 ~. Using the :technique 

as described above, R = l, P = o., and Q, = l. Therefore, 

-2( -1 -2 = 10 1 + 2•10 + 3•10 + 

= .01 
.002 
.0003 
.oooo4 . 
• 000005 
.0000006 . 
• 00000007 
.000000008 
.0000000009 
.00000000010 

Thus, 1/81 = .01234-5679. 



CHAPrER VI 

REUTED TOPICS 

Recurring Decimals and Group Theory 

In this sector, the reader will find it helpful to have some know-

ledge of group theory. The intent of the section is to show how the 

set of possible remainders (numerators), discussed in Chapter III, 

relates to certain properties of abelian groups. The writer has given 

those definitions and theorems that will be illustrated by the set 

mentioned above. 

Definition 6.1. A group is a set G = (a, b, c, •••J for which a binary 

operation* is defined. This operation f.s subject to the following 

laws: 

L Closure. If a and b are in G, then a * b is in G. 

2. _Associativity. If a, b, and care in G, then 

(a. * b) * ~ = a * (b * c). 

3. Identity. There exists a unique element e in G (called the 

identity element) such that for all a in G, a * e = e * a = a., 

4. Inverse. . -1 For every a in G there exist21 a unique element a. 
. . -1 -1 

in G called the inverse of a, such that a* a = a *a= e. 

Definition 6.2. A group is said to be a.n abelian group if it satisfies 

the .following law: 

5. Commutativity. If a. an~ b are in o, then a. * b ... b * a. 



The following table illustrates that multiplication, modulo 13, 

over the set (1, 2, 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

l 2 

l 2 

2 4 

3 6 

4 8 

5 10 

6 12 

7 1 

8 3 

9 5 

10 7 

11 9 

12 11 

0 G !) J 

3 

3 

6 

9 

12 

2 

5 

8 

11 

l 

4 

7 

10 

12} forms an abelian group. 

4 5 6 7 8 

4 5 6 7 8 

8 10 12 1 3 

12 2 5 8 11 

3 7 11 2 6 

7 12 4 9 1 

11 4 10 3 9 

2 9 3 10 4 

6 1 9 4 12 

10 6 2 11 7 

1 11 8 5 2 

5 3 1 12 10 

9 8 7 6 5 

9 10 

9 10 

5 7 

1 4 

10 l 

6 11 

2 8 

11 5 

7 2 

3 12 

12 9 

8 6 

4 3 

11 12 

11 12 

9 11 

7 10 

5 9 

3 8 

1 7 

12 6 

10 5 

8 4 

6 3 

4 2 

2 1 

Definition 6.3 •. A collection of elements Hin G is said to form a 

subgroup of G if H forms a group relative to the binary operation 

defined in G • 
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Consider the set, H = (10, 102, 103, 104, 105, 106}. Using the 

above table, it is found that the residues modulo 13 of the respective 

elements are H"" (10, 9, 12, 3, 4, 1}. The reader will note that His 

also an abelian subgroup of G. Due to the fact that the elements of H 

are congruent modulo 13 to lOn, for n "" 1, 2, ••• , 6, respectively, the 

group H is said to be a cyclic subgroup with the ''generator'' 10. It is 

also noted that 4 will generate H, but it is the generator 10 that 

relates the group to the topic of recurring decimals. Recalling from 
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Chapter III the example where the period of 1/13 was found by the 

division process, it is seen that the set His the set of remainders 

(numerators) found in the "unity-cycle". 

Definition 6.4. If G is~ group, Ha subgroup of G, and a any element 

in G, then the set of elements ha, h arbitrary in H, is called the 

right coset generated by a and H. It is denoted by Ha. Similarly aH 

is cal~ed :the left cos'.et. (Since a+l groups discussed are abelian, the 
' ' . ~ 

right coset Ha will equal the left: c.oset aH. Hence, the writer will 

use the term. "coset1t and denote it by Ha.) 

As an example to illustrate this definit,ion consider. the groups G 

and H discussed above. H, itself, is a coset, since if a= 1, then h•l 

is in H. ActuaJ.ly, if a is in H then ha is Hand Ha.~ H. To find a 

second coset, let a be any element in G which is not in H. For example, 

a= 2 since 2 is the smallest such element. Now, H•2 = (2, 6, 8, 5, 7, 

11}, since 2 • 1·2, 6 • 3·2, 8 • 4·2, 5 • 9·2, 7 • 10•2, 11 e 12•2, 

modulo 13. Therefore, the cosets Hand H•2 partition G into two dis-

joint subsets each with 6 elements. In general, if His a subgroup of 

G, then the cosets of H partition G into disjoint subsets, each with 

the same order (number of elements) as H. 

It was noted that 10 generated the subgroup H, since lOj is in H 

for j = l, 2, ••• , 6. Therefore, the order of 10 is 6, i.e., 10 belo~ 

to 6. But k(l3) ~ 6, since 106 • 1 (mod 13). Is this just a coinci-

dence that the subgroup generated by 10 has order k(13)? The answer is 

"no", since by their respective definitions they will be the same 

number. 

Returning to the cosets of G generated by H, it is seen that in 
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addition to H being the unity-cycle of remainders, H•2 is the other 

cycle of remainders associated with p = 13. As a second example the 

reader can note the cycles of remainders for p = 11, found after 

Corollary 3.14. 
. 2 

In this example, H = (1, 10}, since 10 s 1 (mod 13). 

Consequently, there exists five cosets (1, 10}, C2, 9}, (3, 8}, (4, 7}, 

and (5, 6}. This discussion and examples of cosets suggest the follow-

ing theorem. 

Theorem 6.A. [22] If G is a finite group of order n and His a sub-

group of order r, then r divides n. 

The two examples of groups given so far ha~ the operation of 

multiplication modulo a prime, a..nd the order of the group was one less 

than the prime. If the modulus is not prime, then the group will not 

contain all elements less than it. For example, consider the group G 

formed by multiplication modulo 39. If 3 and 13 are in G, then 

.3•1.3 = o, and O must be in G. But, 0 is not in G, hence 3 and 13 are 

not in G. Actually, it is found that G consists of only those numbers 

less than 39 a.nd relatively prime to 39. Therefore,,. the order of .G 

would be ¢(39) = 24. The next question is, "What cyclic subgroup H is 

generated by 10?" H is found to be Ci, 10, 22, 25, 16,. 4-} and its 

order is 6. This is another illustration for Theorem 6.A. 

The cosets of G generated by Hare H, H•2, H•7, and H•l4. 

Comparing these sets with the cycle of remainders for 39 (Example F, 

page 49), it is seen that they are the same. 

The three examples can be generalized by a corollary to Theorem 

6.A: 
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Corollary 6.B. (22] If G is the multiplicative group modulo m, whose 

order will be ¢(m), with H the subgroup generated by 10, whose order 

will be k(m); then k(~) divides ¢(m). 

The conclusion of the corollary was also reached in the proof of 

Theorem 3.3. 

Since k(m) divides ¢(m), there exists a number, say c(m), such 

that ¢(m) = k(m)•c(m). In terms of the groups G and H, it is said that 

c(m) is the index of Hin G, i.e., c(m) is the number of cosets 

generated by H. In terms of recurring decimals, c(m) is the number of 

distinct cycles of remainders (numerators), each of which has its own 

''distinq_t" period associated with it. 

For the reader who is fam:i.liar with permutation groups i it is 

noted that the cyclic permutation which moves the digits one place to 

the right in the period of k digits forms a cyclic subgroup of the 

group of permutation on k objects. These two groups are not a.bel:i.ano 

Diagonalisation Method and Fibonacci Numbers 

The term "dia.gonalisation'' is a word given to an operation on a 

sequence of numbers. D.R. Kaprekar [19] was the first person to use 

the term. He used the operation in his development of the concept of a 

demlo number. A demlo number is a positive integer whose digits have 

the property that they can be partitioned into three parts such that 

the sum of the first and third (last) parts is a number whose digits 

are all the same, and the second (middle) part has this same digit as 

its only digit. For example, 43329 is a demlo number since 4 + 29 = 3~ 

and the second part is made up of only the digit 'f:311 • A second example 
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would be 499995, since 4 + 5 = 9 and. the "middle" of the number is made 

up of all 9's. 

The concept of a demlo number ha.a been discussed extensively by 

Kaprekar and other Indian mathematicians since the 19301s. The writer 

is of th~ opinion that they are a study in themselves and their main 

contribution to recurring decimals is in the use of the method of 

diagonalising a sequence. It should be noted that the term 

'' diagonalisation" was originally called "demlofication'' by Kapreka:d 4 ], 

but he later changed it to the more descriptive term. 

Definition 6.5. (1) Right diagonalisation of the sequence 

(a1, a2, a3, •••} is defined by the equ~tion 

... -k -2k 
Dk = a1 + 10 •a2 + 10 •a; + Ooo 

(11) Left diagonalisation of the sequence (a.1, a2, a3, •••} is 

defined by the equation 

••• 

The sequence (~, a2 , a3, 00 •} can be an A. P. (arithmetic 

progression), G. P. (geometric progression), or any sequence formed 

according to some fixed rule. As an example, consider the A. P .. 

(15, 18, 21, 24}: 
+-
Dl = 15 + 180 + 2100 + 24000 = 26,295 

i 1 = 15 + 1.8 + .21 + .024 = 17.0:;4 

Since the interest is in the digits of the numbers and not the location 

of the decimal point, the two sums can be found as follows~ 



Le~ Diagonalisation Right Diagonalisation 

15 
18 

21 
alj-

2629; 

15 
18 

21 
24 

J,7034 

The sum of the two diagona.lisations is 4;329, which is a demlo number. 

Thus, this is a way of obtaining demlo Dumbers. 

Kaprekar [J.9] pointed out several different ways in which the 
... 

period of l/7 can be found using diagonalisation. 

(14, ,28, 56, •••} gives 

for example, D2 of 

14 
28 

56 
112 

224 
448 

896 
142857142857 ••• 

The explanation is as follows: 

1 14 14( )-1 
7 = 100-2 = .100 l - •02 

· 14 
.= lo'O'(l + .02 + .ooo4 + ••• ) 

= l~O(l4 + .28 + 00056 + 000 ) 

l ... 
Similarly, 7 = D(l, 3, 9, 

N~ consider :o1 of (7, 35, 175, • • • ): 
7 

35 
175 

875 
4375 

21875 
• 

••• 142857 
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In this case, the common ratio :for the G. P. is 50 and, thus, the 

in:finite sum o:f G. P. will not converge. The explanation, therefore, 

must be different from the two previous examples. 

the sum o:f the first n terms of a G. P.) 

(Note: 

n n-1 
50Sn = 7•50 + 7•50 + ••• + 7•502 + 7•50 

S will be n ... 

s = n 
o o.·e + 7•502 + 7·50 + 7 

n 
S 50 - 1 

n = 1 · 

The reader will recall that this is the saD'!,e example given after 

Theorem 5.2 and the reasoning is the same as before. 

The recurring periods for fractions li~e 1/19, 1/31, 1/39, 1/891, 

etc. can also be derived by diagonalisation of certain geometric 

progressions. The diagonalisation of certain arithmetic progre~sions 

2 2 will result in such fractions as 1/9 and 1/11. The reader will see 
2 ' ... 

that (l) in the section "Finp.:ing the Period of (1/m) from 1/m" is Dk 

of (P, P+Q, P+2Q,, • ."~} where k is the n,umber od digits in Q. For 

example, from.this same section it is see~ that 

1/81 = D1 of (1, 2, ;, •••}, and 

1/121 = n2 o:r (81, 162, 243, ···J. 

Ka.prekar [19] gave several examples where the sequence was other 

than an A. P. or G. P. · His first example was D1 of. h, 3, 6, 10, 15~ 

21, 28, •••}. This sequence, which is denoted as "the triangular" 

number and whose rule of :formulation is n(n+l)/2, gives rise to the 

period of l/93 or 1/729. Since k(729) = 81, the diagonalisation would 

have a minimum of 82 1;1teps. He also observed that for n a positive 



integer 

Also, 

I 

1 _ 1 ,,. .... D, .,,. {n{n+l)(n+2)}· 
:Ii'.' - , o55I 1 o... , 6 ' 
9 

l _ 1 .... D .,,. {n(n+l)(n+2)(n+3)} 
~ - 59049 = 1 o... 24 ° 
9 

~ = n1 of {1, 4, 10, 19, •••}, or 

Kapreka.r ~ 4 ] went to great lengths to show that 

1 .... 
109 = D1 Of (l, l, 2, 3, 5, 8, 13, 21, 34, •••} 
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The writer was able to shorten the explanation by using "the reasoning 

which follows from Theorem 5.2. This particular sequence of numbers is 

known as the Fibanocci numbers, and they have held the fascination of 

mathematicians down through the years. Their rule for formulation is 

a = a 1 + a 2, where a1 = a.2 = 1. n n- n-

The explanation is as follows: 

108 = n 

•• 0 
n-lc ) n + 10 a 1 -a. + 10 a n- n n 

lon l + 10(1-1) ·- 1·02 [ .. S n-2 n-l ] = a - - 10 '· a 1 - 10 a • n ~- n n- n 



Therefore, 

Where the last n d:lgits of lOn[a 1 + 10a ] - l will be 98s. 
n+ n 

Therefore, if n _> 108, then the f'irst lo8 digits of S will be the 
n 

period for 1/109, since k(l09) ""108 .. 
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Kaprekar [ 4] proposed the question, ''What would happen if the 

Lucas numbers;, i.e., {1.? 3s 4, 7» 11, 18, 29, 47., • ••} were d:tagonaJ..-

ised?'' The reader will :o.ote that Lucas numbers follow the same rule as 

Fibonacci numbers:; but have 1 and ; for the first two terms. Rao [21] 

answered the question as follows: 

It may be noted that in the recurrir;.g period of 1/109:; 
the digits from the lOls·t onward are the numbers of Lucas. 
In factJ the series of Lucas is also of the Fibonacci type 
and all types of Fibonacci series can be found in the recur= 
ring period of 1/109, if it is writt,enJ twice. Thus we do 
not get a.n.ytb.ing new by applying the process to Lucas numbers. 
It is highly remarkable that by applying this process to all 
types of :Fibonacci series we are led to the recur.ring period 
of 109 and it is to be noted that 109 is the only prime hav= 
ing this property. 

The Cantor Ternary Set 

The interest in this section is focused on the set I and special 

types of subsets of IJ where I is the set of all real numbers between 

0 and l, inclusive. If xis an element of I, then 
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0 0 0 

Now, the representa.ti,on of x is dependent on the base of the n,umera.tiori 
I 

system as discussed in Chapter II. 

The subset of I, known as the Cantor Ternary set., is an interest-

ing appli.cation of the use of different bases f'or the numeration 

system. The Cantor Ternary set is discussed in most graduate level 

analysis and topology; textbooks, due to its properties. Some of its 

properties might seem strange to the neophyte mathematician. For 

example,. it is nowhere dense, but it has the "same19 number of elements 

as I. 

Definition 606. The Cantor Ternary set, c, is the set of all x in I 

such that when xis represented in its ternary form, i.e., base three 

numeration ~ystem, ~ ~ l for any po~itive integer h • 

.Before .. discussing the properties of c, it should be instructive to 

state an alternate definition for C a.nd show that they a.re equivalent. 

Definition 6. 7. Let c1 be the subs et of I consisting of all pctints of 

I that do not lie in the open interval (l/3, 2/;). Thus, c1 is 

obtained by deleting the open ·middle third of the interval I. Define 

c2 to be the subset of c1 obtained by deleting the open middle third 

of each of the two intervals that form c1 • Continuing in this manner., 

define en for each positive integer. The Cantor Ternary set C is then 

defined by the following: 

co 
C = n C 

n:;zl n 



Theorem 6.1. Defini.tion 6.7 1.f and only if Definition 6.6. 

Proof: Assume Definition 6.7 and show Definition,6.6 follows. Now, 

the rational number 1/3ten = .02three' since 

[ l 1 0 0 J 
10 = 10 + 100 + 1000 + 0 

.. 

[1/10 = .100· 0 0 ] three 

[.l = •02 ]three 

three 

' 
Also, [2/3]t = [.2]thr • Assume :x.1 is an element of c0 

en · .. ee 1 

( complement of c1 ). Thus J [ .,02 < x1 < .2 ]three. This implies the 

first digit of x1 in its ternary expansion is 1. 

But 

From the definition of c2, it is seen that 

c2 = (1/9, 2/9) u (7/9, 8/9). 

[l/9]ten "" [ .Ol = .002]threej) 

[2/9]ten ~ [.02]three» 

• 
[7/9]ten = [ .21 "' .202]three» 

[B/9]ten ~ [.22 ]three 
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implies that if x2 is element of c2, then the second digit of the 

ternary expansion of x2 must be a 1. Similarly, if x3 is an element of 

c3, then the third digit in the ternary ·expansion is a lo In general» 

if x is an element of cu, then the nth digit in the expansion of x n n n 

will be a L 
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From DeMorgan I s La.w it is kn.own that 

[ 
CID JO CID 

C' = nn1c. = U1C1 o = n n= n 

. Hence, from the discussion above it i1;1.,seen that any eleipent of I ,which 

contains the digit l in 1 ts ternary expansion must belong to C 8 o Thus, 

if x belongs to the C of Definition 6 •. 19 then x belongs to, the C of 

Definition 6.11. 

The reader will note that the reasoning going on~ w-y in the 

proof will also be valid in the other direction a;s well. Hence, the 

two definitions are equivalent. 

Theorem 6.2 •. The sum of the lengths of the intervals that form the 

complement of the Cantor set is one~ 

Proof: The length o:f' C{ is 2/?; - 1/-, ... 1;-; •. The l~ngth of C~ is 

(8/9 - 7/9) + (2/9 - 1/9) = 1/9 + 1/9 = 2/9. The ltength of c; is 

(26/27 - 25/27) + (20/27 - 19/27) + (8/27 - 7/27) + (2/27 - 1/27) 

= 1/27 + 1/27 + 1/27 + 1/27 = 4/270 This pattern continues and the 

sum becomes 1/3 + 2/9 + 4/27 + •••j or 

i :'~(3 ·. l, 
since it is the infinite sum of a G. P. with a ratio of 2/;. 

In terms of measure theory, Theorem 6.2 leads to the interesting 

result that the measure of the Cantor set is zero. The Cantor set 

differs from most .sets which have a measure of zero since.it is not 

countable, let alone finite. In fact, it has the same cardi.naJ.ity as I. 

' Theorem 6.3. The cardinality o:r ~ is the same as I. 
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Proof: First, it should be noted if Y1is a.n element .of' I, then y when 

represented in binary form will ha.ve only o•s and l's used for its 

digits. Define the function f who&e domain is C and whose range is I, 

where the pqints of I a.re represented in binary form. The rule of 

correspondence is 

f(x) 1 • 2 .xo 

Jow, x is always divisible by 2, since the digits used in the ternary 

expansion of x are bnly o•s and 2 1s. It is:·seen that :for every element 

in C there exists a. corresponding element in I. Also, since f is mono-

tone, f is one-to-one. !herefore, C and I have the same cardinality. 

Corollary 6.3. The Cantor set is uncountable. 

Proof: Since there exists a one-to-one correspondence between C and I 

(See proof of Theorem 6.2), and I is uncountable, then C mu.st be 'Wll-

countable. 

The Cantor set has several properties, with some of which the 

reader may be familiar. A few of these properties are discussed :l.n 

terms of their definitions or characterizations. 

(I) C is closed, i.e., it contains all its accumulation points 

[14]. 

(II) C is compact, i.e., it is closed and bounded [ 2 ]. 

(III) C is nowhere dense, i.e., it is closed and does not contain 

any intervaJ. [14]. 

(IV) C is perfect:, i.e., it is closed and dense-in-itself [14 ] • 

(V) The characteristic function of C is Riemann-integrable on 

[O, l], In fa.ct, the integral is equal to zero [ 2 ] • 



CHAPI'ER VII 

SUMMARY AND EDUCATIONAL IMPLICATIONS 

Summary 

In this paper, material concerning recurring decimals is discusse~ 

This presentation makes the research concerning this topic more·read

able and more readily available to the student of elementary number · 

theory. It also provides examples,of how some of the basic theorems 

of number theory can be used to prove theorems about recurring 

decimals~ 

In Chapter I the statement of the problem? procedurey scope of the 

paper,. and expected outcome are given. Chapter II includes an elemen= 

tary introduction to the subject along with how the base of the 

numeration system affects recurring decimals. In Chapter III most of 

the properties used from number theory are listed and discussed. The 

theorems in this chapter prove most of the properties of recurring 

decimals that the writer feels are fundamental to the subject. The 

basic result is Theorem 3.3j which states that the period length of l/n 

is kif and only if 10 belongs to k modulo n. Chapter IV provides 

other properties of recurring decimals. In general, the properties 

discussed are not basic to the subjecto The most important theorem in 

the chapt~r is Theorem 4.4, which gives the necessary and sufficient 

conditions for the reciprocal of a prime to have the maximum number of 

digits in its periodo Chapter Vis devoted to different techniques of 
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finding the period of a recurring decimal.o .. Some of the techniques are 

similar, but the explanation of the Justification differs from writer 

to writer. In Chapter VI, three topics are discussed in ternis of how 

they relate to the subJect of recurring decimals. For the neophyte 

abstract algebra student, the discussion relating cosets to recurring 

decimals shoti+d be of interest. 

Educational Implications 

Many of the concepts of mathematics, and number theory in 

particular, can be understood by the laymen and also by elementary and 

secondary school students. In the interest of mathematics, it is 

important that some of the more basic concepts be presented to these 

groups in a systematic manner. A paper such as this, in addition to 

consolidating some of the literature, presents the necessary background 

needed for an understanding of the subJect, and should bring to more 

students a bett.er knowledge of recurring decimals. 

As a result of reading this thesis, the student should gain an 

awareness of some of the elementary concepts of number theory and the 

current and past research that has been done in the area concerning 

recurring decimals. It is also of significance that the reader who is 

a potential teacher of ma.thematics may find material to motivate his 

class, and perhaps enlarge on some of the concepts presented. 

~ndoubtedly, the most irmnediate result of this paper lies in the 

knowledge and experience gained by the writer in its preparation. 
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APPENDIX A 

Primes and Cyele Table 

The fo].1.owing table is reprinted from Cycles!!, Recurring Decimals 

[19]0 In the table Pis the value of the prime and C is the number of 

cycles for that prime when it is converted into e. recurring decimal .. 

Thus:, 

k(P) .,. p .. l o 

C 

For example when P = 13, it is found in the table that C = 2 an~ 

k(13) = (13~1)/2 = 60 If P = 73 then C 2 9 and k(73).,. (73~1)/9 s 80 
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Primes and Cycle Table 

p C p C p C p C p C p C 

3 2 223·· l 487 1 787 2 1093 4 1439 2· 
7 1 227 2 491 1 797 2 097 1 447 l 

11 5 229 1 499 1 809 4 103 1 451 5 
13 2 233 1 503 1 811 1 109 1 453 2 
17 1 239 34 509 1 821 1 117 2 459 9 
19 1 241 8 521 10 823 1 123 2 471 2 
23 1 251 5 523 2 827 2 129 2 481 2 
29 l 257 1 541 829 3 151 2 48; 6 
31 2 263 l 547 839 2 153 1 487 l 
37 12 269 1 557 2 853 4 163 2 489 6 
41 8 271 54 563 2 857 l 171 1 493 4 
43 2 277 4 569 2 859 33 181 l 499 7 
47 l 281 10 571 l 863 1 187 2 511 2 
53 4 283 2 577 l 877 2 193 l 52; 2 
59 l 293 2 587 2 881 2 201 6 531 l 
61 1 307 2 ,93 l 883 2 213 6 543 1 
67 2 311 2 599 2 887 l. 217 l 549 1 
71 2 313 1 601 2 907 6 223 l 553 l 
73 9 317 4 607 3 911 2 229 l 559 2 
79 6 '.3Ql 3 613 12 919 2 231 30 567 l 
83 2 337 l 617 7 929 2 237 6 571 l 
89 2 347 2 619 l 937 l 249 6 579 1 
97 l 349 3 6e1 2 941 l 259 1 583 l 

101 25 353 11 641 20 947 2 277 2 .597 12 
103 3 359 2 64; 6 953 l 279 2 601 8 
107 . 2 367 'l 647 1 967 3 283 2 607 l 
109 l 373 2 653 2 971 l 289 14 609 8 
113 l 379· l 669 l 977 l 291 l 613 4 

· 127 3 383 l 661 3 983 l. 297 1 619 1 
131 l 389, l 673 3 991 2 301 l 621 l 
137 17 397 4 677 2 997 6 303 l 627 6 
139 3 401 2 683 2 1009 4 307 2 637 4 
149 l 409 2 691 3 013 4 319 2 657 3 
151 2 419 1 701 l 019 l 321 24 663 .1 
157 2 421 3 709 1 021 1 327 l .667 2 
163 2 431 2 719 2 031 10 361 2 669 3 
167 1 433 l 727 1 033 l 367 l 693 4 
173 4 439 2 733 12 039 2 873 2 697 1 
179 l 443 2 739 3 o49 2 ;81 1 699 3 
181 1 449 14 743 l 051 l 399 2 709 1 
191 2 !J.57 3 751 6 061 5 409 44 721 4 
193 l 461 .l 757 28 063 l 423 9 72'!> 6 
197 2 46; ·; 761 2 o69 1 427 2 733 2 
199 2 467 2.. 769 4 087 l 429 l 741 l 
211 7 479 2 773 4 1091 1 1433 l 1747 6 

i ! 
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p C p C p C p C p C p C 

1753 3 2111 2 2447 1 2801 2 3203 2 3557 14 
759 2 113 l 459 l 803 2 209 2 559 .2 

777 l 129 4 467 18 819 1 217 3 571 1 
783 l 131 3 473 l 833 l 221 l 581 1 
787 2 137 1 477 4 837 4 229 3 583 3 
789 1 141 1 503 9 843 2 251 1 593 1 
801 2 t43 l 521 4 851 1 253 6 607 l 
811 1 153 l 531 55 857 7 257 1 613 6 
823 l 161 72 539 1 861 1 259 1 617 1 
831 6 179 1 543 1 879 2 271 2 623 1 
847 1 203 2 549 1 887 1 299 1 631 2 
861 l 207 1 551 6 897 1 301 1 637 4 
867 2 213 4 557 4 903 1 307 2 643 2 
871 2 221 1 579 l 909 l 313 1 659 1 
873 l 237 2 591 10 917 2. 319 6 671 10 
877 2 239 2 593 1 927 l 323 2 673 1 
879 6 243 2 609 2 939 l 329 4 677 2 
889 16 251 l 617 l 953 3 331 1 691 3 
901 5 267 2 621 1 957 2 343 1 697 3 
907 2 . 269 1 633 1 963 2 347 2 701 1 
913 1 273 l 647 3 969 8 359 2 709 l· 
931 5 281 10 657 l 971 1 361 2 719 2 .· 

.. 933 92 287 3 659 3 999 2 371 l 727 1 
949 l 293 2 663 l 3001 2 373 4 733 4 
951 10 297 1 671 2 011 1 389 1 739 3 
973 2 309 l 677 12 019 1 391 2 761 2 
979 l 311 10 683 6 023 1 407 1 767 l 
987 6 333 4 687 l 037 12 413 2 769 2 
993 3 339 1 689 64 · 041 8 433 1 779 l 
997 2 341 l 693 2 o49 6 449 8 793 3 
999 2 347 2 699 1 061 15 457 9 797 4 

2003 2 351 2 707 2 067 2 461 1 803 2 
011 3 357 2 711 2 079 2 463 1 821 1 
017 1 371 1 713 1 083 2 467 2 823 3 
027 2 377 9 719 2 o89 2 469 1 833 1 
029 1 381 5 729 4 109 21 491 5 847 1 
039 2 383 1 731 1 119 2 499 11 851 5 
053 6 389 1 741 1 121 20 511 2 853 4 
06, l 393 13 749 3 137 .1 .' 517 4 863 1 
069 1 399 2 753 1 163 '2 527 1 877 4 
o81 2 411 1 767 l 167 1 529 2 881 2 
o83 2 417 1 777 1 169 44 533 2 889 2 
o87 7 423 1 789 1 181 5. 539 l 907 2 
o89 2 437 2 791 90 187 18 54.1 177 911 2 

2099 l 2441 8 2797 4 3191 110 3547 2 3917 2 
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p C p C p C p C p C p C 
·'I-

391.9 6 4283 2 4679 2 5077 2 5477 4 5849 4 
923 2 289 2 691 l o81 4 479 2 851 3 
929 8 297 3 703 l o87 l 483 2 857 l 
931 3 327 l 721 2 099 1 501 l . 861: l 
943 1 337 1 723 2 101 3 503 l 867 2 
947 2 339 1 729 4 107 2 507 2 869 1 
967 1 349 1 733 4 113 3 519 2 879 2 
989 .1 357 18 751 2 119 6 · 521 16 881 2 

4001 8 363 2 759 2 147 2 527 l 897 1 
003 46 373 4 783 l 153 l 531 1 903 1 
007 l 391 2 787 ·2 167 1 557 6 923 2 
013 118 397 14 789 21 171 47 563 2 927 1 
019 1 409 8 793 1 179 1 569 4 939 l 
021 15 421 l 799 ·2 189 1 573 2 953 3 
027 2 423 l 801 6 197 12 581 1 981 l 
o49 2 441 2 813 6 209 14 591 2 987 2 
051 l 447 1 817 1 227 2 623 1 6007 7 
057 1 451 l 831 6 231 2 639 2 OU l 
073 1 457 1 861 5 233 l 641 12 029 1 
079 2 463 l 871 2 237 68 647 3 037 2 
091 l 481 2 877 4 261 5 651 1 o43 2 
093 186 483 18 889 2 273 1 653 2 o47 l 
099 1 493 4 903 3 279 2 657 1 053 2,· 
lll 2 507 6 909 3 281 2 659 1 067 2::' 
127 l 513 -·3 919 2 297 l 669 l 073 l 
129 2 517 2 931 1 303 1 683 .2 079 6 
133 4 519 6 933 2 309 l 689 18 089 8 
139 1 523 2 937 1 323 2 693 4 091 ; 

. 153 1 547 2 943 l 333 4 701 l 101 5 
157 2 549 3 951 2 347 2 711 10 113 1 
159 6 561 2 957 12 351 2 717 4 121 2 
177 1 567 1 967 1 381 1 737 1 131 1 
201 56 583 l 969 6 387 2 741 l 133 4-
211 l 591 2 973 22 393 1 743 l 143 1 
217 1 597 2 987 2 399 2 749 l 151 6 
219 1 . 603 2 993 3 407 3 779 1 163 78 
229 1 621 5 999 14 413 2 783 l 173 2 

.. 231 2 637 76 5003 2 417 1 791 6 197. 2· 
241 4 639 2 009 8 419 1 801 4 199 2 
2'f3 2 643 2 011 3 431 2 807 l 203 14 
253 4 649 664 021 1 437 4 813 2 211 ·1 
259 1 651 1 023 3 441 2 821 1 217 1 
261 1 657 3 039 2 443 6 827 2 221 1 
271 2 663 21 051 101 449 2 839 2 .229 3 

4273 3 4673 1 059 1 5471 10 5843 2 6247 1 
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p C ·'. p ·c p C p C p C p C 
' 

6257 l 6659 l 7019 l 7487 1 7867 2 8273 1 
263 l p61 l 027 6 489 4 873 4 287 l 
269 l 673 l 039 18 499 1 877 2 291 1 
271 6 679 2 o43 i4 507 2 879 2 293 4 
277 4 689 4 057 1 517 2 883 2 297 l 
287 1 691 l 069 l 523 2 901 1 311 2 
299 67 701 1 079 2 529 4 907 2 317 18 
301 1 703 1 io, l 537 3 919 2 329 8 
311 2 709 1 109 1 541 1 927 1 353 l 
317 2 719 2 121 2 547 2 933 2 363 2 
323 2 733 2 127 7 549 3 937 1 369 2 
329 2 737 1 129 12 559 2 949 l · 377 1 
337 l 761 4 151 26 561 4 951 2 387 14 
343 l 763 42 159 2 573 12 963 2 :;89 1 
353 l 779 l 177 l 577 l 993 3 419 3 
359 2 781 5 187 2 583 l 8009 4 423 l 
361 4 791 10 193 l 589 7 011 3 429 l 
367 l 793 1 207 l 591 2 017 l 431 2 
373 6 803 2 211 7 603 6 039 2 443 2 
379 3 823 l 213 4 607 l 053 2 447 l 
389 l 82~ 2 219 l 621 15 059 l 461 3 
397 82 829 l 229 l 639 2 069 l 467 2 

, 421 3 833 l 237 18 643 2 o81 4 501 l 
. 427 6 841 8 243 2 649 4 o87 l 513 l 

449 4 857 1 247 l 669 27 089 6 521 12 
451 3 863 l 253 98 673 l 093 2 527 3 
469 7 869 l · 283. 2 681 4 101 5 537 l 
473 l 871 2 297 3 687 1 111 10 539 3 
lt-81 2lt- 883 2 307 2 691 l 117 4 543 l 
491 5 899 l 309 l 699 l 123 2 563 2 
521 8 907 6 321 2 703 l 147 2 573 2 
529 6 911 2 331 5 717 4 161 8 581 3 
547 6 917 2 333 12 723 6 167 3 597 4 
551 2 947 2 349 l 727 l 171 l 599 6 
553 l 949 l 351 6 741 9 179 l 699 8 
563 2 959 2 369 4 753 l 191 6 623 l 
569 4 961 2 393 l 757 4 209 2 627 2 
571 l· 967 1 411 l 759 2 219 l 629 3 
5TI ·3 971 l 417 3 789 3 221 3 641 2 
581 5 977 l 4.33 l 793 l 231. 2 647 l 
599 2 983 l 451 l 817 l 233 l 663 1 
607 3 991 2 ·457 1 .823 1 237 2 669 ·1 
619 1 997 4 459 1 829 1 243 2 677 12 
6/(;7 14 .7001 4 477 2 841 140 263 l 681 10 

6653 2 7013 2 7481 10 7853 2 8269 1 8689 4 
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p C p C p C p C p C p C 

8689 4 9067 2 9463 3 9859 3 10289 2 10723 2 
693 2 091 909 467 2 871 2 301 l 729 18 
699 1 103 l 473 l 883 2 303 3 733 4 
707 2 109 1 479 2 887 l 313 1 739 1 
713 l 127 3 491 1 901 825 321 4 753 21 
719 2 133 6 497 1 907 2 331 4 771 5 
731 l 137 1 511 6 923 2 333 2 781 1 
737 3 151 6 521 16 929 8 337 1 789 1 
741 1 157 2 533 4 931 1 343 1 799 2 
747 2 161 40 539 1 941 5 357 2 8:51 2 
753 l · ,'';I,73 2 547 2 949 1 369 4 837 172 
761 10 181 3 551 10 967 l 391 2 847 l 
779 399 187 2 587 2 973 18 399 6 853 2 
783 1 199 2 601 2 10007 1 427 2 859 1 
803 6 203 2 613 36 009 2 429 11 861 1 
807 1 209 4 619 8 037 26 433 1 867 6 
819 1 221 1 623 1 039 2 453 2 883 2 
821 1 227 2 629 1 061 1 457 1 889 4 
831 2 239 2 631 2 067 2 459 1 891 9 
8:57 2 241 2 643 2 069 1 463 l 90:5 t 
839 2 257 1 649 16 079 2 477 6 909 9 
849 16 277 2 661 7 091 1 487 1 937 1 
861 1 281 10 677 4 093 4 499 1 939 1 
863 1 283 6 679 6 099 3 501 3 949 l 
867 2 293 4 689 28 103 1 513 1 957 4 
887 1 311 2 697 1 111 2 529 2 973 4 
893 4 319 2 719 2 133 4 531 1 979 1 
923 6 323 2 721 2 139 1 559 2 987 2 
929 62 337 3 733 4 141 1 567 1 993 l 
933 4 341 l 739 l 151 . 2 589 1 11003 2 
941 3 343 l ,.743 l 159 2 597 2 027 2 
951 2 349 3 749 l 163 2 601 10 o47 1 
963 2 371 1 767 1 169 2 607 1 057 1 
969 2 377 1 769 2 177 1 61:5 14 059 ·1 
971 1 391 2 781 1 181 1 627 2 069 l 
999 2 397 116 · 787 2 ··193 1 631 2 071 18 

9001 8 403 6 791 2 211 1 639 2 o83 6 
007 3 413 2 803 2 223 1 651 1 o87 23 
011 1 419 17 811 1 243 18 657 1 093 4 
013 4 421 l 817 1 247 l ,I. 663 l 113 :; 
029 1 431 2 829 l 253 4 667 2 117 4 
o41 8 433 9 833 l 259 1 687 l 119 2 
o43 2 437 2 839 2 267 2 691 l 1:51 1 
o49 . 2 439 6 851 1 271130 709 1 149 1 

9059 l 9461 1 9857 1 10273 1 10711 18 11159 2 



p C p C p C p C p C p C . 
-

1i161 36 11617 1 l2o41 2 124,1- · 1. 12853 28 13267 18 
171 l 621 l o43 6 473 1 889 4 291 l 
173 2 633 l o49 2 479 2 893 4 297 1 
177 1 657 1 071 34 487 1 899 l 309 3 
197 4 677 2 073 1 491 1 901 2 313 1 
213 4 681 2 097 3 497 1 911 2 327 3 
239 2 689 24 101 l 503 l 917 2 331 1'". 
243 2 699 1 107 2 ,511 6 919 6 337 1 
251 5 701 l 109 3 517 84 923 2 339 1 
257 l 717 4 113 1 527 1 941 l 367 l· 
261 5 719 2 119 2 539 1 953 l 381 l 
273 l 731 l 143 1 541 3 959 2 397 2 
279 2 743 1 149 1 547 2 967 3 399 14 
287 1 777 ,' 1 157 6 553 l 9T5 6 411 l 
299 l 779 3 161 2 569 2 979 l 417 3 
311 30 783 1 163 2 577 J. 983 l 421 1 
317 12 789 l 197 4 583 l 13001 8 441 2 
321 10 801 4 203 2 589 l 003 2 451 1 
329 6 807 l 211 3 601 2 007 l 457 l 
351 2 813 2 227 2 611 l 009 6 463 1 
353 1 821 1 239 2 613 2 033 3 469 1 
369 141· 827 2 241 2 619 3 037 2 477 2 
383 1 831 70 251 l 637 4 043 2 487 l, 
393 1 833 1 253 4 641 4 o49 4 499 l 
399 2 839 2 263 l 647 l 063 l 513 "1;\ 
4:11 5 863 1 269 l 65:; 2 093 6 523 

('ti' 

2' 
423 1 867 2 277 4 659 1 099 1 537 l> ,,• 

437 4 887 1 281 2 671 70 103 l 553 r· 
443 6 897 1 289 32 689 16 109 l 567 3rJ 
447 l 903 1 301 5 697 1 121 2 577 1 t ' 467 2 909 l 323 2 703 3 127 l 591 10? 
471 2 923 2 329 4 713 1 147 14 597 1{ ~ .. : 

483 2 927 1 343 3 721 6 151 10 613 2:. 
489 4 933 2 347 2 739 :; 159 ·6 619 ll;·. 
491 15 939 l 373 2 743 l 163 2 627 ~/ 497 1 941 1 377 1 757 6 171 3 633 
503 l 953 1 379 ,, 1 763 18 177 l 61+9 l~/; 
519 2 959 2 391 2 781 l 183 3 669 l 
527 3 969 34 401 10 791 2 187 2 (iq9 2t 
549 1 971 1 409 2 799 6 217 1 681 ~.· ,.! 

551 6 981 1 413 2 809 2 219 3 687 ,tj 
579 1 987 2 421 l 821 l 229 1 691 l t 
587 6 12007 3 433 3 823 l 241 8 693 42 
593 1 011 l 437 2 829 3 249 46 697 l 

11597 2 12037 3 -12451 1 12841 2 13259 7 13709 L 
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