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CHAPTER I
INTRODUCTION AND STATEMENT OF THE PROBLEM
Introduction

The study of the real numbers has held the interest of man for
thousands of years. From the time of Pythagoras it has been known that
not all points on a line can be represented by the ratio of two
integers.. This fact was the impetus for extending the rational number
system. The new numbers were named the irrationals and their presence
allowed one tp say that each point on a line can be denoted by e unique
number. This number is called a real number and it will be either
raticnal or lrrational.

A study of the real numbers can be done by considering their
decimal representation. This gives rise to many interesting questions
about the digits used to form their representations. For example,

l/H = .25, but can it be expressed as an infianite decimal cther than
.25000°°+? Also, .333:: can be expressed as'l/3, but can the real
numbers .5363636°°° and .12345°°° be expressed in the form of a ratio
betweeﬁ two inﬁegers? If so, how?

The study of represehting the integers in bases other than base

' elementary

ten is one of the distinctive characteristics of “modern'
mathematics programs found in schools today. If the question is asked,
"Why is this studied?," the answer is usually given that it helps the

student understand the concept of place value. The place value concept



is used to study the rationals as well as integers. Therefore, it is
logical to ask what affect does the base of the numeration system have
on the rational's "basimal" representation. For example, 1/3 = .333...
in base ten, but 1/3 = .25 in base twelve. Notice that in one base the
basimal was an infinite repeating one, but in the other it temminated.
Why?

Another example of the type of questions asked concerning recurring
decimals is why does the decimal representation of l/T have g,period of
six digits and l/ll has only a two digit period instead of the maximum

possibility of ten?
Statement of the Problem

A teacher is reluctant to introduce concepts in which he has had
little or no preparation. In his experience as an undergraduate, the
secondary teacher finds that the vast majority of his course work is at
such a level that it 1s not applicable to the teaching level he will
encounter. If the prospective teacher is fortunate enough to have had
a number theory course, he will have some material at his disposal that
can be adapted for use by his future students. I. A. Barnett [ 6] of
the University of Cincinattl stated his opinion quite strongly in the
American Mathematical Monthly by saying that a course in "... the theory
of numbers should be required not only of all mathematics majors, but
also of all prospective teachers of elementary-school arithmetic as well

as teachers of high-school algebra and geometry." He started his

lThe author will use the word "basimal" when referring to & numeral
from a general base system and will use the word "decimal"” when
referring to a numeral from the base ten system of numeration.



article by quoting from Hardy's essay "A Mathematician's Apology":
"The elementary theory of numbers should be one of the

very best subjects for early mathematical instruction. It

demands very little previous knowledge; its subject matter

is tangible and familiar; the processes of reasoning which

it employs are simple, general and few; and it is unique

among the mathematical sciences in its appeal to natural

human curiosity. A month's intelligent instruction in the

theory of numbers ought to be twice as instructive, twice

as useful, and at least ten times as entertaining as the

same amount of Calculus for Engineers.”

The purpose of this paper is not to write a text book, but to take
one facet of the real numbers, that of recurring decimals, and develop
material  -that could be used in a seminar at the college senior level.
The intention is to bring together in one volume certain material that
has been written on the subject and topics related to it so the student
could have the experience of "using" his mathematical knowledge. The
level or difficulty should increase as the reader progresses through the
paper. It is expected that many Junior and senior high schocl students,
as well as their teachers, will be able to comprehend much of the mate-

rial of this paper.
Procedure

A survey and analysis of the published results concerming recurring

decimals and related topics was made. The Mathematical Review, bibli-

ographies of textbooks and bibllographies of published papers served as
primary tools for locating source papers. The material was analyzed and
is presented 1n an expository manner. The material is also organized in
an increasing sequence of difficulty. Chapter II provides an introduc-
tion to recurring decimals and is intended for the junior high school
reader. Chapter III points out many of the properties that recurring

decimals possess. Although a few topics of elementary number theory are



used, the explanation should be clear to the better senior high student.
Chapters 1V, V, and part of VI should be understandable to the conscien-
tious college undergraduate. The remainder of Chapter VI is for the
student possessing the mathematical maturity of a beginning graduate

student.
Scope and Limitations

The published material concerning recurring decimals and related
toples is quite extensive, but very uﬁcorrelated. The writer could find
no record of the subject being correlated for the various audiences
mentioned above. The paper, therefore, will be limited by the level of
the intended readers of this paper.

It was the intent of the'write? to write a paper which was self-
contained with respect to the mathematical background pf the different
level of readers. For example, some of the elementary results depend
on the properties of congruences; therefore, a listing of these
properties will be given along with a reference as to where the proofs
may be found.

While the development of the material in the paper did not follow
the historical development of the subject, the writer has made an

effort to show how the subject has evolved.
Expected Outcomes

It is expected that as a result of reading this paper an individual
will become aware of how a topic in mathematics grows as mathematicians
continue to find the reasons behind the phenomens within the topic. It

is also expected that Junlior and senior high school teachers will find



materisl that can be used as enrichment in their courses and that
students studying elementary number theory will be able to understand
how the basic theorems of the course can be used to prove theorems about
recurring decimals. Finally, it is hoped that this material will

stimulate the reader's interest in mathematics.



CHAPTER IT
ELEMENTARY INTRODUCTION TO RECURRING DECIMALS
The Division Algorithm and Rational Numbers

Since the system of rational numbers is used throughout the paper,
- 1t seems wise to review some definitions and basic properties of this
system. Also, since the division algorithm 1s alluded to later on in

the paper, it will be discussed at this point.

Theorem 2.A.% (The Division Algorithm) For any two positive integers
a and b, there exist unique non-negative (positive or zero) integers q

and r with 0 <r <b such that & = bq + r.

The followlng examples should give the reader a feeling for the

division algorithm.

(1) 2 =19, b= 5 implies g = 3, r = 4 since 19 = 5°3 + k4.

(2) a =57, b =12 implies ¢ = 4, r = 9 since 57 = 124 + 9,

(3) a =13, b =17 implies ¢ = O, r = 13 since 13 = 17.0 + 13,
() a =36, b =29 implies ¢ = 4, r = O since 36 = 9.4 + O,

lThe theorems in this paper will be numbered'by chapter where the

chapter number is followed by either a number or a letter. Those with
a number are considered g main part of the paper and will be proved.
Those with a letter are background material from number theory and their
proofs can be found in most standard textbooks on the subject.



The reader will note that fhe third example can be generalized such
that ifa <b then q = O and r = a. Also, it should be noted that the
division algorithm as stated above,is not as general as found in most
textbooks. The condition that a and b be positive integers can be
weakened such that they could be any integer, and as a result g could
be any integer and O <r< |b]. (i.e., & = <17, b = ﬁ implies q = -5,
r = 3 since -17 = 4+(-5) + 3). For the purpose of this paper it will
not be necessary to consider the more general conditions. |

It is the division algorithm that makes the process of division of
one positive integer by another a unique process. All of the fellowing
examples are mathematically correct, but only one of them can be accept-

ed if division is to be unique.

56 ' 5T 5k
7JE00 7500 7400
35_ 35_ 35_
>0 50 50
L2 L9 28
) T 22
400 =756 + 8 LOO = T+57 + 1 4oo = 754 + 22

It is the second example which satisfies the division algorithm.

. Therefore, it is the one £aken as the unique answer to 400 divided by 7.
. The study of rational numbers is very broad, and several excellent

books have been written for the neoﬁhyte mathematics students, such as

Ni%én [24 ] and Rademacher [26]. Only those definitions, theorems, and

propertles whiéa relate directly to the topic of this paper will be

discussed.

Definition 2.1. A positi%e rational number is an ordered pair,(ioe.,

(a, b)) of positive integers. This ordered pair isiuéually expressed as

a/b where a 1s called the numerator and-b is called the denominator.



The expression a/b is usually referred to as the rational fraction form

or the fractiocnal form of the rational number.

Definition 2.2. The ratlonal numbers a/b and c/d are sald to be equia-

lent if and only 1f ad = bec.

Definition 2.3. A rational number isbsaid to be in lowest terms if and

only if the numerator and denominator have no common divisor other than
1. When a genefal rational number is referred td in the form a[b, it

will be understood to be in lowest terms.

One of the most common interpretations of rational numbers 1s that
in which the ordered pair repfesents a quotlent, i.e., a/b =& + b,
_This interpretation follows from the definition of division since

a = b(afb).
Terminating and Non-terminating: Decimals

The reader is probably familiar with decimal notation for represent-
ing rational numbers, but for completeness of the topic‘it“should be

reviewed in light of the first section of thls chapter.

Definition 2.4. The terminating decimal ‘d1d2"'dk 1s equal to the

rational number whose numerator is the pbsitive Iinteger dldzu.odk,
vhere the di's are the digits of the intéger, and the denominator is

100...0 (k zeroes) or 105,

It follows from this definition that since 1/8 = 125/1000 then
1/8 = ,125. Now this termlinatling decimal representatlion could also be
found by interpreting 1/8 to mean 1% 8 and use the standard algorithm

for decimal divislon.



For example,

125

8)1.000
8

20
16
0

Lo

37 _ 3725 | 925 _
A second example is 500 = §00-25 = T0000 .0925 and

.0925

400 Y37.0000
- 36700
1 000
800

2000

2000

Now consider the fraction 4/7. Does there exist a positive integer K
such that 7+K = 100...0? Since 100...0 = 10" = (2:5)" = 2”57, there
does not exist a K such that 7°K = 275", This implies that 4/7 cannot
be expressed as a terminating decimal. How 1s this fact reflected when
the algorithm for division is uged?

5714285 T«

-7 J4 . 000000000 s o
3.5

. 50
L9
1

I
30

]
N

H

qgﬁgg%é
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The readér has noted that the division process of the example
appears not to terminate, (i.e., a remainder of zero‘has not bgen
obté;ned), but 90n£inue§ indefinitely. Recalling the divisidﬁ algo-
fithm, it 1s seen that the set of possible remainders when dividing by
71s {0, 1, 2, 3, &, 5, 6}. In the example above, the remainders
appeared in the following order: L, 5; l,~5; 2, 6, 4,75, 1, cveo The
fact that the remainders repeat appears to have a bearing on whether or
not the decimal repregentation of the rational number 1s terhinatingo
This will be tye case, and more will be said later 1ln this chapter about
this example.

The discussion has been leading to the following theorem:

Theorem 2.1. The rational number a/b has a termineting deqim&l expan.-
sion if and only if the integer b has no prime factors other than 2 or

5.

Proof:A First 1t will be assumed that a/b has a terminating decimal
expansion and then show that b has no prime factors other than 2 or 5.

From Definition 2.4, it follows that

N ﬂ- dl ® 0 q’d
= .d‘j_aa...d =" l 2 a
R n

n
Now if this fractlon is not in lowest terms,gthe reducing of 1t to

d-lde o0 o:dn
21’1° n )

5

=

oY@

10

lowest terms will not alter the fact that b will not have any prime

factbrs.other than 2 or 5. This completes the proof in the only if

dlrection. Yoo

For the:if.part‘assume b hes no prime factors other than 2 or 5.
That is, b 1s equal to a positive integer of the form 2m°5n° Beforé¢.

continuing with the proof, consider the example 2. -Ziéé:z Ziézil
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To convert this to a decimal, simply change it to a fraction which has
a denominator that ls a power of 10. This can be achieved by multiply-
ing both numerator and denominator by 25:

3
455 _ Th53-27 59624 | socn,

22_55 - é5,55 = 10°

This argument can be generalized from this special case in the follow-
ing way. OSuppose that b is of the form 2m'5n, where m and n are
positive integers or zero. Now, from the law of trichotomy for non-

negative integers, one of the three cases, n = my n <m, and n > m,

m _m-.
°

must hold. Whén n = m then 275" = 2™5™ = 10", therefore, a/b;= a/lom,

and the terminating decimal is found by inserting the decimal péihp in
' the correct place.- The second case where n < m is handled by multiply-

'ing both numerator and denominator of the fraction by 5m-n:

i= a - a.5m—n - a.5m-n - a‘°5m""n
b 2m;5n 2mgsn'syg-n 2m'5m : ldm

m-n . m-n
is an integer, and so a+5 . is also an

-Since m - n is positive, 5
integer, say c. Hence the fraction can be written a/b = c/lOm and the
terminating decimal can now be written. The case where n > m is
simil@rly handled.

The following examples are given to illﬁstrate the technique of

the pgpof»

—rv— T2

i
200 -

T = 7'5 = 55 - 0055
2252 350 107
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Recurringl Decimals

Rational fractions can now be separated lnto two types, 1l.e.,
those with terminating decimals and those with infinite decimals. It
wlll now be estabiished that each such infinite decimal has a repeating
patt,’ern. For example: 3/11 = .27272T°°*, and 1979/3300 = 59969696 -,
For convenlence, the'n0£atioh of placling a dot over the first and last
dlgit of the set of digits which are repeated will be used to denote &
recurring decimal: 3/11 = .27, 1979/3300 = .5996, 1/3 = .3, 41/333 =.
.ieé, etc. A second étandard notation is the placing of a bar over the
set of dlglts which are repeating: 3/11 = .27, 1979/3300 = .5996,

1/3 = .3, k1/333 = ..12 , etc. Tﬁe writer has elected to use the first
notatlion since it'is more convenient when the repeating part is quite
large. One more word on terminology is needed at this point. The
_repeatiﬁg part is referred to as the "period” or'"repetend” of the
recurring decimal. The writer has elected to use the word "period” for
the repeating part.

Recalling the example of where the decimal expansion of 4/7 was
found, it was noted, the set of possible remainders was [O, 1, 2, 3, &,
5, 6}. In the aétual divislon process;, the remainders occurred in the
order 5, 1, 3, 2, 6, ik and then started to repeat. Therefore, the
quotient also sta.rj:ed to repeat. The possible remainder O could not
occur in the process of finding a recurring decimal, since this would
terminate the process.

Sincev5/6 = .85,‘it is noted that first, the perlod is only one

_ lThe author has elected to use the term recurring instead of
periodlic or repeating.
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Qigit in size; and second, the period did not start immediately in the
place tolthe right of the decimal point. This example illustrates the
fact thét not all possible femaiﬁders-are used before & repeat takes
place. Also, since this example has a non-repeating paft; it would not
be a "pure"” recurring.décimal.v (A "pure" recurring decimal is one whose
period starts in the place immédiately to the right of the decimal ‘
point).
| ’j Considering the general case, a/b the set of possible remaindefé
due to the division algorizﬁm 15 {0, 1, 2, 3, 0s, - 3, b - 1}, and
s0 a recurrence of the division process is cert&jn, unless the remain-l
deruéero occurs and the process terminates. When the division process

recurs, & cycle 1ls started and the result is a recurring decimal.

The above argument is half of the proof to the following:

Theorem 2.2. Aﬁ& rational fraction a/b 1s expressible as a terminating
decimal or an infinite recurring decimal; conversely, any decimal which
is either terminating or infinite recufiing can be expressed in the

form a/b.

The converse deals with two types of decimalss, terminating and
infinite recurring. The terminating decimals were taken care of by
Theorem 2.1. Before the fepurring decimals are considered, it woﬁid’be
wise to look at the method in one particular case and then generalize
the method to fit any case.

Consider the infinite recurring decimal x = °75£26° Now the object
wiil be to multiply both members of the equation first by one number and
then by another; these numbers will ﬁe chosen so that the difference of

the two products will be an integer. In this example the numbers 105



1k

and 10° will serve the purpose because

73426126

107 °x = 100,000+x

and 102°x = 100+x

"

73406
so0 that the difference is 99900+*x = T3353. Therefore,

o 13353 _ 2hh5l
§§§-— 33300

which exhibits the fact that x is a rational number.

In the generalization of this method it will be shown that the
numbers 10° and 102 were not "pulled out of the hat" but were chosen
_systematically. Now any recurring decimal betweep 0 and 1 can be
written in the form

(l) X =‘ca; a nooab b noué ,

172 12
where 9‘1 s 8o a.s represent the s consecutive digits 1n the non-repeating
part and bl, b,.o., b represent the t digits in the period. (In the

above example 8 = 2, t = 3;ral =T, & = 3, b1 =k, b2 =2, and b, = 6).

2
Now x 1is multiplied first by 10570, then by 10°, and then the differ-.
ence is found; 1l.e.,

s+t : 2 .
10 X = ala.a. » oa-sblbz IS obt + oblb2 x) obty

(- '
107 ex = alaz..oa + - .blb ..obt

s+t S
(lo . - 10 )x = alazoooasblbzooobt - ala;gooo&so
Therefore,
(2) x _ ala:zoooa blbzooobt - a.la:2poo&s'
s+t S ‘
10 - 10

which shows x to be.rational, since both the numerator and denominstor
are integers.
An alternate method, which is similar to the process used in

Theorém 2.2, 18 to multiply the number by lok, where k 1s the number of
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digits in the period, and then subtract the number from this product.

For example, consider .3562;

10%ex = 35,6262
x = 35062
9% = 35.27
_ 35.27 _ 3527

* =799 T 9900
Note, the difference did not result in an integer. Therefore, it was
necessary to multiply both numerator and denominator by 100, so that

they both will be integers.

Thebrem 2.3. Any rational number of the form a/b, where a and b are in
lowest terms and a < b, is equal to a pure recurring decimal 1f and only

if b and 10 have no common factors.

Proof: Assume a/b is equal to a pure recurring decimal, id.e.,
= .‘:\ajvldg o e «!dt [
Then using the algebralc process from Theorem 2.2, it is seen that,

_§§f§2'°%ﬁt,
~99...9

ol ®

o ®

Since a/b is in lowest terms, there exists an integer h such that

bh = 99...9 (t digits). Now 99...9 is not divisible by 2 or 5, there-
fore b 1s not divisiﬁle by 2 or 5. 'This implies b and 10 have no
common factor. This completes the proof in one direction. ‘The proof
going in the other direction will ‘be done by contradiction. Assumé a/b

'is not equal to a pure recurring.decimal, il.eqy

a _ 8t ;
1—)- = .alaea ° oasblbzn @ ubt
S ° °
There.fore) J,:—OFa'— = alaz o e aas + °b1b2 e Obt,

b.b,es0b
. 172 't
(3) B185e008 T —Gr——g—

]
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aee tively.
Let alaea,.as and blb2 bt equal the integers h and k respectively

Equation (3) becomes

S

107a k
=h + ee—?
D t 59...9
or a _ h + o k
5=

S_5 8_B N
2°5° 275 (99...9)
Reducing the fractions of their 2 and 5 factors glves,
t ]
2 v ma. = '
25" 257(99...9)

&
5=

Adding the fractions gives

(%)

] ] t 1
nt2® 5% 4 ket v

2*5Y(99..:9)

& .
z=

where x 1s the larger of u and m and y is the larger of v and n. . Also,

! ' = x-u, and v' = x-v. It should be noted that

m' = x-m, n' = y-n, u
elther m' = O or u' = O and either n' = 0 or v' = 0. Now,in reducing
the right-héﬁd side of (4), it 1s seen that 2 does not divide the
'numerator, since 2 divides one of the terms but not the other.
Similarly, 5 does not divide thé numerator. Therefore, in reducing the
fréction to_a/B,'the factors 2° and 5° will remain in the denominator. |
This implies b and 10 have a common factor. This is the contradiction
needed. |

Since the remainder of the paper will be concerned with pure

recurring decimals, a general rational number of the form a/b will be

assumed to be in lowest terms and b and 10 have no common factors.

Corolliry 2.k, Every pure recurring decimal is equal to the.fraction

. whose numeratorfis formed by the period and the denominator is composed

of as many 9's as there are digits in the period.
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Proof: If x is a pure recurring declmal then s = O in (l)° This

implies that (2) becomes
l 2o-ob blbénoobt

1of -1 = 7T99...9 (t daigits)

which is precisely what the corollary states.

This theorem can be used to convert any infinite recurring decimal
to 1ts fractional equivalent, provided the recurring decimal is first

changed to a pure recurring decimal. For example;

o 426 _ 73°999 + 426 _ 73°(1000-1) + 426
107x = 73.426 = T3 + g5 = “—“G55 595
o = L13000 - 73) + 426 _ 72927 + 426 _ 73353

99900 B 99900 ~ 99906°

It is interesting to note that while the method of Theorem 2.2 is
néither ﬁew nor difficult, it did not appear in elementary textbooks
until just recently. A second method found in most college algebra
textbooks, which have a section on geometric progressions, is as
follows:

726 = .73 + L0026 = .73 + 426(.00001 )

_ 13, ket _ 13 kebri 1
= 155+ To5¢-001) = 155 + 100 [105 YR ]

.13 k26 1/1000 73 k26 1
~ 100 T 100 *I-I/I00¢ - 100 © 100 © 999

732999 + 426 _ 73353 _ 24Ls51
100.999 99900 ~ 33300 °

b
[

]

While this method gives a good example of an application for infinite
geometric progressions, 1t does not lend itself to use by a student who

has not had a course comparable to college algebra.
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Terminating Decimals Written as Recurring Decimals

So far, in this chapter it has been established that some rational
numbers can be expressed as terminating decimals, whereas other rational
numbers become infinite or non-terminating decimals. Curiously enough,
every terminating decimal (except zero) can be expressed in a non-
terminating form. Of course, this can be done in a very obvious way
when .75 is written as .75000°¢¢°, i.e., with an infinite succession of
zeros. But, apart from this ob&ious process, there is another way that-
is a little surprising and certainly more interesting. |

Consider the following: 1/9 = .1llees, 2/9 = .222¢22, 3/9 = 1/3 =
+333%*+° gnd so on until 8/9 = ,888¢¢., If the inductive process is |
carried one more step the strange-looking result is

(1) 9/9=1=.999".

Now equation (1) can be shown to be true by use of the method
found in Theorem 2.2.

X = o999e0o

*

implies 10x = 9.9

*

X N
9x = 9 or x = 1.

Thus equation (1) is true.

This resuitAallows any terminating decimal to be written as an
infinite recurring decimal as 11lustrated by the following example.
<375 + .00L(1)
= 375 + +001(4999:<+)

376

[}

= 4375 + .000999¢ ¢«
= «375999¢+-

Conversely, if an infinite recurring decimal has a period of the
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single digit 9, then 1t can be converted to a terminating decimsl as
11lustrated by the following example:
B39 = L3 4+ 000 = W43 4 J0L(.9) = L3+ 0L = Lk

The uniqueness of the declmal representation of a given rational
number depends on & cholice of notation. For, in addition to writing
Ak as JU43999-+¢, 1t could also be written as 440, 4400, L44OOcc-,
These, however, are such trivial variations of .4k itself, that they
would not be considered as different representations. It will be the
practice of the wriker to use ~45§ as the infinite decimal representsa-
tion of .44 instead of 440 throughout most of the thesis,.but‘will use

the alternate notation whenever it will be expedient.
Recurring Decimals in Other Bases

Recall the process for changling 1/2 to its decimal representation,

that ig, multiply both numerator and denominator by 5 such that
1/2 = 1.5/2:5 = 5/10 = .5.

‘Therefore, .5 can be interpreted as 5 divided by 10, but 10
implies one base in the decimel numeration system. This would mean
that‘.5 implies 5 is divided by one base.

Consider the questién: what is the basimal representation of 1/2
in base eight?v In order to answer this a person needs to find the
number that, when multiplied by 2, will giﬁe oné base for the\p‘roduct°

In this case it would be four since [2°4 = 10] Therefore; the

eight’

answer to the guestion would be found as follows;

[1/2 = 1eb/2°k = L/10 = Jb]

eight
Applying the same type of reasoning it is found that
= o)+ 0‘6 ol

"Jten elght = ' twelve ~ "“two’
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If a person attempts to change 1/2 in base five to its equivalent basi-
mal representation, he will have difficulty since there does not exist
an integer that when multiplied by two will glve the base. This would
imply that (1/2)five would have an infinite recurring basimal represen-
tation in any odd base.

Reflecting on Theorem 2.1, it can be seen that the numbers two and
five are factors of the base ten. If the base of the numeration system
had been six instead of ten then the factors of. "b" would have to.be
two and three»in order for the theorem to hold in base six. Therefore;
base twelve would imply factors of 2 and 3, but base eight would imply
only the factor 2.

Now consider some of the recurring decimals in base ten and their

representation in other bases.

5

H
=
ct
o
=
<
(0]
[t}
=
i
l =
o
#
=

ten twelve
Hence, ['353"°]ten = (°h]twelve°
B - S S VS
ten 9"c,welve {?2 L 10° ) ]twelve
‘Hence, f['lll°°°]ten = [°lu]twelve

It should be obvious by now, that while some recurring decimals in
base ten become termineting basimals in base twelve not all of them
will. For example, l/ll = °O9O9O9f°° in base ten, but it becomes
«11ll°°°* in base twelve. Béfore illustrating this example, the author
needs to define what symbols will be used to denote ten and eleven in
base twelve. Thé author's choice is "t" for ten and "e" for eleven.
[e)ifjé [}_ = ,111“0]

e twelve

l‘twelve
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Also the terminating decimal [.2]ten = [°éh9?]twelve as 1llustrated

below;

L2497 B R '}
5 JT-0000 E?" 29T} tvelve
%

To.‘u
8
0
=

50
2e

T

“twelve

A statement 1s frequéntly made that a base of twelve, l.e., the
duodecimal systéﬁ, would have made a better numeration system than base
ten. What would'be the reasoning behind such a statement? One of the
strongest arguments 1s bgsed on the British system of measure. The

parts of a foot could be denoted quite simply as

[1 inch = .l foot]twelve
[2 inches = .2 fOOt]twelve
[9 in;hes = .é foot]twelve
- [t inches = .t fOOt]twelve
(e inches = .e fOOt]twelve
(10 inches = 1.0 foot]twelve

Also, thelr monetary system of pence and shilling lends itself to the
duodecimal system, since twelve pence is a shilling.

From a straight mathematicsal viewpoint the fact that twelve is an
"abundant” number, i.e., it has more divisors than any number less than

1t gives rise to more fractions less thanlbne, that would have a term-

inating basimal representation. Other examples of abundant numbers are
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2k, 36, 60, 120, and 360. The number 1ik, which would be one base
séuared, just misses abundancy, belng excelled by 120. Compared with
1Lk, the number 100 is relatively poverty-stricken in this respect--
which is why the metrlc system is said fo be & poor one by some people
(1].

Another interesting eiample is to compare the conversion of sixty-

fourths in decimals to their representation in duodecimals.

. Fraction Decimal Duodecimal\j
25/6k4 - 390625 483
27/64 421875 <509
29/64 L53125 553
31/6k L84 375 .599
33/6k .515625 623

In light of_Theorem 2.1, the reader would expect the basimal represen-
tat%on to go from six diglts to thiee, since twelve contains two
factors of 2.

| It 1s intéresfing to note that, according to Aitkeni[J_]ﬁ ".es the
decimal éystem might be rated at about 65 or less, if we assign 100 to
the duodecimal.” |

To carry the discuésion a step further, why not use 6Q for the

base? It 1s an abundant number and also has 5 as a di%isori The |
obvious reason being the operational tables would be prohibitive in
size. Certalnly, the more prime factors of the base, the more raticnal
numbers with terminating basimal representation. The "utopia" base
would be the integer that is the product of "all" primes. If this were
possible then "all" rationals would have a terminating basimal

representation!
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Consider now the method of Theorem 2.2 in light of some base other

than ten. For example, the following process 1s done in base eight.

x = J362
(10°)x = 362.62
10x = 3.62
(1000-10)x = 357
T70x = 357
x = 357/770
The method of Corollary 2.4 would be as follows:
| Cx = 362
10x = 3.62 = 3 + 62/77 = (377 + 62)/77
x = (275 + 62)/770 = 357/770

It 1s the author's hope that the reader can now see how theory
developed in base ten can be generalized to any base. For the most
part, the remainder of this paper will be written with the understand-
ing that the base is ten. It will be noted if the base 1s other than

ten.

. Historica; Notes

It is interesting to note that while the facts from the theorems
in this chapter are well known, their origin in prin& has been document-
ed by L. E. Dickson [12]. His three volume work on the history of the
theory of numbers 1s very complete in giving the originsl source of
proofs. Unfortunately, the author was unable to obtain copies of all
the original works since they were published during the eighteenth and
nineteenth centuries in Europe. However, the proofs have been, for the
most part, modernized and puplished in English during the last fifty

years. The author has footnoted those proofs which are not commonly
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found in books and will give Dickson's reference to the original proof
iof the properties of recurring decimals discussed in this paper.

The facts of Theorem 2.2 were first noted by John Wallis in 1685.
The fact that a pure recu{ring decimal 1s equal to the period divided
by 99...9 where the period has k dlgits and there are k digits 9 was
noted by John Robertson in 1768. The technique used in the example
following Corollary 2.4 was noted by J.VH. Lambert ten years before
Robertson's proof. A. Filkel in 1785 published a paper conceﬁuipg

recurring decimals 1In other bases.



CHAPTER IIT
FUNDAMENTAL PROPERTIES OF RECURRING DECIMALS
Toplcs from Elementary Number Theory

In this chapter the reader will find 1t necessary to havéd some
knowledge of congruences and the Euler ¢¥function. The writer has
given definitions, theoremé, and some examples to enable the reader to

understand how congruences and the Euler ¢-fuﬁction are used in the

remainder of the chapter.

Definition 3.1. If m is positive and m divides (a-b), then a is said

to be congruent to b modulo m and is written a = b (mod m).

For example, 23 = 7 (mod 8), 9= -3 (mod 4). If a is divided by
m to obtain q and r such that-a =mg + r with O <r<m, then m dividés
(a-r) and a Eir (mod m). Therefore, a number is coﬁgruent, modulo m,

to 1ts remainder when it 1s divided by m.

Definition 3.2. If a = ng + r with O <r <m, then r 1s called the

least residue of a modulo m.

Definition 3.%. The set of integers O, 1, 2, .00, m - 1 is called the

least residue éystem modulo m. Any set of m integers, no two of which

are congruent modulo m, is called a complete residue system modulo m.

Theoreh 3.A, If & = b (mod m), then

(1), a+c=b+c (mod m), and

25
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(11) ac = be (mod m) for any integer c.

Theorem 3.B. If a = b (mod m), then a” = p" (mod m) for any positive

integer n.

Definition 3.4. If 4 is the largest common divisor of a and b, it is

called the greatest common divisor of a and b and is denoted by (a,b).

Definition 3.5. If (a,b) = 1, then a and b are said to be relatively

prime or coprime.

Definition 3.6. The number of positive integers, not exceeding m,

vhich are relatively prime to'm is designated by the function f(m).
f#(m) is called the Euler P-function after its originator, Leonard

Euler (1707-1783).

Definition 3.7. Any set of @(m) integers which are relatively prime to

m and which are mutually incongruent (no two are congruent), modulo m,

is called a reduced residue system modulo m.

According to these definitions $(12) = 4, and {1, 5, 7, 11},
{-11, 17, -5, 35} are reduced residue systems modulo 12. Also,
#(1) =1, #(3) =2, and #(7) = 6. Also, f(p) = p - 1, since all

positive integers less than the prime p are relatively prime to p.

Theorem 3.C. (The Euler-Fermat Theorem). If (a, m) = 1, then
a¢(m) =1 (mod m).

Theorem 3.D. If p is prime, p does not divide a, and p - 1 is the

smallest positive value of e such that a®m1 (mod p), then

a, ae, vy o™l form a ‘reduced residue system modulo p.
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Now, consider the example where a = 10 and p = 23.

10 = 10 (mod 23)

lO2 = 100 = 423 + 8 implies 102 = 8 (mod 23)

103 = 80= 11 (mod 23)

10h = 82 2 18 8 .5 (mod 23)

10° = 88= 4 (mod 23) 10lh = 12 = -11 (mod 23)
10° & Jow 6 (moa 23) 107 = .18 ® 5 (mod 23)
107 = 32 = -9 (mod 23) J.ol-6 s 2w 4 (mod 23)
10° = 48 = 2 (mod 23) 1007 = 4o= -6 (moa 23)
10° = 208 -3 (mod 23) 10°°s= b= 9 (mod 23)
1010 = -30 8 -7 (mod 23) 107 = W= 2 (mod 23)
100 = b= (mod 23) | 10°°® 20= 3 (moa 23)

102 8 36 = .10 (mod 23) 100 s 30= 7 (mod 23)

1042 = 15= 8 (mod 23) 10°° = (-1)2 = 1 (mod 23)
Thus, 10, 102, veey 1022 form a reduced residue system modulo 23, since
each of the numbers in the set
{10, 8, 11,-5,4, 6,-9, 2,-3,-T,-1,-10,-8,-11, 5, ¥,-6, 9,-2, 3, T, 1}
is mutually incongruent modulo 23 and there are §(23) = 22 elements in

the set.

Definition 3.6. If k is the least positive integer such that

2Ewl (mod r), then it is said that n belongs to the exponent k

modulo r.

Note from the definition and the example above, it can be said
that 10 belongs to the exponent 22 modulo 23, since r = 23, and
k=r -1=22. But the following example shows that the value of k

does not have to be r - 1. Consider the powers of 2 modulo 7.
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os2,22=s), 02581, =2, 94, 2%=21,27 =2, .
Note, that 2 belongs to 3 modulo T and in general, 2h =1 (mod 7)

implies 3 divides h. This example motivates the following theorem.

Theorem 3i{E. If n belongs to k modulo r and s (mod r), then k

divides h.

The reader will note that when the Euler-Fermat theorem is applied

to Theorem 3.E, the following corollary results.

Corollary 3.F. (i) If n belongs to k modulo r, then k divides §(r).

(11) If n belongé to k modulo p where p 1s g prime, then k divides p-l.

3 p(r)

Corollary 3.G. If g belongs to f(r) mod r, then q, qe, qQ”, ees, Q

form.a reduced residue system modulo r.

Theorem %.H. If q, q2, ceey qp_l forms a reduced residue system

p-l

modulo p, then q + q2 + ses + @ = 0 modulo p.

The reader will note in the example after Theorem 3.D, where

“ J+11

q = 10 and p = 23, that 10° = -10 (mod 23) for J = 1, 2, «.., 1l.

Therefore,
%é g Moy o2 o222
J=l1o = lelo + J=121o =] 3=121o + J=121o 2 0 (mod 23).

Corollary 3.I. If g belongs to h, modulo p, where p is an odd prime,

200 rh-l’ are the least positive residues of go, gl, so0,

h-1

and rp, r

l)
h-1 , 0 1
g , then ro_+ rl + eae + rh-l 2 g + g + ..ot g

= (gh_- 1)/(g - 1)

2 0 (mod p).
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Consider the example where q = 2 and p = T:
20 = 1, ot = 2, 2f = L, 22 s (mod 7).
Therefore, l+2+b=14242°
= (2% - 1)/(2 - 1) (mod 7)

E 0 (mod 7)

Theorem 3.J. Integers a and b are relatively prime, i.e., (a, b) = 1

1f and only if there exists integers x and y such that 1=ax + by.

It should be noted that, since the above theorem is an if and only
if theorem, 1 = ax + by implies (a, b) = 1 and (x, y) = 1, or

(a, y) = 1 and (x, b) = 1.

Theorem 3.K. If m belongs to h modulo r and belongs to k modulo s, and

if (r, ) = 1, then m belongs to [h, k]l modulo rs.

The following properties of the @-function will be needed.

. ' n -1 -1
Theorem .3.L. (i) #(p) =p -1, and p(p") = P’ -p =" (p - 1),

 where p is prime. (1i) @P(pa) = (p - 1)(a - 1), where p and q are
distinct primes. (1ii) $(n) = n(1 - 1/p)(X - 1/q)...(1 - 1/r), where
n = paqp...rc and P, Q, ..., T are prime and a, b, ..., c are positive
integers.

3 2
Example: Let n = 504 =2 - 3 - 7, then

p(50k)

[}

22 3% 7(1 - 1/2)( - 1/3)@ - 1/7)
22. 3(1)(2)(6) = 1Lk

£}

l[h, k] denotes the least common multiple of h and k.
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The Period of m/n

The two main objectives of this section will be first, to explain
how the number of digits in the period of m/n can be found without
actually finding the period and secondly, to show that this number
depends only on the denominator and not the numerator. The material

introduced in the last section will be used in the explanation.

Theorem 3.1. Two fractions m/n and r/n produce the same mantissa

(purely decimal part) if and only if m = r (mod n).

Proof: Assume m = r (mod n) then n divides (m - r) by definition.
Therefore, (m - r)/n is an integer which 1mpliea_that the mantissae of
m/n and r/n are the same. Now assume that m/n and r/n have the same

mantissa, i.e.,

=
S

= |

I

= h + Calaet-oas and I'/n = k + oalaaataasv

m r g ) ) ,
But = - = (h+.aa..&s)-(k+.aa..a5)

12 e fime,
s Rk

where h - k is an integer. Therefore, n divides (m - r), which implies
m=r (mod n).

For example, 31/7 and 5/7 differ by an integer, and therefore,
3L = 3 (mod 7). This implies the mantissae of 31/7 and 3/7 are the
same, namely, .L28571.

Consider the question of the number of different mantissae for a
given denominator n. Now, if m/n is a fraction where m is greater than
n, then by the division algorithm there exists an integer r such that
OK<r<neandm=r (mod n). Now, consider r/n, where r < n. How many

fractions can be formed under this condition? The answer is (n - 1).
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But how many of them are in lowest terms? Recalling the definition of
#(n), it is found that f(n) of them will be in lowest terms. The

original question can now be answered by f(n).

Corollary 3.2. There are f(n) different mantissae for the same

denominator n.

As an example consider n = 6. $(6) = 2, since {1, 5} are the only

numbers less than 6 and relatively prime to 6.

1/6 = .16 5/6 = .83
Therefore, .lé and .85 are the mantissae assoclated with a denominator
of 6.

As & second example consider n = 21, and hence 1/21 = .6&7615
is a mantissa. The positive integers less than 21 and relatively
prime to 21 are 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20. Therefore,
there are §(21) = 12 different mantissae for the denominator.

Now, consider the question of the periodicity of non-terminating
decimals. The determination of the number of digits in the period by
actual division is frequently a long process. Using the theorems on
number congruences from the previous section, this question is quickly
answered.

It is known that the multiplying of m/n by 10% w111 move the
decimal point k places to the right. If k is so chosen that lOk 2 ]
‘(mod n), then the mantissa will not change, i.e., m/n and lOk'm/n will
differ by an integer.

Wm  m - m(lok = 1)

=]
=]
=}

= m(EQ) ; since lOk =1 (mod n),

= mgq, which is an integer.
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From the example found lmmedlately after Theorem 3.D., 1t was
Pound that 10°° = 1 (mod 23) and 22 was the smallest exponent such that
10 to that power was congruent to 1. Therefore, 10 belongs .to 22
modulo 23,

Now, the decimal expansion of m/23, m < 23, will be a pure recur-
ring decimal, and 1ts mantissa will be the same as the mantissa of
1022' m/23. Therefore, the number of digits in the perilod will have to
be 22.

The above can be generallzed to the followlng two theorems:

Theorem 3.3. 10 belongs to k modulo the prime p (p # 2 or 5), iffand

only 1f the period of the decimal expansion of l/p has k digits.

Proof: Assume 10 belongs to k modulo p, then 10k 2 1 (mod p).
Therefore, lok/p and 1/p have the same mantissa by Theorem 3.l. This
implies the period for 1/p has k digits. To complete the, proof,
assume 1/p has a period of k digits. That is,

1/p .éldQQQ,éko

Therefore, lok/p [d1d2°aodk] + odidyeeed,

i

where [d1d2...dk] denotes a k-digit integer.
Now, 1ok/p -1/p :_[dldeooodk] = q (integer),

or | lOk -1 % jolo]

which implies 105 = 1 (mod p). Now, k is the least power of 10 such
that this congruency is true, for assume there exists an integer h <k.
such that 10" = 1 (mod p). This implies loh/p and 1/p have the same

mantisse by Theorem 3.l. - But the mantissa for 1/p is élooadhdh+loaadk

and the mantissa for th/p is éh+l°°'dkd1°°'éh° Therefore,

() .eeddy g enedy ] = [ 500eqd)eeeqy ]
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Implles d1 = dh+l’ d2 = dh+2’ 0ooy dh = dk’ since each slde of the

equation is an integer. But this would make the perilod l/p have
h digits instead of k digits which contradlicts the hypothesis.

Therefore, 10 belongs to k modulo p.

Theorem 3.4. [15 ] The number of digits, k, in the period of m/n

depends upon n alone, and not upon the value of m.

Proof: Assume 10 belongs to k modulo n, i.e., lOk 21 (mod n).
Therefore, lOk°m/n and m/n have the same mantissa. Thls implies the
period has k digits. But k depends only upon n, since 1o¢(n) = 1 by
Buler-Fermat Theorem (Theorem 3.C.), and k divides f(n) by Theorem 3.D.

Theorem 3.3, explains why m/7 has the maximum number of digits 6,
since 10 belongs to 6 modulo 7. |

10" = 3, 10° = 2, 10° 5 6, 10

b 5

= k4, 107 = 5, 106 21 (mod 7).

Considering m/11, it is found that 10 belongs to 2 modulo 11.
| 10t = 10, 1o2 2 1 (mod 11)
Note, 2 divides $(11), since $(11) = 10. Therefore, the period of m/1l

wlll have only 2 diglts and not ithe maximum possible of 1l1.
Periods with Maximum Number of Diglts

Consider the question, when will the pe?iod of m/n have the maxi—
mum number of digits n - 17 Noy,v¢(n) = n -1 implies n is prime,
since by Theorem 3.L., f(p) = ﬁ -.l, thérefore, lOp_l:E 1 (mod p)-

But does lO belong to p -!l modulo p? Not necessarlly, as shown above
when p = 11. |

The problem of finding those values of p such that 10 belongs to

P ~ 1 modulo p is not an easy one and will be deferred until Cﬁapter IV,
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Those primes “p" less than 100, whose reciprocals result in

periods with p - 1 digits are 7, 17, 19, 23, 29, 47, 59, 61, 97.
A complete listing of such primes less than 13,710 can be found in

Appendix A.
The Period Length of 1/n

It will be advantageous at this point to define the k-function:

k(n) = k, where k is the number of digits in the period of the

decimal expansion of 1/n.
For example, k(3) =1, k(7) = 6, k(11) = 2, x(17) = 16.

Now, from the proof of Theorem 3.3, it is seen that k(n) divides
f(n) or q+k(n) = #(n). If n is prime, then PH(n) = n - 1, but k(n) may
or may not ben -vl. This was illustrated for the cases where n = T
and n = 11. Assuming the function value, k(p), is known for any prime
P, how would this affect k(n), where n is composite? The theorems of
this section will answer this question.

Consider the case where n = a*b, a and b distinct primes, e.g-,
‘n =21 = 7+3. . From division, it is found that 1/21 = ,6u761§;
therefore, k(21) = 6. But k(7) = 6 and k(3) = 1, so how are these
three numbers related? Conslder a second example, say, n = T07.
 From division, it is found that 1/707 = .001414L27157; therefore,
k(707) = 12. But k(101) = L, since 1/101 = 06?9§, and k(7) = 6, so how
a;e these three numbers related? In the first example k(7)-k(3) = k(21),
but in the second example k(7)-k(101) # k(707), so k(a)-k(b) # k(ab) in
general. The reader has probably realized that 12 =.f6, 4] and

6 = [6, 1]. These examples motivate the following theorem.

Theorem 3.5. [16 ] If m and n are primes other than 2 or 5; such that

[
A
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k(m) =& and k(n) = b, then k(mn) = [a,b].

Proof: k(m) = a and k(n) = b implies
10% = 1 (mod m) and 10° = 1 (mod n)
by Theorem 3.3. From Theorem 3.K, it follows, that

lo[a’b] =1 (mod mn),

where [a,b] iz the least power of 10 that is congruent to 1 modulo mn.

That ié, 10 belongs to [a,b] modulo mn. Therefore, by Theorem 3.1,

lO[a’b]/mn and 1/mn have the same mantissa. This implies k(mn) = [a,bl
The next case to consider is n = pa, where p is prime. It will be

instructive to first look at the special case of a = 2,

Lemma 3.6. If lOJc = 1{mod p), where t = uv, then
@) @)+ @)+ ...+ (1ov)(u'l) = 0 (mod p), and

@ (10M° + o) + ... + 20)P2) 2 0 (moa p).

Proof: The first conclusion is a direct spplication of Corollary 3.1,
where ¢ = 10', h = u. Now, (lOv)O = (lOV)(p-l) B ldt'E 1 (mod p)
changes (l) and (2) to

(3) (10¥) + (id")2 + eeo + (10")% = 0 (mod D)

1) (10" + (102 + oo + (10") ) 2 0 (mod p).
Since t divides (p - 1), then (p - 1) = wt = wuv. Therefore, the left-

hand side of equation (4) can be written as follows:

(5) [o¥) + (10%)% + .vv + (10V)%] +

v)(u+;) )(u+2)

[(10 + (10¥ + seo (1ov)2u] + oee +

[ (10%) (uv-usd) +‘(1ov)(“uv'“+2) ¥+ (O],

where each of the sums inside the brackets will be congruent to zero

modulo p, since each sum is Just equation (3) multiplied by some power
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of (107)Y. Therefore, equation (5) is congruent to zero modulo p.

. Theorem 3.7. [ 5] If p is a prime, not 2 or 5, and k(p) = t, then
k(pe) = t-pe'b, where b < 2, and pb is the highest power of p dividing

t b
10° -1, 1.e., ((20%-1)/p°, P) = 1.

Proof: Assume k(p°) = T, and let F(t) = 1 + 10% 4 ... + 10@-1)E,

But 10° =1 (mod p), therefore,
F(t) =1 +1 4 eoo +1 =p(1) =20 (mod p).

Now;F(t) is the sum of an infinite geometric progression, and 1s equal
to (ldpt - 1)/(16t - 1). Therefore

(1) 10°% 1= (10° - 1)F(t) = 0 (moa ),
since 100 = 1 (mod p) and F(t) = 0 (mod p),'implies 10° -1 = rp and
F(t) = sp, or (1ot - 1)P(t) = rspzo Now,. (1) implies that T is pt, or
a divisor of ﬁt, and since p is prime, T = t!or pv, where v is t, or a
divisor of t. If v < t, then

14120% + 1207 4 oee 4 20®2V L (10(P1V 1)/(16%_ 1) = 0(mod p).
The reasons for the above step are,lfirst, 10" 1s not = 1 (mod p),
since 10 belongs to t modulo p, and second, the conditions of Lemma 3.6.

are satisfied. Therefore, lo(p-l)v

(p-1)v

= 1 (mod p), which gives,
F(v) = 10 21 (mod p). Now, 10°V -1 = (10" - l)F(v), and
therefore 10Pv is not = 0 (mod p2)g Conseqﬁenily;v is not < t and
T =t or pt, i.e.,.T = t‘pa—b, b=1or 2.

Returning to the general case n = pa, the theorem 1s as follows:

Theorem 3.8, [19 ] If p is a prime, not 2 or 5, and k(p) = t, then
k(p") = t-pn-b, where pb 1s the highest power of p dividing 10° - 1 and

b < n.
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The followlng examples 1llustrate the theorem.

(I) p =3 implies t = 1 and b = 2, since 32 divides 10 - 1, but
33 does not divide 101 - 1. Therefore, k(243) = k(35) =
1-35'2 = 33 = 27,

(II) p =7 implies t = 6 and b = 1, since 7% divides 10° - 1,
but 72 does not divide 106‘_ 1, (t.e., 106 = 1 (mod 7), but
lO6 # 1 (mod 49)). Therefore, k(343) = k(73) =-6°73'l =
6°49 = 20k,

(III) p = 13 implies t = 6 and b = 1, since 10% = 1 (moa 13); and
10° # 1 (mod 169). Therefore, k(13) = 6+13°~ = 78.

The only known cases in which k(p®) = t-are when p = 3 or 487,

The groundwork is complete now for handling the most general case

where al a, a

r
n =pl p2 ownpr ¢

a &/ a

Theorem 3.9, If n = pllpees..prr where plpeo.;pr are distinect primes,

3 & & By
then 1if k(Pl ) = sl} k(p2 ) = sl} k(P2 ) = 82) AN k(pr ) = sr.’
k(n) = Lgl,\sé, ""rsr]’ i.e., the least common multiple of"

‘Sl, 52, “eey Sro

The proof of the theorem would follow from repeated applications

of Theorem 3.K.

Cyclic Properties of Recurring Decimals

Returning to the example of 1/7 = ;ih285%, the remalning sevenths
can be found in two different ways. First, since 1/7 = .142857; then
10/7 = 1.428571, and subtracting 1 gives 3/7 = .:28571; then

30/7 = 4.28571h and subtracting b gives 2/7 = .28571k; then



20/7 = 2.é5714é and

subtracting 2 gives 6/7 = .857142;
60/7'= 8.571426 ‘and subtracting 8 gives 4/7 = .571k28;
40/7 = 5.71428 and subtracting 5 gives 5/7 = .714285;
50/7 = 7.142857 and subtracting T gives 1/7 = .i42857.
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then
then
then

Thus, cyclic

permutation of the six-figure period of 1/7 gives 1/7, 3/7, 2/1, /7,

4/7, 5/7 where each numerator is the residue, modulo 7, of ten times its

predecessor, 1.e. 3 = 1+10, 2 = 3°10, 6 = 2:10, 4 = 6°10, 5 = 4+10

1= 510 (mod 7). If & represents the o8 nume;ator, the situation
can be geheralized by

a

re1 = 102 (mod n), r = 1, 2, ,0.{Ak,

where k belongs to 10 modulo n. ‘The numerators in the example above
form what may be referred to as a “"cycle" of numbers.
Becondly, reconsider the example from Chapter II where the decimal

expansion of 1/7 was found by the divislon process.

0.142857
TIL.00.%.
0

The followlng can be noted; (i) The "initial" remainder 1 recurs later,
and then the process will start to repeat, glving a recurring decimal;
(i1) 2/7 is found by starting with the remainder 2, and so obtain the

same continuous cycle of figures but starting at another point, and
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similarly for 3/7, 4/7, +++; (iii) each "starting number", i.e.,
numerator, is congruent to lo‘times the previdus one.

An interesting point that can be made at this f{ime i1s any remain-
der is determined by its predecessor. Assume the remainder a has two
different predecessors a' and a", therefore,

10a' = a (mod p) and 10a” = a (mod p).
This implies 10a' - a = rp,.and 10a" - & = sp.
Therefore, 10(a' - a") = (r - 8) p, but p does not divide 10; p divides
(;' -a").. Now, a' énd a";<:p implies &' - a" = 0. Thus, any remain-
_der detefmines 1ts predecessor uniquely, and hence, traclng backward
from the two.equals from the decimal group, anything like_o58371%7i is
impossible since 3 cannot follow both 8 and 1. So a/p is a pure
recyrring decimal.

Consider the example 1/13:

..076923
13)1.000
0
T 00
91
90
78
120
117
,30
26
0
39
1.

°
]

It 1s seen that only six of the possible 12 remainders occur, and the
cyelic permut;tion_of the period 076923 give the six fractions 1/13,

io/13, 9/13, 12/13, 3/13, and 4/13. Now, any one of the six missing

numerators can be used when dividing by 13 to obtaln the other six

digit group which forms the peripds‘
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For example, divide 2 by 13:
C L1538
137)2.000...
13
TO
65
50
39
110
10k
T 60
52
- B0
78
‘ET.

The reader will note that no remainder could occur ih.both divisions,
_éince thelr predecessors would be equal also, and soO on.

- For p = 13, it was found that two six-figﬁfe periodé are formed
and the two sets of numerators corréspoﬂding to'them form two six-
meﬁber_cyclés.

The different cycles of numerators found so faf were geﬁérated.by'

-

the division pfocess. This wasxnotvnecessary;msince a = lOoa.r

r+l
(mod p). Thus, for p ='hi, the cyéle contalning 1, the unity cycle,
%ill be: 1; 10, since 10 = 10-1 (mod 41); 18, since 18 = 10.10
(mod 41); 16, since 16 = 1018 (mod 41); 37, since 37 = 10-16 (mod L41).
Since 1 = 10°37 (mod 41), 37 is the léét numerator in the unity cycle;
So 1/41, 10/k1, 18/k1, 16/41, and 37/41 are given by cyclic permutation
of avfive-digit périod which has not been found.
Thé-abpve resulté are not too surprising when cons;dered in light
of the material introduced in the earlier sections of this chapter.
For it can be shown that 10 belongs to 5 modulo 4l. Thus, a EA1059a
 (mod 41) and the cycle of numerators will repesat after five steps,

Summarizing, it is found that if 10 belongs to k modulo p, then:

(1) each of the fractions 1/p, 2/p, 3/D, +e., (p-1)/p 1s given by a
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k digit period; (ii) k of these fractlons are given by cyclic permuta-
tion of one k digit period; and (iii) since no number can occur in more

than one cycle, there will be (p-1)/k = c (say) cycles. Thus,

p=7T 10 =1 (mod T) d=6 c=1
p =13 10° = 1tfmod 13) a=6 c =2
p =kl 10° = 1, (mod 41) a=s c=8
p=3 10t =1 (mod 3) a=1 c = 2,

A complete listing of primes < 15,709.and»their corresponding
c-values can be found in Appendix A.

While the discussioﬁ to this point has dealt with prime denomina-
tors, it should be pointed out that this 1s not necessary. For consid;
er p = 77, then 1/77 = .012987 and P(77) = 60. Thus, there is found
p(77)/&(77) = 60/6 = 10 cycles. The unity cycle will be
{1, 10; 23, 76, 67, 54}. A second cycle could be found by finding the
residues of 105.2, (r = 0, 1, ...,-5) modulo T77. In the next seiection

p will be taken to be any composite relatively prime to 10.
Properties of Remainders and Digits

The proofs of the theorems in this section were based on the
article by Batty [ T 1.

In the previous section it was noted that 8. = 10°a,r (mod p) or

+1

10ar =8 +hp, r =1, 2, vso, ko The reader will find that h = dr’

-+l

i.e., the digit found in the rth place of the period. Thus, the

~ relationship between the remainder and digits can be generalized by
(1) lOar =dp+a

where al/p = 'd1d2"'dk'

. An Interesting property is illustrated by considering 1/7 =oih285%¢

r+l,'r = l, 2, esay k
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Its cycle of remainders was shoﬁn‘to ve {1, 3, 2, 6, 4, 5}. Now, the
sum of the digits 1s 27 or 3*9 whille the sum.of the remainders 1s 21 or
3+7. The reader will note that one sum is a multiple of T and the
other the same multiple of 9. Is thls a property of only primes with
meximum period lengths? Checking 1/13, it was found that 1/13 =.076923
and the cycle of remalnders was [l, 10, 9, 12, 3, 4}. Therefore, the
sum of the diglts is 27 or 3+9 and the sum of the remainders is 39 or

%+13., These examples motivate the following theorem:

Theorem 3.10. If p 1s not a multiple of 3, the sum of ali remainders
in a cycle is 'a multiple of p, and the sum of the corresponding digits
is the same multiple of 9. Thus,

k c k _
g% = PH, égldh = PH

vhere H 1s an Integer.

Proof: Summing the equatlons (l)'gives:

k k
z = &
r=lloar r=l(drp + ar+1)
k k k
_( ) : 1°r§lar p rEldr * r§1ar+1’
But &, . = &, since k(p) = k. Therefore,
k k
rglar - Elar +1 ’

and substituting this result into (2), 1t becomes

k k
(3) 9Ly =P Ed.
k k
If p 1s not a multiple of 3, then p divides £ a_or T a = pH.
r=1 T r=17T

Now, substitute this result into (°®) giving

k
9PH =P rgld.ro
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Thus,

and the proof is complete.
Further, if k(p) =D - 1 then &, is an element of {l, 2, B, coeey

p -1}, and

r§1ar‘; 1+2+ .00+ (p - ;) (not necessarily in this order)
= %p(p - 1).
Therefore, H =4%+(p -1) = §k(p).

Tﬁe following result concerning subsets of Car} and, {dr} will be

used in Theorem 3,12.

Lemma 3.11. If m, n dre any complementary divisors of k = k(p), i.e.;

mn = k(p), and 1f (p, 10"- 1) = 1, then for r = 1, 2, ..., m,

S n-l
(h)v , ,Egoar+sm = hrp
(5) - % 10h_ - h
(5 - 5§o r+sm r ~ r+l’
where hr is an integer satisfying lihr < n-l, and hm+l = hlo

Before proving the lemma; it would be instructive to consider a
. few examples:

(A) Ifm =1 thenn = k and (4) 'and (5) become

k-l H k-l h
séoar+s = h p and sﬁodr+s = 10h, - r+l
!

- These equations are the same as those of Theorem 35.10, where

H = hr = hr+l'

sets, but the starting points are different.

The reason being the sums are over the same

5

If k is prime, this is the only case.
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(B) Assume p = 31, then k(31) = 15, since 1/3L =.032258064516129.
| The unity cycle of rémainders is
1, 10, 7, 8, 18, 25, 2, 20, 14, 16, 5, 19, 4, 9, 28
Taking m = 5, n = 3, glves
2

ZPragg =L+ 25+5 =31 (b, =1)
2
,s§oa2+5s =10 +2 + 19 = 31 (h2 = 1)
‘2 =7+20+k =31 (h, =1)
sZ0?3+58 = T =3 By =
2
L0455 8+ 1% +9 =131 (h4 = 1)
2
s§oa5+55 =18 + 16 + 28 = 62 (h5 = 2)
2
sgod1+5s =0+ 8 f 1=09 (hl = 1)
% d2 =34+0+6=9 (h, = 1)
8=0 +58 - 2
d = 2 6 l = E-3
sgo 5458 + 6 + - 9 _ (h5 1)
2 & =2 +4+2=28 (
EO l"+5s = + + = h)+ = l)
séod5+5sz5+5+9=19 (h5=2)

Interchanging m and n gives

2
sgoal+55 =1+8+2+16+4 =31 (hl = 1)
% = 10 + 18 6

S 8 a0 = + +20+ 5+ 9= 62 (h2 = 2)

8=0
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an3+38 =T7T+25+1% +19 + 28 = 93 (h5 = 3)
% dl =0+2+0+5+1=8= 10hl - h2
§=0 +3s
% d, =3+5+6+1+2=17= 10h2 -h
s=0 +38 3
% d =2 +8+4+6+9=29=10h, -h
§=0 2+ 8 | 5 1
Proof of. Lemma 3.11:
10 -1 =10™ -1 = (20° - 1)(J.o(n'l)m + oeee + 1)

#t

(1o™ - 1)%t10%%,
s=0

Since k(p) = k implies 10 belongs to k modulo p, then p divides
(lOk - 1) but not (lOm.- 1). Thus, if p and (10" - 1) are coprime,

Bl g

=

8

it follows that p divides ™ and, therefore, also ar«nfilosm.
S=0. .

Now, (2) gives lomar =a (mod p), since the cyclic property of the

- remainder allows starting at any remainder. Therefore,

a, =8, (mod p)
10", = & (mod p)
r r+m
10 =g (mod p)
r r+2m P
(n-l)m E ,
10 8 =& (1) (WodP),
v n-l._sm _ n-l

and a, sEolo_ Z8riem (mod p),

for 1 5 r 5 m. Since p divides the left-hand member, it also divides

the right-hand member, i.e.
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L]

(6) nfla h_p,

g=0 r+sm T

for some integer hr' Also, since 0 < a, <D,
(1) 1<h <m-1l.
Now, equation (6) gives

n-l
Sgoloar+sm

[

10h p,

n=l
and . sgoar+l+sm hr+lp'

)

fl

r+sm ~ Sr+l+sm (thr ‘;hr+l)p°

Therefore, nﬁl(lOa
8=0
Substituting from equation (1) gives

n-l
sEodr+smp - (thr - hr+l_)P

or dividing out the p

=l
(®) :Eodr+sm =10h, -h gy lsrsSm

where hm+l ='hl.

The relations of Lemms 3.1l will now be used to prove the follqw@
ing:

Theorem 3.12. If M is the greatest (proper) divisor of k, such that

1M . 1, p are-coprime, then for any cycles of remainders of p, the

value of H as defined by Theorem 3.10 satisfies the ineguality
M<H<k -M

+

Proof: If k 1s composite, any divisor m (satisfying %he coprime con-
ditions of Lemma 3.11) may be used to separate the set [ar]'into m
subsets, each of k/in terms; and for the corresponding set [kr] glves \_

1<h < k/m -1 (see (7)). Summing over the m sets gives
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m < §%<k—m.
0 e

But % h, = H, since summing (6) over r =1, 2, ..., m gives
r=1

£ (e, )= Bnp

ral s=0 TTE0 na1
m

or E B e z hrp.
r=1 r=1l

mmeijamthmmmaEhr=m Therefore, m < H< k - m.
ral i

Since H satisfies this inequality for each m,
(9) M<H<k -M,
where M is the greatest (proper) divisor of k.
If H has its least value of M, then in [hr}M each h_ has its least
‘value, unity; thus, with k = NM, equations (4) and (5) become
N-1

(10) Ean‘r+5M =P

=1

g%0 r+sM 2

(11)

Similarly, if H has its greatest value k - M, each hr in the set

[hr]M is k/M - 1.

Corollary 3.l13. If p and 10*k - 1 are coprime, then

(12) H = -&-k
(13) ar + ar+§-k =p
(14) 4+ gy = 9

Proof: When k is even, the greatest (proper) divisor of k is #°k. So

M = &k forces (9) to become #k < H< k - &k, which implies H = &k.



Now, M = #k implies N = 2. Therefore, (10) and (11) become

a, + °r+i-k = p, and dr + dr+§-k = 9.
Now, two remainders with sum p and two digits with sum 9 may be

called complementary; equations (13) and (14) state that corresponding

remainders and digits in the two half-periods are complementary.
Periods exhibiting these complementary properties will be said to
belong to the class "C". A period of class "C" is necessarily of even
length; a further condition, which is sufficlent, is that p and
ldt°k - 1 are coprime. These conditions depend only on p; therefore,
if one period of p is of class "C" so are all periods. In such a case
it is said that p is of class "C". It follows from the definitions of
k, that all primes or powers of prime with even period are of class "C".
In particular, all primes "p" such that k(p) = p - 1 are of this class
and also those prime powers p. for whiéh k(p®) = ¢(pa), since
¢(pa) = pa_l(p-l), which is even for prime p > 2.

The complementary property of the digits in the half-periods gives

at once:

Corollary 3.14. The sum of the two half-periods of a decimal in class

"C" is 990009 (i"k digits), ar loik - 1.

The following examples illustrate the above corollaries:
(c) p=11, k=2
l & .o 10 -o. 2 ] 9 ', OO. 3 o ". 8 .
II 009, H =090, II =o.18, II -81, II —-27, E =e
11_ . .0 o e ° 0
'II =036’ ‘:{I 5063; %I =c}'|'5, gr = 5,'".
Thies example can be simplified as below where remainders can be

thought of as numerators.
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Remainders 1 - 10 2 -9 3-8 b -7 5 -6
Periods 0 9 L8 g 0 3 6 k5

(D) p=13 k=6
Remainders 1 -10 -9 -12 -3 - L 2 -7 ~8 a3l <68
Periods 0 T .6 N i A 8 & 6

(E) Pp=249, k = k2

b0 -8 - 31 - 16 -13 - 32 -
. P 6 3 2 6

Remainders 1
Periods 0

20 -

10 - 2
20 L

Kl
0]
86 18 -3 o230 - 6 1) e VRuan . 2« Ml .
5 3 0 o 2 2 e b 8

b8 -39 - b7 -29 - 45 - 9= k1 -18 - 33 - 3 -
B Y 9 Wy RN N e T

17 - 23 - 4.2 46 - 19 - 43 - 38 - 37 - 27 -'25 - 5
5 Ok 6 g R NEENTRRCS Y R e

An example to show k even is not sufficient is as follows:

(F) p=39, k=6

Remainders 1 -10 -22 -25 - 16 - &4
Periods 0 2 5 6 L 1
2-.20- 5-11-3 - 8
0 5. P 2 8 2
7 -3 - 37 -19 - 3% - 28
PR g Tl Y
14 -25-35 - 38 -29 - 17T
B - e hl -

Now, (13) and (14) fail to hold, since (39, 10° - 1) = 3. This 1is
a contradiction to the sufficient condition of Corollary 3.13.

The characteristic features of a period of class "C" are that k is
even and the complementary remainder p - a, occurs #-k stages after a,
in the division process.

Conversely, it is seen that if the remainder at, say, the m".'h stage
is p - al then the corresponding digit is 9 - dl’ and the procéss

continues with each of the first m remainders and each of the first m
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digits replaced by its complement, until the remainder a, recurs after
a further m stages. Thus, k = 2m, and the period has two complementary
halves.

It is interesting to note that the above statement can be proved

[ 9] without the use of material from this section. Assume

(a) ;l_ = .dd,...d + p:1 s e

Then, p-a &) a
1 -m 1
1 oo 5‘— = l - 'd1d2'"dm‘— lO + P_ 10

=M

(9 - )9 - ay)een(9 - q) + 5= 107,

since 1 - 107" ¢99...9 (m digits). Thus,

P
;al loqn 2m,

.00...0(9 - dl)(9 - d5)eee(9 - a) + ;-J.: 10~
so (a) becomes

. a
; = ddyeeed (9 - @ )(9 - a).ee(9-a) + 5& 10

-2m
’

where (9 - di) is the digit in the_(n + 1)th decimal place. Hence,
the statement above holds.

If the remainder p - a) does not occur at any stage, then a; and
P -a belong to distinct cycles df remainders, the periods for al/p
and (p - al)/p are distinct, and corresponding digits in each are
compiementary, the sum being .é = l; The various periods separate into
complementary pairs; the number of these periods, jﬁ(p )/k, is therefore
even. .

Summarizing these results:

A necessary condition for p to be of class "C" is that k is even.
A sufficlent condition is that 1oﬁ'k - 1l 1s an integer prime to p.

Another sufficient condition is that @$(p)/k is odd.
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If p is not of class "C", its periods form complementary pairs.
If k is even, a necessary condition is that 10%°% _ 1 has & comaon
factor with p; anothér_nécessary condition in this case is that f(p) 1
a multiple of L.

Examples are:
" (@) p=b1, g(k1) = ko, k(1) = 5

Remainders 1 - 10 - 18 - 16 - 37 Mo = % - 08 w08 = ki
Periods 0 2 L 3 9 9 T 5 6 0
Bre 30 I8« T ety < G g (< O Y
0 T > 1 7 9 2 6 8 2
6 539 - 36 < 1% < 17 35 -22 -15 - 27 - 24
T B R L T Bol LB - % g Ry
IR W SR 36 -32 -33 - 2 -20
1 2 1 9 5 8 T 8 0 L

The reader will note: (1) Corresponding entries in the two columns ar

cdmplementary. (11) The H-values from Theorem 3.10 are 2 in the first

e

column and 3 in the second column. (iii) The sum of a period with its

complementary period is 9k and the ‘sum of their corresponding remainders

is pk; thus the two values of H for the pairs are complementary with
sum k.
(H) p =21, p(21) = 12, k(21) = 6

Remainders 1 - 10 -16 - 1% -4 - 19
Periods a,. % s A | 9

B0k - %= 8T R
o D 2 3 8 6

The reader will note that each of the observations above for p = hy
hold for p = Ql-éxcept the H - values are both 3. INow, p = 41 failed
o be in class “C" since f(41) = 40 which is a multiple of 4 and also
k(4l) = 5 is not even. p = 21 failed since (21, 10° - l) = 3,

To close out this section, a generalization of Corollary 3.l4 is
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: giﬁeh:

 Theorem 3.15. If k is composite with a divisor m, then

= dld ...d + m+l m+2.00d2m + L + dk_m+l‘°°%

1s a multiple of 10" - l,

e | }
Proof: - § =10 (dl A et dk-m+l) + eoet

10 (dm gt a2 gt et d )+ 10 (d + d, | f o +4)

By using (5) each sum changes to

S omel m-2
8, = 10 (10hl - h2) + 10 k~(10h2 - h3)‘+ voo +
1o(1onm'_l - pm) + (thm‘- hi)'

m~2

1omh h + 108 10™Ch. 4+ ... 4
2 3
10°h : 10h + 10h
m-l . om’ m hl
= (107 - 1)k

S;milarly, 1f the digits are grbuped cyclically starting at d , the
sum is (10" - l)hr'

Ex;mples are:
(I) p =231, p(31) = 30, k(31) = 15. Perlods are:

(1) - 032258064516129, (H = 6)

85 = 032 + 258 + OBk + 516 + 129 = 107 - 1,
SS = 03225 + 80645 + 16129 =_1o5 - 1.

(2)  9677Th1935483870, (H = 9)
S 2(10° - 1),

5 -
8, = 107 - 1.
5 .
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(J) p =43, p(43) = 42, k(43) = 21. Periods are:
(1) 023255813953488372093, (H = 10).
8, = 3(10% - 1),

= 7—
5, =10 - 1.

(2) 976744186046511627906, (H = 11).

53 = h(lo5 =LY,

B, w200 1)
7

This chapter has by no means exhausted all the properties of
recurring decimals, but only those which the writer felt were "“basic”.
The remainder of the chapter will relate the theory developed in the
chapter to bases other than ten and the history of the theory will be

traced.
Basimals as Applied to This Chapter

The first section of the chapter will hold true regardless of the
base syﬁtem of numeration. For examplé, consiﬁer the definition of
congruence; if m divides a - b using base ten numeration, then it will
in any base. The example 23 = 7 (mod 8) will become 35 = 11 (mod 12)
in the base six system of numeration.

The theory developed in the second section was not completely
independent of the base system of numeration.. An interesting example
to consider in another base is Theorem 3.%. This was the theorem that
explained why k(7) = 6. Now, if the base had been twelve, then the
"JO" in the theorem would have been the numeral for the number twelve.
Thérefore, the question becomes, "To what power does 10 (twelve)

belong modulo 7?". (The following congruences are in base twelve.)



(1) 10=5, 102 = 4, 100 = 6, 10" = 2, 10° = 3, 100 =1 (mdd T

This implies that k(7) = 6 for base twelve as well as base ten. The
division process to find the period of 1/7 in base twelve would be as

follows:
.186t35
(2) T g‘o‘".
50
48
0

36
2

5%
20
19

30

2e
g

The question, "Is k(7) = 6 true for any basimal?", could be asked by
' the reader at this time. The answer is no, as shown by the following:

Six belongs to two modulo-seven which in base six would be expressed as

~

10° ® 1 (mod 11),

thus, [k(11) = 2]Bix.

From the division process the period is found to be
“' 65
(3) RN
0
I 00
55
RS

Since 8 = 1 (mod 7), then in the base of eight the congruence would be
10 ® 1 (mod 7) and 10 (eight) belongs to one modulo 7. This implies

k(7) = 1. From the division process the period is found to be
4
(&) TG
Lk
=

e
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The periods in the two examples lead to an interesting generaliza-
tion when compared with the analogous situation in base ten. In (3),
the period was found for the reciprocal of the number which was one
more than the base. The digits of the period were zero and one less
“than fhe bese. The reader will recall that in base ten 1/11 = .09
and this is identical to the conditions of (5). Can this observation
be shown to be true in general? The question is answered by the

following theorem.

Theorem 3.16. If b is the base of the system of numeration, then

- 1/(b+1) = .0(b-1).

ik 1l b-1 Db-l

1
Proof: - ' = = (b-1)-
- b+l b+l b-l b2-1 bé-l

2
Now, 1/(b” - 1) can be expressed as an infinite geometric
progression as. follows:

b2 JT

1 4:i5b2

1/v

VAP et v 308 s

1(b2 - l{bl+

1/b

1(1:1" = 1[1:6
1/v.

Thus, 1/(b+l) = ('b-l)-["l/be + 1/1:;1‘k + l/b6 + ¢vo] which implies
1/(b+1) = .O(b1).
The reader will observe the generalization of (4) leads to the

following:

L
Theorem 3.17. If b is the base of the system of numeration, then

i/(b_l) & edo
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Proof: Now 1/(b-1) can be expressed as an infinite geometric

progression as follows:

1/b + 1/b% + 1/p7+ ...

b-1]1

D2 l§b
1/b - 1/p°

1/b

1{1:2 - -1{1:3
1/v”.

Thus, 1/(b-1) = 1/b + l/b2 +’J./‘n5 + vo. which implies 1/(b-1) = .1.

8ince only the function valugg of the k-function are dependent on
the base and not the final resultﬁ, the Theorems 3.5, 3.7, and 5.8.
will still hold with fhe following modifications: (i) p is a prime
which does not divide the base. f1%) “1o” femains in the theorems,
but is‘interpreted as the numeral for the new base. Theorem 3.9 is
true regardless of the base(

The cyclic properties of recurring decimsals are independént of the
base system. The reader should, by Just looking at (2), be able to
| write the period of any of the sevenths in base twelve. The result
concerning the number of cycles is still true. Consider in base six
the foll&wing: 10 = 10.1, 1 = 1010 (mod 11).

Thus, d = 2 and ¢ = (11-1)/2 = 3.

The generalization of Theorem B;LO to any basimal would be to
replace the "9? by "b-1" where b is the base, and to replace the "3"
by "any divisor of b-l1". As an example consider in base twelve the
reciprocal of seven (see (2)). The period is 1/7 = .186t35 and the

cycle of remainders iﬁ {1, 5, 4, 6, 2, 3}. Therefore,
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6

szlds =1+8+6+t+3+5 =;29 = e*'3

and

g a =1+54+4+6+2+3=19 =1T°3
s=1 "

It is seen thaﬁ, since (7, 10° - 1) = 1, the Corollary 3.13 is
satisfied: 1+6=5+2=4+3=7
l+t=8+3=6+5-=e.

Corollary 3.l3 is generaiized_by replacing tﬁé 9's by b-1. The
discussion on class "C" primes carries-through with only the 9's
replaced by b-l, Theorem 3.15 is true regardless of the base, since
its proof depends.only on place value.

The reader should by now see the "obvious" changes necessary in

going from one base to another.
Historical Notes

While the results of Theorem 3.3 were known before 1800, the
theorem was proved for the first time:by C. F. Gauss in 18ﬁl. Theorem
3.5 was first noted in 1771 by Jean Bernoulli, but was not proved in
the general form until 1875 by T. Muir.

The history of Theorem 3.8 is interesting due to the presence of
the éase for the prime 487. Befnoulli was the first person to make the
false assertion by overlooking 487. Thibault's formulation of the
probleém in 1843 was correct, but it was broved by E. Prouhet in 1846,
The firet person to find the case of 487 was E. qum;reat in 1852,
Although W. Shanks was familiar with Deomarest's woik, he still -

erroneously stated the theorem in 1874. He corrected his erfor_in

1877. J. W. L. Glaisher gave the full period of 1/487° in 1878.
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Bernoulli in his a.rtielé in 1771 also noted that if the period of
1/p has p-1 digits then the period of q/p will be a cyclic p_ermuts;i:ion
of the digits.

It is .’;.ntereating to note that Dicksons gives no reference to
Theorem 3.10 even in stated form, but W. H. Hudson in 1864 did note
that if k(p) = p-1 then iéidi = 9(p-1)/2. Lemma 3.1l in a modified
form wae illustrated by E. Midy in 1836. The digital properties of
the class "C" periods were noted by several different authors starting
with H. Goodwyn in 1802. The first reference to the proof of these
properties was in 1851 by P. Lafitte. In 1874 P. Mansion gave a

" L
detailed” proof of d + d .. = 9.



CHAPTER IV
GENERAL PROPERTIES OF RECURRING DECIMALS
Primes with Maximum Periods for Their Reciprocals

The extensive amount of material available on the subject of
recurring decimals is lacking in the discussion of primes with maximum
periods for their reciprocals. Hardy and Wright [17] list the first six
primes with this property and prefaced their remarks by saying "... very
little is known about them".

Two writers who have considered this type of prime are Ayyangar and

Kaprekar [ 4 ]. The following three theorems are attributed to them.

R ' a
Theorem 4.l. If N = pilpge...prr where the pi's are prime integers and .

the si‘s are positive integers, then the factors of N other than N

itself are factors of at least one of the r integers:

N N N
"—'—, —, . - l’ SE——
El Pa Py
Proof: Considpr any factor of N other than itself, it has to be the
form
o Wy by

pl pe - - L] pr
where at least one of the bi's, say, bh’ is such that bh < & - 1.

Therefore, this number is a factor of N/ph.

Theorem 4.2. A necessary and sufficient set of conditions that q is a

prime with a maximum number of digits in its period is that

59
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lo(g-l)/p # 1 (mod q) for all prime factors p of q-l.

Proof: The condlitions are necessary since if lo(q—l)/p 2 1 (mod q) then
k(q) < (q-1)/p by the definition of the k-function. But this contra-
dicts the hypothesis of k(q) = q-1. To prove the sufficiency of the
conditions, assume that 10° =1 (mod q) where t is some proper factor of
q-1. Now, by Theorem 4.1, it is known that t is a factor of some

number of the form (q-1)/p. Therefore, lo(q-l)/p = 1 which implies

k(q) < g-1. But this contradicts the hypothesis k(q) = q-1.

Iyer [18] stated a "theorem" without proof which was similar to
the one above, but he considered only the one case where p = 2. ILater,
Ayyangar [ 3] pointed out that Iyer was in error but he neglected to
give a counterexample. Before looking at a counterexample let us state
the "theorem":

A prime number of the form 1 + 2m, where 2m is any

integer other than a power of 10, has a reciprocal with

a maximum recurring period provided that 10T = -1

(mod (1+2m)).

The "theorem” is necessary but not sufficient since, if 10 belongs
to 2m modulo (1+2m), then 10" # 1, but 10" ® -1 modulo (1+2m). To show
the theorem fs not sufficient, let the prime (2m+l) be 73, then m = 36,
From Appendix A it is found that the period for 1/73 has 8 digits or 10
belongs to 8 modulo 73. This implies 108 = 1 and th ® .1 (mod 73).
Hence, 1036 ® -1 (mod 73). Now, the prime 73 does not satisfy Theorem
4.2, since 10(75"1)/5 = lozh 2 1 (mod 73).

The next theorem gives necessary and sufficient conditions for

primes of the formgq =1 + 233b, of which 73 is one.
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Theorem 4.3. If q is a prime of the form 1 + 2a3b (a, b >0) and
lo(q'l')/6 ®= t (mod q) vwhere |t| < g/2, then a necessary and sufficient
set of conditions that 1/q has the maximum recurring period-of (q-1)

digits is

2

(1) |[t] #1 and t“ = t - 1 (mod q).

Proof: (Note: All congruences in the proof are for modulo g.) The

conditions are nééessary since, assume k(q) = q - 1 then t6 = 1, This

implies

t6 -1=0.
Hence, (t3 - l)(t3 +1) = 0.
Thus, t3 =] or t3 = -],

because (t5 o l)(t5 + 1) = hq for some integer h, implies q divides
(t3 -1) or (t3 + 1) since q is prime. Now, £ ¥ 1 since this would
contradict the hypothesis, therefore t3 E .l or t3 + 1= 0. But

¥ 42w (t + 1)(1;2 -t +1)gives t ® .1 or t°mt - 1. The first
congruence would contradict the hypothesis, therefore, the conditions
(1) are necessary.

It remains to show that if (1) holds then k(q) = q - 1. By the
way t 1s defined, t6 = 10‘1'l 2 ], If 10 does not belong to q - 1 then
10 has to belong to some factor of q - 1 by Corollary 3.F. From
Theorem 4.1, it can be said that this factor has to be a factor of
(a - 1)/2 or (q - 1)/3. This implies 1031/2 g3 o 1009-1)/3 4 5,
But 10(3°1)/2 g 3 ana 1009°1)/3 & +2, Hence, t2 ® 1 or t> = 1 which is
the same as |t| = 1 or £ - 1= o0. |t| = 1 contradicts (1). Does
t2 -1 = 0 imply t° gt -1?

t2 -1m k= 1)(1:2 +t+1) =0, implies
t®mlort+t+1mo.
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Now, t = 1 contradicts (1) and t°m 4 -1 implies £2 f t-1 since, if

t2 ® -t -1 = t-1,then t ® O which is impossible. So the answer to the
question 1is yes, and the conditions are sufficient.
Ayyangar, in the same article in which he polnted out Iyer's error,

also gave a theorem which generalized Theorem 4.3 to cover all primes.

Bo 8y B &,
Theorem 4.4, Ifq=1+2 P Py +e+P. s P =D iPyeeeD

Q= (py-1)(p,-1)e+x(p_-1) and 20091/ % 5 ¢ (moa q), where a, B, B,
seey pr are odd primes, then a necessary and sufficient condition for q
to be a prime with a maximum recurring period for 1/q is that t satis-

fies a cyclotomic congruence equation of degree Q and order 2P.

He neglected to give a proof of the theorem, but said it followed
immediately from his criterion set forth in his previous article
(Theorem 4.3). The writer is of the opinion that this may be true if
the reader has studied "cyclotomlic congruence equations". The writer
had not until he encountered this theorem. The writer found the topic
in several advanced abstract algebra books. Unfortunately, the explana-
tion about them assumes a knowledge in "Galois" and "splitting field".
Consequently, the writer has elected to discuss the theorem intuitively
and show how to apply it.

Since t is defined as 10(q-l)/2P, then it is seen that

2P 10t a (mod q). The question is whether or not th e (mod q)

t
where h divides 2P. This is where the cyclotomic equation comes into
use as pointed out in the theorem.

Before considering an example it will be necessary to define the

"MSbius Function":
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" Definition 4.1. The Mobius function is defined by the following
equations:
k(1) =1,
p(n) = (-1)F if n = 135 T 2P
where the pi's are distince primes,

#(n) = 0 if p2 divides n for any prime p.

Van der Waerden [35] showed the cyclotomic polynomials of order h
are given by
7 = 6t . a) (W
where dTh means the product over all the divisors of h.
For the first example consider the speclal case covered by Theorem
b,3, Thus q =1 + 2a3b implies P = 3, Q = 2, and

Fs(x) = dTG(xd P 1)9‘(6/‘1)

4 (x-l)u'(s)(xz ” l)ﬂ(3)(x3_ l)ﬂ(a)(xfs_ l)l-'i(l)

(x—l)(xs- : % 1 X +1

2
(xe_l)(,?.. 5 e WX X + 1.

Hence, t = 10(q-1)/6 (mod q) has to satisfy the second degree cycloto-
mic congruence equation

X° o x $1 W0 (med q).
This is the same congruence equation given in (1). It is said that
when t satisfies the cyclotomic congruence equation then t is a "2Pth

root of unity"l modulo q, but is not a “Dth root of unity" modnloiq,

- lx is said to be an "nth root of unity" modulo q if and only if
x =1 (mod q).
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where D is any proper divisor of 2P. In the case of q =1 + 2a3b this
means t6 21 (mod q), but £2 # 1 and £ #1 (mod q).
As the second example, let q = 1 + 2a5b5c. Thus, P = 35 = 15 and

Q =24 = 8.

F}O(x) ¥ QT}O(xd- 1)“(50/‘1)

= (x_l)u(EO)(xE_ l)ﬂ(l5)(x3_ l)u-(lo)(x5_ l)l*(s)

6 1)9(5)(1‘10_ 1)“(3)(3‘15_ l)lv"(z)(x30_ l)l-"(l)

(x"-

(xe- l)(xa- l)(xs- l)(x30— 1)
(x - 1)(x°- 1)(x0-1)(x- 1)

L (= + 1)(xl5+ 1) x16+ 24 x + 1

(x3+ 1)(x5_+ 1) X 4 x5:¥ x4+ 1

W R R S

=X +X =X X =X +x+ 1.

Hence, for t = lo(c‘l'l)/30 (mod q), 1/q will have a maximum number of
digits in its period or not according as t satisfles or does not satisfy
the cyclotomic congruence equation
xB #xl xh <% + %180 (mod q).
Before discussing the next theorem it is necessary to introduce

material from number theory.

Definition 4.2. If q belongs to $(r) modulo r, then q is called a primi-

tive root modulo r.

Theorem 4.A. [36] An integer n has primitive roots if and only if it

is 2, 4, p", or 2p", where p is an odd prime.
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‘Theorem 4.B., [70] If n is a primitive root of the odd prime p, and if
np'l‘! 1 (mod p2), then n is a primitive root of pm, for any positive

exponent m.

Rao [27], after observing Ayyanger's results and using the above

properties, proved the following three results:

 Theorem 4.5. If n is an odd number with a maximum recurring‘periodfp(n)
for 1/n, then n must be of the form pm,*Where m‘z‘i and p is a prime

other than 5.

Proof: From Theorem 3.3 it is seen that if 10 belongs to a modulo n,
then the'récurring period consists of e digits. If e = P(n) then the
recurring period is the maximum number of digits. It follows that the
recurring‘period of‘l/n is a maximum when 10 is primitive root of n.
But from Theorem 4.A it 1s known that there exist primitive roots of a
number only when it is 2;'h, 2pm or pm, where p-is ah Odd prime. Since
n is odd, it follows that n must be of the form p. D # 5, since

k(5") = 1 and not P(5").

Corollary 4.6. Every number of the form pm (p is an 0dd prime other

than 5, and m > 1) which has 10 for a primitive root has a maximum

recurring period.

Theorem 4.7. There are infinitely many odd numbers whose reciprocals

A
- A

have the maximum recurring period.

Proof: It is known that 10 belongs to 6 modulo 7, but 106 ¥ 1 (mod 72)y
Conseguently, by Theorem h,B, it can be saild that 10 1is a primitive root-

of 7m, for any positive integer m. Hence, the theorem 1is proved.
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~ The obvious question to ask after Theorem 4,7 1s: “Are there
infinitely many odd primes p such that k(p) = p - 1?" 1In checking
Appendix A,vit‘is found that among the first 150 odd primes there are
5% primes whose reciprocals have the maximum recurring period. The
writer could find no record of this questlon being answered. Rao said

that he felt that 1t was yes;‘but he was unable to prove it.

The Conditions for dr = ar

On evaluating the reciprocal of a prime number, one often finds-
that a diglt in the quotient is the same as a corresponding remainder,
i.e:, dr = ar- For primes 19 and 29, the above property results 9
times. It is possible to glve necessary conditions for this property.

From the Division Algorithm it follows that:

lOar 1 ar
(1) s—— =4, +5 054 <9 0<a <p.

If 4 = ar,vthen (1) becomes
(2) 108, , = (p+l)a,ro

From (2) 1t is possible to deduce the following theorem:

Theorem 4.8, [31] (i) For primes of the form p = 10n + s, where
s=1, 3, 7. Then d_ = a_only if a_ =5 has a solutlon. (i1) For
primes of the form p = 10n + 9, d.r =_ar = b lg possible for all values

of b, (1 <b <9), except for those values of b for which &, = b(n+1)

-1
does not have integral solutions.

Proof: (1) Substituting p = 10n + s into (2) gives

10a , = (1on + s + l)ar, or

(3) e,y = (5n + d)ar, where 2d =8 + 1, d = 1, 2, 4.
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Now, the left-hand side of (3) is divisible by 5, hence (5n + d)ar is

divisible by 5. Since 5 does not divide (5n + d), then 5 divides & or

a, = 5h. But 0 < &, dr < 9 implies that h = 1 or &, = 5. It is

noted that when k(p)

L}

p-l then d.r =8, = 5 only once, since a, takes on

all values between 1 and p-1 one and only one time.
(11) Substituting p = 10n + 9 into (2) gives

10a_ ., = (10n + lO)ar,ﬂor

T-L

(&) &,y = (n + l)ar.

Therefore, for all values of 8.

(&) .has. integral solutions. Hence, d =a =D, (1 <b <9) except for

which are divisible by (n+l), equation

those values of b for which & . = b(n+l) does not have integral

-1

solutions.

a =b for
r .

Coroiiary;h.9,,[3l]_Fbr primes of the form p = 10n + 9, dr‘

every b such that 1 <b <9, where k(p) = p-1.

Proof: If k(p) = p-l, then 8 takes on all values between 1 and (p-l)

inclusive. Hence, dr =&, = b for every b such that 1 <b < 9.

Below are given two examples to illustrate the properties discussed
above.
(1) For p = 17, k(17) = 16 and from Theorem 4.8(1) there exists
only one palr dr =8, = 5. This is shown iIn the table glven below.
r 1 2 3 4% 5 6 78 9 1011 121314 15 16
d 058 823529 b 11 7 6 4 7
a, 101514 4 6 9 5316 7 2 31311 812 1
(11) For p = 19, k(19) = 18 and from Theorem 4.8(ii) there exist

exactly 9 pairs d.r = ar = b where 1 < b'< 9.
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5 6 7 8 9101112 13 1k 15 16 17 18

r 123 4
4, 0526531578947 368%21
a-10512_6_311151718 91 71316 8 4+ 2 1

Rao [27] made an interesting observation about Daljet Singh'
results, namely, for those numbers of the form p" such that k(p ) =
H(p™), the conclusions of Corollary 4.9 still hold with slight modifica-

tion. The simplest example tovillustrate his observation is. for

= 72 = ko,
r 1 2 3 4% 5 6 7 8 910111213 14
4. ’ogoiogf-16326520
a, 10 220 4Lko 8311613322615 3 30

r 1516 17 18 19 20 21 22 23 24 25 26 27 28
d 6 1 224 4897959 18
a, 6111222244k 48 39472045 94118

r 29 30 31 32 33 34 35 36 37 38 39 4o 41 k2
d¢. 367346938775 51
a, 333617253 46194338372725 5 1

r

In this particular case, there exists exactly 8 pairs dr =8, = b
where b tekes all values from 1 to 9 except the value 7. This should be
the case since T ié not prime to 72. For all other values of p and pm
that are of the form 1On + 9 and have 10 for a primitive root, there
existsvexactly 9 cases in which dr =a, = band 1 S'b < 9. By Theorem
k.7, it follows that there are infinitely many numbers’of thé form
10n + 9 having the property stated above; becaus§ 7hh'2 2 9 (mod 10)

~féi all positive integers h.
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The Freguency of Digits

_In'Chapter III, 1t was shown that the period length for m/n
depended 6nly on n, and if k(n) = k, then there exists (n-1)/k = ¢
distinct cycles of numerators or remainders, and with each cycle there
was a "distinct” period. By a fdistinct" period, it is meant that any
cyclic permutetion of the digits of a period gives the same "distinct"
period. Schiller [ 30] stated and proved a theorem and corollary about
the frequency with which a glven diglt appears in the collection of

distinct perliods for a given prime.

Theorem 4.10. Consider the collection of distinct periods of any prime.

If td is the totai number of times the digit d appears 1n these periods,

then Itd - td,l <1, for d f &

This means simply that, as far as possible, every digit appears

Just as often as any other digit.

Proof: Consider the sét of all m such that ms/p glves the same
distinct period for s = 1, 2, ..., k{(p). Now, each digit in a distinct
period will appear once in the first place after the decimal point.
This "first" digit; say d, is found by solving the eguation

10m_ = dp +r, for 0<r <>p° From Chapter III, it is known that k(p)
divides p-l1 and the total number of digits used in all distinct periods
is p~l1. The question noﬂjiesolves itself into the following: For each
a (o E d 5.9), how many ms‘s exlst over EEE the distinct periods so

that both the equation and the condlition on r are satisfied?

If the dlstinct perlod assoclated with a numerator m is not

important, then the subscript s will not be used. In order for the
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cohdition on r to be satisfied, the following inequalities must hold:
(1) \ dp < 10m < (4 + 1)p.

Also if m' is the least such m, and m' + t, 1s the greatest such m, then

a
dp < 10m' < 10(m* + td) < (da + 1)p-
‘Hence,

(2) ' dp +10t, < (d + 1)p, and p >10t,

d

On the other hand, since m' is the least m, and m* + td is the

greatest,
10(m' + ty + 1) >(d + 1)p, and 10(m' - 1) < dp.
Therefore,
10(m*' + ty + 1) >(a +1)p >10(m* - 1) + p, and
(3) 10(t, + 2) > p-

Finally, (2) and (3) result in
- (8) p/10 > %, >p/10 - 2.

Now, all the integers between m' and m’ + t_ satisfy (1), therefore the

d

~total number of m's would be t, + 1. The reader will note that (4)

can have two possible values. Therefore, let td = h or

did not depend on 4, then

implies td

h + 1 for the two possible values. 8ince td

for any two d's, say d and 4°, |td - td,l <1.

Corollary 4.11. If p = 10n + r, then (11 - r) digits appear n times,

and (r - 1) digits appear n + 1 times.

Proof: The set of all digits can be partitioned into two sets, one
containing those that appear h times and the other containing those that

appear h + 1 times. If there are x distinct digits in the first set,
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then there would be 10 - x distinct digits in the second set. The
total number of digits in all the distinct periocds is p-l1. Thus,

p-1l=xh+ (0 ~x)(h+ 1), or

fl

10n + r -1 =xh + 1ph - xh + 10 - x, or

(5) 10n + r = 10h + (11 - x). |
Since 1 <r <9 and 1 <x <9, equation (5) implies n = h; r=11 -x or
x=11 -rand 10 - x = r - 1. Hence, the conclusion follows.

. Schiller defined “"deficient" and "excessive" digits by saying that
the digits which appear n times are deficient and those which appear
n + 1 times are excessive.

If p =len + 1, then the corollary says that all dlgits are
deficient. For the remaining cases it is found that r = 3 implies two
excesslve digits; r = 7T implies four deficient digits; r = 9 implies two
deficlient digits. Can these excessive and deficient digits be
identified? By working with (1), the answer is seen to be yes.

" Considering the case r = 3, the reader will nofe that for d = 3,
10(3n) + 9 < 10m < 10(kn + 1) + 2 implies m = 3n + 1, 3n + 2, oo, bn,
Lknt+l. Therefore, m can have n + 1 values which implies d = 3 is
excessive. For d = 9', 10(9n + 2) + 7<10m < 10(10n + 3) implies
m =>9n + 3, 9n+ L, ...;‘lOn + 1, 10n + 2. Therefore, m can have n
values which implies 4 = 9 is deficient. Listed below-are éll of the
inequalities for each of the digits.

d =0, 0 <10m <10n + 3, dimplies O is deficient;
d=1, 10n + 3<10m <20n + 6, implies 1 is deficient;

d =2, 20n+ 6<10m<30n+ 9, implies 2 is deficient;

a
[

= 3, 30n + 9 <10m < 40n +12, implies 3 is excessive;

d=1L4, bOn +12< 10m < 50n +15, implies 4 1s deficient;
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d=5, 50n + 15 < 10m < 60n + 18, implies 5 is deficlent;

d=6, 60n +18 <10m < 70n + 21, implies 6 is excessive;

[
[}
—q

-

Ton + 21 < 10m < 80n + 24, implies 7 is deficient;
d =8, 8n + 2k <10m < 90n + 27, implies 8 is deficient;

d

9, 90n + 27 < 10m<100n + 30, implies 9 is deficient;

In general, it is seen that an excessive digit occurs whenever the
constant ferms differ in the second diglt and the first digit of the
larger number 1s not zero.

The cases of r = T and 9 follow simllarly and for r = 7 it is found
that 0, 3, 6, and 9 are deficient; for r = 9 it is found that O and 9
are deficient.

Four edamples which illustrate the corollary and the observatlon
about which digits are excessive or deficient are as follows:

(A) For the case r = 1 consider p = 31, the two distinect periods

are
- 032258064516129; 0967T4+193548387.
The reader will note that each digit appears n = 3 times.

(B) For the case r = 3 consider p = 73, the nine distinct

| perlods are

013698633 02739726; O4109589; 054794525 06849315;
08219178; 12328767; 16438356; 2L65T7534.
It is seen that the digits 3 and 6 appear eight times and
the other appear 7 times.
(C) For the case r = 7 consider p = 47, the one distinet period is
021276595 74468085106 3829787234 0425531 91489361 7.
The digits 0, 3, 6, 9 appear four times and 1, 2, 4, 5, 7, 8

’éppear five times.
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(D) For the case r = 9 consider p = 29, the one distinct period is
034L482758620689%6551 724137931 .

The digits 0, 9 appear twice and the others appear three times.
Other Properties of Recurring Decimals

The theorems of this section are not necessarily interrelated, but

Just show more properties of recurring decimals.

Theorem 4.12. If k(n) = 2m, then

l1_ A+1
- = - )
e o |

where A is the first half of the period.

Proof: By Corollary 2.k,
[a a s el b b 'Oibm]

1 172 2
(1) n - — %m
' 107 -1
where alag...am and blb2°"bm are the two half periods.
' m
Now, [alag...gm] + [ble"'bm] =10 -1,

by Corollary 3.1%. This implies (1) can be changed as follows:

"
e

m
10 [glag,,.am] + [blbg.oobm]

(20" + 1)(10™ - 1)

1.
L=

m m
10 [alag...am] + (100 -1) - [alaeoooam]

(10™ + 1)(10™ - 1)

(10™ - 1)([a)a,..0 1 + 1)

i

(10" + 1)(20™ - 1)

A+l
1041

it

; A= [ala2aa.am], i.e., the first half period.
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According to Dicksdn, A. Ricke proved this theorem in 1887,

Umansky [34 ] used Theorem 4.12 in proving the following theorem:

Theorem 4,13, If A and B are the first and second halves, respectively,

of the period for 1/p, where p is prime and k(p) = 2m, then

B p -2
I“P,'1+T°

Proof: From Theorem 4.12 1t is seen that

(A +1)
10m+l

1. 10" %1
2

» OT P = =p=py—

Corollary 3.1k gives A + B = 10° - 1.

Therefore, A+B+2=10"+1.

By substitution, p = %—%#, or Ap + p=A+3B+2.

Hence, ~ B=A(p -1) + (p -2), or
=(m-1)+222,
Examples: 1/7 = .142857 implies 857/142 = 6 + 5/142. 1/13 = .076923

implies 923/076 = 12 + 11/076.

Theorem 4.14. If (n,10) = 1, then there exists a number n' such that

every digit in the product on' is 1.

Proof: Case I; Assume (n, 3) = 1. Now, by Corollary 2.k

) [4,d,000a,]

= ——p———— , Or
10" -1

Bl-

mk-lﬁﬂ%%udﬁ-
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Since 9 divides lOk‘- 1 and (n, 3) =1, then 9 divides [dlde.o.dk]u

Hence,

11...1(k digits) = n[didé,..di] = nn'

where
[4,dy---a,1/9 = [ala)...a!l.

Case IT; Assume (n, 3) = 3. Now,
L e S
on - Tkl
108 -1 = on{d. d ]
— e dl 2.I'dk 9
Hence, 11...1(k digits) = n[dldQ...dk] = nn'.

For example, n = 41 implies n' = 271, since

1 1)
= —p—— glves
5T 107 -1

99999 = 41+2439, or

11111 = 41+ 271,

To illustrate the second case, let n = 123, then

9.i = 5%67 = .000903342366757, or

1072 -1 = 9-123.903342366757.
Hence, 11...1(15 digits) = 123+903342366757.

Rollett [29] gave the following list of factors of 1l...l(k digits),

k=2 to 21



11
111

1,111

11,111

111,111

1,111,111
11,111,111
111,111,111
1,111,111,111
11,111,111,111

', 111,111,111,111
1,111,111,111,111
11,111,111,111,111
111,111,111,111,111

1,111,111,111,111,111

1l1,111,111,111,111,111.

111,111,111,111,111,111
1,111,111,111,111,111,111
11,111,111,111,111,111,111

111,111,111,111,111,111,111

[}

T6

11
3437
11-101

41.271

3eTe11+13.37

239.4649
1173101137
3% .37-353667
11-41-271-9091
21649+513239

3¢T+11+13+37-101-9901

5379265371653

11239 -4649.909091
331+37+41271.2906161
11-17+73+101 1375882353
2071723-5363222357
307411412019 437.52579- 333667
a prime

1141101271 35419091 27961

3.37.43.239.1933 464910838689

This table can he used to find the k-function values for the prime

factors used, and also the perlods for the reciprocals of the primes.

For example,

(2) 111,111 = 3+7-11°13-37
1 _ 31141337 _ 9°3:13°13-37
implies 7 = TIIT,TiT 999,999
1 142,857 ¢ .
7= Sorogy - L4e8oT
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Also, (2) implies that k(3), k(T),' k(11), k(13) and k(37) are less than,
or equal "to six. Now, since 73 appears for the first time as a factor
in 11,111,111, and it is the smallest prime that appears at this time,
then T3 is the smallest prime which has period length of 8.

Using the same ‘type of reasoning for each line above, the following

table [29] is constructed where p, 1is the smallest prime such that

k(pn) = n.

n P, n 1 n P,
1 3 9 333,667 17 2,071,723
2 1 10 9,091 18 19
3 37 11 21,649 19 (- 1)/9
b 101 12 9,901 20 3,5&1
5 b1 13 53 . 21 43
6 T 1k 909,091 22 23

| T 239 13 31 23 ?
8 73 16 5,882,353 |



CHAPTER V
TECHNIQUES FOR FINDING THE PERIOD
Multiplying to Find the Period

The problem of finding the period of certain primes is quite minor
if k(p) is small. The procedure to use in this case is the standard
division process. The reader is aware that the k-function values
follow no set pattern. For example, consider the twin primes 269 and
27l. From the appendix it is found that k(269) = 268, but k(271) = 5.

Now, the first method discussed uses the standard division
process. If the process is continued until a "small" remainder ) is
found, then 1/n = q, + rlfn. Multiply each side of this equation by r;
obtaining rlfn = 1.9, f 1%

2 2

2
r,=ry. If rJ >n, thenlet ri/n =1t + r /nand q, = rjq +t. Either

case results in a new equation r,/n = q, + ra/n. This process of

+ ri/n. If r] <n, then let g, = r,q, and

multiplying by Ty

period of 1/n ie the digits of 95 955 @

can be repeated as many times as necessary. The
e taken in succession
until the digits start to repeat.

As an 1llustration of the method consider 1/29. Long division
gives the first of these equations and the others are obtained by

successive multiplication of each side by 8.

78
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%g = 003)4')'"8-2—2
'gg - .27586§g
2
gg or 229 = 2.20689%%
8> 19 7
- 55 OF 17§§ = 17.6551729
gt 7 27
55 or 1u1§§ = 1&1.3&137§§
8’ 13

5y oF 11292% = 1129.9310355

Therefore, the period for 1/29 is

.53&&827586@0689655172h13793i.
- In actual practice the left side of each equation would be enﬁirely
omitted,.as would also the numbers~2,zl7, 141, and 1129 that precede
the decimal point. In this abridged form the calculation for 1/49
- would be |

.020h0816326535§
.06122uu897959E%

1836734693877

.551020&081632%%

vHence, the period for 1/49 is

.0204081632653061224 48979591836 734693877551,
since the digits started to repeat after the "551" in the fourth line.
It is interesting to note that Nygaard [25] applied this technique to

find the period for 1/487. His ql‘turns out to have 45 digits and r, is

5.



80

This method was also discussed by Glaisher [13], in 1879. He
points out an interesting observation of what happens when the remainder
is 2 or 5. For example;

él‘ & .0163951+1+26229§5J2_ (1)

and the remainder of the period "...can be obtained by halving the

figures from the commencement."

%1. = .01639344262295 (2)
0819672131147 (3)
1509836065573 (1)
7704918032786 (5)

8852459016393 (6)

Hence,

1/61 = .0163934426229508196721 3114754 0983606557377049180327868852459.
(Note: The superscript 1l's are the remainders from previous lines.)
Glaisher made no attempt to explain why the above example works. The
explanation should prove to be instructive for the reader. From (1) it

is seen that

gi’ i %%g . é(o.16593l+ha6229502-2-)

=0 .08196721311h7§§% (7)

.g.f. . %gg - %(0.8196721511h75032§)

= 0.40983606557375 02 (8)
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120 - .22 - 1(4.09836065573750 222)

2. 01&918032786875—51- (9)

625 1 6250 1 6250,
7T = 5 = 5(20.49180327868750—1—)

10. 2h59016395h575—6r (10)

The reader will note that the "integral” part of (7) is added to the
last digit of (1), and the integral part of (8) is added to the last
digit of (7), and the pattern continues through (10). This allows the
proceaa-to continue from part to part as shown in lines (2) through (6).
(Note: It is the digita which are underlined that are affected by the

"carry over” from r being greater than.n.)

1 i
An interesting and simpler example is 1/19. Since

the period for 1/19 can be found as follows:

1/19 = .05 263N 5t agtu T sheshal .
The superscript 1l's are the remainders from the division process in the
previous digit.

When a remainder of 50 is found as with 1/199, the process becomes,
multiply by 100 and divide by 2. This results in taking two digits at
& time as shown below:

1/199 = .00502571256281407 05 511 75 8T-95 969849« « + .

The work Nygaard went to in finding the period for 487 could

certainly have been simplified by the use of Glaisher's method, since

it 1s much easier and faster to divide by two than multiplying by five.
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Finding the Period from "Right-to-Left"

In this section it 1s necessary to recall the relation between a

prime "p" and the di’s and a,'s found in the division process used to

i
determine, the period of p, 1l.e.,
(1) 08, -dp=a_,.

The first case to consider is when p = 10n - 1. Assume k(p) =k,

the;efore, By = 1l and
108, - dk(lOn-l) =1, or
(2) 10(a, - ng )+ d =1
Hence,
(3) 4 =1 (mod 10).

Since O 5 dk 5 9, then dk = 1. Let tl = ak - ndk, or
() 8, =nd +t.
By the division algorithm, the next equation would be

10ak_l - dk_l(IOn -1) = 8,

10y 3 -0y ) + Gy =8y
Hence,
5 4, = e, (mod 10) and
(6) | &,y =104, + b,

Conslder the general equation
10ak_J - dk_J(lOn - 1).5 8y 3417 OF
1o(ak_J}- ndk_J) + dk_J = 8 51 J=1,2, eeey k - 1.

Hence,

(1) Qg = By_gyy (m0d 10), and
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(8) 8y = ndk-J + tj+l°

The reader will note that once 4 and t, are determined from (2)

1
and (3), then the process can be started. It 1s continued by equatiohs
(&), (5), (6), (7), and (8). If k is not known, the process can be
continued unfil the digits start to repeat. Since 'k S p -1, the
process never needs to be more than p - 1 steps long.

As an example to illustrate this process consider p = 29 = 3.10-1.
Hence, n = 3 and dk = 1 implies

4 ;=31 (mod 10), or
dk-l = 3 and tl = 0,
d = 3¢3 + 0 (mod 10), implies

dk—2 = 9 and t2 = .0,

Therefore, 45 & 39 + 0 (mod 10), implies

dk_5 = T and t3 = 2.

Therefore, 4 , =3T7+2 (mod 10), implies
dk-h = 3 and th = 2, and s0 on.

The process can be shortened further to where the process would be as
follows: ‘ _
1/29 = .6t 5tuPugPat 15t 86220628 ot el ssP Than t1 23R r93l

The superscripts are the %, -values which are not zero and are added to

J
the product akdk_J to give dk-(J+1)'

This process works equally well for composites as well as primes.
The reader will note the fact that "p" is a prime was not used.

Considering the process for 39, n = k&, dk = 1 and
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1/39 = .0%2%5t6ui.

The case of p = 10n - 1 was pointed out by Chartres {10] and two
months later Toy'[52] discussed the other cases of p = 10n + T,
P=10n+ 3% and p = 10n + 1. For the case p = 10n - 1, it was seen
that dk = 1 and n was the multiplier used to generate the digits. Toy,
without any explanation, gave the dkfs and multipliers for the other
three cases. The remainder of this section will be devoted to explalin-
ing Toy's observation.

Let p (not neceésarily prime) be 10n + To Hence (1) becomes

10s, - P4 =1, or 10a, - dk(lOn + 7) = 1.
(12) 1o(ak - ndk) = T4 +1
This implies T4, +1=0 (mod 10).

Since dk 1s an integer and 0 5 dk 5 9{,;t can"be concluded that»dk i'?.
Substituting this result back into (12) gives
‘lO(ak - Tn) =49 + 1, or

ak‘= ™ + 5.

The explanation from this point on follows the process for p = 10n - 1,
ﬁnd 8, = To + 5 will be the multiplier for this case. As an example,
consider 1/17 = .0588235294117647. Hence, n = 1 and a, = 12 and the
remalining diglts are found from the followlng congruences modulo Eg:

4., ®e cd =127, implies 4 . = L and %, = 8.

dk-2 = akdk-l + 4, B 12+4 + 8»implies dk52 = 6 and t2 = 5,
G s Bad o+t = 126 + 5 implies dk_3 = 7 and t3 = To

For p = 10n + 3, equation (1) becomes,

108, - dk(lOn +3) =1, or
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(13) 10(a, -nd ) =34 +1.
This implies 34 + 1 =0 (mod 10), and 4, = 3. Substituting this

result into (13) gives,

lO(ak - 3n) = 10, or

= + 1.
ak 3n

Hence, for the case p = lOn + 3 the last digit 1s 3 and the multiplier
is 3n + 1. For example, P = 13 gives n = 1 and & = 4 and the following

congruences modulo 10:

4 ;@ 4+3, implies d . ; =2and t; =1.

4, = 4+2 + 1, implies 4 , =9 and t, = O.
dk-5 g 49 +-O, implies dk-5 = 6 and t3 = 3,
‘—"'~2¢

dk-h = h'6}+ 3, implies dk-h =T and t)

dk-5 2 47 + 2, implies dk-5 = 0 and t5 = 3,

d ¢ 2 L.0 + 3, implies dy ¢ = 3 and tg = 0.
dk-? ® 4¢3 4+ 0, implies the process can stop, since
dk-? = dk-l and steps would start to repeat. Hence,
1/13 = .076923.
For the last case p = 10n + 1, equation (1) becomes,

108, - dk(lOn +1)=1
(1) | 10(a, -nd) =d + 1.

This implies, 4 +1=0 (mod 0), and 4, = 9. Substituting this result

into (14) gives .
' lO(a.k - 9n) = 10, or

ak = 9n + 1.
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Hence, for this case the multiplier is 9n + 1. The following is the
process for p = 21:

dk-l 2 19-9 implies dk-l = 1 and tl = 17
dk-2 = 19.1 + 17 implies dk-2 = 6 and t2 =3

dk-5 = 196 + 3 implies dk-3 = T and t5 = 11

dk_h 2 19+7 + 11 implies dy y = 4 and tLL = 14

5 = 0 and t5 =9

dk_6:5 19+0 + 9 implies d_ = 9 and t, = O

dk-5'; 19+4 + 14 implies dk

dk-? = 199 + O implies dk-? = dk-l and the process stops.

Therefore, 1/21 = .O4T613.

Two observations can now be made. First, if a person is concerned
wilth only pure recurring decimals, then the four cases dlscussed are the
only cases possible. Second, the process can be used for numerators

different than 1 by using the same multiplier. ZFor example, 2/13

implies
108, - dk(lOn +3) =2, or
lo(ak - ndk) = 34, + 2.
Hence, 34, +2 =0 (mod 10), and 4 = 6.

The multiplier for 13 was 4 and

2/13 = 15251826,
In conclusion, it can be said that this "right-to-left"” method can
be used to convert any rational number of the form a/b where (b,10) = 1.
Secondly, the process is good in any base, since it was based on modulo

"10", where "10" is one base.
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"Bose" Numbers

R. C. Das [11] in an article in the American Mathematical Monthly

gave én explanation of a method for finding the pe?iod of the fraction
1/m. He credits N. C. Bose Majumdar for the method and names one of the
nuﬁbers in the method after Bose. The reader will note that Bose's
method 1s precisely the process deScribed in the previous section, but
Das' explanation is different from the author's.

The first term defined 1s the "End Number". Tt is the smallest
integer e such that when multiplied by m gives a number ending in 9.
The "Bose Number b" ié defined by the eguation

(1) em = 10b - 1.

Bose's method consists of writing the End Number el, multiplying it

by the Bose Number b, and placing the lest diglt of the product before

el, calling 1t e. and cairyingvover the remaining digits, multiplying

2

e, by b and adding the number carried over and writing the last digit of

this sum.ej, and so on, untlil the digits recur.

The reader will note that (1) of this section, comes directly from

k

=19=banddk=.—9:el

(1) of the previous section, where e, =d and b = a_. From the

11lustration for p = 21, it was found that 8,

and the period for 1/21 is found by Bose's method as follows:

~Write down the End Number 9 first, multiply this 9 by
the Bose Number 19 and obtain 171. Place 1 before 9 and
carry 17; multiply this 1 by the Bose Number 19 and add 17,
obtaining 36. Place 6 before 1 and carry 3; multiply this
by 19 and adding 3 gives 117. Place T before 6 and carry
1l and so on. Continue the process until the numbers recur.
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The reader will note that the amount carried each time is precisely the
same as the "t" used in the last section.

Das, in his explanation, does not go "backward" in the division
process as the wrifer has done, but considers the entire period at one{
time.

Suppose k(m) = k and

1 [ekek_l;..eeel] .
m

lOk -1

Let r = [eke eeel], then

k_l.'.

Kk

(2) 1/m = r/(10" - 1), and

2 k-1
(3) r = e + 10e, + 10 ext one + 10 &

Then Bose's method indicates that the successive digits of r (counting
from the right toward the left) may be obtalned as follows: the first

“diglt is el; the first two diglts of el‘+ lObel give the flrst two

digits of r; the first three digitS'el<+ 1Obel + loabe2 glve the first

‘three digits of r; and in general the first 1 diglts of e, + 10be, +
loabe2 +oeee + loi_lbei_l are the first 1 digits of r, 1 =2, 3, ..o, ke

.For example, m = 21, 21+9 = 189'= 10+19-1; e = 9, b = 19. Then
10°19.9 i8 1710

9
1719 showing e2 is 1.

102'19'1 1s 1900
1710
9

%619 showing e

10°.19+6 15 114000
1900
1710
9
117619 showing e, 1s 7.

is 6.

3
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This can be condensed into the form

9
1710 = 10;»19-9
1900 = 103-19-1
114000 = 10j*19+6
1330000 = 105»19»7
T600000 = 107 +19+4

“OFT610 = r, so 1/21 is L7619,
since k(21)»= 6. The process can be continued until the digits start to
repeat if k(m) is not known.

To prove the soundness of the procedure, it must be shown that

e,

1

+ lObe1 + loabe2 + ces + loi’lbei 2 r (mod 101), 1 =2, 3, ¢ou, ke

Eliminating m from (1) and (2), gives
(10b - 1)r = (10° - 1) e, or
10br - r = loke é
T 1 - 1

Then, multiplying (3) by 10b and substituting it for 1Obr gives

10be, + 102be2 + see + lokbek -T = 10ke - .

1 1 1
, L qote “
Thus, e, + lObel + lOabe2+ eee + 10 lbei-l -T
k 1 i+
= lOel - lO bei - 10 J-bei+l - 000 = lOkbek,
i- i
or e + 10be, + lO?bee 4+ 4.0 + 10 lbei_l 8 r (mod 107), 1 = 2,3,...,
k.

. Das made the same observation as the writer when he pointed out
that the process can still be used when the numerator has a value other
than one. The same Bose number b can be used, but the value for

el(dk) has to be changed. The reader can see that if

_ ekoocel
- E 2
10" -1

g+



then % = —p— and
ne, ® ei (mod 10). Therefbre, the "End number” for n/m 1s congruent,
modulo 10, to n times the "End number" for 1/m.

~

B. Misra [13] showed how the "Bose and End numbers”, developed by
Das, could be used in a different way to find the perlod for the frac-

tion 1/m.  His method consists of dividing the end Aumber & by b,

giving rise to a quotient ql end a remginder r Then ql 1s placed

l.

after rl, and the number lO0r., + ql so formed is divided by b, giving

1

rise to a gquotient q2 and & remainder r_ . The process 1s repeated.

2
As an example to illustrate the method, consider m:'= 123. Since
3:123 = (37-10) - 1, then b = 37 and e, = 3. Dividing 3 by 37 and

continuing the process as indlicated above, gives

37)3 (0 0 81 3
YR
T - +~q
2 206 2
r3"—-§§ "3
.1, = IIT + q
b 111 h
Ts -+~ 03 *'q5 (The process repeats after this step.)

Hence, 1/123 = ,00813.
. Misra justified his method of using the Bose and end numbers to

find the period for l/m with the following theorem:

Theorem 5.1l. (1) Continuation after k steps of the above process will
cause the quotients q;, ay, +:o , qk (0 < q < 9) to repeat in the same
order; and (ii) [qlqé...qk] is the period of the recurring decimal for

1/m, i.e., tqlqa...qk] = [dlda...dk].



Proof: The process as it is described glves rise to the following

equations
e = bql + rl
lOrl + q = bq2 + ré
() e

lOrk_.l + qk-l = bqk.+ rk;

Multiplying the k equations (4) by lOk, lok'l, ese » 10 respectively

and adding gives

k k-1

k k-1 2
10 e + 10 ql + seo + 1qu_l + 10 ry t 10 Iy + eee 10 Tyl
okl k k-1 2
= 10"q, + 10" g+ ... + 10bq, + 10%r + 10 Tytest 10T o+ 107

Now, this equation can be simplified by removing like terms from both

sides and substituping
: k-1 k2 .
[qlqzo . oqk] = 10 ql + 10 q2 + s00 + qka

k

Thus, 107, + [qlq2...qk] -q = lOb[q1q2“°’qk] + 10r,, or

k
107e, = (10b - l)[qlq2°°°qk] + (lOrk +'qk)°

Subtract e, from both sides and using (1) gives

(5) (lOk -1) e - elm[qlqz..qqk] = (lOrk + qk) - e.

The equatiqn (5) shows e, divides (lOrk + qk)° Let se) = 10r, + q.

Now, dividing the equation (5) by e,m and using Corollary 2.4 gives
(6) [dldzooodl{_] - [qlqz‘co-qk] =-(s~l)/mo

Equation (6) implies that m divides s-l1 and, if EE can Bg shown that

g8 <m, then 8 = 1 and, éonsequently,

[qlq2'°'qk1 = [dldg,..dk].
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The latter relation would.estgblish the second part of the theorem and
s = 1 impllies that Ty = 0 and qk = €. As a consequence of these values
for rk and qk the process wlll repeat after the kth step. So, if it‘
can be established that s <m, then the theorem will be proved.

To show that s <m, 1t willl be necessary to develop some intermed-

late inequalities. First, by the way e, was defined, it is seen that

(a) 1<e <9.

Thus, ‘ 1 <nmnm S elm S 9m < 10m - 1.

‘Since em =10b - 1, then 10b -1 <10m - 1 or b <m. This implies
(b) 1<b<m-1,

since b and m are integers. qum the division algorithm, it is known
‘that

(e) 0<r, <b -1 (all 1).

i
Since el = pql + rl, 1t can be concluded that ql f %15 9. Now, if
»qi 5 9, then multiplying (c) by 10 and adding qi to both sldes gives,

(a) qi_<_10ri+q1510b-l+(qi-9)_<_10b-l.
From (%) it 1s seen that 10r, f q; =ba, , + 71, .., therefore,

bqi+l + ri+l 5 10b - 1.

This result implies, bqi+l 5 10b - 1, since ri+l 2 0. qu, the only way
that this result can hold is for qi+l < 9. .This completes the steps
necessary to say ay < 9 for all 1 by induction, l.e., 9y < 9 then
94 S 9. Consider the case i = k, then (d) becomes

(e) l0r, + g, <10b - 1.
Since equation (5) showed that e, divides 10r, + q,, then s was defined

to be that number such that se, = lOrk + Q.
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Thus, (e) becomes se; <ay

Misra completes his method by showing the argument for’the case

mor 8 < M.

when the numerator is some value other than one. The proof is similar

>t6 the case Just completed and the result is aﬁalogous to Das' method.
Finding the Period as Part of Another Number

D, R. Kaprekar [20] gave a method for finding the period of a
recurring decimal by lookihg at the last "few" digits.bf a certain type
of product; The reade: wlll notice that the method uses some of the
same principles as “Bose numbers”. Also, this method gives another
explanation of the "right-to-left" method discussed earlier in this
chapter.

It will be necessary to prove a theorem that ils used in the method.

Theorem 5.2. Let N be a number having & zero as 1its lasﬁ digit. Then
in the product
Z=(N-1)(1+0N+ ¥ + oee +_Nr),

the last (r+l1) digits will be nines.

Proof: Since (1 + N +_N2 + eee + Nr) is a geometric progression, 1ts
sum 1is (Nr+l - 1)/(N-1). Therefore,

Z=(N-1)1+0N+ ¥ o+ ee * ) becomes,
Z = (N - 1)-ﬁ§;;i§_%% =N i,

But N = 10-b implies Z has 9's for its last (r+l) digits, since
G BT e SR B
~As an illustration let N = 140, then

139(1 + 140 + 1407 + 102 + 1hoh) = 50722499999
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which has 9's for the last five digits.
As an example to motlvate the general method conslder the fraction

1/7. It 1is first necessary to find the least number el such that

Tey + 1 is divisible by 10. (It is the same as the "End number"

discribed earlier.) It is seen that e

it 1s known that the last (r+l) digits in

= 7T and N = 50. By Theorem 5.2,
50" _ 1 = 49(1 + 50 + 50° + ... + 507)

must be nines. By Corollary 2.4, it is seen that lO6 - 1 1s divisible

by 7. Therefore, the recurring portion in the fraction 1/7 will be the

last 6 digits in

r+l

29-7—:_5 = T(1 + 50 + 50° + +oe + 50°)

for r 2'6, This conclusibn is verified by the following remsrks. If

the left~hand sidé of the equation is written as

5Or+l_ 1

'———rr—f— = [dldzdju .d'h]"
then o

50711 = 7la e,y ]

Now, the left-hand side has nine's in at least the first (r+l) digits

which implies that

Teldy 58, 3%, 58 p%, 14, ) = 999999, or
T N L L

T 999999 '
Therefore, [dh-5dh-hdh-3dh-2dh414h] = 142857. Taking r = 6 and working

out the multiplication T7(1 + 50 + 502 + oo + 506) glves
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T

350

17500
875000
43750000
2187500000
109275000000

101507lh2857

Hence, the recurring portion of 1/7 is 142857. If the value of r has
not been determined and the process 1s continued indifinitely, then the
period 142857 is repeated again and again.

For the general case, let p be any odd prime other than.5 and e
be the least integer such tpat N = elp + 1 is divisible by 10. Then the

number

i

et (N‘- 1)(1 + N + K o+ oes + )

elp(l FR AN 4 oee + )

it

is diviéible by p and the last r+l digits are nines due to Theorem 5.2.
Hence, if r >p - 1, the last D - 1 digits in e (1 + N+ K + o0 + N)
are such that multiplication by p yields all nine's for the p-1 digits.
This implies that the p-1 digits will elther be the actual period of

i l/p or will contain the period a whole number of times.

The value of e, will change as the unit's digit of the prime

1
changes. The number e will be 9, 3, 7, 1 according as the prime ends
.in 1, 3, 7; or 9. For the prime 19, el’is 1l and N 1s 20. Hence, the
last 18 digits in
(1) 1-(1 + 20 + 202 + 20° + sos)
will be the period for 1/19. It is noted that the sum in (1) can be
found by starting with the first digit "1" and multiplying it by 2 and

this.product glves the second dlgit. Then multiply the second digit by



2 and this producﬁ gives the third digit. If the process is continued,
1t has the same effect as finding the period by the “"right-to-left"
method described 9arlier.
The last three sections are interrelated but each of the writers .
has taken & different approach to the pfoblem of finding the period.
Finding the Period of (l/m)2 from 1/m
D. R. Kaprekar [19] gave a technique for finding the period of (l/m)2

from 1/m. Assume kfm) =k and R = [d1d2.oodk], then

1. R
P
Hence,
1 R R 1
;E (10k - 1)2' (10k -1) (10k -1)
_ 2 Q
Now; expressing — as P + 5 gives
100 -1 100 -1
1__ 2 . Q.
;E 100 -1 (10k - 1)2
- p.10~% N Q-lo"2k
1-10° (1.-1075)°

f

P10 %1 - 10)7 4+ Qo107 (1 - 107K)"2

4 -2k
+

P°10_k(l + 10 10 + aeo) + Qolo'ak(l + 2.107%, 3910'2k+noo)

]

P20 X 4 (P +@)107F 4+ (P +29)10 K 4 o.u,

In practice, Theorem 3.8 indicates that the process continues until
k or kp of the dlgits are determined. For example, 1ét m = 1ll, then
k(ll)-; 2 and b of Theorem 3.8 is 1. Thus, k(112) = k(121) =‘20112‘l

=22, Now, m=1lgivesR=9, P =0, and Q = 81.
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4 6 8

81.10 + 3240107 4+ ooo

"

1/112 + 16210°

= ,0081
.000162
.00000243
.0000000%24
.000000000405
.00000000000486
-0000000000000567
.000000000000000648
.00000000000000000729
.0000000000000000000810
.000000000000000000000891
»00000000000000000000000972
«0000000000000000000000001053

@
°

°

= -00826446280991735537190082¢ - »

A second interesting example is 1/81 or 1/92;_ Using the technique
as described above; R =1, P= 0, and @ = 1. Therefore,

2

]

—l)-2

1/9% = 1/(20 - 1)% = 10%/(1 - 10

il

1021 + _2°10'l + 32072 4 oe0)

= .0l
.002
.0003
»0000k .
.000005
.0000006
.00000007
-000000008
0000000009
00000000010

e
©

o

01234567901 - « »

Thus, 1/81 = .6123&567§.



CHAPTER VI

RELATED TOPICS

Recurring Decimals and Group Theory

In this sector, the reader will find it helpful to have some know-

ledge of group theory. The intent of the section is to show how the

set of posgible remainders (numerators), discussed in Chapter III,

relates to certain properties of abelian groups. The writer has given

those definitions and theorems that willl be 1llustrated by the set

mentloned above.

Definition 6.1. A group is a set ¢ = {a, b, ¢, ¢+«} for which a biﬁary

operation ¥ is defined. This operation is subJect to the following

laws:
1.

2,

50

Closure. If a and b are in G, then & * b is in G.

.Assoclativity. If a, b, and c are in G, then

(a #*b) *c =a * (b *c).
Identity. There exists a unique element e in G (called the

identity element) such that for all a in G, a ¥eme*a=a..

Inverse. For every a in G there exlists & unique element a'l
in G called the inverse of a, such that a * al=al*a=e,

Definition 6.2. A group is sald to be an abelian group if it satisfies

the following law:

50

Commutativity. If a and b are in G, thena *b = b * a,

98
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The following table illustrates that multiplication, modulo 13,

over the set {1, 2, ..., 12} forms an abelian group.

1 2 3 4% 5 6 7 8 9 10 11 12

1/l 1 2 3 4 5 6 7 8 9 10 11 12
2 2 L 6 8 10 12 1 3 5 7 9 11
3 3 6 9 12 2 5 8 11 1 L 7 10
L L 8 12 3 7 11 2 6 10 1 5 9
5 5 10 2 7 12 L 9 1 6 11 3 8
6 6 12 5 11 L 10 3 9 2 8 1 7
717 1 8 2 9 3 10 4 11 5 12 6
8 8 3 1 6 1 9 L 12 7 2 10 5
9 9 5 1 10 6 2 1 7 3 12 8 b
10(10 7 ¥ 1 11 v8 5 2 12 9 6 3
mwiii 9 7 5 3 ‘1 12 10 8 6 kb 2
1212 11 10 9 8 T 6 5 Y 3 2 1

L

Definition 6.3.. A collection of elements H in G is said to form a

subgroup of G if H forms a group relative to the blnary operation

defined in G.

Consider the set, H = [10, 102, 103, 1oh, 1053 106}o Using the

above table, it is found that the residues modulo 13 of the respective

elements are H = {10; 9, 12, 3, 4, 1}. The reader will note that H is

also an abelian subgroup of G. Due to the fact that the elements of H

are congruent modulo 13 to lOn, forn =1, 2, ..., 6, respectively, the
group H 1s said to be a cyclic subgroup with the "generator” 10. It is
also noted that 4 will generate H, but it is the generator 10 that

relates the group to the topic of recurring decimals. Recalling from
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Chapter III the example where the pericd of 1/13 was found by the
division process, it is seen that the set H is the set of remalnders

(numerators) found in the "unity-cycle”.

Definition 6.4. If G is a group, H a subgroup of G, and a any element

in G, then the set of elements ha, h arbitrary in H, is called the
right coset generated by a and H. It is denoted by Ha. Similarly aH

is cal}ed the left codet. (Since all groups discussed are abelian, the

right coset Ha will equal the left coset aH. Hence, the writer will

use the term "coset™ and denote it by Ha.)

As an example to illustrate this definitionvcénsider the groups G
and H discussed above. H, itself, is a coset, since if a = 1, then h-1
is iﬁ H. Actually, if a is in H then ha is H and Ha = H. To find a
second coset, let a be any element in G which is not in H. For example,
a = 2 since 2 is the smallest such element. Now, H*2 = {2, 6, 8, 5, 7,
11}, since 2 ® 1°2, 6 = 3:2, 8 = ko2, 51 9-2, 7 = 10°2, 11 2 122,
modulo 13. Therefore, the cosets H and H-2 partition G into two dis-
joint subsets each with 6 elements. In general, if H is a subgroup of
G, then the cosets of H partition G into disjJoint subsets, each with
the same order (number of elements) as H.

It was noted that 10 generated the subgroup H, since lOJ is in K
for J =1, 2, +.., 6. Therefore, the order of 10 is 6, 1.e., 10 belongs
to 6. But k(13) = 6, since lO6 = 1 (mod 1%3). 1Is this jJust a coinci-
dence that the subgroup generated by 10 has order k(13%)? The answer is
"no", since by their respective definitions they will be the same
number .

Returning to the cosets of G generated by H, it is seen that in
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addition to H being the unity-cycle of remainders, H-2 1s the other
éycle of remainders associated with p = 13. As a second example the
reader can note the cycles of remainders for p = 11, found after
Corollary 3.14%. In this example, H = {1, 10}, since 10° =1 (mod 13).
Consequently, there exists five cosets {1, 10}, {2, 9}, {3, 8}, {&, 73,
and {5, 6}. This discussion and examples of cosets suggest the follow-

ing theorem.

Theorem 6.A. [22] If G is a finite group of order n and H is a sub-

group of order r, then r divides n.

The two examples of groups given so far had the operation of
multiplication modulo a prime, and the order of the groupr was one less
than the prime. If the modulus is not prime, then the group will not
contain all elements less than it. For example, cohsider the group G
formed by multiplication modulo 39. If 3 and 13 are in G, then
3+13 = 0, and O must be in G. But, O is not in G, henée 3 and 13 are
not in G. Actually,‘it is found that G consists of only those numbers
less thaﬁ 39 and relatively prime to 39. Therefore, the order of G
would be P(39) = 2k. The next question is, "What cyclic subgroup H is
generated by iO?" H is found to be {1, 10, 22, 25, 16, 4} and its
order is 6. This is another illustration for Theorem 6.A.

The cosets of G generated by H are H, H°2, H7, and H-lk,
Comparing these sets wiﬁh the cycle of remainders for 39 (Example F,
ﬁage 49), it is seen that they are the same. “

The three examples can be generalized by a corollary to Theorem

6.4A:
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Corollary 6.3, [22] If G is the multiplicative group modulo m, whose

order will be f(m), with H the subgroup generated by 10, whose order -

will be k(m); then k(m) divides @(m).

The conclusion of the corollary was also reached in the proof of
Theorem 3%.3.

Since k(m) divides P(m), there exists a number, say c(m), such
that §(m) = k(m)+c(m). In terms of the groups G and H, it is said that
c(m) is the index of H in G, l.e., c(m) is the number of cosets
generated by H. In terms of recurring decimals, c¢(m) is the number of
distinct cycles of remainders (numerators), each of which has its own
"distingt” period assoclated with it.

For the reader who is familiar with permutation groups, it is
noted that the cyclic permutation which moves the digits one plece to
the right in the period of k diglits forms a cyelic subgroup of the

group of permutation on k objects. These two groups are not abelilan.
Diagonalisation Method and Fibonacel Numbers

The term "diagonalisation"” is a word given to an operation on a
sequence of numbers. D. R. Kaprekar [19] was the first person to use
the term. He used the operation in his development of the concept of a
demlo number. A demlo number 1s a positive integer whose digits have
the property that they can be partitioned into three parts such that
the sum of the first and third (last) parts is a number whose digits
are all the same, and the second (middle) part has this same digit as
its only digit. For example, 43329 is a demlo number since 4 + 29 = 33

and the second part is made up of only the digit "3". A second example
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would be 499995, since 4 + 5 = 9 and the "middle” of the number is made
up of all 9'5.

The concept of a demlo numbér has been discussed extensively by
Kaprekar and other Indian mathematicians since the 1930's. The writer
is of the opinion that they are a study in themselves and their main
contribution to recurring decimals is in the use of the method of
diagonallising a sequence. It should be noted that the term
"dlagonalisation" was originally called "demlofication" by Keprekar({ 4 ],

but he later changed it to the more descriptive term.

Definition 6.5. (i) Right diagonalisation of the sequence

{al, 8y) 855 222} is defined by the equation

= -k -2k
Dk = al + 10 as + 10 °a.3 +

(11) Left diagonalisation of the seguence {al, 835 B, sos} is

defined by the equation

« k 2k
= 8 . o 90
'Dk 1 + 10 a2 + 10 a3 +

The sequence Cal

progression), G. P. (geometric progression), or any sequence formed

) 8y 8z co} can be an A. P. (arithmetic

according to some fixed rule. As an example, consider the A. P.

(15, 18, 21, 24}:

.
D, =15 + 180 + 2100 + 24000 = 26,295
f& =15 + 1.8 + .21 + .024 = 17.0%4

Since the Interest is in the diglits of the numbers and not the location

of the decimal point, the two sums can be found as follows:



Left Dlagonalisation

15
18
2l
24..;

26295

10k

Right Diagonalisation

15
18
21
2k

17034

The sum of the two dlagonalisations is 43329, which is a demlo number.

Thus, this 1s & way of obtalning demlo numbers.

Kaprekar [19] pointed out several different ways in which the

period of 1/7 can be found using diagonalisation. For example, EE of

{14, .28, 56,

<eo} gives

14
28
56
112
224
4h8
896

142857142857 - »

The explanation is as follows:

Simllarly,

~J

o -

=

[}

— IR

L e

ermm— 22T

100-2 100
I%E'-O'(l + 002 + oOOOll— + ‘°°)

1

I66(lh + 28 + 0056 + °00)

Dy (14, 28, 56, »+).

D1, 3, 9, ***).

Now, consider D. of (7, 35, 175, <*°):

1

21875

°
@

- 142857
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In this case, the common ratio for the G. P. is 50 and, thus, the
infinite sum of G. P. will not converge. The explanation, therefore,
must be different from the two previous examples. (Note: Sn will be
the sum of the first n terms of a G. P.)

750" + 750%™ + oo + 7°50° + 7+50

508 =
5, = 7«50“‘1 + oeee + 7¢5o2 + 7°50 + 7
hgs = 7-50% - 7
o ,
.00 -1

The reader will recall that this 1s the same example glven after
Theorem 5.2 and the reasoning 1s the same as before.

The recurring pefiods for fractions like 1/19, 1/31, 1/39, 1/891,
etcs can also be derived by diagonalisation of certain geometric
progressj:ons° The diagonalisation of certaln arithmetic progressions
willl result in such fractions as 1/92 and 1/112. The reader will see
that (1) in the section "Finding the Period of (l/m)2 from l/m” isb_ﬁk
of {P, P1Q, P+2Q, <o+} ﬁhere k is the number od digits in Q. For

example, from this same section it 1s seen that

1/81 = f& of {1, 2, 3, °++}, and
1/121 ='52 of {81, 162, 243, -=-}.

Keprekar [19] gave several examples where the sequence was other
than an A. P. or G. P. His first example was Bi ot (1, 3, 6, 10, 15,
21, 28, °s+}. This sequence, which is denoted as “the triangular”
number and whose rule of formulation 1s.n(n+1)/2, gives rise to the

period of 1/93 or 1/729. Since k(729) = 81, the diagonalisation would

have a minimum of 82 steps. He also observed that for n a positive
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Integer
1 1 .3 or {n(n+l)(n+2)},
;E = 5561 D1 -6 )’
l_ ~ 1 {n(n+l)(n+2)(n+5)
95 - 590k9
Also,

Eg% =B, of {1, 4, 10, 19, +++}, or

= Dl of i‘an = a'n_l + B(n"l)}) where al«' = 1.

Kaprekar [ L4 ] went to great lengths to show that

_lg = D of {1, 1, 2, 3, 5, 8, 13, 21, 34, vo-}

Thé writer was able to shorten the explanation by using the reasoning
which follows from Theorem 5.2. This particular seguence of numbefs is
known as the Fibanoccl numbers, and they have held the fascination of
mathematicians down through the years. Thelr rule for formulation is

a =8 + 8 where a. =&, = 1
n-2’ 1 2 °

The explanation is as follows:

2 ne-l
Snn al + J.Oa,2 + 10 a5 + 20a + 10 an

108. » 10%& 4+ ... + 10%°T + 10%,

lOSn 1 2 a’n-l n

H

W

2 n-l1 n
9$n -8, + lo(al-ae) + 10 (ae-aa) 4+ 00a + 10 (an~1“an) + 1078

]

i

1onan- a, + 1o(a -8, ) - 10 [a + 108, + ooo + 1077,

1 %p-2

i

n SRR n-2 n-l
10°a -1 +10(1-1) - 107[s - 1077 & 1.

a 1" 10
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Therefore, lO9Sn = [lonan + lonan_l+'lon+lan] -1

“.o.n n+1
Llo 8, + 10 an] -1

10“Lan+l + 10&nJ -1, or

n
. . 16 [an+l + IOan] -1
n_ 109

i

Where the last n digits of lon[an+ + lOan] - 1 will be 9's.

1
Therefore, if n > 108, then the first 108 digits of S, will be the
period for 1/109, since k(109) = 108.

Kaprekar [ %4 ] proposed the question, "What would happen if the
Iucas pumbers, 1.e., {1, 3, 4, 7, 11, 18, 29, 47, -} were diagonal-
ised?” The reader will note that Lucas numbers follow the same rule as
Fibonacci numbers, but have 1 and 3 for the first two terms. Rac [27]
answerad the gquestion as follows:

It may be noted that in the recurring period of 1/109)

the digits from the 10lst onward are the numbers of Lucas.

In fact, the series of Lucas is slso of the Fibonaccl type

and all types of Fibonaccl serles can be found in the recur-

‘ring period of 1/109, if it is written, twice. Thus we do

not get anything new by aprplying the process t¢ Lucas numbers.

It is highly remarkable that by applying this process to sll

types of Fibonaccli series we are led to the recurring period

of 109 and it is to be noted that 109 is the only prime hav-
ing this property.

The Cantor Ternary Set

The interest in this section is focused on the set I and specisl
types of subsets of I, where I is the set of all real numbers between

O and 1, inclusive. If x 1s an element of I, then
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X = odld2d3°°°, or

a a.

4G 4 3

X = en + —  + + oo,
0712 100

Now, the representation of x is dependen? on the base of the numeration
system as discussed in Chapter ITI.

The subset of I, known as the Cantor Ternary set; is aﬁ interest;
ing application of the use of different bases for the nugeration
system. The Cantor Tefnary set is dlscussed in most graduate level
analysis and tdpolog&atextbookss due to its propertles. Some of its
properties might seem strange to the neophyte mathematician. For
example, it is nowhere dense, but it has the "same” number of elements

as L.

Definition 6.6. The Cantor Ternary set, C, is the set of all x in I

such that when x 1s represented in its ternary form, l.e., base three

numeration system, dh # 1 for any positive integer h.

Before. discussing the properties of €, it should be instructive to

state an alternate definition for C and show that they are equivalent.

Definition 6.7. Let C, be the subset of I consisting of all p&ints of

1

I that do not lie in the open interval (1/3, 2/3). Thus, C, is

obtained by deleting the open middle third of the interval I. Define

02 to be the subset of C, obtalned by deleting the open middle third

1

of each of the two lntervals that form Cl° Continuing in this manner,
define-Cn for each positive integer. The Cantor Ternary s@t C is then

defined by the following:

C

]

N Cn
n=



109
Theorem 6.1. Definition 6.7 if and only if Definition 6.6.

Proof: Assume Definition 6.7 and show Definition 6.6 follows. Now,

the rational number l/5ten = .02, . since
ERERLN
3 ten
R S ]
10 0 00 1000 three
[1/10 = 9100°°°]three
[.1= °02]three

. = [, s s . 0
Also, [2/5]ten [ Q]three Assume x, is an element of Cl

(complement of Cl)o Thus, [.02 < x, < °2]t . This implies the

1 hree

first digit of x, in its ternary expansion is l.

1
From the definition of ng it is seen that

¢} = (1/9, 2/9) U (7/9, 8/9).

But [U9%a12[£l=°mm%mw@

[2/9]ten - [°02]three’

[z/9]ten = {.21 = aaoa]threey

[8/9]ten = [°22]three
implies that if x, is element of Cl, then the second diglt of the
ternary expansion of X must be & 1. Similarly, if x3 is an element of

C%, then the third digit in thg ternary expansion is a 1. In gemeral,

if X is an element of Gé, then the nth digit in the expansion of X,

will be a 1.
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From DeMorgan's Law it 15 known that

@ ]
¢t = [nglcn_ = nglcg°
Hence, from the discussion abéve it is seen that any element of I which
contains the digit 1 in its ternary expansion must belong to C'. Thus,
if x belongs to the C of Definition 6§j} then x belongs to. the C of
Definition 6.8.
The reader will note that the reasoning golng one way in the

proof will also be valid in the other direction as well. Hence; the

two definitions are equivalent.

Theorem 6.2. The sum of the lengths of the intervals that form the

complement of the Cantor set is one.

Proof: The length of ci is 2/3 - 1/3 = 1/3. The length of cé is
(8/9 - 7/9) + (2/9 - 1/9) = 1/9 + 1/9 = 2/9, The length of oy 1s

(26/27 - 25/27) +(20/27 - 19/27) + (8/27 - 7/27) + (2/27 - 1/27)
= 1/27 + 1/27 + 1/27 + 1/27 = 4/27. This pettern continues and the

sum becomes 1/3 + 2/9 + 4/27 + <20, or

37%4273 =5
since 1t 1s the infinite sum of & G. P. with a ratio of 2/3.
- In terms of measure theory, Theorem 6.2 leads td the interesting
result that the measure of the Cantor set 1s zero. The Cantor set

differs from most sets which have a measure of zero since it is not

countable, let alone finite. In fact, it has the same cardinality as L.

Theorem 6.3. The cardinality of C 1s the same as I.
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Proof: First, it should be noted if y.is an element of I, then y when
representéa'in binary form will have only O's and l's used‘for its
digits. Define the function f whose domain is C and whose range 1s I,
where the ﬁqints of I are represented in binary form. The rule of
correspondence l1s

| 1

f(x) = §oXa

Now, x is always dlvisible by 2, since the digits used in the ternary
expansion of x are only O's and 2's. It 1s'seen that for every element
in C there exists a corresponding element in I. Also, since f is mono-

tone, f is one-to-one. Therefore, C and I have the same cardinality.

Corollary 6.3. The Cantor set 1s uncountable.

+

Proof: Since there exists a one-to-one correspondence between C and I
(See proof of Theorem 6.2), and I 1s uncountable;, then C must be un-
countable.

The Cantor set has several properties, wlth some of which the
reader may be familiar. A few of these properties are discussed in
terms of their definitions or characterizations.

(I) C is closed, i.e., it contains all its accumlation points

[14]. |

(II) C is compact, i.e., it is closed and bounded [ 27.

(III) C is nowhere dense, i.e., it 1s closed and does not contain
| any interval [1k4].

(IV) C 1s perfect, i.e., it 1s closed and dense-in-itself @m-]o

(V) fThe characteristic funetion of C is Riemann-integrable on

tO, 1]: 1In fact, the integral is equal to zerc [2 ].



CHAFTER VII
SUMMARY AND EDUCATIONAL IMPLICATIONS
Summary

In this paper, meterial concernlng recurring decimals is discussed
This presentation makes the research'conderning this topic mdre'readw
able and more readily avallable to the student of elementary number -
theory. It also provides examples of how some of the basic theorems
of number theory can be used o prove thecrems about recurring
decimals. | |

In Chapter I the statement of the problem, procedure, scope of the
paper, and expected outcome are given. Chapter II includes an elemen-
tary introduction to the subject along ﬁith how the base of the
numeration system affects recurring decimals. In Chapter III most of
the properties used from number theory are listed and discussed. The
theorems in this chapter prove most of the properties of recurring
decimals that the writer feels are fundamental to the subject. The
basic result is Theorem 3.3, which states. that the period length of l/n
is k if and only if 10 belongs to k modulo n. Chapter IV provides
other properties of recurring decimals. In general, the properties
discussed are not basic to the subject. The most important theorem in
the chapter is Theorem 4.4k, which gives the necessary and sufficient
conditions for the reciprocal of a prime to have the maximum number of

digits in its period. Chapter V is devoted to different techniques of
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finding the period of a recurring decimal. BSome of the techniques are
similar, but the explanation of the justification differs from writer

to writer. In Chapter VI, three topics are dlscussed in terms of how

they relate to the subject of recurring decimals. ZFor the neophyte

- abstract algebra student, the discussion relating cosets to recurring

decimals should be of interest.
Educational Implications

Many of the concepts of mathematics, and number theory in
particular, can be understood by the laymen and also by elementary and
secondary school students. In the interest of mathematics, it is
important that some of the more basic concepts be presented to these
groups 1n a systemailc manner. A paper such as this, in addition to
consolldating some of the literature, presents the necessary background
needed for an understanding of the subject; and should bring tc more
students a better knowledge of recurring decimals.

As a result of reading this thesis, the student should gain an
awareness of some of the elementary concepts of number theory and the
current and past research that hes been done 1n the area concerning
recurring decimals. It 1s also of significance that the reader who is
a potential teacher of mathematlics may find material to motivate his
class, and perhaps enlarge on some of the concepts presented.

Undoubtedly, the most lmmediate result of this paper lies in the

knowledge and experlence gained by the writer in its preparation.
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APPENDIX A
Primes and Cyecle Table

The folleowing table is reprinted from Cycles of Recurring Decimals

[19]. 1In the table P is the value of the prime and C is the number of
cycles f@r'thaf prime when it is converted into a recurring decimal.
Thus ,

P-1
k(P) = ===

For example when P = 13, it is found in the table that C = 2 and

k(13) = (13=1)/2 = 6, If P = T3 then C = 9 and k(73) = (73-1)/9 = 8,

117



Primes and Cycle Table
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73

P c c P o P c P c

3 2 223 1 487 1 787 2 1093 4y 1439 2

T 1 227 2 ko1 1 797 2 097 1 b7 1
11 5 229 1 kg9 1 809 4 103 1 b1 5
13 2 233 1 503 1 811 1 109 1 ksz 2
17 1 239 3k 509 1 821 1 117 2 459 9
19 1 241 8 521 10 823 1 123 2 k71 2
23 1 251 5 523 2 827 2 129 2 481 2
29 1 257 1 5k41 829 3 151 2 483 6
31 2 263 1 547 839 2 153 1 L4187 1
37 12 269 1 557 2 853 )3 163 2 489 6
41 8 271 54 563 2 857 1 171 1 493 L
43 2 277 L 569 2 859 33 181 1 k99 7
Y7 1 281 10 571 1 863 1 187 2 511 2
53 L 283 2 57T 1 877 2 193 1 523 2
59 1 293 2 587 2 881 2 201 6 531 1
61 1 307 2 593 1 883 2 213 6 543 1
67 2 311 2 599 2 887 1 217 1 549 1
71 2 313 1 601 2 907 6 223 1 553 1
3 9 317 b 607 3 911 2 229 1 559 2
79 6 331 3 613 12 919 2 231 30 567 1
83 2 337 1 617 7 929 2 237 6 571 1
89 2 347 2 619 1 937 1 2hg 6 579 1
97 1 349 3 651 2 9kl 1 259 1 583 1
101 25 3% 11 641 20 k7 2 277 2 597 12
103 3 359 2 643 6 953 1 279 2 601 8
107 2 367 1 647 1 967 3 283 2 607 1
109 1 373 2 653 2 971 1 289 1k 609 8
113 1 379 1 669 1 977 1 291 1 613 )3
~ 127 3 383 1 661 3 983 1 297 1 619 1
131 1 389 1 673 3 991 2 301 1 621 1
137 17 397 L 677 2 997 6 303 1 627 6
139 3 ko1 2 683 2 1009 )3 307 2 637 L
149 1 409 2 691 3 013 ! 319 2 657 3
151 2 h19 1 701 1 019 1 321 24 663 1
157 2 Loy 3 709 1 021 1 327 1 667 2
163 2 4z 2 719 2 031 10 361 2 669 3
167 1 433 1 727 1 033 1 367 1 693 L
173 L 439 2 733 12 039 2 873 e 697 1
179 1 4h3 2 739 3 ok9 2 381 1 699 3
181 1 Lhg 14 743 1 051 1 399 2 709 1
191 2 L7 3 751 6 061 5 4o9 L4k 721 L
193 1 461 1 757 28 063 1 4o3 9 2% 6
197 2 463 3 761 2 069 1 Lot 2 73% 2
199 2 LeT 2 . T69 b 087 1 ko9 1 741 1
211 T 479 2 L 1091 1 1433 1 1747 6
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P o P c P c P c P c P C
1753 3 2111 2 oWkt 1 2801 2 3203 2 3557 14
759 2 113 1 459 1 803 2 209 2 559 2
177 1 129 4 467 18 819 1 217 3 571 1
783 1 131 3 473 1 833 1 221 1 581 1
787 2 137 1 Y77 b 837 L 229 3 583 3
789 1 141 1 503 9 843 2 251 1 593 1
801 2 143 1 521 b 851 1 253 6 607 1
811 1 153 1 531 55 857 7 257 1 613 6
823 1 161 72 539 1 861 1 259 1 617 1
831 6 179 1 543 1 879 2 271 2 623 1
847 1 203 2 549 1 887 1 299 1 631 2
861 1 207 1 551 6 897 1 301 1 637 Iy
867 2 213 ly 557 3 903 1 307 2 643 2
871 2 221 1 579 1 909 1 313 1 659 1
873 1 237 2 591 10 917 2. 319 6 671 10
877 2 239 2 593 1 927 1 323 2 673 1
879 6 243 2 609 2 939 1 329 h 677 2
889 16 251 1 617 1 953 3 331 1 691 3
901 5 267 2 621 1 957 2 343 1 697 3
907. 2 . 269 1 633 1 963 2 347 2 701 1
913 1 273 1 647 3 969 8 359 2 709 1
931 5 281 10 657 1 971 1 361 2 719 2
: 935 92 287 3 659 3 999 2 371 1 127 1
gk9 1 293 2 663 1 3001 2 373 b 733 b
951 10 297 1 671 2 011 1 389 1 739 3
973 2 309 1 677 12 019 1 391 2 761 2
979 1 311 10 683 6 023 1 Lot 1 767 1
987 6 333 L4 687 1 03 12 413 2 769 2
993 3 339 1 689 64 okl 8 433 1 779 1
997 2 341 1 693 2 o9 6 Lhg 8 793 3
999. 2 37 2 699 1 061 15 457 9 797 b
2003 2 351 2 T07T 2 067 2 461 1 803 2
011 3 357 2 yahl 2 079 2 L63 1 821 1
OLT7 1 371 1 L3 1 083 2 e 2 823 3
027 2 377 9 719 2 089 2 k69 1 833 1
029 1 381 5 729 L 109 21 b9l 5 8h7 1
0%9 2 383 1 731 1 119 2 hgg 11 851 5
053 6 389 1 Thl 1 121 20 511 2 85% by
063 1 393 13 9 3 137 1. 517 L 863 1
069 1 399 2 753 1 163 '2 . 527 1 877 by
081 2 b1 1 767 1 167 1 529 2 881 2
083 2 k7 1 77T 1 169 4k 53 2 889 2
087 7 ko3 1 789 1 181 5. 539 1 907 2
089 2 L37 2 791 90 187 18 541 177 911 2
2099 1 24k 8 Y 31091 110 354 2 3917 2
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3919 6 L4283 2 4679 2 5077 2 sk L 5849 L
923 2 289 2 691 h 081 4 k79 2 851 3
929 8 297 3 703 1 087 1 483 2 857 1
931 3 327 1 721 2 099 1 501 1 86r 1
g9k3 1 337 1 723 2 101 3 503 1 867 2
o7 2 39 1 729 4 107 2 507 2 869 1
96T 1 349 1 733 L 113 3 519 2 879 2
%¥9 1 33T 18 T51 2 19 6 521 16 881 2

hoor 8 363 2 759 2 17 2 527 1 897 1
003 k46 373 L 783 1 153 1 531 1 903 1
007 1 391 2 787 2 167 1 557 6 923 2
013 118 397 1k 789 21 171 L7 563 2 927 1
019 1 Log 8 793 1 179 1 569 b 939 1
021 15 o1 hi 799 2 189 1 573 2 953 3
027 2 423 1 801 6 197 12 581 1 981 1
ob9 2 Ky 2 813 6 209 1+ 591 2 987 2
051 1 Wit 1 817 1 227 2 623 1 6007 T
057 1 451 1 831 6 231 2 639 2 011 1
073 1 Ls7 1 861 5 233 1 6h1 12 029 1
079 2 463 1 811 2 237 68 647 3 037 2
091 1 481 2 877 b 261 5 651 1 oh3 2
093 186 483 18 889 2 273 1 653 2 ok7 ]
099 1 493 L 903 3 279 2 657 1 053 2
111 2 507 6 909 3 281 2 659 1 067 2-
127 1 513 '3 919 2 297 1 669 1 073 1
129 2 517 2 931 1 303 1 683 2 079 6
133 L 519 6 933 2 309 1 689 18 089 8
139 1 523 2 957 1 323 2 693 L 091 3
153 1 547 2 943 1 333 b 701 1 101 5
157 2 549 3 951 2 LT 2 711 10 113 1
159 6 561 2 957 12 351 2 T17 L 121 2
177 1 567 1 967 1 %81 1 73 1 131 1
201 56 583 1 969 6 387 2 Thl 1 133 L -
211 1 591 2 973 22 393 1 3 1 143 1
217 1 597 2 987 2 399 2 9 1 151 6
219 . 1 603 2 995 3 ko7 3 779 1 163 78
229 1 621 5 999 14 413 2 783 1 173 2

231 2 637 T6 5003 2 b1t 1 791 6 197 2.
o1 4 639 2 009 8 419 1 8o1 L 199 2
243 2 643 2 ol1 3 431 2 807 b 203 1k
253 4 649 664 021 1 4 z7 )iy 813 2 211 1
259 1 651 1 023 3 hh1 2 821 1 217 1
261 1 657 3 039 2 443 6 827 2 221 1

271 2 663 21 051 101 b9 2 83 2 229 '3

hoT3 3 k673 1 059 1 5471 10 5843 2 6247 1
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P C P c P c P ¢ P c P o
6257 1 6659 1 7019 1 7487 1 7867 2 8273 1
263 1 661 1 027 6 489 L 873 L 287 1
269 1 673 1 039 18 k99 1 877 2 291 1
271 6 679 2 o3 14 507 2 879 2 293 4
277 L 689 L 057 1 517 2 883 2 297 1
287 1 691 1 069 1 52 2 901 1 311 2
299 67 701 h 079 2 529 4 907 2 317 18
301 1 703 1 103 1 537 3 919 2 329 8
311 2 709 1 109 1 541 1 927 1 353 1
317 2 719 2 121 2 547 2 933 2 363 2
323 2 733 2 127 7 549 3 937 1 369 2
329 2 737 1 129 12 559 2 %9 1 377 1
337 1 761 L 151 26 561 L 951 2 387 1k
343 1 763 k2 159 2 573 12 963 2 389 1
353 1 779 1 177 1 577 1 993 3 419 3
359 2 781 5 187 2 583 1 8009 L ko3 1
361 L 791 10 193 1 589 7 01l 3 hog 1
367 1 793 1 207 1 591 2 017 1 431 2
373 6 803 2 211 7 603 6 039 2 Lhy3 2
79 3 83 1 213 4 607 1 053 2 k7 1
389 1 8y 2 219 1 621 15 059 1 k61 3
397 82 829 1 229 1 639 2 069 1 467 2
ko1 3 833 1 237 18 643 2 081 L 501 1
Lot 6 841 8 243 2 649 L 087 1 513 1
hh9g h 857 1 k7 1 669 27 089 6 521 12
451 p) 863 1 253 98 673 1 093 2 527 3
469 7 869 1 283 2 681 L 101 5 537 1
473 1 871 2 297 3 687 1 111 10 539 3
481 2k 883 2 307 2 691 1 117 L 5h3 1
491 5 899 1 309 1 699 1 123 2 563 2
521 8 907 6 321 2 703 1 k7 2 573 2
529 6 911 2 331 5 717 L 161 8 581 3
5k7 6 oLT 2 333 12 23 6 167 3 597 4
550 2 947 2 3%l 1 27 1 171 1 599 6
553 1 9%%9 1 3L 6 1 9 179 1 609 8
563 2 959 2 3%9 L 755 1 191 6 623 1
569 b 961 2 . 393 1 7 L 209 2 627 2
57 L 967 1 k1 1 759 2 219 1 629 3
577 -3 971 1 hat 3 789 3 221 3 6kl 2
581 5 o717 1 433 1 793 1 231 2 647 1
599 2 983 1 ks 1 817 1 233 1 663 1
607 3 991 2 Ls7 1 823 1 237 2 669 1
619 1 997 & 459 1 829 1 243 2 677 12
637 14 7001 L W7 2 841 1ko 26% 1 681 10
6653 2 7013 2 7481 10 7853 2 8269 1 8689 L
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P c P c P ¢ P c P c

by 9067 2 9k63 3 9859 3 10289 2 10723 2
2 091 909 her 2 871 2 301 1 729 18
h 103 1 Y73 1 883 2 303 3 733 L4
2 109 1 k79 2 887 1 313 1 739 1
h 127 3 by 1 901 825 %21 4 753 21
2 133 6 Lot 1 907 2 331 4 T 5
1 137 1 511 6 923 2 333 2 781 1
3 151 6 521 16 929 8 337 1 789 1
1 157 2 533 L 931 1 33 1 799 2
2 161 ko 539 1 941 5 357 2 8% 2
1 173 2 sh7 2 99 1 369 4 837 172
10 181 3 551 10 967 1 391 2 8t 1
99 87 2 587 2 973 18 399 6 853 2
1 199 2 601 2 10007 1 hor 2 859 1
6 203 2 613 36 009 2 ko9 11 861 1
1 209 &4 619 8 037 26 433 ] 867 6
A 221 1 623 1 039 2 gz 2 883 2
1 227 2 629 1 061 1 kst 1 889 4
2 239 2 631 2 067 2 k59 1 891 9
2 21 2 6k 2 069 1 463 1 90% 1
2 257 1 649 16 079 2 Y 6 909 9
16 277 2 661 7 091 1 487 1 937 1
1 281 10 677 L4 093 4 kg9 1 939 1
1 283 6 679 6 099 3 501 3 okg 1
2 293 4 689 28 103 1 513 1 957 &
1 311 2 697 1 111 2 529 2 973 L
L 319 2 719 2 133 &4 531 1 979 1
6 323 2 21 2 139 1 559 2 987 2
62 33T 3 733 k& 1 2 567 1 993 1
l 341 1 739 1 151 2 589 1 11003 2
3 ™3 1 -3 1 159 2 597 2 o271 2
2 3.9 3 T+ 1 163 2 601 10 ok7 1
2 371 1 767 1 169 2 607 1 057 1
2 3T 1 769 2 177 1 613 14 059 1
1 391 2 781 1 181 1 627 2 069 1
2 397 116 787 2 193 7 631 2 071 18
8 4oz 6 791 2 211 1 639 2 08% 6
3 Y13 2 803 2 223 1 651 1 087 23
1 b1g9 17 811 1 243 18 657 1 093 L
4 hor 1 817 1 247 1 663 1 113 %
1 4z 2 829 1 2535 4 667 2 117 &
8 4233 g 833 1 259 1 687 1 119 2
2 437 2 8% 2 267 2 691 1 131 1
2 hzg9 6 851 1 271 130 709 1 149 1
h gkl 1 9857 1 10273 1 10711 18 11189 2
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P ¢ P c P C P c P c P C
11361 % 11617 1 12041 2 12ks7 1 12853 28 13267 18
171 1 621 1 o3 6 473 1 889 4 291 1
173 2 633 1 okg 2 k19 2 893 4 297 1
177 1 657 1 071 34 487 1 899 1 309 3
197 & 677 2 073 1 holr 1 901 2 313 1
213 4 681 2 097 3 hor 1 911 2 327 3
239 2 689 24 101 1 503 1 917 2 331 1 -
oz 2 699 1 107 2 511 6 919 6 337 1
251 5 701 1 109 3 517 8k 923 2 339 1
257 1 L7k 113 1 527 1 okl 1 367 1.
261 5 719 2 119 2 53 1 953 1 381 1
273 1 731 1 143 1 541 3 959 2 397 2
279 2 ™3 1 k9 1 shr 2 %7 3 399 1k
287 1 TI7T 1 157 6 553 1 973 6 hi1a 1
299 1 9 3 161 2 569 2 9719 1 M7 3
311 30 783 1 163 2 577 1 983 1 o1 1
317 12 789 1 197 & 583 1 13001 8 Wy 2
321 10 801 & 203 2 589 1 003 2 hsy 1
329 6 807 1 211 3 601 2 007 1 st 1
351 2 813 =2 227 2 611 1 009 6 k63 1
353 1 821 1 239 2 613 2 0%3 3 k69 1
369 1k 827 2 2kl 2 619 3 037 2 Yrr 2
383 1 831 T0 251 1. 637 L o3 2 87 1
393 1 833 1 253 L 64 h okg b 499 X
399 2 839 2 263 1 647 1 063 1 513 3.
411 5 863 1 269 1 653 2 093 6 503 2"
ko3 1 867 2 277 & 659 1 099 1 537 1.
kz7 4 887 1 281 2 671 7O 1035 1 553 T
Lz 6 897 1 289 32 689 16 109 1 567 3.
Y7 1 903 1 301 5 697 1 l21 2 57T %,
ko7 2 909 1 323 2 703 3 27 1 591 10
ka2 923 2 329 L 713 1 k7 1k 507 k-
483 2 927 1 343 3 721 6 151 10 613 2.
489 4 933 2 T 2 73 3 189 6 619 1Y
ko1 15 939 1 373 2 743 1 163 2 627 &
kot 1 okl 1 37 1 757 6 17 3 633 3.
5035 1 953 1 3719 1 763 18 177 1 6hg 16
519 2 959 2 391 2 781 1 183 3 669 1
527 3 969 34 Lol 10 791 2 187 2 679 2
549 1 971 1 kog 2 799 6 217 1 681 W
551 6 981 1 k13 2 809 2 219 3 687 3
579 1 987 2 2y 21 821 1 229 1 691 1.
587 6 12007 3 k33 3 823 1 2kl 8 693 L2
593 1 o1l 1 k37 2 829 3 249 46 697 1
11597 2 12037 3 -12451 1 128k1 2 13259 7 13709 1.
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