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INTRODUCTION

It is well known that the second cohomology of modules over an
algebra can be interpreted as extensions of modules amd that singular
extensions of a Lie algebra.L can be interpreted as the second cohomo-
logies of the enveloping algebra 1° when L.is free or R is a field [11.
However the details of such interpretation over an arbitrary commutative
ring R .with unity have neot yet been fully investigated, although Dixmier
[2] and Shukla [7] have related singular extensions to a second coho-
mology assuming additional conditions on L.

We investigate the‘interfelations among extensions of Lie algebras
over R and extensions of modules over Lie algebras. We also consider
‘closely relations among these extensions and second dimensional coho-
mologies of Lie algebras over R.

In Chapter I we show that the classical bijection between equiva-
lence classes of singular extensions of R-free Lie algebras L and those
of their'enveloping algebras.Le is .in general replaced by a .natural in-
jection, The classical bijection between such classes of extensions of
R-projective augmented aigebras»and‘classes of module extensions of
their augmentation ideal holds true in general. .

In Chapter II we considervfirét that the second cohomology derived
from the classicallbar'constrﬁction for an augmented algebra A is in ‘
one-to-one correqundence with the "R-split" classes of singular ex-.

tensions of A. The L°-complex V(L) derived from the exterior algebra

Av



of L yields a cohomology H*(V(L),M). .In general we inject the "R-split"
classes of singular extensions of L into HE(V(L),M). If HE(V(L)) = 0,
then this correspondence is a bijection. The second cohomology with
respect to an A-projective resolution is in one~to-one correspondence
with all classes of singular extensions of A. Each class of R-split

Iie algebra extensions is canonically a class of singular extensions of
18, provided that HE(V(L)) = 0., Shukla has put a second cohomology of
L into one-to-one correspondence with the classes of singular extensions
of L, when 2 is invertible in R. Therefore we have found the inter-
‘relations existing among fbur different cohomologies and several exten-
sions, These interrelations are explicitly shown by a simple example

in Chapter IITI,
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CHAPTER I
EXTENSIONS
le Preliminaries

In this paper, R is a commutative ring with unity. IQL' denotes

the tensor product over R.

Definition. An R-module L is a Lie algebra.in case there is (1)
a monomorphism of R-modules j:L —— A for some R-algebra A and (2) a
morphism of R-modules [ , J]:I®L —— L such that

Jxyx' D) = 3 3(x") - 3" (x).
This definition follows [6], 5.1.

Proposition I.l. (i) [x,x] =0, (ii) [x,x'] = - [x',x], and

(1ii) [xl,[x2,x3]] + [x2,[x3,xl]] + [xB,[xl,x2]j = 0 (Jacobi's identity).

Since j([x,x]) = (j(x))2 - (j(x))2 = 0, (i) follows because j is
injective. Likewise (ii) follows from j([x,x'J+[x',x]) = O, or from
(1) by writing [x+x',x'+x] = O. A similar computation implies (iii).

The -associated ILie algebra AL of an R-algebra A is defined to be

the R-module A with 'Lie product' [a,a'] = aa' - a'a. If L and L' are

Lie algebras we define a morphism of ILie algebrds f:L'—— L to be-a

morphism of R-modules such that f([x,x']) = [f(x),f(x")].



We have defined an R-module L furnished with a bilinear bracket operation

[, .] tobe a Lie algebra in case there exists an algebra A and a mono-

/

morphism jiL ——— AL which respects the bracket operation.

The tensor algebra T(L) of an R-module L is as an R-module the

[-=]
direct sum Z Tn with T =R, T

=L, T
n=0 0

=-I®L, and in general Tn the

1 2

tensor product of n copies of L. With the natural multiplication in-
‘duced by T ® == T, T(L) becomes an R-algebra. The universal
n m n+m ) — s

enveloping algebra L° of a‘Lié-algebra L is the quotient algebra T(L)/I,

where I is the ideal in T(L) generated by elements of the form

Wy - y® - [x,y], where x,y€L.

Proposition I.2. The composition i :L = Tf:T(L) —— 1° has this
'universal property’: if j:L ——— AL is any morphism of Lie algebras
‘then there is a unique morphism of algebras j:Le ~—= A such that

JiL = Je

As is shown in [6], 5.4, this follows from:the corresponding 'uni-

wversal property' of the tensor algebra.

.Proposition I.%. The natural map iL:L — (Ze)L is a monomorphism

of Lie algebras.

Given an algebra A and a monomorphism of Lie algebras j:L —— A,

by the universal property of i. there is a function‘E:Le —— A ‘such

L

that'}iL = jo Since j is am injection, so is ip. Finally i ([x,y])

= iL(x)iL(y) - iL(y)iL(x) by definition of the quotient algebra L°.

We shall frequently identify L with iL(LY:Le.



Proposition L.k, L° is an augmented algebra..

We have an identity injection.WT:R — R = TO C T(L) and a natural

morphism of algebras eT:T(L) ~—t R, Since € = 1., it follows that

TnT R’
© .

T(L) is as an R-module the direct sum Im(%,) + Ker(e,) =R+ T T,

Denote the quotient map T(L) =~ Le‘by‘pT. Since I = Ker(pT) is a

subset of Ker(eT), it follows that €p induces a morphism of algebras

e : . P
e:L” — R with ep; = €;. Defining h= pTWT’ we see that
eh = elpgly) = eplp = Lp.

Thus we can express L° as a direct sum of R-modules Im(%) + Ker(e).

Proposition I.5. Let C be an ideal in the Lie algebra L and let
D be an ideal in I1°. Then (i) i1 (C)D is & two sided ideal in 1°. Con-
‘sequently (ii) the two sided ideal generated in Le‘by iL(C) is

iL(C)Le = 1%, (C),

We recall that any ideal C in L is necessarily two sided because
[y,c] = [~c,y] for any ¢ € C and y € L. To show (i) we prove (1)
(iL(C)D)Le < i, (C)D and (2) Le(iL(C)D < 1, (C)D. For any a € 1° we have
(iL(c)d)a = iL(o)(da) € iL(C)D. Thus assertion (1) is clear. To show
(2) we consider in L that iL(y)iL(c) = iL(o)iL(y) —-iL([c,y]), for any
y € L. Thus ip(y)(ip(c)a) = ip(e) (1 (y)d) - -iL([c,y])d € iL(C)D.

Since any element in 1° is either in R or is a finite sum of products

of the form iL(yl)...iL(yn),‘(E) follows by induction on n. To prove

(ii) denote by Y the two .sided ideal .LeiL(C)Le generated in L by i, (C).
By (2) Y iL'(c)Le. Since 1° has a unit element iL(C)Le C Y also. There-

fore Y = iL(C)Lé, as desired. Similarly, Y = LeiL(C).



o € . . (1€ _ ve:
Corollary. The augmentation ideal of L ls'lL(L>L =L 1L(L).

Let Q denote the augmentation ideal, Ker(e). Since pp is a sur-
jection and epT = €py WE have Q = pT(KerQT). Clearly KereT is the two
sided ideal in T(L) generated by Tl = L. Thus Q = pT(T(L)TlT(L))
= L‘eiL(L_)ILe. It follows that Q = iL(L)Le = L‘e'iL(L) by (ii) of Propo-

sition I.5.

- Proposition I.6, If f:G === T is a morphism of Lie algebras,

then there is a unique morphism of algebras £9:G°% = 1° such that
iLf = feiG. If £ is surjective, £° is also surjective and Ker(fe)

= iG(Ker(f))Ge.

Since iLf:G — 1% i5 a morphism of Lie algebras, the universal

property of iG gives a unique morphism of algebras £9:G% ——m 1° such

that feiG = iLf. We obtain a commutative diagram
G et -1,
! L
e
a% 4 v 1°

If f is surjective it is clear that necessarily £% is surjective.
S8ince Ker(f) is an ideal in G, G/Ker(f) is a ILie algebra. Identifying
G/Ker(f) with L, we can apply [1], p. 269, Proposition 1.3 to conclude
that Ker(f®) is the ideal generated in G° by iG(Ker(f)). By the corol-
lary Ker(f°%) = iG(Ker(f))Geo

We are now going to compare two definitions. Define a singular
extension of a Lie algebra L to be an epimorphism f:G —— L of Lie

algebras satisfying [w,w'] = O for w,w'éKer(f),



Definition. F is a singular extension of L by M in case (1) F is

an exact sequence O =——- M —— Gt L — O of R-modules, (2) f is a

morphism of Lie algebras, and (3) i:M — Ker(f) is a morphism of left
L-modules, with an L-module structure of Ker(f) defined by xw = [y,w]

where f(y) = x€L.

If C is any ideal in a Lie algebra G, define a left G operation on
C by yw = [y,w]€C for any y€G, wéC. The condition that C be a left
G-module is ([y,y'Dw = y(y'w) = y'(yw), which is Jacobi's identity in
G. In particular if f is a singular extension, the ideal C = Ker(f)
can be‘given the structure of a left L-module by defining xw = [y,w],
where f(y) = x€L. For if f(y') - £(y) = O then [y-y",w] = O. Thus a
singular extension of L by Ker(f) is given by

0 — Ker(f) === G == L —= 0

where i:Ker(f) === G the identity injection.

On the other hand, suppose that F i1s a singular extension of L by
M, Let f be the epimorphism in the exact sequence F. Choose any
w,w'€Ker(f). Then [w,w'] = f(w)w' = O, and hence f is a singular ex-

tension.

Proposition I.7. The following condition is equivalent to part

(3) of the above definition. M is a left L-module and i(xm) = [y,i(m)]

where f(y) = x€L.

For assume the condition. Given w€Ker(f) we have a unique m€M
with i(m) = w. We are given i(szm) = [y,i(m)] where f(y) = x€L. As
above we can well-define an L-module structure on Ker(f) by xw = [y,w]
where f(y) = x€L. Then i(am) = [y,i(m)] = [y,w] = xw = xi(m). This

shows that i:M == Ker(f) is a morphism of L-modules. Thus the



condition of the proposition implies condition (3).

xi(m)

]

Conversely, suppose (3) holds. We are given that i(xm)
for méM. Writing w = i(m)€Ker(f), we are also given that xw = [y,w]
where f(y) = %€L., Thus i(xm) = xi(m) = xw = [y,w] = [y,i(m)]. We
conclude that (3) implies the condition of the proposition and the
equivalence is proved.

We define two singular extensions F and F* of L by M to be
equivalent in case there is a morphism of ILie algebras k:G ——— G* such
that the diagram

F: 0 = M s G £ L =—0

! ko

sk *
FHy O ey M oo (s T, 0

commutes. By the five-lemma, such a k is necessarily a bijection.
Hence the definition does give an equifalence relation. We shall
abbreviate the equivalence by k:I~F*, We denote the set of equivalence
classes by ExﬂL,M); A singular extension of L by M is defined to be
R=split in case there is a morphism of R-modules u:L —> G such that
fu = lL” We denote by’Eii(L,M) the subset of R-split classes of Ex(L,M).

‘We shall consider any left L-module canonically as a left 1.°-
module, and conversely.

We now turn our attention to an augmented algebra A with augmen-
tation €:A —> R. We shall always consider any left A-module as an
A-bimodule with right operation of A defined by the augmentation., We

again compare two definitions. Define a singular extension of an aug-

‘mented algebra A to be an epimorphism f:B —> A4 of algebras satisfying

(Ker f)(Ker ef) = 0.-



Definition. FE is a singular extension of A by M in case (1) E is

an exact sequence O M —= B L A —> 0 of R-modules, (2) f is a

morphism of algebras, and (3) i:M —> Ker(f) is a morphism of A-bi-
modules, with an A-bimodule structure of Ker(f) defined by aw = bw and

wa = wb = wela) where f(b) = a€h.

Let F be a singular extension. - Since Ker(f) is an ideal in B,
Ker(f) is a B-bimodule. We can well-define an A-bimodule structure on
Ker(f) by aw = bw and wa = wb, where f(b) = a. TFor if f£(b') = £(b),
both (b-b')w and w(b-b') belong to (Ker(£))° = 0. We must verify that
wa = we(a). If f(b) = &, then f(b-ef(b)) = a - e¢(a). Thus w(a-e(a))
= w(b-ef(b))e(Ker f)Ker ef) = 0, as required. Write i:Ker(f) — B
for the identity injection. Thus a singular extension of B by Ker(f)

S S

is given by O ——> Ker(f)
Conversely, suppose that E is a singular extension of A by M. .Let
f be the corresponding epimorphism. .Select any weKer(f) and beKer(ef).

Then wb = wf(b) = wef(b) = 0, and hence f is a singular extension.

Proposition I.3. The following conditions are equivalent to part

(3) of the definition of a singular extension of A by M. If £(b) = a,

then bi(m) = i(am) and i(m)b = i(me(a)).

The proof is similar to that of propesition I.7.
We define two extensions E and E* to be egquivalent in case there

is a morphism of algebras k:B =~ B* such that the diagram

1 B £ A
lk u
i* B ft A

commutes. Again, such a k is necessarily a bijection. We abbreviate

E: O

o]

M
!
E*: O M 0



k:E~E*, and we denote by E4(A,M) the set of classes of singular exten-
sions of an augmented algebra A by M. A Singular algebra extension E
is defined to be R-split in case there is a morphism of R-modules

uth —> B such that fu = 1,. We denote by E°%(A,M) the subset of

A.
R-split classes of Eg(4,M).
We shall denote by &m the category of all left A-modules; M will

denote the category of all left R-modules.

Definition. T is an extension of @ by M in case T is an exact

sequence O > M ==> X L, Q C in the category ém.

.We define two extensions F and F* to be eguivalent in case there
is a morphism of A-modules k:X =——> X* such that the diagram
F: 0 M > X Q === O

I ko

i*

F*: 0 —s M S x—i g s

commutes. As before, k is a bijection, We write k:F~F* and denote by
EAQKQ,M) the set of classes of extensions of an A-module Q by M. A
module extension F is defined to be R-split in case there is a morphism

of R-modules u:Q ——2> X such that fu = We denote by ESAmKQ,M) the

1l..
Q
subset of R-split classes of E&m(Q,M).

§ 2. The Injection a:E4L°,M) ——> EJL,M) of Singular
Extension Classes of L° by M Into Singular
Extension Classes of a Lie Algebra L

by & Left L-Module M

We first define a:Ea(Le,M) ——> EJL,M). Given [EJEEL(L,M) write



E:0 M= 3 - 18— 0. Define @ = £1(1) = {y€B; f(y)ercr®).

Define f' = f\G:G»—-—e L. Since i(M) = £ T(0)cf t(L) = G, we can define

ittM —> G by i'"(m) = i(m).

7t 1
. Lemma.. EQ:O — M =G £ L= 0 is a singular extension of L

by M.

Evidently exactness of E implies exactness of Qy. ‘We first compute
flyy'-y'y) = £(y)f(y*) - £(y")f(y) = xx' - x'x = [x,x']€L, where
f(y) = x€L and f(y') = x'€L. .This shows that if y,y"€G then yy' - y'y€G.
It follows that G is closed with respect to [y,y'] = yy' - y'y. The
natural injection j:G = f_l(L)CBL satisfies j([y,y']) = [i(y),3(y")],
so by definition G is a Lie algebra. Also by the above computation

f' = f|, is a morphism of Lie algebras. Finally if f'(y)

a x€L, the

11

condition of Proposition I.7 implies that yi'(m) - i'(m)y = i'(xm) - O.
To show we can well-define « by w([E]) = [qy]; we suppose given

k:F~E*. Then evidently k|.:G —> G* is a morphism of Lie algebras

G

and in fact k|.:E ~E*,
G o o

Theorem T.l. a:Ea(Le,M)-———? Ep(L,M) is an injection.

Proof. We shall define :Im(e) ——> E (L°,M) and prove that woy is
=Xool a

the identity function. We are given Qy as the top row in the diagram

3t 1
E : 0 > M G £

> L,
o
Jla . llL
Y. t
f .Le

i G ———

> 0

e
b

=INO
o
i
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Since i f':G — (L%). is a morphism of Lie algebras, by Proposition

L

I.6 there is a unique morphism of algebras f'e such that f'eiG = iLf'.
Define M = iGi'(M), che augmentation ideal of Ge, X the quotient R-
module Ge/ﬁQ,-and p:Ge = X the natural morphism of R-modules. Since
(£1%1,)3" = 1, (£14') = 0, we see that M C Ker(£'®). Since £'° is a mor-
phism of algebras, MQC Ker(£'®). Thus £'°® induces a morphism of R-

modules F:X —— L% with Fp = £'°. Defining I = pi,i', it follows from

the commutativity of the diagram that fi = 0. Define B* to be the
i f _e : e . s
sequence O M X L 0. 8ince f'  1is a surjection and

fp = f'e, f is also a surjection.

By part (ii) of Proposition I.5 the ideal generated by iG(i'(M)) =M
in G° is MG®. Since f' igs an epimorphism and i'(M) = Ker(£'), it fol-
lows from Proposition I.6 that MG® = Ker(£'®). Since M = MR and
iR + §Q = MG®, we obtain Im(I) = p(MR) = (MR + HQ)/MQ = Hc°/HQ
= Ker(f‘e)/MQ = Ker(f). Now § is a two sided ideal in G°, being the
kernel of the augmentation, a morphism of algebras. Thus by part (i)
of Proposition I;B, ﬁ(%is a two sided ideal in Ge; consequently the
guotient X is an algebra. Necessarily p:Ge ——— X 1s a morphism of
algebras. Since fp = £1% we conclude that F:X —— L° is a morphism
of algebras.

To complete the argument that E* is a singular extension of 1° by
M we need to show that I is an injection and to verify the condition
of Proposition I.8. We suppose given f(b) = a and write b = p(z).

To show bi(m) = I(am), we use induction on the degfee of a repre-
sentative of z in T(G). If z = iG(y) then a = £(b) = iLf'(y). Denot~
ing x = £'(y)€L, we see that am = xm by definition of the induced module
structure. Since [§116E£<L’M)’ we have i'(xm) = [y,i'(m)] and iGi'(Xm)

= iG(y)iG(i‘(m)) - iG(i'(m))iG(y). Since iG(G)Cﬂ?and p(iGi'(M)Q) =0
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we conclude that I(am) = I(xm) = p(iGi1(xm)) = bi(m) - 0, as desired.
Now suppose that z = iG(y)z'. By the induction hypothesis, if -

w = F(p(z')) € 1° then p(z')ilm) = I(wm). It follows that‘bi(m)

= piG(y)i(wm) = i(a'wm), where a' = fpiG(y). Since F(b) =
f(piG(y))f(p(z')) = a'w, the induction is completed.

It remains to show i(m)b = i(me(al)). For the case z = iG(y) we
have I(m)b = p(iGi'(m)iG(y)) = O because ﬁiG(G)'CIMQL ~As before
a = iL(f'(y)). But ei, = O implies i(me(a)) = 0 also. The induction
step follows as before.

At this peoint iﬁ the construction of w we have used only the assump-
tion that Qy defined a class in Ep(L,M). To prove that i is injective
we do use the assumption that [ﬂy]'é Imy, In this case we are given an
algebfa B such that the inclusion map  ji:G ———-> BL is a morphism of Lie
algebras. By the universal property of iG:G —> G° there is a morphism

of algebras k:G° ——> B such that kiG = jo .In the disgram

5 )
E:0 , M — £
o

-» I, » O

E: O y M —L— B

we are given that E is a singular algebra extension of 1® by M .and that

o ([E]) = [Ea]°

Lemma. MQ < Ker(k).
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If we show that k(ﬁiG(G)> = O then the result follows by induction.
In B, for any vy € G B, i(m)y = 1(me(£f(y))) = O because £3j(G) = iLf'(G)
= iL(L) C Ker(e). That is, i(m)y = 0 € G € B. Thus we can write 0 = j(0O)
= JEm)y) = 3E @))jily) = kiG(i'(m))kiG(y) = k(iG(i'(m))iG(y)). It
follows that ﬁiG(G) < Ker(k), as desired.

By the lemma, k induces a morphism of R-modules k:X —> B such
that kp = k. Thus i = ji' = (kiG)11 ='ki. Since i is>injective we can
conclude that 1 is injective.

Starting with a singular algebra extension E of L° by M, we have

completed the construction of a class [E*] in EafLe,M).

Lemma. k:iE*E,

We just observed that i = ki. Since p and k are morphisms of
.algebras and kp = k, clearly k is a morphism of algebras. TFinally we
must show that fk = f. We observe that f'eiG =i f' =83 = £kig).
Since iG(G) generates () and f, k, and £1° are morphisms of algebras,
it follows that £'° = fk. Therefore Fp = £'° = fk = f(kp). Since p

is an epimorphism, we obtain T = fk. This completes the proof of the
lemma. ’

If we can well-define w on Imy by aK[Ea]) = [E*] then by the lemma
wx ([E]) ::aXfEa]) = [B*] = [E]. This will complete the proof of
Theorem I.1l.

we can construct k:E*~E_*,

. . . 1R
wils well defined if given k %y Ely 1
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In the diagram

E:0 M G L 0]

o ,14£;

X
% 1 Kk'® k!
X

E. 20 M ‘ G » L » 0,

Jov 1
we are given that k' :G = Gl is a morphism of Lie algebras. By Pro-
position I.6 there is a morphism of algebras k' %:g° —— Gle such that
k'eiG = iG k', Since k' 1s an isomorphism, necessarily alseo x'® is an
1

i

isomorphism. By construction Ker (p) EQ. . Denoting by Ql the augnmen-

» . . . . C oy . e _
tation ideal of Gl’ likewige Ker(pl) lGlll(M)Ql' Since k'™ (Q) (pl

and (k*eiG)i' = (iG k')it = ib ii, we infer that k'S (Ker p) = Ker(pl).
1 1

We obtain an isomorphism of algebras'E:X ——t Xl' It can be shown that
X commutes as reguired. This completes the proof thatw is well-defined

and establishes theorem I.l,

$ 3o The Bijection B:E4(A,M) — EAgjz(Q,M) Onto Module
Extension Classes by M of the Augmentation Ideal Q
Of an Augmented Algebra A

Suppose that E:0 — =~ B L, A —— 0 is a singular extension

of A-by M. As before, let Q denote the augmentation ideal of A. -We

1t 1
define a sequence EB:O — ] s X—£~ Q =~ O as follows. .Let
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X = f””l(Q) = {b € Byf(b) € Q} and let f' = f X — Q. Since i(M)

= 1) f“’l(QL, we can define 17 :M ——— X by i'(m) = i(m).

Lemna. EEBJ € EAm(Q,ML

From the constructions‘EB'is an exact sequence of R-modules. X can

be considered a left A-module if we define ax = bx where f(b) = a, -To

It

see that this multiplication is well-defined, suppose f(b') = f£(b).

Then there is an m € M such that b -« b' = i(m). -Since f£(X) Q = Ker(e),
we conclude that bx - bz = i(m)x = i(me(f(x))) = 0. We nexf show that
f' and 1' are morphisms of A-modules. Given any a € A fix b € B such
that £(b) = a. -Then at once af'(x) = f(b)f(x) = £f(bx) = f(ax). ' Like-

wise 1'(am) = i(am) = bi(m) = ai(m). This completes the proof of the
lemma.,

We show that we can well-define B:E (4,M) ——— Eﬁm(Q,M) by 8([ED

= EEBj, From a given k:E~E* we want to define kB;EHvEE. Write
B30 ot M| it Yl Q === 0. TFor any x € X we have £*(k(x)) = £(x)€Q.

‘This can be written as k(x) € f*ml(Q) = X*, which implies that

k X(X) C X*. .Then kB-: K|y iX === X* gives the desired equivalence.

-Theorem I.2. B is a bijectionq

Proof. We shall define J:Bgq(Q,4) —— Eg(A,M). Then we shall

prove that JB and BJ are identity maps.

- Let F:0 M == X L Q O be an extension of Q by M. .We
construct a sequence F 20 s M —res B £ A 0. As an R-module, we

define B to be the direct sum:X + R. .We define a product in. B by

(2,2 (y,8) = (ry + sx + £f(x)y, rs)e If ep is the identity element of R
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then (0,e.) is a two sided identity element for B. .Since clearly the
multiplication distributes over addition,; we verify the associative
property to conclude that B is an algebra. -We compute ((x,r)(y,8))(z,t)
= ((rs)z + tlry + sx + £(x)y + £lry + sx + £(x)y)z,(rs)t) and

(x,0) ((y,8)(z,t)) = (r(sz+ty+f(y)z) + st(x) + £(x)(sz+ty+L(y)z),r(st)).
‘Since f is a morphism of A-modules and f(x) € Q@ © A, necessarily
F(£f(x)y)z = £(x)f(y)z. It follows that the multiplication in B is
associative. We define T(x,r) = f(x) + r € @ + R = A and define i(m)

= (i(m),0) € B, Then evidently F. is an exact sequence of R-modules.

J
Clearly f preserves the identity element. Furthermore, f((x,r)(y,s))
= flry+sx+f(x)y) + rs = rf(y) + sf(x) + £(x)£(y) + rs = F(x,r)¥(y,s).

If we verify the conditions of Proposition I.8, then we can con-

clude that FJ is a singular extension of A by M. If f(b) = a then

necessarily b = (x,r) with f(x) + r = a. It follows from the definition

il

of multiplication in B that bi(m) = (x,2)(i(m),0) = (ri(m)+0+f(x)i(m),0)

= (ai(m),0) = (i(am),0) = I(am). Likewise, i(m)b = (i(m),0)(x,r)

= (O+ri(m)+£(i(m))x,0) = (i(mr),0) = (i(me(a)),0) = i(me(a)).

1

To show that we can well-define J by J([F]) = [FJ], we suppose
given k:F~F* and construct k:B ——= B*, Given k:X — X* we define
k(x,r) = k(x),r). Then k((x,r)(y,s)) = (rk(y)+sk(x)+f(x)k(y),rs)
= k(x,r)k(y,s) because f(x) = £*(k(x)). Also k preserves the identity
element. We have shown that k is a morphism of algebras. We verify

that %k = F and kI = I¥*. To see the first condition we compute

¥ (x,7)

1l

4 (k(x)) +r = £(x) + r = f(x,r). -Likewise ki(m) = (ki(m),0)
= (i*(m),0) = i*(m). We have shown that E:FJ~F3, and consequently that
J is well-defined.

We next show that JB is the identity map on EaﬂA,M). We suppose
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that B is any singular extension of A by M. Since E_, was defined by

B
restriction, the diagram
E: O M = ' B L A 0
| Ik |
N . i = f _
(EB)J. 0 M ——— B A 0

suffices to recall the construction of (E.) If we define k:B ——— B

B°J"
by k(x,r) = x + r € X + R = B then evidently the diagram commutes.
Since by definition of the A-module structure of X, f(x)y = xy we have
k((x,r)(y,8)) = k(ry+sx+f(x)y,rs) = k(x,r)k(y,s). .Clearly k preserves
the identity element, hence k is a morphism of algebras. We have shown
that k:(EB)wa E. It follows that JB([E]) = J([EB]) = [(EB)J] = [E]
and we conclude JB is the identity map. -

Finally we show that BJ is the identity map on E&m(Q,M). The

construction is indicated in the diagram

F: O M e ¥ £ Q » 0
I ]
i My f R R
Fi O M 5 A 0
I p
i RSN
(FJ)B: 0 - M - Q) Q 0,

in which F is a given extension of @ by M. We observe that §—1(Q)

{(x,r);f(x)+r € Q} = {(xgo);x € X}. We define j(x) = (x,0),p(x;r)

(x,0), and k¥ = pj. If a € A, then a = f(x) + r for some x € X and

H

€ R; that is, f(x,r) = a. We compute ak(y) = (x,10) (y,0) = (ry+0+f(x)y,0

(ay,0) = k(ay), to see that k is a morphism of A-modules. Since

i

commutativity 1s evident, we conclude that k:T ~'(FJ)B. Thus
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'@J([F])==B([FJ]) = [(FJ)B] = [F] and we have shown that BJ is also the

identity map. This completes the proof of theorem I.Z2.

$ 4o The Injection;A:ELemKQlM) — E¢(L,M) and the
Restrictions of o, B, and A to Classes

of R-Split Extensions

Let Q be the augmentation ideal of LS. Let Fi0 —— M —2o X —— g0
be an extension of Q by M. Identifying L with iL(L) C Q< 1°, define
G = fnl(L) < X. For.y,y' € Gldéfine [y,y“]G = f(y)y' - £y € X.
Define f':G —— L by £'(x) = £(x). As before, since i(M) = f-l(O)CfJ(L)
= G, we can define 1':M —— G by i'(m) = i(m). Define F, to be the

A
it f!
sequence of R-modules O —~——= M G +.

L - 0.

Proposition L.9. FA is a singular extension of L by M equivalent

to (FJ)d.

We refer to the diagram

F: 0 M — x —— 2 Q—— 0
] jl
F: 0 M A B L
I
(F)) : 0 M i g £ L 0.

The sequence F. in the middle row is the singular extension of I° by

J

‘M defined in §3 with B = X + R. The sequence (F;), in the bottom row

is the singular extension of L by M defined in §2 with G = @), As
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before, we define the natural injection j:X — B by j(y) = (y,0).

-—l(

Since fj = f, as an R-module G = T (L) j(f’l(L)) j(@Y. The Lie

1
i

product in G was defined for any §,§' €G by [5,5'] yy' - 5'5.

]

Writing ¥y = j(y) and y' = j(y"), we use the definition of multiplication
in B to compute [3(y),j(y")] = (y,0)(y',0) - (y',0)(y,0) = (0+0+f(y)y',0)
- (0+0+f(y")y,0) = (£ (Py'-f(yly) = j([y,y”]G). This result implies

is a Lie algebra, but also that

not only that G with Iie product [ , ]G

JgiG— G is a morphism of Lie algebras. .Since f'j = f' and ji' = i',

necessarily as asserted F, is a singular extension of L by M. Moreover,

A
j\G:F NI(FJ)Q and the proposition is proved.
We define A: ELem&Q M) = EIgQ M) by AC[F]) = [F J. . Since

FA AI(FJ)Q and the functions J and o are well-defined, so is A.
Corollary. A = @J and consequently A is an injection.

o 1is an injection by theorem I.l, and J =»B"l is a bijection by
theorem I.Z2.
The commutative diagram

Esz,M)

A

aﬁL JM) ===y B ém(Q M).

exhibits these maps.

Lemma. We can define uS:E%i(Le,M) —_— EiZ(L,M) to be the restric-

tion of w.
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We suppose that E:Q —— M —E—‘B.;%=¥Le———'0 is an R-split singular

extension of L° by M, where fu = lLe. We suppose

il il
a R

F:0 M L * 0O
is the representative we constructed of o([E]). Let u' be the restric-
tion of u to L © L°., Then in fact Im(u') © G = f_l(L) s0 we can consider
[F] € B52(1M).

It is clear that from the maps EéﬁLe,M)¢=%%=9ELém(Q,M) 5, E£CL,M)

we can also obtain by restriction te equivalence classes of R-split ex-

B A
) S (e s 5
tensions the maps B 4 (L 9M)¢=§§§:=»E Lém(Q’M) —=— BSp(L,M).
Proposition I.10. A =o J_ and J = 8T,
s} s S s 5

As in the proof of the lemma, this is clear from the definitions.



CHAPTER IT

COHOMOLOGY AND. EXTENSIONS

§1. Definition of H(V(L),M) and of the Relative

Cohomologies Ext/g and Ext 7
° '

Definition. The exterior algebra E(L) of a Lie algebra L is the

quotient algebra T(L)/9, where & is the ideal in the tensor algebra

T(L) generated by elements of the form x®x for x € L.

We write p:T(L) —— E(L) for the quotient map. We denote p(Tn)
by AL or by LA ... AL. In particular we identify p(I,) = R and p(T )=L.

. ] An =
We denote p(xi@ coo @mn) by XA eeo Ax € AL for x; € L, iz 2.

Proposition IT.l. %Ay = - yAx for x,y € L.

This follows from p((x+y)®(y+x)) = 0.

Conslder Vn(L) = L%@A™M. as a left L®-module by defining a'(a®w)

= a'a®w. We identify V_ (L) = L°®R with 1°. TLet d_:V (L) — V_ _ (L)
0 n n n-1

be the morphism of L°-modules defined on the generators of Vn(L) by
- i+l v

d (a®x. A vee Ax ) = .Z. (-1) ax. QX AN cos AX.A oaa AX

n 1 n i=l i1 1 n )

L N N
T (~1)1+Ja®fxg,xn]Ax A soe AX.A soe AX.A oos Ax  Tor n=2,
lei<jen SR - J n,

For n = 1, omitting the second summation, we define dl:LGSL-———* L°.

20
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on generators by dl(agx) = ax € Q < L°, where Q is the augmentation ideal.

Definition. We define V(L) to be the Le—complex‘

a a
cor — V(L) o, ... —1° 0.

We observe that if we interpret V(L) as L%8E(L), we can define an
R-algebra structure for V(L). We denote an element x of L by X when
we consider L = p(Tl) as a subset of E(L). For y € L, considered as a
subset of L°, define a multiplication in V(L) by yx = y®% and
Xy = yX + 1%, 71

We further define a derivation d:V(L) —— V(L). TFor x € L < E(L),
let d(%) = x and for y € L L° let d(y) = O. ZExtending d as a deri-
vation to the algebra V(L), it can be shown that the restriction of d
to Vn(L) is d  as defined above.

Returning to the definition of V(L) as an Le—complex, denote as

: w1 ‘ .
usual its nt homology Ker(dn)/Im(dn+l) by Hn(V(L))

Proposition II.2. Hl(V(L)) = 0.

Consider the diagram

» T(L)QL t (L)
s q
a, a
cee e 1%L I 1o,

in which g is the quotient map and s = q&lL. .Given any v = Za{@xiET(L)e&,
we define t(v) = Zaixi € T(L). .Since the formation of the tensor pro-
duct defines the multiplicative operation in T(L), it follows that t is

(0}

a monomorphism of R-modules. Since clearly d N

1 1
= siflq-l(O}. We recall that q_l(O) is the ideal I generated by elements

s = qt, we obtain d
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of the form x®y - y® =~ [x,y] where x,y € L & T(L)., Therefore, given

any v € Ker(dl) we have ¥ = s(v) where v € t>(I). Write t(v) = Zw,

with w, = ui('J;iyiw;y‘guxi-«'[xi,'yij)vi €I. Urite v, =7, + ¥, €R + Q= TI(L),
where Q is the augmentation ideal of T(L). .SinceSfEﬂ<;i>€L%$L,we can
conclude that dzfriq(ui)QmiAyi} = si?l(wi)e We have shown that

v o= ESi?l(wi) € Im(dz) and we conclude that Hl(V(L)) = O

IfME Lgm, let homLém(V(L),M) be the complex
‘ n neL
e oe &= hom MV, (1),M) L homy (M(V, (L) ,.M)-a——-

with'gn(gn) =g d for a morphism gn:vn(L) —mm M of left ‘LE-modules.

Definition. HE (V(L),M) is the n® cohomology of hongMCV(L>GM)a

namely Kerd™/Imb™™~,

We now recall definitions and certain properties of a relative
cohomoloéy theory which we shall need in this paper. .Consider ény
N e Aﬁh the category of left Awmodules for an augmented algebra A. . .Let
€ be a projective clags of‘sequences in_&m. Je know from [3], pagé 6,
dy  dy

.Proposition 3.1, that there is a complex P*: ... = A.Pn o a == PO- 0

and a morphism e:PO =~ N such that each Pi is an E€-projective module,

S 4, g
Bl p wB P g din €, and P, =2 P —feu N ig
n n-1 1 o} .

each sequence P
4 n+l

in €, .Let hommm(P*,M) be the complex
. n n-1
ew = nom (1) ¢4 nom (B 1) A= ..

(v g . o o aD
with o (g,) = 8,8 for g P —— W& M

1
Definition. Extne(Na,M) is the n#t cohomology of homAmCP*‘;M).-,f namely
Ker(gn)/lm(SFh;).
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It follows from the general thebry ([3], p. 7) that (up to isemor-
phism) this definition is independent of the €-projective resolution
P* chosen for N.

- We shall consider two particular classes of seguences, ?2 and

@a, in &m.

~Definition. ?ifis the class of all R-split exact sequences in A@L
Definition. 3; is the class of all exact sequences in Amh

- We recall that ?L and'g‘ are projective classes in ﬁm. Ve shall
apply ‘the notion of Extaa(N,M) with N =R, the underlying ring con-
sidered an A-bimodule by '"pull-back" along the augmentation g:A — R,

-We shall use the "adjoint isomorphisms' homAmKA®C,M)¢=%%=’hommKC,M).
defined by V(g)(c) = gle®c) and w(g')(e®c) = g'(c), where e is the
identity element of A.

Denote the n-fold tensor product of A/7)(R) with itself by Q*".

Let Bz = N@Q*Q®R, with a left A-module structure given by the algebra
multiplication in the left component A, as above. Denote a generator

agifg vos 8&5§m € BX by a(xlyg.v,xn)r? Define a morphism of A=-modules

. *:B*_—-) . : S " * LR y =
d n Bn-l on generators by dn(a(xl’ ,xn)r) aX1(X

> ,..r,xn)r

2

n-1 5
+ iEl ("l) a(xl,o<o‘-,X.‘

- n . b *
lxi+l,wwa$xn)r + (=1) a(Xl""’xn—l)anf Let B
ax af |
be the A-complex ... ‘Bg oo — B; = A®R —— 0. ' With

e*:A®R —— R induced by e, B* has been shown [9] to be a canonical
¥ -resolution of R.

For computation we replace B* by a simpler complex of A—médules,

dp dy
B(A,R): ... Bn cee A -~ 0, defined as follows. Let

Qn be the n-fold tensor product of Q with itself and let Bn =-A8QF.
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XQ’ . ...‘,X_n)

Define dn:Bn —_— Bn«l by dn(a(xl,.-.,xn)) = axl(

n-1
1

i .
+ ig (-1) a<Xl""’XiXi+l’°°"Xn) on generators, with a(Xl,..r,Xn)

an abbreviation for a@ki@ .,.‘®Xn. B(A,R) with augmentation e:A —— R

is often called the '"bar resolution! of R.

Proposition II.4. With the augmentation e:4 —— R, B(A,R) is

an %;—resolution of R,

As in [9], we can consider B(A,R) derived from the canonical reso-
lution B*.

We mention that the%’fl -projective modules are the classical pro-
Jjective modules in Amh For any R-module B, let FB denote the free R-

module with base B. To construct inductively a complex

S > X » X — 0,

d
if given X —2a % , let X be any set of generators for Ker(d ) as
n n-1 n n

an R-module. (In particular we can fix K = Ker(d ).) ‘Let X
n n n+l

= FKn € M and define dfl—l"l:Xn—Fl —""‘"‘"Xn by dn+l<ek) = k for any k € Kn’
extending to the free R-module by R-linearity. -Let X = ARXK and
n+l n+l

define dn+l = ®dn+l' .Settlng XO = A, we complete the inductive defi-

nition by (temporarily for this induction) denoting the augmentation

e:A —— R by dy end R by X ;.

~o

Proposition II.5. With e:4 —— R, XR is en & -projective reso-

‘lution of R.

By construction each triple 1s an exact sequence in Km. .XO = A

is a free A-module, and hence projective. 8ince, for n Z 1, in is a
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free R-module it follows that Xn = A@iﬂ iz a projective A-module,

§2. The Bijection ¥:Bxt% (R,M) — ES(A,M)
(2]
of the Second.%% Cohomology of R € ,qp Onto

the R-Split Classes in Eq(A,M)

We conmsidered im seminar {9] the aiagram
.o o homAmKBB,M?V*ﬁg—'homﬁm(Ba,M)*——-'.a.
i %
v o honl (& 1) e hog (@7, 1) ¢ ...
in which homxm(B(A,R),M) is related to a complex of R-modules in the

bottom row by the "adjoint isomorphisms' of §l. In fact we define

& o ve ¥,

- Proposition IT.6. g € homAmKBE,M) is a 2=cocycle if and only if

xlwg(xé®x3) + wg(x£8x2x3) = wg(xlxé®xg for any %) 1%gs %Ky € Q.

Suppose 32(g) = 0. In particular, we use the definition of d3

to compute O = Sz(g)(eQEEQMégxs) = g(dz(ggxigxégxz)) e xlg(agxégxs)

- g(e@mlxéSXB) + g(e®migm2x3) = x1g<x§8x3) - g(x1Xé8x3) + g(xi&xaxz)g
as required. Conversely if the condition holds; the computation shows

that O = Sz(g)(e8ml®x?®m%)a From the definition of left A-module

structure for B, we -conc¢lude that Sa(g) is the zero function B

- M
3 9

3
as asserted.
Since A is the dirvect sum R + Q, we can define'g' € homm§A8A3M)

as follows. Let e denote the identity element of A. For any x,x' € Q.

define g' (x®x') = Yg(x®') and let g'(e®e) = g' (e®x) = g' (x®e) = O.
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Let Bg as an R-module be the direct sum M + A, Let Eg denote the sequence

L B L1 4 — 0 yhere i(m) = (m,0 € B and £(ma) = a € 4.

Clearly Eg is exact, Define a multiplication in Bg by

Q == M

(mya) (m';a') = (am' + me(a') + g'(a®at),za'),

This multiplication distributes over addition, and (0,e) is a two sided
identity. Also £(0,e) = e and f((m,a)(m',a')) = aa' = f(m,a)f(m';a').
We next verify the conditions of Proposition I.8. If f(b) = a neces--
serily b = (m,a). Then bi(m') = (am'+0,0) = i(am') and i(m')db
= (0+m'e(2),0) = i(m'e(a)). Thus Eg is a singular extension of A by M
if the product in B is assoclative.

To consider associativity, let b, = (mi,ai) € Bg' After computing

bl(bEbB) and (blb2)b3’ we see the two are equal in case
1 L ool (o Ry = - ! - : 1 ).
8.8 (aé@az) + g (al®a2a3) g (ai®d2)e(a3) + g (alaé®a3,
Writing a; as r; + X, € R + Q, this condition is equivalent to

xl$g(xé®x3) + wg(xigxzx ) = $g(xlx58x3)e

3
By Proposition II.6, if gvis.a 2~cocycle then the product in Bg is asso~

cilative., Therefore, Eg determines a class in EaﬂAaM). Let utA ~—— 1B

be defined by u(a) = (0,a). Since fu = 1, we see that Eg is R-split.
Definition. Y:Extag (RyM) oo E?aﬂA,M) is defined by Y([g])::[Eg]7
()

with Eg constructed from the cocycle g as above.

We show ¥ is well-defined. Given g - g* = Sl(h), define

i

h' € hommgA,M) by h'(x) = ¥h(x) for x € Q and h'(e) = O, Define

I

k:Bg ————»Bg* by k(m,a) = (m+h'(a),a). We wish to show that k:EgﬂaEg*o
Evidently k(0,e) = (0,e). Writing b = (m,a) and b' = (m',a"), we

consider k(bb') and k(b)k(b'). By definition,
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k(bb') = (am'+me(a')+g? (a®a') + h'(aa'),aa'), while k(b)k(b')

= (a(m'+h'(a')) + (meh'(a)defa') + g*' (a®a'),aa'). We consider three
cases, Suppose first that a = x € Q and a' = x' € Q. Since g - g* = 8lh,
we obtain (Ig-lg*) (®x') = xlh(x') = (h(xx'). -Since e(x') = 0, we can
conclude that k(bb') = k(b)k(b'). TFor the second case, suppose that
a=r €Rand a' € A, Then (g'-g*')(x®') = 0 = rh'(a') - h'(ra').

Since h'(r)e(a') = 0, again we can conclude that k(bb') = k(b)k(b').
Finally, suppose that a = x € Q and a' = r' € R. Again (g'-g*')(x®r') =0.
But now xh'(r') = h'(xr') + h'(x)elr') = 0 - h'(xr) + h'(x)r = 0.
Therefore in this third case, we also conclude that k(bb') = k(b)k(b').
Since clearly k commutes ag desired (ki=i* and f*k=f), we have shown

that k:Eg»w Eg*e Thus ¥ is well-defined.

‘Theorem IT,l. Y:Ext%@ (R,M) —~—“*Ei1(A,M) is a bijection.
@
.Proof, We define ftEiﬁﬂA,M) e Extag (R,M) and show that ¢V and
(]
¥ ¥ are identity maps. |

Let E:0 2 M s Befg— A == 0 be an R-split singular extension

of A by M. Since u(adu(a') - u(aa') € Ker(f), we can define a morphism

of R-modules g:Q®Q — M by g(x®x') 1 uuE) - ux')). e

i

‘compute u(xl)fu(xz)u(XB)} = u(xl){ig(x58x3) + u(x2x3)} = i(xlg(x£8x3))

+ 1g(x,®x x,) + ulx, x. x,) because u(xl)i(m) = i(xlm). Tikewise

17273 172%3
{u(xl)u(xz)}u(xz) = {ig(xl®x2) + u(xlxz)}u(xB) =0 +'ig(xlx£8x3)
+ u(xlxzxs) because i(m)u(xg) = i(me(XB)) = 0. Since the products in

the algebras are associative and i is a monomorphism, we deduce that

g(xlx58x3) = xlg(xé®x3) + S(Xr®X2XB)- By Proposition II.6, v(g) is

a 2-cocycle. To recall the construction, we write g = gg, and we define
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=D = [p(gh)] € Bty (R,1),

We show ¥ is well-defined. Suppose k:E* ~ E, where E* is the se=

, i* . f* , u* u
quence Q == M -=— B ‘ﬁﬁ?A-“"” O. We need to show that Brx ~ B° We

*

*
are given that f(ku*) = f*u* =1 We conclude that ggu = gg* because

K
i = ki* implies that i {ku*()ku*(x')-ku*(xx')} = 1% {u* (x)u* (x')=u* (xx"}

€ M. Writing u' = ku* for simplicity, it will therefore suffice to show
! u ,
that g, ~ gp. Since (u=u')(x) € Ker(£) = Im(i), write h(x) for the

unique element in M such that ih(x) = (u-u')(x). Clearly h may be con-

sidered inhorrg_m(Q@Q,M)o We compute, for x,x' € Q,

1(g%-g5 ) (a8x') = {uule)-ulee)} - {ur Gour (x)-u' Geet )}

il

ulx){ulx')-u' (x")} - {u@x)-u' @) Iu' (x') - ih(xx')

$Gn(x)) + i(a)e(x!)) ~ ih(ex!). Since e(x') = 0 and $-(n) (@x')

i

' ————
h(d,(e®®x')) = xh(x') - n(xx'), we conclude that gg - gg = $ ).

4]

Thus § is well-defined. We shall henceforth write gu instead of g;.

- We show SY is the identity map on Extago(R,M). We defined

¥([gl) = [Eg],»where Eg:O » M e Bgvfést - 0. Then we defined

S(EEg]) = [pg”] with ig"(x®%') = u(x)ulx') - ulxx') for any x,x' € Q.

Since u(xulx') = ulxx') = (0+0+yg(x®x'),xx') ~ (0,xx') = iyg(x®'),
we can conclude that g” = g or g = pg". All the more, $Y¥ is the
identity map.

Finally consider ¥¥ defined on E'g(A,M). Given
B:0 —— M — B;%‘:*A — 0, we defined S([E]) = [pg~] with ig" (x®x*)

= ulx)ulx') - ulxx'). Then ¥([wg]) = [F] where
it gu fu A

F:O-—""’M Lo.
The product in B is given by (m,a)(m',a') = (am'+me(a') + (g%)' (a®a'),
aa') with (gu)“QgQ'= gu, otherwise zero.

Since ‘§ was shown above to be independent of the choice of "right
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inverse' for f, we assume u preserves the identity element. To see that

e UV L : el
this is possible, suppose u(eA) = b # egs - Define m =1 (bo eB), and

i

let u*(a) = u(a) m-i(amo)u Then fu*(a) = a - 0 and u*(eA) = u(ek)

Vo (boweB) =@ That is, u* is & right inverse for f which preserves

B?
the identity -element.

Define k:B™ === B by k(m,a) = i(m) + u(a), Then k(O,eA) = u(eA)
= ey. The required commutativity (1=ki" and fk=f") is evident. Finally
we compare k(bb') and k(b)k(®B')e For b = (m,a) and b' = (m',a'), we

have k(b)k(b') = i(m)ilm') + ula)i(m®) + i(mula') + ula)ula') and

i

k(bb') = klam' + nela') + (g0)' (s801),88') = i(am') + i(umela’))

+ i(gh) ! (e®at) +ulaat), Thus k is a morphism of algebras in cese
1(gM) (e®a') + ulaa’) = ula)ula’)s. If a and a' belong to Q, (g0)' = g~
and the equality holds. If either a or a' is in R~,(.@uj’(a®a" ) = 0 and
ulaal) = u(a)u(a') because ule,) = e;. This completes the demonstration

that k:F~H8, and we conclude that ¥¥ im the identity function on

Esa(A,’M)-i Thue theorem II.l isg proved and A ‘F“l.
§3. The Bijeotion ﬁzExtgg (R, 1) e B 0(Q,30)
.

We want to define @:Exﬁzg (R, M) momemre> E@}(QQM% For a glven cocycle
| |

g we construct a sequence @g ag in the dlagram

da a d-
s S 2 . 1 - € s
e X, Xy A R
g M+X’l
\\\px
@50' P L T £ Q - 0.

Define I = {(g(w)ﬂ,-ﬂda(w)‘); w € X?} and let Y be the quotient of the
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direct sum of A~-modules M + Xl by its left A-submodule I. TLet
piM + Xi — ¥ be the quotient map. Define i:M — ¥ by i(m) = p(m,0).
We want to define f{p(m,v)) = dl(v) where v € X,. To see that this is

possible, suppose p(m;v) = p(m',v'). Then for some w € X, we have

= - VoA - - - ' T .
dz(w) v - v', and thus O dl(dg(w)) dl(v) dl(v ). Clearly i and
f are morphisms of A-modules. Since Im(dl) =@, f is surjective. Evi=-
dently Im(i) < Ker(f). On the other hand if y = p(m,v) € Ker(f), then

0= f(y) = dl(v)o Since Ker d; = Im d, v = dz(w) for some w € X

1 2°
It follows that i(m+g(w)) = p(m,0) + p(glw),0) = p(m,dz(w)) = y and con~-

'sequenﬁly Im(i) D Ker(f)s To conclude that @g is an exact segquence in

A@L it remains only to show that i is injective. If i(m) = O € Y then

(m,0) = (g(w),=d,(w)) for some w € X2° This implies that m = g(w) and
[

dz(w) = 0, Thus w = d,(x) for some x € X Since g is a 2-cocycle,

3 3"

0 = SE(g)' = gd, and m = g(dz(x)) = 0, We have shown that i is injec-

3
tive and therefore that [@g] € Eﬁm(Q,M).

Definition. &([g]) = Eéglo

We must show that if g - g* = 8§ (1) then @g ~ @g*. Let Y* be 'the

quotient of M + X. by I = {(g*(w),»dz(w));w € XZ} and write

L
p*:M + X == T*, If p(m,v) = p(w',v') then glw) = m - m' and

d2(w) = v! = v for some w € X From these conditions we obtain

20
(men(v)) - (m'+h(v')) = glu) - h(d,(w)) = g*(w). We have shown that
kiY = ¥* can be well-defined by k(p(m;v)) = p*(m+h(v),v). Evidently

k is a morphism of A-modules. It follows that k:@gtv Qg*’ as required.

Theorem IL,2. $:Ext7y (B,M) =—m E,mQ,M) is a bijection.
]

Proof. We show that ¢ is injective and surjective.
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We suppose that &([g]) = 8([g*]). Then we are given k:@gfv B .,

g

that is k:¥Y = ¥*, Let j:Xl = M+ Xl be the natural injection.

Since £*(kp=p*)j = (fp=f*p*)j = d; - d;

by h = i»*—l(kp--p*).jo We observe that i*(g-g*) = kig - i*g* = kpjd,

= 0, we can define h:Xl‘————*M

~ p*id, = (kp~p*)jd2 = i*hd, = 1%§M(h). Since i* is a monomorphi sm,

we conclude that g - g* = 8t (m) and (g] = [g*]. We have proved that 3
ils an injection,

Select any [E] € Egm(Q,M)e Then E is an exact sequence in M, say
By g - .
O = N 1] X £ Q ==+ 0, Conglder dl:Xl — Q & A, Since Xl is

a projective module in A?Iand f' is an epimorphism, there is some

h € hom (X, ,X) such that the disgram

: 1 .
X g 0

commutes. Since'f'(hda) = dd, = 0, we can define g € homﬁm(Xz,M) by
=1

g = 1" hdé. We want to. construct kzég ~ E. For any p(m,v) € ¥

= p(M+Xl)»define k(p(myv)) = i7(m) + h(v). To show this is possible
suppose p(m,v) = p(m",v')s Then m - m' = glw) and v' - v = dz(w) for
some w € X, This implies that i'(m) +hlv) = i(m'+glu)) + h(v’~d2(w))
= i'(m*) + h(v') because i'g = hd,. We have defined a morphism of A-
‘modules k:¥ «— X, Clearly ki = i'. If y = p(m,v) € ¥, we evaluate
f'k(y) = £ (1" (m)+h(v)) = O + dl(v) = f(y). Thus also f'k = f, which
completes the proof that k;@g ~ E, We have demonstrated that €([g])

= [E]. This completes the proof of the theorem.
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§ b, The Tnjection WiESp(L,M) — 22 (V (1), M)

To define M, we shall define a cocycle My =g from a given[F]in

Esfo,M). Then we let M[F] be the cohomology class determined by “F‘

Writing F as the sequence 0 —— M s G«*§:>L » 0, define

g € hommﬁLAL,M)'by ig(xax') = [u(x),u(x')] - u([x,x']). Define

g€ hongm(Va(L),M)‘bny(aEW) = ag(w) where a € I° and w € LAL.
Lemma, g is a 2-cocycle in homLemKV(L),M).

For a generator dgzéVB(L), with z = xlean3 € ABL and e the

identity of L°, we have 82(5)(e®z) =‘E(d3(e®z)) = xlg(XEAXB) --xag(xlAXB)
+ ng(xleé) -'g([xl,xajAXB)-+ g([xl,XBJAxa) -‘g([xz,xBijl). Abbreviate
@(xi),[u(xj),u(xk)] by’uijk and write %) for Exi,xj],x?]. Since
iGm)= [u(x),i(m)] for x € L, we obtain i(&a(g»(égz)
= 5%123—[u(xl),u[x2,x3]§ - {ualzu[ﬁ(xa),u[xl,XBIQ
+ {u —[@(x Youlx,x B - Eu[x x.. ] u(x_ﬂ - ulx
312 5/ ULy 9 X5 ) 1% UKy 123

23]
+ ﬁb[xl,XBJ,u(xaﬂ -u<x132% - ﬁﬁ[xa,XBJ,u(xlj —(x231%

)

= (u ) = 0, by Jacobi's identity. We

125 pm1 a1 p) + 8K a5 Ry
conclude that SZ(E)'= 0, as asserted.
To show M is well-defined, suppose given k:F ~ F* such that the

solid arrows.in the diagram

F:0 - M

[ I

F*:0 ——— M - G* ~ 0
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commute and k[yl,ya] = Ekylykyzj. Define h € hompy(L,M) by i*h = ku - u*

and define T € homLemKVl(L),M) by H(a®x) = ah(x). We observe that

i*(HF-HF*)(egxlea)

{[ku(xl),ku(xz)]—ku[xl,xzj} - {[u*(xl),u*(xz)]-u*[xl,xzj}

1

[ku(xl),ku(xz)—u*(xa)] _ [u*(xl)—ku(xl),u*(xz)] - (ku-u*)[xl,x2]

[eu(xp ), 1% ()] = [u*(x,),i%0(x)] - 1*ulx,y]

i*{xlh(xz)—xzh(xl)—h[x,y]}, because [ku(x),i*(m)]=1i*(m) = [u*(x),i*(m)].

We conclude that My - M, = Sl(ﬁ), and U is well-defined.

F

Theorem IT.3. W:E°p(L,M) —— 52(V(L),M) is an injection.

We define v:Im(M) ———**EsifL,M)-and show that ul is the identity
map. Given [g] € HECV(L),M), define an R-module G* to be the direct
sum M +.L. Define a bracket operation in G* by [ (m,x),(m',x')]
= (xm'-x"m+g(e®xAx'),[x,x']). Define vg to be the sequence of R-modules

s ok *
0 —— M —=— G*<—§¥rL » O where i*(m) = (m,0),f*(m,x) = x and

u*(x) = (0,x). Clearly Ve is R-split exact. Suppose f(y) = x € L for
y € G*, Since necessarily y = (m,x), it follows that [y,i*(m')]

(xm'-0,0) = i(xm'). Also with y' = (m',x') we see that £*([y,y'])

f

[x,x'] = [£*(y),£*(y")].

i1

To be able to define v([g]) to be the class of the extension Vg
we must yet show that G is a Lie algebra and that :such a definition
is independent of the choice of g. We have not yet used the condition
that [g] is in the image of K. Now assuming that g = Mp, as defined

above, we obtain the diagram
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F:0 = M > G === L » O

Sk *
v, i0 or Y s grmd g, — 0.

Define k:G* —— G by k(m,x) = i(m) + u(x). Clearly the diagram com-
mutes, hence by the five-lemma k is an isomorphism of R-modules. Given:

v, = (mi,xi) € G*, we observe that [k(y2),k(yl)] = [i(ml),i(mz)]

+ [u(xl),i(m2)] - [u(xz),i(ml)j + Eu(xl),u(x2)] =0 + i(xlma) - i(x2ml)

+ 1MF(e8mle2) + ulx,y] = k[yl’y2j° Since G is a Lie algebra,

136G = (Ge)L is a monomorphism of Lie algebras by Proposition I.3.

It follows that i.k:G*

a » (Ge)L is also a monomorphism of Lie algebras.

This shows that G* is a Lie algebra, and moreover that kivg ~ F.
To show v is well-defined, we suppose g - g* = §1(n) and construct
k:vg ~ Ve Define h' G“hommgL,M) by h'(x) = h(e®x). We are given

- * fosel -~ -—a 3
that (g-g )(e®mlAX2) th'(x2) th'(xl) h'([xl,xaj). We define

k:G — G* by k(m,x) = (m+h'(x),x). The required commutativity
(f*k = £ and ki = i*) is obvious. Writing v, = (mi,xi) € G, we compute

k([yl,yaj) = k(xlmz—x2ml+g(e@M1Ax2),[xl?xaj)

- 1 - ' * — R
(Xl(m2+h (X2)) x2(m1+h (Xl)) + g (egklea),[xl,xaj) [k(yl),k(ya)]
We conclude that k:\)g ~‘vg*e While proving that G was a Iie algebra,

we demonstrated that given [F'] € EiﬁﬂL,M) it follows that k:v(uF) ~ F.

Thus wi([F]) = [v(“F)j = [F], and the theorem is proved.
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§5. The Injection ®:H2(V(L),M)‘-——‘Elém(Q,M),

With Assumption HZ(V(L)) =

. Given a cohomology class [g] in HZ(V(L),M), we shall define a
sequence»®g. We first consider the direct sum M +‘V1(L) inuLemh Let
I be the left L®-submodule {(g(w),-da(w));w'e VZ(L)}. Let Y be the quo-
tient LS-module (M+V1(L))/I and let p:M + Vl(L) — Y be the quotient
mape The construction is indicated in the diagram

d ‘ d
.._...2__.\/ (L)_...__._-.vl(L)__.].-._..QCLe

2
l MV (L)\\\i- | I8
W . £

Define i:M ~—— ¥ By i(m) = p(m,0). We want to define f:¥ — Q by
fp(m,v) =-di(v). If (m,v) = (m',v') € I thenv - v' = dz(w) for some

w € ¥,(L). Thus O = dl(dz(w>) =d(v) -4, (") and f can be well-defined.
Clearly Im(i) € Ker(f) and i and f are morphisms of L°-modules. Té

show that f is surjective, choose any z € Q. By the corollary to Pro-
position 1.5, z = Eéixi for some a; € 1° and *; € L.‘ Denote

v = Zaf@xi € Vl(L). It follows that fp(0,v) = z, and f is surjective.

Let @g‘be the sequence O M-ty £ Q O. To conclude the

demonstration that ®g is exact we need to show that Im(i) = Ker(f) and

that i is an injection. To prove the inclusion, select any y = p(m,v)

in the kernel of f. Since O = f(y) =-dl(v), we can write v = dZ(w) for
zome w € V2(L)-by'Proposition II.2. Therefore i(m+g(w)) = p(m,0)

+ p(O,dZ(w))= y and Ker(f) © Im(i), as desired. Now suppose

i(m) = p(0,0) € Y; we shall show that m = O. We are given that m = g(w)
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and 0 = da(w) for some w € V2(L). With the assumption that HE(V(L)) = 0,
we can write w = dj(z) for some z € VB(L). Since g is & 2-cocycle,
m = g(dB(z)) = ga(g)(z) = 0, We have demonstrated that i is injective
and conseguently that ®g‘is exact.

We show that we can well-define @ by @([g]) = [@g]. Suppose
g =g = gl(h), for some h € homLém(Vl(L),M). Let ®vaeathe sequence
0 m—— M —E:vY* £ Q = O constructed from .g*. We want to define
kiY = ¥* by kp(m,v) = p*(n+h(v),v). To see this is possible, sup~
pose (myv) - (m',v') € I. Then for some w € VE(L),m ~m' = glw) and
v -y o= ”'da(w>a This implies that (m+h(v),v) = (m'+h(v'),v")
= (glw) - h(dz(w)),v~v') = (g*(w),mdg(w)) € I*, Clearly k, defined in
this manner, is a morphism in Lgm and commites as desired (ki=i* and

f*k=1). Since this shows that k:@g'w ®g*’ we cean conclude that ® is

well-defined.
Lemng, Im(00) & E%p(L,M),

Given a cohomology class [g] in Ha(V(L),M)g let ®g denote the top

sequence in the diesgrem

I, 2 .y
g
|

F,0 M

§

s @1 asf "L (1) e T, ' 0.

Let Fp, the bottom row of the dilagram, be the representative of.A(E®g]>
‘which we constructed from ®g by reatriction, Define a morphism of R«
modules u' L == G' by u'(x) = p(0,e®x). Clearly £'u' is the identity

function on L, which proves the lemma.
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The -lemma motivates consideration of commutativity of the diagram

B (L, 1) : b B2 (V(L), M)

n(®) < B JNQ,M).

Given any cohomology class [g] in H2(V(L),M), we constructed in §4 an
R-split exact sequence Vg With the assumption H2(V(L)) = 0 we are
going to show that we can define G:HE(V(L),M) _— EiffL,M) by

v([g]) = vg. It will suffice to show that vg ~'FA where FA is con-
structed from g as in the lemma. The constructions are exhibited in

the -diagram

Fy 30 o M »a=r i) 1 -0

2 % ES
v 0 - M e @ SR . 0.

We shall define an isomorphism k:G* —_— G which respects the ‘bracket

operation. Since iG,:G’-——mﬂ G'® was shown in Chapter I, §4, to be a

monomorphism of Lie algebras, it will then follow that iG,k:G¥ ———ﬂ'G!e
is also a monomorphism of R-modules which preserves the bracket oper-
ation. This will show that G* is a Lie algebra.

The formula k(m,x) = p(m,e®x) defines a morphism of R-modules
k:G — p(M+(e®L)) € G'. Notice that f'k(m,x) = dl(e®x) =x = £*(m,x).
Since clearly ki* = i', k is an isomorphism of R-modules by the five-

lemma. We recall that the Lie product in G' is defined by Eyl,yzj

= £'(y)y, - £ (y5)yqe Denoting y; = (m;,x;) € &*, we calculate
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[k(yl),k(ya)] = f'(k(Yl))k(ya) - f'k(ya)k(yl)

il

xlp(ma,egxa) --xap(ml,dgxl) = p(xlma-»-xam:L , xf%xa—xégxl)

= p(xlma-xgml+g(e8mle2),e®[xl,x2]) = k[yl,yaj. We have shown that k

respects the bracket operation and consequently we can conclude that
G* is a Lie algebra. Also k gives an equivalence of vg with FA' We
have -explicitly defined G:HE(V(L),M) e EﬁzﬁL,M) such that V = A@

end v Im(Ll) = Ve

Theorem IT.b. M:ESH(L,M) ~— B°((L),M) is a bijection.

Proof. The argument ¢f Theorem II.% can be used to show that vyl
is the identity map on ES¢(L,M). We shall prove that MV is the identity

map on HE(V(L),M)e Given a cocycle g we have defined an R-split singu-

lar extension of L by M which we denoted by F:0 == M == Gh===rL, = O,

Since we defined M*(x) = (0,x) € G*, we obtain‘i*uF(egmAx')

4]

[u*(x),u*(x")] = u*[x,x']=(0-0+g (e®xAx"), [x;x"]) =~ u¥[x,%"]

1i

i*g(e®xAx'). This computation shows that the c,:ovc:ycle»}.l..F coincides
with g. All the more, MV is the identity map on Eiz(L,M), because
WO(LgD) = ulFl = [w] = [,

Corollary. .®:H2(V(L),M) wmmﬂfELemKQ,M) is an injection.

Tt was .shown in the proof of the theorem that MA® is the identity

map on 52 (V (L), M).

Theorem IT1,6. E° () € In(®) and BMA| o is the identity func-

tion on Im(®) CHELém(Q,M).



39

Proof. We suppose given an R-split extension F of Q by M. .ILet

F be the top row in the diagram

F:0 » M = X(.._WE ______ »>Q) - 0
u
i ) . L
F, :0 - M T ) P A— L 0
A u' ;
E:0 > 1 = - Y £ - q - 0.

‘We constructed by restriction the R-split singular extension FA
of L by M, We defined u([FA]) to be [g], where ig(egxlez)

= [u'(xl),u'(xz)] - u'[xl,xé]. Then we defined ®([g]) to be the class
of the bottom row E of the diagram, where ¥ = (M+V1(L))/{(g(wzfdz(w))}.
We are going to show that E and F are equivalent. Define .
k':M + Vl(L) —— X by k'(m,a®x) = i(m) + au'(x) for a € L° and extend
by R-linearity., This is possible-because u' is a morphism of R~modules.

For w = e®x Ax, € VZ(L)’ we compute

k'(O,dz(w)) = k'(O’Xf®X2"Xé®x1“98[X1’X2])

= O+xlu'(x2)mx2u'(xl) - u'[xl,xz].
We also compute k' (g(w),0) = ig(w) + O = [u'(xl),u'(xz)] - u'[xl,xz].

But in G we defined [yl,y2] = f'(yl)y2 - f'(yz)yl. We conclude that
k'(O,dz(w)) = k'(g(w),0). Consequently k' annihilates the L° submodule
{(g(wktdz(w));‘w‘é VZ(L)}’ Therefore there is a map k:¥Y —— X such
that kp = k', where p:M + Vl(L) —— Y is the gquotient map. We want

to show that k:E ~ F. Obviously ki* =i and fk = f*. We verify that

k is a morphism of L°-modules. Writing vy = p(m,a®x), for any a' € 1.°
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we have k(a'y) = kp(a'm,a'a®) = i(a'm) + a'au(x) = a'(i(m) + au(x))

a'k(y). We conclude that k:E ~ F, as asserted. Therefore @([g])

1]

1

[£] = [F] and E° gm(Q,M) © In®.
To prove the ‘second assertion, notice in the above argument we
used -only the existence of u' = uIL:L ~— G satisfying f'u' = lL'

The argument did not require that [F] be in E® (Q,M), but only that
q Lgm

A
is a subset of'EsifL,M). Therefore by the above argument, if F repre-

F, represent a class in ESJKL,M). By the lemma, the image of AlIm@

sents any class in Im(®), then GuUA([F]) = ®H(FA) = 0([g)) = [F] and

the theorem is proved.



CHAPTER III
EXAMPLES

In this chapter we consider the ring 2 of integers as our underlying
ring R. .In this case, M is the category of all abelian groups, and any

commutative riuvg with unity ie a Z-algebra. .Let Z2 denote the additive

group of integers modulo two. Let L be the direct sum Z2 + 22 of two

coples of Z_, with generators x and y, respectively., Define a bilinear

2
mapping of L x L inte L by [x,y] = 0. Let Q be the ideal generated by
x and y in the polynomial ring szx,y] in x and y with coefficients in
ZZQ Let L° denote the»directvsum Z + Q. Since xy = yx in ZZEx,y], it
follows that iL:L — (Le)L.is a.group‘mbnomorphism preserving the

bracket operation; Therefore we can conclude that L is a Lie algebra,.
Clearly 1° may be considered as the enveloping algebra of L. .Let M,

as an abelian group, be Z, with.generator m. Define an L-module struc-

2
ture on M by xm = O = ym,

Proposition III.l. Extag (R,M) = 0.
(/]

In the %;—cohomology we can consider g € hommgqgQ,M)fasva 2-cocycle
in case g satisfies O = ulg(ué®u5) —-g(ulu2®u3) +vg(ui®u2u3) for 'u, € Q.
Thus g is a cocycle if and only if g(ulué®u3) = g(ui@uZuB) for u, € Q.
We can write any element u of @ in the form xiyj where 1 and j are
non-negative and 1.= i + j. We define héihogm(Q,M) as follows. Define

h(x) = 0 and h(y) = 0. If 2gi define hi(x") = g(xl‘l®x), and if 2% j

41



Lo
define h(yd) = g(yI~1®y). If 1€1 and 1< 3 define h(xiyl) = g(xi-lyi®x).

‘Lemma. If 1€m + r and 1%2n + s, then g{xy ®xtyS) = n(xmy+s),

Suppose first that 1= n. Then h(xTRyT+8) = g(xm+n-lyr+s®x)
= g(lyt®xlyS), as reguired. We consider next the case when n = O and
m = 0. Then h(x@ByT*8) = n(yr+s) = g(yr+s-1gy) = o(yr®yS)= g(x"y &y
The case 1£m follows like the first case, and the lemma is proved. |
Let up = xTy" and up = x*yS, Using the lemma, we coumpute glu;®us)
= g(xMyP@y®) = h(xMayr+8) = h(ugus) = whlup)-h(ujus). This demon-
gtrates that'g‘is the coboundary of h. Since g was an arbitrary cocycle,

this completes the proof of the proposition.

Proposition TTT.2, H(V(L),M) = 7

2.

If h € homm(L,M) then the coboundary of h evaluated at the gener-
ator xAy of IAL ig xh(y)-yh(x)-hlx,y] = 0 + 0 + u(0) = 0. Any g in
hom (LAL,M) may be considered as a cocycle because LALAL =0, In
particular, let g be defined by mapping xAy to m. The proposition

follows because this g is clearly the only possible nonzero cocycle.

.Proposition IIll.3, For L = Zé +-Z2, as above, Ha(V(L)) = 0.

We cousider an arbitrary element w in I°®LAL, We recall that L
consists of the four elements 0,x,y, and x+y. Since xAx = 0, yAy = O,
and yAx = -xAy, we can write w as a ®xAy for some a € 1. If w is in
the kernel of dzzLe@LAme-» LE®L, then 0 =-d2(w,) = ax®y - ay®x - &80,
We have obtained ay®x = &x®y in L®8L. But L°OL decomposes into the

direct gum I8®x and 1%®y. Consequently, a = O or a has a factor of 2.
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We now construct for computation’ the portion up to n =.3 of an
‘q-projective resolution for 7 as an L€-module. For nz 3 we define the

resolution canenically. We shall denote the resolution by

dy d1

P¥i..i—3 P —% ...—> P —30.
We let Po = 1° and we let € be the augmentation of L€ which maps the

direct summand Q to zero. We define Pl to be the direct sum of two

copies of 1°®Z. Denote the identity elements of these copies of Z by
'ri and r, respectively. With e the identity element of L, define
dy(e®r1) = x and d;(e®rp) = y. We recall that dp (a®r;) = ad, (e®r;) for

‘2 €I, If u € Q then u is a sum of products aijxing where i+j =1,
We can counsider aij € Z, and we recall that such a product is read

modulo two. Then
i-1 R o
dl{(jéo 8 4% Rrq + (jgo aq3%x ¥ X®ro} = u;
hence Im(dl) = Ker €,

- Let P, be the direct sum of three coples of 1°®7 with identity

2

elements s and s, for the copies of Z. Define d ﬂ?-_’Pl by

115! 3 2°°2

’da(@gsl) = 28rl, dz(e®s2) = 28T2, dz(eSBB) = yﬁrl—xﬁra. We see that

dlda(dgsl+e@E2) = dl(28Tl+28T2)': 2x+2y = 0. Also, dld2(1853) = X=Xy

= 0, To show that conversely Ker d, & Im dz, we decompose P, into the

1 1
direct sum 787, Q®Z, R®Z, and 787 with generators egrl,xingrl,

’xiyjﬁrz, and e@&z, respectively. We observe that dl(n8m1> = nx€L< Q
and dl(m8r2) =my € L © Q. Decompose Q into the direct sum L + Q',
vwhere an element of Q' is of the: form xiyj with 2€1i + :j. We observe

that the image of d, restricted to (Q®Z) + (G8Z) lies in Q'. Now an

1

erbitrary element in'Pl is of the form w

where u and v belong to Q. Consequently if dl(w) =0 € Pl then

it

nBTl + ugrl + vgrz + m@rz,
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‘dl(nﬁrl) = nx = 0, dl(M®r2) =my = 0, and d1{u8r1+v8r2} = ux + vy = O.
It follows by unique factorization in the polyﬁomial ring that u = u'y
and v = v'x, We obtain in the pelynemial ring u'yx = - v'xy. This
implies that u' = = v'. Define a = u'(ygrl -.x8r2) = u8r1+v8r2, Since

n and m are even, dz{(n/z)gbl + u'®s_ + (m/2)®%2} = n8r, + u'(ygwi-xﬁrz)

3
+ m®r2»= w. We have demonstrated that.Im(da) = Ker(dl).

- Let P3 be the direct sum of five copies of L°®Z. Denote the

identity elements of the copies of Z by'tl,

t2’ t3, t#? and t5, respec-
is of the form w = igl (2,®61)

tively. An arbitrary element in P

3
\ , e . _ . _ .
where a, € L%, Define dz(aatl) = ax®sl, dz(aﬂtz) = aygsl, dz(a8t3)

= axgsz, dB(aStu) = ay®s,, and dB(aStS) = 2&853, Then‘d2d3(w)

dz{(alx+a2y)@bl + (anfaqy)@ba +‘235853}

2(a1x+a2y)8Tl + 2(a3x+aAyY&pz +’235(y8rl—x€r2) =0+0+0 =0,

‘To show that-Ker(da) c Im(ds) we decompose P, into six direct

- summends as follows. The decomposition consists of three pairs
(787+0®7Z) with the identity element in the two right hand components

of Z denoted by‘sl > 3 in

the third, We have d,(n®s,) = 2n®r, € Z%% d,(m®s,) = 2mr, € 787,

inh the first pair, s, in the second pair, and s

dz(u@bl) ‘2u8rl = 0 and d2(w®s2) = 2w8r2 = 0 for any u,v € Q. Moreover,

d2(w853) w(y@Tl-Xﬁrz) € Q' for any w € Q. TFinally, d2<p853) B

= p(y@rl—xﬁrz) € 187 + 1®%, a direct sum. If z is an arbitrary element

'of'P2, we can write z:= {mgsl+wgsl} + {m8s2+v®52}‘+ {p®sB+w85 }o We

3

‘have indicated the manner in which direct summands in'Pafmap into

direct summands in Pl; It follows that if dz(z) = O then 2n8rl = 0,
2m@r, = 0, w-(y®rl:—x®r2) = 0, and p(y®rl-x®r2) = 0. From the first two
conditions, necessarily n = 0 and m= O, From the third condition,

‘w must be zero because Wygrl and wx8r2 lie . in different direct summands.
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Since py@rl»and px&'2 lie in different direct summands, from the last

condition p must be even. Consequently, if z is in the kernel of dag

then z = w®sl +‘v®s2 + 25"®s Since uw.and v are in Q we can write -

3.

b o
- . ‘ - . 1€
U= aX +asy and v = a_x + 8,y for some a; € 1L°, Then dB{iEla18kl+p'€w5}

1 3

= {alx3s1+a2ygsl} + {a3x8B2+a4y®sa} + EIﬁQEB = z, We have proved that

Im(dB) = Ker(da).
Since L€ is Le~projective, each 1®®7 is also L€-projective., Conse-
1+Pys and P3 is L®~projective, and P* is an‘zl-projective

resolution of the LC®-module Z.

quently each of P

i 2 _ , ,
Proposition IIT. k4. Ext'g'(Z,M) =7, + Ty + D

Consider any f € hom Lém(Pl,M). Observe that fda(e®sl)=:2f(é8rl)==o,
: & = = } = - = i
fdz(e sa) 2f(e8T2) 0 and fda(e®53) yf(eeml) xf(e&ra) 0. Thus
zero is the only coboundary. Consider an arbitrary g € hom Lefm(Pa,M).
‘Since Q operates trivially on M = Zyy we obtain gd(e®t,) = g(x®s,)
= xg(e®sl) ='O,.gd3(e8%2) = yg(e®sl) = 0, gdB(eQ&B) = xg(e8sa),
.gd3(68t4) = yg(agsz), and gdB(e8%5) = 2g(e®53) = 0., Therefore any

‘morphism of Le-modules g:P =3 M is a 2-cocycle. With §.=1 wheh i=j,
, 1]

2
otherwise zero, define gi(eﬁbj) = Sijm € M. .Let hi(e8si) = 0, otherwise
m, We have defined cocycles h, which satisfy hi(e®sj)é'(8ij+1)m. With
the usual addition of functions, h3==gl-kg2,h2==glavg3, and.hl==g24sg3.
Finally define k by k(egwi) =m for all i. We mention.that‘kzmgi+g2+g3.

Explicitly, this set of 2-cocycles {O,gl,gz,gB,hl,h k} has the

2’h3’
additive structure of the direct sum Z2‘+ Z2 + Z2'

Corollary. nEifL;M)'contains at least eight elements.

@:Exb%fR,M)~—+ELémKQ;M)‘is a bijection, and A:ELemKQ,M)--»EugL,M)
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is an injection.

Proposition ITII.5. There are exactly eight elements in-%ZfL;M).

With Ext(,) the classical extension functor onimh we recall that

Ext(Z2+Z Z2)'= Ext(Za,Za) + Ext(Za,ZZ) =%, + Z.,. Hence, as an abelian

2’ 2 2

group, we know L has exactly four classes of extensions by M. For

0=j=3, we shall explicitly define an exact sequence of abelian groups
s f.
i CoLs

0 ——s H—"s Gj——jflr——’o, which we denote by Ey. First, let G, denote

the direct sum Z2 + Z2 + Z2 with generators a,b, and ¢, respectively,

for the cyclic groups of order two. Define fo(a) = x,fo(b) = y,fo(c)==0,

and io(m) = c. Let G =G, = G; be the direct sum 2) + 2, with generator

2 3

Let each of 1

1 2

>° 1 12,.and i3 map m to 2a., Define
fl(a) = Xsfl(b) = y,fa(a) = y,fa(b)~= x,fB(a) = x, and f3(b) S X + Yo

a for Zh.and b for Z

.We may consider each Gj as a trivial Lie algebra; that is, let the.
Lie product of any twe elements be zero. Clearly each fj is a morphism
of Lie algebras because the Lie product in L is also trivial. The
~ condition of Proposition -I.7 is obviously satisfied because both the 
module operation on M and Lie products in Gj ére zero. We therefore

can consider each Ej as a singular extension of L by M.

Lemma. The classes [Ejj and [Ej‘j in Efo,M) are distinct unless

i=3.

O.bviouslyrEo is not equivaient to Ej f§r 1=j because Go is net
isomorphic as an abelian group with Gj if 1£3. We cdnsider’El, E,
and E3' First, suppose that there is an equivalence k:Eian.' Then
X = fl(a) = fa(k(a))a But & is of order 4 and f;l(x) = {b,b+2a} consists

of elements of order 2. Therefore the classes [El] and [E2] are distinct.
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Second, suppose that there is an equivalence k:E ~E3. Then y::fl(b)

i
= fg(k(b))‘ But b is of order 2 and f;l(y) = {b-a,b+a} consists of
elements of order 4. Therefore [El] and [E3] are distinct. Finally, if

we assume that k:E2~E3, then x==f2(b)==f3(k(b)). But b is of order 2
-1

and f3 (x) = {a,3a} consists of elements of order 4. This completes the
proof of the lemma,

We are now going to define non-zero Lie products in Gj' We shall
let Fj denote the corresponding singular extension of L by M. In Go
define [a,b] = ¢ and [b,a] = =c = ¢« Otherwise let the Lie product be
zero. Since f(ec) = 0, f respects this bracket operation. Moreover this
is the only possible non-zero bracket operation such that the condition
of Proposition I.7 holds. For example, if the condition holds then
necessarily [a,c] = [a,io(m)] = xm = O. Clearly the class determined
by Fo is distinct from all the Ej'

o1 and Gy define [a,b] = 2a and [b,a] = -2a = 2a, otherwise
zero. Up to equivalence, this is again the only definition which can

In Gl, G

yield singular extensions of L by M. Agein since each Fj has a non-

zero Lie product, F, cannot be equivalent to Ej‘ Since as abelian

J
groups there is no map satisfying the commutatively condition between
Fj and Fj" necessarily [Fj] and tFj'] are distinct unless j = j'.

We have exhibited representatives Ej and F;I for O< j<3 of the eight
distinct classes in Ez(L,M).

For clarity, we shall prove that the natural map iGl of G into
its enveloping algebra is an injection; the argument that this property
holds for the other Gj is similar. Suppose that in the tensor algebra
T(G) we have y = Eci(aﬁb - b®a - Ea)di for some y € G. Notice that any

element in the kernel of the quotient map T(G) —> G® can be written in
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this form. Decoupose this summation as

y = mn (2®b-bBa-~22a) +‘205(a8%—b8a-2a)d3 cee (%)L
We have collected first all terms with both c; and di in Z. Thus at
least one of cﬁ or dé has degree greater than zero. IEquate the terms
in equation (*) of degree one to conclude that y = mn(-2a). Equate the
terms of degree two to obtain

0 = mn (a®o~bRa) +v203(—2a)d3 eee (%),

In equation (**), exactly one of the cﬁ,dé has degree one, the other
zero. We observe that GBG is a direct sum with generators a®a, a®b,
b®=, and b®. Suppose that y is non-zero. Then O # mn(-2a) implies
that mn must be odd. But if 4 = b then 03(~2a)(dj) =105(—Ea®b)
= cﬁ(a@gEb) = 0. Consequently if y is non-zero, we can deduce from
equation (**) the contradiction C = mn(a®b) + O = a®. We conclude

that if iGl(y) = 0 € G&, we must have y = O.



SUMMARY AND CONCLUSICNS

For an arbitrary commutative ring R with unity, we construct a
bijection of singular extension classes EQ(A,M) of an augmented R-alge-~
bra A by an A~module M with extension classes E&m(Q,M) of the augmen=-
tation ideal Q by M. We give an injection of Ea(Le,M) into the singular
extension classes ExﬁL,M) of L by M. Considering R.as an A-~bimodule,
we show that Extgga(R,M) is in one-to-one correspondence with R-split
extension classes of EZ))}(Q,M)0 We construct a bijection Ext%q (R,M)
with Egn(Q,M). Ve show that in general n:ES(L,M) — E(V(L),M) is
an injection. If HE(V(L)) = 0, then U is a bijection and we can define

an injection of Ha(\/“(L),M) into EAEm(Q,M)o In the diagram

Ext % (R,M) —g— E° g (1°,1) ESem(Q, M) —— 5% (L, M)

S

= 2 . (el c
¥ (V(@L),M) —— E.em(Q,M) — Eﬂt(L,M) ,

we write " = " above a map to symbolize a bijection, and we write "
to symbolize an injection. We show by example that the %% ,V(L), and
'32 cohomologies are distinct.

Recent developments in homological algebra show strong evidence
that H*(V(L),M) and the cohomology of Dixmier amd Shukla could be in-
cluded within the general framework of relative cohomology theory. It
is expected that this problem will be settled by a most recent result of
my adviser and my colleagues concerning triple cohomology in relative

homological algebra.

Lo
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