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CHAPTER I
INTRODUCTION

The state-variable approach to the analysis of scien=-
tific problems, which includes nearly all the engineering
disciplines, is far from nam.1 For many years this basic
approach has been used by physicists in the description of
dynamic occurrences in classical mechanics and quantum
mechanics, However, many of the more recent advancements in
the topological mathematical theory which are directly appli-
cable to state space analysis have not, as yet, been employed
by either the physicist or the engineer., Also, there exist
many concepts in both of these fields of applied mathematics
which have not been put in a proper perspective with refer-
ence to state models., Due to the increased interest in the
state-variable methods as applied to control system analysis,
a great deal of emphasis is being placed on the integration

of classical and modern control mathuds.2

1The term "state-variable" infers the description of
system models in finite dimensional state space, These
models contain explicit mathematical descriptions of the
system's state in a vector matrix form. Appendix D shows a
method for modeling systems in state space,

2m:::darn control methods and modern control approach to
system analysis are the techniques of control system analysis
employing state-variable models,



Motivation for the increased emphasis on state-variable
methods by systems engineers stems from two sources., The
first source is the increased efforts being placed on
optimization., Most optimization procedures have been devel-
oped from a state space standpoint, Thus, in order to apply
these theories to physical systems consistency of model
domain and optimization technique domain is a necessity.
State-variable representations for physical systems provides
this time domain match with the optimization theories,

The second source of motivation is the need for organ-
izing the analysis methods from the systems viswpoint, For
the analysis of linear time invariant systems classical con=-
trol theory provides transform techniques which allow the
system equations to be readily solved, However, when this
class of systems is extended to include time variance, these
transform techniques are no longer readily applicable, Fur-
ther, when nonlinear terms are introduced classical theory
employs a variety of techniques to obtain a system evalua-
tion. Thus, classical theory does not possess any particular
technique which can be extended to cover all classes of sys-
tem models, The state-variable methods can be extended to
model both stationary as well as nonstationary systems and
linear as well as nonlinear systems coupled with the time
variance or time invariance characters, This property of
the state-variable approach offeps the framework for a more

unified organization of systems analysis,



The basic principle of the state-variable methods is
the description of the system mathematical model as a system
of first order differential equations, This system of equa=
tions can be expressed in a form to which mathematical
topology is directly applicable.

The particular class of mathematical models to be con-
sidered herein are those describable by linear, time invari-
ant (stationary), ordinary differential equations, The
state-variable representations of this class of system models
find themselves amahable to the application of many subtopics
of mathematical topology. These particular subtopics include
matrix algebra and finite dimensional vector spaces. Both
of these have a very rigidly developed history which, when
applied to system analysis, provides a well founded analyti-

cal basis,
State=Variable Models

For any particular system there are many forms in which
the state-variable model can be written, The particular
form of the state model is dependent on the technique
employed to obtain the model. Appendix D describes a method
for modeling dynamic systems in state space. This appendix
shows how the two state models presented below ﬁan be
derived,

The most general state-variable models are the unreduced

models, The mathematical presentation of these models is
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described in the following manner (1).3 A system of linear,
first order, differential equations with constant coeffi-

cients can be expressed completely by the matrix equation

En i Bxs iy (1)
where
X
w= w(t) = , which is an (n+gq) - dimensional column
vector with components i1, iz,...in, Yq,
YZ,...Yq.
x = x(t) = the n - dimensional state vector with compo-

nents X19 Xoy XzyeeeXpe

y = y(t) = the q - dimensional output vector.

v(t) = the p - dimensional input vector with compo-

=<
u

nents Vis Voo u3,...vp.

% = x(t) = the n - dimensional derivatives of state
vectors.,
P = a coefficient matrix of dimension (n+g) by
(n+aq).
Q = a coefficient matrix of dimension (n+g) by n,
E = a coefficient matrix of dimension (n+gq) by p.

Reduction of the unreduced model to standard state space

form gives the following two equations
X = Ax+Buy (1-2)
+Dv (1=3)

[3]
Ix

x =

where x, X, v, and y are vectors as defined in the unreduced

3Numbars appearing in parentheses within the text refer
to references on pages 117 and 118.



model, The coefficient matrices are as follows

A = n by n differential transition matrix
B = n by p input matrix

C = g by n output matrix

D = g by p transmission matrix,

The elements of the coefficient matrices are constants,
These constants are either real or complex and for any par-
ticular system one form of the state-variable model can have
elements which are complex numbers while another form of the
state-variable model for the same system may have elements
which are all real numbers, Therefore, a single state-
variable model for a system is not unique, As many state
models can be written for a system as there are combinations
of the significant constants associated with any particular
system, Three of the more familiar forms of the differential
transition matrix are the Jordan, Rational, and Phase-
Variable Canonical forms, The system characteristics
explicitly displayed by the elements of the Jordan Canonical
Form are the system's characteristic modes (roots). The
Rational Canonical and the Phase-=Variable Canonical forms
display the coefficients of the system's characteristic

equation as elements in the differential transition matrix,

Fundamental State<Variable

Frequency Canonical Form

Due to the lack of uniqueness of the state model forms

including any of the Canonical forms discussed above, the



analysis procedures used in classical control theory can be
represented in one form or another by the coefficient matri-
ces associated with the state-variable models, This fact
permits modern control theory to provide the much needed
unification of control theory from a system amalysis
approach,

One of the analysis procedures which produces most of
the system characteristics employed in classical control
theory is the system real frequency response, The frequency
response method evaluates the system closed loop character-
istics by investigating the cpen loop transfer function.

The frequency response approach has not as yet been employed
in the modern approach to system analysis, At the present
time the frequency response transfer function of a system
described by a state-variable model is obtained from the
state model in exactly the same form as it appears in classi-
cal system analysis, Direct application of classical tech-
nigues is much easier, With presently available modern con=
trol techniques it is not advantagesous to follow the same or
similar paths followed in the development of classical con-
trol theory.

There are various available means for constructing a
system's frequency response spectrum from the state-variable
models as will be shown in the following chapter, These
techniques are based on the parallel developments in classi=
cal control theory; however, since no additional information

is obtained, no particular advantage is gained by employing



the state-~variable approach instead of the well known trans-
fer function method.

The "Fundamental State-Variable Frequency Matrix"
developed in this dissertation demonstrates that from a fre-
quency response standpoint there is a definite advantage to
system state-variable modeling., The need for this matrix
will occur particularly when a system modeled in state space
is to be analyzed through its frequency response spectrum,
The "Fundamental State-Variable Frequency Matrix" displays
explicitly the critical gains, asymptotes, and frequencies
associated with the system frequency response, These funda-
mental characteristics are derived from the entries in the
"Fundamental State-Variable Frequency Matrix",

The information derived from the basic theory of the
"Fundamental State-Variable Frequency Matrix" has application
to compensation and synthesis as well as analysis, This
theory has a rather unique inverse in its application by
direct utilization of experimental frequency response infor-
mation, Since the frequency matrix contains critical gains,
asymptotes, and frequencies, experimental frequency response
data can be used to fill out the matrix, Thus, the state-
variable model can be systematically derived from test data.

Since the state models are not unique, it is possible
to obtain the "Fundamental State-Variable Frequency Matrix"
from a system's mathematical model in one of two ways,
First, the state model can be writtem by any one of the

standard available means which results in a canonical form,



With this model a transformation is performed resulting in
the frequency matrix, The transformation necessary to
transform state models into the Frequency Canonical Form is
developed in this dissertation, Second, the state model can
be written directly in the Frequency Canomnical Form by a

direct programming method developed in this dissertation.



CHAPTER II
SIGNIFICANT HISTORICAL CONTRIBUTIONS

The use of state-variable models has only recently
received a great deal of emphasis by systems engineers,
Consequently, no work has been exerted to express the sys-
tem's frequency response spectrum utilizing modern control
theory state models, However, four methods are presented by
which the frequency response spectrum can be constructed
from state-variable models, The first of these methods was
developed from Brockett's work (2)., Brockett's work, as
will be shown, develops the transfer function of the system
in a matrix form from which the frequency spectrum can be
constructed using Bode's Theorems, The remaining three meth-
ods presented employ work of other investigators which has
been modified by the author to use state models instead of
the frequency domain transfer function, The first of these
methods to obtain the frequency response from a state model
is restricted to those systems which have simple forcing
functions, This method employs the Jordan Canonical Form of
the state model, The other two methods of drawing the fre-
quency response spectrum from a state model inwlves the combining
together of individually developed technigues, O0One of thesse,
developed by Smith (3), which has some limitations, uses a
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direct programming technique to produce the state model in
canonical form and a graphical method for drawing the fre-
quency response spectrum, The other one uses the same means
of developing the state model but the frequency response
spectrum is obtained by a method developed by Ausman (4).
The direct programming techniques referred to are discussed

in Appendix A,
Brockett's State Model Transfer Function

Brockett's work considered the class of linear, time-
invariant systems which can be described by the reduced
state-variable models shown in the following vector matrix

equations,

o

x(t) (t (2-1)
y(t) (t) (2-2)
In these equations v(t) and y(t) are the system input and

]
=
Ix
-
c
p—
+
I=<

8
b

i
o
*
~
c*-
-
+
i=

output matrices, respectively, and i(tJ is the system state=
variable matrix, In this work it is assumed that v(t) and
y(t) are vectors of the same dimension, say g, and that x(t)
is a vector of dimension n, Particular emphasis is placed
on the class of systems which have a single input and a
single output. This is reflected in the state model by set-
ting the dimension g equal to one, Consequently, g(t) and
y(t) are one by one column vectors and are written as v(t)
andly(t). The particular state-variable model used by
Brockett is shown belouw,

x(t) = A x(t) + B v(t) (2-3)

y(¢) = C x(t) + D v(t) (2-4)
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Equations (2-3) and (2-4) can be transformed by use of
Laplace Transformations, The result of this transformation
is

s x(s) = x(0) = A x(s) + B v(s) (2-5)

y(s) = C x(s) + D v(s) (2-6)

Equation (2-5) must be solved for x(s) in order to obtain
the transfer function,

s x(s) = A x(s) = x(0) + B v(s) (2=7)

or

(I s=-A)x(s) = x(0) + B v(s) (2-8)
where

I is the identity matrix,

By post multiplying Equation (2-8) by (I s = ﬁ)"1 the result
is

x(s) = (Ls=-A)""x(0)+ (Ls=-a)"Bu(s) (2-9)
Substituting Equation (2-9) into Equation (2-6) produces an
expression of y(s) in terms of x(0) and v(s).

y(s) = C(Ls-A)" x(o0)
sC(Le=-a)'Buwls)+Duvls) (2-10)

The column vector 5(0) represents all the initial conditions
imposed on the system, For zero initial conditions Equation

(2-10) reduces to

y(s) = [g (1 &= A is g] v(s) (2-11)

The system transfer function as dariuéq from the state-

variable model is as shown in Equation (2-12).
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T [g (Le-ar's. _q] (2-12)

Since the inverse of a matrix can be written as the
adjoint of the matrix divided by the determinant of the

matrix, Equation (2-12) can be rewritten as follouws,

- II-S_A-no (2-13)
With this system transfer function the fregquency response
spectrum can be drawn by use of Bode's Theorems (5).

This method presents no advantage over the standard
transfer function methods other than the fact that the state
model was involved, If the anmalysis was initiated from the
basic system mathematical model, then there is a definite
disadvantage of following Brockett's procedure., This disad=-
vantage is in the evaluation of the vector matrix equation

to obtain the transfer function,

System Frequency Response Using State Models

in Jordan Canonical Form

The general form of the state-variable model in Jordan
Canonical Form for systems with distinct eigenvalues or

unrepeated roots is shown in Equation (2-14).
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X 4 Ty ;[ RS X4 1
X0 0 r, B8 gile.uB X 1
: = ] ) i i + ¥ v (2-14)
L] . . 9 L L]
X 1 e A R N, | T, xnJ 1
- . - = = - -
y = [c‘l cz e o e o @ cn] X1 + [D] v
ol
i (2-15)
Xn

The elements in the differential transition matrix are either
real numbers or complex numbers, The real or nonimaginary
entries are over=damped system modes for negative entries

and undamped or unstable system modes for positive entries,
Complex elements will always occur in conjugate pairs since
the polynomials considered have real coefficients, There-
fore, complex elements with negative real parts are under-

damped oscillatory system modes while those with positive
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real parts represent undamped or unstable oscillatory system
modes, The frequencies of the complex and the real entries
are the corner frequencies for the system's lag frequency
response Spactrum.1 With this information it is possible to
construct the asymptotes of actual lag frequency response
spectrum and, by using Bode's Theorems from classical control
theory, to draw the actual lag spectrum,

By examining both Equations (2-14) and (2-15) it is
evident that the coefficients of the system forcing function
are not explicitly displayed., Herein occurs the limitation
for the use of state models in Jordan Canonical Form to
determine system frequency response spectrums, There is no
explicit information displayed in the state model such as
forcing function coefficients which will contribute to the
construction of the lead frequency response spectrum for a
system, This statement is correct.with the exception of
simple forcing functions, e.g. simple sifusoidal inputs, For
very simple system inputs the forcing function coefficients
appear explicitly in the input matrix. Hence, sufficient
information is displayed to allow the construction of the

total frequency response spectrum,

1Tha lag frequency response spectrum is that part of a
freguency response spectrum constructed by using only the
numerator of the transfer function., Also the lead frequency
spectrum is that part of the fregquency response spectrum
constructed by using only the denominator of the transfer
function or characteristic equation,
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System Frequency Response Using State Models

in Rational Canonical Form

The methods presented in this section to obtain the
system frequency response spectrum will involve state-
variable models in the Rational Canonical Form, However,
the Phase-Variable Canonical Form can also be used equally
as well for finding the frequency response of a system from

its state modal,2

The basic difference in the uses of these
two canonical forms is in the representation of the system
gain, Since the Rational Canonical form presents the total
gain in a combined form the developments in the following
sections will be much clearer by using this form of the

state model., Methods by which the state model can be derived
in either Phase-Variable Canonical Form or Rational Canonical
Form from the system mathematical model are presented in
Appendix A,

In general terms, the state model used in the following

two sections will be as shown in Equations (2-16) and (2-17).

’The differences in the Rational Canonical Form and the
Phase=Variable Canonical Form are primarily the locations of
the coefficients of the characteristic and forcing function
polynomials in the coefficient matrices, The differential
transition matrix of the two Canonical forms display explic-
itly the coefficients of the characteristic function and are
transposes of one another, The coefficients of the forcing
function appear in the input matrix in the Rational Canonical
Form while these coefficients appear in the ocutput matrix in
the Phase<Variable Canonical Form.
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- = - “ = - .-
a b
i,‘ G U G e o o 0 "a_D x1 a—U
n n
a b
1 1
% TD B o o o O sms X —_—
2 a 2 a_
L] D L ] [ ] o o [ ]
= 5 Eﬁ v (2-16)
an
o ° (] L] ° ° U
o ° L ] U ° [ ] L]
® l'l-1
X | (RPN E R | S = X g
n
- e - o - - - J
Yy = [D B e e B 1] X1 » [U] v
%2
? (2-17)
Xn

If the input matrix is normalized with respect to the bm/an
entry in the input matrix, which is equivalent to normaliz-
ing the system forcing function with respect to the highest
order terms, the result is as shown in the following state

model,
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e i B P T -b 4
a
o 0 0
b 4 B D D o @ o G ST— X
1 a, 1 E;
g 8y By
;( D B ° . '] u S X
2 a_ 2 E;
° 0 ° ° ° ° °
° ° ° ° ° ° bm °
= + = v (2-18)
° ° ° ° ° ° " 1
° ° ° ° ° ° 0
° ° ° 0 ° » °
a
° n-1
X0 Bow e w o BT = a X 0
ks - e = I - = -

The scalar multiplying the input matrix is the gain of the
system which is the result of normalizing both the numerator
and the denominator polynomials of the system's transfer
function,

The power of the state-variable techniques lies in the
analysis of more complex systems, e.,g, systems whose mathe=-
matical model is simultaneous, coupled, differential equa-
tions, In order to simplify the presentation of state=
variable techniques it is necessary to use examples of a
rather simple nature, even though these examples may be

handled equally well by classical system analysis techniqguss,
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Smith's Method

Smith's method for constructing the frequency response
spectrum of a dynamic system involves the use of templets
(3) and can be applied to state models, The method devel-
oped from Bode's Theorems for constructing dynamic system
frequency spectrums can also be performed by use of templets,
However, the templets which Smith developed do not require
that the numerator and denominator be factored to find the
corner frequencies and asymptotes as do those based on Bode's
Theorems, The basic technique for Smith's method involves
the use of a series of templets to construct the frequency
spectrum from the unfactored system transfer function,
Smith's method is applicable to a rational algebraic function
of a complex variable as well as to transfer functions when
the transform variable 8 is replaced by jW.

In classical control analysis the denominator of the
transfer function is the characteristic equation and the
numerator is the forcing function, The state model used
with Smith's method for constructing the frequency spectrum
is the Rational Canonical Form, In this form the coeffi-
cients of both the characteristic polynomial or characterise-
tic equation and the forcing function are displayed explic-
itly.

Initially Smith's method deals with the separate poly=-
nomials from the term-pair standpoint, A term-pair is the
grouping of the real and imaginary parts of the particular

polynomial under investigationm into pairs of successive
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terms, The information required by Smith's method can be
obtained from the entries in the Rational Canonical Form of

the differential transition matrix,

a
UU....U-a—U ---wu
n
a
10..-.0";"" ---(U1
n
a1 . - .
ﬂ: (2-19)
a
Ne1 N=1
000.001—an —-—e ()

The elements in the right<hand column are the negative of
the coefficients of the characteristic polynomial with the
coefficient of the highest power normalized, To construct
the lag frequency spectrum from the state model employing
Smith's method the real and imaginary part of the character=-
istic and forcing function polynomials are written in the

following form,

0 6

a a, ag
H(UJ)C w e -‘E:CU + —;cu -'EEOJ

+ oe o (2—20)

s
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w

H(w), = :—1w--:—:-"-w3 + :—Ews-g?-w"’ $oeve (2224
n n n n
whers
R(w), = real part of the characteristic polynomial
when written as a complex function,
I(OJ)C = imaginary part of the characteristic polyno=-

mial when written as a complex function.
w = the driving frequency.

Each of the pairs of terms in the parentheses is a term-pair,
Noting that each of the separate terms represent linear func-
tions of W when the logarithm of each terms is employed,
Smith constructed a series of templets he calls term-pair
contours or term-pair templets, Illustrations of these tem-
plets are shown in Figures 2-1 and 2-2, With these templets
it is possible to construct separate spectrums for each terme
pair included in the real and imaginary part of the charac-
teristic polynomial, This construction is done by placing
the appropriate term-pair templet at the intersection of the
two linear representations for the proper term-pair and drauw-
ing the contour dictated by the coefficients involved. This
procedure is repeated for all term-pairs in both the raai
and imaginary parts resulting in the term-pair spectrums,

The next step in the construction of the frequency
response spectrum is to obtain the spectrum for the real
part and also the spectrum for the imaginary part by adding

the separate composite contours, This step is accomplished
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Figure 2-1, Contours of Term-pair Templets
Representing LngaEithmic
Plots of za £ bw*“, Shown
Oriented for a = b = 1,
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Figure 2-2, Contours of Term-pair Templets
Representing Logarjithmic
Plots of 2aw Zbw”;, Shown
Oriented for a = b = 1,
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by using another templet which is shown in Figure 2-3, With
this templet it is possible toc either obtain the sum or dif-
ference of two term-pair contours, The summing of term-pairs
is accomplished by placing the templet shouwn in Figure 2-3
over the contours with the reference point on the lower con-
tour at the value of the driving frequency W4 at which the
sum is to be found., The upper contour is set on curve a at
W1 and the sum is read at the intersection of curve b and
the driving frequency, This process is continued until all
the contours for the term-pairs of the real part of the
characteristic polynomial are summed, Finally, the term-pair
contours for the imaginary part of the characteristic poly-
nomial are summed, The results of these operations are two
spectrum distributions, one for the real part and one for

the imaginary part of the characteristic polynomial.

The next step is to obtain the amplitude and phase shift
from these two spectrum distributions, This is accomplished
by use of another templet which is shown in Figure 2«4, This
templet is used in a similar manner as the previous templst
shown in Figure 2-3, The lower of the real or imaginary
spectrum distribution is placed at the reference point in
Figure 2-4a at various driving frequencies and the upper
spectrum distribution is placed under the curve e at the
corresponding frequencies, At each frequency the amplitude
is read under curve f, Figure 2-4b is used to obtain ﬁha
phase angle in a similar manner, The sum total of all this

manipulation is the lag frequency response spectrum for the system,
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To obtain the lead frequency response spectrum the
coefficients of the forcing function appearing explicitly in
the input matrix of the Rational Canonical state model are
employed in exactly the same manner as the coefficients of
the characteristic polynomial, Once the lead and lag fre-
quency response spectrums have been constructed then the
total frequency response spectrum is obtained, A mere point
by point graphical subtraction of the lag spectrum from the
lead spectrum can be employed to obtain the total spectrum
since both are logarithmic functions. Also a similar point
by point graphical subtraction can be used to obtain the
phase shift,

Smith's method will provide the frequency response spec=
trum for a system; however, as the order of the system
increases the number of templets necessary also increases,
Specifically, it is necessary to have (n=1)/2 templets for
an nth order system, Also, the tamplafs employed are fash-
ioned to one specific grid of logarithm paper, If frequency
response data is to be constructed on logarithm paper of a
different scale another set of templets must be used.

Smith's method is based directly on the information
displayed explicitly in the Rational Canonical state model;
however, the complexity and restrictions imposed deem prac-

tical utilization nearly impossible,

Ausman's Method

Ausman's method for the construction of a dynamic sys-

tem's frequsncy response spectrum results primarily in the
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frequency versus amplitude response spectrum. For most
practical applications the frequency versus amplitude
response spectrum is a graphic description of the transmis-
sibility or filter characteristics of the system, This fact
is characteristic of time invariant linear systems, The
time invariant linear filter will alter the amplitude and
the phase relationships of the imput signal, but the charac=-
teristic Frequencies'of the input as seen at the output are
identical to those seen at the input, Ausman's method pre=
sents a technique for censtructing the transmissibility or
gaim plot of a dynamic system without factoring the polyno-
mials involved,

_ Since Ausman's method does not require that the charac-
'teristic polynomial or the forcing function polynomial be
factored the Rational Canonical state model will provide
sufficient information for direct application, This conclu=
sion is substantiated by the illustrations which follow.

The only value which the Rational Canonical state model does
net display explicitly is the coeF?icient associated with
the highest derivativs, The coefficients of the character-
istic polynomial appearing in the differemtial transition
matrix of Rétional Canonlcal state models reflect mormaliza-
tion with respect to the cdeFFicient of the highest deriva-
tive, The coefficient of the highest derivative is, there-
fore, implicit within the differential transition matrix as
well as the input matrix, The general form of linear time

invariant system's mathematical model is shown in Equation (2-22).
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2} fe1 ,
an-s-Ld n + Elpu.]d . P oo * 81===Xd L aUy =
dt T dt dt
Mo
dy” dy” dv
b =%e + b + 000 + by— 4 b.v (2-22)
m g4 m m~1dtmwﬁ 1dt 0

The Rational Canonical state model for the system represented
dynamically by Equation (2-22) is shown im Equations (2-17)
and (2-18),

Application of Ausman's method im conjunction with the
Rational Canonical Form of the state model is demonstrated
by the three illustrations bslow, The first two illustra-
tions of system models consist of the two fundamental types
of stable modes, The fimal illustration deals with a much
more general dynamic system analogous to most physically
realizable systems,

This first illustration involves a simple second gorder
system which has dynamics characterized by two aperiocdic
(overdamped) modes, The general mathematical model feor this
type of system is shown below,

a¥ + a y + agy = bgu (2=23)
The stats-variable model written in Rational Canonical Form

for this system is

i ~ a F
}fol U ““‘5; Xm bo 1
= o P 4 v (2=24)
a
% Y- X 2 | g
2 a, 2
= =7 =3 (= E & = L
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Ausman's method For the construction of system trans-
missibility spectrums works with separate combinations of
all the individual terms in both the numerator and denomina-
tor of system transfer fumctions, The Rationmal Canonical
Form of the state model displays the transfer function coef-
ficients explicitly. Therefore, it is possibls to construct
system freguency response spectrums by using state models in
conjunction with Ausman's Method, The conmstructiom of the
frequency spectrum by Ausman's Method involves forming the
ratio of successive numerator terms with the denominator
terms of system tranmsfer functions, The coefficients dis-
played in the Rational Canonical Form of the state medel
must, therefore, be multiplied by appropriate powers of the
driving frequency W so that when combinations of terms are
made from state model entries, the result will be the sams
as thoss formed using the terms from the system's transfer
function, The powars of the drivimg frequency () used are
equal to the subscript of the coefficient eatry im the
Rational Canonical Form of the state model, e.g. aU/an must
be multiplied by aaﬂ, am/an must be multiplied by w™, etc.

For the state model shown in Equations (2-24) and
(2-25). the transmissibility characteristics are obtained by
multiplying the entries in the differential tramsition

.coefficient matrix by the appropriate power of W and then
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dividing each of these into the scalar gain b0/82° Each of
the quotients is an asymptote to system's transmissibility
spectrum, This procedure produces all the asymptotes except
the transmission asymptote at high frequencies, The high
frequency asymptote is the gaim scalar dividsd by (W raised
to a power equal to the highest order derivative in the sys=
tem maodel in differential form, This exact procedure can be
used to construct transmissibility spectrums for nth order
systems, UWhen the forcing fumction polynomial contains many
terms the dominance of each term is established by forming
the ratio of successive terms, The ratios establish the
freguenciss where dominance changes from one fercimg function
term to the nsxt, The application of the combinatien of
Ausman's Method with the system state model shown in Egqua-
tions (2-24) and (2-25) is shouwn in the following paragraphs,
When the driving frequency () becomes very small, the
coefficient ag predominates over the other twe coafficients,

The transmissibility takes the value shown below, -

b
init 5, o,
imi ~ . _0 -
Prpunta T = = = = (2-26)
EQQ)U o
8

Equation (2-26) is represented by the dashed horizenmtal line
in Figure 2-5 labeled "by/ay". Similarly, at wery high
driving frequencies the cosfficient a, predominates over the
other terms, The tramsmissibility.at this frequency is

shown in Equation (2-27).
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Figure 2-5, Simple Second Order System
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- b
Limit - 0
W T = T (2-21)
azu)
Equation (2-27) is represented by the dashed line of slope

minus 2 (40 db per decade) labeled “bU/aza)Q“.

Assuming for the purpose of this illustration that the
dynamic system has two aperiodic modes, the imtermediate
range of driving freguencies is dominated by the coefficient
aq. For this particular situation the transmissibility

within this ramge of driving frequencies is

.t
a b
. 2 _ .0
T = = e (2-28)
1.1 1
=W
2

Equation (2-28) is represented in Figure 2-5 by the dashed
line labeled ”bﬂ/a1ag" of slope 1 (20 db per decade).

Uith the three functions sketched on the graph as shoun
in Figure 2=5 it is apparent which coefficient predominates
at any particular driving fregquency, It also becomes appar-
ent that at the drivimg freguencies where the dashed lines
cross, the transmissibility has two equally weighted repre-
sentations, For example, where bﬂ/aﬁ Crosses ba/a1u) the
value of a, is exactly equal in magnitude to'a1aJ, but ay is
80 degrees different im phasinmg which makes ag and aﬂcu aoual
to one another and the tranémissibility is approximately |

b
T = 0

ag = a.W :
0 1
Yog® + (2,w)?

it

(2=29)

=
2

1 B
g 42 21w §Z
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Similarly at the crossimg of bU/BWUJ and bﬂ/aQO)Zv
fajw = aw? * : ;0 il
V(2 W) + (a,0%)
i = "o : (2-30)

aqW N7 a2w2 V’T

The two points on the transmissibility curve and the
three lines drawm previously permit the frequemcy response
spectrum to be completely defined as shown by the solid line
in Figure 2-5,

The second illustration.inwolves a -dynamic system whose
mathematical model is.the same as that for.'the previous
illustration except that its characteristic mode is an under-
damped oscillation, The application of Ausman's method to
this type of system follows the exact proﬁedura as that for
the system with aperiodic modes, The exception to this first
procedure is when the intermediate frequenmcy range is con-
sidered,

Té begin with, the twoc dashed lines bD/aU and ba/azu.)2
are drawn as shown in Figure 2-6 for the large and small
driving frequency ranges, Now when the intermediate rangs
dominancy is evaluated by drawing the dashed line labeled
“bﬂ/a1co“ it is found that this line is everywhers above at
least one of the other tuwo (bg/a' and bg/aQQ)Z),, For this
situation the a, coefficient mever dominates over a range of
driving frequencies but rather at the driving frequency where
bo/a0 and bﬁ/aZUJZ Cross bo/a1uJ dominates, At this particu-

lar driving frequency bU/aD is egual in magnitwde to
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2 . . . 2
bD/QQF) , but bﬂ/aﬂ is opposite in sign to bU/aQQ) which
indicates a phase shift of 180 degrees, Therefore, bD/aG

and bD/azw2 cancel leawing

_ 0
Tw = w. = o (2-31)

where

W is the natural undamped frequency of the system,
Equation (2-31) is represented by the dashed line labeled
‘ “bw@qau“ shown in Flgure 2-6,

Two additional peints which aid in defining the fre-
quency response spectrum for highly underdamped systems ares

2 crosses the transmissie

1) the point where the lins bD/aza)
bility curve which is approximately 2b0/aB and 2) the point
where the bn/aU line crosses the transmissibility curve which
is at a fresquency of ﬁﬁﬁiETE"o

The lines and points which were calculated in this
example are all shown in Figure 2-=6, With this information
the frequency response spectrum for an underdamped second
order dymamic system is essentlially completsly defined., This
frequency response spectrum is shown by the solid line in
Figure 25,

The third illustration is the two degres-of-<freedom
mechanical system appearing schematically in the upper right-
hand corner of Figure 2-7, The mathematical model for this
system 1s two simultanmeous limear coupled ordimary differen=
tial equations,

my, « (¥4 = §2)D ¢ Kqyq = Kgv (2=-32)
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(2-33)

The state-variable model written in Rational Canonical

\

Form for this system considersd as a single-input single-

output system is

= T T 7
. kK4
X1 000 GW—' X1
. D(Ky + k)
X2 100 i) 2| mK,
. = (mK.n + ki) N
X3 0 1 0 = mm XS
° D m + M
X, 001 a =5 Xy
- ! L o e cJ
yq = [0 00 1] X4
X2
X3
*4
n
where

¥4 is the single-putput

1
2] K 1
D('K1 + k)
mR1
v (2-34)
o
0
L -
(2-35)

A similar state model can be writtemn for this system consids

ered as a single-input single-gutput with Yo used as the oute

put,

Construction of the frequency respense spectrum for a

general system as illustrated here invglves the determination

of the frequency bands over which the separate coefficients

dominate,

This is done by calculatirg the boundary
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frequencies where domimancy changes from one term to ansther,

Specifically, the band bgundaries are

kK1
mK1 kK1

Wi = pwFET < DR, F K) (2-36)
mK1

and
D(K1 + k)

m21 D(K.B + k)

002 = T = mR1 (2”37)

These boundary frequencies which separate the three bands of
dominance are shownm in Figure 2-7 as vertical dashed lines,
Also shouwn, are the domimating input matrix elements desig-
éating the freguency band dominated by‘each.

Once thsse bapds are defimed the constructiom of the
tramsmissibility‘curve can begin, Starting at the low fre-

guency end the transmissibility is representsd approximately

by
ka K1
Limit . o PKq M kKo (2-38)
W-—=g ' ° EK,IA - kR1 B
mi
Continuing across the first frequency band
kK1 K1
. mE1 m kK,
T 5 sRy=kT— ° O, % K@ (2-39)
B
or.
T & 55 (2-40)
¢ bW
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and fimally in this fregquency band

kK,
: i ki
T - | , (2-41)
Ry + kM (mkq + ki)W ?
L
or
roy ko (2-42)
nw?

g
|-

Equations (2-38), (2-40), and (2;42) are shown in Figure 2«7
by dashed lines and are labeled apﬁropriately. With these
lines and applicable points calculated in a similar fashion
as that shown in the previows two illustrations, the trans-
missibility curve is defined sufficiently within the first
dominant band,

Now the second dominant imput matrix slement is used te
calculate the tramsmissibility in the next deominant freguenecy
band, The next three linmes shown in Figure 2-7 ares

D(K1 +.k) mK 4

N L D(K, + k)
LR 1 Puey < ) il C T PRe iy P (2-43)
=N w
or
e D |
T = ‘m“a,' (2°44)
Continuing on through this frequency band
D(K, + k)
‘ W K, + k
T & - ,mﬁw g i (2-45)

(m + m)QQZ
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or

(2-46)

-
oife

and

(2-47)

-
offo

(zky

Dk

—— -~ (2-48)
mM W

o |
o“o

Again Equations (2-44), (2-46), and (2-48) are shouwn as
dashed lines in Figure 2«7,

The fimal frequency band is the high fregquency range,
In this range the dominant coefficients are merely those
which multiply the input matrix or the gain scalar,

Limit  _ mkw? _ &

= = , (2-49)
W =00 KT Mw?

This equation is‘also shown in Figure 2-7 and 1abelgd aAppro=
priately, |

By using all the limes constructed as shown and also
using the principles illustrated inm the first two illustra-
tiagns the frequency response spectrum fer this system can be
effectively constructed., The general principles demonstrated
here in conjunction with state«~variable models in Raticnal
Cangnical Form are readily adaptable to the mmét general
ease and, thus, provide a powerful toel for both analysis
and sygthesis since explicit information is wvtilized

throughout,
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On the whole little was mentioned about the phase shift
associated with the frequency response spectrums, This
places no hardship on the technidue_since once the amplitude
spectrum is obtained the phase shift can be obtained (15).
For example, lines whose slopes are plus 20 decibels per
decade (+1) correspond to plus 90 degree phase shift, lines
of zero slope correspond to zero phase shift, lines whose
slopes are minus 20 decibels per decade (-1) correSpond'to
minus 90 degrees phase shift, lines of slope minus 40 deci-
bels per decade (-2) correspond to minus 180 phase shift,

etc.
Summary

None of the procedures deécribed in this chapter appear
in literature in the manner specified herein, All the sepa-
rate articles used have their own implication aside from
that for which they were employed here using state models,
Therefore, the author has contributed the mechanisms by which
each of the methods presented im the articles could be used
with state models, Soms of the methods have an obvious
application in relationship to the state-variable models;
however, others, such as Smith's and Ausman's method, did
not have obvious implications toward a combination with state
models, Tﬁeygenefal use of the state model in Rational
Canonical Form in conjunction with Ausman's techniques shouws
that a very general set of rules exists for the construction

of frequency response spectrums from state-variable models,
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These rules are outlined by the third illustration in the
"Ausman's Method" sub-section of this chapter, However,
these rules are quite complex and involved which require
that the user be not only very familiar with frequency
response techniques but also very familiar with state space
modeling,

The development of the “Fundamental State-Variable
Frequency Matrix" presénted in the Following chapter contains
specific rules which dictate the important characteristics
of the frequency response for physical systems, This par-
ticular Cancgnical Form of the state-variables model presents
the basic characteristics of system freguency response spec-
trums explicitly inm the matrices genmerated from the
"Fundamental State-Variable Freguency Matrix", This'explicit
matrix display of a system's tramsmissibility or Frequency
response spectrum removes the requirement that the user be
very familiar with frequency response techniques from clase

sical comtfol theory.,



CHAPTER III
MATRIX DISPLAY OF SYSTEM FREQUENCY SPECTRUMS

The previocus chapter presents several ways by which the
freguency response spectrums for dynamic systems can be
cbtained through use of different forms of the system's
state-variable model, The particular forms of the state
model wtilized most frequently were the Jordam Camonical Form
and the Rational Canonmical Form, Since these state model
forms were developed to display particular characteristics
.other than those of the system frequency response, all of
the methods developed thus far assume rather extemsive knowl-
edge of system analysis employing fregquency response proce-
dures, The result of the development of the "Fundamental
State-Variable Frequency Matrix"” contained in this chapter
is an explicit display of system frequency response spectrum
chafacteristics. With these spectrum characteristics the
entire response spectrum can»ba drawn by merely examining
the state~variable model in the Frequency Canonical Form, A
summary of the analeis techniques for the use of thé

Frequency Cancnical Form is presented inm Chapter VI,

43
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General Theory of -the Fundamental

State~Variable Frequency Matrix

The basic concept of the Fundamsntal State-Variable
Frequency Matrix is the explicit disclosure of the frequency
transmissibility possessed by all physical systems, Sincs
it is not possible to display the entire transmission spec=
trum in a finite dimensional matrix, the entries in the
Fundamental State-Variable Frequency Matrix consist of two
fundamental frequency transmission or gain characteristics,
These two characteristics ares 1) transmission bandwidth or
frequency boundaries and 2) transmission spectrum asymptote
functions, The transmission bandwidth boundaries establish
the band-pass widths in which particular transmission-
spectrum asymptote functions are applicable, The
transmission-spectrum asymptote functions determine three
characteristics of the éystem freguency response épectrum
within a specific bandwidth range, These three characteris-
tics ares 1) system gain at specific transmission ﬁréquena
cies, 2) system characteristic mode frequencies, and
3) spectrum asymptotes,

The spectrum characteristics as they appear as entries
in the Fundamental State-=Variable Frequency Matrix can be
visualized by consideration of the’individual functiomal
contributions of each of the coefficients in the ordimary
linear constant coefficient model im differential form,

From this standpoint it is possible to corsider the gensral
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medal form for either a lead or a lag mode, This general

modal form for constant coefficients will be as shown below

. b sl AT o
r. . = u--z-a- E -78- b - 4 ag (3=1)

1,7
where
ri,j = the general modes, which always appear as
complex pairs if the mode is escillatory,
a, b, and ¢ = mode describing integers and are positive
for stable modes which is the only type
considered.

With this general modal description the total lead and
lag modal spectrum can be visualized by superpesition in the
time domain, These spectrums are describable by the coeffi-
cients associated with the various derivatives in the char-
acteristic and forcing functions of the system model. The
model coefficients which describe these spectrums can be
seen by considering the general form of timeginvariant linear
ordinary differential equations,

n Ne 1

d d d
a 2Ll + a 4 c00 + A Y 4 a y =
R R ”°1dtn“ 1dt 0

b dMy m=1, dv
m

o + bm=1;;ﬁ:T + oo * b1:€ + by (3=2)

The coefficients of the forcing funmction establish the trans-
mission bandwidth boundaries by forming the ratio of succes-
sive coefficients starting with the zeroth term and progres-
sing to the higher order terms, The proof that these raties
do establish the band-pass boundaries is presented later in

this chapter, For example, the band-pass boundaries are
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by, by B 1
(-'L)U = 'E? . ﬁ..!)_,l = FE 9 o0oce 9 (Jng‘l = _'5'— (3"’3)

m
The coefficients of the homogeneous function combined with
the coefficients of the forcing function are the transmission
asymptote functions, The particular combination of coeffie
cients is determined by the bandwidth under consideration,

- These functions are formed, as will be shown later, are

Bandwidth 0 to @ g

b b b
2, 2, A, st (3-42)

Bandwidth QJU to Q)1

b b b

LA x5 etc, (3-4b)
aq aza) aau)

This generalization can be continued until the entire

response spectrum is described, As will be demonstrated in
the development of the frequency response spectrum from the
Fundamental State-Variable Frequemncy Matrix, only a few spe=-
cific transmission asymptote functions generated with réspect

to any specific bandwidth are directly 'applicable,
The Fundamental State-Variable Frequency Matrix

The discussion presented in the previgus sectionm points
cut the type of elgments which are regquired to display system
frequency response spactrums from system mathematical models,
In a finite matrix it is not possible to display all the
elements necessary to completely characterize a particular

system's spectrum, However, by examining the general system
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model shown in Equation (3-2) it will be shown later that a
transformation of the independent variable will introducs
the necessary freguency variable into a finite matrix array
so that the characteristics of the system's freguency spec=-
trum are displayed explicitly, The matrix array which dis-
plays this explicit information is the Fundamental State-
Variabia Frequency Matrix, Since a system's state model is
not wunique it is possible to obtaim the Frequency Canmonical
Form, which contains the Fundamental State-=Variable Freguency
Matrix, from other forms of the state model, This is donme
5y use of  the Frequency Transform Matrix, The followimg two
sections show the particular mechanics'involved in obtaining
the Fundamental State<Variable Frequency Matrix from either
the differential form or a state model form of a linear time

invariant system mathematical model,

Frequency Canonical Form From Original System Models

The gensral form of time invariant linear mathematical
models is shown in Equation (3-2), The procedure by which |
the state model Frequency Cancnical Form is developsd is
initiated by ”?reqéancy=transfwrming" the independent Qariaa
ble, This transformation is t = "T’/w,1 Application of this
transformation to the general time invariant model results

in Equation (3=5),

1This "frequency-transforming"” is not to be confused
with an gperational transformation where the operation of
differentiation is represented by an operator nor is it to
be confused with the substitution of jw for s.
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n N1 !
nd 'y . n=1d ; Cdy ~
anw mnx + an_.iw : ﬁ# oeo  F a,iw«l * agy =

dr” dT
m me
md v m-1d U} dv
b () == + b__ ) + vee + bW 4 b v (3-5)
m g™ m=1 dTm-’? 1 dT 0

This frequency transformed model can be solved for the

zeroth order terms which produces

n m+]

. N nd 'y m+1d
Bgv = 3gy = 2w a7 *oeoo + p qW dTm+%
m m_ ) N
s la W™=t - b "Ll 4 L 4 e o bwdh] (3-6)
' gt dT dr a7

The state-variable diagram derived from Equation (3=6) is
shown in Figure 3-1, The state-variable model in the
Frequency Camonical Form can be derived from this diagram by
vconsidering'tne output of each integrator as a state=
variable, Hence, each of the inputs to the integrators
define a first order differential equation, This system of
first order differential equations writtem in matrix form is

as shoun belew

- - . o -
z% 0 0. ¢ o 0 ag z,
z% anaf\D 0 z,
. 0 o 0 o
angjn z? = ° o 0 z.
L z! 4 . o 0 an_z&un°2 Zo
‘ LZ;' 0 ... 0awa w2
o L d L .



—_—Y - y = +
n n
anw an(.L) dT

m m Wmoom
. 8, W dy-bmw dv‘+

n m n m
an(.l.-) , s B an,w daT

Figues 3-1, State Diagram for Ffequenéy'cananical Form Derived From
' the State Diagram for the Rational Canonical Form

6%
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oy m
+ [bu biw o bw” 0. 0f v (3-7)

y=[ﬂ....0=1] 21 'l'[ﬂ]\i

o (3-8)

This form of the state-variable model is the Frequency
Canonical Form and the differemntial transitiom matrix is the
Fundamental State-Variable Freguency Matrix., Rewriting

Equations (3=7) and (3-8) in general state-variable form

produces
a,w z' = Fz+ [ v (3-9)
y = T z (3=18)
whers |
z = the Freguency Canonical Form state variables,

zV = dz/dT, differential of the Freguency Canonical

Form state-variables with respect to 7/¢).

H

Fundamental State=Variable Frequency Matrix,

Freguency Canonical Form input Matrix,

< lhj I™
i

1

input,

3

‘output,

5 <
4]

Frequency Canonical Form output matrix,
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Frequency Canonical Form Derived Frem State Models

The Frequency Canonical Form and accompanying Fundamen-
tal State-Variable FFequency Matrix can be derived from other
forms of ths state mﬁdels by linear transformations, Spg=
cifically, the Frequency Canonical Form is derived very
readiiy by transformation of the state model from the
Rational Canonical Form, The Ratiomal Canonical Form is
transformed into the Frequency Canonical Form by means of

the transformation matrix §2 shown in Eguation (3-11),

cats L

(L)n_1 U U ‘o ° 0

0 w™20.. 0

. 0 2] e o o o

£ = (3-11)
-] L3 o U

s 0o L, ., 0 w"
| 4

The inverse of this transformation matrix is

«w 6 6. . 0
0 wlo.., O
B 0 o o . .
' . L (3=12)
w E- ] -] o o
o o . 0
n

0 0 . . W

o o

The reduced state model in Rational Carionical Form is

X + B v (3=13)

I

o
x =

o

X (3-14)

y =
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where R is the differential transition matrix in Rational

Canonical Form as shown below

o -

a
uaqna?[i
5]
1000 o
R = |oO,. . . (3=15)

° O'G °

lT—1
0. o 1 o=

N

and B is the input matrix the transpose of which is shouwn

below

b b
8" = {2, .L0.0 (3-16)
n n

By forming the transformation x = g& z, the transformation
for X = w £§ z', These transformations can be substituted
directly into Equations (3-13) and (3-14) producing

wi z' = RLz+8v (3<17)

ey werems e

y = ¢ 8z (3-18)

oo coan

Premultiplying Equation (3-17) by 1/, SL7' results in

1 -1 y 1 =
| 4 oy s P =
20 = MRz 07 By (3-19)
It is ssen from Eguation (3-9) that
1of = 0RO
a W w
n
T 1 q-1
sy = p——— B

In genseral, if it is possible to tramsform the state

model for a system into the Raticnal Camcnical Form, then
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this transformation can be combined with the transform
matrix él to obtain the Frequency Canonical Form, For
models with distinct eigenvalues the differential transition
matrix A can be transformed into the Jordan Canonical Form
by using the Modal Matrix M (6 and 9), The Rational
Canonical Form of the state model can also be transformed
into the Jordan Canonical Form by some transformation matrix
N (9 and 10). The combination of the M and N matrices form
a matrix which will transform A into the Rational Canonical
Form R,

R = nmtamn! = plap (3-20)

Spectrum Band-pass Matric552

The Fundamental State-Variable Frequency Matrix is uti-
lized to calculate the transmission asymptote functions for
each of the bandwidths displayed in the input matrix., These
bandwidths are determined by dividing the Frequency Canonical
Form by the successive entrises in the input matrix. Each of
the state models formed by this division consists of a
Spectrum Band-pass Matrix and an input matrix containing the
bandwidth boundary applicable to the accompanying Spectrum

Band-pass Matrix,

2Spactrum Band-pass Matrices are matrices derived from
the Fundamental State-~Variable Frequency Matrix which display
frequency spectrum characteristics within a specific band-
width frequency range,
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In general, bandwidth boundaries are determined by
examining the generated input matrix and equating the unity
entry to the entry immediately following., The result of
equating these two input matrix entries is an equation
explicit in W, Solving this equation for () produces the
upper boundary of the frequency range for which the associ-
ated Spectrum Band-pass Matrix has been formed., The partic=
ular transmission asymptote function entries applicable
within any two bandwidth boundaries are found by examining
the Spectrum Band-pass Matrices for the frequency bands
before and after the one under immediate consideration., One
of the asymptote functions in the previous Spectrum Band-pass
Matrix will be equal to an entry in the particular matrix
under investigation at the bandwidth boundary frequency.

This equality of successive Spectrum Band-pass Matrix
entries determines the first entry in the matrix which is
applicable in this frequency range, A similar equality as
that discussed above alsoc exists between an entry in the
Spectrum Band-pass Matrix describing the spectrum in the
bandwidth following that under investigation and an entry in
the presently considered Band-pass Matrix, Only this time
the frequency where the two functions are equal is the next
bandwidth boundary frequency. This process determines the
last functional entry in the Band-pass Matrix considered
which is applicable in this particular frequency bandwidth,

This procedure can be conducted for the entire frequency
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range governed by the physical characteristics displayed in
the mathematical state model,
In general, the frequency response spectrum for a system

can be determined from the following matrices

U U [ ] [ ] [ ] G ?ru

n 0
anw

_r— U . e @ ° °
0

0 . . N

=F = : 3 i : (3-21)
0 -
o o L] n L] n-1
" 0 . » bu bu
1T bjw By

The transmission bandwidth boundary for the Spectrum Band-
pass Matrix shown in Equation (3-22) is determined from

b10J bg
_EE_ -l XA QJU = E; (3-23)

The applicable entries in the matrix in Equation (3-21)
include all the entries up to and including the entry which
is equal to an entry in the 1/b1uJ F matrix at the frequency

W The entry in the 1/b1uJ F matrix applicable in this

uﬂ
equality is the first asymptote function applicable in the
next bandwidth, The frequency response spectrum in the kth

bandwidth is shown in Equation (3-24).
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a
0 0... O o
n bka)'
an(,u"= 0
B‘;’(:’;E‘ e o o °
0 ° ° °
1
k"F-' = ° ° ° ° (3"'24)
bk“)
° L ] L] 2
n n=1
0 aw an_1¢u-
[ [ L] o b wk b wk
e k ) k -
- k+1 m
k—— - k ° k ° k ¢ ‘
bkau bkCU bkou bka)
| ;

The transmissicn banduwidth boundary for Equation (3-24) is
W, = "k (3-26)
k7 Beat
Consider as an example of the formation ef the Spectrum
Band-=pass Métrices the third order system described in

Freguency Canonical Form as follows

B '“ B 1r 7 ~ T
z} 0 0 ag . Z4 bB
3 3 ) ”~
a W 1z} a W 0 a2,W z,| + | bW v (3-27)
3 2
zé 0 azu) a2u) =z 0
o -l e A > . bew ol
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(3-28)

By .dividing the Frequency Canonical Form input matrix by I:lu

the transmission bandwidth boundary Wy is calculated,

As

will be shown later this is done by equating the unity entry

which occurs to the next entry as shown below

1, v

W =

b1(_d

(3-29a)

(3-29b)

The Spectrum Band-pass Matrices formed from the Fundamental

State-Variable Frequency Matrix are

a

0
0
By
a1w
i =
a 3 a ([1)2
W 285
by Pg
.l
510.)
0 ;131
o« I
Az W azw
byw bW

(3-30)

(3=31)

When w = by/by is substituted into both of Equations (3-24)

and (3-25) the entry a,w /by in Equation (3-24) is equal to
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the a1aJ/h1aJ entry in Equation (3-25), These two transmis-
sion asymptote Functinné are equal at the transmission band-
width boundary W ge At this frequency the dominance from §0
to 5S4 occurs, Therefore, the first part of the frequency
spectrum is characterized by the entries au/b0 and a.lo.)/bB
in the §D Spectrum Band-pass Matrix; and the second part of
the spectrum is characterized by the entries a1aj/b1cu,
azwz/b.lw, and a3w3/h1w in the S, Spectrum Band-pass
Matrix,

The actual construction of the frequency response spec-
trum is performed by expressing the transmission asymptote
functions in decibels, For use in the method described above
involving the Fundamental State-Variable Frequency Matrix
the transmission asymptote functions expressed in decibels

are defined as shown below

Transmission ElaJL
Asymptote Functions = ~20L094g mdb (3-32)
k

These functions are straight lines when plotted on semi-log
graph paper,

b
TAF = 20Log g == + (1-k)20Log, W (3-33)
k

These straight lines determine the three characteristics of
the frequency response spectrum discussed on page 44, The
gains, natural frequencies, and asymptotes of the spectrum
are displayed by these functionally straight lines. The
actual utilization of these lines is illustrated in the next

section where specific illustrations are used to develop the
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mathematics which substantiates the particular functional
significance of the transmission asymptote functions and the

transmission bandwidth boundaries,
Frequency Spectrum Data From Model Coefficients

Frequency response spectrums for physical systems repre-
sent steady-state system performance characteristics., For
linear time invariant models the transmissibility spectrum
is a measure of the amplification or attenuation in driving
frequency magnitude which occurs at the output of the system,
Since the output frequency is exactly equal to the input fre-
quency the amplitude of the driving frequency and the phasing
of the driving frequency are the only things altered, Conse-
quently, the particular or the steady-state solution of the
mathematical model excited by a sinusoidal input is all that
need be considered for a complete description of system fre-
quency response spectrums,

The steady-state frequency response spectrum for linear
time invariant systems is described mathematically by the
system traééfsr function with the complex transform variable
s replaced by jWw, where (W represents the sinusoidal driving
frequency, The transfer function for a general nth order
system is as follows,

m
i bms ¥ o0e *+ h1s + I:|CI (3-34)

V(s n N1
4+
a s + a,_4S * ees + 84S ag
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If the substitution discussed above is made into Equation
(3-30), the transmissibility of the system is given by

m
_bms * ses W b1s + bg

ra il 7

3-35
£ = = (3-35)

s + s 4 & S + a
n T g %4 0 s = jW

At very low frequencies the transmissibility approaches

an asymptote function of bﬂ/aﬂ’ i.e.

b
bty r ke (3

Similarily at very high driving frequencies the transmissi-
bility approaches an asymptote function of bmﬁJm/anan. The
result of these terms predominating the numerator and the

denominator is

m
Limit % hm(‘J

T (3-37)
()=~ 0D anan

The intermediate range of the spectrum is determined by
the successive use of the ratios of the terms in the numera-
tor with all the terms in the denominator, such as
bkqu/alqu. This determination proceeds by first determine
ing the frequency range of applicability for each of the
numerator terms, The mathematical basis for establishing
these dominant ranges is developed by considering the magni-
tude associated with the steady state part of the time solu-
tion (11), The kth and l1th terms in the numsrator of the

steady state time solution can be written as follows in

Equation (3=38),
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n n
00 + [(-1) anw + 00 + an] kain(lJt
+ [(-1)n"1an_1u)""1 * aae ¥ a1uJ] kaJCusth
n n
o [(-1) aﬂw + cee *+ au] blw SinWwt

= [(-1)n—1an_1wn-1 ¥ wae ¥ 81(0] bleCDSwt L (3-38)

where

k =14+ 1

The boundary of dominance changes between the above
numerator terms, with respect to the transmissibility, occurs
where the magnitudes of the succassivg terms are equal, This
equality between the successive terms in Equation (3-38) can

be written as
1

bkw" = bW (3-39)
Solving Equation (3-39) for  produces
5
w; = B, (3-40)

Equation (3-40) substantiates the use of the coefficients
associated with the forcing function in establishing the
transmission bandwidth boundaries in the frequency response

spectrum,
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The transmission asymptote functions which characterize
the frequency spectrum can be established by considering
Equation (3-31) written in the following way,

b_s™ b
T = A - s se ¥ n D (3-41)
8,8 +...+ ayS+ag a8 4eeet a4S%ag | oo,
If each of the terms of the transmissibility equation shoun

n

above are examined for the intermediate spectrum frequency
range, it is seen that the numerator defines the dominant
term contained in the forcing function, Each of the terms
within the absolute value sign describe the frequency
response spectrum within the defined band-pass range, For
very low frequencies the asymptote function is bu/acl since
all the other terms are very nearly zero at low frequencies,
The difference between the asymptote function and the actual
spectrum is the contribution of all the other terms which
have a finite value everywhere except at zero frequency. For
very high frequency a similar description of the spectrum
with respect to the asymptote function bmujm/anoun can be
visualized as presented in Equations (3-32) and (3-33), As
can be seen by the previous discussion the asymptote funce
tions thus far substantiated are essentially first order
approximations to the actual spectrum, The inclusion of more
and more terms in the general model to describe any particu-
lar range of frequencies will assure closer and closer
approximations to the actual response spectrum, However, the
addition of terms to the first order approximations increases the

complexity of calculation in an exponential manner,
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The substantiation of the intermediate range transmis-
sion asymptotes is best presented by considering the general
system modes (4), These modes are described by the following
example,

By
a,s’ + a,s + a
2 1 0

(3-42)

8 = jl
As has already been established the asymptote functions

associated with the above example for the very low and very
high frequencies are bﬁ/au and bD/aquz, respectively, One
of two things can occur in the intermediate frequency range,
First, the eigenvalues of the characteristic equations can
be distinct, If this is the case then by Bode's Theorems

the asymptotic approximations have corner frequencies of

bl Sl w% )2 LS (3-43a)
s 7a, 3,
and
a a 2 a
1 1 0
OJ2 = L 75-2. L V(?a—é) 8_2 (3”43b)
a a
for (-2%- é_ﬂ_ (3-43c)
2

The slope of the asymptote between these two corner frequen-
cies is a minus 1 or a minus 20 decibels per decade, The
corner frequencies and the asymptotic approximations based on
Bode's Theorems are shown in Figure 3=2, The equation for
this asymptotic approximation in the intermediate frequency
range is shown in Equation (3-44),
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79



65

b
0 2
20Log1u T = 20Log1D Cpe a4, - '\/51 - 4anaz]

-20Log4 W (3-44)
The equation for the asymptote function described herein is

b
20Log,q T = 20Logy, -a-% - 20Log, W (3-45)

As shown by these two equations and also in Figure 3-2, the
slopes of the two asymptotes are a minus one or a minus 20
decibels per decade, The actual equation for the frequency
spectrum in decibels is

by

> (3=46)
- azw + _]82(4.] + ag

20Lag1u T = 20Lng1D

The frequency where the low frequency range asymptote and
the high fregquency range asymptote are equal is W = 1Van7a2
as shown in Figure 3-2, At this frequency the actual fre-

quency spectrum has a transmissibility as shown below,

b a

0 4/2 (3-47)

2IJL|:|g10 T = 20Lng1D E? p

The asymptotic value of the frequency response spectrum from

Bode's Theorems is

20Lo T = 20Lo °0 o2 [a - a,% - 4a_.a (3-48)
$ipg ' %91g ?aua2 ag [ 1 1 8}

The value for the asymptote function at W = 4Vao7a2 is

Hy 4%
20Logqq T = 20Log4q -a-aﬁa (3-49)
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The value of the asymptote function at any other frequency is
not equal to the actual spectrum since, if an increment of
frequency is added to or subtracted from -‘ﬁi;ﬂi;, Equation
(3-49) is no longer equal to Equation (3-47), Therefore, the
asymptote function is tangent to the actual spectrum at this
frequency, As is evident from Figure 3-2 and Equation

(3-49) the Spectrum Asymptote Functions for this type of
system represents an excellent first order approximation,
Several extremely important facts become evident upon close
examination of Figure 3-2, These ares 1) at the corner
frequencies of the asymptote functions the actual spectrum

is 2,4 decibels down, 2) the corner frequencies are not the
characteristic roots - they are W, = aﬂ/a1 and W, = a1/a2,
and 3) the asymptote function is truly tangent to the actual
spectrum at W = QJEETEE. These facts aid in determining
the actual frequency response spectrum much more accurately
without having to factor the characteristic polynomial.

The second case in considering the intermediate fre-
quency range is when the eigenvalues are complex conjugates
or the system is underdamped, For this case the low and high
frequency asymptote functions cross one another at the fre=-

quency shown below,

s Yo
au aZOJ

or

W = 2 (3-50)
55
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At this frequency both terms are equal but bu/a,z,w2 is 180
out of phase with the by/a; term so that the transmissibility

20L 02 3<51)
0gg T = 20Logqq = V5, (3=

At W = '\Iat}?az (the natural undamped frequency) the term

is exactly

bu/a1uJ is completely dominant and this is the only frequency
where the asymptote function bo/a1cu is dominant, Therefore,
the value of this asymptote function at the frequency
QVEETE; is a point on the actual frequency spectrum, These
facts are displayed in Figure 3=3, Curves from which the
frequency of maximum tramsmissibility and a curve from which
the difference in transmissibility can be obtained are con-
tained in Appendix B.

The discussion presented above substantiates the fact
that the spectrum asymptote functions will provide the basic
characteristics of a system's frequency response spectrum
employing the unfactored system model, The models used were
the two basic modal forms which make-up the mathematical
models for all linear time invariant models, The cascading
or superposition of several of the basic models to form a
complex system brings forth a limitation to the use of the
entire range of spectrum asymptote functions, This limita-
tion involves primarily the relative frequency locations of
modes and particularly the determination of the transmissi
bility at the natural undamped modal Frequﬁhcias. When the

system modes are within a decade of one another the value for
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the transmissibility at the natural frequency of oscillatory
modes determined by the appropriate asymptote function falls
below the actual transmissibility characteristic of the sys-
tem, Howsver, the asymptote functions which approximate the
general spectrum characteristics are still applicable, This
situation is illustrated in Figure 3-4, The striking thing
about the asymptote functions is that they will locate the
undamped natural frequencies of the oscillatory modes and,
as can be seen from Figure 3=4, produce a somewhat closer
asymptote approximation than that constructed using Bode's
Theorems, which is also shown in Figure 3-4,

Further illustrative substantiation of the basic prine
ciples involved in the construction of frequency response
spectrums from the Fundamental State~Variable Frequency
Matrix is shown in Figures 3=5, 3-6, and 3=7, Thése figures
contain frequency response spectrums of systems whose char-
acteristic polynomials are of order three,

Figure 3-5 shows the way the transmission asymptote
functions adjust the first order approximation for the spec-
trum when nothing but the damping of an underdamped mode
associated with the system is varied, Also in this figure
the phenomena of mode interaction is esvidenced by the asymp-
tote function which is only dominate at the natural undamped
mode frequency, The transmissibility approximated by these
particular asymptote functions are consistantly lower than

the actual transmissibility,
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Figure 3-6 shows the mannsr in which the asymptote funce-
tion which is dominmate at the natural undamped mode freguency
will approach the actual transmissibility as mode separation
is effected,

Figure 3=7 shows what the response spectrum would look
liks if a transmission bandwidth were coincidental, This
coincidental transmission bandwidth becomes evident when the
Spectrum Band-pass Matrices are calculated, Normally, sug=
cessive Spectrum Band-pass Matrices will have at least one
entry which is equal to an emtry im the previocus Spectrum
Band-pass Matrix and also an entry equal to an entry in the
following Spectrum Band-pass Matrix as discussed before,
Transmissien band-pass boumdaries whicbvare coincident with
the following boundaries are characterized by Spectrum Band-
pass Matrices &hich have no entries eqgual to any entry in
either the previous or following Spectrum Band-pass Matrix,
Appendix L presents a means qf dealing with very lightly
damped third order systems and also a critgrion for the
stability of third and qurth¥0rder systems by the use of
the tramsmission asymptote functions,

In general, the ésymptote ﬁﬁn@tioﬁs.aan be used to
approximate the actual frequency response spectrum of an nth
order system, This is alsoc true for higher order systems
since most stable,fmeil béhaved systems tend to be adequately

repressented by well SEparated\break frequencies (4),
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Summacry

This chaptsr has substantiated that the implicit fre-
quency response characteristics of physical systems can be
displayed explicitly, This was accomplished through the wuse
of the Fundamental State~Variable Frequency Matrix, This
Frequency Cancnical Form eF‘the state-variable model is a
natural additiom to the more familiar Jerdam and Rational
Canonical Forms, As iIs demenstrated, the Freguency Cancnical
Form cam be obtained from system mathematical models dirsctly
or by tramsformation from any form of the state model,

With the state model in the Frequency Canonical Form,
Spectrum Band=-pass Matrices can be calculated, These
Spectrum Band-pass Matrices contain the ftransmission asymp-
tﬁte functions from which the freguency response spectrum is
constructed, Also, during the gemeration of the Spectrum
Band-pass Matrices, the transmission bandwidth boundaries are
determined, The bandwidth boundaries establish the range of
frequencies to which the associated Spectrum Band-=pass Matrix
is applicable,

This chapter alse contains a rigorous mathematical sube-
stantiation bf the entries in the Fundamental State<Variable
Matrix as significant fumctions for characterizimg system
frequency response spectrums without having to factor poly-
nomials, The transmission asymptote functions have been
mathematically shown to be representative first order approx-

imations te the frequency response spectrum, Alse, proef is
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shown that under specified mode separatiom these asymptote
functions provide the exact transmissibility for underdamped
frequencies, Along with ‘this proof the calculation of the
transmission bandwidth boundaries from the emtries in the
Frequency Canonical Form input matrix has been mathematically
substamtiated, With these freguency spectrum characteristics
it is possible te isolate all the characteristic modes of any
time invariamt linear system,

The basis of the construction of system frequency
response spectrums by using the Fundamental State-Variable
Frequency Matrix stems from the implicit characteristics of
the coefficients of the unfactored characteristic anrd forcing
function polynomials, From this basic system model mode
representation the matural interaction of modes places a
practical limitation on the application of the tramsmission
asymptote funmctioms, However, this limitation is only oen the
‘determination of the actual transmissibility at a mode's
natural undamped frequency, This limitation invelves main-
taining modes at a minimum distance of one decade separation,
'In general, the first order approximation for a system's
fregquency response spectrum obtained by using the Fundamental
State-Yariable Frequemcy Matrix is closer to the actual spec-
trum than that obtained by using Bode's Theorems, Not only
will this first order approximatiom obtainad by using the
Freguency Canonical Form be more reprssentative but also the
approximation can be obtained without factorimg any polyno-

mials,



CHAPTER IV

FREQUENCY CANONICAL FORM SYNTHESIS AND
COMPENSATION APPLICATIONS

The use of frequency response spectrum information to
represent the dynamic bshavior of a system is asﬁecially
vpluable in system synthesis and compensation, Many times
the excitation to which a system is subjected cam be repre=
sented by a finite Fourier Series, With this means available
to represent an excitation, system performance under this
excitation can be obtained through the use of its frequency
response Spectmmc Along with the steady state performance
much can be learned about the transient performance by exam-
ining the freguency respomrse spectrum of a model, For these
reasons the Frequency Canonical Form of state-variable models
is very wseful in the synthesis and compensation of dynmamic
systems,

The unique features prdvidad,by-th@ Frequency Cancnical
Form for synthesis and compensation are the explicit display
of the tramsmission bandwidths and the tramsmission asymptote
functions, With this information it is possible to comstruct
mathematical models for systems to mest predesigméted fre=
quency domaln specificatioms, The d@mstructian process is

done by superpositiom of model components described

77



78

explicitly in the desired fresquency spectrum, Alsg, systems
whose dynamic characteristics are unacceﬁtaple can be come
pensated by direct adjustment of signifiéant entries in the
Spectrum Band-pass Matrices, These modified entries cam then
be reflected directly into the system msdel° }This discussion
leads to the topic of semsitivity of system parameters,
Although nothing extemsive will bg presented, the sensitivity
of system compenents can be examined on a very prelimipary
level throwgh ths wse of the Frequency Canmconical Form of

system models,
Basic Feedback Centrol

The most fundamental characteristic of dynamic control
systems analysis is that of fesdback, The effect of unity
feedback on the basic mathematical model is the increase of
the cpefficients in the open loop characteristic equationr by
an amount corresponding to particular coefficisnts in the.
Foréing function, This increase of coefficients is donme by
adding tha coefficients associated with egual orders of
derivati&es, This m@difiﬁa@iunﬁgﬂ;the_cpeffigiemts is illus=

trated below, The gensral nth order limear.éystem,with no

feedback is described by

n m
d.y 4y o
a,_— + .00 + @A + 000 * Ay =
”dtn mdtm g
m_
h E"‘y" * ocee *# bUV ’ (4-%1)
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When unity feedback is employed the system model becomes as

that shown in Equation (4-2),

n, , m
dy- , dy o
andt” * 000 * (am + bm);;% + c00 * (aB + bﬂ)y

b dv + oos + bpv (4-2)
m M 0
For physically realizable systems considered herein,
unity feedback is interpreted in the Frequency Canonical Form
as the addition of the input column matrix te the last column
of the Fundamental State-Variable Freguency Matrix., The
effect of unity feedback on the Frequency Canonical Form can

be illustrated by the following., Consider thevsystem;whose

dynamic characteristics are represented by

3 2 2. N
9%+ 109 + 4169 4 sooy = LY 4 1058 4 s00v  (4-3)
dt dt dt dt Tt

The state model for this system in Frequency Canonical Form
can be writtenm by imspection when Equations (3-2), (3-7),
and (3=8) are employed as a comparison, The result is the

following state model

2 6 0 800 z, 500
Wizl = Jw® o at6w|| z,| + J105W] v (4-4)
2} 0 w? ww?] |-z, (02
s P>, - . of L: - b ™.
y = [B 0 —1] Zq
' z, (4=5)
mZS
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The state model for this system with wnity feedback is

- ) ir 1 -
2! B 0 1300 z,] | s00

w?>. zy| = w? B 521W ||z, + |105W | v (4-6)
zg 8] u.):" 11(4)2 ~Zq wz

Thi% form of the state model is sﬁiii'the Frequshcy Caﬁdnibal
Form and tﬁé:y equation is unchanged. The freguency response
spectrum for this system witﬁ and without fesdback is shewn
in Figure 4-=1,

This simplified cencept of feedback primciples as
applied tofthe‘Fraquency Canonical Form of sitate models can
be extendedvto more complex feedback loops, When the feed-
back loop contains other tham unity gain the manmer in which
the different coefficients are added is dictated by the func-
tional form of the dynamics contained in the fesdback loop.
The changes in the entries of the state madel follow rather
logically depending on the contents of the feedback leop,

For other tham simple gains in the feedback loop the entries
in the input matrix will alseo be altered., The specific man-
ner in which these entries in both the Fundamemtal State-
Variable Freguency Matrix and the input matrix vary will be
discussed in a following section where compensation is con-

sidered,
Synthesis in State Space

Synthesis in state space empleying the Freguency

Canpnical State Model follows similarly to system analysis
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employing this state model, The procedure of synthesis
invelves initially the construction of the specified fre-
quency response spectrum by using straight lines whose slopes
are multiples of 20 decibels per decade, Th;s piecewise
linear spectrum approximation describes the transmission
asymptote functions, A typical illustration of theése func=
tions is shown in Figure 4-2, Every frequency where this
first order approximationm has a decrease in slope of 20 deci-
bels per decade is a transmission bandwidth boumndary, At
freguencies where the slope decreasss by 40 decibels per
decade a coincidence of bandwidih boundary occurs, In other
words, when a colncidence of bandwidth boundary occurs the
dominance of input matrix elements skips an entry in the
input matrix, The bandwidth frequency boundary where this
occurs is the square root of the element in the input matrix
which was skipped, |

F;gure 4-2 shows the freguency response spectrum of a
system which was synthesized by first drawing the transmise
sion asymptote Fumctimms, With these functional first ocrder
approximations fer the freguency response of a desired system
it is possible tc write the state model im Fresquénmcy
Canonical Form, By refering to Equations (3-7) and (3-8)
the states model is written as shown im Equationms (4=7) and

(4"8)0
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R o - w
z% | 0 0 388, 2 z4
0,176W" 25| = 0.176 w° O 158.5w | | z,
24 0 0.176W°> 1,0w?2 -z,

\ . |
+ {ﬂ W 0] v (4-7)
' - A

y = [U (8] ~1] Z4q

The actual spectrum for the system represented by the above

(4-8)

state model is also shown im Figure 4-2,

In many cases the modeled fréquency response spactrum
will not exactly meet the required frequency domain Specifi~
cations, However, by using the methods discussed in the fol=-
lowing section on cbmpemsation the modeled frequency respohse
spectrum can be altered such that the specified requirements

are adequately met,
Compensation in State Space

The specific characteristics of the Freguency Cananicdl
Form possess features which permit ths priﬁdiple of compenw=
sation to be applied sasily, The oscillatory mode peaks
which always occur within transmission bandwidth boundaries
are relatively independent of the boundaries involved,

Therefore, it is pessible to adjust this peak transmissihility
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by merely changing the entry in the Fundamental State-
Variable Freqaency Matrix which governs the associated trans-
missibility, This ;articular feature is demonstrated in
Figure 4=3, As seen in this figure the transmissibility at
the natural undamped frequency is easily adjusted to nearly
any desired value,

Adjustment of break frequencies possesses the feature
that any change in these frequencies alsec changes the trans-
mission bandwidth bgundaries, Since the actual break fre-
quencies associated with the transmission asymptote function
generally are not the system characteristic mode frequencies,
this feature permits the shiftinmg around of any banduwidth
boundary to meet any specificationm to improve the frequency
response of the represented system. 1In situations where
oscillatory mode frequencies are altered the peak transmis-
sibility associated with this mode will also be changed,
Figure 4-4 illustrates the typical effect of changing the
mode frequency with the normalized tramsmissibility function
for the peak value unchangad, This operation places no
limitation on thé use of the Frequency Canonical Ferm in
compensation since the peak tramsmissibility is virtually
independent of the transmission bandwidth boundary and, thus,
-can be adjusted independently,
| Of ten compensation infers the additien of equipment to
obtain a desired system perfermance., Generally the addition
of compensation elements involves increasing the order of

either the characteristic and/or the forcing functions, The
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procedure for performing compensation from this standpeint
entails merely the addition of elements in the Frequency
Matrix and/or the input matrix, This operation is similar to
the addition of feedback with other than a pure gainm in the
feedback loop, The following discussion demonstrates the
procedure employed when compensation is performed wsing the
Freguency Canonical Form in state épace.

The classical compensation configurations used in pres=
snt day control system theory are lag-lead and lead-lag,
These can be used either in the feedback loop or in the fore
ward loop, The particular detpils of the use to which either
of these configurations in'eitEer the feedback or forward
loops cam be made are such .that a single illustratiom will
demonstrate the principles invplved. In particular with the
use of the Freqéency Canonical State Model thess prinmciples

can be demonstrated by considering the general model,

i e ol b B ad -
1
z3 g B ¢ o o 8 aﬂ z4
' n
z2 a W 0., o » ] a1uJ 22
° 0 ., ° ° L}
aﬂwn P = ° ° ° ° °
L] [ L] 0 o L
'] n [ P |
zn G| o o o D.amau an_1a) --zn
& - < - o -

T
12} ) /
+ [bu . o bw” 0, @:J v (4=9)
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o o=t
y = [D ] ° [ L) U -1] 21

o (4=-10)
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As illustrated previously, unity feedback is perfermed by
adding the input column matrix to the last column of the

Fundamental Frequency Matrix, For the general lag-lead or
lead=lag configuration in the feedback loop the Frequency

Canonical State Model can be develmpéd as shown below,
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(4-12)

In frequency domain nmotation the configuratiom in the feed-
back loop reflected in Equatien (4=11) is (s+®)/(s+3).

This type of compensation ié characterized in the fre-
guency spectrum by the additicn of one trancsmission asymptote
Function and one transmission bandwidth boundary., In sffect
the state model representation shown in Equatien (4:11)‘can
be accomplished grapﬁically byrmorking with the spectrum

réprasentation°
Sensitivity Check in State Space

The system frequency performance sensitivity of various
system contributions or components cam also be investigated,
This sensitivity investigation can be dome by direct inspec-
tion of the elements of the Spectrum Band-pass Matrices, The
transmission asymptote functions in these matrices describe
the break frequencies of the oscillatory modes amd, to some
extent, alsoc provide the agtual tramsmissibility at these
bfeak freguencies, In the previocus discussion on compensa-
tion it was pointed out how the various types of tramsmission
asymptote functioms affect the actual spectrum, At unity
freguency the intercepts of the asymptote function are com-

posites of all the components of the actual physical system,
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Each of these components have a physical character which may
change due to environmental changes, Thus, the system fre-
quency response spectrum will have a time variant character
~as well, Thé eFFect éf this pbssible time variance can be
checked by examination of the sensitivity of the frequency
spectrum described by the Fundamental State-Variable
Frequeacy Matrix, |

Te illustrate this, the state model for the network

shown in Figure 45 'is as sheoun in Eﬁuatian (4=-13),

0 - - - . - -
z4 & 0 ag ' Z4 ]
aSQUS 24| = aScUS 0 ayw z,| + | bW | e (4=13)
z% 0 agguz azcuz -Zq 0
L d L 4L . J
eg = [0 0 =1 z4
i (4-14)
~2q
L
where
ag = R4/C
ag = (Ly/C)+R Ry#R 24R 7
a, = LiRy+L R, +R4L,
a; = L1L2
b1 + R1R2

From this Frequency Canonical Form of the state model

the entire frequency spectrum and variations in the spectrum
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can be viswalized, Formatiocn of the Spectrum Band-pass

Matrices produces

- ag
a 0
5 W
5. . |39 5 2w (4-15)
59 = 5o 5
g
i b1w b1(4)=

The entry aa/b1uJ indicates that the Spectfum will have a
plus 20db per decade asympﬁote at low frequencies, The next
entry a1ad/b1m) shows an increase in asymptote slope to zero,
The azu)z/b1go entry shows a minus 20db per decade asymptote
slope and aga)z/b1u3 shows a minus 40db per dscade asymptote
slope, From this examination of matrix entries it is possi-
ble to show that an underdamped mode can occur at one of two
frequencies, These frequencies are calculated in the follow=

ing way., Am wnderdamped mode may occur at the frequency

where
an. a @uz
E?Ej E;&T“

which produces in terms of the system components a natural

undamped frequency of

‘w/m -2 \/ il (4=17)
W, = % = 417
n a, L1R1 % L1R2 + R1L2

or the underdamped frequency could be where
a4 a @@3
L el (4-18)
b1w‘ - 1(,0 /
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which is a matural frequency of

- Y N i -1 + R4R, + R, + R, (4=19)
Wp = Y [y el N S B 2 i

A study of the compoments represented in Equations (4=17)

and (4=19) will indicate the le#atian sensitivity of the
modal frequency spectrum witﬁin the spectrum with respect to
any single component or cumbipations of components,

It is also possible to investigate the transmissibility
at these Ffequencies in regards to the system component
variations, These transmissibilitiéé are determinsd by the
asymptote fumctions 31(U/b1ou and azguz/b1aJ, respectively,
For the first possible natural undamped frequency calculated
in Equation (4-17) the transmissibility at this freguenmcy is

. b1
T W= W, = 2@Log1@ E?
Ry |
20Log g > - - (4-20)
T * RqRp + Ry™ + Ry

and for the matural undamped freguency calculated in Equation

(4-19) the transmissibility is

b
T 20 =
W= Wy L231¢ 35
| RiRy
20Legyg (1 P Y P 1 80 TP (4-21)

where the (u , in Equation (4;21) is that shown in Equation
(4=19).,

Sensitivity studies can be performed in a similar manner
for mest any system which is adeguately described by linear

time invariant ordinary differential equations,
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Summary

The Frequency Canpnical Form for state models of physi=-
cal systems provides a powerful tool fer control system
designers and analysts, Its features are such that it can
be used in many capacities to help the engineer solve day to
day ceontrol prdblems. Many times the complexity of the
system 1is swch that a digital computer would be mecessary
to obtain the rcots of the characteristic and forcing func-
tion polynomiale. This form of the state model allgws the
engineer to perform the operations of amalysis, synthesis,

and compensation without reverting te the digital computer,



CHAPTER V

STATE NMODELS DERIVED FROM
EXPERIMENTAL DATA |

An important feature which the Fundamental State=-
Variable Frequency Matrix pro@ides is its capability of being
derived from experime@tal freguency reSpohse data, Although
most physical systems are not linear or stationary and, con-
sequently, experimental frequency response data eof these sys-
tems contain the effects of nonlimearities and time varying
coefficients, many of these éystsms can be adequately repre-
sented by linmear time invariant models, The linmear, time
invariant state model for this class of physical systems can
be derived from its frequency response data through the wuse

of the Fundamental State-=Variable Frequency Matrix,
State Models From Frequency Response Data

The development of the Fundamental State-Variable Fre-
quency Matrix showed that the entries in this ﬁatrix are
first order approximations to the actual system frequency
spectrum, This fact is the basis fer the derivation of state
space models from experimental freqwehcy response spectrums,

To derive the Fundamental Frequency Matrix the emtries

in Spectrum Band-=pass Matrices must first be obtained. This

97



g8

is accomplishéd by constructing a first order appr@ximati@m
to the experimental spectrum data, Since all the tranmsmis-
sionjasymptote functions have slopes which are multiples of
20 decibels per decade, this first order approximation must
consist of straight lime segments whose slopes are multiples
of 20 decibels per decade, Foer simple breaks where the slope
changes by only 20db per decade, these breaks are established
by the appreximation deviating frem the actual spectrum by
approximately 3 decibels,

Once a first order approximation is drawn, then the
transmission bandwidth boundaries can be estimated, These
boundaries occur at svery frequency where the first order
approximation has a decrease in slope, For decreases in
slope of only 20 decibels the boundary dictates simply a
change of dominance from one input matrix element to the
next, However, if the decrease im slope is 40 decibels per
decade then this dictates a coincidence of transmission bamnd-
width boundaries, The frequency associlated with this coinci-
dence is a boundary whose value is the square recot of ‘an
input matrix slement, Also, the change in deminance across
this boundary is from the element before to the slement after
this particular element in the input matrix,

The results of this construction are-the transmission
bandwidth boundaries and the transmission asymptote func-
tions, In order to evaluate the separats coefficients which
make up these- boundaries and functionms, it is necessary to

assume that the derived model is mormalized with respect to
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bm¢ In other words, bm is assumed toc be equal to umity., No
generality is sacrificed with this assumption since many
operations in system amalysis work with this normalized form,
With bm = 1 them all the entries in the imput matrix can be
calculated from the transmission boundaries, Once these
ceefficients ars obtainmed then the remaining elements of the
Fundamental Frequemcy Matrix and, fimally, the Frequency
Canonical State Model Form can be written,

The utilization of this procedure for obtaining state
models from frequency spectrum data may involve the proce-
dures discussed inm the previous chapter under compemsqtion
to ascertain an adeguate fit of the experimental data, This
is due to the lack of cecncrete knowledge about the inter-
action of system modes,

Te illustrate the utilizatien of this procedure consider
the frequency response spectrum data shown in Figure 5=1,

The actual state model represented in this figure in

Frequency Cancnical Form is

-9 - Tr 7T F

2 0 0 o 1600 z,f | o

2! w* o o 776 W 2, 3000
wh 1921 . _ 221, v (5=1)
' = 4 | 9 2

z% 0 W 0 411.6W Z4 400

3 0 o w* s5.6wW3 ~z | w?3

- P o - (Y ot L. -

' T
y o= [D 00 a1j [21 z, 2, ”24} (5-2)
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The state model derived from this spectrum data is

¢ - Tr
z4 0 c 0 1500 z4
‘ " ]
: (]
ol z5 . ,QQJ ‘,ﬂ 0 675W z,
z3 o Lowt o 3tsw?|| 2,
4 3
? : -
z} 0 0 .SW” 37w ] |-z,
(=) = LY d» L J
T
2 (3
+ |0 275W 39,5 v (5=3)
o\ i .
y = [ ﬂ =1] Zaﬂ
Z -
). (5-4)
Z3
=.24
by o

The fresguency response spectrum for the stats model of ELqua-
ticns (Saﬁ) and (5-4) are also shown in Figure 5-1, QOnce a
state model has been fit improvements im this fit @an‘b@ made
by inspection and the appropriate matrix element can be
adjusted to reflect the impreved fit,

In order to illustrate the use of this procedure in a
general situation the spectrum shown in Figure 52 was drauwn
in an arbitrary fashion using French Curves only to obtain a
smooth spectrum. The rssulting spectrum fit is also shouwn
in this figure, No éttempt has beesn made to improve the
spectrum derived from the procsdure developed im this chap-

ter for obtaining the state model from experimental freguency



T - Decibels

B L ge—

Fraquency_

Canonical

Form

Model

Transmission

Asymptote

Functions

Figure 5-2, .fEgguency Canonical State Model Identification

() -~ Radians/Seconds

. of Arbitrarily Drawn Spectrum

201



103

response data, It is possible to Iimprove the linear time
invariant representation if it is necessary, The Frequency
Canonical Form of the state model rspresentative of the

derived or fitted spectrum is shown below,

n ] 7
z% 8} | 5] 578,m' Z,
10, 43 24| = 10,4W° 0 2373 z,
z} 0 10, 43 20w?2 -z,
L, T ’ L
T
. [96,0 42,0W wz] v (5-5)
F =
z, (5=6)

The two illustratieons presented above represent a rather
general application of the Fundamental State<=Variable
Frequency Matrix method to state space modelimg which can be
derived from experimental frequency response data. The
modeled spectrum shown In both Figures 5-1 and 5=2 wefe
derived on the first modsling attempt. Consequently, no
effort has been exerted to imﬁrove the model although 1t is
possible to iterate and possibly obtain better spsctrum fits,
These figures demonstrate the closeness possible on the first
try if care is taken in the selectiom of the aéympt@tes.

This modeling technique has several fesatures which make

its application rather simple, One feature is that the break
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frequencies are not necessarily the roots of the character=-
istic and forecing polynomial fumctions. This feature removes
the task of having to try to guess at representative corner
frequencies, Another is the ability to model peak transmis-
sibilities without worrying about the mode representative
damping ratio, Also, in effect, the coefficients generated
are the coefficients of the linear time invariant model

represented by its freguency response spectrum,



CHAPTER VI

SUMMARY OF SYSTEMS ANALYSIS AND SYNTHESIS
VIA USE OF THE FREQUENCY
CANONICAL STATE MODEL

The procedures outlined in this chapter summarize the
detailed discussions regarding the application of the
Frequency Canonical Form presented in the previous chapters,
The type of systems to which the following procedures are
applicable are those which are adequatsely modeled by linear,
time invariant, ordimary differential equations., 1In general,
these procedures are applied to the category of systems hav-
ing-a single input and a single output, The models for most
physically dynamic systems canlbe/édjusted to fit in this

category by successively pairing the inputs and outputs,
Obtaining the Frequency Canonical Form

Initially the system mathematical representation can be
in either the ordinary differential form or some state model
form, If the model is in differential form the direct pro-
gramming technique shouwn ih‘Figure 3-1 can be applied. This
procedure results directly im the Frequency Canonical Form,
If the system model is imitially in some state-variable form

it can be transformed into the Frequency Canonical Form by

:105
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first transforming the state model intoc Rational Canonical
Form and then applying the Frequency Transformatlon, This

trananrmation is

2 = QTR Qze QT By ~(8=1)
where
2= Q7 %
z=02" x
g% = h by n Freguency Transformation Matrix (see
Equation (3=11)),
x = state-variables for state model in Rational
Camsnical Form,
R = Rational Cancnical Form of differential transition
matrix, |
B = input column matrix.
v = input vector.
also

ra— -—

Q=1 g § = F = Fundamental State-Variable Freguency
Matrix,
Both of the procedures discussed above will result in

the Freqguency Canonical Form for the system's state model,
Analysis Using the Freguency Cancnical Form

To construct the first order approximation for the sys-
tem frequency response spectrum the following steps are sug=
gested,

1. Divide the Fundamental State-Variable Frequency

Matrix and the input matrix by the first entry im
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the input matrix, This produces the first Spectrum
Band=-pass Matrix, The elements of this matrix are
the transmissionm asymptote functions,

The range of frequencies to which this first
Spectrum Band-pass Matrix is applicable is calcu-
lated by sguating the first entry in the input
matrix (after the division indicated above) te the
second entry, This produces the first transmission
bandwidth boundary,

The first two steps are repeated by usimg all suc-
cessive entries in the input matrix starting with
the Fundamental State-Variable Frequency Matrix inm
each instance, This produces m Spectrum Band-pass
Matrices and m transmissidn bandwidth boundaries,
where m is the order of the forcing fumection poly-
noemial., |

The first order approximation of the frequency
response spectrﬁm is constructed by starting at the
low frequency using the first Spectrum Eénd=pass
Matrix generated, The first emtry in the right-=hand
column of this matrix is used as the first asympiote
of the spectrum approximation, (All these functions
are straight limes on log-log paper and thsy all
have slopes which are multiples of 20 decibels per

dscade, )

The asymptote functions of the first Spectrum Matrix

(in the rightahand)cmlwmn),ara used successiveiy
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wntil the transmissibility calculated by an asymp-
tote functien in the first Spectrum Matrix is
exactly equal to the tramsmissibility~calcuiated by
an asymptote function in the next Spectrum Matrix
at the transmission boundary frequency, At this
point the next Spectrum Band-pass Matrix is used to
construct the first erder approximation in the next
frequency band,

6. The points where a change in Spectrum Band-pass
Matrices to be used will always cecur on the transe
mission boundary frequency and its occurrence will
always be indicated by the equality eof asymptote
functions in successive matrices as discussed above,

For systems whose modes are separated by more tham a

decade this first order approximation will not only result

in good straight line approximations fer the system Frequén@y
response spectrums but it will also produce virtually the
exact transmissibility for the ocscillatory mgd@s at the par-
ticular medes! undamped natural frequency. The vndamped
natural frequency is displayed explicitly in the Fundamental
.State=Variable Frequency Matrix for any arrangement of mode

separations,
Synthesis Using the Frequency Camonical Form:

Synthesis using the Frequency Canonical Ferm procseds

as follows,
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1, Construct a first order approximetion on log=log
paper for the daéired frequency response to be pos-
sgssed by a system, These first order approxima-
tions must all have slopes which are some multiple
of 20 decibels per decade,

2, At every frequency where the approximation has a
decrease in slope calculate the elements of the
input matrix, This is dome by starting at ths
highest freguency where the approximation has a
decrease in sleope, This Frequancy is equal to
bm=1/bm% Assuming b = 1 then b__. can be calcu-
lated.. Thé next frequency where the slope decreases
is equal tg*bmnz/bmu15 etc., Using the previously
determined value all the elements of the input
matrix can be determined,

3, Tﬁe fiist order approximations drawm in step 1 are
the transmission asymptote fumctions, From thess
straight lines all the entries in the Fundamental
State-VYariable Frequency Matrix can be calculated
and, thus, the system state model in the Frsguency

Canonical Form is obtained,
Compensation Using the Freguency Canenical Form

System compensation esmploying the Freqmency»&anbmicai
Form involves the knowledge of specific features of the
transmission asymptote functions, These features are as

shown below,
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Asymptote functions which determine the tramsmissi-
bility at oscillatery mode frequencies are virtually
independent of the bandwidth boundaries but are
sensitive to the closeness of other system modes,
All other asymptote functions govern the bandwidth
boundaries and, therefore, adjustments in these
functions will be propagated {o higher frequencies

in the spsctrum,

In gensral, compensaticn can be performed either graphi-

cally and then interpreted into the state modsl er the state

model can be worked with directly,

System Modeling From Experimental Data
' g — Iy
Using the Frequency Canonical Form ‘

The procedure for state model identificatisn from

experimental frequency spectrums follows much the same chan-

nels as outlined for synthesis,

1,

2,

Initially, the experimental data must be approxi-
mated by straight lines on log-log paper., Thess
straight lines must have slopes which are multiples
of 20 decibels per decads.

Every frequency whers: this first order approximation
decregases in slope is a transmission bandwidth

boundary., These boundary frequencies are used to

calculate the entries in the imput matrix, By

starting at the highest bandwidth freguency boundary

which is equal to bm=1/bm where m is the number ef
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bandwidth boundaries, and setting bm = 1, thenm hm=1
is determined. ‘The next boundary fregquency is.
bm-z/bm~1 from which b, , is determined, etc, until
all the elements in the input matrix are obtained,

3, The straight lines which make=-up the first order

approximation for the experimental data are the
asymptote functions., These functions arses ratios of
the input matrix elements and the Fregquency Matrix
elements, Since all the input matrix elements have
been obtained, them all the elements in the
Frequency Matrix can also be obtained,

This procedure results in the state model representative
of the first order appr@ximation drawn imitially, If, after
checking the freguwency response spectrum‘cempwted from the
derived state model with that of the actual system, it is
found that the derived modei is not adequate, them some
adjustments im the first order approximatiom can be perF@rmed
gasily in attempts to obtaim a more adequate model, This
procedure c¢an be mechanized on a digital computer with an
error criterion used to determine adequate first order
approximations and, thus, model freguency response spectrums,

This chapter has summarized the various applications to
which the Frequency Canomical State Model Form develcped in
this dissertation ars amsenable, Several details peculiar to
specific situations are not included in this chapter., Hou=-
ever adequate detdils as well as illustrations are provided

in the chapters dealing with the particular application,



'CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

It has been demonstrated in this dissertation that
linear time invariant models fer physical systems, whether in
differential form or some state-variable ferm, canm be
expressed in the Fregquency Canonical Form, This State Space
Canonical Form can be wsed to display the frequency charage
teristics inherent in all dynamic systems in an exblicit
mapner, The particular procedure developed herein produces
the transmission bandwidths which are péculiar to the funda=
mental modes of the system as well as a transmissibility
description of the modes, All this information is obtained
without resorting to any sort of factorization of the system
characteristic and forcing functions which, uﬁ to the pres
ent, has besn the only way to ascertain this system charac-
teristic data,

Based om an exhaustive literature survey and the
experience of the author, te his krowledge ne work has been
done with system freguency response spectrums in conjunction
with state space system models, Therefore, the following
topics which are developed in this dissertationm will con-
tribute to extending the frontiers of knowledge im state

space analysis of linear, time invariant dynamic systems,

112



3.

113

Four procedures are developed by which presently
known classical control technigues can be used in
conjunction with state models to obtain the frs-
guency response spectrums for dynamic systems from
the representative mathematical models. These pre=
cedures neceséitate a rather extensive knowledge
and experience in frequency response techniques on
the part of the user,

A new addition to the more familiar Jordan,
Rational, and Phase-Variable Canonical Forms in
stata space- is developed, This additien is the
Freguency Cancnical Form for state-variable models,
Along with the Frequency Canonical Form two methods
are developed tﬁ obtain this particular Canonical
Form, The first method uses a freguency transfore
mation and a direct programming procedure to pro-
duce the Frequency Canonical Ferm from the system's
mathsmatical m@dél in differential form, The other
method involves the development of a Frequency
Transform Matrix, This matrix directly transforms
a state model from Raticnal Canonical Form to
Frequency Canmnical Form, Since there are standard

transformations which will transform any state modsl

'into Rational Canonical Form, this Frequsncy

Transform Matrix will essentially tramsform any
system state model into the Fr@quencyvCamonical

Form,
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4, The differential transition coefficient matrix of
the Frequency Canonical Form is the ”Fuhdamental
State~Variable Frequency Matrix"., Explicit in this
matrix are first order approximations of the fre-
gquency response spectrum of the modeled system,

5. The first order approximations explicit im the
"Fundamental State-Variable Fregquency Matrix" are
better approximations than the asymptotic approxima-
tions whieh Bode's Theeorems produce, Alsg, it is
not necessary to Fac%ar the pélyn@mials involved as
is the case in the use of Bode's Thecrems,

6, The Frequency Canomnical Ferm provides extremely
useful applications of state models to the field of
dynamic systems analysis.‘ This dissertation demon=
strates the usefulness of the Freguency Cancnical
Form in system amalysis, synthesis9 and compensas=
tion,

7. At present to the awvthor's knowledge there has been
no method developed by which state models can be
derived from sxperimental data, The "Fundamental
State-Variable Frequency mQtrix” provides a means
for tha identifiéatiun of étate models from experi-
mental frequency response data,

All the contributions containe& in this dissertation

which are listed above suggest much more research in the

Frequency Canonmical Stats Space, Therefere, the author
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recommends the feollowirg topics as arsas which will produce

significant contributioms in state space amalysis,

1.

The phase shift associated with the frequemcy spece
trums developed by the use of the Frequency
Canonical Form of the state model can be obtained
by Bode's Theorems (15), This phase shift spectrum
can also be derived by an explicit matrix display
of state model coefficient matrices,
Transformations for the state model which result inm
more canonical forms peculiar to engineering disci-
plines, for example state model forms specifically
for stability evaluation which will provide obvious
compensation possibilities, would comntribute to the
systems anmalysis fisld through the use of state
model techniques,

The extension of the frequency response spectrum
explicit display in state models for nomlinear sys-
tems will provide a major contribution to system
analysis by state space techniques., The canonical
form of the state model for this class of systems
could conceivably be made up of coefficient matrices
displaying explicitly all thes jump frequsncies
peculiar to any specific system mhemﬁexcit@d by a
sinuspidal excitation, . .

Sigma plots whigh are empiéyéd in classical control
thgmry to determine ﬁha closed loop real roets from

the open loop transfer function by substituting -0~
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fer s in the open loop transfer function can-possi-
bly be characterized by state model coefficient

matrices, These matrices could then be transformed
to_diSplay the closed loop poles explicitly without

reverting to the construction of sigma pluts,(16).
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STATE-VARIABLE DIAGRAMS FROM DIRECT
PROGRAMMING METHODS |

There are two basic direct programming méthads which
produce vector state models im well known canonical forms,
The first of these programming metheods is Tou's direct pro-
gramming method from which the resulting state model appears
in Phase-Variable Canonical Form (12, 13, and 14), The
Phase=Variable Canonical Form is merely the transpose of the
Rational Canonical Form, The second direct programming
method results in Rational Canonical Form state models,

The particular feature existing in these forms for the
state models is the explicit display of the coefficients
associated with the characteristic equation and the coeffi-
cients associated with the form of the forcing function.

The basic difference in the state models produced by thess
direct programming methods, other than the rearrangement af
the elements in the differemntial transition matrix, is the
explicit display of the forcing function coefficients,

The general mathematical model toc which these methods
are applicable are single input - single output linear sta-
tionary ordinary differential eguations., These system

mpodels can be expressed in the following form,

120



121

n, n=1.
a 8Y ., 4 d

+ oes + @HY =
noggn n=1 e i

b dly + b a""y + + b,v (A=1)
moggM m=1 dtm-51 0

For a physically realizable system m is always equal to or

less than n,
Tou's Direct Programming Method

Tou's direct programming method works with the system
transfer function which can be found by transforming Equa-
tion (A-1) by using Laplace Transformations. The system

transfer function resulting is

bms?v+ Iam_.13"3'"1 + .00 + b

y(s) = L= — 2 v(s) (A-2)

anS + an_1S + ocoe + aD

Dividing both the numerator and denominmator by s~ produces

b [ e | . - §1] = |5 -t1 ’ ;—»‘«. -n

) b Sm n + b Sm P *. 000 # b.s :
y(s) = —2 el L v(s) (A-3)
an + an_1s + an_zsv + ,.,v+vaos

If the following substitution is made into Equatien (A-3)

e(s) = ‘ ¥(S)_ (A-4)

S ¥ e0o + aﬂs"n
the result is |
y(s) = (bmsm'n + bm-1sm'n'1 4 veo + bﬂs"n) e(s) (A=5)

Equation (A=4) is equivalent to the following

a a
e(s) = = v(s) = 2'1 s"1e(s) - ess = Eg s"Me(s) (A-6)
n n n

The state medel diagram for this system cam be drawn by
using Equations (A-5) and (A-6)., The state model diagram

for this general linear statisnary simgle input - single
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output system is shown in Figure A-=1, The vector matrix
state-variable model resulting from this figure is shouwn

bslow for m = n=1,

o - o on e - - -
X4 0 1 00 .. 0 Xq 0
° = . ° . ° ° o + o v (A"?)
o ° . ° ° 0 ° °
% 0. 0 0O 1 X 0
n=1 N1
;( “a—ﬂ- --a-;l. an-1 X J—
2] an n an 2] an
] J - ] - -y - o -

. , (A-8)

The standard way the characteristic'equation is
expressed is in a normalized form, The mormalizatien is, in
gensral, performed with respect to the highest derivative,
In other words ths sntries in the differemntial transition
matrix in Equation (A-?),are the negative of the cosffi-
cients of the characteristic polynomial fer the system,

This form of the differential coefficient matrix is called



Figure A-1, State Model Diagram for Tou's Direct Programming Method

A
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the Phase-Variable Canonical Form, The entry in the columnm
matrix multiplying v is the normalizing coefficient, @As
seen in Equation (A-8) the coefficients of the forcing func-

tion are displayed explicitly in the output matrix,

Rational Canonical Form Direct

Programming Method

The Ratiomal Canonical Form direct programming methed
works directly with the system mathematical model; however,
for convenience, the differentials are usually replaced by
the operator p where p" = d"/dt", Performing this substitu-

tion on Eguation (A=1) produces

a ply + a n-1, + + | =
np Y n_']p }’ oo e 31PY + any =

m -1
b,P v + bm_1pm V4 ees + bypy 4 by (a=9)
If Equation (A-9) is solved for the zeorth order terms, the
result is

; -1 '
bgv = agy = (anpn + an_.]pn + eee + a1p)y

m m-1
- (bmp +‘ bm°1p + 600 + b1p)v (A&‘]U)
Fer m = n, Equation (A=10) can be rewritten as

-1
bUV - aey = pn(any - bm\l) + pn (an_‘]y - bm_,.]V)

 eoe +_p(a1y - b1u) (A=11)
For m n
Yew ]
bgv - agy = anpny + an_1pn y
1

+ oeee + am“pm+ y + pm(amy - bv)
2
+ eeo + p7(a,y = byv) + plagy = byv) (A-12)
The state model diagram for Equation (A-12) is shown in

Figure A=-2,
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%m+1
%n
b a
0
q = =V - =Y
“n %n -
- n +,an-1 n-1_, m+l m+l . m 3_ Eﬂ
= pY a see =P p y -z Vv
n n : n n

Figure A-2, State Model Diagram for the Rational Canonical Form
Direct Programming Method
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The state model derived

Figuré A-2 is shown below,

B * B
x1 0
%2 1
¢ i)
.

Xm = °
Xn-1 *
X 0
ol - L

y =

0

q4
a
' 0 0 "E‘q
n
a
0. 00 -t
A
a
51
1 giDn2
aﬂ
0 1 —on=1
an

=3

X
0

b

L\IIET
o i3

mlt:rml

= 7 lo

2
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from the diagram shown in

v (A=13)

(A-14)

The elements in the right hand column of the differen-

tial transition matrix in Equation (A-13) are the negative

of the coefficients of the characteristic polynomial. As

discussed previogusly, the division by a, ;épresents the nor-

malizing of the characteristic polynomial with respect to
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the highest derivative, This form of the differential
transition matrix is called the Rational Canonical Form,
The coefficients of the forcing function appear implicitly
in the input matrix, Am explicit display of these coeffi-
cients is easily obtained by removing the normalizing coef-

ficient used to normalize the characteristic pelynomial,
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RESONANT PEAK TRANSMISSIBILITIES

In the development of system frequency response spec-
trums by the use of the Frequency Canonical Form the trans-
missibility at the nmatural undamped mode freguency is
obtainmed explicitly., However, this value of transmissi-
bility is not the maximum that will occur, The actual maxi=-
mum occurs at a lowser frequency. This frequency where tﬁe
actual maximum occurs is a function of the damping existing
as well as the natural undamped mode freguency, Specifi=
cally, the frequency where the maximum transmissibility

ocours is

w, = w,y-2¢* (1)

where

H

’ng frequency of maximum ftransmissibility -

n
£

i

natural undamped mede fregquency

Adamping ratio

H

The frequency of maximum transmissibility has been cor-
related with the natural undémped mode frequency and the
ratiec 1/a, This correlation is shown in Figure B-1, This
Figure‘can be utilized for the entire frequency range. The
range JF 1/a can be varied to encompass almost all possibls
values of 1/a which will eccur, For ranges of 1/a from

.17857 to 1.7857 the frequency range covers fregquencies from
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0 to 10, A shift in the range of 1/a to the range 1,7857 to
17.857 shifts the frequency range to the range 0 to 1.0,
Therefore, the scale designation om the abscissa is
1ok (B-2)
The scale designated on the ordinate is
wp ° 1gK=1 (B-3)
and the natural undamped mode frequency limes within the
graph are
w, » 10 (B-4)
Once the range of a)m has been selected such that the
required value of W, is within the range, then the appro-
priate value for k is used to establish the scale of the
abscissa, The result of the use ef Figure B-1 is the fre-
guency of maximum transmissibility, |
The next thimg which must be obtained is the walue of
maximum tramsmissibility., This is possible by the use of
Figure B=2 in conjunction mithkriéure B-1, Within the graph
of Figure B-1 are lines of constant damping ratio é . Each
point determined by the values 1/a and W, has an associated
value of C, With the value of g from Figure B-1, Figure B=2
can be entered and a AT in decibels obtained, This incre=
ment in transmissibility is am imcrement which when added te
the tramsmissibility at the natural undamped mede frequency
will produce the maximum transmissibility., As indicated

previously, the maximum occurs at u)p,

2 |
£Y 4+ 48y 100y = 2v (B-5)
dt dt
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The vector matrix state model im Frequency Canonical Form is

z! 0 100 z 2

w? | M=, HESRE (8-6)
z5 | W 4&) =2, 0

y = [U -1] 21 (B-?)

Then the transmission bandwidth boundaries are 0 and o

The Spectrum Band-pass Matrix is

0 100
(B-8)
S = B-
= w? 4w
-7 "7

From Equation (B=8) the transmission asymptote function for

the low frequency range expressed im decibels is

- 20Log, 1%2 = 20Logyy .02 = 33,99db (8-9)
The transmission asymptote functiom for the high Frequency
range is
w? 2
- 20L3910 ~—— = 20L091D 2 - ZULog10 W
= 6,02 - 20Logqy W ° (B=10)
The intersection of these two transmission asymptote func-
tions is
= %’3 (B-11a)
w,, = 10 (B=11b)

The magnitude of transmissiom asymptote function

~20Log g 4W/2 at W = 10 is shown in Equation (B=12).
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T = - 20logyy 25 = 26,02db (8-12)

The transmissibility spectrum as well as the asymp-
totic approximation generated from the transmission asymp-
totic functions are showm in Figure B3,

The value of 1/4 is used to enter Figure B-1 along the
abscissa and a Frequendy u)n = 10 is used within the graph,
For u)ﬁV= 10 the value of k is 1., Employing this facter to
ebtain‘the correct abscissa location the value of freqguency
where maximum transmissibility occurs is QJp = 9,59, The
damping ratio is C::B,Z, With this value of damping rafio
the incremental increase in transmissibility obtained from
Figure B-2 is AT = 0,175 decibels, The maximum transmissi-
bility occuring at W = 9.59 radians per second is

T = 26,02 = 0,175 = 25,845db (B~13)

max
as shown in Figure B3,
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Figure B-3, Illustration of Resonant Peak Determination
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STABILITY EVALUATION FOR THIRD AND
'FOURTH ORDER SYSTEMS (4)

The stability of systems whose characteristic polyno-
nomials are third or fourth order can be determined by merely
inspecting the Spectrum Band=-pass Matrices, As is obvious
to some extent the degree of stability can be estimated by
applicable peak transmissibility calculations, This appendix
deals primarily with absolute instability and the determina-
tion of peak tramsmissibility for third and fourth order
systems which are very lightly damped,

To illustrate the primciples inveolved in this stability
evaluvation the freguency spectrum for, the following system
state model in Frequency Canonical Form is shown in Figure

C"=1 °

- = @ e - o -
z% 0 0 ag z4 6 | |
asw3 zb| = a3603 0 a,Ww z,| + | bW | v (c=1)
' 3 2 ‘
LZC"_ i R el S | ;23_‘ _-0 ]
y = [E U_—1] oz
z, ‘C-Z)
!;is-
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The Spectrum Band-pass Matrix for tﬁis state modsel is

shown in Equation (C-3),

[ 0 E—-——a“ ]

5 W

a.W a
3 1W
= C=3
2= o Y. mo (e-3)
a3w3a2w2
0 - -
biw: b,le
ko

The matural undamped mode freguency associated with the

escillatory system mode occcurs where

ap 82 ?
= : - ('C“l*)
51(,0 51(4) .
or
. a_
W = 2 (C-5)
- 2

This frequency is determined by the intersecticn of these
two tramsmission asymptote functions crossing as shown in
Figure C-=1,

Suppose that the asymptote function azaJa/b1@u is
greater than the asymptote function a,W/b,Ww at the fre-
quency W = 4“5575". This condition is shown in Figure C-2,
Mathematically, this indicates that

| 2 a0 «
a W < azW when (W = = (C=6)
2
or
a.,a

which is the same as

aqa, = azag < 0O (c-8)
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However, one of the criterions for stability developsd by
Routh is that these coefficients of the characteristic poly-
nomial in the above combinatien be greater tham zero, This
means that the system is a nen-minimum phase system and,
therefore, the frequency spectrum doess not exist,

Systems which barely mest the stability criterien
require special but quite logical consideration in order to
estimate the resonance values of transmissibility, The fre-
quency Spéctrum shown in Figure C=3 represents such a system,
At the freguency W = QV§?7§§ the asymptote functions
a1cu/hicu and azcdz/bTQJ are equal but 180 degreses out of
phase; Therefore, these two terms cancel one another praduc-l
ing the value of the transmissibility as shown below,

1

T = i (C"'g)
ag ) A,
b1a) b1cu
and specifically
a
by RS
(1) NETE * °3 (C-10)
(s [ aq

This equation indicates the boundary of stability since the
denominator must be greater tham zero, This special trans-
mission resonance calculation is required only when twe pairs
of transmission asymptote functions are equal at the same
frequency, | o

In general, most fourth order systems cam be handled in

exactly the same way as discussed in this appendix,
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| Figure C=3, Illustration of Véfy?Lightly Damped System Transmission

. Functions and Calculation of Peak Transmissibility
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PRINCIPLES OF STATE-VARIABLE MODELING

Although state-variable analysis can be extended to
encompass most systems describable by ordinary differemtial -
equations, the development contained in this appendix is for
systems which fall into the glass called linear time invari=-
ant, This class of ordinary differential equations can be
illustrated by the following second order modsl im differen=

tial form,

2

d dy . .

a + a + a,y = b.v (D=1)
24t Tgg O 0

The basis of'state;variable modeling is the expression of
Equation (D-1) as a system of first order ordinary differen-
tial_eﬂuatiéﬁs. This sxpression of state models is obtained
by makiﬁg élgebraic substitutions which consist of limear
combinations of the zeroth, first, second, and so forth
derivativegléppearing in the differential form of the system
model, Thése algebraic substitutions define the states or
state=variébles of the system, In the case of a single
input - single output system, this substitution is performed

as shown below,

X1 = (D-?a)

Xg & % = %% (D-2b)
. a2y

Xq = X, = E;% (D=2c)
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If this algebraic substitution is performed on Equation

(D=-1) the following system of first order equations results

e

1
a,Xx

2
Y

]

Oxq + x5 + Ov (D~3a)
~ agxq = aqx, + byv (D=3b)
xq + Ox, + Ov (D=3c)

Equations (D=3) can be writtem in the Followimg unreduced

state~variable feorm

r.1 0 0 X
a a, B 1x
6o 1 y

J"

Pu

F - - -
B‘ 1 X4 g
= maﬂ -naD Xz + bB v (D"A)
1 1E] ]
- o S
Cgxeny (0-5)

Equation (D-5) is the generalized unreduced state space model

for time invariant linear system with multiple inputs and

multiple outputs,

Equations (D-3) can be groupsd with the equations

invelving the derivatives of the state-variables in eone group

and the equations involving the outputs im the other,

The

result of this grouping written in state-variable form is

the following reduced model,

o

e
N

#

0 1 X4
a, a + v (D=6a)
R I b \
] a, a, 2 ’Wq
1 U] xq |+ [0] v (D=6b)
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This system of equations is writtem in gemsral form for a
multiple input - multiple output system im the fellowing

state-variable notation,

X = Ax+Buy (D-7a)
y = Lx+Dy¥ (D=7b)"

The coefficient matrices shown in this appendix comtain all
constants, These censtant matrices are characteristic of

“time invariant linear state space system models.
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