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INTRODUCTION 

It is well known that the second cohomology of modules over an 

algebra can be interpreted as extensions of modules and that singular 

extensions of a Lie algebra L.can be interpreted as the second cohomo

logies of the enveloping algebra Le when Lis free or Risa field [1]. 

However the details of such interpretation over an arbitrary commutative 

ring R with unity have not yet been fully investigated, although Dixmier 

[2] and Shukla [7] have related singular extensions to a second coho

mology assuming additional conditions on L. 

We investigate the interrelations among extensions of Lie algebras 

over Rand extensions of modules over Lie algebras. We also consider 

closely relations among these extensions and second dimensional coho

mologies of Lie algebras over R. 

In Chapter I we show that the classical bijection between equiva

lence classes of singular extensions of R-free Lie algebras Land those 

of their enveloping algebras Le is in general replaced by a natural in

jection. The classical bijection between such classes.of extensions of 

R-projective augmented algebras and classes of module extensions of 

their augmentation ideal holds true in general. 

In Chapter II we consider first that the second cohomology derived 

from the classical bar construction for an augmented algebra A is in 

one-to-one correspondence with the ''R-split" classes of singular ex-. 

tensions of A. The Le-complex V(L) derived from the exterior algebra 

iv 



of L yields ·a cohomology H*(V(L),M). In general we inject the "R-split" 

classes-of singular extensions of L into H2(V(L),M). If H2(V(L)) = o, 

then this correspondence is a .bijection. The-second cohomology with 

respect to an A ... projective resolution is in one-to-one correspondence 

with all classes-of singular extensions of A. Each class of R-split 

Lie algebra extensions -is canonically a class-of singular-extensions of 

Le, provided that H2(V(L)) = o. Shukla has put a second cohomology of 

L: .into · one-to-one · correspondence with the classes of singular · extensions 

-of L, when 2 is invertible in R. Therefore we have found the inter

relations-existing among four different cohomologies and several exten-

sions. These interrelations are explicitly shown by a simple example 

in Chapter III. 
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CHAPTER.I 

EXTENSIONS 

1. Preliminaries 

In this paper, Risa commutative ring with unity •. 1®1 1 denotes 

the t.ensor product over R. 

Definition. An R-mo·dule .L is a Lie algebra in case there is (1) 

a monomorphism of R-modules j:L - A for some R-algebra A and (2) a 

morphism of R-modules [ , ]:I®L - L such that 

j([x,x1 ]) = j(x)j(x') -·j(x')j(x}~ 

This definition follows [6], 5.1. 

Proposition I.1. (i) [x,x] = O, (ii) [x,x'] = - [x' ,x], and 

(iii) [x1 ,[x2 ,x3JJ + [x2,[x3,x1]] + [x3,[x1 ,x2]] = 0 (Jacobi's .identity). 

Since j ( [x,x]) = (j (x) )2 - (j (x) )2 = O, (i) follows because j is 

injective •. Likewise (ii) follows from j ([x-,:x;' ]+[x' ,x]) = o, or from 

(i) .by writing [x+x' ,x' +x] = o. A similar computation implies (iii). 

The associated Lie algebra~ of an R-algebra A is defined to be 

the R-module A with 'Lie product' [a,a 1 ] = aa' - a 1 a. If Land L' are 

Lie algebras we define a morphism of Lie algebraj.s f:L'-L to be·a 

morphism of R-modules such that f([x,x']) = [f(x),f(x1 )]. 

l 
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We have defined an R-module L furnished with a bilinear.bracket operation 

[,.] to be a Lie algebra in case there exists an algebra A and a mono-

morphism j:L ;.__.,~which respects the bracket operation .. 

The tensor algebra T(L) of an R-module L,is ·as an R-module the 

direct sum ~ Tn with T0 = R, T1 =L, T2 = I®L, and in general Tn the 
n=O 

tensor product of n copies of L •. With the natural multiplication in

·duced by T ®I1 ~ T , T(L).becomes an R-algebra. The universal n m n+m 1 

enveloping algebra Le of a Lie1 algebra L is the quotient algebra T(L)/I, . 

where I is the ideal in T(L) generated by elements of the form 

x®:y - y®x. - . .[x,y], where x,yEL. 

Proposition I.2. The composition ir;:L = T1CT(L) - Le has this 

'universal property': if j:L - ~ is any morphism of Lie algebras 

then there· is a unique morphism of algebras j :Le - A such that 

As is shown in [6], 5 .. 4, this follows from;the corresponding !uni-, 

versal property' of the tensor algebra • 

. Proposition I.,3.. The natural map iL ::L - (Le)L · is a monomorphism 

of Lie algebras .. 

Given an algebra A and a monomorphism of Lie algebras j :L ·-:.. Ai,, 

by the universal property of i 1 there is a function 1:Le - A such 

"' that jiL = j.. Since j ·is an injection, so is iL. .Finally i 1 ([x,.y ]') 

= iL(x)iL(y) - iL(y)iL(x) by definition of the quotient algebra Le. 

We shall frequently·identify L with iL(L)=Le. 
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Proposition I.4. Le is an augmented algebra.· 

We have an identity injection ~T:R ____,. R = T0 c T(L)·and a natural 

morphism of algebras eT:T(L) ____,. R. Since eT~T = lR' it follows that 
00 

T(L) is as an R-module the direct sum Im('>'lT) + Ker(eT) = R + ~ T. 
n=l n 
.•.·:.· '•' 

Denote the quotient map T(L) -Le by PT• Since I= Ker(pT) is a 

subset of Ker(eT), it follows that eT induces a morphism of algebras 

e :1 e ~ R with epT = eT. Defining 'rt= pT ~T, we see that 

€ I'/ ;:: e <P1r'!JT) : eT~T : lR. 

Thus we can express Le as a direct sum of R-moqules Im()))+ Ker(e). 

Proposition I.5. Let C be an ideal in the Lie algebra Land let 

D be an ideal in Le. Then (i) iL(C)D is a two sided ideal in Le. Con

sequently (ii) the two sided ideal generated in Le by i 1 (c) is 

iL(C)Le = LeiL(c). 

We recall that any ideal C in Lis necessarily two sided because 

[y,c] = [-c,y] for any c EC and y E 1. To ,show (i) we prove (1) 

(i1 (C)D)Le c i 1 (c)D·and (2) Le(i1 (C)D c i 1 (C)D. ;H'or any a E Le we have 

(i1 (c)d)a = iL(c)(da) E i 1 (c)D. Thus assertion (1) is clear. To show 

(2) we consider in Le that i 1 (y)iL(c) = iL(c)i1 (y) - i 1 ([c,y]), for any 

y EL. Thus. i 1 (y)(iL(c)d) = i 1 (c)(i1 (y)d) - ·i1 ([c,y])d E i 1 (C)D. 

Since any element in Le is either in R or is a finite sum of products 

of the form i 1 (y1 ) ••• i 1 (yn)' (2) follows by induction on n. To prove 

(ii) denote by Y the two sided ideal Lei1 (c)Le generated in Le by iL(C). 

By (2) Y c i 1 (c)te. Since Le has a unit element i 1 (c)Le c Y also. There

fore Y = i 1 (c)Le, as desired. Similarly, Y = Lei1 (c). 



Corollary. The augmentation ideal of r} is iL (L)Le = LeiL (L). 

Let Q denote the augmentation ideal, Ker(e). Since pT is a sur

jection and epT = ~T' we have Q = pT(KereT). Clear.ly KereT is the two 

sided ideal in T(L) generated by T1 = L. Thus Q = pT(T(L)T1T(L)) 

= LeiL(L)Le. It follows that Q = i1 (L)Le = LeiL(L) by (ii) of Propo

sition 1.5. 

Proposition I.6. If f:G - Lis a morphism of Lie algebras, 

th th ' ' h' f 1 b f.e ·. Ge - Le h th t en ere 1s a unique morp ism o age ras sue a 

iLf = feiG. If f is surjective, fe is also surjective and Ker(fe) 

• ·e = 1G(Ker(f))G. 

Since i 1 f:G - Le is a morphism of Lie algebras, the universal 

e e e property of iG gives a unique morphism of algebras f :G --- L such 

that feiG = i 1f. We obtain a commutative diagram 

If f is surjective it is clear that necessarily fe' is surjective. 
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Since Ker(f) is an ideal in G, G/Ker(f) is a Lie algebra. Identifying 

G/Ker(f) with L, we can apply [1], p. 269, Proposition 1.3 to conclude 

that Ker( fe) is the ideal generated in Ge by iG (Ker ( f)). .By the corol

lary Ker(fe) = iG(Ker(f))Ge. 

We are now.going to compare two.definitions •. Define a singular 

extension of a Lie algebra L to be an epimorphism f:G - L of Lie 

algebras satisfying [w,w•] = 0 for w,w'EKer(f). 



Definitions Fis a singular extension of.L.by Min case (1) F·is 

i f an exact sequence O - M - G-_..... L _, 0 of R-modules, (2) f is a 

morphism of Lie algebras, and (3) i:M - Ker(f) is a morphism of left 

L-modules, with an L-module structure of Ker(f) defined by xw = [y,w] 

where f(y) = xEL. 

5 

If C is any ideal in a Lie algebra G, define a left G operation on 

C by yw = [y,w]EC for any yEG, wECe The condition that C be a left 

G-module is ([y,y'])w = y(y'w) = y'(yw), which is Jacobi's ident:Lty in 

G. In particular if f is a singular extension, the ideal C = Ker(f) 

c-an be given the structure of a left L-module by defining xw = [y,w], 

where f(y) = xEL. For ·if f(y') - f(y) = 0 then [y--y' ;w] = O. Thus a 

singular extension of L by Ker(f) is given by 

0 _. Ker ( f) _L. G _L L ~ 0 

where i:Ker(f) - G the identity injection. 

On the other hand, suppose that Fis a singular extension of L by 

M. .Let f be the epimorphism in the exact sequence F. Choose any 

w,w'EKer(f). Then [w,w'] = f(w)w' · = O, and hence f is a singular ex-

tension. 

Proposition 1.7. The following condition is equivalent to part 

(3) of the above definition. Mis a left L-module and i(xm) = [y,i(m)] 

where f(y) = xEL. 

For assume the condition. Given wEKer(f) we have a unique mEM 

with i(m) = Wo .We are given i(xm) = [y,i(m)]·where f(y) = xEL. As 

above we can well-define an L-module structure on Ker(f) by xw = [y,w] 

where f(y) = xEL. Then i(xm) = [y,i(m)] = [y,w] = xw = xi(m). This 

shows that i:M - Ker(f) is a morphism of,L-modules. Thus the 
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condition of the proposition implies condition (3). 

Conversely, suppose (3) holds •. We are given that i(xrn) = xi(m) 

for mEM. Writing w = i(m)EKer(f), we are also given that xw = [y,w] 

where f(y) = xEL. Thus i(xrn) = xi(m) = xw = [y,w] = [y,i(m)]. We 

conclude that (3) implies the condition of the proposition and the 

equivalence is proved. 

We define two singular extensions F ·and F* of L by Mto be 

equivalent in case there is a morphism of.Lie algebras k:G - G* such 

that the diagram 

F: o-M-1.......a..L..L~O 

II i.' lk f' II 
F*: 0 - M·-- G*--=--> L·- 0 

commutes. By the five-lemma, such a k is necessarily a bijection. 

Hence the definition does give an equivalence relation. We shall 

abbreviate the equivalence by k:PvF*. We denote the set of equivalence 

· classes by E.;e(L,M). A singular extension of L by M is defined to be 

R=split in case there is a morphism of R-modules u:L ~ G such that 

fu = lL. We denote by Es.;e(L,M) the subset of R-split classes of E.t(L,M). 

·We shall consider any left L-module canonically as a left Le-

module, and conversely. 

We now turn our attention to an augmented algebra A with augmen-

tation s:A---+ R. We shall always consider any left A-module as an 

A-bimodule with right operation of A.defined by the augmentation. We 

a~ain compare two definitions. Define a singular extension of an aug-

·mented algebra A to be an epimorphism f:B - A of algebras satisfying 

(Ker f)(Ker ef'.) ;:: O.: 



Definition. Eis a singular extension of A by Min case (1) Eis 

i .. f . 
an exact sequence O ___. M.....-.> B ~A~ 0 of R-modules, (2) f ~s a 

morphism of algebras, and. (3) i:M - Ker(f) is a morphism of A-bi-

modules, with an A-bimodule structure of Ker(f) defined by aw= bw and 

wa = wb = we(a) where f(b) = aEA~ 

Let F be a singular extension •. Since Ker(f) is an ideal in B, 

Ker(f) is a B-bimodule. We can well-define an A-bimodule structure on 

Ker(f) by aw = bw and wa = wb, where f(b) = a. For if f(b') = f(b), 

both (b-b')w and w(b-b') belong to (Ker(f))2 = o. We must verify that 

wa = we(a). If f(b) = a, then f(b-e.f(b)) = a - e(a). Thus w(a-e(a)) 

= w(b-ef(b))E(Ker f)(Ker ef) = O, as required. Write i:Ker(f) - B 

for the identity injection. Thus a singular extension of B by Ker(f) 

( ) i f . 
is given by O ~ Ker f - B - A___.,,.. o .• 

Conversely, suppose that Eis a singular extension of A by M. Let 

f be the corresponding epimorphism •. Select any wEKer(f) and bEKer(ef). 

Then wb = wf(b) = wef(b) = 0 1 and hence f is a singular extension. 

Proposition I.8. The following conditions are equivalent to part 

(3) of the definition of a singular extension of A by M. If f(b) = a, 

then bi(m) ,= i(am) and i(m)b = i(me(a)). 

The proof is similar to that of proposition I.7. 

We define two extensions E and E* to·be equivalent in case there 

is a morphism of algebras k~B----+ B* such that the diagram 

E: o-

E*: 0--+ 

i f 
M-B-A-O 

II t II 
M ---1..:B~ A - 0 

commutes. Again, such a k is necessarily a bijection. We abbreviate 

7 



k:-E}..E*, and we denote by Ett,(A,M) the set of classes of singular exten-

sions of an augmented algebra A by M. A singular algebra extension E 

is defined to·be R-split in case there is a morphism of R-modules 

u:A ~ B such that fu = lA. We denote by Esa,(A,M) the subset of 

R-split classes of Ea,(AfM). 

We shall denote by Arsft. the cat·egory of all left A-modules; ·!Dl will 

denote the category of all left R-modules. 

Definition. Fis an extension of Q by Min case Fis an exact 

sequence O -.. M ~ X ...!.,. Q --+ O in the category AIJJI. • 

. We define two extensions F and F* to be equivalent in case there 

is a morphism of A-modules k:X ~ ·x* such that the diagram 

F: o-

F*: o-

commutes. As before, .k is a bijection, We w:ri te k:P...F* and denote by 
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EAmi(Q,M) the set of classes of extensions of an A-module Q by M. A 

module extension F.is defined to be R-split in case there is a morphism 

of R-modules u :.Q ---,. X such that fu = lQ. 

subset of R-split classes of EAIJJl.(Q,M). 

s We denote by E A~(Q,M) the 

§ 2. The InjectionQ':·EJL\M)-E_iL,M) of Singular 

Extension Classes of Le by M Into Singular 

Extension Classes of a Lie Algebra L 

by a Left L-Module M 

We first define Q':Ett(Le,M) ~ EjL,M). Given [E]EEtt(Le,M) write 
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· E:O - M -2:.. BL Le- o. Define G = f-1 (L) = {yEB; f(y)EIA,e}. 

Define f' = f \a :G---.. L •. Since i(M) = r'"'1co)cr'"1 (L) = G, we can define 

i' :M _., G by i' (m) = i(m). 

. Lemma. i' f' E :0 ~ M ~ G ~ L __,. 0 is a singular extension of L 
0( 

by M. 

Evidently exactness of E implies exactness of E •. We first compute 
. (!)t 

f(yy'-y'y) = f(y)f(y 1 ) - f(y')f(y) = xx' - x'x = [x,x']EL, where 

f(y) = xEL and f(y') = x'EL •. This shows that if y,y'EG then yy' - y'yEG .• 

It follows that G is closed with·respect to [y,y'] = yy' - y'y. The 

natural injection j:G = f-1 (L)CBL satisfies j([y,y']) = [j(y),j(y1 )], 

so by definition G is a Lie algebra. Also by the above computation 

f' = f\G ;is a morphism of Lie algebras. Finally if f 1 (y) = xEL, the 

condition of Pro:position 1.7 implies that yi' (m) - i 1 (m)y = i 1 (xm) -' o. 

To show we can well-define ot ·by a([E]) = [E .], we suppose given 
ot 

k:E-,.,E*. Then evidently klG:G----,. G* is a morphism of Lie algebras 

and in·fact kla=E -E*. 
ot Q' 

Theorem. 1.1. a :Ea(Le ,M) ~ E.;e_(L,M) is an injection. 

Proof •. We shall define w:Im(Cl') - Etl.(Le ,M) and prove that f.AXX is 

the identity function. .We are given E as the top row in the diagram 
ex 



Since iLf' :G - (Le\ is a morphism of Lie algebras, by Proposition 

I.6 there is a unique morphism of algebras f'e such that f'e. = i f'. 
1 G L 

.Define M = iGi 1 (M), ~the augmentation ideal of Ge, X the quotient R-

10 

module 
e - e 

G /MQ, and p:G ___, X the natural morphism of R-modules. Since 

- e) phism of algebras, Mt?c Ker(f' • Thus f'e induces a morphism of R-

- e - e 
modules f:X----+ L with fp = f' • Defining i = piGi', it follows from 

the commutativity of the diagram that fi = 0. Define E* to be the 

i f e e 
sequence O ___, M ____, X ____, L ____, O. Since f' is a surjection and 

fp = f'e, f is also a surjection. 

By part (ii) of Proposition I.5 the ideal generated by iG (i' (M)) = M 

in Ge is MGe. Since f' is an epimorphism and i' (M) = Ker(fL), it fol

lows from Proposition I.6 that MGe -= Ker(f' e). Since M = MR and 

MR + M(i) = MGe, we obtain Im(i) = p(MR) = (MR + M(i>)/M~ = MGe /M Q 

= Ker(f'e)/Mc;>= Ker(f). Now(? is a two sided ideal in Ge, being the 

kernel of the augmentation, a morphism of algebras. Thus by part (i) 

of Proposition I .5, M q is a two sided ideal in Ge; consequently the · 

quotient Xis an algebra. 
e 

Necessarily p:G ---+Xis a morphism of 

algebras. Since fp = f'e we conclude that f:X---+ Le is a morphism 

of algebras. 

To complete the argument that E* is a singular extension of Le by 

M we need to show that i is an injection and to verify the condition 

of Proposition I.8. We suppose given f(b) = a and write b = p(z). 

To show bi(m) = i(am), we use induction on the degree of a repre-

sentative of z in T(G). If z = iG(y) then a= f(h) = iL:t''(y)~ Denot

ing x = f'(y)EL, we see that am= xm by definition of the induced module 

structure •. Since [EO!]EE,iL,M), we have i'(xm) = [y,i'(m)] and iai'(xm) 

= iG(y)iG(i' (m)) - iG(i' (m))iG(y) • .Since iG(G)cQand p(iGi' (M)9) = O 



we conclude that i(am) = i(:xrn) = p(iGi" (m)) = bi(m) - O, .as deeired • 

. Now suppose that z = iG (y) z 1 • .By the induction hypothesis, if · 

w = f(p(z 1 )) E Le then p(z 1 )i(m) = I(wm). It follows that bi(m) 

= piG(y)i(wm) = iCa'wm), where a' = fpiG(y) •. Since f(b) = 

f(piG(y))f(p(z 1 )) = a'w., the induction is completed • 

. It remains to show i (m)b = i (Il\e: (a)). For the case z = i 0(y) we 

have i(m)b = p(iGi' (m)iG{y)) = 0 because MiG(G) c M(?. As before 

a= i 1 (f1 (y)). But eiL = O i~plies i{m,e(a)) = O also. The induction 

step follows as before. 
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At this point in the construction of o, we have used only the assump

tion that E defined a class in E~(L.,M), To. prove th,at i is injective 
O{ 

we do use the assumption that [E] E Iml'. In·this case we are given an 
Cit 

algebra B such that the inclusion map j :G ---J> BL is a morph;i.sm of Lie 

algebras. By the universal property of i 0 :G ____,. Ge there is a morphism 

of algebras k:Ge----, B such that kiG = j. In the diagram 

E:O--M 
O{ 

i' 

j 

i E: :O--M-- --•o, 
·e 

we are given that E ·is a singular algebra extension of.l;i by Mand that 

a([EJ) = [E ]. 
OI 

Lemma. MQ c: Ker(k). 
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If we show that k(MiG (G)) = 0 then the result follows by ·induction. 

In B'I for any y E G c B'I i.(m)y = i(me(f(y))) = 0 because fj(G) = iLf1 (G) 

= iL(L) c Ker(e)., That isi i(m)y = 0 E G c B. Thus we can write O = j(O) 

= j{i(m)y) = j(i'(m))j(y) = kiG(i'(m))kiG(y) = k(iG{i'(m))iG(y)). It 

follows that MiG(G) c Ker(k) 'I as desired. 

By the lemma, k induces a morphism of R-,modules k:X ~ B such 

that kp = k.. Thus i = ji' = (kiG)i"' = ki. Since i is injective we can 

conclude that i is injective .. 

Starting with a singular algebra extension E of Le by M, we have 

completed the construction of a class [E*] in Ed.(Le ,M). 

Lemma.. k :E*-E .. 

We just observed that i = ki. Since p and k are m0rphisms of 

algebras and kp = k, clearly k is a morphism of algebras. Finally we 

must show that fk = 3\ We observe that f' eiG = iL f' = fj = f(kiG). 

Since iG(G) generates<t) and f, k'I and f'e are morphisms of algebras, 

it follows that f'e = fke Therefore fp = f'e = fk = f(kp). Since p 

is an epimorphism, we obtain f = fk. This completes the proof of the 

lemma. 

If we can well=define won Im by C1J([EQ']) = [E*] then by the lemma 

GJQ' ( [E]) = ev( [E J) = [E*] = [E] s This will complete the proof of 
ot 

Theorem I.l. 

wis well defined if given k' :E -E,-, we can construct k:E* ...... E1 *. 
Q' JU 
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In the diagram 

we are given that k' :G ............... G1 is a morphism of Lie algebras. By Pro

position I.6 there is a morphism of algebras k'e:Ge -- a/ such that 

k'eiG = iG1k 1 • Since k' is an isomorphism, necessarily also k'e is an 

isomorphism. By construction Ker (p) = M(?. . Denoting by 91 the augmen

tation ideal of G1 , likewise Ker (p1 ) = iG i 1 (M)Q1 • Since k' e (Q) = 91 
. 1 

and (k'ei )i 1 · = (i k' )i' = i i 1 , we infer that k'e(Ker p) = Ker(p1). 
G G1 G1 1 . 

We obtain an isomorphism of algebras k:X ___, x1• It can be shown that 

k commutes as required. This completes the proof that~ is well-defined 

and establishes theorem Ll. 

§ 3. . The Bijection f:l :EiA,M) - EA~(Q,M) Onto Module 

Extension Classes by M of the Augmentation Ideal Q 

Of an Augmented Algebra A 

i f 
Suppose that E :0 - M - B - A - 0 is a singular extension 

of A·by M. As before, let Q denote the augmentation ideal of A •. We 

i' .· f' 
define a sequence ES :0 - M - x- Q _. 0 as follows. Let 



·· X = f-1 (Q) = {b E B;f(b) E Q] and let f' = f fx:X - Q. Since i(M) 

= f-1 (o) c f-1 (Q), .we can define i 1 :M - X by i' (m) = i{m). 

14 

From the constructionj .ES is an exact sequence of R-modules. X can 

be considered a left A-module if we define ax = bx where f(b) = a. ..To 

see that this multiplication is well-defined, su,ppose f(b') · = .f(b). 

Then there is an m E M such that b - · b' · = i(m). :since f'.00 = Q = Ker(e), 

we conclude that bx - b 1 x = i(m)x = i(me(f(x))) = O. We next show that 

f' and i' are morphisms of A-modulesQ Given any a EA fix b EB such 

that f(b) = a. Then at once af'(x) = f(b)f(x) = f(bx) = f(ax). Like-

· wise i' Cam) = i(am) = bi(m) = ai(m),. This completes the proof of the 

lemma • 

. We show that we can well-define S ::E (A,M) - EAg(Q,M) by a([EJ) 

= [ES]. Fr0m a given k:F,-..,E* we want to define k~:ES-ES. Write 

"* f* E* :0 ---+ M _];;... X*-=- Q - O. For any x E X we have f*(k(x}) = f(x) E Q. 

This can be written as k(x) E f*-1 (Q.) = X*, which implies that 

klx(X) C X*. Then ks· =klx:X - X* gives the desired equivalence. 

Theorem I.2. ~ is a bijection. 

Proof. We shaJ.l define J:EAm(Q,M) ·.:.__ Ett(A,M), .'J,1hen .we shall 

prove that JS and SJ are identity maps. 

i f 
. Let F:O - M - X - Q. - 0 be an extensio;n of Q by M •.. We 

. · r - ·. i · .. · 
construct a sequence F J:O -. M .,,..;_,_,. B ~. A - 0~ As an R-module, .we 

define B to be the direct sum X + R • . We define a product in,B by 

(x,r) (y1 s.) = (ry + sx + f(x)y~ rs)$ If eR is the identity element of R 



then (O,eR) is a two sided identity element for B. Since clearly the 

multiplication distributes over addition, we verify the associative 
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property to conclude that Bis an algebra. We compute (Cx,r)(y,s))(z,t) 

= ((rsh + t(ry + sx + fCx)y + f(ry + sx + f(x)y)z,Crs)t) and 

(x,r)((y,s)(z,t)) = CrCsz+ty+f(y)z) + ~tCx) + f(x)(sz+,ty+fCy)z),rCst)) • 

. Since f is a morphism of A-modules and f(x) E Q c A, necessarily 

f(f(x)y)z = f(x)f(y)z. It follows that the multiplication in Bis 

associative. We define f(x,r) =f(x) + r E Q + R = A and define i(m) 

= (i(m),o) EB. Then evidently FJ is an exact sequence of R-modules. 

Clearly f preserves the identity element. Furthermore, f((x,r)(y,s)) 

- f(ry+sx+f(x)y) + rs = rf(y) + sf(x) + f(x)f(y) + rs = fCx,r)f(y,s). 

If we verify the conditions of Proposition I.8, then we can con

clude that FJ is a singular extension of A by M. If f(b) = a then 

necessarily b = (x,r) with fCx) + r = a. It follows from the definition 

of multiplication in B that bi(m) = (x,r)(i(m),O) = (ri(m)+O+f(xhCm),O) 

= (ai(m),O) = (i(am),o) = i(am). Likewise, i(m)b = (i(m),O)('x,.r) 

= (O+ri(m)+f(i(m))x,O) = (i(mr) 1 0) = (i(me(a)),O) = i(me(a)). 

To show that we can well-define J by JC[F]) = [FJ], we suppose 

given k:F-F* and construct k:B - B*. Given k:X - X* we define 

k(x,r) = (kCx),r). Then k((x,r)(y,s)) = (rk(y)+sk(x)+f(x)k(y),rs) 

= k(x,r)k(y,s) because f(x) = f*(k(x)) • .Also k preserves the identity 

element •. We have shown that k is a morphism of algebras. We verify 

that f*k = f and ki = i*. To see the first condition we compute 

f*k(x,r) = f*(k(x)) + r = f(x) + r = f(x,r). Likewise kiCm) = (ki(m),o) 

= (i * Cm) ,O) = i* Cm). We have shown that k:F J""'Fj, and consequently that 

J is well-defined. 

We next show that J~ is the identity map 0n E~(A,M). We suppose 
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that Eis any singular extension of·A by M •. Since E~ was defined by 

restriction, the diagram 

i f 
E: 0 --.... M -----"--- B ----"--- A --.... 0 

II lk II 

i f (Ef3) J: O -- M -----.-.... B _____ _, A -- 0 

suffices to recall the constructiol'.,L of (~f3)J. If we define k:B - B 

by k(x,r) = x + r EX+ R == B then evidently the diagram commutes. 

Since by definition of the A-module structure of X, f(x)y = xy we have 

k((x,r)(y,s)) = k(ry+sx+f(x)y,rs) = k(x,r)k(y,s). Clearly k preserves 

the identity element, hence k is a morphism of algebras. We have shown 

that k:(Ef3)J ,.._, E. It follows that Jf3([E]) = J([Ef3]) = [(Ef3)J] = [E] 

and we conclude Jf3 is the identity map. 

Finally we show that SJ is the identity map on EA!J.Jl(Q,M). The 

construction is indicated in the diagram 

i F: 0 ---+ M _____ _, X 
f 

Q 0 

II lj 
f '.§' A 0 

lp 
--1c ) f' 

Q. o, f Q. 

i FJ: 0 ---+M------

II 
.. I 

(FJ) f3: 0 -- M ---1 -· --

in which Fis a given extension of Q. by M. We observe that f-1(Q.) 

= fCx,r);f(x)+r E Q.} = fex,O);x EX}. We define j(x) = (x,O),p(x,r) 

= (x,O), and k = pj. If a EA, then a= f(x) + r for some x EX and 

r ER; that is, f(x,r) = a. We compute ak(y) = (x;r) (y,O) c (ry+O+f(x)y,0 

= (ay,O) = k(ay), to see that k is a morphism of A-modules. Since 

commutativity is evident, we conclude that k:·F,.., (FJ)S. Thus 
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SJ( [F]) = S ([F JJ) = [ (F J) S] = [F] and we have sh0wn that SJ is also the 

identity map. This completes the proof of theorem I.2. 

§ 4. The Injection .6 ~~~(Q,M) - EiL,M) and the 

Restrictions of CY, a, and A to Classes 

of R-Split Extensions 

Let Q be the augmentation ideal of Le. 
. i f 

Let F:O - M _. X - Q---'0 

be an extension of Q by M. Idep.tifying L with i 1 (L) c Q. c:;: Le, define 

-1 
G = f (1) c- X. For y,y' E G define [y,y'']G = f(y)y' - f(y)y E· X. 

Define f':G-1 by f 1 (x)·= f(x). As before, since i(M) = f-1 (o)cf1cL) 

= G, we can define i 1 :M __, G by i' Cm) = iCm). Define- F 6 to be the 

i' f 1 

sequence of R-modules O --- M - G ->.L - O. 

Proposition r.9. F6 is a singular extension of L by M equivalent 

to (FJ) • 
Q' 

We refer to the diagram 

F: 0 M 
i 

X 
f 

Q 0 

jl . II 
i f 

FJ: 0 M B Le 0 

II 

(FJ) : 0 M i' 
. Q' G f' L o. 

The sequence FJ in the middle row is the singular exten~ion f Le 0 · .. by 

·M defined in §3 with B-= X + R. The sequence (F J) :i,n the bottom row 
a 

is the singular extension of L by M defined in §2 with G = r\L). .As 



before, we define the natural injection j:X-B by j(y) = (y,O). 

Since fj = f, as an R-module G = r 1 (L) = j(f-1 (L)) = j(G'). The Lie 

product in G was defined for any y,y' E G by [y,y'] = yy' - y'y. 
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·Writing y = j (y) and y' = j(y'), we use the definition of multiplication 

in B to compute [j(y),j(y 1 )] = (y,O)(y• ,O) - (y' ,o)(y,O) = (O+O+f(y)y' ,o) 

- (O+O+f(y•·)y,O) = j(f(y)y'..,..f(y')y) = j([y,y•·JG). This result implies 

not only that G with Lie product [ , JG is a Lie algebra 1 but alsc that 

jlG:G - G is a morphism of Lie algebras, Since f'j = f' and ji' = i', 

necessarily as ae;serted FA is a singular extension of L by M. Moreover, 

j\G:F ,.._, (FJ)o: and the proposition is prov~d. 

We define 6:ELe~(Q,M) - E£.(Q,M) by A([Fl) = [FA]. Since 

FA...., (FJ)o: and the functions J and o: are well-defined, so is A. 

Corollary. 6 = o:J and consequently A is an ~njection. 

-1 
o: is an injection by theorem I.l, and J = ·~ is a bijection by 

theorem I.2. 

The commutative diagram 

exhibits these maps. 

Lemma. We can define o: s :E6tt (Le ,M) - Es£(L,M) tp. qe the restric

tion of o:. 
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i f · e 
We suppc)Se that E:O - M - B "'°'~~L __. 0 is an R-split singular 

extension of Le by M, where fu = 11e• We suppose 

i' f' F:O __. M __, a-L- 0 

is the representative we constructed of ct ( [E]). Let u' be the restric

tion of u to L c Le. Then in fact Im(~ 1·) c G = f-1 (L) so we can consider 

[F] E E;e_(LM) e 

It is clear that from the maps Eci(Le ,M)+o=!==+E1 e!IJ!(Q,M) _:A_ E.,e(L,M) 

we can also obtain by restriction to equivalence classes of R-split ex

s ( e ) Ss s ( ) ~s s ( ) tensions the maps E ti L ,M ~=j===-+E Le3)'1 Q,M • E;:, L,M • 
s 

Proposition I.10. A J d J -- Q-1. ~ =a an P 
s s s s s 

As in the proof of the lemma, this is clear from the definitions. 



CHAPTER II 

COHOM0LOGY AND EXTENSIONS 

gl. Definition of H(V(L) ,M) and of the Relative 

Cohomologies Ext l. and Ext~ 
0 I 

Definition. The exterior algebra E(L) of a Lie algebra Lis the 

quotient algebra 'r(L)/~, where Sis the ideal in the tensor algebra 

T(L) generated by elements of the form x®x for x E L. 

We write p:T(L) - E(L) for the quotient map. We denote p(T) 
n 

n 
by AL or by LA AL. In particular we identify p(T0 ) = R and p(T1)=L. 

We denote p(x1® Ax E AnL for x. EL, i ~ 2. 
n l 

Proposition II.1. xAy - - yAx for x, y E .LQ 

This fol.lows from p( (x+y )®(y+x)) = 0. 

Consider V (L)::: Le®AnL as a left Le-module by defining a'(a®w) 
n 

= a'a®w. We identify v0(L) = Le®R with Le. Let d :V (L) __. V 1(L) 
n n n-

be the morphism of Le-modules defined on the generators of V (L) by 
n 

n i+l . V 
d (a®xlA ••• Ax ) = ·.~l (-1) ax.®xlA ••• AX. A •••. Ax n n 1= 1 1 n 

V V 
•••AX.A••~ AX.A••• AX for n ::::2. 

1 J n, 

e e For n = 1, omitting the second summation, we define d1 :L ®L __. L. 

20 
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on generators by d1 (a®x) = ax E Q c Le, where Q is the augmentation ideal. 

Definition. We define V(L) to be the Le-complex 

-v (L) 
dn ___. ... ,. d1 e 

-L -o. 
n 

We observe that if we interpret V(L) as Le®E(L), we can define an 

R-algebra structure for V(L). We denote an element x of L by :x when 

we consider L = p(T1) as a subset of E(L). For y EL, considered as a 

subset of Le, define a multiplication in V(L) by y:x = ;y®.x and 

xy =: yx + [x' y j . 

We further define a derivation d:V(L) _, V(L). For :x E L c E(L), 

let d(x) = x and for y E L c Le let d(y) = O. Extending d as a deri-

vation to the algebra V (L), it can be shown that the restriction of d 

to V (L) is d as defined above. n n 

Returning to the definition of V(L) as an Le-complex, denote as 

usual its nill h0mology Ker(d )/Im(d 1 ) by H (V(L)). 
n n+ n 

Proposition II.2. H1 (V(L)) = O. 

Consider the diagram 

... 
in which q is the quotient map ands= q®l1 • Given any v = ~a.®x. ET(L)®L, 

l l 

we define t(v) = Ea.x. E T(L) •. Since the formation of the tensor pro
i. l 

duct defines the multiplicative operation in T(L), it follows that tis 

-1 ) a monomorphism of R-modules. Since clearly d1s = qt, we obtain d1 (o· 

-1 -1c ) = st q 0 .• -1 ) We recall that q (O is the ideal I generated by elements 



of the form .x®y - y®x - · [x,y] where x 1y t LC T(L). 

any v E Ker (d1 ) we have v = s ('v) where v E t-l (r,). 

Therefore, given 

Write t ( v.) = I:w. 
l. 
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with w. = u. (x.y.-y'.x.-.[x .. 1 y;})v. EI. Write v. = r. + v·.· ER+ Q = T(L), 
·l. l. ,l. l. l. l. 1. 1 l. l. l. l. ' 

where Q. is the augmentat:ion .ideal of T (L). .Since s €-1(.;; i )EL e®L, we can 

conclude that d2(r.q(u .. )®x.Ay.} = st-1 (w;) ... We have shown·that 
l. l. l. l. l. 

v = Eaf1 (w1) E Im(d2) and we conclude that H1 (V(L)) = CD • 

.If M E 1JR, let hom1e,roi(V(.L) ,M) be the complex 

· rn ;n-1 
• •·• ·4-- horn.. eW.(V 1 (L) ,.M) ~ hom.1eJJJ>.(V (L) ,M) ••• 

L :n.+ n 

with Jn(g J = g d · 1 for a mor'l"lhism g :V (L) - M of left 'L6 -modules. n n n+ . J;" n n · · · 

Definition. W(V(L) ,M) is the nth cohomology of hci>m16rm.(V(L)',M), 

:n · n-1 
namely Ker8 · /Im& • 

We now recall definitions and certain properties of a, relative 

cohom0logy theory which we shall need in this paper. .Consider any 

N E Arm' the category of left A-modules for an augmented algebra A. . . .Let 

e be a projective class of sequences in Arm. ..We know fro.m .[3J, p~ge :6, 
d d1 

. Proposition 3.1, that there is a complex ·P*·: ••• .....:.-.... P ...ll. ••• ,;...._.. P ·- 0 
:.n o · 

and a. morph:i.sm e:::]? -- N such that each P. is an e-projective module, 
0 l. 

dn+l dn · d1 s 
each sequence P 1 ~ P ·- P 1 is in e, and P1 ----... P - N is n+ n n~ . o 

:i.n e. ..Let homA!.JJ!(P* ,M) be the complex 

. · ~n ;n-1 
••.• it-- homA!.JJ!(P 11.M) +-"-- homA!.JJ!(P ,M) · ••• 

~ n~ ~ n 

with Sn(g,) = g d l for g :P . - M E Ji. n n n+. n n ~ 

Defini.tion. E:x:tn e<N ,M) is the nib oohomology of hom~(P*·~MJ, · namely 

rn n .. 1 Ker( o :)/Im (S. • ) • 
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It follows from the .general theory ([3], p. 7) that (up to isomer-

phism) this definition is independent of thee-projective resolution 

P* chosen for N • 

. We shall consider tw0 particular c1aqses of sequences, ~ ,and 

.Definition. 1!0 is the class of all R-split exact sequences in Arm.. 

I· 

.Definition. ~ 1 is the class of a.11 exact sequences in Arm., 

We recall that ~o and~. are projective classes in ArJJI.. .We shall 

apply the notion of Ext2e(N,M) with ·N = R, the underlying ring con

sidered an A-bimodule by "pull-back" a.long the augmentation e.:A--+ R • 

. We shall use the "adjoint isomorphisms.n homA!lJl(A®C,M) --~--~ ho~(C,M) 

defined by ,ir(g)(c) = g(e®c) and cp(g 1.)(e®c) = g' (c), where e is the 

identity element of A. 

Denote the ri-fold tensor product of A/~(R) with itself by Q*n. 

Let B* = A®Q*~R, with a left A-module structure given by the algebra 
n 

multiplication in the left component A, as above. Denote a generator 

a®x1® ••• ®x ®r E B* by a(x11 ••• ,x )r. Define a morphism of A-modules 
n n n · 

d*:B* - B* .1 on generators by d*(a(x1 , ••• ,x )r) = ax1 (x2 , .•.•.•. ,x· )r n n n- n n . n 
n-1 · 

+ I: (-1) 1 a(x1 , .•.•.• ,x •. x. 1 , •.•• ,x )r + (-l)na(x1 , .•.••. ,.x 1-)x r. Let B* 
i=l . · i ;t.+ n · n- :n 

-B*~ be the A-complex... n 
d>J: 

--2;_,. B* = A®R- O. .With 
0 

e* :A®R - R induced by e, B* has been shown .[9] t.o be a canonical 

~ -resolution of R. 

For cornp·l).tation we replace B* by a simpler complex of A-modules, 

d 
B(A,R): ••• --+ B --!L. 

n 

d1 
..;......... A-----+ O, defined as follows. Let 

r;l be the n-fold tensor product of· Q. with itself and let B = A~n. 
n 
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n-1 i . 
+ .~ (-1) a(x1 , •.••. ,x.x. 1 , ••• ,x) on generators, with a(x1 , .•.•.•. ,xn .. ) 

i=l i 1+ n 

an abbreviation for a®x1@ ••• ®xn •. B(A,R) with augmentat:j.on e;A - R 

is often called the "bar reso;Lution11 of R. 

Proposition II.4. With the augmentation e:A - R, B(A,R) is 

an ~ 0 -resolution of R, 

As in [ 91, we can consider B(A,R) derived from the canonical reso-

lution B*. 

We mention that the~. -projective modules are the classical pro-

jective modules in !ill. 
A 

For any R-module B, let FB denote the free R-

module with base B. To construct inductively a complex 

. dn 
XR: ••·• --+·Xn -

d1 -x.-o 
0 ' 

. dn 
if given X - X 1 , let K be any set of generators 

n n- n 
for Ker (d ) as 

n 

an R-module. (In particular we can fix K = Ker(d ).) Let X l 
n n n+ 

= FK E !m and define d·. :X - X by dn+l(ek) = k for any k E K , 
n n+l n+l n n 

extending to the free R-module by R..:.linearity. Let X l = A®X l and n+ n+ 

defined = ~d • 
-n+l n+l 

Setting x0 = A, .we complete the inductive defi-

nition by (temporarily for this induction) denoting the augmentatiop. 

e:A - R by d0 and R by x_1 • 

Proposition II.5. With e::A - R, XR is an~ -projective reso

lution ofR. 

By construction each triple is an exact sequence in A!m. X =A 
0 

is a free A-module, and hence projective. Since, for n ~ 1, X is a 
n 



free R--module it follows that X "" A®X is a n:roJ· ecti ve A-motlule .. n n .t' 

§2. 1'he Bi.jection '¥ :Ext2~ (R,M) - E86.,(A;M) 
0 

of the .Second l 0 Cohomology of R E A[YI Onto 

the R~Split Classes in E~(A,M) 

We considered i:o. ,seminar [ 9] the diagram 

it1 which homA~(B(A,R) ,M) is related to a complex of R-modules in the 

bottom row by the "adjoi.zrc isomo:rphisms11 of §L In fact we define 

Sri to be ~ b\,. 

· Proposition rr .. 6~ g E homAroi(B2 ,M) is a 2-cocycle if and only if 

x1 IJ/g (x2®x3) + IJ/g (x1 ®x2x3) = ~g (x1 Xi9X~ for any x1 , x2 , x3 E Q. 

Suppose S2 (g) = O. In p1&rticular, we U15e the definition of d3 

to compute O = £2 (g) (~£.1®.x:2®x3) = g(d/e®x1®x2®x3)) "' x1 g(e®x:t~x3) 

- g ( e®xl xi9X3) + g ( e®x1 ®-.ii:2~'3) "" xl g ( x2 ®x3) - g ( xl :}(i9X3) + g ( xl ®.x:2x3) ; 

25 

the condition holds; the computation shows 

that o = $2 (g)(e®x1®x2i&x:5). J!'rom the definition of left A-module 

structure for B3 we conclude that 62 (g) is the ~ero function B3 - ---• M, 

as asserted .. 

Since A is the cUretYb sum R + Q; we can define gi E ho~(A®A,M) 

as follows. Let e dencd;e the identity elem:ent of A. For any x,x 1 E Q, 

define g' (:i@:ii: 1 ) = IJ/g(:ll®x') and let g' (e®e) = g' (e®x:) "" g' (x®e) = o. 
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Let B as an R-module be the direct sum M + Ao 
g 

Let E denote the sequence 
g 

0 --+ M ...i... B L A - 0 where i(m) = (m,O) E 
g 

B and f(m,a) = a EA. 
g 

Clearly E is exact. Define a multiplication in B by 
g .g 

(m,a)(m 1 ;a 1 ) =(am'+ me(a') + g'(a®a 1 ),aa 1 ). 

This multiplication distributes over addition, and (O,e) is a two sided 

identity. Also f(O,e) = e and f((m,a)(m',a. 1 )) = aa.' = f(m,a)f(m 1 ,a 1 ). 

We next verify the conditions of Proposition Io8. If f(b) = a neces-

sarily b '::: (m,a). '.J.1hen bi(m') = (am'+O,O) = iCam') and i(m')b 

= ( O+m ' e ( a ) , O ) = i. ( m ' e (a.) ) • Thus E is a singular extension of A by M 
g 

if the product in Bis associativeo 

'ro consider associativity, let b. = Cm. ,a.) E B • After computing 
1. 1 1. g 

b1 (b2b3) and (b1b2)b3, we see the tw0 are equal in case 

Writing a. as r. + x. ER+ Q, this condition .is equivalent to 
1 1 1 

By Proposition II.6, if g is a 2-cocycle then the product in B is asso
g 

ciative. Therefore, E determines a class in Ea(A,M). Let u:A - B 
g g 

be defined by u(a) = (O,a). Since fu = lA we see that Eg is R-split. 

Definition. '¥ :Ext2?!' (R;M) --+ Esa_(A,M) is defined by '¥ ( [g]) = [E ] , 
Go g 

with E constructed from the cocycle g as abov,e .. 
.g 

We show'¥ is well-defined. Given g - g* = ~1 (h), define 

h' E ho!I\:m(A,M) by h'(x) = Wh(x) for x E Q and h'(e) = O. Define 

k:B - B * by k(m,a) - (m+h' (a),a). g g We wish to show that k:E -E *. 
g g 

. Evidently k(O,e) = (O,e). Writing b = (m,a) and b' = (m' ,a'), we 

consider k(bb') and k(b)k(b'). By definition, 
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k(bb') = (am'+meCa 1 )+g'(a®a 1 ) + h 1 (aa'),aa'), :while k(b)k(bi) 

= (a{m 1 +h 1 (a 1 )) + (m-rh 1 (a))e(a') + g* 1 (a®a 1 ),aa 1 ). We consider three 

cases. Suppose first that a= x E Q and a' = x' E Q. Since g - g* = c1h, 

we obtain (ljrg-ijrg*) (:x®x'') = x1'rh(x 1 ) - ijrh(xx' ).. Since e(x') = o, we can 

conclude that k(bb') = k(b)k(b 1 ). For the second case, suppose that 

a = r E R and a' E A~ Then (g 1 -g* 1 ) (r®a·1 ) = O = rh 1 (a 1 ) - h' (ra 1 ) • 

Since h' (r)e(a') = o, again we can conclude that k(bb') = k(b)k(b' ). 

Finally, suppose that a= x E Q and a' = r' ER. Again (g 1 -g* 1 )(:x.®r 1 )=0. 

But now xh'(r 1 ) - h'(:xr') + h'(x)e(r') = O - h'(xr) + h'(x)r = o. 

Therefore in this third case, we also conclude that k(bb') = k(b)k(b 1 ). 

Since clearly k commutes as desired (ki=i* and f*k=f), we have sh0wn 

that k:E '""'E ~ .. Thus'¥ is well-defined. g g•· 

Theorem ILl. '¥ :Ext2~ (R,M) - Es8... (A 1 M) is a bijection. 
I) 

Proof. We define !:Es&_(A,M) - Ext2~ (R,M) and sh0w that !'4' and 
/!) 

'4' ~ a.re identity maps. 

i f Let E :0 - M - B .--- A ..._... O be an R-split singular extension 
u 

of A by M. Since u(a)u(a') - u(aa') E K.er(f), we can define a morphism 

of R-modules g:Q8?Q ~ M by g(:x®.x:') = i-1 (u(x)u(x 1 ) - u(xx 1 )). We 

compute u(x1)(u(x2)u(x3)} = u(x1)[ig(x2®x3) + u(x2x3)} = i(x1gCx/9x3)) 

+ ig(x1®:x:2x3) + u(x1x2x3) because u(x1 )i(rn) = i(x1m). Likewise 

tu(x1 )u(x2)}u(x3) = [ig(x1®x2) + u(x1x2)}u(x3 ) = 0 + ig(x1x2®x3) 

+ u(x1x2x3) because i(m)u(x3) = i(me(x3)) = O. Since the products in 

the algebras a.re associative and i is a monomorphism, .we deduce that 

g(xix2®x3) = :x:1g{x2®x3) + g(x1®x2x3). By Proposition II.6, cp(g) is 

a 2-cocycle. To recall the construction, we write g = g~, and we define 
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!([E]) = [c,o(g:)J E Ext\
0 

(R,M). 

We show 'g is well-defined. Suppose k:E*,.., E, where E* is these-

i.* f* u* u 
quence o - M - B* c,.:;u·* .. A - o. We need to show that gE* ,..., gE. We 

· ku* u* 
are given that f(ku*) = f*u* = lA. We conclude that gE ·= gE* because 

i = ki* implies that i-1 (ku*(x)ku*(x 1 )-ku*(xx 1 )} = i*1{u*(x)u*(x 1)-u*(xx 1)) 

E M. Writing u' = ku.* for simplicity, it will therefore suffice to show 

u 1 u 
that gE ,.,., gE. Since (u-u' )(x) E Ker(f) = Im(i), write h(x) for the 

unique element in M such that ih(x) = (u-u')(x). Clearly h may be con

sidered in .hon~nCQ8Q,M). We compute, for x,x' E Q, 

i(g~-gr) (x®.x: 1 ) = {u(x)u(x• )-u(xx' )} - (u 1 (x)u' (x 1J-u 1 (xx')} 

= u(x)(u(x' )-u' (x 1 )} - (u(x)-u' (x)}u' (x 1 ) - ih(:x:x') 

= i(xh(x 1 )) + i(h(x)e{x 1 )) - ih(xx 1 ). Since e{x') = O and ''i'i(h)(:x.®x') 

u u' l = h(d2 (e®x®x 1 )) = xh(x') - h(xx 1 ), we conclude that gE - gE = 8 (h). 

Thus :Sis well-defined. We shall henceforth write gu instead of~· 

. We show :!-'f is the identity map on Ext2"lr' (R.,M). We defined 
a,, 

't'([g]) = [E l, where E :0 - M -2:.... B ~A - Q. Then we defined 
g g g u 

S([E ]) = [c,ogu] with igu(~') = u(x)u(x') - u(xx') for any x,x' E Q. 
g 

. Since u(x)u(x') ... u(xx: 1 ) = (O+O+\jlg(:x.®x 1 .) ,xx') - (O,xx') = i~g(:x.®x'), 

.we can conclude that gu = \jig or g = ~gu •. All the more,~'!' is the 

identity map. 
. s 

Finally consider 'i'Y, defined on E a(A,M). Given 

E:O - M -1... B..-~.:. .. A - O, we defined ~((E]) = [c,ogu] with igu(:x.®xt) 
u 

= u(x)u(x') - u(xx' ). Then '!'([cpgu]) = [F] where 

iU U fU 
F:O - M.,....... B ......_. A·.- O. 

The product in Bu is given by (m,a)(m 1 ,a. 1 ) = (am 1+me:(a') + (gu), (a®a. 1), 

aa') with (gu) 1 I Q8Q :::: gu, otherwise zero. 

Since ~ was she1,wn a'bove to be independent of the choice of' 0 right 
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· inverse" fo.r f, we assume u preserves the identity element. To .see that 

this is pessible, supwose u(e) = b f. eB •. Define m = i-1 (b -eB),' and 
A O · 0 0 

let u*(a) ·= u,(a) - i(an\./• Th:e:n fu*(a) = a - 0 and u*(eA) = u(e.1/ 

, ... (b()'"'eB) f: ·eB~ That is, u* is a right inverse for f which preserves 

the identity-element,, 

Define k:.Bu._ B by k(m.ga) = i(m) + u(a). Then k(O;eA) = u(eA) 

= eB. .The required commu~ativi ty (i=ki u and :f'k=fu) is evident. Finally 

we compare k(bb') and k(b)k(b' ) .•. For b :::: (m,a) and b' = (m' ,a'}, we 

have k(b)k(b 1,) = i(m)i(m 1 ) + ·u(a)i(m') + ·i(m)u(a') + u(a)u(a') and 

k(bb') ~ k(am' + me{a 1 ) +·(gu)'(a~'),a.a.1 ) = i(am 1 ) +:i(me(a')) 
\ . . 

+ i(gu) 1 (a®a. 1 ) + ·u(a.a1).. .Thus k is a morphism of algebras in case 

i(gu):t·(a®a. 1) + u(aa. 1 ) = u(a):u(a' )m I:f a and a. 1 belong to Q~ .(gu), = g\ 

and. the equality '.q.olds. If eith~r a, or a' is in R,(g1'1)(a.®a·1 ) = 0 and 

u(a.a. 1 ) ·= u(a.)u(a') b~oause u(eA) '= .eB. This completes the demonstration 

that k:F-E, and we conclude that 1'~ ia the identity function.on 

E9~(A,MJ. Thus theorem !I.l is proved and ~ = 'Y-1• 

§ 3. .irhe Bijection iii :Ext2i (R,M) ·~ EJl!)](Q,M) 
I . A 

2 . ) '• ( ) We want to define 9i :Ext ~, (R;M -~ EA!)] Q.,M • For a given oooyole 

g we construct a sequence ill as i:n the di a.gram 
g 

d3 d2 xl ,;..,;,,u d1:. -A e: R ....• ' ~ ~ :i2 
M+X1 

i~ f i :O~M y Q 0. 
g 

Define I= {(g(w),-d2 (w)}; w E x2} and let Y be the quotient of the 
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direct sum of A-modules M + x1 by its left A-.submodule I. Let 

p :M + JS_ - Y 'be the quotient map. Define i :M ~ Y by i(m) = p(m,O). 

We want to define f(p(m,v)) = d1 (v) where v E x1 • To see that tbis is 

possible, supp0se p (m.;v) = p Cm'·; v 1 ),. Then for some w E x2 we have 

d/w) = v - v•, and thus O = d1 (d2 (w)) = d1 (v) - d1 (v'). Clearly i and 

fare morphisms of A-.modulese Since Im(d1 ) = Q, f is surjective. Evi~ 

·de:ntly Im(i.) c Ker(f). On the other hand if y = p(m,v) E Ker(f), then 

0 = f(y)= d1 (v). Si.tlce Ker d1 = Im d2 , v = d2 (w) for some w E x2 • 

It follows that i(m+g(w)) = p(m,O) + .p(g(w),O) = p(m,d2 (w)) = y and con-

sequently Im(i) ::> Ker(f)9 To conclude that§ is an exact sequence in 
g 

.}11-, it remains only to show that i is injective. If i(m) = 0 E Y then 

(m,O) = (g(w),-d2 (w)) for some w E x2 • Tbis implies that m = g(w) and 

d/w) = o. Thus w = d3 (x) for .some x E Xy Since g is a 2-cocycle, 

0 = 82 (g). = gd3 and m = g(d3(x)) = Ou We have shown that i is injec

tive and therefore that .[§g] E EA!!](Q,M). 

Definition. H[g]) = [§ J. 
g 

We must shcDW that if g - g* = 81 (h) then ·§ ,.., .§ *. Let Y* be ·the 
g g 

quotient of M + x1 by I= ((g*(w),-d2 (w));w E x2 } and write 

p*:M + x1 - Y* •. If p(m,v) = ;p(m' ,v') .then g(w) = m - m' and 

d2 (w) = v' - v for some w E x2 .. From these conditions we obtain 

(m+h(v)) ... (m'+h(v 1}) = g(w) ·- ·h(d~(w)) = g*(w). We have shown ·that 

k:Y - Y* can be well-defined by k(p(m,.:v)) = p*(m+h(v),v). Evidently 

k is a morphism of A-modules. It follows that k:.§ ,.., § *' as required. 
g g 

Theorem II.2. § :Ext2i (R,M) ·.;,,___. EA!m(Q,M) is a bijection. 
I 

Proof. We show that§ is injective and surjective. 
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We suppose that .H[g3) = H[g*]}. Then we are given k:ili ""iJi *' g g 

that j,s k:Y .;;...__. Y*;. Let j :x1 - M + x1 be the natural injection. 

Since f* (kp-p*)j = (fp-.f*p*)j = d1 - d1 = O, we can define h:X1 ~ M 

by h = i*-1 (kp-p*)j. We observe that i*(g-g*) = kig - i*g* = kp:jd2 

- p*jd.2 = (kp-p*)jd2 ::: i*hd2 = i*81 (h). Since i* is a mcmom0rphism, 

we conclude that g ... g* = 81 (h) and [g] = [g*]. We have proved that ·ill 

is an injectiono 

.. Select any [E] E E.A.!ffi(Q,M;). Then E is an .exact sequence in A!m' say 

' , i' .f' :. 
O ---.-. M - X - Q ......... D. Consider d1 :X1 - Q c A. Since x1 is 

a projective module in AIJJI and f 1 is an epimorphism, there is some 

h E homA~(X1 ,X) such that the diagram 

commutes. Since f"'(hd2 ) = d1d2 = O, we can .define g E homA~(x2 ,M) by 

'..;1 ' 
g ·= i I hd2 • We want to. construct k:.:ili.g ,..._, E. For any p(m,v) E Y 

= p(M+X1 ) define k(p(m,v)) = i·1 (m) + h(v:). To show this is possible 

suppose p(m,v) = p(m•.,v• ).. Then m - .m' = g(w:) and v' - v = q2 (w) for 

some w E x2 • This implies that i·1 (m) + h(v) = i'(m'+g(w,)) + h(v 1 -d2 (w).) 

= i'1{m1 ) + h(v•) because i''g = hd.2 • We have defined a morphism of A-

modules k:;Y- Xu Clearly ki = i'. If y = p(m,,v) E Y, we evaluate 

f 1k(y) = f' (i 1 (m)+h(v)) = 0 + d1 (v) = f(y). Thus also f'k = f, which 

completes the proof that k;:m ""E. We have demonstrated that ili([g]) 
g 

=· [E]. This completes the proof 0f the ·theorem. 



~ 4. The Injection µ:E 6;t(L,M) - ~(V(L) ,M) 

To define µ, we shall define a cocycle ~ = g from a given [FJ in 

Es;,e.(L,M). Then we let µ[F] be the cohomology class determined by~· 

W i f . d . ri ting F as the sequence O - M - G .., __ , L __. 0, efine 
u 

g E hon~1_n(LAL,M) .by ig(xAX') = [u(x),u(x 1 )] - u([x,x']). Define 

g E ho~~(V /L) ,M) by g(a®w) = ag(w) where a E Le and w E 1"1. 

Lemma. g is a 2-cocycle in ho~e!JJt(V(L) ,M). 
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For a.generator e®zEV3(L), 'With z = x1Ax2Ax:3 E A3L and e the 

identity of Le, we have S2 (g)(e®z) = g(d3(e®z)) =· x1g(x2AX3) - x2g(x1AX3) 

+ x3g(x1AX2 ) - g([x1 ,x2 JAX3) + g([x1 ,x3]AX2 ) - g([x2 ,x3]AX1 ). Abbreviate 

~(x. ),[u(x.),u(x. )] by u. "k and write x ... k for [[x. ,x.J,x.J. Since 
1 .J K 1J 1J 1 J K 

i(m)= [u(x),i(m)J for x EL, we obtain i(62 (g))(e®z) 

= f 123 • [ u ( ":!.) 'u[x2' "3 j 1 . [u213· [u (x) , u [":!_' x3] ~ 
r j 

+ [u312- ~(x3 ), u[ll:i_,"21) - ~U["i_ ,x2], u (x3)] - u(":i.23)) 

+ [[u[":!_ ,x3J, u(x2 j -u(":i_32 ~ - f [u[x2,x3J, u(":!_] -(x231 )) 

.(' 2 I""' 
conclude that O 1.g) = O, as asserted. 

To showµ is well~defined, suppose given k:F ...... F* such that the· 

solid arrows in the diagram 

F:O __ ,... M i f •L G~.:.. 

II kl :. II 
M 

i* 
G* .i:=-*--• L u 

---o 

F*:o--- ---o 
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commute and k[y1 ,y2] = [ky1 ,ky2]. Define h E hon\m(L,M) by i*h = ku - u* 

and define h E ho~e!lJl(V1 (L) ,M) by h(a®.x:) = ah(x). We observe that 

= [ku(x1 ),ku(x2)-u*(x2)J - [u*(x1 )-ku(x1 ),u*(x2)J - (ku-u*)[x1 ,x2] 

= [ku(x1 ),i*h(x2)] - [u*(x2),i*h(x1 )] - i*h[x.,y] 

= i * (x1h(x2)-x2h(x1 )-h[x, y ]} , because [ku(x), i * (m) J = i * (m) = [u* (x), i * (m) J. 

We conclude that~ - µF* = 81 <b'.), andµ is well-defined. 

map. 

Theorem rr.3. µ:Es.t,(L,M) ~ H2 (V(L),M) is an injection. 

We define v:Im(µ) - Es.;e_(L,M). and show that \Jµ is the identity 

Given [g] E H2 (V(L),M), define an R-module G* to be the direct 

sum M +.L. Define a bracket operation in G* by [(m,x),(m',x')] 

= (xm 1 -x 1m+g(e®.x:Ax 1 ),[x,x 1 ]). Define v to be the sequence of R-modules 
g 

"* f* 
0 - M ..1:.... G*-u:••L - 0 where i*(m) = (m,O),f*(m,x) = x and 

u*(x) = (O,x). Clearly v is R-split exact. Suppose f(y) = x EL for 
g 

y E G*. Since necessarily· y = (m, x) , it follows that [y, i * (m' ) ] 

= (xm'-0,0) = i(xm' ). Also with y' = (m' ,x') we see that f*([y,y' ]) 

= [x,x'] = (f*(y),f*(y1 )]. 

To be able to define v([g]) to be the class of the extension v, 
g 

we must yet show that G.is a Lie algebra.and that ,such a definition 

is independent of the choice of g. We have not yet used the condition 

that [g] is in the image ofµ. Now assuming that g = ~' as defined 

above, we obtain the diagram 



F :0 ---+ ~ _i __ kr=!="""~ __ _, o 

i* f* 
\J :0 --- M --- G*---> 1 --- O. 

g 

Define k:G* _, G by k(m,x) = i(rn) + u(x). Clearly the diagram com-
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mutes, hence by the five-lemma k is an isomorphism of R-modules. Given" 

+ iµF,(e0.x:1Ax) + u[x,y] = k[y11 y2]. Since G is a Lie algebra, 

iG :G - (Ge\ is a monomorphism of Lie algebras by Proposition I.3. 

It follows that· iGJc:G* --• (Ge )L is also a monomorphism of Lie algebras. 

This shows that G* is a Lie algebra, and moreover that k:\Jg"" F. 

To show \J is well-defined, we suppose g - g* = 81 (h) and construct 

k:\) ""'\) *. g g Define h' E"horr~:nCL,M) by h' (x) = h(e®x:). We are given 

that (g-g*)(e®x:/,x2 ) = x1h 1 Cx) - x2h 1 (x1 ) - h' ([x1 ,x2]). We define 

k:G----> G* by k(m,x) = Cm+h 1 (x) 1 x). The required commutativity 

(f*k = f and ki = i*) is obvious. Writing y" = (m. ,x.) E G, we compute 
l l l 

k([y1 ,y2]) = k(x1m2-x2m1+g(e®x:1Ax2),[x1 ,x2J) 

= (x1 (m2+h' (x2 )) - x2 (m1+h'(x1 )) + g*(e®x1Ax2),[x1 ,x2]) = [k(y1 ),k(y2)]. 

We conclude that k:\J ,...., v *• 
g g 

While proving that G was a Lie algebra, 

we demonstrated that given [F] E Es£(L,M) it follows that 

Thus \Jµ([F]) = [\J(µF)J = [F], and the theorem is proved. 



~5. The Injection ®:If(V(L) ,M) - ~eiffi(Q,M), 

With Assumption H2(V(L)) = 0 

. Given a cohomology class [g] in H2(V(L) ,M), we shall define a 

sequence ® g. We first consider the dire ct sum M + V 1 (L) in Le~· Let 
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I be the left Le-submodule [(g(w),-d2(w));w E v2(L)}. Let Y: be the quo-
~ . . 

tient L -module (M+V1 (L))/I and let p:M + v1 (L) - Y be the quotient 

map. The construction is indicated in the diagram 

• • • 
d3 

• V2(L) . 
d2 

v1 (L) 
dl 

QC Le 

gl M+V1 '.r,\,~ II 

f M. .l. y Q 

Define i:M - Y by i(m) = p(m,o). We want to define f :Y - Q by 

fp(m,v) = d1 (v). If (m,v) - (m' ,v') E I then v - v'. = d2(w) for some 

w E Y2(L). Thus O = d1 (d2(w)) = d1 (v) - d1 (v') and f can be well-defined. 

Clearly Im(i) c Ker(f) and i and fare morphisms of Le-modules. To 

show that f is surjective, choose any z E Q. By the corollary to Pro-

e position 1.5, z = Ea.x. for some a. EL and x. EL. Denote 
l. l. 1 1 

v = Ea.®x. E v1 (L). It follows that fp(O,v) = z, and f is surjective. 
l. 1 

Let ® be the sequence O - M .L Y ....!.... Q - O. To conclude the g 

demonstration that ® is exact we need to show that Im(i) = Ker(f) and 
g 

that i is an .. injection. To prove the inclusion, select any y = p (m, v) 

in the kernel off. Since O = f(y) = d1 (v), we can write v = d2(w) for 

:some w E v2(L) by Proposition II.2. Therefore iCm+g(w)) = p(m,O) 

+ p(O,d2(w)) = y and Ker(f) c Im(i), as desired. Now suppose 

i(m) = p(O,O) E Y; we shall show that m = o. We are given that m = g(w) 



·and O = d2 (w) for some w E v2 (L). With the assumption that ij2 (V(L)) = o, 

we can write w = d3(z) for some z E v3(1). Since g is a 2-cocycle, 

m = g(d3(z)) = 62(g)(z) = O. We have demonstrated that i is injective 

and consequently that® is exact. g 

We ~how that we can well-define·® by·®([g]) = [® ]. -Suppose . g 

g - g* =61 (h), for ~ome h E ho~e!m(V1 (L),M), Let ®g be,the sequence 

i* . f* . 
O - M - Y* - Q - O ·constructed from .g*. We want to define 

k:Y - Y* by kp(m,v) = p*(m+h(v),v). To ,see this is possible, sup

pose (m,v) - (m',v') EI. Then for some w E v2 (L),m - ~, = g(w) and 

v - v' = - ·d2 (w). Th.is implies that (m+h(v),v) - (m'+h(v 1 ),v 1 ) 

= (g(w) - ·h(d2 (w)),v-v') = (g*(w),-d2 (w)) EI*. Clearly k, defined in 

this manner, is a morphism in 1~ and commutes ·as desired (ki=i* and 

:f'*k=i). Since· t4is shows that k :® ,..., ® *, we can conclude that ® is . g g 

well-defined. 

Given a oohomology class [g] in H2 (V(L) ,M), let ® denote the top 
g 

sequence in the diagram 

(8) :0 -- M --·-1--- Y ___ f __ ..,. Q -- 0 
g 

II 

Let Fa, the bottom row of the diagram, be the :representative of,([®]) g 

·which we constructed from® by restriction •. Define a morphism of R-
g 

·modules u 1 :L ·- G' ·by u 1 (x) = p(O,e®x). Clearly f'u' is the identity 

function on L, whioh proves the 1emma8 
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The lemma motivates consideration of commutativity of the diagram 

If (V(L) ,M) 

Im(®) C EL~(Q,M). 

Given any cohomology class [g] in. H2 (V(L),M), we constructed in §4 an 

R-split exact sequence 'Vg• With the assumption H2 (V(L)) = 0 we are 

going to show that we can define ~:H2 (V(L),M) _____.... Es~(L,M) by 

\i([g]) = 'V • 
g 

It will suffice to show that 'Vg,..., F8 where F8 is con-

structed from gas in the lemmae The constructions are exhibited iii 

the diagram 

i' G'=f-1 (L) f' L ------o 

k1 II 

f* G* L 

II 

i* 
'V :0 ------ M ------

_____ _, o. 
g 

We shall define an isomorphism k:G* - G' which respects the bracket 

operation. Since iG' :G' ---- G'e was shown in Chapter I, §4, to be a 

monomorphism of Lie algebras? it will then follow that iG 1k:G*-----+ aie 

is also a monomorphism of R-modules which preserves the bracket aper-

ation. This will show that G* is a Lie algebrae 

The formula k(m,x) = p(m,e®x) defines a morphism of R-modules 

k:G-p(M+(e®L)) c G'. Notice that f'k(m,x) = d1 (e®x) = x = f*(m,x) • 

.Since clearly·ki* = i', k is an isomorphism of R-modules by the five-

lemma. We recall that the Lie product in G' is defined by [y1 ,y2] 

= f' (y1 )y2 - f' (y2 )y1 o Denoting y1 = (mi ,x) E G*, we calculate 



== xlp(m2,e©x2) ""'x2p(ml,e®x:l) = p(xlm2-x2ml' xl©x2-x2©xl) 

== p(x1m2-x2m1+g(e©x1Ax2),e®[x1 ,x2]) == k[y1 ,y2]. We have shown that k 

respects the bracket operation and consequently we can conclude that 

G* is a. Lie algebra. Also k gives an equivalence of vg with F8• We 

have explicitly defined v:H2 (V(L),M) --Es.;e_(L,M) such that v == 6.® 

and vlrm(µ):: v. 

Theorem II.4·s .µ:E8.t(L,M) ,----+ H2 ((1) ,M) is a bijection. 

Proof. The argument o:f" IJ:'heorem II.3 can be used to show that vµ 

is the identity map on E6.t.CL ,M). We shall prove that µ\) is the identity 

map on H2 (V(L),M). Given a cocycle g we have defined an R-split singu-

la.r extension of L by M which we denoted by F:O .- M - G*1-'--•1 - b. 

Since we defined µ*(x) = (O,x) E G*, we obtain i*~(e®xl\x 1 ) 

== [u * (x), u * (x') J - u * [x,x' ]==(O-O+gCe®.x:Ax 1:), [:+·;x 1'J). - u *[:i;:,.xi'J 

== i*g(e©.x:Ax 1 ). This.computation shows that the cocycle µF coincides 

with g. All. the more, iJV is the identity map on Es~(L,M), because 

µv([g]) == µ[F] = [~] == [g]. 

Corollary •. ®:H2 (V(L),M) ____.. E16!J](Q,M) is an injection. 

It was shown in the proof of the theorem that~@ is the identity 

map on ~(V(L),M). 

Theorem II.6. E81e!Dl(Q,M) c Im(®) and ®µ6.frm® is the identity func

tion on Im(®) c E-e[J!(Q,M). 
L 



Proof. We suppose given an R-split extension F of Q by M. Let 

F be the top row in the diagram 

F:O M i 
X<F 

f 
"Q 0 u 

II 
i' 1 · f' 

-'L F6 :o M G=f-. (1) 4-- .o 
u' 

II 
E:O M i* y f* 

Q 

We constructed by restriction the R-split singular extension F6 

of L by M. We defined µ([F6]) to be [g], where ig(e®.x:1Ax2) 

o. 
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= [u'(x1),u'(x2)] - u'[x1 ,x2J. Then we defined ®([g]) to be the class 

of the bottom row E of the diagram, where Y = CM+V1 (L))/(Cg(w),-:-d2 (w))}. 

We are going to show that E and Fare equivalent. Define 

k' :M + v1 (L) - X by k' (m,ai&x) = i(m) + au' (x) for a E Le and extend 

by R-linearity. This is possible because u' is a morphism of R-modules. 

For w = ei&x:1Ax2 E v2 (L), we compute 

k' (O,d2 (w)) = k' (o,x1i&x:2-x}~x1-e®[x1 ,x2]) 

We also compute k' (g(w),O) = ig(w) + O = [u' (x1 ),u' Cx2)] - u' [x1 ,x2]. 

But in G we defined [y1 ,y2] = f 1 (y1 )y2 - f' (y2 )y1 • We conclude that 

k' (o,d2 (w)) = k' (g(w),o). Consequently k' annihilates the Le submodule 

((g(w);:d2 (w)); w E v2 (L)}. Therefore there is a map k:Y -x such 

that kp = k', where p:M + v1 (L) - Y is the quotient map. We want 

to show that k:E ,.,_, F~ Obviously ki* = i and fk = f*. We verify that 

k is a morphism of Le-modulese Writing y = p(m,ai&x), for any a' E Le 



we have k(a'y) = kp(a'm,a'a®.x:) = i(a'm) + a'au(x) = a'(i(m) + au(x)) 

~ a'k(y). W~ conclude that k:E,..., F, as asserted. Therefore ®([g]) 

= [E] = [F] and Es1em(Q,M) C Im®. 

To prove the second assertion, notice in the above argument we 

used,only the existence of u' = ul1 :L - G satisfying f'u' = 11 • 

The argument did not require that [F] be in Es1e!l)?(Q,M), but only that 

F6 represent a class in Es.t_(L,M). By the lemma, the image of 6lrm@ 
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is a subset of Est!L,M). Therefore by the above argument, if F repre

sents any class in Im(®), then ®µ6([F]) = @µ(F6 ) ~ ®([g]) = [F] and 

the theorem is proved. 



CH/.\.PTER .III 

EXAMPLES 

In this chapter we consider ·the ring Z of integers as our underlying 

ring R. . In this case, !m is the category of all abelian groups, and any 

commutative ring with unity is a Z-algebra. Let z2 denote the additive 

group of integers modulo two. Let L be the direct sum z2 + z2 of two 

copies of z2 with generators x and y, respectively. Define a bilinear 

mapping of L x L into L by [x,y] = O. Let Q be the ideal generated by 

x and yin the polynomial ring z2[x,y] in x and y with coefficients in 

z2• Let t.,6 denote the direct sum Z + Q •. Since xy = yx in Zix,y], it 

follows that iL:L - (L6 )L is a group mondmorphism preserving the 

bracket operation. Therefore we·can conclude that Lis a Lie algebra. 

Clearly Le may be considered as the enveloping algebra of L •. Let M, 

as an abelian group, be z2 with,gene:rator m~ Define an L-module·struc

ture on M by xm = 0 = ym. 

Proposition III.l. 2 Ext ~ (R,M) = O. 
0 

In the ~0 -cohomology we can consider g E ho~(~,M) as a 2-cocycle 

in case g satisfies O = u1 g(uis)u3) - g(u1uiru3) + g(u1®u2u3) for ui E Q. 

Thus g is a cocycle if and only if g(u1u2®u3) = g(u1®u2u3) for ui E Q. 

We can write any element u of Qin the form xiyj where i and j are 

non-negative and 1. '!: i + j. We define h E ho~(Q,M) as follows. Define 

h(x) = 0 and h(y) = O. If 2 ~ i define h(xi) = g(xi-l®x), and if 2 ~ .j 

41 
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define h(yJ) = g(yj-l®y).. If 1~ i and l!:.j define h(xiyJ) = g(xi-lyj®x). 

· Lemma.. If 1 '!: m + r and l ::!:. n + s, .then g (i11yI'@xllyS) = h (xtn+nr+s) • 

Suppose first that 1~ n. Then h(xffi+riyr+s) = g(~+n-lyI"+e@x) 

= g(xmyr®xnys), as required. We .consider next the case when n = O and 

m = o. Then h(xtn+ny-1'+8 ) = h(yr+s) = g(yr+s-1®y) = .g(yr®y-s)= g(xm~®xnys~ 1 

The case 15m follows like the first case, ·-ail.ti the lemma is proved. 

Let u1 := xf!!yr and u2 = "J'!J.y6 • Using the lemma, we compute g(u1®q,2) 

- g(xffir@xtl.yS) = h(xm+:nyr+s) = h(u1u2) = u1h(u.2)-h(u1u2). This demon

strates that·g is the coboundary of h. Since g was an arbitrary cocycle, 

this completes the proof of the proposition • 

. If h E horrmi(L,M) then the coboundary of h evaluated at the gener

ator x1t.y of LAL is xh(y)-yh(x)-h[x,y] = 0 + 0 + h(O) = o. Any gin 

horn (LAL,M) .may be considered as a cocycle because Lit.LAL= O. In 

particular, let g be defined by mapping xAy tom. The proposition 

follows because this g is clearly .the only possible nonzero cocycle. 

We consider an arbitrary element win Le®LAL. We recall that·L 

consists of the four elements 0,x, jl', ·and x+y. Since xAx = O, y/\y = O, 

and y/\x = -x/\y,·we can 'Write was a ®.x:Ay for some a E 19 • If w is in 

the ker:nel of d2 :L~L/\L~ L9®L, then 0 - . d2 (w) = a.x®y .,. a-s@x - a®©. 

We have obtained a;y®x =·~in Le@L. But L0®L decoil).poses in.to the 

direct sum .L0®x and Le®y,, .Consequentlr, a= 0 or a has a factor of 2 • 

. In either case, .w =- 0 and the proposition .. follows. 



We n0w construct for computation.the portion up ton= 3 of an 

~-projective resolution .for Z as an Le-module. For n~3 we define the 

resolution canG>nically. We shall denote the resolution, loy 

.. . . dn d1 
P*:.~~~.P.~ ••• --+ P--+ O. n o 

We let P = Le and we let e ·be the augmentation of Le which maps the 
0 

direc.t summand Q to · zero. We define P1 to be the direct sum of two 

copies of Le®Z. Denote the identity elements of these copies ef Z by 

·ri and r 2 respectively. With e the identity element of L, define 

d1(e®r1) = x and a1 (e®r2 ) = y. We recall that d1 (a®ri) = ad1 (e®.ri) for 

·a E 1e.. If u E Q then u is a sum o~ products aificiyJ I where i+j:. ~1. 

We can consider aij E Z, and we recall that such a product is :r;-ead 

modulo tw0. Then 

i~l i j-1 
dl { (j~O aijx )®r1 + ( j~O aijX y )®r2} = U,. 

hence Im(d1) = Ker e. 

Let ~2 be the direct sum of three copies of Le®Z with identity 

elements s1 , s2 , and s3 for the copies of z. Define d2 :P 2--. P1 by 

d2 (e®s1 ) = 2®r1 , d2 (e®s2 ) = 2&-2 , d2 (e®s3) = ;y®r1-x®r2• We see that 

d1d2 (e®s1+e®s2 ) = d1 (2®r1+2®r2) = 2x+2y = O. Also~ d1a2(1®s;3) = yx-xy 

= o. To show that conversely Ker d1 c Im d2 , we decompose P1 into the 

direct sum WZ, ~, Q&)Z, and WZ with.generators e®.r1 ,xiyj®r1 , 

xiyJ®r2 , and e®r2 , respectively. We ob.serve that d1 (n®r1) = nxELC Q 

and d1 (m&r-2 ) = my E L c Q. Decompose Q into the direct sum L ·+ Q' ·, 

.where an element of QI is of the: form :x:iyj w:iJ;h · 2 ~ i + j. ·we ob:>serve 

that the image of d1 restricted to (Q8)Z) + (Q8)Z). lies in Q'. Now an 

.arbitrary element in P1 is of the form w = .n®r1 + u®r1 + v®r2 + m&r-2 , 

.. where u an,d v belong to Q.. Consequently if d1 (w) = 0 E P1 then 
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It follows by unique factorization in the polynomial ring that u = u'y 

and v = v'x. We obtain in the polynomial ring u'yx = - v'xy. This 

implies that u 1 = - v• .. Define a= u'{y®r1 - x®r2) = u®.r1+v®.r2~ Si:nce 

n and m are even, d2 l(n/2)®s1 + u'®s3 + (m/2)®s) = n®.r1 + u' (y®r1 - x®r2) 

+ m®r2 = w. We have demonstrated thatim(d2) = Ker(dl). 

Let P3 be the direct sum of five copies of Le®Z. Denote the 

identity elements of the copies of Z by t 1 , t 2 , t 3, t 41 and t 5, respec.

tively. An arbitrary el~ment in P3 is of the form w ·~ i~l (ai®ti) 

, where ai E Le. Define d3 (a®t1) = ax®s1 , d3 (a®t2) = ay®s1 , d3 (a®t3) 

= ax®s2, d3(a®t4) = ay®s2, and d3(a®t5) = 2a®s3• Then d2d/w) 

= d2{(a1x+a2y)®s1 + (a3x+a4y)®s2 + 2a5®s3} 

= 2(a1x+a2y)®.r1 + 2(a3x+a4y)®.r2 + ·2a5 (y®r1""':x.®r) = O + 0 + 0 = o • 

. To show that Ker(d2) c Im(d3) we decompose P2 into six direct 

· summands as follows. The decomposition consists of three pairs 

(WZ+~.) with the identity element in the two right hand components 

of Z denoted by s1 i:n the first pair, s2 in the second pair, and s3 in 

the third. We have d2 (n®s1) = 2n®.r1 E Z®Zi, d2(m®s2) = 2m®r2 E Z®Z, 

d2 (u®s1) = 2u®.r1 = 0 and d2 (v®s2) = 2v®.r2 = O for a;ny u,v E Q. Moreover, 

d2(,..,g,s3) = w(y®r1 .. x®r2) E Q' for any w E Q. Finally, d2 (p®s3) 

= p(y®r1-x®r2) E 1.RS)Z + I.®Z, a direct sum. If z is an ,arbitrary element 

of P2, we can write z:= {n®s1+u®s1} + {m8ls2+v®s2}.+ (pg,s3+,..,g,s3}. We 

have indicated the manner in which direct summands in P2 map into 

direct summands in P1 • It follows that if d2 (z) = 0 then 2n®r1 = O, 

2m®.r2 = O, w(y®r1-:x.®r2) = O, and p(:y®:t-1-x®r) = O. From .the first two 

conditions, necessarily n = 0 and m= O. From the third ,condition, 

w must be zero becau(:le wy®r1 and wx®r2 lie in different direot summands. 



Since py®.r1 and p:x.®r2 lie in different direct summands, from the ·1ast 

condition :p must be even • .Consequently, if z is in the kernel of d2 ; 

then z = u®s1 + ·v®s2 + :2iir®s3 • Since u· ,and v are in Q we can write · .. 

u = a1x + a2y and v 

= (al:x.®sl+a2y®sl} + 

Im(d3 ) = Ker(d2). 

= a3x + a4y for some ai E 1e. 

(a3x®s2+a4;y®s2} + 2p•®s3 ·= z. 

4 '', 
Then d3{i~1ai®ci+p·t®t5) 

We have proved that 

Since 1e is Le-projective, each 1e®Z 'is also Le-projective. Conse-

quently each of P1 ,P2 , and P3 is Le-projective, and P* is an ~ 1-pro,jective 

resolution of the Le-m0dule z. 

Proposition III.4. Ext2i, (z ,M) = z2 + ·Z2 + z2• 

Consider any f E hom 1e!IR(P1 ,M). Observe that fd2 (e®s1) =2f(e®.r1 ) =0, 

fd)e®s) = 2f(e®.r2 ) = O and fd2 (e®s3 )=yf(e®r1) - xf(e®.r2 ) = o. Thus 

zero is the only co "boundary. Consider an arbitrary g E hom I}~!Dt(P 2 , M) • 

. .Since Q operates trivially on M = z2 , we obtain gd3 (e®t1 ) 0 g(x®e1 ) 

= xg(e®s1 ) = 0-, .gd3 (e®t2 ) = yg(e®s1) = O, gd3 (e®t3) = xg(e®s2), 

gd3(~4) = yg(e®s2 ),, and gd3 (e®t5 ) = 2g(e®s3 ) = o. Therefore any 

morphism of Le-modules g:P2--. M is a 2-cocycle. With J'ij = 1 when i=j, 

otherwise zero, define g. (e®s..) = 8 . . rn E M. .Let h. ·(e®s.) = o, otherwise 
1 J 1J 1 ~ 

m. We have defined cocyi::les h. which satisfy h. (e®s.) ~- (6. j+l)m. · With 
· 1 _ 1 J i 

the usual addi.tion of functions, h3 = g1 + g2 ,~ = g1 +g3, and h1 = g2 + g3• 

Finally define k by k(e®t1) = m :for all i. We mention that k =:g1+g2+g3 • 

. Explicitly, this set of 2-~ocycles (o, gl' g2 , g3 , ~, h2, h3; k) has the 

additive structure.of the direct suqi z2 + z2 + z2• 

CQrQll1if'l• .. E,t:L,M)·conta:ins at least eight elements. 
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is an injection. 

Proposition III.5. There are exac~ly eight elements in E.,cL,M). 

With Ext(,) the classical extension functor on;!)], we recall that 

Ext(z2+z2,z2) = Ext(z2,z2) + Ext(z2 ,z2 ) = z2 + z2• Hence, as an a,belian 

group, we know L has exactly four classes of extensions· ·by M~ For 

0 ~ j !:,3, we shall explicitly define an exact ~equence of abelian groups 
f. . . ij . J . 

o _... ~ G .~ ~ 0, which we denote by E . • First, let G0 denote 
J . J 

the direct sum z2 + z2 + z2 with generators a,b, and c, respectively; 

.for the cyclic groups of order two. Defj_ne f (a) = x,f (b) = y,.f (c) = O, 
0 0 0 

and i 0 (m) = c. Let G1 = G2 = G3 be the direct sum z4 + z2 w:ith generator 

a for z4 and b for z2• Let each of i 1 , i 2, and i 3 map m to 2a. Define 

f 1 (a) = x,f1 (b) = y,f2(a) = y,f2 (b) = x,f3(a) = x, and f 3(b):;: x + y. 

We may consider each G. as a trivial Lie algebra; that is, let the 
J 

Lie product of any two elements be zero. Gle~ly each fj is a morphism 

of Lie algebras because the Lie product in Lis also trivial. The 

condition 0f Proposition r.7 is obviously satisfied because both the· 

module operation on Mand Lie products in G. a.re zero. We therefore 
J 

can consider each E. as a singular extension of L by M. 
J 

Lemma. The classes [E . .] and [E ., ] in E iL,M) are distinct unless 
J J. ~ 

j = j I• 

Obviously E is not equivalent to E. for 1...:. because G is not 
0 J 

.., J 
0 

isqmorphic as an abelian group with G. 
·J 

if l~j. We consider El, E2, 

and E3• First, suppose that there is an equivalence k:Ef'"'E2• Then 

x = f 1 (a) = f 2(k(a)). But a is of order 4 and f;1 <.x) = (b,b+2a} consists 

of elements of order 2. Therefore the classes [E1] and [E2] are distinct. 
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Second, suppose that there is an equivalence k:E1-Ey Then y= f 1 (b) 

= f 3 (k(b)). But bis of order 2 and f31 (y) = (b-a,b+a} consists of 

elements of order 4. Therefore [E1 ] and [E3] are distinct. Finally, if 

we assume that k:E2-E3 , then x= f/b) = f 3 (k(b)). But b is of order 2 

and f31 (x) = (a,3a} consists of elements of order 4. This completes the 

proof of the lemma. 

We are now going to define non-zero Lie products in G .• 
J 

let Fj denote the corresponding singular extension of L by M. 

We shall 

In G 
0 

define [a,b] = c and [b,a] = -c = c. Otherwise let the Lie product be 

zero. Since f(c) = O, f respects this bracket operation. Moreover this 

is the only possible non-zero bracket operation such that the condition 

of Proposition I.7 holds. For example, if the condition holds then 

necessarily [a,c] = [a,i (m)] = xm = O. Clearly the class determined 
0 

by F is distinct from all the E .• 
0 J 

In G1 , G2, and a3 define [a,b] = 2a and [b,a] = -2a = 2a, otherwise 

zero. Up to equivalence, this is again the only definition which can 

yield singular extensions of L by M. Again since each F. has a non
J 

zero Lie product, F. cannot be equivalent to E . • Since as abelian 
J J 

groups there is no map satisfying the commutatively condition between 

F . and F.,, necessarily [F.] and [F ,] are distinct unless j = j 1 • 
J J J j 

We have exhibited representatives E. and F. for 0~ j !:: 3 of the eight 
J J 

distinct classes in Ez(L, M). 

For clarity, we shall prove that the natural map ia1 of G1 into 

its enveloping algebra is an injection; the argument that this property 

holds for the other G. is similar. Suppose that in ' the tensor algebra 
J 

T(G) we have y = ~c. (a®o - b®a - 2a)d. for some y E G. Notice that any 
1 1 

element in the kernel of the quotient map T(G) ~ ae can be written in 
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this form. Decompose this summation as 

y=mn(a®b-b®a.-2a) + ~c'.(a®b-b®a.-2a)d 1• (*). 
J J 

We have collected first all terms with both c. and d. in z. Thus at 
1 1 

least one of c~ or d~ has degree greater than zero. Equate the terms 
J J 

in equation(*) of degree one to conclude that y = mn(-2a). Equate the 

terms of degree two to obtain 

0 = mn(a®b-b®a) + ~c 1• (-2a)d 1• 
J ' ' J 

(**). 

In equation ( * *) , exactly one of the c '., d '. has degree one, the other 
J J 

zero. We observe that~ is a direct sum with generators a®a., a®b, 

b®a, and b®b. Suppose that y is non-zero. Then Of mn(-2a) implie$ 

that mn must be odd. But if d~ = b then c~(-2a)(d.) = c~(-2a®b) 
J J J J 

= c '· (a®-2b) = 0. Consequently if y is non-zero, we can deduce from 
J 

equation(**) the contradiction O = mn(a®b) + 0 = a®b. We conclude 

that if iG1 (y) = 0 E Gi, we must have y = O. 



SUMMARY AND CONCLUSIONS 

For an arbitrary commutative ring R with unity, we construct a 

bijection of singular extension classes E~(A,M) of an augmented R-alge

bra A by an A-module M with extension classes EA!.J](Q,M) of the augmen

tation ideal Q by M. We give an injection of Ed(Le,M) into the singular 

extension classes E,t:(L,M) of L by M. Considering Ras an A-bimodule, 

we show that Ext2~ (R,M) is in one-to-one correspondence with R-split 
0 

extension classes of E!!JJ!(Q,M). We construct a bijection Ext2t'. (R,M) 
I 

with EA~(Q,M). We show that in general µ:Es,t(L,M) ____. H2 (V(L),M) is 

an injection. If H2 (V(L)) = O, thenµ is a bijection and we can define 

an injection of H2(V(L),M) into EA~(Q,M). In the diagram 

2 - Es <1 (Le iM) = E~~(Q,M) 
C 

Es.t (L,M) Ext~ (R,M) '±' ~ 6. 0 s 

= H2 (V(L) ,M) 
C 

EL e!JJ!( Q ' M) 
C 

Ez(L,M) µ ® 6. ' 

we write"=" above a map to symbolize a bijection, and we write" c" 

to symbolize an injection. We show by example that the ~0 ,V(L), and 

. e, cohomologies a.re distinct. 

Recent developments in homological algebra show strong evidence 

that H*(V(L),M) and the cohomology of Dixmier and Shukla could be in-

eluded within the general framework of relative cohomology theory. It 

is expected that this problem will be settled by a most recent result of 

my adviser and my colleagues concerning triple cohomology in relative 

homological algebra. 
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