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CHAPTER I
INTRODUCTION

In hydraulic circuits, and indeed in any system where
sharp edged disturbances occur, one becomes concerned with
the transient behavior of the system. Often, as in the
case of hydraulic devices, the main concern is not speed
of response, but rather the ability of the system to re-
spond in a smooth and regular fashion. The technique
developed in this work provides a means for designing a
system to such a criterion. This design approach is
carried out in the time domain rather than the much used
frequency domain. The time domain is particularly useful
in studying the transient response, a time function, be-
cause all of the information one needs is available from
the state model or one of its forms obtained through a
linear transformation. Attempts have been made [11] to
determine the character of the transient response through
use of the location of the eigenvalues of the system
transfer function on the complex plane. Although the
eigenvalues, or modes, of the system are important to its
transient behavior, this is not sufficient information for
a complete description of the relationships governing the

transient response. Chapter III will discuss these



considerations in detall. The time domain provides some
other advantages also. One of the most important of these
is that the state model may be obtained directly from a
operational block diagram of the system. The gains in
each block become elements in the matrices making up the
state model. For instance, consider Figure 1. A linear-
ized hydraulic pressure control circuit is shown in block
diagram form. This system is used in an example design in
Chapter V. A schematic of the circuit is also shown. The
state model may be obtained by defining the output of each
integrator as a state variable. A series of first order
differential equations is then written which relate the
time derivative of each state wvariable to other pertinent
elements of the system. These form a matrix differential
equation. This form of the basic state model is conven-
ient because each of the elements of the model can be
readily ‘interpreted with regard to its physical
significance.

The concept of expressing the dynamic characteristics
of the system in terms of matrix differential equations
coupled with the use of a high speed digital computer
provides an extrémely powerful tool. The size of system
that can be analyzed is not limited by the method but only
by the memory capacity of the computer. This is a signif-
icant advantage over any of the presently used paper and
pencil methods. In addition to its ability to accommodate

large systems, however, the computer is capable of
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performing very quickly, operations that would be extreme-
ly laborious by hand. This thought suggests the possibil-
ity of a new class of analysis concepts [12]. Normally,
troublesome procedures such as matrix inversion, polynom-
ial factoring, matrix transformations, etc., are accom-
plished easily by the computer.
Some of the features of the approach presented in
this thesis are listed below.
a. The mathematical description of the system
may be taken direétly from an operational
block diagram.
b. Magnitude constraints may be placed on any
vnumber of elements in the state equations.
c. Additional state variable feedback may be
added for system exploration.
d. The performance index used requires no
norm to be calculated in order to evaluate
the quality of the responée.
e. Insight is provided into the influence of
each mode of the system response on the
total response by observing the components
of the performance index attributablevto
each mode.
There are also some limitations of the method at this
time. Only single input/output, linear time invariant
systems have been investigated with this method. These

systems are also assumed to possess distinct eigenvalues.



This last limitation is not very restrictive since most
physical systems will possess distinct eigenvalues. A
step is considered as the design input throughout this
work. -The systems used are to be controllable and observ-
able. More discussion will be forthcoming relative to
this in Chapter II.

The design approach presented in this work is partic-
ularly useful in industrial appliéations since it provides
an all important link between hardware geometry and the
mathematicé required in the process of compensating the
transient response of a system. The high speed capability
of the digital computer permits parametric compensation
studies to be made which would be impractical to do by
hand. Accuracy of the computer, though sufficient for
most design applications, may be increased by modifying
parts of the program to double precision computation. The
design procedure discussed in this thesis is considered,
by the author, to be an early contribution to a new gener-
ation of design methods centering about the high speed

digital computer.



CHAPTER II
RELATED WORK OF OTHER INVESTIGATORS

Thisvchapter contains brief discussions of work
accomplished by other investigators of interest to the
work of this thesis. If the reader is interested in
pursuing any of these papers in depth, they are all

listed in the Selected Bibliography.
Evans, Vigour and Ellert [8]

This paper discusses a parameter optimization design
method and its application to hydraulic servo design.v The
performance index used is composed of a velbcity error and
several sources of position error of a cutting tool rela-
tive to a desired contour. The index has the form

Sr
T .-=f £, (t)db
0
where f,(t) is the sum of squared error functions that are
designed to result in |

1. small path errors,

2. smaller overshoots than undershoots at the

corners of the}path,

3. no oscillations due to backlash or inadequate



system damping, and
4, 1little or no flattening of the contour.

The designer must select values of numerous constants
associated with the terms of f,(t). These determine the
‘relative influence of each term and the regions of low and
high penalty in the optimization procedure.

| In this paper, five system parameters are selected as
optimization variébles. These include the gainé of the
position. errof and valve amplifiers, two time constants
associated with a lag-lead network in the system and
finally the leakage coefficient of the motor. A steepest
descent technique is used to accomplish the minimization
procedure. The criterion used in this paper has the
advantage of encompassing several performance character-
istics but it requires that the designer make numerous

arbitrary selections of paraméters.
Gall [9]

An optimization criterion, which is capable of simul-
taneously considering a number of different aspects of the
performance of a control‘system, is described in this
paper. This criterion is derived from a ranking array.
The array is established by the designer by establishing
the most desirable and maximum allowable values of the
mean square magnitudes of a group of performance charac-
teristics that are considered to be pertinent. In the

second order example of this paper, these characteristics



were the acceleration, velocity, displacement, and input

force as shown in the array below.

TABLE T
RANKING ARRAY

Desirability (i=1) (i=2) (i=3) (i=4)
: 2 2 2
J(1i) oﬁ o o} %
Most Desirable 0 0 0 0 0
1 1 8 0.1 10
2 4 10 0.2 20
3 9 12 0.3 40
Max. Allowable 4 16 16 0.4 80
5 100 200 100 500

Mean square values of these chgracteristics for con-
ditions between the most desirable and maximum allowable
are selected arbitarily by the designer. This selection
allows the designer to weigh the importance of each
parameter. The last row of the array provides an indica-
tion of the field of acceptable values of each parameter.
These are, by nécessity, fairly large since the starting
point of the optimization is taken at random. During the
optimization, each of the mean square magnitudes discussed
above are computed ét each trial point in the search space.

The ranking of the system is no better than the ranking of



the worst parameter. The system is optimized by

minimizing J(i), the ranking variable. This is referred

to by Gall as a '"Max-Ranking'' criterion.

Since the partial derivatives of J are discontinuous,

the steepest descent minimization approach may not
Gall employs a pseudo random search technique that
a probability function. This technique is capable
cluding several characteristics in the performance

terion, but it proved to be very time consuming on

be used.
employs
of in-
cri-

the

digital computer and was difficult to implement with high

order systems.

Gustafson [11]

This paper describes an algebraic method of control

system design using the system characteristic equation and

the Routh array. The method is based on two concepts.

1. The first three time moments of the
impulse response of a system may be ex-
pressed, using only the last three coef-
ficients of the characteristic equation.

2. The first three frequency moments of the
spectral density may be expressed using

only the last three elements of the

Routh array associated with the character-

istic equation.

A truncated transfer function is formed by ignoring all

terms in the denominator of the original function except



10

the last three. An associated transfer function is formed
by using the last three coefficients of the Routh array in

the following way:

b
= )
_ Rn-l,ls + Rusls + R““,1

o]

A(s)

(2-1)

where b, is the same as the numerator of the original and
the truncated transfer functions. The subscripts of the
R's indicate the row and column of the Routh array.
'Gustafson shows that the integral square impulse response,
ISIR of A(s) is identical to that of the original system.
An energy ratio is formed that compares the ISIR's of the
truncated transfer function to that of A(s). If this
ratio is near 1.0, the truncated function is a good approx-
imation to the transfer function of the original system.
This approximation is the goal of the method so that the
system can be designed as if i1t were a second order sys-
tem. An example of a fifth order system indicated that
the transient responses of the original system, the trun-
cated function system and the system represented by A(s)

are only generally comparable.
Morgan [14]

This paper presents a method for obtaining the trans-
fer function matrix P(s). This represents an alternate
approach for arriving at the system response. The devel~

opment of the transfer function matrix is extended to a
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discussion of sensitivity. ©Specifically, this involves
determining the sensitivity of P(s) to changes in the
matrix elements of the state model.  These considerations
may be of use to future investigators in extending the
work of this thesis., Chapter VI discusses two recommenda-
tions for future research that may depend upon a study of

sensitivity.
Brockett [5]

Brockett states that if linear state variable feéd~
back is applied to a system, then the system with feedback
is contrcllable if and only if the original system is con-
trollable. The proof of this theorem is based on the fact
that if the original system is controllable, then for each
initial state x, and each desired final state x,, there is
an input u’ which drives the system from x, to xp. If
such a trajectory is called x’, then for a system possess-—
ing feedback, the same trajectory can be obtained if an
input u = u’ + kx’ is applied.

It is shown in this paper that observability can be
affected by state variable feedback. An example is given
in which a system that is originally observable is modi-
fied by the addition of linear state variable feedback. A
test of the necessary condition for observability ([C, CA]
be of rank n) shows that the modification results in a
system that is not observable. The reason observability

is lost is that a pole of the original system transfer
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function is moved by the addition of feedback such that a
zero is canceled.

Brockett went on to show that through state wvariable
feedback it is possible, ideally, to attain any desired
set of eigenvalues. This is only of practical significance
when all df the state variables are measurable.

The design procedure of this thesis depends upon the
system's being both controllable and observable. Any
modifications made to the system by way of state variable

feedback must be made with these considerations in mind.
Bacon [1] and [2]

The first of these two papers is concerned with
establishing the algebraic constraint equations that pro-
vide the necessary and sufficient conditions for a linear
time invariant state model to have a given solution. To

accomplish this, the state model is first written.

i

x(t) Ax(t) + Bv(t) (2-2)

y(t) Cx(t) + Dv(t) (2-3)

3

The state vector x(t) and the system output y(t) are then

written as the matrix equations

2(t) GSFé(t) + G F_(t) | (2-4)

y(t)

"

NF_(t) + N_P_(t) (2-5)

where the bar over x(t) indicates that it is the desired
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response function. G G_, Nq? and Ne are constant coeffi-

s? “e

cient matrices. Fs(t) is the desired time function asso-
ciated with the homogeneous solution of the state model.
Fe(tj is the time function associated with the input to
the system. Differentiation of Equation (2-4) yields an
equation that may be combined with Equation (‘2-'2). This
combination results in the algebraic constraint equations
required such that Equation (2-3) will be equivalent to

Equation (2-5). A matrix equation of the following form

can now be written:
HEK =KW (2-6)

where H is a matrix containing all of the coefficient
matrices of the state model as well as the initial condi-
tions of the state vector x(t). K, and X, are matrices
made up of constant matrices that relate the desired solu-
tion to the original state model. W is a matrix made up
of constant matrices that associate the desired system
output with the state vector and the initial conditions of
time functions Fs(t) and Fe(t).

The second of the two papers places constraints on
the entries of the matrices in the state model. Certain
entries in the A matrix of Equation (2-2) are written as
functions of several parameters p. This can be true, in
general, of all the constant matrices of the state model.

The form that results is

x(t) = A(P)x(t) + B(P)v(%) " (2-7)



14
7(t) = C(P)x() + D(P)v(t). (2-8)

From these equations and the development above, the fol-

lowing expression is obtained;
H(P)K, (G) = K, (G)W (2-9)

where G is a new vector that contains all of the unknown
entries of K, and K, .

An error function is estabiished since 1t will not be
possible, in general, to satisfy Equation (2-9) exactly

when constraints are imposed. This function has the form
Z = H(P)K, (G) ~ K (G)W (2-10)

and the performance index associated with 2 is

r q |
w(E,6) =) Y g, (2-11)
i=1 j=1

where Z is taken as an r X q matrix and z,; is a typical
element of 4. The optimum parameter vector P is defined
as that vector which together with G minimizes the solu-
tion error index u(P,G).

This method has the following advantages:

1. It can accommodate multiple inputs/outputs.

2. It is not restricted to state models with

distinct eigenvalues.
3. bpecific parameters that make up the ele-

ments of the coefficiént matrices in the
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state model may be constrained.
Some of the disadvantages to using this approach as a gen-
eral design technique are that one must specify a time
response, No procedure is provided that might help the
designer make this specification. The functions of p,
that make up the elements of A, B, C, and D in the state
model are likely peculiar to the particular design under
investigation and cannot be programmed in a general sense.
The computer program used to accomplish this task would

require modification before each study.



CHAPTER IIXT
A PERFORMANCE INDEX FOR TRANSIENT RESPONSE

In this discussion, the words '"transient response'
refer exclusively to the response of a system to a step
input unless otherwise specified. The problem of develop-
ing a criterion upon which to judge the quality of the
transient response is a complex one. This chapter pre-
sents an original step response criterion that allows the
quality of the response to be expressed as a numerical
value. This criterion emphasizes the tendency of a system
to overshoot or oscillate. A value of one implies no
oscillation or overshoot. A value of less than one im-
plies the presence of oscillation or overshoot. The wvalue
of the criterion is referred to in this thesis as a

steadiness factor. The design approach of this thesis is

not totally dependent upon this particular performance
criterion. Many other criteria could be used but the
steadiness factor permits the quality of a '""nice' response
to be expressed quantitatively, a much sought after goal.
This capability is of partiéular use when the physical
parameters of a system are established primérily by
steady-state rather than dynamic considerations.

It is interesting to compare the attributes of

16
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several of the common performsnce indices. Table IT shows
a group of these, along with the criterion of this thesis,

with their associated individual advantages.

TABLE IT
COMPARISON OF PERFORMANCE CRITERIA

Criterion Reference Primary Characteristics
j' g? dt 16 large errors are penalized
4 more heavily than small

errors, although large
errors may be tolerated for a

short time
[» o]

j. leldt 16 gives more even penalty for
o large and small errorss; easy
to implement
w .
.[ tdleldt 16 permits heavier weighting of
o s " | sustained errors; easy to
RS implement
Ty
j. fo(t)dt 8 permits several response
o ) characteristics to be in-
: cludedy difficult to imple-
ment for a general procedure
Max-Ranking Array 9 permits random inputs; dif-
ficult to implement for
large general systems
Steadiness Factor this permits quantitative de-

thesis scription of the quality of
the transient response; 1s
easily implemented

Most of these criteria were originally conceived for the
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purpose of optimizing a design through a minimization of
the criterion. The steadiness factor is not used in quite
this way. Although a steadiness factor of 1.0 indicates
no tendency of the system to overshoot or oscillate, com-
pensating a system to have this steadiness factor could
result in sluggish operation. Experience has shown that a
small tendency to overshoot can allow the system to
respond more rapidly. Consequently, the design goal for
steadiness factor is usually not 1.0 but rather a somewhat
smaller value, say 0.95. The specific implication of
values less than 1.0 will be explained later in this

chapter.
Considerations Important to the Transient Response

Attempts have been made to design the response of
systems through adjustiﬁg the eigenvalues alone. This
probably stems from the overwhelming amount of experience
and familiarity that most designers of dynamic systems
have with first and sécond order differential equations
and root locus technigues. This approach does not result
in meaningful information for higher ordered systems or
systems possessing zeros in the numerator of the system
transfer function. Consider, for example, an open loop

system transfer function of the form,

k
Gl(s) = a—s——:—Sj .

If unit feedback 1s applied to this system and the gain
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increased from zero, the locus of the roots will assume
the form shown in Figure 2a. Assume the gain is raised
until the eigenvalues are at -2.5 % 3.12j. This is equiv-
alent to a damping ratio, (, of approximately 0.6. The
transient response of such a system is shown in Figure 2b.
Now, say that another system is designed which has an open

loop transfer function of the following form:

G (s) - Bt 0l(s £ 2.7) (3-1)
Now, with unit feedback and increasing the gain, the locus
of roots appears as shown in Figure 3a. The previous root
locus is shown also for comparison. At some gain the
locus of the complex pair of roots arrives at the same

end points as in the previous system. Since the time
response of a system to a step input is made up of the sum
of constants and exponentials of the eigenvalues, it is
apparent that feal eigenvalues make no direct contribution
to oscillatory tendencies in the response. Consequently
the complex pairs in both of the examples above make the
only direct contributions to overshoot. Figure 3b illus-
trates that the transient response of the second system
possesses significantly more overshoot than the first
eventhough the complex eigenvalues in both systems are
identical. It will be shown later in this chapter that
this is caused by a difference in the phasing of the

oscillatory modes.
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Development of the Steadiness Factor Criterion

To begin this discussion consider a state model

described by the following equations:
x = Ax + Bv (3-2)
y = Cx. (3-3)

. The solution of these equations may be written as follows

for a step input:

x(t)

]

o

T(t)x(0) +j.tr(t - 7T)Bvdt (3-4)

y(t)

]

or(t)x(0) + of T(t - Bvar.  (3-5)

If, for simplicity x(0) is allowed to be a zero vector and
all coefficient matrices are constant, then Equation

(3-5) may be written

y(t) =f0t01“(t - T)BvdT. (3-6)

Again for the sake of simplicity, let C, T, aﬁd B all be
in the normal form such that the modes of the system are
uncoupled. Transformation of the coefficient matrices to
normal form is discussed in Chapter IV. Now, T(t - 7) has

the form,
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—
T:_l(t“'f) 0

1"22 (t— T)

I‘(t—'ﬁ‘) = 1"33 (t"' T)

Now, Equation (3-6) may be written,

t TF
y(t) ::f ‘:Cl 02 03 .o Cn] E]_l(t"ﬁc) 0 bl
(o]
, e (t-1) b,
I‘;;(t-—'f) +b3 vdr
- O rnn(t—T) bn

(3-7)
%
:j. [clrll(t_’ﬂblvwfcaIgz(t—’0b2v=+c3r33(t—1)b3v +
O .
cnrnn(t-'ﬂbnv]dr

A (5-1)
but, since T,,(t-7) = e , one may write

y(t) :j %[CIbl Ve}\‘i <t_T>+02 b2 ve>\'2 (t—,)T)"' e 0 & Cn‘bnve}\’n (ta T)]dﬁf
O
and this expression may be rewritten as follows:
t
y(8) :j. [CiblVékl(t—T>+czszg\2<t"o+ ,.ncnbnv€K“<t-I)]
o]

a(t-1). (3-8)

The integration may now be completed.
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Assume for the moment that twe of the eigenvalues in
Equation (3-8) are complex conjugates, say M, and.hz. Now ,

let
Ay =0+ Jw
Ka =O"‘ jwo

Making these substitutions and writing only the pertinent

part of Equation (3%-8) one obtains

o [eabi v el v ceby v (o+jwlt e v (o-jw)t
Y1,2<t) = o + o + oy e +-—%C§~— e .
(3-9)
Let GV g and C2 DoV K, , then
- i T v
y1,2(8) = - [Kl A e"tﬁ:lei}‘*“G + Ky eIV (3-10)

by applying the exponential definition of sine and cosine

one obtains
’ ot ..
= - [Kl-FK?]-Fe [(Kl-er)coswt-f(Kl-—KZ)J 51ntnt]. (3-11)

Letting K, +K, =K; 5in? and (X, - K, )j = K3 cos & for @
equal to a constant, and applying a familiar trigonometric
identity one finally obtains the following well known form

for a second order system:

ot

Yi,e (8) = = [Ky +K 1 + Kze” "sin(wt + 3). (3-12)

This motion is such that at time, t, = O, sinwt + %) is not
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necessarily zZero but sin 4. Since sin & = Klf;KL, it is
apparent that at t = 0, y;,,(t) = O. The peak values of
the second term of Equation (3-12) will occur Jjust prior
to the times at which wt +% = ngiﬁllﬂ,.(n =1, 2, 3,
«..). For a damped system, the first peak is the largest
and, therefore, can be used as an indicator of the tend-
ency of this mode to oscillate or overshoot. It can be
seen from this equation that even though this mode may be
damped the phase angle & can cause the modes of the system
to be phased Such‘that an overshoot occurs. Figure 4
1llustrates this for two normalized cases. These two
transient responses have the sane damping enveldps and the
same damped natufal frequency. This means that their
eigenvalues are.identical.v Curve A overshoots consider-
ably more than curve B, however. This difference is
caused by the difference in phasing, &, of the two modes.
A performance index for transient response is now
suggested based on the foregoing discussion. Let this

index be called a steadiness factor. The steadiness fac-

tor for each mode containing a real eigenvalue is defined
to be équal to 1.0. ZFor the oscillatory modes, the
steadiness factor is defined as follows:

gdl tp
sin§i

(3-13)

where ¢ is the real part of the eigenvalue pair under
consideration and tp is the time to the first peak.

" Equation (3-13) comes from rewriting Equation (3-12) as
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Figure 4, The Effect of Zeros on the Transient Response
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7. (1) = (& + ), [1-(gogs 7 )e’! Psin(wt+8,)] (3-14)

K1 . ,
but K +K,~ sini® °° Equation (%-14) may be written

7,(8) = (] +K )[1 (Sm tPsin(w, t + @1)].
(3-15)
The magnitude of the expression inside the square brackets
of Equation (3-15) approaches 1.0 as t approaches infinity.
If ¥t is taken to correspond with the time at which

sin(w,t +&,) = -1.0, then Equation (3-15) may be rewritten

7, (o) = (& +5)[1+ (ke 7] (3-16)

where tp is the time discussed above. At tp, yi(tp) is
approximately at a peak magnitude of y,. This is actually
the point of tangency of the sinusoid and the exponential
of Equation (3-16). 8Since the steady state value of the
expression in the brackets is 1.0, the overshoot of this
expression can be expressed as

o, t
e ' P

overshoot = m:o

The steadiness factor is then expressed as the difference
between the normalized steady state value of a mode's
response and the overshoot. The smaller the overshoot
becomes, then the closer SF, approaches 1.0. ©BF, will
finally be weighted according to the influence of its



28

assoclate mode in the response of the total system. This
is shown in later paragraphs. The time to first peak,

tp, is calculated according to the following equation

AT
6, = —f2=t (3-17)

where w is the magnitude of the imaginary part of the
eigenvalue. The value, 5%p is shown as a typical value
in keeping with the requirement that sin(wt + 6) be -1.0
discussed above. Actually, as the signs of K, and K,
change and as ¢ changes, adjustments are necessary to the
multiple of /2 or to the angle & in order to reflect the
effect of the first peak. This adjustment is discussed in
detail in Appendix C. |

A steadiness»factor for the complete system can be
obtained by applying a weighting factor to each individual
steadiness factor. In the interest of clarity let the
following definitions hold for the constants associated

with the weighting factors:

cibiv

T for real A's = Ki

r

Cybyv
1 —
i for complex A's = KJC
|Ky, + Ky %] = the absolute value of the

sum of Kjc and its
conjugate.

It may be seen from Equation (3-8) that the terms
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cib v

Ay
. For the real modes, these are expressed above as Kir; For

establish the steady state magnitudes of each mode.

the complex modes that involve a pair of eigenvalues, the
magnitude is given by the absolute value of the sum of the
two corresponding ch's defined above. Thé fraction of
the total system steady state response that each mode rep-

resents can be determined by

K .
ir
for real modes
K, o+ Z]KJC4-KJC*|
and
‘KJC-FKJC*‘ for complex modes
TK, . * D]K,, + Ky _* P .

Now the total system steadiness factor may be expressed as
follows remembering that the basic steadiness factor of a
real mode is 1.0 and that of a complex mode is computed by

Equation (3-13):

) ZK . ZIKJc + KJC*|SF1 (3-18)
K + Z‘ch + ch*[ - ‘ '

Kach mode is now weighted according to its influence on
the total system response. OSFT is equal to 1.0 minus the
sum of the overshoots of each oscillatory mode taken at
its first peak.

The value of SFT obtained from Equation (%-18) may
then be compared to a desired value, say 0.95 to determine

an acceptable response. Use of 0.95 as a criteriou
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implies that the sum of the first peak overshoots of all
the oscillatory modes totals to less than 5% of the total
system steady state response. This is a direct measure of
the deviation from nonoscillatory response. Chapter IV
will discuss the details of adjusting the system in the
event that SFT is less than the desired value.

The system associated with the transfer function of
Equation (3-1) was used for a test case. The closed loop

transfer function of this system may be written

Q(S) B 4,385 + 38,28 + 71
R T8’ o+ 9,388 + 38.2s8 + 71

for a K of 4.38. The eigenvalues of this system are

Ay = =4.35

&>
)
H

~2.5 + %.162]

Ay = =2.5 - 3.1623.

The steadiness factor of the system was determinedrto
be 0.824. The transient response for this system is shown
in Figure 5. This implies that the sum of the first over-
shoots of all the oscillatory modes is‘approximately equal
to 1.0 = 0.824 = 0.176. There is only one oscillatory

mode in this case and it is interesting to note that
¢
Vi-¢2

the imaginary part of a complex eigenvalue. The above

= .79 from the quotient of the real part divided by

ratio corresponds to a value of ¢ of .61. The overshoot

o

associated with a simple (constant numerator) second order
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system with this damping ratic is about 10 percent. The
increased overshoot, indicated by the steadiness factor
above, is attributed to a difference in phasing of this
mode from that of a simple second order system. The phase
angle of the system in this test study is 120 degrees. In
a simpie second order system with the same complex eigen-
values the phase angle would be approximately 52 degrees.
The time required for wt+ & to reach 270 degrees is con-
siderably less for the first case than for the second.
Consequently, the multiplier th is larger for the first
than the second.

This system, compensated by the method of this thesis,
yielded a steadiness factor of 0.95%3., It will be noticed
from Figure 5 that although the steadiness factor indi-
cates the overshoot to be approximately 5% of the steady
state response, the transient appears to go up to nearly
1.1. This is due to the fact that the steadiness factor
is computed relative to the point of tangency of the
transient to the decay envelope. In this case, the real
part of the complex eigenvalues, given below is large
enough such that the tangent point is somewhat to the

right of the transient peak.
}\.1 = —-4.4
Ay = =3.2 + 2.46]

}\.3 = "352 - 2.463.



CHAPTER IV
TIME DOMAIN COMPENSATION TECHNIQUE

This chapter presents a design approach that allows
the designer to adjust the elements of his original design
such that a transient respcnse criterion is satisfied. A
convenient and useful performance index, the steadiness
factor, developed in Chapter III, is used in the discus-
sion of this procedure. ©State space techniques are used
in this approach. These techniques have been found to be
well suited for implementation on the digital computer.
The general operation of this procedure is depicted in the

block diagram shown below.

Establish state Transformation to Determine new
model in terms of >tnormal form and coefficient
physical parameters adjustment of -|Imatrices of
r—eigenvalues —1 state model
? ]
when
SFT - SFK> 0O

stop process

Since this procedure depends upon the formation of ‘a
state model and several transformations it was deemed ap-
propriate that the more significant of these operations be

discussed. The next section of this chapter includes

33
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pertinent comments relative to these concepts. The subse-
quent section is devoted to & specific discussion of the

design approach. Design examples, using this method are

given in Chapter V.
Operations Useful to This Design Approach

The differential equations that govern the states of
a dynamic;system may be obtained from the equations of
each component in the system. This approach permits the
coefficients and the state variables to be readily inter-~
preted into physical parameters. The differential equa-
tions of the components can be easily joined together
through the use of an operational block diagram. The out-
put of each integrator is then defined as a state variable
of the system x,. Together, all of the state variables
form a state vector. The differential equations of the
total system can be written as a matrix differential equa-
tion, called in this work "the state equation.' The addi-
tion of an output equation describing the manner in which
each state enters the system output completes the state
model. Appendix A includes some detail discussion rela-
tive to the formation of a state model.

The state model may be written in the following form:

>
#

Ax + Bv (4-1)

Cx (4-2)

1t

J

where x 1s an n vector, A is an n X n square counstant
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matrix, B is an n x 1 constant matrix snd C is a 1 X n

constant matrix.
Transformation to Normal Form

Although the form of the equations resulting from the
method described above provide a much needed contact with
the physical world, this form is not convenient for study-
ing the parameters that more directly describe the tran-
sient characteristics of a system. In order to attain a
"more convenient' form, a transformation is accomplished.
In Chapter III, a performance criterion was discussed. It
will be remembered that this criterion was made up of the

eigenvalues and some multiplying factors that had the form
CiBﬂn
Ay O

terion, it was assumed that the state model was in the

i =1y 2, aeas n., In the explanation of this cri-

nornal form so that the dynamic modes of the system would
be nuncoupled.

The transformation of a system with distinct eigen-
values from a general form to the normal form i1s discussed
in several texts on state variable analysis, e.g., [7] and
[17]. A brief discussion is included here, however, to
provide continuity. A transformation matrix must be ob-
tained., In this case, since the transformation is to the
normal form such a matrix is the modal matrix, This
matrix may be determined by first forming the matrix
(AMI = A)l. The determinant of this matrix yields the char-

acteristic polynomial, the zeros of which are the
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eigenvalues of the system. The following homogeneous
equation may be formed:

[AI - Alx = O (4-3)

which comes from the basic concept of transforming a par-
ticular vector x into another vector y such that y is
proportional to x, [7]. For each of the n eigenvalues
Ay(i=1,2, «o., n) of A, a solution of Equation (4-3)
for x can be obtained providedbthe A,'s are distinct. The

vectors x, that are solutions of
[}\‘{ I P .LCL]X’. == O (i B4 ]_ 9 2’ ¢ s e 9 n) (4‘-/_‘—>

are eigenvectors of A, FEach of these eigenvectors makes
up one column of the modal matrix. This matrix is not
unique since any of the columns may be multiplied by a
constant and the transformation is still valid.

The following describes the reasoning through the
transformation. Let the original state variable, x, be
described in the transformed space as Ma, where M is the

meodal matrix and q is the transformed state vector.

x = Mg. (4-5)
Then since x = Ax + Bv
and | y = Cx
one obtains Mq = AMq + Bv (4-6)

and v = CMg. (4=7)
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Now if both sides of Equation (4-6) are prewmultiplied by

M-1, the result is

M-*AMqg + M-1'Bv

Qe
i

and v = CMq.

i

In the literature [7], M-?AM is called J, the Jordan
canonical form of the coefficient matrix, A. M B and CM
are often writtenYBN and C,, respectively, to imply that
they are in the normal form. At this point, it is inter-
esting to note that although constant multipliers of any
column of the modal matrix do not affect the transforma-
tion of A to J, they have a definite affect on By and C,.
The products of corresponding elements of By and C,,
however, remain fixed for a given system. The matrix J

has the following form:

a diagonal matrix made up of the eigenvalues. It can be
seen that the state model in this form displays all of
the parameters required to calculate the performance

index, i.e., the steadiness factor. These are, it will be
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. Cyu. D .
remembered, A, 5 i =1, 2, ..., n, and Z8L7M, 1 = 1, 2,

A .
i

eeey . Now, the steadiness factor, SFT, may be calculated

by Equation (3-18), repeated below for reference.

TK,. + D|K,, + K, ¥|SF,

SET = TR, K]

(4-8)

1y
Transformation to the Phase Variable Fornm

Another transformation matrix called the Vandermonde
matrix is formed during the design procedure. This matrix

has the form shown below.

[ 1 1 co1
‘/\1 Ka }\.3 . ° >\'D
V= \2 2 . ® 2
oAl \2

ne—1
1 2 3 . . . KD

e e

This matrix is a transformation matrix between the normal
form of the state model and the phase variable or compan-

ion form. The transformation takes the following form:

P = VJV-2 (4-9)
C_ = C,V-1 (4-10)
D

B, = VUBy. | (4-11)

Since the output of the original system expressed by
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 Equations (4-1) and (4-2) was taken as one of the state
variables, x,, it is possible to obtain a Gp with a simi-
lar form. This can be shown by the following argument.

By normalizing the columns of the modal matrix M with
respect to the first element in each column and expressing
C as

C:[l O O O ® 00 O],

it follows that

CM =Cy =[1 O 0 O ...0I[1 1 ....17]
My My My
M3 .
Mpy My s o Iy g

=[1 1 1 1 ...1]3.

A transformation also may be performed on Cp to obtain Cy.

CV=2Cy = [c c. ¢ vee C ] (1 1 1 coo 1
D Pr P2 DPs Pa ‘
A A
1 2 3 see n
2 2 2
A Ay A oo Ay

But Cy, =1 1 1 ... 1], so if Cp =1 0 O ...Q0l,

the above product will yield the desired C,. This
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development implies that one state variable of the compan-
ion form can always be made eguivalent to one variable of
the original system. | ”

As the eigenvalues are changed during the compensa-
tion procedure, Cp wiil remain constant since the top row
of the Vandermonde matrix is always made up of ones. Bp
will vary in general since By will change and V-! will

change.
Coefficients of the Characteristic Polynomial

Another operation that is performed during the proce-
dure of this thesis is that of determining the character-
istic polynomial corresponding to a given A matrix. This
is accomplished through the use of Bocher's formula [7].

For a characteristic equation of the form given by
st + ays*-l + gy;sr? o+ L., a,.,8 + 38, = 0, (4-12)

one may determine the coefficients a,, i = 1, 2, ..., 1 by

first applying the following definitions. Let

T, = trace of A,
T, = trace of A?, and
T; = trace of A3.

The trace of a matrix is the sum of its diagonal elements.
Bocher's formula states that the coefficients of the char-

acteristic equation may be computed in the following way:



a, = ~7/3 (2T, + 8, T, + T;)
. . (4-1%)
an = —1/I1<an__1T1 + an__2 Ta + o v e alTn—-l + Tn)'

Note from Equation (4-1%3) that the ca1091ation of the nth

coefficient may be accomplished progressively by starting
with a, and working toward a,, since in each equation for
a, only a's up through a, _, are required in addition to

the traces of various powers of the coefficient matrix, A.
The Time Domain Compensation Method

The discussion of this method will begin with the
state model. The acquisition of the state model from
component differential equations is covered in Appendix A.
It is assumed that the designer has formed the state model
in such a way that the interpretation of the matrix ele-
ments in terms of physical parameters is convenient. Any
changes in the system due to compensation of the transient
response will be réflected in these elements.

The first operation of the method is that of trans-
forming the original state model to the normal form. This
is accomplished through the useful procedures of the pre-
vious paragraphs. This form contains all of the necessary
information for comﬁuting the transient response criterion,

steadiness factor. ©OFT, the total system steadiness



42

factor is computed according to Equaﬁion (3-18). This
value is then compared with & specification or desired
value, SFK, that i1s selected by the designer. If SFT is
larger than SFK, then the specification is satisfied and
no compensation is necessary. If SFT is less than SFK,

the system must be compensated.
Adjustment of Eigenvalues

The compensation of the transient response of a sys-
tem is accomplished by adjusting its eigenvalues. In gen-
eral the system will possess both real and complex pairs
of eigenvalues. The adjustmént of the real eigenvalues is
accomplished differently from that of the complex pairs.
Both methods of adjustment are associated with the
steepest descent optimization procedure discussed 1n
Appendix B.

The adjustment of the real eigenvalues is accomplish-
ed according to the following steps:

1. One real eigenvalue is incremented by a

percentage of its original magnitude.

2. A new Vandermonde, V matrix is formed.

%2, Considering Cp and Bp to be fixed, V and

V-1 are used with Cp and BP to obtain a
new By, and Cy,, using the transformations
discussed in earlier paragraphs.

4, BFT is recalculated and this value is

compared with the original value.
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5. 1If SFT, > SFT, , then the increment was

in the proper direction and is stored for

future use. The eigenvalue is then set

back to its original wvalue and another

real eigenvalue is incremented. If

SFT, < SFT,, the sign of the increment is

reversed and this increment is stored as

before.
6. After the proper direction of each incre-

ment is established, a partial derivative

dSFT
AN,

of the form is computed for future

use.
These six steps are repeated until increments for all of
the real eigenvalues have been determined.

Attention is now focused on adjustment of the complex
eigenvalues. A typical pair of complek eigenvalues is
shown on the complex plane in Figure 6. Instead of ex-
pressing these eigenvalues in terms of real and imaginary
Cartesian coordinatesg they may be expressed as a radius
vector R and an angle 6. The adjustment of the complex
eigenvalues is accomplished by incrementing 6 by a per-
centage of its original value. This adjustment policy
maintains the undamped natural frequency of each oscilla-
tory mode. As this implies, the emphasis in this proce-
dure is placed on modifying the damping rather than the
gain. The sequence of events in establishing the signs of

increments for the O's associated with each oscillatory
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Figure 6.

Vector Representation of Complex
Eigenvalues
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mode is identical to that for the real eigenvalues. The

resulting partial derivatives of step © take the form

OSFT
06, °
When all of the increment directions and partial

derivatives have been established, a group of weighting
functions are computed. These weighting functions are
actually direction numbers in a space whose orthogonal
coordinate axes correspond with each of the increment
parameters, the A,'s in the case of real eigenvalues and
the 8,'s for the complex pairs. The weighting functions

have the form

ar Do -3
@ - B T (4-24)
1=

where ds is defined as

n
d52 = Z d}\.z1 s
i=1

In both of these expressions, let A, take on a general
meaning including both the real eigenvalues and the 6;'s
associated with the complex pairs.‘

Fach of the increments used in the search procedure
discussed above is now multiplied by its corresponding
weighting factor, Equation (4-14). This results in the
set of increments that is added to the original eigenvalues
to obtain the adjusted eigenvalues. This completes the

adjustment of the eigenvalues for the first cycle through
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the procedure. The next step is to determine how the A
matrix of the original state model nmust be adjusted to re-

sult in these new eigenvalues.
Computation of New A Matrix

Obtaining the new A is not a simple matter of inverse
transformation now because the modal matrix used before is
no longer valid.‘ The method of obtaining the form of
Equations (4-1) and (4-2) reflecting the new eigenvalues
involves the following steps.

The characteristic equation, being invariant with
similarity transformations, provides a means of numeri-
cally determining the modifed A matrix. The coefficients
of the characteristic equation of the system with adjusted
eigenvalues are displayed in the last row of P, the state
coefficient matrix in the companion or phase variable
form. P is obtained using J, V and V-! as shown in
Equation (4~ 9). The coefficients of the characteristic
equation for the original system A matrix are determined
through the use of Bocher's formula [7]. For simplicity,
let the coefficients of the characteristic equation ob-
tained from the A matrix of the original system through
the abo;e procedure be denoted-by a,, 1 =1, 25 ve.,y n.
Let the coefficients of desired system equation be
denoted by p,, 1 = 1, 2, ...,y o

Now, two characteristic equations are available,

A(a) and A(p). The goal is to determine how to adjust the
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coefficient matrix A such that A(a) approaches A(p) within
some tolerance. The following error function is

established:

n
b= (s - p 2. (4-15)
i=1

This function is made up of the sum of the squares of the
differences between corresponding coefficients of the two
characteristic equations. Since the argument, (a, - p,)

is squared and the a's and p's are real constants ¥ will

always be positive. If the A matrix is adjusted in

exactly the correct manner, ¥ will reduce to zero.
Minimization of the Difference Function ¥

The process of minimizing V is similar to that used
to increase SFT. Let each‘variable entry of A be denoted
by ax, (i = 1, 2, ..., k) where k is the total number of
variable entries. The minimization of V is accomplished
according to the following steps:

1. The first valﬁe of ax, is incremented Dby

a percentage of its original value.

2. A new characteristic polynomial is computed

using Bocher's formula.

3, ¥ is recomputed and compared with the

original wvalue.
4, If ¥, > VU, , the sign of the increment to

ax, 1s chaﬁged and the computation, steps
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1, 2, and 3, is repeated. If ¥, > ¥,

even after this, the increment is halved,

the sign of the increment is returned to

its original state and steps 1, 2, and 3

are repeated again. This continues until

v, < ¥,.

5. When ¥, < V,, the increment in ax, is

stored and a partial derivative of the

form 6%%: is computed and stored for fu-

ture use. The next value of ax, is then

incremented and steps 1, 2, 3, 4, and 5

are repeated until all values of ax, have

been treated.
In step 5, when V¥, < ¥, , the second time through the proc-
ess this implies that the initial step size was too large
for the shape of the contour of ¥ in that direction.
Figure 7 illustrates this condition and the effect of
halving the increment.

When all of the increment directions and magnitudes
have been established, a set of weighting functions are
oomputed. These perform the same task as those associated
with computing the eigenvalue adjustments to increase SFT.

A typical weighting function has the form

dax, Y ey ov TR
ds =~ Jdax, z ( aaXiD ] | (4-16)
i=1

where
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When the above procedure has been completed each ax, is
incremented, its increment being the increment resulting
from steps 1 through 5, multiplied by its appropriate
weighting function, Equation (4-16). After each system
increment, ¥ is recalculated and if A¥ is negative, the
system is incremented again. This procedure is continued
until AY becomes positive or until V¥ is less than some
acceptable value. 5Hince this procedure is to be accom-
plished by a digital computer using finite differences, it
is not likely that any criterion can be met exactly. It
is necessary, therefore, to establish some criterion of
acceptability. One such criterion is discussed later in
this chapter. If AV finally becomes positive, then the
ax, 's are set back to the values they had just prior to
the last incremenﬁ and a new search for the direction of
steepest descent may be started.

The criterion used to stop the descent process is not
easily determined in terms of V itself. In the case where
constraints are imposed on the ax,'s, ¥ will probably have
a minimum at some value other than ¥ = 0. A criterion
which was used in this work and appears to have the
desired characteristics is based on the size of AY during
a descent, compared to the original magnitude of V¥V at the

beginning of the problem. The criterion states that when
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AV is less than the original ¥ divided by 10,000 then an
effective minimum has been reached.

When the effective minimum value of ¥ is attained,
then the new elements of A are Jjoined with the invariant
elements to obtain a new A matrix. This matrix is trans-
formed by the same reasoning as that which was the basis
for Equations (4-3), (4~4); and (4~5). The computation
then proceeds through the recalculation of SFT as before,
but now, since a new A is available, a new modal matrix M
is also available. This completes one cycle of the proc-
ess, the goal of which is to force the performance index,
SFT, to satisfy a given criterion. The process is con-
tinued until (SFT -~ SFK) is positive.

A point of interest that deserves mention is that the
original incremental values of the axi‘s are arbitrarily
selected as a fractional portion of the original ax, . If,
during the descent, the contour of V¥ is well behaved and
changes occur slowly, convergence of the procedure 1s
accelerated by increasing the size of the increments.

This acceleration is accomplished by first calculating a

ficticious angle of descent, 6. 0 is defined as follows:

(4-17)

0= tan-?

[>!I>
=

(6}

k
1
where As = [Z (rax, )? ]"5
i=1

after the first incremental step of the system AO is
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computed. If A6 is less than some value, §£, then the
increments are doubled. If A® 1s greater than some other
value Eu’ then the increments are halved. If

El < AB <L Zu9 then the increments are untouched and the

computation proceeds.
Engineering Decisions in Adjusting the A Matrix

Some engineering Jjudgment must be exercised in making
the decision as to which elements of the A matrix should
be variable. For example, a hydraulic circuit designer
has little control over the bulk modulus of the o0il to be
used or even the volume in a power cylinder since this
will probably be set by pressure -~ force - stroke steady
state relationships. Adjustments can be made to the
spring rates, the valve stem mass, and orifices or
capillary tubes may be added to improve valve damping.
More complex feedback relationships involving sensing a
pressure rate of change may even be possible. Since the A
matrix 1s made up of elements which have‘physical signifi-
cance, the designer may decide which of these he wishes to
allow to be variable and which should be held fixed. He
probably would begin by holding the form of the system
fixed and adjusting only those parameters considered to be
variable. There also may be physical constraints or
bounds on the variation of these elements. These bounds
may be imposed by steady state operating requirements or

by required manufacturing tolerances, etc. During the
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adjustment of the ax,'s, care must be taken that these
constraints are not violated.

It is recommended when using this design procedure,
even if constraints are to be placed on the variable ele-
ments of A, that all pertinent entries of the A matrix be
allowed to Vafy at first. In this way, when constraints
are imposed, one may Judge to what extent each is depre-
ciating the system performance.

An additional word is also pertinent regarding the
constraints themselves. At times, the designer may be
fortunate in having each variable element of A dependent
upon only one physical parameter such as a spring constant.
However, it also happens, a¢ shown in Bacon's work [2],
that these entries of A can be functions of several
parameterse Bacon was able to solve the difficulty by
defining the function in terms of variable parameters p,
and then using a vector P made up of all p,'s in an error
index computation. In order that this design approach be
generally usable for all types of linesar systems, only the
elements of A were constrained since there is no way of
knowing beforehand what type of parametric function might
make up these elements.

If such a system were studied with the approach dis-
cussed in this thesis, it would be necessary Lo perform a
parametric study holding all but one parameter fixed at a
time in each element. In this way, a change in the ele-

ment could be traced directly to a change in a given
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parameter. Parametric relationships between elements are
considered by holding the related elements fixed while one
is varied. The process is then repeated after the related
elementé are adjusted to correspond parametrically to the
variable element.

If constraints are imposed on the elements of A, then
it may not be possible to make (SFT - SFK) positive. This
situation implies that the resulting SFT is the best that
can be expected from the system within the constraints
imposed. This is a situation in which it is valuable to
have the unconstrained solution at hand for comparison.
Often, constraints are set somewhat arbitrarily and can be
relaxed if significant good may result. These are design
decisions that must be made by the engineer on the basis
of information he has available in his mathematical and
computer design tools.

There is another realm of investigation that could,
in some cases; help the designer to hold his constraints
and still gain some improvement in SFT. This involves
changing the topology of his system. In most state models
there will be zeros appearing in the coefficient matrices.
These zeros indicate no dependence of the time derivative
of a certain state variable to itself or some other state
variable. A dependency may be added artificially by re-
placing one of these zeros with a nonzero entry and
allowing this entry to be variable in the procedure. A

parametric study involving all the original zero entries
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taken one at a time can, in some cases, uncover a relation-
ship thét will help the performance of the design. Inter-
pretation of this relationship into hardware design may
not always be readily apparent, but it would serve as a
stimulant to find such a hardware arrangement if the need

warranted.
Summary of the Design Method

The general block diagram shown early in this chapter
is expanded in detail in Figure 8. The process begins
with an initial state model provided by the designer. The
transformation matrix M is formed and is used to transform
the state model coefficient matrices to the normal form, J,

By and C,. The coefficients K, and Kj , Biven by the
. C b i C
expression _ELWEL, are then formed. With these constants,

the total syst;m steadiness factor SFT is computed. This
value is then compared to a specified goal for steadiness
factor SFK. If SFT-SFK is positive, the system already
satisfies the specification and there is no need for
compensation. If SFT-SFK is negative, compensation is
performed.

New eigenvalues are obtained after which a new
Vandermonde and Jordon matrix are established. These are
used tc obtain P through a similarity transfcormation.
This also results in a characteristic polynomial repre-
senting the new eigenvalues.

A characteristic polynomial for the original system
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is obtained using Bocher's formula. The corresponding
coefficiénts of the two charscteristic polynomials are
combined to form the difference function ¥. V¥ is mini-
mized through a steepest descents process and yilelds a new
A matrix. This A matrix is entered back at the beginning
of the process and SFT is recomputed. This cycle is re-
peated until SFT - SFK is positive.

The following chapter presents two sample design
problems which will demonstrate the practical use of the

design approach that has been discussed in this chapter.



CHAPTER V
EXAMPLE DESIGN PROBLEMS

In this chapter, two typical design problems are
discussed in order to demonstrate the usefulness of this
design approach. The first example is a circuit that ap-
pears in many hydraulic systems. This circuit is designed
to protect the system from overpressurizing. The mathe-
matical model of this system is developed in Appendix A.
The rationale of the design process will be made clear as
the procedure progresses.

The second example involves an electro~-mechanical
positioning system whose characteristics are expressed in
a slightly different manner from those of the first exam-
ple. This is a design problem in which it is desired to
raise the system steady state gain in order to reduce the
system's load sensitivity while maintaining an acceptable
transient characteristic. In both of these examples, the
systems are of low order in order to simplify the discus-
sion of the procédure and results. The method is not
limited to low order systems, however. The only limita-
tion in this respect would depend upon the memory capacity

of the digital computer being used.
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Hydraulic Pressure Control Clrcuit

This circuit was used to illustrate some features of
the design approach in Chapter IV, Bince a poppet valve
has a high flow (i.e., %%) pressure oscillations often
occur. It is the purpose of this discussion to show how a
valve, designed for steady state operation may be compen-—
sated such that it possesses acceptable transient
characteristics.

The particular design considered is shown in Figure 9.
The valve stem is refained on its seat by a coil spring.

A secondary chamber is provided with a capillary tube out-
let to tank to provide additional damping. The valve is
opened by the system pressure acting on a differential
area formed by stepping the stem down in diameter above
the seat. The mathematical models of this valve and the
associated ram chamber are discussed in Appendix A.

If the state variables are defined as

X =D % (0) = X4
% = Xyalve % (0) = %
%5 7 Xyalve %5 (0) = Xz 5

then the linearized state model for this system becomes

X, X K, - Ooll=x Yé;_

X | = 0 0 1l + |0lv (5-1)
K

* A s c

| %5 | | m "= mdl®l  LO.
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Initial values of the physical parameters resulted in ele-

ments of the A and B matrices of

K
IS
K, =23 = -
C-—
KX = 657000 o=
v
A )
I.ﬁ=59 ——B—=

288000

150

312.5.

The following state model results:

% | 2.3 -657000 O
Xp = 0 0 1
_5{,_' b' 59 288000 150
y = [1 0 0] Xy

Xp
X3 [

The eigenvalues of this system are

— -

Xy

X2

X3

N = -137.69
N = - 7.30 + 535.1]
As = - 7.%0 - 5%5.17.

The steadiness factor for this system is

312.5
+ o) v
9
.9396. Even

(5-2)

(5-3)

though the eigenvalues indicate the presence of a very
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lightly damped mode, a relatively high steadiness factor
results due to the small weighting coefficient for this

mode. In this example

A, + A = 0.1402

and TA, + (A, + A¥) =2,2828,
i
14, + A%
» _0.1402
SuChthat ZAr T Z(Al T A;i,'y' = ""‘—'—""2.282"'8 = 0.0615-

1

Consequently, even though this lightly damped mode may
overshoot its final value nearly 100%, the total system
effective "unsteadiness' is only about 6%. The normalized
transient response of this system is shown in Figure 10.
It will be noticed that this response is quite oscillatory,
although the ampiitude df the oscillation'is relatively.
small. The design method was applied, letting %, E?’ and
% be variable., The resulting transient response is shown
in Figure 10, After compensation by means of adjusting
the elements indicated above the steadiness factor became
0.9695 and the response became considerably smoother.

The history of ¥ during the operation of this proce-
dure is intéresting. Figure 11 shows that after six
gradient searches, ¥ was very near zero. This figure is a
plot of ¥ versus the iteration number and gives an indica-
tion of/the rapidity of convergence.

The original state equation and the revised state

equation are presented in Figure 12 for comparison.
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State Equations for the Original System
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Figure 12. Comparison of State Equations
of Original and Compensated
Systems
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Relatively small changes occurred. percentagewise, in some
but % changed by 88%. Now, consider the implications of
these changes in terms of hardware geometry. A certain
amount of engineering judgment must be used in this part
of the procedure. For instance a 10% change in % can
probably be more easily obtaiﬁed by adjusting A than by

adjusting m. In the case of ]ﬁ, K_ is more easily changed

s
than m. There are several considerations that must be
made in considering the change %ﬁ The radial clearance of
the valve stem could be adjusted to obtain the larger
viscous damping required. However, the radial clearance

6 of the original system was 00045 inch. This is a

close fit by most standards and to make 0 smaller would
probably be wvery expensive.

Another possibility is to change thé unsteady flow
force contribution. Even if a large enough benefit could
be attained using this approcach, it is likely that a new
housing design would be required. Adjustment of the cap-
illary tube damping éugmenter appears to be the most prom-
ising approach. Since the diameter of the capillary tube
appears in the expression for ¢ to the fourth power, a
simple change in the tube diameter results in adequate
improvement in the effective damping. This parameter would
probably be the easiest to adjust in most practical cases.
The following table shows a comparison of the wvariable

parameters which result for this example. Since other
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compensated systems will be discussed later, This systenm

is identified as compensated system I.

TABLE IIT

COMPARISON OF VARIABLE PARAMETERS

Original Compensated
Parameter Systen System I
A L0419 L0377
K 205.2 195
capil. dia. .16% .139
Eigenvalues
Ay -137.69 - -125.3
A ~7.3 + 535.1j -79.7 + 526.8j
A ~7.3 - 535.1] | =79.7 - 526.8]
Weighting
coefficients
mode 1 .9395 .95
mode 2,3 .0605 .05

Next consider the effect of constraining some of the

paramneters in Table III to the extent that they cannot

reach the values given.
strained to not less than -2.9

than'»200, This constraint on

X
c
m

K

. S
For instance, let Y be con-

108, and % 0 not less

1L

is somewhat hypothetical
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but for the sake of illustration consider it to be true.
This system is called compensated system II; Figure 13
shows the transient response of such a system with the
response of the original system plotted also for compari-
son., Compensated system II shows an improvement over the
original system, but it still displays a considerable
tendency to oscillate even though the amplitude is small.
The steadiness factor criterion is satisfied since com-
pensated system IT has a value of SFT equal to .9569
compared to the specified .95. Obviously, there is a
lightly dampedmode which has only a small influence on
the total response. The result is a slowly decaying small
amplitude (less than 5% of final value) oscillation. The
lightly damped mode may be seen from the printout of the
digital progran.

If such a condition is considered to be unsatisfacto-
ry by the designer, as well may be the‘case, one of three
attacks may be employed. The first and perhaps most
obvious is to relieve the constraints. If this is impos-—
sible or impractical, SFK may be raised and an attempt may
be made to improve the situation by adjusting free vari-
ables further. The third approach is to look for another
state variable dependency that will help.

Element a3 was permitted to become non zero to test
its efféct on the steadiness of the response. The result
was that this element had no significant effect on the

response. The other two zero entries, a, and ap , were
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the allowed to be variable with similar results.

At this point, a different gnd more subtle type of
constraint in the method should be mentioned. The method
of adjusting the eigenvalues, especially in the case of
the complex conjugates, is to fix ®, and rotate the radius
vector toward greater damping. This method of variation
preserves the general rise time qualities of the systemn,
but it will be recognized that this is not the only method
for adjusting the eigenvalues that could be applied. The
approach used here is to develop a characteristic equation
that has some desired transient characteristic and then to
adjust the original system to have the same or nearly
equivalent characteristic equation. Adjusting certain
elements bf A may not have the desired influence on the
characteristic equation. This peculiarity is discussed
in more detail in Chapter VI in connection with recommen-—

dations for future research.
Position Control System

This example problem shows how the design technique
may be used in a somewhat different way. Often a machine
will be designed_for good transient characteristics and
later the designer will discover that due to gain level or
distribution, the system is overly load sensitive. In
order to correct this situation, the design must be re-
evaluated. In this example, the original design is

established by selecting initial values which appear
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reasonable and by allowing the design prcocedure to compute
values that will meet the design criterion. A load dis-
turbance is then imposed and the relation between the
responses to the two inputs is discussed. The system is
then adjusted to reduce load sensitivity and yet maintain
the quality of transient behavior desired.

Figure 14 shows a schematic diagram of the system
under consideration. A voltage amplifier, Amp, is pro-
vided to control an amplidyne circuit. The amplidyne
provides power for the armature circuit of a d.c. electric
motor. The motor uses a field winding with a constant
current if to provide the flux field required for the
motor operation. The shaft of the motor is attached to an
inertia load and alsd to the wiper of a position sensing
potentiometer. The wiper is connected electrically to one
terminal of the amplifier. The winding of the pot is con-
nected in parallel with the winding of another pot and
with a d.c. voltagé source. The wiper of the second pot
provides the input position reference. The load disturb-
ance is imposed at the shaft of the motor. |

The amplifier is assumed to have a constant gain Ka
and no significant dynamics. This gain includes the |
actual amplifier gain as well as the static gain of the
amplidyne.

The purposes of this study are to determine which of
the parameters in the system most affects its dynamic per-

formance and to adjust all parameters such that a desired
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characteristic is achieved. The state model for this sys-
tem may be established from the basic relations governing
the system as developed in Appendix A. The system differ-

ential equations become

diC ~Rc ‘
——d—Eﬂ = "'fl"c‘ 1C + A(ein - 60) (5—-'4)
e R

== - 1q + quc (5=-5)

q
KT .
8 = Tﬁ; (Kdlq e Km80>- (5*-6)
Defining

Xy =04 v o= 0By

X = éo

X3 = lq

X&_ = iC?

then the state model may be written

%ﬂ 0 1 0 ol 1x 0
KK K. K |

e T m T d

X, o) R 5 0 X o)
a a

= +
. - R ’ v
X 0 0 q LA 0
L, .
}o(* -—'Ka 0 0 - == Xy A
L - - Cad e SR




y=[1 0 0 01 [x (5-7)

The following initial values were used for this example:

Kp = 0.75 %9 -5 5 = 1.0
q
K = 250 R, =5
»%E - 20 Ky = 1
C
J =0 K = 1.33

Using these values, the eigenvalues of the original system

become

Ay = - 6.08
A = -19.930
A3 = = 0.493 + 1.69]
Aa = = 0.493 - 1.69j.

The steadiness factor is .6352. Figure 15 shows that the
transient response for this system is quite oscillatory.
Four iterations of the compensation procedure produced the

following eigenvalues:

Ay = ~ 6.82

i

Aa = —20.4%
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-1.157 + 1.159;

. A‘@ = “'la].i{)rx) bl 1&159jm

The steadiness factor for this system called compensated
system IITI is .97%1. The transient response for compen-
sated system III is shown in Figure 15,

Only one of the element, a, , of the coefficient
matrix, A, varied by a large amount from the original sys-
tem to compensated system III even though all elements
were considered to be variable. This element represents
the damping term. Comparison of the two state equations
in Figure 16 shows that a, changed by 50% from its origi-
nal value, but none of the other elements changed more
than 15%. Compensated system IV, in Figure 15, shows the

effect of varying elements ay and ap only. .In this case,

ayq has virtually no effect on the minimization of ¥.
However, a change in element ap from -2.0 to -3.%5 accom-

plishes the necessary compensation.
Load Sensitivity Study

The load sensitivity of the sysfem is investigated in
the following manner. Consider Figure 17 showing a second
input at the summing junction just ahead of the motor
dynamics. This input represents an external torque dis-
turbance to the shaft of the motor. Consider the effect
of this input only on the total system response, i1.e.,

let vy, = O temporarily. OSubstituting the initial values
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of all parameters except Ka into the state model shown in
Figure 17 produces the following steady state

relationships,

X = -6.677, (5-8)
-K,%, - 20x, = O, and (5-9)
'-’5X3 + Xg= 0. (5“10)

Combining Equations (5-8), (5-9), and (5-10)

Xy = %?2 Vy . (5-11)
a

Thus, reduction in the sensitivity of x, to v, requires an

increase of Kao If Ka has a value of 250, then %L = 2,0,
2

It Ka is set equal to 12500, then the ratio %L will equal

2
.05%3, 1Ideally, a designer wishes the system to be as
load insensitive as possible. To accomplish this insensi-
tivity, the value of K, should be as high as possible
within the capabilities of the equipment being used. For
the purpose of illustration, a Ka equal to 12,500 is used
in the following discussion.

Now that a value of Ka has been selected to reduce
the locad sensitivity of the system, v, is set equal to
zero and the response of the system to vy is investigated.
It might be expected that this system would become oscil-

latory or even unstable if Ka only were increased. In

order to anticipate this difficulty and reduce design
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time element 8, (previously shown to be very influential)
was increased by a similar ratio. The initial state

model for this increased gain design is the same as that
of the original system except for a,, and ap; . The initial
values of these elements are 12,500 and -40, respectively.
The resulting steadiness factor is .6947 and the transient
response, resulting from an input, vy, is shown in Figure
18. When the system is compensated, the resulting steadi-
ness factor is .9584 and the transient response (compen-
sated system V) is as shown in the figure. During this
compensation, all pertinent entries in the A matrix were
allowed to be variable. The resulting changes in these
elements can be observed from the state equations shown in
Figure 19. It is evident that the matrix element ay, is
still the most important in the compensation process as
might be expected from the previous case.

Since ay, represents a damping type term, there are
several methods of acquiring the desired values of this
parameter. Perhaps the most direct of these methods is
the addition of a dashpot or fluid damper. Another possi-
ble method is the use of tachometer attached to the shaft
of the motor with its output fed to a current amplifier.
The current from this amplifier could then be used to
supply the field current. Making the field current de-
pendent upon the motor speed allows the torque to be
modulated to create an effective damping influence. The

question in such an approach would be whether sufficient
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effect could be attained within the capabilities of the

hardware available,

Summary

In both of the foregoing examples, the elements of
the A matrices having the most influence in satisfying the
response criterion, were apparent in the state models re-
sulting from the compensation procedure. The compensated
systems displayed much smoother transient characteristics
than those of the original systems. -In cases where the
amplitude of a lightly damped mode is only a small per-
centage of the total system steady state response, it may
be necessary to raise the steadiness factor specification
to eliminate undesirable oscillations. Interpretation of
the modified state models back into hardware changes was
discussed along with the rationale of making the necessary
engineering decisions. The ability to study load sensi-
tivity of a linear system was also presented. The proce-
dure, as presented, functions very well and provides
needed information and insight into the transient dynamics
of linear systems. There is room for expansion of the

method which will be discussed in Chapter VI,



CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

A time domain technique has been presented which en-
ables a designer to compensate the transient behavior of a
linear model representing a physical system. Extensive
use is made of the high speed digital computer in accom-
plishing the routine computation tasks. A performance
criterion is developed to help the user assess the quality
of the transient response of the system. The method re-
quires the formation of a state model representing the
dynamics of the system under study. The performance cri-
terion is satisfied by adjusting the elements of the state
model coefficient matrices.

The compensation method offers the following advan-
tages over current methods:

1. The differential equations governing the

system components may be used directly,
in the form of a state model, rather than
transforming the equations to the fre-
quency domain in terms of transfer
functions.

2., The transient response may be compensated

directly by using a criterion that contains

84



There are also a number of limitations in the method

which suggest natural extensions for recommended future

work.

1.

all of the important factors governing
the transient response.

The method does not 1limit the size of
the system to be studied.

Constraints may be placed on the magni-
tudes of elements in the coefficient
matriées of the state model.

The value of the performance index has
direct physical significance. This is
due to the fact that SFT indicates by
its value, the amount of oscillation
or overshoot that will be seen in the

transient response.

These limitations are listed below.

The method presently is restricted to
step inputs. Extension to include

other types of inputs may require an

adjustment to the performance index.

Only single input/output systems have
been investigated. Extension of the
method for use with multiple inputs and
outputs may be useful in some applications.
The procedure requires that the systen
be linear and posssess distinct eigen-

values. Extension of the method to
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include certain classes of nonlinearities
will certainly be wvaluable.

4. Presently, there is no method of maintain-
ing a functional correspondence between
elements of the state model coefficient
matrices. Extension of the procedure to
include simple correspondence between ele-
ments, such as a proportionality, appears
to be straightforward at this time, but
more complex relationships will require
further research.

5. There is probably a '"best! way of adjust-
ing the eigenvalues during the compensa-
tion, such that for the available
variable elements of the A matrix, Vois
most effectively minimized. The method
of adjusting the eigenvalues used in this
investigation was selected in order to
maintain the general rise time character-
istics of the system, but this approach
will not always allow the minimization of
¥ if the number of variable elements in
the A matrix is severely limited.

There is ancother area of investigation that is not

associated directly with a limitvation of the method. This
suggested investigation involves the determination of a

function that describes a line or region in space along or
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in which an index of performance is in an acceptable range
of values. It is believed that the steadiness factor cri-
terion introduced in this thesis could be adapted so that
it defines the desired performance line or region for |
higher order systems. If such a line or region could be
defined in hyperspace such that the desirable qualities of
the system response are preserved, the procedure discussed
in this thesis would be greatly enhanced.

The existence of such a line is suggested from a con-
sideration of a second order system. If, for instance, a
""good'" response is considered to be one with a damping
ratio of 0.7, then there exists a line in two dimensional
space along which the damping ratio is constant at 0.7.
Let a second order linear system be represented by the

following equation:

52+ 2Cw,s + w& = O | (6-1)

or
st + as + b = 0.

Let the coordinate directions of a two dimensional func-
tion space be defined by ai and bi, where i and J are unit
orthogonal vectors. One can see that for C to equal 0.7
in Equation (6-1), the following relationship must exist

between '"a' and ""b."

a
-_—— = 1.4
VDb

or
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a = 1.470. (6-2)

The locus of points in the a, b plane that satisfy Equa-
tion (6-2) form a parabola which is symmetric about the b
axis and passes through the origin of the space. The only
values of '""a'" that result in meaningfﬁl systems are those
that are positive. »Alongvthis parabola, ¢ rémains fixed,
but , varies, implying that the rise time characteristic
of a transient for such a system will also vary. The
damping ratio remaining fixed indicates that the transient
response of this second order system will have similar

characteristics all along the parabola.
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APPENDIX A
OBTAINING THE STATE MODEL

The design procedure presented in this thesis depends
upon the engimeer's ability to express the system mathe-
matically in terms of a state model. One of the primary
goals of the method of this thesis is to allow the designer
to maintain contact with his original system. In the case
of a hydraulic circuit or of a position control system
such as were discussed in Chapter V, the recommended pro-
‘cedure initiaily involves drawing a functional block dia-
‘gram of the system. This requires some knowledge of the
differential equations that describe the dynamics of dif-
ferent components. Any design or analysis procedure re-
quires that the components of the system be modeled
mathematically. Modeling is still recognized as being
difficult, eSpecielly in hydraulics research where there
is a noticeable lack of test data to corroborate theoreti-
cal results. Once the mathematical descriptions of the
hardware components are known or estimated, the design

procedure may continue.
State Model for Hydraulic Circuit Example

The equations describing the dynamics of this system
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stem from the following two primary sources:

1. Continuity of the fluid.

2., Egquation of motion of the valve stem.
The pressure in the cylinder of Figure 9 1is described by
the following continuity relationships.

Vo

-B—PzQ.

in (A-1)

-Q, -Q

v rest of system

For simplicity, the last term on the right of Equation
(A-1) will be assumed to be zero. Another assumption made
in the following discussion is that the ram is either
blocked by some outside force or that it is at the end of
its travel. V,, B, and Qv are the chamber volume, the
bulk modulus of the oil and the flow through the valve,
respectively.

Equation (A-1) may be rewritten
a -— —5— — —
P = Vo <Qin Qv) (4-2)

This expression is now written in terms of perturbation
variables. Taking the natural logarithm of both sides,

Equation (A-2) becomes

).

1]

. _& _
in P in 7 + ln(Qin QV

Taking the differential of both sides yields

ap _ Q5 - Q)
? B (an - QV
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or

. P
dP='(-

Qin—ngj d(Qiﬂ - Qv)e

but from Equation (A-2), (Qin f ij = %%, S0

ab = £ a@q, - )

and substituting lower case letters for the perturbation

variables this yields

P=-£ (q

vV - g ) (A“B)

o in v
A block diagram of this relationship would appear as shown
in Figure 20a.

The equation governing flow through a valve is given

r2§P-P;§
Q'Valve = CdndX 0 (A-4)

where Cd is the orifice coefficient, nd is the circumfer-

by

ence of the valve sten, XA is the valve displacement, P is
the fluid density, P is the upstream pressure, and Py 1is
the tank pressure. ©Since P is usually very large compared
to Py, it is common to assume P, = O. Equation (A-4)

becomes
Q, - odnde%ﬁ. (A-5)

This nonlinear equation may be linearized for small

perturbations about some steady state operating point.
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Figure 20a. Block Diagram of
Continuity
Equation

ﬁ@f

pat

Figure 20b. Expanded Continuiﬁy
Diagram

- system pressure

Yin A P X X
Tin, _
,_ﬂ?— % [ | f .
+ =0 |
v ‘ K 4
a s |
1 Xo

Figure 20c. Complete Pressure Control Circuit Diagram
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Writing the natural logarithm of both sides of Equation

(A-4) gives
1in QV = 1n Cdndfg + InX + 1nVP
+ 1n C, + 1nX + $1nP. (A-6)

Taking the differential of both sides of (A-5) yields

Nx
QV X 2P
or
Q Q
v v
Ryalve = T & * 35 - (4-7)

If the perturbation variables are defined to be e X and
p and the steady state operating point is denoted by Qg s

X,, and Py, Equation (A~6) becomes

Q
q, = %j X + §Po (A-8)

Figure 20a can now be expanded to 20b.
The equation of motion of the valve stem has the

familiar form
m¥ + c¢X + KX = PA_. (A-9)

In this expression m, KS, and Av are constant coefficients
representing, respectively, the valve stem mass, the
spring constant of the retaining spring and the area upon

which the pressure acts to open the valve. The damping
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coefficient ¢ is made up of three components.

e

_ paDL o\ 2P 128142 o
o = HE= - pCgndycos60” | S5 (A + X)) + =Sogr
(A-10)

where the first term on the right of Equation (A-10) is
the effect of viscous shear due the oil between the stem
and the bore. The second term is due to the flow forces
and is destabilizing. The coso0® factor in this term
comes from the geometry of this particular example. The
third term is from the capillary tube damping augmenter in
the chamber over the valve stem. The development of the
first and third terms of Equation (A-10) may be found in
Reference [3]. The second term is developed in Reference
[15].

The second term of Equation (A-9) can now be linear-
ized in a manner similar to that used earlier. If the
steady state operating point of X is taken as zero, then
Equation (A-9) becomes, using perturbation variables as
before,

.o 2 L]
nx + ( E—%P—L - PCsnd, cos60° "gfp}ic‘—(gxo +X )+g‘-§§}‘%é——‘-e‘->x+KSX ,

Cc Tﬁdz
= Dphy .

This equation may be solved for mx, lumping the coeffi-

cient of x all into one constant c.

mx = pAv - st - cX.

Figure 20c¢ shows the complete operational block diagram of
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the system. The state model of the system may be estab-
lished directly from this diszgram by defining the outputs
of each integrator as a state variable. A matrix differ-
ential equation may then be written which relates thé
inputs to each integrator to all of the outputs through
the feedback constants. The literal form of the state

model in this example is

L _ o ~
D b 2b 0 e £
PV, X,V, v,
é% x | = 0 o 1]|lx| +1lolaq
. Ay s c .
A A wom[|¥ ©
.. - | 1L ]
y = [1 0 O] [p
xX
x|,

The steady state operating point used for this exam-

ple is defined by the parameters

P, = 2000 psi
%, = .0l4 in
io = O -

Using these steady state conditions and some assumed geo-
metric constants, the elements of the coefficient matrices

in the state model as shown below.

D 2.3  -657000 0Tl p 12.
é% x | = 0 0 1 x|+ 0 a
x 59 -288000 -200!| x 0
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and y=[1 0 0] p] (A-15)

Equations (A-13) and (A-14) together make up the state

model of this example system.
State Model for Position Control System

A schematic diagram of the system under consideration
is shown in Figure 14. A voltage amplifier, AMP is pro-
vided to control an amplidyne circuit. The amplidyne pro-
vides power for the armature circuit of a d.c. electric
motor. The motor uses a field winding with a constant
current if to provide the flux field required for the
motor operation. The shaft of the motor is attached to an
inertia load and also to the wiper of a position sensing
potentiometer. The wipér is connected electrically to one
terminal of the amplifier. The winding of the pot is
connected in parallel with the winding of another pot and
with a d.c. voltage source. The wiper of the second pot
provides the input position reference. The load disturb-
ance is input at the shaft of the motor.

The amplifier isvassumed to have a constant gain Ka
and no significant dynamics. This gain includes the
actual amplifier gain as well as the static gaih of the
amplidyne.

The development of the differential equations

describing the dynamics of the amplidyne follow the
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discussion of D’Azzo’and Houpis [6]. TFigure 21 shows an
equivalent two stage representation of the amplidyne that
will facilitate understanding of the equations. The input
control voltage from Amp results in a control current iC
that must pass through a control winding with both induct-
ance LC and resistance, RC‘ The resulting equation is

given as follows

dic
LC-a—E—!— RCJ.C= €y (A-16)

A voltage eq is induced by the current ic in the first

stage of the equivalent circuit such that
e =K i (A-17)

where Kq is a constant of proportionality. The quadrature
winding also has inductance Lq and resistance Rq such that

the current iq resulting from eq forms the relationship

di
4 s -
Lq Tt quq = eg- (A-18)

Also, iq in turn induces a voltage eq such that

where Kd is a constant of proportionality. The induced
output voltage eq is then fed to the armature of the d.c.

motor. The torque produced by the motor may be written

Tq = K121, (A-20)



Figure 21. Two Stage Representation of Amplidyne Circuit

00T
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where XK, is a constant of proportionality relating the
field flux & and the armature current ia to the torque.
If a fixed voltage is applied to the field winding, then
the flux is constant and the torque becomes proportional
to only the armature current, ia' The constant of pro-
portionality is called K, and now Equation (A-20) may be

written
TQ = KTlao

When the armature is rotating, there is a back emf pro-
duced that is proportional to the motor speed 8,. The

voltage drop across the motor then becomes

e =K 6, (A-21)
where en is now given by
e, = €4 - R,i (A-22)

where Ra is the armature resistance and the inductance is
assumed to be negligible.

The state model for this system may also be estab-
lished by forming the operational block diagram. Such a
block diagram is shown in Figure 22. The output of each
integrator is defined as a state variable. The state

model of the system then becomes



+ le €q, Tq Kd Ky + ] o
Ka =@ [ 1% 9 TR~ 171/ TL{,G
X Al
Re Ra Km| 3
Le Lq Ra
e
©o

Figure 22. Operational Block Diagram of Position Control System

cOT
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x| [ O 1 0 0 %11 [0
Kk, EpKy
a
4 _ + v
dt b R
X; 0 0 -5 K, || 0
q
q
e
_Xﬂ- :Ka 0 0 -i;“?a _K%
(A-23)
y=[1 0 0 0] [=x]
Xp
X3
—XJY—I
where v is . and the output of the system x; is 4.

in
" When typical values are substituted in Equation (A-23),

the result is

-— — — — — — — —

X, 0 1 0 o] [x 0
%, 0O -2.0 1.5 0 |x 0
'55 x| 7 0 0 -5 ollx| " o7V
EA | -250 0 0 =20 |x| |[250
(A=24)

State Model of a Transfer Function With Zeros

It is often convenient to start with a transfer func-
tion in the formation of the time domain state model. The
literature contains several methods of programming which
result in different useful forms of the state model [7].

One very useful procedure will be presented in this
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appendix because it allows consideration of numerator
dynamics as well as poles of the system.

Consider, for example, a transfer function which may
be shown in the form

C _K(s? + bys + b))
R<S) T8 +ay;s® +a;s5+a; C (A-25)

This equation may be rewritten, by cross-multiplying, in

the following form:

(83 + a;8% + 8,8 + a5 )C(s) = K(s2 + bys + by )R(s).
(A-26)
Rearranging Equation (A~26) such that all terms containing
zeroth powers of s are on the right side and all other

terms are on the left, gives

(83 +a;8% +8,8)C(s) ~K(s?2 +Dby,8)R(s) = KbyR(s) - 2a3C(s).
(A-27)
The right side of Equation (A~27) is defined as =x (s).

Integrating ii yields X, and the following equation:
(82 + a;8 + 8 )C(s) - K(s + b, )R(s) = %, (s).

Transposing all zeroth power s terms from left to right

results in
(2 + a;,8)C(s) - KsR(s) = x;, + Eb,R(s) - 8 C(s).

The right side of this expression is defined as x, (s).

Integrating, yields
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(s + 8,)C(s) ~ KR(8) = x,(s8).
Following the procedure one more time yields
sC(s) = x, + KR(s) - a,C(s)
where C(8) = x3.

In summary, the following definitions have been made.

%, (s) = Kb, R(s) - a;C(s), (A-28)
% (s) = %, (8) KbyR(s) - 8C(s), (4-29)
%3 (8) = % (s) + Kb,R(s) - a,C(s). (A-20)

A block diagram may be constructed to assist in the
visualization of these relationships as shown in Figure
23. Again, taking the outputs from the integrators and
relating them to the inputs a state model of the form

given below is obtained.

Xy 0 0 -az || Xy Kb, % (0) = Xy
| =1 0 -8 || % | + [Kby | R(t)y % (0) = X,
X 0 1 ~ay || X3 K x5 (0) = Xz
| (4-16)
y = [0 0 1] [ x4
X
X3 (A-17)

This technique for obtaining the state model from the
transfer function has a particular usefulness. This form

is called the Rational Canonical Form and is characterized



~R(s)

Kbo

| —

: Xahﬂv

Figure 23.

Programming Diagram for System With Zeros

C(s)

90T
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by the display of the coefficients of the characteristic
equation in the last column of the state coefficient
matrix. It may also be noticed that the input coefficient
matrix contains the static gain, K and the coefficients of
the numerator polynomial. This convenient separation per-
mits independent study of numerator and denominator effects.
The change from s domain to T domain, above, is accom-
plished by considering appropriate initial conditions for

the state variables.



APPENDIX B
METHOD OF STEEPEST DESCENT

The‘meth§d of optimization through a steepest ascent/
descent technique is particularly useful in numerical
methods. The approach discussed in this thesis uses this
concept twice in the determination of a compensated system.
Since this technique is important to the design approach,
it is discussed briefly in this appendix. This discussion
follows that of Kelly [11].

Before considering the general gradient technique of
optimization, first consider the continuous descent proc-
ess. Let f be a function of several variables x , X
...g.Xn, defined in an open domain and possessing continu-
ous partial derivatives with respect to the x,3 1 = 1, 2,
swey N Let a differential distance, ds, in this‘space,

be defined in the following manner:

n
ast =y axd. (B-1)
i=1

Since the goal of this procedure is to move from some
starting point x, = %X, 1 =1, 2, ..., n, toward a minimum

f, first consider the directions in which the rate of

108
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change of f with respect to s, is negative.

n
£y (e (8-2)
i=1
The direction of steepest descent is given by one of the
directions that make Equation (B-2) stationary subject to
(B-1).
Equation (B-1) may be rewritten in the following

form:

= dx, e
mz (-as— = O (B"B)
i=1
dx,
where g5 may be considered to be direction cosines. This

constraint may be adjoined to the right side of Equation

(B-2) by means of a Lagrange multiplier Ko as follows:
n n
dx dx
af T 12
2 Y [1 - E, - ] (B=4)
i=1 as ’-‘:l(dS)

In order to find the value of A, that extremizes Equation

(B~2), the partial derivative of this expression is taken
dx
with respect %o Tﬂgo Setting the result equal to zero one

obtains
:-——‘-—w- -+ }\, [ 2 = O i = l'-) 2’ ° L] n. (B—5)
From (B-5) one may obtain
dx ) .
i .]_ aI. 1 = lg 29 o ) nNe (B”6)

ds = 2\, 9%,
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From (B-3) the following expression for A, results from

combining Equations (B-6) and (B-3):

LT porNe
- -%[Zl(ssz‘;) IE (3-7)

of

If all the 3% are not zero, the two distinct sets of di-
1

rection numbers that make %g stationary are

dx, f =
d_s = 5———" z [ j_ = l, 29 oo o g n. (B"'8)

It can be seen that the continuous case given above
can be readily extended to use in a numerical technique.
Since the determination of partial derivatives égl may be
time consuming for high order systems, it is desirable to
make the best use of each calculation of local gradient
direction. The procedure used in this thesis is to follow
the lccal gradient direction until f reaches a minimum. A
new gradient direction is then calculated and the procedure
repeated.

In this way. an n-dimensional minimum problem is
reduced to a sequence of one-dimensional problems. The
continuous and stepwise processes are contrasted in Figure
24 which shows the two types of motion as they occur in
the vicinity of a minimum of a function of two variables
f(x, 4%, )» The gradient direction shown is normal to a

contour while the local minimum in the gradient direction



X

Figure 24, Comparison of Continuous and Numerical Descent
Technigues

1t
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is found at a point of tangency to a contour. Higher or-
dered cases are not so easily displayed in a figure, but
these same characteristics exist.

It is apparent that the stepwise path is not inde-
pendent of the coordinate system selected. If a transfor-
mation of coordinates could be found that would result in
circular contours, the first gradient direction would pass
through minimum f. In the usual case, however, there is
not sufficient information a priori to allow a sophisti-
cated choice of coordinates. A normalization of parameters
is possible, howéver, since generally a designer will have
some idea of the practical range of each parameter. In
this thesis, normalization is accomplished by letting an
incremental step of a parameter be determined by a frac-
tional multiple bf the original value. In this way, the

increments are percentage changes of the parameters.



APPENDIX C
DISCUSSION OF DIGITAL COMPUTER PROGRAM

The compensation procedure of this thesis 1s designed
to make use of the extensive capabilities of the digital
computer. A computer program which mechanizes the con-
cepts of Chapter IV and was used to obtain the results of
Chapter V, was written for the IBM 7040 in the Oklahoma
State University Computing Center. The compiler language
used is FORTRAN IV, The program consists of a main
callihg program and nine subroutines. The program is
arranged to keep the number of input cards as low as pos-
sible to facilitate its use.

If the reader does not care to read the details of
the program listings that follow, he may refer to Figure
25 for a flow diagram showing the major functions of the
program. FORTRAN listings of all subprograms are included
in later appendices, although only the significant sub-
programs are discussed in detail. Subroutines that invert
a matrix or some other routine task are referred to in
terms of the function they perform but are notbdiscussed
at length. The writer feels that eventually this sort of
action will be accomplished by some FORTRAN statement much

the same as multiplication and division is done today.

113%
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Figure 25. Digital Computef Flow Diagram
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400

form new B matrix from

B = MV 1B
P

GO TO CALL STDFK

Figure 25. (Continued)



118
Main Calliing Program

The main or calling program was developed from a
library program from the SHARE series, known as DALA4. The
original purpose of this program was to compute the eigen-
values and eigenvectors of an input A matrix. Significant
additions were made to DAL4 in the process of developing a
main program for this design procedure.

It will be noticed that a good part of DAL4 was
written in double precision. This causes no difficulty if
one 1s careful in preparing his input cards. The first
action of the program is to read in N and SFK. N is the
order of the system under study and SFK is the reference
steadiness factor. Next, the positions of the variable
elements of the A matrix are read in. These positions are
then indexed for future reference by a numbering system
that starts on the top row of A and increases from left to
right. The maximum and minimum values of the variable
elements of A are then read in. All of the entries of the
B matrix are assumed to be variable so the maximum and
minimum values of b, are read in next. If one desires %o
hold an element of B fixed, then he must make the maximun
and mininum values the same for that element. Some write
statements occur next. None of the write statements will
receive comment in the interest of expediting this discus-
sion. The A matrix is then read in, in double precision.

Next DAL4 performs a normalization operation which is

not particularly pertinent to the concepts of this work.



119

In the statements from 3% to 82, the traces of powers of A
from 1 to N are calculated. In this process a subroutine
SQMULT is called to obtain the wvarious powers of A, Next,
using the traces obtained above, the coefficients of the
characteristic equation are obtained using Leverrier's
algorithm. These coefficients are used to prepare inputs
to another subroutine DNEWRA which factors the character-
istic polynomial and produces the roots of the equation in
the form RR(I) and RI(I). These are the real and imaginary
parts, respectively, of the ith eigenvalue. DAI4 then
goes through some accuracy checks and then computes the
eigenvectors. This point can be recognized by the nota-
tion EGVCR(III,JJJ) and EGVCI(III,JJJ) which are the real

and imaginary parts of the elements of the JJJth

eigen-
vector. These real numbers representing the real and
imaginary parts of the eigenvectors are then formed into
complex pairs and XMORIG(I,J) is formed. This is the
first form of the system modal matrix, M. This matrix is
then adjusted such that each column is normalized with
respect to its top element. This results in a matrix, the
top row of which is made up only of ones.

The next significant operation is the calling of sub-
routine STDFK. STDFK is significant to the procedure and
will be discussed in detall later. At this point suffice
it to say that STDFK uses the modal matrix, RR(I), RI(I),

and SFK and returns an interim desired system in the phase

variable form called PHSCOR and the proper size input,
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XKP, to result in unity output of the original system. At
this point, if the program has cycled four times it
branches to the section in which the differential equa-
tions are solved, otherwise it continues.

In the event that the program does not branch, it
goes to 3%%3 where it begins the calculation of ¥, the
minimization of which brings the characteristic equation
of the original system, A, as close as possible to that of
the desired system, PHYSCOR. The traces of the various
powers of A are recomputed and Leverrier's algorithm is
employed once agaln to obtain the coefficients of the
characteristic equation. Since PHSCOR is in the phase
variable form already, the desired coefficients for this
system are displayed as a row of this matrix. V¥ is then
computed between 1553 and 1504,

At this point begins the operation that modifies the
A matrix such that ¥ is minimized. Since ¥ is recalcu-
lated many times in the process of determining the proper
gradient direction and then in the descent itself, a group
of indices are set up to control traffic through this part
of the program. These were all set equal to zero Jjust
below 3333, |

An index for stopping the descent is established
first by dividing the first value of ¥ by 10000. It will
be noticed that this part of the program only occurs if
INDXIO is zero, or the first time through the routine.

Next, using KMOR as an index, the program is sent to 1518
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since initially KMOR is zero. 1In the range from 1518 to
Jjust above 1514, each variable entry of the A matrix is
incremented. These increments are made one at a time and
after each the program is sent back to 1509 and a new
value of P81 is calculated. KCAL is increased by one
every time through the loop until KCAL is greater than
KMAX, the number of variable entries of A. KMOR is incre-
mented by one every time through this loop also so the
second time the IF statement just below 1520 is reached
and all subsequent times during this loop the IF condition
is false and the program proceeds through. A test is made
on the direction of change of ¥. If the change is nega-
tive or zero, the program is sent to 15573 if positive %o
1543,

At 1557 a partial derivative is calculated and the
variable entry of A under consideration is set back to
its original value so the next may be investigated. At
1543 g check is made to see if AV has beeh positive before
when considering this element of A. If not, the sign of
the increment to the element is changed and the element is
set back to its original value, KSOK is incremented to
record that the program has been through this branch and
finally the program is sent to 1542 where the element is
incremented in the new direction and the cycle repeated.
When the program reaches 1511 again,if At is negative or
zero, the program is sent to 1557 as discussed above. If

AV is still positive, however, the increment is halved and
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the cycle is repeated. This section of the program pro-
tects against taking too large a step and making an
erroneous choice of gradient direction. This procedure
continues until a AV which is negative or zero results or
until the cycle has been traversed twenty times. 6 This
check is to protect the program from becoming locked in a
loop.

After all of the increments, their directions, and
their associated partial derivatives have been estab-
lished, the gradient direction for steepest descept is
determined, This is done in the range from 1578 to the
statement just above 1557. The program is then sent to
1514 where the present entries of the A matrix are stored.
Next, each variable entry of A is increment in a steepest
descent sense., After these increments are made, a test is
applied to see i1f any variable element of A exceeds its
constraints. If so, the element is set equal to the con~
straining value. The traffic control indices, KMOR and
KMOD, are reset to zero and KADJ is set equal to 1 to in-
dicate that a descent is in progress. The program is then
sent back to 1509 where V is recalculated for a new A with
all variable entries adjusted. One can see by tracing the
statements from 1509 that with KADJ = 1 there are some
skips compared to previous cycles.

Finally, Just below 1504 the-program is sent to 1516
where ¥ is written out and a check is made on the direc-

tion of AY¥. This first time through, the change will
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probably be negative since the gradient search was Jjust
completed. If it should happen to be positive, however;
the program is branched to 1545 where all the increments
are halved and the program is sent to 1514 again. This
will continue until AV is negative. In the usual case
‘where AV is negative, the first time the value of AV is
stored and the program is sent back to 1514 to increment A
once more. Finally, during the descent a local minimum
will be reached as was discussed in Appendix B. This is
sensed by a positive AV after there has been at least one
negative AVY. When this occurs, the program is branched to
1546 where A is set back to its form Jjust prior to obtain-
ing the positive AV, Traffic.control indices, KREP and
KADJ are set back to zero and the program is sent back to
1509 where a new gradient search is initiated. The above
procedure continues until A¥ is less than the first value
of ¥ divided by 10,000. This test is made just below 1516
every time a negative AV occurs. When this test is satis-
fied, the program is branched to 1521, toward the end of
the listing of the main program.

At this point the new values of A are put back into
double precision and control index JSKY is increased to 1.
The program is then branched back toA1592 near the front
of the listing where the eigenvalues and eigenvectors of
the new A matrix are computed. ‘The new modal matrix is
also computed at this time. Just below 139, the progranm

senses that JSKY is greater than zero and branches to
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1591, In this part of the. program, a new B matrix is
computed by transforming the input coefficient matrix
established in subroutine STDFK in the phase variable
form to the form of the original state model. The result-
ing changes in the elements of B are then checked against
the constréintvlimits of each entry. If any value'bi
exceeds its constrained value, the entry is set at the
value of the constraint.

At this point, the program is sent back to 1597 where
subroutine STDFK is called again., This completes one
major cycle of the progrm. This procedufe is repeated
until SFT exceeds the value of SFK the first btime through
subroutine STDFK or until a prescribed number of passes
through STDFK have been made. This check is made by an IF
- statement Jjust below the subroutine CALL statement using
index KSICK. When either of the above criteria is satis—»
fied, the program branches to 1598 where‘the matrix 4if-
ferential equations for the original and the revised
systems are solved and a time trace comparison is plotted

out on the output sheet.
Subroutine STDFK

This subroutine performs several important funétions
in the procedure. The inputs to STDFK include RR, RI, N,
SFK, XMAJ, XMAJIN, and KSICK. This information is used to
calculate the system steadiness factor, SFT and the

matrices that make up the state model of the system
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expressed in the phase variable or companion form.

The first action of this subroutine is to read into
memory CORIG and BORIG. These are the C matrix and the B
matrix of the original system. It will be noticed from
the IF statement just preceding the READ statements that
these are read only the first time the program enters the
subroutine since thereafter KSICK is greater than zero.
BFIX is Jjust the stored‘value of the input B matrix to be
used when the differential equations of the original sys-
tem are solved in the main program.

The matrices Cy and B, are formed using CORIG, BORIG,
and the modaibmatrix and its inverse. The next formation,
starting at 108 through 8, is that of the Vandermonde
matrix to be used in the transformation from normal form
to phase variable form. After the Vandermonde matrix is
formed, its inverse is obtained through subroutine CINV,
This subroutine differs from that used in the main program
in that this one allows complex entries where the other
one does not. Once these matrices are available, the out-
put and input coefficient matrices CP and BP of the phase
variable form may be obtained. These are considered as a
sort of pivot point for the approximate calculations to
follow in that they are assumed not to change with changes
in the eigenvalues later on.

The next significant computation occurs after 1011
where the products of corresponding entries of Cy and B,

are formed. This is in preparation for forming the K,
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coefficients discussed in Chapter III. Beginning at 1013
the eigenvalues are sorted out as to real and complex and
the complex pairs are located. These locations are stored
in arrays IJ(I) and IT(I) for the complex eigenvalues and
KL(I) for the real eigenvalues. The eigenvalues are then
_formed:into appropriate complex numbers and the coeffi—
cients K,, mentioned above, are formed. Once these are
available tan® is calculated as discussed in Chapter III.
The tan~! of this quantity provides a value for &. It
will be remembered thaﬁ $ is used to calculate tp which is
needed for the calculation of steadiness factor.

With Equation (3-13) it was discussed that the sign
of sind% would influencé whether a reference of %; is used
in that equation or %. In order that the function be
fixed in the digital program, a value of 2 is used for
'all cases, & is adjusted by = radians, howevér,:whenever
it was apparent from (&, + 4, ) and -(4, - A,) that & was
in the third or fourth quadrant. This was necessitated
in part by the fact that the inverse tangent subprogram
only returns the principle values of the angle ¢. Once ¢
has been established, TP is calculated in a straightfor-
ward manner. With this, then XSF is calculated for the
pairs of complex eigenvalues. JFrom 22 to justbbelow 23
the contributions of both real and complex conjugate modes
are added together to form the total system steadiness
factor, SFT.

The program is branched at this point to 107 where
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PHSCOR, the state coefficient matrix for this, the origi-
nal system, is the phase varisble form. After this, an
input size for unity output is computed. More will be
said of this computation later. The program is then
branched back to 1021 where KSAP is increased from zero.to
one. At this point begins the adjustment of the system
eigenvalues,

Each real eigenvalue is incremented individually from
1061 to Jjust above 102. After each is incremented, the
program branches back to 108 and SFT is recomputed, hold-
ing CP and BP constant. A partial derivative of SFT with
respect to each real eigenvalue is computed, based on the
change of SFT. After each partial derivative is calcu-
lated, the corresponding eigenvalue is set back to its
original value. After all of the real eigenvalues have
been investigated, the complex conjugate pairs are
engaged. This 1s done below 22%2 by forming each complex
eigenvalue into a polar vector of the form R/B. 6 is then
incremented and the program branches back to 108 and SFT

is recalculated. Partial derivatives of the form aggT

are formed after each mode is studied.

Finally, when all increments have been made and ad-
justed as to sign such that SFT increases, the direction
of steepest ascent i1s computed Jjust below 2230 and each
variable is incremented. The program then branches back
to 108 where SFT is calculated with all eigenvalues ad-

Justed by an appropriate amount. The program is then
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branched to 107 where the coefficient matrix of the phase
variable or companion form is obtained. KXSAP is greater
than 2zero this time, so the program is returned to the
main program. The main output of this subroutine is
PHSCOR which is used in the calculation of ¥ in the main
program.

STDFK also serves another purpbse. Since PHSCOR is
obtained here and is a convenient form, the input size is
computed.that will result in unit output of the system.
This input magnitude is called XKP in STDFK. The logic
behind this computation may be seen from the block dia-
grams of Figure 26. This represents a system expressed in
the phase variable form. Notice that in a steady state
condition, the inputs to all integrators must be zero.
This allows the following equations to be written for a

unity output.

If x, = O then x = -Kv
If % = O then x5 = -Kb,v
If ﬁ; = O then vKb, = a;x3 + @X + azx

but the desired value of x;, is 1, so

VKb, = g (~Kbyv) + &, (-Kv) + as
a; = V(sz + Kbl a-l + Ka2>
and v

= 3
~ Kb, + Kb;ay, + Ka,*

This equation is easily mechanized on the digital computer

as shown in STDFK from 2248 to Just below 2250 near the
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Figure 26. Steady State Characteristic Diagram
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end of the listing.
Subroutines LIFS0L and PLOT

These subroutines serve the purpose of solviﬁg the
differential equations and plotting the resultsQ
respectively. Since these are only incidental to the pro-
cedure, they will not be discussed in detail. A discus-
sion of the integration procedure may be found in
Caterpillar Tractor Company Applied Control Series, Volume
5 published by the Oklahoma State University Fluid Power

Control Laboratory in 1967 [4].



APPENDIX D

PREPARATION OF INPUT CARDS

The input data required for the use of this digital

design program are read in on data cards. These cards

form 13 groups.

The groups are listed below with the re-

quired format information.

Group 1:

Group 2:

Group 3:

One card that contains the order of
the system under study and the
specification value of steadiness
factor, SFK. The format for this
card is I2, F10.4.

This group indicates which entries
in the A matrix are to be variable,
1's for variable entries and zeros
for fixed entries. These are ar-
ranged by rows in the format 5I2.
Each card indicates the variable or .
fixed nature of the elements of one
row of the A matrix. There will be
as many cards in thisvgroup as there
are rows in the A matrix.

This group indicates the maximum

magnitude allowed for each wvariable

131



Group 4:

Group 5:

Group 6:

Group 7:

Group 8:

132

element of the A matrix. The values

are arranged in a format of 7F10.4.

The order of the data is by rowé.

This group indicates the minimum mag-
nitude of the entries of the A matrix.
The format and order are identical to
those of Group 3.

This group indicates the maximum

values of the entries in the B matrix.
The format is 10F7.4 and the order is
from the top of the matrix.

This group indicates the minimum values
of the entries in the B matrix. The
format and order are identical to those
of Group 5. If it is desired to hold

an entry of B fixed, make thé maximum
and minimum values the same.

This group contains the starting vaiues
of the entries in the A matrix. The.
format is 5D14.7. The order is by
columns of A.

This group contains the entries of the‘
C matrix in a format of (4F15.4, 4F15.4),
The double format is because the entries
of this matrix are input as complex num-
bers. The first part of the format is

for the real part and the second is for



Group 9:

Group 10:

132

the imaginary part. It is important
to input zeros or leave the field
blank corresponding to the second
part if the entry is real. The order
of the entries on the cards is the
real part, then the imaginary part of

each entry starting with the left most

element of the C matrix.

This group contains the elements of
the B matrix where the format and
order are identical to those of Group
8 except that the first entry is the
top element of B.

This group contains information needed
for the numerical integration of the
differential equations. The first
entry is a value for the initial time
step size. This should be some frac-
tion of the shortest time constant of
the system. The second entry is the

quotient of the total time the design-

. er wishes the solution to include

divided by the initial time step size
above. For inStance, if the initial
step size is .00l second and the
desired final time is 7.5 seconds,

then the second entry on the card



Group 11:

Group 12:

Group 13:

124

would be ?%

for this card is F10.5,I10.

= 7500. fThe format

Ok
I‘__JE\J‘:

This group contains the initial
conditions of the state variables
starting with the first element of
the state vector. The format for
these entriesg is 8F10.5. If the
order of the system is less than 8
and the initial conditions are to
be zero then a single blank card
will suffice.

This group is made up of one card
that contains the title of the plot
of the step responses which the pro-
gram provides. All 80 columns may
be uéed.

This group is also only one card.
It contains the title of the verti-
cal axis in columns 1 through 18,
the symbols to be used on the plot
in columns 19 through 58, the title
of the horizontal axis in columns
59 through 76, and in columns 77, 78,
and 79 are a decimal point, a plus

sign, and a minus sign, respectively.



APPENDIX E

FORTRAN PROGRAM FOR TIME DOMAIN COMPENSATION
OF LINEAR SYSTEMS
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FORTRAN LISTING OF MAIN CALLING PROGRAM

DIMENSION TRC(5)sPQ(5)sTD(5)sZ0Q15) 2 JVARI5+5) sAXE(25)91A(25)sJA(25)
DIMENSION A2(555)sPA(5)sZA(5) sAMAX(25) s AMIN(25)
DIMENSION DPSI(25)+PDVI(25)+FAK(25)sPSX(5)
DIMENSION Al 54 5)sAA( 59 5)sTRU 5)sAAMD( 5+ 5) sAAMT( 5 5) DAL40007
DIMENSION DET(25)sVMAX(25) s VMIN(25) s APWR(545) s APWX(545)
DIMENSION Ul 40)sRI( 5)sRR( 5)+IPIVOT(10)+INDEX(10s2)sPIVOT(10)
DIMENSION RI1( 5)sRR1( 5)sCl10+10)sCOMM(12)+AL( 59 5)+EGVCR( 54 5)
DIMENSION ZZI( 54 5)sDEF(10)»TMRSP1(202)+TMRSP2(202)sSYSRSP(202) DAL40009
DIMENSION COLUMNI( 5)+Z( 5)sP(16)sX(30)9G(30s1)sTIME(202) DAL40010
DIMENSION EGVCI( 5% S5)+E(5)sB15)+QX(545)
COMPLEX RMIINV(555)sQSUMsTFX(595)sBFIX(5)sXBsYBsZBsBMAX(5)+BMINI(S)
COMPLEX ZLMDA( 5)sRML 59 5)sD( 59 5)9CNl 5)eF( 5)sXMORIGI 5 5)
COMPLEX DINV( 54 5)sRMINVI 59 5)sARGPHI( 5)sXYsZ2eXMAJ( 54 5)
DIMENSION 1J( 5)sIT( 5)sPHI( 5)19ARI( 5)sTP( 5)
COMPLEX XMINV( 54 5) +XMAJIN( 59 5)sXMARIG(595)+BP(5)+BORIG(5)
DIMENSION SF( 5)+RRGPHI( 5)+TRR{ 5)1sTRI( 5)sZ1( 5) +PHSCOR( 5¢ 5)
COMMON PIVOTsINDEXsIPIVOT DAL40011
DOUBLE PRECISION RI1+RR1+CoAsAA»TRyAAMDsAAMT sUsRISRR2Z2Z1 +DEF +COLUMDAL40012
INsZsPsXsGoFLONsHsSIGMA3DIFF 9EPSsZERO+FLOK s TREKR+TREKI » SUMsFDIV DAL40013
DOUBLE PRECISION PIVOT.DETERM DAL40014
1585 FORMAT(1HO#33X»4HPSI=sF1544)
1586 FORMAT(/1lHO»11Xs26HGRADIENT SEARCH COMMENCING)
1575 FORMAT(7F10e4)

1001 FORMAT(I2s11) DAL40206
1002 FORMATI(5D14eT7) DAL40L07
10 FORMATI(L12A6) DAL40213
12 FORMAT(1H112A6) DAL&4Q214&
3001 FORMAT(23H1 ERROR IN DNEWRA) DAL40204
1108 FORMAT(28H1 THE DETERMINANT IS ZERO) DAL40205
4102 FORMAT(8H [12+2H Dlé6+99+6H D16+9+20H DAL4O208
1 12+3H DI6e9sTH D16+9) DAL40D209

1581 FORMATI(/Z//1HOs54X 9 22H%%%%%F INAL SYSTEM#* %% %% )

1112 FORMAT(6BH1 DAL40Z210
lEIGENVECTOR 12//85H DAL40Z11
2REAL PART IMAGINARY PART /) DAL40212

7101 FORMAT(////1HO»8Xs40H INPUT MATRIX MULTIPLIED BY EIGENVECTOR 12+32DAL40215
1H EIGENVECTORI2+27H MULTIPLIED BY EIGENVALUE DAL40Z216&
212/113H REAL PART IMAGINARY PART DAL40QZ17
3 REAL PART IMAGINARY PART//) DAL40218

2004 FORMAT(/1HO»21X+18H NORMALIZED TRACESs13Xs54H TRACE CHECKS(REAL PADAL40219
1RT) TRACE CHECKS(IMAGINARY PART)) DAL40220

2001 FORMAT(1H1419Xs1THMATRIX DIMENSION=12+12X+2HH=D16e9+11X+»6HSIGMA=D1DAL4022]
16.9) DAL40222

1609 FORMAT(//1H0#37X+59HTHE CYCLE COUNT HAS BEEN EXCEEDED FOR VARIABLE
1 ENTRY NUMBER»13)
15 FORMAT(10FT7e4)
4 FORMAT(5F10e4)

2013 FORMAT(1H +22X9D1649+23X90164942X9D1649) DAL40223
2023 FORMATI(1H +22XsD1649) DAL40224
2005 FORMAT(//1HO#38X+52H EIGENVALUESIREAL PART) EIGENVALUES(IMAGINARY

1 PART)) DAL40226

2015 FORMATI(1H +41Xs12+2X+D166992XsD1649)
1106 FORMAT(/1HO» 4(D12e492X9D12sb04X))
1 FORMATI( 1H1 954X s25H# %2 20R|GINAL SYSTEM####%)
2 FORMAT( IH1954Xs25H*# X 8 #MODIFIED SYSTEM## &%)
20 FORMATI(/1HO56X13H INPUT MATRIX/) DAL40<L29
6010 FORMAT(34X+5D01547)
2003 FORMATI(/1HU»18Xs24H NORMALIZED COEFFICIENTS+7X9¢62H NORMALIZED ROOTDAL&0231
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c

7111
7113
7112
1602
6000
9

11
13
14
1583

1584
34

3334

1505

1506

1111

1592

5000

50

52

54
56
58

1S(REAL PART) NORMALIZED ROOTS{IMAGIKARY PARTI}!

FORMAT(1H1)

FORMAT({1HO 4 10X sSHFIRST 425X ¢ SHSECOND s 26X o SHTHIRD 2 25 s 6HFOURTH}
FORMAT B8Xe4(11HEIGENVECTOR 20X ) )
FORMAT(//1HO+4TX el IHR R4 #SMODIFICAYION OF SYSTEM A MATRIXS®#ue)

FORMAT{1HO 432X +3HROW+12)
FORMAT (124+F104s4)

FORMAT (8F1544)

FORMAT (2F10e4)

FORMAT (4F1504+4F1504)

FORMAT ( 1H1940Xe55H#w#%% TIME DOMAIN COMPENSATION OF A LINEAR SY

1STEM ##¥ux)

FORMAT(1HO+56X+23HTHIS SYSTEM IS OF ORDER»I12)

FORMAT(512)
INIZIALIZATION

READ(5+9)Ns+SFK

DO1505 I=14N

READ(5+34) (JVAR(IsJ) s J=lsN)
CONTINUE

K=0

DO1506 I=1sN

DO1506 J=1sN

KV=JVAR(19J)

IF(KVeLT«1)GO TO 1506
K=K+1

IA(K)=]

JA(K)=J

CONTINUE

KMAX=K

READ(54+1575) (AMAX(1)s1=1sKMAX)
READ(5+1575) (AMIN(1)»I=19KMAX)
READ(5+15 ) (BMAX(L)esI=1sN)
READ(5+15 ) (BMIN(I)sI=1lsN)
IFIN)I1111+3333,1111
WRITE(6+1583)
WRITE(6+1584)N

KSICK=0

JSKY=0
READ(5+1002)(tALIsJ)al=1sN)sJ=1lsN)
FLON=N

MAX=20

EPS=1.D-10

ZERO=14D-10

WRITE (6+20)

DO 5000 J=1N
WRITE(6+6000)J
WRITE(6+6010)11ALJsI)sI=laN)
H=,000

DO 50 K=1«N

H=H+A(K+K)

H=H/FLON

S1GMA=,0D0

DO 58 I=1sN

DO 58 J=1sN

IF(I=J)154+52+54
DIFF=(AlTIsJ)=H)##2

GOTO 56

DIFF=(A(lsJ) ) uu2
SIGMA=S1GMA+DIFF

CONT INUE

SIGMA=SQRT (SIGMA/FLON)
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DAL40232
DAL40233

DAL40015
DAL40016

DAL40020

DAL40022

DAL40023
DAL40024
DAL40025
DAL40026
DAL400Q27
DAL40028
DAL40029
DAL40030
DAL40031
DAL40032
DAL40033
DAL40034
DAL40035
DAL40036
DAL40037
DAL40038
DAL40039
DAL40040
DAL4004L
DAL&40042
DAL40043



62

64
70
33

72

76

78

82

86
B4

94
92

96

95

100

120

122

130

DO 70 I=1sN

DO 70 J=1sN

IF(I=J162+64062

AA(TeJ)=Al1sJ)

GOTO 70

AA(T»J)=A(]lsJd)=H

CONTINUE

TR(1)=.0D0

DO 72 L=1sN

TRIU1)=TR(1)+AA(LsL)
TRI1)=TR(1)/SIGMA

DO 76 I=1sN

DO 76 J=1lsN

AAMDI(TsJ)=AA(]J)

K=2

CALL SQMULT(AA,AAMDyAAMT sN)
TR(K)=,000

DO 78 L=1sN

TRIK)=TR(K)+AAMT (LsL)
TRIK)=TRIK)} /{ SIGMA##%K )
IFIK=N)B2+84 84

K=K+1

DO 86 I=1sN

DO 86 J=1sN

AAMDI( T 9J)=AAMT (1 J)

GOTO 88

Pl(1)=TR(1)

DO 92 K=2sN

FLOK=K

ZiK)=.000

LIM=K~1

DO 94 I=1sLIM

LIMM=LIM+1~1
ZIK)I=Z(K)+P(I)*TR(LIMM)
PIKI=(TRIK)=Z(K))/FLOK

Ulli=1.D0

Ul21=0.D0

DO 96 I=1sN

Ui2#1+1)1==P (1)

Ul2*1+42)=0.D0

CALL DNEWRA(NsUsXsMAXsEPS+ZERO»GoKE)
IF(KE«NE+Q)GO TO03333

DO 100I=1sN
RR{I)=X(2%]-1)
RI(CI)=X(2%])
DO 120 I=14N
RILII)=RI(I)
RR1(I)=RR(1I)
TREKR=.,0D0
TREKI=.00D0
DO 122 I=14N
TREKR=TREKR+RR
TREKI=TREKI+RI
DO 136 K=2.N
TREKR=0D0
TREKI=«0D0
DO 130 I=14N
Z(I)=RR(I)*RIL(1)+RI(1)*RR1(1])
RRUII=RR(I)*RR1(I)=RI(I)*RIL(I)
TREKR=TREKR+RR (1)

RICI)=2(1)

TREKI=TREKI+RI(I)

(1)
(1
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DAL&400&7
DAL40048
DAL40049
DAL40050
DAL40051
DAL40052
DAL40053
DAL40054
DAL40055
DAL40056
DAL40058
DAL40059
DAL40060
DAL40061
DAL40062
DAL40063
DAL40064
DAL40065
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136

140
209

208

213

219
400
403
402
404

405

408
410

411

231
233
235

240
243
703
246

25

CONT INUE

DO 140 I=1:N
RI(CII=RI1(1)=*SIGMA
RR{1)=RR1(I)*SIGMA+H
NM=N#*2

DO 777 K=14N

DO 208 I=1N
X(I1)=A(IsI)=-RR(K)
NNN=I+N
XINNN}=X(1)

DO 213 I=1+NM

DO 213 J=1+NM
ClIsJ)=s0

DO 219 I=14N
INN=I+N
CLINNsI)==RII(K)
C(IsINN)=RI(K)

DO 219 J=1,N
ClleJdi=A(lsJ)
JNN=J+N
CUINNsJNN)=A(T14J)
DO 400 I=1.NM
ClIeld=X(1)
MM=NM~-1

DO 405 I=1sMM
X(I)=C(IsN)

DO 405 J=N:MM
ClIsdi=ClloJ+l)

DO 408 J=1.MM

DO 408 I[=N+MM
Cllsd)=ClI+1led)

DO 410 I=N.MM
X{1)=X(1+1)

DO 411 I=1,MM
Gllsl)==X(I)
LH=MM-1

CALL MATINV(CsLH»Gs»1+DETERM)
IF(DETERM) 233,231,233
WRITE(6+1108)

GO TO 11

DO 235 I=N:MM
1Z2Z2=MM+N=1
GUIZZ+1s1)=GI(1ZZs1)
G(N»1l)=1.D0
G(NM»1)=+00D0
SUM=.0D0

DO 240 I=1.NM
SUM=SUM+G( 1s1)%%#2
FDIV=SQRT(SUM)

DO 243 I=1,NM
G(Iel)=GlIsl)/FDIV
DO 246 I=14N
KK=I+N
TRUI)=G(KKsl)

D025 111=1.N

JJJd=K
EGVCRITIT#JJJ)=G(ITIs1)
EGVCI(III»JJJ)=TRILIILI)
CONTINUE

DO 4000 I=1sN
KK=1+N

DEF(1)=.0D0
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4000

4005

4010

4020
177

137

138

1385

139

1597

1416

141

DEF(KK)=+0DQ

DO 4000 J=1.N

KKKK=J+N
DEF(I)=DEF(I)+A(1sJ)®G(Js]l)
DEF(KK)=DEF(KK)+A(] o J)#GIKKKKs1}
CONT INUE

DO 4005 I=1+N

KK=1+N

AAMD(1+K)=DEF(1)

AAMT (1 +K)=DEF (KK}

DO 4010 J=1sN

KK=J+N
DEF(J)=RR(K)*G(Jsl)=RI(K)*G(KK»1)
DEF(KK)=RR(K)®*G(KKs1)+RI(K)*#G(Js1)
CONTINUE

DO 4020 I=1»sN

KK=1+N

AA(T1+K)=DEF(I)

ZZ1(1+K)=DEF (KK)

CONTINUE

WRITE(6+2005)
WRITE(6+2015) (1 sRRIIDSRI(I)eI=1sN)
WRITE(6+7113)

WRITE(6+7112)

DO 3 IIl=1sN

WRITE(6+1106) (EGVCRITII»JJI)sEGVCICIIT sJJIJ) sddJ=leN)
CONTINUE

DO137 I=1sN

DO137 J=1sN

XXX=EGVCR(1sJ)

YYY=EGVCI(IsJ)
XMORIG(I+J)=CMPLX(XXXsYYY)

CONT INUE

DO 138 J=1.N

D0138 I=1sN
XMARIG(I»J)=XMORIG(I+J)/XMORIG(1sJ)
CONTINUE

DO1385 I=1sN

DO1385 J=1,.N
XMORIG(I»J)=XMARIG(I+J)

CONTINUE

CALL CINVIXMORIGsNsXMINV¢KKK)
D0139 J=1,N

DO139 I=1sN
XMAJ(19J)=XMORIG(T9J)%XMINV(JsN)
CONTINUE

CALL CINVIXMAJsNsXMAJINSKKK)
IF(JSKYeGT0)1GO TO 1591

CALL STODFK(RRsRIsN+SFKsSFTsXMAJ»XMAJINSsBORIGsRMIINVsCNsKSICK»BFIX»

1PHSCOR s KSAP s XKP )
IF(KSICK«GT«3)GO TO 1598
DO1416e I=14N

XY=BFIX(I)
E{I)=REAL(XY)

CONTINUE

DO141 I=1sN

DO141 J=1sN
Al(IsJ)=SNGLIA(T+J))
IFIKSICK«GT<0)GO TO 141
BETO=XKP
QXi{leJd)=Al(10J)

CONT INUE
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141

IFIKSAPsLT211G0 TO 1598
GO TO 3333 ‘
1598 N2zZw=}
WRITE(691)
CALL DIFSOLIGXoMoMZZZ 2 TMRSPL o THRIPZ ¢ [ I oE sBETO) '
D0142 1=1s1JK
SYSRSP(I)=TMRSPL(]}
TIME(I)=THMRSPZ (1)
142 CONTINUE
DO1415 I=1eN
XY=BORIG(1}
B{I)=REAL(XY)
1415 CONTINUE
MJIK=TJIK.
WRITE(6+2}
CALL DIFSOL (Al sNINZZZ+TMRSP1 s TMRSP2o1JKsB s XKP)
D0O143 I=1,1JK )
12=1+MJK
SYSRSP(12)=TMRSP1(1)
TIME(12)=TMRSP2(1)
143 CONTINUE
TMAX=TIME(]2)
RMAX=1e5
CALL PLOT(TIMEsOs0sTMAX90sSYSRSP10e05145904040906060s0009126291030¢
12)
GO TO 3335
3333 CONTINUE
WRITE(651602)
KMOD=0
KADJ=0
KMOR=0
KREP=0
KCyC=0
IND1O=0
KSOK=0
1509 TRC(11=0.0
DO1531 L=1sN
1531 TRC(1)=TRC({1)+Al(LsL)
DO1534 I=13sN
DO1534 J=1.N
1534 APWR(14J)=A1(14J)
: LX=2
1537 DO1535 K=1sN
DO1533 I=14N
SUM=0.0
DO1532 J=14N
SUM=SUM+AL1(19J) #APWR(JsK)
1532 CONTINUE
1533 APWX(1sK)=SUM
1535 CONTINUE
DO1540 I=1.N
DO1540 J=14N
1540 APWR(1+J)=APWX(1sJ)
TRC{LX)=040
D0O1536 L=1sN
1536 TRC(LX)=TRC(LX)+APWRI(LoL)
LX=LX+1
IF(LXeGTeN)GO TO 1538
GO TO 1537
1538 CONTINUE
IF(KADJeGT«01GO TO 1510
IF(KMODeGT40)GO TO 1510



1500

1501
1502
1510

1552
1553

1504

1578
1520

1511
1543

1572

1573

1558

1559

1560

1561

IF(KCYCeGTL0IGO TO 1830
DO1500 I=1.N i
K=pN=-f+1
PQ{1)=-PHSCOR(N,K}
TD(1)=-PQ{1)

DQ1502 K=2sN

ZQ{K}=0e0

FLOK=K

LIX=K-1

. DO1501 I=1,LIX

LIXX=LIX+1~]
ZQIK)I=ZQUKI+PQ(I)*TD(LIXX)
TD(K)==PQ(]1)*FLOK-Z2Q(K)
PA(1)=~TRC(1)

DO1553 K=2,N

FLOK=K

ZA(K)=040

LIM=K~1

DO1552 I=1+LIM
LIMM=LIM+1-]

ZA(K)=2A(K)+PA( 1) *TRC (L IMM)

PA(K)==(TRC(K)+ZA(K) ) /FLOK
SUM=060

DO1504 I=1,N
PSI2=PQ(1)—-PA(I)
PSI1=ABS(PS12)#%%24,0
SUM=SUM+PSI1

PS1=SUM

CONTINUE

[F(KADJ«GT«0}GO TO 1516
IF(KMODeGT«0)GO TO 1511
PSO=PSI

WRITE(6+1585)PSI
IF(IND10+GT40)GO TO 1578
IND10=IND10O+1
PSIX=PSI/10000,

CONTINUE

KCAL=0

IF(KMOReLT41)GO TO 1518
IF(PSI~PS0J 1557415571543
KSOR=KSOR+1
IF(KSOReGT&20)GO TO 1573
IF (KSOKsGT#0)GO TO 1572
DET(KCAL)=-DET (KCAL)
Al(IXsJX)=A1HLD
KSOK=KSOK+1

GO TO 1542
DET(KCAL)=~0«5%DET (KCAL)
Al(IXeJX)=A1lHLD

KSOK=0

GO TO 1542
WRITE(6+1609)KCAL

GO TO 1557

SUM=00

DO1559 I=1,KMAX
SUM=SUM+(PDV (] )*%2)
PDVS=SUM

D01560 I=1sKMAX
FAK(I)=PDV(I)/(PDVS*#0,5)
FAK(1)=ABS(FAK(I1)}
DO1561 I=1,KMAX
DET(IVN=DET(I)*FAK(I)
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143

XDET=140
YDET=140
' GO TG 1514
1557 DPSI(KCAL}=PSI-PSO
KSOR=0 :
PDV(KCAL) =DPSI(KCAL} /ABS{DET{KCAL}
1513 AL(IXeJX)=ALHLD
1518 KCAL=KCAL+1
KSOK=0
KSOR=0
KCYE=0
KCYF=0
KMOR=KMOR+1
IF(KCAL+GT+KMAX)GO TO 1558
IX=IA(KCAL)
JX=JA(KCAL)
CAL=A1(IXsJX)
CAL=ABS (CAL)
IF(CAL+GT+040)GO TO 1522
DET(KCAL) =140
GO TO 1523
1522 DET(KCAL)=0,05%#A1(1XsJX)
1523 ALHLD=A1(IXsJX)
1542 A1{IXsJX)=A1(IXsJX)+DET (KCAL)
KMOD=KMOD+1
GO TO 1509
1514 KREP=KREP+1
IF (KREP+GT+15)G0 TO 1521
DO1551 I=1,N
DO1551J=1N
1551 A2(1sJ)=A1(1sJ)
DO1515 K=1,KMAX
IX=1A(K)
JX=JA(K) :
AL(IXsJX)=A1{IXeJX)+DET(K)
XNEW=A1(1XsJX)
AMAK =AMAX(K)
AMIX=AMIN(K)
IF (XNEW-AMAK ) 157051570+1569
1569 Al(IXsJX)=AMAX(K)
GO TO 1515
1570 IF (XNEW~AMIX)1571,1515,1515
1571 AL(IXsJX)=AMIN(K)
1515 CONTINUE
KMOD=0
KADJ=1
K=0
KMOR=0
GO TO 1509
1516 WRITE(6+1585)PS1
IF(PSI-PS0)1567,1517,1545
1567 PSXX=PSI-PSO
PSXX=ABS(PSXX)
IF (PSXXeLT4PSIX)GO TO 1521
IF(KCYFeGTe0)GO TO 1562
KCYF=1
1568 CHG=PSI-PSO
PSO=PSI
KCYE=1
GO TO 1514
1562 THET1=CHG/XDET
THET1=ATAN(THET1)



1563
1565

1564
1566

1545

1548

1549

1546

1550

1517

1521

1590

1591

1596

1593
1594

1595

THETZ2=(PSL=PSQY/YDETY
THET2=ATANI{THET 2}
DELTH=THET1~THETZ
DELTH=ABSIDELTH}
IF{DELTHeGT#0e81G0 TQ 1563
IF{DELTHoLT05%)1GC TO 1564
XDET=YDET

GO TO 1568

D01565 I=1sKMAX
DET(1)=0e5%DET (1}
XDET=YDET
YOET=YDET%#(Qe5%%04¢5)

GO TO 1568

DO1566 I=1sKMAX
DET(I)=240%DET(])
XDET=YDET
YDET=YDET#(2.0%#%0¢5)

GO TO 1568
IF(KCYE«GTe0)GO TO 1546
DO 1548 I=1sN

DO 1548 J=1,N
Al(IsJ)=A2{1sJ)

DO 1549 l=1esKMAX
DET(I)I=DET(I)%045
XDET=XDET*(0e5%%0¢5)

GO TO 1514

DO 1550 I=1sN

DO 1550 J=1,N
Al(I4J)=A2(19J)

KCYE=0

GO T0 1517

CONT INUE

KREP=0

KADJ=0

KCYC=KCYC+1
IF(KCYCeGTel0)GO TO 1521
WRITE(6+1586)

GO TO 1509

DO1590 I=1eN

D01590 J=1oN
XERX=ALl{(1sJ)
A(I9J)=DBLE(XERX)
JSKY=JSKY+1

GO TO 1592

D01596 J=1sN

DO1596 1=1,.N
XMORIG{1sJ)=XMORIG(I+J)}#CN(J)
D0O1594 K=1,N

DO1594 I=1,N
QSUM=(0e0s0601}

DO1593 J=1,N
QSUM=QSUM+XMORIG( I+ J)#¥RMIINV{JsK)
TEX(I+K)=QSUM

DO1595 I=1,N
QSUM={0e03040)

D01595 J=1,.N
QSUM=QSUM+TFX( ] sJ)*BP(J)
BORIG(1)=QSUM

DO1599 I=1,.N

XB=BMAX(I)

28=BMIN(I])

Y8=BORIG(]I])
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1601

1599

3335

vyBB=REALIYB)

XBB=REAL (XB)
2BB=REAL{ZB)
IFIYBBaLToXBBIGO TO 1601
BORIGII)=BMAX{T)

GO TO 1599
IF(YBB-GT-2BBIGO TO 1599
BORIG(Ii=BMINCL])
CONTINUE

KSTCK=KSICK+1
IF(KSAP—-1)1598s1597+,1597
CONTINUE

STOP

END
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$IBFTC SQMULT

C
C

10
20
25
30
35
40
50
69

SQUARE MATRIX MULTIPLICATION

SUBROUTINE SQMULT(AsB+CoN)

DIMENSION Al 59 5} B{ 592 5} C{ 5o 3o COLUMN( 5)
DOUBLE PRECISION AsBsCoCOLUMN
M=N

DO 50 J=1sM
DO 25 K=1lsM
COLUMN(K) =B (KesJ)
DO 50 I=1sM
ClI+J)=060
DO 50 K=1+M
ClIoJd)=ClIsJ)+A( 1K) *COLUMN(K)
RETURN
END
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$IBFTC DNEWR

10
15

20

25
30

35

40
45

50

55

60

65

SUBROUTINE DNEWRA(MsCoRsMAXoEFSeZERD«GGoKED

DIMENSION CULIoR(11oGG(2):G4)oSIR2 ol {2) a2

DOUBLE PRECISION CoReSsToX P06
DATA G(3)9G{4}/elD0os1DO/
KE=0

N=M

S(1)=C(1)

S(2)=C(2}

Q=S (1) ##245(2 ) ##2

IF(NeNEal) GO TO 5
R{1)==(S(1)#C(3)+S(2)%C(4))/Q
R(2)=(S(2)%#C(3)-S(1)*C(4))/Q
GO TO 200

L=0

KR=0

KT=0

EN=N

G(1)=G6G(1)

G(2)=GG(2)
CM=(C(2%¥N+1)%%2+C(2EN+2)%%2)/Q
IF(CMsNEsOs) GO TO 10

CM=1,

R(1)=04D0

R(2)=04D0

G(l)=e1D0

L=1

DO 15 I=1sN - .
S(1)=S(1)+C(2%]+1)
S(2)=5(2)+C(2%]1+2)
IF(SQRTI(S(L1)#%#245(2)%#%2) /CM)-ZERQ)20920025
R(2%L+1)=14D0

R(2#L.4+2)=04D0

G(l)=1.1D0

G(2)=0.D0

L=L+1

IF(L-N)25+200+200
IF(MOD(N»2))30+35030
S(1)=C(3)=-Ct{l)
S5(2)=C{4)-C(2)

K=3

GO TO 40

S(1)=C(1)

S(2)=C(2)

K=2

DO 45 1=KsNs2
S(1)=S(1)=C(2%¥]~1)+C(2%]+]1)
S$(2)=S(2)=C(2#])+C(2%#]+2)
IF(SQRTI(S(1)*%2+S5(2)#%2) /CM}~ZERO)50+50+55
R{2%L+]1)=~14D0

R(2#L+2)=04D0

G(l)=-1.1D0

G(2)=0,D0

L=L+1

IF(L~N)554200+200
Q=G(1)#%#2+G(2) #%2
IF(Q-14)75+75+60

Gll)=G(l)/Q

G(2)=(-G(2))/Q

KR=-1

CM=14/CM

K=(N+1)/2
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70

80

85

90

95
100

105
110

115
120
125
130
135
140

145
150
155

160

DO 70 1=1eK

Jep-1

T(ly=Cq2a})~1}

Ti2)=CL2#1

Cl2#]=1)=C{2%4+3}
CU2#])=Cl28J+4)

Cl2#J+3)=T(1)

Cl2#J+4)=T(2)

1G6=1

X(1)=G(2#1G6-1)

X(2)=G(2%*]G)

DO 110 J=1MAX

P=EN
S{1)=CL1)#X(1)-C(2)#*X{2)+C(3)
S(2)=C(2)#X (1)+C(1)#X(2)+C(4)
T(1)=P%C(1) .

T(2)=p*C(2)

DO 85 I=2sN
Q=S(1)#X(1)=S(2)*X(2)+C(2#]+1)
S(2)=S(2) %X (1)+S(1)#X(2)+C(2%#]+2)
$(11=Q

P=P-14D0

Q=T(1)*X(1)=T(2)*X (2)+P*C(2%]~1)
T(2)=T(2)%X(1)+T(1)%X(2)+P*C(2%])
T(1)=Q

P=S(1)*¥2+45(2) #%2
Q=(T(1)*S(1)+T(2)%#5(2))/P
TU2)={T(2)%S(1)=T(1)*5(2)) /P
Til)=q

IF(PeEQeOs) T(1)=1eD16
IF(L)90+100590

DO 95 I=1,L

S(1)=X(1)=-R(2%]~1)
$(2)=X(2)=R(2%])
Q=S(1)%*2+5(2) #%2
T(1)=T(1)=5(1)/Q
T(2)=T(2)+5(2)/Q
Q=T(1)%R2+T(2) #%2
X(1)=xX(1)=T(1)/Q
X12)=x(2)+T(2)/Q

IF(1lo/SQRT(Q¥*(X(1)**2+X(2)%%2))~EPS)105,105+110

IF(SQRT(P/CM)~ZERO)1609160s110
CONTINUE

1G=1G+1
IF(IG-21115+80+115
IF{KT)120+155+120
IF(L)125+1759125

KE=L

IF{KR)135+2005135

KT=0

DO 145 I=1,L
Q=R(2%[~1)*#%24R (2%] ) %#%2
R(2%]-1)=R(2¥]~1)/Q
R(2*])=(~-R(2%]))/Q
IF{KT)659200465

KT=1

KR=KR+1

Q=X (1) **2+X(2)#%2
Gil)=X(1})/0
G(2)=(-%x(2))/Q
IF(L)140+659140
IF{ABS{X{2)/X(1))=-ZERO11654165+170
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165
170

175
200

X{2)¥=00
R{ZEL+L)=X{1}
RI2#L+2)=X{2)
Gil}=1a1D0%X (1}
G(2)=1o1D0%X{2)
L=l+1

CIF(L=N)7551300130

KE==1
RETURM
END
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SIBFTC MATINV

C
C

C

[a¥aXa!

[aXaXal

[aNaXal

[a¥aKal

130
140
150
160
170
200
205
210
220
230
250
260
270
310
320

330
340
350
355
360
370

380
390

MATREX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR EQUATIONS
SUBROUTINE MATINVIAsNsBsMsDETERM}

DIMENSION IPIVOT(10)s AL1Us10)s BI30sl)s INDEXE1002)s PIVOTI10)
COMMON PIVOTsINDEXs IPIVOT

EQUIVALENCE (IROW»JROW)s {ICOLUMsJCOLUM)s (AMAX, Ty SWAP)
DOUBLE PRECISION DETERMsAMAXsSWAP oTeAsBsPIVOT

INITIALIZATION

DETERM=1.D0
DO 20 J=1»N
IPIVOT(J)=0
DO 550 I=1sN

SEARCH FOR PIVOT ELEMENT

AMAX=04D0

DO 105 J=1,N

IF (IPIVOT(J)=1) 60y 105 60

DO 100 K=1sN

IF {IPIVOT(K)=1) 80s 100s 740
IF (ABS(AMAX)=ABS(A(JsK))) 855 100s 100
IROW=J

1COLUM=K

AMAX=A(JsK)

CONTINUE

CONTINUE

IPIVOT (ICOLUM) =IPIVOT (1COLUM)+1

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL

IF (IROW-ICOLUM)} 140» 260y 140
DETERM=~DETERM

DO 200 L=1sN
SWAP=A(IROWsL)
ACIROWsL)=A(ICOLUML)
A(ICOLUMyL)=SWAP

IF(M) 260, 260, 210

DO 250 L=1y M
SWAP=B(1ROW»sL)
BUIROWsL)=B(ICOLUMsL)
B(ICOLUMsL ) =SWAP
INDEX(Is1)=1ROW
INDEX(1+2)=1COLUM
PIVOT(I)=A(ICOLUM» ICOLUM)
DETERM=DETERM¥PIVOT(I])

DIVIDE PIVOT ROW BY PIVOT ELEMENT

A(ICOLUM»ICOLUM) =140

DO 350 L=1sN
A(ICOLUMsL)=A(ICOLUMyL)/PIVOT(I)
IF(M) 380, 380y 360

DO 370 L=1.M
B(ICOLUMsL)=B(ICOLUMsL)/PIVOT(])

REDUCE NON-PIVOT ROWS

DO 550 L1=1sN
IF(L1-ICOLUM) 400s 5504 400

150

DAL40238
DAL40239
DAL40240Q
DAL40241
DAL40242
DAL40243
DAL40244
DAL40245
DAL40246
DAL40247
DAL40248
DAL40249
DAL40250
DAL40251
DAL40252
DAL40253
DAL40254
DAL40255
DAL40256
DAL40257
DAL40258
DAL40259
DAL40260
DAL40261
DAL40262
DAL40263
DAL40264
DAL40265
DAL40266
DAL40267
DAL40268
DAL40269
DAL40270
DAL40271
DAL40272
DAL40273
DAL40274
DAL40275
DAL40276
DAL40277
DAL40278
DAL40279
DAL40280
DAL40281
DAL40282
DAL40283
DAL40284
DAL40285
DAL40286
DAL40287
DAL40288
DAL40289
DAL40290
DAL40291
DAL40292 "
DAL40293
DAL40294
DAL40295
DAL40296
DAL40297
DAL40298



[a¥aXal

400
420
430
450
455
460
500
550

600
610
620
630
640
650

670
700
705
710
740

T=A(L1o FCOLUM?
AlLL,ICOLUMI=0,0

DO 450 L=1.M
ALLLoL)=AlL Lol ) ~ACECOLUMaLY BT
IFIM) 550 5500 460

DO 500 L=1l.M
BULIsL)=BILL+L)~B(ICOLUMSL) %T
COMT INUE

INTERCHANGE COLUMNS

DO 710 I=1sN

L=N+1-1]

IF LINDEX(L+1)~INDEX(Ls2)}) 630 710, 630
JROW=INDEX(Ls1)
JCOLUM=INDEX (L s2)

DO 705 K=1N
SWAP=A(K» JROW)
A{K»JROW)=A(KsJCOLUM)
A(K»JCOLUM) =SWAP
CONT INUE

CONTINUE

RETURN

END
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DAL40299

DAL40300
DAL40301
DAL40302
DAL40303
DAL40304
DAL40305
DAL40306
DAL40307
DAL40308
DAL40309
DAL40310
DAL40311
DAL40312
DAL40313
DAL40314
DAL40315
DAL40316
DAL40317
DAL40318
DAL40319
DAL 40320
DAL40321
DAL40322
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SIBFTC STDFK

2218
2219
2220
2221
2222
2223
2224
2225
1

9

11
13
14
15
2201
2202
2203

2204
2205
2206
2207
2208
2209
2270

2269

2268
2210
2211
2212
2213
2214
2215
2216
2217

2228
2227

SUBROUTINE STDFKI{RReRIsHNeSFRoSFT o XMAJ s XMAJIN+BORIGRMITNVCNoKSICK
LeBFIXoPHSCORSKSAP s XKP}

COMPLEX XMAJ{ 5o S)sXMAJINCG 54 %) LORIGE 51 BORIGL S)eRMIC S 5)
COMPLEX XLAMIoXLAMZA10A20PROD s SUME s DENXL s DENN2 pCMD oRLC o RLCOF
COMPLEX RMIINV{ 50 5)+BNi 5)9CP{ 51:BP{ 5)sRLRTIS) »DELI5) o XSF
COMPLEX ZLMDA{ 5)sRM{ 5% 514Dl 55 53sCHE 5)oF({ S)s¥YXsSUM29BFIX(5)
COMPLEX DINV( 59 5)sRMINVE 59 5) s ARGPHE( 5)9XY 922 0XXeXSFTHRLRT]
COMPLEX FIXERsBPFIX(5)+BNFIX(5)

COMPLEX SUMsASUMsAX1(5+5) sBSUMsPHSCONI5+5) sXJ(5+5) 9X7 ¢ XDELsX10
DIMENSION 1J& 5)9IT( S)sPHIL 5)9ARI( 5)sTP( 5)9RRL 5)sRI( 5)sKL(5)
DIMENSTION SF( 5)sRRGPHI( 5)sTRR( 5)sTRI( 5)9ZI( 5)¢PHSCOR( 5y 5)
DIMENSION DELZ2(5)sPSFI(5)sR(5)sPSFTI(5)

DIMENSION CMHLD(5)4+8PFIR(5)

DOUBLE PRECISION RRsRI ’
FORMAT(//1HO»50X935HOUTPUT COEFe MATRIX OF ORIGe SYSTEM)
FORMAT(/1HO 50X +34HINPUT COEF. MATRIX OF ORIGe SYSTEM)
FORMAT(/1HO 953X 328HORIGINAL SYSTEM MODAL MATRIX)
FORMAT(/1H0 949X ¢36HINVERSE OF ORIGe SYSTEM MODAL MATRIX)
FORMAT(/1HO 949X + 3THNORMAL FORM OUTPUT COEFFICIENT MATRIX)

FORMAT (1HO» 19X+ 13HCOEFFICIENT AsIlslH=9Fl0e49F1l0e4)
FORMAT(1HO 918X s 13HCOEFFICIENT AsIl92H*=9F10e4sF1GCat)
FORMAT(1HO 27Xy THARGPHI=3sF10e49F10e4)

FORMAT(12)

FORMAT (125F1044)

FORMAT (8F1544) .

FORMAT (2F10e4)

FORMAT (4F15e494F1544)

FORMAT (10F744)

FORMAT (/1HO 99X s 15SHCALCULATION NOe s12912H *&EHMu#%%%)

FORMAT (/1HO 60X+ 1 7THVANDERMOND MATRIX)

FORMAT(1HOs 8X»6H(REAL)s8X911H(IMAGINARY ) s5Xs6H(REAL)IBXs11H(IMAGIN

1ARY ) 95X 96H(REAL) s8Xs11H( IMAGINARY ) s5X»y6H(REAL) 98X s 11H¢ IMAGINARY ))

FORMAT(/1HOs56X+25HINVERSE VANDERMOND MATRIX)
FORMAT(/1H0949X»38HOUTPUT COEFFICIENT MATRIX(NORMAL FORM})
FORMAT(/1H0»30Xs 4HPHI=sF7e498H RADIANS)
FORMAT(/1HOs15X+19HTIME TO FIRST PEAK=sF10e438H SECONDS)

FORMAT(/1HO0s31Xs 3HX1=43F10e4)

FORMAT(/1HO+16Xs18HSTEADINESS FACTOR=9FT7e¢4)

FORMAT{1HO s41HSUMMATION OF COEFFICIENTS OF REAL MODES =9F10e4sF10,.
14)

FORMAT ( 1HO » 44HSUMMATION OF COEFFICIENTS OF COMPLEX MODES =3sF1l0o4+F
11044)

FORMAT (1HO 32HTOTAL SYSTEM STEADINESS FACTOR =4F7e4}

FORMAT(/1HO+48X96H(REAL ) »8X911H( IMAGINARY))
FORMAT(1HO»40XsF15e49F1544)
FORMAT(//1H0950X»21HRESULTING EIGENVALUES)
FORMAT(//1H0952X s 30HRESULTING PHASE CANONICAL FORM)
FORMAT(1HO+52X»28HPHASE CANONICAL MODAL MATRIX)
FORMAT(1HO+47X9»39HINVERSE OF PHASE CANONICAL MODAL MATRIX)
FORMAT(1HO,48X+36HPHASE CANONICAL OUTPUT COEFFe MATRIX)
FORMAT (1HO 49X s 35HPHASE CANONICAL INPUT COEFFe MATRIX)
IF(KSICKeGTe0)GO TO 2227

READ(5415)CORIG

READ(5+15)BORIG

002228 1=1,N

BFIX(I)=BORIG(I)

WRITE(6+2218)

WRITE(6514) (CORIG(I)sI=14N)

WRITE(6+2219) :

WRITE(6914) (BORIG(I)sI=1sN)

DO 103 I=14N



103

1074

1075

108

71
2251

91

81
2252

79

TRR{I)=RR{ )
TRICEY=RICL}

CONTINUE

INDX3=0

KAY=0)

JERRY=1

DO1074 J=1H

INDX1=0

INDX2=0

SUM=(0s09040) .

DO1074 I=1eN
ASUM=SUM+CORIGLII®¥XMAJ(]4J}
SUM=ASUM

CN(J)=SUM

CONTINUE

DO1075 I=1,N
SUM=(0e0+0,0)

DO1075 J=1eN
ASUM=SUM+XMAJIN(I+J)#BORIG(J)
SUM=ASUM

BN(1)=SUM

CONTINUE

KSAK=0

KSAP=Q

XBO=0

DO 6 I=1sN

X=TRRI(1)

¥Y=TRI(I)
ZLMDA(I)=CMPLX(XsY)
CONTINUE

DO7 J=1sN

DO7 I=1sN

K=1-1
RM(I9J)=ZLMDA(J)%%K
CONTINUE

D08 I=1sN

D08 J=1,N
D{IsJ}=RM(]sJ)

CONTINUE
IF{KSAK«GT+0)GO TO 2251
KDS=KSICK+1
WRITE{(64+2201}KDS
WRITE(652202)
WRITE(6+2203)

DO71 I=1wN
WRITE(6:14)(D(IsJ)sJ=14N)}
CONTINUE

CALL CINV(DsNsDINVsKKK)
D091 I=1sN

D091 J=1sN
RMINV(I+J)=DINV(IsJ)
CONTINUE
IF(KSAKeGTL,0)G0O TO 2252
WRITE(692204)
WRITE(6+2203)

DO 81 I=1sN

WRITE{6914) (RMINV(IsJ)sJ=1sN)}
CONTINUE

D079 J=1sN

D079 I=1sN
RMI(I9J)=CN(J)XRM(T4J)
CONTINUE
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2253
2254

82

2255

83
1015

2256

101

1011

1012

1013

19

21

20

202

CALL CINVIRMI N oRMI INV KKK}
IFIKBOGT-01GO TO 1015
DOBZ I=1len
SUM={Qe0s0.0Q}

D082 J=loN
ASUM=SUM+CNIJ) #RMI INY{Jo I )
SUM=ASUM

CPIIy=SUM

CONTINUE
IF(KSAK«GT+0)GO TO 2255
WRITE(602216)
WRITE(6+2203)
WRITE(6914){CP({TI)eI=14N)
D083 I=1sN
SUM=(0401060)

D083 J=1sN )
ASUM=SUM+RMI (1 s J)#BN(J)
SUM=ASUM

BP(1)=SUM

CONTINUE
IF(KSAK«GT.01GO0 TO 2256
WRITE(692217)
WRITE(692203)
WRITE(6+14)(BPLI)sI=1sN)
IF(KBQeLT41)GO TO 1011
DO101 J=1oN i :
SUM=(0+0+040)

DO101 I=1sN
ASUM=SUM+CP (1) #RM(1,J)
SUM=ASUM

CN(J)=SUM

CONTINUE

DO1011 I=1,4N
SUM=(0+000.0)

D0O1011 J=14N
ASUM=SUM+RMINV(1sJ)%BP(J)
SUM=ASUM

BN(1)=5UM

CONTINUE

DO1012 I=1,N
CNCI)=CN(I}%BN(I])
BN(I)=(1e05040)
CONTINUE
IF(KSAKeGT«0)GO TO 1013
WRITE(6+2205)
WRITE(6+2203)
WRITE(6914) (CN(I)sI=1sN)
K=0

KR=0

KBO=KBO+1

DO 201 I=1,N

X=TRI(I)

IF(X)19+202,19

DO 20 J=1sN

Y=TRI(J)
IF(X+Y)20921+20

K=K+1

1J(K)=J

IT(K)=1

CONTINUE

GO TO 201

KR=KR+1
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201

2257
203
204

2258

2238
2239
205

2259

2260

2261

2262

22
2263

RLRT(KRI=TRR(})
KLIKR)=]

CONT ENUE

K=K/2

KIM=K

SUM3=0,0

DO 22 1=1eK

1S=1+1

N1=IJ(1)

N2=1T(])

X=TRR(N1)

Y=TRI(N1}

XLAM2=CMPLX (XsY)
X=TRR(N2)

Y=TRI(N2)

XLAM1=CMPLX (XsY)
A1=CN(N2)/(-XLAM1)
A23CN(N1) /7 (=XLAM2)

IF (KSAKeGT0)GO TO 2257
WRITE(6»2223)1,Al
WRITE(692224)1yA2
IF(Y4GT+040)GO TO 2023
ARGPHI(11=(A2+A1)/(A2-A1)
GO TO 204
ARGPHI(1)=(A1+A2)/ (A1-A2)
IF (KSAKsGT+0)GO TO 2258
WRITE(6+2225)ARGPHI(])
XY=ARGPHI ()

RRGPHI (1)=AIMAG(XY)
PHI(1)=ATANIRRGPHI (1))
XT=A1+A2

X8=REAL (X7)

X10==Al+A2
X9=AIMAG(X10)
IF(X84LTe040)GO TO 2239
IF{X9:LT+040)GO TO 2238
GO TO 205
PHI(1)=PHI(1)+341416

GO TO 205
IF(X94LT40.0)GO TO 205
PHI(1)=PHI(1)+3,1416
IF(KSAKeGT+0)GO TO 2259
WRITE(6+2206)PHI(])
ARI(1)=ABS(TRI(N2))

TP(I)=(964251/20-PHI(1))/ARI(1}

IF(KSAK+GT«0)GO TO 2260
WRITE(652207)TP( 1)
X1=TRR(NZ2)*TP (1)
IF(KSAK+GT40)GO TO 2261
WRITE(652208)X1
X6=ABS(PHI(1})

XSF=(AL+A2) % (1.0-EXP(X1)/SIN(X6))

SF(I)=REAL (XSF)
SUM3=SUM3+SF (1)
IF(KSAKeGT«0)GO TO 2262
WRITE(692209)SF (1)
CMD=A1+A2
CMHLD(I)=CABS(CMD)
CONTINUE

SUM2=(040500)

D0220 I=1sKR

N3=KL(I)
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220

2264

23

2265
2266

22617

1021

1065
1061
1063

1069

1066

102
2231
2233

2232

RLC=CNINIY/{-TRRINT D}
RLCOF =SUM2+RILC
SUK2=RLCOF
CONT INUE
IFIKSAKGT01GO TO 2264
WRITE(6+2270)RLCOF
XLCOF=REAL {RLCOF)
SFT=S5UM3+XLCOF
SUM6=({0a0+040)
D023 I=1:K
DENX1=SUM6+CMHLD(T)
SUM6=DENX1]
CONTINUE
IF{KSAK«GT40)GO TQ 2265
WRITE(692269)1DENX]
DENX2=DENX1+RLCOF
DENR2=REAL (DENX2}
SFT=SFT/DENR2
IF(KSAKsGT+0}GO TO 2267
WRITE(6+2268)SFT
IF(KAY«GT«0)GO TO 102
IF(INDX1eGTe0)GO TO 1065
GO TO 107
SFOR=SFT
KSAK=KSAK+1
KSAP=KSAP+1
IF(KSAP«GT«1)GO TO 107
IFISFT-SFOR)1061+1069,1063
DEL ( INDX2)==DEL ( INDX2)
TRR(TA}=XHOLD
XDEL=DEL(INDX2)
YDEL=REAL(XDEL)
PSFT(INDX2)=(SFT-SFOR})/YDEL
PSFT(INDX2)=ABS(PSFT(INDX2)}
INDX2=INDX2+1
IF{INDX2~KR)106651066+2232
TA=KL ( INDX2)
DEL (INDX2) =RLRT(INDX2)#0.,2
RLRT1=RLRT{INDX2)+DEL({ INDX2)
XHOLD=TRR(IA)
TRR(TA)=REAL(RLRT1)
INDX1=INDX1+1
KR=0
GO TO 108
IF(SFT~SFOR)2231+2232,2233
DELZ2(INDX3)==DELZ2(INDX3)
PSFI(INDX3)={(SFT~SFOR)/DELZ2(INDX3)
PSFI(INDX3)=ABS(PSFI{(INDX3))
N1=TJ{INDX3)
N2=IT(INDX3)
TRI(N2)=TI2HLD
TRR(N2)=TR2HLD
TRI(N1)=-TRI(N2)
TRRIN1)=TRR(N2)
ZI(INDX3)=ZIHLD
INDX3=INDX3+1
IF(INDX3eGT«KIMIGO TO 27230
N1=T1J(INDX3)
N2=1T(INDX3)
X=TRR(N2)
Y=TRI(N2)
Z22=CMPLX{XsY}
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2230

2234

2235

2236

2237

1068

107

1007

1008
1006

1001

RUINDK3)=CABSIZ2}

TRAI=ABS (TRRIN2))
ZICIHDX3V=ATANITRIINZ /TR
DELZ2CINDX3b=0.1%Z1( INDX3)
ZIHLD=2E(INDX3)
ZICINDX3)=Z 1 L INDX3)~DELZZIINDX3)
TR2HLD=TRR (N2}

TIZHLD=TRE (N2}
TRI(N2)=R({INDX3)2SIN{ZI(INDX3))
TRRIN2)=~R{INDX3)#COS{ZI{INDX3}}
TRI{N1)=-TRE(N2)
TRR(N1)=TRR(N2})

KAY=KAY+1

GO TO 108

SUM7=0.0

D02234 I=1»KR .
SUM7=SUMT+PSFT (1) #%2,0
SUMB=0.0

D02235 I=1,KIM
SUM8=SUMB+PSFI(1)##2,.0
SUMPT=SUMT7+5SUM8
SUMPT=SUMPT##0.5

D02236 I=1.KR
DEL(I)=DEL{T)*(PSFT(I)/SUMPT)
D02237 I=1.KIM
DELZ2(1)=DEL22(I)*(PSFI(1)/SUMPT)
ZI(1)=2I(1)-DELZ2(T)

N1=1J(I)

N2=1T(I)
TRI(N2)=R(I)*#SIN(ZI(I))
TRRINZ2)=~R{1)*#COS(Z21(]))
TRI(N1)==TRI(N2)
TRR{N1)=TRR{N2}

DO1068 1=1.KR

TA=KL({I)
RLRT(1)=TRR{IA)I+DEL (1)
YX=RLRT(I)

TRROTA}=REAL(YX}

CONTINUE

KAY=0

INDX1=0

KSAK=0

GO TO 108

CONTINUE

WRITE(6+2212)

WRITE(6+2210)

WRITE(6+2211)(TRRUI)»TRI(I)sI=1sN)

DO100& I=14N

D01006 J=1sN
IF(I-J)1007+1008+1007
XJ(I1+J)=(0.040.0)

GO TO 1006
XJ(1sJ)=ZLMDAL])
CONTINUE

D01002 K=1N

D0O1002 I=1sN
SUM=(0.0+0.0}

DO1001 J=1sN
ASUM=SUM+D (19 J)#*XJ (JsK)
SUM=ASUM

CONTINUE

AX1(T9K)=SUM
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1002

1005

1003

1009

1004

2245

2246

2247

2248

2250

2226

CONT INUE

DO1003 K=lN

DO1003 I=1,N
SUM=({0s0s0:0)

D01005 J=1¢N
BSUM=SUM+AXT {1 s J I #RMINYEJeK )
SUM=BSUM

CONTINUE

PHSCON( 15K} =SUM

CONT INUE

WRITE(6,2213)
WRITE(6+2203)

D01009 I=14N

WRITE(6914) (PHSCON(IsJ)sJ=14N)
D0O1004 I=1sN '
DO1004 J=14N
XX=PHSCON(TsdJ)
PHSCOR(IsJ)=REAL (XX)
CONTINUE

IF(KSAP«GT0)GO TO 2226
D02245 I=1sN
BNFIX(I)=CN(I)

D02247 J=1,N
SUM=(0,050,0)

D02246 I=14N
SUM=SUM+RM(Js 1 ) %BNFIX(])
BPFIX(J)=SUM

D02248 I=14N
FIXER=BPFIX(I)
BPFIR(I)=REAL(FIXER)
XSUM=BPFIR(N)

J=N~-1

D02250 1=14J

K=]+1
XSUM=XSUM—-BPFIR (1) #PHSCOR(NsK)
XINPT=-PHSCOR(N+1)/XSUM
XKP=XINPT
IF(SFT-SFK}1021,2226+2226
CONTINUE

RETURN

END
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SIBFTC INV
SUBROUTINE CINVIDsMoDINVsKKK)
COMPLEX O 59 51 eDINVE 55 5550103 oB¢ 510) ¥
1000 FORMAT{6EL5.41
MM=2 %N
KKK=0
DO 23 1=1.N
DO 23 JslyN
23 Blled)=DiloJ}
Kap+1 )
DO 24 1=1¢H
DO 24 J=KsMM

24 B{I+J)=(0e00000)
DO 25 I=1sN
K=1+N
25 B{IsK)=(1e050e0)
DO 33 I=1sN
J=1
IF(CABS(B(IsJ))eGTaleOE-08) GO TO26
L=l+1 .

DO 12 K=LsN
IF{CABS(B(KoJ) ) eGTeleOE-08) GO TO27
12 CONTINUE
KKK=1
RETURN
27 DO 13 M=1,MM
13 S(M)=B(KM)
DO 14 M=1:MM
14 B(KsM)I=B(]oM)
DO 16 M=1sMM
16 B(IsM)=S(M)
26 T=B{1sJ)
DO 17 K=1sMM
17 BOIsK)=B(I KI/T
L=l+1
IF{LeGTeN) GO TO 33
DO 10 K=LN
T=B{(KsJd)
DO 10 NN=1sMM
10 BIKsNN)=B(KsNN)-T*B(1sNN)
33 CONTINUE
IF(N«EQel) GO TO 50
DO 20 I=24N
J=1
L=]~1
29 T=B(LeJ)
DO 21 K=JsMM
21 BILsK)=BlLoK)=T%B(]sK)}
IF(L.EQel) GO TO 20
L=L-1
GO TO 29
20 CONTINUE
50 DO 30 I=1sN
DO 30 J=1»sN
NN=J+N
30 DINV(IsJ)=B({IsNN)
RETURN
END
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IBFTC DIFSOL
SUBROUTINE DIFSOL(GoNsNZZZ s THMRSPY o THRSPZs LK +E 0ABE )
DIMENSION. G{ 59 530Bi{ 55 5)aVi 53sXICE 510SE 50 57+TMRSPLI202)sTM
1RSP21(202) +E{5}
COMMON Y(202)
COMMON/DATA/NXK 9598V
FORMAT (F1045s110)
14 FORMAT{///1HOs44Xs44HTABULATED SOLUTION OF DIFFERENTIAL EQUATIONS)
15 FORMAT(/1HOs9Xs5HFIRST+10X+6HSECOND »9XeSHTHIRD » 10X s GSHFOURTH »9X ¢ SHF
1IFTHs10Xs5HSEXTH)
16 FORMAT(1HO+8Xs8HVARIABLE » 7Xs8HVARIABLE »6X » BHVARIABLE » 7X » §HVARIABLE
196X +8HVARIABLE » 7X s 8HVARIABLE)
 FORMAT(8F1045)
4 FORMAT(1HO+30X94F1545)
FORMAT (8F1545)
10 FORMAT(//1HO»54Xs24HINPUT COEFFICIENT MATRIX)
11 FORMAT(//1HOs54Xs24HSTATE COEFFICIENT MATRIX)
13 FORMAT(//1H0»60Xs12HINPUT MATRIX)
6 FORMAT(///1HO»40X3s51H*****SOLUTION OF MATRIX DIFFERENTIAL EQUATION
1Sk #ERR)
9 FORMAT(//1HOs57Xs18HINITIAL CONDITIONS)
8 FORMAT(/1HO330X+4F1545)
IF(NZZZ~11102+102+1025
102 READ(551)A,NST
READ(542) (XIC(I)s1=14N)
NZZZ=NZZZ+1
1025 CONTINUE
NXK =N
00103 [=14N
D0103 J=1,N
S(1s31=Q(14J)
103 CONTINUE
001026 I=1sN
B(Is1)=E(])
1026 CONTINUE
D01027 J=2,N
D01027 I=1,N
B(IyJ)=040
1027 CONTINUE
V(1)=ABE
00105 [=2,N
V(112040
105 CONTINUE
WRITE(6+6)
WRITE(659)
WRITE(698) (XIC(I)s1=14N)
WRITE(6+11)
00106 I[=1,N
WRITE(634) (Q(I9J) sJ=1sN)
106 CONTINUE
WRITE(6510)
DO107 I=1sN
WRITE(6+4) (BUIyJ) sJ=1,N)
107 CONTINUE
WRITE(6+13)
WRITE(634) (VII)sI=1sN)
DO 7 I=1,N
Y(I)=XIC(1)
Y(N+11=040
NT=N+1
FNST=NST
TF=FNST*A
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NT=NT®2
CALL START(IMN$3:1:85001 9060000l000U0001:005 b
WRITE(S914)
WRITE(6015)
WRITE(6916)
KNT=N+2
WRITE(G6s5)LYLLe]IslelNT)
1JK=0
12 TJK=1UK+1

CALL KAMSUB(1l)}
WRITE(6951(Y(I)sI=14KNT)
KXT=N+1
TMRSPL(IJK)I=Y(]1)
TMRSPZ2(IJKI=Y(KXT)
IF(Y(N+1)=TF 1124393

3 CONTINUE
RETURN
END

$IBFTC DERFUN
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SIBFTC START
SUBROUTINE START{M1eMZeMIoAlolZoA30AG0ASA6)
COMMON/ SHARE /NN s SPACE e MODE s KRAEIMAK s E IMIK o EXMAN c EZHMINFALCT

C NO INFORMATION IS REQUIRED IN THIZ SUBROUTINE

NN=M]
MODE=M2
KKA=M3
EIMAX=A2
E1MIN=A3
E2MAX=A4
E2MIN=AS
FACT=A6
SPACE=A1l
CALL KAMSUB(0)
END
C
$IBFTC KAMSUB
SUBROUTINE KAMSUB (NSTART)
DIMENSION DELY{(44100) oBET(4)oXVI5)sFV(49100)sYU(50100)}
COMMON /SHARE/NNysSPACE yMODE sKKASEIMAXsEIMINSE2MAX9sE2MINFACT
COMMON Y(202)
COMMON/ INTDAT/Z(59202) s IERR
DOuBLE PRECISION YU

C .
C NO INFORMATION IS REQUIRED IN THIS SUBROUTINE
C

IF(NSTART«LE«0)GO TO 9977

GO TO (1001»2000,2000) ¢MODE
C RUNGE-KUTTA
1000 LL=1

1001 DO 1034 K=1s4%

DO 1350 I=1sNN

DELY(Ks1)=Y{N2)I*FV(MMs1)

Q=YU(MM» 1)
1350 Y(I1)=Q+BET(K)*DELY(Ks1)

YINPL)=BET(KI®Y (N2)+XV(MM)

CALL DERFUN

DO 1100 I=1sNN

IPN2=1+N2
1100 FVI(MMeI)=Y(IPN2)
1034 CONTINUE

DO 1039 I=1sNN

DEL=(DELO(1sI1)+240%DELY(2+1)+260%DELY(3,1)+DELY(49]))/640

YU(MM+1s1)=YU(MMs I )+DEL
1039 CONTINUE

MM=MM+1

XVIMM)=XV{MM=1)+Y(N2)

DO 1400 I=1sNN
1400 Y{(I)=YU(MMsI)

Y{NPL1)=XV(MM)

CALL DERFUN

GO TO (425100+100)»MODE
100 DO 150 I=1.NN

IPN2=1+N2
150 FV(MMs I )=Y(IPN2)

GO TO (1001+1001510015,200V) sMM
C ADAMS~MOUL TON
2000 DO 2048 I=1sNN

DEL=Y(N2)*#(55e0%FV(451)-59.0%FV(3s1)

1+37e0%FVI(291)=940%FV(191))/2440



2048

2051

3000

3301
3650
3307
3032
3033

3034
303%

3036
4340

5360
5361

5363

42
44

707
43

708

Y{I)=YU{bs ] i4+DEL
DELY(lol)sY(])
Y{NPLI=XV{4)+Y{N2)

CALL DERFURN

XVI5)=Y(NPL)

DO 2051 I=aleNN

IPN2=1+N2 )
DEL=Y(N2)#{Fo0%Y(IPN2)+19.08FV{4s1)
1-5e0%FV(3s 1 )+FV(251)) /2440
YU(531)=YU(4s])+DEL
Y(I3=YU(5s])

CALL DERFUN

GO TO (42+42+3000) sMODE

ERROR ANALYSIS

- §SE=0.0

DO 3033 [=1sNN
EPSIL=R*®ABS(Y(I)=-DELY(1lsI})
GO TO (330143307)sKKA
IF{Y(]))365093307+3650
EPSIL=EPSIL/ABS(Y(I1))
IF(SSE~EPSIL)3032+3033,3033
SSE=EPSIL

CONTINUE
IF(E1MAX~SSE)3034+3034,3035
JF{ABS{Y(N2))~E2MIN)42942+4340
IF(SSE-E1MIN)3036+42+42 S
IF(E2MAX-ABS(Y(N2)))42+42+5360
LL=1

IERR = 1

MM=1

YIN2)=Y(N2)*FACT

GO TO 1001

GO TO (42+5361)sLL
XVI2)=XV(3)

XV(3)=XVI(5)

DO 5362 [=1sNN
FVI2+s1)=FV(3s1])

IPN2=[+N2

FVI3s[)=Y{[PN2)
YU(2s])=YU(3s1])
YU(3s1)=YU(5,])
Y(N2)=2,0%Y(N2)

IERR = 2
Li=2

MM=3

GO 70 1001

EXIT ROUTINE

GO TO(43944944) sMODE
DO 707 K=144
Z{KsNP1l)= XV(K)
ZIKIN2)=XV(K+1)=-XV(K)
DO 707 I=1sNN
Z(Ksl)= YU(Ks])

IPN2 = N2 + 1
Z(KsIPN2)= FV(KsI)
Z(59NP1) = XV(5)

DO 708 I= 1NN
Z{5s1)= YU(5s])

IPN2 = N2 + |
Z(5+1PN2)= Y({IPN2)
Z(5sN2)= Y(N2)

DO 12 K=1+3
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52

9977

© 0

[PURS S e V]

320
73

71
70

XVIK =XV (K41

DO 12 I=1sNN
FVIK« L1 =FVIR®Lel)
YULKs £ ) sYULKPReE)
LL=2

MM=4

XY (4)=XV{5)

DO 52 [=1».MN
IPN2=1+N2
FV(4eld=YiIPN2)
YU(4sI)=YU(Sel)
GO TO (70970973) ¢MODE
CONTINUE

IERR = 3
ALPHA=Y(NN+1)
EPM=0e0

GO TO (7+9+9)sMODE
MM=4

GO 70 8

MM=1

BET(1)=0e5
BET(21=0e5
BET(3)=1e0
BET(4)=040
N2=NN+2
Y(N2)=SPACE

NP 1=NN+1
R=1940/27040
XV(MM)=Y(NP1)
IF(ELIMINIZ2 9291
EIMIN=ELMAX /550
IF(FACT ) 49403
FACT=140/240

CALL DERFUN

DO 320 I=1,NN
IPN2=1+N2
FVIMMsI)=Y(IPN2)
YU(MMsI)=Y(1])

GO 70O 1000
E=ABS{XV(4)-ALPHA)
IF(E~EPM)2000+2000571
EPM=E

RETURN

END
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SUBROUT INE DERFUN

DIMENSION S{ 56 5)oB¢ B Sjo¥W{ B3eoXiCI 5)
COMMON YE2023

COMMON/DATA/NXK sSoBoV
FORMAT (4F 15652 110)

N=NXK

DO 7 1=1sN

SUM=0Qs

DO 8 J=1oN
SUM=SUM+S{ s J)uY(J}+B( .20V}
KI=sN+2+1]

Y(KI1=5UM

CONTINUE

RETURN

END
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$IBFTC PLOT
SUBROUTINEPLOT (X o XMINoXMAX oL X oV o YMIMoVMAR e LY 626 ZM Mo ZMAX o LZ o MPT »
INPLOT o NCOPY s NCDaNDIM)

DIMENSION X{1DeYi1DoZl)eSXET)oTITLECLZ2) ol §13%) oNCHNIGLS tMORPILB)

FORMAT (1246}

2 FORMAT({5BAls3A604A1)
FORMAT({lH1+26X:12A6)
FORMAT(1H sAlslPEPe20121A1)
FORMAT(132A1)
FORMAT(1PEL1702+5E20029E1542}

7 FORMAT{1PELT7429E116¢2)

8 FORMAT(1PE17e29E61229E5542)

9 FORMAT(1PE1702+2E40023E3642)

10 FORMAT(1PE1T7¢243E30629E2642)
11 FORMAT(1PE17e294E24429E2042)
12 FORMATI(1HK»62X93A6)

SLOG(F)=ALOG(F)/24302585

LLX=LX+1

NDD=NCD+1

GOTO(15913914413) MDD
13 READ(5+1)(TITLE(I)sI=1912)

14 TF(NDDeGEe3)IREAD(5+2)(MOP(1)eI=x1418) o (NCH{I)sI=1:40)sTABLsTAB2,»TAB

134NDsNPINMsNB

15 NCH(41)=NB
NPN=NPT/NPLOT
IF(LXeGT«0)GOTO17
CX=120e/ (XMAX=XMIN)
SX{1)=XMIN
SX(7)=XMAX
U=XMIN
DO16K=2,46
U= (XMAX-XMIN)/6e+U

16 SX(K)=U
GOTO19

17 XLx=LX
CX=120e/XLX
NX=SLOG (XMIN)

DO18K=1yLLX

18 SX(K)=10a%%{NX+K-1)

19 CALLPOT{XeXMINSLXINPT9091206sCX)
IF(LYeGT0)GOTO20
CY=504/ (YMAX~YMIN)

GOTO21

20 YLY=LY
CY=504/YLY
KY=CY
NY=SLOG(YMIN)

21 CALLPOT(YsYMINSLYsNPT919506CY)
IFINDIMeLT3)GOTO24
IF(LZeGT«0)GOTO22
CZ=40e/ (ZMAX-ZMIN)

GOTO023

22 zLZ=LZ
CZ=40e/2L2

23 CALLPOTI(Z+ZMINWLZ WINPT »0+4049C2Z

24 DO5O0ONN=1sNCOPY
Ml=]

T1l=33,

LYY=LY

TT=50.
WRITE(6+3)(TITLE(I)sI=1912)
DO43KK=1+51

—
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25

26
27

28
29

30

31
32

33
34
35

37

38
39

40

41

43

N=1

NNN=NPN

JED=2}

T=51~KK
DO25J=1,5133
L(J)=NB

L{133)=ND
IF(LYsGT<0)GOTO26
L(13)=NP
IF(T«GTTTIGOTO30
SCALE=T/CY+YMIN

“L{133)=NP

N=0
TT=TT=5,
IF(T.LE«D4)SCALE=YMIN
GOTO30
GOTO(27+27+28+28527+28) sLY
SS=KY#LYY

‘GOT029

SS=KY#LYY+]
L(13)=ND
IF(TeGT«SS)IGOTO30
SCALE=10e#% (NY+LYY)
N=0

LYY=LYY-1

L{13)=NP

L(133)=NP
IF(500¢EQeTIGOTO31
IF(0soNEoT)GOTO37
D032J=14,133
L{J)=NM
IF(LXeGTe0)GOTO34
D0330=13,133»10
L{J)=NP

GOTO36

KX=120/LX
D035U=13+133+KX
L(J)=NP
IF{50+seEQeT)IL(133)=ND
DO40LM=1+NPLOT
DO391=JED»NNN
IF(Y(I)eNEST)GOTO39
J=xX{(1)
IF(NDIMeNE23)GOTO38
12=2(1})
L{J+13)=NCH(IZ+1}
GOTO39
L(J+13)=NCH(LM)
CONTINUE

JED=NNN+1
NNN=NNN+NPN
CONTINUE
IF({TLeNE«T)IGOTO%1
IF{15eeGE«T)IGOTO41
L(2)=MOP(M1)
Ml=M1+1

Ti=T1l-1.
IF(NeEQe1)GOTO42
WRITE(6+4)L(2)9SCALES(LIJ)»JU=12+,132)
GOTO043

WRITE(635) (L{J)sJ=19132)
CONTINUE
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GOTO (4404544624 T56864F 044 ) s LLX

44 WRITE{(S6s6) (SXIKIsR=10T}
GOTO50

45 WRITE{(GoTHISX{K) oKaL oL X}
GOTO5¢

46 WRITE(6s8)(SXIK) oK=1sLi XD
GOTO50

47 WRITE(H699) (SX{K) oK=Ll LX)
GOTO50

48 WRITE(6+10)(SX(K)oK=1sLLX)
GOTO50

49 WRITE(6911)(SX(K)sK=1sbllX)

50 WRITE{(6+12)TAB1+»7TAB2»TAB3
RETURN
END

$IBFTC POT

FRU R )

~Now;m

SUBROUTINEPOT(VsVMINILVeNPsJsVCsC)

DIMENSIONV{1}
IF(LVeGTL01GOTOR2
DOlI=1sNP

VII)=FLOAT(IFIX{(CH{V(I)-VMIN)+e5))

GOTO4
DO31=1NP

VII)=FLOAT(IFIX(C*(ALOG(V(I)/VMIN)/24302585)+45))

IF(JeGT«0)GOTO7
DO61=14NP
IF(V(I)eLTe0s)GOTOS
IF(V{I)eLEoVC)IGOTOS
VIiI)=vC+le

CONTINUE

RETURN

END
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APPENDIX F

SAMPLE PROGRAM OUTPUT
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seess TIME DOMAIN COMPENSATION OF A LINERX SYSYEW *swss

THIS §
LB
ROW L
~0.23000000~01 -0.6570000D 04
how 2
0. 0.
ROW 3

1S OF DRDER 3

MATRIX

0.

0.10000000~-01

0.5900000D 00 -0.2R8800000 04 -0.15000000 O1

EIGENVALUES (REAL "PART)
L -0.1376905310 01
2 ~0.730473430D-01
3 -0,730473430D-01

EIGENVALUES { IMAGINARY PART}
0.

0.5350514510 0}
-0.5350514510 01

FIRST SECOND THIRD
EIGENVECTOR EIGENVECTOR EIGENVECTOR
-0.9996D 00 -0. 0,9165D 00 ~0.2109D-01 0.91650 00 0.21090-01
~0.2060D~03 -0. -0.10190-04 ~0.74650-03 ~0.10196-04 0. 74650-03
0.28360-01 0. 0.39950 00 0. 0.3995D0 00 0.
OUTPUT COEF. MATRIX OF CRIG. SYSTEM
1.0000 - -0.0000 ~0,0000 -0.0009 ~0,0000 =-0.0000
ENPUY COEF. MATRIX OF ORIG. SYSVEM
3.1250 -0.0000 ~0.0000 -0.0000 ~-0.0000 -0.0000

CALCULATION ND, 1 w##sxddexsn

VANDERMOND MATRIX

(reaL ) ( IMAGENARY) (REAL} { IMAGINARY) (REALY { IMAGINARY)
1.0000 0.0000 1.0900 3.0000 1.0000 3.0000
-1.3169 0.7000 -0.0730 543505 -0.0730 -5.3505
1.8959 -0.0000 ~28.6227 ~0.7817 ~28.6227 0.7817
INVERSE VANDERMOND MATRIX
(REAL) ( IMAGINARY) (REAL) [ IMAGINARY} {REAL) { TMAGINARY)
0.9441 0.0000 0.0048 0.0000 0.0330 0.0000
0.0279 -0.1219 ~0.0024 ~0,0940 -0,0165 -0.0040
0.0279 0.1219 -0.0024 0.0940 -0,0165 0.0040
N PHASE CANNNICAL OUTPUT COEFF. MATRIX
[REAL) ( IMAGINARY]) {REAL) { IMAGINARY) (REAL) { IMAGINARY)
1.1000 0,0000 =0.0000 0,0000 ~0.0000 0.0000
PHASE CANDNICAL INPUT COEFF. MATRIX
(REAL) (I4AGINARY) (REAL) {[MAGINARY) (REALJ (IMAGINARY)
3.1250 0.0000 ~0.0719 -0.2200 0.,0017 0.0000
OUTPUT COEFFICIENT MATRIX{NORMAL FORM)
(REAL) ( TMAGINARY) (REAL} ([ TMAGINARY} tREAL) ( fMAGINARY)
2.9401 0.0000 0.0875 ~0.3741 0.,0875 0.3741
COEFFICIENT Al= 0,0701 0.0154
COEFFICIENT Al%= 0.0701 -0.0154
ARGPHI = 0.0000 ~4.5569
PHI= 1.7868 RADIANS
TIME T0O FIRST PEAK= 0.5468 SECONDS
X1l= -0.0399
STEADINESS FACTOR= 0,0023
SUMMATION OF CDEFFICIENTS OF REAL MODES = 241425 0.0000
SUMMATINN OF COEFFICIENTS OF COMPLEX MODES = 0.1402 0.0000

TOTAL SYSTEM STEADINESS FACTOR = 0.9396

FOURTH
EIGENVECTOR
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RESULYING

EYGENYALUES

{REAL) Ci%AGINARY D
~i.376% 0.0000
~0.0730 5.3505
-0.0730 -5,3505

RESULTING PHASE CANONICAL FDRN

{REAL} (IMAGINARY) (REAL} ( IMAGINARY) {REAL) { IMAGINARY} '
~0.0000 ~0.0000 1.0000 -0.0000 -0.0000 0.0000
-0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

-39.4254 ~0.0000 ~28. 8345 0.0000 -1.5230 -0.0000

CALCULATION NO, 1 #skxsxessx

VANDERMOND MATRIX

{REAL} { IMAGINARY} {REAL} 1 IMAGINARY) {REAL} ( IMAGINARY)

1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
~1.2425 0.0000 -0.7973 5.2913 ~0.7973 -5.2913

1.5438 . ~0.0000 ~27.3618 ~8.4379 -27.3618 8.4379

INVERSE VANDERMOND MATRIX

(REALY} { IMAGINARY} {REAL) {IMAGINARY) {REAL) { TMAGINARY)

1.0155 0.0000 0.0566 0.0200 0.0355 0.0000
-0.0078 ~0.1181 -0.0283 -0.,0969 ~0.0177 -0.0015
-0.0078 0.1181 -0.0283 0.0969 ~0.0177 0.0015

PHASF CANONECAL INPUT COEFF. MATRIX
{REAL) { IMAGINARY} (REAL) f IMAGINARY)} (REAL} { IMAGINARY}
3.1250 0.0000 ~0.0719 ~0.0000 0.0017 0.0000 -
QUTPUT COEFFICIENT MATRIX(INOURMAL FORM}
{REAL} { IMAGINARY} {REAL) {IMAGINARY} {REAL) { IMAGINARY)
3.1695 0.0000 -0.0222 ~0.3620 ~0.0222 0.3620
COEFFICIENT Al= 0. 0663 ~0.0142
COEFFICYENT Alw= 0. 0663 0.0142
ARGPHI = 0.0000 4.6702
PHI= 1.3599 RADILANS
TIME TO FIRST PEAK= 0.6336 SECONDS
Xl= ~0.5052
STEADINESS FACTOR= 0.0508
SUMMATION OF COEFFICIENTS OF REAL MODES = 2.5509 0.0000
SUMMATION OF COEFFICIENTYS OF COMPLEX MQOES = 0.1325 0.0000

TOTAL SYSTEM STEADINESS FACTYOR = 0.969%

RESULTING EIGENVALUES

(REAL) {IMAGINARY}
-1.2425 0.0000
-0.7973 52913
-0.7973 -5.2913

RESULTING PHASE CANONICAL FORM

tREAL} { IMAGINARY}) {REAL} { IMAGINARY} (REAL} { IMAGINARY)

0.0000 -0.0000 1.0000 0.0000 -0.0000 0.0000
~0.0000 0.0000 -0.0000 0.0000 1.0000 0.0000
~35.5773 ~0.0000 ~30.6147 ~0.0000 ~2.8372 ~0.0000



GRADIENT SEARCH COMMENCING
pSi=
PSI=

PSI=

GRADIENT SEARCH COMMENCING
PSi=
pSt=
pS1=
PSi=
PSI=
PSli=
PSI=

PSI=

GRADIENT SEARCH COMMENCING
PSI=
PSI=

pPSl=

GRADIENT SEARCH COMMENCING
PSI=
PSI=
PSI=
PSi=

pSi=

GRANIENT SEARCH COMMENCING
PSi=
PSE=

PSi=

GRADIENT SEARCH COMMENCING
PSI=
psis=
PSI=

PSI=

GRADIENT SEARCH COMMENCING
PSi=
PSi=
pSt=

PSI=

GRADIENT SEARCH COMMENCING
PSI=
PSI=

PSI=

so#esMODIF ICATION OF SYSTEN & MATRIRGBTG®
19.7041

P82}

5.0931

13,7578

5.0931
4.8887

5.0011

4.8887
4.7719
426579
4.4377
4.0298
3.3441
2.4999

2.9811

2.4999
243235

2.4%38

2.3235
2.2931
2.2128
2.2623

243625

2.2623
2.1982

2.44857

2.1361

2.1105

2.1361
2.1125
2.1086

2.1603

2.1086
2.0722

2.0704

172



GRSYT MATHINX

ROW 1
w8 690TITD~01 ~0E56IFEID B2 G
ROW 2
0o Q. G, 10000000-01
ROW 3

0.5L35435D 00 ~0.,29003920 04 -0.26729950 ClL

EIGENVALUES(REAL PART)
1 -0,7167085290 00
2 -0.130862484D0 01
3 -0.7167085290 00

EIGENVALUES( {MAGINARY PART}
005176776020 01

0.
-0.5176776020 01

FIRST SECOND THIRD
EIGENVECTOR EIGENVECTOR EIGENVECTOR
0.89210 00 -0.2393D 00 -0.99970 00  -0. 0.8921D 00 0,23930 00
-0.1006D-03  ~0.72650-03 -0,18860-03  -0. -0.1006D-03 0.7265D-03
0.38330 00 0. 0.24680-01 0. 0.3833D 00 0.
OUTPUT COEF. MATRIX.OF ORIG. SYSTEM
1.0000 «0, 0000 ~0.0000 ~0.0000 ~0,0000 ~0,0000
INPUT COEF. MATRIX OF ORIG. SYSTEM
3.1250 -0.0000 ~0.0000 ~0.0000 -0.0000 -0,0000
CALCULATION NO, 2 &wsksssxss

VANDERMOND MATRIX

L {MAGINARY)

{REAL) ( IRAGINARY} {REAL) {IMAGINARY?} {REALY
1.0000 0,0000 1.0000 0.0000 1.0000 0,0000
~0.7167 5.1768 -1.3086 0.0000 ~0.7167 -5.1768
~26.2853 -7.4205 1.7125 -0,0000 -26.2853 . Te4205
A
INVERSE VANDERMOND MATREX
(REAL} { IMAGINARY} (REAL} { IMAGINARY} {REALS { IMAGINARY)
~0.0030 -0.1267 ~0.026% ~0.,0996 -0,019% ~0.0021
1.0060 0.0000 0.0528 0.0000 0.0368 0.0000
-0.0030 0.1267 -0.0264 0.0996 ~0.0184 0.0021
PHASE CANONICAL QUTPUT COEFF. MATRIX
{RFAL) { IMAGINARY) {REAL) LEMAGINARY} {REAL} { IMAGIYARY!}
1.0000 0.0000 -0,0000 0.0000 0.0000 0.0000
PHASE CANONLILAL INPUT COEFF. MATRIX
tREAL} { IMAGINARY} {REAL) { IMAGINARY) {REAL) { IMAGINARY)
3.1250 0.0000 -0.2158 0.0000 0.0149 ~0.0000
OUTPUT COEFFICIENT MATRIX{NOAMAL FORM}
{REAL) { IMAGINARY) {REAL) (IMAGINARY) {REAL} { IMAGINARY}
-0.0040 -0.3746 3.1330 0.0000 -0.0040 0.3746
COEFFICIENT Al= 0.0709 ~0.0106
COEFFICIENT Al®= 0.0709. 0.0106
ARGPHI = -0.0000 6.6987
PHI= 1.4226 RADIANS
TIME TO FIRST PEAK= 0.6355 SECONDS
Xxl= ~0+4555
STEADINESS FACTOR= 0.0509
SUMMATION OF COEFFECIENTS OF REAL MODES = 223941 0.0000
SUMMATION OF COEFFICIENTS OF COMPLEX MODES = 0.1418 0.0000

TOTAL SYSTEM STEADINESS FACTOR = 0.96%41

FOURTH
EIGENVECTOR
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RESULTING EIGENVALUES

{REAL) {IMAGINARY)
-0.7167 5.1768
-1.3086 5.0000
-0.7167 ~5.1768

RESULTING PHASE CANONICAL FORM

(REAL) { TMAGINARY) (REAL) (TMAGINARY) (REAL) ( IMAGINARY)
~0.0900 -0.9000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

=35.7421 0.0000 ~29.1885 -0.0000 =2,7420 ~3.0000



FIRSF

VARTABLE
0.00548
0.34241
0.63592
0.68544
0.70589
0.71568
0.73294
0.76911
0.821399
N.B8673
0.94089
0.97212
0.97472
0.95429
0.92546
0.90554
0.90709
0.93283
0.,97329
1.01365
1.03784
1.03695
l1.01288
0.97747
0.94726
0.93A26
0.94985
0.98245
1.02012
1.04669
1.05091
1.03134
0.99695
0.96312
0.94484
0.95017
0.97673
1.01283
1.04266
1.05323
1.04010
1.00922
0.97428
0.950068
0494872
0.96914
1.00287
1.03503
1.05156
1.04530
1.01916
0.98474
0.95721
0.94859
0.96255
0.99283
1.02604
1.04760

SECOND

VARFABLE
0.00000
0.20002
0.00013
0.00017
0.00019
0.00019
0.00017
0.00015
0.00013
0.00013
0.00015
0.00019
0.00022
0.00024
0.00024
0.00022
0.00019
0.00016
0.00015
0.00016
0.00019
0.00022
0.00024
0.00025
0.00023
0.00020
0.00017
0.00016
0.00016
0.00019
0.00022
0.00024
0.00025
0.00024
0.00021
0.00018
0.00016
0.00016
0.00018
0.00021
0.00023
0.00025
0.00024
0.00022
0.00019
0.00017
0.00018
0.00017
0.00020
0.00023
0.00024
0.00025
0.00023
0.00020
0.00018
0.00016
0.00017
0.00019

S#oed SOLUTION OF MAYTRIX

~0.00000

~0.02300

0.00000

0.5%9000

3.12500
-0.00000

-0.00000

0.43806

S3UDEORIGIMAL SYSTEROOESS

i

JEFFERENT AL EQUATIONSSGoRR

INIT AL CONQRITIONS

-0.00000

STATE COEFFICIENT MATRIX

-6570.00000
0.00000

-2880.00000

INPUT COEFFICIENY MATRIX

0.00000
0.00000

0.,00000

0.00000

-0.00000

0.00000
5.01000

—-1.50000

0.00000
0.00000

0.00000

INPUT MATRIX

0.00000

TABULATED SOLUTION OF DIFFERENTIAL EQUATIONS

THIRD

VARIABLE
0.0000t
0.01986
0.03807
0.02749
0.00959
~0.,00839
-0.01929
~0.01885
-0.00782
0.00854
0.02268
0.02816
0,02241
0.,00783
-0.00928
-0.02152
-0.02368
-0.01496
0.00067
0.01624
0.02487
0.02277
0.01090
~0.00551
~0.01926
~0.02436
~0.01864
-0.00470
0.01128
0.02227
0.02346
0.01440
-0.00089
-0.01566
-0.02344
-0.02088
-0.00915
0.00653
0.01925
0.02346
0.,01736
0.00369
-0.01150
-0.02155
-0.02208
~-0.01291
0.00186
0.01573
0.02260
0.01953
0.00790
~0,00711
-0.01891
-0.02234
~0.01594
~-0.00260
0.01180
0.02093

FOURTH

VARIABLE
0.00400
0.25700
0.57700
0.70500
0.83300
0,96100
1.08900
1.21700
1.34500
1.47300
1.60100
1.72900
1.85700
1.98500
2.11300
2.24100
2.36900
2.43700
2.62500
2.75300
2.88100
3.00900
3.13700
3.26500
3.39300
3.52100
3.64900
3.77700
3.90500
4.,03300
4.16100
4.28900
4.41700
4.54500
4.67300
4.80100
4.92900
5.05700
5.18500
5.31300
5.44100
5.56900
5.6970C
5.82500
5.95300
6.08100
6.20900
6.33700
6.46500
6.59300
6472100
6484300
6.97700
7.10500
7.23300
7.36100
T.48900
7.61700

FIFTH

VARFABLE
0.00100
0.06400
0.124800
0.12800
0.12800
0.12800
0.12800
0.12800
0.i2800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0,12800
0.12800
G.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.128C0
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0.12800
0412800
0.12800
0.12800

SIXTH

VARIABLE
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FIRSY

VARTABLE
0.00493
0.54938
0.62850
0.68102
0.71515
0.72839
0.74138
0.75462
0.76881
0.85506
0.89893
0.91556
0.93274
0.94102
0.94357
0.94448
0.94728
0.95353
0,96309
0.97367
0.98289
0.98889
0.99111
0.99036
0.98744
0.98678
0.98801
0.99088
0.99448
0.99764
0.99951
0.99982
0.99891
0.99689
0.99620
0.99642
0.99742
0.99945
1.00040
1.00072
1.00043
0.99913
0.99876
0.99880
0.99918
0.99999
1.00036
1.00047
1.00032
0.99972
0.99955
0.99955
0.99971
1.00004

SECOND

VARIABLE
0.00000
0.00007
0.00010
0.00013
0.00015
0.00015
0.00015
0.00015
0.00014
0.00014
0.00014
0.00015
0.00016
0.00017
0.00018
0.00018
0.00017
0.00017
0.00016
0.00017
0.00017
0.00017
0.00018
0.00018
0.00018
0.00018
0.00017
0.00017
0.00017
0.00017
0.00018
0.00018
0.00018
0.00018
0.00018
0.00018
0.00018
0.00018
0.00018
0.000t8
0.00018
0.00018
0.00018
0.00018
0.00018
0.00018
0.00018
0.00018
0.00018
0,00018
0.00018
0.00018
0.00018
0.00018

¢4ooUSDLUTION OF MATREY DIFFERENTEIAL EQUATHDRSTESED

~0. 00000

=3.06905
0.00000

0.51354

3,12500
-0.00000

-0.00000

0.3943%

BeeesRBREE(ED SYITEMCIO R

INETEAL CONDEIVIONS

-0.00000 -0.00000

STATE COEFFICIENT MATRIX

~6569.92279 0.00000
0.00000 0.01000
=2900.39233 -~2.67299

INPUT COEFFICIENT MATRIX

0.00000 0.00000
0.00000 0.00000
0.00000 0.00000

TNPUT MATREX

0.00000 0.00600

TABULATED SOLUTION OF DIFFERENTIAL EQUATIONS

THIRD

VARIABLE
0,00001
0.02721
0.02463
0.01671
0.00677
0,00228
-0.00129
-0.00376
~0.00503
0.00237
0.00684
0.00906
0.00836
0.00527
0.00126
-0.00207
-0.00360
~0.00308
~0.00107
0.00136
0.00314
0.00363
0.00280
0.001L14
-0.00122
~0.00187
-0.00160
~0.00067
0.00045
0.00127
0.00152
0.00116
0.00044
~0.00061
~0.00089
-0.00076
-0.00034
0.,00037
0.00061
0.00059
0.00034
~0.,00027
-0.00039
~0.00033
-0.00015
0.00015
0.00026
0.00025
0.0001 4
~0.00012
-0.00017
-0.00014
-0.00007
0.00007

FOURTH FIFTH
VARTABLE VARIABLE
0,00400 0.00100
0.51300 0.12800
0.64100 0.12800
0.76900 0,12800
0.89700 0,12800
0.96100 0.06400
1.02500 0.,06400
1.08900 0.06400
1.15300 0.06400
1.47300 0.12800
1.60100 0,12800
1.72900 0.12800
1,85700 0,12800
1.98500 0.12800
2.11300 0.12800
2.24100 0.12800
2.36900 0.12800
2.49700 0.12800
2.62500 0.12800
2.75300 0.12800
2.88100 0.12800
3.00900 0.12800
3.13700 0.12800
3.26500 0.12800
3.45700 0.12800
3.58500 0.12800
3,71300 0.12800
3.84100 0.12800
3,96900 0.12800
4,09700 0.12800
4.22500 0.12800
4.35300 0.12800
4.48100 0.12800
4.67300 0.12800
4.80100 0.12800
4.92900 0.12800
5.05700 0.12800
5.24900 0.12800
5,37700 0.12800
5.50500 0.12800
5.63300 0.12800
5.88900 0.12800
6,01700 0.12800
6.14500 0,12800
6.27300 0.12800
6446500 0.12800
6.59300 0.12800
6.72100 0.12800
6.84900 0,12800
7.10500 0.12800
7.23300 0.12800
7.36100 0.12800
7.48900 012800
7.68100 0.12800

SIXTH

VAR JABLE
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