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CHAPTER I 

INTRODUCTION 

In hydraulic circuits, and indeed in any system where 

sharp edged disturbances occur, one becomes concerned with 

the transient behavior of the system. Often, as in the 

case of hydraulic devices, the main concern is not speed 

of response 9 but rather the ability of the system to re­

spond in a smooth and regular fashion. The technique 

developed in this work provides a means for designing a 

system to such a criterion. This design approach is 

carried out in the time domain rather than the much used 

frequency domaino The time domain is particularly useful 

in studying the transient response, a time function, be­

cause all of the information one needs is available from 

the state model or one of its forms obtained through a 

linear transformation. Attempts have been made [11] to 

determine the character of the transient response through 

use of the location of the eigenvalues of the system 

transfer function on the complex planeo Although the 

eigenvalues9 or modes~ of the system are important to its 

transient behavior~ this is not sufficient information for 

a complete description of the relationships governing the 

transient response. Chapter III will discuss these 

1 
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considerations in detail. The time domain provides some 

other advantages also. One of the most important of these 

is that the state model may be obtained directly from a 

operational block diagram of the system. The gains in 

each block become elements in the matrices making up the 

state model. For instance, consid~r Figure 1. A linear­

ized hydraulic pressure control circuit is shown in block 

diagram form. This system is used in an example design in 

Chapter V. A schematic of the circuit is .also shown. The 

state model may be obtained by defining the output of each 

integrator as a state variable. A series of first order 

differential equations is then written which relate the 

time derivative of each state variable to other pertinent 

elements of the system. These form a matrix differential 

equation. This form of the basic state model is conven­

ient because each of the elements of the model can be 

readily interpreted with regard to its physical 

significance. 

The concept of expressing the dynamic characteristics 

of the system in terms of matrix differential equations 

coupled with the use of a high speed digital computer 

provides an extremely powerful tool. The size of system 

that can be analyzed is not limited by the method but only 

by the memory capacity of the computer. This is a signif­

icant advantage over any of the presently used paper and 

pencil methods. In addition to its ability to accommodate 

large systems, however, the computer is capable of 
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Figure 1. Typical Hydraulic Pressure Control Circuit 
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performing very quickly, operations that would be extreme­

ly laborious by hand. This th.ought suggests the possibil­

ity of a new class of analysis concepts [12]. Normally, 

troublesome procedures such as matrix inversion, polynom­

ial factoring, matrix transformations, etc., are accom­

plished easily by the computer. 

Some of the features of the approach presented in 

this thesis are listed below. 

a. The mathematical description of the system 

may be taken directly from an operational 

block diagram. 

b. Magnitude constraints may be placed on any 

number of elements in the state equations. 

c. Additional state variable feedback may be 

added for system exploration. 

d. The performance index used requires no 

norm to be calculated in order to evaluate 

the quality of the response. 

e. Insight is provided into the influence of 

each mode of the system response on the 

total response by observing the components 

of the performance index attributable to 

each mode. 

There are also some limitations of the method at this 

time. Only single input/output, linear time invariant 

systems have been investigated with this method. These 

systems are also assumed to possess distinct eigenvalues. 
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This last limitation is not very restrictive since most 

physical systems will possess distinct eigenvalues. A 

step is considered as the design input throughout this 

work. The systems used are to be controllable and observ­

able. More discussion will be forthcoming relative to 

this in Chapter II • 

The design approach presented in this work is partic­

ularly useful in industrial applications since it provides 

an all important link between hardware geometry and the 

mathematics required in the process of compensating the 

transient response of a system. The high speed capability 

of the digital computer permits parametric compensation 

studies to be made which would be impractical to do by 

hand. Accuracy of the computer, though sufficient for 

most design applications, may be increased by modifying 

parts of the program to double precision computation. The 

design procedure discussed in this thesis is considered, 

by the author, to be an early contribution to a new gener­

ation of design methods centering about the high speed 

digital computer. 



CE'.APTER II 

RELATED WORK OF OTHER INVESTIGATORS 

This chapter contains brief discussions of work 

accomplished by other investigators of interest to the 

work of this thesis. If the reader is interested in 

pursuing any of these papers in depth, they are all 

listed in the Selected Bibliography. 

Evans, Vigour and Ellert [8] 

This paper discusses a parameter optimization design 

method and its application to hydraulic servo design. The 

performance index used is composed of a velocity error and 

several sources of position error of a cutting tool rela­

tive to a desired contour. The index has the form 

tr 
I=/ f 0 (t)dt 

0 

where f 0 (t) is the sum of squared error functions that are 

designed to result in 

1. small path errors, 

2. smaller overshoots than undershoots at the 

corners of the path, 

3. no oscillations due to backlash or inadequate 

6 
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system damping, and 

4. little or no flattening of the contour. 

The designer must select values of numerous constants 

associated with the terms of f 0 (t). These determine the 

relative influence of each term and the regions of low and 

high penalty in the optimization procedure. 

In this paper, five system parameters are selected as 

optimization variables. These include the gains of the 

position error and valve amplifiers, two time constants 

associated with a lag-lead network in the system and 

finally the leakage coefficient of the motor. A steepest 

de.scent technique is used to accomplish the minimization 

procedure. The criterion used in this paper has the 

advantage of encompassing several performance character­

istics but it requires that the designer make numerous 

arbitrary selections of parameters. 

Gall [9] 

An optimization criterion, which is capable of simul­

taneously considering a number o;f different aspects of the 

performance of a control system, is described in this 

paper. This criterion is derived from a ranking array. 

The array is established by the designer by establishing 

the most desirable and maximum allowable values of the 

mean square magnitudes of a group of performance charac­

teristics that a:re considered to be pertinent. In the 

second order example of this paper, these characteristics 



were the acceleration, velocity, displacement, and input 

force as shown in the array below. 

Desirability 

J(i) 

Most Desirable 0 
1 
2 
3 

Max. Allowable 4 
5 

TABLE I 

RANKING ARRAY 

(i=l) (i=2) 

o'i cr2 
V 

0 0 
1 8 
4 10 
9 12 

16 16 
100 200 

Ci= 3) . (i=4) 

cr2 
D 

cr2 
F 

0 0 
0.1 10 
0.2 20 
0.3 40 
0.4 80 

100 500 

Mean square values of these characteristics for con-

ditions between the most desirable and maximum allowable 

are selected arbitarily by the designer. This selection 

allows the designer to weigh the importance of each 

parameter. The last row of the array provides an indica-

tion of the field of acceptable values of each parameter. 

8 

These are, by necessity, fairly large since the starting 

point of the optimization is taken at random. During the 

optimization, each of the mean square magnitudes discussed 

above are computed at each trial point in the search space. 

The ranking of the system is no better than the ranking of 



the worst parameter. The system is optimized by 

minimizing J(i), the ranking variable. This is referred 

to by Gall as a "Max-Ranking." criterion. 

9 

Since the partial derivatives of J are discontinuous, 

the steepest descent minimization approach may not be used. 

Gall employs a pseudo random search technique that employs 

a probability function. This technique is capable of in­

cluding several characteristics in the performance cri­

terion, but it proved to be very time consuming on the 

digital computer and was difficult to implement with high 

order systems. 

Gustafson [11] 

This paper descr~bes an algebraic method of control 

system design using the system characteristic equation and 

the Routh array. The method is based on two concepts. 

1. The first three time moments of the 

impulse response of a system may be ex­

pressed, using only the last three coef­

ficients of the characteristic equation. 

2. The first three frequency moments of the 

spectral density may be expressed using 

only the last three elements of the 

Routh array associated with the character­

istic equation. 

A truncated transfer function is formed by ignoring all 

terms in the denominator of the original function except 
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the last three. An associated transfer function is formed 

by using the last three coefficients of the Routh array in 

the following way: 

A(s) = (2-1) 

where b0 is the same as the numerator of the original and 

the truncated transfer functions. The subscripts of the 

R's indicate the row and column of the Routh array. 

Gustafson shows that the integral square impulse response, 

ISIR of A(s) is identical to that of the original system. 

An energy ratio is formed that compares the ISIR's of the 

truncated transfer function to that of A(s). If this 

ratio is near 1.0, the truncated function is a good approx­

imation to the transfer function of the original system. 

This approximation is the goal of the method so that the 

system can be designed as if it were a second order sys­

tem. An example of a fifth order system indicated that 

the transient responses of the original system, the trun­

cated function system and the system represented by A(s) 

are only generally comparable. 

Morgan [14] 

This paper presents a method for obtaining the trans­

fer function matrix P(s). This represents an alternate 

approach for arriving at the system response. The devel­

opment of the transfer function matrix is extended to a 
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discussion of sensitivity. Specifically, this involves 

determining the sensitivity o.f P(s) to changes in the 

ma:trix elements of the state model.· 1rhese considerations 

may be of use to future investigators in extending the 

work of this thesis. Chapter VI discusses two recommenda­

tions for future research that may depend upon a study of 

sensitivity. 

Brockett [ 5] 

Brockett states that if linear state variable feed­

back is applied to a system, then the system with feedback 

is controllable if and only if the original system is con­

trollable. The proof of this theorem is based on the fact 

that if the original system is controllable, then for each 

initial state x 0 and each desired final state xf' there is 

an input u' which drives the system from x0 to xf. If 

such a trajectory is called x', then for a system possess­

ing feedback 1 the same trajectory can be obtained if an 

input u = u' + kx' is applied& 

It is shown in this paper that observability can be 

affected by state variable feedback. An example is given 

in which a system that is originally observable is modi­

fied by the addition of linear state variable feedback. A 

test of the necessary condition for observability ([C, CA] 

be of rank n) shows that the modification results in a 

system that is not observable. The reason observability 

is lost is that a pole of the original system transfer 
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function is moved by the addition of feedback such that a 

zero is canceled. 

Brockett went on to show that through state variable 

feedback it is possible, ideally, to attain any desired 

set of eigenvalues. This is only of practical significance 

when all of the state variables are measurable. 

The design procedure of this thesis depends upon the 

system's being both controllable and observable. Any 

modifications made to the system by way of·state variable 

feedback must be made with these considerations in mind. 

Bacon [l] and [2] 

The first of these two papers is concerned with 

establishing the algebraic constraint equations that pro­

vide the necessary and sufficient conditions for a linear 

time invariant state model t~ have a given solut.ion. To 

accomplish this, the state model is first written. 

x(t) = Ax(t) + Bv(t) 

y(t) = Cx(t) + Dv(t) 

(2-2) 

(2-3) 

The state vector x(t) and the system output y(t) are then 

written as the matrix equations 

i(t) = GSFS(t) + GeFe(t) 

y(t) = NSFS(t) + NeFe(t) 

(2-4) 

(2-5) 

where the bar over x(t) indicates that it is the desired 
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response function. Gs, G , N,, and N are constant coeffi-e s e 

cient matrices. Fs(t) is the ciesired time function asso-

ciated with the homogeneous solution of the state model. 

Fe(t) is the time function associated with the input to 

the system. Differentiation of Equation (2-4) yields an 

equation that may be combined with Equation (2-2). This 

combination results in the algebraic constraint equations 

required such that Equation (2-3) will be equivalent to 

Equation (2-5). A matrix equation of the following form 

can now be written: 

(2-6) 

where His a matrix containing all of the coefficient 

matrices of the state model as well as the initial condi-

tions of the state vector x( t). K1 and K2 are matrices 

made up of constant matrices that relate the desired solu­

tion to the original state model. Wis a matrix made up 

of constant matrices that associate the desired system 

output with the state vector and the initial conditions of 

time functions Fs(t) and Fe(t). 

The second of the two papers places constraints on 

the entries of the matrices in the state model. Certain 

entries in the A matrix of Equation (2-2) are written as 

functions of several parameters p. This can be true, in 

general, of all the constant matrices of the state model. 

The form that results is 

x(t) = A(P)x(t) + B(P)v(t) (2-7) 
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y(t) = C(P)x(t) + D(P)v(t). (2-8) 

From these equations and the development above, the fol-

lowing expression is obtained; 

(2-9) 

where G is a new vector that contains all of the unknown 

entries of K1 and K2 • 

An error function is established since it will not be 

possible, in general, to satisfy Equation (2-9) exactly 

when constraints are imposed. This function has the form 

Z = H ( P) K1 ( G) - K2 ( G) W 

and the performance index associated with Z is 

r q 

u ( P, G) = L L z~ ., 
i=l j=l 

(2-10) 

(2-11) 

where Z is taken as an r x q matrix and z 1 ., is a typical 

element of Z. The optimum parameter vector Pis defined 

as that vector which together with G minimizes the solu­

tion error index u(P,G). 

This method has the following advantages: 

1. It can accommodate multiple inputs/outputs. 

2. It is not restricted to state models with 

distinct eigenvalues. 

3. Specific parameters that make up the ele-

ments of the coefficient matrices in the 
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state model may be constrained.. 

Some of the disadvantages to using this approach as a gen­

eral design technique are that one must specify a time 

response. No procedure is provided that might help the 

designer make this specification. The functions of p 1 

that make up the elements of A, B, C, and Din the state 

model are likely peculiar to the particular design under 

investigation and cannot be programmed in a general sense. 

The computer program used to accomplish this task would 

require modification before each study. 



CHAPTER III 

A PERFORMANCE INDEX FOR TRANSIENT RESPONSE 

In this discussion, the words fl transient response fl 

refer exclusively to the response of a system to a step 

input unless otherwise specified. The problem of develop­

ing a criterion upon which to judge the quality of the 

transient response is a complex one. This chapter pre­

sents an original step response criterion that allows the 

quality of the response to be expressed as a numerical 

value. This criterion emphasizes the tendency of a system 

to overshoot or oscillate. A value of one implies no 

oscillation or overshoot. A value of less than one im­

plies the presence of oscillation or overshoot. The value 

of the criterion is referred to in this thesis as a 

steadiness factor. The design approach o;f this thesis is 

not totally dependent upon this particular performance 

criterion. Many other criteria could be used but the. 

steadiness factor permits the quality of a "nice" response 

to be expressed quantitatively, a much sought after goal. 

This capability is of particular use when the physical 

parameters of a system are established primarily by 

steady-state rather than dynamic considerations. 

It is interesting to compare the attributes of 

16 
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several of the common performance indices. Table II shows 

a group of these, along with the criterion of this thesis, 

with their associated individual advantages. 

TABLE II 

COMPARISON OF PERFORMANCE CRITERIA 

Criterion 

0 
'·· 

Max-Ranking Array 

Steadiness Factor 

Reference 

16 

16 

16 

8 

9 

this 
thesis 

Primary Characteristics 

large errors are penalized 
more heavily than small 
errors, although large 
errors may be tolerated for a 
short time 

gives more even penalty for 
large and small errors; easy 
to implement 

permits heavier weighting of 
sustained errors; easy to 
implement 

permits several response 
characteristics to be in­
cluded; difficult to imple­
ment for a general procedure 

permits random inputs; dif­
ficult to implement for 
large general systems 

permits quantitative de­
scription of the quality of 
the transient response; is 
easily implemented 

Most of these criteria were originally conceived for the 
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purpose of optimizing a design through a minimization of 

the criterion. The steadines::i factor is not used in quite 

this way. Although a steadiness factor of 1.0 indicates 

no tendency of the system to overshoot or oscillate, com­

pensating a system to have this steadiness factor could 

result in sluggish operation. Experience has shown that a 

small tendency to overshoot can allow the system to 

respond more rapidly. Consequently, the design goal for 

steadiness factor is usually not 1.0 but rather a somewhat 

smaller value, say 0.95. The specific implication of 

values less than 1.0 will be explained later in this 

chapter. 

Considerations Important to the Transient Response 

Attempts have been made to design the response of 

systems through adjusting the eigenvalues alone. This 

probably stems from the overwhelming amount of experience 

and familiarity that most designers of dynamic systems· 

have with first and second order differential equations 

and root locus techniques. This approach does not result 

in meaningful information for higher ordered systems or 

systems possessing zeros in the numerator of the system 

transfer function. Consider, for example, an open loop 

system transfer function of the form, 

If unit feedback is applied to this system and the gain 
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increased from zero, the locus of the roots will assume 

the form shown in Figure 2a. Assume the gain is raised 

until the eigenvalues are at -2.5 ± 3.12j. This is equiv­

alent to a damping ratio, C, of approximately 0.6. The 

transient response of such a system is shown in Figure 2b. 

Now, say that another system is designed which has an open 

loop transfer function of the following form: 

G ( s) = K ( f + 61(§ + 2. 7) 
2 S ts+5J (3-1) 

Now, with unit feedback and increasing the gain, the locus 

of roots appears as shown in Figure 3a. The previous root 

locus is shown also for comparison. At some gain the 

locus of the complex pair of roots arrives at the same 

end points as in the previous system. Since the time 

response of a system to a step input is made up of the sum 

of constants and exponentials of the eigenvalues, it is 

apparent that real eigenvalues make no direct contribution 

to oscillatory tendencies in the response. Consequently 

the complex pairs in both of the examples above make the 

only direct, contributions to overshoot. Figure 3b illus­

trates that the transient response of the second system 

possesses significantly more overshoot than the first 

eventhough the complex eigenvalues in both systems are 

identical. It will be shown later in this chapter that 

this is caused by a difference in the phasing of the 

os6illatory modes: 
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System 
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Figure 3a. Root Locus of a Second Order System 
With Zeros 
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Development of the Steadiness Factor Criterion 

To begin this discussion consider a state model 

described by the following equations: 

x =Ax+ Bv 

y = Cx • 

22 

(3-2) 

(3-3) 

. The solution of these equations may be written as follows 

for a step input: 

x(t) = r(t)x(O) +Ltr(t.,.. t')Bvd-r 

y(t) = cr(t)x(o) + cl tr(t - -r)Bvd-r. 

(3-4) 

(3-5) 

If, for simplicity x(O) is allowed to be a zero vector and 

all coefficient matrices are constant, then Equation 

(3-5).may be written 

(3-6) 

Again for the sake of simplicity, let C, r, and Ball be 

in the normal form such that the modes of the system are 

uncoupled. Transformation of the coefficient matrices to 

normal form is discussed in Chapter IV. Now, r(t - -r) has 

the form, 



r2 2 Ct- -r) 

r(t--r) = r 3 3 Ct- -r) 

0 

Now, Equation (3-6) may be written, 

0 

0 

r2 2 Ct- -r) 

r 33 (t--r) 

23 

0 

vd-r 

(3-7) 

= 1 t [ C1 r11 ( t- 't')b1 V + C2 r2 2 ( t- 't')b2 V + C3 r, 3 ( t-'t' )b3 V + 

.•• cnrnnCt--r)bnv]d-r 

but,since 
A. 1 (t--r) 

r 11 (t--r) = e , one may write 

and this expression may be rewritten as follows: 

d( t- t') O (3-8) 

The integration may now be completed. 
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Assume for the moment that two of the ej_genvalues in 

Equation ( 3-8) are complex conjugates, say A1 and A2 • Now, 

let 

A1 = cr + j<.u 

A 2 = cr - jw. 

Making these substitutions and writing only the pertinent 

part of Equation (3-8) one obtains 

Ct) __ [c, b, v + c2 b2 v] + c1 b, v e(cr+jw)t + Cz b2 v 6 (cr-jw)t. 
Y1,2 - A1 A2 A1 A 2 

Let and c, ~2 v = ~ , then 
2 

( ) [ J crt[ jwt -jwtJ Y1 , 2 t = - K1 + K, + e K1 e + K, e _ 

(3-9) 

(3-10) 

by applying the exponential definition of sine and cosine 

one obtains 

= - [K1 + K, J + e 0 t[ (K1 + K, )coswt + (K1 - K, )j sin wt J. (3-11) 

Letting K1 + ~ = K3 sin~ and (K1 - ~ ) j = K3 cos if? for if? 

equal to a constant, and applying a familiar trigonometric 

identity one finally obtains the following well known form 

for a second order system: 

(3-12) 

This motion is such that at time, t 0 = 0, sin(w t + ~) is not 



necessarily zero but sin~. Since sin~= !i..;K2, it is 
3 

apparent that at t The peak values of 

the second term of Equation (3-12) will occur just prior 

to the times at whichwt+t = C2n-2l)n, (n = 1, 2, 3, 
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••• ). For a damped system, the first peak is the largest 

and, therefore, can be used as an indicator of the tend-

ency of this mode to oscillate or overshoot. It can be 

seen from this equation that even though this mode may be 

damped the phase angle t can cause the modes of the system 

to be phased such that an overshoot occurs. Figure 4 

illustrates this for two normalized cases. These two 

transient responses have the same damping envelops and the 

same damped natural frequency. This means that their 

eigenvalues are identical. Curve A overshoots consider­

ably more than curve B,.however. This difference is 

caused by the difference in phasing,~, of the two modes. 

A performance index for transient response is now 

suggested based on the foregoing discussion. Let this 

index be called a steadiness factor. The steadiness fac-

tor for each mode containing a real eigenvalue is defined 

to be equal to 1.0. For the oscillatory modes, the 

steadiness factor is defined as follows: 

(3-13) 

where o is the real part of the eigenvalue pair under 

consideration and tp is the time to the first peak. 

Equation (3-13) comes from rewriting Equation (3-12) as 
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Figure 4. The Effect of Zeros on the Transient Response 
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y 1 ( t) = (K1 + ~ ) 1 [ 1 -(K1 K; K2);0 1 tsin(w 1t + t 1 ) J ( 3-14) 

but Ki K.; ~ = siln4!, so Equation ( 3-14) may be written 

y 1 (t) ·- -(K1 +K2 )[1 -(si!, 1)e0 1tsin(w 1 t+t 1 )]. 

(3-15) 

The magnitude of the expression inside the square brackets 

of Equation (3-15) approaches 1.0 as t approaches infinity. 

If tis taken to correspond with the ti'me at which 

Sin(w 1 t + 1 1 ) == -1.0, then Equation (3-15) may be rewritten 

(3-16) · 

where tp is the time discussed above. At tp, y1 (tp) is 

approximately at a peak magnitude of y 1 • This is actually 

the point of tangency of the sinusoid and the exponential 

of Equation (3-16). Since the steady state value of the 

expression in the brackets is 1.0, the overshoot of this 

expression can be expressed as 

overshoot 

The steadiness factor is then expressed as the difference 

between the normalized steady state value of a mode's 

response and the overshoot. The smaller the overshoot 

becomes,. then the closer SF I approaches 1.0. SF I will 

finally be weighted according to the influence of its 



28 

associate mode in the response of the total system. This 

is shown in later paragraphs. The t:irn.e to first peak, 

tp' is calculated according to the following equation 

(3-17) 

where w is the magnitude of the imaginary part of the 

eigenvalue. The value, 372 is shown as a typical value 

in keeping with the requirement that sin(wt + 8) be -1.0 

discussed above. Actually~ as the signs of K1 and K2 

change and as f changes, adjustments are necessary to the 

multiple of n/2 or to the angle ik in order to ref le ct the 

effect of the first peak. This adjustment is discussed in 

detail in Appendix C. 

A steadiness factor for the complete system can be 

obtained by applying a weighting factor to each individual 

steadiness factor. In the interest of clarity let the 

following definitions hold for th~ constants associated 

with the weighting factors: 

c,_b 1 v 
--- for real A.' s = 

/\.1 

C.l bj V 

A.J for complex A. 1 S = K.lc 

lK 3 c + K3 c*1 = the absolute value of the 

sum of K3 c and its 

conjugate. 

It may be seen from Equation (3-8) that the terms 
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c 1 b 1 v 
/\. 

1 
establish the steady state magnitudes of each mode. 

For the real modes, these are expressed above as K1 r~ For 

the complex modes that involve a pair of eigenvaluep, the 

magnitude is given by the absolute value of the sum of the 

two corresponding K3 c's defined above. The fraction of 

the total system steady state response that each mode rep-

resents can be determined by 

and 

Now the total system steadiness factor may be expressed as 

follows remembering that the basic steadiness factor of a 

real mode is 1.0 and that of a complex mode is·computed by 

Equation ( 3-13): 

SFT 
~Ktr + ~IK3c + K3c*ISF1 

= ~Ktr + ~IK3c + K3c*I 
( 3~18) 

Each mode is now weighted according to its influence on 

the total system response. SFT is equal to 1.0 minus the 

sum of the overshoots of each oscillatory mode taken at 

its first peak. 

The value of SFT obtained from Equation (3-18) may 

then be compared to a desired value, say 0.95 to determine 

an acceptable response. Use of 0.95 as a criterio!.L 
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implies that the sum of the first peak overshoots of all 

the oscillatory modes totals to less than 5% of the total 

system steady state response. This is a direct measure of 

the deviation from nonoscillatory response. Chapter IV 

will discuss the details .of adjusting the system in the 

event that SFT is less than the desired value. 

The system associated with the transfer function of 

Equation (3-1) was-used for a test case. The closed loop 

transfer function of this system may be written 

CC) 4.~8# + 38.2s + 71 
ff s = s3 ~-9.38~-+ 38.2s-+ 71 

for a K of 4.38. The eigenvalues of this system are 

A.1 = -4.35 

Ai = -2.5 + 3.162j 

A.3 = -2.5 - 3.162j. 

The steadiness factor of the system was determined to 

be 0.824. The transient response for this system is shown 

in Figure 5. This implies that the sum of the first over­

shoots of all the oscillatory. modes is approximately equal 

to 1.0 - 0.824 = 0.176. There is only one oscillatory 

mode in this case and it is interesting to note that 

v1-r;,2 
= .79 from the quotient of the real part divided by 

the imaginary part of a complex eigenvalue. The above 

ratio corresponds to a value of C of .61. The overshoot 

associated with a simple (constant numerator) second order 
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system with this damping ratio is about 10 percent. The 

increased overshoot, indice.ted by the .steadiness factor 

above, is attributed to a difference in phasing of this 

mode from that of a simple second order system. The phase 

angle of the system in this test study is 120 degrees. In 

a simple second order system with the same complex eigen­

values the phase angle would be approximately 52 degrees. 

The time required for wt + t to reach 270 degrees is con­

siderably less for the first case than for the second. 

Consequently, the multiplier eat is larger for the first 

than the second. 

This system, compensated by the method of this thesis, 

yielded a steadiness factor of 0.953. It will be noticed 

from Figure 5 that although the steadiness factor indi­

cates the overshoot to be approximately 5% of the steady 

state response, the transient appears to go up to nearly 

1.1. This is due to the fact that the steadiness factor 

is computed relative to the point of tangency of the 

transient to the decay envelope. In this case, the real 

part of the complex eigenvalues, given below is large 

enough such that the tangent point is somewhat to the 

right of the transient peak. 

A. 1 -4.4 

A 2 = - 3 • 2 + 2 • 46 j 

A 3 = - 3 . 2 - 2 • 46 j . 



CHAPTER IV 

TIME DOMAIN COMPENSATION TECHNIQUE 

This chapter presents a design approach that allows 

the designer to adjust the elements of his original design 

such that a transient response criterion is satisfied. A 

convenient and useful performance index, the steadiness 

factor, developed in Chapter III, is used in the discus­

sion of this procedure. State space techniques are used 

in this approach. These technique$ have been found to be 

well suited for implementation on the digital computer. 

The general operation of this procedure is depicted in the 

block diagram shown below. 

Establish state 
model in terms of 
physical parameters 

Transformation t 
normal form and 
adjustment of 
eigenvalues 

Determine ne 
coefficient 
matrices of 
state model 

when 
SFT- SFK> 0 
stop process 

Since this procedure depends upon the formation of ·a 

state model and several transformations it was deemed ap-

propriate that the more significant of these operations be 

discussed. The next section of this chapter includes 

33 



34 

pertinent comments relative to these concepts. The subse­

quent section is devoted to a specific discussion of the 

design approach. Design examples, using this method are 

given in Chapter V. 

Operations Useful to This Design Approach 

The differential equations that govern the states of 

a dynamic system may be obtained from the equations of 

each component in the system. This approach permits the 

coefficients and the state variables to be readily inter-

preted into physical parameters. The differential equa-

tions of the components can be easily joined together 

through the use of an operational block diagram. The out-

put of each integrator is then defined as a state variable 

of the system x 1 • Together, all of the state variables 

form a state vector. The differential equations of the 

total system can be written as a matrix differential equa-

tion, called in this work "the state equation." The addi­

tion of an output equation describing the manner in whi.ch 

each state enters the system output completes the state 

model. Appendix A includes some detail discussion rela­

tive to the formation of a state model. 

The state model may be written in the following form: 

. 
x = Ax + Bv (4-1) 

y = Cx (4-2) 

where xis an n vector, A is an n x n square constant 
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matrix 9 Bis an n x 1 constant matrix and C is a 1 x n 

constant matrix. 

Transformation to Normal Form 

Although the form of the equations resulting from the 

method described above provide a much needed contact with 

the physical world, this form is not convenient for study­

ing the parameters that more directly describe the tran-

sient characteristics of a system. In order to attain a 

"more convenient" form, a transformation is accomplished. 

In Chapter III, a performance criterion was discussed. It 

will be remembered that this criterion was made up of the 

eigenvalues and some multiplying factors that had the form 

C1Bt 
-'\-; i = 1, 2, ••• , n. In the explanation of this cri-

1\.1 

terion 9 it was assumed that the state model was in the 

normal form so that the dynamic modes of the system would 

be uncoupled. 

The transformation of a system with distinct eigen­

values from a general form to the normal form is discussed 

in several texts on state variable analysis, e.g.~ [7] and 

[1'.7]. A brief discussion is included here, however, to 

provide continuityo ·A transformation matrix must be ob-

tained. In this case, since the transformation is to the 

normal form such a matrix is the modal matrix. This 

matrix may be determined by first forming the matrix 

[AI - A]. The determinant of this matrix yields the char-

acteristic polynomial, the zeros of which are the 
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eigenvalues of the system. The following homogeneous 

equation ma;y be formed: 

[AI - 11.Jx == 0 (4-3) 

which comes .from the basic concept of transforming a par-

ticular vector x into another vector y such that y is 

proportional to x, [7]. For each of then eigenvalues 

A1 (i === 1~ 2, •.• , n) of A, a solution of Equation (4-3) 

for x can be obtained provided the A 1 's are distinct. The 

vectors x 1 that are solutions of 

(i 1 2 ) ,- = ., ' ••• , n ( 4-LJ-) 

are eigenvectors of A. Each of these eigenvectors makes 

up one column of the modal matrix. This matrix is not 

unique since any of the columns may be multiplied by a 

constant and the transformation is still valid. 

The following describes the reasoning through the 

transformation. Let the original state variable, x, be 

described in the transformed space as Mq, where I'1 is the 

mod.al matrix and q is the transformed state vector. 

X = Mq. ( L~-5) 

Then s:ince X = Ax + Bv 

and y = Ox 

one obtains Mq = AI'1q + Bv ( L+-6) 

and y CMq. ( LJ--7) 
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Now if both s:ides of Equation (4-6) are premultiplied by 

:ivr-1, the result is 

and y = CMq. 

In the literature [7], :ivr- 1 .Al"I is called J, the Jordan 

canonical form of the coefficient matrix, A. :ivr- 1 B and CM 

are often written BN and CN, respectively, to imply that 

they are in the normal form. At this point, it is inter­

esting to note that although constant multipliers of any 

column of the modal matrix do not affect the transforma-

tion of A to J, they have a definite affect on BN and CN. 

The products of corresponding elements of BN and CN, 

however, remain fixed for a given system. The matrix J 

has the following form: 

0 

J = ' 

• 

0 

a diagonal matrix made up of the eigenvalues. It can be 

seen that the state model in this form displays all of 

the parameters required to calculate the performance 

index, i.e., the steadiness factor. These are, it will be 
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remembered, A1 ; i = 1, 2, ••• , n, and ~!Ll.E..t!...1..; i = 1, 2, 
/\. i 

••• , n. Now, the steadiness .factor, SFT, may be calculated 

by Equation (3-18), repeated below for reference. 

SFT 
~K1r + LfKJc + K3c*ISF1 

= LKtr + ~1K3c + KJc*l 

Transformation to the Phase Variable Form 

(4-8) 

Another transformation matrix called the Vandermonde 

matrix is formed during the design procedure. This matrix 

has the form shown below. 

V = 

1 

/\ l 

~ 2 
,i\. l 

•· 

"An- 1 
l 

1 

/\. 2 

I\. 2 
2 

/\.n-1 
2 

1 

I\. 3 

I\. 2 
3 

A. n-1 
3 

. • 

. . 

. . 

• 

0 

. 

1 

/\. n 

/\. 2 
n 

A. n-1 
n 

This matrix is a transformation matrix between the normal 

form of the state model and the phase variable or compan­

ion form. The transformation takes the following form: 

P = VJV- 1 

C 
p 

= C V- 1 
N 

Since the output of the original system expressed by 

(4-9) 

(4-10) 

(4-11) 
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Equations (4-1) and (4-2) was taken as one of the state 

variables, x 1 , it is possi bJ..e to obtain a OP with a simi­

lar form. This can be shown by the following argument •. 

By normaltzing the columns of the modal matrix M with 

respect to the first element in each column and expressing 

C as 

C = [1 0 0 0 ••• OJ' 

it follows that 

CM = CN :::; [1 0 0 0 ... 0) 1 1 . . . . l 

m21 Ille 2 m2 n 

m31 • • 

• 
• 

mnl mn2 . . . . mn 

::::: [l 1 1 1 • . . l]. 

A transformation also.may be performed on C p to obtain CN. 

C V = CN == [ cP1 CP2 C p P3 
. . . cPn] 1 1 1 . . . 1 

A. A. A. A. 
l 2 3 n 

A. 2 2 2 2 
A. 2 A. 3 • • • A.n l 

• 

n-1 n·-1 n-1 n-1 
A.1 A 2 A. 3 . . . An • 

But CN = [1 1 l . . . l] ' so if C = [l p 0 0 • • • OJ, 

the above product will yield the desired CN. This 
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development implies that one state variable of the compan-

ion form can always be made equivalent to one variable of 

the original system. 

As the eigenvalues are changed during the compensa-

tion procedure, Cp will remain constant since the top row 

of the Vandermonde matrix is always made up of ones. BP 

wi 11 vary in general since BN will change and v- 1 will 

change. 

Coefficients of the Characteristic Polynomial 

Another operation that is performed during the proce-

dure of this thesis is that of determining the character­

istic polynomial corresponding to a given A matrix. This 

is accomplished through the use of Bocher's formula [7]. 

For a characteristic equation of the form given b;y 

S n + a sn-1 + a sn-2 1 2 (4-12) 

one may determine the coefficients a 1 , i = 1, 2, ••• , n by 

first applying the following definitions. Let 

T1 = trace of A, 

T2 = trace of A2 , and 

T5 = trace of A'. 

The trace of a matrix is the sum of its diagonal elements. 

Bocher's formula states that the coefficients of the char-

acteristic equation may be computed in the following way: 
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a1 = -'I\ 

82 = -~2 (a1 T1 + T2) 

1 
a1 T2 T3) a, = - '13 ( ~ T1 + + 

(4-13) · 

Note from Equation (4-13) that the calc~lation of the nth 

coefficient may be accomplished progressively by starting 

with a1 and working toward an, since in each equation for 

ak only a's up through ak-l are required in addition to 

the traces of various powers of the coefficient matrix, A. 

The Time Domain Compensation Method 

The discussion of this method will begin with the 

state model. The acquisition of the state mo.del from 

component differential equations is covered in Appendix A. 

It is assumed that the designer has formed the state model 

in such a way that the interpretation of the matrix ele-

ments in terms of physical parameters is convenient. Any 

changes in the system due to compensation of the transient 

response will be reflected in these elements. 

The first operation of the method is that of trans­

forming the original state model to the normal form. This 

is accomplished through the useful procedures of the pre-

vious paragraphs. This form contains all of the necessary 

information for computing the transient response criterion, 

steadiness factor. SFT, the total system steadiness 



factor is computed according to Equation (3-18). This 

value is then compared with a specification or desired 

value, SFK, that is selected. by the designer. If SFT is 

larger than SFK, then the specification is satisfied and 

no compensation is necessary. If SFT is less than SFK, 

the system must be compensated. 

Adjustment of Eigenvalues 
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The compensation of the transient response of a sys-

tem is accomplished by adjusting its eigenvalues. In gen­

eral the system will possess both real and complex pairs 

of eigenvalues. The adjustment of the real eigenvalues is 

accomplished differently from that of the complex pairs. 

Both methods of adjustment are associated with the 

steepest descent optimization procedure discussed in 

Appendix B. 

The adjustment of the real eigenvalues is accomplish-

ed according to the following steps: 

1. One real eigenva1ue is incremented by a 

percentage of its original magnitude. 

2. A new Vandermonde, V matrix is formed. 

3. Considering CP and BP to be fixed, V and 

v-1 are used with CP and B to obtain a 
p 

new BN and CN, using the transformations 

discussed in earlier paragraphs. 

4. SFT is recalculated and this value is 

compared with the original value. 



5. If SFT2 > SFT1 ~ then the increment was 

in the proper direction and is stored for 

future use. The eigenvalue is then set 

back to its original value and another 

real eigenvalue is incremented. If 

SFT2 < SFT1 , the sign of the increment is 

reversed and this increment is stored as 

before. 

6. After the proper direction of each incre-

ment is established, a partial derivative 

asFT . 
of the form -~- 1s computed for future a r1. i 

use. 

These six steps are repeated until increments for all of 

the real eigenvalues have been determined. 
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Attention is now focused on adjustment of the complex 

eigenvalues. A typical pair of complex eigenvalues is 

shown on the complex plane in Figure 6. Instead of ex-

pressing these eigenvalues in terms of real and imaginary 

Cartesian coordinates 9 they may be expressed as a radius 

vector R and an angle 8. The adjustment of the complex 

eigenvalues is accomplished by incrementing 8 by a per-

centage of its original value. This adjustment policy 

maintains the undamped natural frequency of each oscilla-

tory mode. As this implies, the emphasis in this proce-· 

dure is placed on modifying the damping rather than the 

gain. The sequence of events in establishing the signs of 

increments for the 8's associated with each oscillatory 
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mode is identical to that for the real eigenvalues. The 

resulting partial derivatives of step 6 take the form 

oSFT ae· i 

When all of the increment directions and partial 

derivatives have been established, a group of weighting 

functions are computed. These weighting functions are 

actually direction numbers in a space whose orthogonal 

coordinate axes correspond with each of the increment 

parameters, the A1 'sin the case of real eigenvalues and 

the 8/ s for the complex pairs. The weighting functions 

have the form 

dAi 

ds 
aSFT 

=~ 

where ds is defined as 

11 

ds2 = I dA;. 
i~l 

( 4-14) 

In both of these expressions, let A 1 take on a general 

meaning including both the real eigenvalues and the 8/ s 

associated with the complex pairs. 

Each of the increments used in the search procedure 

discussed above is now multiplied by its corresponding 

weighting factor, Equation ( 4-14-). This results in the 

set of increments that is added to the original eigenvalues 

to obtain the adjusted eigenvalues. This completes the 

adjustment of the eigenvalues for the first cycle through 
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the procedure. The next step is to determine how the A 

matrix of the original state model must be adjusted to re­

sult in these new eigenvalues .. 

Computation of New A Matrix 

Obtaining the new A is not a simple matter of inverse 

transformation now because the modal matrix used before is 

no longer valid. The method of obtaining the form of 

Equations (4-1) and (4-2) reflecting the new eigenvalues 

involves the following steps. 

The characteristic equation, being invariant with 

similarity transformations, provides a means of numeri­

cally determining the modifed A matrix. The coefficients 

of the characteristic equation of the system with adjusted 

eigenvalues are displayed in the last row of P, the state 

coefficient matrix in the companion or phase variable 

form. Pis obtained using J, V and v- 1 as shown in 

Equation (4- 9). The coefficients of the characteristic 

equation for the original system A matrix are determined 

through the use of Bocher's formula [7]. For simplicity, 

let the coefficients of the characteristic equation ob­

tained from the A matrix of the original system through 

the above procedure be denoted by a 1 , i = 1, 2, ••. , n. 

Let the coefficients of desired system equation be 

denoted by p 1 , i = 1, 2, ••• , n. 

Now, two characteristic equations are available, 

~(a) and ~(p). The goal is to determine how to adjust the 
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coefficient matrix A such that 6(a) approaches 6(p) within 

some tolerance. The followi error function is 

established: 

n 

w = I c ai - p 1 ) 2 • 

i=l 

(4-15) 

This function is made up of the sum of the squares of the 

differences between corresponding coefficients of the two 

characteristic equations. Since the argument, (a 1 - p 1 ) 

is squared and the a's and p's are real constants 1V will 

always be positive. If the A matrix is adjusted in 

exactly the correct manner, \jr will reduce to zero. 

Minimization of the Difference Function$ 

The process of minimizing ~. is similar to that used 

to increase SJ!"'T. Let each variable entry of A be denoted 

ilt •• ' 
k) where k is the total number of 

variable entries. The minimization of 1¥ is accomplished 

according to the following steps: 

1. The first value of ax 1 is incremented by 

a percentage of its original value. 

2. A new characteristic polynomial is computed 

using Bocher's formula. 

3. I!! is rec.omputed and compared with the 

original value. 

4. If 1V 2 > 1V 1 , the sign of the increment to 

ax 1 is changed and the computation, steps 



1, 2, and 3, is repeated. If "1 2 > V1 

even after this,the increment is halved, 

the sign of the increment is returned to 

its original state and steps 1, 2, and 3 

are repeated again. This continues until 

V2 < "11 • 

5. When W2 < V1 , the increment in ax 1 is 

stored and a partial derivative of the 
av form~ is computed and stored for fu-ax1 

ture use. The next value of ax1 is then 

incremented and steps 1, 2, 3, 4, and 5 

are repeated until all values of ax1 have 

been treated. 
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In step 5, when "1 2 < V1 , the second time through the proc­

ess this implies that the initial step size was too large 

for the shape of the contour of Win that direction. 

Figure 7 illustrates this condition and the effect of 

halving the increment. 

When all of the increment directions and magnitudes 

have been established, a set of weighting functions are 

computed. These perform the same task as those associated 

with computing the eigenvalue adjustments to increase SFT. 

A typical weighting function has the.form 

(4-16) 

where 
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k 

ds2 = ~ r '1ax· )2 ,I \. '.. .. ,~ --it. i lo> 

"-·i/J 
i,=1 

When the above procedure has been completed each ax 1 is 

incremented, its increment being the increment resulting 

from steps 1 through 5, multiplied by its appropriate 

weighting function, Equation ( L~-16). After each system 

increment, Wis recalculated and if 6$ is negative, the 

system is incremented again. This procedure is continued 

until 6• becomes positive or until, is less than some 

acceptable value. Since this procedure is to be accom-, 

plished by a digital computer using finite differences, it 

is not likely that any criterion can be met exactly. It 

is necessary~ therefore, to establish some criterion of 

acceptability. One such criterion is discussed. later in 

this chapter. If 6~ finally becomes positive, then the 

ax 1 's are set back to the values they had just prior to 

the last increment and a new search. for the direction of 

steepest descent may be started. 

The criterion used to stop the descent process is not 

easily determined in terms of W itself. In the case where 

constraints are imposed on the ax 1 's, '1t will probably have 

a minimum at some value other than*= 0. A criterion 

which was used in this work and appears to have the 

desired characteristics is based on the size of 6, during 

a descent, compared to the original magnitude of, at the 

beginning of the problem. The criterion states that when 



ti V is less than the original W divided by 10,000 then an 

effective minimum has been reached. 

When the effective minimum value of 111 is attained, 

then the new elements of A are joined with the invariant 
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elements to obtain a new A matrix. This matrix is trans-

formed by the same reasoning as that which was the basis 

for Equations (4-3), (4-4), and (4-5). The computation 

then proceeds through the recalculation of SFT as before, 

but now, since a new A is available, a new modal matrix M 

is also available. This completes one cycle of the proc-

ess, the goal of which is to foroe the performance index, 

SFT, to satisfy a given criterion. The process is con-

tinued until (SFT - SFK) is positive. 

A point of interest that deserves mention is that the 

original incremental values of the axi 's are arbitrarily 

selected as a fractional portion of the original ax 1 • If, 

during the descent, the contour of 111 is well behaved and 

changes occur slowly, convergence of the procedure is 

accelerated by increasing the size of the increments. 

This acceleration is accomplished by first calculating a 

ficticious angle of descent, e. 8 is defined as fallows: 

where 

8 :: tan- 1 ti"' 
tis 

k 

As - [ L (.tiaxt )2 Ji 
i=l 

after the first incremental step of the system 68 is 

(4-17) 
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computed. If .68 is less than some value, l;t, then the 

increments are doubled. If A8 is greater than some other 

value ~u' then the increments are halved. If 

~l ~ .68 < ~u' then the increments are untouched and the 

computation proceeds. 

Engineering Decisions in Adjusting the A Matrix 

Some engineering judgment must be exercised in making 

the decision as to which elements of the A matrix should 

be variable. For example, a hydraulic circuit designer 

has little control over the bulk modulus of the oil to be 

used or even the volume in a power cylinder since this 

will probably be set by pressure - force - stroke steady 

state relationships. Adjustments can be made to the 

spring rates, the valve stem mass, and orifices or 

capillary tubes may be added to improve valve damping. 

More complex feedback relationships involving sensing a 

pressure rate of change may even be possible. Since the A 

matrix is made up of elements which have physical signifi­

cance, the designer may decide which of these 4e wishes to 

allow to be variable and which should be held fixed. He 

probably would begin by holding the form of the system 

fixed and adjusting only those parameters considered to be 

variable. There also may be physical constraints or 

bounds on the variation of these elements. These bounds 

may be imposed by steady state operating requirements or 

by required manufacturing tolerances, etc. During the 



adjustment of the axi 's, care must be taken that these 

constraints are not violated. 
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It is recommended when using this design procedure, 

even if constraints are to be placed on the variable ele­

ments of A, that all pertinent entries of the A matrix be 

allowed to vary at first. In this way, when constraints 

are imposed, one may judge to what extent each is depre­

ciating the system performance. 

An additional word is also pertinent regarding the 

constraints themselves. At times, the designer may be 

fortunate in having each variable element of A dependent 

upon only one physical parameter such as a spring constant. 

However, it also happens, as shown in Bacon's work [2], 

that these entries of A can be functions of several 

parameters. Bacon was able to solve the difficulty by 

defining the function in terms of variable parameters p 1 

and then using a vector P made up of all p 1 'sin an error 

index computation. In order that this design approach be 

generally usable for all types of linear systems, only the 

elements of A were constrained since there is no way of 

knowing beforehand. what type of parametric function might 

make up these elements. 

If such a system were studied with the approach dis­

cussed in this thesis, it would be necessary to perform a 

parametric study holding all but one parameter fixed at a 

time in each element. In this way, a change in the ele­

ment could be traced directly to a change in a given 
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parameter. Parametric relationships between elements are 

considered by holding the .related elements fixed while one 

is varied. The process is then repeated after the related 

elements are adjusted to correspond parametrically to the 

variable element. 

If constraints are imposed on the elements of A, then 

it may not be possible to make (SFT - SFK) positive. This 

situation implies that the resulting SFT is the best that 

can be expected from the system within the constraints 

imposed. This is a situation in which it is valuable to 

have the unconstrained solution at hand for comparison. 

Often, constraints are set somewhat arbitrarily and can be 

relaxed if significant good may result. These are design 

decisions that must be made by the engineer on the basis 

of information he has available in his mathematical and 

computer design tools. 

There is another realm of investigation that could, 

in some cases, help the designer to hold his constraints 

and still gain some improvement in SFT. This involves 

changing the topology of his system. In most state models 

there will be zeros appearing in the coefficient matrices. 

These zeros indicate no dependence of the time derivative 

of a certain state variable to itself or some other state 

variable. A dependency may be added artificially by re­

placing one of these zeros with a nonzero entry and 

allowing this entry to be variable in the procedure. A 

parametric study involving .all the original zero entries 
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taken one at a time can, in some cases, uncover a relation-

ship that will help the performance of the design. Inter·-· 

pretation of this relationship into hardware design may 

not always be readily apparent, but it would serve as a 

stimulant to find such a hardware arrangement if the need 

warranted. 

Summary of the Design Method 

The general block diagram shown early in this chapter 

is expanded in detai 1 in Figure 8. The process begins 

with an initial state model provided by the designer. The 

transformation matrix l'1 is formed and is used to transform 

the state model coefficient matrices to the normal form, J, 

BN and CN. The coefficients Kr 
C b i 

and K. , given by the 
Jc 

expression n1 rt are then formed. A '1 -, 
With these cons tan ts, 

the total system steadiness factor SFT is computed. This 

value is then compared to a specified goal for steadiness 

factor SFK. If SFT-SFK is positive, the system already 

satisfies the specification and there is no need for 

compensation. If SFT-SFK is negative, compensation is 

performed. 

New eigenvalues are obtained after which a new 

Vandermonde and Jordon matrix are established. These are 

used to obtain P through a similarity transformation. 

This also results in a characteristic polynomial repre-

sen.ting the new eigenvalues. 

A characteristic polynomial for the original system 
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is obtained using Bocher's formula. The corresponding 

coefficients of the two characteristic polynomials are 

combined to form the difference function t. Wis mini­

mized through a steepest descents process and yields a new 

A matrix. This A matrix is entered back at the beginning 

of the process and SFT is recomputed. This cycle is re­

peated until SFT - SFK is positive. 

The following chapter presents two sample design 

problems which will demonstrate the practical use of the 

design approach that has been discussed in this chapter. 
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EXAMPLE DESIGN PROBLEMS 

In this chapter, two typical design problems are 

discussed in order to demonstrate the usefulness of this 

design approach. The first example is a circuit that ap­

pears in many hydraulic systems. This circuit is designed 

to protect the system from overpressurizing. The mathe­

matical model of this system is developed in Appendix A. 

The rationale of the design process will be made clear as 

the procedure progresses. 

The second example involves an electro-mechanical 

positioning system whose characteristics are expressed in 

a slightly different manner from those of the first exam­

ple. This is a design problem in which it is desired to 

raise the system steady state gain in order to reduce the 

system's load sensitivity while maintaining an acceptable 

transient characteristic. In both of these examples, the 

systems are of low order in order to simplify the discus­

sion of the procedure and results. The method is not 

limited to low order systems, however. The only limita­

tion in this respect would depend upon the memory capacity 

of the digital computer being used. 
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Hydraulic Pressure Control Circuit 

This circuit was used to illustrate some features of 

the design approach in Chapter IV. Since a poppet valve 

has a high flow (i.e.,~) pressure oscillations often 

occur. It is the purpose of this discussion to show how a 

valve, designed for steady state operation may be compen­

sated such that it possesses acceptable transient 

characteristics. 

The particular design considered is shown in Figure 9. 

The valve stem is retained on its seat by a coil spring. 

A secondary chamber is provided with a capillary tube out­

let to tank to provide additional damping. The valve is 

opened by the system pressure acting on a differential 

area formed by stepping the stem down in diameter above 

the seat. The mathematical models of this valve and the 

associated ram chamber are discussed in Appendix A. 

If the state variables are defined as 

:X:1 - p X1 (0) = X10 

xt = xvalve ~ (0) = ~o . 
X3 (0) X3 ::: xvalve = X30 ' 

then the linearized state model for this system becomes 

• 
X1 -K -K 0 X1 -0. 

p X f3 

• Xe. ::: 0 0 l X2 + 0 V (5-1) 

• A Ks C 
X3 -- -- X3 0 m m m 
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y = [l 0 

Initial values of the physical parameters resulted in ele­

ments of the A and B matrices of 

K 2.3 
Ks 

288000 = = p m 

K 657000 C 150 = = X m 

A Vo 
- = 59 lf = 312.5. m 

The following state model results: 

• -2.3 .-657000 0 X1 X1 312.5 

• 0 0 1 ~ = ~ + 0 V 

• 59 288000 150 X3 X3 0 

(5-2) 

y = [l 0 0] X1 

~ 

X3 . (5-3) 

The eigenvalues of this system are 

Ai = -137.69 

A-z = 7.30 + 535.lj 

A.3 = - 7.30 - 535.lj. 

The steadiness factor for this system is .9396. Even 

though the eigenvalues indicate the presence of a very 



lightly damped mode, a relatively high steadiness factor 

results due to the small weighting coefficient for this 

mode. In this example 

and 

such that 0.1402 
= 2.2828 = 0.0613. 
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Consequently, even though this lightly damped mode may 

overshoot its final value nearly 100%, the total system 

effective "unsteadiness" is only about 6%. The normalized 

transient response of this system is shown in Figure 10. 

It will be noticed that this response is quite oscillatory, 

although the amplitude of the oscillation is relatively 
A Ks 

small. The design method was applied, letting m' m' and 

i be variable. The resulting transient response is shown 

in Figure 10. After compensation by means of adjusting 

the elements indicated above the steadiness factor became 

0.9695 and the response became considerably smoother. 

The history of W during the operation of this proce-

dure is interesting. Figure 11 shows that after six 

gradient searches, twas very near zero. This figure is a 

plot oft versus the iteration number and gives an indica-

tion of the rapidity of convergence. 

The original state equation and the revised state 

equation are presented in Figure 12 for comparison. 
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State Equations for the Original. System 

*1 I . 5 I 
X1 312.5 ~2.3 -6,57 X 10 0 

-+---- ~-
*2 = -(~--'~ _ o_ ~ X2 + 0 

. 
59 I -2.88 x 105 ,-150 0 X3 x.s 

. State Equations for the Compensated System I 

-2.3 I 5 I 0 312.5 Xl -6.57 X 10 Xl -t-- -
,-1 

X2 = 
0-+ 

0 X:3 + 0 
- --5-t-

X3 53.1 I -3.03 x 10 I -282 X3 0 

Figure 12. Comparison of State Equations 
of Original and Compensated 
Systems 
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Relatively small changes occurred, percentagewise, in some 

of the variable elements. ~ chs.nged by 10.2°,,6, K; by 5%, 

but£ changed by 88%. Now, consider the implications of m 

these changes in terms of hardware geometry. A certain 

amount of engineering judgment must be used in this part 

of the procedure. For instance a 10% change in! can 
m 

probably be more easily obtained by adjusting A than by 
K 

adjusting m. In the case of ;, Ks is more easily changed 

than m. There are several considerations that must be 
C made in considering the change iii• The radial clearance of 

the valve stem could be adjusted to obtain the larger 

viscous damping required. However, the radial clearance 

6 of the original system was .00045 inch. This is a 

close fit by most standards and to make 6 smaller would 

probably be very expensive. 

Another possibility is to change the unsteady flow 

force contribution. Even if a large enough benefit could 

be attained usi.ng this approach, it is likely that a new 

housing design would be required. Adjustment of the cap-

illary tube damping augmenter appears to be the most prom­

ising approach. Since the diameter of the capillary tube 

appears in the expression for c to the fourth power, a 

simple change in the tube diameter results in adequate 

improvement in the effective damping. This parameter would 

probably be the easiest to adjust in most practical cases. 

The following table shows a comparison of the variable 

parameters which result for this example. Since other 



compensated systems will be discussed later, this system 

is identified as compensated. system I. 

TABLE III 

COMPARISON OF VARIABLE PARAMETERS 

Original ~ompensated 
Parameter System I System I ~~~~~-~~--------------~~--

A 

Ks 

capil. dia. 

Eigenvalues 

A.1 

A.2 

A. 3 

Weighting 
coefficients 

mode 1 

_---1.'.=od e ~_J_-

.0419 

205.2 

.163 

-137.69 

-7-3 + 535.lj 

-7.3 - 535.lj 

.9395 

.0605 

.0377 

195 

.139 

-125.3 

-79.7 + 526.Bj 

-79.7 - 526.Sj 

.95 

.05 
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Next consider the effect of constraining some of the 

parameters in Table III to the extent that they cannot 
Ks 

reach the values given. For instance, let - be con­m 

strained to not less than -2.9 x 105 , and£ to not less 
m 

than -200. This constraint on c is somewhat h;ypothetical m 
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but for the sake of illustration consider it to be true. 

This system is called compensated system II. Figure 13 

shows the transient response of such a system with the 

response of the original system plotted also for compari­

son. Compensated system II shows an improvement over the 

original system, but it still displays a considerable 

tendency to oscillate even though the amplitude is small. 

The steadiness factor criterion is satisfied since com­

pensated system II has a value of SFT equal to .9569 

compared to the specified .95. Obviously, there is a 

lightly damped mode which has only a small influence on 

the total response. The result is a slowly decaying small 

amplitude (less than 5% of final value) oscillation. The 

lightly damped mode may be seen from the printout of the 

digital program. 

If such a condition is considered to be unsatisfacto­

ry by the designer, as well may be the case, one of three 

attacks may be employed. The first and perhaps most 

obvious is to relieve the constraints. If this is impos­

sible or impractical, SFK may be raised and an attempt may 

be made to improve the situation by adjusting free vari­

ables further. The third approach is to look for another 

state variable dependency that will help. 

Element au was permitted to become non zero to test 

its effect on the steadiness of the response. The result 

was that this element had no significant effect on the 

response. The other two zero entries, 821 and a22 , were 
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the allowed to be variable with similar results. 

At this point, a different and more subtle type of 

constraint in the method should be mentioned. The method 

of adjusting the eigenvalues, especially in the case of 

the complex conjugates, is to fix wn and rotate the radius 

vector toward greater damping. This method of variation 

preserves the general rise time qualities of the system, 

but it will be recognized that this is not the only method 

for adjusting the eigenvalues that could be applied. The 

approach used here is to develop a characteristic equation 

that has some desired transient characteristic and then to 

adjust the original system to have the same or nearly 

equivalent characteristic equation. Adjusting certain 

elements of A may not.have the desired influence on the 

characteristic equation. This peculiarity is discussed 

in more detail in Chapter VI in connection with recommen­

dations for future research. 

Position Control System 

This example problem shows how the design technique 

may be used in a somewhat different wayc Often a machine 

will be designed for good transient characteristics and 

later the designer will discover that due to gain level or 

distribution, the system is overly load sensitive. In 

order to correct this situation, the design must be re­

evaluated. In this example, the original design is 

established by selecting initial values which appear 
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reasonable and b;y allowing th,:: design p.roeedure to compute 

values that will meet the design criterion. A load dis­

turbance is then imposed and the relation between the 

responses to the t11·rn inputs is discussed. The system is 

then adjusted to reduce load sensitivity and yet maintain 

the quality of transient behavior desired. 

Figure 14 shows a schematic diagram of the system 

under consideration. A voltage amplifier, Amp, is pro­

vided to control an amplidyne circuit. The amplidyne 

provides power for the armature circuit of a d.c. electric 

motor. The motor uses a field winding with a constant 

current if to provide the flux field required for the 

motor operation. The shaft of the motor is attached to an 

inertia load and also to the wiper of a position sensing 

potentiometer. The wiper is connected electrically to one 

terminal of the amplifier. The winding of the pot is con­

nected in parallel with the winding of another pot and 

with a d.c. voltage source. The wiper of the second pot 

provides the input position reference. The load disturb­

ance is imposed at the shaft of the motor. 

The amplifier is assumed to have a constant gain Ka 

and no significant dynamics. This gain includes the 

actual amplifier gain as well as the static gain of the 

amplidyne. 

The purposes of this study are to determine which of 

the parameters in the system most affects its dynamic per­

formance and to adjust all parameters such that a desired 
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Figure 14. Schematic Diagram of Position Control System 
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characteristic is achieved. '.I1he state model for this sys-

tern may be established from the basic relations governing 

the system as developed in Appendix A. The system differ-

ential equations become 

Defining 

d' l.c 

dt = 

di 

dt9 

X1 

X2 

X3 

X4 

= -

- 80 
• 

= eo 
= iq 

= ic' 

V ::;;: e in 

then the state model may be written 

. 
X1 0 1 0 0 

.. 
0 

-KTKm KTKd 
0 Xi JR JR; a = 

- R • 0 0 Kq X3 ___9. 
Lq 

R 
• -K 0 0 C 
X4 a LC 

(5-4) 

(5-5) 

(5-6) 

X1 0 

X2 0 

+ V 

X3 0 

X4, A 
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y = [1 0 0 O] (5-7) 

The following initial values were used for this example: 

KT 0.75 ~ e 
= 5 80 1.0. Lq = = 

K = 250 R = 5 a a 

RC 
20 Kd 1 

LC 
= = 

J = 0.1 K = 1.33 m 

Using these values, the eigenvalues of the original system 

become 

/\.1 = - 6.08 

/\2 = -19.930 

A.3 = - 0.493 + l.69j 

/\.4 = - 0.493 - l.69j. 

The steadiness factor is .6352. Figure 15 shows that the 

transient response for this system is quite oscillatory. 

Four iterations of the compensation procedure produced the 

following eigenvalues: 

A.1 = - 6.82 
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~3 = -1.157 + l.159j 

~4 = -1.157 - l.159j. 

The steadiness factor for this system called compensated 

system III is .9731. The transient response for compen­

sated system III is shown in Figure 15. 
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Only one of the element, ~ , of the coefficient 

matrix, A, varied by a large amount from the original sys­

tem to compensated system III even though all elements 

were considered to be variable. This element represents 

the damping term. Comparison of the two state equations 

in Figure 16 shows that a22 changed by 50°,,6 from its origi­

nal value, but none of the other elements changed more 

than 15%. Compensated system IV, in Figure 15, shows the 

effect of varying elements a4a. and a22 only. In this case, 

a~ has virtually no effect on the minimization of,. 

However, a change in element~ from -2.0 to -3.35 accom­

plishes the necessary compensation. 

Load Sensitivity Study 

The load sensitivity of the system is investigated in 

the following manner. Consider Figure 17 showing a second 

input at the summing junction just ahead of the motor 

dynamics. This input represents an external torque dis­

turbance to the shaft of the motor. Consider the effect 

of this input only on the total system response, i.e., 

let v1 = 0 temporarily. Substituting the initial values 
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State Equation for Original. System 

xl 0 1 0 0 Xl 0 

X:a 0 -2 1. 5 0 X:a 0 
= + V 

X3 0 0 -5 1 X3 0 

X4 -250 0 0 -20 X4 250 

State Equation for Compensated System III 

Xl. 0 1 0 0 xl 0 

X:a 0 -3.11 1. 5 0 X:a 0 
= + V 

X3 0 0 -5.75 1 X3 0 

X4 -250 0 0 -20.5 X4 250 

Figure 160 Comparison of State Equations 
for Original and Compensated 
Systems 
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of all parameters except Ka into the state model shown in 

Figure 17 produces the following steady state 

relationships, 

(5-8) 

(5-9) 

(5-10) 

Combining Equations (5-8), (5-9), and (5-10) 

(5-11) 

Thus, reduction in the sensitivity of x1 to v2 requires an 

increase of Ka. If Ka has a value of 250, then~= 2.6. 

If Ka is set equal to 12500, then the ratio 2fL will equal 
V2 

.0533. Ideally, a designer wishes the system to be as 

load insensitive as possible. To accomplish this insensi-

tivity, the value of Ka should be as high as possible 

within the capabilities of the equipment being used. For 

the purpose of illustration, a Ka equal to 12,500 is used 

in the following discussion. 

Now that a value of Ka has been selected to reduce 

the load sensitivity of the system, v2 is set equal to 

zero and the response of the system to v1 is investigated. 

It might be expected that this system would become oscil-

latory or even unstable if Ka only were increased. In 

order to anticipate this difficulty and reduce design 
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time element a~ (previously shown to be very influential) 

was increased by a similar r atio. The initial state 

model for this increased gain design is the same as that 

of the original system except for a 41 and a~. The initial 

values of these elements are 12,500 and -40, respectively. 

The resulting steadiness factor is .6947 and the transient 

response, resulting from an input, v 1 , is shown in Figure 

18. When the system is compensated, the resulting steadi­

ness factor is .9584 and the transient response (compen­

sated system V) is as shown in the figure. During this 

compensation, all pertinent entries in the A matrix were 

allowed to be variable. The resulting changes in these 

elements can be observed from the state equations shown in 

Figure 19. It is evident that the matrix element a~ is 

still the most important in the compensation process as 

might be expected from the previous case. 

Since a~ represents a damping type term, there are 

several methods of ac quiring the desired values of this 

parameter. Perhaps the most direc t of these methods is 

the addition of a dashpot or fluid damper. Another possi­

ble method is t he use of tachometer attached to the shaft 

of the motor with its output fed to a current amplifier. 

The current from this amplifier could then be used to 

supply the field current. Making the field current de­

pendent upon the motor speed allows t he torque to be 

modulated to create an effective damping influence. The 

question in such an approach would be whether sufficient 
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0 0.4 0.8 l2 1.6 2D 
TIME - (seconds) 

Figure 18. Comparison of Transient Responses for the 
Increased Gain System 
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State Equation for Estiinated Increased . 

Gain System · 

Xl 0 1 0 0 Xl 0 

X:3 0 -40 1.5 0 Xa 0 

= 0 + vl X3 0 -5 l X3 0 

X4 -12.5 X 103 0 0 -20 X4 12,5 X 103 

State Equations'. fot:·.·co.mpen1;1ated System v:-· 

·, 0 1 xl 0 0 Xl 0 

X:3 0 -42.5 1. 5 0 X:3 0 

= + Vl X3 0 0 -7.46 1 X3 0 

:l4 . -12.5 X 103 0 0 -22.3 X4 12.5 X 103 

Figure 19. Comparison of State Equations for the 
High Gain System 



effect could be attained within the capabilities of the 

hardware available. 

Summary 
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In both of the foregoing examples, the elements of 

the A matrices having the most influence in satisfying the 

response criterion, were apparent in the state models re­

sulting from the compensation procedure. The compensated 

systems displayed much smoother transient characteristics 

than those of the original systems. In cases where the 

amplitude of a lightly damped mode is only a small per­

centage of the total system steady state response, it may 

be necessary to raise the steadiness factor specification 

to eliminate undesirable oscillations. Interpretation of 

the modified state models back into hardware changes was 

discussed along with the rationale of making the necessary 

engineering decisions. The ability to study load sensi­

tivity of a linear system was also presented. The proce­

dure9 as presented~ functions very well and provides 

needed information and insight into the transient dynamics 

of linear systems. There is room for expansion of the 

method which will be discussed in Chapter VI. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

A time domain technique has been presented which en­

ables a designer to compensate the transient behavior of a 

linear model representing a physical system. Extensive 

use is made of the high speed digital computer in accom­

plishing the routine computation tasks. A performance 

criterion is developed to help the user assess the quality 

of the transient response of the system. The method re­

quires the formation of a state model representing the 

dynamics of the system under study. The performance cri­

terion is satisfied by adjusting the elements of the state 

model coefficient matrices. 

The compensation method offers the following advan­

tages over current methods: 

1. The differential equations governing the 

system components may be used directly, 

in the form of a state model, rather than 

transforming the equations to the fre­

quency domain in terms of transfer 

functions. 

2. The transient response may be compensated 

directly by using a criterion that contains 
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all of the important factors governing 

the transient response. 

3. The method does not limit the size of 

the system to be studied. 

4. Constraints may be placed on the magni­

tudes of elements in the coefficient 

matrices of the state model. 

5. The value of the performance index has 

direct physical significance. This is 

due to the fact that SFT indicates by 

its value, the amount of oscillation 

or overshoot that will be seen in the 

transient response. 
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There are also a number of limitations in the method 

which suggest natural extensions for recommended future 

work. These limitations are listed below. 

1. The method presently is restricted to 

step inputs. Extension to include 

other types of inputs may require an 

adjustment to the performance index. 

2. Only single input/output systems have 

been investigated. Extension of the 

method for use with multiple inputs and 

outputs may be useful in some applications. 

3. The procedure requires that the system 

be linear and posssess distinct eigen­

values. Extension of the method to 



include certain classes of nonlinearities 

will certainly be veb1able. 

4. Presently, there is no method of maintain­

ing a functional correspondence between 

elements of the state model coefficient 

matrices. Extension of the procedure to 

include simple correspondence between ele­

ments, such as a proportionality, appears 

to be straightforward at this time, but 

more complex relationships will require 

further research. 

5. There is probably a "best" way of adjust­

ing the eigenvalues during the compensa­

tion, such that for the available 

variable elements of the A matrix,~ is 

most effectively minimized. The method 

of adjusting the eigenvalues used in this 

investigation was selected in order to 

maintain the general rise time character­

istics of the system, but this approach 

will not always allow the minimization of 

W if the number of variable elements in 

the A matrix is severely limited. 
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There is another area of investigation that is not 

associated directly- with a limitation of the method. This 

suggested investigation involves the determination of a 

function that describes a line or region in space along or 
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in which an index of performance is in an acceptable range 

of values. It is believed that the steadiness factor cri-

terion introduced in this thesis.could be adapted so that 

it defines the desired performance line or region for 

higher order systems. If such a line or region could be 

defined in hyperspace such that the desirable qualities of 

the system response are preserved, the procedure discussed 

in this thesis would be greatly enhanced. 

The existence of such a line is suggested from a con-

sideration of a second order system. If, for instance, a 

11 good" response is considered to be one with a damping 

ratio of 0.7, then there exists a line in two dimensional 

space along which the damping ratio is constant at 0.7. 

Let a second order linear system be represented by the 

following equation: 

s2 + 2 Cw n s + w2n = O (6-1) 

or 

s2 + as + b = O. 

Let the coordinate directions of a two dimensional func-

tion space be defined by ai and bi, where i and j are unit 

orthogonal vectors. One can see that for C to equal 0.7 

in Equation (6-1), the following relationship must exist 

between II a 11 and II b. 11 

1. 4 

or 



a = l.4Vb. 
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(6-2) 

The locus of points in the a, b plane that satisfy Equa­

tion (6-2) form a parabola which is symmetric about the b 

axis and passes through the origin of the space. The only 

values of" a" that result in meaningful systems are those 

that are positive. Along this parabola, C remains fixed, 

but n varies, implying that the rise time characteristic 

of a transient for such a system will also vary. The 

damping ratio remaining fixed indicates that the transient 

response of this second order system will have similar 

characteristics all along the parabola. 
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APPENDIX A 

OBTAINING THE STATE MODEL 

The design procedure presented in this thesis depends 

upon the engi-p.eer's ability to express the system mathe­

matically~~ terms of a state model. One of the primary 

goals of the method of this thesis is to allow the designer 

to maintain contact with his original system. In the case 

of a hydraulic circuit or of a position control system 

such as were discussed in Chapter V, the recommended pro­

cedure initially involves drawing a functional block dia­

gram of the system. This requires some knowledge of the 

differential equations that describe the dynamics of dif­

ferent components. Any design or analysis procedure re­

quires that the components of the system be modeled 

mathematically. Modeling is still recognized as being 

difficult, especially in hydraulics research where there 

is a noticeable lack of test data to corroborate theoreti­

cal results. Once the mathematical descriptions of the 

hardware components are known or estimated, the design 

procedure may continue. 

State Model for Hydraulic Circuit Example 

The equations describing the dynamics of this system 
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stem from the following two primary sources: 

1. Continuity of the fluid. 

2. Equation of motion of the valve stem. 

The pressure in the cylinder of Figure 9 is described by 

the following continuity relationships. 

Vo • 
T p = Qi·n - Q - Q f t '"' ~ rest o sys em (A-1) 

For simplicity, the last term on the right of Equation 

(A-1) will be assumed to be zero. Another assumption made 

in the following discussion is that the ram is either 

blocked by some outside force or that it is at the end of 

its travel. V0 , 13, and Qv are the chamber volume, the 

bulk modulus of the oil and the flow through the valve, 

respectively. 

Equation (A-1) may be rewritten 

p = Jt (Q. - Q ) 
V0 in ~ 

(A-2) 

This expression is now written in terms of perturbation 

variables. Taking the natural logarithm of both sides, 

Equation (A-2) becomes 

ln P = ln JLV + ln(Q. - Qv). 
0 in 

Taking the differential of both sides yields 

d(Qin - Qv) 

(Qin Qv 
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or 

• f? 
dP = (Q Q ~ d(Q. - Q ), . - ) in V in V 

but from Equation (A-2), ~ ~ Q) =,/-,so 
in V 0 

. ~ dP = V d(Q. - Q) 
o in ~ 

and substituting lower case letters for the perturbation 

variables this yields 

P = v~ (q. - a) 
0 in ~ 

(A-3) 

A block diagram of this relationship would appear as shown 

in Figure 20a. 

The equation governing flow through a valve is given 

by 

Q = CdndxY 2(P p hl 
~alve f (A-4) 

where Cd is the orifice coef.ficient, red is the circumfer­

ence of the valve stem, XA is the valve displacement, Pis 

the fluid density, Pis the upstream pressure, and P, is 

the tank pressure. Since Pis usually very large compared 

to Pt, it is common to assume Pt = O. Equation (A-4) 

becomes 

(A-5) 

This nonlinear equation may be linearized for small 

perturbations about some steady state operating point. 
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Figure 20c. Complete Pressure Control Circuit Diagram 
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Writing the natural logarithm. of both sides of Equation 

(A-4) gives 

+ ln cl + lnX + llnP. 

Taking the differential of both sides of (A-5) yields 

or 

dQ,v dX dP 
~=1r+2P 
""v 

(A-6) 

(A-7) 

If the perturbation variables a.re defined to be qv' x, and 

p and the steady state operating point is denoted by Q,0 , 

X0 , and P0 , Equation (A-6) becomes 

q =Sk.x+-~ 
v Xo 2Po • (A-8) 

Figure 20a can now be expanded to 20b. 

The equation of motion of the valve stem has the 

familiar form 

(A-9) 

In this expression m, Ks' and Av are constant coefficients 

representing, respectively, the valve stem mass, the 

spring constant of the retaining spring and the area upon 

which the pressure acts to open the valve. The damping 
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coefficient c is made up of three components. 

= µnDL - p C d cos6oof 2P ( 2X + X ) + 128µA2 t 
C 6 d 1t 1 p C 1t ~t 

(A-10) 

where the first term on the right of Equation (A-10) is 

the effect of viscous shear due the oil between the stem 

and the bore. The second term is due to the flow forces 

and is destabilizing. The cos60° factor in this term 

comes from the geometry of this particular example. The 

third term is from the capillary tube damping augmenter in 

the chamber over the valve stem. The development of the 

first and third terms of Equation (A-10) may be found in 

Reference [3]. The second term is developed in Reference 

[ 15] • 

The second term of Equation (A-9) can now be linear-

ized in a manner similar to that used earlier. If the 
• 

steady state operating point of Xis taken as zero, then 

Equation (A-9) becomes, using perturbation variables as 

b.efore, 

mx + C µ 6DL - PCd1td1 cos60° 12PP0 ( 2Xo + X ) + 12sµA2 J,) X + K X 
C nd2' S 

.. 
This equation may be solved for mx, lumping the coeffi-

cient of x all into one constant c. 

mx = pA - K x -V S 

. 
ex. 

Figure 20c shows the complete operational block diagram of 



97 

the system. The state model of the s;ystem may be estab-

lished directly from this diagram by defining the outputs 

of each integrator as a state variable. A matrix differ-

ential equation may then be written which relates the 

inputs to each integrator to all of the outputs through 

the feedback constants. The literal form of the state 

model in this example is 

p Qo § ik_§_ 0 p Ji. 
2P0 V0 Xo Vo Vo 

d 
0 0 dt X = 1 X + 0 q 

A K 
0 V s C 0 

X = X 0. m m m 

y = [l 0 OJ p 

X 

0 

X . 
The steady state operating point used for this exam­

ple is defined by the parameters 

Po 2000 psi 

Xo = .014 in 

• 
XO :::: 0 . 

Using these steady state conditions and some assumed geo-

metric constants, the elements of the coefficient matrices 

in the state model as shown below. 

p -2.3 -657000 0 - p 12. 

d 0 0 dt X 1 X + 0 qin 
• 

X 59 -288000 -200 X 0 

(A-14) 
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and JF = [ 1 0 OJ (A-15) 

Equations (A-13) and (A-14) together make up the state 

model of this example system. 

State Model for Position Control System 

A schematic diagram of the system under consideration 

is shown in Figure 14. A voltage amplifier, AMP is pro­

vided to control an amplidyne circuit. The amplidyne pro-

vides power for the armature circuit of a d.c. electric 

motor. The motor uses a field winding with a constant 

current if to provide the flux field required for the 

motor operation. The shaft of the motor is attached to an 

inertia load and also to the wiper of a position sensing 

potentiometer. The wiper is connected electrically to one 

terminal of the amplifier. The winding of the pot is 

connected in parallel with the winding of another pot and 

with a d.c. voltage source~ The wiper of the second pot 

provides the input position reference. The load disturb-

ance is input at the shaft of the motor. 

The amplifier is assumed to have a constant gain Ka 

and no significant dynamics. This gain includes the 

actual amplifier gain as well as the static gain of the 

amplidyne. 

The development of the differential equations 

describing the dynamics of the amplidyne follow the 
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discussion of D'Azzo and Houpis [6]. Figure 21 shows an 

equivalent two stage represe.ntation of the amplidyne that 

will facilitate understanding of the equations. The input 

control voltage from Amp results in a control current ic 

that must pass through a control winding with both induct-

ance Le and resistance, Re· The resulting equation is 

given as follows 

(A-16) 

A voltage eq is induced by the current ic in the first 

stage of the equivalent circuit such that 

where K is a constant of proportionality. The quadrature q 

winding also has inductance Lq and resistance Rq such that 

the current iq resulting from eq forms the relationship 

"" e . q (A-18) 

Also, iq in turn induces a voltage ed such that 

where Kd is a constant of proportionality. The induced 

output voltage ed is then fed to the armature of the d.c. 

motor. The torque produced by the motor may be written 

(A-20) 



~ I 
C 

"'\ 

ec L_o< 

Figure 21~ 
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Lq 

eq 
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~ 

Two Stage Representation of Amplidyne Circuit 
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0 
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where K1 is a constant of proportionality relating the 

field flu:K ip and the armature cur.ren .. t ia to the torque. 

If a fixed voltage is applied to the field winding, then 

the flux is constant and the torque becomes proportional 

to only the armature current, ia. The constant of pro­

portionality is called KT and now Equation (A-20) may be 

written 

When the armature is rotating, there is a back emf pro-
~ 

duced that is proportional to the motor speed 8 0 • The 

voltage drop across the motor then becomes 

(A-21) 

where em is now given by 

(A-22) 

where Ra is the armature resistance and the inductance is 

assumed to be negligible. 

The state model for this system may also be estab­

lished by forming the operational block diagram. Such a 

block diagram is shown in Figure 22. The output of each 

integrator is defined as a state variable. The state 

model of the system then becomes 



K f i c eq a K + q 

Re 
Le 

I 
B.9. . Lq 

e 
0o 

_ __,So So.------. 
I -.-
J I 

Km 
Ra 

Xi 
! 

Figure 22. Operational Block Diagram of Position Control System 

0o 
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X1 

X2 

d 
dt 

X3 

= 

0 

0 

0 

-K a 

1 0 0 

0 0 

+ V 

0 0 

0 0 

(A-23) 

y = [1 0 0 OJ X1 

Xe 

X3 

Xt. 

where vis in and the output of the system x1 is 0 • 

· When typical values are substituted in Equation (A-23), 

the result is 

X1 0 1 0 0 X1 0 

~ 0 -2.0 1.5 0 X2 0 
d 

+ dt 
:::: 

0 0 -5 0 0 X3 X3 

X4, -250 0 0 -20 X4 250 

V 

(A-24) 

State Model of a Transfer Function With Zeros 

It is often convenient to start with a transfer func-

tion in the formation of the time domain state model. The 

literature contains several methods of programming which 

result in different useful forms of the state model [7]. 

One very useful procedure will be presented in this 
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appendix because it allows consideration of numerator 

dynamics as well as poles of the system. 

Consider, for example, a transfer function which may 

be shown in the form 

(A-25) 

This equation may be rewritten, by cross-multiplying, in 

the following form: 

( s3 + a1 s2 + a2 s + a3 )C ( s) - K( s2 + b1 s + b2 )R( s). 

(A-26) 

Rearranging Equation (A-26) such that all terms containing 

zeroth powers of s are on the right side and all other 

terms are on the left, gives 

(s' +a1 s2 +~s)C(s)-K(s2 +b1 s)R(s) = Kb2R(s)-a3C(s). 

(A,...27) 

The right side of Equation (A-27) is defined as x1 ( s). 
. . 

Integrating :x;_ yields Xi. and the following equation: 

( s2 + a1 s + a2 ) C ( s ) - K ( s + b1 ) R ( s ) = x1 ( s ) • 

Transposing all zeroth powers terms from left to right 

results in 

( s2 + a1 s )C ( s) - KsR( s) = x1 + Kb1 R( s) - ~ C ( s). 

The right side of this expression is defined as i 2 (s). 

Integrating, yields 
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( s + a1 ) C ( s ) - KR ( s ) = x2 ( s ) • 

Following the procedure one more time yields 

sC(s) = ~ + KR(s) - a1 C(s) 

where. 

In summary, the following definitions have been made. 

(A-28) 

~ ( s ) = x1 ( s ) Kb1 R ( s ) - S-e C ( s ) , (A-29) 

x3 ( s ) = ~ ( s ) + Kb2 R ( s ) - a1 C ( s ) • (A-30) 

A block diagram may be constructed to assist in the 

visualization of these relationships as shown in Figure 

23. Again, taking the outputs from the integrators and 

relating them to the inputs a state model of the form 

given below is obtained • 
. 
X1 0 0 -a, X1 Kb2 X1 (0) = Xio 

0 

~ = 1 0 -a2 X2 + Kb1 R(t); ~ (0) = ~o .. 
0 1 K X3 (0) X3 -a1 X3 = X30 

(A-16) 
y = [O 0 

(A-17) 

This technique for obtaining the state model from the 

transfer function has a particular usefulness. This form 

is called the Rational Canonical Form and is characterized 
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by the display of the coefficients of the characteristic 

equation in the last column of the state coefficient 

matrix. It may also be noticed that the input coefficient 

matrix contains the static gain, Kand the coefficients of 

the numerator polynomial. This convenient separation per­

mi ts independent study of numerator and denominator effects. 

The change from s domain to T domain, above, is accom­

plished by considering appropriate initial conditions for 

the state variables. 



APPENDIX B 

METHOD OF STEEPEST DESCENT 

The method of optimization through a steepest ascent/ 

descent technique is particularly useful in numerical 

methods. The approach discussed in this thesis uses this 

concept twice in the determination of a compensated system. 

Since this technique is important to the design approach, 

it is discussed briefly in this appendix. This discussion 

follows that of Kelly [11]. 

Before considering the general gradient technique of 

optimization, first consider the continuous descent proc-

ess. Let f be a function of several variables x1 , x2 , 

••• ; Xn, defi.ned in an open domain and possessing continu- · 

ous partial derivatives with respect to the x 1 ; i = 1, 2, 

••• , n. Let a differential distance, ds, in this space, 

be defined in the following manner: 

n 

ds2 =I~­
i=l 

Since the goal of this procedure is to move from some 

(B-1) 

starting point x 1 = x1 , i = 1, 2, ••• , n, toward a minimum 

f, first consider the directions in which the rate of 
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change off with respect to s, is negative. 

df 
ds 

n 

=L 
i=l 
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(B-2) 

The direction of steepest descent is given by one of the 

directions that make Equation (B-2) stationary subject to 

(B-1). 

Equation (B-1) may be rewritten in the following 

form: 

1 -i C::)· . o (B-3) 
i=l 

· dx1 

where ds may be considered to be direction cosines. This 

constraint may be adjoined to the right side of Equation 

(B-2) by means of a Lagrange multiplier A0 as follows: 

n n 

J1 o°;, a;~ + 40 [ 1 - h/d:'JJ. (B-4) 

In order to find the value of A. 0 that extremizes Equation 

(B-2) 9 the partial derivative of this expression is taken 
dx1 

with respect to ds Setting the result equal to zero one 

obtains 

i = 1~ 2, ... , n. (B-5) 

From (B-5) one may obtain 

i 1, 2, ... , n. (B-6) 



From (B-3) the following expression for A0 results from 

combining Equations (B-6) and (B-3): 
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(B-7) 

af 
If all the ax are not zero, the two distinct sets of di-

1 df 
rection numbers that make ds stationary are 

i = 1, 2, 0 e 4) ' n. (B-8) 

It can be seen that the continuous case given above 

can be readily extended to use in a numerical technique. 

Since the determination of partial derivatives :J. may be 
i 

time consuming for high order systems, it is desirable to 

make the best use of each calculation of local gradient 

direction. The procedure used in this thesis is to follow 

the local gradient direction until f reaches a minimum. A 

new gradient direction is then calculated and the procedure 

repeated. 

In this way~ an n-dimensional minimum problem is 

reduced to a sequence of one-dimensional problems. The 

continuous and stepwise processes are contrasted in Figure 

24 which shows the two types of motion as they occur in 

the vicinity of a minimum of a function of two variables 

f (x1 ,x2 ) o The gradient direction shown is normal to a 

contour while the local minimum in the gradient direction 
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is found at a point of tangency to a contour. Higher or­

dered cases are not so easily displayed in a figure, but 

these same characteristics exist. 

It is apparent that the stepwise path is not inde­

pendent of the coordinate system selected. If a transfor­

mation of coordinates could be found that would result in 

circular contours, the first gradient direction would pass 

through minimum f. In the usual case, however, there is 

not sufficient information a priori to allow a sophisti­

cated choice of coordinates. A normalization of parameters 

is possible, however, since generally a designer will have 

some idea of the practical range of each parameter. In 

this thesis, normalization is accomplished by letting an 

incremental step of a parameter be determined by a frac­

tional multiple of the original value. In this way, the 

increments are percentage changes of the parameters. 



APPENDIX C 

DISCUSSION OF DIGITAL COMPUTER PROGRAM 

The compensation procedure of this thesis is designed 

to make use of the extensive capabilities of the digital 

computer. A computer program which mechanizes the con­

cepts of Chapter IV and was used to obtain the results of 

Chapter V, was written for the IBM 7040 in the Oklahoma 

State University Computing Center. The compiler language 

used is FORTRAN IV. The program consists of a main 

calling program and nine subroutines. The program is 

arranged to keep the number of input cards as low as pos­

sible to facilitate its use. 

If the reader does not care to read the details of 

the program listings that follow, he may refer to Figure 

25 for a flow diagram showing the major functions of the 

program. FORTRAN listings of all subprograms are included 

in later appendices, although only the significant sub­

programs are discussed in detail. Subroutines that invert 

a matrix or some other routine task are referred to in 

terms of the function they perform but are not discussed 

at length. The writer feels that eventually this sort of 

action will be accomplished by some FORTRAN statement much 

the same as multiplication and division is done today. 
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Main Galling Program 

The main or calling program was developed from a 

library program from the BEARE series, known as DAL4. The 

original purpose of this program was to compute the eigen­

values and eigenvectors of an input A matrix. Significant 

additions were made to DAL4 in the process of developing a 

main program for this design procedure. 

It will be noticed that a good part of DAL4 was 

written in double precision. This causes no difficulty if 

one is careful in preparing his input cards. The first 

action of the program is to read in N and SFK. N is the 

order of the system under study and SFK is the reference 

steadiness factor. Next, the positions of the variable 

elements of the A matrix are read in. These positions are 

then indexed for future reference by a numbering system 

that starts on the top row of A and increases from left to 

right. The maximum and minimum values of the variable 

elements of A are then read ino All of the entries of the 

B matrix are assumed to be variable so the maximum and 

minimum values of b 1 are read in next. If one desires to 

hold an element of B fixed 9 then he must make the maximum 

and minimum values the same for that element. Some write 

statements occur next. None of the write statements will 

receive comment in the interest of expediting this discus­

sion. The A matrix is then read in, in double precision. 

Next DAL4 performs a normalization operation which is 

not particularly pertinent to the concepts of this work. 
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In the statements from. 33 to B2 ~ the traceE, of powers of A 

from 1 to N are calculated. this process a subroutine 

SQMULT is called to obtain t}H) various powers of A. Next, 

using the traces obtained above, the coefficients of the 

characteristic equation are obtained using Leverrier's 

algorithm. These coefficients are used to prepare inputs 

to another subroutine DNEWRA which factors the character-

istic polynomial and produces the roots of the equation in 

the form RR(I) and RI(I). These are the real and imaginary 

parts~ respectively 9 of the ith eigenvalue. DAL4- then 

goes through some accuracy checks and then computes the 

eigenvectors. This point can be recognized by the nota-· 

tion EGVCR(III,JJJ) and EGVCI(III,JJJ·) which are the real 

and imaginary parts of the elements of the JJJth eigen-

vector. These real numbers representing the real and 

imaginary parts of the eigenvectors are then formed into 

complex pairs and Xl~ORIG(I,J) is formed. This is the 

first form of the system modal matrix, 1'1* This matrix is 

then adjusted such that each column is normalized with 

respect to its top element. This results in a matrix, the 

top row of which is made 11p only of ones. 

The next significant operation is the calling of sub­

routine STDFKo STDFK is significant to the procedure and 

will be discussed in detail later. At this point suffice 

it to say that STDFK uses the modal matrix, RR(I), RI(I), 

and SFK and returns an interim desired system in the phase 

variable form called PHSCOR and the proper size input, 
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XKP, to result in unity output of the o:ciginal system. At 

this point, if the program has cycled four times it 

branches to the section in whi cl1 the differential equa­

tions are solved, otherwise it continues. 

In the event that the program does not branch, it 

goes to 3333 where it begins the calculation oft, the 

minimization of which brings the characteristic equation 

of the original system, A, as close as possible to that of 

the desired system, PHYSCOR. The traces of the various 

powers of A are recomputed and Leverrier's algorithm is 

employed once again to obtain the coefficients of the 

characteristic equation. Since PHSCOR is in the phase 

variable form already, the desired coefficients for this 

system are displayed as a row of this matrix. Wis then 

computed between 1553 and 1501.j-. 

At this point begins the operation that modifies the 

A matrix such that* is minimized. Since tis recalcu­

lated many times in the process of determining the proper 

gradient direction and then in the descent itself, a group 

of indices are set up to control traffic through this part 

of the program. These were all set equal to zero just 

below 3333. 

An index for stopping the descent is established 

first by dividing the first value oft by 10000. It will 

be noticed that this part of the program only occurs if 

INDXIO is zero, or the first time through the routine. 

Next, using KMOR as an index, the program is sent to 1518 
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since initially Kl'10R is zero. In the range from 1518 to 

just above 1514 9 each variable entry o.f the A matrix is 

incremented. These increments are made one at a time and 

after each the program is sent back to 1509 and a new 

value of PSI is calculated. KCAL is increased by one 

every time through the loop until KCAL is greater than 

Kl'1AX, the number of variable entries of A. Kl'10R is incre­

mented by one every time through this loop also so the 

second time the IF statement just below 1520 is reached 

and all subsequent times during this loop the IF condition 

is false and the program proceeds through. A test is made 

on the direction of change oft. If the change is nega­

tive or zero, the program is sent to 1557; if positive to 

1543. 

At 1557 a partial derivative is calculated and the 

variable entry of A under consideration is set back to 

its original value so the next may be investigated. At 

1543 a check is made to see if 6t has been positive before 

when considering this element of A. If not, the sign of 

the increment to the element is changed and the element is 

set back to its original value,, KSOK is incremented to 

record that the program has been through this branch and 

finally the program is sent to 1542 where the element is 

incremented in the new direction and the cycle repeated. 

When the program reaches 1511 again,if 6t is negative or 

zero, the program is sent to 1557 as discussed above. If 

6t is still positive, however, the increment is halved and 
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the cycle is repeated. This section of' the program pro­

tects against taking too large a. step and making an 

erroneous choice of gradient direction. This procedure 

continues until a !J.W which is negative or zero results or 

until the cycle has been traversed twenty times., This 

check is to protect the program from becoming locked in a 

loop. 

After all of the increments, their directions, and 

their associated partial derivatives have been estab­

lished, the gradient direction for steepest descent is 

determined. This is done in the range from 1578 to the 

statement just above 1557. The program is then sent to 

1514 where the present entries of the A matrix are stored. 

Next, each variable entry of A is increment in a steepest 

descent sense. After these increments are made, a test is 

applied to see if any variable element of A exceeds its 

constraints. If so, the element is set equal to the con­

straining value. The traffic control indices, KMOR and 

KMOD, are reset to zero and KADJ is set equal to 1 to in­

dicate that a descent is in progress. The program is then 

sent back to 1509 where Wis recalculated for a new A with 

all variable entries adjusted. One can see by tracing the 

statements from 1509 that with KADJ = 1 there are some 

skips compared to previous cycles. 

Finally, just below 1504 the-program is sent to 1516 

where 1V is written out and a check js made on the direc­

tion of !J.1V. This first time through, the change will 
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probably be negative since the gradient search was just 

completed. If it should hap:pen to be positive, however, 

the program is branched to 1545 where all the increments 

are halved and the program is sent to 1514 again. This 

will continue until .61V is negative. In the usual case 

.where .6W is negative, the first time the value of .61V is 

stored and the program is sent back to 1514 to increment A 

once more. Finally, during the descent a local minimum 

will be reached as was discussed in Appendix B. This is 

sensed by a positive .61V after there has been at least one 

negative ,6W. When this occurs, the program is branched to 

1546 where A is set back to its form just prior to obtain­

ing the positive 6W. Traffic control indices, KREP and 

KADJ are set back to zero and the program is sent back to 

1509 where a new gradient search is initiated. The above 

procedure continues until .6W is less than the first value 

of W divided by 10,000. This test is made just below 1516 

every time a negative 61V occurs. When this test is satis­

fied, the program is branched to 1521, toward the end of 

the listing of the main program. 

At this point the new values of A are put back into 

double precision and control index JSKY is increased to 1. 

The program is then branched back to 1592 near the front 

of the listing where the eigenvalues and eigenvectors of 

the new A matrix are computed. The new modal matrix is 

also computed at this time. Just below 139, the program 

senses that JSKY is greater than zero and branches to 
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1591. In this part of the. program, a new B matrix is 

computed by transforming the :i.nput coefficient matrix 

established in subroutine STDFK in the phase variable 

form to the form of the original state model. The result-

ing changes in the elements of Bare then checked against 

the constraint limits of each entry. If any value b. 
l 

exceeds its constrained value, the entry is set at the 

value of the constraint. 

At this point, the program is sent back to 1597 where 

subroutine STDFK is called again. This completes one 

major cycle of the progrm. This procedure is repeated 

until SFT exceeds the value of SFK the first time through 

subroutine STDFK or until a prescribed number of passes 

through STDFK have been made. This check is made by an IF 

statement just below the subroutine CALL statement using 

index KSICK. When either of the above criteria is satis­

fied, the program branches to 1598 where the matrix dif-

ferential equations for the original and the revised 

systems are solved and a time trace comparison is plotted 

out on the output sheet. 

Subroutine STDFK 

This subroutine performs several important functions 

in the procedure. The inputs to STDFK include RR, RI, N, 

SFK, XMAJ, XMAJIN, and KSICK. This information is used to 

calculate the system steadiness factor, SFT and the 

matrices that make up the state model of the system 
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expressed in the phase variable or companion form. 

The first action of this subroutine is to read into 

memory CORIG and BORIG. These are the C matrix and the B 

matrix of the original system. It will be noticed from 

the IF statement just preceding the READ statements that 

these are read only the first time the program enters the 

subroutine since thereafter KSICK is greater than zero. 

BFIX is just the stored value of the input B matrix to be 

used when the differential equations of the original sys­

tem are solved in the main program. 

The matrices CN arid BN are formed using CORIG, BORIG, 

and the modal matrix and its inverse. The next formation, 

starting at 108 through 8, is that of the Vandermonde 

matrix to be used in the transformation from normal form 

to phase variable form. After the Vandermonde matrix is 

formed, its inverse is obtained through subroutine CINV. 

This subroutine differs from that used in the main program 

in that this one allows complex entries where the other 

one does not. Once these matrices are available, the out­

put and input coefficient matrices CP and BP of the phase 

variable form may be obtained. These are considered as a 

sort of pivot point for the approximate calculations to 

follow in that they are assumed not to change with changes 

in the eigenvalues later on. 

The next significant computation occurs after 1011 

where the products of corresponding entries of ON and BN 

are formed. This is in preparation for forming the K1 
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coefficients discussed in Chapter III* Beginning at 1013 

the eigenvalues are sorted out as to real and complex and 

the complex pairs are located.. These locations are stored 

in arrays IJ(I) and IT(I) for the complex eigenvalues and 

KL(I) for the real eigenvalues. The eigenvalues are then 

.formed into appropriate complex numbers and the coeffi-

cients K1 , mentioned above, are formed. Once these are 

available tan~ is calculated as discussed in Chapter III. 

The tan- 1 of this quantity provides a value for~. It 

will be remembered that tis used to calculate tp which is 

needed for the calculation of steadiness factor. 

With Equation (3-13) it was discussed that the sign 

of sini would influence whether a reference of~ is used 

in that equation or~- In order that the function be 

fixed in the digital program, a value of 2f, is used for 

all cases. tis adjusted by n radians, however, whenever 

it was apparent from (A1 +~)arid -(A1 - A2 ) that twas 

in the third or fourth quadrant. This was necessitated 

in part by the fact that the inverse tangent subprogram 

only returns the principle values of the angle,. Once t 

has been established, TP is calculated in a straightfor­

ward manner. With this, then XSF is calculated for the 

pairs of complex eigenvalues. From 22 to just below 23 

the contribu.tions of both real and complex conjugate modes 

are added together to form the total system steadiness 

factor, SFT. 

The program is branched at this point to 107 where 
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PHSCOR, the state coefficient matrix for this, the origi-

nal system, is the phase va:e:Lable form, After this, an 

input size for unity output is computed. More will be 

said of this computation later. The program is then 

branched back to 1021 where KSAP is increased from zero to 

one. At this point begins the adjustment of the system 

eigenvalues. 

Each real eigenvalue is incremented individually from 

1061 to just above 102. After each is incremented, the 

program branches back to 108 and SFT is recomputed, hold­

ing CP and BP constant. A partial derivative of SFT with 

respect to each real eigenvalue is computed, based on the 

change of SFT. After each partial derivative is calcu-

lated, the corresponding eigenvalue is set back to its 

original value. After all of the real eigenvalues have 

been investigated, the complex conjugate pairs are 

engaged. This is done below 2232 by forming each complex 

eigenvalue into a polar vector of the form R~. 8 is then 

incremented and the program branches back to 108 and SFT 

is recalculated. Partial derivatives of the form oSFT ae 
are formed after each mode is studied. 

Finally, when all increments have been made and ad­

justed as to sign such that SFT increases, the direction 

of steepest ascent is computed just below 2230 and each 

variable is incremented. The program then branches back 

to 108 where SFT is calculated with all eigenvalues ad­

justed by an appropriate amount. The program is then 
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branched to 107 where the coefficient matrix of the phase 

variable or companion form is obtained. KSAP is greater 

than zero this time, so the program is returned to the 

main program. The main output of this subroutine is 

PHSCOR which is used in the calculation of, in the main 

program. 

STDFK also serves another purpose. Since PHSCOR is 

obtained here and is a convenient form, the input size is 

computed that will result in unit output of the system. 

This input magnitude is called XKP in STDFK. The logic 

behind this computation may be seen from the block dia­

grams of Figure 26. This represents a system expressed in 

the phase variable form. Notice that in a steady state 

condition, the inputs to all integrators must be zero. 

This allows the following equations to be written for a 

unity output • 

• If X1 0 then X2 ::::: -Kv 

If X2 :::: 0 then X3 ::::: -Kb,v 
. 

If X3 - 0 then vKb2 = al X3 + a2 X2 + a3 X1 

but the desired value of X1 is 1, so 

and 

vKb2 = a1 (-Kb1 v) + a2 (-Kv) + · a3 

a3 = v(Kb2 + Kb1 a1 + Ka2 ) 

This equation is easily mechanized on the digital computer 

as shown in STDFK from 2248 to just below 2250 near the 
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end of the listing. 

Subroutines DIFSOL and PLOT 

These subroutines serve the purpose of solving the 

differential equations and plotting the results, 

respectively. Since these are only incidental to the p:i-o­

cedure, they will not be discussed in detail. A discus­

sion of the integration procedure may be found in 

Caterpillar Tractor Company Applied Control Series, Volume 

5 published by the Oklahoma State University Fluid Power 

Control Laboratory in 1967 [4]. 



APPENDIX D 

PREPARATION OF INPUT CARDS 

The input data required for the use of this digital 

design program are read in on data cards. These cards 

form 13 groups. The groups are listed below with the re­

quired format information. 

Group 1: One card that contains the· order of 

the system under study and the 

specification value of steadiness 

factor, SFK. The format for this 

card is 12, Fl0.4. 

Group 2: This group indicates which entries 

in the A matrix are to be variable, 

l's for variable entries and zeros 

for fixed entries. These are ar­

ranged by rows in the format 512. 

Each card indicates the variable or 

fixed nature of the elements of one 

row of the A matrix. There will be 

as many cards in this group as there 

are rows in the A matrix. 

Group 3: This group indicates the maximum 

magnitude allowed for each variable 
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element of the A matrix. The values 

are arranged :Ln a f orma.t of 7Fl0. 4 ., 

The order of the data is by rows. 

Group 4: This group indicates the minimum mag­

nitude of the entries of the A matrix. 

The format and order are identical to 

those of Group 3. 

Group 5: This group indicates the maximum 

values of the entries in the B matrix. 

The format is lOF7.4 and the order is 

from the top of the matrix. 

Group 6: This group indicates the minimum values 

of the entries in the B matrix. The 

format and order are identical to those 

of Group 5. If it is desired to hold 

an entry of B fixed, make the maximum 

and minimum values the same. 

Group 7: This group contains the starting values 

of the entries in the A matrix. The 

format is 5Dl4.7. The order is by 

columns of A. 

Group 8: This group contains the entries of the 
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C matrix in a format of (4Fl5.4, 4Fl5.4). 

The double format is because the entries 

of this matrix are input as complex num­

bers. The first part of the format is 

for the real part and the second is for 



the imaginary part. It is important 

to input zeros or leave the field 

blank corresponding to the second 

part if the entry is real. The order 

of the entries on the cards is the 

real part, then the imaginary part of 

each entry starting with the left most 

element of the C matrix. 

Group 9: This group contains the elements of 

the B matrix where the format and 

order are identical to those of Group 

8 except that the first entry is the 

top element of B. 

Group 10: This group contains information needed 

for. the numerical integration of the 

differential equations. The first 

entry is a value for the initial time 

step size. This should be some frac­

tion of the shortest time constant of 

the system. The second entry is the 

quotient of the total time the design­

er wishes the solution to include 

divided by the initial time step size 

above. For instance, if the initial 

step size is .001 second and the 

desired final time is 7.5 seconds, 

then the second entry on the card 

133 



.L!2_ would be ~OOl = 7500. The format 

for this card is Fl0~5,Il0. 

Group 11: This group contains the initial 

conditions of the state variables 

starting with the first element of 

the state vector. The format for 

these entries is 8Fl0.5. If the 

order of the system is less than 8 

and the initial conditions are to 
' 

be zero then a single blank card 

will suffice. 

Group 12: This group is made up of one card 

that contains the title of the plot 

of the step responses which the pro­

gram provides. All 80 columns may 

be used. 

Group 13: This group is also only one card. 

It contains the title of the verti-

cal axis in columns 1 through 18, 

the symbols to be used on the plot 

in columns 19 through 58, the title 

of the horizontal axis in columns 

59 through 76, and in columns 77, 78, 

and 79 are a decimal point, a plus 

sign, and a minus sign, respectively. 
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.APPENDIX E 

FORTRAN PROGRAM FOR Til"lE DOM.A.IN COMPENSATION 

OF LINE.AR SYSTEI"JS 
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FORTRAN LISTING OF MAIN CALLING PROGRAM 

DIMENSION TRCl51,PQl51,TDl51,ZQ151,JVAR15,51,AXE1251,IAl25l,JA(25) 
DIMENSION A215,51,PA(51,ZAl51,AMAXl25l,AMIN1251 
DIMENSION OPSl1251,PDVl251,FAK1251,PSX(51 
DIMENSION Al 5, 51,AAI 5, 51,TRI 51,AAMOI 5, 51,AAMTI 5, 51 
DIMENSION OET125J,VMAXl251,VMIN(251,APWRl5,5l,APWXl5,51 
DIMENSION UI 401,RII 51,RRI 5J,IPIVOTllOl,INOEXll0,21,PIVOTllOI 
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DAL40007 

DIMENSION Rlll 51,RRll 51,CllO,lOl,COMMl121,All 5, 51,EGVCRI 5, 51 
DIMENSION ZZII 5, 51,DEFllOl,TMRSPll202J,TMRSP212021,SYSRSPl2021 DAL40009 
DIMENSION COLUMN! 51,ZI 5l,Pll61,Xl301,Gl30,ll,TIMEl2021 DAL40010 
DIMENSION EGVCII 5, 51,El51,B151,QXl5,5J 
COMPLEX RMIINVl5,5J,QSUM,TFX15,5),BFIXl51,XB,YB,Z6,BMAXl51,BMINl5J 
COMPLEX ZLMDAI 51,RMI 5, 51,01 5, 51,CNI 51,FI 51,XMORIGI 5, 51 
COMPLEX DINVI 5, 5ltRMINVI 5, 51,ARGPHII 51,XY,Z2,XMAJ( 5, 51 
DIMENSION I.JI 51,ITI 51,PHI( 5l,ARII 51,TPI 51 
COMPLEX XMINVI 5, 5),XMAJINI 5, 51,XMARIGl5,5J,BPl51tBORIG(5J 
DIMENSION SFI 51,RRGPHII 5l,TRRI 51,TRII 51,ZII 51,PHSCORI 5, 51 
COMMON PIVOT,INDEX,IPIVOT OAL400ll 
DOUBLE PRECISION Rll,RRl,C,A,AA,TR,AAMD,AAMT,U,RI,RR,ZZl,OEF,COLUMOAL400l2 

lN,Z,P,X,G,FLON,H,SIGMA,DIFF,EPS,ZERO,FLOK,TREKR,TREKI,SUM,FDIV DAL400l3 
DOUBLE PRECISION PIVOT,DETERM DAL40014 

1585 FORMATl1H0,33X,4HPSI=,Fl5.41 
1586 FORMAT(/lHO,llX,26HGRADIENT SEARCH COMMENCING) 
1575 FORMAT17Fl0e41 
1001 FORMATl12,Ill 
1002 FORMATl5Dl4e7l 

lU FORMAT(l2A61 
12 FORMATl1Hll2A61 

3001 FORMAT(23Hl ERROR IN DNEWRA) 
1108 FORMAT(28Hl THE DETERMINANT IS ZEROJ 
4102 FORMAT(8H I2,2H Dl6.9,6H D16e9,20H 

1 12,3H Dl6.9,7H Dl6e91 
1581 FORMAT(///1H0,54X,22H*****FINAL SYSTEM*****> 

DAL40206 
DAL40207 
DAL40213 
DAL40214 
DAL40204 
DAL40205 
DAL40208 
DAL40209 

1112 FORMATl68Hl OAL40210 
lEIGENVECTOR 12//85H DAL40il! 
2REAL PART IMAGINARY PART /I DAL40212 

7101 FORMATl////lH0,8X,40H INPUT MATRIX MULTIPLIED BY EIGENVECTOR I2,J2DAL40215 
lH EIGENVECTORI2,27H MULTIPLIED BY EIGENVALUE DAL40216 
2I2/ll3H REAL PART IMAGINARY PART DAL40217 
3 REAL PART IMAGINARY PART//) DAL40218 

2004 FORMAT(/1H0,21X,18H NORMALIZED TRACES,13X,54H TRACE CHECKSIREAL PADAL40219 
lRTl TRACE CHECKSIIMAGINARY PART)) DAL40220 

2001 FORMATl1Hl,19X,17HMATR!X DIMENSION=l2,12X,2HH=Dl6o9,llX,6HSIGMA•DlDAL40221 
16.9) DAL40222 

1609 FORMATl//lH0,37X,59HTHE CYCLE COUNT HAS BEEN EXCEEDED FOR VARIABLE 
l ENTRY NUMBER,13) 

15 FORMATl10F7o41 
4 FORMAT(5Fl0o41 

2013 FORMAT(lH ,22X,Dl6.9,23X,Dl6o9,2X,Dl6o91 
2023 FORMATllH ,22X,Dl6o9) 
20()5 FORMATl//lH0,38X,52H E!GENVALUESIREAL PARTI 

l PART)) 
2015 FORMAT(lH ,41X,12,2X,Dl6o9,2X,Dl6e9) 
1106 FORMATl/lHO, 4(Dl2.4,2X,Dl2o4t4XIJ 

DAL40223 
DAL40224 

EIGENVALUES I IMAGINARY 
DAL40226 

1 FORMAT( 1Hl,54X,25H*****ORIGINAL SYSTEM*****I 
2 FORMAT( 1Hl,54X,25H**«**MODIFIED SYSTEM*****) 

20 FORMAT(/1H056Xl3H INPUT MAiRIX/) DAL40.l29 
6010 FORMAT(34X,5015o7) 
2003 FORMATl/1HU,18X,24H NORMALIZED COEFFICIENTS,7X,62H NORMALIZED ROOTDAL40231 



C 

lSIREAL PAR T> 
7111 FORMA T( lHl l 

NORMALIZED ROOTSllMAGnNARY PART! ! 

7113 FORMA TClHO,lOX,5HF IRSTt25X,6HSECONOr26X-SHTHIR0,2~~,6HFOURTHI 
7112 FORMAT< 8X,4(11HEIGENVECTOR,20~)» 
1602 FORMAT(//1H0t 47X,41H•••••MOD 1FICAr 3oN OF SYS1EM A MATRIX*****) 
6000 FORMA TC1H0,32X,3HROW,J21 

9 FORMAT 112,Fl0,41 
11 FORMAT (8Fl5,4 1 
13 FORMAT 12F l0 ,41 
14 FORMAT (4FlS,4,4FlS,41 

1S83 FORMAT( 1Hlt 40Xt5SH***** TIME DOMAIN COMPENSATION OF A LINEAR SY 
lSTEM *****I 

1584 FORMAT(1HO,S6X,23HTHIS SYSTEM IS OF ORDER,121 
34 FORMAT< SIZ 1 

INIZIALIZATION 
C 

3334 READ1S,91N,SFK 

1505 

D01SOS 1•1,N 
READIS,341(JVARII,Jl,J•l,NI 
CONTINUE 
KsO 
DOlS06 1.,1,N 
D01506 J=l,N 
KV:JVARII,Jl 
lF (KV,LTollGO TO 1506 
K"'K+l 
lAIKl•l 
JAIKl•J 

1506 CONTINUE 
KMAXzK 
READ(S,157SllAMAX(ll,1•1,KMAXl 
REA015,1S7SIIAMIN111,l•l,KMAX1 
READIS,lS llBMAXlll,1•1,NI 
READ15,15 IIBMINlll•l•l,NI 
IF(Nlllll,3333,1111 

1111 ~RJT£16,15831 
WRITE(6,1S84IN 
KSICK•O 
JSKY•O 
READ15,l0021IIAll,Jltl=l,Nl,J•l•NI 

1592 FLONsN 
MAX,.20 
EPS=l,D-10 
ZERO=l,D-10 
WRITE 16,201 
00 5000 J•·l tN 
WR !TE ( 6 ,6000 I J 

SOOO WRITE16t60lO)IAIJolltl•l,NI 
H=,ODO 
DO 50 K•l,N 

50 H:H+AIK,KI 
HaH/FLON 
SIGMA•,000 
DO 58 J • l ,N 
DO 58 Jal,N 
IFII-J>54,52,54 

52 Olff:(A(l,JI-Hl••Z 
GOTO 56 

54 DIFF=IAII,Jll**Z 
56 SIGMA:SlGMA+DlFF 
58 CONTINUE 

SIGMAaSQRTISlGMA/FLONI 
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DAL40232 
OAL40233 

OAL40015 
OAL40016 

OAL4002 0 

OAL4002 2 

DAL4002 3 
OAL4002 4 
OAL4002S 
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DAL40027 
DAL40028 
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DAL40039 
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DAL4004 l 
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DAL4004 3 



138 

DO 70 l•l,N 
DO 70 J=l,N OAL40047 
IFII-J162,64 ,62 OAL40048 

62 AAII,Jl=A II,JI OAL40049 
GOTO 70 OAL40050 

64 AAll,Jl•Al l,Jl-H OAL40051 
70 CONTINUE OAL40052 
33 TRlll"eOOO OAL400 53 

DO 72 L•l,N OAL40054 
72 TRlll•TRlll+AAIL,LI DAL40055 . 

TRlll•TRlll/SIGMA OAL40056 
DO 76 I=l,N OAL40058 
DO 76 J•l,N OAL40059 

76 AAMOII,Jl=AAII,Jl OAL40060 
K=2 OAL40061 

88 CALL SQMUL TI AA,AAMD,AAMT,Nl OAL40062 
TRIKl•eOOO OAL40063 
00 78 L=l,N OAL40064 

78 TRIK)xTRIKl+AAMTIL,LI DAL40065 
TRIKl•TRIKl/lSIGMA**Kl OAL40066 
IFIK-N)82,84,84 OAL40067 

82 K=K+l OAL40068 
00 86 Jcl,N OAL40069 
DO 86 J=l,N OAL40070 

86 AAMOll,Jl•AAMTll,Jl OAL40071 
GOTO 88 OAL40072 

84 Plll•TRlll DAL40073 
DO 92 Kc2,N OAL40074 
FLOKsK OAL40075 
ZIKl•eOOO OAL40076 
LIM•K-1 DAL40077 
00 94 i=l,LIM OAL40078 
LIMM=LIM+l-1 OAL40079 ' 

94 ZIKl=ZIKl+Plll*TR ILIMMI OAL40080 
92 PIKl=ITRIKI-ZIKII/FLOK DAL4008l 

U I 11 cl .. DO OAL40082 
Ul2l=O.DO OAL40083 
DO 96 i =1,N OAL40084 
Ul2*1+1 la:-p( 11 DAL40085 

96 Ul2*1+21=0.00 DAL40086 
CALL DNEWRAIN,U,X,MAX,EPS,ZERO,G,KEI OAL40087 
IFIKE.NE.OIGO T03333 

95 00 1001=1,N OAL40089 
RRI I l=Xl2*1-ll DAL40090 

100 Rllll=Xl2*11 OAL4009l 
00 120 fzl,N DAL40092 
R 11 I I 1 =RI I I I OAL40093 

120 RRllll•RRlll OAL40094 
TREKR=.ODO DAL40097 
TREKI•.000 OAL40098 
DO 122 l=l,N DAL40099 
TREKR=TREKR+RRIII OAL40lOO 

122 TREKl=TREKl+Rl(I) DAL4010l 
DO 136 Kz2,N DAL40104 
TREKR=.ODO OAL40J.05 
TREKI=.ODO DAL40J.06 
DO 130 l•l ,N OAL40107 
Zlll•RRlll*Rlllll+Rllll*RRllll OAL40108 
RRlll•RRlll*RRllll-RIIIl*Rlllll OAL40109 
TREKRzTREKR+RRIII DAL40llO 
RI I 11 •Z I I l OAL40lll 

130 TREKl•TREKI+RIIIl OAL40112 



139 

136 CONTINUE 
00 140 l•l.N OAL40l l4 
Rill l •Rll( I l*S I GMA OAL40ll5 

140 RR IIl•RRllll*SIGMA+H OAL40ll6 
209 NM• N*2 OAL40120 

DO 777 K•l ,N OAL40l22 
DO 208 1•1,N OAL40l23 
Xlll•A(I ,II-RR( KI OAL40124 
NNN-=I+N OAL40125 

. 208 XINNNl=XIII OAL40l26 
DO 213 1•1,NM OAL40127 
DO 213 Jaol,NM DAL40128 

213 ClltJl•aO DAL40129 
DO 219 1 .. 1,N OAL40l30 
INN•I+N DAL40.13l 
CI INN, I la-RI I Kl DAL40132 
CI I, INN l =RI I Kl DAL40l33 
DO 219 J•l,N DAL40l34 
CII,Jl=AII,Jl DAL40135 
JNN"'J+N DAL40136 

219 CIINN,JNNl=AII,J) DAL40137 
DO 400 lal,NM DAL40138 

400 Cl I ,I l=XI I I DAL40l39 
403 MM=NM-1 DAL40140 
402 DO 405 I =l •MM DAL40141 
404 XI I 1 "'CI I , NI DAL40142 

DO 405 J=N,MM DAL40143 
405 CII,Jl • CIJ, J+l l DAL40144 

DO 408 J=l,MM DAL40145 
DO 408 I =N, MM DAL40146 

408 Cl I ,Jl=CI I+l,Jl DAL40147 
DO 410 I=N,MM DAL40148 

410 XIIl•Xll+ll OAL40149 
DO 411 I a 1,MM DAL40150 

411 GI I , 1 l :o-X I I I OAL40151 
LH=MM-1 DAL40152 
CALL MATINVIC,LH,G,1,DETERMI DAL40153 
IFIDETERMl233,231,233 DAL40154 

231 WRITE 16,1108 l DAL40155 
GO TO 11 DAL40156 . 

233 DO 235 l=N,MM DAL40157 
IZZ=MM+N-1 DAL40l58 

235 GIIZZ+l,l l •GIIZZ,11 OAL40159 
GIN,ll • l.DO DAL40160 
GINM,l)•eODO DAL4016 1 
SUM=eODO DAL40162 
DO 2 4 0 I • l , NM DAL40163 

240 SUM=SUM+GII,11**2 DAL40164 ' 
FDIV,.SQRTISUMI DAL40165 
DO 243 I•l,NM DAL40166 

243 Gll,l):oGII,ll/FDIV OAL40167 
703 DO 246 I•l,N OAL40l69 

KK=l+N DAL40170 
246 TR I I l •GI KK, l I DAL40171 

0025 111,.1,N 
JJJ•K 
EGVCRIIIl,JJJl•Gllll,ll 
EGVCIIIli,JJJ)•TRIIIII 

25 CONTINUE 
DO 4000 l•l,N OAL40173 
KKal+N DAL40174 
DEFlll•eODO DAL40175 



DEFIKKl•eODO 
DO 4000 J•l,N 
KKKK•J+N 
DEFll)cDEFCJl+ACI,Jl*GCJ ,lJ 
DEF IKK J•DEF IKKl+All,Jl*GIKKKK , 1 ) 

4000 CONTINUE 
DO 4005 I=l,N 
KKal+N 
AAMDI I ,Kl•DEFI 11 

4005 AAMTII,Kl•DEFIKKI 
DO 4010 J=l ,N 
KK .. J+N 
DEFCJ)=RRIKl*GIJ1l)-RIIKJ*GCKK1ll 
DEFCKKl•RRIKl*GCKK,ll+RIIKl*GCJ,lJ 

4010 CONTINUE 
DO 4020 I=l,N 
KK.cl+N 
AA(l,KJ=DEFlll 

4020 ZZICl,Kl•DEFIKKI 
777 CONTINUE 

WRITEC612005 J 
WRITEl6120151111RRlll1Rllll1l•l1NJ 
WR I TE I 6 , 7113 I 
WRITE16,71121 
DO 3 111•1,N 
WRITEl61ll06llEGVCRllll1JJJJ1EGVClllll1JJJl1JJJ•l1NI 

3 CONTINUE 
D0137 l•l,N 
D0137 J=l,N 
xxx=EGVCRll,JJ 
YYY=EGVCill,JJ 
XMORIGll,Jl=CMPLXCXXX,YYYI 

137 CONTINUE 
DO 138 J= l,N 
D0138 l= l,N 
XMARIGll1JJ =XMORIGll,JJ/XMORIGll1JI 

138 CONTINUE 
D01385 l=l,N 
D01385 J .. 1,N 
XMORIGll,Jl =XMARIGll,JJ 

1385 CONTINUE 
CALL CINVIXMORIG,N,XMI NV,KKKJ 
D0139 J=l,N 
D0139 1=1,N 
XMAJll,Jl•XMORIGll,Jl*XMINVIJ,NI 

139 CONTINUE 
CALL CINVIXMAJ,N,XMAJIN,KKKI 
IFIJSKYeGTeOIGO TO 1591 

1597 CALL STDFK(RR,RI,N,SFK,SFT,XMAJ,XMAJIN,BORIG,RMIINV,CN,KSICK,BFIX, 
lPHSCOR,KSAP,XKPI 

IF1KS1CKeGTe3IG0 TO 1598 
D01416 l =l,N 
XY=BFIXI I I 
EIIJoaREALIXYI 

1416 CONTINUE 
D014l l•l,N 
D0141 J=l,N 
Alll,JJ=SNGLIAII,JIJ 
IF(KSICKeGT.OIGO TO 141 
BETO=XKP 
QXll,JJ"Alll,JJ 

141 CONTINUE 

140 

OAL40176 
OAL40177 
OAL401 78 
OAL40l79 
OAL40180 
DAL40181 
DAL40182 
DAL40183 
DAL40184 
DAL40185 
OAL40186 
DAL40187 
OAL40188 
OAL40189 
OAL40l90 
DAL40191 
OAL40192 
DAL40193 
OAL40194 
OAL40l95 



IFIKSAPeLTeUGO TO 1598 
GO TO 3333 

1598 NZZZ111l 
WRJTEC6,l) 
CALL OIFSOLIQX,N,NZlleTMRSPli1M~SPe.,£JK.E@SETO! 
D0142 I=l,IJK 
SYSRSPlllaTMRSPllI) 
TIMEIIl•TMRSP21II 

142 CONTINUE 
D01415 I=l,N 
XY=BORJG( I! 
BIIJaREALIXYI 

1415 CONTINUE 
MJK=JJK. 
WRITEl6 ,21 
CALL DIFSOLIAl ,N,NZZZ,TMRSP1,TMRSP2,IJK,B,XKPI 
D0143 1=1,IJK 
J2=I+MJK 
SYSRSPll21=TMRSP11II 
TIME(I2l=TMRSP2(II 

143 CONTINUE 
TMAX=TIME I I 21 

.RMAX=le5 
CALL PLOTITIME,O.O,TMAX,O,SYSRSP,o.o,1.s,o,o.o,o.o,o.o,0,12,2,1,3, 

121 
GO TO 3335 

3333 CONT I NUE 
WRITE16,16021 
KMOO=O 
KAOJ=O 
KMOR=O 
KREP=O 
KCYC=O 
INOlO•O 
KSOK=O 

1509 TRCI 11 =o.o 
001531 L=l,N 

1531 TRClll=TRClll+Al(L1LI 
001534 1=1,N 
001534 J=l,N 

1534 APWRII,Jl=Alll,JI 
LX=2 

1537 001535 K=l,N 
001533 I=l ,N 
SUM=o.o 
001532 J=l,N 
SUM=SUM+Alll,Jl*APWRIJ,KI 

1532 CONTINUE 
1533 APWXII1Kl=SUM 
1535 CONTINUE 

001540 I=l,N 
D01540 J=l,N 

1540 APWRII,Jl=APWXII,JI 
TRCILXl=OeO 
001536 L=l,N 

1536 TRCILX)=TRCILXl+APWRIL,LI 
LX=LX+l 
IFILXeGTeNIGO TO 1538 
GO TO 1537 

1538 CONTINUE 
IFIKAOJeGToOIGO TO 1510 
IFIKMOOoGToOlGO TO 1510 

; ., 
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IFIKCYCeGl.O)GO TO 1510 
001500 I=loN 
K=N-Hl 

1500 PQll>=-PHSCOR(N,KI 
TD I 11 "'-PQ I l l 
001502 K=2,N 
ZQIKl=OeO 
FLOK=K 
LIX=K-1 
001501 l=l ,LIX 
LIXX=LIX+l-I 

1501 ZQIKi=ZQIKl+PQIIl*TDILIXXl 
1502 TO(Kl•-PQ(JJ*FLOK-ZQIKI 
1510 PACll=-TRC(ll 

001553 K=2,N 
FLOK=K 
ZA(K)=O,O 
LIM:K-1 
D01552 l=l ,LIM 
L IMM=LIM+l-I 

1552 ZAIK)=ZAIKl+PAlll*TRCILIMMl 
1553 PAIKl=-ITRCIKl+ZAIKll/FLOK 

SUM=O,O 
001504 I=l,N 
PSI2=PQlll-PAIII 
P5Il=AB51PSI2l**2,0 
SUM=SUM+PSil 
PSI=SUM 

1504 CONTINUE 
IFIKAOJ,GT.OIGO TO 1516 
IFIKMOO,GT,OIGO TO 1511 
PSO=PSI 
WRITEl6,15851PSI 
IFIIND10,GT,OlGO TO 1578 
1ND10=IND10+l 
PS I X=PS I /10000 s 

1578 CONTINUE 
1520 KCAL=O 

IF(KMOR,LT,llGO TO 1518 
1511 IFIPSI-PSOll557,1557,1543 
1543 KSOR=KSOR+l 

IFIKSOR,GT,20lGO TO 1573 
IFIKSOK.GT.OlGO TO 1572 
DETIKCALl=-DETIKCALl 
AllIX,JXl=AlHLD 
KSOK=KSOK+l 
GO TO 1542 

1572 DETIKCALl=-0,5*DETIKCALI 
Al(IX,JXl=AlHLD 
KSOK=O 
GO TO 1542 

1573 WRITE16,16091KCAL 
GO TO 1557 

1558 SUM=0,0 
D01559 I=l,KMAX 

1559 SUM=SUM+IPDVII1**21 
PDVS=SUM 
D01560 I=l,KMAX 
FAKIIl=PDV(ll/l~DVS**0,51 

1560 FAKIIl=ABSIFAKIIII 
D01561 I =1,KMAX 

1561 DET(Il=DETIIl*FAKIII 
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XDET .. leO 
YDET=leO 
GO TO 1514 

1557 OPSl(KCAL)sPSJ-PSO 
KSOR-=O 
POVIKCAL)•OPSl(KCALI/ABS(DETfKCAl)I 

1513 AlllX,JXl=AlHLD 
1518 KCALsKCAL+l 

KSOK•O 
KSOR•O 
KCYEzO 
KCYF•O 
KMOR•KMOR+l 
JFtKCAL•GT.KMAX)GO TO 1558 
IX=IAIKCALI 
JX=JA I KCALI 
CAL=All lX,JX I 
.CAL=ABSICALI 
IFCCAL.GTeOeOIGO TO 1522 
DETIKCALl"leO 
GO TO 1523 

1522 DETIKCALl=Oe05*AlllXtJXI 
1523 AlHLD=AlllXtJXI 
1542 AlllX,JXl=AlllX,JXl+DETIKCALI 

KMOD•KMOD+l 
GO TO 1509 

1514 KREP=KREP+l 
IFIKREPeGT.151GO TO 1521 
DO 15 51 I • l ,.N 
D01551J=l,N 

1551 A21IoJl=AlCI,JI 
D01515 K=l,KMAX 
IX=IAIKI 
JX=JA(KI 
Al(IX,JXl=AllIX,JXl+DET(KI 
XNEW=AlllX,JXI 
AMAK=AMAXIKI 
AMIX=AMINIKI 
IFIXNEW-AMAKl1570,1570tl569 

1569 Al(lX,JXl=AMAXCKI 
GO TO 1515 

1570 lFCXNEW-AMIX11571,1515,1515 
1571 Al(IX,JXl=AMINIKI 
1515 CONTINUE 

KMOD=O 
.KADJ=l 
K=O 
KMOR=O 
GO TO 1509 

1516 WRITEl6tl5851PSI 
IFIPSI-PSOl1567,1517,1545 

1567 PSXX=PSI-PSO 
PSXX=ABSIPSXXI 
IFIPSXXeLTePSIXIGO TO 1521 
IFIKCYFeGTeOIGO TO 1562 
KCYF=l 

1568 CHG=PS[-PSO 
PSO=PSI 
KCYE=l 
GO TO 1514 

1562 THETl=CHG/XDET 
THETl•ATANITHETll 
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THET2•1PSl-PSCIIYDET 
THET2~ATAN!THET2l 
DELTH•THET1-THET2 
DELTH=ABSiOELTH! 
IFIDELTHeGT.O.B!GO TO 1563 
IF(DELTHoLT®0~5»GO TO 1564 
XDET='l'DET 
GO TO 1568 

1563 001565 I=l,KMAX 
1565 DETCll=0.5*DETIII 

XOET=YDET 
YDET•YDET*(Oo5**0•51 
GO TO 1568 

1564 001566 I=leKMAX 
1566 DETII1=2oO*DETIIl 

XDET=YDET 
YDET=YDET*l2•0**0•51 
GO TO 1568 

1545 IFIKCYEoGT.OIGO TO 1546 
DO 1548 I=l,N 
DO 1548 J=l,N 

1548 Al11,Jl=A211,JI 
DO 1549 I=l,KMAX 

1549 DET(ll=DETlll*0•5 
XDET•XDET*(Oo5**0o51 
GO TO 1514 

1546 DO 1550 l=l,N 
DO 1550 J=l,N 

1550 Al1I,Jl=A21I,JI 
KCYE=O 
GO TO 1517 

1517 CONTINUE 
KREP=O 
KADJ=O 
KCYC=KCYC+l 
IFIKCYC.GTelOIGO TO 1521 
WR!TE(6,1586l 
GO TO 1509 

1521 D01590 I=l,N 
D01590 J=loN 
XERX=Al I 1,J I 

1590 AlltJl=DBLEIXERXI 
JSKY=JSKY+l 
GO TO 1592 

1591 D01596 J=l,N 
001596 I=l,N 

1596 XMORIG(l,Jl=XMORIGll,Jl*CN(JI 
D01594 K=l,N 
D01594 I=l,N 
QSUM=IOo0,0.01 
001593 J=l,N 

1593 QSUM=QSUM+XMORIGll,Jl*RMIINVIJ,KJ 
1594 TFX(l,Kl•QSUM 

D01595 Izl,N 
QSUM=(0.0,0.01 
D01595 J•l,N 
QSUM=QSUM+TFX<I,Jl*BPIJI 

1595 BORIGIIl=QSUM 
D01599 I=l,N 
XB=BMAX I 11 
ZB=BMIN(II 
YB=BORIGI!) 
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YBB .. REAliYBI 
XBB=REALIXBI 
ZlfH3wREAli ZS l 
IFCYBB.LToXBBIGO TO 1601 
BORIGI I l=BMAXI I I 
GO TO 1599 

1601 IFIYBBeGT&ZBBlGO TO 1599 
BORIGI I l"'BMINI I I 

1599 CONTINUE 
KSICK=KSICK+l 
IFIKSAP-1)1598,1597,1597 

3335 CONTINUE 
STOP 
END 
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$IBFTC SQMULT 
C SQUARE MATRIX MULTIPLICATION 
C 

SUBROUTINE SQMULTIA,B,C,Nl 
DI MENS I ON A I 5, 5 » • B ! 5 • 5 i ~ CI 8" 5 l ~ COlUIMN I 51 
DOUBLE PRECISION A,B,Co(OLUMN 

5 M'"N 
10 DO 50 J=l,M 
20 DO 25 K==l,M 
25 (OLUMN(K)=BIKtJl 
30 DO 50 I=l,M 
35 C.11 ,J l =OeO 
40 DO 50 K=l,M 
50 C!I,Jl=Cll,Jl+ACl,Kl*COLUMNIKI 
6(? RETURN 

END 
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SIBFTC DNEWR 
SUBROUTINE DNEWRAIM,CoRtMAX,EPS,ZERO,GG,KEl 
DIMENSION Clli,Rlll•GGl21,Gl4!~5121eTl2),XIZi 
DOUBLE PRECISION C,R,S,T,X,PtOtG 
DATA GC3ltGl41/elDO,.lDO/ 
KE=O 
N=M 
SCll=Clll 
S12l=C(2l 
Q=SC11**2+SC21**2 
IFINeNEell GO TO 5 
Rlll•-1Sll1*Cl31+S121*Cl4ll/Q 
Rl21=1SC2>•CC3)-SCll*CC41l/Q 
GO TO 200 

5 L=O 
KR=O 
KT=O 
.EN=N 
GC 1 l=GGI 11 
GC2l=GGl2l 
CM=CCC2*N+l1**2+CC2*N+21**2l/Q 
IFICM.NEeO.I GO TO 10 
CM"'l• 
RC ll =0.00 
RC2J=O.DO 
GCll=elDO 
L=l 

10 DO 15 I=l,N 
SC11=5Cll+CC2*1+11 

15 SC2t=S~21+Cl2*1+2l 
IFCSQRTICSCll**2+512l**2l/CMI-ZEROl20,20,25 

20 Rl2*L+ll=l.DO 
Rl2*L+21=0.DO 
GCll=lelDO 
Gl2l=O.DO 
L=L+l 
IFIL-Nl25,200t200 

25 IFIMODIN121l30,35,30 
30 Slll=CC31-Clll 

5121=(141-((21 
K.=3 
GO TO 40 

35 Slll=Clll 
5(2)=(121 
K.=2 

40 DO 45 I=K,N,2 
SCll•S(ll-Cl2*1-ll+Cl2*1+11 

45 5121=5121-Cl2*Il+Cl2*1+21 
IFISQRTCISC11**2+S121**2l/CMI-ZER0l50,50,55 

~O Rl2*L+ll•-l•DO 
Rl2•L+21=0.DO 
Glll=-1.lDO 
Gl2l=O.DO 
L=L+l 
IFIL-N155,200,200 

55 Q•Gll1**2+Gl21**2 
IFIQ-1.175,75,60 

60 GCll•Glll/Q 
Gl21=C-Gl21 I/Q 
KR=-1 

65 CM=le/CM 
K=CN+ll/2 
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DO 70 I•l,K 
J=N-1 
TC l JaC'2*X-l » 
TC2)=Cl2*11 
Cl2*I•lt=Cl2*J+3! 
Cl2*I>=Cl2•J+41 
CC2*J+3>sTCll 

70 CC2*J+4l=T 121 
7!> IG•l 
80 Xlll~Gl2*IG-l> 

Xl21=Gl2*1GI 
DO 110 J=l ,MAX 
P=EN 
Slll=Clll*X(ll-CC2>*XC2J+CC31 
SC2l=CC21*XCll+CCll*XC21+CC4) 
TCll=P*CCl) 
Tl21=P*Cl21 
DO 8!> I=Z,N 
Q=SCll*XCl)-S121*Xl2)+Cl2*I+l) 
SC21=SC21*XCl>+SCll*XC2>+CC2*I+21 
SCll=Q 
P=P-leDO 
Q=TCll•Xlll-Tl21*XC21+P*Cl2*I-11 
TC21=TC21*Xlll+T~ll*Xl21+P*Cl2*11 

85 TC 11 =Q 
P=SC11**2+S12l**2 
Q=ITCll*SCll+TC21*S121)/P 
Tl21=1Tl2l*Sll)-TCll*SC2ll/P 
Tlll=Q 
IFIPeEQeOel Tlll=l.Dl6 
IFILJ90,100,90 

90 DO 95 I=l,L 
Slll=Xlll-Rl2*I-ll 
5121=Xl21-Rl2*11 
Q=5Cllft*2+5121**2 
Tlll=Tlll-5111/Q 

95 TC21=Tl21+5(21/Q 
100 Q=Tlll**2+Tl21**2 

Xlll=X(ll-Tlll/Q 
Xl21=XC21+TC21/Q 
IFllo/50RTIQ*IXlll**2+Xl21**211-EPS)l05,l05,llO 

105 IFCSQRTIP/CMI-ZERO)l60,160,ll0 
110 CONTINUE 

IG=IG+l 
IFCIG-21115,80,115 

115 IFIKTJ120,155,120 
120 IFIL1125,175,125 
125 KE=L 
130 IFIKRl135,200,135 
135 KT=O . 
140 DO 145 1=1,L 

Q=Rl2*I-11**2+Rl2*11**2 
Rl2*1-ll=Rl2*l-11/Q 

145 Rl2*11=1-Rl2*111/Q 
150 .JFIKT165,200,65 
1.55 KT=l 

KR=KR+l 
O=Xll1**2+Xl21**2 
Glll=Xlll/Q 
Gl21=1-Xl21 )IQ 

IF(Lll40,65,140 
160 IFIABSIXl21/Xllll-ZEROl165,165,170 
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165 Xl21=0• DAL4046l 
170 Rl2*L+ll=Xlll OAL40464 

Rl2*L+21=Xl21 OAL40465 
G(l)=lelDO*Xlll DAL40466 
Gl21=lelD0*Xl21 DAL40467 
L=L+l DAL40468 
IF(L-Nl75,130tl30 DAL40469 

175 K.E=-1 DAL40470 
200 RETURN DAL40471 

END DAL40472 



516FTC MATINV 
C MATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR EQUATIONS 
C 

C 
SUBROUTINE MATINVCA,N,B,M,DETERM) 

DIMENSION IPIVOT(lOlt All0,101• 8130,llt INDEXll0,21, PIVOTllOI 
COMMON PIVOTtlNDEX,IPIVOT 
EQUIVALENCE IIROW,JROWlt IICOLUM,JCOlUMI, (AMAX, T, SWAP) 
DOUBLE PRECISION DETERM,AMAX,SWAP,T,A,B,PIVOT 

C INITIALIZATION 
C 

C 

10 DETERM=leDO 
15 DO 20 J=l,N 
20 IPIVOTIJl=O 
30 DO 550 I=l,N 

C .SEARCH FOR PIVOT ELEMENT 
C 

C 

40 AMAX=O.DO 
45 DO 105 J=i.,N 
50 IF IIPIVOTIJl-11 60, 105, 60 
60 DO 100 K=l,N 
70 IF llPIVOTIKl-11 ~O, 100, 1•0 
80 IF IABSIAMAXI-ABSIAIJ,KIII 85, 100• 100 
85 IROW=J 
90 ICOLUM=K 
95 AMAX=AIJ,KI 

100 CONTINUE 
105 CONTINUE 
110 IPIVOTIICOLUMl=IPIVOTIICOLUMl+l 

C INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL 
C 

C 

130 IF IIROW-ICOLUMI 140, 260, 140 
140 DETERM=-DETERM 
150 DO 200 L=l,N 
160 SWAP=AIIROW,LI 
170 A(IROWtLl=AIICOLUMtLI 
200 AIICOLUM,Ll=SWAP 
205 IFIMI 260, 260, 210 
210 DO 250 L=l, M 
220 SWAP=BIIROW,Ll 
230 BIIROW,Ll=BtlCOLUM,LI 
250 BIICOLUMtLl=SWAP 
260 INDEXII,ll=IROW 
270 INDEXll,21=1COLUM 
310 PIVOTIIl=AIICOLUM,ICOLUMl 
320 DETERM=DETERM*PIVOTIII 

C DIVIDE PIVOT ROW BY PIVOT ELEMENT 
C 

C 

330 AIICOLUM,ICOLUMl=leO 
340 DO 350 L=l,N 
350 AIICOLUM,Ll=AIICOLUM,Ll/PIVOTlll 
355 IFIMl 380, 380, 360 
360 DO 370 L=l,M 
370 BIICOLUM,Ll=BIICOLUM,LI/PIVOTIII 

C REDUCE NON-PIVOT ROWS 
C 

380 DO 550 Ll=l,N 
390 IF(Ll-ICOLUMI 400, 550, 400 
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C 

400 T=Alll,JCOLUMI 
420 AILlo!COLUMl•O.O 
430 DO 450 L=l•N 
450 AILloll=A(lltL)-A!ICOLUM,Ll*T 
455 IFIMI 550• 5500 460 
460 DO 500 L=l,M 
500 BILl,L>=Bill,L>-BIICOLUMtll*T 
550 CONTINUE 

C INTERCHANGE COLUMNS 
C 

600 DO 710 l=l,N 
610 L=N+l-I 
620. IF IINDEXIL,1)-lNDEXlL,2>> 630t 710, 630 
630 JROW=INDEXIL,11 .. 
640 JCOLUM=INDEXIL,21 
650 DO 705 K=l,N 
660 SWAP=AIK,JROWI 
670 AIK,JROWl=AIK,JCOLUMI 
700 AIK,JCOLUM)=SWAP 
705 CONTINUE 
710 CONTINUE 
740 RETURN 

END 
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SIBFTC STDFK 
SUBROUTINE STDFKIRR,Rl1N•SFK,SFT.XMAJ1XMAJIN1BORIG1RMIINV,CN,KSICK 

l,BFIX1PHSCOR9KSAP,XKPI 
COMPLEX XMAJI 5• 51,XMAJIN! 5• Sl,CORIG( 51,BORIGI 5!tRM!I St 51 
COMPLEX XLAM1,XLAM2,Al.A21PROD1SUM61DENX1,CENX2~CMD,RLC•RLCDF 
COMPLEX RMIINVi Si 5».BN( 51,CP! 5l.BP« 51oRlRTi5loDEli5ioXSF 
COMPLEX ZLMDA! 51,RMI 5, 5l,D1 5. 5JjCNI 5l•FI 5i&YXoSUM2,BFIX(51 
COMPLEX DINVI 5, 5!,RMINV( 5, 5loARGPHXI 51,XY,Z2oXX,XSFT,RLRTl 
COMPLEX FIXER,BPFIXl5l,BNFIXl51 
COMPLEX SUM.ASUM,AXl15,51,BSUM,PHSCONi5,5JtXJ15,5l,X7,XDEL,XlO 
DIMENSION IJI 51,ITI 51,PHI! 51,ARII 51,TPI 51,RRI 51,RI( 51,KL151 
DIMENSION SFI 51,RRGPHII 51,TRRI 51,TRII 51,ZII 51,PHSCORI 5, 51 
DIMENSION DELZ2151,PSFIJ51,Rl5),PSFTl5) 
DIMENSION CMHLDl51,BPFIRl5) 
DOUBLE PRECISION RR,RI 

2218 FORMATl//1H0,50X,35HOUTPUT COEF. MATRIX OF ORIG. SYSTEM> 
2219 FORMATl/1H0,50Xt34HINPUT COEF. MATRIX OF ORIG. SYSTEM) 
2220 FORMATl/1H0,53X,28HORIGINAL SYSTEM MODAL MATRIX> 
2221 FORMATC/lHOt49X,36HINVERSE OF ORlGo SYSTEM MODAL MATRIX) 
2222 FORMAT(/1H0,49X,37HNORMAL FORM OUTPUT COEFFICIENT MATRIX) 
2223 FORMAT11H0,19X,13HCOEFFICIENT A,Il,lH=,Fl0.4,FlOo41 
2224 FORMATl1H0,18X,13HCOEFFICIENT A,Il,2H*=,Fl0o4,Fl0.41 
2225 FORMATllH0,27X,7HARGPHI=,Fl0.4,FlOo4l 

1 FORMATll21 
9 FORMAT 112,Fl0.41 

11 FORMAT 18Fl5o41. 
13 FORMAT 12Fl0o4l 
14 FORMAT !4Fl5o4,4Fl5.41 
15 FORMATl10F7o41 

2201 FORMATl/1H0,9X,15HCALCULATION NOo,I2,12H **********I 
2202 FORMATl/1H0,60X,17HVANDERMOND MATRIXI 
2203 FORMATllHO, 8X,6HIREALl,8X,llHIIMAGINARYl,5X,6HIREALl8X,llHIIMAGIN 

lARYl,5Xt6HIREALl,8X,llHIIMAGINARY!,5X,6HIREALl,8X,llHIIMAGINARYll 
2204 FORMATl/1H0t56X,25HINVERSE VANDERMOND MATRIX! 
2205 FORMATl/1H0,49X,38HOUTPUT COEFFICIENT MATRIXINORMAL FORM)) 
2206 FORMATl/1H0,30X, 4HPHI•,F7o4,8H RADIANS) 
2207 FORMATl/1H0,15X,19HTIME TO FIRST PEAK=tFlOo4,8H SECONDS! 
2208 FORMATl/1H0,31X, 3HX1•,Fl0o4l 
2209 FORMATl/1H0tl6X,18HSTEADINESS FACTOR=,F7o41 
2270 FORMATC1H0,41HSUMMATION OF COEFFICIENTS OF REAL MODES =,Fl0e4,Fl0o 

141 
2269 FORMATl1H0,44HSUMMATION OF COEFFICIENTS OF COMPLEX MODES =,Fl0.4,F 

11004) 
2268 FORMATllHO, 32HTOTAL SYSTEM STEADINESS FACTOR =,F7o4l 
2210 FORMATl/lH0,48X,6HIREALl,8XtllHIIMAGINARYll 
2211 FORMATl1H0,40X,Fl5o4,Fl5o41 
2212 FORMAT(//lH0,50X,21HRESULTING EIGENVALUES) 
2213 FORMATl//1H0,52X,30HRESULTING PHASE CANONICAL FORM) 
2214 FORMATl1H0,52X,28HPHASE CANONICAL MODAL MATRIX> 
2215 FORMAT11H0,47X,39HINVERSE OF PHASE CANONICAL MODAL MATRIX) 
2216 FORMAT(lH0,48X,36HPHASE CANONICAL OUTPUT COEFFo MATRIX) 
2217 FORMATl1H0,49X,35HPHASE CANONICAL INPUT COEFFo MATRIXI 

IFIKSICKoGToOIGO TO 2227 
READ15,15)CORIG 
READ15,151B0RIG 
D02228 I=l,N 

2228 BFIXIIl=BORIGIII 
2227 WRITE16,22181 

WRITE16,1411CORIGIIl,I=l,NI 
WRITEl6,22191 
WRITE16,1411BORIGIIl,I=l,NI 
DO 103 I=l,N 
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TRR(l:l•RRII) 
TRI I ll•RIC II 

103 CONTINUE 
INDX3m0 
KAY•O 
JERRYzl 
D01074 J•l.N 
INOXl•O 
lNOX2=0 
SUM=10.o,o.01. 
001074 I=l,N 
ASUM=SUM+CORIGlll*XMAJll,JI 
SUM=ASUM 
CNIJl•SUM 

1074 CONTINUE 
001075 I•l,N 
SUM=co.0,0.01 
00107.S J=l ,N 
ASUM=SUM+xMAJINII,Jl*BORIGIJI 
SUM=ASUM 
BNIIl=SUM 

107S CONTINUE 
KSAK=O 
KSAP=O 
KBO=O 

108 DO 6 I=l,N 
X=TRRCII 
Y=TRIIII 
ZLMDAIIl=CMPLXIX,YI 

6 CONTINUE 
D07 J=l,N 
D07 I=l,N 
K=I-1 
RMll,Jl=ZLMDAIJl**K 

7 CONTINUE 
D08 I •1,N 
D08 J=l,N 
D I I , J I =RM I I , JI 

8 CONTINUE 
IFIKSAKoGT.OIGO TO 2251 
KDS=KSICK+l 
WRITEl6t2201IKD5 
WRITE16,22021 
WRITEl6,22031 
D071 I=ltN 
WRITEl6,1411Dll,Jl,J=l,NI 

71 CONTINUE 
2251 CALL CINVID,N,DINV,KKKI 

D09l I=l,N 
D091 J=l,N 
RMINVII,Jl=DINVII,JI 

91 CONTINUE 
IFIKSAKoGToOIGO TO 22S2 
WRITEl6,22041 
WRITEl6,22031 
DO 81 I =1,N 
WRI TEl6tl41 I RMI NV( I ,JI ,J=l,NI 

81 CONTINUE 
2252 D079 J=l,N 

0079 I=l,N 
RMIII,Jl=CNIJl*RMII,JJ 

79 CONTINUE 
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2253 CALL CINVIRMl,N0RMIXNV,KKKI 
2254 lFCKBOeGTeOIGO TO 1015 

0082 I•ltN 
SUM=co.0,0.01 
D082 J=loN 
ASUM=SUM+CN(Jl*RMIINV«J,II 
SUM•ASUM 
CPCil•SUM 

82 CONTINUE 
IFCKSAK.GT.OIGO TO 2255 
WRJTEC6t2216 I 
WRITEC6t2203) 
WRITEC6tl41CCPCil,I•l,Nl 

2255 D083 l•ltN 
SUM=co.0,0.01 
D083 J=l,N . 
ASUM•SUM+RMICl,Jl*BNCJi 
SUM=ASUM 
BPCll•SUM 

83 CONTINUE 
1015 IFCKSAK,GT,OIGO TO 2256 

WRITEC6,22171 
,WRITEC6,2203) 
WRITEC6,141CBPCll,I=l,Nl 

2256 IFCKBOeLT.l)GO TO 1011 
D0101 J=l,N 
SUM=co.0,0.01 
D0101 I=l,N 
ASUM=SUM+CPlll*RMCI,Jl 
~.IJ.M=ASUM 
CNIJ)=SUM 

l O l CON.Tl NUE 
D01011 I= 1,N 
SUM=10.o,o.01 
001011 J=l,N 
ASUM=SUM+RMINVCI,Jl*BPIJI 
SUM=ASUM 
BNll)•SUM 

1011 CONTINUE 
D01012 I=l,N 
CNIIl=CN<Il*BNIII 
BNIIl=ll,0,0,01 

1012 CONTINUE 
IFIKSAKeGT,OIGO TO 1013 
WRITEl6,22051 
WRITE16,22031 
WR I TE I 6, 14 l 1.CN I 11, I= 1 ,N j 

1013 K=O 
KR=O 
KBO=KBO+l 
DO 201 I =1,N 
X=TRJCII 
IFCX119,202,19 

19 DO 20 J=l,N 
Y=TRI(JI 
IFCX+Y)20,21,20 

21 K=K+l 
IJIKl=J 
IT(Kl=l 

20 CONTINUE 
GO TO 20.l 

202 KR=KR+l 
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RLRT! KR l =TRR l I» 
KL!KRl,.J 

201 CONTINUE 
K"'K/2 
KIM.;K 
SUM3s:o.o 
DO 22 I=l,K 
IS.;I+l 
Nl=IJ(Il 
N2•1Tlll 
X=TRRlNll 
Y"'TRI lNl) 
XLAM2=CMPLXlX•YI 

·xaTRRIN2l 
.Y=TRilN21 
XLAMl=CMPLXlXtYl 
Al=CNlN2lll-XLAMll 
A2=CNlNllll-XLAM2l 
IFlKSAKeGTeOIGO TO 2257 
WRITEC6,22231I,Al 
WRITEl6,22241I,A2 

2257 IF(YeGTeOeOIGO TO 203 
ARGPHI11):IA2+All/lA2-All 
GO TO 204 

203 ARGPHil11=1Al+A2l/(Al-A2l 
204 lFlKSAKeGTeOIGO TO 22!8 

WRITE16,22251ARGPHIIII 
2258 XY=A-GPHIIII 

RRGPHllll=AIMAG(XY) 
PHllll=ATANIRRGPHillll 
X7=Al+A2 
XB=REALIX71 
Xl0=-Al+A2 
X9=AIMAGIX10l 
IFIX8eLT.O.OIGO TO 2239 
IFIX9eLTeOeOIGO TO 2238 
GO TO 20.5 

2238 PHllll=PH1111+3.l416 
GO TO 205 

2239 1FIX9.LT~O.OIGO TO 205 
PHllll=PHl111+3el416 

205 IFIKSAKeGTeOIGO TO 2259 
WRITE16,22061PHIIII 

2259 ARllll=AB51TRl1N211 
TP(ll=l9e425l/2e-O-PHl1111/ARIIII 
IFIKSAKeGT.OIGO TO 2260 
WRITE16,22071TP(II 

2260 Xl=TRRIN21*TPIII 
IFIKSAKeGTeOIGO TO 2261 
WRITE16,22081Xl 

2261 X6=AB5IPHIII11 
XSF=IAl+A21*11.0-EXPIXll/SINlX611 
SF ( I I =REALI XSF I 
SUM3=SUM3+SFIII 
IFIKSAKeGTeOIGO TO 2262 
WRITE16,22091SFIII 

2262 CMD=Al+A2 
CMHLDIIl=CABSICMDI 

22 CONTINUE 
2263 SUM2=10.o,o.01 

D0220 I=l,KR 
· N3=KLI I I 
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RLC=CNCN3il«-TRR«N3»1 
RlCOF•SUM2+RlC 
SUM2•RlCOF. 

220 CONTINUE 
IFIKSAKeGT.O&GO VO 2264 
WRITEC6,22701RlCOF 

2264 XLCOF=REALIRlCOFl 
SFT=SUM3+XLCOF 
SUM6=10.o.o.01 
D023 I=ltK 
DENX1=SUM6+CMHLD1Jl 
SUM6.•DENX1 

23 CONTINUE 
IFIKSAKeGT.OlGO TO 2265 
WRITEl6,22691DENX1 

2265 D£NX2•DENXl+RLCOF 
2266 DENR2=REALIDENX21 

SFT•SFT/DENR2 
IFCKSAK.GTeOlGO TO 2267 
WRlTEC6,2268lSFT 

2267 IFIKAYeGTeOIGO TO 102 
IF~INDXl.GTeOJGO TO 1065 
GO TO 107 

1021 SFOR=SFT 
KSAK=KSAK+l 
KSAP=KSAP+l 
IFIKSAPeGTellGO TO 107 

1065 IFISFT-SFORl106ltl069,1063 
1061 DELIINDX2l=-DELIINDX2l 
1063 TRRIIAJ•XHOLD 

XDEL=DELI I NDX2 l 
YDEL=REALI XDEL l 
PSFTIINDX2l=ISFT-SFOR)/YDEL 
PSFTIINDX2l=ABS1PSFTIJNDX211 

1069 INDX2=INDX2+1 
IFIINDX2-KR11066,l066t2232 

1066 IA=KLIINDX21 
DELIINDX2l=RLRTCJNDX2l*0•2 
RLRTl=RLRTIINDX21+DELIINDX21 
XHOLD=TRRI IA) 
TRRIIAl=REALIRLRTll 
INDXl=INDXl+l 
KR=O 
GO TO 108 

102 IFISFT-SFORl2231,2232,2233 
2231 DELZ211NDX31=-DELZ211NDX31 
2233 PSFIIINDX3l=ISFT-SFOR)/DELZ21INDX31 

PSFIIINDX31=ABSIPSFIIINDX31l 
Nl=IJIINDX31 
N2=1TC INDX31 
TRI IN2)•TI2HLD 
TRR I N2 I =TR2HLD 
TRI INl 1=-TRI IN2 I 

TRR1Nll•TRR(N21 
ZIIINDX31=ZIHLD 

2232 INDX3=1NDX3+1 
IFIINDX3eGT.KIMlGO TO 2130 
Nl=IJIJNDX3l 
N2=1TI INDX3l 
X=TRRIN21 
Y=TRl(N21 
Z2=CMPLXCX,YI 
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RIINDX31•CABS«Z2l 
TR1=AB51TRRIN2!1 
ZIIINDX3)~ATANITRl!N2!/TR11 
DELZ2!INOX3l=O.l*ZlllNDX31 
Z IHLO•Z 11 I IIIDX3 l 
ZIIINDX31•ZIIINDX3)-0ElZ2iINDX31 
TR2HLD=TRRIN21 
TI2HLD=TRI CN21 
TRICN21=RIINDX31*SINIZIIINDX311 
TRRIN2)R-RIINOX3l*COSIZIIINOX31l 
TRJ(Nll=-TRIIN21 
TRRCNll=TRRIN2i 
KAY=KAY+l 
GO TO 108 

2230 SUM7=o.o 
002234 I=l,KR . 

2234 SUM7=SUM7+PSFTIIJ**2e0 
SUM8=0.0 
002235 I=l,KIM 

2235 SUM8•SUM8+PSFllll**2•0 
SUMPT=SUM7+SUM8 
5UMPT=SUMPT**Oe5 
002236 1=1,KR 

2236 OELlll=OELlll*IPSFTII)/SUMPTI 
002237 l=l,KIM 
OELZ21Il•OELZ2Cil*IPSFIIII/SUMPTI 
ZIIIl=ZIIII-OELZ2CII 
Nl=IJIII 
N2=ITI I I 
TRIIN2)=RIIl*SINIZIIIII 
TRRIN21=-RIIl*COSIZIIIII 
TRI INll=-TRl IN21 

2237 TRRIN1J=TRRIN21 
D01068 l=l,KR 
IA=KLI I I 
RLRTIIl=TRRIIAl+DELIII 
YX=RLRTIII 
TRRIIAl•REALIYXI · 

1068 CONTINUE 
KAY=O 
INDXl=O 
KSAK=O 
GO TO 108 

107 CONTINUE 
WRITEC6,22121 
WRITE16,2210l 
WRITE16,221111TRRIIl,TRilll,I=l,NJ 
001006 I=l,N 
001006 J=l,N 
IFII-Jll007,1008,1007 

1007 XJII,JJ=IO.O,O.Ol 
GO TO 1006 

1008 XJII,JJ•ZLMDAIII 
1006 CONTINUE 

D01002 K=l,N· 
001002 I=l,N 
SUM=co.0,0.01 
001001 J=l,N 
ASUM=SUM+OCI,Jl*XJIJ,KJ 
SUM=ASUM 

1001 CONTINUE 
AXllJ,Kl=SUM 
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1002 CONTINUE 
001003 KuloN 
001003 l=bN 
SUMx(OeO•O~Ol 
DOlOOS J=loN 
BSUM=SUM+AXllitJl*RMINV!JtK) 
SUM=BSUM 

1005 CONTINUE 
PHSCONll,K!=SUM 

1003 CONTINUE 
WRlTE16,22131 
WRITE16,2203l 
001009 I=l,N 

1009 WRITEl6~1411PHSCONll,J),J=l•Nl 
001004 1=1,N 
001004 J=l,N 
XX=PHSCONll,JI 
PHSCOR(l,Jl=REALIXXI 

1004 CONTINUE 
IFCKSAPeGT.OlGO TO 2226 
D02245 l=l,N 

2245 BNFIXIIl=CNCll 
D02247 J=ltN 
SUM=co.0,0.01 
002246 l=l,N 

2246 SUM=SUM+RM(J,ll*BNFIXIII 
2247 BPFIXIJl=SUM 

002248 I=l,N 
FIXER=BPFlXlll 

2248 BPFIRIIl=REALIFIXER) 
XSUM=BPFIRINI 
J=N-1 
D02250 1=1,J 
K=I+l 

2250 XSUM=XSUM-BPFIRIIl*PHSCORIN,K) 
XINPT=-PHSCORIN,11/XSUM 
XKP~XINPT 
IFCSFT-SFKll021,2226,2226 

2226 CONTINUE 
RETURN 
END 
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$IBFTC INV 
SUBROUTINE Cl~V!Do~oDINVoKKK! 
COMPLEX DI 5, ShlHi\\\l! Si. 5hSU©l~~I ~oU!hl 

1000 FORMATl6El5~41 
MM=2*N 
KKK=O 
DO 23 l"'l,N 
DO 23 J:l ,N 

23 BII,Jl=D!l,JI 
K=N+l 
DO 2.4 I=l•N 
DO 24 J=KtMM 

24 BII,Jl=IOoO,OeOI 
DO 25 I=l,N 
K=I+N 

25 BII,Kl=lloO,OoOl 
DO 33 I =1,N 
J=I 
IF(CABS(BI I ,JI loGToloOE-081 GO T026 
L=I+l 
DO 12 K=L,N 
IFICABSIBIK,JI loGToloOE-081 GO T027 

12 CONTINUE 
KKK=l 
RETURN 

27 DO 13 M=l,MM 
13 SIMl•BIK,MI 

DO 14 M=l,MM 
14 BIK,Ml=BlltMl 

DO 16 M=ltMM 
16 Bli,Ml=SIMI 
26 T=BII,JI 

DO 17 K=l,MM 
17 BII,Kl=Bll,Kl/T 

L=l+l 
IFILoGToNI GO TO 33 
DO 10 K=L,N 
T=BIK,Jl 
DO 10 NN=l,MM 

10 BIK,NN)=B(K,NNI-T*Bll,NNI 
33 CONTINUE 

IFINoEOoll GO TO 50 
DO 20 1=2,N 
J=i 
L=I-1 

29 T=B!L,JI 
DO 21 K=J,MM 

21 BCL,Kl=BIL,Kl-T*Bll,KI 
IFCL.EQoll GO TO 20 
L=L-1 
GO TO 29 

20 CONTINUE 
50 DO 30 l=l,N 

DO 30 J=l,N 
NN=J+N 

30 DINVll,Jl=Bll,NNI 
RETURN 
END 
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$JBFTC DIFSOL 
SUBROUTINE DIFSOLIO,NtNZZZ,TMRSP1eTMRSP2tlJK~EfA0EI 
DIMENSION QI 5, 51,BC St 51tlll 5)0}!!CI S!eS« 5~ 5hTMRSPll2021,TM 

lRSP212021tEl51 
COMMON Yl2021 
COMMON/DATA/NXK,s,s.v 

1 FORMAT 1Fl0o5,Il0l 
14 FORMATl///lH0,44X,44HTABULATED SOLUTION OF DIFFERENTIAL EQUATIONS! 
15 FORMATl/lH0,9X,5HFIRST,lOX,6HSECOND,9X,SHTHlRD,lOX,6HFOURTH,9X,5HF 

llFTH,lOX,SHSIXTHI 
16 FORMATC1H0,8X,8HIIARIABLE,7Xt8HVARIABLE,6Xo8HVARIABLE,7X,8HVARJABLE 

l,6X,8HVARIABLE,7X,8HVARIABLEI 
2 FORMATl8Fl0oS1 

4 FORMATllH0,30X,4Fl~oS1 
5 FORMATC8Fl5~S1 

10 FORMATC//1HO,S4X,24HINPUT COEFFICIENT MATRIX! 
11 FORMATC//1HO,S4X,24HSTATE COEFFICIENT MATRIX) 
13 FORMATl//1H0,60X,12HINP.UT MATRIX) 

6 FORMAT(///lH0,40X,SlH*****SOLUTION OF MATRIX DIFFERENTIAL EQUATION 
15*****1 

9 FORMATl//1H0,57X,18HINJTIAL CONDITIONS) 
8 FORMAT(/1H0,30X,4Fl5o51 

IFINZZZ-11102,102,1025 
102 READ15,11A,NST 

READ(5,211XICCil,I=l,NI 
NZZZ=NZZZ+l 

1025 CONTINUE 
NXK=N 
D0103 I=l,N 
D0103 J=l,N 
$ I I , J l =QC I , JI 

103 CONTINUE 
D01026 I=l,N 
BII,ll=EIII 

1026 CONTINUE 
D01027 J=2,N 
D01027 I=l ,N 
BII,Jl=O.O 

1027 CONTINUE 
Vlll=ABE 
D0i05 I=2,N 
Vlll=OoO 

105 CONTINUE 
WRITEl6,61 
WRITE16,9l 
WRITE16,81CXIC(ll,I=l,NI 
WRITEl6tll I 
D0106 l=l,N 
WRITEl6,411QII,Jl,J=l,NJ 

106 CONTINUE 
WRITE16,10l 
00107 l=l,N 
WRITE16,411BII,JleJ=l,Nl 

107 CONTINUE 
WR1TE16,131 
WRITEl6,41 IVIIltl=l,NI 
DO 7 I=l ,N 

7 YIIl•XICIIl 
YIN+ll=OoO 
NT,.N+l 
FNST=NST 
TF=FNST*A 
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NT=NT*2 
CALL START«N,3,1,A,eOl ,Oe0t0olo$0~000l,005 
WRITE16,14l 
WRJTEl6,15l 
WR I TE ( 6, 16 l 
KNT=N+2 
WRITEl6,51!YII),l"l•KNTI 
IJK=O 

12 IJK=IJK+l 
CALL KAMSUB(ll 
WRITEl6,51CYlll,I=l,KNTI 
KXT=N+l 
TMRSPll IJKI =YI l I 
TMRSP2CIJKl=YlKXTI 
IF(YIN+ll-TFl12,3,3 

3 CONTINUE 
RETURN 
END 

SIBFTC DERFUN 
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SIBFTC START 

C 

SUBROUTINE STARTIMl,M2,M3,AleA2eA3oA4oA5oA61 
COMMDN/SHARE/NN,SPACE,MODE,KKA,ElMAX1ElMlN9f2MAX,E2~IN,FACT 

C NO INFORMATION [S REQUIRED IN THIS SUBROUTINE 
C 

C 

NN=Ml 
MODE=M2 
KKA=M3 
ElMAX=A2 
ElMIN=A3 
E2MAX=A4 
E2MIN•A5 
FACT=A6 
SPACE=Al 
CALL KAMSUBIOI 
END 

SIBFTC KAMSUB 

C 

SUBROUTINE KAMSUBl~STARTI 
DIMENSION DELY14,1001,BETl41,XVl51,FV14,1001,YU15,lOOI 
COMMON /SHARE/NN,SPACE,MODE,KKA,ElMAX,ElMIN,E2MAX,E2MIN,FACT 
COMMON Y12021 
COMMON/1NTDAT/Z15,2021,IERR 
DOUBLE PRECISION YU 

C NO INFORMATION 15 REQUIRED IN THIS SUBROUTINE 
C 

C 
1000 
1001 

1350 

1100 
1034 

1039 

1400 

100 

150 

C 
2000 

IFINSTART.LEeOIGO TO 9977 
GO TO 11001,2000,2000),MODE 

RUNGE-KUTT A 
LL=l 
DO 1034 K=l,4 
DO 1350 1=1,NN 
DELYIK,ll=YIN21*FVIMM,11 
Q=YUIMM,II 
YIIl=Q+BETIKl*DELYIK,II 
YINPll=BETIKl*YIN2l+XVIMMI 
CALL DERFUN 
DO 1100 I=l,NN 
IPN2=I+N2 
FVIMM,Il=YIIPN21 
CONTINUE 
DO 1039 I=l ,NN 
DEL=IDEL011,ll+2.0*DELYl2,Il+2eO*DELYl3,Il+DELYl4,Ill/6eO 
YUIMM+l,Ii=YUIMM,Il+DEL 
CONTINUE 
MM=MM+l 
XVIMMl=XVIMM-ll+YIN21 
DO 1400 I .. l ,NN 
Y 11 I =YU I MM, I I 
YINPll,.XVIMMI 
CALL DERFUN 
GO TO 142,100,1001,MODE 
DO 150 I=l,NN 
lPN2,.I+N2 
FVfMM, I l=YI IPN2 I 
GO TO 11001,1001,1001,2oou1,.MM 
ADAMS-MOULTON 
DO 2048 I=l,NN 
DEL=YIN21*155.0*FVl4,Il-59eO*FV13,ll 

1+37eO*FV12,Il-9eO*FV11,Ill/24eO 
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2048 

2051 

C 
3000 

3301 
3650 
3307 
3032 
3033 

3034 
3035 
3036 
4340 

5360 
5361 

5363 

C 

YIEl=YU141il+DEL 
DEL.Yi 1,1 l=Y! I I 
YINPll=XVl4i+Y(N2! 
CALL DERFUN 
XV(5l=YINP11 
DO 2051 I=l,NN 
IPN2..,l+N2 
DEL=YIN2l*l9eO*YIIPN2l+l9eO*FV14o!! 

l-5eO*FV13,Il+FV12,lll/24~0 
YU15,Il=YUl4,Il+DEL 
Yll l=YUl5,l I 
CALL DERFUN 
GO TO (42,42,30001,MODE 
ERROR ANALYSIS 
SSE=OoO 
DO 3033 I=l ,NN 
EPSIL=R*ABSIYIII-DELYtl,111 
GO TO (3301,33071,KKA 
IFIY(Ill3650,3307,3650 
EPSlL=EPSIL/ABSIYllll 
lFISSE-EPSILl3032,3033,3033 
SSE=EPSIL 
CONTINUE 
IFIElMAX-SSEl3034,3034,3035 
IF(ABSIYIN2ll-E2MIN142,42,4340 
IFISSE-ElMINl3036,42,42 
IFIE2MAX-ABS1Y(N2lll42,42,5360 
LL=l 
IERR = 1 
MM=l 
YIN2l•YIN21*FACT 
GO TO 1001 
GO TO 142,5361),LL 
XV( 2 l '-XVI 31 
XVl31=XVl5l 
DO 5363 l=l,NN 
F V ( 2, I I =FV I 3 , I I 
IPN2=l+N2 
FV ( 3, I l =YI I PN2 l 
YU12,l l=YUl3,l l 
YU13,Il=YUl5,ll 
YIN2l,.2.0*YIN2l 
IERR = 2 
LL=2 
MM=3 
GO TO 1001 
EXIT ROUTINE 

42 GO T0(43t44,44l,MODE 
44 DO 707 K=l,4 

ZIK,NPll= XVIKI 
ZIK,N2)=XVIK+ll-XV(KI 
DO 707 l=l ,NN 

707 
43 

708 

Z I K, I I= YU I K, I l 
IPN2 = N2 + I 
ZIK,IPN21= FVIK,Il 
Z I 5, NP ll = XV I 5 I 
DO 708 I= 1,NN 
Zl5,l I= YUl5,I l 
IPN2 = N2 + I 
Zl5,IPN2l= YIIPN21 

Z15,N21= Y(N2l 
DO 12 K=l,3 
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XViKI .. XIIIK+ll. » 
DO 12 I=l ,Nll'I 
FV«K@ll•fVIK+l,XI 

12 YUIK,ll=YU(K+l,11 
LL=2 
MMa:4 
XVC4l•XVl51 
DO 52 1=1,NN 
IPN2•1+N2 
FV14, I I =YI IPN2 I 

S2 YUl4ell=YUIS,II 
GO TO (70,70,73),MODE 

9977 CONTINUE 
IERR = 3 
ALPHA•YCNN+ll 

·EPM=O.o 
GO TO 17,9,91,MODE 

7 MM=4 
GO TO 8 

9 MM=l 
8 BETI 11 =0• 5 

BETl21=0•5 
BETC31=1.0 
BETC41=0e0 

5 N2=NN+2 
YIN2>=SPACE 
NPl=NN+l 
R=l9.0/270.0 
XVIMMl=YINPll 
IFIE1MIN12,2tl 

2 ElMIN=ElMAX/55eO 
l IF(FACTl4,4,3 
4 FACT=l.012.0 
3 CALL DERFUN 

DO 320 l=l,NN 
IPN2=1+N2 
FVIMMtil=Yl[PN21 

320 YUIMM,Il=Ylll 
GO TO 1000 

73 E=ABS1XVl4)-ALPHA1 
IFIE-EPMl2000,2000,71 

71 EPM=E 
70 RETURN 

END 
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SUBROUTINE DERFU~ 
DIMENSION SI 5, 5!,B! 5, 51,V( s»~xxc1 51 
COMMON Yl202) 
COMMON/DATA/NXK,SeB,V 

S FORMAT14FlSoSeilO! 
N .. NXK 
DO 7 l•l eN 
SUM"O• 
DO e J=l,N 

8 SUM=SUM+S(I,J>•YCJl+BCleJl•VIJI 
Kl=N+2+l 
Y(Kll=SUM 

7 CONTINUE 
RETURN 
END 
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'.!iJBFTC PLOT 
SUBROUTINEPLOTIXoXMINoXMAXoLX1YoYMIN1YMAX•LY®Z•ZNIN•ZMAX,LZeNPT, 

lNPLOT,NCOPYeNCD,NDIMi 
DIMENSION X 111 • V 111 oZ I l I ,SJU 71 on H.:E « ll2 ! •LI 13~>! ~/i\lC~H 41! iMOP I llS) 

1 FORMAT(l2A6l 
2 FORMAT!58Al,3A6~4All 

3 FORMATl1Hl.26Xol2A6) 
4 FORMAT(lH eAltlPE9e2,121All 
5 FORMAT(l32All 
6 FORMATllPE17o2t5E20e2tE15.21 

7 FORMAT11PE17.2,Ell6.21 
8 FORMAT11PE17.2,E61.2,E55.2i 
9 FORMAT11PE17o2,2E40e2,E36.21 

10 FORMAT(lPEl7e2t3E30o2tE26e21 
11 FORMAT11PE17e2,4E24e2,E20•21 
12 FORMATl1HK,62X,3A61 

SLOG(Fl=ALOGIFl/20302585 
LLX=LX+l 
NDD=NCD+l 

GOTO(lS,13,14,131,NDD 
13 READIS,l)ITITLE(lltl=l,121 

14 IF(NDO.GEe31READ15,211MOPIIltI•ltl8)tlNCHIIl,Islo40JtTAB1,TAB2,TAB 
13,ND,NP,NM,NB 

15 NCHl411=NB 
NPN=NPT/NPLOT 
IFILX.GT.OIGOT017 
CX=l20./IXMAX-XMINI 
SXlll,.XMIN 
SXl7J=XMAX 
U:XMIN 
D0lbK=2,6 
U"IXMAX-XMINl/6&+U 

16 SXIKJ=U 
GOT019 

17 XLX=LX 
CX=l20o/XLX 
NX=SLOGIXMINI 
D018K=l,LLX 

18 SXIKl=lOo**INX+K-11 
19 CALLPOTIX,XMIN,LX,NPT,0,120.,cx, 

IFILYeGTeO)GOT020 
CY•50o/lYMAX-YMINI 
GOT021 

20 YLY=LY 
CY=50o/YLY 
KY=CY 
NY=SLOGIYMINI 

21 CALLPOTIY,YMIN,LY,NPT,1,50.,CYI 
IFINDIMoLTo31GOT024 
IFILZeGToOIGOT022 
CZ=40o/lZMAX-ZMINI 
GOT023 

22 ZLZ=LZ 
CZ=40o/ZLZ 

23 CALLPOTIZ,ZMIN,LZ,NPT,0,40.,CZI 
24 D050NN=l,NCOPY 

Ml•l 
T 1:33. 
LYY=LY 
TT=50. 
WRITE16,311TITLEIIJ,I~l,121 
D043KK=l,51 
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167 

N"'l 
NNN=NPN 
JED"l 
T=51-KK 
D025J,,1,l33 

2S LIJl=NB 
Lll33l=ND 
IFILY.GTsO!GOT026 
LI 13 I "NP 
IFIT.GT.TTIGOT030 
SCALE=T/CY+YMIN 

'Lll331=NP 
N=O 
TT=n-s. 
IFITeLEeOelSCALE=YMIN 
GOT030 

26 GOT0127,27,28,28,27,28l,LY 
27 SS=KY*LYY 

GOT029 
28 SS=KY*LYY+l 
29 Lll31"'ND 

IFIT.GTeSSIGOT030 
SCALE=lOe**INY+LYYl 
N=O 
LYY=LYY-1 
Lll31=NP 
Lll331=NP 

30 IFl50oeEOeTIGOT031 
IFIO •• NEeTIGOT037 

31 D032J=14,l33 
32 LIJl=NM 

IFILXoGT.OIGOT034 
D033J=l3,133,10 

33 LIJl=NP 
GOT036 

34 KX=l20/LX 
D035J:13tl33,KX 

35 LIJl=NP 
3b IF(50ooEQ.TIL(l331•ND 
37 D040LM=l,NPLOT 

D039l=JED,NNN 
IFIYIIleNEoTIGOT039 
J=X(ll 
IFINDIMoNEo3IGOT038 
IZ=ZIII 
LIJ+l31=NCHIIZ+ll 
GOT039 

38 L(J+l3)=NCHILMI 
39 CONTINUE 

JED'-'NNN+l 
NNN=NNN+NPN 

40 CONTINUE 
IF(TloNEoT)GOT041 
IF115ooGE.TlGOT041 
Ll2l=MOP1Mll 
Ml=Ml+l 
T l=Tl-1 o 

41 IFIN.EQollGOT042 
WRITEl6,4)Ll21,SCALE,ILIJl,J=l2,1321 
GOT043 

42 WRITE16,5l (LIJ) ,J=l,1321 
43 CONTINUE 



GOTC144,45.46147,48o49.441,LLX 
44 WRITE!6s6i !SX!~J oK"'l~7l 

GOT050 
45 WRITEl6•7iiSXIK!,K;ltlLX) 

GOT050 
46 WRITE16,8l(SXIKi•K~l•llXI 

GOT050 . 
47 WRITE16,9l!SX(Kl,K=l,LLX! 

GOT050 
48 WRITE16,lOIISX(KloK=l,LLXl 

GOT050 
49 WRITEl6,ll)(SXIKl,K=l,LLXI 
50 WRITE16,l21TAB1,TAB2,TAB3 

RETURN 
ENO 

$1BFTC POT 
SUBROUTINEPOTIV,VMIN,LV,NP,J,VC,Cl 
DIMENSIONVI l l 
IFILV.GT.OIGOT02 
0011 = 1,NP 

l Vlll=FLOATIIFIX(C*IVIII-VMINl+o511 
GOT04 

2 D031=1,NP 
3 V(ll=FLOAT(IFIXIC*IALOGIVIII/VMIN)/2e3025651+.5ll 
4 1F(J.~T.OIGOT07 

D06I=i,NP 
IF(VIIleLT.OolGOT05 
IF(Vlll•LEoVCIGOT06 

5 V(ll=VC+l. 
6 CONTINUE 
7 RETURN 

END 
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APPENDIX F 

SAMPLE PROGRAM OUTPUT 

169 



FIRST 
EIGENVECTOK 

-0.99960 00 -o. 

-o. 20601)-03 -o. 

0.28361)-01 o. 

I. 0000 

1, l 250 

-0.0000 

-o. 0000 

ROW I 
-0.23000000-01 -0.6570DOOD O, 0, 

"lww 2 
o. 

ROW 3 

o. 0.10000000-01 

0,59000000 00 -0.2RBOOOOD 04 -0.15000000 01 

EIGENVALUESIREAL PARTI 
I -0.1376905310 01 
2 -0.7304734300-01 
3 -0.7304734300-01 

SECOND 
EIGENVECTOR 

0,91650 00 -0,21090-0I 

-0.10190-04 -0.74650-03 

0.39950 00 o. 

EIGENVALUESIIHAGINARV PARTI 
o. 
0.5350514510 01 

-0.5350514510 01 

THIRD 
EIGENVECTOR 

0,91650 00 0.21090-01 

-0.10190-04 0, 74650-03 

0.30950 00 o. 

OUTPUT COEF. MATRIX OF ORIG. SYSTEM 
-0.0000 -0.0000 -0.0000 -0.0000 

INPUT COEF. MAIRIX OF ORIG, SYSIES 
-0,0000 -0.0000 -0.0000 -0.0000 

CA.LCULAJION ~O. l ****•••••• 

VANOERMONO MATR i X 

I Hf AL) I IMAGJ.NAKYI IR EALI I IMAGINUYI !HEAL I I IMAGl~ARYI 
1.oono o. 0000 1.0000 o. 000() 1.0000 0,0000 

-l.3769 o. 0000 -o. 0730 5,3505 -o.ono -5.3505 
1.oq59 - o. 0000 -28.b227 -o. ·,au -28.6227 0.7817 

INVERSE VANOERHOND MATR(X 

I ft.f Al J I I ~AG I NARY I IRE ALI I IMAGINARY I IREALI !IMAGl'ARYI 
O~(J44 l o. 0000 o.oo4R o. 0000 0.0330 0.0000 
o. 02 79 -O,l?l9 -D.0024 -o. 0040 -0.0165 -0 .0040 
0.0279 o. 1219 -o. 0024 o. 0940 -0,0165 0.0040 

PHASE CANONICAL OUf PUT COEFF. MATRIX 

fl,~ EAL ) I lOAGlNA•YI IR F ALI IIMAGINA•YI (REALI C IMAGl\JARYI 
1. nnoo o. 0000 -o.ooon o. 0000 -o. 0000 0 .0000 

PHASE CANONICAL INPUT COE FF. MATRIX 

I KEAL I I l'~AGINARYI IRE ALI IIMAG!NA•YI IRE ALI I IMAGllllARYI 
3.1250 o. 0000 -o. 071 q -0,0JOO D. 00 l 7 0.0000 

OUTPUT COEFFICIENT MAT•IXINORMAL FORMI 

I RULi 
2,950 l 

( l~AGINARYJ 
o. 0000 

COEFFICIENT Al= 

COFFFIC!ENT Al•= 

ARGPHI-

IR EALI 
0.0875 

0.0101 

0.0701 

0.0000 

I !MAGINARYI 
-0.3741 

0.0154 

-0,0154 

-4.5569 

PHI - l. 1868 RADIANS 

TIME TO FIRST PEAK= 0.54h8 SECONOS 

Xi= -0.0399 

STEADINESS FACTOR= 0.0023 

SUMMATION OF COEFFICIENTS OF REAL MODES - 2.1425 0.0000 

SU~MATION OF COEFFICIENTS OF CO~PL~X MOOES • 0.1402 0.0000 

TOIIL SYSTEM STEADINESS FACTOR - 0,9396 

IR EALI 
0.0875 

( lMAGI\JARYI 
0. 374 l 

FOURTH 
EIGENVECTOR 
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CREAL I 
-0.0000 
-0.0000 

-39 .• 4254 

IIMAGINARYI 
-0.0000 

0.0000 
-0.0000 

IREALI 
1. 0000 
0.0000 

-2a; 8345 

CALCULATION NO. l •••••••••• 

IREAL I IIHAGINARYI IREALI 
1.0000 0,0000 1.0000 

-1,2425 0.0000 -o. 7973 
1,5438 -0.0000 -27.3618 

CRf AL I I IMAGINARY I CREALI 
1.0155 0.0000 0.0566 

-0.0078 -0.1181 -0.0283 
-0,0078 0.1181 -0.0283 

!REAU 

·-l. 3769 

-o.ono 

-D.0730 

I a~AG.INARVD 

0.0000 

s. 3505 

-5,3505 

RESULTING PHASE CANOl'jlCAL FORM 

1 IMAGJ.NARYI 
-o. 0000 

0.0000 
0.0000 

IREALI 
-0,0000 

1.0000 
-1.5210 

VANDERMOND .MATRIX 

IIMAGINARYI CREALI 
0.0000 1.0000 
5,2913 -o. 7973 

-,8.4379 -27.3618 

INVE~SE VANDERMOND MATRIX 

C IMAGINARY! IREALI 
0.0000 0,0355 

-0,0969 -0,0177 
0,0969 -0.0177 

C IMAGINARY I 
0.0000 
0.0000. 

-0.0000 

1 IHAGl~ARYI 
0.0000 

-5.2913 
8,4379 

C IMAGINARY I 
0.0000 

-0,0015 
0,0015 

PUA Sf CANON I CAL INPUT COEFF. MATRIX 

CREAL I I IMAGINARY! IREALI 
3, 1250 0.0000 -0,0719 

CREAL I C IMAGCNARYI CR EAU 
'!. f695 0,0000 -0.0222 

CO·EFFICIENT Al• 0,0663 

COEFFICIENT Al•= 0,0663 

ARGPHI • 0.0000 

flMAGINARYI 
-o.oocio 

OUTPUT COEFFICIENT 

I IMAGINARY I 
-o. 3620 

-,0.0142 

0,0142 

4,6702 

IREALI 
0.0011 

MA TR I HNOMHAL 

CREAL I 
-0.0222 

PHI= I. 3599 RADIANS 

TIME TO FIRST PEAK= 0, 6336 SECONDS 

XI= -o. 5052 

STEADINESS FACTOR= 0,0508 

SUMMATION OF COEFFICIENTS OF REAL MODES = 

SU~MATION OF COEFFICIENTS OF COMPLEX ~ODES 

TOTAL SYSTEM STEADINESS FACTOR = 0,9695 

C REALI 
0.0000 

-0.0000 
-35,5773 

C J~AGINARYI 
-0.0000 

0.0000 
-0.0000 

I REALI 
1.0000 

-0.0000 
-30,6147 

2.s5·09 0.0000 

0.1325 0.0000 

RESULTING EIGENVALUES 

IREAL I ll~AGINARYI 

-1,2425 0.0000 

-0, 79H 

-0, 7973 -5.2911 

RE SUL TING PHASE CANONICAL FORM 

IIHAGINARYI 
0.0000 
0.0000 

-0.0000 

IREALI 
-0.0000 

1.0000 
-2.8372 

1 IMAGl~ARYI 
0.0000 

FOkMI 

Cl~AGINARYI 
0,3620 

I IMAGINARY I 
0.0000 
0.0000 

-0.0000 
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..... MOil iF nc~r UON or $.VS,lTlF~ s ~~,'illH ;{01'¢¢0" 

PSI= l 9,. }'01-t i 

PSi• 9 .. 489l 

PSI• 5.093! 

PSI= n. 7578 

GRAD I ENI SEAR CH COMMENCING 

PSI= 5.0931 

PSI= 4.8887 

PSI= 5.0011 

GRADIENT SEARCH COMMENCING 

PSI= 4. 888 7 

PSI= 4. 7719 

PSI= 4.6579 

PSI= 4. 4377 

PSI= 4.0299 

PS I= 3.3441 

PS I= 2 .. 4999 

PS I= 2. 98 II 

GRADIENT SEARCH COMM ENCi NG 

PSI= 2. 4999 

PS I= 2.3235 

PS I= 2. 4148 

GRADIENT SEARCH COMM ENC I NG 

PS!= 2.3235 

PS I= 2.2Q31 

PSI= 2. 2128 

PS I= 2. 2623 

PS I= 2., 362 5 

GRADIENT SEARCH COMMFNC I NG 

PS I= 2.2623 

PS I= 2.1982 

PS I= 2. 465 7 

GRADIENT SEARCH COMM ENC I NG 

PSI= 2.1982 

PS I= 2.1551 

PSI= 2. 1361 

PSI= 2.1105 

GRAD I ENT SEARCH COMMENCING 

PS I= 2. 1361 

PS I= 2.1125 

PS I= 2. 1086 

PS I= 2.1603 

GRAD I ENT SEARCH COMMENCING 

PS I= 2 .1086 

PS I= 2.0122 

PS I= 2.0704 



FIRST 
EIGENVECTOR 

ROW I 
-o.,,,,,o~n10-oa -o.i.56,;,;nt, !.O~ o. 

i'\DW 2 
o. 

ROIi 3 

o. o.10000000-01 

0.5l35"'35D 00 -0.29003920 04 -0.26729950 01 

EIGENVALUESIREAL PARTI 
I -0.716708529D 00 
2 -O.l30862484D 01 
3 -0. 716708529D 00 

SECOND 
EIGENVECTOR 

EIGENVALUESIIMAGINARY PARTI 
0.5176776020 01 
o. 

-0.511677602D 01 

THIRD 
EIGENVECTOR 

0.8921D 00 -0.2393D 00 -0.99970 00 -o. 0.89210 DO 0.23930 oo 

-0.1006D-03 -0.72650~03 -0.18860-03 -o. -o .10060-03 o. 72650~03 

ci. 3833D 00 O. 0.24680-01 o. 0.38330 00 o. 

OUTPUT COEF. MATRIX.OF ORIG. SYSTEM 
1.0000 -o. 0000 -0.0000 -0.0000 -0.0000 -0.0000 

INPUT COEF. MATRIX Of ORIG. SYSTEM 
3.1250 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 

CALCULATION NO. 2 •••••••••• 

(REAL I I l~AGINARYI (REALI 
1.0000 0.0000 1.0000 

-0.7167 5.1768 -1.3086 
-26.2853 -7.4205 1. 7125 

CREAL I C lHAGINARYI !REALI 
-0.0030 -0.1267 -0.0264 

1.0060 0.0000 o. 0528 
-0.0030 0.1267 -0.0264 

VAN DE RHO ND. HAT RIX 

IIHAGINARYI 
o. 0000 
0.0000 

-0.0000 

(REALI 
1.0000 

-o. 7167 
-26.2853 

INVERSE VANDERHONO MATRIX 

IIHAGINARYI 
-0.0996 

o. 0000 
o. 0996 

(REAL I 
-0.0184 

0.0368 
-0.0184 

'I IMAGINARYI 
0.0000 

-5.1768 
7 .4205 

I IMAGINARY I 
-0.0021 

0.0000 
0.0021 

PHASE CANONICAL OUTPUT COEFF. MATRIX 

IKfALI I IMAGINARY I 
1.0000 0.0000 

(REALI 
-0.0000 

I IMAGINARY! 
0.0000 

!REALI 
0.0000 

1 IHAGl~ARYI 
0.0000 

PHASE CANONICAL INPUT COEFF. MATRIX 

(REAL I I IMAGINARY I 
3.1250 0.0000 

(REALI 
-0.2158 

I IMAGINARY I 
0.0000 

!REALI 
0.0149 

I IHAGl~ARYI 
-0.0000 

OUTPUT COEFFICIENT MATRIXINORHAL FORMI 

(REAL I 
-0.0040 

I IMAGINARY I 
-0.3746 

!REALI 
3.1330 

IIMAGINARYI 
0.0000 

COEFFICIENT Al= 0.0709 -0.0106 

COE ff ICIENT Al*" o. 0709. o.o 106 

ARGPHI= -0.0000 6.6987 

PHI• 1.4226 RADIANS 

TIME TO FIRST PEAK= 0.6355 SECONDS 

XI= -0.4555 

STEADINESS FACTOR= o.0509 

SUMMATION OF crJEFFICIENTS Of REAL MODES= 2.3941 0.0000 

SUMMATION Of COEFFICIENTS Of COMPLEX HODES• 0.1418 0.0000 

TOTAL SYSTEM STEADINESS FACTOR • O.'lb41 

IR"EALI 
-0.0040 

( IHAGl~ARYI 
0.3746 

FOURTH 
EIGENVECTOR 
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I eEAL I 
-Oc0:)00 

O .. OIJOO 
-35,7421 

I IMAGINARY I 
-0.0000 

o. 0000 
0.0000 

IREALl 
l,OOO(J 
0.0000 

-29.1885 

RESULTING EIGE~VALUES 

(REAL I I IMAGINARY) 

-o. 7167 5 .1768 

-1.3086 rJ.0000 

-o. 7167 -,.1768 

eESULTING PHASE CANONICAL FORM 

IIMIIGINARVI 
o. 0000 
o. 0000 

-0.0000 

(REAL I 
o. 0000 
1,0000 

-?, 7420 

I IMAGl~ARVI 
0 .0000 
0.0000 

-1) ... 0000 
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-*•••O~IG!i\J~l S1'SHll$H$• 

**•**SOLUTION OF tOYU.~ ll!l'HRENUAL Hll/llVl!ll\!~0$$$$ 

!NUU!. CONlllHOh!S 

-0,00000 -0.00000 -0,00000 

STATE COEFFICIENT MATRIX 

-0,02300 -6570,00000 0,00000 

0,00000 ' 0,00000 0,01000 

0,59000 -2880,00000 -1, ~0000 

INPUT COEFFICIENT MATRIX 

3, 12500 o. 00000 0,00000 

-0,00000 0.00000 0.00000 

-0.00000 0,00000 0,00000 

INPUT MATRIX 

0,43806 0.00000 0,00000 

TABULATED SOLUTION OF DlffERENrlAL EQUATIONS 

FIRST SECOND 'THIRD FOURTH FIFTH SIXTH 

VARIAALE VARIABLE VARI ABLE VAMIABLE VARIABLE VARIABLE 
o. 00548 0.00000 0.00001 0,00400 0,00100 
0,34241 0.00002 0,01986 0,25700 0,06400 
0,63592 0.00013 0,03807 o.57700 0, 12800 
0,68544 0.00017 0,02749 0,70500 0,12800 
o. 70589 0,00019 0,00959 0,83300 0, 12800 
0,71568 0.00019 -0.00839 0,96100 0,12800 
o. 73294 0,00017 -0,01929 1,08900 0,12800 
0.76911 0,00015 -0.01885 1,21700 0,12800 
0,82'!99 0,00013 -0,00782 1,34500 0,12800 
0.88673 0.00013 0.00854 1,47300 0.12800 
O. 9't0A9 0,00015 0,02268 1,60100 0,12800 
0.97212 0.00019 0.02816 1. 72900 0,12800 
0,97472 0.00022 0,02241 1,85700 0,12800 
0,95429 0,00024 0,00783 1,98500 0,12800 
0,'92546 0,00024 -0,00928 2, 11300 0,12800 
0,90554 0,00022 -0,02152 2,24100 0,12800 
0,90709 0,00019 -0.02]68 2,]6900 0,12800 
0,93253 0,00016 -0,01496 2,49700 0.12800 
0,97329 0,00015 0.00067 2,62500 0,12800 
1,01365 D,00016 0,01624 2.75300 0,12800 
1.03784 0,00019 0.02487 2,88100 0,12800 
1,03695 0,00022 0.02211 3,00900 0,12800 
1.01288 0,00024 0,01090 3,13700 0,12800 
0.97747 0.00025 -0,00551 3.26500 0,12800 
0.94726 0,00023 -o.o 1926 3,39300 0.12800 
0,93S26 0.00020 -0,02436 3,52100 0,12800 
0,94985 0.00011 -0.01864 3,64900 0,12800 
o.98245 0,00016 -0.00470 3, 77700 0 .12800 
1,02012 0,00016 0.01128 3,90500 0,12800 
1,04669 0,00019 0,02227 4.03300 0,12800 
1,05091 0,00022 0,02346 4.16100 0,12800 
1,03134 0.00024 0,01440 4,28900 0,12800 
0.99695 0.00025 -0.00089 4,41700 0,12800 
0.9631.2 0.00024 -0,01566 4,54500 0,12800 
0,94484 0,00021 -0.02144 4.67300 0.12800 
0,95017 0.00018 -0.02088 4,80100 0,128CO 
0.97673 0.00016 -0.00915 4.92900 0.12800 
I, 01283 0,00016 O.Q0653 5,05700 0,12800 
1,04266 0,00018 0,01925 5.18500 0,12800 
1,05323 0.00021 0,02346 5, 31300 0,12800 
1,04010 0.00023 0,01736 5,44100 0,12800 
1,00922 0.00025 0,00369 5,56900 0,12800 
0.97428 0,00024 -0.01150 5,6970C 0,12800 
0,95068 0,00022 -0,02155 5,82500 0,12800 
0,94872 0,00019 -0.02208 5,95300 0,12800 
0,96914 0,00017 -0,01291 6,08100 0,12800 
1.00287 0,00016 0.00186 6,20900 0,12800 
1.03503 0,00017 0,01573 6.33700 0.12800 
1,05156 0.00020 0,02260 6,46500 0.12800 
1,04530 0,00023 0.01953 6.59300 0, 12800 
1,01916 0,00024 0.00790 6, 72100 0,12800 
0,98474 0.00025 -0.00111 6,84900 0,12800 
0.95721 0.00023 -0.01891 6,97700 0.12800 
0,94859 0,00020 -0.02234 7, 10500 0,12800 
0,96255 0.00018 -0,01594 7,2]300 0.12800 
0,99283 0.00016 -0.00260 7,36100 0.12800 
1,02604 0,00017 0,01180 7.48900 0,12800 
1,04760 0,00019 0,02093 7,61700 0.12800 
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0$*>•PIOIHfUEll ~V:HEM@$$.~8 

••eHSOI.UTION OF IIATR!M lliHE~ENVIAI. EQUAVION$9$$$$ 

INITIAL CONDITIONS 

-0.00000 -0.00<100 -0,00000 

STATE COEFFICIENT MATRIX 

-0.06905 -6569.92279 0.00000 

0.00000 0.00000 0.01000 

0, 51354 -2900, 3923 3 -2.67299 

INPUT COEFFICIENT MATRIX 

3. 12500 0.00000 0.00000 

-0.00000 0.00000 0.00000 

-0,00000 0.00000 0.00000 

INPUT HAT RIX 

0.39434 0.00000 0.00000 

TABULATED SflLUT ION OF DIFFERENTIAL EQUATIONS 

FIRST SECOND THIRD FOURTH FIFTH SIXTH 

VARIAIILE VAR !ABLE VAR !ABLE VARIABLE VARIABLE VARIABLE 
0.00493 0.00000 0.00001 0,00400 0.00100 
0.54938 0,00007 0.02121 o. 51300 0.12800 
0.62850 0.00010 0.02463 0.64100 0,12800 
o. 68102 0,00013 o.o 1671 0.76900 0,12800 
o. 71515 0,00015 0.00677 0.89700 0.12600 
o. 72839 0.00015 0.00220 o.96100 0,06400 
0.74138 0.00015 -0.00129 1.02500 0, 06400 
0.75462 0,00015 -0.00376 1.08900 0.06400 
o.76881 0,00014 -0.00'303 1.15300 0,06400 
0.85506 0.00014 0.00237 1.47300 0,12800 
0,88893 o.00014 0.00684 1.60100 0, 12800 
0,91556 0.00015 0.00906 1.12900 0,12800 
0.93274 0,00016 0,00836 1, 85700 0,12800 
0,94102 0,00017 0.00527 1.98500 0.12800 
0.94357 0,00018 0,00126 2, 11300 0,12800 
0,94448 0.00018 -0.00201 2,24100 0.12800 
0.94728 0.00017 -0.00360 2,36QOO 0,12800 
0.95363 0.00011 -0.00308 2,49700 0.12800 
o. 96309 0.00016 -0.00107 2,62500 0,12800 
0.97367 0.00011 Q.00136 2.75300 0,12800 
o. 98289 0.00017 0.00314 2.88100 0.12000 
0,98889 0,00017 0,00363 3.00900 0,12800 
0,99111 0.00018 0,00280 3, I 3700 0.12800 
0.99036 0.00018 0,00114 3,26500 0.12800 
0.98744 0.00018 -0.00122 3.45700 0.12000 
0.98678 0.00018 -0.00187 3,58500 0, 12800 
0,98801 0.00011 -0.00160 3. 71300 0.12800 
0.99088 0,00017 -0.00067 3,84100 0.12800 
0,99448 0.00017 0.00045 3.9MOO 0.12800 
0,99764 0,00017 0,00127 4,09700 0,12800 
o. 9995 l 0.00018 0.00152 4.22500 0,12800 
0.99982 0,00018 0,00116 4.35300 0;12aoo 
il.99891 0,00018 o.D0044 4.48100 0.12800 
0.99689 0.00018 -0.00061 4,67300 0.12800 
0.99620 o.oooia -0.0008Q 4,80100 0,12800 
0.99642 0.00018 -0.00076 4,92900 o.i2aoa 
o. 99742 0,00018 -0.00034 5.05700 o.i2aoo 
0.99945 0.00018 0.00037 5,24900 0, 12800 
1,00040 0,00018 0,00061 5.37700 O.l28DO 
1.00012 0.00018 0.00059 5.50500 0.12800 
1,00043 0.0001a 0.00034 5.63300 0.12800 
o. 99913 0.00018 -0.00021 5.88900 0.12800 
0.99876 0.00018 -0,00039 6.01700 0,12800 
0.99880 0,00018 -0.00033 6.14500 o.12aoo 
0,99918 0.00018 -0.00015 6.27300 0,12800 
o. 9999Q 0.00018 0,00015 6,46500 0.12800 
1.00036 0,00018 0.00026 6.59300 0.12800 
1.00047 0,00018 0.00025 6.72100 0.12800 
1.00032 0.00018 0,00014 6.84900 0.12800 
0.99972 0,00018 -0.00012 7, 10500 0.12000 
0,99955 0.00010 -0.00011 7 .23300 0,12800 
0.99955 0.00018 -0,00014 7.36100 0.12800 
0.99971 0.00018 -0.00001 7.48900 0.12800 
1.00004 0,00018 0.00007 7,68100 0.12800 



COMPARISON OF TRANSIENT RESPONSES 
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