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CHAPTER I 

INTRODUCTION 

The state-variable approach to the analysis of scien­

tific problems, which includes nearly all the engineering 
1 disci plines, is far from newo For many years this basic 

approach has been used by physicists in the description of 

dynamic occurrences in classical mechanics and quantum 

mechanics. However, many of the more recent advancements in 

the topological mathematical theory which are directly appli-

cable to state space analysis have not, as yet, been employed 

by either the physicist or the engineer. Also, there exist 

many concepts in both of these fields of applied mathematics 

which have not been put in a proper perspective with refer-

ence to state models. Due to the increased interest in the 

state- variable methods as applied to control system analysis, 

a great deal of emphasis is being placed on the integration 

of classical and modern control methods. 2 

'1The term "state-variable" infers the description of 
system models in finite dimensional state space. These 
models contain explicit mathematical descriptions df the 
system's state in a vector matrix form. Appendix D shows a 
method for modeling systems in state space. 

2modern control methods and modern control approach to 
system analysis are the techniques of control system analysis 
employing state-variable models. 

1 
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Motivation for the increased emphasis on state-variable 

methods by systems engineers stems from two sources. The 

first source is the increased efforts being placed on 

optimization. Most optimization procedures have been devel­

oped from a state space standpoint. Thus, in order to apply 

these theories to physical systems consistency of model 

domain and optimization technique domain is a necessity. 

State-variable representations for physical systems provides 

this time domain match with the optimization theoriesD 

The second source of motivation is the need for organ­

izing the analysis methods from the systems viewpoint. tor 

the analysis of linear time invariant systems classical con­

trol theory provides transform techniques which allow the 

system equations to be readily solved. However, when this 

class of systems is extended to include time variance, these 

transform techniques are no longer readily applicable. tur­

ther, when nonlinear terms are introduced classical theory 

employs a variety of techniques to obt~in a system evalua­

tion. Thus, classical theory does not possess any particular 

technique which can be extended to cover all classes of sys­

tem models. The state-variable methods can be extended to 

model both stationary as well as nonstationary systems and 

linear as well as nonlinear systems coupled with the time 

variance or time invariance characters. This property of 

the state-variable approach offeDs the framework for a more 

unified organization of systems analysis. 
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The basic principle of the state-variable methods is 

the description of the system mathematical model as a system 

of first order differential equations. This system of aqua~ 

tions can be expressed in a form to which mathematical 

topology is directly applicable. 

The particular class of mathematical models to be con­

sidered herein are those describable by linear, time invari­

ant (stationary), ordinary differential equations. The 

state-variable representations of this class of system models 

find themselves amenable to the application of many subtopics 

of mathematical topology. These particular subtopics include 

matrix algebra and finite dimensional vector spaces. Both 

of these have a ve~y rigidly developed history which, when 

applied to system analysis, provides a well founded analyti­

cal basis 0 

State-Variable Models 

For any particular system there are many forms in which 

the state-variable model can be written. The particular 

form of the state model is dependent on the technique 

employed to obtain the model. Appendix D describes a method 

for modeling dynamic systems in state space. This appendix 

shows how the two state models presented below can be 

derived. 

The most general state-variable models are the unreduced 

models. The mathematical presentation of these models is 
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described in the following manner (1). 3 A system of linear, 

first or~er, differential equations with constant coeffi­

cients can be expressed completely by the matrix equation 

where 

p w = B ~ + R V (1-1) 

w = ~(t) -[x] which is an {n+q) - dimensional column 

- ~ :actor with components X1, X2,,,,Xn, Y1, 

Y2,•••Yq• 

x = ~(t) =then - dimensional state vector with compo-

1 = 1(t) = the q dimensional output vector. 

v = ~(t) = the p - dimensional input vector with compo-

nents v1 , v2 , v3 ,~ •• vp. 

x = x(t) =then - dimensional derivatives of state 

vectors. 

P = a coefficient matrix of dimension (n+q) by 

(n+q). 

Q = a coefficient matrix of dimension (n+q) by n. 

R = a coefficient matrix of dimension {n+q) by p. 

Reduction of the unreduced model to standard state space 

form gives the following two equations 

• X = 
= 

A X + 8 V 

C X + D V 

(1-2) 

(1-3) 

• where~,~'~' and 1 are vectors as defined in the unreduced 

3Numbers appearing in parentheses . within the text refer 
to references on pages 117 and 118. 



modelo The coefficient matrices are as follows 

A= n by n differential transition matrix 

8 = n by p input matrix . 

C = q by n output matrix 

D = q by p transmission matrix. 

5 

The elements of the coefficient matrices are constants. 

These constants are either real or complex and for any par­

ticular system one form of the state-variable model can have 

elements which are complex numbers while another form of the 

state-variable model for the same system may have elements 

which are all .real numbers. Therefore, a single state­

variable model for a system is not unique. As many state 

models can be written for a system as there are combinations 

of the significant constants associated with any particular 

system. Three of the more familiar forms of the differential 

transition matrix are the Jordan, Rational, and Phase­

Variable Canonical forms. The system characteristics 

explicitly displayed by the elements of the Jordan Canonical 

form are the system's charact~ristic modes (roots). The 

Rational Canonical and the Phase~Variable Canonical forms 

display the coefficients of the system's characteristic 

equation as elements in the differ~ntial transition matrix. 

fundamental State-Variable 

frequency Canonical form 

Due to the lack of uniqueness of the state model forms 

including any of the Canonical forms discussed above, the 



6 

analysis procedures used in classical control theory can be 

represented in one form or another by the coefficient matri­

ces associated with the state-variable models. This fact 

permits modern control theory to provide the much needed 

unification of control theory from a system analysis 

approach. 

One of the analysis procedures which produces most of 

the system cha~acteristics employed in classical control 

theory is the system real frequency responseo The frequency 

response method evaluates the system closed loop character­

istics by investigating the open loop transfer function. 

The frequency response approach has not as yet been employed 

in the modern approach to system analysis, At the present 

time the frequency response transfer function of a system 

described by a state-variable model is obtained from the 

state model in exactly the same form as it appears in classi­

cal system analysis. Direct application of classical tech­

niques is much easier 0 With presently available modern con­

trol techniques it is not advantageous to follow the same or 

similar paths followed in the development of classical con­

trol theory. 

There are various available means for constructing a 

system's frequency response spectrum from the state-variable 

models as will be shown in the following chapter. These 

techniques are based on the parallel developments in classi­

cal control theory; however, since no additional information 

is obtained, no particular advantage is gained by employing 



7 

the state-variable approach instead of the well known trans­

fer function method. 

The "Fundamental State-Variable Frequency Matrix" 

developed in this dissertation demonstrates that from a fre­

quency response standpoint there is a definite advantage to 

system state-variable modeling. The need for this matrix 

will occur particularly when a system modeled in state space 

is to be analyzed through its frequency response spectrum. 

The "Fundamental State-Variable Frequency Matrix" displays 

explicitly the critical gains, a~ymptotes, and frequencies 

associated with the system frequency response. These funda­

mental characteristics are derived from the entries in the 

"fundamental State-Variable Frequency Matrix"o 

The information derived from the basic theory of the 

"Fundamental State-Variable frequency Matrix" has application 

to compensation and synthesis as well as analysis. This 

theory has a rather unique inverse in its application by 

direct utilization of experimental frequency response infor­

mation. Since the frequency matrix contains critical gains, 

asymp~otes, and f~equencies, experimental frequency response 

data can be used to fill out the matrixo Thus, the state­

variable model can be systematically derived from test data. 

Since the state models are not unique, it is possible 

to obtain the "Fundamental State-Variable frequency Matrix" 

from a system's mathematical model in one of two ways. 

first, the state model can be written by any one of the 

standard available means which results in a canonical form. 
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With this model a transformation is performed resulting in 

the frequency matrix~ The transformation necessary to 

transform state models into the Frequency Canonical Form is 

developed in this .dissertationo Second, the state model can 

be written directly in the frequency Canonical Form by a 

direct programming method developed in this dissertationo 



CHAPTER II 

SIGNirICANT HISTORICAL CONTRIBUTIONS 

The use of state-variable models has only recently 

received a great deal of emphasis by systems engineers. 

Consequently 9 no work has been exerted to express the sys­

tem's frequency response spectrum utilizing modern control 

theory state models. However, four methods are presented by 

which the frequency response spectrum can be constructed 

from state-variable models. The first of these methods was 

developed from Brockett•s work (2). Brockett•s work 9 as 

will be shown, develops the transfer function of the system 

in a matrix form from which the frequency spectrum can be 

constructed using Bede's Theorems. The remaining thr~e m~th­

ods presented employ work of other investigators which has 

been modified by the author to use state models instead of 

the frequency domain transfer f~nction. The first of these 

methods to obtain the frequency response from a state model 

is restricted to those systems which have simple forcing 

functions. This method employs the Jordan Canonical form of 

the state model. The pther two methods of drawing the fre­

quency response spectrum from a 'State model involves the combining 

together of individually developed techniques. One of these, 

developed by Smith (3), which has some limitations, uses a 

9 
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direct programming technique to produce tha state model in 

canonical form and a graphical method for drawing the fre­

quency response spectrum. The other one uses the same means 

of developing the state model but the frequency response 

spectrum is obtained by a method developed by Ausman (4). 

The direct programming techniques referred to are discussed 

· in Appendix A. 

Brockett's State Model Transfer runction 

Brockett•s work considered the class of linear, time-

invariant system5 which can be described by the reduced 

state-variable models shown in the following vector matrix 

equations. 

x(t) 

1(t) 

= ~ ~(t) + ~ ~(t) 
' 

= f ~(t) + D ~(t) 

(2-1) 

(2-2) 

In these equations ~(t) and 1(t) are the system input and 

output matrices, respectively, and ~(t) is the system state­

variable matrix. In this work it is assumed that ~(t) and 

1(t) are vectors of the same dimension, say q, and that ~(t) 

is a vector of dimension n. Particular emphasis is placed 

on the class of systems which have a single input and a 

single output. This is reflected in the state moqel by set­

ting the dimension q equal to oneo Consequently, ~(t) and 

1(t) are one by one column vectors and are written as v(t) 

and y(t). The particular state-variable model used by 

Brockett is shown below. 

x(t) 

y(t) 

= ~ ~(t) + B v(t) 

= f ~(t) + D v(t) 

(2-3) 

(2-4) 
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Equations (2-3) and (2-4) can be transformed by use of 

Laplace Transformations. The result of this transformation 

is 

s ~(s) - ~(O) = 1 ~(s) + ~ v(s) 

y(s) = £ !(s) + D v(s) 

(2-5) 

(2-6) 

Equation (2-5) must be solved for ~(s) in order to obtain 

the transfer function. 

s ~(s) - 1 ~(s) = ~(O) + 8 v(s) (2-7) 

or 

(ls - 1) ~(s) = ~(O) + ~ v(s) (2-8) 

where 

I is the identity matrix. 

By post multiplying Equation (2-8) by (ls - ~)- 1 the result 

is 

~(s) = (ls - ~)- 1 ~(O) + (ls - ~)- 1 ~ v(s) (2-9) 

Substituting Equation (2-9) into Equation (2-6) produces an 

expression of y(s) in terms of ~(O) and v(s). 

y(s) = £(ls - ~)- 1 ~(O) 

+£(ls - 1)-1 ~ v(s) + D v(s) (2-10) 

The column vector ~(O) represents all the initial conditions 

imposed on the system. ror zero initial conditions Equation 

(2~10) reduces to 

(2-11) 

The system transfer function as derived from the state­

variable model is as shown in Equation (2-12). 
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~f:l = [f (l. 5 - ~,-
1 ! + £] (2-12) 

Since the inverse of a matrix can be written as the 

adjoint of the matrix divided by the determinant of the 

matrix, Equation (2-12) can be rewritten as follows. 

= 
C adj(I s - A) B ..... - -

11 s - 1 l 
+ D (2-13) 

With this system transfer function the frequency respo.nse 

speptrum can be drawn by use of Bede's Theorems (5). 

This method presents no advantage over the standard 

transfer function methods other than the fact that the state 

model was involved. If the analysis was initiated from the 

basic system mathematical model, then there is a definite 

disadvantage of following Brockett•s procedure. This disad­

vantage is in the evaluation of the vector matrix equation 

to obtain the transfer function. 

System frequen6y Response Using State Models 

in Jordan Canonical form 

The general form of the state-variable model in Jordan 

Canonical form for systems with distinct eigenvalues or 

unrepea ted roots is shown in ~quation (2-14). 
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• 0 0 0 0 1 X1 r1 • • • X 
I 1 

• 0 x2 r2 0 0 • • .. 0 x2 1 

• • • • • • 

• • • • • • 
= + V (2-14) 

• • • • • • 

• • • • • • 

• • • Q • • 
0 

0 xn • • • • • 0 rn xn 1 

y = [ C1 c2 • • • • • en] X1 + [a] V 

x2 

• 

• 
(2-15) 

• 

0 

0 

X n 

The elements in the differential transition matrix are either 

real numbers or complex numbers. The real or nonimaginary 

entries are over-damped system modes for negative entries 

and undamped or unstable system modes for positive entries. 

Complex elements will always occur in conjugate pairs since 

the polynomials considered have real coefficients. There-

fore, complex elements with negative real parts are under-

damped oscillatory system modes while those with positive 
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real parts represent undamped or unstable oscillatory system 

modes. The frequencies of the complex and the real entries 

are the corner frequencies for the system's lag frequency 
1 response spectrum. With this information it is possible to 

construct the asymptotes of actual lag frequency response 

spectrum and, by using Soda's Theorems from classical control 

theory, to draw the actual lag spectrum. 

By examining both Equations (2-14) and (2-15) it is 

evident that the coefficients of the system forcing function 

are not explicitly displayed. Herein occurs the limitation 

for the use of state models in Jordan Canonical Form to 

determine system frequency response spectrums. There is no 

explicit information displayed in the state model such as 

forcing function coefficients which will contribute to the 

construction of the lead frequency response spectrum for a 

system. This statement is correct with the exception of 

simple farcing functions, e.g. simple sinuso·rdal inputs. F'o·r 

very simple system inputs the fo~cing function coefficients 

appear explicitly in the input matrix. Hence, sufficient 

information is displayed to allow the construction of the 

total frequency response spectrum. 

1The lag . frequency response spectrum is that part of a 
frequency response spectrum constructed by using only the 
numerator of the transfer function. Also the lead frequency 
spectrum is that part of the frequency fesponse spectrum 
constructed by using only the denominator pf the transfer 
function or characteristic equation. 



System rrequency Response Using State Models 

in Rational Canonical form 

The methods presented in this section to obtain the 

system frequency response spectrum will involve state-
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variable models in the Rational Canonical rorm. However, 

the Phase-Variable Canonical rorm can also be used equally 

as well for finding the frequency response of a system from 

its state model. 2 The basic difference in the uses of these 

two canonical forms is in the representation of the system 

gain. Since the Rational Canonical form presents the total 

gain in a combined form the developments in the following 

sections will be much clearer by using this form of the 

state model. Methods by which the state model can be derived 

in either Phase-Variable Canonical form or Rational Canonical 

form from the system mathematical model are presented in 

Appendix A. 

In general terms, the state model used in the following 

two sections will be as shown in Equations (2-16) and (2-17). 

2The differences in the Rational Canonical form and the 
Phase-Variable Canonical form are primarily the locations of 
the coefficients of the characteristic and forcing function 
polynomials in the coefficient matrices. The differential 
transition matrix of the two Canonical forms display explic­
itly the coefficients of the characteristic function and are 
transposes of one another. The coefficients of the forcing 
function appear in the input matrix in the Rational Canonical 
Form while these coefficients appear in the output matrix in 
the Phase-Variable Canonical form. 
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• 0 0 0 0 
ao bo 

X1 • • • -- X 
an 1 a n 

0 1 0 0 0 
a1 b1 

x2 • • 0 

an x2 an 

• 0 • • • • • 

• • • • • • • 

= + bm V (2-16) 
0 0 • • 0 0 

an 

• • • • • • 0 

• .. • 0 • • • 

a 
• 0 0 1 n-1 0 xn • • • • -- xn an 

0 

• 
(2-17) 

0 

• 

• 

If the i nput matrix is normalized with r espect to the bm/an 

entry in the input matrix 1 which is equivalent to normaliz­

ing t he system 'fo rcing function with res pect to the highes t 

order te r ms 1 the r esult i s a s s hown i n t he following s tate 

model. 
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0 
0 0 0 0 

ao bo 
X • • 0 X1 o 1 a n m 

• 1 0 0 0 
a1 b1 

x2 • • • x2 o an .m 

0 0 0 • • 0 • 

0 • 0 0 • • b • 
= + 

m -an 
V (2-18) 

• , 0 0 • • 1 -
0 0 0 0 • 0 0 

• • • 0 • • • 

• 0 0 1 an-1 
0 xn • 0 • • -- X 

an n 

The scalar multiplying the input matrix is the gain of the 

system which is the result. of normalizing both the numerator 

and the denominator polynomials of the system's transfer 

function. 

The power of the state-variable techniques lies in the 

analysis of more complex systems, e.g. systems whose maths-

matical modal is simultaneous, coupled, differential equa­

tions. In order to simplify the presa~tation of state-

variable techniques it is necessary to use examples of a 

rather simple nature, even though these examples may be 

handl~d equally well by classical system analysis techniques. 
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511! th• s ffletbod 

Sm! tb • s method for constructing tbe frequency respoMe 

spectrum of a dynamic system involves tha use of tamplets 

(3) and can be applied to state models. The method devel­

oped from Bode's Theorems for constructing dynamic system 

frequency spectrums can also be performed by ~sa of templets . 

However, the templets which Smith developed do not require 

that the numerator and denominator be factored to find the 

corner frequencies and asymptotes as do those based on Bode ' s 

Th eorems. The basic technique for Smith's method involves 

the use of a series of templets to construct the frequency 

spectrum from the unfactored system transfer function . 

Smith's method is applicable to a rational algebraic function 

of a complex variable as mall as to transfer functions when 

the transform variable ii is replaced by JW. 

In classical control analysis the denominator of the 

transfer function is the characteristic equ~tion and the 

numerator is the forcing function. The stata model used 

with S111i th• s method for co~structing tbe. frequency spec·eru11 

is the Rational Canonical rorm. In this form the coeffi­

cients of both the characteristic polynomial or characteris­

tic equation and the forcing function are displayed explic­

itly. 

I n.i ti ally Sm! th• s method deals 111! th the separate poly­

nomials from the term-pair standpoint. A term-pair is the 

grouping of the real and imaginary parts of the particular 

polynomial under investigation into pairs of successive 
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tarmso The informatio~ required by Smith's method can be 

obtained from the entries in the Rational Canonical form of 

the differential transition matrixo 

0 0 0 
ao 

• • • • --a 
WO 

n 

1 0 0 
81 

• 0 • • a n 

0 1 0 • 

0 0 • • 
A = ( 2-19) 

0 • • 0 

0 • 0 0 

0 • 0 • 

a n-1 0 0 0 0 • 0 1 --an 
wn-1 

The elements in the right-hand column are the negative of 

the coefficients of the characteristic polynomial with the 

coefficient of the highest power normalized. To construct 

the lag frequency spectrum from the state modal employing 

Smith's method the real and imaginary ·part of the character­

istic and forcing function polynomials are written in the 

following form. 

= 



where 

20 

(2-21) 

R(u.J)c = real part of the characteristic polynomial 

when written as a complex function. 

I(u.J)c = imaginary part of the characteristic polyno­

mial when written as a complex function. 

uJ = the driving frequency. 

Each of the pairs of terms in the parentheses is a term-pair. 

Noting that each of the separate terms represent linear func­

tions of W when the !agar i thm of each terms is employed, 

Smith constructed a series of templets he calls term-pair 

contours or term-pair templets. Illustrations of these tem­

plets are shown in figures 2-1 and 2-2. With these templets 

it is possible to construct separate spectrums for each term-

pair included in the real and imaginary part of the charac­

teristic polynomial. This construction is done by placing 

the appropriate term-pair te,mplet at the intersection of the 

two linear representations for the proper term-pair and draw-, ' 

ing the cbntour di.ctated by the coefficients involved~ This 

procedure is repeated for all term-pairs in both the real 

and imaginary parts resulting in the term-pair spectrums. 

The next step in the construction of the frequency 

response spectrum is to obtain the spectrum for the real 

part and also the spectrum for the imaginary part by adding 

the separate composite contours. This step is accomplished 
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by using another templet which is shown in rigure 2-3. With 

this templet it is possible to either obtain the sum or dif­

ference of two term-pair contours. The summing of term-pairs 

is accomplished by placing the templet shown in rigure 2-3 

over the contours with the reference point on the lower coA­

tour at the value of the driving frequency c.u 1 at which the 

sum is to be found. The upper contour is set on curve a at 

c.u 1 and the sum is read at the intersection of curve band 

the driving frequency. This process is continued until all 

the contours for the term-pairs of the real part of the 

characteristic polynomial are summed. rinally, the term-pair 

contours for the im~ginary part of the characteristic poly­

nomial are summed. The results of these operations are two 

spectrum distributions, one for the rea,l part and one fo.r 

the imaginary part of the characteristic polynomial. 

The next step is to obtain the amplitude and phase shift 

from these t :wo spectrum distributions. This is accomp lished 

by use of another templet which is shown in rigure 2-4. This 

templet is used in a similar manner as the previous templat 

shown in rigure 2-3. The lower of the real or imaginary 

spectrum distribution is placed at the reference point in 

rigure 2-4a at various driving frequencies and the upper 

spectrum distribution is placed under the curve eat the 

corresponding frequencies. At each frequency the amplitude 

is read under curve f. figure 2-4b is · used to obtain the 

phase angle in a similar manner. The sum total of all this 

manip.Jlation is the la~ frequency response spectrum for the system. 
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To obtain the lead frequency response spectrum the 

coefficients of the forcing function appearing explicitly in 

the input matrix of the Rational Canonical state model are 

employed in exactly the same manner as the coefficients of 

the characteristic polynomial. Once the lead and lag fre­

quency response spectrums have bean constructed then ,the 

total frequency response spectrum is obtained. A mere point 

by point graphical subtraction of the lag spectrum from the 

lead spectrum can be employed to obtain the total spectrum 

since both are logarithmic functions. Also a similar point 

by point graphical subtraction can be used to obtain the 

phase shift. 

Smith's method will provide the frequency response spec­

trum for a system; however, as the order of the system 

increases the number of templets necessary also increases. 

Specifically, it is necessary to have (n-1)/2 templets for 

an nth order system. Also, the templets employed are fash­

ioned to one specific grid of logarithm paper. If frequency 

response data is to be constructed on logarithm paper of a 

different scale another set of templets must be used. 

Smith's method is based directly on the information 

displayed explicitly in the Rational Canonical state model; 

however, the complexity and restrictions imposed deem prac~ 

tical utilization nearly impossible. 

Ausman•s Method 

Ausman•s method for the construction of a dynamic sys­

tem's frequency response spectrum results primarily in the 
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frequency versus amplitude response spectrumo ror most 

practical applications the frequency versus amplitude 

response spectrum is a graphic description of the transmis­

sibility or filter characteristics of the systemo This fact 

is characteristic of time invariant linear systems. The 

time invariant linear filter will alter the amplitude and 

the phase relationships of the input signal 1 but the charac~ 

teristic frequencies of the input as seen at the output are 

identical to those seen at the inputo Ausman•s method pre­

sents a technique for constructing the transmissibility or 

gain plot of a dynamic system without factoring the polyno­

mials involved., 

Since Ausman's method does not require that the charac­

teristic polynomial or the forcing function polynomial be 

factored the Rational Canonical state model will provide 

sufficient information for direct applicationo This conclu­

sion is substantiated by the illustrations which followo 

The only ~alue which the Rational Canonical state model does 

not display explicitly is the coefficient associated with 

the highest derivativeo The coefficients of the character­

istic polynomial appearing in the differential transition 

matrix of Rational Canonical state models reflect normaliza­

tion with respect to the coefficient of the highest dsriva­

tiveo The coefficient of the highest derivatiV'e is 11 there ... 

fore 9 implicit within the differential transition matrix as 

well as the input matrixo The general form of linear time 

invariant system's mathematical model is shown in Equation (2.,.22)0 
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+ 0 0 0 + (2-22) 

The Rational Canonical state model for the system represented 

dynamically by Equation (2-22) is shown in Equations (2-17) 

and (2-18) .. 

Application of Ausman 9 s method in conjunction with the 

Rational Canonical Form of the state model is demonstrated 

by the three illustration.a belowo The first two illustra-

tions of system models consist of the two fundamental types 

of stable modeso The final illustration deals with a much 

more general dynamic system analogous to most physically 

realizable systems., 

This first illustration involves a simple second order 

system which has dynamics characteriz•d by two aperiodic 

(cn.Perdamped) modes., The. general ma thema ti cal model for this 

type of system is shown below., 

(2-23) 

The state-variable model written in Rational Canonical Form 

for this system is 

i1 0 
ao 

1 
a2 ><1 bo - + - V (2-24) 

" 1 
B1 a2 

0 x2 -~ x2 82 
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(2 ... 2s) 

Ausman•s method for the construction of system trans­

missibility spectrums works •1th separate ccimbinations of 

all the individual terms in both the numerator and denomina-

tor of system transfer functions. The Rational Canonical 

F'orm of the state model displays the transfer function coef­

ficient.a explici tlyo Therefore 11 it is possible to construct 

system frequency response spectrums by using state models in 

conjunction with Ausman•s methodo The construction of the 

frequency spectrum ·by Ausman•s Method involves forming tbe 

ratio of successive numerator terms with the denominator 

terms of system transfer functions. Th$ coefficients dis­

played in the Rational C.anon!cal F'orm· of the etate model 

must 11 therefore 11 be. multiplied by appropriate powers of the 

driving frequency w so that wh.eu11 combinations of terms are 

made from state model entries, the result will be the same 

as those formed using the terms from the system• s transfer 

functiono The powers of the driving frequency (c.J used are 

equal to the subscript of the coefficient entry in the 

Rational CanoAica.1 F'orm of the state model 11 BoQo a 0/an must 

be multiplied by w 0, am/an must be multipl,i.ed by Wm, etc • 

. F'or the state model shown in Equattons (2-24) and 

(2-25). the trtnsmiss!bility characteristics are obtained by 

multiplying the entries in the differential transition 

coefficient matrix by the appropriate power of W and then 
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dividing each of these into the scalar gain b0/a 2o Each of 

the quotients is an asymptote to system's transmissibility 

spectrum. This procedure produces all the asymptotes except 

the transmission asymptote at high frequencies. The high 

frequency asymptote is the gain scalar divided by c.,; raised 

to a power equal to the highest order derivative in the sys 0 

tem model in differential form. This exact procedure can be 

used to construct transmissibility sµectrums for nth order 

systems. When tbe forcing function polynamial contains many 

terms the dominance of each term js established by forming 

the ratio of successive termso The ratios establish the 

frequencies where dominance changes from one forqimg fanction 

term to the next. Tbe application of the c.ambination of 

Ausman 1 s Method with t.he, system state model snown in Equa­

tions (2-24) and (2-25) is shown in the following paragraphs. 

When the driving frequency W becomes very small 11 the 

coefficient a 0 predomina~es over the other two colfficiepts. 

The transmissibility takes the ~alue shown below~· 

(2-26) 

Equation (2-26) is represented dashed horizontal line 

in Figure 2-5 labeled "b0/a 0"o Similarly, at wary high 

driving· frequ~ncies the coefficient a 2 ·pr~dominates ~var the 

other termso The transmissibility ~t this frequency is 

shown in Equation (2Q27)o 
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(2-27) 

Equation (2-27) is represented by the dashed line of slope 

minus 2 (40 db per decade) labele,d ub 0/a2_W 2". 

Assuming for the purpose of tbis illustration that tbe 

dynamic system has two aperiodic modes, the intermediate 

range of driving frequencies is dominated by the co~fficient 

a 1• ror this particular situation the transmissibility 

within this range of driving frequencies is 

T = 
a2 

a1 1 -w 
a2 

(2-28) 

Equation (2-28) is represented in Figure 2~5 by the dashed 

line labeled ••b 0/a1 W" of slope 1 (20 db per decade). 

With the three functions sketched on the graph as shown 

in rigure 2-5 it is apparent ~hich coefficient predominates 

at any partic~lar driving frequency. It also becomes appar­

ent that at the driving rrequencies where the dashed lines 

cross, the transmissibility mas two eq~ally weighted repre­

sentations. tor example, where b0/a0 crosses o0/a1c.u the 

value of a 0 is exactly equal in magnitude to 'a1c.u, but a 0 is 

90- ctegrees- ctirr-srent irT ph"eis-irrg which makes a0 and a 1 W equal 

' ta one another and tbe tr•a~missibility is approximately 

bl) 

1 (2-29) 



Similarly at the crossing of b0/a1W and b0/a 2W 2 

a w 2 = 
2 

b 0 

bo 
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(2-30) 

The two points on the transmissibility curve and the 

three lines drawn previously permit the frequency response 

spectrum to be completely defined as shown by the solid line 

in F'igure 2-50 

The second illustration involves a dynamic'system whose 

mathematical model is the same as that for.'the previous 

illustration except that its characteristic mode is an under­

damped oscillatiorl'o The applica~ion of Ausman• s method to 

this type of system follows the exact procedure as that for 

the system with aperiodic modeso The exception to this first 

procedure is when the intermediate frequency range is con­

sideredo 

To begin with P the two dashed lines b0/a0 and b0/a 2w 2 

are drawn as shown iA f"igure 2-6 for the large and small 

driving frequency rangeso Now when the intermediate range 

dominancy is evaluated by drawing the.dashed line labeled 

''b0/a1 w 0~ it. is foumd that this line is everywhere above at 

least one of the other two (b 0/a0 and b0/a 2w2 )o f"or this 

situation the a 1 coefficient never dominates over a range of 

driving frequencies but rather at the driving frequency where 

b0/a0 and b0/a 2 w 2 cross b0/a 1 W dominateso At tbis particu­

lar driving frequency b0/a0 is eq~al in magnitude to 
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bc/a 2~ 2 9 but b0/a 0 is opposite in sign to b0/a 2w2 which 

indicates a phase shift of 180 degrees. Therefore, b0/a0 

and b0/a 2w 2 camcel leaving 

35 

= 
bo -a1w 

(2-31) 

where 

vJn is the natural undamped freq~ency of the system. 

Equation (2-31) is represented by the dashed line labeled 

01 bofa1 Wit shown in F'igure 2-6. 

Two additional points which aid in defining the fre ... 

quency response spectrum for highly underdamped systems ares 

1) the point w~ere the line b0/a2<'..u 2 crosses the transmissi­

bility curwe which is approximately 2b0/a0 and 2) the point 

where the b0/a 0 line crosses the traMsmissibility curve which 

is a't a frequency of ~2a0Ja 2o 

The lines and points which were calculated in this 

example are all shown in rigure 2-6. With this information 

the frequency response spectrum for an underdamped second 

order dynamic system is essentially completely defined. This 

frequency response spectrum is shown by the solid line in 

rigure 2-So 

The third illustration is the two degree-of-freedom 

mechanical system appearing schematically in the upper right­

hand corner of Figure 2-70 The mathematical model for this 

system is two simultaneous liAaar coupled ordinary differen-

tial equationso 

(2-32) 
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(2-33) 

The state~variable model written in Rational Canonical 
\ 

rerm for tnis system considered as a singl$-inp~t single­

output system is 

0 
0 (J 0 

kl<1 kl<1 
X1 -iiilr' X1 iiii':i 

D(K1 + k) D(K + k) 
0 . 1 
x2 1 0 0 - mm x2 mK 1 mk 1 

ia=· 
(mK 1 klYl) +iilr V (2-34) 

+ 
O· 

0 1 0 X3 1-"':~ X3 ... mffl 

0 
0 0 1 o(m + m) 0 "4 - mM X4 

Y1 = [o o 0 1] X1 

)(2 
(2 ... 35) 

X3 

X4 

where 

y1 is the single-output 

A similar state model can be written for this system consid­

ered as a simgle-input siAgle-eutput witA y2 used as tne o~t­

t:'HJto 

Construction of the freq~ency response spectrum for a 

general system as illustrated here involves the determination 

of the frequency bands over which the separate coefficients 

domi~at~o This is done by calculating the boundary 
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frequencies where dominancy changes from one term to anothero 

Specifically, the band boundaries are 

kK 1 

w1 
mK 1 kl<1 

:a: D (i< 1 I<) = o(k1 k) + oJ, 
( 2-36) 

mK 1 -
and 

D(K 1 + k) 

ml<1 D(K 1 + k) 
W2 ~ g mk 1 

(2-37) 

These boundary frequencies which separate the three bands of 

dominance are shown in rigure 2-7 as vertical dashed lines. 

Also shown, are the dominating input matrix elements desig­

nating the frequency band ~ominated by eacho 

Once these bards are defined the construction of the 

transmissibility curve can begin 0 Starting at t~e low fre~ 

quency and t~e transmissibility is represented approximately 

by 

Limit 
w~o r .. 

'f 

kK 1 K1 

ml<', ~ 
kK 1 . 
iilYr'" 

Continuing across the first frequency band 

T o (R1 + k} 
miff W 

D(k 1 + k)w 

or 

T 

1 ( 2 ... 38) 

(2-39) 

(2-40) 



and finally in this frequency band 

T 

or 

• = 0 mk 1 + ktYi 2 
mM w 

T ; 

kk 
(mK 1 + kM)W 2 

k 

oow 2 
I' 
! . 

39 

(2-41) 

(2-42) 

E qUa tions ( 2-38 )i, (2 ... 40), and ( 2-42) are shown in F'igure 2-7 

by dashed lines and are labeled ap~ropriately. With these 

lines and applicable points calculated in a similar fashion 

as that shown in the previous two illustrations, the trans­

missibility curve is defined sufficiently within the first 

dominant band. 

Now the second dominant input matrix element is used to 

calculate the transmissibility in tbe next dominant frequency 

band. The next three lines shown in Figure 2-7 areg 

D(K 1 + 

mf< 1 
T • i (ml< 1 t 

mm 
o:r 

k) mK 1 
w air 

kM) · 2 
w 

T D 
Mw 

D(K 1 + k) 
= (mk1 kM)eu + 

Continuing on through this frequency band 

T 

D (K 1 +. k) 
· mM w 

l)(M + m}w3 mM · · · (M + m)W 2 

(2 .. 43) 

(2-44) 

(2-45) 



413 

or 

T • k ·= 
MW 2 • (2-46) 

and 

D(K 1 + k) 
T • f -mMW 3 

(2 .. 47) 

or 

T • Dk = 
mMW3 0 

(2-4~) 

Again Equations (2-44), (2-46), and (2-48) are shown as 

dashed lines in rigure 2-7. 

The final frequency band is the higb frequency range. 

In this range the dominant coefficients are meiely those 

*hicb multiply the input matrix or the gain scalar. 

Lim! t T mKW 2 k 
w ..... oo = mKw' = mw2 ( 2-49) 

This eq~ation is also shewn in rigure 2-7 and labeled appro­

priatelyo 

By using all the limes constructed as shown and also 

using t~e principles illustrated in tbe first two illustra~ 

tiaAs the frequency response spectrum for this system c~n be 

effectively constructed. The general principles demonstrated 

nere in conjunction with state-variable models in Rational 
I Canonical form are readily adaptable to the moat general 

case and, taus, provide a powerful tool for both analysis 

and synthesis since explicit information is utilized 
\ ... -" 

throughout. 
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On the whole little was mentioned about the phase shift 

associated with the frequency response spectrums. This 

places no hardship on the technique since once the amplitude 

spectrum is obtained the phase shift can be obtained (15). 

ror example, lines whose slopes are plus 20 decibels per 

decade (+1) correspond to plus 90 degree phase shift, lines 

of zero slope correspond to zero phase shift, lines whose 

slopes are minus 20 decibels p•r decade (-1) correspond to 

minus 90 degrees phase shift, lines of slope minus 40 deci­

bels per decade (-2) correspond to minus 180 phase shift, 

etc. 

Summary 

None of the procedures described in this chapter appear 

in literature in the manner specified herein. All the sepa­

rate articles used have their own implication aside from 

that for which they were employed here using state models. 

Therefore 9 the author has contributed the mechanisms by which 

each of the methods ~resented in the articles could be used 

with state models. Some of the methods have an obvious 

application in relationship to the state-variable models; 

however, others, such as Smith's and Ausman•s method, did 

not have obvious imp.lications toward a combination with state 

models. The genera.! use of the state model in Ra ti anal 

Canonical rorm in conjunction with Ausman•s techniques shows 

that a very general set of rul~s exists for the construction 

of frequency response spectrums from state-variable models. 
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These rules are outlined my the third illustration in the 

"Ausman' s method" .sub-section of trnis chapter. Hmwever, 

these rules are quite complex and involved which require 

that the user be ~ot Dnly very familiar with frequency 

response techniques but also very familia.r with state space 

modeling. 

The development of the "rundamental State-Variable 

rrequency matrix" presented in the following chapter contains 

specific rules which dictate t.he important characteristics 

of the frequerncy r·esponse for physical systems. This par­

ticular Canonical rorm of the state-vari~ble model presents 

the basic characteristics of system frequeAcy-response spec­

trums explicitly in tne matrices generated from the 

"rundamental State-Variable rrequency Matrix". This explicit 

matrix display of a system's tran~missibility or frequency 

response spectrum removes tbe requirement that tbs user be 

very familiar wit~ freqmemcy response techniques from clas­

sical control theory. 



CHAPTER III 

MATRIX DISPLAY Of SYSTEM FREQUENCY SPECTRUMS 

The previous chapter presents several ways by which the 

frequency response spectrums for dynamic systems can be 

obtained through use of different forms of the system's 

state-variable model 0 The particular forms of the state 

model utilized most frequently were the Jordan Canonical rorm 

and the Rational Canonical formo Since these ~tate model 

forms were developed to display particular characteristics 

. other than those of the system frequency responae, all of 

the methods developed thus far assume rather extensive knowl­

edge of system analysis employing frequency response proce= 

dureso The .result of the development of the "Fundamental 

State-Variable frequency Matrix" contained in this chapter 

is an explicit display of system frequency response spectrum 

characteristicso With these spectrum characteristics the 

entiri response spectrum can be drawn by merely examining 

the state-variable model in the frequency Canonical form. A 

summary of the analysis techniques for the use of the 

frequency Canonical form is presented in Chapter VI. 

43 
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The basic concept of the rundamental State-Variable 

Frequency Matrix is the explicit disclosure of the frequency 

transmissibility possessed by all physical systems. Since 

it is not possible to display the entire transmission spec­

trum in a finite dimensional matrix, the entries in the 

Fundamental State-Variable Frequency Matrix consist of two 

fundamental frequency transmission or gain characteristicso 

These two characteristics arei 1) transmission bandwidth or 

frequency boundaries and 2) transmission spectrum asymptote 

functiopso The transmission bandwidth boundaries establish 

the band-pass widths in which particular transmission­

s~ectrum asymptote functions are applicableo The 

transmission-spectrum asymptote functions determine three 

characteristics of the system frequency response spectrum 

within a specific bandwidth range. These three characteris~ 

tics ares 1) system gain at specific transmission frequen­

cies, 2) system characteristic mode frequencies, and 

3) spectrum asymptotes9 

The spectrum characteristics as they appear as entries 

in the fundamental State-Variable rrequency Matrix can be 

visualized by consideration of the individual functional 

contributions of each of the coefficients in the ordinary 

linear constant coefficient model in differential formo 

from this standpoint it is possible to consider the general 
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modal form for either a lead or a lag mode. This general 

modal form for constant coefficients will be as shown below 

where 

(3-1) 

ri,j = the general modes, which always appear as 

complex pairs if the mode is oscillatory. 

a, b, aod c • mode describing integers and are positive 

for stable modes which is the only type 

considered. 

With this general modal description the total lead and 

lag modal spectrum can be visualized by superposition in the 

time domain. These spectrums are describable by the coeffi­

cients associated with the various derivatives in the char­

acteristic and forciqg functions of the system modal. The 

model coefficients which describe these spectrums can be 

seen by considering the generai form of timeJinvariant linear 

ordinary differential eq~ations. 

dn dn-1, 
a 5!1. a .2...I + 8 n-1dtn-t + + + aoy = 

"dt0 
0 0 0 

1dt 
m dm-1 b dv b .!L! V b V (3-2) + b - + + + 

mdtm m-1dtm-1 
0 o,o 

1;;: a 

The coefficients of the forcing function establish the trans­

mission bandwidth boundaries by forming the ratio of succes­

sive coefficients startiAg with the zeroth term and progres­

sing to the higher order terms. The proof that these ratios 

do establish the band-pass boundaries is presar.,te:d lat'Sr in 

this chapter. ror example, the band-pass bo~ndaries are 
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bo b1 b m-1 <.uo ''V ( 3-3) ·- °1 , ~~ 1 ::; 

~ ' 
0 O 0 ' vJ m ... 1 = -s;-

The coefficients of the homogeneous function combined with 

the coefficients of the forcing function are the transmission 

asymptote functions., The particular combination of coeffi ... 

cients is determined by the bandwidth under considerationo 

These functions are forme~ as will be shown later, are 

Bandwidth O to W 0 

bo ~o 
a 0 a 1ctJ 

8andwi dth ~ 0 to W 1 

(3-.4a) 

( 3-4b) 

This generalization can be continued until the entire 

response spectrum is describedo As will be demonstratep in 

the devel~pment of the frequency response spectrum from the 

Fundamental State-Variable Frequency ,M.atrix, only a few spe­

cific transmission asymptote fun~tions generated with r•spect 

to any specific bandwidth are directly ·applicableo 

The Fundamental State-Variable Frequency Matrix 

The discussion presented in the previous section points 

out the type of elements which are required to display system 

frequency response spectrums from system mathematical modelso 

In a finite matrix it is not possible to displ~y all the 

elements necessary to completely characterize a particular 

system's spectrum. Howev,r, by examining the general system 
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model shown in Equation (3-2) it will be shown later that a 

transformation of the independent variable will introduce 

the necessary frequency variable into a finite matrix array 

so that the characteristics of the system's frequency spec­

trum are displayed explicitlyo The matrix array which dis­

plays this explicit information is the rundamental State­

Variable rrequency Matrixo Since a system's state model is 

not unique it is possible to obtain the rrequancy Canonical 

rorm 9 which contains the Fundamental State-Variable Frequency 

Matrix, from other forms of the state modelo This is done 

by use of the Frequency Transform matrixo The following two 

sections show the particular mechanicsiinvolved in obtaining 

the Fundamental State~Variable Frequency Matrix from either 

the differential form or a state model form of a linear time 

invariant system mathematical modelo 

rreguency Canonical~ From Original System Models 

Tbe general form of time invariant linear mathematical 

models is shown in Equation (3-2)o The procedure by which 

the state model rrequency Canonical Form is developed is 
I 

I. 

initiated by ~freq~ency-transforming" tbe independent uaria-

bleo This transformation i's t i,; T / w o 1 Application of tn! s 

t~ansformation to the general time invariant model results 

in Equation (3-S)o 

1This Mfrequency-transforming" is not to pa confused 
with an opel'ational transformation wb ere tha operation of 
differentiation is represented by an operator nor is it to 
be confused with the substitution of j 0JJ r'or so 
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' &l a1w + aay 
I .d-r 

+ b w.f!! + b. v 
1 d'T 0 

(3-5) 

This frequency transformed model can be solved fer the 

zeroth order terms which produces 
n 

bnv - a0 y = a w"U + ••• 
u n. d1'n 

+ [a wmflmy .. b wmdmv] + • • • + [a1w.2.I .. b1w2] (3-i) 
m d1'm m dTm d'T d1" 

The state-variable diagram d~rived from Equation (3-~) is 

show~ in rig~re 3-1. The state-variable model in the 

rrequency Canonical rorm can be der~ved. from this diagram by 

considering the owtput ef each integrator as a state-\ 

variable. Hence 9 each of the inputs to the integrators 

define a first order differential equation. This system af 

first order differential equationa writteA in matrix form is 

as shown below 

z\ 0 0 • • • 0 ao z, 
z• 

2 a w" n 0 0 a,w 22 

0 0 0 • .. '"· 1r • 
anw n z• m • . .. 0 l'i a uJ ;~\ m I•,,, 

z m 

0 0 • • • • 
z• n-1 • 0 0 a wn .. 2 

n-2 2 n-1 
z' a 0 n · n-1 

0 Cl • anw an-1w . -z A n 



zm+2 zn-1 

---------
dny m+1 

bo ao + 8 rri+1 wm+1d y 
--.-v - y = - + .••.• 

anwn anw n dTn anwn dTm+1 

[ m m m m ] + [ •1 Wn dy _ b1w n dv] + amW d y - bmW d V + .... 
anW n d7m anWn dTm a W dT a W dT · 

n n . 

F'igu re 3 ... 1 o Stata Diagram for frequency Canonical form Derived from 
the State Diagram for the Rational Canonical form 

Zn 

Zn 

.!'.a,, 
I.O 



y = [o .... o -1] 
0 

0 

z n-1 
-z n 
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(3-7) 

(3 ... 8) 

This form of the state-variable model is the Frequency 

Canonical Form and the differential transition matrix is the 

Fundamental State-V~riable Frequency Matrixo Rewriting 

Equations (3-7) and (3-8) in general state-variable form 

produces 

where 

.z :a: -
z ' ::: 

n z' f r (3-9) anc.u = z + V -
y :: 'I' z ( 3-10) 

the frequency Canonical form state variables • 

ai/dT~ differential of the Frequency Canonical 

form state-variables with respect to 'T/uJo 
f = Fundamental State-Variable Frequency Matrix. 

f = Frequency Canonical form input Matrix. 

y = output. 

-· T = Frequency Canonical Form output matrix. 
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F'requency Canonical~ Derived f!!!! State models 

The F"requency Canonical F"orm and accompanying F'undamen­

tal State-Variable F'requency matrix can be derived from otber 
' 

forms of the state models by linear transformations. Spe­

cifically, tbe F"requency Canonical F'o~m is derived very 

readily by transformation of the state model from the 

Rational Canonical f"orm. The Rational Canonical F"orm is 

transformed into the F'requency Canonical F'orm by means of 

the transformation matrix .Q shomn in Equation (3~11). 

The 

.n = -

inverse of this 

n-1 

n-1 0 Ci 0 w o· • 

0 wn-2 0 • • 0 

0 0 0 0 0 0 

0 0 0 0 

0 • • 0 

I) 0 0 • 0 wO 

transformation matrix is 

= 1 

w" 

w a o • • a 
a w2 o • • o 

0 0 

0 0 

0 0 

0 

O O 0 

0 

• 

• • 0 

0 

0 

0 

w" 

(3-12) 

Th~ reduced state model in aational Cadonical F'orm is 

~· = R X + B V 
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where R is the differential transition matrix in Rational 

Canonical Form as shown below 

0 0 0 
ao 

• --a n 
1 0 "' 0 0 

R = {] • 0 0 ( 3 ... 15) 

0 • 0 0 

0 1 an-1 
• • --~n 

and 8 is the input matrix the transpose of which is shown 

below 

= [:~ .. :~ o. a] (3-16) 

By forming the transformation~= f2 !, the transformation 

for x = uJ .Q !'• These transformations can be substituted 

directly into Equations (3-13) and (3-14) producing 

<.u g I' = li Q I + !! ll\, - (3-17) 

y ::: £ Q ! ( 3-18) 

Premultiplying Equation (3 ... 17) by 1/w Q-1 results in 

Z. 1 ri_ -1 R n 1 in, ... 1 
::: - J.,,&, ~t, Z + - :ti. 8 V 

fa)- --- w- (3-19) 

It is seen from Equation (3-9) that 

1 r, _ .L n-1 s 
aw" w -

O' 

In general 1 if it is possible to transform the state 

model for a system into the Rational Canonical rorm~ then 
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this transformation can be combined with the transform 

matrix .Q to obtain the Frequency Canonical Form. For 

models with distinct eigenvalues the differential transition 

matrix A can be transformed into the Jordan Canonical Form 

by using the modal Matrix m (6 and 9). The Rational 

Canonical Form of the state model can also be transformed 

into the Jordan Canonical Form by some transformation matrix 

N (9 and 10). The combination of the m and N matrices form 

a matrix which will transform A into the Rational Canonical 

form .B_. 

R = = p-1 A p (3-20) 

Spectru~ Band-pass matrices 2 

The Fundamental State-Variable Frequency matrix is uti-

lized to calculate the transmission asymptote functions for 

each of the bandwidths displayed in the input matrix. These 

bandwidths are determined by dividing the Frequency Canonical 

Form by the successive entries in the input matrix. Each of 

the state models formed by this division consists of a 

Spectrum Band-pass Matrix and an input matrix containing the 

bandwidth boundary applicable to the accompanyi ng Spectrum 

Band-pass matrix. 

2spectrum Band-pass matrices are matrices derived from 
the Fundamental State-Variable Frequency matrix which display 
frequency spectrum characteristics within a specific band­
width frequency range. 
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In general, bandwidth boundaries are determined by 

examining the generated input matrix and equating the unity 

entry to the entry immediately following. The result of 

equating these two input matrix entries is an equation 

explicit in W. Solving this equation for <JJ produces the 

upper boundary of the frequency range for which the associ­

ated Spectrum . Band-pass Matrix has been formed. The partic~ 

ular transmission asymptote function .entries applicable 

within any two bandwidth boundaries are found by examining 

the Spectrum Band-pass Matrices for the frequency bands 

before and after the one under immediate consideration. One 

of the asymptote functions in the previous Spectrum Band-pass 

matrix will be equal to an entry in the partictilar matrix 

under investigation at the bandwidth boundary frequency. 

This equality of successive Spectrum Band-pass matrix 

entries determines the first . entry in the matrix which is 

applicable in this fr~quency range. A similar equality as 

that discussed above also exists between an entry in the 

Spectrum Band-pass matrix describing the spectrum in the 

bandwidth following that under investigation and an entry in 

the presently considered Band-pass Matrix. Only this time 
-, 

the frequency where the two functions are equal is the next 

bandwidth boundary frequency. This process determines the 

last functional entry in the Band-pass matrix considered 

which is applicable in this particular frequency bandwidth. 

This procedure can be conducted for the entire frequency 
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range QOVerned by the physical characteristics display~d in 

the math~matical state modal. 

In general, the frequency response spectrum for a system 

can be determined from the following matrices 

0 0 0 
ao 

• • • Ea anwn 
0 

60 • • • • 0 

0 • • • 
1 

F (3-21) Ea - = 0 0 • 0 

0 • • 0 

• • • n • n-1 
0 

anw an-1W 
• 0 • • 60 60 

= (3-22) 

The transmission bandwidth boundary for the Spectrµm ~anrl-

pa$s matrix shown in Equation (3-22) i :s determined from 

b1w 
1 Wo 

bo 
(3-23) tiiJ = or = F.j 

The applicable entries in the matrix in Equa tio'n (3~21) 

include all the entries up to and including the entry which 

is equal to an entry in the 1/b1W f matrix a_t the frequency 

w 0 • The entry in the 1/b1W £:. matrix applicable in this 

equality is the first asymptote function applicable in the 

next bandwidth. The frequency respon$e spectrum in the kth 

bandwidth is shown i n Equation (3-24 ). 



1 r 
b k-kw 

1 rr 
b wk­
k 

= 

0 

anw 
n 

b wk 
k 

0 

0 

• 

0 

0 • • 

0 • .. 

• 

• 

• 

.. 

0 

0 

0 

.. 

0 

n 
af'lw 

0 O O 0 

b wk 
k ·. 

0 1 

k+1 
bk+1W 

b wk 
k 

a 0 
b wk 

k 

• 

0 

• 

.. 
W n-1 a 1 . n-

m 
b w m 
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(3-24) 

The transmission bandwidtn boundary for E~uation (3-24) is 

Considet as an example of the formation of the Spectrum 

Bamd-pass matrices the third order iystem described in 
I 

frequency Canonical form as follows 

z• 1 
[) 0 ao' 21 b(I 

3 z' a w3 0 a 3w 
2 3 a 1W z2 + bW 1 v(3c.27) 

z' 0 3 2 0 3 a 3w a 2W -z3 
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y = [a 0 -1] 21 

( 3-28) 22 

-Z3 

By .dividing the frequency Canonical form input matrix by b0 

the tran~mission bandwidth boundary le.Jo is calculated. As 

will be shown later this is done by equating the unity entry 

which occurs to the next entry as !shown below 

b1W 

1 = ~ (3-29a) 

bo 
-- ~ = "S:j (3-29b) 

The Spectrum Band-pass Matrices formed from the fundamental 

State-Variable frequ.~cy Matrix are 

0 0 
ao 
ii: 

3 0 

~o 1 f 
a 3w 

0 
a1w 

(3-30) = a;- = 60 ' ~ 3 2 
0 

a3w a2w 

60 60 

0 0 
ao 

b1w . ,/,, 
3 -

(;21 - 1. F 83~ _,_:.: 
0 

a1w 
(3-31) :: 

61~- = 61w 61w 
3 2 

Cl 
83W a 2w 
61w 61w 

When W = b0/b1 is substituted into both of Equations (3-2 4) 

and (3-25) the entry a 1W/b0 in Equation (3-24) is equal to 
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the a1<.cJ/b1<.cJ entry in Equation (3-25). These two transmis­

sion asymptote functions are equal at the transmission band­

widtt.l boundary <.cJ 0 • At tbi·S frequency the dominaace from .§.0 

to s1 occurs. Therefore, the first part of the frequency 

spectrum is cbaracter.ized by tills entries a0/b0 and a 1<.cJ/b0 

in the .§.0 Spectrum Band-pass matrix; and the second part of 

the spectrum . is characterized by the entries a 1<.cJ/b1<u, 

a 2<.cJ 2/b1 <.cJ, and a 3<.cJ 3 /b1W in the §1 . Sp~ctrum Band-pass 

matrix. 

The actual construction of the frequency resporse spec­

trum is performed by expressing the transmission asymptote 

fwnctions in decibels. ror use in the method described above 

involving the rundamental State-Variable rrequency matrix 

the transmission asymptote functions expressed in decibels 

are defined as shomn below 

Transmission 
Asymptote runct!ons = -20Log 10 

l 
al <.cJ 
--.... kdb 
bkW 

(3-32) 

These functions are straight lines when plotted on semi-log 

graph paper. 

bk 
TAr = 20Log 10 a"9 + (1-k)20Log 10w 

k 
(3-33) 

These straight lines determine the three characteristics of 

the frequency response spectrum discussed on pag~ 44. The 

gains, natural frequencies, and asymptotes of the spectrum 

are displayed by these functionally straight lines. The 

astual utilization of these lines is illustrated in the next 

section where specific illustrations are used .to develo~ the 
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mathematics which substantiates the particular functional 

significance of the transmission asymptote functions and the 

transmission bandwidth boundaries. 

frequency Spectrum Data from Model Coefficients 

frequency response spectrums for physical systems repre­

sent steady-state system performance characteri.stics. for 

linear time invariant models the transmissibility spectrum 

is a measure of the amplification or attenuation in driving 

frequency magnitude which occurs at the output of the system. 

Since the output frequency is exactly equal to the input fre­

quency the amplitude of the driving frequency and the phasing 

of the driving frequency are the only things altered. Conse­

quently, the particular or the steady-state solution of the 

mathematical model excited by a sinusoidal input is all that 

need be considered for a complete description of system fre-

quency response spectrums. 

The steady-state frequency response spectrum for linear 

time invaria~t systems is described math~matically by the 

system transfer function · wi'th the complex transform variable 

s replaced by j lu, where W represents the , sinus.oi dal driving 

frequehcy. The transfer function for a general ntfu order 

system is as follows. 

+ ••• ( 3-34) 



If t~e substitution discussed above is made i~to Equation 
I 

(3-30), the transmissibility of the system is given by 

b Sm + + ·+ 

60 

••• b1s bo 
T = jl f m (3-35) = 

V j(.u Sn n + a 1s + + a1s + ao an n- ••• ? 

At very low fraquenc"ies the transmissibility 

an asymptote function of b0/a0, i.e. 

Limit T 
w-o = 

= jW 

approaches 

(3-36) 

Similarily at very high driving frequencies the transmissi-
I 

bility approaches an asymptote function ·of bm:wm/anwn. The 

result of these terms predominating the numerator and the 

deMomin?}tor is 

Lim! t T 
w-oo = 

b uJm m · 
n 

anW 
(3-37) 

The intermediate range ~f the spectrum is determined by 

the successive use of the ratios of the terms in the numera-

tor with all the terms in the denominatorp such as 
k 1 bkuJ /a1W • This determination proceeds by first determin-

ing the frequency range of applicability for each of the 

numerator terms. The mathematical basis for establishing 

these dominant r~nges is developed by considering the magoi­

tude associated with the steady state part of the time solu-
' ' 

tion (11). The kth and 1th terms in the numerator of the 

steady state time . solution can be written as follows in 

Equation (3-38). 
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[
. ( 1 ) n-1 . n-1 

... - . an-1W (3-38) 

where 

k = 1 + 1 

The boundary of dominance changes between the above 

numerator terms, with respect to the transmissibility, occurs 

where the magnitudes of the successive terms are equal. This 

equality between the successive terms in Equation (3-38) can 

be written as 

bkWk = 'bl Wl 

Solving Equation (3-39) for W produces 

bl 
Wl = °k 

(3-39) 

(3-40) 

Equation (3-40) substantiates the use of the coefficients 

associated with the forcing function in establishing the 

transmission bandwidth boundaries in the frequency response 

spectrum. 
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The transmission asymptote functions which characterize 

the frequency spectrum can be established by considering 

Equation (3-31) written in tbe fol~owing way. 

T 
bo 

+ • • • + ( 3-41) 
ans"+ ••• + a1s+a0 ansn + ••• + a1s+a0 s=j(J.J 

= 

If each of the terms of the transmissibility equation shown 

above are examined for the intermediate spectrum frequency 

range, it is seen that the numerator defines the dominant 

term contained in the forcing function. Each of the terms 

within the absolute value sign describe. the frequency 

response spectrum within the defined band-pass range. for· 

very low frequencies the asymio,tot·e f'uriction is b0/a0 since 

all the other terms are very nearly zero at low frequencies. 
I 

The difference between the asymptote function and the actual 

spectrum is the contribution of all the other terms which 

have a finite value everywhere e~cept at zero frequency. for 

very high frequency a similar description of the spectrum 

with respect to the asymptote function b Wm /a Wn caa be m n 
visualized as presented in Equations (3-32) and (3-33). As 

can be seen by the previous discussion the asymptote func­

tions thus far substantiated are essenti~lly first order 

approximations to the actual spectrum. · The inclusion of more 

and more terms iR the general model to describe any particu-

lar range of frequencies will assure closer and closer 

approximations to the actual response spectrum. However, the 

additia, of terms to tbe first order approximation·s increases the 

complexity of calculation in an exponential manner. 
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The substantiation of the intermediate range transmis­

sion asymptotes is best presented by considering the general 

system modes (4). These modes are described by the following 

example. 

T :: (3-42) 
a 2s + a 1s + a0 s = jlu 

As has already been established the asymptote functions 

associated with the above example for the very low and very 

high frequencies are b0/a0 and b0/a 2W 2
9 respective,ly. One 

of two things can occur in the intermediate frequency fangs. 

first, the eigenvalues of the characteristic equations can 

be distinct. If this is the case then by Bede's Theorems 

the asymptotic approximations have corner frequencies of 

(3-43a) 

and 

a1 l/(*;) 2 ao 
W2 = + ~ + - - (3-43b) 

a2 a2 

(~) 
2 ao 

for > (3-43c) 
a2 

The slope of the asymptote between these two corner frequen-

cies is a minus 1 or a minus 20 decibels per decade. The 

corner frequencies and the asymptotic approximations based on 

Bode 1 s Theorems are shown in figure 3-2. The equation for 

this asymptotic approximation in the intermediate frequency 

range is .shown in Equation (3-44). 
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20Log 10 T = 20Log 10 a 1 
2 

-20Log 10 w (3-44) 

The equation for the asymptote function described herein is 

20Log 10 T = (3-45) 

As shown by these two equations and also in Figure 3-2, the 

slopes of the two asymptotes are a minus one or a minus 20 

decibels per decadeo The actual equation for the frequency 

spectrum in decibels is 

- a 2 W + ja2w + a 0 
20Log 10 T = 20Log10 ( 3-46) 

The frequency where the low frequency range asymptote and 

the high frequency range asymptote are equal is uJ = ~ 
as shown in Figure 3-2. At this frequency the actual fre-

quency spectrum has a transmissibility as shown below. 

20Log10 T .. (3-47) 

The asymptotic value of the frequency response spectrum from 

Soda's Theorems is 

20Log 10 T ba ~r -Va12 - 4a0a 1 }3-48) = 20Log10 2a a 'a'" La1 -0 2 0 

The value for the asymptote function at W= ~ao/a2 is 

20Log 10 T = (3-49) 
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The value of the asymptote function at any other frequency is 

not equal to the actual spectrum since, if an increment of 

frequency is added to or subtracted from ~, Equation 

(3-49) is no longer equal to Equation (3-47). Therefore, the 

asymptote function is tangent to the actual spectrum at this 

frequency. As is evident from Figure 3-2 and Equation 

(3-49) the Spectrum :Asymptote functions for this type of 

system represents an excellent first order approximat~ono 

Several extremely importa~t facts become evident upon close 
I 

examination of Figure 3-2. These ares 1) at the corner 

frequencies of the asymptote functions the actual. spec~rum 

is 2.4 decibels down, 2) the corner frequencies are not the 

characteristic roots - they are W 3 = a0/a1 and W 4 = a 1/a2, 

and 3) the asymptote function is truly tangent to the actual 

spectrum at W = ~a0Ja 2 • These facts aid in determining 

the actual frequency respmnse spectrum much more accurately 

without having to factor the characteristic polynomial. 

The second case in considering the -intermedia ta fre-

quency range is when the eigenvalues are complex conjugates 

or the system is underdamped. F"or this case the low and high 

frequency asymptote functions cross one another at the fre-

quency shown below. 

= 

or 

W= ~ ( 3-5 0) 
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At this frequency both terms are equal but b0/a.2w 2 is 180 

out of phase with the b0/a0 term so that the transmissibility 

is exactly 

20Log10 T = (3-51) 

At W = ~ (the natural undamped frequency) the term 

b0/a1 CAJ is completely dominant and this is the only frequency 

where the asymptote function b0/a 1 W is dominant. Therefore, 

the value of this asymptote functioA at the frequency 

~ is a point on the actual frequency spectrum. These 

facts are displayed in figure 3-3. Curves from which the 

frequency of maximum transmissibility and a curve from which 

the difference in transmissibility can be obtained are con-

tained in Appendix B. 

The discuss ion presented above substantiates the fact 

that the spectrum asymptdte functions ~ill provide the basic 

characteristics of a system's frequency response spectrum 

employing the unfactored system model. The models used were 

the two basic modal forms which make-up the mathematical 

models for all linear time invariant models. The cascading 

or superposition of several of the basic models to form a 

complex system brings forth a limitation to the use of the 

entire range of spectrum asymptote functions. This limita­

tion involves primarily the relative frequency locations of 

modes and particularly the determination of the transmissi­

bility at the natur~l undamped modal frequencies. When the 

system modes are within a decade of. one another the value for 
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the transmissibility at the natural frequency of oscillatory 

modes determined by the appropriate asymptote function falls 

below the actual transmissibility characteristic of the sys­

tem. Homeyer, the asymptote functions which approximate the 

general spectrum characteristics are still applicable. Tbis 

situation is illustrated in Figure 3-4. The striking thing 

about the asymptote functions is that they will locate the 

undamped natural frequencies of the oscillatory modes and, 

as can be seen from Figure 3-4, produce a somewhat closer 

asymptote approximation than that constructed using Bode 1 s 

Theorems, which is also shown in Figure 3-4. 

Further illustrative substantiation af the basic prin­

ciples involved iA the construction of frequency response 

spectrums from the Fundamental State-Variable Frequency 

matrix is shown in Figures 3-5, 3-6, and 3-7. These figures 

contain frequency response spectrums af systems whose char­

acteristic polynomials are of order three. 

Figure 3-5 shows the way the transmission asymptote 

functions adjust the first order approximation for th~ spec­

trum when nothing but the damping of an underdamped mode 

associated with the s~stem is varied. · .Also in this figure 

the phenomena of mode interaction is evidenced by the asymp­

tote function which is only dominate a~ the natur~l undamped 

mode frequency. The transmissibility approximated by these 

particular asymptote functions are consistantly lower than 

the actual transmissibility. 
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F'igt!lre 3 ... 5 shows tt'le manner in which the asymptote func .. 

tion wbich is dominate at the nat~ral undamped mode frequency 

will approach tbe actual transmissibility as made separation 

is effected. 

F'igure 3-7 shows what the respm"se spectrum woald look 

like if a transmission bandwidth were coincidental. This 

coincidental transmission bandwidth becomes evident when tne 

Spectrum Sand-pass matrices are calculated. Normally 1 suc­

cessive Spectrum Band-pass matrices will nave at least one 

entry which is equal to an eAtry in the previous Spectrum 

Band-pass matrix and also an entry equal to an entry in tne 

following Spectrum Band-pass matri~ as discussed before. 

Trar1smissicn band-pass btuuullaries which ~re coincident wi tb 

the followimg bowndaries are cbaracterized by Spectrum Band­

pass Matrices which have no entries equal to any eRtry in 

either the previous or fallomiag Spectrum Bandapass Matrix. 

Appendix C presents a means of mealing with very lightly 

damped third order systems a~d -lsm ,a cr!t~rion for the 
' I 

stability of tt,irs ar1d fourth order systems by· the tJse or 
I 

the transmissioA asymptcte.functio~8o 

In g11:u11eral ll tne asymptote ftrn1cti·ons can be .used ta 

apprexima te the ac.ta:Ja:l frequ ~iH.11cy response SJ!)ectram mf an mth 

order system. This is also tiue for b~gher order systems 

.sifilce m.ost stable,· wall behaved systems tend to be adequately 

represented by well separated break frequencies (4). 
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Samma.r y 

Tm!s chapter has swbstant!ated tbat the implicit fre­

q~ency response characteristics of physical systems can be 

displayed explicitlyo This was accomplished thraugb tAe use 

of the rlllru:Jamental State-Variable F'requemcy Ma trixo This 

frequency Canonical F'orm of the state-variable model is a 

nalural additio~ to the more familiar Jmrdan and Rational 

Canonical rormso As is denu,nstrated, the F'reqt1ency Canonical 

rorm can be obtained fro~ system mathematical models directly 

or by transformation' from any form ~f tbe state model 0 

With the state model in the F'requency Canonical F"orm,.· 

Spectrum Band-pass matrices can be calculated. Tbese 

Spectrum Sand-pass Ma trices contain the transmis.siom asymp;. 

tote functions from which tbe frequency response spectrum is 

constr11:mct~u::lo Also, dt1ring the generation of the Spectrum 

Band-pass matricesp the transmis~io~ bandwidtb beuAdaries are 

determi~edo The bandwidth bo~ndaries establish tbe range of 

f'requemcies to which the associated Spectrum Band-pass matrix 

is applicableo 

This chapter also comtains a rigorous mathematical sub­

stantiation of the entries in the r~ndamental State~Var!able 

Matrix as significant functions for characterizing system 

frequency l'!!Sponse spectrums wi thmtJt having to factor poly ... 

namialso The transmission asymptote functions have bee.n 

mathematically sbowA to be representative first order approx­

imations to the frequency respo~se spectr~mo Also, p~cilllf is 
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shown that under specified mode separatiom these asymptote 

functions provide the exact traasmissibility for umderdamped 

frequencieso Along with ·this proof the calculation of the 

transmission bandwidtb boundaries from the entries in the 

frequency Canonical Form input matrix .has been mathematically 

substaatiatedo ll1i th these frequency spectrum characteristics 

it is possible to isolate all the characteristic modes of any 

time in~ariant linear systemo 

The basis of the construction of system frequency 

response spectrums by using the fundamental State-Variable 

Frequency matrix stems from the implicit characteristics of 

the coefficients of the unfactored characteristic and foraing 

function polynomialso rrom this basic system model mode 

representation the nat~ral interaction of modes places a 

practical limitation on the application of the transmission 

asymptote f1t1lllctionso However 9 this limitation is only on the 

determination of the actual transmissibility at a mode's 

natural undamped frequencyo This limitation inval~es main­

taining modes at a minimum distance of one decade separationo 

· In general 9 the first order approximation for a system's 

frequency response spectrum obtained by using the rundamental 

State~Variable rraquency Matrix is closer to the actual spec­

trum than that obtained by using Bode' s Theoremso Not only 

will this first order approximatiom obtained by using tRs 

Freqoency Canonical F'orm be more representative but also the 

approximation can be obtained without faatori~g any palyna­

mialso 



CHAPTER IV 

FREQUENCY CANONICAL fORM SYNTHESIS ANO 

COMPENSATION APPLICATIONS 

The use of frequency response spectrum information to 

represent the dynamic behavior of a system is especially 

wplaable in sy-tem synthesis and aompensationo Many times 

the excitation to which a system is subjected can be repre­

sented by a finite rourier Serieso Witb this means available 

to represent a" excitation, system performance under this 

excitation can be obtained through the use of its frequency 

response spectr~mo Alomg witb the steady state perfQrmance 

much ean oe learneq about the tran~ient p:erformanc:e by exam= 

ining the frequency.respense spectrum of a modelo for these 

reasons the rrequency Canonical rorm of state-variable mGdels 

is very useful in the synthesis and compensatiom of dynamic 

systemso 

The uni qua features provided .bY · the frequency Canonical 

rorm for synthesis and compensation are the explicit. display 

of the transmission bandwidths and the t!'ansmission asymptote 

functionso With this information it is possible to construct 

mathematical models for systems to meet predesignated fre~ 

quency domain specificationso The construction process is 

dome by superposition of model components described 
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explicitly in the desired frequency spectrum. Also, systems 

whose dynamic characteristics are unaccepta~le can be com­

pensated by direct adjustment mf significant entries in the 

Spectrum Band-pass Matrices. These modifi~d entries can then 

be reflected directly into the system model. This discassion 

leads to the tat3ic of sensi tiv! ty of system parameters. 

Although nothing extensive will b~ presented, the sensitivity 

of system components can be examined on a very preliminary 

level through the use sf the frequency Canonical rorm sf 

system models. 

Basic feedback Control 

The most ftu1damental characteristic af dyr»amic control 

systems analysis is that o( feedback. The effect of UB!ty 

feedback on tbs basic mathem..atical model is tne imcrease of 

the ceeff icients in the o.pen 10013 characteri~tic, eqt11a tion. by 

an amount oorrespending to particular coefficieqts in the. 

forping function. T-is increase of coefftcients is done by 

add:i,ng t~~ coefficients associated with equal erders of 

derivatives. This modificat_:ton, o.f. _the_ coefficients is illus ... 
~~:------ - ·---

trated below. The general nth order linear system .witb no 

feedback. ts described by 

••• + •• 0 

+ b V ' fl (4 ... t) 
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Wham unity feed.back is employed the system model becomes as 

that shown in 

a d'\, + 
ndtn 

Equation (4-2)., 

( : . )dmy 
ooo + am+ bm m + 

dt 

(4 ... 2) 

for physically realizable systems considered herein, 

unity feedback is interpreted in the Frequency Canonical form 

as the addition of the input column matrix t, the last column 

of the fundamental State-Variable frequency Matrixo The 

effect of unity feedback on the frequency Canonical. ~orm can 

be illustrated by tine followingo Consider the. system wl1ose 

dynamic characteristics are represented by 

d3! +· d2 dv 1 ~ + 416.=.... + 800y 
dt ' dt dt 

2 
g d V + 105£! + 500V 

dt dt 
(4-3) 

The state model far this system in Frequency Canonical form 

can be writtern by inspection when Equations (3-2) 9 (3-7), 

and (3 ... 8) are employed as a comparison. The result is thie 

followi~g state model 

z~ 0 0 800 z1 500 

w3 z• 
2 = w3 a 416W 22 + 105W V (4-4) 

zV 
3 0 w3 1ow2 -z3 ld 2 

(4-5) 
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The state model for this system with uAity feedback is 

z• " 1 0 0 1300 2 11 5El0 

3 z• (;J3 a 521W '2j 105W (4-6) -W :, 2 = + V 

Z3, 0 w3 11w 2 ..,z3 w2 

Thf'§ form of· the state model is st.iii · the f'requeilcy CanoRical 

f'orm and the· y equation is unchanged. The frequency respo~se 

spe.ctrum for this system witb and without feedback is shown 

in f'igure 4 ... 10 

This simplified concept of feedback principles as 

applied to the f'requency Canonical f'orm of state models can 

be extended t~ ~ore complex feedback loops. When the feed­

back loop comtains other than unity. gain the manmer in wmicm 

the different coefficients are added is dictated by tile fu~c­

tional form of the dynamics contained in the feedback lo~po 

The changes im tbe entries of the state msdel follow rather 

logically depending on the contents of the feedback lcopo 

ror other tharn simple gains in the feedback laop t~e eRtries 

in the input matrix will also be alteredo Tne specific man­

Aer in which tbese emtries in both the Fundamental State­

Variable freqaency Matrix and the input matrix vary will be 

discussed in a follawing sectien wmere compensation is can­

sideredot 

Synthesis in State Space 

Synthesi,s in state sp-ace empleyimg the f'requency 

Canonical State Model follows similarly to system analysis 
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employing th.is state modelo The procedure of synthesis 

involves initially tbe cmnstruction ef the specified fre­

quency response spectrum' by using st:raigtilt, lines wbose slopes 
i . 

are multiples of 20 decibels per decadeo This piecewise 

linear spectr~m approximation describes the transmission 

asymptote functions. A typical illustration of these func­

tions is sbown 1- Figure 4-2. Every frequency where this 

first order approximation has a decrease in slope of 20 deci­

bels per dercade is a tramsmission bandwidth boundary. At 

frequer:icies ml1ere the s.,lope decreases by 40 decibels per 

decade a coincidence of barndwidtm boundary occurs. In other 

wordst when a coiAcidenQe of baAdwidt~ boundary occurs tbe 

deminance of input matrix elememts skips an entry in the 

input ma trixo The bandwidtl;1 fre1:1u~ncy bou.ndary where tnis 

obcars is the sq~are root of the. elem~nt in tbe input matrix 

wbicm was skippedo 

Figure 4-2 s~ows the freqgency response spectram of a. 
;. 

system. which was synthesized by first drawing the transmis­

siofll asymptote ftu,cti1iu1se1 Ulitb tbese ftrnctional first arde.r 

approximations fer tAe f·ren1mency response of a desired system 

it is possible to write the state model in Frequ~ncy 

Cano mi cal F'ormo By ref ering ta E~ua ti oms (3 ... 7) and ( 3-8) 

the state model is written as shewn ini Equatioms (4-7) aad 
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Zl 13 g 38B.2 

0.176W 3 z• 
2 = 0.11a w3 ll 15S.5W 

z; 0 00 176,W 
3· 

1.aw 2 

+[ewaf• (4-7) 

y • [ B B •1] 
(4-B) 

-z.3 

The actual spectrum for the system represented by the above 

state model is also shown im Figure 4-2. 

In many cases tne mmdeled frequency respense spectrum 

will Aot exactly meet tbe required freeiuency domain specif!-
' 

cations. However, by using the metbods discussed in·tbe fol• 

lowing section on cempensation the modeled frequeQcy respo~se 

spectrum caA be altered s~ch tbat the specified requirements 

·are adeu1uatel y met. 

CompeAsatien in State $pace 

The specific c~aractel'istics of t"e F'.reqmenoy Car:uu,ica1 

rorm possess features w~ich permit tbe ptinciiple of compen­

sation to be applied easily. The oscillat~~, mode peaks 

which always occur within transmission bandwidth boundaries 

are relativ'31J irutependent of the boundaries involved. 

Therefore, it is possible to adjust· this peak transmissibility 
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by merely changing the entry in the r~ndameatal State­

Variable rreq~ency Matrix which governs the associated trans­

missibility. This particular feature is demonstrated in 

rigure 4-3. As seen im this figure the transmissibility at 

the natural undamped frequency is easily adjusted to nearly 

any desired value. 

Adjustment of break frequencies possesses the feature 

that any change in tnese freq~encies also changes tbe t;ans­

mission bandwidth\ boundaries. Since tl:1e actual break fre-, . 

quencies associated witra the transmission asymptote fuactian 

generally ar, not tbe syst~m characteristic mode frequencies, 

this feature permits the shifting a~ound of amy bandwidth 

boundary ta meet any specification to improve the frequency 

respons~ of the represented system. In situations wbere 

oscillatary mode f~e~uencies are altered the peak tra•smis­

sibili ty associated with till is mode will also b,e chamged. 

rigure 4-4 illustrates the typical e~fect af changing the 

mode frequency with tba normalized transmissibility function 

for the peak val~e unchanged. This operation places no 

limitation on the use of the Frequency Canonical rorm in 

compensation since the peak tramsmissibility is virtually 

independe~t sf the transmission bandwidth boundary and, thus, 

·can be adjusted independently. 

O.ften campensatioA infers the addi tien of equipqsent to 
. ', 

obtain a dasired system performamce. Generally tbe ~dditicn 

of compensation elements !Dv.olves increasirag tt:le order of 

either tine characteristic and/or the forcing f1anctianso The 
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procedure for performing compensation from this standpoint 

entails merely the addltion of elements in the F'requemcy 

Matrix arid/or the iAput matrix. Tbis operation is similar to 

the addition of feedback with other than a pure gain in the 

feedback lmop. The following discussion demonstr·ates tne 

procedure employed when compensatinn is performed ~sing t~e 

F'requency Canonical F'orm in state ~p~ce. 

The classical compensation configurations used in pres­

ent day control system theery are lag-lead and lead-lag. 

These can be used el tbe:r; in tl:le feedback loap or in tile for­

ward loop. Tne particular det~ils of the use to which eitnar 
' ' 

\ 

of these configurations i~ either the feedback or farward 

loops caR be made are sucb .that a single illustratiom will 

demoastra te the principles involved. .In p~:rticular td th the 

wse af tne frequency Canonical State Model these .principles 

can be demomstrated by comsidering tme general modal. 

z' fJ g • • • a am z1 

z2 an WR 0 • 0 • B a 1W z2 
• · i 

0 0 o, 0 • • 
A 

anw•, 0 = • 0 0 • • 

• 0 • • • • 

0 0 0 () ·• 0 

z• n 0 0 • • 0 aw" n 8 n-1 
wra-1 -z n 

(4~9) 
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(4-10) 

As ~llastrated previouslyp unity feedback is performed by 

adding the input column matrix to the last column of the 

fundamental frequency matrix. F"o.r the general .lag-lead or 

lead-lag configuration in the f~edback loop the frequency 

Canonical State IYlodel can be developed as shown below. 

:z • 
1 Cl 0 • • .. 0 pao 

z' 2 an wn+1 0 0 0 

0 0 0 0 0 

wn+1 0 ~amw m 
an 0 = 0 0 

0 • 0 0 • 

0 0 0 0 0 

z~+1 Cl wn+1 (3 Br/,d 
n 

0 0 0 0 an 

0 0 0 0 0 

0 0 0 0 80 w 
+ ; 

0 0 0 

0 0 ·o 

0 0 0 0 a r:n- 1 
wn 
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~n frequency domain notation tbe configttratisA in the feed­

back loop reflected !A Equation (4-11) is (s+Cl)/(s+,d.). 

Thls type af compensatien is characterized in the fre­

queAcy spectr~• by the •ddition ef ~Ae tradsmission asymptote 

ftsr1cticu1 and one transmission bandwidth boundart• ,Ia ef feet 
·, 

the state m~del ~apresentatimn shown in Equation (4-11) can 

be accomplisned grapl3ically by iwerk.ing with the spe .. c;tram 
.. I 

represemt.a tion. 

Sens! tivi ty Che.ck in State Space 

The system frequency perfor$ance sensitivity of vario~s 

system contributions or components can also be investLgated. 

This sens! ti.vi ty lnvestigation can be doae by direct imsp.ec­

tion of tbe elements sf t~e Spectrum Band-pass Matrices. The 

transmission asymptote functions in these matrices describe 

the break frequencies mf the oscillatory modes and, to some 

extent, also provide the actttal transmissibility at these 

break frequencies. IA the previous discussion an cmm~ensa­

tion it was pointed out how tbe varimus types of transmissia• 

asymptote fuactioffls affect the actual spectrum. At unity 

freq~ency tbe intercepts ef the asymptote function are com­

posites of all tbe components of the actual physical system. 
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Eacb Qf these componemts have a physical character which may 

change due to environmental changeso Tbus, the system fre­

quency response spectrum will nave a time variant character 

.as well. The effect of this possible time variance can be 
. ' 

checked by examination of the sensitivity of the frequency 

spectrum described by the Fundamental State-Variable 

Frequerncy Matrix. 

To illustrate this, the state model for the network 

showR in F'igure 4 ... 5 ·is as shown in Equation (4-t3'). 

a 3W 3 

z• 1 

z2. 
z• 3 

ao = 

81 = 

a2 = 

r 
0 0 ao 

3 Cl = a 3 W a1w 

0 3 a w 2 83(.u 2 

2 . 2 (L1/c)+R 1R2+R 1 +R 2 

L1R1+L1R2+R1L2 

a3 = L1L2 

b1 + R1R2 

r 1 
z1 Cl 

z2 + b1W ei (4 ... 13) 

-z3 0 

( 4-1.4) 

from this frequency Canonical Form of the state model 

the entire frequency spectrum amd variations in the spectrt1m 
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can be visualizedo rormation of the Spectrum Band-pass 

Matrices produces 

' 0 
·3 .. 

a3W 

51w 

0 

(4-15) 

The entry al/b1 W indicates that the spectrum wi 11 have a 

plus 20db per decade asymptote at low frequencieso The next 

entry a 1 W/b1 W srnows an increase in asymptote. slope to zero. 

The a 2w 2/b 1 w entry shows a miraus 20db per decade asymptote 

slope and a 3uJ 3/b1uJ shows a minus 40db per decade asymptote 

slapeo from this examination of matrix entries it is possi­

ble to ,show that an underdamped mode can occur at ome of two 

frequencies. These frequencies are calculated in the follow­

ing wayo An underdamped mode may occur at t~e frequency 

where 

ao 
s,w (4 ... 16) 

which produces in terms of the system components a natural 

undamped freque~cy of 

(4-17) 

or the underdamped frequency where 

(4-18) 
I 
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which is a natural frequency of 

= ~ = -,Jr~c2{?, + e1R2 + R/ + e/) (4-1,) 

A study of the compoments represented in Eq~ations (4-17) 

and (4-1~) will indicate tbe 10,ation sensitivity af the 

modal frequenriy spectr~m within tbe spectium with respect to 

any single component or cemb~nations of components. 

It is also possible to investigate t~e traasmissibility 

at tn ese frequencies in regards to tine system companeu,t 

variatio~s. These traasmissib!lities are 'determined oy the 

I 2 asymptote functions a,1 W 1::i1w aAd a 2w /b1w, respe~tively .• 

ror tbe first possible n~tural undamped frequency calculated 

in Equation (4-17) the transmissibJlity at this frequency is 

b 
T = 20Log10 a11 = w=w.,n 

(4 ... 20) 

and for the natural undamped frequency calculated !A Eq~ation 

(4-19) the transmissim~lity is 

T = w= wl'l 
b1 

20leg1 o a2w = 

R1 11 2 , . (4-21) 

wberi, tbe w ia Equation (4-21) is that shown iR EquatitiH'l 
fl 

(4-19). 

Sanaitivity studies can be performed in a_ simila~ •anAer 

fo~ most any system wbicb is adequately des~ribed by·linear 

time invariant ordinary differential equations. 
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Summary 

The freq~ency Canonical Form for state models of physi­

cal systems provides a powerful tool for control system 

designers ancl analystso Its features are such that it can 

be used in many capacities to help the engineer solve day to 
. . I 

day control problemso Many times the complexity of the 

system is such that a cli gi tal computer would be necessary 

to obtain the rootA ef the cbaracteristiQ 1 and forcing func­

tion polynomialt~ This form of the state model allows the 

engineer to perform the operations of aaalysis 9 syntnesisp 

and compensation without reverting to the digital computer. 



CHAPTER V 

STATE MODELS DERIVED rRom 

EXPERIMENTAL DATA 

An important feature which the ruadameAtal State­

Variable rrequency Matrix provides is its capability of being 

derived from experimental frequency response datao Although 

msst physical systems are not linear or statianary and, con­

sequently? experimental frequency response data of these sys­

tems contain tne effects of nonlinearities and time varying 

coefficients$ many of these systems can qe adequately repre­

sented by linear time invariant models~ The linear$ time 

invariant state model for this class of physical systems can 

be derived from its frequency response data through the use 

of the rumdamemtal State-Variable F'requ~ncy matrix. 

State Models rrom Frequency Response Data 

The development of the rundamental State-Variable fre­

quency Matrix showed that the ent~ies ici.this matrix are 
t 

first order approximations to the actu1al system frequency 

spectrumo This fact is the.basis for the derivation of state 

space moclels ftom experimental freq~ency response spectrumso 

To derive the F'undamai,tal F'requency matrix the entries 

in Spe_ctrum Band-pass Matrices must first be obtainedo This 

97 
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is accomplished by canstrtJcting a first order appre~imation 

to the experimer:atal spectrum data. Since all the transmis ... 
·, 

sion· asym.ptote functions have slopes whicb are multiples of 

20 decibels per decade, this first order approximation mast 

co.nsist of straight line segments. whose slopes are multiples 

of 20 decibels par decade. rmr simple breaks where the slope 

changes by only 20db per decade, these breaks are established 

by tbe approximation deviating from the actual spectr~m by 

approximately 3 decibelso 

Once a first order approximation is drawn, t~en the 

trarasmissie,n bandwidth botu1daries can be estimated. Tnes.e 

boundaries occur at every frequeacy where the first order 

approximation has a decrease in slope. For decreases im 

slope of only 20 decibels tbe bo~ndary dictates simply a 

chamge ef dominance trom one input matrix element to tb~ 

next. Howeverp if tbe decrease in slope is 40 decibels per 

decade then this dictates a ceincidence of transmission band­

width boundarieso The rrequeAcy associated witb this coinci­

dence is a bo~ndary wbose valbe is the sqmare ro,t of 'am 

input matrix elememte1 Also, the cnaf,lge in dominance across 

this boundary is from the element ·before to the element after 

this partic~lar elememt iR tbe input matrix. 

The restalts or this construction are··tne transmission 

bandwidth bm~~da~ies and the transmission asymptote fonc­

tioAs. In order to eval~ate the separate coefficie~ts which 

make up tbesa.. bauf;:l.daries ar1d · ft:1nctio11s, it is necessary to 

assume that the derived model is normalized with respect to 
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bm~ In other words 9 bm is assumed to be ,qua! to unity. No 

generality is sacrificed with this assumption since many 

operations in system analysis work 111! th this normalized form .. 

With bm = 1 then all the entries in the input matrix can be 

calculated from the transmission boundarieso Once tnese 

coefficiernts are obtained then the remaining elements of the 

fundamental frequency Matrix and 9 finally, the frequency 

Canonical State Model fmrm can be writteno 

Tbe utilization of this procedure far obtaining sta ta 

models from frequency spectrum data may involve the proce­

dures discussed in the previous chapter under compensation 
' I 

to ascertain an adequate fit of the experimental da tao This 

is d~e to the lack of concrete knowled~e about the inter-

action of system modes$ 

Tn illustrate the utilization of this prmcedure consider 

the frequency response spectrum data shown in Figure 5-10 

The actual state model represented in this figure in 

Frequency Canonical Farm is 

z• 0 0 Cl 1600 21 
,. 

(] 
1 

w4 z• w4 0 0 776W "z2 300W 2 + :ca w4 411o6W 2 40W 2 zv 0 0 Z3 3 

z• (J w4 3 . 3 
Cl 5o6W ..,z4 w 

4 

'ii (s ... 1) 

(5-2) 
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The state model derived from this spectrum data is 

o9W4 

z• 
4 

0 

0 

0 

0 

1500 

675W 

0 

0 

o 9W 4 0 376W 2 

0 .,9W 4 3 0 7W 3 

T 

+ [a 21sw 39,sw 2 w3] • 

y m [a O -1] Z1 
z2: 

Z3 

-24 

1 IJ1 

(5-3) 

(5-4) 

The frequency response spectrum for the stats model of Equa­

tions (5-3) and (5-4) are also shown in figure 5-10 .Once a 

state model has been fit i~provaments in this fit can ba made 

by inspection and the appropriate matrix element can be 

adjusted ta reflect the improved fit., 

In order to illustrate the use of this procedure in a 

general situation ths spectr~m shown in Figure 5-2 was drawn 

in an arbitrary fashion using rrench Curves only to obtain a 

smooth spectrum., The resulting spectrum fit is also shown 

' in this figure 0 No attempt has b~an made ta impr~we the 

spectrum derived from the pro~edure developed in this chap­

ter for obtaining the state model from experimental fr~quency 
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response datao It is pGssible to improve the linear time 

invariant representation if it is necessary. The rrequancy 

Canonical farm of the state model representative of the 

derived or fitted spectrum is shown below. 

z~ 0 0 576.0 z1 

10 4W 3 z• 3 0 2373W g 10.4W z 0 .. 2 ·.2 

z• 
3 a 10 0 4W 3 2ow 2·· 

-~3 

+ [96.0 42,0W W2rv (5 ... 5) 

(5-6) 

The two illustrations presented abo,e represe~t a rather 

general application of the fundamental State-Variable 

frequency matrix method to state space modeling whicb can be 

derived from experimental frequency response data. The 

modeled spectrum s~own in both Figures 5-1 and 5-2 were 

derived on the first modeliAg attempt. CDns~qu~ntly, Ro 

effort has been exerted ta improve the model althc~gh it is 
' possible to it.erat~ a~d poss!bly obtain batter spectrum f!tso 

These figures demon•trate the clossness possibls on the first 

try if care is tak-en in the selecti©'lrt of the a$ymptotes. 

This modeling technique has several features which make 

its application rather si•ple. One feature is tbat the break 
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frequencies are not necessarily the raats of the character­

istic and forcing polynomial functionso This feature removes 

the task of having to try to guess at representative corner 

frequencieso Another is the ability to model peak transmis­

sibilities without worrying about the mode representative 

damping ratioo Also 1 in effect 9 the coefficients generated 

are the coefficients of the linear time invariant model 

represented by its frequency response spectrumo 



CHAPTER VI 

SUMMARY OF SYSTEMS ANALYSIS AND SYNTHESIS 

VIA USE OF THE FREQUENCY 

CANONICA~ STATE fflODEL 

The procedures outlined in this chapter summarize the 

detailed discussions regarding the application of the 

Frequency Canonical Form presented in the previous chapters. 

The type of systems to which the following procedures are 

applicable are those which are adequately modeled by lineart 

time invariant; ordinary differential equations. In general, 

these procedures are applied to the category of systems hav­

ing a single input and a single output. The models for most 

physically dynami~ systems can .be adjusted to fit in this 

category by successively pairing the inputs and outputs. 

Obtaining the Frequency Canonical form 

Initially the system mathematical representation caR be 

in either the ordinary differential form or some state model 

form. If the model is in differential form the direct pro­

gramming t,chnique shown in Figure 3-1 can be applied. This 

procedure results directly in the Fr•quency Canonical Form. 

If the system model is initially in some stateqvariable form 

it can be transformed into the frequency Canonical Form by 

105 
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first transforming the state model into Rational Canonical 

F'orm and then applying the Frequency Transformation. This 

transformation is 

where 

also 

z• 1f""l-1 f""I 1,(""\c,t1 
=w!£ lil3:.+c:u~ 8v 

Z ' L r'l-1 • 
::a: W ~ X 

Z :: n-1 X 

.Q = i, by n F'reguency Transformali_g!l Matrix (see 

Equation (3-11)) .. 

x • state""variables for state model in Rational 

Canonical F'orm. 

(6-1) 

R • Rational Canonical form of differential transition 

8 = ineut column matrix. 

'fl ~ ineut vector. 

Beth mf the procedures discussed above will result in 

the rrequency Canonical Form for the system's state model. 

Analysis Using the Frequency Canonical rorm 

To cons.truct the first mrder appro:dmation for the sys-

tern frequency response spectrum the following steps are sug-

gestedo 

1o Divide tbe rundamental State-Variable rreqaanay 

Matrix and the input matrix by the first entry in 
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the input matrixo Tbis prod~ces the first S~ectrum 

Band-pass Ma trixo Tne elements of this matrix are 

the transmission asymptote functionso 

2.. The range of frequencies to which this first 

Spectrum Band-pass matrix is applicable is calcu­

lated by equating tne first ~ntry in the input 

matrix (after. the division indica tad above) ta 'f;he 

second entry., This produces the first transmission 

bandwidth boundary .. 

3., The first two steps are repeated by using all suc­

cessive entries in the input matrix starting with 

the rundamental State-Variable rrequency matrix iA 

each instance., This produces m Spectrum Sand-pass 

Matrices and m transmission bandwidth boundaries 9 

where mis the order of the forcing function poly­

nomialo 

4o The first order approximation of the freq~ency 

response spectrum is constructed by starting at the 

low frequency using the first Spectrum Band-pass 

Matrix geRaratedo The first entry in the rigbt~hand 

column of this matrix is used as the first asymptote 

of the spectrum approximation., (All these functians 

are straight lines on log-log paper and they all 

have slopes which are multiples of 20 decibels p~r 

decacleo) 

5., The asymJ!!)tote functions of the first Spectrum MatlC'!x 

(in th• right-hand> column) are used successiwely 
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um1til tills transmissibili ty calct,la ted by an asymp­

tote function in the first•Spectrum Matrix is 

exactly equal to the tr~nsmissibility· calculated by 

an asymptote function in the next Spectrum Matrix 

at the transmission boundary frequency. At this 

point the next Spectrum·Band-pass matrix is used to 

construct the first order approximation in the next 

frequency band. 

6. Tne poi~ts where a change in Spectrum Band-pass 

Matrices to be used will always occur an the trans­

mission boundary frequency and its occurrence will 

always be indicated by the equality sf asymptate 

functions iA successive matrices as discussed abeve. 

ror systems whose modes are separated by more than a 

decade this first or-er a~prmximation will not only res~lt 

in good straight line approximations for.the system freq~ency 

response spectrums but it will alss produce v.frtually the 

exact t.ransm!ssibili ty for the oscillatory mm(j'es at, th~ par­

ticular modes• undamped natural frequency. The undamped 

natural fr~quency is displayed explicitly in the rundamental 

. State-Variable rrequency matrix for ·any arrangement of mode 

separations. 

Synthesis Using the rrequency Canonical rorm, 

Synthesis using the rrequency Canonical r~rm proceeds 

as follows. 
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1. Construct a first order approximation on log=log 

paper for the desired frequency response to be pos­

sessed by a system~ These first order apprmxima­

tions must all bave slopes which are some multiple 

of 20 decibels per decade. 

2. At every fraquency where the approximation has a 

decrease iA slope calculat·e· the elements of the:1 

input matrix. This is done by starting at the 

highest frequency where the approximation has a 

decrease in slo~e. This frequency is equal to 

bm_ 1/m111\ Assuming bm = 1 then bm-l caA be calcu-

la tad. The mext frequency where the slope decrea~es 

is equal ta_ bm ... 2/bm ... 1' etc. Using the previous! y 

determined value all the elements of the input 

matrix can be determined. 

3. The first order approximations drawn in step 1 are 

the transmission asymptote functions~ rrom these 

str~ight lines all the entries in the rundamental 

State-Variable Frequency Matrix can ba calcal,ted 

and 9 thus 9 the system state model ih the frequency 

Canonical fsrm is obtained. 

Compensation Using the frequency Canonical form 

System compensation emplmying the Frequency Canonical 

form involves the knowledge of specific features of the 

transmission asymptote fnnctlons. These featares are as 

shown below. 
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1 o Asymptote ft.rnctions which determine the transmissi­

bili ty at oscillatory mode frequencies are virtually 

independent of the bandwidth boundaries but are 

sensitive to the closeness of other system modes. 

2o All other asymptote functions govern the. bandwidtR 

boundaries and, therefore, adjustme~ts i~ theae 

functions will be propagated to higher frequencies 

in the spactrumo 

In general, compensation can be performed either graphi­

cally aad then interpreted into the state model ar the state 

model can be worked with directly~ 

System Modeling from Experimental Data ,, .. r 

Using the Frequency Canonical rorm 

The procedure for state model identification from 

experimental frequency spectrums follows much the same chan­

nels as outlined for synthesiso 

1o Initially9 the experimental data must be approxi­

mated by straight lines on log-log papero Tbesa 

straight lines must have slopes which are multiple• 

of 20 decibels ~er decadso 

~20 Every frequency wher~: this first order approximation 

decreases in slope is a transmission bandwidth 

boundaryo These boundary frequencies are usea to 

calculate the entries in the imput matrixo By 

starting at the highest bandwidth frequemcy boundary 

which is equal ta bm_1/bm where mis the number of 
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bandwidth boundaries, and setting bm ~ 19 the~ bm~ 1 

is determineq .. Tbe next boundary frequency is 

bm. 2/bm_ 1 from which bm~ 2 is determined, etc .. until 

all the elements in the input matrix are obtained. 

3. The straight lines which make-up the first order 

approximation for the experimental data are the 

asymptote functioms.. These functions are ratios of 

the inp~t matrix elements and the frequency Matrix 

elements .. Since all the input matrix elements have 

been obtained, then all the elements in the 

frequency Matrix can also.be obtained. 

This procedure results in the state model rep~esentative 

of the first order approximation drawn initially .. If, after 

chscking tbe frequency response spectrum' computed from the 

derived state model with that of the actu~l system 9 it is 

found that the derived model is not adequate 9 then some 

adjustments in·the first order approximation can be perfoirmed 

easily in attempts to obtain a more adeciuate model.. This 

procedure can be mechanized on a digital computer witb an 

error criterion used ta determine adequate first Qrder 

approximations and 9 thus 9 model frequency response spectr~mao 

This chapter has summarized the various applicatiwns to 

which the rreciuency Canonical State M~del rorm developed in 

this dissertation are amenable .. Several details peculiar to 

specific situati~ns are not included in this mbapter. How­

ever adequate det~ils as well as illustrations are provided 

in the chapters dealing with the particular applicationo 



CHAPTER VII 

CONCLUSIONS ANO RECOMMENDATIONS 

It has' been demonstrated in this dissertation that 

linear time invariant models for physical systems, whether in 

differential form or some state-variable form, can be 

expressed in the frequency Canonicjl rormo This State Space 

Camonical F'orm can be used to display the frec:iuency charac­

teristics inherent in all' dynalllic sy.stem~ in an explicit 

manner. The particular procedure developed herein produces 

the transmission bandwidths which are peculiar to the funda­

mental modes of the system as well as a transmissibility 

description of the modes. All this info~mation is obtained 

without resorting to any sort of factorization of the system 

characteristic and forcing functions whiclil 11 up t~ the p:res ... 

ant, has been the only way to ascertain this system charac­

teristic datao 

Based om an exhaustive literature survey and the 

experience of the author 11 to his knowledge no work has been 

done with system frequency response spectrums in conjunction 

with state space system modelso Tha;efore, the following 

topics which are developed in this dissertation will con­

tribute to extending the frontiers of knowledge in state 

space analysis of linearv time invariant dynamic systemso 
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1. F"our procedures are developed by which presently 

known classical control techniques can be used in 

comjunction with state models to obtain the fre­

quency response spectrums for dynamic systems fr~m 

the representative mathematical models. These pro­

cedures necessitate a rather extensive knowledge 

and experience in frequency response techniques om 

the part of the user. 

2. A aew addition to the more familiar Jordan, 

Rational, and Phase-Variable Canonical Forms in 

state space is developed. This addition is the 

Frequency Canonical Form for state-variable models. 

3., Along with th.a f"requer:acy Canonical Form two methods 

are developed ta obtain this particular Canonical 

rormo The first method uses~ frequency transfor­

mation and a direct pr~gramming procedure te pro= 

duce the rrequency Canenical Form from the system'• 

mathematical model in differential form~ The other 

method involves tbe development of a Frequency 

Transform matrixo This matrix directly transforms 

a state model from Rational Camonical form to 

F'requ.ertcy Canoni.cal f"ormo Since there are standard 

tranbformations which will tramsform any state model 

into Rational Canonical Form, this frequency 

Transform Matrix will essentially transform any 

system state model into the rrequency Camonical 

Form. 
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4. The differential transition coefficient matrix of 

the frequency Canonical F'orm is the uF'undamantal 

State-Variable F'requemcy 1Ylatrix'0 • Explicit in ·this 

matrix are first order approximations of the fre­

quericy response spectrum of the modeled system. 

s. The first order approximations explicit in the 

"F'undamental State-Variable F'requeAcy Matrix" are 

better approximations than the asymptotic approxima­

tions which Bode' s 'Theorems produce. Also, it is 

not necessary ·ta factor tll e psl ynornial s iFivol ved as 

is the case in the use of Soda's Theorems. 

6. The frequency Canonical Form provides extremely 

us~ful app~icatisns of state models to the field of 

dynamic systems analysis. This dissertation demo~­

s'trates the usefulness of the F'requency Canonical 

form in system analysis, synthesis, and c~mpensa­

tiono 

7. At present to the author's knowledge there has been 

no method developed by which state models can be 

derived from experimental datao The "fundamental 

State-Variable F'requency M~trix~ prowides a means 

for the ideatification of state models frQm experi= 

mental frequency respons1e datao 

All the contributions contained in this dissertatiorn 

which are list~d above suggest much more research in the 

rrequency Canonical State Space. Therefore 9 the autb~r 
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recommends the fellowiAg topics as areas wbictl will p)!;'odt.u:;e 

significant contributions in state space analysis. 

1. The phase shift associated wi tb tbe frequency spec­

trums developed by the use of .the rrequency 

Canonical rarm of the state model can be obtained 

by Sode' s Tbeoreu~s (15). This phase shift spectrum 

can also be derived by an explicit matrix display 

af state model coefficient mat~ices. 

2. Transformatioms for the state model which res~lt irn 

more caAonical forms peculiar ta engineering disc!~ 

plines, for example state model forms specifically 

for stability evaluation which will provide obvious 

compensation possibilities, wmald contribute to tne 

systems analysis field through the use of state 

model techniqwes. 

3. The extension of the frequency respo~se spectr~m 

explicit display in state models for ne~linaar sys­

tems will provide a maj~r con\rib~tion to system 

analysis by state space techniques. The can~~ical 

form of the state model for .this class of systems 

cmuld conceivably be made up ef cesffi~ieat matrices 

displaying explicitly all the j~mp frequencies 

.pec:uiliar to any specif.le system whem ,exci tad by a 

sim~soidal excitation. 

4. Sigma plots which are employed iA. classical cGntrol 

tbeory to determlriae the close):t loop real roots from 
' 

the OJH!ll"!l loop transfer function by sttbsti t11Jting ... (J 
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for sin the open loop transfer fwnctioA can··possi­

bly be cbaracterized by state model coefficient 

matrices. These matrices could then be transformed 

to dis.play the -0,losed loop poles explicitly withaut 

reverting to the construction of sigma plmts.(16). 
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APPENDIX A 

STATE-VARIABLE DIAGRAMS tROM DIRECT 

PROGRAMMING METHODS 



STATE-VARIABLE DIAGRAMS FROM DIRECT 

PROGRAMMING METHODS 

There are two basic direct programming methods which 

produce vector state models in well known canonical formso 

The first of these programming methods is Tou•s direct pro­

gramming method from which the resulting state model appears 

in Phase-Variable Canonical Form (12, 13, and 14). The 

Phase-Variable Canonical Form is merely the transpose of the 

Rational Canonical Form. The second direct programming 

method results in Rational Canonical Form state models. 

The particular feature existing in these forms for the 

state models is the explicit display of the coefficients 

associated with the characteristic equation and the coeffi­

cients associated with the form of the forcing function., 

The basic difference in the state models produced by these 

direct programming methods, other than the rearrangement of 

the elements in the differential transition ~atrix, is the 

explicit display of the forcing function coefficients. 

The general mathematical model to which these methods 

are applicable are single input - single output linear sta­

tionary ordinary differential equationso These system 

models can be expressed in the following formo 

120 
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0 0 0 + b \I (J (A-1) 

tor a physically realizable system mis always equal to or 

less than n. 

Tou•s Direct Programming Method 

Tau's direct programming method works with the system 

transfer function which can be found by transforming Equa­

tion (A-1) by using Laplace Transformations. The system 

transfer function resulting is 

y (s) = 
b .. m s. 
m/ 

b m-1 + s . 
m-1 + • • • + b0 

v (s) (A-2) 
+ ••• + ao 

-n Dividing both the numerator and denominator bys produces 

b ,, m-n .b. "m-n-1 , . b· ,-.··· .. n 
ms + ffi. 18 .· ,t,•oo + ·oS . 

= . . -1 - _2 . ..n v(s) (A-3) 
an+ an-1$ + an-2$ + Ooo + aoS 

y(s) 

If the following substitution is made into Equation (A-3) 

e (s) = v{s) (A-4) 

the resu 1 t is 

y(s) = (bmsm-n + bm_ 1sm-n-1 + ••• + b0s-n) e(s) (A-5) 

Equation (A-4) is equivalent to the following 

e(s) ..... -
The state model diagram for this system can be drawn by 

using Equations (A-5) and (A-6). The state model diagram 

for this general linear stationary single input - single 



output system is shown in F"igure A-1. The vector matrix 

state~variable model resulting from this figure is shown 

below form= n-1 • 

• 0 1 0 0 0 0 X1 • • Xt 
• 0 0 1 0 0 0 x2 • • x2 

• • • • • • 0 • 
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0 = • • • 0 0 0 + 0 V (A-7) 

0 • • .. 0 0 • 0 

0 
0 0 0 1 Cl xn-1 xn .. 1 

.. ao a1 an-1 1 
xn -- -- 0 • 0 • xn -an an an an 

• 

0 (A-8) 

0 

The standard way the characteristic equation is 

expressed is in a normalized form. The normalization is, in 

general, performed with respect to the highest derivative .. 

In other words the entries in the differential transition 

matrix in Equation (A-7) are the negative of the coeffi­

cients of the characteristic pdlynomial for the system. 

This form of the differential coefficient matrix is called 



-1 s els 

xn 

-2 I s el s J I ----x I 

n-1 

-n+ 1 ,. 
S 8tS 

x2 x, 
-n ( s e_s 

Figure A-1 0 State Model Diagram for Tou•s Direct Programming Method 
~ 

I',.) 
c.,:i 
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tne Phase-Variable Canonieal rorm. The entry in the column 

matrix multiplying vis the normalizing coefficient. As 

seen iR Eq~ation (A-8) the coefficients of the forcing func­

tion are displayed explicitly in the output matrix. 

Rational Canonical Form Direct 

Programming method 

The Ratiomal Canonical rorm direct programming method 

works directly with the system mathematical model; nowevar, 

for convenience, the differentials are usually replaced by 

the operator p where pn = d"/dt". Performing this substitu­

tion on Equation (A-1) produces 
n n-1 a p y + an .. 1P y + 0 •• + a1py + afly = n 

b p 
m 

'ii m + 
m-1 

bm-1P V + ••• + b1pv + b0v (A-9) 

If [quation (A-9) is solved for the ~eo~th order terms, the 

result is 

ror m = n, Equation 

b0 v - a0 y = 

Form n 

(anpn + an-1Pn-1 + ••• + a1p)y 

- (b pm+ b 1pm-1 + ••• + b1~)v (A-10) m m-
(A-10) can be rewritten as 

"( ) n-1( P any - bmv + P an-1Y -

+ ••• +. p(a1y - b1v) 

n n-1 
amp y + an-1P y 

m+1 me ) + ••• + am+ 1P , + p_ a~y - bmv 

+ ••• + p 2(a 2y - b2v) + p(a1y - b1v) (A-12) 

The state model diagram for Equation (A-12) is sbown in 

F'igure A-2. 
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Figure A-2o State Model Diagram for the Rational Canonical form 
Direct Programming Method 
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The state model derived from the diagram shown in 

rigure A-2 is shown below. 

• 0 0 0 0 ><1 • 

• 1 0 0 Cl x2 • 

0 0 • • 

xm = • 0 0 

0 • • 

• 1 xn-1 • 

• 0 0 xn • " "' 

0 
ao --an 

0 
81 --an 

" • 

am 
0 --a n 

• • 
. a : n, . .:. 2 

(].;;.--
a n 

1 
8 n-1 --an 

X1 ! 

><2 

• 

xm 

• 

xn-1 

xn 

0 

• 

• 
X n 

+ 

bo 
all 

b1 -an 

• 

b m 
V 

an 

0 

• 

CJ 
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(A-1 3) 

(A-14) 

The elements in the right hand column of the differern­

tial transition matrix in Equation (A-13) are the negative 

of the coefficients of the charac~eristic polynomial. As 

discussed previously, the division by a represents the nor-n ! . 

malizing of the characteristic polynomial with respect to 
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the highest derivative. This form of the differential 

transition matrix is called the Rational Cano~ical rorm. 

The coefficients of the forcing function appear implicitly 

in the input mat~ix. An explicit display of these coeffi­

cients is easily obtained by removing the normalizing coef­

ficient used to normalize the characteristic polynomial. 
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RESONANT PEAK TRANSfflISSIBILITIES 

In the development of system fre~uency response spec­

trums by the use of the rrequency Canonical rorm the trans­

missibility at the natural undamped mode frequency is 

obtained explicitly. However~ this value of transmissi­

bility is not the maximum that will occur. The actual ma~i-

mum occurs at a lower frequency. This frequency where tAe 
\ 

actual maximum ,ccurs is a fu~ction of the damping existing 

as well as the ~atural un~amped mode frequency. Specifi­

cally, the frequency where the maximum transmissibility 

occurs is 

where 

(8-1) 

1t·. = damping ratio 
: I 

'CA.JP= frequency of maximum transmissib!lity 

·in = natural undamped mode frequency 

1 he frequency of maximum transmissibility .has been cor-

related with the natural undamped mode frequency and the 

ratio 1/a. Tnis correlation is shown in F"igure 8-1. Tbis 

figure can be utilized for the entire frequency range. Tbe 
I 
i 

range ~f 1/a can be varie~ to encompass almost all possible 

values of 1/a which will occur. ror ranges of 1/a from 

.17857 to 1. 7857 the frequency range covers frequencies from 

129 
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f"igure 8-1. Mode Damping Characteristics 
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0 to 100 A shift in the range of 1/a to the range 107857 to 

17.857 shifts the frequency range to the range Oto 1.0. 

Therefore, the scale designation on the abscissa is 

.! • 10k 
a 

The scale designated on the ordinate is 

w " 1ok-1 
p 

(B-2) 

(8-3) 

and the natural undamped mode frequency lines within the 

graph are 

w " 1ok-1 
n 

Orace the range of W n has been selected such that the 

(8 ... 4) 

required value of wn is within the range, then the appro-

priate value fork is used to establish the scale of tbe 

abscissa. The result of the use of Figure B-1 is the fre-

quency cf maximum transmissibility,, 

The next thing which must be obtained is the value of 

maximum transmissibility,, This is possible by the use of 

figure 8-2 in conjunction with Figure 8-1. Within the graph 

of figure 8-1 are lines of constant damping ratio',, Each 

point determined by the values 1/a and W. bas an associated n 

value of~" With the value of S fI'--0m Figure B-1, F'!gure 8-2 

can be entered and a AT in decibels obtained. This incre ... 

ment in transmi$>Sibility is .an increment which when added to 
l 

the transmissibility at the natural undamped mode frequemcy 

will produce the maximum transmissibili ty. As indicated 

previously, the maximum occurs at lc)p" 
2 
~ ~ 4 .El.+ 100y = 2v 
dt dt 

(8-5) 
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The vector matrix state moclel ia F',reqaency Canonical F'orm is 

w2 z' 0 100 21 2 
= w2· 

+ 'II 

z• 4W -z2 0 
2 

Thea the transmission bandwidth boundaries are O and 

The Spectrum Band-pass matrix is 

s = 
a 1 go 

W 2 4W 
22 

(B-6) 

(B-7) 

• 

(B-8) 

F'rom Equatiem (8-8) the transmission asymptote function for 

the low frequency rang~ expressed in decibels is 
I 

. 100 - 20Log10 2 = 2BLog 10 .02 = 33.99db (B-9) 

The transmission asymptote function for tbe high frequency 

range is ... 2 
L w 

- 20 0~10 2 = 20Log10 2 - 20Log 10 lc.J 2 

' 2 
6. 02 - 20Log10 W (B-10) = 

The intersection of these two transmission asymptote func­

tions is 

10 

(B-11a) 

(B-11b) 

The magnitude .of transmission asymptote fuaction 

-20Log10 4W/2 at W = 10 is snown in Equatiom (8-12). 
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T = 26 0 02db (B-12) 

The transmissibility spectrum as well as the asymp­

totic approximation generated from the transmission asymp­

totic.functions are shown in figure 8-3. 

The value of 1/4 is used to enter figure B-1 along the 

abscissa and a frequency w = 1 O is used wi tnin the graph. n 

· f"or W · :: 10 tbe value of k is 1. Employing this factor to n 

obtain the correct abscissa location the value of frequency 

where maximum transmissibility occurs is W = 9.59. lhe p 
' 

damping ratio is ~ = o. 2. With this value of damping ratio 

the incremental increase in transmissibility obtained from 

F"igare 8-2 is ~ T = o. 175 decibels. The maximum transmissi­

bili ty occuring at W = 9o59 radians per second is 

Tmax = 26.02 - o.175 = 25.845db 

as shown in figure 8-3. 

(B-13) 
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STABILITY EVALUATION roR THIRD ANO 

F'OURTH ORDER svs.n:ms (4) 
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STABILITY EVALUATION rOR THIRD AND 

. FOURTH ORDER SYSTEMS (4) 

The stability of systems wbase characteristic polynp~ 

nomials are third or fourth arder can be determined by merely 

inspecting the Spectrum Band-pass Matrices. As is obvious 

to some extent the degree of stability can be estimated by 

applicable peak transmissibility calculations. This appendix 

deals primarily with absolute instability and the determina­

tion of peak transmissihility for third and fourth order 

systems which are very lightly damped. 

To illustrate the primciples involved in tnis stability 

evaluation the freque~cy spectrum for, the following system 

state m~del in Frequency Canonical Form is shown in Figure 

C""'1• 

z; m CJ ao 21 0 

a w3 
3 z• 2 = a w3 

3 
[) a,w z2 + b1W V (C-1) 

z' 3 CJ a w 3 
3 a w 2 

2 -z3 Cl 

(C-2) 
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Tbe Spectrtam Band-pass Matrix for tbis state model is 

shown in E~uation (C-3). 

s = (C-3) 

Tn e natmral undamped mede fr·equ e11ay associated with the 

oscillatory system mode occurs where 

or 

2 azw . 
6 w . 

1 
(C-4) 

(C-5) 

Tbis freqiaancy is dete.rmined by tl:le intersection mf tnese 

twm transmission asym~tote functions crossing as sbown in 

f"igure C-1. 

t ~ 3/ Suppose that ne asymptote fttnction a 3W c1w is 

greater thaA the asymptote f1:1nctimn a 1W/brW at the fre­

quenl';y W = ~a0Ja 2• Tt.is C?Dmdi tion is shown in F"igure c ... 2. 

Matn.ematically, tbis indicates that 

(C-6) 

or 

(C-7) 

which is the same as 

(C-8) 
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However, oae of the criterioms for stability developed by 

Routh is that tbese ~oefficients of the characteristic poly­

nomial in tne aeeve combination be greater tban zero. ·Tnis 

means tbat the system is a non-minimum ptrase system and, 

tnerefore, tne frequency spectrum does not exist. 

Systems wbicb barely meet the stab!li ty criterion 

reqt:t!re special but quite logical consideratioA ln order to 

estimate tf:!Je resonance values ef transmissibili ty. The fre-· 

quency spectrum shc:nin in F"igttre C-3 represents such a syst"m• 

At the frequency W = Va1Ja3 tbe asymptote functions 
\ 3 

a 1 W/~ 1w and a 3 w /b1W are equal but 180 degrees et:tt of 

phase. Therefore, these two terms cancel one anotber produc­

ing t~e value of the transmissibility as shown below. 

T = 1 {C-9) 
a a .w 2 

0 2 
61w - -s1-w-. -

and specifically 

b1 ~ 
a2a1 

a --0 . a 3 

{T) W ·;: = (C-10) 

This equation indicates the boundary of stability since the 

denominator mwst be greater tman zere. This sp~cial trans­

mission resonance cal cu la tion is reu11Jired only wheR two pairs 

of transmission asymp·tste ftmctions are equal at the same 

freciu ency~ 

In gen~r~l, most fourth order systems can be handled in 

exactly tbe same way as discussed in this appendix. 
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PRINCIPLES or STATE-VARIABLE fflODELING 

Al though s-ta ts-variable anal y,sis cu, be extended te 

erncom~ass mmst systems describable )y ordinary differe~tial 

equatiems, the development cmllltaimed in this appem~ix is for· 

sys.tams wtdcb fall .. into title class called linear time invari­

ant. This class of ordinary differential equations cam be 

illustrated by th• following second order model in differen­

tial form. 

(D-1) 

!he basis mf state~variable modeling is the ~xpressioa sf 

Equation (D-1) as a system ef first order ardirnary differen­

tial equations. This expression of state models is obtained 
•' 

by making algebraic substitutions wbicn consist a,f limear 

combinations of the zeroth, first? seoend, and so fertb 

derivatives appearing in the differential form af the system 

model. These algebraic sabstitutians defi~e tbs s~ates or 

state-variables of the system. In .tbe case of a simgla 

infl)ut - si1t1gle output system, tll!s s-ubst! tutiom is pe.rt'ormed 

as sho_wn belew 0 

X 1 = y (o ... 2a) 

)(2 = !1 • * (D-2b) 

• d2 
(D-2c) "3 = x2 = ~ 
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If this algebraic substitution is perfmrmed ea Eqmatiom 

(D-1) tbe following system of first order equations results 

• £lx 1 + x2 + Ov 

- a9x1 - a1x 2 + bav 

(D-3a) 

(0-3b) 

y = x1 .~ ox 2 + ~v (D-3c) 

EquatioAs (D-3) can be written in tbe following umreduced 

state-variable fmrm 

1 El B 

0 a2 0 

o a 1 

Ill 

1 

-ao -ao 
1 B 

P w • Q.x·+ R v ... _ -...- --

+ 

(D-5) 
Equation (D-5) is the generalized umreduced state space model 

'' 

for time invariant linear system wi tn multiple inputs and 

multiple outputs. 

Equatiens (D-3) can be grouped wit~ the &Cfuatioms 

involving the der~vatives af the state-vari.ables in cute group 

and tne equations imvolv!mg t.ne outputs in the o th~'r ~ Tbe 

result of this groupimg written in state-variable f~rm is 

the following reduced model • 

• 0 1 fJ X1 X1 
• ao a1 +. V 

0 b x2 ,.._ -- x2 a2 a2 0 

(D-6a) 

j 



This system of eqttations ls writtem in general form for a 

multiple input - multiple oatput system im tme fellowiRg 

state-variabla •otatiom. 
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Jc = A X + 8 ., (D-7a) - -
l. z C X + 0 V (D-7bJ-- - - -

The coefficient matrices shown in this appendix contain all 

canstaRts. These constant matrices are characteristic of 

· time irnvariaAt linear state space system models. 
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