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CHAPTER I
INTRODUCTION

The purpose of this thesis is to provide an analytical method
for calculating the pressure distribution which results from a two-
dimensionsl separation interaction. Because of its allied practical
applications, the model used is the two-dimensional flat plate with
an attached deflected flap. The flow throughout the entire compression
process is assumed to be laminar and in the supersonic~hypersonic regime.

At present, the techniques for obtaining an engineering solution to
this problem are virtually non-existent. The limitation which is char-
acteristic of most solutions previously proposed is that the engineer
must use information which he does not have available. For example, 1f
the‘separation point is known, the entire pressure distribution mey be
obtained. These become merely methods for reproduclng én experimental
pregsure distribution once some characteristic of the flow has been
found experimentally.

The technigue which is developed in this thesis makes use of the
Crocco-lees mixing theory. Because this theory is semi-empirical, the
correlations which are developed represent an extension in the present
understanding of how the parameters behave downstream from separation.
By utilizing these correlations and employing a model which incorporates
a straight dividing streamline, the complete separation-reattachment

interaction is solved for the resulting surface pressure distribution.



This pressure field is obtained by making use only of the free stream

conditions ahead of the interaction and the model geometry.

The Separated Flow Problem

Since separated and reattaching flows can occur under a variety of
circumstances, an understanding of these phenomena are of great impor-
tance in the solution of many engineering design problems. The flow
may be laminar, transitional, or turbulent; steady or unsteady; and sub-
sonic or supersonic. In a&ll cases, the main cause of the phenomenon of
separation can be traced to the inability of the low energy viscous re-
gion adjacent to a body to adjust to the imposed inviscid pressure dig-
tribution.

Current interest in high velocity flight, whether aircraft or sub-
orbital vehicles, has stimulated considerable research in the supersonic
and hypersonic separation problem. Among the problems encountered are
control requirements and the prediction of pressures on the body sur-
face. Large and often unpredictable changes in aerodynamic control
characteristics result when an airflow separates from the body surface.
These control complexities become more severe at high velocities due to
the energy level of the flow. In the design of future hypersonic vehi-
cles, separated flows and their effects on the control characteristics
must be well-understood.

Effective aerodynamic controls usually involve compressions of the
local stream flow. This is because the pressure loads produced by com-
pression surfaces are considerably larger than those produced by expan-
sion surfaces. ©Separations which result from this type of compression

turn have received the most attention because of their probable use in



hypersonic flight controls. This application provides justification
for the anslytical and experimental interest in the two-~dimensional
plete and ramp model.

The adverse pressure gradient which causes the relstively low ve-
locity layer near the surface to decelerate and ultimately reverse may
result from several causes. In general, it usually results from the
effect of body geometry on the inviscid stream, or it may be caused by
a shock wave impinging on the boundary layer, or both. The thickening
of the boundary layer from these various causes affects the surface
pressure distribution. Despite the simple description, separation phe-
nomensa are quite complex.

FPigure 1 presents the essential features of the two-dimensional
free interaction separation caused by a flat plate and ramp. It should
be mentioned that the separation and reattachment shocks coalesce into
a single shock at a distance above the boundary layer. The fluid near
the body passes through a succession of weak shocks, while the flow well

out into the inviscid layer passes through only a single shock.
Scope of Investigation

Considering this separation problem from the perspective of the
engineer who in the end must apply the theories to hardware applica-
tions, the problem becomes clouded with complications. The flow cendi-
tions ahead of the interaction and the geometry are the only guantities
which are known in advance. The locations of separation and reattach-
ment, and the distribution of pressure throughout the interaction region
are not known initially. This is one important class of problems in

which the static pressures are not given, but must be determined by the
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interaction between the '

'external” inviscid flow and the viscous layer
near the surface.

The Crocco-Lees method is capable of embracing the entire separated
interaction within a single framework once the semi-empirical features
have been reasonably well defined. The probleﬁ!ié\anaiyzed by bresking
the interaction region into three distinct parts. These parts include:
1.) flat plate Blasius type flow to separation, 2.) separation to pres-
sure plateau to beginning of reattachment, and~3.)»reattachment and
transition to downstream conditions. By utilizing an empirical pres-
sure plateau correlation and the downstream pressure ratio calculated
from inviscid theory, the three segments are tied together. A straight
dividing streamline which connects the separation and Begiﬁhing of reat-
tachment points is assumed. The inviscid turning angle.dictéted by
the empirical plateau pressure is used to approximate the b:eékaway
angle which this streamline makes with the plate. By first guessing a
separation point, the beginning of reattachment point fecomeé fixed.

By working through the interaction up to the}beginning of reattachment,
it is determined if sufficient mixing has'oécurfed in the plateau.re—
gion to accomplish reattachment at the knowr. higher préssure downétream.

If the length of the mixing region (pressure plateau) is too short
to accomplish the inviscid reattachment pressure rise, a new separation
location farther forward on the plate must be selected; Iteration will
produce the proper location for the sepasration point and will give the
pressure distribution throughout the entire interaction.

In considering the foundation upon which to base the separation

development, the design engineer was kept uppermost in mind. Simplicity



of use, conceptual understanding, and accuracy were given prime con-

sideration.
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CHAPTER II
REVIEW OF PREVIOUS WORK

In early attempts by Howarth (1)*%, and others, to solve this super-
sonic interaction problem, the interaction between the adjacent subsonic
and supersonic layers within the boundary layer was considered as the
important mechanism, It was reasoned that a small disturbance in the
supersonic flow is propagated upstream in the subsonic flow, causing
the boundary layer thickness to change aﬁd to deflect the free stream.
Such methods were restricted by the assumption of small perturbations
and by the fact that viscosity effects were neglected. This technique
has been unsuccessful in assessing the effects of boundary layer sepa-
ration.

In 1952, a mixing theory developed by Crocco and Lees (2) appeared.
They considered the interaction between the dissipative flow and the
nearly isentropic outer stream as a flow model. In thelr model, 1t was
the mixing, or the transport of momentum from the free stream to the
dissipative layer, that was the fundemental mechanism in the growth of
the boundary layer. The theory accounts for viscosity through a bound-
ary layer velocity profile parameter. The skin friction, mixing rate,
and mean boundary layer temperature are estimated in terms of this pa-

rameter., The analysis treats both separation and reattachment without

*¥lumbers in parentheses indicate references in the bibliography.



placing any restriction on the size of the disturbance. The concept
of mixing between the viscous and inviscid layers has become the stand-
ard physical model used to analyze separated flows.

Another significant contribution to the understanding of separation
has been presented by Chapman, Kuehn, and Larson (3). This work was
in ascertaining the general characteristics of flow separations and in
crystallizing the notion of a dividing streamline. The dividing stream-
line may be thought of as an artificial boundary which separates the
trapped circulating inner flow from the outer stream,

By using the physical model described by Crocco-Lees, the method
for solution of this problem usually follows either & semi-empirical or
an analytical approach. The original theory was developed in such a
manner that it was semi-empirical. Three correlation parameters, depen-
dent upon the velocity profile parameter, were needed in order to de-
scribe the flow. Other researchers have chosen to develop theories
which are capable of including the entire separated flow within a sin-
gle framework, without introducing these semi-empirical features. This
is accomplished by assuming a form for the velocity profile as it trav-
erses the interaction region. Regardless of which of these approaches
is selected, nearly all of the solutions make use of the von Karman
integral momentum technique as a means of simplifying and handling the
boundary layer equations. It should also be noted that all the methods
meptioned apply only to ideal gases and two-dimensional geometries.

All employ the usual compressible boundary layer assumptions which are:
Prandtl number of unity, viscosity proportional to temperature, no heat

transfer at the wall, and zero pressure gradient normal to the wall.



The original Crocco-Lees theory hag been examined and extended by
Cheng and Bray (4), Cheng and Chang (5), Glick (6), and others. How-
ever, the semi-empirical feature and the general lack of detailed exper-
imental data, particularly for supersonic laminar separated flows, has
directed attention awasy from this method. This has been true because
the three correlation parameters which are necessary must be derived
from other sources, either theoretical or experimental. There are no
theoretical solutions for separated flows so experimental values must
be used entirely. Since the Crocco-Lees method is used in this inves-
tigation, its facets and details will be elaborated upon in the fol-
lowing chapters.

There are other possible ways to treat separated and resttaching
flows. By employing the first moment of momentum in addition to the
usual (zeroth) momentum integral, another relationship between the flow
variables is obtained. This first moment equation is obtained by mul-~
tiplying the momentum equation by u and then integrating across the
boundary l@yer, This first moment, plus the choice of an alternate pa-
rameter that is satisfactory for the treatment of separated flows, de-
termines the essential differences between the Crocco-Lees method and
other approximate integral methods.

For example, Tani (7) used a fourth-degree polynomial to describe
the velocity profile, in which the parameter has a physical meaning in
that it is proportionel to the shearing stress at the wall. Tani ap-
plied his method only to attached flows. Pinkus {8) extended the Tani
method to separated laminar boundary layers on compression corners and
curved surfaces. The chief criticism voiced against the use of polyno-

mials to describe the separated flow is that they are not capable of
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describing the constant pressure plateau regioﬁ which is characteristic
of laminar separations. Due to the mass entrainment (or mixing) which
takes place in the plateau region, a similar profile throughout this
region cannot be justified.

In an attempt to avoid some of the difficulties encountered with
polynomials, Lees and Reeves (9) have elected to use the Stewartson (10)
reversed-flow profiles. As in the Pinkus method, the successful appli-
cation of this method to separated and resttaching flows hinges on the
proper choice of the one-parameter family of velocity profiles which is
utilized to determine the integral properties of the wviscous flow. The
single independent parameter is not explicitly related to the local
static pressure gradient. They found in their development that the
Stewartson reversed-flow profiles had the qualitatively correct behavior
while polynomials did not. The Lees and Reeves method dces raise some
complications in that these profiles are not available in the form of
analytical expressions. The velocity profiles which are used have never
been substantiated by experimental measurements. Also, no constant
pressure plateau region can ever be reached except in an asymptotic
sense.

Makofski (11), like Tani and Pinkus, has elected to represent the
velocity profile with a polynomial. He uses a fifth-degree polynomial
and two undetermined parameters instead of the usual cne. One of the
parameters is related to the skin friction at the wall, while the other
is proporticnal to the imposed pressure gradient. As with other methods
which use polynomials, the primary difficulty lies in its application to
the constant pressure plateau region downstream of separation. There

are additional mathematical complexities introduced by the second
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parameter, the only justification being the possibility of obtaining
significantly better results.

Two methods which differ somewhat from the usual pattern of those
already mentioned include the "free interaction" theory by Erdos and
Pallone (12) and the "method of integral relations" which is being ac-
tively pursued by Nielsen, Lynes, Goodwin, and Holt (13).

The free interaction concept may be applied to bofh laminar and
turbulent flows. This analysis treats the complex separation phenome-
non in two phases: 1.) A study of shock-~boundary layer interaction
(without specification of the location of the interaction with respect
to the compression corner). 2.) Application of the results of the first
phase to the problem of flow separation in a compression corner, ana
determination of the location of the separation andireattachment inter-
action.

In the first phase, semi-empirical equations are developed for the
determination of the pressure distribution in the free interaction. In
the second phase, the location of the separation and reattachment points
has been fixed by an empirical correlation formula. With the correla-
tion formula and the free interaction equations, it is possible to pre-
dict the complete pressure distribution for a shock-separated flow.
However, this correlation formula is based upon very meager data, a
single experiment, and is only a first approximation. Additional dats
is needed to confirm and extend the results.

The "method of integral relations" has been mentioned with in-

creased frequency as a new and promising analytical method for handling

the separation problem. This technique, & general method of numerical

soluticn for nonlinear fluid-dynamic problems, has the important
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advantage of being well-suited for digital computation. The approach
was first introduced by Dorodnitsyn (1k4). Principal among the inherent
difficulties is the fact that the one~parameter family of velocity pro-
files used does not represent accurately all the possible velocity pro-
files that can be developed in separated and attached flows.

The review of literature makes one cognizant of the similarities
which exist among the different methods. All techniques employ basi-
cally the same physical model and assumptions. The chief difference
which appears is whether semi-empirical correlations are used to rep-
resent the velocity profile changes or whether some velceclity profile
shape must be assumed.

To attain the goal of an engineering solution to this interaction
problem, the Crocco-Lees semi-empirical approach was selected. The
velocity profile changes are absorbed in the correlation parameters,
without becoming involved in the detailed changes in the velocity pro-
file shape. It was felt that the requirements of simplicity, concep-
tual understanding, and accuracy could be hest satisfied by using this

method of attack.



CHAPTER III

DEVELOPMENT OF THE CROCCO-LEES METHOD

The so~called free interaction type of boundary layer separation
is the classification which is of interest in this study. In a free
interaction the pressure distribution of the outer flow is considered
to be the result of a mutual interaction between the boundary layer and
the inviscid flow. In a free interaction the flow is independent of
the direct influence of the downstream configuration and is also inde-
pendent of the manner of inducing the separation.

The original Crocco~Lees paper dealt with flows up to the point of
separation for compression corners end for the aft flow over a super-
gonic airfoil with & blunt treiling edge. The original concepts which
apply up to the point of separatlon have remained essentially unchanged
except for the behavior of the mixing rate parameter (C(K)). Glick (6)
has extended the technique to include the separated region and has
cleared-up some troublesome detalls near separation, such as the cor-

rect behavior of C(K).

Velocity Profile Parameters

The Crocco-Lees method is based upon the assumptions that the pa~
rameters describing the boundary layer are dependent upon the rate of
entraimment of fluid into the boundary layer from the external stream

and that there exist certain universal correlation functions which

13



relate these parameters., The boundary layer profiles are absorbed in
the definition of a new velocity profile parameter., The analytical

development for the method hinges on the velocity shape parameter, K,
which is non-dimensional and is defined as the ratio of the momentum
flux to the product of mass flux and local external velocity. It may

be expressed as

K = I = momentum flux ,
m ug mass flux x Vg
where

§

I = f pu2 dy
o)

— §

n = f pu dy .
o)

Different K's are associated with different velocity profiles. This
gives a conceptusl feeling for the changes which occur without becoming
involved in the mathematics which describe the actual profile shape.
This method is consistent with the concepts that the velocity profile
is dependent upon its previous history and that K at separation can
differ from K at reattachment.

This basic parameter which characterizes the flow in the viscous
region may be defined in terms of either compressible or incompressible

boundary layer variables (2, 6) as

2 BH
KeB-8-8 _ 5-8-& (1)

&~ Sq %5_— %;ﬂ .
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The Stewartson (15) transformation, which assumes a Prandtl number of
unity and viscosity proportional to the absolute temperature, is uti-
lized to transform a compressible boundary layer into its equivalent
incompressible form. It may be observed that K is not determined solely
by 8§, and it is not explicitly related to the free stream velocity gra-
dient along the plate outside the viscous layer.

By dividing the momentum flux by the mass flux, a mean velocity
(uy) is obtained for the viscous region. Also, without attaching any
physical significance to the definition, one can think of a mean-
temperature (Tl) across the viscous region and a mean-density (pl).
These are related by the perfect gas law as

T, = p/pR .

The ratio of the mean-temperature to the temperature at the edge

of the boundary layer is called f. This parameter, defined in terms of

the incompressible boundary layer variables, can be shown to be

f w iy e 55;"5,-"84354: R 188 (2)

e (& -%%) (8,-8f) .

In a sense, the deviations of f and K from unity measure the non-
uniformity of the velocity profile. For every incompressible boundary
layer flow, f and K can be related to each other. Compressible bound-
ary layers may be expressed in an equivalent incompressible form. Once
transformed, each streamline location in the flow region correaponds to
a point in the f-K plane, and the whole class of flows (attached, sep-
arating, separated, etc.) is represented by a single locus of points in

the f-K plane.
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For convenience, an alternate mean~temperature parameter, F, is

defined as

" w4
If N - & — o4
F= <Kz Dm (-9 &%) . (3)

F and X, just as f and K, are defined by incompressible boundary layer

parameters and are uniquely related.
Tguations Which Define the Flow

For mathematical solution, a model must be selected to represent
the physical phenomenon. For purposes of analysis, the flow is divided
into two parts -~ an outer region which is assumed to be essentially
nondissgipative, and an inner region in which the viscosity is assumed
to play an important role. Filgure 2 expresses the separated region in
terms of the Crocco-Lees model. The extent of the viscous region is
measured by the length, 8, which for the case of a body in a high-
Reynolds-number stream is the usual boundary layer thickness. The
definition of the length § is artificiel. Physical guantities, such
as pressure and interaction distance, only depend to a small degree on
the definition adopted for &,

The definition for laminar boundary layer thickness (8) is the
distance above the surface at which the wvelocity ratio u(6>/ue has a
particular value. Recause of the way in which it is defined, it is &
hard quantity to measure experimentally. Small changes in the defini-
tion of § do not modify the character of the final results, but they do
alter the intermediate numerical values. Any reasonable value of §

should give qualitative agreement with experimental results.
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The variations in the velocity profile parameter, K, besides being
dependent on the profile shape are also dependent on the definition
used for §. If u((s)/ue is taken as 1.0, the whole f-K curve reduces to
a single point, and in terms of the shape psrameter, all profiles are
the same, If a u(é)/ue of .82 is selected as the definition used, all
profiles between the flat-plate~type flow and separation have nearly
the same K.

As & criterion for the optimum selection of a definition for 6,

AK = Kb - KS should be selected as & maximum. It was found that this

AK maximum requirement resulted in a definition of approximately

u(ﬁ)/ue = ,96. Also observed was the fact that AK was almost constant
between § = .94 and .98, and any value within these limits is the most
desirable. In this investigation, the value used for u(G)/ue is the
same as the one used by Glick and has a numerical value of approximately
.95. By using the same boundary layer thickness definition, it was felt
that a more meaningful extension of the method could be obtained.

The Navier-Stokes equations are unwieldy and have not been used
successfully in the interaction solution. In order to permit a meaning-
ful mathematical analysis, several simplifying assumptions must be em~
ployed. The principal assumptions which have been employed may be
grouped into the following three categories:

1. The usual boundary layer equations describe the viscous region.
The boundary layer equations have evolved from the Navier-Stokes equa-~
tions by assuming a.) the gradients of viscous stresses in the flow
direction are negligible in comparison with the static pressure gra-
dient in that direction, b.) the pressure gradient normal to the sur-

face is zero, and c.) by making an order-of masgnitude comparison o
’ - " B
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eliminate terms. The second restriction, zero pressure gradient, does
not hold in actual practice for some cases. Fér example, in the super-
sonic part of a boundary layer the pressure is nearly constant along
Mach waves, which at higher Mach numbers could introduce appreciable
pressure gradients. Also, in the vicinity of the point where a shock
wave impinges on the boundary layer, large pressure gradients normal

to the wall must exist.

In this analysis the static pressure across the internal viscous
region 1s taken as being equal to the logal pressure in the outer
invisecid region. The analysis is further restricted to flows over
adigbatic walls. This simplifies the viscous equations since no energy
is transferred at the wall.

2. The boundary layer is assumed to remain leminar throughout the en-
tire interaction. In this study, only boundary layers which are rela-
tively well understood are included. The present formulation, while
gualitatively capable of handling transitional and turbulent interac-
tions, will not be applied to these cases. In addition, the flow is
steady with a constant stagnation temperature throughout the entire
interaction region.

3. The fluid (air) is assumed to be thermally and calorically perfect.,
The flow in the outer inviscid region is supersonic and isentropic.
This means that the Prandtl-Meyer relationship may be used to determine
the flow direction as it proceeds through the interaction compression.
As already mentioned, a Prandtl number of unity and viscosity propor-
tional to the absolute temperature is required in order to determine
the equivalent incompressible boundary layer for sach compressible

boundary layer.
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The flow within the viscous region is described by the momentum

and continuity equetions which can be written in the following form:

L= (13- 5(50-7 (%)
K=/ e<‘“ ~tan 6) (5)

where 6 1s the streamline direction angle at y = § relative to the wall.
(A complete development of the equations used in this chapter is given
in Appendix A.) 1In all previous work using this model, it has been the
practice to replace tan 6 by 6. In order to obtaln as accurate values
as possible, tan 8 will be used throughout in this analysis. The mag-
nitude of errors introduced by the various approximations which have
frequently been employed will be discugsed later in this chapter.

Equations (4) and (5) may be written in the following form:

We C dF
-l ko) = v (45 - BYes - g (92 (6)

dm :( e)( ~tan ©) (1)

where B 2
qS:O—.Z We>
e \{VVe 9
L ue/at .
and
a, = VyRTt .



In addition to these two equations for the viscous region, the
Bernoulli equation is used to describe the external inviscid fiow. It
can be shown that this equation mey be expressed as

4 o e (8)

In addition to these three equations, (6), (7), and (8), the mass

flux in the viscous region can be expressed as

o :5/9u.8 ::§%$ﬁ%?~ . (

\O

Since m = E'at, equation (9) is used to obtain the following expression:

where

The Prandtl-Meyer relationship used to express the flow angle 6, can
be expressed in terms of w,, i.e., 6 = e(we), giving another independ-
ent equation.

This system of five equations involves eight unknowns (&8, m, X,
Was Cpo ¢l’ p, and 8). To account for the three remaining unknowns and
thus complete the mathematical formulation of the method, semi~empirical
coefficients are introduced. These account for the mean temperaturs,
the skin friction, and the mixing in the viscous region. These addi-
tional parameters, all dependent upon the velocity profile shape param-
eter K, are defined as F(K), D(K), and C(X). F(K) is related to the

mesn temperature-mean velocity correlation; D(K) is the skin friction
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correlation function; and C(K) is the mixing rate correlation function.
F(K) has already been described in terms of the velocity profile vari-
ables, In terms of the eight variables, these new correlation functions

are expressed as follows:

FiK)=F =ﬁ-EP’*- -(|-¥5_-I-w.“) = ﬁ%’— -t (10)
DK)=D = Feay (11)

4g
C(K)zc 2az M - m}{ (12)

In the solution of the interaction problem, the functional dependence
oflthese empirical coefficients must be obtained through correlation
with experiments.

With these definitions of F(K), D(K), and C(K), the system of
equations may be solved simultaneocusly to obtain the following set of

non-linear first order ordinary differential equations:

_KFTE[-KED- (%'_'_'ﬂ [K(+eX1- 5 ey KM t‘(Y-fﬂ:] +an 9}

a5 \
s = ¢ {K(Fa-t)(‘—;%:l met)+KEr=I) Met® = KF(F+t+K S-E )} i
and
s F
o 8 e G- e (4E)] +tan 0] N

C{K(F)( - 2 MEL) + K(y-1) M:t’-KF(Fn-»K—j,"()} _
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These two general equations describe the flow and are basic to the
Crocco-Lees method. By proper selection of the parameters C(X), D(K),
and F(K), these equations may be specialized to the various flow regions
within the interaction. In these two equations, several terms have been

combined and written as new quantities which are defined as follows:

- D)
S = ZEEKY CKY

N PO =B = Q
t== =(-%'%) = Feres

S

—_m__ .M
Qg My Se .
The quantity z which appeérs in the sbove general gystem of equa-
tions behaves like a Reynolds number. It may also be written
[ ds
o SO
S ’
which 1s dimensionless and has all the terms that appear in a Reynolds
-number. Conceptually, it is evident that 7 should incresase with dis-
tance down the plate because it is related to the boundary layer
growth. In the separated flow region, ¢ would be expected to grow
more rapidly than in a normal flat plate case, due to the large changes
in boundary layer thickness. The rate at which { grows is related to
the mixing. The more vigorous the mixing, the faster the rate at whichn
¢ and boundary layer thickness increase.
A discussion of how the two general equations, (13) and {1k), have

been modified or adapted to each of the three regions will now be given.



Blesius to Separation

In the region upstream of separation the boundary layer is at-
tached. The correlation parameters which are used in this region have
been developed by Glick (6), and while not optimum, they do give quali-
tatively correct pressure distributions. The parameters which were
obtained have been derived from both detailed theoretical and experi-
mental data. It was found that all three of these parameters varied
in this region. In the interest of simplicity, linear or other simple
variations were selected for each parameter.

F(K) was obtained from a maximization method which was found to be
in fair agreement with the curve based on the Falkner-Skan solution.
This maximum method leads to a simple expression and in this form is
helpful in obtaining the mixing rate correlstion function from the ex-
perimental studies.

The D(K) relationship that was used in this region was based upon
the Falkner-Skan solution. The D(K) correlastion is probably the best
understood of the three parameters. It is related to the skin frietion
and 1s the easiest to measure experimentally.

The C(K) correlation was obtained from detailed analytical and
experimental Schubauer ellipse data. The C(K) variation differs appre-
clably from the correlation curve which was used previously. The early
workers had used a relstionship derived from the Falkner-Skan solution.
This curve was found to be qualitatively different from the curve based
on experimental results.

The correlation parameters which are used in equations (13) and

(14) for the Blasius to separation region are:
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: - 2 (1-K)
P(x) (2K-1)
D(K) = 22.2 (K - .63)

C(K) = 36.2 (K ~ .63) .

It should be noted that the method for defining the boundary layer
thickness is artificial and will lead to different numerical values for
F(K), C(K), and D(X) when some other definition is assumed. The above
parameters may be used only with the § definition which has been

adopted.

Seperation to Beginning of Reattachment

Beyond the separation point the flow 1s detached. Since there are
no detailed theoretical studies which apply to separated and reattaching
flows, this region must be handled differently than the attached region.
It is assumed that the skin friction at the wall is sufficiently reduced
50 that it can be neglected in this region. D(K) is taken as zero
rather than trying to approximate the average negetive value which this
parameter would have. As a first approximation, F(K) is taken as con-
stant and equal to the value at separation. The mixing rate correlation
function, C(K), is more elusive and must follow a trajectory such that
the correct pressure distribution results. The shape and dependence of

this trajectory will be discussed in the next chapter.

By taking
DK) =0 ,
F(K) = Fe
and c(K)y =¢

the generalized equations may be written in & simpler form as
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—KF {%E: - K(F+)- Q-l—;—? (K(F-vt)(\—é\;_ﬂ M:t) sKMet0Y- l))] +tan 6}

ﬂ”é“: AVl o 2 z oz (15)
C {K(Ht)(u— Bl mdt)+ K(Y-1) e £~ KF (F+1)}
and
C —
dMe . _~Me {? Et" K(F+t) = Q1 K)(F“‘t{l + tan © } )

95 CIKED(- 2 ME L)+ K- MEL" - KF (Fet)]

Mixing in this region is of paramount importance. After separation
the flow is essentially divided into two parts by the dividing stream-
line. The fluid along the dividing streamline is accelerated by viscous
momentum transfer in the region between separation and the beginning of
reattachment. The fluid is thereby prepared for the reattachment pres-

sure rise which occurs on the ramp when this streamline is stagnated.
Reattachment

It has been previously noted that the skin friction is probably
the best understood of the three correlation parameters. In the reat-
tachment regicn, the skin friction has a negative value ahead of and a
positive value downstream from the reattachment point. To simplify the
analysis of this region, the positive and negative regions offset one
another, and may be taken as negligible over the entire region. Just
as in the separation to beginning of reattachment region, D(K) will be
taken as zero.

The mixing rate correlation, C(X), must come principally from

experiment. The experiments of Chapman, Kuehn, and Larson (3), using
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a special model to study the reattachment process, has helped to sub~
stantiate the belief that mixing is negligible in the resttachment proc-
ess. It has been poinﬁed out that the most important phenomena in the
reattachment process are the deceleration of the flow and the contrac-
tion of the viscous region, and not mixing. In the spirit of simplic-
ity, C(X) has been taken as zero in this region.

The only parameter left to be defined is F(X). This perameter is
the hardest to determine because it is dependent upon veloecity profile
measurements, which are virtually nonexistent for separated flows of
this type. F(X) is used to correlate the flow behavior throughout the
reattachment region since it is closely allied with the actual profile
changes. It seems apparent that the deceleration and contraction of
the viscous region can be easily associated with the various changes
in FP(X) values. The character of a particular reattachment pressure
rise can be related to changes in F(K). A discussion on how F(X) has
been correlated, using experimentsal data, is deferred until the next
chapter,

The general equations, (13) and (1L4), are not altered to handle
this region. Since 7 is dependent on the amount of mixing (related to
the boundary layer growth), and does not vary in the reattachment re-
gion, it is simpler to develop a new set of equations which relate

changes in K to the change in M, and x-distance.

dé

Starting with the basic momentum and equations which are

given in Appendix A,

35 ~ ﬁz Ciizle :@_o’)(lui«:) (%ﬁ- %?—) (A-12)
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two ordinary differential equations may be obtained. The two relation-
ships which are desired are dM,/dK and dx/dK. From (4-12), by taking

dm/dx = 0 (zero mixing),

e (17)
aK K F(K)

is obtained, where the F(K) behavior has not yet been defined. From
the d§/dx equation, by taking C(X) and D(X) zero, and meking the sub-

stitutions

aM Mea q1¢
e . .2 &K and We2 = M@Qt ’

dx Kr dx

the following equation is obtained:

i xe [FeerkE - G- ) -(Eme s

d (18)
K Re, -_E_.,_EQLQ_

The method of numerical sclution for these three regions will be

discussed in the following chapter.
Transformation to Beal Plane

No mention has been made yet on how the generalized differentisl
equations are transformed into a meaningful pressure versus distance
distribution along the plate. The transformation back to the physical

plane is made by using the continuity equation. The separation point
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is taken as a reference and the continuity equation is integrated. The

resulting expression may be written in the form

3Y-\
e el Y- 2\* SdS Me |I* e
l‘;x_,‘ i Ra‘s (l*""g.' M-) C(K\ Me |+3-z;'|_ M,: (19)

This equation is used in the entire region from the Blasius point to
the beginning of reattachment.
The pressure corresponding to a given point is obtained directly

from the isentropic relationship

(20)

where M’b is the reference local Mach number at the point where the
pressure first starts to increase. This pressure relationship is used

throughout the entire interaction.
How K Changes With Velocity Profile Changes

One value of the velocity profile shape parameter K, because of
the way it is derined, can describe many different profile shapes. It
is noteworthy to point out that in particular, a given value can de-
scribe both an attached and a separated profile shape or two different
separated profiles. With the definition for § which has been selected,
the flat plate Blasius type profile is represented by K = 0.693 and the
separation profile by K = 0.63. K is a minimum at the separation point
and must increase again with the presence of a reversed flow adjacent

to the surface. K reaches a maximum value which is larger than the
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Blasius value somewhere in the separated region. In the reattachment;
since the experimental profiles have not been determined accurately,
it will be assumed that the Blasius value of K is approached from the
positive side, rather than traversing first through a trajectory which
leads to K-separation. The arguments here become heuristic in nature.
From schlieren photographs of the flow downstream from reattachment,
there is observed a "necking down" in boundary layer thickness. After
this, the boundary layer appears to grow in a normal fashion and would
be expected to correspond to the Blasius K. In the vicinity of reat-
tachment, because the flow impinges on the surface, the boundary layer
can be thought of as more nearly resembling a slug type flow. In other
words, the displacement thickness might be thought of as being a mini-
mun at resttachment and then increasing to the Blasius value.

Figure 3 illustrates approximately how K and the velocity profile
shapes are assumed to vary, starting from a Blasius profile and then
traversing the entire interaction region. All of the boundary layer
details have not been preserved in this illustration. Tor example, the
free stream velocity u, and the boundary layer thickness § would both

change from location to location.



l l. Blasius flow

(:) ! 2, Separation point
Ve 3. Separated region :
7 gt (K = Kp)

' - L, Separated region
| (K > Kb) '
! 5, Beginning of
Reattachment (Kp.,)
{ 6. Attached flow '

T. Blasius flow

\ Q@ |

Kg = .63 Ky = .693 K> Ky oo ™ Ky
VELOCITY PROFILE PARAMETER, K

Figure 3. Approximate Velocity Profile and K Changes
Throughout a Free Interaction



CHAPTER IV
SOLUTION IN THE INTERACTION BEGION

This chapter discusses how the equations are solved and the manner
in vhich the required correlations with experimental data were obtained.
The solution of the entire interaction is handled in the same three
segmnents or regions as described previously. A subroutine was written
for each of these three regions and incorporated in a general program.
The general program was solved using an IBM 7040 digital computer. A
discussion of the complete interaction and general program, each sub-

routine, and the experimental date selected 1s given.
General Solution-Complete Interaction

Before discussing the complete computer solution, it should prove
beneficial to discuss deteils which are charascteristic of leminer
separation~pressure distributions. In laminar separations, the pres-
gsures along the plate and ramp surfaces are influenced over a consider-~
ably larger region than for turbulent separations on a similar geometry.
Figure 4 illustrates the details of the various surface pressure dis-
tribvutions which can be obtained by making various assumptions for
supersonic and hypersonic flows.

The simplest example is explained by Figure L-a, which is the
idealized inviscid flow model. No boundary layer exists, and the shock

originates at the juncture of the plate and ramp. This idealized model

32
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has the pressure distribution indicated in which a single discontinuous
pressure rise occurs at the ramp corner.

The next configuration illustrated, Figure L-b, is a two-ramp con-
figuration in which the straight dividing streamline is replaced by a
solid surface. In this case the flow must negotiate two idealized in-
viscid turns with the two pressure discontinuities as indicated. The
two surface discontinuities can be used to correspond to the separation
and reattachment points respectively. There is no way to know in ad-
vance how to approximate the separation and reattachment points, and
hence, to approximate the location of the intermediate ramp.

The actual pressure distribution is shown in Figure L-c. Note that
the pressure decreases to a minimum at the beginning of the interaction,
rises to a constant plateau value which extends to or beyond the ramp
corner, and then rises rather sharply to a final value. In actual ex-
perimental tests, the pressure ratio may reach a peak value after reat-
tachment and then decrease slightly. The Mach number at the beginning
of the interaction is less than the free stream Mach number. This re-
sults in a pressure ratic greater than one at the start of the inter-
action, when based on the free stream pressure. This decrease in Mach
number results from the viscous interaction effects caused by the plate
leading edge. If the reference pressure is taken as the pressure at
the beginning of the interaction (p,), the resulting pressure distribu-
tion is shifted downward as shown.

The last part of Figure I shows how the pressure distributions
from the previous three parts appear when they are superimposed on one
another in the same figure. In this figure, all curves except (p/po)

are dependent upon the free stream reference conditions. As a general



rule the final downstream pressure ratio predicted by the single invis-
cid turn, does not differ greatly from the final p/po ratio.

In the literature on separated flows, it has become standard prac~
tice to use the pressure at the beginning of the interaction as the
reference value. This study also follows the standard convention by
selecting p, as the reference pressure.

To tie the complete interaction together within a single framework,
and to obtain the necessary semi-empirical correlations, it becomes
necessary to make some assumptions regarding the resultant pressure
distribution. Flrst, it is assumed that the final pressure on the ramp
corresponds with the same pressure ratio which would be obtained if the
free stream flow negotiated the single inviscid turn as shown in Figure
b-a, This compromise was imposed as a result of experimental pressure
measurements on the ramp surface at different Mach numbers. At low
Mech numbers (2-5) it appears to give good correlstion, while at higher
Mach numbers it is below the peak pressure in many instances.

Additional assumptions regarding the plateau pressure ratic and
its typical behavior are made. On the basis of the observed experi-
mental pressure distributions, it is assumed that once the plateau
region is reached, the pressure ratio remains fixed until the beginning
of reattachment. TFigure 5 presents a plot showing how the experimental
plateau pressure ratios appear when compared with the correlation equa-
tion selected. This equation is the same as the one presented by
Sterrett and Holloway (16), except that the numerical coefficient was
changed. The plateau pressure ratio has been approximated by the fol-

lowing expression:
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This equation normalizes the spread in the experimental variastion and
provides a closed mathemstical expression for calculstion purposes.
It should be noted that the dependent parameters are the Mach and
Reynolds numbers at the beginning of the interaction.

This plateeau pressure eguation differs from the one Chapman, Kuehn,
and Larson (3) developed in that a (Mo%) term appears in the denomi~
nstor. Other semi~empiricel correlations (17, 18) were tried, but the
expression gselected gave the hest fit of the data,

The breskaway sngle which the dividing streamline mekes with the
plate was assumed to be the inviscid turn angle which would be neces-
sary to reach the calculated plateau pressure. At low Mach numbers,
this technique gilves angles vhich correspond closely with the measured
angles in the schlerien photographs. However, at higher Mach numbers
these angles were smaller than the measured angles. For a fixed geom-
etry, experimental observations indicate that the plateau pressure ratio
increases rather slowly with increasing Mach number, while the overall
pressure ratio increases rapidly.

Since the goal of this thesis is to predict the entire pressure
interaction, a "beginning of reattachment” must be specified. The
scheme being discussed requires that the location where the reattachment
pressure rise first starts must be known, and, of course, the resultant
pressure distribution should be in good agreement with experimental

messurements. Several previous investigators (6, 8, 9) have considered
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that the reattachment pressure rise begins at the ramp corner, while
Erdos and Pallone (12) use the dividing streamline to locate the reat-
tachment pressure rise. In their solution, Erdos and Pallone assume
that the reattachment of the dividing streamline on the ramp corresponds
with the mid-pressure point of the reattachment pressure rise. The
merit of either of these techniques regts in its correlation with the
observed experimental data used. The first procedure, where the pres-
sure rise begins at the corner, has been compared prineipally with low
Mech number date, while Erdos and Pallone have used but & single exper-
iment at Mach 2.0. In this thesis, a general technigque was sought.
After examining considerable experimental data, a feir spproximation

for the beginning of resttachment in the Mach 2-10 range, is to consider
that the reattachment process begins at the point where the dividing
streamline impinges on the ramp. This gives considerable deviation

from selected experiments at the lower Mach numbers used (2.0-3.0), but
the correlation was found to be quite satisfactory above this range.

The technique for solving the complete intéraction pressure dige
tribution is schematically outlined by the computer flow diagram in
Figure 6. The only program inputs are free stream Mach and Reynolds
numbers, the location of the ramp corner and end of ramp, the ramp
angle, an approximate value of the Mach angle which corresponds with
the known ramp angle and Mach number, the ratioc of specific heats, the
AK Increment used in the numericgl integration, au accuracy term, and
the F(XK) value which correlates the reattachment process. Program in-
puts also included an estimated value for the location of the separation
point and a term which specifies the maximum number of iteration loops

allowed before the solution is automatically terminated. The latter
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of these last two terms is used to safeguard against the use of too
much computer time when a slow convergence is encountered. An estimated
value for the location of separation was used to start the calculations.
This very probably could have the effect of reducing the time required
to obtain a solution. The value 1.4 has been used throughout this work
as the ratio of specific heats, y. This quantity was assigned a vari-
able name to permit the use of different vy's, had the need arisen. The
approximate value for the Mach angle was input to start the Newton-
Raphson calculations. This insures that the method will counverge on
the correct angle. All of the remaining input quantities are obtained
directly from the known flow and geometry except for the AK increment,
accuracy, and F(K) terms. The AK increment and asccuracy terms are
chosen arbitrarily while F(K) comes from a previously determined cor-
relation curve.

Figure 7 explains some of the solution particulars which, together
with the flow diagram (Figure 6), will be helpful in the discussion
that follows. Note that the location of the separation point controls
the whole solution. A change in the location of separation affects the
plateau pressure ratio, the dividing streamline breskaway angle, the
location of the beginning of reattachment, and hence, the whcole pres-
sure distribution. The computational requirements necessitate that the
correct downstream Mach number be reached at the same time the Blasius
value of K is reached. By adjusting the location of the separation
point it is possible to match the downstream reguirements and also to
have the correct final velocity profile shape.

After reading the input values, the géneral program first calcu-

lates the downstream Mach number and pressure ratio by using the
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inviscid flow relationships. The pressure ratio becomes the final val-
ue which must be matched at the end of the reattachment portion of the
solution. The next step in the solution is to solve for the pressure
distribution between the beginning of the interaction (Blasius point)
and the separation point. The BLASEP subroutine is called for in these
calculations.

From the conditions which are found at the Blasius point, the
plateau pressure ratio, streamline breakaway angle, and the beginning
of reattachment locetion are determined. Next the pressure distribu-
tion between the separation point and the beginning of reattachment is
found, using the SEPSH subroutine. This subroutine calculates a pres-
sure distribution shead of the pressure plateau and maintains a constant
pressure ratio throughout the plateau.

The x-~-distance measurements are made along the surface of the plate
and ramp, rather than along the axis. The direction of the streamline
at the edge of the boundary layer, 6, is measured with reference to the
plate and ramp surfaces. At the ramp corner this reference changes and
necessitates a compensation in the reattachment portion of the soclution.
The angle 0 is calculated using the Prandtl-Meyer relationship. Since
the local free stream Mach number does not change in the plateau region,
the direction of streamline at the edge of the boundary layer remains
fixed. As far as the pressure in the outer inviscid flow (outside the
boundary layer) is concerned, the change in the direction of the plate
and ramp boundary is not realized until the beginning of the reattach-
ment pressure rise. For this reason, no change in the wvalue of 6 has
been incorporated prior to the beginning of reattachment. For calcula-

tion purposes, the measured value of the ramp angle cannot be used for



this turn. Instead, an equivalent turn angle obtained from the Prandtl-
Meyer relationship must be used. This is necessary because the incre-
mentel changes in the outer streamline direction have been approximated
by using the Prandtl-Meyer equation. By such a procedure, the down-
gtream Mach number and streamline direction may be matched for all
flows, once the correct separation point location has been obtained.

The next step in the computer program is to solve the reattachment
region, For this, the REATCH subroutine is celled. The solution in
this region starts at the last point in the SEPSH solufion and works
toward the Blasius-profile flow. The correct overall solution is ob~-
tained when the downstream pressure ratio and Blasius K value are
reached simultaneously. When this desired end result occurs, the pres-
sure distributions found by the BLASEP, SEPSH, and REATCH subroutines
give the correct overall pressure distribution. When a satisfactory
match in the reattachment region is not obtained, a new location for
the separation point must be selected and the entire cycle of calcula-
tions repeated, starting with the BLASEP subroutine.

Two corrections are possible in reposi£ionin@ the separation point.
The separation point must move either upstream or downstream with re-
spect to its previous location. This adjustment can be determined from
the way K and the pressure ratio behave near the end of the REATCH solu-
tion. In the case where the Blasius value of K is reached before at-
taining the desired pressure ratio, the separation point must be moved
forward of its previous location. When the final pressure ratio is
reached before the Blasius K value is reached, the pressure distribution
will intercept rather than asymptotically approach the final downstream

pressure. This signifies that the mixing region was too large and that
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the separation point should move closer to the ramp corner. Figure 8
illustrates the characteristic behavior of the pressure distribution
when the separation point is forward, aft, and at the correct location.
Another point to be noted in this figure is that the plateau pressure
ratio decreases as the separation pbint moves closer to the corner.

The general program adjusts the separation point location in ac-
cordance with the checks mentioned. The magnitude of the adjustment
is controclled by how closely the final end conditions are matched. In
general, it takes only a few steps for the solution to converge on a
separation point which will satisfy the end conditions downstream.

An item which has not been previously discussed and which has con-
terms. This value, like the size of the integration increment, is arbi-
trary. The accuracy term is used in both the BLASEP and SEPSH subrou-
tines and in the general program. In the BLASEP subroutine it is used
in determining when the correct Eq and (4 have been found, and in the
SEPSH subroutine it is used in matching the calculated plateau pressure
ratio. Its use in the two subroutines will be discussed in the follow-
ing two sections. In the general program it is used in a check to zee
if the calculated final pressure ratio is close enough to the inviscid
final value to allow the solution to be concluded. Figure 9 illus~
trates how the accuracy term is used in specifying the bhand of values
which constitute an acceptable solution. 1In all cases, K must reach
the final Blasius value before the check is performed. This means that
the final pressure cannot be grester than the final inviscid value, but

it can be in the range determined by the accuracy term.
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An accuracy term of .05 has been used throughout this investiga-
tion. This wvalue is used in the general program and both subroutines.
In preliminary calculations, values larger and smaller than .05 were
used. It was found that the number of steps needed to obtain the de-~
sired convergence increased with smaller accuracy terms, while the over—
all accuracy decreases rapidly with larger values. For an engineering
solution, .05 was found to give good results.

The AK increment used in the numerical integrations likewise has
some bearing on the overall accuracy. After trying several values,

.003 was selected and used throughout.
Blasius Point to Separation (BLASEP Subroutine)

The semi-empirical correlation parameters mentioned in Chapter III
are the same as those developed by Glick in the region upstream of sep~
aration where the bhoundary layer is attached. The differential equa~-
tions (13) and (14), incorporating these semi-empirical parameters, were
programmed as the BLASEP subroutine. A flow dlagram for this subroutine
is given in Figure 29 of Appendix C, and the Fortran listing is given in
Appendix D.

This subroutine requires that values of € and ¢, analogous to Mach
and Reynolds numbers, be chosen at the separation point. Once selected,
these values are used to start the step-by-step calculations which move
ﬁpstream in AK increments to the Blasius pointf The solution in this
subroutine involves trying repeated cholces of € and ¢ at the separation
point in order to end with the correct values at the Blasius point.

The values corresponding to the Blasius point which must be matched

are obtained by assuming that the weak hypersonic pressure interaction
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solution applies along the plate. These quantities are calculated by

using the following two equations:

_ t J-KJRex
R Cr (22)

and

Y= 2 ¢
1+ 5= M. ) C(K) (1=K -
£ = e (1455 M) CCK)(i=k) Dm‘ﬁ (s L Mfﬂ (23)

-1 {A [Re, -

where A = 0.44. (An explanation and derivation of these expressions
is given in Appendix A.) The quantity €y, may also be written in a
linearized form by making the assumption that M_ >> 1. However, this
form of the equation was not used in the BLASEP subroutine, because
there are large differences between the exact and linearized values
at low Mach numbers.

The solution which was obtained between the Blasius and separation
points differs from Glick's work in that the exact form rather than
linearized form of the differential equations have been used. This
point, while not terribly important at lower Mach numbers, does make
an gppreciable difference in the results obtained at higher Mach num-
bers. It is interesting to note that all the methods which were men-
tioned in Chapter II make use of the assumption that ¢ << M_, implying
that Me * M_. With this approximation, the differential equations are
expressed in their linearized form.

From equation (23) it is noted that the value of €y, increases as
a function of Mmu° Therefore, as the Mach number increases, the assump-
tion that e << M_ becomes more subject to question. Figure 10 illus-
trates the magnitude of error involved in this assumption. The absolute

value of the ratio eb/M°O has been plotted as a function of both Mach
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and Reynolds numbers. The values of €y, used in plotting this figure
have been found by using both the exact and linearized form of the £y,
equation. It is observed that the linearized and exact values approach
each other at higher Mach numbers, and that the eb/M°o ratio incresases
with increasing Mach number when the Reynolds number is held fixed.

The relationship illustrated in Figure 10 applies only to the €
value calculated at the Blasius point. ©Since the magnitude of & in-
creases throughout the interaction, the e/M_ ratio would be larger and
raise even more doubt about the use of the linearized equations. For
this reason, the exact form of the differential equations and the exact
Prandtl-Meyer relationship have been used in preference to the linear-
ized forms. This involves no added complexities as far as the computer
solution is concerned.

The numerical solution performed by the computer makes use of a
refined Runge-Kutta method devised by Gill (19, 20). The discussion
and explanation of these calculations is given in Appendix B. All cal-
culations have been incremented with K as the independent wvariable.

The correct solution requires that € and  must be matched at the
Blasius point. This 1s complicated by the fact that changes in either
e, or Cs will cause changes in the location found for xp. This causes
£y and Cb to take on ever-~changing values as the convergence progresses.
It was found that during the convergence, € was the more sensitive of
the two variables. As a result, it was convenient to first converge on
the correct €g» and then to work on Cs’ rather than to converge on both
values simultaneously. The convergence scheme which was finally used
evolved largely from the trial-and-error approach. Often a technique

which works well at low Mach numbers will converge very slowly at
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higher Mach numbers, and conversely. The system which was finally
adopted gave satisfactory convergence speed over the entire Mach 2-10
range. However, 1t was not the optimum solution in some regions of
this range.

The accuracy term was employed in the check to see if satisfactory
€y and Es values had been found. Here, as in the matching of the final
pressure ratio in the general program, the accuracy term is used to
specify the band of values which constitutes an acceptable solution.

The smaller the accuracy term; the narrower the band; the larger a

number of trials needed to reach convergence.
Separation to Beginning of Reattachment (SEPSH Subroutine)

In this region, equations (15) and (16) were programmed for com-
puter solution as the SEPSH subroutine. The flow diagram which illus-
trates the computational procedure is given by Figure 30 ,in Appendix
C, and the Fortran listing is given in Appendix D. The € and  values
which have been found at the separation point are used to start the
solution.

The only semi-empirical parameter to be handled in this region is
the C(K) or mixing term. The mixing is of paramount importance and as
a result is dominant over the effects any changes in F(X) and D(K) may
have. Glick has proposed two technigues for treating the C(K) values
in this region. He conjectures that C(K) rises from zero at the sepa-
ration value of K to some maximum value at the beginning of the pla~
teau, and that C(K) remains constant after this point. He offers a
simplified and refined approach as an approximation for this distribu-

tion of C(X). 1In the simplified case, C(K) takes on a constant value
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C throughout the whole region. In the refined case, C(K) has a value
of Cl between separation and the plateau, and a wvalue of 02 throughout
the plateau region. The values of C; = 11.0 and Cp, = 15.0 presented
by Glick were obtained from one set of experimental data (Mach 2.L45).
These values were suggested as universal for all separations. Figure
11 illustrates the various C(K) trajectories from Glick's work.

In this study it was found that C(K) takes on a behavior different
from that specified by Glick. First, Cl does not universally equal
11.0 but has a dependency on the Mach and Reynolds numbers at the be-
ginning of the interaction. Also, a constant value for 02 was found
to produce a decreasing rather than constant pressure ratio in the pla-
teau. If a constant pressure ratio is to be maintained, C(X) must con-

tinually increase with increasing K values. The definition for c(x),

0] dmw
C(K) = /*e/”e Ue dY: )

points out the inconsistency in fixing 02 as a constant. The only way
that C(K) may be constant in the plateau region, according to the defi-
nition, is for m to be constant and hence dﬁydx to be zero. However,
this results in a value of zero for the mixing parameter.

In the SEPSH subroutine, C(K) is assumed to have a constant value
of C; between separation and plateau, and then to follow a trajectory
such that the pressure remains constant in the plateau. Since Cl is
not a universal value, the subroutine has a built-in convergence scheme
for finding the correct Cl value. The subroutine calculates an initial
C, and then makes subsequent adjustments until the plateau pressure

ratio determined by equation (21) is reached. The accuracy term is

used in specifying the range of values for an acceptable matching of
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the plateau pressure ratio. Figure 12 illustrates how Cy affects the
pressure distribution between separation and the plateau and how the
accuracy term is employed.

With C; a fixed constant, the program simply marehes in AK steps
from the separation point to the plateau, calculating the corresponding
pressure ratio and x~location value for each step. The beginning of
the plateau is reached when the pressure gradient (dp/dx) equals zero.
This portion of the calculations is repeated until a C; is found which
gives a correct matching of the plateau pressure ratio. From this
point on to the beginning of reattachment, C(K) is calculated in each
AK step such that the pressure gradient remains equal to zero. When
the known x-location that corresponds to the beginning of reattachment
is reached, the SEPSH subroutine is completed; and control is returned
to the general program.

Figure 13 illustrates the C(K) behavior for this region. In all
cases C(K) increases with K in the pressure plateag -~ serving as an
indication that the mixing becomes more vigorous with increased dis-~
tance down the plateau, rather than remaining constant as Glick assumed.

The length of the plateau, Kp te K is determined in part by the over-

r?
all magnitude of the reattachment pressure rise. At a given Mach num-
ber, the length of the region increases with the increase in pressure
rise, The numerical values which Kp and Kr assume are not fixed, but
vary, depending on the flow and gecmetry. In general, Kp has values
in the vicinity of 0.70 - 0.77. The value of the corresponding Kr is
larger than or equal to Kp and must have a value greater than 0.693

{the Blasius value) if the REATCH subroutine is to work. When Kr is

less than or equal to Kb’ this indicates that the separation poiht
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should be moved forward to obtain a workable solution. If this condi-~
tion occurs within the first five loops in the calculation procedure
(see Figure 6), a new x, further forward is automatically selected.
Beyond the fifth loop, the solution is terminated when Kr is less than

Kb'
Reattachment (REATCH Subroutine)

The reattachment process starts at the point where the dividing
streamline impinges on the ramp. Equations (17) and (18), which were
derived for this region, are solved in the REATCH subroutine, A sche~
matic representation of the computational details is given in the flow
diagram which appears as Figure 31 in Appendix C. A complete Fortran
listing for this program is given in Appendix D.

The solution in this region must begin with the values of K, T,
and M, which were fbuﬁd for X, in the SEPSH subroutine. The numerical
value of these three quantities for a given set of flow conditions and
geometry is affected by the length of the mixing region. The K and ¢
values at the start of reattachment increase while M, decreases slightly
as the separation point is moved forward. One other parameter, F(K)
must be considered. It has been assumed that this quantity has a con-
stant value throughout the reattachment process, and that this value is
dependent on the size of the ramp angle and the free stream Mach number.
These values were determined from correlation with existing experiments
and are discussed in the next chapter. The parameter F decreases with
increasing Mach number. For a given Mach number F decreases with in-

creasing ramp angles as shown.
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The direction of the streamline at the edge of the boundary layer,
6, 1s measured with reference to the ramp surface in the reattachment
region, Ahead of the reattachment region this angle is measured with
the plate as the reference. This angle starts from a smgll positive
value at the start of the interaction and increases continually until
g constant angle is reached at the beginning of the pressure platesau.
In the reattachment region the measurement reference changes, and 8
assumes negative values until the end of reattachment. As the soluéion
progresses through the resttachment region the free stream Mach number
continually decreases, causing the outer streamline diregtion to rotate
in & counter-clockwise direction. At the end of the reattachment proc-
ess this outer streamline is parallel with the ramp, corresponding to
the initiation of Blasius-type flow downstream of reattachment.

The Prandtl-Meyer relationship has been used to calculate an equiv-
alent turn angle for the ramp deflection angle, and this assures that
the correct downstream Mach number, pressure ratio, and streamline
direction must all be reached simultaneously. However, it does not
assure that XK, and the downstream pressure ratio will be reached to-
gether. This latter match is possible only in one case, when x4 is at
the correct location.

Figures 8 and 9 illustrate the general requirements for a satis-
factory solution. The REATCH calculations proceed in AK steps, working
from Kr to Ki. The subroutine continues until either the final pres-
sure ratio or Ky is reached. When the pressure ratio is reached first,
this signals the general program that an unsatisféctory reattachment
was made and that a new separation point must be selected. If Ky is

reached first, the generasl program performs a check to see if the
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pressure 1s within the band set by the accuracy term. If it is not, a
new separation point must be tried and the calculations must be re-

peated.
Experimental Data

The previous sections in this chapter have been devoted to explain-
ing the computer solution of the complete interaction. This section
discusses the type of experimental data needed, limitations which have
been imposed as g result of the data which were available, and the man-
ner in which the data have been employed in the overall study. The
purpose in using this experimental data was to obtain a F(X) correla-
tion for the reattachment region.

A sequence of data was needed at several uniformly-spaced Mach num-
bers between 2 and 10, in which the Reynolds number and ramp angle were
varied independently. This permits a discrimination between the effects
of Mach number, Reynolds number, and the strength of the interaction
(ramp angle). To obtain an optimu; correlation of the semi-empirical
parameters, a wind tunnel test program would have been desirable. Since
this was not feasible, data which were currently available had to be
utilized.

The whole method is dependent upon the location of the separation
point. This point should be located with as much precision as possible
in order to obtain a good semi-empirical correlation. In addition to
the separation point, closely-spaced pressure measurements along the
plate and ramp are highly desirable. The plateau pressure ratio and
beginning of reattachment are determined from this distribution.

Schlieren photographs, when used in conjunction with the pressure



distribution, are extremely helpful in locating the separation point
and in determining whether the flow remains laminar throughout the
entire interaction region.

A current problem common to the study of high velocity laminar
separated flows is that only a limited amount of experimental data is
available, An effort was made to obtain and use data taken under a
wide variety of flow conditions and from a variety of tunnel facilities.
Much of the data used had not been previously published in the open
literature. If it had, it was generally of recent origin. A total of
38 cases with Mach numbers between 2 and 10 were selected for analysis.
The ramp angle in these selected experiments ranged from 5 to 30 de-

rees. Because of the general scaracity of data, some experiments
which normally would be of marginal value were used. A complete tabu-~
lation of this data, together with some of the results which were ob-
tained, is given in Table I of the next chapter.

The Reynolds numbers at the start of the interaction varied be-
tween 102 and 106, with a few exceptions. If plotted, the Mach and
Reynolds number values give a good scatter of data between Mach 2 and
10 and Reynolds numbers lO5 and 106.

Much of the unpublished data was of limited wvalue, because there
were no accompanying schlieren photographs or supplementary information.
The separation point location was not given in much of the data. In
the cases where it.was not specifiedgithe separation point was assumed
to lie at the point where the slope of the pressure distributicn curve
was a maximum in the region shead of the plateau. This technique intro-
duces chance for apprecisble errors, particularly in the case where the

surface pressure measurements are not spaced close to one another.
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Without a photograph, there is no wey of knowing whether the reattach-
ment was transitional or laminar. The nearly constant plateau region
was taken ms an indication that the flow remsined laminar through most
of the interaction.

Another problem which was encountered is that it is possible that
three~dimensionsl effects become appreciable at higher Mach numbers.
Putman (21) and other experimentalists have noted that two-dimensional
flow cannot be obtained at higher Mach numbers, i.e., above Mach 8 to
10. Even two-dimensional models with end plates do unot aleviate this
difficulty. As a result, only three-dimensional type flows can be ob-
tained at higher Mach numbers. Due to this problem, this study has
been limited to Mach numbers below 10.

The Mach 10 data had only limited pressure measurements on the
ramp surface and did not afford an opportunity to make a good compari-
son between the calculated reattachment pressures and the experimental
neasurements. Analysis of Mach 16 data by Miller et al (22) was at-
tempted, but the leading edge interaction effects were such that it was
not possible to make a satisfactory correlation. Another problem at
high Mach numbers is that the normal pressure gradient across the
boundary layer is no longer zero.

The data used in this investigation was utilized in a manner which
will be described.

The BLASEP and SEPSH subroutine portions of the general program
were used to calculate the pressure distribution in the region shead of
the beginning of reattachment. The separation point, which had been
determined experimentally, was used in these computations. The final

values of K, ¢, and Me from these calculations correspond with the
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start of reattachment. These are used to start calculations in the
reattachment region. In addition, many other intermediate parameters
are calculated by these subroutines. Several of these have been tab-
lated and are given in Table I in the subsequent chapter.

The F value necessary for the correct reattachment pressure rise
must be found. To do this, the REATCH subroutine was modified intec a
F-Calculation program. The flow diagram and listing for this program
is given in Appendix C and Appendix D respectively.

Through repeated choices, the correct value of F is found so that
the correct downstream pressure ratio and K, are reached simultaneously.
In this convergence on F, an accuracy term is employed. The accuracy
term is employed in the same manner as has previously been illustrated
for the C; convergence in the SEPSH subroutine. Figure 14 illustrates
how.the béhavior of ¥ influences the correct matching of the downstream

pressure ratio.
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CHAPTER V
DISCUSSION OF RESULTS

This chapter details the experimental data which were reduced and
used in determining the C; and F(K) correlations. The F(K) values are
needed to cobtain a solution for the complete pressure distribution in
the interaction region. Also included are examples showing the com-

parison between the general program calculations and experiment.
Reduction of Experimental Data

The date assembled for use In determining the needed correlations
were analyzed in the manner described in the previous chapter. The
principal data and results collected during the course of this investi-
gation are presented in a conecise form in Tables I through IV.

Table I lists the pertinent parameters which were taken directly
from the experimental data. With the exception of Xg and (P/po)p’ this
table lists thé guantities which the design engineer would have at his
disposal for determining the interaction solution. The (p/po)P values
given in Table I have been plotted in Figure 5 and show the comparison
between the approximate experimental plateau pressure ratic and the
value obtained from the correlation equation (21).

The Xy values given in Table I were of paramount importance in
finding the Cl and F correlation values. In the cases where xg Was

approximated by the maximum slope technique, the value in Table I has

6l



TABLE I

EXPERIMENTAL DATA USED IN THE CORRELATION

No Mach No. Source Re/In Ramp Angle X, »In Xg,In (p/po)pc
1 2.00 3,6 151,000, 6.50¢ 1,962 1.515 1.18
2 2.45 3,6 60,000,  13.00¢ .900 .315 1.46
3 2.55 23 70,800, 10,00 2,280 1.050° 1.33
L 2.70 28 467,000,  10.00 2,250 1.643 1.20
5 3.00 2L 34,000. 10.00 8.000 5.700 1.37
6 3.00 2k 95,000. 20,00 8.000 6.250 1.25
T 3.00 2l 34,000.  30.00 8.000 L4.790 1.40
8 3.06 23 109,100,  10.00 2,280 1.120° 1.36
9 4,50 25 120,000, 15.00 8,000 5.660 1.50

10 4.50 25 89,000, 30.00 8.000  3.k00 1.75

11 L.50 25 88,000, 15.00 8.000 5.500 1.55

12 4.50 25 120,000. 30.00 8.000 3.660 1.60

13 5.00 24 93,000, 15.00 8.000 k4,450 1.70

1k 5.00 24 280,000, 15.00 8.000 L4.Lk60 1.55

15 5.00 2k 97,000,  30.00 8.000 2.390 1.85

16 6.00 a 103,300.  14.00 6.000  4,000°¢ 1.50

17 6.00 b 83,500, 20.00 12.000 6.750° 1.60

18 6.00 b 83,590, 10,00 12.000 9.300° 1.45

19 8.00 8 18,330. 20,00 10.000 T.120 2.05

20 8.00 a 2Lk,200, 20.00 10,000 T7.500 2.05

21 8.00 a 35,000. 20.00 10.000 7.250 2.05

22 8.00 a 54,200, 20.00 10.000 6.750° 2.15

23 8.00 b 85,670. 20,00 12.000 6,500° 1.70

24 8.00 26 250,000. 15.00 7.250  L4,600° 1.65

25 8.00 26 250,000. 22,50 7.250  3.Loo¢ 1.50

26 8.00 b 85,210, 5,00 12.000 11.000° 1.20

27 8.00 b 85,280. 10.00 12.000 9,250¢ 1.40

28 8.00 b 86,350. 10.00 12,000 9.k50° 1.50

29 8.00 b 86,800. 15.00 12.000 7.300° 1.70

30 8.00 b 87,580. 20.00 12,000 5.350° 1.85

31 8.45 a 590,000.  1k4.60 6.000  3.250° 1.55

32 10.00 b 82,820. 10.00 12,000  9.000¢ 1.75

33 10.03 27 126,000.  10.00 8.725  8.000¢ 1.70

34 10.03 27 126,000.  20.00 8.725 5.800° 2.00

35 10.03 27 126,000,  30.00 8.725  3.850°  2.20

36 10.03 21 127,000.  10.00 8.750 8.250° 2.10

37 10.03 21 127,000. 20.00 8.750  6.500¢ 2.50

38 10.03 21 127,000.  30.00 8.750  3.750° 2.25

a Unpublished NASA Langley Research Center data (29)
b Unpublished Air Force Flight Dynamics Laboratory data (30)
¢ Approximated from data



PARAMETERS DETERMINED BY BLASEP SUBROUTINE

TABLE II
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No Y Rexp Mep 2% Me§ Ls (P/Po)g
1 1.2206 184,311. 1.991 51T.9 1.901 558.0 1.150
2 .1880 11,280. 2.399 107.5 2.287 127.6 1.192
3 .7850 55.578. 2.525 223.9 2.406 246.3 1.203
L 1.4809 691,580, 2.692 733.8 2.568 758.8 1:213
5 4,6236 157,202, 2.978 309.2 2.840 330.8 1.232
6 5.4281 515,669. 2.988 55T.2 2.853 584.6 1.226
T 3.6943 125,606. 2.975 276.4 2.8k0 301.6 1.226
8 .8788 95,877. 3.030 236.1 2.888 255.0 1.240
9 L.7991 575,892.  4.462 329.4 4,256 347.1 1.300

10 2.6630 237,007. L.kka 212.8 4,238 230.9 1.295

11 4.4898 395,102.  L4,k5k 273.5 4,251 292.3 1.296

12 3.0018 360,216, L.hs2 261.4 L. 2ks 278.4 1.301

13 3.5600 331,080. 4.929 212.2 4.699 227.8 1.316

1L 3.8383 1,074,724, L.961 378.5 4.733 397.0 1.312

15 1.7606 170,778. 4.901 154.0 4.680 170.5 1.304

16 3.1186 322,151. 5.865 155.6 5.588 168.6 1.3k42

17 5.1855 432,989. 5.884 179.6 5.616 195.8 1.327

18 T.4887 625,980. 5.903 21k4.6 5.628 229.8 1.337

19 5.4072 99,114. T7.306 58.3 6.971 64,0 1.348

20 5.6212 136,033. T.koT 66.6 7.068 T3.5 1.349

21 5.3876 188,566. T.496 76.7 T.154 8L.5 1.349

22 5.0548 273,970. T7.582 90.9 T.234 100.1 1.352

23 4.8239 413,264, T.660 109.1 T.321 120.2 1.349

2k 3.561k 890,350. T.768 156.0 7.408 169.7 1.357

25 2.5768 644,200, T.T27 134.0 T.372 146.7 1.354

26 8.4190 27383, T.The 141.0 7.386 154.2 1.353

27 7.0918 604,789. T.719 130.1 T.360 142.2 1.358

28 7.1551 617,843. T.722 131.4 7.366 143.9 1.354

29 5.5683 483,328. T.685 117.2 T.327 128.4 1.359

30 4.0288 352,842, T.632 101.5 7.278 111.6 1.356

31 2.5824 1,523,616. 8.232 183.3 7.843 197.2 1.370

32 6.9053 571,897. 9.327 88.8 8.895 97.1 1.367

33 6.1253 T71,788.  9.uklh 100.8 9.012 110.4 1.363

34 4, 4182 556,693. 9.340 8T.4 8.914 95.6 1.362

35 2.9746 374,800. 9.190 Th.2 8.770 80.9 1.361

36 6.2L452 793,140, 9.452 102.0 9.020 31).T 1.363

37 4.9711 631,330. 9.382 92.3 8.947 100.8 1.369

38 2.9009 368,41k, 9.182 73.6 8,761 80.2 1.362




PARAMETERS DETERMINED BY SEPSH SUBROUTINE

TABLE ITI

No. xp,In Kp Mep cp Cq K. Ty
1 1.656 .702 1.878 T37.8 15.32 867 1570.5
2 439 750 2.149 265.0 12.17 .OL6 1125.1
3 1.285 . T35 2.336 403.8 12.43 2935 1515.9
i 1.722 .687 2,558 915.7 17.63 .880 2262.4
5 6.568 .720 2.797 LhTh.9 11.81 .852 870.8
6 6,655 .690 2.840 713.9 13.78 .820 1194 .4
T 5.651 .T29 2.783 460.6 12.25 .867 907.0
8 1.358 . T35 2.821 Lok.6 11.53 924 1320.6
9 6.513 JTLT L, 21k 478.5 9.65 .82L 758.0
10 4,288 JThl L.1k4k2 379.9 9.73 .905 990.5
11 6.602 .732 4,183 4hi.2 9.94 .829 680.9
12 L, L17 .T32 4,181 418.5 9.45 .899 1077.0
13 5.642 LTl 4,598 372.8 9.12 .869 715.3
1k 5.025 .T708 4,701 521.7 9.31 .882 1257.3
15 3.255 759 4.529 316.0 9.12 .932 1079.2
16 5.518 .T59 5.421 308.3 8.1k .811 391.2
17 9.090 .756 5.461 348.6 8.50 . 849 55T7.7
18 11.949 LThL 5.515 372.5 8.13 LT76 Lok, 9
19% 10.712 L761 6.523 148.4 8.01 .T761 148.Y4
20% 10.583 .Th45 6.648 153.6 8.10 .Th5 153.6 °
o1% 10.602 .T55 6.761 179.4 T.Th .T55 179.
2% 10.661 LT76 6.878 224 .6 7.49 LTT76 224,
23 10.211 . T80 6.993 263.6 7.45 .835 3h9.
2L 6.6UT7 .T65 7.178 321.3 T.27 . 808 392.
25 5.090 771 7.111 293.0 T.21 .862 482,
6% 13.285 .T07 7.130 237.7 8.36 LTOT 237.
oT# 13.127 LT54 7.097 265.4 7.18 .T5h 265.
28% 13.039 - .T7hLt 7.105 260.1 T.23 LTHT 260.
29 11.217 CTTh 7.04L 265.6 7.13 .813 320,
30 8.478 .780 6.950 2LT. 4 7.40 .868 L0,
31 L.546 -T59 7.635 354.0 7.15 .87 553.2
320% 13.190 .756 8.4L4 201.4 7.18 .756 201.4
33% 8.994 .684 8.587 167.7 11.67 .684 167.7
34 9.217 LT76 8.450 219.0 7.10 JTT6 219.0
35 6.645 .T95 8.265 210.4 7.27 .858 303.6
36% 8.934 672 8.607 161.6 14,64 LE6T2 161.6
37* 9.120 .Ths5 8.506 197.7 T.27 LTh5 197.7
38 6.466  .795 8.256 208.8 7.27 .863 311.8

OB oW oy

¥A constant pressure plateau region

was not reached.
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TABLE IV

PARAMETERS DETERMINED BY GENERAL PROGRAM
AND BY P-CORRELATION PROGRAM

No (p/po) (p/Po) £ihal Xp,In F(K)
1 1.193 1.390 2,390 4,070
2 1.477 2.170 1.433 2.548
3 1.339 1.897 3.266 3,005
n 1.195 1.960 2.458 1.917
5 1.318 2.055 9.322 1.897
6 1.237 3.783 8.288 578
7 1.336 6.333 8.486 .503
8 1.367 2.103 3.079 2,741
9 1.374 L. 224 8.564 <T97

10 1.464 11.050 8.629 .633

11 1.410 L. 224 8,667 . 843

12 1.420 11.050 8.538 .610

13 1.485 5,226 9.002 .973

14 1.364 5.226 8.734 .961

15 1.569 13.000 8.832 .T12

16 1.606 5.531 6.624 .T33

17 1.56L 9.268 12,987 .651

18 1.517 3.668 13.107 . 738

19% 2.067 16.590 10.712 . 266

20% 2.003 16.590 10.583 - -

21% 1.938 16,590 10.602 .236

oo% 1.867 16.590 10.661 .31k

23 1.792 14,870 13.027 .536

24 1.665 9,443 7.836 .5h47

25 1.716 18.310 7.824 .559

26% 1.699 2.556 13.285 .298

27% 1.727 5.241 13.127 JL66

o8# 1.723 5.241 13.039 .395

29 1.765 9.L443 b 13,195 .585

30 1.820 14.870 13.283 .653

31 1.625 9.685 6.553 . 705

3% 1.933 T7.067 13,190 - -

33% 1.879 7.067 8.994 - -

3L % 1,941 22.,k20 9,217 291

35 2.018 5,410 9,292 26

36% 1.87h T7.06T 8.934 -

37% 1.917 22,420 9,120 .186

38 2.021 45,410 9.333 435

¥A constant pressure plateau region was not reached.
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been given a superscript. There were instances in the data where xg
was specified, but no mention was made as to how this location was de-
termined. The confidence vested in a specified xg location was enhanced
when a schlieren photograph accompanied the pressure distribution.

Using the x4 values given in Table I, the correlation procedure
was begun by solving the BLASEP subroutine. This subroutine establishes
the correct € and r values at the separation point and also gives the
location and parameters at the start of the interaction. The important
parameters from this subroutine, together with the calculated Blasius
point Reynolds number, are given in Table IT. This Reynolds number and

the Mach number at the start of the interaction (Mg or M,) are used to

b
determine the plateau pressure ratio. The calculation of the plateau
pressure ratio is performed by the general program, and the results
have been tabulated in Table IV. The point at which the reattachment
process begins, Xps is also determined by the general program and is
presented in Table IV,

The SEPSH subroutine is solved in the region between separation
and the beginning of reattachment using the € and ¢ values at the sepa-
ration point as the starting conditions. A satisfactory solution is
obtained by selecting Cl in such a manner that the calculated plateau
pressure ratio is reached. The SEPSH solution terminates when x, is

reached, which corresponds with the location of the start of reattach-

ment., Of the 38 cases analyzed, there were twelve in which x,. was

r
reached before a plateau region was established. In these cases, Cg

was selected such that the final pressure at x, matched the plateau

pressure ratio determined by the general program. The cases where no
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plateau was established have been noted in Table IIT and IV. The use
of these data will be discussed later in this chapter.

A final correlation for F(K) was made by solving the F-~Calculation
program. This F value must be selected such that the final downstream
pressure ratic is matched at the completion of the reattachment process.
The final pressure rstio and the calculated F values are given in Table

IV.
Determination of Universal Cl and F Relationships

The data in Tables I through IV must be analyzed and a F correla-
tion established. In keeping with the simplicity desired, this F
correlation must be presented in such a manner that the designer can
find F for a given configuration without performing preliminary calcu-
lations. In order to meet this requirement, F has been found and pre-~
sented such that it is a function of the free stream Mach number and
the ramp angle.

As a logical extension to the Crocco-Lees method, the inclusion of
a Cl cprrelation has also been develcoped. This correlation is a by-
product of this study and extends the general understanding of the
Crocco-Lees mixing theory. Since C1 was calculated prior to ¥ for
each case, this correlation will be discussed first.

Because of the way it is related to the plateau pressure ratio,
parameter C, also depends on the location of the separation point. To
vpresent a desirable C1 correlation, certain data had to be eliminated
from consideration. It 1s known that transition in the reattachment
regicn causes the separation point to move closer to the ramp corner.

Table V was prepared to aid in determining which of this data should



TABLE V

EVALUATION OF EXPERIMENTAL DATA

Was xg Was plateau
given in Was Schlieren lam. or trans. reached in
No. the data? photo given? reattachment? calculations?
1 yes no transitional yes
2 yes yes laminar yes
3 no ne laminar yes
L yves ves transitional ves
5 yes yes laminar yes
6 yves ves transitional yes
T yes ves transitional yes
8 no no unknown yes
9 yves yes laminar yves
10 yes yes laminar¥#* yes
11 ves yes laminar yes
12 yes yes lamingr¥#* yes
13 yes yes laminar yes
1L yves yes laminar ves
15 ves yes laminar boyes
16 no no unknown yes
17 no no unknown yes
18 no no unknown ves
19 yes no unknown no
20 yes no unknown no
21 yes no unknown no
22 no no unknown no
23 no no unknown ves
24 no no unknown yves
25 no no unknown yes
26 no no unknown no
27 no no unknown no
28 no no unknown no
29 no no unknown yes
30 no no unknown yes
31 no no unknown yes
32 no no unknown no
33 no yes¥ unknown no
3k no yest unknown no
35 no yes® unknown yes
36 no yes¥ unknown no
37 no yes¥ unknown no
38 no yes¥* unknovwn yes

¥0f marginal wvalue
¥¥Probably laminar
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be eliminated, This table indicates the known cases in which transi-
tion occurs during the reattachment process.

At the onset it was not known whether or not the transition in the
reattachment region would have an appreciable affect on the F correla-
tion. For this reason, some transitional data were included among the
38 cases considered. Table V also indicates those cases in which x,
was reached prior to establishing a plateau region.

Figure 15 presents the C, versus free stream Mach number correla-
tion which was found in this study. In this plot, the 12 cases where
a plateau had not been established and the four known transitional cases
were eliminated from consideration. It is probable that the 12 cases
in which the plateau was not reached were also transitional flows.

This is merely a conjecture without the benefit of additional informa-
tion. The remaining 22 c1 values have been plotted and show that c1
decreases with increasing Mach number. The C; values at M, = 10.03
are of uncertain accuracy because the pressure data offers a poor ap-
proximation in locating xg. Errors in the selected location for xg
introduce errors in C, and F.

The results in Figure 15 show no discernible relationship between
C, and the Reynolds number. C, depends only on the Mach number and is
independent of Reynolds number in the range from 10° to 10°.

The F correlation values depend on the solution in the plateau
region. The 16 cases which had been previously eliminated in the C,
correlation are of no value in the F correlation. Table VI has been
prepared to illustrate the resulting dependence of F on M, and the
ramp angle. These data points have been plotted in Figure 16 and

illustrate that F decreases with increasing Mach number. These data
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TABLE VI

SYNOPSIS OF RESULTS FOR F-M,-RAMP ANGLE CORRELATION

Ramp Angle = 10° Ramp Angle = 15° Ramp Angle = 200
No. M, F No. My T No. Moo F
3 2.55 | 3.005 9 4.50 JT9T 17 6,00 651
5 3.00 | 1.897 11 4.50 .B43 23 8.00 536
8 3.06 | 2,741 13 5.00 973 30 8.00 .653
18 6.00 .738 1k 5.00 961
2k 8.00 54T
29 8.00 .585

Ramp Angle = 30° Other Data
No. My F No. Mg Ramp Angle F
10 4,50 .633 2 2.45 13.00 2,548
12 4.50 .610 16 6.00 14.00 733
15 5.00 . 712 25 §.00 22,50 .559
35 10.03 426 31 8.45 14.60 " LT05
38 10.03 435
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further show that F decreases with increasing ramp angle. Curves have
been sketched in Figure 16 to give the values of F which are used in
the program calculations.

The 16 values of C, and F which had been eliminated from consider-
ation were compared with the C, end F correlation curves. The C; values
which were not plotted in general lie above the curve in Figure 15.
Alsoc, the F values which were not used generally lie below the repre-
sentative curves. It is evident that the presence of transition in the
reattachment region has the effect of shifting the C; curve upward and
the F curve downward. For purely iaminar interactions, Cq and F can be
approximated quite well with the single curves given. A band of values
is encountered when transitional effects are included, and the unique-
ness of the correlation method breaks down.

The F value which is input into the general program is obtained
directly from Figure 16. With the free stream Mach number and ramp
angle known, it is a simple matter to interpolate F directly from the

figure.
Solution of the Complete Interaction Problem

The complete computer solution has been described in Chapter IV.
This section illustrates how the calculated pressure distributions com-
pare with experimental measurements. Figure 17 illustrates how each of
the three semi-empirical parameters vary throughout the interaction.
The trajectories given in this figure duplicate the previous discussion,
but they are helpful in illustrating the behavior of each parameter in

each of the three regions.
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In order to compare the calculated results with experiment, an
illustrative sampling of the data is given. Figures 18 through 27
illustrate a representative sampling of data in the Mach 2.55 to 10
region. The general program calculations give a better comparison at
Mach numbers above 3.0. Below Mach 3.0 the reattachment pressure rise
starts too far downstream and also has a slope which iz flatter than
the experimental pressures. When the magnitude of the overall pressure
rise on the ramp is considered, the resulting discrepancy will not in-
troduce design errors as large as & similar discrepancy at higher Mach
numbers would. The soclution developed gives good agreement over the
range of data (Mach 2-10).

To illustrate the program's convergence on a correct solution, Fig-
ure 28 is given. This result is the same as the one given by Figure 19
for M, = 3.0. To start the calculation procedure, x, was assumed to be
at 4.7 inches. The convergence procedure required 4 loops to reach the
desired solution. The plot for each intermediate fressure distribution
has been given to show how the calculations proceed toward the correct
solution. A similar set of calculations was performed by assuming that
X, was at 6.7 inches. The solution converged on & sabisfactory solu-
tion in the fourth loop of calculations.

In the reattachment portion of the pressure rise, the distribution
has an inflection point. This is most apparent at the higher Mach
numbers. No significance is associated with this observed character-

istic.
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CEAPTER VI
CONCLUSIONS AND RECOMMENDATIONS
Conclusions

A solution for the complete interaction-pressure distribution for
laminar flows over plate and ramp combinations in the Mach 2 to 10
range has been developed. This technique is semi-empirical and makes
use of the Crocco-lLees flow model. The objective of this investigation,
which was to find an engineering solution for this complex interaction
pressure distribution, has been fulfilled.

The three semi-empirical parameters which are used to describe the
flow in each of the three regions have been defined. Further, the re-
sultant correlations for each of the parameters are given. To obtain
a solution for this problem, only the free stream flow conditions, the
plate-ramp geometry, and the F(K) correlation value are necessary.

This F(K) value is obtained directly from the correlation curves in
Figure 16 and is based on existing experimental data.

A by-product of the method presented is that it extends the pres-
ent Crocco~-Lees theory by defining the correct behavior for the mixing
parameter, C(X), in the region between separation and the beginning of
reattachment. A C(K) correlation has been established by making use of
a constant C; value between separation and the beginning of the plateau
and a varying C(K) value from this point on. A previous hypothesis by

Glick (6), that C(K) has an universal behavior in this region, was found

90
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to be invalid. The mixing term, C,, was found to decrease with increas-
ing Mach number and was independent of the Reynolds number. At the
outset it was felt that C; would depend on both the Reynolds number and
the Mach number. This was not supported by the data.

In the plateau region C(XK) was found to be an ever-increasing func-
tion. This study supports the conclusion that the mixing becomes more
vigorous with increasing advancement into the plateau region.

The correlation parameter for the reattachment region, F, has been
found to be dependent upon the free stream Mach number and the ramp an-
gle. It was found from the correlation of results that F decreases
with increasing Mach number and with increasing ramp angles. Here, too,
as in the C; correlation, no dependence on Reynolds number was observed.
On the basis of the correlation curves which were found, it is evident
that F depends principally on the inviscid outer flow and to an indis-
tinctive amount upon other effects such as the Reynolds number.

In the computer solution of the differential equations, the exact -
rather than the linearized form has been solved. The limitations placed
on the method by the usual linearization assumption has been discussed
in Chapter IV. The errors resulting from this assumption are small at
low Mach numbers, but they increase rapidly with increasing Mach number.

The ultimate worth of any method rests in its comparison with ex-
periment. The figures in Chapter V show that the correlation above
Mach 3.0 is good, while the slope of the reattachment pressure rise
below this value is flatter than experiment. This deviation at lower
velocities may be attributed partly to the extent of the subsonic por-
tion of the boundary layer. At higher Mach numbers the pressure clearly

does not start to rise until some distance beyond the ramp corner, while
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at lower Mach numbers the pressure rise appears to originate at the

ramp corner. The actual resttachment point in the flow occurs somewhere
downstream from the start of the reattachment pressure rise. The divid-
ing streamline, as it has been incorporated, is used merely as a model
to approximate the relative location of reattachment with respect to
separation.

The chief problem encountered in this study was the collection of
adequate experimental data for use in establishing the necessary F cor-
relation. Three problems which had to be resolved before the collected
data could be used were: 1.) Does the boundary layer remain laminar
throughout the entire interaction?, 2.) Has the exact location of the
separation point been found?, and 3.) Is the flow two-dimensional?

Transition within the reattachment region has the qualitative ef-
fect of shortening the distance between separation and reattachment.
This results in a C; value larger than that for laminar flow at the
same Mach number. A secondary result is that a smaller F is obtained
in a transitional interaction. The uniqueness of the Cl and F corre-
lations break down when transitional flows are considered. C; and F
may be represented by distinet curves for laminar flows, while these
correlation parameters take on a band of values in transitional flows.
For this reason, only laminar interactions may be treated. Transitional
and turbulent flows introduce new values for the semi-empirical param-
eters C(K), D(K), and F(K), and for that reason, these flows cannot be
incorporated within the laminar definitions used in the three regions.

In reviewing the literature on this separation-interaction problem,
the similarities rather than the differences in the various methods,

were most apparent. All methods make essentially the same assumptions
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and incorporate the same flow model. The basic difference comes in the
way the boundery layer profile is handled. ©Some chose to represent the
boundary layer by an assumed family of profiles while others use a semi-
empirical approach to represent the boundary layer. Each type of pro-
file representation has its limitations and associated problems.

In the complete interaction solution, the initial assumptions
regarding the plateau pressure ratio, the final pressure ratio, and the
relative location of the dividing streamline were found to give good
overall agreement. The location of xg controls the whole interaction

and is of paramount importance in this method.
Recommendations

The chief limitgtion recognized in this thesis was that sufficient
experimental data of the type and detail needed was not available at
this time. As more data becomes gvailable, the F-correlation curves
in Figure 16 should be brought up to date.

The constant-value F correlastion which has been proposed for use
in the reattachment region may be Improved upon. This is evidenced by
the fact that the slope of the pressure distribution curve is not in
good agreement with experiment at low Mach numbers. An alternate meth-
od for correlating F, possibly a step function, may be needed to bring
these values into better agreement. A linear variation for F through-
out the reattachment process has been tried. In this case the F values
became unwieldy to correlate because the starting point (Kr) was not a
universal value.

A generally accepted view is that the reattachment process‘controls

the location of the separation point and, for that matter, the behavior
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of the whole interaction. Probaebly the most fruitful area for additional
investigation in the interaction problem is to try to understand what
happens in the vieinity of the reattachment point. Experimentally,
detailed velocity profile measurements in the resttachment region are
needed to extend the qualitative understanding of this region. Also,
velocity profile measurements between separation and reattachment would
be helpful in determining if K follows the trajectory which has been

assumed.
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APPENDIX A
DEVELOPMENT OF EQUATIONS

This appendix supplements the development of equations which ap-
pears in Chapters 3 and 4. The two general differential equations
which describe the flow are derived first, followed by the derivation
of the x-length equation, the differential equations for the reattach-

ment region, and the hypersonic limit equations.
The Crocco-Lees Differential Equations

To obtain these equations, the system of equations describing the
flow are transformed into the Crocco-~Lees nomenclature and then are
reduced to two non-linear first order ordinary differential equations.

The momentum and continuity equations which describe the viscous

region may be written directly from the flow model as

and

..:_?_ =/% ug(-%— - tan e) respectively. (A-2)

By using the definitions XK = I/Eﬁe and m = ﬂ’at, the momentum flux, I,

may be written
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m
With this deflnltlon and the relationships j;n = ég:*) '?L- %
- 2
C. = Tw and qb _ (l"]%E Uqa)
- —-—-——r‘ —
the momentum equation becomes
d = dmY_ dP) P Cs
S =w ()-8 (8 - B (1-3)

In a similar manner, after making use of the definitions for m and

¢e’ the continuity equation may be expressed as

dm (—{—é;) (82 - wn®) (4-b)

The Bernoulli equation, which describes the inviscid region, is
obtained in the desired form by starting from the lsentropic perfect

gas form which appears in Reference 31 as
Y-t 2

Y (RYPNY L uve _ Y B
/oé( + = =1 2 - (A-5)

Meking use of the perfect gas relationship, oy = P,/RTy,
together with w, = ue/at and ay = vyRTy , the Bernoulli equation becomes
Y

P =Et[l—l%f=wejﬂ ' (A-6)

Both sides of this equation are differentiated with respect to x, which

gives

dwg

-5t wf] dx ?} ax (A~T7)
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Equation (A-7) is the desired form of the Bernoulli equation and is
used in the following derivations.

In addition, the mean-temperature equation,

P
‘""3?8:_ 5 (A-8)

m

and the Prandtl-Meyer relationship are needed to describe the flow. To
complete the mathematical description of the problem, the three semi-

empirical parameters F(X), C(K), and D(K) are introduced and are

described by

F = FIK) = &ﬁ_".‘l%;f, "“(I I:‘ we> — _QS_L__J.::ZY_ -t

k= (dé_tdn@ = (K L (8-9)

o w DM Oy
£ 5™ .

The five equations, (A-3), (A-L), (A-7), (A-8), and the Prandtl-Meyer
expression, plus the three semi-empirical relationships (A~9), are
sufficient to account for the eight variables involved in the problem.
The first step in the development of the differential equations
requires expanding the momentum equation (A-3), céllecting terms, and

eliminating the pressure gradient term by using equation (A-T), thus

giving
S (o bdm [ PYWed K] dw_ PC
dx = (g @m o X + }‘mwg(x L;wg) We | dX 2%m .

The definition for ¢e given above and the identity ¢l = 28 allows the
m

second term on the right-hand side to be rewritten as
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| | Cle PC
R I -

€

The definition for F is used to show that [‘%‘ KJ - 'E%&
dw,

In addition, L £ can be written as
Ve
_jg__m_d__ | dMe _ i__ d Me
W dx (H—I—Me)Me dx ~ Me dx .

After ¢ = m/utat is rearranged and differentiated, it is easily shown

that

| dm _ | 45
m  dx .5 dx .

These three substitutions transform the momentum equatioh into

FK dMe _ PS¢
Me dX 2FmM .

d {1 —
- =(-K

ds
={ i *

I
S
Finally, the definition of c¢p from (A-9) is employed to obtain the de-

sired form of the momentum equation

' a
(l -K\) FK dMe __ PD(K\/ue t (A—-lO)

}Q Me dX Z¢e_ mz .

By utilizing the definitions for C(K), -%1;-2—, - —%, m, and t,
m

the continuity equation, (A-2), may be written as

| dg _ C,(KB
g di

/oe LLe . (A-11)

This form of the continuity equation is then inserted into the last

term of the momentum equation, (A-10), to give

dK _ FK Eli.Ms - q_nK) 4 d5 ~o (1 —K) _;_

ala.
x|y
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where o(K) = D(K)
2(1-K)c(K)
For convenience, this equation may be written as

d F | - -
BB AN 0 e
In addition to (A-12), another fundamental equation is developed;
this one being derived from the definition of the boundary layer thick-
ness. It is shown on page 658 of the original Crocco and Lees (2)

paper that

_ o K(F+t) %
& = P (A-13)

After equation (A-13) is differentiated with respect to x,

s _ imk [REK + g 4fls] +(Ft) m 3—,'¢<-+KS-§?]}YPW=

dx (Y P‘Ni)

Y K(Frt) [waSE + p 4]

(Y = Wg) z (A=1k4)

is obtained. From the definition of mixing in (A-9), this can be

written

dx

480 Gy T — CK) £
= tan B+ Y - tan9+4€— .

This expression may be substituted into (A-1l4), and after substitution

of the Bernoulli equation it becomes
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K =Y (Fat) K Fe 1 dwe
K%Eadik_+(l+ STM.+ m 3—?—+(|_ We ) We dx

—K (F+t) WI&% =|E!:M9+q-9L] 1;:—\"—

Similar terms are combined, and with the substitutions

A dwe _ t dMe
We dX = Me dx &a

4 Me
T (g mIyE

this equation can be written

I:F +t+Kﬂ-§-:]th— - [K(F-rt)(\—%r:l w:)+ Kt (Y-1) w::] ____Ae _S%\,_
= TR g o OL| 0

m

The right-hand side is modified by meking use of the relationships

m =% : ¢ :Yﬁf- [Fet] ,
iy 48 o
&%_%(dx wian e) m = 540 ,
and T =(!"‘Y%‘LW:)
to obtain

[F-l-t-i' K-d—] _xi - |:K(F+t_)(| i_l_ we)"'Kt(Y-)%:]TﬂL'd_T"

= %sgt—g |:‘ta.n e+ C;(K) (k-K (r-'+t))}

(A-15)

which is the second fundamental equation.
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Both equations (A-12) and (A-15) have x appearing only in the
deriva‘pives° By solving these two equations simultaneously, x may be
eliminated, resulting in the desired set of non-linear first order or-
dinary differential equations. The two equations are multiplied by
dx/dr, where dx/dz is obtained from (A-11), and after some algebraic

manipulations, are written as

[F+tw<§f%-§-§ _KF [ﬂtmjrﬂj@e - (n—crs)(t-K) [F““t*KadR (A-128)

dF1dK |, =12 . z] | dM
et ol T ] 20

(A-15a)

— [ten® . Co[E-K(Fs)
Ty T8 Cln) .

Equation (A-12a) is subtracted from (A-15a); the definition for

t is used, and after manipulation, the desired expression for dMe/d;,

e ,
dMe _ =M 5/(;(& [t K(F +t) (1=l K\)(F+t+KjN )] +tan O

P2 A-16
45 el tK(Ht\)( - pEe (- KMEL =KF(E+t K E)| (4-26)
is obtained.
By dropping the common coefficient in (A-12a),
dK _ KF dMe _ (I=)(1-K)
P v il = (A-120)

remains. Equation (A-16) is substituted into (A-12b) and in solving

for dK/dy, the second desired differential equation,
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e (S S T ) ]

dy -
7 | KED- T M) - YRMEE) K e K R) |

is obtained. These two differential equations, (A-16) and (A-17), form

(A-1T7)

the basis for the numerical solutions. Prior to the beginning of reat-
tachment, these equations are tailored to the particular region by

specifying the behavior of the three semi-empirical parameters.
x-length Equation

To relate the solution of equations (A-16) and (A-17) to a mean-
ingful pressure distribution, the numerical integration results must
be transformed back into the real plane.

The derivation starts with the continuity equation (A-4). With
the perfect gas relationship and definitions for ¢, wo, &, and t,

this equation becomes

dm - /aeu_gtc(m ai’-
ax g s

(A-18)

This equation, after being integrated, results in an expression for
determining x-distance locations. ©Since the separation point is the
reference location for starting the interaction calculations, the inte-
grations for x-distance must proceed upstream and downstream from this

point. Substitution of dm = p,a,dg into (A-18) gives

s M dt
dx :,%uet cKYy -

/%Y Xs
Both sides are divided by xg, and with the definition Re, ='—:;I“———-“,
s @
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a _ _Sd8 M /e Ue
Xq R@—x_., /ae Ue t C(K) ) Moo

is obtained. The isentropic relationships,

Te _ |
T G BimEy o

1l

(1+ Xz M:)

and
\

é_ _' |+i%'— M:‘[ K
e |+1;_—'M:J

together with the assumed temperature-viscosity relationship are used

in transforming the previous equation into

3 _
Yzl M2 Me I+ Me" Td¢
dx _ __ 2 = (A-19)
X Re, Mo [+ XY=l ™M = C(K) .
S Z_ s

Equation (A-19) is now integrated between some arbitrary x-location

and the separation point to give

X 2 > 3(\(-”'()

s 1\ 2 DV I o

J__ dx :(|+—Z— Mm) Mo [+ 7 Me §d§
%, Re, Me CCRY | ) el S

Y
{



108

or
% 3Y-|
=l 2 O
xmx_ _(+7Z M,) Moo 1+ % i 4C
= S (A-20)
Ae Rex’ Me C(K) |+ %I Mm i
S

Equation (A-20) is used to find the x-location which corresponds to

each step in the numerical integration process.
Reattachment Equations

In keeping with the simplicity that was mentioned in Chapter III,
it is assumed that the mixing and skin friction are negligible in the
reattachment process. This means C(K) = 0, D(K) = 0, and consequently,
o(K) = 0. The generalization that the reattachment process is prin-
cipally an inviscid flow is supported by Chapman, Kuehn, and Larson's
(3) experiments. The only parameter left undefined is F(K), which
we know to be associated with the velocity profile shape since it is
related to the mean-temperature profile.

Rather than tailoring the generalized equations (A-16) and (A-1T)
to this region, it is easier to start from (A-12) and (A-15) and then
to derive new simpler expressions. From the definition of the mixing
parameter C(K), it is obvious that dm/dx = O when C(K) = 0. With
this substitution, (A-12) becomes

dK _ FK dM. _ 0

dx Me dX ~
or
dMe _ Me
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Equation (A-21) expresses the change in local Mach number throughout
the reattachment process.

The second differential equation is obtained by substituting

ﬂgggi' =- %?%T‘ %é}‘ and VﬁfﬁZ Pﬂe?t

into (A-15). After rearrangement, this gives

o [paocth - (2= e (E)N Y

dx
dK — 3 %
Rexs t g‘_to.n o )

(A-22)

which relates changes in K to changes in x-location. The value for F
must be determined such that the desired pressure distribution is ob-

tained. The selection of F is discussed in Chapters IV and V.
Hypersonic Limit Equations

Boundary layer calculations can commence from one of two general
starting conditions, both of which depend on the characteristicg of the
external flow field. One of these, called the vorticity interaction,
results from an effective blunting of the plate's leading edge and, as
a result, affects the way the boundary layer grows initially. This
type of interaction is important in the analysis of flows over blunted
slender bodies and on blunt bodies at low values of Reynoids number.

In this type of interaction the vorticity outside the boundary layer
may be sufficiently large that it influences the boundary layer struc-
ture even though the layer is relatively thin. The vorticity inter-
action cannot be handled by the analysis presented in this thesis.

The second type, called the pressure interaction, results from the

relatively large outward streamline deflection induced by a thick
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boundary layer at hypersonic speeds. At high Reynolds numbers and sub-
sonic or low supersonic speeds, the local streamline deflection induced
by the boundary layer is of the order of the reciprocal of the square
root of the local Reynolds number. At hypersonic speeds the streamline
deflection is of the order of its value at low supersonic speeds multi-
plied by Mg. On slender bodies, the induced pressure due to the inter-~
action is of the order of the streamline deflection times M,. A pressure
interaction of this order of magnitude may become very important when

M, 1s large.

Only the pressure interaction resulting from two-dimensional flow
past a sharp leading-edge flat plate has been considered. A sharp lead-
ing edge implies that it has no essential affect on the inviscid pres-
sure distribution along the surface. According to Hayes and Probstein
(32), a sharp leading edge exists whenever the leading edge radius is
small enough to make the Reynolds number based on this thickness on the
order of 100 or less. In the case of high Mach numbers, the viscous
effects far outweigh any inviscid effects associated with a finite lead-
ing edge radius.

The hypersonic interaction problem then becomes one of determining
solutions for a classical Prandtl boundary layer which has been sub-
jected to an initially unknown external pressure gradient and vorticity
field, but which, through the hypersonic inviscid flow relations depends
on the rate of growth of the boundary layer itself. The viscous bound-
ary layer must be considered to be distinct from the inviscid shock
layer. If the two were to coincide, the mass flow in the boundary

layer would have to equal the mass flow passing through the shock.
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Therefore, the shock layer contalns both an inviscid region and the
boundary layer.

‘Previous investigations have found that the pressure interaction
could be divided quite naturally into two asymptotic regions, called
strong and weak interaction zones respectively. On a flat plate the
strong interaction zone would be close to the leading edge, while the
week intersction zone would be farther downstream. According to this
concept, the effects produced in the weak intereaction region by the
self-induced pressure gradient are essentially perturbations superposed
on an already existing uniform flow. The strong interaction region is
characterized by the fact that the streamline inclination induced by
the viscous layer becomes larger, and the pressure gradient and viscous
stress gradient terms are of the same order of magnitude. The pressures
along the plate for both types of interaction have been correlated in
terms of an interaction parameter. This parameter varies directly with
the cube of the Mach number and inversely as the square root of the
local Reynolds number.

The values of € and  are needed at the Blasius point in order to
match the conditions at the beginning of the interaction. It has been
shown by Crocco (33) that the value of ¢ for Blasius type flow in a

weak pressure interaction can be given by

g = _t.;._?f_s*‘_ (A-—23)

b (= Kp) ’

where Regwx = /K'VRexb « The undefined coefficient, A, has a numerical

value of .44 and is called the momentum parameter. This value applies

to both adiabatic and non-adiabatic flows with zero pressure gradient.
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When there is a pressure gradient, the momentum parameter is defined
by
= A+ Bn

with n # O corresponding with & non-zero pressuré gredient, and B is
affected by the presence of heat transfer. Cohen and Reshotko (3k4)
have tabulated the various heat transfer, wall shear, and momentum
parameters.

The derivation of ey, begins with the two general differential
equations (A-16) and (A-1T). The semi-empirical values for C(X) and
D(K) at the Blasius point are substituted into the definition for o(K),

giving

_ D(m

With the assumption that Blasius type flow can be represented by o(K)

equal to unity, equations (A-16) and (A-17) become

gfg“ - <:(£§me> e [tw K(F-kt)] + tan e} (A-2k)
and ]
jg‘-’— ::(z\ge> { Et Hfr‘ﬁr‘tzl + tan @j (KF> j% , (A-25)
where
d=HKF+)(1- Z M)+ k{y-1) Met -KF(Frt +K( 5F) |

When these two equations are combined and solved for tan 6, the follow-

ing expression is obtained:
~C [t-K(F)] |
g |K K, * "(A-26)

tan & =
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The streamline direction for the outer edge of the boundary layer
at the Blasius point can also be given by the Prandtl-Meyer relation-
ship. For convenience, at the small angles of 6 which occur at the

Blasius point, this quantity may be approximated by

5 = -J/ME-1 &,
~—r~!\a=.(l+3<'-§1—Ma.‘:) .

The errors introduced by this assumption are small and can be ignored.

tanB = (A-27)

For exeample, the largest error occurs at Mach 10 and corresponds to an
¢ of -.85 and 0 = 2.5°, In this case, the approximate form of the
Prandtl-Meyer relationship gives a value which is T percent smaller
than the exact value. This error decreases rapidly with decreasing
Mach number and is less than 1 percent below Mach 5.0.

Equations (A-26) and (A-27) are solved for e, to obtain the

following expression:

M (14 G M2)CO-K) [t=K(Fe)
\’fﬁ“;&"_‘— \3,7\‘ V'Fé-;: t 5 .

B

This equation, with the definition of t, may be reduced to

A
XL ma ) C (17K
R F e )] e

The values of ¢ and € given by equations (A-23) and (A-28) are
used as the quantities which must be matched at the start of the inter-
action. They apply only to plates with sharp leading edges and assume

that a weak hypersonic pressure interaction exists.



APPENDIX B
NUMERICAL INTEGRATION OF THE DIFFERENTIAL EQUATIONS

Since the solution of this problem involves a numerical soluticn
of two ordinary first-order differential equations, a discussion of
the integration technique selected is warranted. If not carefully
chosen, numerical integration schemes can result in erroneous answers,
particularly at some distance from the start of the integration. The
integration involved in this problem starts at the separation point
and advances both upstream and downstream from this point. The down-
stream integration is subject to greater error, because of the consider-
able length in K over which the integration must be performed.

In ofder to choose the best method with which to effect the solu-
tion of a system of ordinary differential equations it is necessary to
consider several factors. These include: 1.) The accuracy required.
Are errors introduced by truncation and round-off in each step, and is
the method stable, i.e., how is the error incurred at each step propa-
gated to later steps? 2.) The ease with which the error at each step
may be estimated. 3.) The speed of the computation., and L4.) The ease
with which the method can be programmed for computer solution.

As a compromise of these requirements, a fourth-order Runge-Kutta
method was selected. The Runge-Kutta methods are widely used and have
an advantage in that they do not require the use of explicit definitions

nor the evaluation of derivatives higher than the first. However, the

11k
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first derivative must be evaluated four times for each step in the
fourth-order integration. Runge-Kutta methods are stable and are self-
starting, i.e., only the function values st a single previous point are
required to obtain the functional values at the next point. A chief
disadvantage of the classical Runge-Kutta method is that neither the
truncation errors nor estimates of them is obtained in the calculation
procedure.

In order to apply the method on high-speed digital computers,
Gill (19, 20) has developed a calculation procedure which controls
the growth of round-off errors and gives the highest attainable accu-
racy. This method compensates for the round-off errors accumulated
during each step without increasing the complexity of the procedure
and with no increase in storage requirements. The guantities 9y and
), which account for these errors, are introduced and are illustrated
by the example given below. To start the calculation procedure, 9y is
taken initially as zero. If the step calculations are performed with
no round-off errors, a), would be zero. This is not the case in prac-
tice, and a, represents approximately three times the round-off error
in one step. To compensate for this accumulated round-off, q), is used
as q for the next step.

The following system of equations illustrates the method. The

differential equation,

= £(5, Me) (B-1)

represents the equation to be solved with the values at the starting

point given by Mg =M, and g = Lo- The increment of ¢ for one step
0

of the numerical process is taken as AZ.
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K .=a5 (5, M)
Me,= Mo, +4 (Ki-Z 4.)
%= %+3 E%.(Me"‘Z%o):J -+ K
(o= AT (5,52, Me)
Me,= Me, + (1= Z)( K.~ 3)
Fa= G+ 3[(142 J(Keg)] -0 ) K.
K= &% f(5+42, Me,)
Me,= Me, +(1+ 5 )(Ks—%2)
- o=t 3[(1FE Mo ga)] ~ (14 E) K
=08 F(G+A5: Me,)
Me,= Me, + ¢ (Ko~ 255) (B-2)

%=Gs+ 3 [‘Z%' (K, -2 5]'3)] -+ K, (B-3)

At the end of a Ar step, Me has the value given in equation (B-2) with
the correction term, to be used as qy in the next step, given by (B-3).
The above system of equations is employed throughout the main

program and subroutines whenever a numerical integration is required.
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FLOW DIAGRAMS FOR
COMPUTER PROGRAMS
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| BLASEP Subroutine]

i
ICOmmon and Format Statementsl
1

Calculate: :
lst guess of xp location
initial ey and gy
initial eq and s

<l> Ll 1L
Calculate and Write:

Results at Xg

Set parameters

No ! 2
I—t—@ K + 0K < .6037 P—rSS—em|for next step

lak = .693 - K |

I Calculate:
Numerical solution of

(13) and (14) for one
Yes No AK step

@‘-( Too many loops? )—‘—® : x-distance

pressure ratio

1
Initialize parameters
Write: d K
to start new loop (rite ‘Fta at K )

P Intermediate check:
_l ick new ESI < Is eg progressing OK?

i No /Intermediate check: Yes
J CX new Xp Has assumed xy, been reacheg?

_Yes Was this the last AK

§ step? NJ

Pick new g No Check for accuracy: :>:Yes
Is eg OK? .

No Check for‘accuracy: Yes
—{Pick new xp Is xp OK? .

| I-N :: : .

. Pick new Gg 0 Cheiz ioroiscuracy. Yes

5 1 y
Write:

Comment that satisfac-
tory solution reached

G—

[ﬁéturn to General Programl

Figure 29. Computer Flow Diagram for BLASEP Subroutine



iL(Is dp/dx 2 0 >

| SEPSH Subroutine |
]

ICommon and Format Statementa]

Select

new C1

1 |
es —1 No
@Y_( Too many loovs? >_'

Calculate and Write:
Results at Xg

Set parameters

[k = k + ax ]
1

for next step

No Yes
f——(Is this the first StEU?>_V

Yes

Is calculated plateau pres-
sure within accuracy band?

f:?i

-

No

)

r

Calculate:

Numerical solution of
(15) and (16) for one
AK step with dp/dx O
c(K)

x-distance

pressure ratio

1

3534( Has x, been reached?

No

©)

Calculate:
Numerical solution of
(15) and (16) for one

AK step
x-distance
pressure ratio
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-IEE<:_Has X, been reached? i
i

f
( Write: data at K )

[
( Write: data at K )
) d

Set parameters
for next step

e |
Calculate:
Values at x,
} ¢
(Frite: dgta at Kr_)

o5 (5) Yes

-

®

[ 4

[Beturn to General ProgramJ

Figure 30.

End

Calculate:
Values at X,

I

data at Kp )

(-Write:

Is final pressure
ratio within accuracy
band?

Computer Flow Diagram for SEPSH Subroutine

2
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| REATCH Subroutine |

| Common and Format Statements]

( Calculate and Write:__)

data at xr

b
—2—Ts K - &>

[&K = K - .693 |

Calculate:
Numerical solution of
(17) and (18) for one
AK step
x-distance
pressure ratio

I

data at K

Write:

Yes

A nevw xg must be

selected by General
Program. xg must

Was this the last
AK step?

>N_f

Set parameters
for next step

move closer to the
ramp .,

The accuracy of final
pressure must be

checked by General
Program. If new xg is
needed, it must be moved
forward on the plate.

&< ]

IReturn to General Progréﬁ]

Figure 31.

Computer Flow Diagram for REATCH Subroutine
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F-Calculation Program

Imet&mmme
|

1
(_ Read: Input data _)
1

@
@
@—i( Too ma.n; loops? )ﬁt

r

Calculate and Write:
data at X,

f_ug—(ls K - AK > .6937 e

| &k = K - .693 |
| SREREE

—Q

Calculate:
Numerical solution of
(17) and (18) for one
AK step
x-distance
pressure ratio

i
(_ Write: data at K _)

| —Je8 7T T o
1

Yo Yes
‘.' ‘]\Tﬂ.s this :he Yes WaB thiB the NO
ast _ste 1 last step? i
|
ziitelzzse; Set parameters
for next step
1 .
3
No Has desired final Yes

pressure ratio
! been reached? Y

. —0Q
Pick smaller
value for F

i

Initialize conditions : No Is there Yes
for new loop of 1 more data?
calculations

({‘) | End

Figure 32. Computer Flow Diagram for F-Calculation Program
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51D
$J08

COMPLETE

C-0001 ALEXANDER R« PETERS

ALEXANDER R. PETERS 2527-50008

$1BJOB NAMEPR DECK
$IBFTC DXNAME DECK

C
1
2

I

16
17

18
19

20
21

22
23

24
25

26
27

28
28
28
29

30
31
32
44

LAMINAR BOUNDARY LAYER-SHOCK WAVE INTERACTION®##%#MAIN PROGRAM

FORMAT (7F10.2)

FORMAT (4F10.258X512}

COMMON XMACHSREY s XS 3 XSHyGAMMA 9DFELK] sPRP 2 As XMRyXMS 373 3ES53XByXMDS
1XMF»XKSH»ZSH»XMSH» AANGLE s ANGLE s XPsC1s PRF »XKPsPRSsPRDSsZBsZPy
2FRyXRP s XKF s M1 s¥25M3 M4

FORMAT STATEMENTS FOR FIRST PAGE OF PRINT-0UT

FOGRMAT (1HYs//7/777777)

FCRMAT (3UX»71HSHOCK WAVE-BOUNDARY LAYER INTERACTION SCLUTION FOR
1FOLLOWING CONDITIONS/) .

FORMAT (39Xy54H{USING A MODIFIED CROCCO-LEES MIXING PARAMETER METH
10D 7771}

FORMAT (34X s20HFREFE STREAM MACH NOes&Xs3H = ,F10e2//)

FORMAT (34X s21HREYNOLDS NOs PER INCHs3Xs3H = sF10.0//)

FORMAT (34X s5HGAMMAS19Xs3H = sF10.3//}

FORMAT (34XsI7THDELTA K INCREMENTsTXs3H = sF10e4//)

FORMAT (34X, 13HACCURACY TERM,11Xs3H = »F1Cet4//}

FORMAT (34X ,24HRAMP ANGLE, OR EQUIVALENT}

FORMAT (34X ,23HSHOCK STRENGTHs; RADIANS»2X»3H = sF10e654H OR sFb6a2,

18H DEGREES//)

FORMAT (34Xs16HSEPARATICN POINT»BXs3H = sF1lCe4510H (A GUESS)//)
FORMAT {34X+16HSEPARATION POINTySXsBH = +F104¢4+35H (ADJUSTED BY PR
10GRAM CALCULATIONS)/ /)

FORMAT (24X s20HCOMPLETE INTERACTION)

FORMAT (34X,22HCALCULATIONSs LOCP NCas2Xs3H = 58X,12)

FORMAT STATEMENTS FOR FINAL PAGE OF PRINT-OUT

FORMAT (1H1s///77/77)

FORMAT {23Xs85HA SATISFACTORY SOLUTION TQ THF SHOCK WAVE-BCOUNDARY
1LAYER INTERACTION HAS BEEN REACHED////}

FORMAT (10Xs33HTHE PERTINENT RESULTS INCLUDE®*%%*///}

FORMAT (14Xs17HMACHs FREE STREAMs7Xs13HMACHs BLASIUS»10X»>10HMACHS
1SEP512Xs11HMACHs SHOCK 94X »25HMACHs INVISCID DOWNSTREAM)

FORMAT {17XsF1Ua5512X9F10e5912X9F10a5912X9F1045912X5F10.5//77)
FORMAT {9X»s27HWACH, ISENTROPIC DOWNSTREAMs5X96HRE/INSs14Xs11HREs B3
1LASIUSs15Xs2HCT 913X s 17THF{K—REATTACHMENT }

FORMAT (17XsF1Ca5+512XsF1i0eCs12XsF1l0a0512XsF10a5913XsFTets/ 7/}
FORMAT (17Xs1CHXs BLASIUSs14Xs7HXs SEPss13Xs10HXs PLATEAU»13X»8HX,
1 SHOCK35X»26HXs REATTACHMENT STREAMLINE}

FORMAT (18X +sFBe&slaXsFBatislaXsFBaks14XsFBaliy14XsF8at///)

FORMAT (17Xs11HP(SEP}I/P(0O}»9Xs15HP{PLATEAUI/P(0)+8Xs13HPIFINAL})/PI
103 96X s 1BHP {DOWNSTREAM) /P (01 »4Xs 19HRAMP ANGLE, DEGREES)

FORMAT (18XsF9a53513X9F945513X3F9e53513X3F9e5514X9F642///)

FORMAT (18X 3sF9¢5513XsFPe551323X9F945+13X3F9e¢5914XsF542//7/)

FORMAT (18X sF5e5913XsF*a5513X3F945913XsFG.5514X9F642//7)

FCRMAT {(16Xs13HZETAs BLASIUSs10X»10HZETAs SEP.s11Xs13HZETAs PLATEA
1U»1CX 9 11HZETAs SHOCKs9Xs14HKAPPA, PLATEZU) ’

FCRMAT {(17XsF10e5512XsF1Ca5+512XsF1l0e5+:12X3F1045+12X9F1045///}
FORMAT (16X 12HKAPPAS SHOCKY

FORMAT (17XsF1Ca5//7/)

FORMAT (10Xs19HSOLUTIGN TERMINATED)

READ (551} XMACHSREY sXSHeGAMMAZDRELKISALPHAZXEP

READ (5+2) AsXSsBETALsFRyNL

L=C

M1=0

M2=0

M3=0

[aNal

36

54

33

34
35

46

45

INTERACTION (MAIN PROGRAMI}

M4=0
ANGLF=ALPHA%*40174533
FINDING THE WACH ANGLE CORRESPONDING TOQ FREE STREAM MACH NO. AND
RAMP ANGLE #% USING THE NEWTON~RAPHSON METHOD.
BETA11=BETA1
A11={ C(GAMMA+] cCI*¥ (XMACH* 223/ (2,03 L IXMACH*#21# (SINIBETAL} *¥2)=1,0
1)13-140
A12=( {GAMMAHT SO ) # (XMACHR*4 0 #SINISETAL) *COS(RETALY I/ L L IXMACH##2} %
I{SIN(BETAL) #221-1.03%%2}
FB1=TAN(BETAl)*Al1~COTAN{ANGLF}
FBIP=((1.0/COS(BETAT) 1 ##2) *AT1-TANIBETAI)*AL1?
BETA1=BETAl-(FB1/FR1P}
IF{{ABS{BETA1-8ETAL1}1.LT.0.00001} GO TO 37
GO TO 36
CONTINUE
FORMAT (1H1s9XsTHRFTAT =4F1046)
WRITE (65381 BETAl
CALCULATION OF NOWMSTREAM MACH MO. AND PRESSURE RATIO
PRDS= (24 Q¥GAMMAR { XMACH# 22 ) % (STN{BETAL 1 # %2} —(GAMMA—1+0) } /{GAMMA+140
13
FORMAT {18X+27HPRESSURE RATIO DOdNSTREAh =4F10.6}
WRITE (6+53) PRDS
A13=( (GAMMA+1 Q) *#2) % { XMACH* %4, 01 *(SIN(EETAL) *%2)
Al4=4.0%( (XMACH®#2) % (SIN{BETAL)}##%2)—14C}%( GAMMA® { XMACH®*2} £ SIN { BE
1TALI*%23+1401
A15=( 2, ORGAMMA* { XMACH®%2) # (STN{RETAL} %42 } = (GAMNA=1.0)}
AY16=( {GAMMA=140)# (XMAACH*¥2 1 ¥ (SIN(RETAL}*#2142,.0)
XNDS=SQRTI{A13-A143/(A1G*A16))
FCRMAT (10X s24HDOWNSTREAM MACH NUMBER =,F1046)
WRITE (6554) XMDS
BEGINNING OF EACH COMPLETE INTERACTION CALCULATIONS
L=L+1
IF (LeGEWNL} GO TO 3
WRITE FIRST PAGE OF OUTPUT
WRITE (644)
WRITE (655)
WRITE (6461
WRITE (6»7) XMACH
WRITE (648} REY
WRITF (6591 GAMMA
WRITF (6510) DFLKI
WRITE (6,111 A
WRITE (6512}
WRITE (6513} ANGLEsALPHA
IF (LsEQsl) GO TO 34
WRITE (65151 XS
GO TO 25
WRITE (6514) XS
WRITE (6,16} .
WRITE (6417} L i
CALL BLASIUS-SEPARATION SUBROUTINE
CALL BLASEP
IF(M1+EQ.0) GO TO 45
FORMAT (10Xs35HERROR IN BLASEPe SKIP TO NEXT DATA4}
WRITE (6246}
GO TO 3
CONTINUE
CALCULATION OF PLATEAJ PRESSURE FROM SEMI- EMPIRICAL FORMUL A
REYXB=REY*XB

T OALT={(XMBRI (XM5*#2)-14C)*REYXB)#%.25)

1 XA
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39

55

48

47

59

60

PRP=140+{ 14120 7*#GAMMAR (XMB##2) ) /A1T
CALCULATING BREAKAWAY ANGLE FOR AN ASSUMED STRAIGHT DIVIDING
STREAML INE
SINBE3=SORT ({PRP® {GAMMA+] a0} + {GAMMA=T140) }/ (2, Q¥ CAMVAX { XMACH*%2) 1)
BETA3=ARSIN(SINBE3) -
COTBE2=TAN(BETAB I {{ (GAMMA+1.0 )% IXMACH*%2)) /{2, 0% ( { XMACH¥#2) % {SIN(
1BETA3)*%21-1.0)1-1.0"?

TANBE2=1,0/COTBE2

BETA2Z=ATANITANSEZ} _

FORMAT (10X »4HBETA»1192H =3F9.6)

N&=2 -

N5=3

WRITE {6+39IN4,BETA2 -

WRITE (6+39IN5+BETA3

LOCATION OF REATTACHMENT POINT ON RAMP

XRR={ XSH=TAN(ANGLE }~XS#TAN{BETA2) 1 /{TAN{ ANGLE}-TAN(BETAZ2}}
XRP=XSH+[XRR-XESH} /COS{ANGLE}

FORMAT (19X»2BHREATTACHMENT POINT GON RAMP =3F1C.6)

WRITF {6555} XRP

CALL SEPARATION-SHOCK SUBROUYINE

CALL SEPSH

IF(M2.EQ.0) GO TO 47

FORMAT (10X +34HERROR IMN SEPSH. SKIP TG NEXT DATA.)

WRITE {648}

GO TO 3

CONTINUE

CALCULATION CF EQUIVALENT TU®RN ANGLE FOR ISEMTROPIC FLOW
AlB=1e0+{ {GAMMA=1,0]/2.0)%(XMO#%2)

XMF=SQRT( {240/ (GAMMA=T o0} )# ( {A18/{PRDS** ({GAMMA=1.01/GAMMAT 1) =1401
11

A3=SQRT (XMACH*%2-1,0}

TER=2.4495%ATAN{ «40825%A3}-ATAN(A3)

A19=SORT{XMF#%2=140}

TEF=2.4495%ATAN{ »4NB25%A191~ATANIALD)

AANGLE=TER-TEF

IF{XKSHeGTe 46931 GO TO 58

FORMAT (1H0»29Xs72HNOTE-~—KAPPA AT SEGINNING OF REATTACHMENT 1S SM
1ALLER THAN BLASIUS—KAPPAL} .

FORMAT (30Xs69HIF A SOLUTION EXISTSs X~SEP MyST BE CLOSER TO THE P
1LATE LEADING EDGEs}

WRITE (65593

WRITE (6,60}

X5=»B*XS

IF (LeGTe5) GO TO 3

58

50

49

51

52

43

42

57

56

41

GO TO 33

CONTINUE

CALL SHOCK-REATTACHMENT SUBROUTINE

CALL REATCH

IF{M3.EQ.D) GO TO 49

FORMAT {10X»35HERRCR IN REATCHe SKIP TO NEXT DATA.}
WRITE (6550}

GO TO 3

CONTINUE

XS51=XS

IF(M&4eEQel) GO TO 51
1F({ABS{PRDS=PRF}+L T+ (A%¥.,5% {PRDS=140)})} GO TO 42
XS=XS—{ (PRDS—PRF }/ {PRDS—1+0} 1 ¥XS*47

GO TO 52

XS=XS4+XS*{ {XKF~e693) /{XKSH=4693 1}

IF EXSeGE«XSH} GO TO 43

GO TO 33 -

XS=X51+¢5%( XSH-XS1}

GO TOo 33

WRITE FINAL PAGE OF PERTINENT RESULTS
WRITE (6,18}

WRITE {6519)

WRITE (6+2C)

WRITE (6,21}

WRITE (6522} XMACHsXMBaXMSsXMSHs XMDS
WRITE (6+23) -

WRITE (6+24) XMFsREYSREYXBsCl,sFR

WRITE (6525}

WRITE (65261 XB»XS»XPsXSHsXRP

WRITE (627}

WRITE (6528} PPS,PRP+PRF,PRDS,ALPHA
WRITE (6329)

WRITE (653C0) ZBsZSs2ZPsZSHsXKP

WRITE (6,31)

WRITE {6+32) XKSH

IF{XRP.LT«XEP) GO TO 56

FORMAT {1HGC»22X»B6HNOTE—=~THE PROGRAM HAS FOUND A REATTACHMENT POI
INT WHICH IS BEYOND THE END OF THE FLAP.)
WRITE (6557}

" CONTINUE

WRITE (6s44)
GC TO 3
STOP
END =~

el
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101
102
103

104 .
105

106
107

108

109

156

BLASEP SUBROUTINE

$IBFTC NAMEL  DECK

SUBROUTINE BLASEP

COMMON XMACHSREY XS+ XSHsGAMMASDELKI +PRP s A» XMBsXMS+ZSsES»XB s XMDS»
1XMF s XKSHsZSH» X4SHs AANGLE s ANGLE +XPsC1ly PRF »XKP s PRS3sPRDS+ZBsZP s
2FRsXRP g XKF oMl M2sM3 M4

FORMAT STATEMENTS FOR STANDARD PRINT-0UT

FORMAT (1H1s49Xs34HBLASIUS TO SEPARATION CALCULATIONS)

FCRMAT (43Xs4S5H{POINT 1 CORRESPONDS TO THE SSPARATION POINTY////)
FORMAT (11XsBHLOOP NCa210X9B8HMACH NO.sB8Xs12HBLASIUS ZETA94Xy15HBLL
15IUS EPSTLONsS5Xs12HINITIAL ZETAs4Xs1SHINITIAL EPSILCN)

FORMAT (13XsI3s14XsF6a3910XsF10a43BXsF1Ce698XsFl0e498XsF1l0.6/)
FORMAT (20X »10HX»s BLASIUS»5Xs13HXs SEPARATION3sSXs8HXs SHOCK»s7Xs5HR
1E/INsBXs THDFLTA K3s5X918HPLAT. PRESS. RATIO)}

FORMAT (21X 3sF7e4510X3F70a499XsFTe¢455XsF104035X35F7e43510XsFBa5/7/71)
FORMAT (21X 3+5HPOINT »5XsSHKAPPA6Xs THEPSILONs7TX»4HZETAS6Xs8HMACH NO
1es3XsBHX-LENGTH»3Xs11HPRESS RATIO»2Xs THME{AVE) 35X 52HQ49Xs3HQ14/ )
FORMAT (22X 31334XsFB84533X3F10.643X>F10e&4s3XsFBe593XsF8e554XsFBe533
1X3sFBa532X9E104352X+E10.3) X

FORMAT .{1HOs3X51UBHTHIS LOOP OF CALCULATIONS RESULTED IN A SATISFA
1CTORY CONVERGENCE AT THE BLASIUS POINT. AN ACCURACY TERM OF »F7.4
2+10H WAS USED.) .
GUESS INITIAL VALUSS FOR BLASIUS POINT

XB= «B%¥XS

REYXB=REY*XB

DEFINITION OF CONSTANTS APPEARING IN SUEROUTINE

Al =1+40-5QRT{.5)

A2 =1+0+SQRT{.5)

A3 SQRT { XMACH¥%2-1.0)

At =10+ { (GAMMA=140)/20)* (XMACH®*2}

A5 ={3,0%¥GAMMA-1.,0}/2.0

A6 ={GAMMA~140}/2.0

AT ={3.0%GAMMA=1401/{2+0% (GAMMA=1.0)}

A8 =GAMMA/(GAMMA-1.0)

TER=2e4495%ATAN(«40825%A3 ) —ATAN( A3}

INITIAL VALUES FOR EPSILON AND ZETA

EB={{ (XMACH®A41%2.2806%,094249)/ (A3%¥SQRT («44¥REYXBI )} #{1.0~{{+693%
114591 /43271 %A4)

XMB=XMACH +E£8

T =1e0/(1aCH+AE* (XMB¥%2))

A9 =10+ ({ {GAMMA=140}/2+0} % (XMB#X2}

ZB =(T*SQRT{.44*REYXB} /307

SET INITIAL CONDITIONS FOR COMPUTATIONS
Q4 =0.0

Ql4=0.C

SUM=N .0

L=0

XKAFPA=,63 : .
Nl=¢

CALCULATION OF INITIAL GUESS FOR EPSILON AND ZETA AT THE SEP POINT
DPR=PRP-1.0

PRS=1.0+.5%*DPR

XME=SQRT( (2.2/ {GAMMA~1+0} ) *{ AGK (PRS** { {GAMMA=140) /{~GAMMA) } }1~1. O))
XME1=XME

EI=YME-XMACH

T =1e0/{1e0+A6*(XME*%2))

Z1 ={T*SQRT(.44%REY¥XS)}/e37

IF (Z14GTeZB} GO TO 156

21=1.10%Z8B

21=21

CALCULATION .OF INITIAL RCW OF DATA

[a¥aNaKa)

110

111

112

N=1

L=L+1

E1=E1

B5=140+{ {GAMMA-1. 0)/2.0)*(XME**2)

PR=(AS/B5)**A8

PRS=PR

DELK= DELKI

WRITE HEADINGS &ND FIRST ROW OF DATA

WRITE (6:101)

WRITE (6,102}

WRITE (65103)

WRITE (635104) LaXMACH»ZBsEBsZIsEI

WRITE (64135)

WRITE (6:106) XB3sXS»XSHsREYsDELKsPRP

WRITE (6+107)

WRITE (64108} NsXKAPPASETsZ1sXMEsXSsPRaXME»T4»Cle

BEGINNING OF STEPWISE CALCULATIONS

IF (XKAPPA+DELKeLT,0e693) GO TO 112

DELK =+693-XKAPPA

N1=1

STEP-BY-STEP NUMERICAL INTEGRATIOM OF THE DIFFFRENTIAL EQUATIONSS
USING GILLS RUNGE-KUTTA METHOD.

FINDING APPROX. AVERAGE VALUF FOR LOCAL “ACH NU¥BER TG USE IN
DZETA/DXAPPA CALCULATION.

XK= XKAPPA+{DELK/2.0}

XK1=XKAPPA

XME=XME1

Z=71

N=N+1

C =3642%(XK-263)

D= 2242¥(XK—e63)

F= {2e0%(1e0-XK})/{2.0%XK=140}

SIGMA =D/{2.0%{1.C-XK}%C)

E=XME—XMACH

A1D=SORT{XME*%*2-1.0)

TEP=2.4495%ATAN{<40825%A101-ATAN(ALQ)

TED=TER-TEP

THETA=TAN{TED)

T =1a0/(1.0+A6% (XMER%2})

DFDK = {-2+0}/(12.0%XK~1.C)%%2)

Bl =CH{XK®{F+T)I*(1.,0-a5% (XMEX#2)#T ) +XK*{GAMMA=1, 01 *IXMERR2 )X (THR2)
1-XK*F%{F+T+XK*DFDK} ) .

B2 S{—XK*F)¥((C/Z)%UT-XK*¥{F+T)=1(1e0-XK)*¥{140~-SIGMA}/ (XK*F) )% {XK*
TUF+T IR (1o J=ASH IXMER¥2) % T )4 XKH { XMER%2 J % (T*22 )5 { GAMMA-140} )} +THETA)
DZ=DELK*(B1/B2)

2=214D27/2.0

B3 =—XME*{ (C/Z)*{T-XK* (F+T)—{1+0~SIGMAY* (140-XK)* [F+T+XKXDFDK )} +
1THETA}

B4 = CHIXK*(F+T)I%( ] 0-AE*(XMEXR2)*¥T )+ {GAMMA-T o Q) RXKRIXMERR ) % (T*¥%2
1) —XK*F*(F+T+XK*DFDK}) :
DME = (B3/B4)*DZ
XME=X4E1 + DME/2.u
XME A=XME

RUNGE-KUTTA SOLUTION OF DZ/DK D.E. USING AVERAGE XME VALUE.
11=0

Q0=04

z2=21

YG0=21

XK=XK1

E=XME=XMACH

YAl



113

114

115

116

117

118

A10=SQRT(XME#*2-140)
«4LGS*ATAN{<40825%A10)}~ATANCALO)
TED=TFR-TEP

THETA=TAN(TED)

T 214G/ (1.04A6%(XME**2))

C =3642%(XK=463)

D =2242%(XK=263)

F =(2.0%(140-XK})/(2+0%XK=140}
SIGMA=D/ (2. 0% (140-XK)*C}

DFDK= (=240)1/({2.0%XK=1,01%%2)

Bl ®CH*{XKX(F+T)*(1,0-A5¥(XME##2 )T ) +XK¥{ GAMMA=140)# (XME*¥2) & (TH#%2)
1=XK*F *( F+T+XK*DFDK )

B2 =(=XK¥F)®{(C/Z)*{T-XK*{F+T)=({1+0~XK)*(1.0- —STGMA) £ (XK*F ) 1 # (XK¥(
1F+TI* (1o O-AS* (XME*%2) ¥T )+ XK* (XME#%2) % [T*#2 )% { GAMMA=1401) 1+ THETA)
DZDK=B1/B2

11=11+1

IF (11-1.EQ4J) GO TO 114

IF (I1-2.EQ.0} GO TO 115

IF (11=3.EQ.0) .GC TN 116

IF (11-4.EQ.0} GO TO 117
XKG1=DELK#*DZDK
YGL=YGO+4 5% (XKG1~240%Q0)
Q1=QU+3.0%(o5% (XKG1-24 C*QC1 1 ~a5%XKG]
2=YGl

XK=XK1+DELK/240

GO TO 113

XKG2=DELK#*DZDK

YG2=YGl+A1#* (XKG2~Q1 !}

Q2 =Q1+3.0% (A1*(XKG2-Ql)}-A1*XKG2
2=YG2

XK= XK1+DELK/240

GO TO 113

XKG3, =DELK*DZDK

YG3 =YG2+A2*#(XKG3~Q2)

G3= Q2+3.0%(A2¥(XKG3-Q2))-A2*XKG3
2=YG3

XK=XK1+DELK

GO TO 113

XKG4=DELK*DZDK

YG4 =YG3+{1e0/64U)*(XKG4=240%Q3}

Q4 =0Q3+3. 3% ((1e0/640)*(XKG4=~240%Q3) 1= 5%XKG4
22=Y64

XK2=XK1+DELK

D2=22-21

RUNGE-KUTTA SOLUTION OF DHME/DZ DeEe
12=0

Q10=Q14

XK=XK1

XME=XME 1

2=71

YGLUSXME]

C=3642%(XK=463)

D=2242%{XK=063)
F=(2e0%(1.,0~XK}1/(240%¥XK=140)
SIGMA=D/ (24 0% (1.0-XK}%C)

E=XME-XMACH

AI0=SQRT (XME*%2-1.0})
TEP=244495%ATAN{ 4P 825%A10)~ATANIALOD)
TED=TER-TEP

THETA=TAN(TED}

=1a0/ 11 G+A6* (XMER%2} )

DFDK={=2.01/{(2+0U%*XK-1e0}%%2})

B3 =—XME*{{C/Z}*{T=XK*{F+T)—{1s0=SIGMA}# (14 0=~XK) * (F+T+XK*DFDK} )+
1THETA)

B4 =CHIXKH*{F+T)%¥(1,0-A5* (XME##2}#T )+ GAMMA=140) #XKX [ XMEXRZ ) ¥ (T#*2)
ToXK*F 3 {F+T+XK#DFDK) )

[aNad

rr

119

120

121

122

163
134

DMEDZ=B3/B4
12=12+1
IF {12-1.EQ.0) GO TO 119
IF (12-2.EQ.0} GO TO 120
IF (12-3.EQ.0} GO TO 121
IF (12-4,EQ.V) GO TO 122
XKG11=DZ*DMEDZ
YOLI=YGLID+e5* XKLL LI=2eU*QL0)
W1l =WIC+34 U Leo*IXKL]IL=24U¥DL0 ) )= H¥XKG11
XME=YOG1l . ’
L2LI+DLI2eV
XK= XK1+DELK/24U -
GO 10 118
XKG L2=D2*DMEDL
YG1Z =YGLLI+AL®IXKG12-Q41}
Q12 =0Q11+3.U®(AI*(XKG12-Q11)}~A1*XKG]12
XME =YGL2 '
L=L14DLI 20V
XK =XK1+DELK/ZeU
GO 10 118
XKG13 =DL*DMEDL
YGL3 =YGL2+A2%1XKG13~QL2}
Q13 =U1Z+3.D%LAZ*IXKG13-012) ) =A2%XKG13
XMEFYGLY
L=L2
XK=XK2 B
GO TO 118
XKG1l4= DZ*DMEDZ
YGlé SYGL3+(1e0/6e01%#(XKL14~2,0%013)
Q14 =Q13+3.U%((1.0/6.01*(XKG14=2.0%Q13) -4 5#XKG14a
XME2=YG 14
DME=XME2=XME 1
E2=XMEZ=XMACH
CALCULAIION OF X-DISIANCE LOCATIONW
XME= XME1+DME/Z240
XK =XKL1+DELK/240
C= 3642%{XK—-e63)
REYXS =REY*XS.
B5 =1s0+{{GAMMA=1401/2+0) % {XME*%2)

SX =UleU/REYXS)*¥LAL¥X2 ) ¥ [XMACHAICHXME) )X ((R5/A4)%%AT )%, ‘*((Zl**z)-:

1022%%2))

SUM=SUM+5X

X= XS%*{leU~SUM)

CALLULATIUN UF PRESSUKE RATEO

BO =JaU+{IUAMMA=L.U}/2eU}*(XME2*%2}

PR S(AY/8b)%%*Ab

XKAPPA=XKAPPA+DELK

WR1iE ROW UF QUIPUL RESUL!S

WRILE 1621U8) NsXKAPPASEZ2LZ2sXME22XsPRyXMEASQL QLG
INTERMEDIAIE CHECKSe. 10 SEE IF SAIISFACIORY CONVERGENCE IS BEING
OBTAINED. (MODIFICATIONS INCLUDF DOWN TO STATEMENT 128}

IF (LZe.GEetB) GO TO 127

IF tXesLEeXB) GO 10 126

IF tE2.Gketl) GO 10 128

A NEW VALUE FOR INTILAL EPSILON 15 NEEDEDs SINCE A MAXIMUM IN
EPSILUN Ve KAFPA HAS BEEN OBTAINED.

E1 SEB-1(Es~b1)/1XK2—ab3) 1% 1,05%,063

XB1= XO=(1X5=X}/tXKL-e03)1%,063

It {XBleGheXB)} LU TO 133

XB=XB1

IFIXBeGTo040) GO 10 163

XB=e4*XS

CONTINUE

FORMA1 (1UXs77HINTERMEDIATE ADJUSTMENT —— EPSILON-SEPARATION {(E-MA

1Xs OCCURRED! AND X-RBLASIUS)

WRITE 16,134)

9¢1



139

C

C
C

C

133

126

161
135

127

162
137

140
136

150

158

157

128

GO T0 150
FORMAI (1UX:63HINIERMEDIATE ADJUSIMENS ~= EPSILON~SEPARATION (E-HA
1X. OCCURRED)) .

WRITE (65139}

G0 To 150

X=BLASIUS CORRFCTION

XB= XS={(X5=X)/(XK2~+63))1%.063%1405

IF{XBeGT4Us0) GO TO 161

XB= e 4%XS

CONTINUE

FORMAT (10X s36HINTERMEDIATE ADJUSTMENT =—— X—BLASIUS})
WRITE (65135)

GO TO 150 .

EPSILON CORRECTION =

El= EB-({kZ2~E1)/{XK2-e63))#1,05%,063

XBl= XS={(XS-X1/{XK2=+63)1%.063

IF (XBl.GE.XB} GO TO 136

XB=XB1

IF(XBeGT+0+01 GO TO 162

XB= e 4*X5

CONTINUE

FORMAT {10X3s59HINTERMEDIATE ADJUSTMENT —-- EPSILON-SEFARATION AND X-

1-BLASIUS!

WRITE {6+137) N

GO TO 150 ~

FORMAT {10Xs45HINTERMEDIATE ADJUSTMENT == EPSILON-SEPARATIONY
WRITE {6»140)

INITIALIZING PARAMETERS SO ANOTHER LOOP OF CALCULATIONS MAY BEGIN
AT THE SEPARATION POINT.

IF {LeGE.25) GO TO 141

REYXB =REY®XB

EB= (L {XMACH®AL)*2, 2806*-094249)/(A3*SQRT(.QA*REYXB)7)*(1-0-((-693
1%1459)/43077%AL)

XMB=XMACH+ER

T =140/(140+A6H (XMR%#%2))

A9= 1e0+( (GAMMA=1.0)/2.0)*{XMB%%2)
2B =(T*#SQRT (. 44%REYXB))/+307

IF (2Z1.GT+ZB) GO TO 158

21=1.10%28B

Q4=0,0

Q14=0.0

SUM=0.0

N1=0

XKAPPA=.63

IF (El14LT.EB) GO TO 157

EI=EB*145

XME=XMACH+t I

Ll=21

XME 1=XME

GO 10 110

IF (NleEQel) GO 10 130 N ~
SE! INITIAL CONDITIONS FOR NEXT STEP IN THE MUMERICAL INTEGRATION
Z1=22 o

E1=E2

XME1=XME2

GO TO 111

CHECKING EPSILONs ZETAs AND X=-BLASIUS FOR ACCURACY.

CHECKING EPSILON

130

146

147

le8
169
16>

164

148

155

159
16U
153
151

154

170
141
142

171

IF {{EB-E2)} LT(A®{EB-EI}})} GO TO 148

EI2=E1l

ET =El +.7¥(EB-E2)

FORMA! (1H®,; 9X»44HSOLUIION DID NO! RESULT IN DESIRED ACCURACY.)
WRITE {65146}

FORMAT (1UX+53HA NEW VALUE FOR EPSILON-SEPARATION HAS BEEN SELECTE
iDe)

WRITE (65147)

IF(L.LE.5) GO TO 164

IFLARSIEI-E12) +GTe(«5*EBY) GO TO 164

IF(EI.GT.EI2) GO TO 168

XB=XB~({{E1-E12)/EB}*%2)%XB

GO TO 169 .

XB=XB+{ ({E1~E12)1/ER) %%2 ) *#XB

CONTINUE

FURMAT (10X +29HADJUSTMENT MADE IN X~BLASIUS.}

WRITE (632165}

CONE INUE

GO TO ‘151

CHECKING X—BLASIUS

IF (ABS{X~XB)«LT4ABS{A®{X5=XE}}) GO TO 143

XB2=XB

XB=X+e25% (XB-X)

WRITE (6,146)

FORMAT {1GX»4&HA NEW VALUE FOR X—-BLASIUS HAS BEEN SELFCTED}
WRITE (65155} :
IF(LeLEe5) GO TO 166

El=bl1-(1.U-SORIIXB2/XB)I*EB

FORMAG (10X »3BHADJUSTMENT MADE IN tPSILGN—SEPARATION-)

WRITE (64167}

CONTINUE

GO TO 151

CHECKING ZETA

IF (2241.T+ZB) GO TO 159

IF t1Z2-2B)«LTlA*(ZI~ZB))} GO TO 154

© ZISZI-e9%(22-IB) .

GO TO 160

ZI=21-1e1%tZ2-/B)

WRIIE 16+146)

FORMAT (1UX>5UHA NEW VALUE FOR ZEIA-SEPARATION HAS BEEN SELECTED.)
WRLIE (62153)

GO 10-15V

RETURN OR TERMINATION OF bUBROUlth

WRITE (6451U9) A

ES=t2

ZS=12

XMS=XMACH+E]

XB=X

RETURN

CONTINUE

FORMA1 (1HE8,10X>63HCONVERGENCE HAS NO! EEEN REACHEDs SUBROUTINE BL
LASEP 1ERMINATEDS)

WRITE (65142}

M1l=1

B

TG0 10 1/U

STOP
END ’ ~

Lzl



B SEPSH

SIBFTC NAMEZ DECK

2uu
21
202

204

205
2ub

2u8

209
21U
211
212
213
214

21>
Z10

SUBRGUTINE SEPSH
CUMMON XVALHvRtY’szstvGAWWA,DFLKI»PQP9A’XMB,XWS,ZQ,ESvXBsXMDS,
LEXME Y KKOH L OH s AMOH s AANGLE s ANGLE s AP (1 PRF s AKP s PR s PRDS s2B 2P 5

2PR 5 ARP s XKP ML MIaMY s Mg

FOKMAT STATEMENT> FOR STANDARD PRINT=OUT
FURMA! L1HIs44X»a4H5EPARATION 10 SHOCUK tOR CORMNER} CALCULAIIONS)
FUKMAT (44X 4DriPUINT 1 CORKRESPORUS 10 THE SEPARATION POLINTY///7)

FUKMA L 134Xx9BHLOOP NOws1395X54H0L =51 /4355X324HPLATEAU PRESSURE RA

L1TI0 =sF7e377/3

FURMATY X s BHMACH NOW sTAs6HREZ 1IN, sBX 9 5HX~SEP 36X s BHX-CORNER s 5X s BHZET
1A SEF»6Xs L LHEPSILON SEP»5X»16HBLASIUS MACH NO.»5Xs13HSEP. MACH NO.
2)

FORMAT {BXsF6e3s5XsF100125KsFTabs5XsFTaks5XsF10e 436X9FBa5s11XsF9e5
LslUXsF9ab/7)

FORMAT (58X s ISHTAHLE, OF VALUES//)

FORMAL {LLXsDHPOINT »6X s 5HKAPPA» 10X »4HZET A2 OXy THEPSILCNs6X 9 13HLCL o
IMACH NOs3»bX s JUPX—LOCAIIONsb5X s 12HPRESSS RAI IO 7X94HCIK) /)

FORMA! 11ZX913s6XeFBebsbXatlUsbsbXorFeS5es7X3FFa53TXsFFe5437X9FP4547X
1sF8e3)

FURMAT 1 [H8, 92s54HCORKECT PLATEAU PRESSURE RATIO REACHED USING C1
1 SHOWNa)

FUKMAT™ t JUX s LSHATCURALY TERM =3sF7+4/)

FUORMAL (1HB s LUXs59HINCORRECT PLATEAU PRESSURE QATIO- NEW VALUE OF
1CL SELECTED.)

FORMAL 11HO, 9Xs64HX-$HOCK HAS BREEN REACHED BEFORE FSTARLISHING A
LPRESSURE PLATEAU.?

FORMAT (1TRsabHLL PRODUCED 100 LOW A PRESS RATIC AT X-SHOCK.)
FURMAT (10X 946HLL PRODULED 100 HIGH A PRESS RATIO AT X—~SHOCK.)
FORMAT (13Xs63HCORRECT PLA!EAU PRESS RAT IO REACHED AT X-SHOCK. AC
ICURALY TERM=sk fe4)

FUKMAT (19X 3 36HSEPARATION=—SHOCK SOLUIION COMPLETEDS)

FUKMA T {LHUs YA936HSEPARATIUN~SHOLK SQLUTION COMPLEIED)
DEFINITIUN Or CUNSTANTS APPELARING LN SUEROUTINE

Al =1eU=50RT(e5)

A2 =1.U+SQRT{.5)

A3 =SURTIXMACH®**2-1.0) R

Ab =1eB+{ (GAMMA=140/240)% (XMACH®#2)

AS ={3.U*GAMMA=1.U) /2.0

A6 SLLAMMA=1.U1/Z40

AT ={340%#GANMMA=IeU]/t 2.0% (GAMMA=1.0))

A8 =GAMMA/ LGAMMA=140)

AY Z1eU+{ tUAMMA=LeU /2201 % LXME%%2)
TER=2e4695%A1ANT o4 0BZO%AS ) —ATANTAS}

L=0

F=zedaols

(L= 1/eB3Y8-2441 L4%¥XMACH+a 1143 { XMACH®#2}

SET INITIAL (ONDLIIONS FOR CO“DUTATIONS

it (LebEs10}) GO 10 218

Q4=v.U

Qla=U.0

SUM=U 0

XKAPPA=.63

XME1=XMS

XK1=XKAPPA

X=X5

C=Cl

Z1=¢45

N=1

L=L+1

SUBROUTINE

[aXa¥aks)

C

222

XME=X

DELK= DtLKl

CALCULATIONS FOR snNiTIAL ROW OF DATA

B5= 1eC+( {GAMMA~140)/2s0)}% (XME*%2)

PR ={A9/B5)**A8

PR2=PR

WRITE HEADINGS AND FIRST ROW OF DATA

WRITE (6,200}

WRITE (6+201) X

WRITE (6+202) LsClsPRP

WRITE (65203)

WRITE (652041 XMACHsREY»XSsXSHsZSyESsXMP s XMS

WRITE (6+205)

WRITE (6,206}

WRITE (6+207) NsXKAPPA>ZS»ESyXMSsXSsPRHC1

BEGINNING OF STEPWISE CALCULATIONS

IF (Ne«FQ.1} GO TO 220

IF (PPRX.LE.0.C} GO TO 221

N=N+1

STEP-BY-STEP MUMERTICAL INTEGRATION CF THE DIFFERENTIAL EQUATIONS,
USING GILLS RUNGE-KUTTA METHOD.

FINDING APPROX. AVERAGE VALUE FOR_LOCAL MACH NUMBER TO USE IN
DZETA/DKAPPA CALCULATICN.

XK=XKAPPL+IDELK/240}

XK1=XXAPPA

XME=XME1

2=21

E=XME—-XMACH

A10=SCRT(XME#%*2-140)

TEP=2+4495%ATAN{40825%A1CI-ATAN(ALC)

TED=TER-TEP

THETA=TAN{TED)

T =1e8/7(1e8+A6X (XME*%2})

Bl =CHIXK®(F+TI* (1 N~ASK{XMERE2 XTI+ XK* {GAMMA—1 D) ¥ (XMF*#2 ) # (TR%2)
1-XKE*F ¥ (F+T))

B2 ={—XK¥F}*{(C/Z)1*{T-XKE(F+T)—( (140=XK) /I XKRF}} ¥ (XK*{F4+T1*¥{1.0=-A5
1R {XMEX#2) T J+XKE(XME*¥2) ¥ (T*E2 ) ¥ (GAMMA~]1.0) 1 )+THETA}
DZ=DELK®(B1/B2}

2= 214D2/2+9

B3 =—XME*#{{C/Z}®(TwXK*¥{F+T}—(1aC=XK)}®(F+T) }+THETA)

B4 =SCHEIXK*(F+TIR(10-B5% (XMEXRX2)¥T ) +{GAMMA=] 4O ) XXK* ( XME#X2 ) # (T* %2}
1-XKX*F%(F+T) )

DME= (B3/B431*DZ

XME= XME1+DME/2.C

XVEA=XHME

RUNGE-KUTTA SCLUTION OF DZ/DK DeEa USING AVERAGE- XME VALUE.

11=0 .

QC=Q4 . -

Z=21

¥Go=21

XK=XK1

E=XME—XMACH

A1O=SQRT{XME*%2-1.0)

TEP=2.4495%ATAN( 40B25%A1C)—ATAN(AIC)

TED=TER-TEP

THETA=TAN(TED)

T =1.0/01.0+A6%(XME#%2))

Bl =C*{XK®{F+T)*{1,0~ BEEIXPERR2) XT3 4XK*( GAMIA=140 1% (XMEX*2 ) % (TH%2)
1-XKEZF*(F+T1)

82 -(-xK*F)*((L/Z)*(T XK#(F+T1—{{1e0=XK) /{ XK¥F) I CXK*(F+T)}*¢1,0-A5

8CT.



223

224

225

226

228

229

23G

THIXMER*2) % T Y X KH(XMER#2) ¥ (T2 2) % (S0MMA—T.0) ) )+ THET 2}
DIDK=31/82

11=11+3

IF (11-1,F0.0) GO TO 222

IF (11-2,F0.0) 6D TC 224

IF (11-3.E4.0) GO TO 225

IF (1l-4.EUeL) GO TO 226

XKG1=DELK¥DZCx
YG1=YGO+4. 5% (XKG1-2,0%22)
01=00+3.0%{ 5% (XKG1-240%CG0) Y=o 5¥XKG1
2=YG1

XK=XKI+DELK/249

GO TO 222

XKG2=DELK#DZDK

YG2=YGL+AT* (XKG2-Q1)

Q2 =01+43.0% (A1% (XKG2-R1))—A1#X<G2
2=YG2

XK=XK1+DELK/2.0

G0 TO 222 .

XKG3 =DELK*DZDK

Y63 =YG2+A2%(XKG3-02)

Q3= Q2+3.0% (A2%(XKG2-02))-A2%XKG3
7=YG3

XK=X%K1+DELK

GC TH 222

XKG4=DELK*DZDK -

YG4= YG3+(1.0/640)% (XKG4~240%03)

Q4 =Q3+3,0% ((1e0/660)% (XKG4-2.0%N03) ) - S¥XKGL
22=Y64 '
XK2=XK1+DELK

Dz=22-21

GE=KUTTA SOLUTICN OF DME/DZ DeEe

Qlu=Qls4

XK=XK1

XHME=XME]

z=21

YGLi=XHMEL

£=XIME-XMACH

ALO=SORT(XME#*2-140)
TEP=244495%ATAN{ 440825 %A 121 -ATAN(ALC)
TED=TER-TEP

THETA=TAN{TED)

T= levt{leCHAB%(XME®®2)) .

335 —XMER({C/ZIHIT-XKE(F+TI- (14 0-XKYR(F+T} }+THETA)
B4= CHIXKHIF+T)H (1o 0-ASH (XME*22)¥T ) +{GAMMA 1, 01 HXKFIXME* R ) ¥ (T#%2)
1-XK#F*{F+T))

DMEDZ=B3/E4

12=12+1 .

IF (12-1.£Q.2) GO TO 228

IF {12-2.5Q.0) GC TO 229

IF (12-3.EQ42) GO TN 23D

IF (]2-4.7R2.0) ¢O TO 231
XKG11=DZ*DMEDZ
YGLl1=YG1o+e 5% (XKG11-240%Q12)

011 =010C+340% (5% (XKG11-240%Q10))-a5%XKG11
XME=YG11

2=21+D2/2.C

XK= XK1+DELK/24%

6o TO 227

XKG12=DZ*DMEDZ

YG12 =YGI1l+A1#(XKG12-211)

Q12= 21143, 0% (AT*{XKG12-011} )AL #XKGI2
XME =YG12 i

2=21+D2/24%3

XK=XK1+DELK /24

Go To 227

XKG13 =DZ*DMEDZ

YG13 =YG12+AZ#(XKG13~Q12)

Il

232

233

234

013 =QI2+2.0%{A2¥(XKG23-Q12) ) ~A2*XKCrE3
XHE=YG13

7272

XK=XK2

GO TO 227

XKG14=0Z*PHUEDZ

Y614 =Y513+(1.%/640)1%{XKG14=2.0%012}

016 =013+34C¥((140/640)1%(XKG14-240%G13) ) =0 5%XKG 14
XME2=YG14

DME =XME2-X¥E1

E2=XME2~X"ACH

CALCULATION OF X-DISTANCE LOCATION

XME=XME1+DME /2.0

XK=XK1+DELK/2.6

REYXS=REY®XS .

855 1aQ+({GANMA=140)/240) R {XME*#2) Co-
SX =(1eO/REYXS)H(B4%%2 )% (XMACH/ (CRXMEY 12 ((RS/AGIREATIH Q5™ (Z1H%2) =
1(Z2%%2))

SUM1=5Ut,

SUM=SUM+3X

X1=X

X=X5%(1.0-5ui)

CALCULATION OF PRESSURE RATIC

B6S 140+A6HIXFE2%%2)

PR1=PR

PR=(AZ/B6 I *¥AB

XKAPPA=XKAPPA+DELK

DPDX={PR—PR1} / {X~X1]

CHECK TO SEF IF X—SHOCK HAS BEEN REACHED.

IF (X<GE«XRP)} GC TH 232

“RITE ROW OF OUTPUT RESULTS

WRITE (6:207) NsXKAPPASZ23E25XME2sXsPRC

SET INITIAL CONDITIONS FOR NEXT STEP INM THE NUMERICAL INTEGRATIOR
z1=22 -
El=E2

XME 1=XUE2

GO TO 219 .

ADJUSTMENTS SECAUSE X—SHOCK HAS SFEN REFCHED,

IF (X<GT4XRP} GO TO 233

WRITE (652071 NsXKAPPA3Z2,E25XME25X PR »C

WRITE (55211)

GO TO 234 .

CALCULATING CONDITIONS FOR THE FINAL STEP WHICH ENDS AT X=SHOCK
SUM=1.C~{XRP/XS)

Z2= SORT({ZI1*223-(SX)/({«5/REYXSY#*(AL®RZ )% (XMACH/ (CXXME) )*{ {B5/A4L)
1%%473 1))

DZ2=22-71

DHE=DMEDZH#DZ

XHE2=XME1+DME

E2=XYE2-X"ACH

DK=DZ/DZDX -
XK2=X¥1+4DK

B6= 1eC+AEF(XME2®EX2)

PR={A9/B61*%.8

XKAPPA=XK1+DK

X=XRP

ZP=72

XKP=XKAPPA

XP=XRP

WRITE FINAL RQOW OF RESULTS AT X-SHCCK

WRITE (65287} NsXKAPPASZ2+E2+XME24XsPRyC
WRITE (6+211}

CHECKING FINAL PRESSURE RATIC FOR ACCURECY
IF(ARS{PR—PRP).LT-ABS{A*(PRP~PR2})) GO TC 235
IF (PR«4GTPRP)} GC TO 237

WRITE (64212}

Cl ={1404{{PRP-PR}/(PRP-PR2}}*47}%C1l

SET NEw INITIAL CONDITIONS -

6C1



249

239

250

238

[aNal

240

241

242

243

244

GO0 TO 217
WRITE (65213)

C1 ={1.0+{(PRP-PR}/{PRP-PR21}1#.7)*C1

SET NEW INITIAL CONDITIONS

GC TO 217

CHECKING THE CALCULATED PLATEAU PRESSURE FOR ACCURACY
IFCABS(PR=-PRP).LT+ABS{A#{PRP-PR2))} GO TO 238
WRITE (65210)

IF {PR.GT.PRP} GO TO 239

IF({PRP=PR2}+LTeCs1} GO TO 249

Cl= (1.0+({PRP-PR}/(PRP-PR2})1#,7)%C1

GO TO 217

Cl= {1.0+({PRP~PR}/(PRP=-PR2:}#,25)%C1

GO TO 217

CONTINUE .
IF{{PRP=PR2)+LT40s1) GO TO 250

C1 =(1.0+{(PRP=PR)/(PRP=PR2})%,73%C1

GO TO 217

Cl= (1e0+{{PRP-PR}/{PRP-PR2}}%,25)%C1

GO TO 217

WRITE (6+208)

WRITE (65200) A

XP=x

XKP=XKAPPA

zP=22

SOLUTION IN THE FRESSURE PLATEAU REGION
SOLVING DZ/DK Defa USING GILLS RUMGE-KUTTA METHOD.
XK1=XKAPPA

XME=XME 1

E=XME-XMACH

B5= 1e0+{{GAMMA=148)/2401% (XME*#2}
Al0=SQRT(XMF**2-1,0)
TEP=2.4495%ATAN{+40825%A101~ATAN(ALQ)
TED=TER-TEP -

THETA=TAN(TED)

T= 1a9/(1e0+AB6% (XME#%2))

Q4=040

SEGIN STEPWISE CALCULATIONS.

13=0

N=N+1

Q0=Q&

2=21

YGC=21

XK=Xx 1

C= (=THETA%Z}/{T-XK*(F+T}~(1.0=XK) ¥ (F+T})

Bl= CH(XK¥(F4T)*(140=-A5% (XMEX#2)%T ) +XK*{ GAMMA~1.0) % [ XME**2) % (T%%2)
1-XK#*F¥(F+T1}

B2= (~XK*FI¥{(C/ZI*(T=XK*{F+T}=({1a0=XK}/{XKXF) )= (XK*(F4T) % (1.0~A5
13 (XME#3#2)#T )+ XK* (XME*%2) % (T#%2) #{GAMMA=2 .0} } 1 +THETA}
DZDK=B1/B2

13=13+1

IF (I13-1.EQ.u) GO TO 243

IF {13-2.EQ.0) GO TO 244

IF (12-3.E2.0) GC TO 245

IF (12-4.EQ.0) GO TO 246

XKG1=DELK*D2DX .

YGI=YG0+45% (XKG1—2, 0%Q0)
Q1=Q0+3.0%{ 5% (XKG1~24U%Q0) 1= 5%XKG1

2=YG1

XK=XK1+DELK /240

c2=c - .

GO TO 242 -

XKG2=DELK*0ZDK

YG2=YG1+A1¥ (XKG2-Q1)
02=Q1+3.0% (Al #(XKG2-Q11)-A1*XKG2

245

246

247

235

251
218
248

252

2=Y62
XK=XK1+DELK/2.0

¢3=¢

GO To 242

XKG3=DELK*DZDK

YG3 =YG2+A2#(XKG3-02)

Q3= Q2+3.0% (A2*(XKG3=Q2) }~A2*XKG3

Z=v63

XK=XK1+DELK

Ca=C

G0 TO 242

XKG4=DELK*DZDK
YG4=YG3+(140/64C )% [XKG4~2+0%Q3)

Q4= Q3+3.0%((14C/640)% (XKG4=240%Q3) )=e5*¥XKG4
22=YG4

XK2=XK1+DELX

XKAPPA=XK2

¢5=C

D2=22-71

CALCULATION OF X-DIXTANCE LOCATION
XK=XK1+DELK /240

C=(C2+C3+C4+C5) /440 .

REYXS=REYXXS - T

BS5= 1.0+ (A6%(XME*%21)

SX= (1e0/REYXSI*¥(A4*¥2) ¥ {XMACH/ {CXXME) }% ((B5/A4) ¥XAT ) XaBX{ (Z1*X2)~
1(22%%21)

SUM1=SUM

SUM=CUM$SX

X1=x

X=XS5*{1.0-SUM}

CHECKING TG SEE IF X~SHOCK HAS REEN REACHED.
IF (X.GE.XRP) GO TO 247

WRITE (65207) NaXKAPPAsZ24E2sXME23XsPRsC5
SET INITIAL CONDITIONS FOR NEXT STEP IN THE NUMERICAL INTEGRATION.

71=22 .
XK1=XKAPPA

GO TO 241

CALCULATING CONDITIONS FOR THE FINAL STEFP WHICH ENDS AT X-SHOCKs
SUM=10-(XRP/XS? . 7 .

SX=SyM-SuMl

22= SQRTO{Z1*¥%2}={SX}/{aB5/REYXS)IH{ALNRD )X (XMACH/ {CXXME )} }*((B5/A4}
1*%A7)))

D2=22-21

XME2=XME

DK=DZ/DZDK

XK2=XK1+DK

XKAPPA=XK2

X=XRP

C=C2+{1C5~C2) /2401 # L {XK2-XK1}/DELK}

WRITE FINAL ROW OF RESULTS AT X-SHOCK.
WRITE (692077 NeXKAPPASZ23E2+sXME29XsPRSC
WRITE {65216} .
WRITE (6+209) A . —
XKSH=XKAPPA

ZsH=22

XMSH=XME2

RETURN

CCNTINUE )
FORMAT (1HYs10Xs62HCONVERGENCE HAS NOT BEEN REACHEDe SUBROUTINE SE
1PSH TERMINATED.!

WRITE (65248}

T M2=1

GO TO .251
STOP
END

0¢T



REATCH  SUBROUTINE

$IBFTC MAME3Z  DECK

C

C
302
303

304
305

306
C

308

SUBROUTINE REATCH

COMMON XMACHSREYsXSsXSHsGAMMAsDELKT sPRP's A5 XM2 s XMSsZS9ES s XB s XMDSy C
1XMF s XKSH»ZSHs XMSHs AANGLE s ANGLE »XP5Cls PRF+XKPsPRSsPRD5sZB3s2P s C
2FRsXRPsXKFaM1s¥M2+M3 M4 309

REATTACHMENT SOLUTICNs F(K) AS PARAMETER

FORMAT STATEMENTS FOR PRINT-OUT

FORMAT (1H1,46X»40HREATTACHMENT SOLUTIONs F(K} AS PARAMETER///)

FORMAT (15X»s10HMACH NOe« =3F64353X>8HRE/INs =,F94053Xs6HZETA =»F843

143X+3HF =3F746453XsBHX>SEPs =3F7e353Xs THANGLE =,FB845///)

FORMAT {(6UXs12HTABULAR DATA//)

FORMAT (20X 35HPOINT 96X sSHKAPPAs5X > THEPSILONs6X »12HLCL MACH NOws5Xs
110HX=DISTANCE 35X s12HPRESS. RATIO»6X s SHTHETA /)

FORMAT (21X 2I236XsFTetis5XsF8e596XsF00520XsFBabaBXsFEalisTXsFBu5) 310
CALCULATION OF CONSTANTS :
Al=1.0=SQRT (+5)

A251.04SQRT{.5)

A3=SQRT (XMACH#%2-1,0)

AGZ1e 0+ ( (GAMMA=140) /24 0} % ( XMACH®%2)

AS=(3.0%GAMMA=140)/24C

A6= (GAMMA=1,C) /240

A7=(3.0%GAMMA=140)/(2.0% (GAMMA=140) )

AB=GAMMA/ (GAMMA=140)

A9=1.0+A6# ( XMB*#2)

TER=2.4495%ATANI«4NB25%A3} —ATANIA3)

CALCULATION OF INITIAL ROW OF DATA

N=1

M&=0

XKAPP A= XK SH 311
XME =XHSH :

E=XME-XMACH

B5=1e 0+A6H ( XMEX#2)

PR=(A9/B5)**A8

PRSH=PR

SEMI-EMPIRICAL FORMULA FOF F(K)

F=FR

A10SSQRT(XME*#2-140)

TEP=2.4495%ATAN(.4NR25%AT0)~ATAN(ALC)

TED={ TER-TEP 1 ~AANGLE 312
THETA=TAN(TED)

WRITE HEADINGS AND INITIAL ROW OF DATA

WRITE (643021

WRITE (653531 XMACHsREYs2SHsFsXS»AANGLE

WRITE (65304)

WRITE (65305) .

WRITE (653061 NsXKAPPAEsXMEsXRPsPRsTHETA

SET INITIAL CONDITIONS FOR COMPUTATIONS

DELK=-DELKI i

XME 1=XMSH 313
04=0,0

Q14=0.0

" E1=XME1~-XMACH

XK1=XKAPPA
X1=XRP

z=25H

DFDK=040

REYXS=REY®XS

N1=0 :

CHECKING IF RLASIUS FLOW REACHED ) 314
IF (XKAPPA+DELK+GT404693) G0 TO 339

DELK=+693-XKAPPA

N1=1 .

NUMERICAL SOLUTION FOR ONE STEP IN INTEGRATION

SOLUTION OF DME/DK AND DX/DK EQUATIONS

11=C

00=04

YGO=XMFE1 ’ b
XK=XK1 .
X=x1 ¢
010=014
YG10=x1
XME=XME1
N=N+1
Al10=SQRT(XME*#2-1,0) =
TEP=2.4495%ATAN +40825%A10)-ATAN(ALO)

TED=t TER-TEPI—AANGLE

THETA=TAN(TED} S
T=1e0/114C+A6X {XMEN®2) ) ’
DMEDK=XME / { XK#F }
BI=XS*(F+T+XK*DFDK—{ {F+T}/F 1= {140-ASEIXME*#2 17T )= ( {GAMMA=140)/F)%(

IXME*%2)#(THx22) }

B2=REYXSH(T*#2)# I THFTA/Z)

DXDK=81/82

I1=11+1

IF{11-1.EQeQ) GG TO 311
IF{11-2.EQa0) GO TO 312
IF{11-3.EQ.0) GO TO 3132
IF(11-4+EQ«0) GO TO 314
XKG1=DELK*DMEDK
YG1=YGO+e 5% (XKG1=2,0%03)
01=00+3¢0#{ e 5% (XKG1=24u*¥QC} ) =4 5%XKG1
XME=YG1

XKG11=DELK¥*DXDK -
YG11=YG1C+e 5% (XKG11~2.0%¥Q10)
011=01743.0% (& 5*{XKG11=2.0%010) } ~e5%¥XKG11
X=YG11

XK=XK1+DFLK/2eT

GO TO 310

XKG2=DELK*DMEDK

YG2=YG1+A1#%(XKG2~Q1}

02=01+3.2% (A1%(XKG2-01) }-ALl¥*XKG2
XHE=YG2

XKG12=DELK*DXDX
YG12=YG11+A1*(XKG12-Q11)
Q12=011+34I%(A1%(XKG12=-N11))=A1%XKG12
X=YG12

XK=XK1+DELK/2D

GO TO 319

XKG3=DELK*DMEDK

YG3=YG2+22% (XKG3-0Q2)
Q3=02+3.0% (A2% (XKGA=G2)1-A2%#XKG3
XME=YG3

XKG13=RELX*DXNK

YG13=YG12+4A2% (XKG13-Q12)
Q13=0Q12+3. 0% (A2X¥{XKG13-Q12))=A2%XKG13
X=YG13

XK=XK1+DELK

GO TO 310

XKG4=DELK#DMEDK
YG4=YG34{100/6¢01#{XKGL=2,0%03)

T€eT



04=Q2343,0%((120/640) % (XKG4=2.0%Q3) ) —45%#XKGG
XME2=YG4
XKG14=DELK*DXDK
Y614=YG13+{1e0/640)*{XKG14=-2.0%Q13)
Q14=Q13+3e0%({1e0/6eV) R {XKG14=240%Q13})~a5%XKG14
X2=YG1l4
XME2-XME 1
ME2-XMACH
DX=X2-X1
X=X1+DX
C CALCULATION OF PRESSURE RATIO
B6=140+A6% (XME2R#2)
PR={A9/B6)**A8
XKAPPA=XKAPPA+DELK
IF (THETA«GE+C+0} GO TO 315 .
WRITE {6+306) NsXKAPPASE2+XME2»XsPRYTHETA
IF {N1+EOG.1) GO TO 315 )
El1=E2
"XME1=XME2
X1=X
XK1=XKAPPA .
IF - {NeGT4100) GO- TO 316
IF (N1.EQsl} GO TO 315
GO TN 108 : .
THETA=2 REACHFD BEFORF K-2LASIUS WAS REPCHED. THIS IMPLIES F(K}
WAS TOO SMALL. THEREFORE»s & X~SEPe. CLOSFR TC THE HINGE CORNER IS
NEEDED -
315 XKF=XKAPPA
FR=F
PRF=PR
IF (N1.EQel) GO TO 317
Ma=1
317 CONTINUE
: GO TO 318
316 M3=1 co ’ B
318 CONTINUE
RETURN
END
SENTRY
$IBSYS
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51D
408

F-CALCULATION PROGRAM

B-C0v1 ALEXANDER Re PETERS

ALEXANDER Re PEZTERS 2527-50008

$18J08B NAMEFR DECK
SIBFTC DKNAME LECK

C
300
301

<
392
303

304
308

306
323

307

C

318

REATTACHMENT SCLUIION, F{K)} AS PARAMETER

FORMAT (7F10.2)

FORMAT {TF1042)

FORMAT STAIEMERTS FOR PRIKT~-OUT

FORMAT (1H146Xs4UHREATTACHMENT SOLUTICNs F{K) AS PARAMETER///)
FORMAT (15Xs1CHMACH NDe =3F06e333XsBHRE/INe =3F9a053Xs6HZETA =,F843
193X93HF =sFTels3XsBHXsEEPe =9FT7e353Xs THANGLE =9+845///1)
FORMAT (6UX»12HTABULAR DATA//}

FORMAD {(2UXs5HPOINT s6X+5HKAPPA 35X s THEPSILONs6X 9 12HLCL MACH .NQes5X s
110HX~DiSTANCE s5X+12HPRLESSe RATIO»6XsSHTHET A/

FORMAL {21Xsi3s0XsFTets o) sFBu516X3F2e¢5s9X9F8,493XsFBatiyTXsFB8.5}
FORMAT (10X,8HLOOP NO.s1Z/)

READ INPUT DATA

READ (553007 XMACHSREY sGAMMAXMSH, XM3 4% 9 X SH

READ (5,3011 XKSHsDELKI»F»ANGLE s ZSHsPRDE$A

CALCULATION OF CONSTANTS

Al=140=SQRI[(+5)

A2=14U+SQRI{e5)

A3=5QRT{XMACH#%2=1.0)

A4=1le U+ { {OAMMA=LaU /2 U F{XMACHR*2)

AS={ 3 UXGAMMA—L1eU} /240

A6={GAMMA-1.01)/2.0U

AT=(30KGAMMA-]140) /{24, 0¥ {GAMMA=1401}}

AB=GAMMA/ (GAMMA-1.0}

A9=140+ALF(XMR%*%2) -
TER=2+4495*ATAN(40825%A3)~ATAN(A3)

L=0 :

CALCULATION CF INITIAL ROw OF DATA

N=1

L=t+1

IF {LaGT41%)} GO TO 307

XKAPPA=XKSH

XME=XMSH

E=XME-XMACH

B5=1. O+A6* ( XME®#2)

PR={A9/B5)%*%*A8

PRSH=PR

AlO=SQRT(XME*%#2-1.0}
TEP=2.4495%ATAN{«40825%A1C)—ATAN(ALD)

TED=( TER-TLP)-AKGLE

THETA=TAN(TED)

WRITE HEADINGS AND INITIAL ROwW OF DATA

WRITE (6s3U2)

WRITE (653U3) XMACHs»REY+ZSHsF s X5sANGLE

WRITE (653231 L

WRITE (6,204)

WRITE (6+305)

WRITE {633061 NsXKAPPASFsXMESXSHsPRYTHET A

SET INITIAL CONDITIONS FOR COMPUTATIQNS

DELK=-DELKI

E1=XME1~-XMACH
XK1=XKAPPA
X1=XSH

3ie

313

Nl=0

CHECKING IF BLASIUS FLOW REACHED

IF (XKAPPA4DFLK.GT.0.693) GO TO 309
DELK=e693-XKAPPA

N1=1

NUMERICAL SOLUIION FOR CME STEP IM INTEGRATION
SOLUTION OF DME/DK AND DX/DK EQUAIIONS
11=C

Q0=Q4

YGC=XME1

XK=XK1

X=x1

010=014

YG10=X1 -

XME=XMEL

N=N+1

AlU3=SQRT(XHME%*2-140}
TEP=2.4495%ATAN(4CB25%A10)-ATAN(ALG)
TED=({ TER-TEP}~ANGLE ’
THETASTANE IED)
T=1e0/01a0+AGEIXMESE2) )

" DMEDK=XME / { XK*F

Bl=XS¥IF+ I +XKEDFDOK=({F+T}/F )% (1o 0-ASH (XMUE* %D )T )~ (GAMMA-1.0)/F ) %1
IXME*#2)#{T*%2} )
B2=REYXS*{ | ®¥% 2} % {THFTA/Z)

DXEK=81/82 )

I1=I1+1

IF{i1-1.EGsU} GO TO 311

IF{E1-24EQ.C) GO [C 312

IF{11-3,:Q40) GO 1O 313

1+{1l1-44EGeUY ‘GO 10 314

XKGL=DELK¥UMEDK

YOUI=YGO+aSHIXKGL—Z2 0O%GD)

Q1=UD+3 e 0R L oo ¥ (XK1 ~2.0%Q0) 1~ o 5#XKG1
XME=YGL

XKGEI=DELK*DXDK
YG11=YG10+e5¥(XKG11-2.0%¥710)
011=Q1043+0%€e5*(XKG11~240%R10) ) ~e5%XXG1]

T X=YG11

XK=XK1+DELK/240

G0 TO 310

XKG2=DELV *DMEDK

YG2=YGL+AI* (XKGZ-Q1}

Q2=0l+34U% (Al#(XKG2-01}))-A1%XKG2
XME=Y G2

XKGI2=DELK*DXDK .
YG12=YG11+A1*¥{XKG1?-011)
012=QI1+3U*(AL®(XKG12~011)i~A]%XKGI2
X=YG12

XK=XK1+DELK/240

GO TO 3190

XKG3=DELK*DMEDK

YGI=YG2+AZ* (XKG2-QJ)
G3=Q2+3.C%{A2¥{XKG3-Q21 1 ~A2%*XKG3
XME=YG3 .
XKG13=DELK¥DXDK
YG13=YG12+A2#(XKG13-Q12})

€T
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319

317

320

327

1

321

316

BENIRY
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Q13=Q12+3.U*(A2%(XKG13~Q12))—-A2%¥XKG13

X=YG13

XK=XK1+DELK

GO TO 310

XKG4=DELK*DMEDK

YG4=YG3+{1+0/6.01#({XKG4—240%Q3)
Q4=C3+3.0%({14U/6.0)#{XKGA=2.0%Q3) )}~ 5% XKG4:
XME22YG4

XKG14=DELK*DXDK
YG14=YG13+(1.0/6+0)%(XKG14—2.0%Q13)
Q14=Q13+3.U%{{140U/6eU} ¥{XKG14-2.0%Q13}))~.5%XKG14
X2=YGl4 .
DME =XME2~XME1
E2=XME2-XMACH
bx=x2~x1
X=X1+DXx
CALCULATION OF PRESSURE RATIO : -

B6=1e0+A6* XME2%%2) . o
PR={AQ/BE ) * %A

XKAPPA=XKAPPA+DELK

IF (THETA.GE«0.C) GG TO 315

WRITE (635306) NsXKAPPASE2»XME23sXsPRyTHETA .

IF (N1.EQ.1) GO TO 315 .
El1=E2

XME1=XME2

X1=X

XK1=XKAPPA

IF (NeGT100} GO TO 307

IF (N1.EQ.1) GO TO 3i5

GO TO 308

GONTINUE

CHECKING TO SEE IF THE CORRECT F(K} HAS BEEN SELECTED.
CONVERGENCE SCHEME REQUIRES THAT IHF CORRECT F(K)} BE APPROACHED
FROM THE HIGH SIDF. -

IF (N1+EQ+1) GO TO 317

F =F+ F *((XKAPPA-.693)I(XKSH—-693))*1.25

FORMAT (1HU»9X»44HF(K) WAS TOO SMALL TO OBTAIN DESIRED RESULT.}
WRITE (65319}

GO TO 318 )

IF{{PRDS=PR}eLT«{o5%A% {PRDS~PRSH)}} GO TO 321

F=F—F*{ (PROS~PR}/(PRDS—PRSH}} *1.25

FORMAT (1HU,9X»44HF(K) WAS TOO LARGE TO OBTAIN DESIRED. RESULT.}
WRITE 653201} .

GO TO 318 : :

FURMAL (1HUsYXs46HF (K} PRODUCED DESIRED RESULTSe ACCURACY TERM =,F

63}

WRIIE Ubs3U61 NsXKAPPASE2sAMEZ2»XsPRsIHETA
WRIIE (69342} A

LU 10 3U7

Stop

END

7ET
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