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b el oyt s

This paper will be concerned with results related to
the orbit of a point and the orbit of a component under a
continuous transformation. Chapter I is an introductory
chapter where the definitions of orbit and related terms
are given. The fundamental properties of transitive con-
tinuous functions are developed in Chapter II. 1In a major
portion of the paper, it is assumed that the topological
spaces are compact, connected, metric spaces. In the
chapter, some necessary and sufficient conditions are
established for a function f to be transitive at a point x
in the topological space. Chapter III is devoted primarily
to the construction of transitive continuous functions.
Examples of transitive continuous functions on the closed
unit interval and on the open unit interval are given.

In Chapter IV a theorem of G. E. Schweigert concerning
the limit set of a closed component orbit under a periodic
function in a compact metric space will be generalized. The
same result is obtained in a compact Hausdorff space with a
continuous, componentwise periodic, monotone transformation.
The summary of all results is given in Chapter V.

Numbers in brackets refer to the bibliography at the
end of the paper. For example, (3, 720) refers to biblio-

graphy reference number 3, page 720.
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CHAPTER I

INTRODUCTION

This paper will be devoted to the consideration of cer-
tain results in connection with the orbit of a point and the
orbit of a component under a continuous transformation. 1In
particular, the theory of transitive continuous functions is
developed in Chapter II. 1In a major portion of the paper
it is assumed that the spaces are compact, connected, metric
spaces.

The concept of transitive functions is not new.
However, in the past it seems that the notion of transitive
functions has been reserved for homeomorphisms. The con-
cept of transitive functions is related to what was known
as the Ergodic Hypothesis which was introduced about 1879
by two physicists, Ludwig Bolzman and James Maxwell. This
hypothesis states that any system will return to its orig-
inal state after a sufficiently long time. This theory was
not very acceptable; however, the Quasi-Ergodic Hypothesis
introduced by P. and T. Ehrenpst is probably true for all
systems of interest. It states that after sufficiently
long time any system will return arbitrarily close to its
original state.

Quasi-Ergodic theory aroused considerable interest in



measure preserving transformations. Oxtobey generalized the
notion to homeomorphisms (4). Schweigert defined a compo-
nent orbit for a pointwise periodic transformation, and has
shown that the limit set of a convergent sequence of closed
component orbits is a closed component orbit (5). This
result will be generalized in Chapter III.

Some of the definitions and notation that are needed in
this paper are the following:

Notation: f will denote a continuous mapping on a
topological space X to X. Let

F = {geg = £ for some non-negative integer n} where by
definition £%(x) = x.

Definition 1.1: Let ACF and xe€X. The A-orbit of x

will be
{Y:Y oz g(X), gEA}

and will be denoted by xA.

Definition 1.2: The A-orbit closure of x shall mean

the closure of xA and is denoted by XA.

Definition 1.3: A point xeX is called a transitive

point of X with respect to F (or just transitive) if xF = X.

Definition 1.4: A subset Y of X is called A-invariant

under ACF if Y(A-e) = LJg(Y) = Y, where e is the identity
ge(A-e)
mapping.

Definition 1.5: If there is a point x in X such that x

is transitivé with respect to F, then:we will say that (X,F)
is transitive.

Definition 1.6: A mapping £ of a topological space X

to a topological space Y is interior if and only if the



image of each open set is open.



CHAPTER II

PROPERTIES OF TRANSITIVE CONTINUOUS FUNCTIONS

Some examples of functions that have transitive points
will be constructed in Chapter III. Verification of that
construction will depend upon the theory developed in
Chapter II. It will especially use the characterizations of
a transitive point with respect to F given in Theorem 2.3
and the Corollary to Theorem 2.3. A characterization of an
F-invariant, nonempty, open subset is given in Theorem 2.4
and Theorem 2.5 provided F is generated by an interior
transformation, and the relation of an F-invariant open
subset which is dense in the space to an F-invariant proper
closed subset of the space is given in Theorem 2.8.

Throughout the chapter, examples are given, whenever
it seems appropriate, to show that certain conditions of
theorems cannot be relaxed and still obtain the same result.

The following theorem gives a characterization of a
transitive point in an arbitrary topological space.

Theorem 2.1l: Let X be an arbitrary topological space.

A point x in X is a transitive point with respect to F if
and only if, given any non-empty open subset V of X, there
is a geF such that g(x)eV.

Proof: This follows immediately from the trivially



equivalent fact that a set A is ever ywhere dense if and only
if every open set contains a point of A.

The next theorem characterizes the set of transitive
points in a connected T,-space.

Theorem 2.2: Let X be a connected T space. If there

is a point x that is transitive with respect to F, then
there is a dense subset Y of X such that if yeY, then y is
transitive with respect to F. 1In particular, the set of
iterates of a transitive point is an everywhere dense set

of transitive points.

n . S ‘
CT f (x) where x is transitive. Since

Proof: Let A w20

A is dense, then A = X. Suppose the set of transitive
points is not dense. Then some point of A is not tran-
sitive. Let k be the smallest positive integer such that
fk(x) is not transitive. Now k21 since x=£°(x) is

k-1 p e A
£ (x), then y is a transitive point

transitive. Let y =
et
and f(y) is not. Let B = {y} and C = éé&f (y). Then
C#X, in particular since C=C, y¢C. Since X is a connected
T,-space and B consists of a single point y, B=B#X.
n — —r - . .

However, B[]C=J;%f (y)=X and BUC = BUC in any topological
space. By above BATC = @ and B = B, so BNC = @. Hence
X = BUC, two closed disjoint sets contradicting the con-
nectedness of X.

Remark: From this point on, X will denote a compact,
connected metric space unless it is specified otherwise.

A characterization of transitive points in a compact,

connected metric space will now be given. This theorem



will be used extensively in Chapter III to prove that the
examples given there are actually transitive.

Theorem 2.3: The pair (X,F) is transitive if and only

if, given two arbitrary non-empty open subsets U and V of X,
then UFNV # #.

Proof: Assume (X,F) is transitive. Let U and V be two
arbitrary open subsets of X. Since U is open and XF = X,
there is a point y in xF such that y €U. Thus, by Theorem
2.2, yF = X which means that yFNV # @. Therefore, there
is an element g in F such that g(y) is in V. Thus,
g(U)NV # # which means that UFNV # .

Suppose that for two arbitrary open subsets U and V of
X we have UFNV # @. This means that there is an element g
in F such that g(U)NV # @. Since X is a compact metric
space, we choose a covering of X as follows: For each n let
Vais 1 =1, 2, ° © °, ky, be a finite covering of X such
that the diameter of each V_. is less than 1/n. Let Uy, be
a spherical neighborhood in X with diameter less than one.
By assumption UjoFNVy1 # @#. Thus, there is an element
g1 of F such that g;;(U;5) NV # @. Let Uj; be a spher-
ical neighborhood of X such that U;;CUjg and g13(U11)C V-
In general, define a spherical neighborhood Ulk such that
TS inely w8208, © T Ty end lRrIe Vay

Define Upqg = ﬁjbulk = Ulkn and continue inductively.
then there is a point p in gjlﬁga and it follows that
pFNV # @ for an arbitrary open subset V of X. Hence

pF = X.



Corollary: The pair (X,F) is transitive if and only if

for any open subset U of X, it is true that UF = X.
Proof: This follows immediately from the theorem.
The following example shows that Theorem 2.3 is not
true in an arbitrary topological space.

Example 2.1l: Let X be the unit interval with the fol-

lowing topology. A subset U of X is open if and only if the
complement of U is countable. Let F be the identity map, e.
Now if U and V are nonempty open subsets of X, we have
e(U)NV =UNV # @. The orbit of a point x is just the
point x, therefore XF#X and there are no transitive points.

Theorem 2.4 and Theorem 2.5 will serve to decide when
(X, F) is transitive provided F is generated by an interior
transformation £. It is noted that the condition that F be
generated by an interior transformation is not required in
Theorem 2.4. We follow Theorem 2.5 with an example which
shows that the condition that f be an interior transforma-
tion cannot be relaxed to the condition that the generating
function £ be a monotone transformation.

Theorem 2.4: If (X, F) is transitive, then every F-

invariant, non-empty, open subset of X is everywhere dense
in X.

Proof: Suppose that (X, F) is transitive. Let U be an
arbitrary open subset of X such that U is F-invariant. It
will now be shown that U is everywhere dense in X.

Suppose U is not everywhere dense in X, then there

‘exists a non-empty open subset V of X such that UNV = {.



Since (X, F) is transitive, then by Theorem 2.2, there is a
point y in U such that yF = X. Now V is a non-empty open
subset of X thus there is an element g # e in F such that
g(y)ev. This means that g(U)N V#F, but U is F-iﬁﬁgfﬁgé% so
g(U)€ U for every g-im F. Therefore UN V¥F cont.ra;_r'six.?.tlélo;'--
assumption and U is everywhere dense in X.

Theorem 2.5: If F is generated by an interior trans-

formation £, and every F-invariant open subset of X is
everywhere dense in X, then (X, F) is transitive.

Proof: Assume that (X, F) is not transitive. Then
there exist two open subsets U and V of X such that
UFNV = @ by Theorem 2.3. Let f be the interior trans-
formation that generates F. Now

UF = UUE U - - UL - - ¢

is F-invariant and UF is open because it is the union of
open sets since £ in an interior transformation. It 1is seen
that U = UF is not everywhere dense in X because UFNV = @,
and this contradicts the fact that every F-invariant open
subset of X is everywhere dense in X.

Example 2.2: Let X = [0, 1] with the usual topology.

Define f(x) = 4 for all xeX. Since there are no F-invar-
iant open subsets of X, the hypothesis of the theorem is
satisfied vacuously, but obviously (X,F) is not transitive.
The following three theorems deal with F-invariant
subsets when (X, F) is transitive. In particular, Theorem
2.8 will deal with the relationship between F-invariant

open subsets and F-invariant closed subsets.



Theorem 2.6: If (X, F) is transitive then every F-

invariant, proper, closed, subset of X is nowhere dense in
X.

Proof: Suppose (X, F) is transitive and H is a proper,
closed, F-invariant subset of X which is not nowhere dense.
Then, since H is closed, there is an open subset U of X such
that UCH = H which means that every open subset V of U
contains points of H.

By Theorem 2.3 we have, for any two non-empty open sub-
sets V, and V, of X, V]FNVy # #. Choose a covering of X as
follows: For each n let the set V.4, 1 =1, 2, * ° *, Ky,
be a finite covering of X such that the diameter of each
Vnpi is less than I/n. Let Ujg be a spherical neighborhood
in H with diameter less than one and by Theorem 2.3,
U1oFNVyy # @ thus there is an element g7 in F such that
g11(U100NV # B. Define U;; so that T;;CU;( and
gll(Ull)CZVll. In general, define Ujy, k=2, 3, *"* *; kg,
such that Uy, CUj(g-1), and there is an element g;, in F
such that g9, (U;,)CV,). Let S; be a spherical neighbor-
hood of diameter less than one such that §f:.£ilUlk and let
Dy = §IK]H. Then D; is nonempty. Continue inductively in
the same manner as in the proof of Theorem 2.3 to obtain two
sequences {Dﬁ} and {Sg}. Now H is closed hence there is a
point p in gian = gﬁiSn' Furthermore p is transitive with
respect to F by construction. Since p belongs to H, then

H must be everywhere dense in X because H is F-invariant.

But H is closed and, therefore, H = H which means that
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H = X. This contradicts the assumption that H was a proper
subset of X.

Theorem 2.7: For any set X and F generated by any

function f:X-=>X, a subset Y of X is F-invariant if and only
if £(Y) = Y, where f is the function which generates F.
Proof: Let f(Y) =H # Y. Since Y is F-invariant and
f(Y) = H, then certainly Y = U g(Y)2H. Thus there is a
ge(F-e) i
point y in Y such that y is not in H. Now f (Y)CH for all
nZ1l and thus Y = g_gsy)CHgY. Hence £(Y) = Y.

ge(
Y, then for all g in F-e, g(Y) = Y. Hence,

If £0%)

g EJ(F-e )g_(Y)

Theorem 2.8: Let F be generated by an interior trans-

Y and Y-.is F-invariant.

formation £. Every F-invariant open subset of X is every-
where dense in X if and only if every F-invariant proper
closed subset of X is nowhere dense in X.

Proof: Suppose that every F-invariant open subset of
X is everywhere dense in X and suppose there exists a proper
closed subset H of X such that H is not nowhere dense in X.
Since H is closed, and H is not nowhere dense, then H con-
tains a nonempty open subset U. Let Up be the interior of
H. Suppose that H is F-invariant, then since UyCH we have
UgFCH. Now by assumption F is generated by an interior
transformation, thus UgF is open. But Ug is the maximal
open subset of F and UOFCZH therefore UgFC Ug. Hence, UQ
is an F-invariant open set and thus by assumption is every-
where dense in X. Thus UgCH = H = X, and this contradicts

the fact that H was a proper subset of X.
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Suppose that every F-invariant proper closed subset of
X is nowhere dense in X. Suppose further that there exists
an open subset U of X which is F-invariant and not every-
where dense in X. By Theorem 2.7, £(U) = U and since f is
continuous £(U)C U. Also f(U)DU and, therefore, contains
U since £(U) is closed. ™

Therefore, U is nowhere dense in X since it is F-
invariant. This gives a contradiction, and thus U is every-
where dense in X. 2

It is noticed that if the restriction that the gener-
ating transformation of F be interior is removed, then the
following result remains true; every F-invariant proper
closed subset of X is nowhere dense in X impiiés that every
F-invariant open subset of X is everywhere dense in X. -

The following results concern the nature of F-invariant

subsets of a topological space X when (X, F) is transitive.

Theorem 2.9: Let (X, F) be transitive, then

it ;f B and C are Fsinvariant, open subsets of X such that
BNC = @, then either B = # or C = #.
ii) If B and C are F-invariant, closed subsets of X such
that BUC = X, then B = X or C = X.
iii) If B and C are F-lnvariant subsets of X such that
BNC = @ and BUC = X, then

a) The interior of B is empty or the interior of C is
empty, and

b)) B=X or€ =X

iv) If B is an F-invariant subset of X, then the interior
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of B is empty or B = X.

Proof: 1) Suppose B and ¢ are F-invariant open sub-
sets of X such that BNC = @. If both B and C are non-
empty, then by Theorem 2.4, each of B and C is everywhere
dense in X. But each of B and C is open, hence, BNC # @.
This gives a contradiction, therefore, either B = # or
c=4d.

ii) Suppose B and C are F-invariant closed subsets of
X such that BUC = X. Suppose B and C are both proper sub-
sets of X, then by Theorem 2.5, both B and C are nowhere
dense in X. Therefore, BUC 1is nowhere dense in X since it
is the union of two nowhere dense sets. This contradicts
BUC = X and means that either B = X or C = X.

iii) a) Suppose that both B and C contain interior
points. Since B is an F-invariant subset of X, we have
B = BF. But B contains an open set and, therefore, con-
tains a transitive point since (X, F) is transitive, thus
BF intersects every non-empty open set because this set is
everywhere dense in X. Now since B = BF, we have BM1C # .

b) Since (X, F) is transitive and BUC = X, then
there is a point x in BUC such that XF = X. Suppose xe B,
then XFCB because B is F-invariant. Thus B = X.

Similarly, if xe C we have C = X because C is also F-
invariant.

iv) Suppose B is an F-invariant subset of X and B con-
tains an interior point, then B contains a transitive point

and thus B = BF = X.
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Theorem 2.10: The set of transitive points is F-in-

variant.

Proof: Let Y be the set of transitive points. It is
easily seen that if ye Y, then each point of yF is in Y.
Let £ be the generating function for F, then £(Y)CY.
Suppose there is a point z e [Y-£(Y)]. Now Y is non-empty,
and £ is onto. Since f(X) is everywhere dense in X and X
is a compact metric space £(X) = X. Therefore, there is a
point x € X such that f(x) = z. This means that xFD zF
~because z is a transitive point, thus xeY andv
f(x) = ze£(Y). But by assumption zelY-£(Y) and this gives
a contradiction. Thus, £(Y) = Y, and Y is F-invariant.

Given a transitive continuous function f from a topo-
logical space S onto S and a homeomorphism g from S onto a
topological space X, it will now be shown how one can con-
struct a transitive continuous function from X onto X.

Théorem 2.11: Let £ be a transitive continuous func-

tion from a tobological space S onto S8 and let g be a homeo-
ﬁorphism from S onto a topological space X. Then gfg_l is
a transitive continuous function from X onto X.

Proof: Clearly gfg_l is continuous as the composite of
three continuous functions.

Since f is transitive on' S, there is a point se S such

that gjofn(s) = 8. Now g is a homeomorphism, so there 1is
exactly one point x;€ X such that g(s) = Xq - This means
that g—l(xl) = s. It is also seen that

(gfg™HP(xp) = g Txp).
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Choose an arbitrary point x'e€ X. It will now be shown

.. . , -1 e
itive point with respect tc £ so g (x') &€ Ljofn(s).
n=
Case l: If there is an integer m=0 such that
- -1 ~

£M(s) = g~ (x') then gf'g (x,) = x'. Hence, '
x'e tj gfng—l(x ).
© T A=0 L
Case 2: Suppose there is no integer m such that

1

[~V
fM(s) = g~ "(x'), then, since #gofn(s) is dense in S, g—l(x')

(=¥
is a limit point of giofn(s). Therefore, there is a sub-

sequence {fni(si} of {fn(sigaio that converges to g‘l(x').
-1 ng . -1 -1

Now 8 = g (xl) so {f [g~.(xlﬂ} converges to g (x') and

L

. . . nj -L
since g is continuous {gf g (%)} converges to

- == -1 '
g(g l(x‘))= x'. Thus, x'€ %Jogfng (x1) and, since x' is an

arbitrary point of X, gfg_l is transitive.



CHAPTER III
. SPECIAL CASES AND EXAMPILES

It seems reasonable and desirable at this point to in-
vestigate the existence of transitive continuous functions
in particular cases. The existence of tranéitive continuous
functions will now be established by means of examples, and
some theorems will be proved for particular topological
spaces. |

In Example 3.1, a transitive continuous function from
the closed unit interval into itself is established.

Example 3.1: The following function £ is a continuous

mapping of the closed unit interval I onto itself such that
there exists a transitive point xe I:
2x, Osxet
f(x) ='f
}_2—2x, 1exel
In general

?{2nx~K, K/2%x2(K+1) /2", K even

n
£7(x) = 0sK<2 ,

n
(k+1) - 2%x, K/2"£x 2 (K+1)/2 , K odd
K an integer.

Notice that £ maps the interval [K/Zn, (K+l)/2n10nto

Proof: Let {gi;ﬁ=lbe a countable base, consisting of

open intervals, for the topology for the interval I (for

15
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example, intéfvals with rational centers and Bational
leﬁgth). Then given any open sat U of 1 there exists a base
element g; such that g; CU. A sequence ¢f closed nested
intervals will be defined inductively. Let[aq, bﬂ = EI.
Choose an integer nj such that 4(1/2nl)£'bl-al, then
fnl [ay, b£]= I, and since £l is a continuous functian,
there exists a closed subinterval [a,, bilc[?l’ bﬂ such
that £l [az, b27C:El° In general, given[ay, bkj , choose
an integer n, such that L(1/2"%) < b, - &y, then
fnk[:ak, bk] = I, and since £k ig continuous, there exists
a subinterval [ak+l’ bk+£]of [ak, bé} such that |
£'% [ay 10 Dierd C By

The sequence {Iak, bg}' satisfies the following: -
L [agerr Prel] C [Pus By s
2) Given a base element g -there exists an integer m such
that £% [a b1 Cg,-
Let x = Zil [a, b;] , then

n+1?

fnl(x)Egl; £72(x)e gy, - - -y fnk(x)egk,
Therefore, ;zofm(x) forms an everywhere dense set in I
by Theorem 2.1. (Figure 1).
An interesting theorem concerning continuous functions
on the unit interval is now given.
Theorem 3.1: Let £ be a continuous function such.that

f(I) = T (I is the unit interval). Then f2 = f(f5 allows at

least two fixed points in I.

Prooﬁi If £ allows two fixed points, then £2 allows

two fixed points, and the proof is complete. Suppose f

allows only one fixed point. Since f is onto, this fixed
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point must be an interior point of the interval. Hence,
£(0)>0 and £(1)< 1l. Suppose pbis the fixed point. It
follows that there exists c, O$c<p, such that f(c) = 1.
Hence, f(c, p) D[p, 1] . Similarly, there exists a point
d, p<«<d<1l, such that £(d) = 0. Let e€ (¢, p) such that
f(e) = d. Then"fz(e) = 0. ©Now either f2(0) = 0 or there
exists x such that Oéxse and fz(x) = x.

Example 3.2: The following function £ is a continuous

mapping of the closed unit square I x I onto itself such
that there exists a transitive point (x, y) € IxI.
(2%x,2y), O=x=1/2, 0=y=1/2
: (2%, 2-2y), Osx=1/2, 1/2¢ y=1
fix,y) =
(2-2x%, 2y), 1/2=x21, 0£y<£1/2
(2-2%, 2-2y), 1/2£x=<1, 1/2syﬁ1
In general,
(2%%-k, 2"y-3), k/2<x < (k+1)/2",
j/2%< y=(3+1)/2%, k, j even
(2nx—kb, (3+1)-2"9), k/2%2x= (k+1)/2D,
i/2% y< (§+1) /2", %k even, j odd

n
£ (x,y) = n n n
((k+1)-2"x, 2 y-3), k/2 £ x= (k+1) /2"

.50 . .
i/2 = y2 (3+1) /2", k odd, j even

((k+1)-2"%, (§+1)-2"9), k/2"= x = (k+1) /2",

/202 y £(5+1) /2", k, j odd
0-‘-k42n, 0% 3«2, %, j integers.
Notice that £" maps the rectangle k/2%= x = (k+1)/2",
j/2%= y 2 (3+1)/2" onto IXI.

Proof: 1) £(x,y) is continuous.
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It is first shown that £(1/2, 1/2) = (1, 1) in each
representation for £. £(1/2, 1/2) = (2(1/2), 2(1/2)) =
(1, 1), £(1/2, 1/2) = (2(1/2), 2-2(1/2)) = (1, 1),
£(1/2, 1/2) = (2-2(1/2), 2(1/2)) = (1, 1), and
£(1/2, 1/2) = (2-2(1/2), 2-2(1/2)) = (1, 1).

It will now be shown that for each open neighborhood U
of £(xg, yy) of radius €, there exists an open neighborhood
V. of (xqg, yo) of radius & such that if (x,y)e V, then
f(x, y) €U.

Choose an arbitrary‘ €>0 and suppose Oﬁxoé.l/Z,

. OéyoL 1/2. P(f(x.,y), f(xo, yo))é-€ implies

/(2x=2x )% + (2y-2y,)2¢€ implies 4 E(x~xo)2 + (y-yg)2]< e’

which implies” (,x'—xé)2 + (y#y(’))z‘v"@z/h sé let & = €.21/Ll
and choose g small enough so that 0£x<1/2, 0£y<1/2.
Hence, it is seen that P(f(x_,y), f(xo, yo))Lé whenever
P (x,y), (%q, }’o))“d:; in this case.

Now suppose Oﬁxoz.l/Z, 1/2« yo&l, then |
REx,y), f(xo, yo)) = AZX—ZXO)z + (2‘~2y-2'+2y0)2 implies
L [(x—xo)2 + (y-yo)zj 2 e?, so let § = ez/u.

The other two cases are done similarly.

ii) £ is onto.

Let (a,b) € IXI.

Case 1: Suppose 0£a<l1l/2, 04b<«1/2. Let x = a/2,
and y = b/2, then f(x,y) =(a/2), 2(b/2)) = (a, b).

Case 2: Suppose 04a<1/2, 1/22b<%1. Let x = a/2,
and y = (2-b)/2, then
£(x,y) = (2(a/2), 2-2((2-b)/2)) = (a, b).
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Case 3: Suppose 1/2<azl, 02b£1/2. Let

x = (2-a)/2, and y = b/2, then
£(x,y) = (2-2((2-a)/2), 2(b/2)) = (a, b).

Case 4: Suppose 1/2<£a<l, 1/2£b%1. Let

x = (2-a)/2 and y = (2-b)/2, then
£(x,y) = (2-2((2-a)/2), 2-2((2-b)/2)) = (a, b).

Hence, £ is onto.
iii) There exists a transitive point (x,y) € IXI.

Let{Gn}:;l be a countéble base for the tpp§logy for
IXI consisting of open fectangles (for example, rectangles
with rational centers, rational length and rational width).
Then given an open set U of I, there exists a base element
G; such that GjCU. A sequehCe of closed nested rectangles
will be defined inductively. Let Ay = EI. Choose an
integer nj such that ﬁ(1/2nlj£tnin (length‘Al,.width Ay,
then fnl(Al) = I and since £l is a continuous function,
there exists a closed subrectangle A2C:A1 such that
fnl(Az)(ZGl. In general, given AkCZEI, choose an integer
n, such that 4(1/2"k) < min (length Ay, width Ak)’ then.
£M%(A,) = IXI and since f£"k: is:.continuous, there.exists a
subrectangle Ay, .y of A, such that fnk(Ak+l)<:Gk.

The sequence {Ay} satisfies the following conditions:
L) Ayps1CAg.
2) Given a base element G, there exists an integer m such
that £™(A,,1) CGn- |

Let (x,y)=jlen, then

£'(x,y) €6y, £"2(x,9)€Gy, - * *, £ E(x,9)€ Gy,
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>

ééofm(x,y) forms an everywhere dense set in

I by Theorem 2.1.

Therefore,

It should be evident to the imaginative—readef that one
could construct an example of a transitive continuous func-
tion from I™ to I".

It seems reasonable to believe that if f:X-X is a
transitive continuous function and g:X-*X is a homeo-
morphism, then g(f) is a transitive continuous function.
The following theorem will show that this is not necessarily
true.

Theorem 3.2: Let f:A-2>A be a transitive continuous

function and let g:A->A be a homeomorphism, then g(£f) is not
‘necessarily a transitive function.
Proof : Tet

2%, 0£x=1/2
Cf(x) =

2-2%, 1/2=x= 1

then £:I5 1 is transitive continuous by a previous example.

2

‘Let g(x) = x“, then g is a homeomorphism from I onto I.

(ux2, 0ex=1/2
g(fx)) =
Lx2-8x+h, 1/2€x=1
If 0£x%1/4, then 0% g(£(x))< 1/4, hence 0< (gf)’e 1/4.
Let F = {h:h(x) = (gf)n(x) for some non-negative integer n}.
By Theorem 2.3, we have x is transitive with respect to
F if and only if given two non-empty open sets U and V of X,
then UFNV: # &.
Let U be the open interval (1/16, 1/8) and let V be the

open interval (5/8, 3/4) then UF C [0, 1/4] and hence,
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UFNV = @. Therefore, g(f) is not transitive.
An example of a transitive continuous function from the
open unit interval onto itself will now be given.

Example 3.3: Example of a transitive continuous func-

tion from the open unit interval onto the open unit inter--

val. »

Ry = Ly = (5/T2, 176) (7/12,75/8)
that is, | g-1/6 = U(x-5/12)
or, y = 4x-3/2 5/12%x<7/12

L, = (L/4, L/8) (L/3, L-1/6)

In general, if k=22

L, = (I72K, I/8%)  (1/C2%-1), I-T/2(Zk-1))
or y = ((8k2-8k+1)/2)x + (2-2k), 1/2k%x<1/(2k-1).
Notice that the absolute value of the slope 1is greater

than or equal to 4.

L

L', = (1/3, 5/8) (5/12,71/8)
-8%x + 19/6, 1/3£x«5/12

or, 'y

L'.Z

(L/5, L-1/710) (l/4, 1/8)

and in general if k=2

(T7C2R+Iy, I=I/2(2k+ 1)) (1/7k, I/5K)

It

1
L k

or, y = ((-8k2+1)/2)x + 2k, 1/(2k+l) = x <1/2k.

For k22 we have

R = (I-1/C2k-1y, L/2CZk-1)Y (I-172k, I-1/Z(2K)) or;

y = (8k2;8k+i)x/2}(i6k3—24k2+14kh2)/4k, 1-1/(2k;1)§x54-1/z§'
R', = 771277578 (273,7176)

or, gy = -8x + 33/6, 7/122%x=2/3.

In general, if kZ2 we have
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R'y = (I-I72k; I-I/2020)) (I-I/ 2Ry 17202k D))
or, y = (-8kZ+hk+1)x/2+(16k”-8k%-2k+1)/(Lk+2)
for 1-1/2k 2 x=1-1/(2k+1).

Now define f to be thé function whose graph is
U mudirp uBry v iRy,

Choose an arbitrary open set U;:(O,l) then U contains
an open interval (a, b).

It will now be shown that,if (a, b) is any interval
containing an interval of the form (1/(2k+l), 1/2k),
(l/Zk,ﬂl/(zkfl));‘(l?l/(Zkfl),flgl/zkjifﬁg.Cl<i72k,¥-l/2k+l)
andfx is‘any;pointiinw(o, l)ltbén;there*gxists an integer n
,such“thgt_xuefn(ra, b).

Case l: Suppose (a,b) contains an interval of the form
(1/2k, 1/(2k-1)).

0] o :
Let Ly denote the domain of Lk and let Li denote the

0 I i

range of L, and similarly let Lro and LQI, Ry and Rk’ Rko,

k

and RiI denote the range and domain of L;, R,.» and R;

respectively. Then we have )
I

= [1/2k, 1/(2k-1)] ,Li = [1/bk, 1-1/2(2k-1)]
130= [1/(2k+1), 1/2k] L t= [1/4k, 1-1/2(2k+1)]

= [1-1/(2k-1), 1-1/21] R = [1/2(2k-1), 1-1/2(2k)]
= [1-1/2k,1-1/(2k+1)]  ,Ry'= [1/2(2k+1), 1-1/2(2k)].
Since (a, B) contains an interval of the form '
172k, l/(2k 1)) by assumption then (a, b) DL thus
f(a, b):)f(L ) = Lk [ 1/4k, 1-1/2(2k-1)] =
[1/2¢2x), 1- l/2(2k 1;1:)[1/2(2k) 1/(2(2k)- 1i] L2k ‘There-

fore, f(a,b):)LZk'wh;ch by the same argument as used-above
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contains L?Lk = ngk‘

Hence, in general |
£%a, B2 £won-1) = [1/2°M, 1-1/¢™ -2y .
Now let x €(0,1) then there exists an integer j such that
1/23 2 min [d(x,0), d(x,1)] which means that 1/2% x<1-1/27,
Now 1/29 T k=(1/2%y(1/23)2 1/23 ana 1/29 >1/(29*Lk-2)
because‘2j+lk—-2 = 2(2jk-l)>2fj, therefore
-1/¢23* -2y > -1/27 which means that 1-1/(23"1k-2)>1-1/27.
Therefore, l/2j+<lk4x4 l-l/(2j+,lk-2),. bThverefore, in this
case X €& fj(a,b) for some integer j. Thﬁs, :Lj;ofn(a,b)DI.
Case 2: Now suppose (a, b) contains an interval of the
form [1/(2k+1), 1/2k] . Then (a, b) contains L;o,
therefore, f(a,b):Df(L;O) = L;I = [ 1/uxk, 1-1/2(2k+1)j D
[ 1/2(2%+1) +1), 1/2(2K)7 = Lop.
"Therefore, f(a, b)jL;EWhich means that f2(a, b))f(L;E)
and by the same argument as used above, .we have
fz(a, b):)L,_lg ='L‘2'8k. In géneral,
£a, b) DE(gn-1) = [ 172"k, 1-1/2"k-2] .
Now let x €(0,1), then there exists an integer j such
that l/Zj—]Z. min [ d(x, 0), d(x, 1)] therefore,
l/2j—lz_ X <Z l—l/2j—l and by the same argument as used in
Case 1, we have l/ijLxLl-l/ZJk—Z and in this case
xXE fj(a, b) for some integer j. | Thus, §=Ofn(a,b)3_1.
Case 3: Now suppose (a, b) contains an interval of the
form [1-1/(2k-1), 1-1/2kj . Then (a, b) contains RE |
thus, £(a, b)DE(RY = RL = [1/2(2k-1), 1-1/2(2k)] D

[1-1/(2(2k)-1), 1-1/2(2k)] = ng.}



25

Therefore, f(a, b)Dng'\Whi,ch means that fz(a, “b);Df(ng*)
and by the same argument as above f2(a, ‘b)fD ng = R%Zk.
In general, £"(a,b)D £(Ryn-1) = [1/(2%%-2), 1-1/2"%] .
Let x € (0, 1), then there exists an integer j such that
1/232 min [ (d(x,0), d(x,1))] tbus, 1/23"12 xc1-1/237L.
By the'argument used in Case 1, we have
1/23-15 1/(23-2) and 1-1/2jk >1-1/2j"l hence,
l/2jk-2< x < 1-1/23"l and xe fj(a, b) for some integer j.
Thus, :@__,Of“(a, b)DI. |
Case 4: Suppose (a, b) contains an interval of the
form [1-1/2k, 1-1/(2k+1)] , then (a, b) contains R{Co.
Thus, f(a, b)Df(RILQ) = R;I = [1/2(2k+1), 1-1/2(2k)] D
[1-1/2(2k-2), 1-1/2C2k)] = Rpp_; -
Thus fz(a, b)Df(Rég_l) fhus by the same argument

2 'O x'0 :
£%(a, P)DRyy 4 = R22(k-l)+l' In general
£, BIDER 1y o) =

[1/¢2™ T (ko1y+1); 1-12%Ck-1)+1)] .

Let xe(0, 1) then there exists an integer j such that
1/232 min [d(x, 0), d(x, 1)] which means that
1/23 2 xe1-1/23. Now 1/(29" (k-1)+1)21/27 and
1-1/(2j(k-1)+1> 1-1/2j_, hence,
l/(2j+l(k-l)+l< X.é-l—l/(Zj(k-l)"'l'. Therefore, xe fj(a, b)
for some integer j and, therefore, nD:O“fn(a, b) = I.

Now suppose (a, b)2>(1/3, 5/12) then |
f(a, b)D(1/6, 5/6) which contains Lg hence, :Ljo £%Ca, b)D
(0, L. |

‘Similarly, if (a, b) 2(5/12, 7/12) or (2/3, 3/4) then
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| .0 S n |
£(a, b) contains L, hence, é{of (a, b)D(0, 1).
Now suppose (a, b) does not contain any of the inter-
vals, and it will be shown that there is an integer k such

that fk(a, b) contains one of the intervals and hence,

Ej fk+n(

rd
= U k .
n=0 a, b) k=0f .(a, b) D (0 5 ]_) .

It is observed that the absolute value of the minimum

slope of f is 4 which occurs on the interval 5/12« x£=7/12.

. . ] .t )
Hence, given any subinterval (¢, d) of Ly, Lq, R,, Ry, Lg,

! '0 . .
Lko, Rg or Rk’ then the arc length of f(c, d) is greater

than or equal to 4d(c, d).
Now f is a continuous function, therefore, for any

subinterval (a, b)C (0, 1), we have f£(a, b) is a continuous
0 ! .0 '0

cgrve. Let Ik represent any»of Ll, Ll, Rl, Rl’ Lk’ Lk ’

Rk’

T
or Rko, then if (a, b) does not contain an Ig, it must
intersect at most two of them. Let (cl, di) be the maximum_

intersection of f(a, b) with an IZ.

fn(cl, dl)Z hnd(cl, dl). Then certainly there is an integer

Then arc length

N such that the inverse image of fN(ql, dl) contains an
Ig, then }jofN+j(cl, d;)2(0, 1) by the argument above,
which means that Wot"(e;, d;) D (0, 1). Thus, £ is
transitive. (Figure 2).

It is well known that thevopen unit interval is homeo-
morphic to El, thus if one applies Theorem 2.11 to Example
3.3, it is seeﬁ that tﬁere exists a transitive continuous
function from EX onto El.

The next theorem will show that there does not exist a

transitive homeomorphism from the open unit interval onto



27

(1/5,9/10) - + (5/6,11/12)
i (3/4,7/8)
(1/3,5/6) (7/12,5/6)
| \
/
/ oy
/
|
L
\
.
I \
| \
]
|
\ ] | [
| | (5/12,1/6) (2/3,1/6)
I (1/6,1/8) o

o 1/i2°1/6 .1/4 1/3 s/i2 1/2 7/12 2/3 3/4 5/6 11/12 1

Figure 2. Transitive continuous function on (0,1)
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itself. It follows from Theorem 2.1l that there does not
exist a transitive homeomorphism £rom the reals onto the
reals.

Theorem 3.3: There is no transitive homeomorphism from

the open unit interval (0,1) onto (0,l)..
Proof: Suppose £:(0,1)~»(0,1) is a homeomorphism, then

f is monotone and either lim f(x) = 0 and lim f(x) =1
: x>0 x-=>1
or lim f(x) = 1 and 1lim f(x) = 0.
x-20 : x>l
Suppose f is monotone increasing. We consider the

’

following three cases:

Case 1l: f(x)>x for every xe (0, 1).

Chodse a point ae€ (0, 1), then f£(x)> a for every xi'a
since £ is monotone. This means that fn(x):ra for each
integer n = 1, 2, - - -. Therefore, f(a, 1)C(a, 1) which
means that £P(a, 1)C (a, 1) for an arbitrary a€ (0, 1).

.But then f is not transitive by Theorem 2.2 because the set
of transitive points of a transitive function must be dense
in (0, 1). |

Case 2: Suppose there is a point ae (0, 1) such that
f(a) = a. Then since f is monotone increasing, we have
f(x)> a for all x >a and £ is not transitive by case 1.

Case 3: f(x)<x for each xe€ (0, 1).

Choose an arbitrary point a € (0, 1) then £(0, a)C (0,a)
and thus £%(0, a)c (O, a) and f is not transitive by
Theorem 2.2. |

Now suppose f is monotone decreasing, then lim f(x) =1

x-=0
and lim £f(x) = 0, so there exists a point x; such that
x->1 _ :
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£(x) >x if x<xy and £(x)< x if x>x;. Let _

a = x; + (l—xl)/2, then f(a)« a so let £(a) = b. Now if
f(b) <« a, then fz(b)< f(a) = b and f3(b)<lf2(a) = f£(b).
Continuing in this manner, we see that b< £7(a)< a so there
is no integer k sﬁch that‘fk(a)>'a thus F(b, a)N(a, 1) = g,
and f is not transitive by Theorem 2.2.

Now suppose f(b) > a, then fz(b)<;f(a) = b and
£3(by>£%(a) = £(b)> a. Hence, if n is odd £7(a)<b and if
n is evenl, then £%(a) > a. Thus, fn(a, 1)4b if n is odd
and fn (a, 1)>a if n is even, thus fn(a, 1)N(b, a) = @ and
f is not transitive by Theorem 2.2.

A. S. Besicovitch has proved that the following homeo-
morphism is a transitive function from the plane into the

plane (1, 63) . Define
ig. - if £(f)+&
T(re ') = re e

: ' 21T
where f is periodic of period 27 such that S f(gdg = 0
0

and § 1s an irrational multiple of 7r.

The previous example shows a transitive continuous

. 1 1 . . .
function on E x E . One is tempted to conjecture that if
transitive functions exist on X and Y, they do on X x Y.
However, the next example will show that it is possible to
have transitive continuous functions on spaces X, Y and no
transitive function on X x Y. It is noticed, however, that

X is not a connected topological space..

) od
Example 3.4: Let X = {l/n} U {0}, with the relative
n=1
topology of the reals. Let f:X-X be defined by

£(1/n) = 1/(n¥Ll), £(0) = 0, then f is a transitive
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continuous function. Moreover, it will be shown that any
transitive function on X is topologically equivalent to f.
Let g be any transitive continuous function defined on

X. Suppose x # y, x, yeX and g(x) = g(y).

Case 1: y = 0, x not a limit point of X-x.
Let x, be a transitive point then there is an integer n such
that gn(xo) = x because x is not é limit peoint of X-x,

Since g is continuous, for any sequence {x; converging
to zero, we have {g(xni? converges to g(0). Now the only
limit point in the space‘is zero, therefore, g(0) = 0.

Hence, for the point x_ chosen above, we have

o
g (x0) = (g (x0)) = g(x) = g(y) = g(0) = 0.

Therefore, the orbit of x, under g is finite, namely

Xo, E(Xg), gz(xo), -+ -, gMxy) = %. Thus g is not trans-

itive in this case.
Case 2: Suppose x # 0 and y # O.
In this case X-x = X-x and X-y = X-y. Assume x, is a

transitive point, then as in case 1 we have gn(xo) = x for

some n and gm(xo) y for some m. Choose the smallest of

the integers m, n. Now g(g(xo)) gn+l(xo) = g(x) = g(y) =

gm+l(xo) . Ifm

y, a contradiction.

n, we have x
There is no loss in generality in assuming n>m, then

n = m+k for some integer k, therefore, gm+l(x09=gn+l(xo)
implies gm+l(xo).=‘gm+k+l(xo), and thus g is periodic of

period k at the point gm+l(xo), and, therefore, the orbit of

X, under g is {x,, g(x,), gz(xo), <o ey g™ L(xg), ¢ - -,
gm+k(x02} which is finite. Hence, g is not transitive in

case 2.
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Hence, if x # y, we have g(x) # g(y) which implies that
g 1s one-to-one. Now g is continuous and one-to-one and X
is compact, therefore, g is a homecmorphism.

It will now be shown that there is only one transitive
point relative to g.

Suppose Xo#y, and X F = yoF = X. Then x, # 0 and
o # 0 since g(0) = 0.

Thus, there is an integer n such that gn(xo) =y and

01
an integer m such that gm(yo) = X,. Therefore,

m v . . s
gmn(yo) = g'(g (yg)) = gn(xo) = y,,» and thus g is periodic
at y, of period mn.

Define h:X2X as follows: h(xo) =1,
h(gh(x_)) = 1/(n+l) and h(0) = h(g(0)) = O, then h is a

homeomorphism.

Now, .
hgh T (1/n) = hg(g” (%)) = hgllxg) = L/(n+l) = £(1/n)
hgh 1(0) = h(g(0)) = h(0) = £(0).

" Therefore, g is topologically equivalent to f.

Hereafter when we speak of a transitive function on X
we will mean the function f defined on page 29.

Now let I = [0, 1] and let X be the space defined on
page 29.

Consider X x I. I allows transitive functions and X
- allows transitive functions, but it will now be shown that
there i1s no transitive function from X x I to X x I.

Suppose h:X X I X x I is a transitive functidn. Let

In = Xx(1/n), then h(In)CIk for some integer k because h is
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continuous and because the continuous image of a connected
set is connected. Define B(1/n) = 1/k, and it is seen that
2 is transitive on X if h is transitive on X x I. Thus,
g=~£.

Furthermore, if h is transitive at the point (1/n, x),
then g is transitive at 1/n. But by the proof above g has
only one transitive point, say p. Therefore, if h is

transitive, then there exists x such that 0£x£ 1 where h is

transitive at (p, x).

Choose any point (p, x) € Ip, then Jzohn(P’x) fle=(p,x)
because there exists no integer no7'0 such that gno(p)=P

because then g would be periodic at p. Therefore,

Jzohn(p,x) N Ip = (p,x) which means that

al
U h"(p,x % I,
Joh p,x) # X
Hence, h 1s not transitive. '
Now, as a last result in this chapter a theorem con-
cerning the composite of two transitive functions is given.

Theorem 3.4: The composite of two transitive functiens

is not necessarily a transitive function.

Préof:‘ What A. S. Besicovitch actually proved in the
example mentioned above is that the follbwing is a tfah—
sitive homeomorphism from the plane into the plane.

T(reig) = rei¢ef(¢)+s ,
whenever f is periodic and continuous of period 2 17 such

that S £f(@)dg = 0, and § is an irrational multiple of
O .

Since T is a homeomorphism, then Tl exists. Now
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T'l(reigefgﬁ)*g ) = re].'g = reiﬁef(¢)+5.(e'f(¢)" 8), thus,
T-l(rel®) = pelle-E£(@)-§
The function f is periodic of period 2 Tf, hence,

f(k) = £(k+21T), therefore, -f(k) = -f(k;ZTT) and it is seen
that -f is‘pefiodic of period 2 1r . Now

Sz v —f(ﬂ)dﬁ:»-—gz £(@)df = 0. Now § is an irrational
vmulgiple of 1, thergforé, - & is an irrational multiple of
T . Therefore, -f and - § safisfy the conditions of

1

Besicovitch's example, and thus T ~ is a transitive func-

tion. Now TeT"l! = I which is certainly not transitive.



'CHAPTER IV
ON THE LIMIT OF ORBITS

Definition 4.1l: A single valued continuous trans-

formation, £(M) = M, of a compact space onto itself is said
to be pointwise periodic if for each point % of M there is
é positive integer n such that fh(x) = x.

| Remark: Such a transformation is necessarily one-to-
one, hence a homeomorphism.

Definition 4.2: By the orbit of a point x under £, or

more briefly a point orbit, we shall mean the set of all y
in M such that £7(x) = £®(y) fof some integers m,nZ0.

The definition of component orbit'under a pointwise
periodic homeomorphism is given in Whyburn (7, 259) . The
definition for an arbitrary function is given below.

Definition 4.3: If C is a component of an invariant

k v
set G, then Agof“(c) is the component orbit of C relative
to G under f. |

Definition 4.4: Let £(M) = M, then f is componentwise

periodic if for each component C of M there is an integer
n such that fP'(c)CcC.
The following theorem concerning the limit set of a

convergent sequence of point orbits is fcund in (3, 720)

"Theorem A: If M is a compact metric space, £(M) = M,

34
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a pbintwise periodic transformation, {Gi} a convergent
sequence of point orbits under £ with limit L, and if there
is in L a connected set B such that f(B) = B, then L is
connected.

After looking at the problem from a different point of
view, Schweigert was able to prove the following theorem

from which Theorem A follows as a corollary (5, 964).

Theorem B: If M is a compact metric space, £(M) = M
a pointwise‘periodic transformation and {Gi} a convergent
sequence of closed component-orbits under f with limit set
L, then L is likewise a closed component orbit.

The first work with component-orbits was done by L.
Whyburn (8). Iﬁ her paper, she studies the set of points
that remian fixed under a topological transformation of a
set M into itself. It is shown that the components of the
complement of such a set of fixed points in M fall into
groups of two types.

Haddock generalized Whyburn's results by relaxing the
condition that the transformation be topological (2).

The results of Theorem A were localized by A. D.
Wallace (6, 65). He obtained the follbwing results.

Theorem C: Let £:X-»X be a pointwise periodic homeo-

morphism on the totally disconnected locally compact

Hausdorff space X, let a€ X and let A be an open set about

a. If fMa) = a, then there is a compact oﬁen set V with
acv = fN(VCA.

Corollary: If f£:X->X is a pointwise periodic homeo-
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morpﬁisﬁ on f%é‘iocally compa;t totally‘disconhected
Hausdorff space X and if A is a compact open set in X, then
there is an integer n éuch that

£8a) = aA.

It occurred to me that one should be able to generalize
Schweigert's results also. The purpose of this chapter is
to generalize Theorem B by dropping the condition that the
space be metric and by relaxing the condition that the
transformation be topological.

Theorem 4.1;: If M is a compact Hausdorff space;

"£f(M) = M a continuous, componentwise periodic, monotone
transformation, {G{}‘a convergent sequence of closed com-
ponent orbits undér f with limit L, then L is likewise a
closed component orbit.

In order to prove the théorem; a sequence of lemmas
will first be pfesented. |
| Lemma 1: Under the conditions of the theorem £(L) = 1L,
and L is closed.

Proof: (a) £(L)CL. Let x be a point of L, then
since L is a limit set, there is a sequence {x;} of points
in {G;} such that the sequence {xi} converges to x. Now
£(x3) is in G; for each i and since f ié_continuous
{£(x{)} converges to f(x). Since £(x) is the limit of a
sequence of points OE-{Gi} , we have f£(x) is in L.

Therefore £(L) € L. (L)

(b) L Cf(L). Let x be a point of L. It will be

shown that there is a point y in L such that f(y) = x.
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Since x is in L, there is a sequence {xi} of points
converging to x such that X ig in G; for each i. Now
f_l(xi) is a connected set contained in G; since £ is mono-
tone and G; is a component orbit. Consider the seduence

{f‘l(xij} , this sequenbe of connected sets has a limit
set, say B, since M is a compact space and B is contained in
L since L is the sequential limit set of {Gi} . Therefore,
B is non-empty and contained in L.

Choose a point y in B, we wish to show that f£(y) = x.
Since y is in B, there exists a sequence of points {yj} in
the sequence of sets {f—l(xi)} such that {yj} convefges to
y. Now y, in f-1<xi) implies that f(yj)c:f(f"l(xi)) = x4,
therefore, f(yj) = X3 which implies that {f(yj)} converges
to x, but since the function is continuous {f(yj)} converges
to £(y). Thus, f£(y) = x since the limit is unique.

Hence L Cf(L). : ' o 2)

(1) and (2) imply that L = £(L).

Since L is the limit of a sequence of closed sets, it
is closed.

Lemma 2: Under the condifions of the theorem if
L=Lj UL, is a separation of L into components, then
£7(L;) = L;, i=1, 2 for some n=l, 2, |

Proof : Assume the conclusion is false, then we may
assume that fn(Ll) # Ly for all n. Therefore, fn(Ll) = LZ
for all n since f(L)CL by the proof of Lemma 1 and since f
is monotone. This means that £(Ly) = f(fn(Ll))=fn+l(Ll)=L2.

Therefofe, L, is not the image of a component of L cohtrary

L
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to the proof of Lemma 1 that L C £(L). This gives a contra-
diction.
Thus, £'(L;) = L;, i =1, 2 for some n = 1, 2, - -
Lemma 3: Under the conditions of the theorem, let Ay
be the orbit of a component k of M. If j is a component of
ja
Proof: Since j is in Ay then fn(j) = fm(k) for some

M and j is in Ay, then A = A

integers m and n, therefore, k is in Aj by the definition of
component orbit.

Let g be a component of Aj’ then there are integers s

and t such that £5(g) = £5(3). But we have £(j) = £P(k)
n+1i m+ 1

() =£ (k)

]

I

which implies that for all integers i>0, £
so there is no loss of generality in supposing that n >t.
Therefore,
£577 () = £7(H = £,
so that g is in Ap. Thus, AjC A,.
By choosing a component h of A, and repeating the argu-

ment, we see that AL, C A Thus A, = A

J- J-
This means that the orbits, such as Ap, are disjoint
when different.

Proof of the theorem: It has been shown that f(1L) = L

and L is closed.7 It must now be shown that L is a component
orbit.

(L) If L is connected, then L is already a component
relative to itself and since f£(L) = 1, L is a component
orbit. | |

(2) Assume I is not connected.



39

Let K be a component of L and let f(Kd) = Ky,

£(K) = Ky,* © +, £(Kp_1) = Ky, £(Kp) = Ky, so that K, Ky,

, Ky is a component orbit and let K = §=0Ki' It will
be shown that K = L.

Assume K # L, then L is separated and closed. Hence,
there exists a neighborhood V of K having the property that
the boundary F(V) is disjoint with L and also V is disjoint
with L-K, that 1is,

F(MONL = g, (M-VONL # .
Since K is in L, there exists a sequence of components
{Ai} such that A; is in G and {Aj converges to K,.

Since almost all A; are in V, we may suppose all are in V.
For each i, let Bj be the first component in the sequence
f(Ai), f2(Ai), L belonging to M-V. We may again suppose
B; exists for all i.because almost all G; must intersect
M-V. A subsequence of {Bi},which we may suppose is the
whole sequence, converges to a component C of L /1 (M-V).
Now the sets f'l(Bi) are connected since f is monotone, and
they are in V, furthermore, they‘are contained in a sequence
of components because the componéﬁts are the maximal con-
nected sets. By an argument like that given in part (b) of
"the proof of Lemma l,‘there is a subsequence {Di} of the
sequence {f'l(Bi)} converging to a limit set D such that
DN f'l(C) # @ and D is in (VNL)-K because if D were in K,
then £(D) C C would be in K.

It will now be shown that £71(C) is in (VN L)-K.

Since £(L) = L by Lemma 1, we have f~l(C) is in L. Suppose
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f'l(C) is not in V, then £-1(C) = DUE where D is in VN L
and E is not in V and since F(V)NL = @, we have DNE = .
Now if DNE and DNE are non-empty, their point of inter-
section must be in F(V) but each set is in L, hence their
point of intersection is in L because L is closed. This

contradicts F(V)NL = ¢. ,
Since ffl(C)CZ(Vf\L)-K, there exists an integer N;

such that f'l(B__]-_)n A; = g for i>Nl because if
ffl(Bi)/iAi # @ for all i =1, 2, * * -, we could find a
subsequence of the {f'l(Bi)} that converges to K  and
f(Ko) # C because £(k,) is in K. |
In the same way, the connected sets f'2(Bi) are in V
for i>N;, and we may argue as above that £72(C) is in
(VNAL)-K, and there exists an integer No> Nj such that
£-2(B;)NA; = . Again, £73(B;) for i>Ny are in V and
£-3(C) is in (VAL)-K so find Ny>N, such that £ >(B;NA;=f.
If we continue in this manner, we will obtain £77(C) is
in V contrary to the periodicity at C which would require
that £°2(c)NC # ¢ for some n, where CCM-V.

Corollary: If L contains a fixed point or a fixed com-

ponent, then L is connected.

The proof of the corollary follows immediately from the
proof of the theorem.

The following example shows that Theorem 4.1 is
actually a generalizatibn of Theorem B. Although the
éxample is trivial, the imaginative reader can easily sée
that morevcomplicated examples can be constructed in a

similar manner.



Example 4.1l: Example of a continuous componentwise

periodic, monotone transformation which is not pointwise
periodic.
Let M = [0,1] with the relative topology from the
reals.
Define | 3/2%, 0% x<1/3
f(x) = 1/2, 1/34%x42/3
3/2x-1/2, 2/3«x<1

Clearly £ is a continuous monotone transformation. Since

M has only one component, namely M itself, and £(M)

i
=

then f is componentwise periodic. However, £ is not

pointwise periodic because £7(1/3) = 1/2 for all n.

41



CHAPTER V
SUMMARY

The primary objectives‘of this paper are to study the
orbit of a point under a transitive continuous function, to
construct some examples of transitive continuous functions
in particular topological spaces and to consider the limit
of a convergent sequence of components under a componentwise
periodic monotone transformation. |

The orbit of a point x and transitive fuﬁction are
defined, then in Chapter II some fundamental properties of
transitive functions are proved. Included among these
results is a theorem which states that a pdint x ls tran-
sitive with respecf to F if and only if, given two_érbitrary
non-empty open subsets of the space X, then UFNV # @. This
result is used extensively in Chapter III to construct
examples of transitive continuous functions. There a tran-
sitive continuous function is constructed from the closed
unit interval into itself. A transitive continuous function
from the open unit interval into itself is also cdnstructed.
It follows from this that therevexists a transitive contin-
uous function from El into El.

One of the main results of this paper is given in

Chapter IV. It states that if M is a compact Hausdorff

L2
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space, £(M) = M a continuous, componentwise periodic,
monotone transformation {G{} a convergent sequence of closed
component orbits under f with limit L, then L is likewise

a closed component orbit. This is a generalization of a
theorem due to Schweigert (5)

The‘following are some’duestions for further study.
What are necessary and sufficient conditions on a function
to insure that it is transitive? What restrictions must be
placed on the space X to insure fﬁat a transitive function

exists on X? For any continuous mapping f:X-2X let

T = {x:x is transitive with respect to xJ},
A = {x: there is a g in F such that g(x) = x} and
L = {x: the limit of f" (x) exists) .

Are there other points and can they be characterized?
Given an everywhere dense set A is there an F such that A is

the set of transitive points of F.
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