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CHAPTER I 

INTRODUCTION 

The purpose of this thesis is to provide an analytical method 

for calculating the pressure distribution which results from a two­

dimensional separation interaction. Because of its allied practical 

applications, the model used is the two-dimensional flat plate with 

an attached deflected flap. The flow throughout the entire compression 

process is assumed to be laminar and in the supersonic-hypersonic regime. 

At present, the techniques for obtaining an engineering solution to 

this problem are virtually non-existent. The limitation which is char­

acteristic of most solutions previously proposed is that the engineer 

must use information which he does not have available. For example, if 

the separation point is known, the entire pressure distribution may be 

obtained. These become merely methods for reproducing an experimental 

pressure distribution once some characteristic of the flow has been 

found experimentally. 

The technique which is developed in this thesis makes use of the 

Crocco-Lees mixing theory. Because this theory is semi-empirical, the 

correlations which are developed represent an extension in the present 

understanding of how the parameters behave downstream from separation. 

By utilizing these correlations and employing a model which incorporates 

a straight dividing streamline, the complete separation-reattachment 

interaction is solved for the resulting surface pressure distribution. 

l 



This pressure field is obtained by making use only of the free stream 

conditions ahead of the interaction and the model geometry. 

The Separated Flow Problem 

2 

Since separated and reattaching flows can occur under a variety of 

circumstances, an understanding of these phenomena are of great impor­

tance in the solution of many engineering design problems. The flow 

may be laminar, transitional, or turbulent; steady or unsteady; and sub­

sonic or supersonic. In all cases, the main cause of the phenomenon of 

separation can be traced to the inability of the low energy viscous re­

gion adjacent to a body to adjust to the imposed inviscid pressure dis­

tribution. 

Current interest in high velocity flight, whether aircraft or sub­

orbital vehicles, has stimulated considerable research in the supersonic 

and hypersonic separation problem • .Among the problems encountered are 

control requirements and the prediction of pressures on the body sur­

face. Large and often unpredictable changes in aerodynamic control 

characteristics result when an airflow separates from the body surface. 

These control complexities become more severe at high velocities due to 

the energy level of the flow. In the design of future hypersonic vehi­

cles, separated flows and their effects on the control characteristics 

must be well-understood. 

Effective aerodynamic controls usually involve compressions of the 

local stream flow. This is because the pressure loads produced by com­

pression surfaces are considerably larger than those produced by expan­

sion surfaces. Separations which result from this type of compression 

turn have received the most attention because of their probable use in 



hypersonic flight controls. This application provides justification 

for the analytical and experimental interest in the two-dimensional 

plate and ramp model. 

3 

The adverse pressure gradient which causes the relatively low ve­

locity layer near the surface to decelerate and ultimately reverse may 

result from several causes. In general, it usually results from the 

effect of body geometry on the inviscid stream, or it may be caused by 

a shock wave impinging on the boundary layer, or both. The thickening 

of the boundary layer from these various causes affects the surface 

pressure distribution. Despite the simple description, separation phe­

nomena are quite complex. 

Figure 1 presents the essential features of the two-dimensional 

free interaction separation caused by a flat plate and ramp. It should 

be mentioned that the separation and reattachment shocks coalesce into 

a single shock at a distance above the boundary layer. The fluid near 

the body passes through a succession of weak shocks, while the flow well 

out into the inviscid layer passes through only a single shock. 

Scope of Investigation 

Considering this separation problem from the perspective of the 

engineer who in the end must apply the theories to hardware applica­

tions, the problem becomes clouded with complications. The flow condi­

tions ahead of the interaction and the geometry are the only quantities 

which are known in advance. The locations of separation and reattach­

ment, and the distribution of pressure throughout the interaction region 

are not known initially. This is one importarrt class of problems in 

which the static pressures are not given, but must be determined by the 
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interaction between the "external" inviscid flow and the viscous layer 

near the surface. 
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The Crocco-Lees method is capable of embracing the entire separated 

interaction within a single framework once the semi~empirical features 

have been reasonably well defined. The problem is analyzed by breaking 

the interaction region into three distinct parts. These parts include: 

1.) flat plate Blasius type flow to separation, 2. ) separation to pres­

sure plateau to beginning· of reattachment, and·· 3. ) · reattachment and 

transition to downstream conditions. By utilizing an empirical pres­

sure plateau correlation and the downstream pressure ratio calculated 

from inviscid theory, the three segments are tied together. A straight 

dividing streamline which connects the separation and beginning of reat­

tachment points is assumed. The inviscid turning angle dictated by 

the empirical plateau pressure is used to approximate the breakaway 

angle which this streamline makes with the plate. By first guessing a 

separation point, the beginning of reattachment point becomes fixed. 

By working through the interaction up to the beginning of reattachment, 

it is determined if sufficient mixing has occurred in the plateau re­

gion to accomplish reattachment at the knownhigher pressure downstream. 

If the length of the mixing region (pressure plateau) is too short 

to accomplish the inviscid reattachment pressure rise, a new separation 

location farther forward on the plate must be selected. Iteration will 

produce the proper location for the separation point and will give the 

pressure distribution throughout the entire interaction. : 

In considering the foundation upon which to base the separation 

development, the design engineer was kept uppermost in mind. Simplicity 



of use, conceptual understanding, and accuracy were given prime con­

sideration. 
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CH.APTER II 

REVIEW OF PREVIOUS WORK 

In early attempts by Howarth (1)*, and others, to solve this super­

sonic interaction problem, the interaction between the adjacent subsonic 

and supersonic layers within the boundary layer was considered as the 

important mechanism, It was reasoned that a small disturbance in the 

supersonic flow is propagated upstream in the subsonic flow, causing 

the boundary layer thickness to change and to deflect the free stream. 

Such methods were restricted by the assumption of small perturbations 

and by the fact that viscosity effects were neglected. This technique 

has been unsuccessful in assessing the effects of boundary layer sepa­

ration. 

In 1952, a mixing theory developed by Crocco and Lees (2) appeared, 

They considered the interaction between the dissipative flow and the 

nearly isentropic outer stream as a flow model. In their model, it was 

th~ mixing, or the transport of momentum from the free stream to the 

dissipative layer, that was the fundamen~al mechanism in the growth of 

the boundary layer. The theory accounts for viscosity through a bound­

ary layer velocity profile parameter. The skin friction, mixing rate, 

and mean boundary layer temperature are estimated in terms of this pa­

rameter. The analysis treats both separation and reattachment without 

*Numbers in parentheses indicate references in the bibliography. 
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placing any restriction on the size of the disturbance. The concept 

of mixing between the viscous and inviscid layers has become the stand­

ard physical model used to analyze separated flows. 

Another significant contribution to the understanding of separation 

has been presented by Chapman, Kuehnt and Larson (3), ':L1his work was 

primarily an experimental investigation, but it has helped considerably 

in ascertaining the general characteristics of flow separations and in 

crystallizing the notion of a dividing streamline. The dividing stream­

line may be thought of as an artificial 1Joundary which separates the 

trapped circulating inner flow from the outer stream, 

By using the physical model described by Crocco-Lees, the method 

for solution of this problem usually follows either a semi-empirical or 

an analytical approach. 'l'he original theory was a.eveloped in such a 

manner that it was semi-empirical. Three correlation para.meters, depen­

dent upon the velocity profile parameter, were needed in order to de­

scribe the flow. Other researchers have chosen to develop theories 

which are capable of including the entire separated flow within a sin-­

gle framework, without introducing these semi-empirical features, This 

is accomplished by assuming a form for the velocity profile as it trav­

erses the interaction region. Regardless of which of these approaches 

is selected, nearly all of the solutions make use of the von Karman 

integral momentum technique as a means of simplifying and handling the 

boundary layer eq_uations. It should also be noted that all the methods 

mentioned apply only to ideal gases and two-dimensional geometries. 

All employ the usual compressible boundary layer assumptions which are: 

Prandtl number of unity, viscosity 11roportional to temperature, no heat 

transfer at the wall, and zero pressure gradient normal to the walL 
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The original Crocco-Lees theory has been examined and extended by 

Cheng and Bray ( 4), Cheng and Chang ( 5), Glick ( 6), and others. How­

ever, the semi-empirical feature and the general lack of detailed exper­

imental data, particularly for supersonic laminar separated flows, has 

directed attention away from this method. This has been true because 

the three correlation parameters which are necessary must be derived 

from other sources, either theoretical or experimental. There are no 

theoretical solutions for separated flows so experimental values must 

be used entirely. Since the Crocco-Lees method is used in this inves­

tigation, its facets and details will be elaborated upon in the fol­

lowing chapters. 

There are other possible ways to treat separated and reattaching 

flows. By employing the first moment of momentum in addition to the 

usual (zeroth) momentum integral, another relationship between the flow 

variables is obtained. This first moment equation is obtained by mul­

tiplying the momentum equation by u and then integrating across the 

boundary layer. This first moment, plus the choice of an alternate pa­

ra.meter that is satisfactory for the treatment of separated flows, de­

termines the essential differences between the Crocco-Lees method and 

other approximate integral methods. 

For example, Tani (7) used a fourth-degree polynomial to describe 

the velocity profile, in which the parameter has a physical meaning in 

that it is proportional to the shearing stress at the wall. Tani ap­

plied his method only to attached flows. Pinkus {8) extended the Tani 

method to separated laminar boundary layers on compression corners and 

curved surfaces. 'l'he chief criticism voiced against the use of polyno­

mials to describe the separated flow is that they are not capable of 
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describing the constant pressure plateau region which is characteristic 

of laminar separations. Due to the mass entrainment (or mixing) which 

takes place in the plateau region, a similar profile throughout this 

region cannot be justified, 

In an attempt to avoid some of the difficulties encountered witb. 

polynomials, Lees and Reeves (9) have elected to use the Stewartson (10) 

reversed-flow profiles. As in the Pinkus method, the successful appli­

cation of this method to separated and ree,ttaching flows hinges on the 

proper choice of the one-parameter family of velocity profiles which is 

utilized to determine the integral properties of the viscous flow. The 

single independent parameter is not explicitly related to the local 

static pressure gradient. They found in their development that the 

Stewarts on reversed-flow profiles had the quali.tati vely correct behavior 

while polynomials did not. The Lees and Reeves method does raise some 

complications in that these profiles are not available in the form of 

analytical expressions. The velocity profiles ·which are used have never 

been substantiated by experimental measurements" Also, no constant 

pressure plateau region can ever be reached except in an asymptotic 

sense. 

Makofski (11), like Tani and Pinkus, he,s elected to represent the 

velocity profile with a polynomial. He uses a fifth-degree polynomial 

and two undetermined parameters instead of the usual one, One of the 

para.meters is related to the skin friction at the wall, while the other 

is proportional to the imposed pressure gradient. As with other methods 

which use polynomials, the primary difficulty lies in its application to 

the constant pressure plateau region downstream of separation, There 

are additional mathematical complexities introduced by the second 



parameter, the only justification being the possibility of obtaining 

significantly better results. 

11 

'l'wo methods which d.iffer somewhat from the usual pattern of those 

already mentioned include the 11 free interaction,, theory by grdos and 

Pallone (12) and the 11method of integral relations" which is being ac­

tively pursued by Nielsen, Lynes, Goodwin, and Holt (13), 

The free interaction concept may be applied to both laminar and 

turbulent flows. This analysis treats the complex separation phenome­

non in two phases: 1.) A study of shock-boundary layer interaction 

(without specification of the location of the :interaction with respect 

to the compression corner). 2.) Application of the results of the first 

phase to the problem of fl.ow separation in a compression corner, and 

determination of the location of the separation and reattacbment inter-­

action. 

In the first phase, semi-empirical equations are developed for the 

determination of the pressure distribution in the free interaction, In 

the second phase, the location of the separation and reattachment points 

has 1ieen fixed by an empirical correlation formula, With the correla­

tion formula and the free interaction equations, it is possible to pre­

dict the complete pressure distribution for a shock-separated flow. 

However, this correlation formula is based upon very meager data, a 

single experiment, and is only a first approximationc Additional data 

is needed to confirm and extend the resu1tso 

The nmethod of integral relations" has been mentioned with in­

creased frequency as a new and promising ana1ytical method for handling 

the separation problemo This technique, a general method of numerical 

solution for nonlinear fluid-dynamic problems, has the important 
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advantage of being well-suited for digital computation, The approach 

was first introduced by Dorodnitsyn (14). Principal among the inherent 

difficulties is the fact that the one-parameter family of velocity pro­

files used does not represent accurately all the possible velocity pro­

files that can be developed in separated and attached flows. 

The review of literature makes one cognizant of the similarities 

which exist among the different methods. All techniques employ basi­

cally the same physical model and assumptions. The chief difference 

which appears is whether semi-empirical correlations are used to rep­

resent the velocity profile changes or whether some velocity profile 

shape must be assumed. 

To attain the goal of an engineering solution to this interaction 

problem, the Crocco-Lees semi-empirical approach was selected. The 

velocity profile changes are absorbed in the correlation parameters, 

without becoming involved in the detailed changes in the velocity pro­

file shape. It was felt that the requirements of si.mplici ty, concep­

tual understanding, and accuracy could be best satisfied by using this 

method of attack, 



CHAPTER III 

DEVELOPMENT OF THE CROCCO-LEES METHOD 

The so-called free interaction type of boundary layer separation 

is the classification which is of interest in this study. In a free 

interaction the pressure distribution of the outer flow is considered 

to be the result of a mutual interaction between the boundary layer and 

the inviscid flow. In a free interaction the flow is independent of 

the direct influence of the downstream configuration and is also inde­

pendent of the manner of inducing the separation, 

The original Crocco-Lees paper dealt with flows up to the point o:f' 

separation for compression corners and for the aft flow over a super­

sonic airfoil with a blunt trailing edge. The original concepts which 

apply up to the point of separation have remained essentially unchanged 

except for the behavior o:f' the mixing rate parameter (C(K)), Glick (6) 

has extended the technique to include the separated region and has 

cleared-up some troublesome details near separation, such as the cor­

rect behavior of C(K). 

Velocity Profile Parameters 

The Crocco-Lees method is based upon the assumptions that the pa­

rameters describing the boundary layer are dependent upon the rate of 

entrainment of fluid into the boundary layer from the external stream 

and that there exist certain universal correlation functions which 

13 



relate these parameters. The boundary layer profiles are absorbed in 

the definition of a new velocity profile parameter. The analytical 

development for the method. hinges on the velocity shape parameter, K, 

which is non-dimensional and is defined as the ratio of the momentum 

flux to the product of mass flux and local external velocity. It may 

be expressed as 

K = I = moment,~m flux 

m ue mass flux x ue 

where 

m = I: pu dy 

Different K's are associated with different velocity profiles. 'l'his 

gives a conceptual feeling for the changes which occur without becoming 

involved in the mathematics which describe the actual profile shapeo 

'I'his method is consistent with the concepts that the velocity profile 

is dependent upon its previous history and that K at separation can 

differ from Kat reattachmento 

This basic parameter which characterizes the flow in the viscous 

region may be defined in terms of either compressible or incompressible 

boundary layer variables (2, 6) as 

(1) 
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The Stewartson (15) transformation, which assumes a Prandtl number of 

unity and viscosity proportional to the absolute temperature, is uti-

lized to transform a compressible boundary layer into its equivalent 

incompressible form. It may be observed that K is not determined solely 

by o, and it is not explicitly related to the free stream velocity gra-

dient along the plate outside the viscous layer. 

By dividing the momentum flux by the mass flux, a mean velocity 

(u1 ) is obtained for the viscous region. Also, without attaching any 

physical significance to the definition, one can think of a mean-

temperature (T1 ) across the viscous region and a mean-density (p1 ). 

These are related by the perfect gas law as 

The ratio of the mean-temperature to the temperature at the edge 

of the boundary layer is called f, This parameter, defined in terms of 

the incompressible boundary layer variables, can be shown to be 

f = 
K 6; 

( S.t - S;.*) 
(2) 

In a sense, the deviations off and K from unity measure the non-

uniformity of the velocity profile. For every incompressible boundary 

layer flow, f and K can be related to each other. Compressible bound-

ary layers may be expressed in an equivalent incompressible form. Once 

transformed, each streamline location in the flow region corresponds to 

a point in the f-K plane, and the whole class of flows (attached, sep-

arating, separated, etc.) is represented by a single locus of points in 

the f-K plane . 



16 

For convenience, an alternate mean-temperature parameter, F, is 

defined as 

F=(~-1) (3) 

F and K, just as f and K, are defined by incompressible boundary layer 

parameters and are uniquely related. 

Equations Which Define the Flow 

For mathematical solution, a model must be selected to represent 

the physical phenomenon. For purposes of analysis, the flow is divided 

into two parts -- an outer region which is assumed to be essentially 

nondissipative, and an inner region in which the viscosity is assumed 

to play an important role. Figure 2 expresses the separated region in 

terms of the Crocco-Lees model. The extent of the viscous region is 

measured by the length, a, which for the case of a body in a high-

Reynolds-number stream is the usual boundary layer thickness. The 

definition of the length o is artificial. Physical quantities, such 

a.s pressure and interaction distance, only depend to a small degree on 

the definition adopted for o. 

The definition for laminar boundary layer thickness (o) is the 

distance above the surface at which the velocity ratio u(c5)/ue has a 

particular value. Because of the way in which it is defined, it is a 

hard quantity to measure experimentally. Small changes in the defini-

tion of c5 do not modify the character of the final results, but they do 

alter the intermediate numerical values. Any reasonable value of o 

should give qualit~tive agreement with experimental resultso 
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'l'he variations in the velocity profile parameter, K, besides being 

dependent on the profile shape are also dependent on the definition 

used for o. If u( 0) /ue is taken as 1. 0, the whole f-K curve reduces to 

a single point, and in terms of the shape parameter, all profiles are 

the same. If a u( 0/ue of .82 is selected as the definition used, all 

profiles between the flat-plate-type flow and separation have nearly 

the same K. 

As a criterion for the optimum selection of a definition for o, 

t.iK = y'b K should be selected as a maximum, It was found that this s 

t.iK maximum requirement resulted in a definition of approximately 

u( 0 ) /ue = . 96. Also observed was the fact that MC was almost constant 

between c = • 9~· and , 98, ~:md any value within these limits is the most 

desirable. In this investigation, the value used. for u(i5)/ue is the 

same as the one used by Gl:l.ck e,nd has a numerical value of approximately 

,95, By using the same boundary layer thickness definition, it was felt 

that a more meaningful extension of the method could be obtained, 

The Navier-Stokes equations are unwieldy and have not been used 

successfully in the interaction solution, In order to perrni t a meaning-· 

ful mathematical analysis, several simpl.ifying assumptions must be em--

ployed., The principal assum.ptions which have been employed may be 

grouped into the follovring three categories: 

1. The usual boundary layer equations describe the viscous regior1o 

'.l'he boundary layer equations have evolved from the Navier-Stokes eq_ua-

tions by assuming a,) the gradients of viscous stresses in the flow 

direction are neglig:i.ble in comparison with the static pressure gra-

dient in that d.irectioh, b") the pressure gradient normal to the sur·-

face is zero, and c.) by making an order-of magnitude comparison to 
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eliminate terms. The second restriction, zero pressure gradient, does 

not hold in actual practice for some cases, For example, in the super­

sonic part of a boundary layer the pressure is nearly constant along 

Mach waves, which at higher Mach num·bers could introduce appreciable 

pressure gradients. Also, in the vicinity of the point where a shock 

wave impinges on the boundary layer, large pressure gradients normal 

to the wall must exist. 

In this analysis the static pressure across the internal viscous 

region is taken as being equal to the local pressure in the outer 

inviscid region. The analysis is further restricted to flows over 

adiabatic walls. This simplifies the viscous equations since no energy 

is transferred at the wall. 

2. The boundary layer is assumed to remain le.minar throughout the en­

tire interaction. In this study, only boundary layers which are rela­

tively well understood are included. The present formulation, while 

qualitatively capable of handling transitional and turbulent interac-­

tions, will not be applied to these cases. In addition, the flow is 

steady with a constant stagnation temperature throughout the entire 

interaction region. 

3. The fluid (air) is assumed to be thermally and calorically perfect, 

The flow in the outer inviscid region is supersonic and isentropic. 

'I'his means that the Prandtl-Meyer relationship may be used to determine 

the flow direction as it proceeds through the interaction compression, 

As already mentioned, a Prandtl number of unity and viscosity propor-, 

tional to the absolute temperature is required in order to determine 

the equivalent incompressible boundary layer for each compressible 

boundary layer. 
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The flow within the viscous region is described by the momentum 

and continuity equations which can be written in the following form: 

(4) 

dm - A u. ~d ?J - ta.n e \ 
d X - I e e. \ d)( ) (5) 

where e is the streamline direction angle at y = 8 relative to the wall, 

(A complete development of the equations used in this chapter is given 

in Appendix A,) In all previous work using this model, it has been the 

practice to replace tan e by 6. In order to obtain as accurate values 

as possible, tan e will be used throughout in this analysis, The mag-

nitude of errors introduced by the various approximations which have 

frequently been employed will be discussed later in this chapter. 

Equations (4) and (5) may be written in the following form: 

(6) 

(7) 

where 
B_ a} 

¢e 
~We._ 

Ywe. "I 

we = ue/at 

and 

at = ~ 
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In addition to these two equations for the viscous region, the 

Bernoulli equation is used to describe the external inviscid flow. It 

can be shown that this equation may be expressed as 

.J!J2_ = -dwe (8) 
p qie 

In addition to these three equations, ( 6), ( 1), and ( 8), the mass 

flux in the viscous region can be expressed as 

(9) 

Since m =mat, equation (9) is used to obtain the following expression: 

where 

P5 
m -T, 

The Prandtl-Meyer relationship used to express the flow angle e, can 

be expressed in terms of we, i.e. , e = e (we) , giving another independ-

ent equation. 

This system of five equations involves eight unkno,ms (a, m, K, 

we' cf' ¢1 , p, and e). To account for the three remaining unknowns and 

thus complete the mathematical formulation of the method, semi-empirical 

coefficients are introduced. These account for the mean temperature, 

the skin friction, and the mixing in the viscous region. 'rhese a.ddi-

tional parameters, all dependent upon the velocity profile sha:pe param-

eter K, are defined as F(K), D(K), and. C(K), F(K) is related to the 

mean temperature-mean velocity correlation; D(K) is the skin friction 
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correlation function; and C(K) is the mixing rate correlation tunction. 

F(K) has already been described in terms of the velocity profile vari-

ables. In terms of the eight variables, these new correlation functions 

are expressed aa follows: 

(10) 

(11) 

C:(K)= C - (12) 

In th~ solution of the interaction problem, the functional dependence 

of these empirical coefficients must be obtained through correlation 

with experiments. 

' )lith these definitions of F(K), D(K), and C(K), the system of 

equations ml\Y' be solved simultaneously to obtain the following set of 

non-~inear first order ordinary differential equations: 

4Ji._ -KFt%~-K(F+t)_(,-l<)(t-d) [K(F+t;(I-~ rv1.it)+KM ... t(v-1m +tAn e 
dS - C. [K(F+t)(1-~ M:t')+K('<-l)M.;t.z.-KF(F+t+K~)1 

and 

!IM..- -M .. f [t-K(F+t)-(1-<>'XI-K)(F+t+K~~ +to.n 61 
di; - cf K (F+t')(I - ~-l M._'!t) + K (y-1) M:t2 - K F(F+t+ K4k) 

• 

13) 

(14) 
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These two general equations describe the flow and are basic to the 

Crocco-Lees method. By proper selection of the parameters C(K), D(K), 

and F(K), these equations may be specialized to the various flow regions 

within the interaction. In these two equations, several terms have been 

combined and written as new quantities which are defined as follows: 

m 

The quantity, which appears in the above general system of equa-

tions behaves like a Reynolds number. It may also be written 

, 

which is dimensionless and has all the terms that appear in a Reynolds 

· number. Conceptually, it is evident that, should increase with dis-

tance down the plate because it is related to the boundary layer 

growth. In the separated flow region, s would be expected to grow 

more rapidly than in a normal flat plate case, due to the large changes 

in boundary layer thickness. The rate at which s grows is related to 

the mixing, The more vigorous the mixing, the faster the rate at which 

sand boundary layer thickness increase. 

A discussion of how the two general equations, (13) and (14), have 

been modified or adapted to each of the three regions will now be given. 



Blasius to Separation 

In the region upstream of separation the boundary layer is at­

tached. 'l'he correlation parameters which are used in this region have 

been developed "by Glick ( 6), and while not optimum, they do give quali­

tatively correct pressure distributions. The parameters which were 

obtained have been derived from both detailed theoretical and experi­

mental datao It was found that all three of these parameters varied 

in this region. In the interest of simplicity, linear or other simpJ.e 

variations were selected for each parameter. 

F(K) was obtained from a maximization method which was found to be 

in fair agreement with the curve based on the Falkner-Skan solutiono 

'I'his maximum method leads to a simple expression and in this form is 

helpful in obtaining the mixing rate correlation f1mction from the ex­

perimental studies. 

The D(K) relationship that was used in this region was based upon 

the Fa,lkner-Skan solution. The D(K) correlation is pro"bably the best 

una.erstood of the three parrun.eters. It .:ts related to the skin fr:tction 

and is the easiest to measure experimentally. 

The C(K) correlation was obtained from detailed analytical and 

experimental Schubauer ellipse data. 'I'he C(K) variation differs aJlpre-­

ciably from the correlation curve which was used previously, The early 

workers had used a relationship derived from the Fa1k.ner-S1<:an solution" 

'I'his curve was found to be qualitatively dlfferent from the curve based. 

on experimental results, 

'.l.1he correlation parameters which are used in equations ( 13) and 

(14) for the Blasius to separation region are: 



F(K) = 2 (1-K) 
(2K-1) 

D(K) = 22.2 (K .63) 

C(K) = 36.2 (K .63) 
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It should be noted that the method for defining the boundary layer 

thickness is artificial and will lead to different numerical values for 

F(K), C(K), and D(K) when some other definitfon is assumed. The above 

parameters may be used only with the o def:!.nition which has 'been 

adopted. 

Separation to Beginning of Reattachment 

Beyond the separation point the flow is detached. Since there are 

no detailed theoretical studies which apply to separated and reattaching 

flows, this region must be handled differently than the attached region. 

It is assumed that the skin friction at the wall is sufficiently reduced 

so that it can be neglected in this region. D(K) is taken as zero 

rather than trying to approximate the average negative value which this 

parameter would have. As a first approximation, F(K) is taken as con--

stant and equal to the value at separation. The mixing rate correlation 

function, C(K), is more elusive and must follow a trajectory such that 

the correct pressure distribution results. The shape and dependence of 

this trajectory will be discussed in the next chapter. 

By taking 

and 

D(K) = 0 

F(K) = Fs 

C(K) = C 

the generalized equations may be written in a simpler form as 
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(15) 

and 

dMe_ 
di; -

-Mel~ [t- K(F"+t) -(1-K)(F+t)J + ta.vi 8] 
(16) 

Mixing in this region is of paramount importance, After separation 

the flow is essentially divided into two parts by the dividing stream-

line. The fluid along the dividing streamline is accelerated by viscous 

momentum transfer in the region between separation and the beginning of 

:reattachment. The fluid is thereby prepared for the reattachment pres-

sure rise which occurs on the ramp when this st1·eaml:i.ne is stagnated. 

Reatt1:1.chrnent 

It has been previously noted that the skin friction is probably 

the best understood of the three correlation parameters, In the reat--

tachment region, the skin friction has a negative value ahead of and a 

positive value downstream from the reattachment point, To simplify the 

analysis of this region, the positive and negative regions offset one 

another, and may be taken as negligible over the entire region. Just 

as in the separation to beginning of reattachment region~ D(K) will be 

taken as zero. 

The mixing rate correlation, C(K), must come principally from 

experiment. The experiments of Chapman, Kuehn, and Larson (3), using 
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a special model to study the reattachment process, has helped to sub-

stantiate the belief that mixing is n,egligible in the reattachment proc-

ess. It has been pointed out that the most important phenomena in the 

reattachment process are the deceleration of the flow and the contrac-

tion of the viscous region, and not mixing. In the spirit of simplic-

ity, C(K) has been taken as zero in this region. 

The only parameter le~ to be defined is F(K). This parameter is 

the hardest to determine because it is dependent upon velocity profile 

measurements, which are virtually nonexistent for separated flows of 

this type. F(K) is used to correlate the flow behavior throughout the 

reattachment region since it is closely allied with the actual profile 

changes. It seems apparent that the deceleration and contraction of 

the viscous region can be easily associated with the various changes 

in F(K) values. The character of a particular reattachment pressure 

rise can be related to changes in F(K). A discussion on how F(K) has 

been correlated, using experimental data, is deferred until the next 

chapter. 

The general equations, (13) and (14), are not altered to handle 

this region. Since~ is dependent on the amount of mixing (related to 

the boundary layer growth), and does not vary in the reattachment re-

gion, it is simpler to develop a new set of equations which relate 

changes in K to the change in Me and x-distance. 

Starting with the basic momentum and ..sli.. equations which are 
dx 

given in Appendix A, 

(A-12) 



I dFJ dK [ :3Y-I :t\ i.J I d Me 
L_F-+t+KJi< dx - [!< (F+t)( 1----z.-- We J+ Kt('(-IJ We tv\e. ~ 

28 

f-t2 [to.n e + ~ (t-K(F+t)~ 
' (A-15) 

two ordinary differential equations may be obtained. The two relation-

ships which are desired are d.Me/d.K and dx/dK, From (A-12), by taking 

dm/dx = 0 (zero mixing), 

dM e 

dK 

Me =----
!{ F(K) 

(17) 

is obtained, where the F(K) behavior has not yet been defined. From 

the do/dx equation, by taking C(K) and D(K) zero, and making the sub-

stitutions 

dMe 

dx 

Me dK 
=- and 

KF dx 

the following equation is obtained: · 

Xs [F+t1-Ki - (Ef )(1- ~~ M:t)-(~)Me't-z.] 
t: ta.n9 

i; 

(18) 
• 

The method of numerical solution for these three regions will be 

discussed in the following chapter. 

Transformation to Real Plane 

No mention has been made yet on how the generalized differential 

equations are transformed into a meaningful pressure versus distance 

distribution along the plate. The transformation back to the physical 

plane is made by using the continuity equation. The separation point 
\ 
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is taken as a reference and the continuity equation is integrated. The 

resulting expression ma¥ be written in the form 

1~, 
~ - I (11 "<-IM 2.)i. Sd s 

){$ - - Re.~\+ ?. , • ._ C(K) 

~ . 

?JY-1 
~(Y-1) 

• 

{19) 

This equation is used in the entire region tran the Blasius point to 

the beginning of reattachment. 

The pressure corresponding to a given point is obtained directl.1' 

from the isentropic relationship 

...E.. 
P. 

where Me is the reference local Mach number at the point where the 
b 

(20) 

pressure first starts to increase. This pressure relationship is used 

throughout the entire interaction. 

How K Changes With Velocity Profile Changes 

One value of' the velocity profile shape parameter K, because of 

the We¥ it is defined, can describe many di:fferent profile shapes. It 

is noteworthy to point out that in particular, a given value can de-

scribe both an attached and a separated profile shape or two ditterent 

separated profiles. With the definition f'or 6 which has been selected, 

the flat plate Blasius type profile is represented by K = 0.693 and the 

separation profile by K = 0.63. K is a minimum at the separation point 

and must increase again with the presence of a reversed flow adjacent 

to the surface. K reaches a maximum value which is larger than the 
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', 

Blasius value somewhere in the separated region. In the reattachment, 

since the experimental profiles have not been determined accurately, 

it will be asswned that the Blasius value of K is apJ,iroached from the 

positive side, rather than traversing first through a trajectory which 

leads to K-separation. The arguments here become heuristic in nti,ture. 

From schlieren photographs of the flow downstream from reattachment, 

there is observed a "necking down11 in 1Joundary layer thickness. After 

this, the boundary layer appears to grow in a normal fashion and would 

be expected to corres1)ond to the Blasius K, In the vic:l.nity of reat-

tachment, because the flow impinges on the surface, the boundary layer 

can be thought of as more nearly resembling a slug type flow. In other 

words, the displacement thickness might be thought of as being a mini-

mum. at reattachment and then increasing to the Blasius value. 

Figure 3 illustratei:1 approximately how K and the velocity profile 

shapes are assumed. to vary, starting from ll. Blasius profile 1md then 

traversing the entire interaction region. All of the boundary layer 

details have not been preserved in this illustration. For example, the 

free stream velocity ue and the ·boundary layer thickness o would both 

change from location to location. 
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CHAPTER IV 

SOLUTION IN THE INTERACTION REGION 

This chapter discusses how the equations are solved and the manner 

in which the required correlations with experimental data were obtained. 

The solution of the entire interaction is handled in the same three 

segments or regions as described previously. A subroutine was written 

for each of these three regions and incorporated in a general program. 

The general program was solved using an IBM 7040 digital computer, A 

discussion of the complete interaction and general program, each sub­

routine, and the experimental data selected is given. 

General Solution-Complete Interaction 

Before discussing the complete computer solution, it should prove 

beneficial to discuss d.etails whicli a.re characteristic of laminar 

separation-pressure distributions, In laminar separa'l:,ions, the pres­

sures along the plate and ramp surfaces are influenced over a consider-· 

ably larger region than for turbulent separations on a similar geometry. 

Figure 4 illustrates the details of the various surface pressure dis­

~ributions which can be obtained by making various assumptions for 

supersonic and hypersonic flows. 

The simplest example is explained by Figure 4-a, which is the 

idealized inviscid flow model. No boundary layer exists, and the shock 

originates at the juncture of the plate and ramp. This idealized model 

32 
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has the pressure distribution indicated in which a single discontinuous 

pressure rise occurs at the ramp corner . 

The next configuration illustrated, Figure 4-b, is a two-ramp con­

figuration in which the straight dividing streamline is replaced by a 

solid surface . In this case the flow must negotiate two idealized in­

viscid turns with the two pressure discontinuities as indicated. The 

two surface discontinuities can be used to correspond to the separation 

and reattachment points respectively. There is no way to know in ad­

vance how to approximate the separation and reattachment points, and 

hence, to approximate the location of the intermediate ramp. 

The actual pressure distribution is shown in Figure 4-c. Note that 

the pressure decreases to a minimum at the beginning of the interaction, 

rises to a constant plateau value which extends to or beyond the ramp 

corner, and then rises rather sharply to a final value. In actual ex­

perimental tests, the pressure ratio may reach a peak value after reat­

tachment and then decrease slightly. The Mach number at the beginning 

of the interaction is less than the free stream Mach number . This re­

sults in a pressure ratio greater than one at the s tart of the inter­

action, when based on the free stream pressure. This decrease in Mach 

number results from the viscous interaction effects caused by the plate 

leading edge . If the reference pressure is taken as the pressure at 

the beginning of the interaction (p0 ), the resulting pressure distribu­

tion is shifted downward as shown. 

The last part of Figure 4 shows how the pressure distributions 

from the previous three parts appear when they are superimposed on one 

another in the same figure . In this figure, all curves except (p/p0 ) 

are dependent upon the free stream reference conditions. As a general 
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rule the final downstream pressure ratio predicted by the single invis­

cid turn, does not differ greatly from the final p/p0 ratio. 

In the literature on separated flows, it has become standard prac­

tice to use the pressure at the beginning of the interaction as the 

reference value. This study also follows the standard convention by 

selecting p0 as the reference pressure. 

To tie the complete interaction together within a single framework, 

and to obtain the necessary semi-empirical correlations, it becomes 

necessary to make some assumptions regarding the resultant pressure 

distribution, First, it is assumed that the final pressure on the ramp 

corresponds with the same pressure ratio which would be obtained if the 

free stream flow negotiated the single inviscid turn as shown in Figure 

4-a. This compromise was imposed as a result of experimental pressure 

measurements on the ramp surface at different Mach numbers. At low 

Mach numbers (2-5) it appears to give good correlation, while at higher 

Mach numbers it is below the peak pressure in many instanceso 

Additional assumptions regarding the plateau pressure ratio and 

its typical behavior are made. On the basis of the observed experi­

mental pressure distributions, it is assumed that once the plateau 

region is reached, the pressure ratio rema:i.ns fixed until the beginning 

of reattachment. Figure 5 presents a plot showing how the experimental 

plateau pressure ratios appear when compared with the correlation equa­

tion selected. This equation is the same as the one presented by 

Sterrett and Holloway (16), except that the numerical coefficient was 

changed. The plateau pressure ratio has been approximated by the fol­

lowing expression: 
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(21) 
• 

This equation normalizes the spread ln the experimental variation and 

provides a closed mathematical expression for calculation purposes. 

It should be noted that the dependent parameters are the Mach .and 

Reynolds numbers at the beginning of the interaction. 

This plateau pressure equation differs from the one Chapman, Kuehn, 

and Larson (3) developed in that a (M0~) term appears in the denomi­

nator. Other semi-empirical correlations (17, 18) were tried., but the 

expression selected gave the best fit of the a.a.ta. 

The breakaway angle which the dividing streamline makes with the 

plate was assumed to be the inviscid turn angle which would be neces-

sary to reach the ca,lculated plateau pressure. At low Mach numbers, 

this technique gives angles which correspond closely with ·bhe measured 

angles in the schlerien photographs. However, at higher Mach numbers 

these angles were smaller than the measured angles. For a fixed geom-

etry, experimental observations indicate that the plateau pressure ratio 

increases rather slowly with increasing Mach number, while the overall 

pressure ratio increases rapidly. 

Since the goal of this thesis is to predict the entire pressure 

interaction, a "beginning of reattachmentrr must be specified. The 

scheme being discussed requires that the location where the reattachment 

pressure rise first starts must be known, and, of course, the resultant 

pressure distribution should be in good agreement with experimental 

measurements. Several previous investigators (6, 8, 9) have considered 
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that the reattachment pressure rise begins at the ramp corner, while 

Erdos and Pallone (12) use the dividing streamline to locate thereat­

tachment pressure rise. In their solution, E-rdos and Pallone assume 

that the reattachment of the dividing strea.mline on the ramp corresponds 

with the mid-pressure point of the reattachment pressure rise. The 

merit of either of these technig_ues rests in its correlation with the 

observed experimental data used. The first procedure, where the pres­

sure rise begins at the corner, has been compared principally with low 

Mach number data, wh~le Erdos and Pallone have used but a single exper­

iment at Mach 2.0. In this thesis, a general technique was sought. 

After examining considerable experimental data, a fair approximation 

for the beginning of rea.ttachment in the Ma.ch 2-10 range, is to consider 

that the reattachment process begins at the point where the dividing 

strea:mline impinges on the ramp. This gives considerable deviation 

from selected experiments at the lower Mach numbers used (2.0-3,0), but 

the correlation was found to be quite satisfactory above this range. 

The technique for solving the complete interaction pressure dis­

tribution is schematically outlined by the computer flow diagram in 

Figure 6. The only program inputs are free stream Mach and Reynolds 

numbers, the location of the ramp corner and end of ramp, the ramp 

angle, an approximate value of the Mach angle which corresponds with 

the known ramp angle and Mach number, the ratio of specific heats, the 

~K increment used in the numerical integration, an accuracy term, and 

the F(K) value which correlates the reattachment process. Program in­

puts also included an estimated. value for the location of the separa.tion 

point and a term which specifies the maximum number of ite.ration loops 

allowed before the solution is automatically terminated. The latter 
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of these last two terms is used to safeguard against the use of too 

much computer time when a slow convergence is encountered. An estimated 

value for the location of separation was used to start the calculations. 

This very probably could have the effect of reducing the time required 

to obtain a solution. The value L l1 has been used throughout this work 

as the ratio of specific heats, y, This quantity was assigned a vari-~ 

able name to permit the use of different y' s, had the need arisen. '.l'he 

approximate value for the Mach angle was input to start the Newton-~ 

Raphson calculations, This insures that the method will converge on 

the correct angle. All of the remaining input q_uanti ties are obtained 

directly from the 1\:nown flow anci geometry except for thEi LiK i11crem(:mt, 

accuracy, ancl I•'(K) tern1.s. The l':iK increment and a.ccuracy terms a.re 

chosen arbitrarily while F'(K) comes from a previously determined cor­

relation curve. 

Figure 7 explains some of the solution particulars which, together 

with the flow diagram (Figure 6), w:l.11 be hel1~ful in the discussion 

that follows. Note that the location of the separation point controls 

the whole solution. A change in the location of separation affects the 

plateau pressure ratio, the dividing streamline breakaway angle, the 

location of the beginning of reattachment, and hence, the whole pres-­

sure distribution. The computational requirements necessitate that the 

correct downstream Mach number be reached at the same time the Blasius 

value of K is reached, By adjusting the location of the separation 

point it is possible to match the d.ownstream requirements and also to 

have the correct final velocity profile shape. 

After reading the input values, the general program first calcu-· 

lates the downstream Mach number and pressure ratio by using the 
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inviscid flow relationships. The pressure ratio becomes the final val­

ue which must be matched at the end of the reattachment portion of the 

solution, The next step in the solut i on is to solve for the pressure 

distribution between the beginning of the interaction (Blasius point) 

and the separation point. The BLASEP subroutine is called for in these 

calculations. 

From the conditions which are found at the Blasius point, the 

plateau pressure ratio, streamline breakaway angle, and the beginning 

of r eattachment location are determined . Next the pressure distribu­

t i on between the separation point and the beginning of reattachment is 

found, using the SEPSH subroutine. This subroutine calculates a pres­

sure distribution ahead of the pressure plateau and maintains a constant 

pressure rat i o throughout the plateau. 

The x-distance measurements are made along the surface of the plate 

and ramp, rather than along the axis. The direction of the streamline 

at the edge of the boundary layer, e, is measured with reference to the 

plate and ramp surfaces . At the ramp corner this reference changes and 

necessit ates a compensation in the reatt achment portion of the solution. 

The angle e is calculated us i ng the Prandtl-Meyer relationship. Since 

the local free stream Mach number does not change in the plateau region, 

the direction of streamline at the edge of the boundary layer remains 

f i xed . As far as the pressure i n the outer inviscid flow (outs i de the 

boundary layer) is concerned , the change in the direction of the plate 

and ramp boundary is not realized until the beginning of the reattach­

ment pressure rise. For thi s reason, no change in the value of e has 

been incorporated prior to the begi nning of reattachment . For calcula­

tion purposes , t he measured value of the ramp angle cannot be used for 



this turn. Instead, an equivalent turn angle obtained from the Prandtl­

Meyer relationship must be used, This is necessary because the incre­

mental changes in the outer streamline direction have been approximated 

by using the Prandtl-Meyer equation. By such a procedure, the down­

stream Mach number and streamline direction may be matched for all 

flows, once the correct separation J?Oint location has been obtained, 

The next step in the computer program is to solve the reattachment 

region. For this, the REA'"l'CH subroutine is called, The solution in 

this region starts at the last point in the SEPSH solution and works 

toward the Blasi us-profile flow. rrl:,e correct overall solution is ob-"' 

tained when the downstream pressure ratio and Blasius K value are 

reached simultaneously, When this desired end result occurs, the pres,­

sure distributions found 'by the BLABEP, SEPSH, and REATCH subroutines 

give the correct overall pressure distribution, When a satisfactory 

match in the reattachment region is not obtained, a new location for 

the separation point must be selected. and the entire eye.le of calcula ... 

tions repeated, starting with the 13LAf3IDP ~rnbroutim!, 

Two corrections are possible in repcisit:1.oning the separat1.on point, 

'I1he separation point must move either upstream or downstream with re­

spect to its previous location. This ad,justment can be determined from 

the way K and the pressure ratio behave near the end of the REA'I'CH solu,­

tion. In the case where the Blasius value of K is reached before at­

taining the desired pressure ratio, the separation point must be moved 

forward of its previous location. When the final pressure ratio is 

reached before the Blasius K value is reached., the pressure distribution 

will intercept rather than asymptotically approach the final downstream 

pressure. This signifies that the mixing region was too large and that 



the separation point should move closer to the ramp corner. Figure 8 

illustrates the characteristic behavior of the pressure distribution 

when the separation point is forward, aft, and at the correct location. 

Another point to r)e noted in this figure is that the plateau pressure 

ratio decreases as the separation point moves closer to the corner, 

The general program adjusts the separation 1,oint location in ac­

cordance with the checks mentioned. The magnitude of the adjustment 

is controlled by how closely the final end conditions are matched, In 

general, it tak.es only a few steps for the solution to converge on a 

separation point which will satisfy the end conditions downstream. 

An item which has not been previously discussed and which has con­

siderable affect on the speed of convergence is the use of accuracy 

terms. This value, like the size of the integration increment, is arbi·­

trary. ~:'he accuracy term is used in both the BLAtHDP and m~PSH subrou­

tines and in the general progrrun. In the BLASEP subroutine it is used 

in a.etermining when the correct e:: 8 and ~s have been found, anci in the 

ffE;PSH. subroutine i.t is used in matching the calculated plateau pressure 

ratio. Its use in the two subroutines will be discussed in the follow-­

ing two sections. In the general program it is used in a check to see 

if the calculated final pressure ratio is close enough to the inviscid 

final value to allow the solution to be concludedo Figure 9 illus­

trates how the accuracy term is used in specifying the band of values 

which constitute an acceptable solutiono In all cases, K must reach 

the final Blasius value before the check is performed. 'I'his means that 

the final pressure cannot be greater than the final inviscid value, but 

it can be in the range determined r)y the accuracy term. 
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An accuracy term of , 05 has been used throughout this investiga"­

tion. This value is used in the general program and both subroutines, 

In preliminary calculations, values larger and smaller than .05 were 

used. It was found that the number of steps needed to obtain the de-­

sired convergence increased with smaller accuracy terms, while the over-· 

all accuracy decreases rapidly with larger values. For an engineering 

solution, .05 was found to give good results. 

The llK increment used in the numerical integrations likewise has 

some bearing on the overall accuracy. After trying several values, 

.003 was selected and used throughout. 

Blasius Point to Separation (BLASEP Subroutine) 

The semi-empirical correlation parameters mentioned in Chapter III 

are the same as those developed by Glick in the region upstream of sep·­

aration where the boundary layer is attached. The differential equa­

tions ( 13) and ( 111), incorporating these semi,-empirical parameters, were 

programmed as the BLASEP subroutine. A flow diagram for thi.s subroutine 

is given in Figure 29 of Appendix C, and. the Fortran listing is given in 

Appendix D. 

This subroutine requires that values of c: and l;., analogous to Mach 

and Reynolds numbers, be chosen at the separation point. Once selected, 

these values are used to start the step-by-step calculations which move 

upstream in llK increments to the Blasius point. The solution in this 

subroutine involves trying repeated choices of e: and l;. at the separation 

point in order to end with the correct values at the Blasius point. 

The values corresponding to the Blasius point which must be matched 

are obtained by assuming that the weak hypersonic pressure interaction 
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solution applies along the plate. These quantities are calculated by 

using the following two equations: 

l;=tJA~ 
b (I-K1o') (22) 

and 

[1- ,~~ (1+ Yi! Mco2~ (23) 

K=K1i:, 

where A= o.44. (An explanation and derivation of these expressions 

is given in Appendix A.) The quantity Eb may also be written in a 

linearized form by ma.king the assumption that M00 >> 1. However, this 

form of the equation was not used in the BLASEP subroutine, because 

there are large differences between the exact and linearized values 

at low Mach numbers. 

The solution which was obtained between the Blasius and separation 

points differs from Glick's work in that the exact form rather than 

linearized form of the differential equations have been used. This 

point, while not terribly important at lower Mach numbers, does make 

an appreciable difference in the results obtained at higher Mach num-

bers. It is interesting to note that all the methods which were men-

tioned in Chapter II make use of the assumption that E << M00 , implying 

that Me~ Meo. With this approximation, the differential equations are 

expressed in their linearized form. 

From equation (23) it is noted that the value of Eb increases as 

a function of M00
4. Therefore, as the Mach number increases, the assump-

tion that E << M00 becomes more subject to question. Figure 10 illus-

trates the magnitude of error involved in this assumption. The absolute 

value of the ratio Eb/M00 has been plotted as a function of both Mach 
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and Reynolds numbers. The values of Eb used in plotting this figure 

ha.ve been found by using both the exact and linearized form of the Eb 

equation. It is observed that the linearized and exact values approach 

each other at higher Mach numbers, and that the Eb/M00 ratio increases 

with increasing Mach number when the Reynolds number is held fixed. 

The relationship illustrated in Figure 10 applies only to the E 

value calculated at the Blasius point. Since the magnitude of E in­

creases throughout the interaction, the E/M«, ratio would be larger and 

raise even more doubt about the use of the linearized equations. For 

this reason, the exact form of the differential equations and the exact 

Prandtl-Meyer relationship have been used in preference to the linear­

ized forms. This involves no added complexities as far as the computer 

solution is concerned. 

The numerical solution performed by the computer makes use of a 

refined Runge-Kutta method devised by Gill (19, 20). The discussion 

and explanation of these calculations is given in Appendix B. All cal­

culations have been incremented with K as the independent variable. 

The correct solution requires that E and~ must be matched at the 

Blasius point. This is complicated by the fact that changes in either 

E8 or ~swill cause changes in the location found for xb. This causes 

Eb and ~b to take on ever-changing values as the convergence progresses. 

It was found that during the convergence, E was the more sensitive of 

the two variables. As a. result, it was convenient to first converge on 

the correct Es' and then to work on ~s' rather than to converge on both 

values simultaneously. The convergence scheme which was finally used 

evolved largely from the trial-and-error approach. Often a technique 

which works well at low Mach numbers will converge very slowly at 
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higher Mach numbers, and conversely. 'l'he system which was finally 

adopted gave satisfactory convergence speed over the entire Mach 2-10 

range. However, it was not the optimum solution in some regions of 

this range. 

The accuracy term was employed in the check to see if satisfactory 

£ and r;; values had been found. Here, as in the matching of the final s s 

pressure ratio in the general program, the accuracy term is used to 

specify the band of values which constitutes an acceptable solution. 

'I'he smaller the accuracy term; the narrower the band; the larger a 

number of trials needed to reach convergence. 

Separation to Beginning of Reattachment (SEPSH Subroutine) 

In this region, equations (15) and (16) were programmed for com-

puter solution as the SEPSH subroutine. The flow diagram which illus-

trates the computational procedure is given by Figure 30 ,.in Appendix 

C, and the Fortran listing is given in Appendix D. The£ and r;; values 

which have been found at the separation point are used to start the 

solution. 

The only semi-empirical parameter to be handled in this region is 

the C(K) or mixing term. The mixing is of paramount importance and as 

a result is dominant over the effects any changes in F(K) and D(K) may 

have. Glick has proposed two techniques for treating the C(K) values 

in this region. He conjectures that C(K) rises from zero at the sepa-·· 

ration value of K to some maximum value at the beginning of the pla­

teau, and that C(K) remains constant after this point. He offers a 

simplified and refined approach as an approximation for this distribu­

tion of C(K). In the simplified case, C(K) takes on a constant value 
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C throughout the whole region. In the refined case, C(K) has a value 

of c1 between separation and the plateau, and a value of c2 throughout 

the plateau region. The values of c1 = 11. 0 and c2 = 15. 0 presented 

by Glick were obtained from one set of experimental data (Mach 2.45). 

These values were suggested as universal for all separations. Figure 

11 illustrates the various C(K) trajectories from Glick's work. 

In this study it was found that C(K) takes on a behavior different 

from that specified by Glick. First, c1 does not universally equal 

11,0 but has a dependency on the Mach and Reynolds numbers at the be-

ginning of the interaction. Also, a constant value for c2 was found 

to produce a decreasing rather than constant pressure ratio in the pla-

teau. If a constant pressure ratio is to be maintained, C(K) must con-

tinually increase with increasing K values. The definition for C(K), 

' 
points out the inconsistency in fixing c2 as a constant. The only way 

that C(K) may be constant in the plateau region, according to the defi-

ni tion, is for m to be constant and hence dm/ dx to 'be zero. However, 

this results in a value of zero for the mixing parameter. 

In the SEPSH subroutine, C(K) is assumed to have a constant value 

of c1 between separation and plateau, and then to follow a trajectory 

such that the pressure remains constant in the plateau. Since c1 is 

not a universal value, the subroutine has a built-in convergence scheme 

for finding the correct c1 value. The subroutine calculates an initial 

c1 and then makes subsequent adjustments until the plateau pressure 

ratio determined by equation (21) is reached. The accuracy term is 

used in specifying the range of values for an acceptable matching of 
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the plateau pressure ratio. Figure 12 illustrates how c1 affects the 

pressure distribution between separation and the plateau and how the 

accuracy term is employed, 

With c1 a fixed constant, the program simply marehes in f:IK steps 

from the separation point to the plateau, calculating the corresponding 

pressure ratio and x-location value for each step. The beginning of 

the plateau is reached when the pressure gradient (dp/dx) equals zero. 

'J'his portion of the calculations is repeated until a c1 is found which 

gives a correct matching of the plateau pressure ratio. From this 

point on to the beginning of reattachment, C(K) is calculated in each 

f:IK step su~h that the pressure gradient remains equal to zero. When 

the known x-location that corresponds to the beginning of reattachment 

is reached, the SEPSH subroutine is completed; and control is returned 

to the general program. 

Figure 13 illustrates the C(K) behavior for this region. In all 

cases C(K) increases with Kin the pressure plateau -- serving as an 

indication that the mixing becomes. more vigorous with increased dis-

ta.nee down the plateau, rather than remaining constant as Glick assumed. 

The length of the plateau, KP to Kr, is determined in part by the over­

all magnitude of the reattachment pressure rise. At a given Mach num-

ber, the length of the region increases with the increase in pressure 

rise. The numerical values which K and K assume are not fixed, but p r 

vary, depending on the flow and geometry. In general, K has values p 

in the vicinity of 0.70 - 0.77, The value of the corresponding Kr is 

larger than or equal to K and must have a value greater than 0,693 p 

(the Blasius value) if the REATCH subroutine is to work, When Kr is 

less than or equal to Kb' this indicates that the separation point 
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shouJ.d be moved forward to obtain a workable solution. If this condi-

ti.on occurs within the first five loops in the calculation procedure 

(see Figure 6), a new xs further forward is automat:i,cally selected. 

Beyond the fifth loop, the solution is terminated when Kr is less than 

Kb' 

Reattachment (REATCH Subroutine) 

The reattachment process starts at the point where the dividing 

streamline impinges on the ramp. Equations (17) and (18), which were 

derived for this region, are solved in the RF.ATCH subroutine. A sche-

matic representation of the computational details is given in the flow 

diagram which appears as Figure 31 in Appendix c. A complete Fortran 

listing for this program is given .in Appendix D. 

The solution in this region must begin with the values of K, s, 

and Me which were found for x in the SEPSH subroutine. The numerical . r 

value of these three quantities for a given set of flow conditions and 

geometry is affected by the length of the mixing region. The Kand s 

values at the start of reattachment increase while Me decreases slightly 

as the separation point is moved forward. One other parameter, F(K) 

must be considered. It has been assumed that this quantity has a con-

stant value throughout the reattachment process, and that this value is 

dependent on the size of the ramp angle and the free stream Mach number. 

These values were determined from correlation with existing experiments 

and are discussed in the next chapter. '.I'he parameter F decreases with 

increasing Mach number. For a given Mach number F decreases with in-

creasing ramp angles as shown. 
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The direction of the streamline at the edge of the boundary layer, 

e, is measured with reference to the ramp surface in the reattachment 

region. Ahead of the reattachment region this angle is measured with 

the plate as the reference. This angle starts from a small positive 

value at the start of the interaction and increases continually until 

a constant angle is reached at the beginning of the pressure plateau. 

In the reattachment region the measurement reference changes, and e 

assumes negative values until the end of reattachment. As the solution 

progresses through the reattachment region the free stream Mach number 

continually decreases, causing the outer streamline direction to rotate 

in a counter-clockwise direction. At the end of the reattachment proc­

ess this outer streamline is parallel with the ramp, corresponding to 

the initiation of Blasius-type flow downstream of reattachment. 

The Prandtl-Meyer relationship has been used to calculate an equiv­

alent turn angle for the ramp deflection angle, and this assures that 

the correct downstream Mach number, pressure ratio, and streamline 

direction must all be reached simultaneously. However, it does not 

assure that Kb and the downstream pressure ratio will be reached to­

gether. This latter match is possible only in one case, when Xs is at 

the correct location. 

Figures 8 and 9 illustrate the general requirements for a satis­

factory solution. The REATCH calculations proceed in 6K steps, working 

from Kr to Kb. The subroutine continues until either the final pres­

sure ratio or Kb is reached. When the pressure ratio is reached first, 

this signals the general program that an unsatisfactory reattachment 

was made and that a new separation point must be selected. If K0 is 

reached first, the general program performs a check to see if the 
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pressure is within the band set by the accuracy term. If it is not, a 

new separation point must be tried and the calculations must be re-

peated. 

Experimental Data 

The previous sections in this chapter have been devoted to explain-

ing the computer solution of the complete interaction. This section 

discusses the type of experimental data needed, limitations which have 

been imposed as a result of the data which were available, and the man-

ner in which the data have been employed in the overall study. The 

purpose in using this experimental data was to obtain a F(K) correla-

tion for the reattachment region. 

A sequence of data was needed at several uniformly-spaced Mach num-

bers between 2 and 10, in which the Reynolds number and ramp angle were 

varied independently. This permits a discrimination between the effects 

of Mach number, Reynolds number, and the strength of the interaction 

(ramp angle). To obtain an optimum correlation of the semi-empirical 

para.meters, a wind tunnel test program would have been desirable. Since 

this was not feasible, data which were currently available had to be 

utilized. 

The whole method is dependent upon the location of the separation 

· point. This point should be located with as much precision as possible 

in order to obtain a good semi-empirical correlation. In addition to 

the separation point, closely-spaced pres.sure measurements along the 

plate and ramp are highly desirable. The plateau pressure ratio and 

beginning of reattachment are determined. from this distribution. 

Schlieren photographs, when used in conjunction with the pressure 



distribution, are extremely helpful in locating the separation point 

and in determining whether the flow remains laminar throughout the 

entire interaction region. 
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A current problem common to the study of high velocity laminar 

separated flows is that only a limited amount of experimental data is 

available. An effort was made to obtain and use data ta.k.en under a 

wide variety of flow conditions and from a variety of tunnel facilities. 

Much of the data used had not ·been previously published in the open 

literature. If it had, it was generally of recent origin, A total of 

38 cases with Mach numbers between 2 and 10 were selected for analysis. 

The ramp angle in these selected experiments ranged from 5 to 30 de­

grees. Because of the general scaracity of data, some experiments 

which normally would be of marginal value were used. A complete tabu­

lation of this data, together with some of the results which were ob­

tained, is given in Table I of the next chapter. 

The Reynolds numbers at the start of the interaction varied be­

tween 105 and 106, with a few exceptions. If plotted, the Mach and 

Reynolds number values give a good scatter of data between Mach 2 and 

10 and Reynolds numbers 105 and 106. 

Much of the unpublished data was of limited value, because there 

were no accompanying schlieren photographs or supplementary information. 

'The separation point location was not given in much of the data. In 

the cases where it was not specified, the separation point was assumed 

to lie at the point where the slope of the pressure distribution curve 

was a maximum in the region ahead of the plateau, This technique intro­

duces chance for appreciable errors, particularly in the case where the 

surface pressure measurements are not spaced close to one another. 
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Without a photograph, there is no wa:y of knowing whether the reattach­

ment was transitional or laminar. The nearly constant plateau region 

was taken as an indication that the flow rema.ined laminar through most 

of the interaction. 

Another problem which was encountered is that it is possible that 

three-dimensional effects become appreciable at higher Mach numbers. 

Putman (21) and other experimentalists have noted that two-dimensional 

flow cannot be obtained at higher Mach numbers , i.e. , above Mach 8 to 

10. Even two-dimensional models with end plates do not aleviate this 

difficulty. As a result, only three-dimensional type flows can be ob­

tained at higher Mach numbers. Due to this problem, this study has 

been limited to Mach numbers below 10. 

The Mach 10 data had only limited pressure measurements on the 

ramp surface and did not afford. an opportunity to make a good compari­

son between the calculated reattachment pressures and the experimental 

measurements. Analysis of Mach 16 data by Miller et al (22) was at­

tempted, but the leading edge interaction effects were such that it was 

not possible to make a satisfactory correlation. Another problem at 

high Mach numbers is that the normal pressure gradient across the 

boundary layer is no longer zero. 

The data used in this investigation was utilized in a manner which 

will be described. 

The BLASEP and ,SEPSH subroutine portions of the general program 

were used to calculate the pressure distribution in the region ahead of 

the beginning of reattachment. The separation point, which had been 

determined experimentally, was used in these computations. The final 

values of K, i;, and Me from these calculations corresponq. with the 



start of reattachment. These are used to start calculations in the 

reattachment region. In addition, many other intermediate parameters 

are calculated by these subroutines. Several of these have been tab­

lated and are given in Table I in the subsequent chapter. 

The F value necessary for the correct reattachment pressure rise 

must be found. To do this, the REATCH subroutine was modified into a 

F-Calculation program. The flow diagram and listing for this program 

is given in Appendix C and Appendix D respectively. 
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Through repeated choices, the correct value of Fis found so that 

the correct downstream pressure ratio and Kb are reached simultaneously. 

In this convergence on F, an accuracy term is employed. The accuracy 

term is employed in the same manner as has previously been illustrated 

for the c1 convergence in the SEPSH subroutine. Figure 14 illustrates 

how the behavior of F influences the correct matching of the downstream 

pressure ratio. 
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CHAPTER V 

DISCUSSION OF RESULTS 

This chapter details the experimental data which were reduced and 

used in determining the c1 and F(K) correlations. The F(K) values are 

needed to obtain a solution for the complete pressure distribution in 

the interaction region. Also included are examples showing the com-

pa.risen between the general :program calculations anc'! experiment, 

Reduction of l:l:xperimental Data 

The data assembled for use in determining the needed correlations 

were analyzed in the manner d.escribed in the previous chapter. The 

principal data and results collected" during the course o:f' thh1 investi-

gation a.re presented in a concise form in '.I1a'bl.es I through IV. 

Table I lists the pertinent parameters which were taken directly 

from the experimental data. With the exception of xs and (p/p0 )p, thi.s 

table lists the quantities which the design engineer would have at his 

disposal for determining the interaction solution. The (p/p0 )p values 

given in Table I have been plotted in Figure 5 and show the compar:i.son 

between the approximate experimental plateau pressure ratio and the 

value obtained from the correlation equation (2l)o 

The x values given in Table I were of paramount importance in s 

finding the c1 and F correlation values. In the cases where x was s 

approximated by the maximum slope techniq.ue, the value in Table I has 

64 



TABLE I 

EXPERIMENTAL DATA USED IN THE CORRELATION 

No. Mach No. Source Re/In Ra.mp Angle xc,In x8 ,In (p/po)p 
C 

1 2.00 3,6 151,000. 6,50C 1.962 1.515 1.18 
2 2.45 3,6 60,000. 13,00C ,900 ,315 1.46 
3 2.55 23 70,800. 10.00 2.280 1.050C L33 
4 2.70 28 467,000. 10.00 2,250 1. 6113 1.20 
5 3.00 24 34,000; 10.00 s:ooo 5.700 l.37 
6 3.00 24 95,000. 20.00 8.000 6.250 1.25 
·7 3,00 24 34,000. 30,00 8.000 4.790 1.40 
8 3.06 23 109,100. 10.00 2.280 1.120c 1.36 
9 4.50 25 120,000. 15,00 8.000 5.660 1.50 

10 l+, 50 25 89,000. 30.00 8.000 3. l100 1. 75 

11 4.50 25 88,000. 15,00 8,000 5,500 1.55 
12 4.50 25 120,000. 30,00 8.000 3.660 1.60 
13 5,00 2lt 93,000. 15.00 8.000 4 .l150 1. 70 
14. 5.00 24 280,000. 15.00 8.000 4.460 1.55 
15 5.00 24 97,000. 30,00 8.000 2.390 1.85 
16 6.oo a 103,300. 14.oo 6.000 4.oooc 1.50 
17 6.oo b 83,500. 20.00 12.000 6,750C 1.60 
18 6.00 b [33,590. 10.00 12.000 9,300c 1.45 
19 8.00 a 18,330. 20.00 10,000 7.120 2.05 
20 8.00 a 211,200. 20.00 10.000 7.500 2.05 

21 8.00 a 35,000. 20.00 10.000 7.250 2.05 
22 8.oo a 54,200. 20.00 10.000 6,750C 2.15 
23 8.00 b a5,670. 20.00 12.000 6., 500C 1,70 
24 8.00 26 250,000. 15.00 '7,250 4.6ooc 1.65 
25 a.oo 26 250,000. 22.50 7,250 3.4ooc 1.50 
26 8.00 b 85,210. 5.00 12.000 lLOOOc 1.20 
27 8.00 b 85,2BO. 10.00 12.000 9,250c 1.40 
28 8.00 'b 86,350. 10.00 12.000 4 C 1.50 9. 50 
29 8.00 b 86,800. 15.00 12.000 7,300c 1. 70 
30 8.00 b 87,580. 20.00 12.000 5,350C L85 

31 8.45 a 590,000. 14.60 6.000 3,250C 1.55 
32 10.00 b 82,820, 10.00 12.000 9.oooc 1,75 
33 10.03 27 126,000. 10.00 8.725 8.oooc 1. '70 
34 10.03 27 126,000. 20.00 8,725 5.800c 2.00 
35 10.03 27 126,000. 30.00 8.725 3,850C 2.20 
36 10.03 21 127,000, 10.00 8.750 8.250° 2.10 
37 10.03 21 127,000. 20.00 8.750 6.500c 2.50 
38 10.03 21 127,000. 30.00 8,750 3,750c 2.25 
--

a Unpublished NASA Langley Research Center data (29) 
b Unpublished Air Force Flight Dynamics Laboratory data (30) 
C Approximated from data 
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TABLE II 

PARAMETERS DETERMINED BY BLASEP SUBROUTINE 

No . Xb , I n Rexb Meb r;b Me r; s (p/pO)s s 

1 1.2206 184,311 , 1.991 517,9 1.901 558.0 1.150 
2 .1880 11,280. 2,399 107,5 2.287 127.6 1,192 
3 . 7850 55,578, 2.525 223 , 9 2.406 246.3 1.203 
4 1.4809 691,580. 2.692 733,8 2. 568 758 . 8 1.211 
5 4.6236 157,202. 2.978 309.2 2.840 330 .8 1.232 
6 5.4281 515,669. 2.988 557,2 2.853 584.6 1.226 
7 3,6943 125,606 . 2,975 276.4 2.840 301.6 1.226 
8 .8788 95,877, 3,030 236.1 2.888 255.0 1.240 
9 4.7991 575,892. 4.462 329.4 4.256 347.1 1.300 

10 2.6630 237,007. 4.441 212.8 4. 238 230.9 1.295 

11 4.4898 395,102. 4.454 273,5 4,251 292,3 1 . 296 
12 3,0018 360,216. 4. 452 261 . 4 4.245 278.4 1.301 
13 3,5600 331,080. 4.929 212.2 4.699 227.8 1.316 
14 3,8383 1,074,724. 4.961 378.5 4,733 397.0 1.312 
15 L 7606 170,778. 4.901 154.o 4.680 170.5 1.304 
16 3,1186 322,151. 5.865 155 .6 5,588 168.6 1.342 
17 5,1855 432,989. 5,884 179.6 5.616 195,8 1 . 327 
18 7,4887 625 ,980 . 5,903 214.6 5.628 229.8 1.337 
19 5.4072 99,114. 7,306 58.3 6,971 64.o 1.348 
20 5.6212 136,033, 7.407 66.6 1.068 73.5 1.349 

21 5,3876 188,566. 7,496 76.7 7.154 84,5 1.349 
22 5. 0548 273,970. 7,582 90.9 7.234 100.1 1.352 
23 4.8239 413,264. 7.660 109 .1 7,311 120.2 1.349 
24 3,5614 890,350. 7,768 156.0 7,408 169,7 1.357 
25 2.5768 644,200. 7 ,727 134.o 7.372 146.7 1.354 
26 8. 4190 717,383. 7,742 141.0 7,386 154.2 1.353 
27 7. 0918 604,789. 7,719 130.1 7,360 142. 2 1.358 
28 7,1551 617,843, 7,722 131,4 7, 366 143,9 1.354 
29 5,5683 483,328. 7.685 117.2 7,327 128.4 1.359 
30 4.0288 352,842. 7, 632 101.5 7,278 111.6 1.356 

31 2.5824 1,523,616. 8.232 183.3 7,843 197,2 1.370 
32 6.9053 571,897, 9,327 88 .8 8.895 97 .1 1.367 
33 6.1253 771,788. 9.444 100.8 9,012 110.4 1. 363 
34 4.4182 556,693, 9,340 87 . 4 8.914 95.6 1.362 
35 2.9746 374,800. 9.190 74 .2 8.770 80 . 9 1.361 
36 6. 2452 793,140. 9.452 102.0 9.020 111 .7 1.363 
37 4,9711 631,330. 9,382 92.3 · 8 .947 100. 8 1.369 
38 2.9009 368,414. 9.182 73.6 8.761 80 . 2 1. 362 
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TABLE III 

PARAMETERS DETERMINED BY SEPSH SUBROUTINE 

No. Xp,In I<p Me l;p C1 Kr z;r 

1 1.656 ,702 1.878 737.8 15.32 .867 1570,5 
2 .439 .750 2.149 265.0 12.17 .946 1125.1 
3 1.285 .735 2,336 403.8 12.43 .935 1515.9 
4 1,722 .687 2.558 915.7 17,63 .880 2262.4 
5 6.568 .720 2,797 474.9 11~81 .852 870.8 
6 6.655 .690 2.840 713,9 13.78 .820 1194.4 
7 5.651 .729 2.783 460.6 12.25 .867 907.0 
8 1.358 • 735 2.821 404.6 11.53 ,924 1320.6 
9 6,513 ,717 4.214 478,5 9.65 .824 758.0 

10 4.288 ,744 4.142 379,9 9,73 .905 990,5 

11 6.602 ,732 4.183 441.2 9.94 .829 680.9 
12 4.417 ,732 !~ .181 418.5 9,45 .899 1077,0 
13 5.642 ,744 4.598 372.8 9.12 .869 715,3 
14 5.025 ,708 4.701 521.7 9.31 .882 1257,3 
15 3.255 ,759 4.529 316.0 9.12 ,932 1079.2 
16 5.518 ,759 5.421 308,3 8.14 .811 391.2 
17 9.090 ,756 5.461 348.6 8.50 .849 557.7 
18 11.949 .744 5.515 372.5 8.13 ,776 424.9 
19iC· 10.712 .761 6.523 148.4 8.01 .761 148.4 
20* 10.583 ,745 6.648 153,6 8.10 .745 153,6 

21* 10.602 ,755 6.761 179. l} 7.74 ,755 179. 4, 
22* 10.661 ,776 6.878 224.6 7,49 .776 224.6 
23 10.211 .780 6.993 263.6 7.45 .835 349,3 
24 6.647 .765 7.178 321.3 7.27 .808 392.6 
25 5.090 ,771 7.111 293,0 7.21 .862 482.8 
26* 13.285 .707 7.130 237,7 8.36 .707 237,7 
27* 13.127 .754 7.097 265.4 7.18 ,754 265.4 
28* 13.039 .747 7.105 260.1 7,23 ,747 260.1 
29 11.217 ,774 7.044 265.6 7,13 .813 320.6 
30 8.478 .780 6,950 247,4 7.40 .868 410.4 

31 4.546 .759 7,635 354.o 7.15 .847 553,2 
32* 13.190 ,756 8.444 201.4 7.18 ,756 201.4 
33* 8.994 .684 8.587 167.7 11.67 .684 167.7 
34* 9.217 .776 8.450 219.0 7.10 ,776 219.0 
35 6.645 ,795 8.265 210.4 7.27 .858 303.6 
36* 8.934 .672 8.607 161.6 14.64 .672 161.6 
37* 9,120 .745 8.506 197.7 7,27 .745 197.7 
38 6.466 . , 795 8.256 208.8 7.27 .863 311.8 

*A constant pressure plateau region was not reached. 
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TABLE IV 

PARAMETERS DETERMINED BY GENERAL PROGRAM 
AND BY F-CORRELATION PROGRAM 

No. (p/po) (p/po)fi1al Xr,In F(K) 

1 1.193 1.390 2.390 4.070 
2 1.477 2.170 1.433 2.548 
3 1.339 1.897 3.266 3.005 
4 1.195 1.960 2.458 1.917 
5 1.318 2.055 9.322 1.897 
6 1.237 3.783 8.288 ,578 
7 1.336 6,333 8.486 .503 
8 1.367 2.103 30079 2.741 
9 1.374 4.224 8.564 .797 

10 1.464 11.050 8.629 .633 

11 1.410 4 0 22l+ 8.667 .843 
12 1.420 11.050 8.538 .610 
13 1.485 5.226 9.002 .973 
14 1.364 5.226 8,734 .961 
15 1.569 13.000 8.832 ,712 
16 1.606 5.531 6.624 ,733 
17 1. 564 9,268 12.987 .651 
18 1.517 3.668 13.107 .738 
19* 2.067 16,590 10.712 .266 
20* 2.003 16.590 10,583 

21i~ 1.938 16.590 10.602 .236 
22* 1.867 16.590 10.661 ,314 
23 1.792 14.870 13.027 ,536 
24 1.665 9.443 7,836 ,547 
25 1.716 18.310 7.824 ,559 
26* 1.699 2.556 13.285 .298 
27* 1.727 5,241 13.127 ,466 
28* 1. 723 5,241 13,039 ,395 
29 1. 765 9, li43 13.195 ,585 
30 1.820 14.870 13,283 .653 

31 1.625 9.685 6.553 ,705 
32* 1.933 7,067 13,190 
33* 1.879 7,067 8. 99lr 
34* 1.941 22 .lr20 9,217 .291 
35 2.018 4501110 9,292 .426 
36* 1.874 7.067 8,934 
37* 1.917 22.420 9,120 .186 
38 2.021 45.410 9.333 01+35 

*A constant pressure plateau region was not reached. 
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been given a superscript. There were instances in the data where Xs 

was specified, but no mention was made as to how this location was de-

termined, The confidence vested in a specified x 8 location was enhanced 

when a schlieren photograph accompanied the pressure distribution. 

Using the xs values given in Table I, the correlation procedure 

was begun by solving the BLASFJP subroutine. This subroutine establishes 

the correct E: and i:;. values at the separation point and also gives the 

location and parameters at the start of the interaction. The important 

parameters from this subroutine, together with the calculated Blasius 

point Reynold.s number, are given in Table II. This Reynolds number and. 

the Mach number at the start of the interaction (Me or M0 ) are used to 
b 

determine the plateau pressure ratio. 'l'he calculation of the plateau 

pressure ratio is performed by the general program, and the results 

have been tabulated in Table IV. The point at which the reattachment 

process begins, xr, is also determined by the general program and. is 

presented in Table IV. 

'rhe SEPSH subroutine is solved in the region ·between separation 

and the beginning of reattachment using the E: and I:;. values at the sepa-

ration point as the starting conditions. A satisfactory solution is 

obtained by selecting c1 in such a manner that the calculated plateau 

pressure ratio is reached. The SEPSH solution terminates when Xr is 

reached, which corresponds with the location of the start of reattach-

ment. Of the 38 cases analyzed, there were twelve in which xr was 

reached before a plateau region was established. In these cases, c1 

was selected such that the final pressure at Xr matched the plateau 

pressure ratio determined by the general program. The cases where no 



plateau was established have been noted in Table III and IV. The use 

of these data will be discussed later in this chapter. 
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A final correlation for F(K) was made by solving the F-Calculation 

program. This F value must be selected such that the final downstream 

pressure ratio is matched at the completion of the reattachment process. 

The final pressure ratio and the calculated F values are given in Table 

IV. 

Determination of Universal c1 and F Relationships 

The data in Tables I through IV must be analyzed and a F correla­

tion established. In ~eeping with the simplicity desired, this F 

correlation must be presented in such a manner that the designer can 

find F for a given configuration without performing preliminary calcu­

lations. In order to meet this requirement, F has been found and pre­

sented such that it is a function of the free stream Mach number and 

the ramp angle. 

As a logical extension to the Crocco-Lees method, the inclusion of 

a c1 correlation has also been developed. This correlation is a by­

product of this study and extends the general understanding of the 

Crocco-Lees mixing theory. Since c1 ~~s calculated prior to F for 

each case, this correlation will be discussed first. 

Because of the way it is related to the plateau pressure ratio, 

parameter c1 also depends on the location of the separation point. To 

present a desirable c1 correlation, certain data had to be eliminated 

from consideration. It is known that transition in the reattachment 

region causes the separation point to move closer to the ramp corner. 

Table V was prepared to aid in determining which of this data should 



71 

TABLE V 

EVALUATION OF EXPERIMENTAL DATA 

Was XS Was plateau 
given in Was Schlieren lam. or trans. reached in 

No. the data? photo given? reattachment? calculations? 

1 yes no transitional yes 
2 yes yes laminar yes 
3 no no laminar yes 
4 yes yes transitional yes 
5 yes yes laminar yes 
6 yes yes transitional yes 
7 yes yes transitional yes 
8 no no unknown yes 
9 yes yes laminar yes 

10 yes yes laminar** yes 

11 yes yes laminar yes 
12 yes yes laminar** yes 
13 yes yes laminar yes 
14 yes yes laminar yes 
15 yes yes laminar L• yes 
16 no no unknown yes 
17 no no unknown yes 
18 no no unknown yes 
19 yes no unknown no 
20 yes no unknown no 

21 yes no unknown no 
22 no no unknown no 
23 no no unknown yes 
24 no no unknown yes 
25 no no unknown yes 
26 no no unknown no 
27 no no unknown no 
28 no no unknown no 
29 no no unknown yes 
30 no no unknown yes 

31 no no unknown yes 
32 no no unknown no 
33 no yes* unknown no 
34 no yes* unknown no 
35 no yes* unknown yes 
36 no yes* unknown no 
37 no yes* unknown no 
38 no yes* unknown yes 

*Of marginal value 
**Probaqly laminar 
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be eliminated. This table indicates the known cues in ~ich tran•i-. . . : 

tion occurs during the reattachment process. 

At the onset it was not known whether or not the transition in the 

reattachment region would have an appreciable attect on the r correl&-

tion. For this reason, some transitional data were included among the 

38 cases considered. Table V also indicates tho•e cues in which Xr 

was. reached prior to establishing a plateau region. 

Figure 15 presents the c1 versus tree stream Mach number correla­

tion which was tound in this stu~. In this plot, the 12 cue• where 

a plateau had not been established and the tour known transitional cues 

were eliminated from consideration. It is probable that the 12 cases 

in which the plateau was not reached were also transitional tlows. 

This is merely a conjecture without the benetit ot additional intorma-

tion. The remaining 22 c1 values have been plotted and show that c1 

decreases with increasing Mach number. The c1 values at M_. • 10.03 

are ot uncertain accuracy because the pressure data otters a poor ap-

proximation in locating Xe• Erroll's in the selected location tor Xs 

introduce errors in c1 and F. 

The results in Figure 15 show no discernible relationship between 

c1 and the Reynolds number. c1 depends only on the Mach nUJl!,ber and is 

inde~endept ot Reynolds nl.D!lber fn the range from 105 to 106. 

The F correlation values depend on the solution in the plateau 

region. The 16 cases which had been previously eliminated in the c1 

correlation are of no value in the P correlation. Table VI has been 

prepared to illustrate the resulting dependence of Fon M. and the 

ramp angle. These data points have been plotted in Figure 16 and 

illustrate that 1 decreases vi th increasing Mach number. These data 
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TABLE VI 

SYNOPSIS OF RESULTS FOR F-M.:o-RAMP ANGLE CORRELATION 

Ramp Angle= 100 

No. MCC F 

3 2.55 3,005 
5 3,00 1.897 
8 3,06 2,741 

18 6.oo ,738 

Ramp Angle= 30° 

No. Moo F 

10 4.50 .633 
12 4.50 .610 
15 5.00 ,712 
35 10.03 .426 
38 10.03 .435 

Ramp Angle= 150 

No. Ma, F 

9 4.50 ,797 
11 4,50 • 8lt3 
13 5.00 .973 
14 5,00 .961 
24 8.00 ,547 
29 8.00 ,585 

No. Moo 

2 2,45 
16 6.oo 
25 8.00 
31 8.45 

Ramp Angle= 200 

No. 

17 
23 
30 

Other Data 

Ramp Angle 

13.00 
14.oo 
22050 
14.60 

6.oo 
8.00 
8.00 

F 

2,548 
,733 
,559 ,, 
.705 

F 

.651 
,536 
,653 
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further show that F decreases with increasing ramp angle. C~rves have 

been sketched in Figure 16 to give the values of F which are used in 

the program calculations. 

The 16 values of c1 and F which had been eliminated from consider­

ation were compared with the c1 and F correlation curves. The c1 values 

which were not plotted in general lie above the curve in Figure 15. 

Also, the F values which were not used generally lie below the repre­

sentative curves. It is evident that the presence of transition in the 

reattachment region has the effect of shifting the c1 curve upward and 

the F curve downward. For purely laminar interactions, c1 and F can be 

approximated quite well with the single curves given. A band of values 

is encountered when transitional effects are included, and the unique­

ness of the correlation method breaks down. 

The F value which is input into the general program is obtained 

directly from Figure 16. With the free stream Mach number and ramp 

angle known, it is a simple matter to interpolate F directly from the 

figure. 

Solution of the Complete Interaction Problem 

The complete computer solution has been described in Chapter IV. 

This section illustrates how the calculated pressure distributions com­

pare with experimental measurements. Figure 17 illustrates how each of 

the three semi-empirical parameters vary throughout the interaction. 

The trajectories given in this figure duplicate the previous discussion, 

but they are helpful in illustrating the behavior of each para.meter in 

each of the three regions. 
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In order to compare the calculated results with experiment, an 

illustrative sampling of the data is given. Figures 18 through 27 

illustrate a. representative sampling of data in the Mach 2.55 to 10 

region. The general program calculations give a better comparison at 

Mach numbers above 3.0. Below Mach 3.0 the reattachment pressure rise 

starts too far downstream and also has a slope which is flatter than 

the experimental pressures. When the magnitude of the overall pressure 

rise on the ramp is considered, the resulting discrepancy will not in­

troduce design errors as large as a similar discrepancy at higher Mach 

numbers would. The solution developed gives good agreement over the 

range of data (Mach 2-10). 

To illustrate the program's convergence on a correct solution, Fig­

ure 28 is given. This result is the same as the one given by Figure 19 

for M,,:, = 3.0. To start the calculation procedure, xs was assumed to be 

at 4.7 inches. The convergence procedure required 4 loops to reach the 

desired solution. The plot for each intermediate pressure distribution 

has been given to show how the calculations proceed toward the correct 

solution. A similar set of calculations was performed by assuming that 

x8 was at 6.7 inches. The solution converged on a satisfactory solu­

tion in the fourth loop of calculations. 

In the reattachment portion of the pressure rise, the distribution 

has an inflection point. This is most apparent at the higher Mach 

numbers. No significance is associated with this observed character­

istic. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

A solution for the complete interaction-pressure distribution for 

laminar flows over plate and ramp combinations in the Mach 2 to 10 

range has been developed. This technique is semi-empirical and makes 

use of the Crocco-Lees flow model. The objective of this investigation, 

which was to find. an engineering solution for this complex interaction 

pressure distribution, has been fulfilled. 

The three semi-empirical parameters which are used to describe the 

flow in each of the three regions have been defined. Further, the re­

sultant correlations for each of the parameters are giveno To obtain 

a solution for this problem, only the free stream flow conditions, the 

plate-ramp geometry, and the F(K) correlation value are necessary,, 

This F(K) value is obtained directly from the correlation curves in 

Figure 16 and is based on existing experimental data. 

A by-product of the method presented is that it extends the pres­

ent Crocco-Lees theory by defining the correct behavior for the mixing 

parameter, C(K), in the region between separation and the beginning of 

reattachment. A C(K) correlation has been established by making use of 

a constant c1 value between separation and the beginning of the plateau 

and a varying C(K) value from this point on. A previous hypothesis by 

Glick (6), that C(K) has an universal behavior in this region, was found 
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to be invalid. The mixing term, c1 , was found to decrease with increas­

ing Mach number and was independent of the Reynolds number . At the 

outset it was felt that c1 would depend on both the Reynolds number and 

the Mach number. This was not supported by the data. 

In the plateau region C(K) was found to be an ever-increasing func­

tion. This study supports the conclusion that the mixing becomes more 

vigorous with increasing advancement into the plateau region. 

The correlation para.meter for the reattachment region, F, has been 

found to be dependent upon the free stream Mach number and the ramp an­

gle. It was found from the correlation of results that F decreases 

with increasing Mach number and with increasing ramp angles. Here, too, 

as in the c1 correlation, no dependence on Reynolds number was observed. 

On the basis of the correlation curves which were found, it is evident 

that F depends principally on the inviscid outer flow and to an indis­

tinctive amount upon other effects such as the Reynolds number. 

In the computer solution of the differential equations, the exact · 

rather than the linearized form has been solved. The limitations placed 

on the method by the usual linearization assumption has been discussed 

in Chapter IV. The errors resulting from this assumption are small at 

low Mach numbers, but they increase rapidly with increasing Mach number. 

The ultimate worth of any method rests in its comparison with ex­

periment. The figures in Chapter V show that the correlation above 

Mach 3.0 is good , while the slope of the reattachment pressure rise 

below this value is flatter than experiment. This deviation at lower 

velocities may be attributed partly to the extent of the subsonic por­

tion of the boundary layer. At higher Mach numbers the pressure clearly 

does not start to rise until some distance beyond the ramp corner, while 
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at lower Mach numbers the pressure rise appears to originate at the 

ramp corner. The actual reattachment point in the flow occurs somewhere 

downstream from the start of the reattachment pressure rise. The divid­

ing streamline, as it has been incorporated, is used merely as a model 

to approximate the relative location of reattachment with respect to 

separation. 

The chief problem encountered in this study was the collection of 

adequate experimental data for use in establishing the necessary F cor­

relation. Three problems which had to be resolved before the collected 

data could be used were: 1.) Does the boundary layer remain laminar 

throughout the entire interaction?, 2.) Has the exact location of the 

separation point been found?, and 3,) Is t he flow two-dimensional? 

Transition within the reattachment region has the qualitative ef­

fect of shortening the distance between separation and reattachment. 

This results in a c1 value larger than that for laminar flow at the 

same Mach number. A secondary result is that a smaller Fis obtained 

in a transitional interaction. The uniqueness of the c1 and F corre­

lations break down when transitional flows are considered. c1 and F 

may be represented by distinct curves for laminar flows, while these 

correlation para.meters take on a band of values in transitional flows. 

For this reason, only laminar i nteracti ons may be treated. Transitional 

and turbulent flows introduce new values for the semi-empirical param­

eters C(K), D(K), and F(K) , and for that reason, these flows cannot be 

incorporated within the laminar definitions used in the three regions . 

In reviewing the literature on this separation- interaction problem, 

the similarities rather than the differences in the various methods, 

were most apparent. All methods make essentially the same assumptions 
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and incorporate the sl:l.me flow model. The basic difference comes in the 

way the boundary layer profile is handled. Some chose to represent the 

boundary layer by an assumed family of profiles while others use a semi­

empirical approach to represent the boundary layer. Each type of pro­

file representation has its limitations and associated problems. 

In the complete interaction solution, the initial assumptions 

regarding the plateau pressure ratio, the final pressure ratio, and the 

relative location of the dividing streamline were found to give good 

overall agreement. The location of xs controls the whole interaction 

and is of paramount importance in this method. 

Recommendations 

The chief limitation recognized in this thesis was that sufficient 

experimental data of the type and detail needed was not available at 

this time. As more data becomes available, the F-correlation curves 

in Figure 16 should be brought up to date. 

The constant-value F correlation which has been proposed for use 

in the reattachment region may be improved upon. This is evidenced by 

the fact that the slope of the pressure distribution curve is not in 

good agreement with experiment at low Mach numbers. An alternate meth­

od for correlating F, possibly a step function, may be needed to bring 

these values into better agreement. A linear variation for F through­

out the reattachment process has been tried. In this case the F values 

became unwieldy to correlate because the starting point (Kr) was not a 

universal value. 

A generally accepted view is that the reattachment process controls 

the location of the separatj_on point and, for that matter, the behavior 
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of the whole interaction. Probably the most fruitful area for additional 

investigation in the interaction problem is to try to understand what 

happens in the vicinity of the reattachment point. Experimentally, 

detailed velocity profile measurements in the reattachment region are 

needed to extend the qualitative understanding of this region. Also, 

velocity profile measurements between separation and reattachment would 

be helpful in determining if K follows the trajectory which has been 

assumed. 
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APPENDIX A 

DEVELOPMENT OF EQUATIONS 

This appendix supplements the development of equations which ap-

pears in Chapters 3 and 4. The two general differential equations 

which describe the flow are derived first, followed by the derivation 

of the x-length equation, the differential equations for the reattach-

ment region, and the hypersonic limit equations. 

The Crocco-Lees Differential Equations 

To obtain these equations, the system of equations describing the 

flow are transformed into the Crocco-Lees nomenclature and then are 

reduced to two non-linear first order ordinary differential equations. 

The momentum and continuity equations which describe the viscous 

region may be written directly from the flow model as 

cl I = d>< 
(A-1) 

and 

respectively. (A-2) 

By using the definitions K = I/mue and m = m 9.t, the momentum flux, I, 

may be written 

I = 
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(m) d- d a 
and the relationships d ~ = dx 1: 

I dm 
- Cit d>C , With this definition 

(1-'Yil- ~) 
' 

and 
YWe. ' 

the momentum equation becomes 

(A-3) 

In a similar manner, a~er making use of the definitions form and 

~e' the continuity equation may be expressed as 

(A-4) 

The Bernoulli equation, which describes the inviscid region, is 

obtained in the desired form by starting from the isentropic perfect 

gas form which appears in Reference 31 as 
Y-1 z 

Y~I (~~(-~ ~T + ~e - (A-5) 

Making use of the perfect gas rel~tionship, Pt= Pt/RTt, 

together with we= ue/~ and~= /yRTt , the Bernoulli equation becomes 

y 
. y-( 

p =fc [/ - ~Wej (A-6) .. 

Both sides of this equation are differentiated with respect to x, which 

gives 

t(~:~ - -Wey 
[1-~ w;J 

-c-, ,~ 
c{f;J dx • (A-7) 



Equation (A-7) is the desired form of the Bern~.ulli equation and is 

used in the following derivations. 

In addition, the mean-temperature equation, 

P5 
m = ¢, ' 
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(A-8) 

and the Prandtl-Meyer relationship are needed to describe the flow. To 

complete the mathematical description of the problem, the three semi-

empirical para.meters F(K), C(K), and D(K) are introduced and are 

described by 

C f 

(A-9) 

The five equations, (A-3), (A-4), (A-7), (A-8), and the Prandtl-Meyer 

expression, plus the three semi-empirical relationships (A-9), are 

sufficient to account for the eight variables involved in the problem. 

The first step in the development of the differential equations 

requires expanding the momentum equation (A-3), collecting terms, and 

eliminating the pressure gradient term by using equation (A-7), thus 

giving 

. -

~6 --·· 
d~ ~- (1-K) ,*ti+ [m~~~e%1 w:r!J 1T-

The definition for ~e given above and the identity ~l 

second term on the right-hand side to be rewritten as 

= ...E2.... allows the 
m 



_9K ___ (I-K\ _l_ drn + rt, _ KJ. _1 dd":e _ P cf 
dx •} m dx L 't"e We. " Z. <f>e m 

The definition for Fis used to show that '-~ - K] ·= .Eli L <Pe. t . 
In addition, _l~ 

We 
can be written as 

I dWe I dMe 
-~ dx -- (H·'<z_1 M:) Me d X-

t dMe 
tv\e dx • 

After r; = m/µtat is rearranged and differentiated, it is easily shown 

that 

dm 
m ax- d5 

dx 

These three substitutions transform the momentum equation into 
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Finally, the definition of cf from (A-9) is employed to obtain the de-

sired form of the momentum equation 

dK -( \ I d~ + FK _dMe _ PD(K))-(e a.t 
d,x - I -Kl g d x l'Ae d>< Z. 'Pe. mz. • 

(A-10) 

By utilizing the definitions for C(K), ...9.m.., ..i_ dm, m, and t, 
dx m dx 

the continuity equation, (A-2), may be written as 

C(K) AU t~ 
sz /le I e e • (A-11) 

This form of the continuity equation is then inserted into the last 

term of the momentum equation, (A-10), to give 
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where o(K) • D(K) 
2(1-K)C(K) 

For convenience, this equation may be written as 

(A-12) 

In addition to (A-12), another tundamental equation is developed; 

this one being derived from the definition of the boundary 1,q-er thick­

ness. It is ehown on page 658 ot the original Crocco and Lee1 (2) 

pa.per that 

6 = mK(F+t) 
y p We. 

After equation (A-13) is differentiated with respect to x, 

db 
dx 

f:dF sUS + A ~l + (F'+t) rm 41i + K dm1l y pwe. 
mK LdR dx dMe d)( J L dX rx..u 

(Y P We) 

'(m K(F+t) [w.~ -t- P ~] 
(Y pwe)-y. 

is obtained. From the definition of mixing in (A-9), this can be 

written 

(A-13) 

(A-14) 

This expression may be substituted into (A-14}, and after substitution 

of the Bernoulli equation it becomes 



Similar terms are combined, and with the substitutions 

-'-~ - ..:L 4ML. w. d)l - Ma dx. 

this equation can be written 

and 

[F +t+K*-J :f- - [K(F+t)(\- ~i-1 w:)+ Kt (Y-1) w:J ~ ~~ 
= -(F-tt) K dm +[to. e+ C(K)t] YPWe 

m dx n ; m . 
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The right-hand side is modified by making use of the relationships 

,I,.. = .JS._ QF-t-t.J 
'ti y w. ' 

sun.. =- _e_ (.4.§_ - t.a.n e) 
cb 'Pe dx , 

and t =(1-Yzl w:) 
to obtain 

(A-15) 

which is the second :fundamental equation. 
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Both equations (A-12) and (A-15) have x appearing only in the 

derivatives. By solving these two equations simultaneously, x may be 

eliminated, resulting in the desired set of non-linear first order or-

dinary differential equations. The two equations are multiplied by 

dx/dt, where dx/dt is obtained from (A-11), and a~er some algebraic 

manipulations, are written as 

(A-12a.} 

(A-15a) 

Equation (A-12a) is subtracted from (A-15a); the definition for 

tis used, and a~er manipulation, the desired expression for d.Me/dt, 

(A-16) 

is obtained. 

By dropping the common coefficient in (A-12a), 

dK KF dMe. 
d~ Me dS (A-12b) 

remains. Equation (A-16) is substituted into (A-12b) and in solving 

for dK/dt, the second desired differential equation, 
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(A-17) 

is obtained. These two differential equations, (A-16) and (A-17), form 

the basis for the numerical solutions. Prior to the beginning of reat-

tachment, these equations are tailored to the particular region by 

specifying the behavior of the three semi-empirical parameters. 

x-length Equation 

To relate the solution of equations (A-16) and (A-17) to a mean-

ingful pressure distribution, the numerical integration results must 

be transformed back into the real plane. 

The derivation starts with the continuity equation (A-4). With 

the perfect gas relationship and definitions for ~e' we,~, and t, 

this equation becomes 

(A-18) 

This equation, a~er being integrated, results in an expression for 

determining x-distance locations. Since the separation point is the 

reference location for starting the interaction calculations, the inte-

grations for x-distance must proceed upstream and downstream from this 

point. Substitution of dm = µtatd~ into (A-18) gives 

Both sides are divided by xs, and with the definition Rex 
s , 
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is obtained. The is entropic relationships, 

Te= I 

4 (1 + '<2.1 Me-z.) ' 

Pe = (1 + Y~I Me~) 
ft ' 

and 

t ~ r-1 ~= 
I+ Y~l Me 

;°e. I + y z..' f'/l=z 
' 

together with the assumed temperature-viscosity relationship are used 

in transforming the previous equation into 

(A-19) 

Equation (A-19) is now integrated between some arbitrary x-location 

and the separation point to give 

J)(s 

- 1- dx 
~ 

){ 

?. 
'(-1 ~) _ (I+ --y Meo 
Re.)( 

s 
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or 

3'(-1 

l+yMe ~d~ [ 

Y-1 %. J2(y-l) 
I + ::<i_l M: . • 

(A-20) 

Equatio~ (A-20) i1 used to tind the x-location which corre1pon48 to 

each atep in the numerical integration proce11. 

Reattachment Equation• 

In keeping with the aimplicity that w&1 mentioned in Chapter III, 

it i1 aaaumed that the mixing and akin triction are negligible in the 

reattachment proce11. Thi• mean, C(K) • o, D(K) • O, and con1equently, 

a(K) • O. 'rhe 'generaliiation that the reattachment proce11 11 prin­

cipally an inviacid tlow 11 supported by Chapman, Kuehn, and L&r1on'1 

(3) exper1-tnt1. 'rhe only parameter lett und.etined ii P(K), which . 

we know to be aaaociated with the velocity protile shape 1ince it 11 

related to the mean-teiaperature protile. 

Rather than tailoring the generalized equation• (A-16) and. (A-17) 

to this region, it is easier to start trom (A-12) and (A-15) and then 

to derive new simpler expre11ion1. From the detinition ot the mixing 

parameter C(K), it is obvious that dm/dx = O when C(K) • O. With 

this substitution, (A-12) becomes 

or 

(A-21) 
• 
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Equation (A-21) expresses the change in local Mach number throughout 

the reattachment process. 

The second differential equation is obtained by substituting 

d fvie __ _Me_ d K 
,dY- - KF dx and z. Me.z.t We= 

into (A-15). After rearrangement, this gives 

dx 
dK 

[ dF (F+t\(1-3'f-lM2.t\-(Y-l)fYl -z.te..J 
Xs F +t + K JR - F ] _ ?- e ") F e 

t.;;:. ta.I'\ e 
~ ' 

(A-22) 

which relates changes in K to changes in x-location. The value for F 

must be determined such that the desired pressure distribution is ob-

tained. The selection of Fis discussed in Chapters IV and V. 

Hypersonic Limit Equations 

Boundary layer calculations can commence from one of two general 

starting conditions, both of which depend on the characteristics of the 

external flow field. One of these, called the vorticity interaction, 

results from an effective blunting of the plate's leading edge and, as 

a result, affects the way the boundary layer grows initially, This 

type of interaction is important in the analysis of flows over blunted 

slender bodies and on blunt bodies at low values of Reynolds number. 

In this type of interaction the vorticity outside the boundary layer 

may be sufficiently large that it influences the boundary layer struc-

ture even though the layer is relatively thin. The vorticity inter-

action cannot be handled by the analysis presented in this thesis. 

The second type, called the pressure interaction, results from the 

relatively large outward streamline deflection induced by a thick 
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boundary layer at hypersonic speeds. At high Reynolds numbers and sub­

sonic or low supersonic speeds, the local streamline deflection induced 

by the boundary layer is of the order of the reciprocal of the square 

root of the local Reynolds number. At hypersonic speeds the streamline 

deflection is of the order of its value at low supersonic speeds multi­

plied by M~. On slender bodies, the induced pressure due to the inter­

action is of the order of the streamline deflection times M00 • A pressure 

interaction of this order of magnitude may become very important when 

M00 is large. 

Only the pressure interaction resulting from two-dimensional flow 

past a sharp leading-edge flat plate has been considered. A sharp lead­

ing edge implies that it has no essential affect on the inviscid pres­

sure distribution along the surface. According to Hayes and Probstein 

(32), a sharp leading edge exists whenever the leading edge radius is 

small enough to make the Reynolds number based on this thickness on the 

order of 100 or less. In the case of high Mach numbers, the viscous 

effects far outweigh any inviscid effects associated with a finite lead­

ing edge radius. 

The hypersonic interaction problem then becomes one of determining 

solutions for a classical Prandtl boundary layer which has been sub­

jected to an initially unknown external pressure gradient and vorticity 

field, but which, through the hypersonic inviscid flow relations depends 

on the rate of growth of the boundary layer itself. The viscous bound-­

ary layer must be considered to be distinct from the inviscid shock 

layer. If the two were to coincide, the mass flow in the boundary 

layer would have to equal the mass flow passing through the shock. 
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Therefore, the shock la;yer contains both an inviscid region and the 

boundary layer. 

Previous investigations have found that the pressure interaction 

could be divided quite naturally into two asymptotic regions, called 

strong and weak interaction zones respectively. On a flat plate the 

strong interaction zone would be close to the leading edge, while the 

weak interaction zone would be farther downstream. According to this 

concept, the effects produced in the weak interaction region by the 

self-induced pressure gradient are essentially perturbations superposed 

on an already existing uniform flow. The strong interaction region is 

characterized by the fact that the streamline inclination induced by 

the viscous la;yer becomes larger, and the pressure gradient and viscous 

stress gradient terms are of the same order of magnitude. The pressures 

along the plate for both types of interaction have been correlated in 

terms of an interaction parameter. This para.meter varies directly with 

the cube of the Mach number and inversely as the square root of the 

local Reynolds number. 

The values of E and~ are needed at the Blasius point in order to 

match the conditions at the beginning of the interaction. It has been 

shown by Crocco (33) that the value of~ for Blasius type flow in a 

weak pressure interaction can be given by 

(A-23) 

where Reo** ~ .fi /Rex • The undefined coefficient, A, has a numerical 
b 

value of .44 and is called the momentum parameter. This value applies 

to both adiabatic and non-adiabatic flows with zero pressure gradient. 



When there is a pressure gradient, the momentum parameter is defined 

by 

N =:A+ B n 

with n ~ O corresponding with a non-zero pressure gradient, and Bis 

affected by the presence of heat transfer. Cohen and Reshotko (34) 

have tabulated the various heat transfer, wall shear, and momentum 

parameters o 

The derivation of eb begins with the two general differential 

equations (A-16) and (A-17)0 The semi-empirical values for C(K) and 
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D(K) at the Blasius point are substituted into the definition for o(K), 

giving 

d(K) D(K) _ 
Z (1-K) CO<) - 0. 974 :: 1.0 

With the assumption that Blasius type flow can be represented by o(K) 

equal to unity, equations (A-16) and (A-17) become 

(A-24) 

and 

(A-25) 

' 
where 

When these two equations are combined and solved for tan e, the follow-

ing expression is obtained: 

to.n e ~~ [t - K (F+t)] 
i; 

K =Ki,, • . (A-26) 
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The streamline direction for the outer edge of the boundary layer 

at the Blasius point can also be given by the Prandtl-Meyer relation-

ship. For convenience, at the small angles of a which occur at the 

Blasius point, this quantity may be approximated by 

ta.n6 - e -J M!-1 eb 
Ma, (!+ Y- M!) 

(A-27) 

The errors introduced by this assumption are small and can be ignored. 

For example, the largest error occurs at Mach 10 and corresponds to an 

£ of -.85 and a= 2.5°. In this case, the approximate form of the 

Prandtl-Meyer relationship gives a value which is 7 percent smaller 

than the exact value. This error decreases rapidly with decreasing 

Mach number and is less than 1 percent below Mach 5,0, 

Equations (A-26) and (A-27) are solved for Eb to obtain the 

following expression: 

M0 (I+ Yjl M!) C ( 1 -·K) [~ - K (F +t~ 

-- / ~ -1 · J A / ReY.~ t - • 

This equation, with the definition oft, may be reduced to 

(A-28) 

The values of~ and£ given by equations (A-23) and (A-28) are 

use~ as the quantit i es which must be matched at the start of the inter-

action . They apply only to plates with sharp leading edges and assume 

that a weak hypersonic pressure interaction exists. 



APPENDIX B 

NUMERICAL INTEGRA'l'ION OF '11HE DIFFERENTIAL Eq,UATIONS 

Since the solution of this problem involves a numerical solution 

of two ordinary first-order differential equations, a discussion of 

the integration technique selected is warranted. If not carefully 

chosen, numerical integration schemes can result in erroneous answers, 

particularly at some distance from the start of the integration. The 

integration involved in this problem starts at the separation point 

and advances both upstream and downstream from this point. The down­

stream integration is subject to greater error, because of the consider­

able length in Kover which the integration must be performed. 

In order to choose the best method with which to effect the solu­

tion of a system of ordinary differential equations it is necessary to 

consider several factors. 'I'hese include: L) The accuracy required. 

Are errors introduced by truncation and round--off in each step, and is 

the method stable, i.e. , how is the error incurred at each ste1, propa­

gated to later steps? 2.) The ease with which the error at each step 

may be estimated. 3,) The speed of the computation., and 4.) The ease 

with which the method ca .. n 1Je programmed for computer solution. 

As a compromise of these requirements, a fourth-order Runge--Kutta 

method was selected. The Runge-Kutta methods are widely used and have 

an advantage in that they do not require the use of explicit definitions 

nor the evaluation of derivat:i.ves higher than the first, However, the 

114 
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first derivative must be evaluated four times for each step in the 

fourth-order integration. Runge-Kutta methods are stable and are self-

starting, i.e., only the function values at a single previous point are 

required to obtain the functional values at the next point. A chief 

disadvantage of the classical Runge-Kutta method is that neither the 

truncation errors nor estimates of them is obtained in the calculation 

procedure. 

In order to apply the method on high-speed digital computers, 

Gill (19, 20) has developed a calculation procedure which controls 

the growth of round-off errors and gives the highest attainable accu-

racy. This method compensates for the round-off errors accumulated 

during each step without increasing the complexity of the procedure 

and with no increase in storage requirements. The quantities q0 and 

q4, which account for these errors, are introduced and are illustrated 

by the example given below, To start the calculation procedure, q0 is 

taken initially as zero. If the step calculations are performed with 

no round-off errors, q4 would be zero. This is not the case in prac­

tice, and q4 represents approximately three times the round-off error 

in one step. To compensate for this accumulated round-off, q4 is used 

as q0 for the next step. 

The following system of equations illustrates the method. The 

differential equation, 

f (S, Me) 
' 

(B-1) 

represents the equation to be solved with the values at the starting 

point given by Me= Me and~= ~0 • The increment of~ for one step 
0 

of the nUillerical process is taken as~~. 



K, = A~ f ( ~o , fv\e0J 

Me1 = Meo+ l ( K, - Z 0o) 

j 1 = jo + 3 [i(Me,-Z'g0)] -f K, 

Ke.= A~ f ( S0 + ~;, fV\e1) 

Me 2 = N\e1 + ( 1-J1)( Kz. - i ,J 

i~= 't1 + 3 [(1-Jt)(K~-%0]-(1-J-f)K~ 

. Me:1= Met +(I +H)(K3-it.) 

(j-3= f/-e.+ 3 [(1+Jf )(K3-1~)J-(1+JI)K~ 

K4 = 6 ~ f ( c;o + L), S, Me3) 

Me4 = Me3 + t (K4 - 2t3) 

f/-4= C/-• + 3 I} (K4 -Z f,ij -t K4 
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(B-2) 

(B-3) 

At the end of a A~ step, Me has the value given in equation (B-2) with 

the correction term, to be used as q0 in the next step, given by (B-3). 

The above system of equations is employed throughout the main 

program and subroutines whenever a numerical integration is required. 
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BLASEP Subroutine 

Common and Format Statements 

Calculate: 
1st guess of xb location 
initial Eb and ~b 
initial e: 1)----~~___..:~~~~~~==:---
Calculate and Write: 

Results at xs 
~::::::::::E::::::::::::::;:=-~-:---iSet parameters 

>-_Y_e_s~- for next step Is K + 6K < .693? 

!IK = .693 - K Calculate: 

No 
>---f 1 

Numerical solution of 
(13) and (14) for one 
6K step 
x-distance 
pressure ratio 

Initialize parameters 
to start new loo 

Write: data at K 

Pick new Es 

Pick new Xb 

Pick new ~s 

No Intermediate check: 
Is Es progressing OK? 

Pick new Esi--.-.--~~ 

No 
Pick new xbi--..... ~< 

Intermediate check: 
Has assumed xb been 

No 

· No 

· No 

Check 
Is 

Check 
Is 

Check 
Is 

Yes Was this the last !IK 
ste ? 

for accuracy: Yes 
e:s OK? 

for accuracy: Yes 
Xb OK? 

for accuracy: Yes 
~s OK? 

Write : 
Comment t hat satisfac­
tory solution r eached 

3)--t---------==========3=======:-Return to General Program 

Figure 29 . Computer Flow Diagram for BLASEP Subroutine 
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SEPSH Subroutine 

Select 
new C1 

and Format Statements 
1i-.--t 

Too many loops? No 

Calculate and Write: 
Results at x5 

K = K + 6K 

No 

Set parameters 
for next _step 

Yes 
Is this the first ste? 

No 
Is dp/dx:::. 0 

Yes 

Is calculated plateau pres­
sure within accuracy band? 

Calculate: . 
Numerical solution of 
(15) and (16) for one 
~K step with dp/dx 0 
C(K) 
x-distance 
pressure ratio 

Has x been reached? 

Write: data at K 

No 

Set parameters 
for next step L_~..:::==::c======--..--(3 

Calculate: 
Values at Xr 

Write: data at K 

4-------
Return to General Program 

End 

Calculate: 
Numerical solution of 
(15) and (16) for one 
6K step 
x-distance 
pressure ratio 

Has Xr been reached? 

Write: data at K 

Calculate: . 
Values at Xr 

Write: data at Kr 

Is final pressure 
ratio within accuracy 
band? 

Figure 30. Computer Flow Diagram for SEPSH Subrout ine 
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REATCH Subroutine 

Common and Format Statements 

Calculate and Write: 
data at xr 

No 
Is K - 6K > .6 3 · Yes 

6K • K - .6 3 

A new x8 must be 
selected by General 
Program. Xs must 
move closer to the 
ram • 

Yes 

Return to General 

End 

Calculate: 
Numerical solution of 
(17) and (18) for one 
AK step 
x-distance 
pressure ratio 

Write: date. at K 

Yes 
Is e ,> O? 

Was this the last 
AK step? 

Set para.meters 
for next ate 

No 

The accuracy of final 
pressure must be 
checked by General 
Program. If new Xs is 
needed, it must be moved 
forward on the plate. 

Figure 31. Computer Flow Di agram for REATCH Subroutine 
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6K = K -

No 

Pick larger 
value for F 

Yes 

F-Calculation Pro ram 

Fonnat 

Read: ut data 

Too many loops? 

Calculate and Write: 
data at Xr 

3 
Is K - 6K > .693? 

Calculate: 

Was this the 
last ste? 

Yes 

Numerical solution of 
(17) and (18) for one 
6K step 
x-distance 
pressure ratio 

Write: data at K 

Is e ~ O? 

Was this the 
.last ste ? 

S.et parameters 
for next step 

No 
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.__ ____ __, 3 

No 

Initialize conditions 
for new loop of 
calculations 

Has desired final 
pressure ratio 
been reached? 

Pick smaller 
value for F 

No 

End 

Yes 

Is there 
more data? 

Figure 32. Computer Flow Diagram for F-Calculation Program 

2 
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COMPLETE INTERACTION {MAIN PROGRAM) 
$ID C-OGOl ALEXANDER R. PETERS 
$JOB ALEXANDER R. PETERS 2527-50008 
$IBJOB NAMEPR DECK 
$IBFTC D~NAME DECK 
C LAMINAR BOUNDARY LAYER-SHOCK WAVE 

FORMAT 17Fl0.2l 
INTERACTION****MAIN PROGRAM 

C 
4 
5 

6 

7 
8 
9 

10 
11 
12 
13 

14 
15 

16 
17 

C 
18 
19 

20 
21 

22 
23 

24 
25 

26 
27 

28 
28 
28 
'29 

30 
31 
32 
44 

3 

FORMAT 14F!0.2,ex,12i 
(QM~QN XMACH,REY,X~,XSH,GA~~A,n~LKl,PRP,A,XMR,X~'~,ZS,ES,XB,XMDS, 

JkMF,XKSH,ZSH,XMSH,AANGLE,ANGLE,XP,Cl, P~F,XK~,PRS,PRDS,ZB,ZP, 
2FR,XRP,XKF,Ml,~2,Vi3,M4 

FORMAT STATEMENTS FOR FIRST PAGE OF PRINT-OUT 
FORMAT l!Hl,//////////l 
FORMAT (3~X,71HSHOCK WAVE-BO~NDA~Y LAYER INTERACTION SOLUTION FOR 

!FOLLOWING CONDITIONS/) 
FORMAT 139X,54HIUS!NG A MODIFIED CROCCO-LEES MIXING PARAMETER METH 

lODl II /l 
FORMAT (34X,20HFREE STREAM MACH N0.,4X,3H • ,Fl0o2//l 
FORMAT l34X,,21HREYNOLDS NO. P£R INCH,3X,3H • ,FJO.O//l 
FORMAT li4X,5HGAMMA,19X,3H • ,FJ0.3//) 
FORMAT 134X,17HDELTA K INCREMENT,7X,3H = ,Fl0o4//l 
FORMAT 134X,13HACCURACY TERM,11X,3H • ,FJ0.4//l 
FORMAT 134X,24HRAMP ANGLE.OR EQUIVALENT) 
FORMAT 134X,23HSHOCK STRENGTH, RAD1ANS,2X,3H • ,Fl0•6,4H OR ,F6,2, 

!BH .DEGREES/ /l 
FORMAT 134X,16HSEPARATION POINT,BX,3H •, ,,Fl0,4,lOH IA GUESS)//) 
FO'lMAT 134X.16HSEPARATION POINT,BX,3H = ,Fl0,4,35H IADJUSTE'D BY PR 

!OGRAM CALCULATIONS)//) 
FORMAT 134X,20H{:OMPLETE INTERACTION) 
FORMAT 134X,22HCALCULATIONS, LOOP N0.,2X,3H = ,BX,12) 
FORMAT STATEMENTS FOR FINAL PAGE OF PRINT-OUT 
FORMAT l!Hl,////////l , 
FORMAT I 23X,B5HA SH ISFACTORY SOLUTION TO THE SHOCK WAVE-BOUNDARY 

lLAYE'R INTERACTION HAS BEEN REACHED////) 
FORMAT IJCX,33HTHE PERTINENT RESULTS INCLUDE****///) 
FORMAT 114X,17HMACH, FREE STREAM,7X,13HMACH, BLAS1us.1ox,10HMACH, 

lSEP,!2X,!lHMACH, SHOCK,4X,25HMACH, INVISCID DOWNSTREAM) 
FORMAT 117X,FJC.5,12X,Fl0.5,J2X,Fl0.5,12X,F!0.5,12X,Fl0.5///l 
FORMAT (9X,27Hl'A(H, ISENTROPIC DOWNSTR~f"1,5X,6HRE/IN.",l4X,llHRE·, S 

!LASIUS,15X,2HC!,13X,17HFIK1-REATTACHMENTl , 
. FORMAT (17X,Flr.5,12X,FlO.C,l2X,Fl~.o,12x,F10.5,13X,F7.4///) 

FORMAT 117X,10HX, BLASIUS,14X,7HX, SEP.,13X,IOHX, PLATEAU,13X,BHX, 
l SHOCK,5X,26HX, REAtTACHMENT STREAMLINE) 

FOR~AT (18X,FB.4,14X,FB.4,14X,FB.~,14X,F8.4,14X,F8.4///l 
FORMAT ll7X,llHPISEPl/PI0),9X,15H 0 1PLATEAUJ/PIOl,BX,l3HPIFINAL)/PI 

10l,6X,18HPIDOWNSTREA~l/PI01,4X,I9HRAMP ANGLE, DEGREESl 
FORMAT 11BX,F9.5,13X,F9,5,l3X,F9.5,13X,F9.5,14X,F6,2///l 
FORMAT ClBX,F9.5,13X,F9.5,13X,F9.5,13X;F9.5,14X,F6.2///I 
FORMAT IJBX,F9.5,!3X,F*.5,13X,F9.5,13X,F9.5,!4X,F6.2///) 
FORM-T 116X,13HZETA, BLASIUS,lOX,lOHZETA, SEP.,1JX,13HZETA, PLATEA 

lU,lCX,llHZETA, SHOCK,9X,14H~APPA, PLATEJU) , 
FORMAT <17X,Fl0.5,12X,FlC.5,12X,Fl0.5,12X,Fl0~5,12X,Fl0.5///) 
FORMAT tl6X,12HKAPPA, SHOCKt 
FORMAT 117X,Fl0.5///l 
FORMAT l!OX,l9H,SOLUTION TER~l~ATFDl 
READ (5,1) XMACH,RE~1XSH,GAM~4,DFLKl,ALP~A,X~p 
READ 15,2) A,XS,BETAl,FR,NL 
L=G 
Ml=O 
M2=0 
M3=0 

M4=C 
ANGLF•ALPHA*.0174533 

C FINDING THE ll"'CH ANGLF CORR'cSPONDl'!G TO FREE STREM• l'ACH NO, AND 
C RAMP ANGLE** USING THE NEWTON-qAPHSON METHOD, 

36 9ETA!l=BETA! 
All=l(IGAMMA+J,OJ*(XMACH**2l)/(2,D*IIXMtCH**~l*ISljlBETA11**21-l,O 

llll-1,0 
Al2=1(GAMMA+l.OJ•IXMACH**4,0l*SIN<8ETA!l*COSIBET~lll/lllXMACH**21* 

l(SINIBETA!l**2l-l.Ol**2l 
FBl=TANIBETAll*'ll-COTANIAMGLEI 
FB!P=(ll.O/COSIBETAlll**2l*All-TANIBETAll*Al2 
BETA!=BETAl-lFBl/FP!PJ 
IFIIABSIBETAl-BETAlllloLT.O.OOOOll GO TO 37 
GO TO 36 

37 CONTINUE 
38 FORMAT (1Hl,9X,7HRFTAl =,Fl0.6) 

WRITE 16,3Bl BETA! 
C CALCULATION OF i'OWNSTREA'4 f,fACH •IO, AND P~!':SSURE RATIO 

PRDS=l2.0*GAM~A*IXMACH**2l*ISl~(BETAll**21-l~AMMA-l,QIJ/IGAMMA+loO 
1) 

53 FORMAT (lOX,27hPRESSURE RATIO DOWNSTREAM =,F!0,61 
WRITE 16,531 PRDS 
Al3=11GAMMA+!.Ol•*2l*IX~ACH**4•0l*ISINl6ETAll**2l 
Al4•4.0* I I XMACH**2 I* I SIN I BETA! l **21-1,01 *I GAMMA* I XMACH**2 I*,( SIN I BE 

lTAll**2l+l.Ol 
Jl5=<2.0*GAMMA*{X~ACH**2)*(S!N(PETA1J**2)-IG4M~A-l.0)1 
A16=(CGA~MA-l~OJ*CXMACH**2l*<SIN<BETA1)**2J+2•C> . 
x~rS=SQRT((Al3-Al4l/(Al5*Al6ll 

54 FORM•T (!DX,24HDOW~STREAM M•CH NUMBER =,Fl0.61 
WRITE (6,54l XMDS 

C BEGINNING OF EACH COMPLETE INTERA:TION CALCULATIONS 
33 L=L+l 

IF IL,GE,NLJ GO TO 3 
C WRITE FIRST PAGE OF OUT~UT 

WRITE ( 6,4l 
WRITE 16,5l 
WRITE 16,6l 
WRITE 16,7l XMACH 
>IRITE 16,Bl REY 
WRITF 16,9) GAMMA 
WRITF 16,!Jl D~LKI 
\1RITE (6,lll A 
WRITE 16,12) 
WRITE 16,13) ANGLE,ALPHA 
IF IL.EQ.!l GO TO 34 
WRITE 16,15) XS , 
GO TO 35 

34 WRITE 16,141 XS 
35 WRITE 16,161 

WRITE I 6,171 L 
C CALL BLASIUS-SEPARATION SUBROUTINE 

CALL BLASEP 
IF<Ml,EQ,Ol GO TO 45 

46 FOclMAT IJOX,35HERROR IN BLASEP, SKIP TO NEXT DATA,! 
~/RITE 16,46l, 
GO TO 3 

45 CONTINUE 
C CALCULATION OF PLATEA~ PRESSURE FROM SEMI-EMPIRICAL FORMULA 

REYXB•REY*XB 
Al7=(1XMB*IIXMti**2l-l,DJ*REYXBl**•251 
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PRP=l • O+ I 1 o l207*GAl•\MA* ( XMl3**2 I I/ AJ.7 
C CALCULATING BREAKAWAY ANGLE FOR AN AS5UMED iTRA!GHT DIVIDING 
C STREAMLINE . 

S INBE3=SORT CC PRP• C r.AMMA+l • 01 + C GAM'1A-l. 0 I I/ (.2. QHSA,..'1A.* I XMA.CH**21 l J 
.BETA3=ARSINCSINAE3J . 
COHlE2=TA.N C BET A3 I* ( ·C C GAMr-'./\+l. 0 I* I x·MACH**2 I JI I 2• O* C ( XMAC_H**2 l * (SIN ( 

1BETA31**21-l.Cll-l.D! 
TANBE2=1.v/COTBE2 
BETA2=AiANITANBE21 

39 Ft~~AT. 110X,4HBETA,Il,~H =,F9.61 
N4=2 
N5=3 
WRITE 16,39JN4,BETA2 
WRITE 16,39JN5,BETA3 

C LOCATION OF REATTACHMENT POINT ON RAMP 
XRR=IXSH•TANCANGLEt-XS*TANIBETA211/ITANCANGLEI-TANIRETA211 
XRP=jSH+CXRR-XSHI/COS(ANGLEI . 

55 FORMAT ClOX,28HREATTACH ... ENT PO.INT ON RAl"P =,Fl0 •. 61 
WRITF 16,551 XRP 

C CALL SEPARATIO.N-SHOCk SUjiROUT.JNE 
CALL SEPSH 
JFCM2.EQ.OJ GO TO 47 

48 FORMAT Cl0X,34HERROR IN SEPSH. SKIP TO NEXT OATAol 
WRITE C 6 ,48 J 
GO TO 3 

47 CONTINUE 
C CALCULATION OF EQUIVALENT TUQN ANGLE FOR ISE"TROPIC FLOW 

A18=lo0+C(GAMMA-l.Ol/2•Cl*CX'1~**21 
XMF=SQRTC C2.0/tGAM'1A-l•Oll*CCA18/iPRDS**(IGAMMA-l.OI/GAMMAlll-loOI 

11 
A3=SORTCXMACH**2-l.Ol 
TER=2o4495*ATAN(.40B25*A3I-ATANCA3J 
A19=SORTIXMF**2-loOI 
TEF=2o4495*ATANC.40825*Al91-ATANCA191 
AANGLE=TER-TEF 
!F(XKSH.GTo.6931 GO TO 58 

59 FORMAT C1HD,29X,72HNOTE---KAPPA AT BEGINNING OF REATTACHMENT IS SM 
lALLER THAN BLASIUS-KAPPA.I 

60 FORMAT (3uX,69HIF A SOLUTION EXISTS, X-SEP 'IUST BE CLO.SER TO THE l' 
lLATE LEADING EDGE.I 

WRITE 16,591 
WRITE 16,601 
xs= •. 8*XS 
IF IL,GT,51 G.O TO 3 

GO TO 33 
58 CONTINUE 

C CALL SHOCK-REATTACHMENT SUBROUTINE 
CALL REATCH 
IF1M3oEQ,D1 GO TO 49 

50 FORMAT IIDX,35HERROR IN REATCH, SKIP TO NEXT DATA.) 
WRITE 16,501 
GO TO 3 

49 CO"ITINUE 
XSl=XS 
!F(M4.EQ.ll GO TO 51 
lFIABSIPRDS-PRFloLT,CA*,5*CPRDS-1.0lll GO TO 42 
XS=XS-l!PRDS-PRFI/CPRDS-1,0ll*XS*,7 
GO TO 52 

51 XS=XS+XS*CIXKF-,6931/IXKSH-,693)1 
52 IF IXS,GE,XSHl Go· TO 43 

GO TO 33 
4~ XS=XS1+;5*1XSH-XS1> 

GO TO 33 
C WRITE FINAL PAGE OF PERTINENT RESULTS 

42 WRITE C6,1Bl 
WRITE ·16,19) 
~/RITE ·16,2vl 
WRITE (6,211 
WRITE 16,221 XMACH,XMB,XMS,XMSH,XMDS 
WRITE 16,231 
WRITE (6,241 XMF,REY,REYXB,Cl,FR 
WRITE I 6 ,25 l 
WRITE 16,261 XB,XS,XP,XSH,XRP 
WRITE 16,271 . 
WRITE 16,281 PP~,P~P,PRF,PRDS,ALPHA 
W~ITE I 6 ,29 I 
WRITE 16,3CJ ZB,ZS,ZP,ZSH,XKP 
WRITE 16,311 
WRITE I 6 ,.32 I XKSH 
IFCXRP.LT,XEPI GO TO 56 

57 FORMAT t1H0,22X,86HNOTE---THE PROGRAM HAS FQUND A REATTACHMENT POI 
lNT WHICH IS BEYOND THE END OF THE FLAP,J 

WRITE I 6,57 I 
56 CONTINUE 

WRIT!c 16,44) 
GO TO 3 

41 STOP 
END 
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BLASEP 
·~]BFTC NAMEl DECK 

SUBROUTINE BLASEP 
COMMON XMACH,REY,XS,XSH1GAMMA,DELKI,PRP,A,X~B•XMS,ZS,ES,XB,XMDS, 

lXMF,XKSH,ZSH,XMSH,AANGLE,ANGLE,XP,Cl, PRF,XKP,PRS,PRDS,ZB,ZP, 
2FR,XRP,X,F,Ml,M2,M3,M4 

C 
101 
102 
103 

FORMAT STATEMENTS ~OR STANDARD PRINT-OUT 
FORMJT 11Hl,4~X,34HBLASIUS TO SEPARATION CALCUL-TIONS! . 
FORMAT 143X,45HIDOINT l CORRESPONDS TO THE SEPARATION· POINT)////) 
FORMAT lllX,BHLOOP NO.,lDX,BHMACH NO.,BX,12HBLASIUS ZETA,4X,15HBLA 

C 

C 

C 

C 

lS!US EPSILON,5X,12HIN!TIAL ZETA,4X,15HINITIAL EPSILC~l 
104 • FOR~~AT 1131, I 3, 14X, F6. 3, lOX, FlO • 4, BX, FlC .6, BX, Fl0.4, BX ,Fio .6/) 
105 FORMAT 120X,10HX, BLASIUS,5X,13HX, SEPARATION,5X,BHX, SHOCK,7X,5HR 

1E/IN,BX,7HDFLTA K,5X,1BHPLAT. PRESS. ~ATIC) 
106 FORMAT (21X,F7.4,lOX,F7.4,9X,F7~4,5X,Fl0.0,5X,F7.4,lOX,FB.5///J 
107 FORMAT 121X,5HPOINT,5X,5HKAPPA,6X,7HEPSILCN,7X,4HZETA,6X,BHMACH NO 

1.,3X,BHX-LENGTH,3X,llHPRESS RATI0,2X,7HMEIAVE!,5X,2HQ4,9X,3HQ14/J 
108 FORMAT (22X,I3,4X,F8.S,3X,Fl0.6•3X,Fl0.4,3X,F8.5,3X~F8.5,4X,F8.5,3 

lX,FB.5,2X,El0.3,2X,El0.3l 
109 FORMAT flH0,3X,10BHTHIS LOOP CF CALCULATIONS RE.SULTED IN A SATISFA 

lCTORY CONVERGENCE AT THE.BLASIUS POINT. AN ACCURACY TERM OF ,F7.4 
2 ,lOH WAS USED. l 

GUESS INITHL VALU"S FOR ·BLASIUS POI~T 
XB= • B*XS 
REYXB=REY*XB 
DEFINITION OF CONSTANTS APPEARING IN SUEROUTJNE 
Al =1.0-SQRTl.5! 
AZ =l.O+SQRTC.5! 
A3 = SQRTIXMACH**Z-loOl 
A4 =l.O+IIGAMMA~l.Ol/2.Dl*IXMACH**2l 
A5 =(3~0*GAMMA-1.o,,2.o 
A6 =IGAMMA-l.Ol/2.0 

. A7 =13.0*GAMMA-1.0)/12.0*(GAMMA-l.Ol) 
AB =GAMMA/(GAMMA-1.0l 
TER=2• 4495*ATAN (.40B·25*A3 l-ATAN I A3 r 
INITIAL VALUES FOR EPSILON AND ZETA 
EB=<(IXMACH*A4!*2•2B06*•094249!/IA3*SDRT!.44•REYXBlll*il.O-llo693* 

llo59)/.307l*A4l 
XMB=XMACH +EB 
T =l.O/ll.D+•6*1XMB**2ll 
A9 =1.0+(IGAMMA-loOl/2.0l*<XMB**Zl 
ZB =IT*SORT<.4·4*REYXBl l/0307 
SET INITIAL CONDITIONS FOR COMPUTATIONS 
04 =o.o 
014=0.0 
SUM=r'\.r 
L=0 
XKAFPA=.63 
Nl=W 

C CALCULATfON OF INITIAL GUESS FOR EPSILON AND ZETA AT THE SEP POINT 
DPR=PRP-1.0 . . 
PRS=1.o+.s·•ol'R 
XME=·SQRT < 12 .O/ < GAMMA-loO l l* ( A9* < PRS** 11 GA~MA-1. 0 l /I-GAMMA l l l -I.OJ l 
XMEl=XME 
El=X"1E-XMACH 
T =1.0/ll.O+A6*1XME**2ll 
21 =<T*SORTl.44*REY*XSll/,37 
IF IZI.GT.ZBl GO TO 156 
21=1.IO*ZB 

.156 21=21 
C CALCULATION OF INITIAL ROW OF DAT'A 

SUBROUTINE 

C 

C 

C 
C 
C 
C 

C 

110 

lll 

ll2 

N=l 
L=L+l 
El,,EI 
ss~r.o+ I< GAMMA-1.0 J 12. OJ*( XME**2 l 
PR=IA9IB5l**A8 
PRS=PR 
DELK= DELK! 
WRITE HEADINGS ANO FIRST ROW OF DATA 
WRITE 16,1011 
WRITE 16,102) 
WRITE 16,103! 
WRITE 16,104) L,XMACH,28,EB,21,EI 
WRITE 16,105) 
WRITE 16,106) XB,XS,XSH,REY,DELK,PRP 
WRITE 16,107) 
WRITE (6,108) N,XKAPPA,EI,Zl,XME,XS,PR,XME,~4,014 
BEGINNING OF STEPWISE CALCULATIONS 
IF IXKAPPA+DELK,LT.0.6931 GO TO 112 
DELK =.693-XKAPPA 
Nl=l 
STEP-eY-5TEP NUMERICAL INTEGRATION OF THE DI~FFRENTIAL EOUATION5, 
USING GILLS RUNGE-KUTTA METHOD. 
FINDING APPROX. AVERAGE VALUE FOR LOCAL '-lACH Nu·-,sER TO USE IN 
DZETA/~KAPPA CALCULATION. . 
XK= XKAPPA+!DELK/2.0J 
XKI=XKAPPA . 
XME=XMEl 
2=2.1. 
N=N+I 
C =36o2*!XK-,63) 
D= 22.Z*IXK-.631 
F= (Z._O*ll•O-XKll/(2.0*XK-loOl 
SIGMA =D/12.C*<l.C-XKl*Cl 
E=XME-XMACH 
AlD=SQRTIXME**Z-1.Gl 
TEP=2•4495*ATANl.4Q825*Al0J-ATANIA10l 
TED=TER-TEP 
THETA=T AN <TED l 
T =I.f7/(l .• 0+A6*1XM!'**2ll 
DFDK = 1-2.0)1( 12.l)*XK-1.01**21 
Bl =C*CXK*(~+T1*1I.0--5*(X~E**21*TJ+XK*(GAM~A-le0)*1XME**21*(T**2) 

1-XK*F*IF+T+XK*DFDKJl . 
B2 =1-XK*Fl~IIC/Z)*IT-XK*IF+Tl-1(1.0-XKJ*<I.O-SIGMAJ/IXK*Fll*IXK* 

l(F+TJ*II.~-A5*1XME**2J*TJ+XK*IXME**21*1T**2J~IGA~MA-l.OJ1)+THETAJ 
DZ=DELK*1Bl/B2l . 
Z=Zl+DZ/2.0 
B3 ="-XME*< <·CIZ l*I T-XK* < F+T )-11. 0-S IG1',Al* 11.0-XK l* < F+T+XK*DFOK l l + 

lTHETAJ 
B4 = C* ( XK* IF+ T )*( l• O-A5* ( X:'-1E**2 J*T >+I Sft~MA-t .C)*XK*I XME**2) * (·T**2 

ll -XK•F*<F+T+XK*DFDKll 
D~:E = I B3/B4 l •DZ 
XME=X~El + DME/2.u 
XMEA=XME 
RUNGE-KUTTA SOLUTiON OF DZ/DK D.E. USING AVERAGE XME VALUE. 
II=O 
00=04 
Z=Zl 
YGO=Zl 
XK=XKl 
E=XME-X•~ACH 
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ll3 

114 

115 

116 

117 

C 

.lJ8 

AlO=SORT.I XME**2-l •. QI 
TEP=z.44g5*ATANl040825*AlOI-ATAN!AlOJ 
·TED=TFR-TEP 
THEH =TAN I TEO I 
T =l.O/(l.O+A6*1XME**2JJ 
C =36.2*1XK-.631 
D =22•2*!XK-.631 
F = I 2.0*( 1.0-xio 1112.o•xK-l.O l 
SIGMA=D/12.0*!l.0-XKl*CI 
DFDK= 1-2.011112.o•xK-l.01**21 
Bl •C*IXK*IF+Tl*ll.O-A5*1X~E**21*Tl+XK*IGAMMA~l.OJ*IX~E*42J*IT**2J 

1-XK*F*IF+T+XK*!JFDKJ I . 
B2 ·=t~XK*Fl*I !CIZJ*!T-XK*IF+TJ-1 I J.0-XKJ*I J.O-SIGMAJ/IXK*Fl l*IXK*! 

JF+T J * I J .• O-A5* I XME**2 I *l' I +XK* I XME**2 I* ( T**2 I* I GAMMA-1; 0 II !+THETA I 
DZDK=Bl/B2 
11=11+1 
IF <.11-1.EO.OI GO TO 114 
IF 111-2.EO.OJ GO TO 115 
IF (11-3.EQ.OJ .GD Tn 116 
IF 111-4.EO.Ol GO TO 117 
XKGl=DELK•DZDK 
YGl=YG0+.5*1XKGl-2.0•QOJ 
Ql=Q0+3.0*<.5•1XKG1-z.0•0011-.5~XKG1 
Z=YGl 
XK=XKl+DELK/2.0 
GO TO lB 
XKG2=DELK*DZDK 
YG2=YGl+Al*!XKG2-011 
02 =Ql+3.0*(Al*fXKG2-QlJJ-Al*XKG2 
Z=YG2 
XK= )(Kl+DELK/2•0 
GO TO 113 
XKG3 =DELK*DZDK 
YG3 ~YG2+A2*1XKG3-Q21 
Q·3= 02+3. 0* CAZ* I XKG3-Q2 J l-A2*XKG3 
Z=YG3 
XK=XKl+DELK 
GO TO 113 
XKG4=DELK*DZD.K 
YG4 =YG3+(1 .• 0/6.llJ•IXKG4-2•0*03J 
04. =Q3+3.:i*( I 1 •. 0/6.0l*IXKG4-2 .• 0*Q3J 1-·.5*XKG4 
Z2=YG4 
XK2=XKl+DELK 
DZ=Z2-Zl 
RUNGE-KUTTA SOLUTION OF o;.1E/DZ D.E. 
12=0 
Ql0=Ql4 
XK=XKl. 
XME~XMEl 
Z=Zl 
YGlOfiXM.El 
C=36.2*1XK-.631 
D=22.2*1XK-.63J 
F=!Z.O*!l.O-XKJJ/12.0*XK-l•OI 
SIGMA=D/12•0*(1.0-XKJ*Cl 
E=XME-XMACH 
Al0=SQRT!XME**2-l.nJ 
TEP=2. 4495*AT .AN I• 4~ q;f~•A l O I-AT AN I A 10 I 
T.ED=TER-TEP . 
THETA=TANITEDI 
T =1 .• 0/"( 1.0+A6*(XME**2) J 
DFDK=l-2.0l/112.0*XK-1•01**21 
83. =-XME* I I C/Z J<H T-XK* I F+TJ-1 l • 0-SI GMA I* 11. 0-XK l * !F+T+XK*DFDK l l + 

lTHETAl . 
B4 =C*IXK*IF+TJ*IJ.O-A5*1XME**2l*Tl+IGAMMA-loOl*XK*IXME**Zl*IT**21 

I-XK*F*I F+T+XK*DFDK I I . 

C 

L 

L 

(. 

C 

L 
L 

ll~ 

120 

121 

122 

163 
134 

. OMEDZ=B3/B4 
12=!2+1 
IF 112-1.EQ.OJ GO TO 119 
IF 112-2.EQ.OJ GO TO 120 
IF 112~3.EQ.OJ GO TO 121 
IF I 12-4.tQ.UJ GO ·To 122 
Xli:.Gll=DZ*DMEDZ 
lbll=YblP+•'*IXKbll-L.U*OIUJ 
Ull =U1C+3.U*( •'*(XKbH-2.U*QlO) )-·-~*XKGll 
XME=Ybll. . . 
L=L!+UL/2 .. U 
XK= XKl+IJtLK/2o1J 
GO TO 118 
XKG12·=DL*D'IEIJL 
Ybl2 =YuJl+Al*IXKG12-0lll 

· 012 =011+3.U*!.Al*IXKG12-Qlll )-Al*XKG12 
XMt =YG12 ' 
l..=.Ll+IJLl2•U 
XK =XKl+IJtLKl2•U 
GO 10 l!H 
XK(ll 3 =IJL*lJMtlJL 
Yb13 =YG12+A2*1XKG13-Q12) 

.Ul3 =.U12+3. o·*c A2*1 XKG13-012 I J-A2*XKG13 
XMt.TYbl'.:5' 
L=L2 
XK=XK2 
GO TO 118 
XKG14= DZ*lJMtDZ 
Ybl4 =Ybl3+(!.0/b.Ol*IXKbl4-2.0*0l3) 
Cll4 =U!3+3• U*! 11. 0.t6.tJJ*.IXcKG14-2•U*Ol 3 I 1-o 5*XKG14 
XMb!=YG!4 
.DMt=XMt2-XMEl 
·tz=ilM.t:.2-XMAtH 
CALCULAIION Of X-D!SIANCE LOCATION. 
XME= XMEl+lJMt/2.,U 
XK =XKl+DtLK/2.U 

.C= 36~2*(XK-.631 
.REYXS =REY*XS. 
B5 =l~U+!IGAMMA-loOl/2•0l*IXME**2) 
SX =! l.U/l{t YX-S I *I A4**2 ).* t XMACHII C*XME I I* I IR5/A4J **A7 J *• 5*1 I Zl**2 I- ; 

1(£2**211 . 
!>Ur-'=SUM+!>X 
X= XS*IJ..U-SUM) 
LALLULATIUN Ur Pi<tSSuHl HATIO 
l::5b =!.U+(lbAMMA-!.UJ/2•UJ*lXMt.2**2) 
1-'I{ =tA':l/l::5b)**At, 
XKA-f.'l"A=XKAf'PA+Ut.LK 
WI<! .. t HOW Ur OU I l'U I HE!>ULT:, 
W~llt tb,!VHJ ~,XKAl-'l"A~tzi.t.2,XME2,X,PR,~Mt.A,Q4,Ql~ 

· INTtRM!:lJIAIE CHttK:,. 10 !>Et IF SAi l!>FAClORY r-ONVERGENCE IS BElNG 
OBTAINED. IMODIFICATIONS INCLUDE DOWN TO STATEME"IT 128) 
IF (t2.GE.tl:l) GO TO 121 
lr 1x.Lt.Xtil GO 10 126 
1~ tt.2.Gtet!J GO 10 128 
A NtW. VALlJt rOI< INTI !AL EP!>ILON I!> NEEDED, SINCE A MAXIMUM IN 
E·l'!>ILUN v:,. KAl'l'A HA!> tittN OtHAINtD• 
ti =!9-l!~L-til/lXKZ-.b311*1•05*o063 
XH!= X~-ltXb-XJ/tXK2-.b3J)*;063 
Ir IXtiloGtoXBJ bO TO 133 
XB=XB1 
lHXBoGT.O.O) GU 10 i63 
XB=e4*XS 
CONTINUE 
FORMAi nux;77H1NTE.RMED1ATE ADJUSTMENT -- EP~ILON-SEPARATION (E-MA 

lXo OCLURRtUJ ANIJ X-HLA!>lUSI . . . 
WRITE 16,1341 
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139 

133 

C 
-. 126 

161 
135 

C 
127 

162 
137 

140 
136 

C 
C 

150 

156 

15 I 

lZ~ 
t 

C 
C 

GO TO 15U 
FORMAi llUX,63HINIERMEIJIAlt ADJUStMt:NI -- EPSILON-SEPARATION IE-MA 

lX, OCCURREIJII. . . 
WRITE 16,1391 
GO TO 150 
X-BLASIUS CORRFCT!ON 
XB= XS-IIXS-XJ/IXKZ-,6311*,063*1,05 
IFIXB,Gt,U,01 GO TO 161 
XB=•4*XS 
CONTINUE 
FORMAT 11UX,36HINTERMEDIATE ADJUSTMENT 
WRITE 16, 1351 
GD TD 150 
EPSILON CORRECTION 
El= E~-lltZ-tll/lXK2-.6311*l,05*,063 
XBl= XS-IIXS-XI/IXK2-,6311*,063 
IF IXB1,GE,XB1 GO TO 136 
XB=XBl 
IFIXB~GT,0,0J GO TO 162 
XB=,4*XS 
CONTINUE 

X-BLASIUS) 

FORMAT t1DX,59HINTERMED1ATE ADJUSTMENT -- EPSILON-SEPARATION AND~-
1-BLAS !US I 

WRITE 16,1371 
GO TD 150 ._ 
FORMAT I lOX ,45HI NTERMEDI ATE ADJUSTMENT -- EPSILON-SEPARATION) 
WRITE 16,1401 . 
JNITl~LIZING PARAMETERS SD ANOTHER LOOP OF CALCULATIONS MAY BEGIN. 
AT THE SEPARATION POINT, 
IF IL,,GE,251 GO TO 141 
REYXB =REY*XB 
EB= I I I XMACH*A4 I *2 ,2606*,094249 I If A3*SOIH I ,44*REYXB I) I* I 1-, 0-11, 693 

l*l,591/,~07f*A4) . 
XMB=XI'IACH+ER 
T =l,0/ll,O+A6*!XMB**2)) 
A9= l,O+IIGAMMA-l,0)/2,0l*IXMR**2) 
ZB =!T*SQRTl,44*REYXBll/,307 
IF 121,GT,ZBI GO TO 158 
ZI=l.lO*ZB 
Q4=0,0 
Q]4=0,0 
SUM=O,O 
Nl=O 
XKAPPA=,63 
IF IEI,LT,EBI GO TO 157 
EI=EB*l,5 
XME=XMACH+tl 
Ll=LI . 
XMU=XMt 
GO 10 llU 
!~ INl,tQol) GO 10 13U 

<..,_, 

SEI IN!l!AL CONDITIONS FOR .NEXT STEP IN THE NUMERICAL INTEGRATION 
Zl=L2 
El=E2 
Xt'El=X"1E2 
GD TO 111 
CHECKING EPSILON, ZETA, AND X-BLASIUS FOR AC<"URACY, 
CHECKING EPSILON 

130 

146 

147 

168 
169 
lb" 

164 

C 
148 

155 

167 

166 

C -
143 

159 
-lbU 
153 

151 
t 

154 

170 
141 
14.! 

171 

IF IIEB-E21,LT,IA*IE6-Ellll GO TO 148 
EI2=EI 
EI =EI +,7*1EB-E2l 
FORMAi llH41, 9X•44HSOLUI ION DID NOi RESULT. l'l DESIRED ACCURACY, I _. 
WRITE 16'1461 
FORMAT (1uX,53HA NEW VALUE FOR EPSILON-SEPARATION HAS ·BEEN SELECTE 

lD,I . 
WRITF 16,1471 
IFIL,LE,5l GO TD 164 
IFIABS-1EI-!:.l2l,GT,l,5*EB11 GO TO 164. 
IFIE!,GT,El21 GO TO 168 . 
XB=XB-111£1-t!21/tB1**2l*XB 
GO TO 169 
XB=XB+llll:1-E!21/EB1**2l*XB 
CONTINUE 
~UKMAI 11bx,29ttAUJUSTMtN1 MADt IN X-BLASIUS,J 
wi<11'1: ·,i;;ibi,i 
CON I INUt 
GO TO ·151 
CHECKiNG X-BLAS!US 
IF IABSIX-XBl,LT,ABSIA*IXS-XBIII GO TO 143 
XB2=XB. 
XB=X+,25*1XB-XI 
WRITE I ti, i-46 I 
FORMAT 11UX,44HA NEW.VALUE FOR X-BLAS!U! HAS BEEN SELECTEDal 
WRITE 16,1551 . 
IFIL.Lt,5J GO 10 166 
El=tl-ll.U-SQRIIXB2/XBll*EB 
FORMAi 110X,38HAUJUs'tl'.tNT MADt IN tPSILON-SEPARATION,I 
·wRITE 16,lb7J 
CONTINUE 
GO TO. 151 
CHECKING ZETA 
'IF IZ2.LT,ZB1 GO TO 159 
H II Z2-'2B I , LT .~-A*-1 Z 1-'ZB IJ I GO TO 154 
ZI=Zl-,9*1'22-LBI 
GO TO 160 
ZI=Ll-l.1*122-LBJ 
WK! It lb,1461. 
~UKMAI llUX,5UHA NEW VALUE FOR ZEIA-SEPIIRATION HAS BEEN SELECTED.I 
WK! It lb,l;,31 
GO 10-150 
R~TUKN UK TtKMlNATJON U~ SUBROUl!Nt 
WRITE 16,1091 A 
ES=t2 . . 
ZS=L2 
XMS=X•'A(H+t I 
XB"'X 
RETURN 
CONJ INUt 
~OKMAI 11ttC,1ux,63HCONVERGtNCE HAS NOi tEEN REACHED. SUBROUTINE BL 

lASt~ ltKMINAltU,I 
WR!lt lb,1421 
Ml=! . 
GO 10 1 /U 
STOP 
END 

J--' 
N 
-..J 



~IH~TC NA~~2 Dt.CK 
SUH~OUT!Nt. S~PSH 

SEPSH 

COMMUN X~ALH,~tr,xs9X~H,GA~MA,DELKI,PRP,A,XMB,X~S,ZS,ES,XB,X~DS, 
lXMt-~x~:::,H,L~HtJI.M~H,AANbLt,ANbLl:.tXl-",Ll, ~HF,XKP,PH.::,,PROS,2B,2P, 
£"PR ,J1.A.P, XKP,M! ,"M2,M'3, Mq. .. 

L , !'-UK.MAI bTAT~M~NT~ ~OR ~~ANUAKU PHlN"I-UU'T 
2uu ~UKMAI llH1'44X,44Hbt.PAKArJON 10 bHOlK tOH CORMERl CALCULAl!ONS) 
2ui. !'-UK.MAI l4'+A,4"~MlPUJNT l LUKKl:.!:>1-"0Nu:::i 10 !Ht :::it:P.ARAi"!ON PO!NT)////) 
'2u'2 t-UKMAI l~'+Jl.,8HL001-' NO.,i::s,5'A,4He,1 =,t-t.3,~X,24t-1PLAT1:.AU PRE!:>!:iURE RA 

11"10 =,"1.J111 
LUj rut<MA"i"'ltX,8HMACH NU,;7x,bnR£11N,,~J1.,~HX-:::,~P,6X,8HX-CORNER,5X,8HZET 

lA bt.P,bX,llHt.PblLON bt.P,~X,16HBLAblUb MJCH NOo,5X,13HSfP, ~ACH NO. 
21 

£04 F"ORMAT C 8X,F6. 3,~x ,F10".1,5x ,F7 .4,5X ,F7. 4 ,·5X ,Flr~.4,6X ,F8,5, l lX ,F9.5 
1,1ux,r~.~1,1 · 

lU~ ~OKMA,-.t,HX,l,HTA~L~ ~~ VALUt.S//) 
.lUb t,UR:MA I 1.! !X, ~HJ.'UJ NT, OX ,~HKAPPA, l UX ,4HZl:. Tl\.., 9X, 7HEPSI LON ,6X, l 3HLCLe 

lMAtH NO.,~X,lUl-fX-LOtAI 10N,~X,12HPRl:.!:i!:i• RAI I0,7X·,4HC(KJ/J 
£UT ~UNMAI ll£X,J~,bX,~H.~,~X,r!U.4,~X,~9.5,7X,~9.5,7X,F9.5,7X~F9.5,7X 

!,~8,3) 
2uB f'UKMAT l lHII, .,,,.,,4HLllKKt.L'T"" PLArt.Au PRtbbURc RATIO REACHED USING Cl 

l ~HOWNol 
"t.lJ"i FlJKMA,- l!UX,l~HACCURAlY Tt.RM =,F7.4/) 
nu .HJKMAl 11Htl,1ux.~9HINCORRt.CT' PLATEAU PRESSUR• RATio. NEW VALUE OF 

lC:1 bt.Lt.LiEO.) 
Zll eUK~AI IJHO, 9X,64HX-SHOCK HAS BEEN RfA(HED qEFORE fSTABLISH1NG A 

lPl·O:!',!:,UHf: PLAT'c.AU• J 
ZU SUKMAI t 11'.lx,4,HU PKOIJUUIJ 100 LOW A PRESb RATIO ·AT X-SHOCK. J 
[B eUKMAI llOX,46HL1 PKCJUUlt.lJ 100 HIGH A PRt:,b 'IATIO AT' X-SHOCKo) 
<14 SUKMAI llUX,63HLOKRt.LI PLAlt.AU PRt.:,:, RATIO REACHED AT X-SHOCK, AC 

lLUKALY fER:M=,~/e4l 
<10 SUKMAI t 10XdbHbtPAKAt10N-:,HOCK SOLUI JON ·Lm'r>LETED,) 
£lb rUKMA I I u-iu, 1:JA,.:SOH::.c.f-'AR:.Al lO"l-tiHOLK !:>-OLU I !ON (0fl-1PLEI EU.} 

L ut.t1Nr'r1UN Ut" LUf-4::tTANi::. Af-'Pt.AKlNb IN tiUeR~Ui'INE 
Al =!eU-!:,C,H{t'le5') 
A2 =l • U+SDRTt, S°J 

. A3 =SGKIIXMALH**Z-1.0t . 
- A4 =1.~+l(GAMMA-1.o:,2.ol*(XMACH**2) 

A:5 =('.i.lJ*GA~MA-l,.UJ/2,U 
Ab =tb~~MA-1.u,,2.o 
AT =(~eO*hAVMA-l•UJ/l 2.ui1GAMMA-l.U)) 
A8 =~AMMA/IGAM~A-leUJ 
A~ =!.U+llbAMMA-leUJ/2•UJ*lXM8**21 
1'"t:1-<=L•449~*AIANle40H.Z!:l*A~J-AIANtA3J 
L=U 
F°=Let14f:ll!:> 
ll• l/,83YM-2.4114*XMALH+.ll43*1XMACH**21 

L btr lNJ~JAL LONIJJIIONS FOR co~PUTATIONS 
<17 H lLoC.t.,101 GO 10 218 

Q4=U,U 
CJ14=u.u 
su:vi=u.u 
XKAl-'PA=eb3 

. XMEl=XMS 
XK!=XKAPPA 
l\=Xb 
l=ll 
Z:l=LS 
N=l 
L=L+l 

SUBROUTINE 

C 

C 

C 
219 

220 
C 
c. 
C 
C 

C 

222 

Xi"E=XMS 
D~LK=lJt.LK.l 
LALLULAl10Ns FoK 1N1T1AL Kuw oe DATA 
B5= 1.C+I (GAMMA-l.Cll/2o0l*IXi.<E**2l 
PR. =IA9/B5l.**A8 
.PR2=P·R . 
WRJTE HEADINGS AND FIRST ROW OF DATA 
WRITE 16,200) 
WRITE 16,20ll 
WRITE 16,2021 L,Cl,PRP 
WRITE 16,2J3J 
WRITE (6,204J XMACH,REY,XS,XSH,ZS,ES,XMP,XMS 
WRITE <~,2051 . 
WRITE 16,2061 
WRITE (6,207) N,XKAPPA,ZS,ES,x~s.xs,PR,Cl 
BEGINNING OF STEPWISE CALCUL~TIONS 
IF IN.ED.ll GO TO 220 
IF (~Pox.LE.a.a, GO TO 221 
N=N+l 

. STEP-l:IY-STEP NUMERICAL INTEGRATION OF THE DIFFERENTIAL EllUATIONS, 
USING GILLS RUNGE-KUTTA METHOD• 
f'INDING APPROX, AVERAGE VALUE FOR.LOCAL MACH NUMBER· TO USE IN 
DZETA/DKAPPA CALCULATION, 
XK=XKAPPA+IDELK/2.0J 
XKl=XKAPPA 
XME=XMEl 
Z=Zl 
E=XME~XMACH 
Al0=SCRTIXME**2-l,OJ 
TEP=2 o4495*ATAN I o40S25*Al0 l-ATA'I (Al OJ 
TEO=TER-TEP 
THETA•TANITEDI 
T =l.D/ll,6+A6*1X~E**2ll 
Bl =C*( XK*( F+T J*( 1. n-l\5* C XME*42 J*Tl+XK* ( GA~!·1A-l e0 l * ( X~llf**2) * ( T**2) 

1-XK*F*I F+Tl J 
B2 =I-XK*Fl*IIC/Zl•IT-XK*IF+T)-111.C-XK)/IXK•Fll*IXK*IF+Tl*lloO-AS 

l* ( XME**2) *T J+XK* ( XME**2) *( T**2) *CGA'-~!~A-I .0 J > )+THETA J 
DZ=DELK*rBl/B2 l 
Z= Zf+DZ/2.0 
B3 =-XME*IIC/Zl*IT-XK*IF+Tl-lloO-XKJ*IF+Tll+THcTA) 
84 =C*(XK*CF+TJ*<I.0-~5*CXME**2J*TJ+(G~~MA-l.Ol*XK*CXME**2l*fT**2J 

1-XK*F*I F+T l I 
DME= IB3/B4 l*DZ 
XME= XMEl+DME/2,0 
X~FA=XME -
RUNGE-KUTTA SCLUTION 0F DZ/DK D.E. USING AVERAGE· XME VALUE. 
11=0 . 
QC=Q4 
Z=Zl 
YGO=Zl 
XK=XKl 
E=Xf'E-XMACH 
Al0=S0RTIXME**2-lo0l 
TEP=2,4495*ATANl.40825*AlCJ-ATAN(AlCJ 
TED=TER-TEP 
THETA=TANITEDJ 
T =1.0/(1.0+A6*(XME**2JJ 
Bl =C*CXK*fF+TJ*Cl.O-A5*fX~E**2J*TJ+XK*(GA~~A-l•O>*<XME**2J*(T**2J 

1-XK*F*IF+Tll . 
S2 =1-XK*F l *II C/Z I* I r.:.XK*I F+TJ-IJ 1.0-XK l II XK*F l l * (XK* ( F+Tl * 11.0-As 

I-' 
N 
00 



1 * ( X~",E~f-)::- 2 l -~,T} +XK·:i. < Xt,l:"·:!*2 }-ll· IT·:!-~ 2 J ·:i- ( J.t-,11MA-J .·o l l ) +THET t. ). 
DZDK=3! IS, 
I l = Il +1 
IF ( Tl-1.~0.0) GO TO ?2? 
IF ( I 1-2.fQ.OJ G'J TC 224 
IF ( I 1- 3. E:,;. 0 l GO TO 2 2 5 
IF (ll-4.EU.~J GO TO 226 

223 XKGl=DELK*DZC~ 
YGl=YG0+.5*(XKGl-2.0*QJJ 
Ql=00+3 .. 0-l'r( .5*(XKC1-2.C*C-'.::J r-.s·:•xKGl 
Z=YGl 
XK=XK]+:)ELK/2.J 
GO TO 222 

224 XKG2=DELK*DZnK 
YG2=YG1+A1*CXKG2-Qll 
()2 =Ql+3.l?*IA1~'"(Xl(G2-'::il} l-1>.l*X<GZ 
Z=YG2 
XK=XKl+DELK/2.0 
GO TO 222 

225 XKG3 =DELK*DZDK 
YG3 =YG2+A2*(XKG3-Q2l 
03= Q2+3.0-~(A.2·ll:{XKG-3-:J2J )-,'\2*XKG3 
Z=YG3 
XK=X(l+DELK 
GO T,'J 222 

226 XKG4=DELK*DZDK 
YG4= YG3+(1.0/6.0)*(XKG4-2.J*03l 
04 =Q3+3.Q-;r( ( l .• !)!6.0J*(XKG4-2.0*-13l l-.5*XKG4 
Z2=YG4 
XK2=XK1+D1:LK 
DZ=Z2-z l 
RUNGE-KUTTA SOLUTION OF D~iE/DZ D.E. 

·1 2=0 
Q!C=Ql4 
XK=XK 1 ' 
Xf"'E=Xfl.!'Fl 
Z=ZJ 
YGlC=XHEl 

227 E=X~E-X~ACH 
A1J=S0RT(X~'.E**2-1.0J 
TEP=2.4495*4TAN(.4082~*Al~l-ATAN{AlCJ 
TED=TER-T~P 
THET .A =T P,N ( TED J 
T= l.J/{l.C+~6*(XME**Zl l 
83= -Xi'--1E 01-( {C/ZJ*!T-XK*(F+Tl:_(l.O-XK)·*{F+Tl J+THETAJ 
B4= C*(XK*(F+Tl*(l.0-A5*(X!~E**2l*Tl+(GtM~A-l.Ol*XK*IX~E**2l*lT**2J 

1-XK*F*(F+Tl l 
Dr-11:DZ=B3/C4 
]2=!2+1 
IF (I2-l.EO.JJ GO TO 228 
IF (12-2.F.O.O) GO TO ~<9 
IF ( 12-J.EQ.Jl Gr rn 2?J 
IF (!2-4.[~.0J GO TO 231 

228 XKGll=DZ*DMEDZ 
YGll=YGlC+.5*(XKGll-2.J*OlJJ 
Qll =Q10+3.0*( .5*(XKG11-2.0:l-Ql0 l J-.5*XKG11 
XME=YGll 
Z=Zl+DZ/2.C 
XK= XKl+DELK/2.C 
GO TO 227 

229 XKG12=DZ*DM~DZ 
YG12 =YGll+Al*fXKGlZ-~llJ 
Oli= Jll+~.Oi(Al*(XKG12-01lll-Al*XKG1? 
Xi•'.E = YG 12 
Z=Zl+~)Z/2.C 
XK=XKl+DELK/2.:: 
GO TO 227 

230 XKG13 =DZ*PMEtZ 
YG13 =YG12+A2*{XKG13-012l 

Q13 =Gl2+3.l;*(A2*(XKG]3-Q12))-A2*XKCT.1.3 
X'.·1E=YG13 
z:z 2 
XK=XK2 
GO TO 2?7 

231 XKG14=QZ•OME~Z 
YG14 =YS13+C1.,/6.0)*(XKG14-2.0*Dl3J 
014 =013+3.C*(C}.0/6.0J*(XKG14-2.0*Ql3l)-.5*XKG14 
XMEZ=YG14 
D1'1E=XME2-X!-'.E 1 
E2= xi,,E2-x·-~AcH 
CALCULATIO~ OF X-DISTANCE LOCATION 
XME=XMEl+D~~,z.Q 
XK=XKl+DELK/2,.C 
REYXS=REY*XS 
85= 1.0+ < < G.t.t,;r.:.:..-1 .. 0112 .O) * t x.~·'!E**2 l 
SX =(l.O/REYXSl*(64**~J*(X~ACH/{C*XME)l*{(~5/A4l**A7)*.5*{(Zl•*2)-

l{Z2**2l l 
SU:Jjl=Sur,: 
SU!-1=SUM+SX 
Xl=X 
X=XS* ( 1.0-su:,~ l 

C CALCULATION OF PRESSURE RATIO 
86= }.O+A6*lX~F2**2l 
PRl=PR 
PR={A9/B6l**A8 
XKAPPA=XKAPPA+DELK 
DPDX={PR-PRl)/(X-Xll 

C CHECK TO SEf IF X-SHOCK HAS REEN REACHED. 
IF !X.GE.XRPJ GC T0 232 

C ~RITE RO~ OF OUTPUT RESULTS 
~RTTE !6~207) N,XKAPPA,Z2,E2,XME2,X,PR,C 

C SET INITIAL CONDITIONS FOR NEXT STEP I~' THE NUMERICAL INTEGRATION 
Zl=Z2 
El=E2 
X~El=XMEZ 
GO TO 219 

C ADJUST~ENTS BECAUSE X-SHOCK HAS ~EEN REfCHFD. 
232 IF CX.GT.XRPJ GO TO 233 

WRITE (6,2C7) N,XKAPPA,Z2,E2,X~E2,X,PR,C 
WRITE C5,2lll 
GO TO 234 

C CALCULATI1G CONDITIO~S FOR THE FT~AL STfP WHICH EMDS AT X-SHOCK 
233 SUM=l.r-(XRP/XSl 

SX=St1t-'-su·011 
22= SORT! CZ1**2)-(SXJ/ ( { .5/REYXSJ*{A4**2 )*CX~~ACH/(C*XMEl l*! !B5/A4) 

l**f..7) l) 
DZ=Z2-Zl 
Df,'.E=-DI-liEDZ*DZ 
X~'1E2=XME1+DME 
E2=X""1E2-X'•1ACH 
DK=DZ/DZ!)K 
XKZ=XKl+DK 
86= 1.C+A6* ( xr•1E2**2 l 
P~={A9/B6Jk*A8 
XKAPPA=XKl+DK 
X:XRP 
ZP=Z2 
XKP=XKAPPA 
XP=XRP 

C. WRITE FINAL R0 1,." 0F RES\JLTS AT X-$HCCK 
WRITE C6,207J N,XKAPPA,Z2,E2,XME2,X,P~,C 
':JRJTE (6,211) 

C CHECKING FINAL PRESS~RE RATIG FOR ACCURtCY 
234 IFIARS!PR-PRPl.LT.A8S(A*!PRP-PR2ll) GO TO 235 

IF !PR.GT.PRP) GO TO 237 
WRITE !6,212) 
Cl =Cl.J+CCPRP-PRl/CPRP-PR2ll*•7l*Cl 
SET NEW INITIAL CON~ITIO~S 

I-' 
N 
\D 



237 

C 

C 
221 

249 

239 

250 

238 

C 
C 

240 

C 
241 

242 

243 

244 

GO TO 217 
WRITE 16,2131 
Cl =lloO+llPRP-PR)/lPRP-PR2ll*.71*Cl 
SET NEW INITIAL CONDITIONS 
GC TO 217 
CHECKING THE CALCULATED PLATEAU PRESSURE FOR ACCURAC'I' 
IFtA~SlPR-PRP!.LT.ABSlA*lPRP-PR2)ll GO TO 238 
WRITE 16,210) -
IF lPR.GT.PRPl GO TO 239 
1FllPRP-PR2J.LT.uoll GO TO 249 
Cl= ll.O+llPRP-PRl/lPRP-PR21>*.7l*Cl 
GO TO 217 . 
Cl= ll.O+llPRP-PR)/(DRP-PR2:1•.25l*Cl 
GO TO 217 
CONT I f'JUE 
!FllPPP-PR2loLT.O.l) GO TO 250 
Cl •ll.O+CCPRP-PRI/CPRP-PR21)*.7l*Cl 
GO TO 217 
Cl• Cl.O+CCPRP-PRl/CPRP-PR21>*•25l*Cl 
GO TO 217 
'.,RITE 16,2081 
WRITE 16,209) A 
XP=X 
XKP•XKAPPA 
ZP=Z.2 
SOLUTION IN THE PRE~SURE PLATEAU REGION 
SOLVING DZ/DK D.c. USING GILLS RUNGE-KUTTA METHOD. 
XKl=XKAPPA . 
XME=)\MEl 
E•X''.E-XMACH 
s-s·= 1.o+c (GAMMA--1.0112.01•CXME••21 
AlO•SORTCXMF**?-1.0l 
TEP•2o4495*ATANlo40825*Al0l-ATANCAlOl 
TED•TER-TEP 
T"HETA•TANl TED) 
T= l.J/fl.O+A6*CXME**2J> 
04=0.0 
BEGIN STEPWISE CALCULATIONS. 
13=0 
N•N+! 
00=04 
Z•Zl 
YGO=Zl 
XK=XKI 
C• C-THETA*Zl/CT-XK*CF+Tl-Cl.O-XKl*CF+Tll 
el= C*(XK*CF+T)*Cl.O-A5*CXME**2)*Tl+XK*CGA~~A-l.01*CXME**2J*CT**2l 

1-XK*F*CF+T)) 
B2= C-XK*Fl*ClC/Zl•CT-XK*CF+Tl-CCl.O-XKl/CXK•Fll*lXK*CF+Tl*Cl.Q-A5 

l*lXME**2l*T>+XK*CXME**2l*CT**Zl*CGAMMA-2.0lll+THETAl 
DZDK=Bl /B2 
13=13+1 
IF 113-1.EO.~l GO TO 243 
IF 113-2.EQ.ul GO TO 244 
IF 113-3.EJ.Ol GO TO 245 
IF CJ,-4.EQ.Ol GO TO 246 
XKGl=DELK*DZDK 
YGI=YGO+. 5-* C XKGI-2. O*Oe l 
Ol=QJ+3 • C*·C • 5* C'XKG 1-2. O*Ot> J ) - • 5* XKG 1 
Z=YGl 
XK=XKl+DELK/2.0 
C2=C 
GO TO 242 
XKG2=DELK*JZDK 
YG2•YGl+Al*CXKG2-0ll 
02=01+3.0*IAl*CXKG2-QJll-Al*XKG2 

245 

246 

C 

C 

C 

C 
247 

C 

235 

251 
216 
248 

252 

Z=YG2-
XK=XKJ+DELK/2.0 
C3=C 
GO TO 242 
.XKG3=DELK*D2DK 
YG3 =YG2+A2*1XKG3-02l 
03= 02+3.0*IA2*1XKG3-Q2ll-A2*XKG3 
Z=YG3 
XK=XKl+DELK 
C4=C 
GO TO 242 
XKG4=DELK*DZDK 
YG4=YG3+11•0/6.Cl*lXKG4-2.0*03l 
04= Q3+3.0*!lloC/6o0l*lXKG4-2.0*03ll-.5*XKG4 
Z2=YG4 
XK2=XKl+DELK 
XKPPPA=XK2 
C5=C 
DZ=Z.2-Zl 
CALCULATION OF X-DIXTANCE LOCATION 
XK=XKl+DEL.K/2 .• 0 
C=CC2+C3+C4+t5)/4.0 
REYXS=~EY*XS 
65= J.D~lA6*CX~E**2l( 
SX= ll.O/REYXSl*CA4**21*CXMACH/CC*XMEll*IIB5/A4l**A7l*•5*CCZ1**2l-

l(Z2**2l l -
SUMl=SUM 
Su~>-=~ll~+SX 
Xl=l' 
X=XS* Cl. J-SU") 
CHECKING TO S.EE IF X-SHOCK HAS llEEN REACHED. 
IF CXoGE.XRPl GO TO 247 
WRITE 16,207) N,XKAPPA,,Z2,E2,XME2,X,PR,C5 
SET INITIAL CONDITIONS FOR NEXT STEP IN THE NUMERICAL INTEGRATION• 
Zl=Z2 -
XKI=XKAPPA 
GO TO 241 
CALCULATING CONDITIONS FOR THE FINAL STFP WHICH ENDS AT X-SHOCK. 
SUM=J.O-(XRP/XSl ' 
SX=SUM-SUMl 
Z2= SORTllZl**Z)-(SXl/CC.5/REYX5l*lA4**2l*lX~ACH/IC*XMFll*ICB5/A41 

l**A1lll 
DZ=Z2-Zl 
XME2=XME 
DK=DZ/DZOK 
XK2=XKI+DK 
XKAPPA=XK2 
X=XRP 
C=C2+llC5-C2)/2.J)*C(XK2-XKll/DELKI 
WRITE FINAL ROW OF RESULTS AT X-SHOCK .• 
WRITE 16,207) N,XKAPPA,Z2,E2,X"E2,X,PR,C 
WRITE 16,2161 
WRITE 16,209) A 
XKSH=XKAPPA 
ZSH=ZZ 
Xi".SH•XME2 
RETURN 
CONTINUE 

--,_: ~ 

FORMAT (lHu,lOX,62HCONVERGENCE HAS NOT .BEEN REACHED• SUBROUTiNE SE 
lPSH TERMINATEOo l 

WRITE I 6~248 l 
'M2=1 

GO T0.251 
STOP 
END 

t-' 
l,;) 
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REATCH 
$IBFTC NAME! DECK 

SUBROUTINE REATCH 

C 
C 

302 
303 

304 
305 

306 
C 

C 

C 

C 

C 

C 
308 

CO~MON XMACH,REY,XS,X~H,GAMMA,DELKl,PRP,A,i~s,xMs,zs,E~.xA,XMOS, 
lXMF,XKSH,ZSH,XMSH,AANGLE,ANGLE,XP,Cl, PRF,XKP,PRS,PPDS,ZB,ZP, 
2FR,XRP,XKF,Ml,P2,M3,M4 

REATTACHMENT SOLUT)ON, FIKJ AS PARAMETER 
FORMAT STATEMENTS FOR PRINT-OUT 
FORMAT 11Hl,46X,4JHREATTACHMENT SOLUTION, FIKJ AS PARAMETER///) 
FORMAT 115X,l0HMACH NO. =,F6.3,3X,BHRE/INo =,F9.0,3X,6HZETA =,FB.3 

l,3X,3HF =,F7.4,3X,8HX,SEP. =,F7.3,3X,7~ANGLE =,FS.5///l 
FORMAT 16JX,12HTA9ULAR DATA//J 
FORMAT i20X,5HPO!NT,6X,5HKAPPA,5X,7HEPSILON,6X,l2HLCL MACH N0,,5X, 

ll0HX-D1STANCE,5X,l2HPRE~S. RATI0,6X,5HTHETA/l 
FOR~AT (21X,I3,6X,F7.4,5X,FB.5,6X,F9.5,9X,F8.4,BX,F8.4,7X,F8.5) 
CALCULATION OF CONSTANTS 
Al=l.J-SQRT!.51 
A2=1.0+SQRT!o5l 
A3•SQRTIXMACH**2-l.OJ 
A4~l.O+IIGAMMA-l.OJ/2.0l*IXMACH**21 
A5=13.0*GAMMA-l.0J/2oC 
A6•1GAMMA-l.C)/2,0 
A7=1!~0*GAMMA-l.Ol/12.0•!GAMMA-l.OJ J 
AS=GA~MA/IGAMMA-1.0! 
.A9= 1. O+.A6.H XMB**2) 
TER=2.4495*ATAN!.4~825*A3J-ATANIA3J 
CALCULATION OF INITIAL ROW OF DATA 
N=l . 
M4=0 
XKAPPA•XKSH 
XME=XMSH 
E=XME-XMACH 
95·=1. O+A6* I XME"*2 J 
PR=IA9/B5l**AB 
PRSH=PR 
SEMI-EMPIRICAL FOR~ULA FOP F!KI 
F=FR 
Al0=SORT(XM5**2-l.O) 
TEP=2,4495*ATAN!.4nB25*Al0l-ATANIA1CJ 
TED=ITER-TEPJ-AANGLE 
THETA•TANITE)J 
WRITE HEADINGS AND INITIAL ROW OF DATA 
WRITE 16,3J21 
WRITE (6,3C3) XM!CH,REY,ZSH,F,XS,AANGLE 
WRITE 16,3041 
WRITE 16,3051 
WRITE ( 6, 3061 N,XKAPPA ,E,X:•IE ,XRP,PR ,'1HET A 
SET INITIAL CONDITIONS FOR COMPUTATIONS 
DELK=-DELKI 
XMEl=XMSH 
04=D.O 
014=0,0 
El=XMEl-XMACH 
XKl=XKAPPA. 
Xl=X~P 
Z=ZSH 
DFDK=J.O 
REYXS=REY*XS 
Nl=u 
CHECKING IF PL.ASIUS FL.OW REA.CHED 
IF IXKAPPA;DF~K.GT.~~6931 ~OTO 3J9 

SUBROUTINE 

C 
C 

309 

310 

311. 

312 

.313 

314 

DELK••693-XKAPPA 
Nl=l 
NUMERIC.AL SOLUTION FOR ONE STEP IN INTEGRATION 
SOLUTION OF DME/DK A~D DX/DK EQUATIONS 
11=0. . 
QO=Q4 
YGO=XMlcl 
XK•XKl 
X•Xl 
010=Ql4 
YG10=Xl 
XME=XMEI 
N=-N+l " 
Al0=SQRTCXME**2-l.0) Y 
TEP=2.4495*ATA~C.40825*Al~l-ATANIA10l 
TED=CTER-TEP>-AANGLE 

~, 

THETA=TANITED) : / 
T=!,Oill,G+A6*1XME**2ll . 
DMEDK=XME/CXl<*Fl 
Bl=XS*IF+T+XK*DFDi-llF+TI/F)*ll,0-A5*1XME**2!*TI-IIGA~MA-loOI/F)Rt 

lXME**2J*tT**2> ) 
82=REYXS*CT**2l*ITHFTA/Zl 
DXDK=E.ll/B2 
11=11+1 
IFCll~l.EQ,Ol GO TO 311 
IF!ll-2.EQ,OJ GO TO 312 
!Flll-3,EQ.O) GO TO 313 
IFCII-4.EQ.O) GO TO 314 
XKGl=DELK*DMEDK 
YGl•YGO+.S*CXKGl-2.:l*QDJ 
Ql=OD+3,0*C.5*1XKGl-2.v*OCIJ-.5*XKGl 
XME=YGl 
XKG 11 =DELK*DXDK 
YGll=YG10+,5*CXKGll-Zo0*Cl01 
Oll=Dl0+3,0•l.5*CXKG11-2.D*OIOJJ-.5*XKG11 
X=YGl 1 
XK=XKl+DfLK/2,C 
GO TO 31D 
XKG2=DELK•D••EDK 
YG2=YGl+Al*CXKG2-0ll 
Q2=Ql+~.O*IAl*IXKG2-Ql)l-Al*XKG2 
XME=YG2 
XKG12=DELK*DXDK 
YG12=YGll+Al*CXKG12-QllJ 
Ql2=Dll+3.)*CAl*CXKG12-Qll!J-Al*XKG12 
X=YE12 
XK=XKl+::JELK/7.0 
GO TO 3JJ 
XKG3=DELK*DMEDK 
YG3=YG2+~2*CXKG3-Q2) 
Q3=Q2+3.0*IA2*CXKG3-02)J-A2*XKG3 
XME=YG3 
XKG13=DEL~*DX:lK 
YG13=YG12+A2*1X~Gl3-Ql21 
Qj3=Ql2+3.C•IA2*1XKG13-Ql2JJ-A2*XKG13 
X=YG13 
XK=XKl+DELK 
GO TO 310 
XKG4=DELK*D'.-IEDK 
YG4=YG3+(le0/6.0J*(XK~4-2.0*03) 

t-' 
l,J 
t-' 



C 

C 
C 
C 

315 

Q4=03+3.0*C(l•0/6.~)*(~KG4-2.0*03))-.5*XKG4 
XME2=YG4 
XKG14=DELK*DXl)K 
YG14=YG13+1le0/6.JJ*IXKG14-2.0*0l31 
Ql4=Ql3+3.0*ill.0/6.0J*IXKG14-2.0*0l3JI-.S*XKG1~ 
X2=YG14 
DME=XME2~XMEl 
E2=XME2-XMACH 
DX=X2-Xl 
X=Xl+DX 
CALCULATlON OF PRESSURE RATIO 
86=1.0+A6*1XME2**21 
PR=IA9/B6J**AB 
XKAPPA=XKAPPA+DELK 
iF ITHETA.GE.O.OJ GO TO 315 
WRITE 16,306i N,XKAPPA,EZ,XMEZ,X,PR,THETA 
IF INl.EO.lJ GO TO 315 
El=E2 

. X"1El=XME2 
Xl=X 
XKl=XKAPPA 
!F · IN.GT~·lOOI GO. TO 316 
IF INl.EQ.J J GO TO 315 
GO Tr> ~OB 
THETft=~ REACHFn ~EFORF K-qLASIUS WAS REACHED. THis IMPLIES F(KI 
WAS TOO SMALL. THF:REFORE, AX-SEP. CLOSFR TC THE Hl'IGE CORNER IS 
NEEDED. . 
XKF=XKAPPA 
FR=F 
PRF=PR 
IF INl.EQ.lJ GO TO 317 
M4=1 

317 CUNT!NUE 
GO TO 318 

316 '13=1 
318 CONTINUE 

RETURN 
END 

$ENTRY 
$IBSYS 
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F - CALCULATION 
SID 

SJOO 
$JBJOB 
SJ Br TC 
C 

B-UUVl AltXANDER R. PETERS 
ALtXANDER R. PETERS 2~27-5r·'.:r',8 

C 

300 
301 

3Q2 
3J3 

304 

NM.11!:.PR Dt.CK 
DK/\lf.,}'11: t)t.CK 

REATTACHMENT SOLUIION, F{Kl AS PARA"1ETER 
FOR:·-1Af !1F!<J.2l 
FOR~'1/IT (7F10.?l 
FOR4~T STAlE~ENTS FOR PRINT-OUT 
FORM,'\l I 1Hl,46X,4VHREATiACHMENT S0Lur10N, F{K) AS PARA~..,ETER//i) 
FOR~AI ll5X,10HMACH NQ. =,~6.3,3X,8HRttIN. ~,f9.Q,3X,6HZETA =,F8.3 

l,3X,3rlF =,~7.4,3X,8HX,StP. =,~7.3,3x,7HAN~Lt =,~3.5///) 
FORMAi !6uX,12HTA~ULAR Dl,TA/1) 

3U~ ~URl~AI l2UX,~HP01NT,6X,5HKAPPA,5X,7HCPSILON,6X,12HLCL MACH.N0.,5X, 
11UHX-Ul~TANCt,5X,12HPRtSS. RATI0,6X,5HTHETA/l 

3U6 ~URMAI (2!X,13,6X,F7.4,5X,F8.5,6X,F9.5,QX,FP.4,8X,F8.4,7X,F8.5l 
323 FQq~Al {1UX,8HLOOP NU.,13/) 

C P~AD T~PUT DATA 
307 READ {5,1JU) XMAlH,RtY,GAM~A9X~SH,XM9,Xf,XSH 

READ 15,1011 XK~H,DtLKJ,r,ANGLE,Z5H,PR~~,A 
C CALCULATIO~ OF CONSTANTS 

Al=l. (1-SQR It .5 J 
A2=1.0+5QRi c.5} 
A3=SQRl!XMACH**2-l.Oi 
A4=l.0+((GAMMA-l.UJ/2.Ul*(XMACH**2) 
A5=-(3.U*GAMMA-1.u1;2.o 
A6=!GAMMA-1.u112.u 
A7=(3.0*GAM~A-l.Jl/(2.U*(GAMMA-1.0) l 
AS=GAMNA/(GAM~A-1.0l 
A9=1.0+A6*(XMR**2l 
TER=2.4495*ATA~(.40825*A3J-~TA~(A3l 
L=O 

C CALCULATION OF INITIAL RO~ OF DATA 
318 N=l 

L=L+l 
IF IL.GT.151 GO TO 307 
XKAPPA=XKSrl 
XME=XMSH 
E=X~E-XMACH 
B5=l.O+A6*IXME**2I 
PR=(A9/B5l**A8 
PRSH=PR 
AlO=SORT!XME**Z-1.0I 
TEP=2.449~*ATAN(.40825*AlCJ-ATA~(Al8l 
TED=!TER-TLP)-ANGLE 
THEl A=TAN I rm I 

C WRifE HtADlNGS AND INIIIAL ROW OF ~ATA 
WRI l'E: I 6 ,::Hi2) 
WRITt {6,3J3) XMALH,RtY,LSH,F,XS,ANGLE 
WRITE {6,3231 L 
1,.JRITE {6,304) 
WRITE 16,3051 
WRITE C6,3J6) N,XKAPPA,F,X~E,XSH,PR,THFT~ 

C SET INITI/\L CONDITIONS FOR C0\1PUTATIO~~s 
DELK=-DELKI 
X~El=X'~SH 
Q4=0.0 . 
a14=0_.o 
El=XMEl-XMACH 
XKl=XKAPPA 
Xl=XSH 

C 

C 
C 

3-':8 

309 

PROGRAM 
Z=ZSH 
oFUK=0.0 
REvxsa:r<!tyixS 
Nl=U 
CHECKING IF GLASIUS FLO!-! REACHED 
IF !XKAPPA*DFLK.GT.0.693) GO TO 309 
DELK=.691-X~4PDA 
Nl=l 
NUMt.RlCAL !:i.OLUI !ON FOR c~;E STEP IN INT=°GRATION: 
SOLUTION UC OMt/OK AND DX/DK EQUAi iONS 
!l=G 
QO=Q4 
YGC=XMEl 
XK=XKl 
X=Xl 
Q10=Gl4 
YGl L1=X1 
XME=XM~l 
N.=r-!+l 

310 AliJ=SORT(X~E**2-l.O) 
TEP=2.449~*ATAN(.4C82~*Al0l-ATA~(A10J 
TED=CTER-TEPI-ANGLE 
THE.tA=TANl IElll 
r=1.urc1.~+A6*1XMt**ZJJ 

- D~CUK=X~t/{XK*~l 
Bl=XS*tF+r+xK*DfDK-l(F+T)/F)*ll.O-A5*(X~~**2J*TJ-((GAMMA-l.Q)/F)•( 

1X~E**2l*(T**2l l 
82~REYXS*{ 1**2l*!THCTA/Z) 
DXDK=Bl/82 
Il=Il+l 
IF< 11-1.t.Q.u) GO TO 311 
U-(11-2.tQ.UJ GO 10 312 
I~(ll-3.~Q.U) GO 10 313 
1~(11-4.tQ.U) ~0 10 314 

311 XKG!=llt.LK*LlMt.DK 
YG!=YU0+.5*(XKU1-Z.O*CC} 
Ul=U0~3.0*t.~*lXKGI-2.0*Q0JJ-.S*XKG1 
XMt.=-YG! 
XKGll=D!:LK*UXllK 
YGll=YGJ:J+•5*(XKGll-2.U*~lO) 
Oll=QlQ+J.U*( .• S*!XKGll-2.0*0lOl)-.5*X~Gll 

- X=YGll 
XK=XKl+DELK/2 • C 
GO TO 310 

312 XKG2=~ELr*U~EDK 
YG2=YGl+Al*!XKGZ-01) 
Q2=Ql+3.U*lAl*tXKG2-Q]JJ-Al*XKG2 
XMt=YGZ 
XKG12=0LLK*DXDK 
YG12=YGll+Al*lXKGl?-Qll) 
012=011+3.U*lAl*lXKG12-0ll)i-Al~XKG12 
X=YG12 
XK=XKl+DELK/2.0 
GO TO 310 

313 XKG3=-DELK*DMEDK 
YG3=YG2+A2*(XK~?-O~I 
Q3=02+3.C*IA2*1XKG3-Q2)!-A2*XKG3 
XME=YG3 
XKG13=DELK*DXDK 
YG13=YG12+A2*(XKG13-Ql21 

..... 
w 
w 



C 

Ql3•Ql2+3~0•(A2*1XKG13-Ql2ll-A2*XKG13 
X•YG13 
XK=XKl+DELK 
GO TO 310 

314 XKG4=DELK*DMEDK 
YG4=YG3+!1.0/6•0l*(XKG4-2.0*Q3) 
Q4•Q3+3. O• I I I. U/6. CI* I XKG4-2. O•Q3 l l -.5*XKG4· 
xn2=YG4 
XKG14•DELK*DXDK 
YG14=YG13+ll.0/6.ol*IXKGl4-2.0*0l3l 
Ql4•Ql3+3.U*lfl.C/6.Ul*!XKG14-2o0*013ll-.5•XKG14 
X2=YG14 . 
Q\1E=XME2-XME1 
E2•XME2-XMACH 
DX•X2-Xl 
X•Xl+DX 
CALCULATION OF PRESSURE RATIO 
B6=l.0+A6*IXME2**2l 
PR•!A9/B6l**A~ . 
XKAPPA•XKAPPA+DELK 
IF !THETA.GE.O.Gl GO TO 315 
WRITE 16,306) N,XKAPPA,E2,XME2,X,PR,THETA 
IF !Nl.EO.ll GO TO 315 
El•E2 
XMEl•XME2 
Xl=X 
XKl•XKAPPA 
IF CN.GT.100) GO TO 307 
IF INI.EQ.ll GO TO 315 

315 
C 

GO TO 308 
CONTINUE 
CHECKING TO SEE IF THE CORRECT F(Kl HAS BEEN SELECTED. 

C 
C 

319 

317 

320 

32£ 

321. 

CONVERGENCt SCHtM~ REOUIRES THAT IHE CORRECT FCKJ BE APPROACHED 
FROM THE HIGH SIDF, -
IF !Nl,EO.ll GO TO 317 
F =F+ F *IIXKAPPA-,693)/!XKSH-.693Jl*l,25 
FORMAT !lHU,9X,44HFIKI WAS TOO SMALL TO OBTAIN DESIRED RESULT,) 
WRITE !6,319) 
GO TO 318 
IF!lPRDS-PRl,Ll.l.5*A*IPRDS-PRSHlll GO TO 321 
F=F-F*(!PRDS-PRl/!PRDS-PRSHll *l,25 
FORMAT !1HU,9X,44HF!Kl WAS TOO LARGE TO OBTAIN D!SIRED RESULT.I 
WRITE 16,320) 
GO TO 318 
~URMAI llHV,9X,46H~lKI PRODUCtD DESIRED RESULTS, ACCURACY TERM =,F 

16,3) . 
WHllt lb,~U6l N,AKAPPA,t:.2,~ME2,X,P~,IHtlA 
Wl-ll It:. lb,~t.Zl A 
t,U IU 3U7 

:;.10 .!:i !OP 
tND 
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