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CHAPTER I 

INTRODUCTION 

Until about thirty years ago the area of algebra now called 

lattice theory was v:i..rtually unknowno Since that time it has emerged 

as an important area of mathematical study, and rapid progress has 

marked its development. 

Although it is a comparatively new subject area, the beginnings of 

lattice them:y can be traced back more than 100 years. While doing 

research in mathematical logic in 1842, Boole developed an important 

cl.ass of lattices which were later named Boolean Algebras, In 1890 

Schrode-r introducEid the latti.ce concept as it is understood today; 

and in 1.897 Dedekind def.in.ed, according to present-day term:i.nology, 

modular and di.st·.r.:ibutive lattices [ 14] •1 The development of lattice 

theo:ry proper began in the 1.930 us with Garrett Birkhoff being the 

dominate figure in the field. 

The significance of lattice theory in the field of mathematics is 

due not only to the important theorems :it has yielded but also to its 

unifying nature. Its concepts and techniques have found fundamental 

applications in many areas of mathematics. 

In an article for the American Mathematical Society, Garrett 

Birkhoff, an outstanding mathematician. in lattice theory and head of 

1Numbers in brackets refer to references in the bibliography. 
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the Department of Mathematics at Harvard University, wrote that 

..• some familiarity with , , . lattice theory is 
an essential preliminary to the full understanding 
of logic, set theory, probability, functional anal
ysis, projective geometry, the decomposition theorems 
of abstract algebra., and many other branches of 
ma.thematics [2]. 

Another mathematician who stresses the. unifying nature of lattice 

theory is Lillian Lieber. In her book on the. subject, she states that 

lattices help the mathematician to see connections between various 

branches of mathematics, thus re.vealing their common structure even 

though they seem so different [10], 

In spite of the fact that lattice theory is an important branch of 

2 

algebra and has manifold applications in mathematics, it has not reached 

the prominence it deserves in college curricula, Currently, very few 

colleges and universi tie.s offer a course in lattice theory, and when 

one is offered :i.t is ge.nerally at the g·raduate level. Although an occa .. , 

sional tex.t i.n abstract algebra wi.11 include some work in the f:ield, 

eleme.nta:ry textbooks in lattice the.ory are few. 

This pa.per has been prepared to be the. basis fo·.r an 'llhdex·gt·adua.te. 

course in lattice theory. It is self-contained to the extent that the 

only prerequisites are a basic knowledge of abstract algebra and set 

theory. In fact, this material has already been used in a senior sem .. 

inar course at Harding College., Searcy, Arkansas. The paper attempts 

to me.et two important objectives. First, it will help show the basic 

relationships that exist be.tween different areas of mathematics, and 

will illuminate some. important properties of a variety of mathematical 

systems. The. second basic objective of the paper is to ex.pose the 

undergraduate student to the. frontier in a specific area of mathematics. 



Because lattice theory is relatively new and is based on very simple 

postulates, undergraduates can utilize it to engage in mathematical 

research and work on unsolved problems. 
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CHAPTER II 

BASIC DEFINITIONS AND EXAMPLES 

In trying to relate some of the many areas of mathematics, it could 

be asked, "What do set theory, group theory, theory of numbers, projec-

tive geometry, theory of probability, and mathematical logic have in 

common?" One answer to this question would be to observe that the no-

tion of 11 part of" or "contained in" is basic to each of these subjects. 

Consider for example how important the study of subgroups is in group 

theory. In this context, A is a "part of 11 B would mean that A is a sub-

group of B. Similar comments could be made in each of these other areas. 

The notion of a 11 lattice11 arises in the attempt to obtain an abstract 

system that includes such systems as the subgroups of a group, subspaces 

of a vector space, etc, as special cases. 

Partially Ordered Sets 

How this relation of "part of 11 i.s used in de.fining a 11 lattice11 

will soon be made clear, but first some preliminary definitions are 

needed. 

Definition 1.1. A partially ordered set is a system consisting of 
.. 

a Syt S and a binary relation C ( 11 part of 11 or "contained in") satisfying 

the following postulates: For all elements a, b, c, in S, 

i) a c a, 

4 
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ii) If a c band b ca, then a= b, and 

iii) If ac band b cc, then acc. 

Definition 1.2. If a, b e S, then a:) b (read':) as "contains") if, 

and only if, b ca. 

If a, be Sand a c b orb ca then a and bare said to be compar

able; however, it is not necessarily true that each two elements of S 

are comparable. If a, be S implies that either a c b orb ca, then S 

is called linearly ordered or sometimes the word chain is used. 

When thinking intuitively of partially ordered sets, the next two 

examples will prove very useful. 

Example 1.1. For an arbitrary set M, let P (M) be the set of all 

subsets of M. The set P (M) is partially ordered with respect to the 

relation of set inclusion. 

Example 1.1. The real numbers ordered by the relation 11 ~ 11 • 

Notice that in Example 1.2 all the elements are comparable, thus this 

example represents a chain. 

Diagrams 

The ordering of finite sets can be very clearly illustrated with 

the use of diagrams. Before describing the method some preliminary 

concepts need to be introduced. 

If for a pair of element a, b of a partially ordered set, ac b 

and there is no element x such that ac x cb, then it is said that a 

is covered QY b orb covers a. The notation for "a covered by b" is 

a< b. Notice that in Example 1.1, B covers A if, and only if, 

B = A U ( a 3 where a e B "- A. 
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In a finite partially ordered set the relation c can be expressed 

in terms of the relation of covering, for if a c b then a chain a ·= a1 

• • 'C a .=: .b can be found in which each 
n 

This is called a principle chain from a to band 

aitl covers ai [14]. 

is denoted by a :~ a1 < 

<an= b. Conversely, the existence of a principle chain 

implies that a c b. Thus, a diagram can be obtained by representing 

the elements of S by small circles (or dots) and placing the circle for 

a 2 above that for a 1 and connecting by a line if a2 covers a1 • There-

fore, a c b if, and only if, there is a descending broken line connecting 

b to a. Some examples of such diagrams are given below: 

r 
0 

1 
(a) (b) (c) (d) (e) 

Figure 1.1 

It is evident that the notion of a diagram of a partially ordered set 

gives us another way to construct examples of such sets, 

By appropriate conventions, some infinite ·partially ordered sets 

can be illustrated by diagrams of a similar nature but of generalized 

meaning. Thus, the natural ordering of the positive integers will be 

represented by the diagram in Figure 1.2. 



Figure 1.2 

One more concept must be considered before the definition of a 

lattice can be given. 
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Definition 1.3. An element p of a partially ordered set S is said 

to be an upper bound for the subset A of S if a c p for every a e A. 

The element p is a least uppe·r bound (1.u.b.) if p is an upper bound and 

pc v for any upper bound v of A. Similar definitions are made for lower 

bound and greatest lower bound (g.1.b.). 

In Figure 1.1, the partially ordered set represented by (d) does 

not have an upper bound, and (e) does not have a lower bound. 

Lattices 

A pa.rticular type of partially ordered set will now be considered. 

This partially ordered set was first called a "Dual gruppe" by Dedekind 

in 1900 and was given the name "lattice" by Garrett Birkhoff in 1933 [5]. 

Definition 1.4. A lattice is a partially ordered set in which any 

two elements have a least upper bound, p, and a greatest lower bound, qo 

It follows inunediately from Definition 1.3 that if a least upper 

bound or greatest lower bound exists then it is unique, 

There are many different notations used for the least upper bound, 
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p, and the greatest lower bouild, q, of, two elements a and b. Some of· 

these notations are: 

p = a + b = l.u.b. (a,b) = av b = sup (a,b) 

q = a . b = g.l.b. (a,b) = an b = inf (a,b). 

The notations used in this paper will be a• b (lattice product or the 

meet of a and b) for the greatest lower bound and a + b (lattice sum 

or the join of a and b) for the least upper bound. 

Thus, a lattice is a set Sand two binary relations, = (binary 

relation of equivalence) and c(binary relation of "part of" or or-

dering relation) such that 

i) Sis partially ordered with respect to c, and 

ii) S contains, with each 2 of i.ts elements, a g.l.b. and a l.u.b. 

The notation for a lattice will be L ~ Es,= ,c]. 

Notice that Examples 1.1 and 1.2 form lattices and that in Figure 

1.1, (d) and (e) do not represent lattices. 

Now consider the follow:l.ng examples of lattices. These will not 

only b·e a help in understanding mo:i:·e fully the concept of a lattice but 

will also begin to show how many of the areas of mathematics can be 

related through a study of lattices. The justification that each of 

these examples forms a lattice is relatively simple. 

1 
Example 1. 3. Let S denote a ring of sets; = will be set equality 

and c will be set inclusion. 

i) a· bis set intersection. 

ii) a + b is set union. 

1 
A family of sets Fis a ring of sets provided F contains with each 

two of its elements their union and intersection. 
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Example Ll. 2 
Let S be the set of all convex subsets of E2. Equa-

li ty is set equality and c is set inclusion. 

i) a· bis the set intersection since the intersection of two 

convex subsets of E2 is convex [151. 

ii) a+ bis the convex hull of a and b, where the convex hull of 

a set Sis defined to be the intersection of all convex sets 

that contain a and b. 

Example 1. 5. Let S be the set of all subgroups of a given group G. 

Equality is set equality and a c b means that a is a subgroup of b. 

i) a• bis the intersection of a and b. 

ii) a+ bis the smallest subgroup of G that contains both a and 

b, that is, a+ bis the intersection. of all subgroups of G 

that contain both a and b. 

Example 1.6, Sis the set of all positive integers. Equality means 

identity and a c b means that a is a d:i.visor of b. 

i) a • b i.s the greatest common divisor of a and b. 

ii) a+ bis the least common multiple of a and b. 

Example~. Let S be the set of all linear subspaces of a pro• 

jective 3-space, that is, S is formed by the null set, points, line.s, 

etc. Equality is set equality and a c b means that a is on band the 

dimension of a is less than or equal to the dimension of b. 

i) a b = an b. 

ii) a+ bis the smallest linear subspace containing both a and b, 

2c .is a convex subset of E2 if C contains with each two of its 
elements the line segment joining them. 
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Example 1.8, S consists of all propositions; a= b means that 

the occurrence of either implies the occurrence of the other, that is, 

a:::;;':> b, and b~ a; a c b means that the occurrence of a implies the 

occurrence of b. 

i) a.bis the conjunction of a and b (aA b). 

ii) a+ b is the inclusive disjunction of a and b (a V b). 

Example 1. 9. Let S be the set of all real functions f defined on 

the interval [0,1] such that O < f(x) '.:S. 1 for all x. If f,g e S, then 

f = g means that f (x) = g (x) for all x 'E: [ 0, 1] ; f c g means that f (x) 

< g(x) for all x e [0,1]. 

i) f • g 

ii) f + g 

x~ (f g) x = minimum [Hx), g(x)] 

X----:7 (f + g) x = maximum [f(x), g(x)] 

Example 1.10. Let S be the set of all subspaces of a vector space. 

Equality is set equality and a c b means that a is a subspace of b. 

i) a· bis the intersection of a and b. 

ii) a+ bis the linear hull of a and b, that is, the intersection 

of all subspaces of S that contain both a and b. 

These examples are very important since they will be used throughout 

this paper to illustrate certain types of lattices. 

Some diagrams of finite lattices will not be considered with their 

corresponding addition and multiplication tables (see Figure 1.3). 

Ah Alternate Definition 

If L = [S,=,c] is a lattice, then the following three properties 

are satisfied. 

10. Sis partially ordered witb respect to c, that is, 
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(a) C a b C + a b C 

I 
b a a a a a a b C 

I 
b b b b b b a a C 

C a b C C C C C 

(b) a b C d + ja b C d 
d I 

/ ""'c 
a a a a a a I a b C d 

""'/ 
' 

b a b a b "b "b "b d d 

C a a C C C: C d C d 

d I a b C d d d d d d 

(c) •· a b C d e f 

f~ 
a a a a a a a 

I /i b a b a a a b 

b~l/d 
C a a C a C C 

d a a a d d d a 

e a a C d e e 

f a b C d e f 

+ a ·b C d e f 

a a b C d e f 

b b b "£ "f f f 

C :C "f :C .e e :f 

d d f e d e f 

e e f e e e f 

f f f f f f f 

Figure 1.3 
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i) aeS~aca; 

ii) a, b e S; a c b and b c a:;> a ::: b; and 

iii) a,b,c e S; ac band be c~ac c. 

2°. a,b e S implies the existence of a· be S such that a· b 

ca, a· b c b, and if x e S where x ca and x c b, then 

X C a • b. 

3°. a, b e S implies the existence of a+ b e S such that a c a 

+ b, b ca+ band if ye S where a c y and b c y, then 

a+ b Cy. 

If in 1°, 2°, 3° the transformations 

a · b a +b \ 

a•b} 
(

=C 

=:, a+ b 

are made, then the new statements will be called the "duals" of the 

corresponding old statements. Notice that 1° is a self dual. By this 

it is meant that if the substitution is carried out,nothing is changed. 

The dual of 2° is ··. 3° and the dual of 3° is . 2°. Therefore, the three 

conditions 1°, 20, 3° remain valid under the transformations 

(
= Ca • b 

=::>a+b 

a+ b) 
a · b 

i.e., the principle of duality holds in a free lattice (a lattice with 

no special properties placed on it). 

Now it is possible to approach a lattice as a purely algebraic 

structure. Consider the system [s,=, ·, -8 3: satisfying the followi:ng 

conditions: 

3s is a set and"·" and 11+11 are binary operations defined on S. 



1 I • a,b,c e: s implies that: 

(a) (a . b) . c= a . (b . c) 

(b) a . b = b . a 

(c) a . a= a. 

2 I• a,b,c e: s implies that: 

(a) (a+ b) + C = a + (b + c) 

(b) a + b = b + a 

(c) a + a .= a. 

3'. a,b,e: s; a . b = a iff a.+ b = b. 

Theorem 1.1. Each lattice L is a system [S,=, ·, +J where the 

meet of a and bis a· band the join of a and bis a+ b. 

Proof: Conditions 1 1 , 2', and 3' must be proved to hold given 

that 1°, 2°, and 3° hold. To prove 1' part (a), not.ice that 
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Cl) (a • b) • cc a • b c a follows directly from· the definition· 

of lattice product. Similarly, 

(2) (a• b) • cc a, b c band (a, b) •cc c, so 

(3) (a• b) • CC b • C, 

Now on combining (1) and (3), 

(a , b) • c c a , Cb • c). 

Using a similar argument, 

a • ( b • C) C b . C C C and a • (b • C) C a • b. 

This implies that a • (b • c) c {a • b) . c. Therefore, a · (b • c) = 

(a • b) • c. 

Now to prove part (b) of l', notice that a· b c band a• b ca, 

so a • b c b • a. Similarly, it follows that b • a ca• b. Therefore, 

a • b = b • a. 



For part (c) of 1', a c a and a ca~ a ca • a. This combined 

with the fact that a · a c a proves that a= a · a. 

14 

The principle of duality gives 2 1 directly so all that remains is 

to prove 3'. Suppose that a • b = •a.· This combined with a · b c b 

implies that a c b; therefore, a .+ b = b. The converse is proved 

similarly. 

The next theo~m is the converse of Theorem 1. 1. 

Theorem Ll. [s, =, ·, +J is a lattice when for each a, b e S, 

a c b is defined to mean that a , b = a. Moreover, a • b is the meet 

of a and b, and a+ bis the join of a and b. 

Proof: For 10 part (i), merely observe that a · a:::: a~ a c a. 

To prove 1° part (ii), notice that by definition a c b ifE 

a · b = a and b c a iff b • a = b. These together with 1 1 (b) imply 

that a = b. 

Part (iii) also follows directly, for a c b ~ a • b = a 

and b c c ~ b • c = b, thus a · c = (a · b) · c = a • (b • c) = 

a • (b) = a. Hence, a c c. 

To prove 2°, it must be shown that a• bis the g,l.b. (a,b). 

First, observe that a · b c a since (a • b) · a = a • (b • a) = a • 

(a· b) =(a· a) · b =a· b. Also, a• b c b since (a· b) • b =a· 

(b • b) =a· b. Now, suppose that cc a and cc b. This means that 

c ·a= c and c • b = c, which implies that c • (a· b) = (c • a) · 

b = c. Thus, by definition, cc a· band hence a• bis the greatest 

lower bound of a and b .. 

30 follows from 2° and the principle of duality. 
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Lattices With First and Last Elements 

Attention will now be focused on an extremely important type of 

lattice. 

Definition 1......5_. If ac x for all x of the lattice, then a is 

called the first element of the lattice, and if a:> y for all y then 

a is called the last element. 

Theorem l...].. Every finite lattice has a first element and a 

last element. 

Proof: Rather than prove this theorem the way it is stated, it 

is desirable to prove the somewhat more general result that each finite 

subset of a lattice has a g.l.p. (meet) and a 1.u.b. (join). This 

result is valid for each set of two elements of the lattice. Make 

the inductive assumption that the result holds for all subsets of k 

elements. Let a 1 , a2 , ••. , 81c' ~+le Land denote the g.1.b. (a1 , 

a2' 81<) by a 1 
. 

a2 . . ak and the g.1. b. fa. . az . . . . ' ... 1 • 8k,, 

81<+1) by al . az . . ak . ak+l• To be shown: al . a2 
. ... • ak+ 1 

= g.1.b. (al, a2, .. ' ~+l). 

First note that: 

a1 • a2 • • • • • ~+ 1 c a1 • a2 • • • • • ~c a1 , a2 , ••• , ~ and 

a1 a2 • • • • • akt-l c ak+l • This shows that Ca1 ' • • • • ~) • ak +l 

is a lower bound of the set. Now let Z be any other lower bound, i.e., 

z,8 LandZca1 , a2 , ••. , akt-l thenZca1, a 2 , ... , 

Thus, Z c a 1 • az • ••• • ak and Z c ~+l' which 

~ and Z c ak +l. 

implies that 

Zca1 • a2 • ~·· • ~l= g.l.b. (a1 • a2 • ... · ak, a ). 
k+l 

Thus, each finite subset of a lattice has a g.l.b. and a 1.u.b. 



and hence it follows that every finite lattice has a first element 

and a last element. 

Now, consider the concepts of first and last elements in regard 

to sbme of the examples considered previously. 

Example 1.1. (All subsets of the given set). The set Mis the 

last element and the null set is the first element. 
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Ex.8Jllple L.2.. (Real numbers). There is no first element or last 

element. 

E;x:ample 1 ... 3. (Ring of sets). Neither a first nor a last element 

necessarily present. Consider, for example, all the sets which pro

perly contain a set c1 and are properly contained in a set c2 • 

Example .1.8. (Algebra of propositions). A logically false 

statement (f) is the first element and a logically true. statement 

(t) is the last element. 

Example 1 .. 9.. The first element is tre function f such that 

f(x) = 0 for xe [ 0,1] and the last element is the function g such that 

g(x) - 1 for xe [0,1]. 

The first element of a lattice is denoted by O, and the last ele

ment by 1. Notice that O c a is equ3walent to O • a = 0 and O + a.= a. 

Also, a c 1 is equivalent to a • 1 = a and a+ 1 = 1 for all a, Thus, 

the principle of duality is valid in a lattice with both a first ele

ment and a last element, i.e., duality is preserved under the trans

formations: 

(: C a • b a+ b 0 :) 
? a +b a . b 1 

In the next two definitions, L is a lattice with first and last 

elements, and a c b. 
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Definition Ll- A comllleme.nta:ry element of the first kind (de

noted by b - a) is any element x = b = a such that a· x = 0 and 

a+ X = b, 

Definition 1.6. A complementary element of the second kind 

(denoted by a I b) is any y = a I b such that b + y = 1 and y · b = a. 

Now consider some of the examples with respect to these ele

ments .. 

In Example 1.1, if Ac B then B "- A is a complementary element 

of the first kind and U '\· (B '\ A) is a complementary element of the 

second kind (See Figure 1.4). 

u 

Figure 1.4. 

To see that complementary elements of the first kind do not neces

sarily exist in the lattice of convex sets (Example 1.4), consider 

the case where a and bare intervals in E1 with ac b. If xis any 

complementary element of the first kind, the? a• x = 0 implies that 

xis disjoint from a. This combined with a+ x = b shows that x = 

b""' a. However, b ""'a is not a convex set ( see Figure 1. 5) . 
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a 

Figure 1.5 

The same type argument can be used in considering complementary 

elements of the second kind. 

In Example 1.7, if bis a line and a is a point on b, the comple-

mentary elemen'ts of the first kind are those points of b that are 

different from a. Complementary elements of the second kind would be 

planes which pass through a but do not contain b (see Figure 1.6), 

X a b 

FigtJ.re 1.6 

In Example 1.9 comparable elements must be of a very special type 

if they are to have either first or second complementary elements. 

To prove this, let f cg and assume that there exists a point ae [O,l] 

such that f(a) 1 0 and f(a) 1 1. The existence of a complementary 

element of the first kind, k, means that f · k is the zero function 

and this implies that k(a) = O. Thus, [f + k](a) = f(a) but 
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[f + k] (a) = g(a_), since k is a complementary element of the first kind. 

Thus, f(a) must be equ.al to g(a) and it is clear that in Example 1.9 

most comparable elements would not have COll!J?lementaz::y elements of the. 

first kind. A similar discussion could be given concerning complemen00 

ta~y elements of the second kind. 

To illustrate types of functions that would not contain these 

special elements see Figure 1.7. 

Figure 1. 7 

There is a related concept that should be discussed at this point. 

Definition 1.7. If c e L, any element c' of L such that c • c' = 0 

and c + c'= 1 is called a complement of c. A lattice is said to be 

complemented if it has first and last elements and if every element has 

a complement. 

The next two theorems show the relationship between complementary 

elements of the first and second kind and the complement of an element. 

Theorem 1. 4. For each a, b e L for which a c b, each complementary 

element of the first kind is the complement of each complementary ele-

ment of the second kind. 

Proof: Let x = b a and y = a I b, i.e., a• x = O, a+ x = b 

and y • b = a, y + b = 1. 



Since x =(a+ x) · x, 

X • y = y x = y , [Ca + x) • x] = y , [b · x] = (y • b) 

. X = a . X. = o. 
4 

Similarly, y = y + y . b implies that X + y = y + X = (y + y 

+ X = (y + a) + X = y + (a+ x) = y + b = 1. 

Therefore, xis tle complement of y and conversely since their 

lattice product is O and their sum is 1. 

. 
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b) 

The next theorem follows directly from the definitions and is very 

important in showing the relationship between these concepts. 

Theorem 1.5. If each pair of comparable elements of a lattice have 

complementary elements of the first kind (or second kind) then the lat

tice is complemented. 

Proof: For any element c e L, cc 1. Thus by hypothesis, there 

exists an x e L such that x • c = 0 and x + c = 1. 

A similar proof can be given under the assumption that every pair 

have second complementary elements 

The following example shows that the converse of this theorem is 

not true. Consider the lattice: 

b 

0 

4:For convenience, y::+' y • b will be used ih place of y + (y · b). 



This lattice is complemented for the complement of O is 1, a is c, 

bis c, c is a orb, and 1 is O. However, a c b, but there is no 

element x such that a• x = 0 and a+ x = b. The only possibilities 

for x are O, c, and l; however, a+ 0 1b,a+11 b, and a+ c 1 b. 

In most of the basic examples it is quite easy to check whether 

or not the lattice is complemented. For example, in the lattice of 

propositions (Example 1.8), the complement of each statement pis its 

negative -P· 

In projective 3-space, Example 1.7, the complement of a point is 

a plane not containing it. The complement of a plane is a point not 

lying in the plane, and the complement of a line is a skew line. 
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The lattice of real functions in Example 1.9 is not a complemented 

lattice since, for example, f{x) = 1/2 for : :xe [O, 1] would not have a 

complement. This is easy to see, for {f • g) x = 0 means that g (x) 

is the zero function and, thus, f(x) + g(x) = f(x) r 1. 

Properties of Lattices in General 

Theorem 1......2., If a cc and b c d then a• b cc • d and a+ b 

CC+ d, 

Proof: a , b c a c c ~ a , b c c. Similarly, a • b c d. Thus, 

by definition, a, b cc, d. The remaining part of the theorem fol

lows from the principle of duality. 

Corollary 1.6: If a c b, then for every c e L, a , cc b • c and 

a+ccb+c. 

Proof: Follows directly from Theorem 1.6 and fact that cc c. 

Theorem 1. 7. If a c c c;: b and a = b, then a = c = b. 

Proof: Since a= b, b cc ca c band, thus, a= c = b. 



Theorem 1.8. a· b =a+ b if, and only if, a= b. 

Proof: 
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i) If a= b, then a· b =a· a= a and a+ b =a+ a= a. 

Thus, a· b =a+ b. 

ii) a · b = a + b together with a · b c a c a + b implies 

that a· b =a= a+ b. Using a similar argument, it 

follows that a· b = b =a+ band, thus, a= b. 

Theorem 1.9. If a,b,c e L, then a· c + b ·cc (a+ b) · 

C C C C a • b + C C (a + c) • (b + c). 

Proof: 

i) Show that a· c + b ·cc (a+ b) • c. 

a CCC and b . CCC implies that a. C + b . CC c. 

Also, a· cc a ca+ band b ·cc b ca+ b proves that 

a · c + b · c c a + b. Therefore·, (a · c + b • c) · 

(a· c + b · c) =a, c + b • cc (a+ b) • c. 

ii) Show that a• b +cc (a+ c) · (b + c), 

a · b c a and cc c => a , b + c c a + c. Also, 

a • b C b and C C C ~ a • b + C C b + C. Hence' 

a . b + c c (a + c) , (b + c). 

Modular and Distributive Lattices 

The next special class of lattices to be considered was first 

studied by Dedekind [14], and the definition is due to him. 

Definition 1.8. A lattice will be called a modular lattice if it 

satisfies the following condition: 

If a c c then (a + b) • c = a + b • c for every b. Another way to 



state this same property is that (a+ b) · c =a• c + b · c holds 

if a C C, 

Notice that if Lis any lattice, then for each a,b,c,eL, a, c + 

b · cc (a+ b) • c. This means that if a cc, then a+ b • cc 

(a + b) • c. 

The following results follow inunediately from the definition: 
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i) The Dedekind condition is a self-dual, thus duality holds 

in a Dedekind lattice. 

ii) If a lattice is distributive, that is, (a+ b) • c = 

(a, c) + (b • c), then the lattice is modular. 

Another rather interesting consequence of the modular condition 

is that if a,b,c e L, with a cc, and Lis modular lattice, then these 

elements are distributive. To prove this, the following three equali

ties must be proved to hold: 

(1) (a+ b) • c =a• c + b • c 

(2) (a + C) b = a b + C • b 

(3) (b + c) • a = b • a + c • a 

Equation (1) follows directly from modularity. In equation (2), 

a c c ~ a + c = c and a b c c • b. Thus, (a + c) • b = c · b and 

a • b + c b = c • b. In equation (3), a c, c~ a c b + c and c • a = a. 

Thus, (b + c) •a= a and b •a+ c •a= b. a+ a= a. Notice that 

this does not prove that the lattice, L, is distributive;·it only 

proves that these particular elements satisfy the distributive property. 

Thus, modularity is certainly a kind of ''weak" distributive law. 

There is another rather useful way of characterizing modular 

lattices. 
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Theorem 1.10, A lattice Lis modular if and only if it satisfies 

the following condition. If a c band there exists an element c such 

that a, c = b , c and a+ c = b + c, then a= b, 

Proof: 

i) Suppose Lis modular, and a,b,c e L such that a c b, 

a· c = b , c, and a+ c = b + c, It must be shown that 

a= b, 

The following equalities all follow directly from the 

hypothesis: 

(1) a+ c , b =a+ c ·a= a 

(2) (a+c) b = (b + c) 

(3) (a+ c) · b =a+ c · b 

Therefore, b = a, 

b = b 

ii) Suppose now that L saisfies this new condition, i.e., if 

a c b and there e.xists an element c such that a , c = b 

· c and a+ c = b + c, then a.~ b. 

Let p =a+ b · c and q =(a+ b) c where ac c, Since a+ b 

· cc (a+ b) · c when a cc, then pc q (see Theorem 1.9), It remains 

now to prove that q c p. p C q~ b • p C b • q and b + p C b + q. 

But b , q = b (a+ b) C = b 

C a + b • C = p and b • C C b • 

· c, and b, cc b , p since b · c 

Thus, b , q::: b , p and hence b , q = 

b, p. Also, b + q = b +(a+ b), cc b + ac b + b • c. +a.= b + p. 

Therefore, b + qc b + p, and hence, b + q = b + p. Thus, by hypothesis, 

p = q. 

This theorem gives an extremely useful way of characterizing rnodu

la.r lattices in terms of their sublattices., where a subset M of a lattice 



L is called a sublattice if it is closed relative to the operation + 

and •• This characterization was first given by Dedekind [4] and is 

stated in the next corollary. 
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Corollary 1.10. (Dedekind's modularity criterion). A lattice is 

modular if£ it does not contain the fol lowing sublattice: 

e 

b 

d 

Figure 1.8 

Proof: 

i) If this sublattice is present in L, then Lis not modular 

since a cc but (a+ b) • c 1 a+ b • c. 

ii) Assume that Lis not modular, then by Theorem 1.10, there 

exist elements a,b,c e L such that a c c, a + b = a + c, 

and a• b =a• c but a 1 c. Thus, L contains the 

sub lattice: 

a+ b 

C 

b 
a 

b: • C 

A similar type result was obtained by Garret Birkhoff [4] for dis

tributive lattices. He proved the following theorem: 
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Theorem 1.11. A lattice is distributive if and only if it does 

not contain either of the following sublattices shown in Figure 1.9. 

e e 

b d 

a 
d 

Figure 1.9 

A simple, though tedious, proof of this theorem is found in [ 14] • 

Now, consider some of the examples with respect to the properties 

of modularity and distributivity. 

The convex sets (Example 1.4) do not form a modular lattice. 

Consider the following example. Let a,b, and c be non-overlapping 

unit circles whose centers are colinear (see Figure 1.10). If d =a+ b, 

then a c d, a• c = d • c, and a+ c = d + c; however, a 1 d. Thus, by 

Theorem 1.10, the lattice is not modular. 

C b d a 

Figure 1.10 

In the lattice formed by the subgroups of a group (Example 1.5), 

every possible combination can occur, depending on the particular group 

that is being considered. This is clearly seen in the following 

examples. 
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i) In the group of integers modulo 12, where the operation is 

addition, the subgroups form a distributive lattice. This can be proved 

by considering all the subgroups of this group and drawing the lattice 

diagram. The subgroups are: G = fo,1,2,3,4,5,6,7,8,9,10,ll), 

H1 = {0,2,4,6,8,10), H2 = {o,3,6,91, H3 = {0,4,8}, H4 = {0,65, and 

H5 = i05. The diagram is: 

G 

Thus, the lattice is modular and distributive since it contains neither 

of the sublattices of Figure 1. 9. 

ii) In the permutation group S3, the lattice of subgroups forms 

a modular, non-distributive lattice. The elements in this group are: 

(: b ~) (: b ~) 1 b = Ci) 4 = (ab c) C 

(: b ~) (~ b ~) 2 = (b c) 5 = (a Cb) C a 

(: b ~) = Cab) 6 (~ b j (a c) 3 = a b 

The multiplication table for this group is: 

1 2 3 4 5 6 

.,,. 1 1 2 3 4 5 6 
2 2 1 4 3 6 5 
3 3 5 1 6 2 4 
4 4 e 2 5 :l 3 
5 5 3 6 1 4 2 
6 6 4 .5 2 3 1 
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The subgroups are H0 = t11, H1 = ~ 1, 21, H2 = \1,. 31, H3 = \1, 61, 
H 4 = { 1, 2, 31 , and G = { 1, 2, 3, 4, 5, 6}. 

From the lattice diagram shown in Figure 1.11, it follows that 

the lattice contains the sublattice 

but not a sublattice of the form 

O· 
Tp.us, the lattice is modular but not distributive. 

Figure 1.11 

iii) The alternating group A4 is an example of a lattice of sub

groups that is not even modular. This group has elements: 

(: b C :) ;i,. 1 b = C 

2 (: b C ~) = (b C d) 
C d 

3 (: b C ~) (b d c) d b = 

(: b C ~) (a b) (c d) 4 = a d 

5 (: b C :) = (a b c) 
C a 



29 

6 ~ b C j (ab d) = 
d C 

7 (~ b C ~) (a C b) = 
a b 

8 (: b C 1) (a C d) . , = 
b d 

9 ~ 
b C ~) (a c) (b d) = 
d a 

(: b C ~) (ad b) 10 = a C 

(~ b C ~) (a de) 11 = b a 

(~ b C ~) (a d) (b c) 12 b = 
C 

The subgroups of this group are: 

Go= {15 

G -1 - {1, 41 
G = 2 z1, 9 J 

G = 3 t1, 12) 

G = 
4 tl' 2, 31 

G = 
5 tl' 5, 71 

.G6 = ll, 6, 10) 
G = {1, 8, 115 

7 
G = 

8 \1, 4, 9, 121 

G9 i:= A4. 
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The lattice diagram is 

and the existence of the sublattice 

proves that the lattice is not modular. 

In the set of real functions discussed in Example 1.9, the lattice 

formed is distributive. Let x0 e [o, 1], and assume that f(x0)-::> gCx0 ) 

>hcx0). Then, 

[(£ + g) . h] x0 = min [Cf+ g) x, h(x )] 
0 0 

= min [ max [£Cx0), g(x0)], h(x0)] 

= min [ f(x0), h(x0 )] = h(x0 )1 

and (f • h) x0 + (g • h)x0 = 

max [ (f • h)x0 , Cg • h}x0] = max [h(x0), h(x0)}= h(x0). 

Thus [Cf+ g) • h] (x0 ). = (f · h)x0 + (g • h)x0 for this particular 

ordering. The same would be true for all possible orderings and hence 

(f + g) • h = (f • h) + (g . h). 



31 

The lattice.of subspaces of a vector space (Example 1.10) is not 

distributive for consider z22 (Z ). 1his is a vector space with elements 
2 

(O,O), (l,O), (O,l), and (1,1). 1he subspaces are: 

Ho = { (O,O)} 

H1 = {<o,o), <1,0)1 

H = t<O,O), (0, 01 
2 

H = {<o,o), (1, 01 
3 

H4 = t<O,O), (0,0, c1,o), c1,o]. 

The lattice diagram is 

and the lattice is modular but not distributive. In general, the 

lattice of subspaces is a modular lattice. To prove this, let a,b,c 

be subspaces with acc. It must be proved that (a+ b) • c =(a• c) 

+ Cb • c) =a+ (b. c). Since a. c + b. c is always contained in 

(a+ b) • c, this reduces to showing that (a+ b) •cc a. c + b • c. 

Now, let z e (a+ b) • c, then z = y3 ec and z = y1 + y2 , where Yl 

and Y2 are in a and b respectively. Hence, y3 = y1 + y2 , which implies 

that y2 = y3 - y1 e c +a= c. 1hus, Yz e b • c and z = Y3 = y1 + Yz 

ea+ b • c. 1his shows that (a+ b) • cc a+ (b • c); therefore, 

(a+ b) • c =a+ b • c [9]. 



CHAPTER III 

RELATIONSHIPS BETWEEN DIFFERENT TYPES OF LATTICES 

In Chapter II some basic types of lattices were discussed and sev-

eral examples given that illustrated. these different types. As an aid. 

in seeing how the many kinds of lattices are related, it is extremely 

illuminating to construct Venn diagrams where each circle represents a 

different type of latticee This chapter will be concerned with the con-

struct:i.on of such Venn diagram.so 

Venn Diagrams of Lattices 

F:i.:.r.st, con.sider a Vis,rnn diagram to illustrate the relat:i.onships be-

twee.rm the following types of lattices--modular, distributive., complcS:-

merr1ted, a1rnd lattices with O arrnd 1 elements. The. Verrnn diagram is sim-

pU.:fi(-:id cons:l..der,ably by the fact that a.11 di.stributive lattices a'!t.·<:i 

mod:ulat·; th1.s me.ams that the C!i.rcle repr~1sen.t:l.r1g the d:i.stributive 

la.tt:i.ce.s i.s pla.ced in.si.d.e the c:i .. rcle for modular ones. A similar relia.-

tionsh:i.p holds between complemented lattices and lattices wh:i.ch have 0 

and 1 eilemen.ts. Figure 3.1 is the desired Venn Diagram. 

To show that ,the Ven.n d.iagram is drawn correctly, it is necessary 

to find a lattice which will satisfy the specific properties of each 

region of Figure 3.1. In most instances the easiest way to find these 

lattices is by drawing lattice diagrams. The diagram.s actually defirie 
--'5 

lattice.s, with the meet and join of each pair of elemen.t-s easily 
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-----· --------· 

Fi.gure 3.1 

obta.i.ned from the. di.a.gram. To illustrate. the technique. used in con-

structing these diagrams, consider region (:L) of Figure 3.1. A lattice 

in this region is non-modular. and does not have. both first and last ele-

ments. Since the desired lattice is not modular, it mu.st:, by Corollary 

1.10, contain the 
~ 

sub lattice r \\ 
"-,/ 

; however, this lattice by itself 

0 

contains O and 1 elements. Thus the infinite chain I 

l 
( see. page 7 ) 

is combined with it to form the des:i.red lattice. It should be noted 

that this is certainly not the only lattice that satisfies these prop-

erties. 
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Examples of lattices in the different regions of Figure 3.1 are 

shown in Figure 3.2 with the number of the lattice diagram corresponding 

to the number of the region. 

2 

5 

7 8 

I 

0 

I 
I 

) 

<D 
Figure\ 3.2 

3 

0 
6 

I 

9 i 
Next~ consider how the Ve.nn diag·ra.m is changed whe.n the ad.di tional 

prope.rty of being "linearly ordered" is considered. As in the case of 

the first Venn diagram, this one is considerably simplified by relation-

ships that exist a.rnong the lattices. For example, it follows i.mme-

diately from Theorem 1..11 that every linearly ordered lattice is 

distributive. 

The Venn diagram with the additional property included is given in 
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Figure 3.3. Pet"haps :i,t s~ould·be m!ant:i,oned th~t the Venll di~gram is 

drawn in its most genei:-al form,; this meanf;l. 1:h!:1,t every possible region is 

incluc;led. It is certainly conceivable that thet"e might be f:lome region. 

that is empty, that is,_no lattice satisfie$ all the condit;ions of _that 

region. If thh · is found to be the· case, th~n the Venn diagram wi.11 be 

redtawn with th1;1,t region Olllitted. · · 

,, 10 ',::,~- --~·······-········· 
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Again it is necessary to exhibit lattices that satisfy the partic-

ular properties of each of the regions in Figure 3.3; these lattices are 

given in Figure 3.4. 

t 

1 

t 

0 
2 3 

4 C 5 6 

) 
7 0 8 9 

10 11 12 

Figure 3. 4,. 

For most of the regions there are many other lattices which would 

work just as well as the one used. In this respe.ct, reg:i.on (9) is 

unique since the only linearly ordered lattice that is complemented is 

the one given in Figure 3.4. This is easily seen, for if bis an 
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element of the chain, where b f O and b r 1, then O c: b c lo Thus, 

b • x = 0 implies that x = O; therefore, b + x = b 1 1. 

Complete Lattices 

There are certainly many more properties of lattices that could be 

considered and the corresponding Venn diagram drawn; however, only one 

more property will be considered in this chapter. This is the property 

of "completeness." 

Definition 3.1. A lattice is said to be complete if every (finite 

or infinite) subset A = laQ' 1 has a 1. u. b. U aO:' and a g.1. b. naQ' in the 

lattice. 

In the proof of Theorem 1.3 it was shown that every finite subset 

of a lattice has.a g.1.b. (meet) and a 1.u.b. (join). This implies that 

finite lattices are complete. Thus, when trying to show a particular 

lattice incomplete, only infinite lattices and infinite subsets of these 

lattices need to be considered. 

To illustrate a lattice that is not complete, consider the rational 

numbers between O and 2. This certainly forms a lattice, L, under the 

normal ordering--to be specific, it forms a lattice which is linearly 

ordered and has first and last elements. Now consider the set 

A = Thus Lis not 

complete. 

Notice that in this lattice there is no element which covers O; 

in fact, there is no element that covers any other elemento Thus, the 



lattice cannot be represented by the diagram b 
I 
I 

1 
For convenience 

in representing certain types of lattices that are not complete, this 

particular lattice will be represented by the diagram i 
In drawing the Venn diagram when this new property is considered, 

the diagram is again simplified by a basic relationship, namely, that 
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every complete lattice must have first and last elements. This follows 

directly from the definition and the fact that every set is a subset of 

its elf. 

The most general Venn diagram representing these types of lattices 

is given in Figure 3.5. 

\\ 

\ 
\ 
i 

Figure 3.5. 



The lattices which correspond to regions (1) through (17) of 

Figure 3.5 are given below. 

1 

4 

7 

I 
I 
I 

6 

0 

<I> 
lv 

' ' 

] li. ? 

"<{> 

2 

5 

8 

11 t 
I 
I 

' 

15 ~ 

0 

3 

6 l 

r> <1> 
9 

i2 13 

I I 
16 17 

I 

I 

<! ' 

1 
Figure 3.6 
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Regions (18) and (19) involve finding modular lattices that are 

complemented but not complete. It is extremely difficult to construct 

mean.ingful diagrams that would represent these lattices; therefore, 

these lattices will be obtained without the use of diagrams. 

First, consider region 09). A lattice satisfying the particular 

properties of this region must be (i) distributive, (ii) complemented, 

(iii) not linearly ordered, and (iv) not complete. 

To construct a lattice satisfying these properties, let B be a 

collection of subsets of the integers such that Se: B iff Sis fin:i.te 

or S' is finite. It will now be proved that Bis a lattice that satis-

fies the desired. conditions. 

It must be established that B is a lattice. B is partially ordere.d. 

by set inclusion so all that needs to be proved is that S , S e: B =;;>-
1 2 

SUS e: Band S () S e B. There are three cases to be consideredo 
1 2 1 2 

Case I: S, S are both finite. It follows that Sn S is finite 
1 2 1 2 

and s1u S is finite. Thus, Sn S e: B and. S \) S e: B. 
2 1 2 1 2 

Case II: S, S are both infinite. 
1 2 

G 
This means that S and S 1 

1 2 

are both finite. Thus, (sln S2)' = sl 1 U S2' and 

(SU S ) 1 ~ S 1ns I are both finite sets of integers. 
1 2 1 2 

Therefore, S US and S n S a:.ce elements of B. 
1 2 1 2 

Case II.I: One o:i: the •·ets ""Si.Y S is i.n:fini te and the ot.r.1e1c· 8Elt, I~ I' 1.::H 1 , 

s is finite. s n s is finite,and cs us)' -
2' 1 2 1 2 

s In s I is finite. Thus, s n s , s u s € B. 
1 2 1 2 1 2 

Hence, B is a lattice wlth S 
1 

s =sns ands +s ""sus. 
2 1 2 1 2 1 2 
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This lattice is distributive, since sets are always distributive, 

and it follows immediately from the definition of B that the lattice 

is complemented. 

All that remains is to show that the lattice is not complete. 

Consider the subset P of B defined as follows: 

p = ( t21 ' ~41 ' t 61 ' ... 1. 
Then UP is ( 2 S u ~ 4} V.. • U l 2n 1 U = t2 , 4, 6 , 8, •• • J • However , 

[ 2, 4, 6, ••• , 2n, •• ·] t B since it is an infinite set and its com

plement is also infinite. 

For region (18), the lattice must be modular, complemented, not 

distributive, and not complete, To obtain a lattice satisfying these 

conditions, let F be the set of all real functions defined on Z that 

are zero except at a finite number of points, where Z is the set of 

positive integers. That F forms a vector space over R, the set of real 

numbers, follows easily and the details will be omitted. Now define L 

to be the collection of subspaces of F that have finite dimension or 

fi.nite. co-dimension. It is now asserted that L is a lattice satisfying 

the desired conditions. 

Before the pt·oof of this assertion is begun, a basis needs to be 

obtained for the real vector space F. 

£ 
n 

(x) 
(tifx=n 

= l O elsewhere. 

First define f e Fas follows: 
n 

Then,S = \£1 , £2 , ••• , fn; •••] forms a basis fat· F. To prove this 

it must be shown that (1) S spans F, and (2) Sis a linearly independent 

set of vectors. 
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Proof of (1): If g'e F then there exists a set of integers B = 

i ' 2 
• D 8 ' ip} such that g (x) 1 0 if x e Band g (x) = O if x 1 B. 

Let g (i ) = a if i e B. Then, g = a f + a f + a f + + ... t t t 1 2 i i 3 i 
1 2 3 

f 
p 

f and thus S t\' f f ... } F. a = 
t~l 

a = spans 
2' 

... ' ' p i t i n 
p t 

Proof of (2): Let (f. , f. , ••• , f 1 be any subset of Sand 
\ 1 1 i 5 

1 2 n 

suppose that f + f + Ci f + + Ci f o. 1 Then Ci Ci ... = 
1 i 2 i 3 i n i 

1 2 3 n 
(a f + Ci f + Ci f + ... + Ci f ) i = 0 <\) = 0 implies that 

1 i 2 i 3 i n i 1 
1 2 3 n 

Ci 1 f. (i ) = 0 and; hence, a = o. Similarly, Ci = Ci = = Ci = o. 
1 1 1 2 3 n 

1 

Now,it will be proved that Lis a lattice. Lis partially ordered 

by set inclusion so it remains to prove that s 
1' 

s e L implies that 
2 

sl . s = s in s e Land s + s = [s vs J e L • Consider the follow-
2 2 1 2 1 2 

ing cases: 

Case I: 

Case II: 

s 
1' 

s both of finite dimension. This implies that 
2 

sl . s 
2 

and sl + s 
2 

are both of finite dimension and thus 

s1 . s2.' s + s e L. 
1 2 

S of finite dimension and S of i.nfinite dimens:i.on. It 
1 2 

follows directly that s 1 n s 2 i.s of finite dimension. 

s 2 being of infinite dimension implies that s2 1 is of 

finite dimension; therefore, dim (S1 + s2) 1 is finite 

1In this context O means the zero function. 



si.nce S cs + S -'::.':'> dim (S + S ) 1 ~ dim S 1 • Thus, 
2 1 2 . 1 2 2 

s1 • s2 and s1 + s2 are both elements of L. 

Case III: s1 , s2 both of infinite dimension. s1 c s1 + s2 · ;:> 

(S1 + s2 )' c s1 ' and thus dim cs1 + s2)' :::: dim s1 ', 
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which i.s finite. 
\ 

Thus, S + S ~ L. 
1 2 

s1• of finite di.men-

sion means that only a finite number of elements of B, the 

basis for F given on page 41, can be in SJ.'. Hence, there 

exists an integer n1 such that fm · e S1 if m :> n1 , where 

fm e B. Similarly, there exists an integer riz· such that 

fk e Sz if k-;;, nz. Therefore, ~or n -~ max (n1 , n2 ), 

fr d Sf/) S2 ) if r )> n. From this it follows that dim 

Hence, L is a lattice with A • B = AnB and A + B = [AUB]. 

This lattice is modular since the subspaces of a vector space are 

always modular; however, Lis not distributive, for if S = [f J, 2 
1 1 

s2 = [f2], and s3 = [f1 + f 2] then s1 • (S2 + s3 ) = s1 but s1 

s1 • s3 = o. Thus,L is not a distributive lattice. 

s + 
2 

All that now remains is to prove that Lis not complete. Consider 

Each of 

these is of dimension 1 and, thus, each is in L, but S = { s2 , s4 , ••• , 

s2n, ••• ] does not have a least upper bound in L since the. l.u.b. 

S = [f J + [f J + [f J + ••• + [f J + is of infinite dimension 
2 4 6 2n 

2[£1] means the space generated by £1• 
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and its complement is also o:f inUnite dimension. 

A lattice satisfying the conditions o:f ~egion (20) must be (i) 

linearly ordered, (ii) complemented, and (iii) not complete. It is 

impossible for any lattice to satisfy these three conditions since the 

only linearly ordered lattice that is complemented is represented by f . 
0 

This is a finite lattice and is thus complete. Therefore, Figure 3.5 

needs tp be redrawn with region (20) excluded. (Figure 3.7). 

1 

, . .....___ ------
Figure 3.7 



CHAPTER IV 

COMPLEMENTED LATTICES 

In this chapter attention is focused on various theorems concerning 

complemented lattices. Most of the results considered are from recent 

publications in mathematics journals, and the relationships between the 

various theorems is discussed in detail. 

First, J. Von Neumann's Theorem [4] relating complemented and 

relatively complemented lattices is proved along with a recent converse 

to it that is due to G. Szasz [12]. The remainder of the chapter pri-

marily deals with recent applications of this converse, 

Relatively Complemented Lattices 

One additional property of lattices is to be considered in this 

section - - that of bei.ng relatively complemented. 

Definition 4.1.. Let L be an arbitrary lattice arid [a, b] be some 

1 
interval of L with u an element of [a, b]. If some element x of L 

satisfies the equations 

u • x = a and u + x = b, 

then xis included in the sublattice [a, b]. On this basis, an element 

1 
If a and b are .elements of a lattice L and a c b, then the set of 

all elements x e L such that a c x c bis called the interval bounded by 
a and band is denoted by [a, b]. 
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x of L for which these two equations hold is called a relative 

complement of u in [a, b]. The adjective "relative" indicates that the 

complement is considered relative to a sublattice. It is also said that 

xis a relative complement of u with respect to the pair of elements a, 

b, A lattice is said to be relatively complemented if for any triplet 

of its elements a, b, u (ac u c b), there can be found at least one 

complement of u in [a, b], in other words, if every interval of Lis 

a complemented lattice. 

The similarity of the definitions of complemented and relatively 

complemented lattices would seem to imply that certain basic relation

ships exist between lattices satisfying each of these properties. Pos

sibly the most basic theorem relating these two types of lattices is 

due to J. Von Neumann [ 14, p. 115] • .. 

Theorem 4.1. (Neumann's Theorem). Any complemented modular 

lattice is relatively complemented. 

Proof. Let a c r c b be given, and let t be any complement of r. 

Then [Ca+ t) i b] ~ r = (~ + t) (bi r) =(a+ t) r =a+ (t • r) = 

a+ O = a, and [(a+ t) b] + r =[a.+ (t • b)] + r = r + 

[a+ (t • b)] = (r +a)+ (t. b) = r + Ct ~ b) = (r + t) , b = 1 • b = 

b, 

Thus, if Lis modular, then for any complement t of r, the element 

(1) s =Ca+ t) • b =a+ Ct • b) 

is a relative complement of r in [a, b], 

In 1957, G. Szasz [12] published the following converse to 

Neumann's Theorem. 
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Theorem 4.2. Let L be any relatively complemented lattice with 

greatest and least elements, and let a, b, r be any elements of L such 

that a c r c b holds. Furthermore, lets be any relative complement of 

r in [a, b]. Then there exists at least one complement t of r which 

satisfies ( 1), 

Rather than prove this theorem the way it is stated, Szasz chose 

to prove the somewhat more general result. 

Theorem 4.3. Let L, a, b, r, s be as in Theorem 4.2 and let t 

(e L) be any solution of the equation system 

(2) i) r . t = 0, 

ii) r -i· t = 1 , 

iii) (a + t) '·· b = s' and 

iv) a+ Ct , b) = s. 

Then there exists a relative complement y of a in [o, s] and a relative 

complement z of bin [s, 1] such that tis a relative complement of s 

in [y, z]. 

Conversely, if y is any relative complement of a in [o, s] and z is 

any relative complement of bin [s, 1], then any relative complement t 

of s in [y, z] satisfies the equation system (2), (See Figure 4.1), 

( t 

0 

Figure 4.1 



:Proof of Theorem 4.3. To prove the first part, consider any 

solution t of (2) and define two elements y, z by y = s . t and 

z = s + t. By the definition of these elements, tis a relative com

plement of sin [y, z]. Also, by the last two equations of (2), it 

follows that 

y = s • t = [ ( a + t ) ., b J . t = ( a + t ) , ( b . t ) = b , t , and 

z = s + t =[a+ (t b)] + t = t +[a+ (t • b)] = (t + a) 

+ Ct , b) = t + a. 
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It will now be shown that y is a relative complement of a in [O, s] and 

that z is a relative complement of bin [s, 1]. First, 

a · y = a , Cb · t) = Ca , b) , t = a O t c r • t = OJ and 

a+ y =a+ Cb • t) = s by the last equation of (2). 

Similarly, 

b • z = b (t + a) = (a + t) , b = s by the third equation of (2), 

and b + z = b +Ct+ a)= b +Ca+ t) = (b +a)+ t = b + t~ r + t = 1. 

Thus, the first part of the theorem is proved. 

Conversely, let y be any relative complement of a in [o, sJ, zany 

relative complement of bin [s, 1], and t any relative complement of s 

i.n [y, z]. It must be proved that t satisfies the equation system (2). 

Thus, we have given: 

(3) ac XC b 

C4) y . a = o, y + a = s. 

(5) z . b = s' z + b = 1 

C6) t . s = Y, t + s = z. 



Using these equations, the different parts of (2) are obtained as 

follows: 

(i) r • t = (r • b) • (z , t) 

(ii) r .,. t 

= r • (b • z) • t 

= r · s · t 

(r • s) • (s • t) 

a . Y 

= 0 

= (r ... a) 

= r + (a+ 

r + s + 

= (r + s) 

= b + z 

= 1 

... (y + t) 

y) + t 

t 

+ (s ·r t) 

(iii) (a "~ t) • b = [a + (y + t)] • b 

= [ (a + y) + t] • b 

= (s + t) • b 

= z • b 

= s 

(iv) a + (t . b) = a + [(t . z) • b] 

= a + [t . (z . b) J 

= a + [t . s] 

= a + y 

= s 

49 
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Thus, the proof of Theorem 4.3 is complete, and Theorem 4.2 is an 

immediate consequence of the second· part of this theorem. 

As an important consequence of this result, notice that ~f L, a, 

b are as in Theorem 4.3 and r 1, r 2 are two distinct elements of [a, b] 

that have a common relative complements in [a, b], then it follows 

immediately that r 1 and r 2 have at least one common complement t. 

A Modularity Condition 

The theorem of Dedekind (Corollary 1.10) is certainly a remarkable 

one, and its usefulness was demonstrated in Chapter III. Using Theorem 

4.3 and the remark following it, Szasz [13] obtained a similar type mod-

ularity condition for relatively complemented lattices with greatest and 

least elements. This result is given in the following theorem. 

Theorem 4.4. Let L be any relatively complemented lattice with 

greatest and least elements. Then Lis modular if and only if it con-

tains no sublattice of the type 

s 

Proof. By Corollary 1.10, the condition is necessary. To show 

that it is also sufficient, let L be any relatively complemented lattice 

with greatest and least elements. If Lis non-modular, then -- again by 

the theorem of Dedekind -- it contains a sublattice of the type :()s , 
a 

Thus, there exists elements a, b, r 1 , r 2 , sin L such that r 1 and r 2 

have a common relative complements in [a, b]. Hence by the remark 
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following Theorem 4.3, r 1 and r 2 have a common complement t, It 

follows that the set of elements O, r 1, r 2 , t, 1 forms the desired type 

of sublattice. 

Simi lat" conditions have been obtained for complemented· lattfces of 

finite dimension by R, P. Dilworth [7]., and for· complemented,· atomic 

lattices by J, E, McLaughlin [11]. 

Lattices With Unique Complements 

Some interesting properties of uniquely complemented lattices will 

now be considered. In the first theorem, Szasz [13] gives a simple 

proof of a known theorem [4, p, 171], 

Theorem 4.6. Any modular lattice with unique complements is a 

Boolean Algebra. 

Proof. From Theorem 1.11, all that needs to be proved is that 

any lattice satisfying the given conditions has unique relative com

plements. To do this, let a, b, r be any elements of a complemented 

modular lattice L such that a c r c b, By Neumann's Theorem, Lis 

relatively complemented; therefore, by Theorem 4.2 it follows that to 

each relative complements of r there exists at least one complement t 

of r such thats= a+ (t • b). Hence, if L also has the property of 

being a lattice with unique complements, then r has a unique complement 

t and, consequently, a unique relative complements in [a, b], Thus, 

the theorem is proved. 

The next theorem follows immediately from Theorems 4.4 and 4.6, 



Theorem !±J.. A lattice with unique complements is relatively 

complemented if and only if it is distributive. 
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Since any distributive, complemented lattice is relatively comple

mented, the 11if 11 part is immediate. To prove the "only if" part, let 

L be any lattice with unique complements. If Lis non-distributive, 

then by Theorem 4.6, it is non-modular. But from Theorem 4.4, it 

follows that non-modular lattices with unique complements are not 

relatively complemented. Thus, the proof is complete. 

The last result included in this chapter was published by R. 

Bumcrot [6] in 1964. It provides an extension of De.Morgans laws to 

complemented modular lattices. 

Theorem 4.8. If Lis a modular lattice with O and 1, if a,b in L 

have unique complements a', b' respectively, and if a+ band a· b 

have complements, then a+~ is the complement of a.band a'. b' is 

the complement of a+ b. 

Proof. It will first be proved that x = (a -:- b)' + [(a • b)' · b] 

is a complement of a and y =(a+ b)' +[(a• b)' · a] is a complement 

of b, where (a+ b)' and (a. b)' are any complements of a+ band a· b, 

respectively. The steps in which the modularity condition is used will 

be denoted by=* 

a+ X = fa + (a b)1 + i<a + b) I + [ (a b) I bJ1 

= la + (a+ b) 'J + l (a • b) + [(a. b) I • b]} 

=*\a + (a + b) '1 +\[ (a • b) + (a· b)'] . b} (Note: a• b Cb) 

= a + (a + b) I + b 

= (a + b) + (a + b) I 

= 1, 
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and 

a • X = fa • (a + b) J • t<a + b) I + [(a • b) I • b] 1 
= a ./(a-l·b) 

\ 
• \ (a + b) I + [(a • b) I • bJ1) 

* a •!(a + b) (a+b) 1 +[(a· b) I • b]} (Note: (a•b)'. 
b Cb C a+b) 

a ,• t O + [ (a • b)' .• bJ1 

= 

= 

= (a • b) . (a • b)' 

= o. 

Thus, xis a complement of a. Similarly, y = (a+ b)' + 

[ (a • b)' • a] is a complement of b. Also, by dualizing each step of 

the proofs above, it can be shown that x = (a • b)' [(a+ b)' + b] and 

y = (a • b)' •[(a+ b)' + a] are also complements of a and b, respec-

tively. Thus, since a' and b' are unique, a' = x = x and b' = y = y. 

Now, 

( a ' + b ' ) + ( a . b.) 

= (x + y) + (a • b) 

= <i<a -~ b)' + [ (a • b) I • b] 1 + [<a + b)' + [ (a ,• b)' aJ}) 

+ (a • b) 

= (a + b)' + [(a • b)' • b] + (a + b)' + [ (a • b) I • a] 

+ (a. b) 

= (a + b)' + {<a • b) +[(a. b)' • b]} + {<a • b) 

+ [(a ' b) I • a]3 

* + { [ (a = (a+ b)' • b) + (a .• b) 'J • b} + l [ (a • b) 

+ (a • b) I J • a J 
= (a+ b) I + (1 • b) + (1 • a) 

= (a + b)' + (a + b) 

1, 
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(a' ·l· b'), (a, b) 

= <X + y) , <a . b) 

=(t<a b)' [ ( a + b) ' + b J) + l ( a , b) 1 ! [ ( a + b) 1 + a J }) 

(a , b) 

* (a. b)' 0a + b)' + b + t<a · b)' · [(a+b)' + aJ}) 

(a, b) 

= ( a , b) 1 ( a b) (< a + b) ' + b + { ( a · b) ' 

, [(a+ b) 1 + aJ3) 

o. 

Therefore, (a' + b') is a complement of a • b. 

Also, 

(a' , b') + (a. •r b) = (x • y) + (a + b) = 

=(l<a + b)' +[(a· b)' · b]J · i (a+ b)' +[(a· b)' • aJ)) 

+·(a+b) 

+([<a •b)' • b] • t<a+b)' + [,·.(a ·b)' ·aJ}) * = (a+b)' 

+ (a+ b) 

(Note: (a+b)'c(a+b)'+[(a •b)' •a]) 

={<a+ b)' + (a ·r b)J +([<a, b)' • b] • t<a. + b)' 

+ [ ( a .• b) ' , a] J) 
= 1+([<a ,b)' .b] • ~ ( a. + b ) 1 + [ ( a , b ) ' • a J 1) 
= 1, 
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and 

(a'~ b') • (a+ b) = (x. y). (a+ b) = 

= ((<a ,• b)' [ (a + b ) 1 + b]} .• ~ (a .• b)' • [ (a + b)' + aJ}) 

• (a + b) 

= (a b) 1 • t<a + b) ~ [ (a + b) ' + b J 1 .• t (a + b) 

.• [ (a + b)' + a]} 

* = (a • b) 1 ·{[ (a + b) • (a + b) '] + b] • l [ (a + b) 

.(a+b)']+aJ 

(Note: b c a + b and a c a + b) 

= ( a • b ) ' • ( O + b ) .• ( O + a) 

= (a ·" b) ' _,, (a • b) 

Thus, a' • b' is a complement of a+ band the proof is complete. 



CHAPTER V 

SUMMARY AND EDUCATIONAL IMFLICATIONS 

This thesis presents a discussion of many basic types of lattices 

with particular emphasis given to complemented lattices. It attempts 

to do so in such a manner that the material can be understood by under

graduate mathematics students who have a basic knowledge of abstract 

algebra and set theory. 

Summary 

Chapter I serves as an introduction and includes a brief history of 

the development of lattice theory and its current significance in the 

field of mathematics. The two basic objectives of the paper are stated 

in the first chapter. These are 

(1) to show the basic relationships that exist between different 

areas of mathematics and to illuminate some important prop

erties of a variety of mathematical systems; and 

(2) to expose the undergraduate to the frontier in a specific 

area of mathematics. 

Chapter II discusses the basic structure of a lattice, and the 

concept of a lattice is then related to other a·reas: of mathematics -

logic, group theory, convex sets, etc. -- by considering basic examples 

of lattices in the various areas, These examples are then used to 

illustrate certain special properties of lattices. To be specific, 
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when the property of modularity is defined the basic examples are 

analyzed with respect to this particular property. The examples dis

cussed are those that seem most relevant and interesting, and no at

tempt is made to discuss all the examples with respect to each property. 

Chapter III illustrates in detail the relationships among the var

ious lattices discussed in Chapter II. Venn diagrams are constructed 

with each circle representing a particular type lattice. To prove the 

diagram is accurately drawn a lattice is found that satisfies the par

ticular properties of each region in the Venn diagram. The following 

types of lattices are considered: modular, distributive, complemented, 

complete, linearly ordered, and those with first and last elements. 

Using Chapters II and III as background material, Chapter IV fo

cuses on the specific area of complemented lattices. Most of the mat

erial discussed is from recent publications in mathematical journals, 

and the theorems and developments in the area of complemented lattices 

are related in detail. 

Educational Implications 

There seems to be a need in most mathematics curricula for a 

course that in some way shows underlying relationships among various 

areas of mathematics. This thesis uses a recently developed study -

lattice theory -- as a unifying course. 

Not only does this paper help to show the relationship among di.f

ferent areas of mathematics, it also exposes the student to the frontier 

in the specific area of complemented lattices. This exposure will give 

the student an opportunity to reach the level of original work and will 
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be a valuable asset in helping the more capable student prepare himself 

for future work on the graduate level. 
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