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THE ANALYSIS OF BIOLOGICAL DATA COLLECTED SYSTEMATICALLY 

AND PSEUDO-SYSTEMATICALLY OVER TIME

CHAPTER I

INTRODUCTION AND STATEMENT OF PROBLEM 

Introduction

Within the past decade the variation over time of many biologi­

cal phenomena has received a large measure of attention. In 1962 the 

New York Academy of Science sponsored a conference concerned with the 

rhythmic phenomena in living systems and, in 1966, another conference 

with human variation as the theme. The resulting publication from the 

former with Wolf (1962) as conference editor serves not only to indicate 

the application in varied biological fields, but also provides a valuable 

source of bibliographic information. The publication resulting from 

the latter, with Brozek (1966) as conference chairman, contains several 

papers concerned with variation in the genetic sense, but also contains 

papers directly concerned with variation over time. In particular, 

Vandenberg's (1966) contribution gives a discussion of statistical 

techniques and computer applications together with a rather extensive 

list of references.

Although some investigators such as Potthoff and Roy (1964) 

and Elston and Grizzle (1962) have offered new multivariate techniques
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for handling time response curves of the growth curve type, a large part

of the theoretical work on time response seems to concentrate on dealing

with the analysis of rhythmic data. In discussing these analyses

Sollberger (1962) writes.

The various types of analysis may be obtained by tedious mathe­
matical computation or mechanical, optical, and electronic com­
puters. They include several modifications of straight­
forward harmonic analysis, auto-correlation (lag correlation, 
correlating a curve with itself, moved one or several steps 
out of phase, yielding correlograms ...), and cross correla­
tion. The results may be represented by an amplitude spectrum 
(periodograms, frequencies on the x axis, corresponding ampli­
tudes on the y axis), a power spectrum (phase plotted against 
frequencies). Many of these analyses require long stretches 
of cycle recordings which may be difficult to obtain. ... The 
application of Fourier analysis to biological rhythm has 
developed rapidly in the last years, ... .

Although advances have been made in techniques since the time 

of Sollberger's statement, it still serves as a succinct summary of the 

more sophisticated analyses for rhythmic data. However, many biological 

investigations are carried out which, although concerned with measure­

ments over time, are not seeking the information yielded by the above 

analyses nor, in many instances, does the conduct of the experiments 

yield data which is suitable. The investigations of diurnal variation in 

blood coagulation times of animals reported by Scheving and Pauly (1967), 

Nagorra-Stasiak (1963), and Everson (1960) are examples of such studies.

Statistical tools are available to aid in the extraction of 

information from the time series resulting from these studies, but often 

the appropriate tools are not those analyses mentioned by Sollberger.
It is to some of these less elaborate (though often more appropriate) 

statistical methods and their application to time series that this 

dissertation addresses itself. Although the term "time series" has
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become so closely associated with analyses involving Fourier series, 

power spectra, etc., that its usage seems to connote data to be sub­

jected to one of these techniques, this is not the intention here. A 

time series will mean simply measurements taken serially over time.

For the purpose of discussion the analyses of time series con­

sidered here will be partitioned into two classifications - Time Classi­

fication Analyses (TCA) and Time Average Analyses (TAA). The appropriate­

ness of a TCA or TAA approach in the extraction of information for a 

particular study will depend upon the nature of the variable measured 

and the sampling procedure and the inferences to be made. The defini­

tions, examples, and discussions below will provide the rationale for 

this partitioning.

Time Classification Analyses

If the analysis regards the time points as levels of a classi­

fication or factor, then the analysis will be called a Time Classification 

Analysis which, for brevity, will be denoted by TCA. Essentially this 

is a requirement that the subject matter point of view and the conduct 

of the sampling allow a meaningful way to define an equivalence of time 

points across a second classification such as individual subjects, groups, 

treatments, etc.

Many of the investigations concerned with circadian periodicity 

and seasonal rhythm would meet this criterion. The investigation by 

Scheving and Pauly (1967) provides a clear example of a set of data for 

which a TCA would be appropriate.

In many investigations yielding data consistent with a TCA



there are typically several environmental conditions {a^, a^, . a^} 

measured at times (b^, b^, •••> b^}. The time levels may be actual clock 
times that are the same for each condition or, the more usual situation, 

time relative to some specific event. In the article cited above the 

measurements within each environmental condition were begun at 6 A.M. 

and taken every two hours until 4 A.M. the following day. Each group 

was measured on different days, but the time points were regarded as 

equivalent since they were measured as time elapsed from a specific 

event, (12 Midnight).

The important point concerning the "levels" of time is that for 

the purpose of interpretation they are equivalent in some meaningful 

sense across groups.

The purpose of such experiments is to gain information on the

locus of the mean of a population of subjects over a time period.

The population of inference is all subjects (of which a sample has been

measured at time points b^, bg.....  b^) under environmental condition

a^. Not only is the experimenter uncertain of the exact value of the

population mean at a time t^ because he is estimating this from a sample 

from but also there is usually assumed a random variable associated

with each measurement. Said another way; if several elements of the 

sample are measured at time b^ they will not all give the same value 

for two reasons.

(1) An element x^ has its own individual deviation from the 

population mean.

(2) There is s random component e.K-i
Conceptually, the e is a random variable in the sense that if
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were measured again at the same (equivalent) time, the e would not 

necessarily be the same. The ir̂ , however, is a characteristic of the

element and would be the same.

Clearly, the problem of extracting information from these experi­

ments is partially a statistical one. However, examination of recent 

publications concerning studies of this nature reveals that only the 

simpler statistical techniques are usually applied to the data. As an 

example consider the following statement from the article by Scheving 

and Pauly (1967) cited above : "Statistical analyses were made by calcula­

ting the standard error of the difference between the means to be compared 

and the t value." The means compared were, for each environmental condi­

tion:

1. High vs. low

2. Overall mean vs. high

3. Overall mean vs. low.

Certainly these are comparisons of interest and are appropriate; however, 

application of slightly more sophisticated analyses would allow other

informative comparisons to be made. Also, since in the original analysis,

the pairs to be tested were determined after examining the data, prob­

ability levels obtained from Students' t tables could be seriously mis­

leading.

The data were presented as means for each time point together 

with a standard deviation for each mean. Graphs of the means were pre­

sented and inferences made from examining the graphs. The purpose here 

is not to criticize the discussions and observations presented, but to 

point out that the application of certain statistical techniques will



allow correct probability levels to be associated with desired compari­

sons. The authors were kind enough to grant permission for the use of 

their data to illustrate an analysis by TCA. This expanded analysis is 

presented in CHAPTER II.

Time Average Analyses

If an analysis summarizes the measurements without specific 

regard to the time coordinates and inferences are drawn only from the 

averaged or pooled measurements over time, then the analysis will be 

called a Time Average Analysis which, for brevity, will be denoted by 

TAA. The investigation of fibrinogen patterns by Hampton (1966) offers 

an example of data analysed by TAA. In the analysis presented, not 

only are estimates of means obtained by averaging over time (the more 

common TAA found in applied biological literature), but also estimates 

of within subject variances are obtained by pooling over time.

A TAA is appropriate whenever inferences are to be drawn - 

(by choice or necessitated by circumstance) only from estimates of the 

characteristics of the distribution of values attained by a variable 

over the sampled time interval. The property of when in the interval 

values are attained enters the problem only in connection with how to 

sample, not as a factor which changes the population values being esti­

mated. If certain mathematical niceties are ignored, one may say, 

roughly, that these population values and estimates depend upon the 

relative frequency with which values are attained, but not upon the 

pattern exhibited over time in attaining these values. Note, however, 

that the interaction of the sampling plan and pattern may have important 

effects on estimates.
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Although many investigations conducted in laboratories would 

use a TCA, many others would use TAA; however, information gathered from 

large epidemiological studies such as the Framingham, Tecumseh, and 

Roseto studies would almost exclusively be summarized in a manner that 

would classify the analysis as TAA. In large sampling situations the 

difficulty in controlling the activities of subjects, especially human 

subjects, often prohibits the measurements at precise times which are 

necessary for a meaningful TCA. Perhaps the best that can be done in 

survey situations is to control partially for time pattern changes by 

partitioning the data relative to when the measurements were taken 

(time of day, season of year, etc.).

In addition to the difficulties in conducting experiments, the 

variable itself may be such as to almost preclude a TCA approach. The 

pattern exhibited may be similar in two different subjects, but the time 

coordinate must be measured relative to each subject if the similarity 

is to be perceived. The pattern in hormone levels related to the men­

strual cycle in women is an example. Of course, when the cycle is known, 

as in this case, it would be possible to define meaningfully equivalent 
time points by measuring time relative to onset of menses for each indi­

vidual, but when such specific knowledge is not available, there may be 

no way to define meaningfully equivalent time points.

Whether for convenience, nature of the variable under study, 

availability of data, tradition, or other reasons, many studies are con­

ducted where conclusions are reached by examining only the distribution 

of values obtained. In the following chapters some of the difficulties 

and merits of this procedure will be examined.



The greater portion of this dissertation is devoted to TAA topics 

rather than TCA, not because TAA is felt to be more important, but only 

because discussions applicable to TCA are found in most standard statis­

tical references. The portion devoted to TCA is intended only to 

illustrate how standard statistical techniques may be applied to bio­

logical time series by regarding time points as levels of a factor.

With this view of time in mind, many of the statistical techniques dis­

cussed in context other than time series are seen to be appropriate and, 

therefore, a less detailed treatment of TCA seems sufficient.



CHAPTER II

When the aim of an investigation is the acquisition of informa­

tion on the response over time of a variable G under a set of environ­

mental conditions A = {a^, Ug, ...» a^}, and measurements are made in 

each condition at a set of time points B = {b^y b^, ..., b^}, a well 

known statistical procedure, an analysis of variance (AOV) will be the 

basic statistical tool appropriate for the analysis in order to interpret 

the data. Although certain conditions must obtain for an AOV to be theo­

retically valid, rigorous insistence that the assumptions are exactly 

met is seldom made in situations where AOV's are used extensively, and 
a critical attitude toward these assumptions simply because time is re­

garded as a factor would seem unnecessarily restrictive. In this chapter 

only analyses which require these assumptions are specifically considered. 

The same approach may be used, however, with most of the observations 

and recommendations remaining germane, even if the nonparametric analogs 

are used rather than the normal theory tactics discussed here. Winer 

(1962) discusses the nonparametric analogs of AOV's. Siegel (1956) gives 
many of the nonparametric alternatives together with comparisons of re­

lative efficiency.

For statistical considerations studies in which measurements 

are taken at the same (equivalent) time points under several conditions

9
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may be considered as experiments conducted with a factorial arrangement 

of treatments. The time points are regarded as levels of factor B and 

the conditions as levels of factor A. An appropriate analysis conducted 

in the factorial context will "answer" the following questions:

1. Are the means (averaged over all time periods) different across 
conditions? (A main effect).

2. Are the means (averaged over all conditions) different across 

time periods?' (B main effect).

3. Is the pattern of response over time the same in each condition 

(except possibly for a translation), i.e. are the time response 

curves within each condition parallel?

In addition to the above three questions (which are the ordinary 

orthogonal partitions made in a factorial analysis), tests of the simple 

effects of B within each level of A would "answer" the question (for each 

condition) "Does the response variable vary over time?". These tests 

would be concerned with the same information that is being tested by the 

"t tests" of the investigation of Scheving and Pauly (1967) mentioned in 

CHAPTER I. The selection of comparisons, however, would not be based 

upon examination of the data, and a proper probability level would, there­

fore, be obtained. Note also that an AOV would use information under all 

times and conditions for the estimation of the error term. Thus a better 

estimate of error is available than with the t test approach.

Also, subsets of conditions or subsets of times can be compared 

for parallelism of response curves over time. Of course, care must be 

taken in selection if independence of tests is to be preserved.

Even xf an xnvestigation is confined to a unxvarxate approach
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for a time series with time regarded in the factorial context, the 

possible designs are many. A greater degree of complexity occurs with 

the introduction of more and more classification factors, replications 

in the factorial sense, attempts to design so as to estimate residual 

effects, etc. The set of all such designs, however, may be partitioned 

into two important subsets - those designs in which each experimental 

unit is measured under only one treatment combination, and those in 

which some or all experimental units are measured under more than one 

treatment combination. The assumed structural model for the analysis 

and a brief discussion of the two-way cross classification design in 

each of these subsets is given below for the purpose of pointing up the 

relevant difference between the two subsets and to offer justification 

for the conceptual view of time points as levels of a factor.

Both of these analyses and the multivariate approach to the 

same experimental situation discussed below require the usual assumption 

of normality, equality of variance, and identical covariance matrices 

across conditions.

If the structural model assumed is

*ljk - k + »i + .
where x^^^ is the observation on the subject under condition a^ at

time bj; p is the overall mean; is the effect of condition a^;

B. is the effect of time b .; oB.. is the interaction; and e... is a 
j J ij

2random variable distributed N(0, a ) and E(e..,, e.,.,.,) = 0 for ijkG 13 ̂  1 3
not identical to i'j'k', then the analysis will be called a Type I.

This analysis would apply to studies where no repeated measure­

ments aie made on the same experimental unit, i.e., a different group of
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subjects is measured at each time point and condition. This circumstance 

would obtain necessarily in many biological studies where the measurement 

itself requires the sacrifice of an experimental animal or, when the 

animal is not sacrificed, the measuring process is such that it may in 

some way influence a measurement at a subsequent time. The latter con­

dition necessitated the use of different rats at each time point in the 

coagulation study used below as an example of TCA.

Theory and computational procedures for Type I are discussed in 

most texts on experimental design. Steel and Torrie (1960) and Winer 

(1962) give extensive and readable coverage of this topic.

If the structural model assumed is

*ijk = y + “i + *k(i) ĵ “^ij ®k(ij) ’

where the terms have the same meaning as in Type I, but with the addi­

tion of ^k(i) ’ effect of subject k, and parentheses in subscripts 
indicating that the effect is nested under the enclosed indices, then 

the analysis will be called Type II.

Type II would be appropriate when measurements are made on the 

same subjects at each time point within a condition, but different sub­

jects for each condition. Indeed, the term "nested" and the use of 

parentheses in the indexing in the definition above are, respectively, 

the statistical parlance and often used symbolic representation to state 

formally this condition.

The repeated measures upon a subject within each condition to­

gether with the assumptions of the model lead to a within condition co- 

variance matrix with along the main diagonal and a constant ra^ 

elsewhere, i.e., the correlation of measurements at b^ and b^ is a
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constant r for ail i j . This may be regarded as correlation existing 

only because measurements are taken on the same subjects, but not be­

cause of proximity in time. When correlation does exist because of 

proximity in time. Type II is not strictly proper. Under these circum­

stances the multivariate view of the time series is appropriate.

Note that the covariance matrix of Type I consists of along 

the main diagonal also, but with zeros elsewhere.

Winer (1962) deals at great length with Type II and other more 

complex designs with repeated measures, as well as with comparisons of 

Type I and Type II models.

Cole and Grizzle (1966) offer a multivariate alternative to the 

Type II repeated measure design above. This alternative will be re­

ferenced as Type III. In this analysis a slightly different concept of 

the series of measurements is employed. As in Type II, measurements 

are taken on.the same subject at each time point, and different subjects 

are used for each condition. However, the series of measurements at time 

points b^, bg, ...» b^ for each subject is regarded as an element drawn 

from a q dimensional multivariate normal population. Whereas the time 

points are considered levels of a factor in Type II, they act in Type III 

as an index to designate 1̂ *", 2^^, ..., component of a vector.

As mentioned above, if correlation between pairs of measurements 

within a subject is a function of their proximity in time, then the 

assumptions necessary for Type II are not met. This condition does not 

violate the assumptions of Type III. In the article cited, the authors 

offer analyses of time series data by both Type II and Type III, con­

trast the two, and suggest conditions under which one is to be preferred
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over the other. All the comparisons yielding main effects, interactions, 

simple effects, etc., possible in the Type II are possible with Type III. 

In fact, the method of forming rejection regions (the union intersection 

method of Roy) allows comparison to be made without the distinction 

necessary in Type II between pre-planned comparisons and those conceived 

after examining the data.

Although Type III circumvents certain problems of Type II, the 

multivariate approach creates difficulties of its own. The complexities 

of computing procedures is not the least of these. Also, the question 

of power of these tests does not seem resolved. For a more thorough 

discussion of the merits and difficulties of Type III, the article cited 

may be consulted.

Although Types I and II are found in many intermediate level 

text books in the section covering factorial and factorial with repeated 

measures on one factor, there is a shift of interest when these methods 

are applied to time series which is not reflected in the usual text book 

treatments and examples. Since the interest is in the pattern of re­

sponse over factor B, and the effect upon this pattern by the levels of 

A, the AB interaction is the major concern rather than main effects.

The problem of extracting information about the response curves across 

levels of a factor is treated most often in the statistical literature 

in one of two ways:

(1) Estimation of the curve and a corresponding confidence band.

(2) Partitioning the interactions into comparisons such as linear 

by linear, quadratic by linear, quadratic by quadratic, etc. 

Most intermediate level texts discuss the procedures and
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interpretation of this trend analysis approach.

While both of these procedures are appropriate for many time 

series, there are certain problems associated with each for particular 

applications. In the usual regression fitting of a polynomial to cyclic 

data such as circadian rhythms, the "closeness of fit" at particular time 

points may be influenced by the selection of the time to be considered 

as the first in the series. The fitting of a polynomial model to a set 

of data with, say 12 noon measurements, considered as the first of the 

series may yield different values for a given "closeness of fit" criterion 

than the value obtained by fitting the same polynomial model to the same 

data with, say 12 midnight measurements, considered as the first of the 

series. Since the designation of starting time is arbitrary if the pur­

pose is to represent the curve through exactly one cycle, an investigator 

may be able to find an adequate fit (by whatever standard he wishes to 

judge "adequate") with the use of a smaller degree polynomial simply by 

choosing a different time point as the beginning of the cycle. To 

illustrate the dependency upon starting point, consider a measurement 

series wherein the response curve is exactly sin 2nt. If the first mea­

surement is at t = .25 and the last at t = 1.25, then a plot of the data 

would appear parabolic, and a second degree polynomial would roughly 

approximate the curve. However, if t = 0 were the initial point and 

t = 1 the last, a third degree polynomial would be required for even a 

crude approximation.

Clearly, the ability to describe the data by a lesser degree 

polynomial would be advantageous where the calculations are to be done 

on a hand calculator, but it is perhaps not so obvious when a computer
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program is to be used; however, the problem of retention of significant 

digits does present itself in some programs for regression analyses.

Descriptions couched in terms of trend analysis may be difficult 

for a researcher to interpret meaningfully. Information such as "the 

general upward (downward) trend is the same under all conditions" - a 

rough statement of the failure of linear by anything to be significant - 

may not be helpful. In a specific study there are often other compari­

sons that would be more useful for extracting information from the data.

A close cooperation between a researcher and a statistical consultant may 

uncover sets of comparisons which may be presented together with proper 

probability levels that will have a clearer interpretation from a subject 

matter, point of view and, consequently, be more helpful to the researcher 
and the readers of his publication.

When the sets of comparisons are not defined a priori but are 

decided upon only after examining the data, the methods suggested by 

Scheffe" (1959) may provide a method of reporting a proper probability 

level. As mentioned above. Dr. L. E. Scheving and Dr. J. E. Pauly have 

given their permission to use the data from their coagulation study (1957) 

to illustrate the applicability of certain statistical, graphical, and 

data analysis techniques to measurements taken over time. The results 

of the application of these techniques lead concessions that differ 

in some respects from those of the authors, "hese differences are in 

no way intended as criticism, but rather examples of how more thorough 

analysis may give insight into alternate interpretations and suggest 

hypotheses for further study.

The following is from the abstract appearing with the



With all other environmental factors rigidly standardized, normal 
Sprague—Dawley rats were maintained under the following schedules:
(1) 12 hours of artificial light 0600 to 1800 alternating with 12 
hours of darkness - LD; (2) reversal of the first - DL; (3) con­
stant darkness - DD; and (4) constant illumination - LL.

After the animals had been under a specific lighting regimen for 
at least three weeks, blood coagulation times were determined on 
separate groups of 8 to 16 animals at bi-hourly intervals during 
a 24 hour period.

The following is from the text of the article:

In the first phase of the study two different colonies were 
utilized. One colony had been in DD for nearly four months; 
the second colony had been maintained under a LD regimen for 
almost three months. Other than the differences in lighting 
regimens the rats were comparable ... .

The second phase involved sampling the original colony of rats 
that had been utilized for the DD studies but which, by this 
time, had been maintained in LL for about one month. However,
prior to being placed in LL they were first subjected to LD
cycles for seven days ... .

The LL animals subsequently were placed in LD for readjustment 
and then were subjected to DL.

For a more detailed explanation of the conduct of the experi­

ment the article should be consulted.

For the purpose of analysis.the two colonies are regarded as 

simple random samples from the population of rats to which inferences 

are to be made (noirmal Sprague-Dawley rats weighing about 350 grams, 

etc.), and the selection of rats to be measured at a time point is re­

garded as a random assignment of time points.to the members of the colony.

In the conduct of the study equal numbers of rats were not used 

at each time period in either the first or second phase. In order to 

illustrate analyses with equal and unequal cell frequencies the data 

from the first phase was adjusted by randomly discarding measurements 

from.those time points for which more than 12 rats were measured. Thus,
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the cell means presented here for LD and DD rats will differ slightly 

from those in the article. Table 1 below gives the summay statistics 

for the data used in this analysis. Table 2 is the basic AOV and simple 

effects resulting from a Type I analysis with equal cell frequencies. 

Prior to the computation of the AOV, the homogeneity of variance assump­

tion was tested by the method of Hartley. No evidence was found for re­

jection of the hypothesis of equality of variance with a = .01.

Although this basic AOV could be made more elaborate by further 

partitioning, the analysis as presented in Table 2 would provide statis­

tical support for several hypotheses concerned with the daily temporal 

relation of the coagulation time (CT) of laboratory rats. Some possible 

wordings of these hypotheses are the following:

i. The 24 hr. CT mean is different in LD rats from the 24 hr.

mean of DD rats (significance of lighting condition main 

effect).

ii. Within the LD and within the DD conditions the locus of the

CT mean over time is not a constant (significance of within 

LD and DD simple effects). 

iii. The pattern over time of mean CT response of LD rats is not

parallel to the pattern of DD rats (Significance of Condition 

X Time interaction). 

iv. The mean CT of LD rats is different from the mean CT of DD

rats for each of the time points measured from 0730 through 

1730 (significance of the first 6 within time points simple 

effects).

V. No difference in the mean CT of LD rats and DD rats is
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TABLE 1

SUMMARY STATISTICS* FOR COAGULATION TIMES OF 
RATS UNDER DD AND LD LIGHTING CONDITIONS

DD LD
Time
Period

Mean*
(Sec.)

Standard
Error

Mean*
(Sec.)

Standard
Error

0730 255.3 12.0 217.8 13.6

0930 136.3 14.7 246.1 13.8

1130 131.8 12.9 276.8 15.1

1330 149.4 19.6 219.9 13.1

1530 163.9 11.0 240.6 21.3

1730 181.2 19.7 265.4 10.9

1930 283.1 12.0 259.3 15.0

2130 288.1 22.3 299.3 18.9

0230 344.8 25.0 302.4 18.8

0130 321.1 17.9 314.3 23.3

0330 306.6 17.2 296.5 23.7

0570 254.5 19.2 257.4 16.9

*Each mean is based on 12 rats for a total of 288 rats.
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TABLE 2

ANALYSIS OF VARIANCE FOR COAGULATION TIMES OF RATS 
UNDER DD AND LD LIGHTING CONDITIONS

Source of Variation SS DF MS F
Lighting Condition 72168.340 1 72168.34 19.64**
Time Period 672797.733 11 61163.43 16.64**
Condition x Period 258295.524 11 23481.41 6.39**
Within Cell 970248.418 264 3675.18

Time Periods Within Lighting Condition Simple Effects
Condition SS DF MS F

LD 137028 11 12457.1 3.38**
DD 794065 11 72187.7 19.64**

Lighting Condition Within Time Periods Simple Effects
Time Period SS DF MS F

0730 8437.50 1 8437.50 2.29
0930 7238.01 1 7328.01 19.69**
1130 1261.50 1 1261.50 34.32**
1330 2982.15 1 2982.15 8.11**
1530 3526.66 1 3526.66 9.59**
1730 4258.83 1 4258.83 11.58**
1930 3384.37 1 3384.37 .92
2130 7481.70 1 7481.70 .20
2330 1075.26 1 1075.26 2.92
0130 2733.75 1 2733.75 .07
0330 6100.44 1 6100.44 .16
0530 5104.10 1 5104.10 .01

**Indicates significance at .01; * at .05.



91

detectable at a = .05 for each of the time periods measured 

from 1930 through 0530 (non-significance of last 6 within 

time points simple effects).

Further partitioning of the within ID simple effect sum of 

squares could be made so as to lead to more specific comparisons concern­

ing the nature of the pattern of response over time within this lighting 

condition. In addition to the trend analysis mentioned above, the nature 

of the subject matter suggests other comparisons such as the mean CT in 

light versus the mean under darkness, the first x time periods after 

switching on lights versus the first x time periods after switching off 

lights, the middle time periods of light versus middle dark periods, 

etc. Similarly, other meaningful comparisons may be made by further 

partitions of the DD simple effect or interaction sum of squares.

These comparisons, in the context used here, are preplanned 

comparisons, i.e.,comparisons decided upon without examining the data.

Of course all possible comparisons should not be made. The specific 

questions which a researcher would like the data to answer would govern 

the selection of the set of comparisons. Ideally, the set selected 

would consist only of orthogonal comparisons so as to preserve the in­

dependence of tests, but departure from complete independence in order 

to obtain meaningful comparisons should not be condemned. The lack of 

independence should, of course, be noted in the discussion of results.

Comparisons which are suggested by the data can, of course, be 

made. The procedure of Scheffe' (1959) assigns a proper a level to com­

parisons. He refers to such procedures as "data snooping". The dis­

advantage of making comparisons after the fact lies in the lessened
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ability to detect small differences, i.e., differences in data means 

must be greater to be declared significant at a given a level if the 

comparisons are decided upon after examining the data. Comparison of 

the high mean with the low mean would be an example of this kind of com­

parison. There are alternatives to Scheffe^'s method when only pairs of 

means (such as the high and low) are to be compared. Duncan's new 

multiple range test is an excellent alternative which divides the set of 

all means into groups which may be considered different at a proper a 

level. Application of this test to the cell means of this study at each 

time point within each condition shows that the high and low mean in each 

condition are significantly different for a .05 a level.

Since an AOV is essentially only an arithmetic process for 

partitioning the sum of squares into identified sources of variation, 

the AOV presented in Table 2 is certainly not the only possible basic 

partitioning. The analysis is governed by the basic point of view taken 

of the experiment. This is necessarily a subject matter decision, not a 

statistical decision. If the view is taken of the first phase that the 

experiment is designed to detect the differences in the CT response 

pattern over time in rats exposed to light during normal daylight hours 

and the pattern in rats kept in total darkness during (a) the time period 

of exposure (6 AM to 6 PM) and/or (b) the time when neither is receiving 

light (6 PM to 6 AM), then the AOV in Table 3 would perhaps be more 

appropriate. The AOV of Table 3 would directly furnish statistical 

support for the following conclusions:

i. In the hours of exposure to light the response pattern of LD 

rats differs from that of DD rats not only in the average



TABLE 3

ALTERNATE AOV FOR LD AND DD CONDITIONS

Source of Variation DF SS MS F

Among All Cells 23 1003261.516 43620.07

Between Day and Night Hours 1 543664.720 543664.72 147.9**

Within Day Hours 11 360716.580

Lighting Conditions 1 201377.460 201377.46 54.79**
Time Periods 5 46073.840 9241.77 2.51*

Lighting x Time 5 113265.276 22653.06 6.16**
Within Night Hours 11 98880.240

Lighting Conditions 1 4737.960 4737.96 1.29

Time Periods 5 83060.520 16612.21 4.52**
Lighting x Time 5 11081.760 2216.35 < 1

Within All Cells 264 970248.418 3675.18

Total 287

**Indicates significance at .01; * at .05.
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clotting time for the daylight hours (significant Within Day 

Hours Lighting Condition main effect), but also in the shape 

of the pattern (significant interaction Within Day Hours),

ii. In the time interval in which neither colony is receiving light 

no evidence of either a different average CT (failure of 

Within Night Hours Lighting Conditions main effect to be signi­

ficant) or pattern of responsej(failure of Within Night Hours 

interaction to be significant) is found between the two 

colonies; however, the locus of the mean clotting time is not 

constant over the night hours (significant Within Night Hours 

Time main effect).

As a computational convenience the data for the day hours and 

night hours may be regarded as separate sets or experiments in the com­

putations of their respective sums of squares for conditions, times, 

and interaction, but the information for the error term comes from each 

cell of both sets. Note that the within time period simple effects and 

the within LD and DD simple effects (ignoring the day-night classifica­

tion) would be the same for the analysis of Table 2 and Table 3.

While both analyses convey, in a general way, the same inform­

ation, slightly different hypotheses are being directly subjected to 

statistical tests in the two analyses. As an example consider the within 

night hours lighting condition main effect. This was tested in the se­

cond analysis and found to be not significant. One might have suspected 

that this would be the result since the simple effects within the 1930 

to 0530 time periods reported in the first analysis were not significant; 

however, it is perfectly conceivable that the difference at each time



25

point would be so small as to be undetectable at any one point, but the 

information accumulated over all the times (the test of main effect) 

would be sufficient to detect the small difference.

Although a well constructed statistical analysis may be extremely 

helpful in extracting information, a large measure of the essential mean­

ing is often more quickly imparted by a plot of the data. For studies 

in which the main interest is in pattern of response over time this is 

certainly true. In the plot of the CT response data means for each of 

the lighting conditions (Figure 1), some of the conclusions of the AOV 

would seem obvious, but others would not. The significant DD simple 

effect, for example, would be easily detected from the graph, but the 

failure of the LD and DD responses to be significantly different during 

the night hours is not so apparent. In the original article, this 

similarity is not noted.

Often a smoothing of the data by some process will be an aid 

in perceiving patterns obscured by variation of the data points. An 

often used procedure is the least squares fit of a polynomial to the 

data. Programs for this procedure are available at most computer faci­

lities and if a plotter is available as peripheral equipment to the 

computer, even the tedium of plotting the large numbers of points neces­

sary to produce a smooth curve is circumvented.

A sixth degree polynomial was fitted to the cell means for both 

the DD and LD conditions with 0730 considered as first time point (Fig­

ure 2). To illustrate the dependency of the fit of a polynomial upon 

choice of first time point, a sixth degree polynomial was also fitted 

to the means with 0130 considered as first time point (Figure 3). For
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the LD condition the 0730 polynomial accounted for 86.56% of the total 

variation of the cell means while the 0130 fit accounts for only 76.71%. 

For the DD condition the 0730 start yields a polynomial which accounts 

for 93.92% of the variation and the other accounts for 94.03%. These 

differences in the percent of variation accounted for by the regression 

reflect the difference in the adequacy of fit obtained for different 

choices of the serial relation of the time points.

The summary statistic for the LL and DL conditions are given in 

Table 4. Note that the number of rats measured is not the same at each 

time point. Therefore, the techniques used in the first phase must be 

modified slightly to account for the unequal cell frequencies. The 

technique of an unweighted means analysis seems appropriate for these 

data. This procedure is computationally simpler than the procedure based 

upon the least squares solution to the unequal cell frequency problem.

The computational methods and conditions under which each of these 

analyses is proper are discussed in Winer (1962).

To illustrate the appearance of an AOV with more than two 

environmental conditions, the DD condition is included in the analysis 

for the second phase. The AOV computed by the unweighted means procedure 

is given in Table 5. Although the sums of squares are computed by a dif­

ferent technique, the interpretation of the effects is analogous to those 

given with the two previous AOV*s.

In the analysis of the first phase data it was found that when 

the light stimulus was removed, the coagulation times of the rats were 

not significantly different from those of rats which had received no 

light. Hence, a comparison which (before observing the data) would seem
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TABLE 4

SUMMARY STATISTICS FOR COAGULATION TIMES OF'
RATS UNDER LL AND DL LIGHTING CONDITIONS

Time
Periods

LL
Sample Mean 
Size (Sec.)

Standard
Error

Sample
Size

DL
Mean
(Sec.)

Standard
Error

0730 12 268.1 12.4 12 217.6 15.0

0930 13 255.0 13.9 12 150.4 26.4

1130 14 251.9 15.1 11 138.5 19.3

1330 14 274.4 12.7 11 149.5 20.8

1530 14 272.9 14.4 12 178.8 26.6

1730 14 284.1 15.6 11 181.3 22.1

1930 14 299.5 15.2 9 221.4 28.6

2130 14 305.8 16.2 12 237.1 24.0

2330 13 284.4 12.2 12 231.5 14.2

0130 12 305.1 16.9 9 216.6 6.2

0330 12 333.4 16.5 11 211.6 12.0

0530 12 292.2 14.4 11 210.9 19.3
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TABLE 5

ANALYSIS OF VARIANCE FOR COAGULATION TIMES OF RATS 
UNDER DD, DL, AND LL LIGHTING CONDITIONS

Source of Variation SS DF MS F

Lighting Condition 586245.494 2 293122.747 79.03**

Time Period 725098.549 11 65418.050 17.77**

Condition x Period 293504.219 22 13341.101 3.60**

Within Cell 1479891.510 399 3709.00

Time Periods Within Lighting Condition Simple Effect
Condition SS DF MS F

DD 791641 11 71967.3 19.40**
DL 155469 11 14133.5 3.81**
LL 71493 11 6499.3 1.75

**Indicates significance at .01; * at .05.



to be of interest is a comparison of measurements during the dark hours 

for the DL rats with the corresponding times for the DD rats. The re­

sults of this comparison are given in Table 6.

Note that the tests in the second phase analysis are not inde­

pendent of those in the first phase since the DD data are included in 

both. However, the DD data used in computing the main effects and inter­

action sums of squares in Table 6 were not used in the computation of 

sums of squares for the Within Night Hours portion of the analysis in

Table 3. The only data common to both comparisons is the contribution

to the pooled error term made by the DD data. Thus, joint consideration 

of these two comparisons is not greatly influenced by the presence of 

DD data in both.

A possible interpretation of the joint consideration that sug­

gests itself is that upon removal of the light stimulus the rats revert 

within a short period to a basic time dependent CT pattern manifested 

in rats which have not been exposed to light for nearly four months.

In the discussion portion of the original article, the authors note that 

the CT pattern in rats does not seem to invert with an inversion of the 

light-dark cycle, and express concern for this seeming "resistance to 

inversion in blood coagulation rhythm" since "it previously had been 

reported that the characteristic rhythms in their (same rats) circula­

ting eosinophils, neutrophils, and leucocytes as well as the rhythm in 

their plasma corticosterone levels all could be inverted by reversing 

the environmental LD cycle 180®."

If the interpretation suggested above is accepted, then no 

inversion would be expected and the dilemma is, at least partially,
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TABLE 6

COMPARISON OF DARK HOURS FOR DL EATS 
WITH SAME HOURS FOR DD RATS

Source of Variation SS DF MS F

Lighting Condition 2.942 1 2.94 <1

Time Period 164781.011 5 32956.20 8.89**

Condition x Period 8957.108 5 1791.42 <1

Error Term (From Table 5) 3709.00

**Indicates significance at .01; * at .05.
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resolved. Indeed, one might speculate that some of the other reported 

inversions may be manifestations of the light stimulus interaction \d.th 
a basic no-light pattern rather than true inversions. These findings 

are in no way intended as criticism of the author’ work, but are offered 

as an example of how slightly more sophisticated statistical techniques 

may be used to extract from the data a larger portion of the information 

concerning questions which are important to the researcher.

It is not intended that the analysis of the coagulation study 

presented here be construed as "the most appropriate" analysis possible. 

Many others would be equally, or perhaps more appropriate. The inten­

tion here is to illustrate the applicability of a basically analysis 
of variance approach to rhythmic time series data.



CHAPTER III 

SOME THEORETICAL CONSIDERATIONS FOR TAA 

Introduction

Many physiological variables are known to vary within a subject 

over time as well as among subjects. Often the variable of interest, 

say G, will in some manner vary within a subject around a central value 

and the purpose of much research is to obtain estimates for this central 

tendency. Conceptually, the central value for subject A is a number 

assigned to the subject as a measure of G although if G were measured 

at a randomly chosen time, the probability of obtaining G^ as the actually 

measured value may be very small (possibly zero). Nevertheless, the 

concept of a central value is a useful abstraction since it offers a 

number with some stability over time which characterizes G within A over 

some time interval. In fact, its use has proven so fruitful that it 

seems to have dominated the thinking of much biological research. Other 

characteristics of the relationship of time and G within a subject, such 

as the variability over time, have often been ignored or used only to 

establish a measure of reliability for the central tendency number.

Procedures for classification, estimates of susceptibility to 

disease, etc. often depend upon an estimate of central tendency only. 

Variability enters the procedure only as a measure of reliability of the 

estimate and is seldom of itself used as a criterion. The common usage

35
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of "Error Term" for the measure of variability indicates the general 

attitude toward this characteristic of G. This is not to say that vari­

ability is not recognized and used. Indeed, the analysis of variance 

is a much used tool in biological statistics, but the point of view is 

still directed toward the relationship of certain mean values rather 

than the variability over time. A comment heard often in discussions 

of medical studies is "The patient group seems more variable than the 

normals." Even though the difference is noted, it is often ignored and 

tests which require homogeneity of variance are applied. The robust­

ness of these tests is such that little damage is done— perhaps. The 

point here Is not to attack the use of Student's t tests and AOV pro­

cedures when variances seem slightly different, but to suggest that per­

haps a useful characteristic of the phenomenon under study is being 

ignored in some investigations.

In practice, the mean is most often used as the measure of 

central tendency and the variance (or its square root) is used as a mea­

sure of variability. Researchers may be better able to use information 

phrased in these terms because of familiarity. For this reason, the 

concentration here will be upon exploring possible uses and properties 

of the usual estimates of means and variances under certain conditions.

Consider the familiar problem "Does group A differ from group 

B relative to variable G?" A straightforward and often used sampling 

approach to attempt to answer this question is made by obtaining sub­

jects in group A, subjects in group B, measuring G once in each sub­

ject and presenting the usual sample estimates G^ , G^, S^, for each

group mean and variance.
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Assuming that conditions for the sample and measurements are 

such that the estimates are unbiased, there is still a problem concerning 

the variance that should be considered. The expected value of for 

each group is composed of two components— the within subject and the 

among subjects variances. Symbolically,

= "sA + " m

where the S subscript denotes the variance among subjects and the W de­

notes the within subject variance. If only one measurement is made on 

each subject, the two variance components are completely confounded. 

Clearly, there are various possible combinations of relative sizes for 

the population values of these components such that E(S^) = E(S|), but 

# Ogg and o ^  ^ Also, corresponding components from each group,

say o|a and Ogg may be equal, or nearly so, and large relative to 

and 0^ .  Under this condition may not be an unusual result from

a sampling situation even though, Is very different from.a^.

Thus it can be seen that even if the question of difference in 

the groups is confined to means and variances, the above approach may 

obscure important Information. Note that increased sample size does not 

mollify the problem.

Amother common problem in biological research is the estimation 

of "normal" values. As in the problem of comparing two groups, this 

problem Is often approached by drawing a sample of N subjects, measuring 

the quantity G once on each subject and reporting a mean and variance 

estimate from the sample. A second approach is to take several measure­

ments on each subject, compute a mean for each subject, and use a mean
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of the means as a central tendency measure of the population.

This second approach may be viewed as a two stage sampling prob^ 

lem. It may be shown that the second method may, under some circumstances, 

yield more precise estimates with fewer measurements and/or less cost 

than the first. The considerations necessary for choosing between these 

two and the allocation of measurements among subjects and within subjects 

is considered in Cochran (1965). The point to be made here is that with­

in subject measurements over time may be of value in increasing precision 

and/or in decreasing cost even when the concern is for a central tendency 

measure only.

Although many of the rather general remarks above may be rele­

vant for studies in which a Time Classification Analysis is to be used, 

the primary concern here is for some of the problems in implementing 

within subject measurements as a method of obtaining estimates of means 

and variances of values attained over time for Time Average Analysis.

For many biological situations no problem exists. If the vari­

ation within a subject around the subject's own central value is entirely 

random and a measurement at one sampling time may be considered as 

uncorrelated with any other, then the sample mean y and sample variance 

are statistics appropriate for the estimates and both have many of the 

desired properties of estimators. However, if in addition to the random 

variation, there is a variation which is functionally related with time, 

then the problem of estimates and meaningful interpretations becomes 

difficult. In a TCA the pattern over time of the central value around 

which the random variation occurs is usually observed or taken into account 

in some manner, but in TAA these two sources would be confounded in a
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within subject estimate and complications result. In particular some 

of the desirable properties of y and as estimators may not be guaranteed.

If mathematical tools are.to be employed in perceiving the prob­

lems and interpreting results from TAA, the behavior over time of the 

measured variable and sampling process employed must be couched in pre­

cise terms. Definitions of a model for a variable, sampling models, and 

terminology related to sampling over time are offered below in mathemati­

cally rigorous terms together with less rigorous discussions and motiva­

tions for the definitions. Following the definitions, some theoretical 

results are given in the form of an algorithm and theorems concerned 

with the effect on y and 8% of functional variation over time. Although 

not all of the results are applicable exclusively to periodic variation, 

the emphasis is on this form.

In the theorems presented it is shown that under sampling plans 

often employed in obtaining within subject measurements, is a biased 

estimator of the variance when the pattern over time of the variable 

sampled is periodic. It is further shown that this bias is, in general, 

dependent upon the pattern, the scheme used to select the times for mea­

surement, and the number of measurements taken within each subject.

The theorems indicate some of the misleading results that may 

be obtained if the cyclic nature of the measured variable is unsuspected 

or ignored. Fortunately, however, these theorems together with the com­

puter sampling results given in CHAPTER V provide information for guide­

lines in constructing sampling schemes.to overcome some of the difficul­

ties in obtaining appropriate estimates for within subject means and 

variances for a TAA even if the pattern over time is cyclic.
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A Model for Physiological Variable Over Time 
Before the terms mean, variance, or other characteristics of 

the distribution of values attained may be applied with specificity to 

the relationship of a variable G over time, some model must be assumed.

The model assumed and referenced as MI is the following:

G(t) = f(t) + Ej.

where G(t) are random variables for each real number t, f is a fixed 

function, and the joint distribution is such that for all marginals at 

s,t, K(s,t) = E(Eg e^) exist, E(e )̂ = 0 and K(t,t) = for all t, with 

the additional property that there exist a positive real number d* such 

that d* = inf {d | | s-t | > d implies K(s,t) = 0}. Additional conditions 

common to stochastic processes of this kind, that is, "signal plus noise" 

such as covariance stationarity, where K(s,t) = k(s-t), and k(s-t) is 

continuous at 0, will often hold in the models of interest but these 

assumptions are not made here.

This model, then, describes a quantity G which follows the locus 

of f(t) over time, but which has in addition a random variation around 

the locus. The assumption of the possibility of covariance of e's is 

introduced to account for the belief that in many biological situations 

measurements taken close together in time tend to be alike, but after a 

sufficient amount of time, d*, has elapsed, this tendency is no longer 

detectable. The covariance assumption may be viewed as an attempt to 

build into the model a belief that in the real physical situation a 

finite amount of time is required for G to change appreciably. The 

rapidity with which E(e^ e^) converges to zero is, roughly a measure of 

just how fast it is believed G mav change relative to f.
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Note that as a special case, MI may describe a function G which 

is an exact mathematical function defined on T by letting =0.

Terminology for Sampling of a Function

In the sampling of G, a realization of MI, there must exist some 

scheme whereby the times for taking the measurements are selected. This 

scheme may be a rigidly defined schedule such as blood samples drawn 

every four hours, or a rather loose system such as instructing a subject 

to "come back in two weeks." No matter how accidentally or rigidly the 

selections were made, if n measurements are obtained, then some scheme 

has been used to select n times. This scheme, whatever it may be, will 

be called the sampling plan.

In the consideration of the mean and variance of G over an 

interval T, the mean of f over T is regarded as the "true" or population

mean and the sum of the variance of f and as the population variance.

In many realizations the mean of f is easily obtained by integrating f 

over the interval T and dividing by the length of T. With the mean thus

computed, the variance of f is found by integrating f^ over the interval

T, subtracting the mean squared, and dividing this computation by the 

length of T.

Given below are some of the terms and notations used in con­

sidering the sampling of functions.

Let Tg = {x^ 1 i = 1, 2, ... m} be a set of elements selected 

from a time interval T by sampling plan M.

Let G be a realization of MI defined on T and g(t.) the sample 

value at t^.



The set Y = {g(t^) | e T^) is said to be an m-size sample 

of (from) G over I by M. Forming a set in this manner will be called 

sampling G by (under) M.

The set of values attained by G over T will be denoted by

GY(T).

The distribution function induced on GY(T) by M will be de­

noted by

Sampling G under over T^ is said to be equivalent to 

sampling under over Tg if and only if GY(T^) = GY(T2) T is

identical to Cl. „ .

Définition of RAN

When repeated measurements within subjects are being made, the 

time points are seldom selected in a truly random manner from the sampled 

interval T. If a random sequence of times {t^^ were selected, not only 

would the correlation of measurement taken close together in time create 

difficulty, but also the practical limitation of time required to take 

a measurement would often prohibit the execution of the randomly selected 

schedule. The use of automated devices such as the various patient 

monitoring systems may circumvent the latter objection, but true random 

sampling within subjects would be rare. There would, however, be samp­

ling situations which are approximated by a random sampling model. If 

only one measurement is taken per subject where the subjects are selected 

for sampling from a homogeneous group at random times selected from T, 

then the function representing the group mean over time might be regarded 

as a function being randomly sampled.



Ran Sampling. A sampling plan M is said to be random, denoted by RAN 

(belongs to set RAN), if the set = {t^ | i = 1, ..., m} of time points 

at which G is to be measured is a random sample from the sampled interval 

T.

If G is a realization of MI which is a mathematical function 

(e^ = 0) defined on a sampled interval T, then the distribution induced 

by the RAN sampling scheme, may be constructed by the methods given

In the algorithm below. In the consideration of a RAN sampling of a 

function it is often helpful to construct the associated since an 

m-size sampling of G under RAN may be regarded as equivalent to drawing 

a simple random sample of size m from Following the algorithm,

some of the special techniques in its application are illustrated by

specific examples.

Algorithm for the Construction of Distribution
and Density Functions of GY Given Ĝ

Let G be a bounded, continuous mathematical function defined on 

an interval T = [L,R] such that T may be partitioned into a finite num­

ber m of disjoint subintervals {T^} = T^[a^ = L, a^), = [a^,ag], ...,

^m * ^^m-1* %  “ R] where i < j implies a^ < a^ for i,j = 0, 1, ..., m 

with having the following properties

(1) The union of all e{T^} is T.

(2) Within a given subinterval G is:

(a) monotonie strictly increasing,

or (b) monotonie strictly decreasing

or (c) constant.

If G is sampled over T by RAN, then the distribution function F
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and the density function f of the set of values attained, GY, may be con­

structed in the following way:

I. For each form defined by F̂ (vi) = P[G(t)<y|t eT^]

-00 < y < + oo. F^, therefore, is the distribution function of 

GY^, where GY^ is the set of values attained by G in T^. 

Equivalently, F^ may be viewed as the distribution obtained 

when G is sampled only over T^.

Let G^ be the function equal to G in with G^ undefined 

elsewhere. Then G^ exists whenever the monotonie strictly 

Increasing (decreasing) property of G in holds.

Let GYĵ  MAX be the least upper bound and GY^ MIN be the 

greatest lower bound of GY^.

Using this notation then, F^ will have one of the follow­

ing forms.

(a) If G^ = K^, a constant.

F,(y)
> y

and GY^ MIN = GY^ MAX = G(a^)

(b) If G^ is monotonie strictly increasing

G(a^) < y

Ü T - V i  G ( a ^ . p  < p < G ( a p

0 G(ai-1 > > y,

GY^ MIN = G(a^_^) and GY^ MAX = G(a^)

(c) If G^ is monotonie strictly decreasing
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G(a^) < p < G(a^_^)

G(a^) > p
The validity of the three forms is argued below.

For a. given T^, if p < MIN, the probability of obtaining a 

value less than or equal to p is certainly zero. If p > GY^ MAX, the 

probability of obtaining a value less than or equal to p is clearly 1.

If GY^ MIN < p < GY^ MAX, then the probability of obtaining a value less 

than or equal to p must be considered separately for (b) and (c). Note 

that (a) need not be considered since GŶ  ̂MIN = GY^ MAX for (a).

If G^is monotonie strictly increasing, then G^(t) < p < GY^ MAX 

if and only if t e I = [a^_^, G^^(ji)],i.e.,t must be in the interval with

left end point the same as and right end point G^^(p).

If G^ is monotonie strictly decreasing, then G^(t) < p < GY^ MAX

if and only if t e I = [G^^ (p), a^] ,i.e.,t must be in the interval with

right end point the same as and left end point G^^(p).

For (b) or (c), the probability of t e I is the length of I 

divided by the length of T^. For (b) then, the required probability is

given by

and for (c) by

II. Let F be defined by F(p) = P[G(t) < p] for-œ < y < + œ
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by letting
i=9n f .

A
Since {Tĵ } constitutes a partition of T into mutually exclusive 

sets* and P[t e T^] is clearly the length of divided by length of T, 

the validity of defining F as the weighted sum of F^'s follows from the 

relationship given by Parzen (1960):

p[B] = p [b |c^i p [c ]̂ + ... + p [b !c j  PICJ

where B is the event G(t) < p and is the event t e T^.

III. The density function may now be formed by differentiating F.

Sampling by RAN

The difficulty in using a RAN sampling plan in a real situation 

is briefly discussed above; however, consideration of RAN sampling in an 

idealized or theoretical situation may, hopefully, lend some insight into 

the problems of sampling a function.

To remove some of the difficulties, assume 6 is a realization 

of MI which is a mathematical function (â  = 0) defined on T and further 

assume that measurements may be taken instantaneously.

Now, if 6 is sampled over T by RAN, then the set of time points 

Tg is a simple random sample from T. Since each element of the set of 

function values Y is a function of an element of this sample of time 

points, it follows that Y is a simple random sample from the distribution 

Qgj of the values attained by G over T. Thus, the theory of simple ran­

dom sampling applies. In particular, the usual estimates for mean and 

variance using the elements of Y will be unbiased.

Even with these simplifications, the results are often difficult
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to interpret. A "seemingly innocent" function which is bounded, con­

tinuous, and with derivitives existing at every point of T can have 

rather bizarre functions for the distribution and density of the values 

attained. Intuitive ideas of the nature of the distributions are often 

wrong even when the functioned sampled is known. To illustrate the above 

remarks and some of the special considerations in the application of the 

algorithm, four examples are considered.

Examples of Application of Algorithm

I. Let G(t) = t^ - 1 < t < 1.

Since G(t) is monotonie strictly increasing throughout the 

interval sampled, only one interval need be considered. Thus

1 1 < y
F(y) = yl/3 + 1 -1 < y < 1

(1 + 1)
0 -1 > y

dFand f = the density function is found by
1 / 6  y " 2 / 3  - 1  <  y  <  1 ,  y  f  0

f = 4^ = undefined y *» 0dy
0 elsewhere

Note that at the mid-point of its range, zero, the density is 

undefined and f = <» and f = “. However, f is a density

function since

a ^ i V  dy + /” f(y) dy = 1 and
f(y) > 0 -“ < y < +® .

This example was chosen to illustrate the "seemingly innocent"
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function which has a discontinuous density. Further, the expected value 

of y is zero, a value at which the density is undefined.

The next three functions were chosen because these same functions 

will be considered in the empirical portion of this investigation dis­

cussed below.

II. Let G(t) = Sin 2ïït 0 < t < 1.

G is monotonie strictly increasing in T^: 0 < t < 1/4;

monotonie strictly decreasing in Tg: 1/4 < t < 3/4 and

monotonie strictly increasing in T^: 3/4 < t < 1.

Thus G^^(p) = l/2ir Sin ^ y 0 < y < 1

G“^(y) «= l/2n *Sin"^ y

G~^(y) = l/2ir *Sin"^ y

The * in front of the inverse sine indicates that this is not the princi­

pal value range inverse. In the derivation of the algorithm, the range

of the inverse function was required to be T^. These may be written in 

terms of the principal value functions as

G~^(y) = l/2ir(TT - Sin ^y ) -1 < y < +1

G^^(y) = 1/2 (2if + Sin~\ ) -1 < y < 0.

In terms of these principal value inverses then

1  1 < y

F^(y) = ^  2/tt Sin ^ y 0 < y < 1

0 > y

1 < y

FgCy) = ^  1/2 + I h  Sin"^y -1 < y < 1

-1 > y
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: 0 < p

Fg(p) = ; 1 + 2/ïï Sin"^y -1 < p < 0

0 -1 > P
The weights associated with the F^'s are 1/4, 1/2, and 1/4, respectively. 

Thus, for -1 < p < 0, F(p) = 1/4(0) + 1/2(1/2 + 1/tt Sin~^ p) +

1/4(1 +  2/tt Sin"^ p)

For 0 < p < 1,

1/2 +  1/ tt Sin'^ p.

F(p) - 1/4(2/% Sin“^ p) + l/2(l/2 + 1/% Sin“^ p) +

Therefore,

1/4(1)

1/2 +  1/ tt Sin“ ^ p.

1 < p

F(p) = \l/2 + 1/tt Sin"^ p -1 < p < 1

-1 > p

and

; f(p) = ^ 1 -Tp2
-1 < p < 1

elsewhere

This result agrees with that obtained by Parzen (1960) by a 

slightly different procedure.

Note that F is exactly F2 . This is not a property peculiarly 

associated with the sine function, but an expression of a more general 

principle. Whenever a function f^ on an interval may be transformed 

so as to coincide with a function f^ on I^, and having the same 

length, by a translation or a reflection in a line parallel to the function
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axis, a RAN sampling of f^ over 1̂  ̂and a RAN sampling of over are 

equivalent in the sense that the distribution and density functions will 

be the same. Roughly speaking, f̂  ̂attains the same values with the same 

relative frequency over as does fg over Ig.

For the function G(t) = Sin 2mt, G in may be reflected onto 

G in the first half of through the line t = 1/4; G in may be re­

flected onto G in the second half of through t = 3/4. It follows then 

that sampling Sin 2irt on [1/4, 3/4] is equivalent to sampling on [0, 1] 

and the identity of F and Fg is to be expected. This principle will be 

referenced as the "reflection principle".

Since a large class of functions will have the necessary symmetry 

so that the reflection principle may be used, a preliminary examination 

of the function for reflection lines may greatly reduce the work of con­

structing the distribution function. Noting the equivalence of sampling 

[1/4, 3/4] and [0, 1] in the above example would have reduced the work 

by 2/3.
0 < t < 1/2 

1/2 < t < 1

Therefore, G(t) is monotonie strictly increasing in T̂ :̂ 0 < t < 1/2 

and monotonie strictly decreasing in Tg: 1/2 < t < 1. Note that G in T^ 

may be made to coincide with G in T̂  ̂by reflection through t = 1/2. Thus 

the reflection principle may be used. Since

G"^(y) = -1< M < +1,

^  1 < V
F(p) =^l/2(p + 1) -1 < y < 1

> 11

III. Let G(t) =
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and
—1 < y < +1

elsewhere

IV. Let G(t) = Sln^ 2ïït < t < +“.

Since G is a periodic function, sampling G over the real number

line is equivalent to sampling G over one period, say [-1/2, + 1/2].

Then, by the reflection principle, this is equivalent to sampling G over 

[-1/4, 1/4] = Tĵ . This 1/2 period is chosen so that the inverses will 

be the usual principal value inverse functions.

Since G"^(y) = 1/2? Sin“^(p^^^) for -1 < y < +1

1 1 < y

F(y) = U / 2  +  1/tt Sin“^(y^^^) -1 < y < 1

and

-1 > y

• jp ....... 2 ......

P f p..

Definition of A and R Sampling 

If the problem of selecting the initial time point t^ is ignored 

for the moment, many sampling plans for the selection of set T^ = {t^|i=l, 

2, ... m-1} of time points at which the subsequent (m-1) measurements of 

an n-size sample of G over time are to be made may be described by two 

sets of models, A and R, defined below.

Let t^ be selected by any means.

is a sequence of distributions having finite ranges and defined 

as zero on (-®; 0).

{d^} is a sequence of non-negative numbers selected à priori of the
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selection of T .s
A Sampling. Sampling plan M is said to be A (belong to set A) if for 

every i X 0

"here is a random sample from

R Sampling. Sampling plan M is said to be R (belong to set R) if for

every i > 0

j=i
t = r  + Z (d. + X ) , 

j=l  ̂ ^
where for every j, is a random sample from Hj.

The essential quality which distinguishes A from R is the effect

of previous selection of time points on subsequent selection. After t^

has been selected the selection of t^ is independent in the probability 

sense of all other t's in A sampling, but in R sampling this would not, 

in general, be true. Note that for measurements taken always at exact 

times (x’s can take on zero value only) A and R are the same.

As an example to illustrate A and R consider a clinical study 

which schedules a subject to return every 14 days following the initial 

visit at time t^. Then for every i, d^ = 14. There are many circum­

stances that may arise such as personal business, illness, whim, etc., 

such that the first measurement taken after t^ is delayed, say by 2 days. 

If the remaining visits are still scheduled at the same time regardless 

of the delay, then the plan would be A. However, if the schedule were 

revised so that the third time is now 16 + 14 = 30 days after t^, the 

4th visit 14 days after the 3rd, etc., then the plan would be R. It is
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assumed here that there exist distributions, though perhaps unknown, such 

that the occurrence of a delay is a random selection from one of these 

distributions.

The use of Â and R to designate the two models is intended as 

a mnemonic since A is a sampling analogue of the^dditive model and R 

the analogue of the autoregressive model for functions described by 

Hurwicz (1962). Indeed it may be shown that sampling an additive func­

tion model by R is equivalent to sampling an autoregressive model at 

exact a priori designated intervals.

■ Definition of PA and PR 

Since there is little expectation of knowing the exact distri­

butions {H^} to use in defining a real sampling situation, the approach 

Is to consider certain idealized situations and then, hopefully, be 

able to make judgements relative to real sampling. To facilitate the 

discussions, a subset PA of A and a subset PR of R are defined below.

Let HcA or R and for all i and j

= H where H is such that x selected from H can take 

on only non-negative values and H has a finite range h.

PA Sampling. M is said to be a pseudo-systematic sampling type A denoted 

by PA (belongs to subset PA) if

1. MeA

2. d, = d - = . . . = d  = d1 2  n
3. d > h

PR Sampling. M is said to be a pseudo-systematic sampling type R denoted 

by PR (belongs to subset PR) if
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1. MeR

2. dL = d_ = ...d = d 1 2 n
In the context of A and R, H will be called the "distribution 

of delays" and a random sample x from E will be called a "delay".

{d^} will be called the set of minimum times.

In the clinical study example above, if the assumption is made 

that the distribution of delays is the same for all visits then the plan 

M for the study would be PA if (1) no delay greater than 14 could occur 

and (2) no revision of the schedule of visits is made regardless of the 

delays, or H would be PR if a reschedule to new 14 day intervals occurred 

following a non-zero delay.

Although there are many other situations where the sampling 

may be described by PA, the definition was motivated by studies such as 

the PA clinical study example above where measurements are planned at 

exact times, but "random" circumstances cause delays. However, the 

motivation for the definition of PR was the more loosely designed study 

in which the subject is measured, after some minimum time has elapsed,

"at the next opportunity" following each measurement. In this context 

E  might better be described as a distribution of next opportunities, 

but the term "delay" will be retained for both PA and PR. There are 

studies which of necessity have a PR sampling plan. If at each visit 

an action is taken, a drug administered, a treatment given, etc. and the 

effect of this is to be measured d time units later, when a delay occurs 

then the following visit must be rescheduled.

■ Expected Values of Mean and Variance Estimators 

In Theorem 1 below,the expected value of is exhibited in terms
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of sample size, variance of the population sampled, and covariance of 

the measurements for any sampling scheme such that, at each measurement, 

the expected value of the measurement is the mean of the population 

sampled, and the value obtained, when squared, has as expected value the

second moment of the population. In Theorem 2 it is shown that in the

application of Theorem 1 to the sampling of a realization of MI the 

possible bias indicated in Theorem 1 may be partitioned into two compon­

ents - one reflecting the covariance of the function values at the samp- 

1 1 ^  points and one reflecting the covariance of the random components 

around the locus. Theorem 3 shows that in this sampling the expected 

value of the sample mean is the population mean, but the variance of this 

estimator is a function of the bias of S^.

Let x^, Xg, x^ be a sample from a population P with mean

p and variance o^ under a sampling plan M such that for every i=l, 2,
2n,E(x^) = p and E(x^) = Pg, the second moment of P. Let

_  n n _  _
X = Z x./n and = Z (x. - x) /(n-1)

i=l i=l 1

denote the estimates of mean and variance respectively. Note that the

constraint present in independent sampling that for i f j cov (x^,x^) = 0

is not placed on M.

The following lemma and theorem are listed for further reference.

Their proofs follow in a straight forward manner from similar proofs

found in elementary texts.

Lemma 1. E( E x. x.) = Z cov(x., x.) + n(n-l)p . 
i#j ^  ̂ ^ ^

Theorem 1. E(S^) = 0% - TTTTT"  ̂ cov(x., x ).
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Clearly then, is an unbiased estimator of if and only if

Z cov(x., X ) = 0. The coefficient (including the sign) and the sum- 
ijfj ^ ^
nation will be called the bias.

Let G be a realization of MI. Let Y = {g^, g^, g^} be the

set of values obtained by sampling G under M* over an interval T. Clearly 

Y is a sample from the population P = GY(T) of all values possible for 

G to attain on T. It follows from the definition of G that the mean of 

P is f the mean of f over T. Let denote the variance of P. Let the 

constraints on M above obtain for M*.

Theorem 2. If G is sampled over T under M*, then

Proof1 By Theorem 1

i#j ^ j'
Since for any index k, g^ = f(t^j + e^, the theorem follows from the

additive property of covariance of sums.

Theorem 3. If G is sampled over T under M*, then the sample mean, g,

is an unbiased estimator of f and q£ the variance of g may be expressed
g

as = o^/n - (1 - l/n)B where B is the bias given in Theorem 1.
. 8
Proof:

_  n n _
E(g) = E( Z g./n) = Z E(g )/n = f.

i=l i=l

Thus g is unbiased. Since

g^ = I/o? ( Z g^ + Z g. g.),
i=l ^ i^j ^ j

E(g^) = ]ijn + 1/n^ Z E(g g )
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By Lemma 1

E(i^) = P,/n + (1 - 1/n) + 1/n^ I cov(g., g.)
 ̂ iî̂ J ^

= 0% + - o^/n + - (1 - l/n)B.

Hence a| = E(g^) - [E(g)]^

= o^/n + “ (1 - 1/n) B -

“ o^/n - (1 - 1/n) B.

Sampling Periodic Functions by PR and PA

Of the infinitude of functions which may be used to define a

particular realization of MI, the class of functions which exhibit a

rhythmic variation around a central value create special problems for

the investigator. Many times it is impossible to distinguish the rhythm

of f from the random fluctuations around the locus. When the rhythmic
2nature of f is unsuspected or ignored and the usual estimate, S„, ofO

variance is made, the results may be biased and misleading interpretations 

made from the data. Unfortunately for the biological researcher, many of 

the variables of interest are rhythmic over time.

The purpose here will be to investigate a subset of the rhythmic 

functions -—  those where the rhythm may be regarded as periodic over time. 

Although physiological variables, whose rhythmic variations have the nice 

properties of the mathematically precise periodic functions, may not be 

commonplace, many do exist which exhibit a close approximation to well 

known periodic functions. The urinary excretion of adrenaline reported 

by Levi (1968) is an example of a variable over time which closely approxi­

mates a sine curve. The various circadian and seasonal variations that
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have been reported certainly may be considered periodic functions 

although, unfortunately, not a function so familiar as Levi's sine 

curve. Even if the rhythm of interest is very different from the periodic 

functions to be presented here, knowledge of the behavior of the bias 

and variance of the estimator for these functions may be used to design 

sampling plans which may increase accuracy or better allocate time and 

effort.

Clearly, the results from a PA or PR sample will be highly de­

pendent upon the initial time point. (The special case of f == c a con­

stant is an exception). The investigation here is limited to sampling 

plans where the selection of may be regarded as a random selection

from an interval T whose length is equal to a period of the function 

sampled. Certainly there are many biological experiments and epidemio­

logical surveys conducted for which the initial measurement time (entry 

into study, first visit to clinic, etc.) is not related to the position 

of the function in its cycle. In situations in which the value of the 

function does not, at least partially, define t^, the assumption of a 

randomly selected initial time is not unrealistic.

With the preceding remarks as motivation, the following assump­

tions are made:

1. 6 is a realization of MI.

2. f is a continuous periodic function with period X.

. 3. In the sampling of G, t^ is a random selection from the

uniform distribution U(0,X).

4. The minimum time between measurements is such that the

covariance of e's is zero.
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These four assumptions are in force for all theorems and dis­

cussions in the remainder of this chapter unless specifically stated 

otherwise.

Clearly, the assumption of positive time and first sampled point 

in (0, 1) are merely a reflection of the choice of a convenient reference 

point for measuring time.

Since f is periodic, E[G(t)] = E[G(t+X)]. The selection of t 

as a sample point is equivalent to selecting t+X in the sense that both 

will yield the same value of f. This property is the motivation for the 

following definitions*

Equivalence of Time Points. Time points t^ and t^ are said to be equiva­

lent if |t^ - tgl = X.

Equivalence of Intervals. Intervals T^ and T^ of the time axis are said 

to be equivalent if T̂  ̂is T^ or Tg is a positive or negative translation 

of by an amount which is an integral multiple of X.

Clique of an Interval. The union of intervals equivalent to an interval 

I is said to be the clique of T and will be denoted by C(T).

In order to show that under assumptions 1-4, PA and PR sampling 

of 6 are such that Theorems 1, 2, and 3 apply, the necessary constraints 

on the sampling scheme are shown to obtain for both A and R sampling plans 

and, therefore, for the subsets PA and PR.

In Theorem 4 below it is shown that in A or R sampling, the 

sample drawn at each time point is equivalent to a random sampling of 

size one of a periodic function over an interval of length one period. 

Therefore, the constraints on the sampling scheme in the previous theorems 

are seen to hold for A and R sampling. This result is established as a
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corollary of Theorem 4. Thus, the expression for the possible bias of 

Sf as an estimator of the variance of G exhibited in the previous section 

is seen to apply to A and R sampling of periodic functions. Also, the 

expected value of the within subject sample mean and the relationship of 

the variance of this estimator and the bias term are seen to be those 

given by Theorem 3.

Two preliminary results are established in the two lemmas pre­

ceding Theorem 4. The first of these merely develops a convenient ex­

pression for the distribution of the 1^^ sample time and the second 

establishes a sufficient condition for the equivalence of a sampling 

plan to a random sample over one period.

■ lemma If y and v are Independent random variables such that y 

is distributed as the uniform U(0, A) and v has distribution F where F 

is.zero for any negative value and t = y + v has distribution Z, then

Z(x) = 1/A F(w) dw.

Proof; Since y and v are independent, Z may be expressed as the 

convolution of U and F. Thus

Z(x) = U(x) * F(x)

X t
= /q /oP(t - w) dF(w) dt.

Since u, the density of y. Is zero for all negative values in its domain,

Z(x) = /J [ 1/A dF(w)] dt.

= 1/A [F(t) - F(t-A)] dt.

By letting w = t-A and noting that F is zero for any negative value in
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/- F(t-l.)dt = F(w)dw.

Thus,

Z(x) = l/\ [/q F(t)dt - F(w)dwJ = l/X/^_^F(w)dw.

For the next lemma assumption 3 requiring the first sample point 

to be selected from U(0,A) is not required for M*.

Lemma 2» Let M* be any sampling plan which selects exactly one sample 

point t* from an interval T* with length greater than or equal to A.

Let M be a sampling lAich selects exactly one sample point t 

from the interval T = (0,A) by letting t be a random selection from the 

uniform UCO,A).

If I is a subinterval of T, denote the probability that t e l

by Pj and the probability that t* in C(I), the clique of I, by P*.

If Pj =* P* for every subinterval I of T, then sampling G under 

M is equivalent to sampling under M*.

Proof: Since the l^gth of T* is at least A, GY(T*) = GY(T). Let

« {t I G(t) < X and t e I}. Then, there exist a set {I^} .of disjoint 

subintervals of T such that the union lU of these subintervals is equal 

to T^ except possibly for a set of measure zero. Hence

P[G(t) < x] = P[t e IÜ] = Z P[t e L ] .
k ^

Since G is periodic, P[G(t*) < x] = Z P[t* e C(t^)]. But for every k 

P[t E Iĵ ] = P[t* E C(I^)] by hypothesis. Therefore, P[G(t) < x] =

P[G(t*) < x] and the plans are equivalent.

Theorem If an (n+l)-size sample of G is drawn under MeA or R, 

then for every positive integer s < n+1 the sampling at the s^^ sample
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number is equivalent to a random sample of G over T = (0,X).

Proof; Assume MeR. Choose à sample number s < n+1. Let j = s-1.

Then at the sample number tj is the sample point selected and

j j
t. = t + Z V. where v. = (d + x.). Let v = Z v . and v be distri- 
J ° i=l i=l

buted as F. (Note the distribution of v may be found by the repeated 

convolution of the distributions for each v^ since v is the sum of in­

dependent variables.) By assumption 3, t^ is distributed as the uniform 

U(0,X). If Zj denotes the distribution of the time point of the s*"̂  

sample number, then by Lemma 2

Zj(x) » 1/X F(w)dw.

Let I be an arbitrary subinterval of [0,X] with left end point 

a and right end point b. Then, under a size one random sampling of G,

the probability that the sample point is in I is (b^a)/X,

Note that for every non-negative interval equivalent to I there 

exist a non-negative integer k such that the left end point is a+kX and 

the right end point is b+kX.

For every k, therefore, the probability that t̂  is in the 

associated interval is

ZjCMkX) - Zj(a+U) = 1/X F(»)d„ - 1/X

b+kX / b+(k-l)X
= 1/X S F(w)dw - 1/X / F(w)dw.a-rkX arCk-lyX

Since tj has a finite range, there exist an m such that

w > a-taX implies F(w) = 1. Hence the probability that t. e C(I) may be

written as



63

k=m b+kA b+(k-l)X
(1/A) Z { / FCw)dw ~ f F(w)dw}

k=0 a+kA a+(k-’l)A

« (1/A) F(w)dw = 1/A (b+mA - a-mA)a+mA
= (b - a)/A.

Therefore, the theorem follows from Lemma 3 if MeR. The same argument 

with V defined by

i=j
V *= X. +  Z d

j 1-1 ^
assures the.theorem for MeA.

Corollary 1. Under the hypothesis and notation of Theorem 4, for 

any function if) such that the integrals exist

* iGCx)] dZj (x) = 1/A if) lG(t)Jdt.

Proof: It is clear that this right hand integral is the expected

value of 4 associated with the random sampling of G over (0,A). The left 

integral is the expected value of ^ associated with the sampling of G 

at the s*"̂  sample number. The proposition follows from the equivalence 

of the two sampling plans as established in Theorem 4.

Corollary If G is sampled under MeA or R, then the constraints 

upon the sampling scheme in the hypothesis of Theorems 1-3 obtain for M.

Proof: The proposition follows immediately from Theorem 4 and the

properties of random sampling of a population .

Since Theorems 1, 2, and 3 apply to A and R sampling, they must 

apply for PA and PR. Theorem 2 shows that whenever the minimum time is 

sufficiently large to insure assumption 4 is in force, (the covariance
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among the random components is zero) the bias is due entirely to the 

covariance of the values of f at the sample points. Clearly, investiga­

tions into the magnitude of the bias may be conducted by examining the 

sampling of mathematical functions, i.e., by assuming E(e^) = 0. Note, 

however, that the variance of the sample estimates x and 5% are influenced 

by the assumption of no random component. Since the value of f at a 

sample point is independent of s at that point, the adjustments of the 

variances for the presence of a random component are merely the usual 

adjustments for the sum of two independent variables. For the remainder 

of this chapter, 6 is assumed to be à mathematical function over time.

The notation T = { t , t , , t , }  will be used to denote the sequencen o J. n—J.
of sampling points for an n-size sample and for i = 0, 1, ..., n-1, ĝ ^

= G(t^).

In Lemma 4 below it is shown that in PA sampling the covariance 

of any two sample values (not involving the first) is dependent upon 

their separation in the sampling sequence and not upon their position 

in the sequence. The covariance of the values at sample numbers 5 and 

8, for example, would be the same as numbers 6 and 9, the same as 7 and 

10, etc. This concept may be expressed in terms of the covariance matrix 

by stating that with the exception of the first row or column all numbers 

on a diagonal parallel to the main diagonal will be equal.

An analogous result for PR sampling is given in Lemma 5, but for 

PR sampling covariances involving the initial measurement are not excep­

tions as in PA sampling. Thus, the above description of the covariance 

matrix holds for PR sampling, but the numbers in the first row or column 

also being equal to the other numbers on the associated diagonal.
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Theorems5 and 6 use the properties of these two lemmas to 

establish more compact expressions for the bias terms for PA and PR 

sampling respectively.

Léimnà For an n-size sample of G under MePA there exists, for 

every positive integer j < n-2, a constant Cj such that if i > 0 and t^ 

and t̂_j_j are terms of the sequence T^,

cov(g^, g^^j) = Cj.

Proof: Since covariances are invariant under a translation, it is

sufficient to prove the lemma for G with mean zero.

Choose a positive integer j < n-2. Since G has mean zero, it 

follows from Corollory 2 and the definition of covariance that if i is as 

In hypothesis, cov(g^, g^^) = = E(g^ follows from the

definition of PA that = E[G(t^ + id + x^) G(t^ + id + jd +

Since the distribution of all x's are the same by definition of PA, 

j = E [G(t^ + id + x^) G(t^ + id + jd + x^].

Letting v^ = t^ + id yields

= E [G(v^ + x^) G(v + jd + Xg)].

Note that for every i, the distribution of v^ is the uniform U(id,id+A). 

Since G is periodic with period A it follows that for every i the 

selection of v^ is equivalent to a random sampling from U(0,X). It follows 

from the definition of expected value that

E(x^) HCXg) {1/X ^G(v^ + x^) G(v^ + jd + %2)dv^}dx2 dx^.

Since Xĵ  and Xg are functionally independent of v, it follows 

from Corollary 1 that the expression in braces may be replaced by
Xi/A jjj UV.C -r x^/ UV.I; -r ja -r Xgjat.
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Thus, the value of does not depend upon the choice of i. Letting 

= Cj completes the proof.

: Theorem For an n-size sample of G under MePA, the bias B has the 

form

n-1 n-1
B = -2/nfn-l^ f Z covfe . e.) + Z (n — 1-1) C .}• j=i -O' -j- j=l - 3

where for every j, Cj is the constant defined in Lemma 4.

Proof: By Theorem 1

B » -2/n(n-l) Z cov(g , g.).
i< k ^

Clearly there are n-1 such covariances involving g^. For each positive 

integer j < n-2, the set of integers Ij = {1, 2, ..., n-j-1} is such that 

if i e Ij, then i + j < n-1. Thus, there are exactly n-j-1 covariance 

terms of the form coy(g^, g .). By Lemma 4, each of these is equal to

Lénrmia J?- For an n-size sample of G under MePR there exist, for every 

positive integer j < n-1, a constant Cj such that if i > 0 and t^ and 

t̂ _j_j are terms of the sequence T^, then

coy(g^, g^^j) = Cj.

Proof: Again, since covariances are invariant under a translation,

it is sufficient to prove lemma for G with mean zero.

Choose a positive integer j < n-1. Since G has mean zero, it 

follows from Theorem 5 and the definition of covariance that, if i is 

as in hypothesis.

cov(g^, Sn-j> - •=!] " E(Si Si+j)-
By definition of PR
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i+J
K - E[G(t.) G(t. + jd + Z s.)].
J k«i+l

Since by definition of PR all distributions of x's are Identical, letting

J
y " E X. 

k«l

implies

K y  = E[G(t^) G(t^ + jd + y)].

Let V be the density of t^ and w the density of y. Note w.is not 

functionally related to t^. It follows from the définitin of expected 

value that

^Ij * *(y) { G(t^) G(t^ + jd + y) v(t^)dt^}dy.

Since y is not functionally related to t^, it follows from Corollary 1 

that the expression in braces may be replaced by

1/1 /q G(t) G(t + jd + y)dt.

Thus, is not dependent upon the choice of i. Letting com­

pletes the proof.

Theorem 6. For an n-size sample of MePR the bias B has the form

n-1
B = -2/n(n-l) Z (n-j) C 

j=l ^
where for every j, Cy is the constant defined by Lemma 5.

Proof: By Theorem 1,

B = -2/n(n-l) Z coy(g., g,).

For each positive integer j < n-1 the set = {0, 1.....n-j-1} is

such that if i e Ij, then i + j < n-i. Thus, there are n-j covariance



68

terms of the form cov(g^, ). By Lemma 5, each of these is equal to

"j-
Note that in PR sampling it is not necessary to consider covari­

ances involving g^ separately as in PA. This difference is illustrated 

in the calculation of the bias terms for a specific function below.

Theorem 7. Let G = A Sin Bt. Let the delay distribution be the 

uniform U(0, h) and d be the minimum time between measurements for both 

MePR and M*ePA. The bias B̂  ̂for an n-size sample of G under M is given 

by
n-1 .

B, = -2/n(n-l) Z (n-j) A^/2(2/Bh Sin Bh/2)'' cos Bj (d + h/2),
* j-i

and the bias B^ for an n-size sample of G under M* is given by

n—1
B. = -2/n(n-l) { Z A^/Bh Sin Bh/2 cos B(jd + h/2)

j»l
n-2

+ Z Sin ^(Bh/2) cos B jd}.

Proof: By use of the trigonemetric identity for the product of two

sines

G(t) G(t + jd + y) = A^/2 cos B(jd + y) - A^/2 cos B(2t + jd + y).

Under M sampling for every positive integer j < n-1, may be

calculated using the method and notation of Lemma 5. The above Identity 

Implies

1/X G(t) G(t + jd + y)dt = A^/X cos B(jd + y) dt -.A^/2X

cos B(2 + jd + y) dt

= A^/2 cos B(jd + y) - 0.

The right most integral is clearly zero since it is a cosine function
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Integrated over twice.its period.

Substituting this result in the expression for the calculation 

of Cj in Lemma 5 yields

C. = .A^/2h^ ... cos B(jd + Z x, ) dx_ ... dx.
J o o It J- J

= .A2/2h^ /^ ... U/B(Sin B(jd + x^ + \  x^)|^}dx^ ...dx_, , C O  J *v o J

= A^/2Bh^ (2 Sin Bh/2) ... /^ cos B(jd + %  + Z x,)dx-...dx.O O A K I

Note that after one integration the integrand has exactly the same form 

as before except that the constant term has been increased by Bh/2. Clearly 

then, after j such integrations

Cj = A^/2B^ (2 Sin Bh/2)^ cos Bj (d + h/2).

The expression for B̂  ̂follows from Theorem 6.

Under M* sampling for every j < n - 1, 

cov (g^, gj) = E(g^gj) = E[G(tg) G(tg + jd + Xj)].

By using the above identity with t = t^ and y = x^ and definition of PA,

E(g g.) = 1/lh .A^/2 cos B(jd + x.) dXdx. - A^/2Xh /V^cos(2t +jd+x.)O j O O j j 0 O O j
dXdx.j

= A^/2h cos B(jd + x^) dx^ - 0

= .A2/2hB [Sin B(jd + xy)

= A^/hB Sin Bh/2. cos B(jd + h/2)].

If i / o ,  then coy(g^, g^^^) may be calculated using the method

and notation of Lemma 4. By use of the trigonemetric identity for the
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product of two sines
G(t + x^) G(t + jd + Xg) =.A^/2 cos B(x^ - x^) - Af/Z cos(2t + jd + x̂  ̂+ Xg) 

Thus,

1/X /^G(t+x^) G(t + jd + Xg) = A^/2X cos B(x^^-Xg) dX - A^/2X

•/̂ ‘eos B(2t + jd + Xĵ  + x^) dX

=.A^/2X cos B(x^ - Xg) - 0.

Substituting this result in the expression for the calculation

of Cj in Lemma 4 yields

Cj = Af/2h% /q /q cos B(x^ - Xg) dx^ dx̂ ^

= 2A^/h^ Slnf(Bh/2) cos Bjd.

The expression for B^ follows from Theorem 5.

From the above theorems it is seen that PA and PR sampling may 

yield a biased estimate of the population variance. In general this bias 

is a function of n, f, and the sampling plan. The complexity of these 

relationships are illustrated by the expressions for B^ and B^ in 

Theorem 7. Note that for n = 2,PA and PR sampling do not differ since 

there is no possible "rescheduling" and that the two expressions do in­

deed yield the same value.

Although Theorem 3 shows that the estimator for the mean is 

unbiased, the variance of this estimator is a function of the bias of 

the population variance estimator.

If mild regularity conditicns were placed on the functions and 

delay distributions to be considered, then the magnitude of the bias, 

variance of g, and other quantities may be found using the techniques
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for the sine function in.Theorem 7. However, the integration may prove 

formidable for certain functions and delay distributions.

No further theoretical distributions will be presented, but 

rather a systematic study of three functions under PA and PR sampling 

with uniform distribution of delays using computer simulation is described 

in CHAPTER IV and the results presented in CHAPTER V. The three functions 

sampled are defined as follows:

FI is the function defined by FI(t) = Sin 2nt.

FII is the function with period 1 such that

0 < t < 1/2(4t - 1 3 - 4t
Fll(t)

1/2 < t < 1.

Fill is the function defined by Fill(t) = Sin^ 2irt.

As can be seen in Figure 4, FI models a variable whose course 

over time is such that it is remote from its mean value most of the time. 

Fill models a variable which is near its mean most of the time, but with 

short lived excursions to the extremes and FII a variable whose time 

course is intermediate to the other two. Conclusions based upon the re­

sults of the simulated sampling of these functions, then, may act as 

guidelines in designing sampling schemes for a variable whose time course 

is not necessarily the same as any of these three functions, but is 

intermediate to two of them.

In the definitions, discussions, and development of the properties 

of PA and PR sampling, the terms "scheduled time" and "delay" have been 

used to describe the departure of these sampling schemes from that of the 

usual systematic sampling. The failure to have samples taken at these 

scheduled times has been depicted as some random event the outcome of
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which is not known prior to the scheduling. From this perspective the 

departures are unknown and perhaps even unsuspected during the planning 

stages and the theoretical and empirical results, when viewed in this 

context, seem, perhaps, to be meaningful only in ascertaining how much 

difficulty these "accidental delays" and cyclic nature of the variable 

have created in estimating the within subject mean and variances of a 

population. While these difficulties were certainly part of the moti­

vation for this investigation, this seemingly negative purpose was not 

the only goal. The investigation of sampling with a uniform distribution 

of delays is intended not only to aid in perceiving the imbroglio of 

sampling periodic functions, but also to offer guidelines for designing 

sampling schemes which mollify, to some extent, the difficulties.

Although a uniform distributioncf the departures from the scheduled times 

would seldom obtain in a real sampling situation where the departures 

are dictated by events such as illness of subject, equipment failure, 

subject's access to clinic, etc., certain general properties may be seen 

in the sampling with this admittedly artificial distribution that may 

aid in the design and interpretation of investigations where the distri­

butions are those dictated by the real world. Also, if the random ele­

ment in the selection of time points is viewed in a mathematically equiv­

alent, but conceptually different manner, the infdrmation from the 

empirical sampling is directly applicable to the problem. As part of 

the design, the random component may be introduced at the time of schedu­

ling by selecting, for each subject, a sequence x^, x^, ...» x^ where for 

every i ^ n x^ is an independent selection from the uniform UCO,h) and 

these values, together with the minimum time, used to define the times



74

of measurements. Using these "artificial delays" to select the'time 

points is similar in purpose to the use of randomization in many experi­

mental design situations. This point will be discussed later. Of course, 

the "accidental delays" from the other point of view given above would 

be superimposed on the scheduled times derived from the "artificial 

delays", but if the investigator can keep the range of these departures 

from schedule small, results from real world sampling should be quite 

similar to results from the computer simulation.

In the context of "artificial delays", it is, perhaps, more 

apparent that FA and PR sampling plans have aspects of both random and 

systematic sampling. Her ce, some basis for the choice of the term 

pseudo—systematic sampling may be seen.



CHAPTER IV 

METHODS OF EMPIRICAL INVESTIGATION

The basic program used was written to simulate a survey of 1500 

subjects with 25 measurements over time made within each subject on a 

variable which, within each subject, has the same functional relationship 

over time. The program has as options, by way of subroutines and para­

meter cards, the exact function to be sampled and sampling scheme to be 

employed. The program was designed specifically for this investigation 

by the author with the assistance of Mr. Gary Haskin at the University 

of Oklahoma Medical School Computer Facility. The program was written 

in Fortran suitable for utilization cf the Task System for an IBM 1800 

computer with typewriter, cards, and two magnetic tape drives as input- 

output devices.

To avoid certain ambiguities in the discussion, the term "study" 

eill be used to mean the simulation of a given function sampled under a 

given sampling plan with a given minimum time and a given range for the 

delay distribution. Hence, a study is completely designated by stating 

the functions, type of sampling CPA, PR. or RAN), minimum time, and 

range. The term "sample size" will refer to the number of values obtained 

within each of the 1500 subjects simulated in each study.

Since the functions sampled have a period of unit length, samp­

ling with a minimum time of d is clearly equivalent to sampling with a

75
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minimum time of d + k where k is any positive integer. In certain of 

the PA samplings, the requirement in the definition of PA that the mini­

mum time be greater than the range is seemingly violated, hut with the 

equivalence mentioned above and interpreting the minimum time in these 

studies as the stated value plus one, the difficulty.is removed. With 

this convention used when necessary, each set of the équivalent sampling 

plans may be identified by using the smallest minimum time to designate 

the set. Thus, the inferences from the computer simulation of pseudo- 

systematic sampling is to a much larger set of sampling plans than the 

19 distinct plans used. Note that this equivalence holds for the mini­

mum time parameter, but not for the range. Sampling with à range of h 

is . not necessarily equivalent to sampling with range h + k.

Utilizing the program discussed above, 27 studies were conducted 

using PR sampling, 27 using PA, and 3 using RAN. Each of the three 

functions FI, FII, and Fill defined in CHAPTER III were sampled under 

both PA and PR sampling with à separate study conducted for each of the 

9 combinations of three minimum times (.25, .5, .75) and three ranges 

(.25, .5, .75) of a uniform distribution of delays. After some prelimin­

ary examination of the output from these studies, one additional sampling 

of FI under PR with, minimum time .5 and range 1.25 was conducted.

For all sampling plans the random component associated with each

sampling point was defined by a pseudo-random number generated by the

subroutine RANDU furnished in the IBM Scientific Subroutine Package. For

each study, five odd integers were selected from a table of random digits
13as initializing values for RANDU. Since the subroutine generates only 2 

numbers before cycling, a new initializing integer was used after each
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7,500 sampling points. In this manner the 7,500 x 5 =-37,500 random com­

ponents associated with each study were simulated. The first 1500 numbers 

generated were used to define the first sample point for each of the 1500 

subjects, the next 1500 define the second within subject time, the next 

1500 define the third, etc. Thus, each initializing digit for RANDU de­

fined only 5 within subject values for each subject. Therefore, the 

within subject samples for a particular subject should not reflect any 

autocorrelation since the possibility of "recycling" the generator has 

been avoided.

The basic simulation had two forms of output for each study.

As an example of the first, the summary.statistics, abbreviated.forms of 

the tables obtained for the RAN sampling of each function are given in 

Table 7. For each sample size n the entries in the table were computed 

in the manner described below.

.Let x ^  be the function value obtained for the n*"̂  sample on the
th —1 subject. For each subject a running mean x ^  was computed as

"in "

An e s t i m a t e . f o r  the within subject variance was computed by

S|n ' ('ij ' (= - 1)-

The table for x was then computed by

_  _  1500 _
X  = X = I X. / 1500..n 1=1 in

The table entry for Variance of x was computed by
1500 _  _  .

S2 = Z (x, - X )^ / 1499.
^  i=l ^
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TABLE 7

SUMMARY STATISTICS OF RAN SAMPLING OF FI, FII, AND Fill

Function N X
Variance 
of X ?2

Variance 
of s2 Bias Bias/VAR

1 -.0107 .4890 _ _ — _

2 -.0008 .2529 .4980 .3115 -.0020 -.003
3 .0028 .1664 .4997 .1242 -.0003 -.000

FI 5 .0051 .0988 .5010 .0502 .0010 .002
10 .0010 .0496 .5002 .0182 .0002 .000
15 .0011 .0327 .5008 .0106 .0008 .001
25 .0015 .0197 .5011 .0061 .0011 .0002

1 .0122 .3285 — — — —

2 .0056 .1664 .3379 .1562 .0046 .013
3 -.0064 .1097 .3356 .0664 .0022 .006

FII 5 -.0026 . 0652 .3359 .0298 .0026 .007
10 -.0004 .0326 .3347 .0114 .0014 .004
15 -.0001 .0222 .3336 .0071 .0003 .000
25 .0009 .0136 .3328 .0039 -.0005 -.001

1 -.0068 .2340 - — -

2 -.0041 .1233 .2434 .1154 -.0027 -.010
3 -.0018 .0810 .2458 .0589 -.0003 -.001

Fill 5 .0018 .0489 .2470 .0293 .0009 .003
10 .0019 .0240 .2456 .0132 -.0004 -.001
15 .0010 .0163 .2451 .0083 -.0009 -.004
25 .0005 .0097 .2460 .0049 .0001 .000
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The table entry for =.5% = Z 8% / 1500.
1«1

The table entry for Variance of was computed by

1500 ,
VAR(S^ ) = Z (Ŝ  - / 1499.in in .n

The table entry for Bias was computed by subtracting the Icnown 

variance of the sampled function from S^_. The entry for Bias/Var was 

computed by dividing the empirically computed estimate of bias by the 

known variance.

The second output of the simulation program consisted of 25 sets 

of three vectors stored on magnetic tape for use as input to other pro­

grams. For each sample size the 1500 sample values were stored as a 

vector. The corresponding nuning sample mean and within subject sample 

variances were also stored. This tape was then used as input to a pro­

gram which yielded frequency distributions for each sample size of the 

sample values, sample means, and sample S^.

The frequency distributions of the sample values were used as 

a partial check to assure that the simulation was performing as expected. 

Since for each sample size the frequency distribution should approximate 

the known frequency distribution of a random sample of size 1500 from 

the sampled function, a radical departure from this expected distribution 

by any of the 25 in a study would indicate a possible programming error

or a failure of the pseudo-random number generator to be adequate for the

purpose of this simulation. One such check was made with PA type sampling

and one with PR for each of the three functions.

The frequency distribution for each sample size of the sample
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2means and S were obtained for each study. Tables and graphs prepared 

from these frequency distributions are given in CHAPTER V.

For each study four groups of size 20 were selected by sampling

without replac -.ment from the 1500 simulated subjects. The magnetic tape

output from the simulation program was then used as input to another 

program which computed, for each sample size, the group mean and pooled 

within subject estimate of variance of the sampled function. Graphs 

showing the group means as a function of sample size were plotted using 

a Calcomp 1627 plotter under control of an IBM 1800 computer system.

The four functions were plotted on the same axis set. Similar plots were 

made for the estimates of variance as a function of sample size. Thus,

a set of 58 means and 58 estimates of variance graphs were produced.

Selections from these sets are presented in CHAPTER V.

In addition to these graphs, the 25 sample values for a randomly

selected subject were also plotted as a function of sample number for

several of the studies.

The decision to use 20 subjects per group to investigate the

pattern over sample size was based upon two factors. First, 20 subjects

is not an unrealistically large number for a group size in clinical 

studies. Secondly, it was felt that group sizes of much less than 20 

would obscure the relationship of bias and sample size because of samp­

ling variation. Prior experience in sampling the sine function was used 

in making the latter judgement.

Several techniques were used to assure the validity of the simu­
lation program in addition to the frequency distribution checks mentioned 

above. The expected value of the quantities computed for each of the
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functions under a RAN sampling are of course known from statistical theory. 

The output from each of the RAN samples was carefully examined for abnormal 

departure from these expected values. Table 7 gives the abbreviated forms 

of the tabular output from the RAN samplings.

Since certain subroutines are used in the PA and PR sampling 

that are not used in the RAN sampling, this portion of the program was 

investigated by using these two sampling types to obtain samples which 

are theoretically equivalent to RAN sampling. This was accomplished by 

setting.the range of the uniform delay distribution equal to the period 

of the function. Thus, the delays would have a uniform distribution,

U (0,1)i and any selection of a delay would define a random selection from 

an interval with length exactly one period. Note that neither the value 

of the minimum time, nor the sampling type affects the équivalence to 

'RAH sampling. One study was performed with a PA type sampling for FI with 

minimum time as .5 and delay range of 1 and another for the same.function 

and delay range with minimum time as .25 and PR sampling type. The re­

sults of these two studies were examined for differences one from the 

other and from the RAN sample. Only minor differences were noted and 

these, it was felt, could be attributed to sampling variation.

After these checks had provided evidence for the essential vali­

dity of the simulation, the remainder of the studies were performed. In 

the sampling of FI under both PA and PR, further evidence of the adequacy 

of the simulation was given by the rather close agreement of the empirical 

estimates of bias as compared with the theoretical values given by the 

formulas of CHAPTER III.



CHAPTER V

RESULTS OF COMPUTER SAMPLING

Summary Statistics 

In evaluating the results of the computer sampling It should be 

noted that for a given sample size within a given study, the and esti­

mate of variance of S^ computed are based upon a simple random sample of 

size 1500 from a distribution of within subject Sf's which, In general.

Is not the same distribution sampled for the computation of and esti­

mate of variance of S^ for any other sample size In the same study nor 

In any other study. Indeed, examination of the frequency distributions 

of the values of obtained In the simulation for samples of size 2 and 

3 differ radically from those of larger sample sizes. H<'"'iver, a mean 

based upon a sample of size 1500 should be a sufficiently accurate esti­

mate of the expected value to allow reliable comparisons If the variance 

of the sampled distribution Is not extremely large. The maximum estimate 

for the variance of was .3790 obtained for sample size 2 In the samp­

ling of FI with minimum time .25 and range .5. Thus, even this extreme 

does not seem to Invalidate a high degree of confidence In the accuracy 

of the computed as an estimate of the expected value of and hence 

the accuracy of the corresponding estimate of the bias for every sample 

size of every study. An even greater degree of confidence may be ex­

pressed for estimâtes associated with larger sample sizes since In every

82
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study there was a general downward trend In the estimate of the variance 

with increasing sample size. This trend was not quite monotonie in 

every study, but within each study for a difference of 2 in the sample 

size the estimate of the variance of was smaller for the larger sample 

size. The rate of decrease with sample size seems much greater for the 

smaller sample sizes. As an example consider the study in which the maxi­

mum variance estimate was obtained for sample size 2. At sample size 4 

the estimate had decreased to .0653 and for size 5 to .0437. Within 

each study all sample sizes greater than 5 had an estimate of variance 

of which were smaller than that obtained at size 5. The maximum value 

over all studies at sample size 5 was .0846 for FI under PA with minimum 

time .5 and range .25, and within each function the maximum was obtained 

under exactly the same sampling plan. These values were .0530 for FII 

and .0579 for Fill.

The magnitude of the estimate of bias was also obseirved to 

exhibit a somewhat similar pattern over sample size. Within each study, 

the greater magnitudes were observed for the smaller sample sizes and a 

general downward trend of magnitude as sample size increased was found. 

These two trends are illustrated in Table 8 which is a copy of the initial 

output of the summary statistics obtained from the simulation program for 

the sampling of FII under PR with minimum time of .25 and range .5. The 

complete table of summary statistics was selected for presentation as a 

typical example of the simulation of the pseudo-systematic samplings. 

Abbreviated forms of the summary statistics for all studies are given in 

Tables 9, 10 and 11.

In comparing the statistics of these tables it should be noted



TABLE 8
EXAMPLE TABLE OF SUMMARY STATISTICS FOR PSEUDO-SYSTEMATIC

SAMPLING SIMULATION

Size X
Variance 

of X S2
Variance 

of S2 Bias Bias/Var
1 -0.004364 0.343855 0.000000 0.000000 -0.333333 -1.000
2 -0.007446 0.063923 0.532303 0.196210 0.198969 0.596
3 -0.003654 0.049485 0.420263 0.061969 0.086930 0.260
4 -0.002681 0.028692 0.406228 0.040671 0.072894 0.218
5 0.001085 0.022610 0.386772 0.027707 0.053438 0.160
6 -0.002644 0.017649 0.375905 0.021595 0.042571 0.127
7 -0.002282 0.015030 0.369637 0.018068 0.036304 0.108
8 -0.000530 0.012014 0.366137 0.015377 0.032804 0.098
9 -0.002820 0.010692 0.360456 0.013089 0.027122 0.081
10 -0.001225 0.009446 0.357143 0.011771 0.023810 0.071
11 -0.001598 0.008311 0.356035 0.010303 0.022702 0.068
12 -0.000905 0.007452 0.353209 0.009234 0.019876 0.059
13 -0.001462 0.006949 0.351823 0.008175 0.018490 0.055
14 -0.000486 0.006320 0.349426 0.007577 0.016093 0.048
15 0.000348 0.005798 0.348733 0.006981 0.015400 0.046
16 0.000227 0.005437 0.347754 0.006566 0.014421 0.043
17 0.000371 0.004935 0.347115 0.006027 0.013781 0.041
18 -0.000331 0.004736 0.345323 0.005627 0.011989 0.035
19 0.000513 0.004432 0.344660 0.005326 0.011327 0.033
20 0.001117 0.004209 0.344016 0.005056 0.010682 0.032
21 0.001270 0.003956 0.343932 0.004764 0.010599 0.031
22 0.001547 0.003716 0.343839 0.004459 0.010506 0.031
23 0.001370 0.003608 0.343176 0.004228 0.009843 0.029
24 0.001930 0.003350 0.342556 0.004014 0.009223 0.027
25 0.002111 0.003256 0.342409 0.003922 0.009076 0.027
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TABLE 9
SUMMARY STATISTICS OF COMPUTER SAMPLING OF FI (SIN 2 PIT)

PA Sampling PR Sampling;
Min Variance Variance Variance Variance
Time Range N of X S2 of S2 Bias of X S2 of Bias

2 .0882 .8380 .3762 .3380 .0914 .8280 .3664 .3280
3 .0264 .7105 .0645 .2105 .0249 .7227 .0627 .2227

.25 .25 5 .0349 .5810 .0269 .0810 .0136 .6071 .0242 .1071
10 .0114 .5444 .0112 .0444 .0058 .5502 .0084 .0502
15 .0064 .5294 .0061 .0294 .0033 .5331 .0049 .0331

2 .0896 .8299 .3586 .3299 .0889 .8241 .3790 .3241
3 .0980 .6023 .1125 .1023 .0662 .6494 .1019 .1494

.25 .5 5 .0688 .5429 .0440 .0429 .0319 .5821 .0437 .0821
10 .0282 .5302 .0166 .0302 .0132 .5409 .0165 .0409
15 .0191 .5191 .0102 .0191 .0082 .5267 .0267 .0267

2 .1922 .6069 .3447 .1069 .1989 .6130 .3553 .1130
3 .1602 .5003 .1186 .0003 .1129 .5895 .1144 .0895

.25 .75 5 .0884 .5064 .0481 .0064 .0633 .5535 .0428 .0534
10 .0443 .5039 .0184 .0039 .0309 .5248 .0148 .0248
15 .0306 .5013 .0112 .0013 .0192 .5177 .0089 .0177

2 .0931 .8146 .3759 .3146 .0875 .8206 .3672 .3206
3 .0771 .6297 .1274 .1297 .0264 .7073 .0644 .2073

.5 .25 5 .0350 .5750 .0846 .0750 .0129 .6064 .0239 .1064
10 .0113 .5381 .0651 .0381 .0059 .5485 .0079 .0485
15 .0077 .5199 .0581 .0199 .0036 .5321 .0045 .0321

c»Ln



TABLE 9— Continued

PA Sampling PR Sampling
Min Variance Variance Variance Variance
Time Range N of X ?2 of S2 Bias of X S2 of S2 Bias

2 .2535 .5020 .3045 .0020 .2537 .4969 .3097 -.0031
3 .1227 .5755 .1160 .0755 .1321 .5521 .1197 .0521

.5 .5 5 . 0668 .5427 .0442 .0427 .0573 .5522 .0385 .0522
10 .0343 .5206 .0170 .0206 .0246 .5251 .0158 .0251
15 .0208 .5171 .0099 .0171 .0150 .5173 .0092 .0173

2 .3086 .3956 .2565 -.1044 .2982 .3884 .2450 -.1116
3 .1576 .5174 .1274 .0174 .2092 .4309 .1137 -.0691

.5 .75 5 .0931 .5101 .0532 .0101 .1265 .4654 .0514 -.0346
10 .0473 .5006 .0209 .0006 .0650 .4825 .0177 -.0174
15 .0313 .4993 .0149 -.0007 .0464 .4841 .0102 -.0158

2 .4086 .1813 .0528 -.3187 .4147 .1834 .0521 -.3166
3 .1709 .4960 .1091 -.0040 .3033 .2901 .0624 -.2099

.75 .25 5 .0355 .5783 .0256 .0783 .1294 .4611 .0459 -.0389
10 .0244 .5282 .0094 .0282 .0343 .5179 .0080 .0179
15 .0119 .5236 .0060 .0236 .0192 .5183 .0046 .0183

2 .4026 .1863 .0526 -.3137 .3956 .1787 .0486 -.3213
3 .2340 .3971 .1146 -.1029 .3458 .2196 .0477 -.2804

.75 .5 5 .0660 .5444 .0452 .0444 .2804 .2753 .0401 -.2247
10 .0411 .5137 .0173 .0137 .1772 .3598 .0295 -.1402
15 .0254 .5112 .0104 .0112 .1295 .3967 .0212 -.1033

2 .3031 .3787 .2392 -.1213 .3017 .4008 .2475 -.0992
3 .2133 .4303 .1198 -.0697 .2112 .4314 .1157 -.0686

.75 .75 5 .0937 .5085 .0505 .0085 .1324 .4579 .0484 -.0421
10 .0484 .5034 .0169 .0034 .0674 .4810 .0180 -.0190
15 .0335 .5005 .0108 .0005 .0460 .4870 .0108 -.0130

00o\



TABLE 10
SUMMARY STATISTICS OF COMPUTER SAMPLING OF FII (TRIANGLE)

PA Sampling PR Sampling
Min Variance Variance Variarice Variance
Time Range N of X gZ of gZ Bias of X g2 of g2 Bias

2 .0625 .5300 .2077 .1967 .0648 .5231 .2004 .1898
3 .0186 .4678 .0464 .1345 .0181 .4641 .0476 .1307

.25 .25 5 .0235 .3865 .0184 .0531 .0100 .4047 .0174 .0713
10 .0076 .3610 .0075 .0277 .0047 .3648 .0061 .0314
15 .0042 .3513 .0043 .0180 .0027 .3533 .0036 .0199

2 .0650 .5341 .2010 .2008 .0639 .5323 .1962 .1990
3 .0673 .3983 .0664 .0650 .0495 .4203 .0620 .0869

.25 .5 5 .0487 .3572 .0274 .0239 .0226 .3868 .0277 .0534
10 .0186 .3488 .0109 .0154 .0094 .3571 .0117 .0238
15 .0133 .3442 .0067 .0109 .0058 .3487 .0070 .0154

2 .1352 .3923 .1737 .0590 .1307 .4020 .1837 . 0686
3 .1147 .3254 .0635 -.0079 .0786 .3772 . 0660 .0439

.25 .75 5 .0632 .3363 .0282 .0030 .0454 .3578 .0271 .0244
10 .0293 .3378 .0113 .0045 .0212 .3445 .0100 .0111
15 .0211 .3341 .0067 .0008 .0142 .3399 .0062 .0065

2 .0645 .5272 .1991 .1939 .0635 .5361 .2151 .2027
3 .0538 .4109 .0768 .0776 .0178 .4724 .0487 .1391

.5 .25 5 .0246 .3786 .0530 .0452 .0099 .4058 .0174 .0724
10 .0081 .3516 .0411 .0182 .0052 .3653 .0057 .0320
15 .0056 .3395 .0376 .006 .0030 .3555 .0035 .0222

00



TABLE 10— Continued

PA Sampling PR Sampling;
Min Variance 1Variance Variances Variance
Time Range N of X of gZ Bias of X S2 of S2 Bias

2 .1754 .3369 .1605 .0036 .1653 .3333 .1594 .0000
3 .0840 .3860 .0723 .0527 .0842 .3701 .0687 .0368

.5 .5 5 .0440 .3680 .0293 .0347 .0379 .3696 .0260 .0363
10 .0225 .3485 .0115 .0152 .0171 .3471 .0107 .0137
15 .0143 .3441 .0069 .0108 .0112 .3442 .0067 .0108
2 .2004 .2849 .1322 —.0484 .2007 .2646 .1225 -.0687
3 .1021 .3608 .0711 .0275 .1408 .2879 .0625 -.0454

.5 .75 5 .0605 .3484 .0322 .0150 .0850 .3081 .0277 -.0252
10 .0322 .3395 .0145 .0062 .0437 .3226 .0108 -.0108
15 .0207 .3391 .0099 .0057 .0294 .3263 .0064 -.0070
2 .2707 .1242 .0173 -.2091 .2647 .1270 .0178 -.2063
3 .1127 .3328 .0540 -.0005 .2003 .1919 .0243 -.1415

.75 .25 5 .0232 .3872 .0176 .0538 .0891 .2998 .0235 -.0335
10 .0154 .3521 .0070 .0188 .0220 .3435 .0053 .0102
15 .0078 .3477 .0044 .0144 .0118 .3412 .0033 .0078
2 .2671 .1269 .0178 -.2064 .2659 .1274 .0177 -.2060
3 .1525 .2712 .0562 -.0621 .2277 .1537 .0199 -.1797

.75 .5 5 .0459 .3565 .0273 .0231 .1838 .1874 .0179 -.1459
10 .0272 .3395 .0107 .0061 .1160 .2423 .0137 -.0911
15 .0171 .3378 .0068 .0045 .0825 .2691 .0095 -.0642
2 .2121 .2544 .1203 -.0790 .2069 .2645 .1181 -.0688
3 .1516 .2812 .0616 -.0521 .1454 .2888 .0600 — .0446

.75 .75 5 .0645 .3371 .0285 .0037 .0840 .3110 .0273 -.0223
10 .0337 .3318 .0121 -.0015 .0445 .3197 .0117 -.0137
15 .0222 .3334 .0073 .0001 .0290 .3242 .0067 -.0091

00
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TABLE 11
SUMMARY STATISTICS OF COMPUTER SAMPLING OF FII (SINS 2 PIT)

PA Sampling PR Sampling
Min Variaiice Variance Variance Variance
Time Range N of X S2 of S2 Bias of X s- of S2 Bias

2 .0651 .3663 .1979 .1202 .0668 .3438 .1726 .0977
3 .0324 .3273 .0650 .0812 .0319 .3169 .0631 .0708

.25 .25 5 .0222 .2791 .0251 .0330 .0185 .2795 .2369 .0334
10 .0091 .2601 .0101 .0140 .0091 .2609 .0090 .0148
15 .0057 .2549 .0060 .0088 .0059 .2580 .0060 .0119

2 .0637 .3453 .1868 .0991 .0660 .3709 .1958 .1248
3 .0528 .2792 .0714 .0332 .0046 .3068 .0745 .0607

.25 .5 5 .0350 .2610 .0317 .0149 .0254 .2816 .0341 .0355
10 .0151 .2548 .0132 .0087 .0122 .2604 .0147 .0144
15 .0109 .2489 .0080 .0028 .0079 .2567 .0087 .0106

2 .1085 .2873 .1413 .0413 .1031 .2785 .1309 .0325
3 .0846 .2487 .0583 .0026 .0632 .2672 .0625 .0212

.25 .75 5 .0456 .2532 .0296 .0072 .0370 .2545 .0280 .0084
10 .0214 .2510 .0127 .0049 .0181 .2531 .0129 .0070
15 .0148 .2466 .0081 .0005 .0122 .2506 .0080 .0046

2 .0637 .3501 .1764 .1040 .0661 .3531 .1807 .1070
3 .0478 .3023 .0872 .0562 .0304 .3179 .0636 .0718

.5 .25 5 .0243 .2851 .0579 .0390 .0183 .2794 .0248 .0333
10 .0090 .2682 .0432 .0221 .0090 .2614 .0089 .0153
15 .0063 .2615 .0394 .0153 .0058 .2566 .0052 .0105

OoVO



TABLE 11— Continued

PA Sampling PR Sampling
Min Variance Variance Variance Variance
Time Range N of X of S2 Bias of X S% of S2 Bias

2 .1210 .2404 .1145 -.0057 .1248 .2474 .1181 .0013
3 .0607 .2771 .0696 .0310 .0635 .2746 .0684 .0285

.5 .5 5 .0340 .2624 .0322 .0164 .0326 .2683 .0316 .0222
10 .0172 .2527 .0134 .0066 .0151 .2560 .0124 .0099
15 .0108 .2488 .0083 .0028 .0092 .2518 .0079 .0057
2 .1379 .2056 .0831 -.0405 .1433 .2104 .0920 -.0357
3 .0774 .2512 .0601 .0051 .1001 .2263 .0530 -.0198

.5 .75 5 . 0466 .2512 .0326 .0051 .0604 .2346 .0280 -.0115
10 .0241 .2440 .0157 -.0021 .0306 .2383 .0126 -.0078
15 .0153 .2462 .0117 .0001 .0202 .2411 .0079 -.0050
2 .1730 .1316 .0243 -.1145 .1860 .1289 .0241 -.1172
3 .0800 .2409 .0478 -.0052 .1321 .1661 .0178 -.0800

.75 .25 5 .0226 .2768 .0250 .0307 .0573 .2364 .0217 -.0097
10 .0135 .2571 .0097 .0110 .0169 .2535 .0079 .0074
15 .0076 .2540 .0064 .0079 .0089 .2520 .0051 .0059
2 .1865 .1345 .0239 -.1116 .1832 .1263 .0231 -.1197
3 .1070 .2087 .0476 -.0374 .1510 .1433 .0147 -.1028

.75 .5 5 .0355 .2631 .0328 .0170 .1157 .1609 .0121 -.0852
10 .0194 .2515 .0135 .0053 .0718 .1929 .0094 -.0532
15 .0128 .2514 .0085 .0053 .0515 .2091 .0074 -.0370
2 .1407 .1992 .0856 -.0469 .1390 . 2021 .0877 -.0440
3 .0981 .2180 .0504 -.0281 .1008 . 2125 .0449 -.0336

.75 .75 5 .0475 .2430 .0287 -.0031 .0504 .2310 .0194 -.0151
10 .0237 .2446 .0125 -.0015 .0294 . 2400 .0116 -.0061
15 .0157 .2442 .0081 -.0019 .0204 .2423 .0075 -.0037

VOo
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that although the mean of each of the three sampled functions - FI (Sin 2 

PIT), FII (TRIANGLE), and Fill (Sin^ 2 PIT) - is zero, their variances are 

1/2, 1/3, and .246093 respectively. These values were computed by evalu­

ating the integral of the function squared over one period. It is these 

values which are used in the computation of the estimate of bias. Since 

these differences in variance among the function will be reflected in 

the distributions of the biases, across function comparisons of bias will 

also be affected by these differences. If a statistic r defined as the 

estimate of the bias divided by the variance of the function sampled is 

used for comparisons rather than the bias itself, different results are 

obtained. Clearly, if r is used for within function comparisons, the 

variance acts merely as a scale factor, but in across function compari­

sons a completely different impression may be given by a comparison of 

r's than by a comparison of the unweighted biases. Consider the PR 

sampling with minimum time .25 and range .25 for FI and FII. The size 

5 estimate of bias obtained for FI was .1071 while that for FII was 

.0713. The corresponding r for FI, however, was .2142 while the associ­

ate r for FII was .2139. For some purposes the use of r would seem more 

appropriate. Defined below is a statistic, the critical size, based upon 

the use of r which proved very helpful in giving some specificity to the 

rather vague general impression of the relationship of bias and sample 

size gleaned from studying the summary statistics of each study.

For a given function and a given positive number p, the critical 

size Np is the smallest positive integer n < 25 such that:

(i) If is the absolute value of the bias estimate obtained for 

sample size n and V the variance of the given function, then
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(B^ / V) < p.
(11) If 25 > m > n then (B^ / V) < p.

If no such integer exist, then Is said not to exist.
Np Is, then, an estimate of the smallest sample size such that, 

for this sample size or any larger size, the absolute value of the bias 

expressed as a fractional portion of the variance of the function does 

not exceed a given amount p. Of course, proved useful only because of 

the general downward trend noted above. Table 12 gives critical size 

information for the functions sampled.

Although In the discussions of the PA and PR sampling In CHAPTER 

III the view of these plans as having a fixed scheduled time between samp­

ling times delayed, perhaps, by some positive time was adopted, an 

equally valid Interpretation is given by regarding the scheduled time be­

tween samples as the minimum time plus the expected value of the delay

distribution with the possibility of a sample being taken early (a delay

of less than the expected value) or late (a delay of greater than the 

expected value). If this latter view Is taken, then the sampling plans 

with a minimum time .25 and range .75 are similar to those with minimum 

time .5 and range .25 in the sense that the expected time between samples 

is 5/8. The same relationship exists among those plans with minimum time 

.5, range .75 and those with minimum time .75, range .25, since the ex­

pected time between samples Is 7/8. Some insight Into the influence of 

the range may be gained by comparing the results for these similar plans. 

Table 12 shows that within each function the corresponding is less for 

the associated similar plan of the same type with the larger range. Thus, 

it would seem that increasing the range tends to accelerate the downward



TABLE 12
CRITICAL SIZE VALUES FOR P = .1, .05, .03

Min
Time Range B.IO

FI
PA

W.05

(Sin 2 PIT)
PR

” .03 ” .10 ” .05 ” .03 ” .10

Fll
PA

” .05

(TRIANGLE) 

” .03 ”.10
PR

” .05 ” .03 ” .10

Fill
PA

” .05

(SinS 2 PIT)
PR

” .03 ” .10 ” .05 ” .03

.25 9 17 - 10 20 - 9 16 24 10 17 - 7 12 18 6 13 22

.25 .5 6 12 19 8 16 - 4 8 16 8 14 23 4 7 11 7 12 24

.75 3 3 3 6 10 18 3 3 5 4 8 11 3 3 3 3 5 6

.25 8 14 18 10 20 - 7 11 13 10 21 - 9 19 - 7 13 21

.5 .5 4 8 16 6 10 19 6 10 16 6 9 16 4 8 10 5 9 13

.75 3 4 4 4 8 17 3 4 8 4 8 12 3 3 3 3 5 11

.25 6 17 - 5 9 18 9 16 25 5 6 10 6 13 18 5 9 10

.75 .5 4 8 14 - - - 4 6 13 - - - 4 6 14 24 - -

.75 4 4 4 5 8 12 4 4 4 5 7 14 4 4 5 4 7 9

- Indicates no critical size exist.
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trend of the magnitude of the bias for a fixed "scheduled" time between 

samples. Examination of the tables of summary statistics reinforces this 

observation.

As a further check upon the effect of increase of range and to

observe the results of sampling with a plan having a delay range greater

than one, an additional study was conducted for FI under PR with minimum 

time .5 and range 1.25. The expected time for this plan is 9/8, the same 

as for a minimum time of .75 and range of .75. An abbreviated table of 

the summary statistics for this study is given in Table 13. The N 

N gg, and N for this study were 3, 6, and 7 respectively. From Table 

12 the corresponding N^’s for the similar PR sampling of FI are 5, 8, 

and 12. This additional study, therefore, offers further evidence in 

support of the hypothesis of larger range values accelerating the down­

ward trend of the bias.

It was shown in CHAPTER III that under PA and PR sampling the

expected value of the within subject mean is an unbiased estimator of

the function mean. Hence, the mean (of a sample of size 1500) of the 

within subject running means for each sample size is an unbiased esti­

mator of this expected value. Since the mean of all functions was zero, 

the expected value of this statistic at each sample size was zero. The 

results of the computer sampling were in agreement with this theoretical 

result. The maximum deviation from zero was .02456 obtained for a sample 

size 1 of FI, however most of the magnitudes of the deviations from zero 

were much smaller than this. Over all studies, the number of positive 

deviations was approximately equal to the number of negative deviations 

as would be expected from the symmetry.
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XABLa XJ

SUMMARY STATISTICS FOR PR SAMPLING OF FI WITH MINIMUM 
TIME .5 AND RANGE 1.25

N
Variance 

of g S2
Variance 

of S2 Bias Bias/V

2 .2200 .5736 .3458 .0736 .147

3 .1414 .5451 .1210 .0451 .090

5 .0789 .5290 .0464 .0290 .058

10 .0400 .5079 .0166 .0079 .015

15 .0272 .5039 .0100 .0039 .007
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The variance V_ of the distribution of running means was shown 

g
in CHAPTER III to be related to the bias by

V_ = o^/n - (1 - l/n)B 
g

where n is the sample size, the variance of the function, and B the 

bias. Examination of the tables of summary statistics shows that the 

estimate of the variance of g" is in agreement with this result even when 

the estimate of bias is used rather than the exact population figure.

Note that the relationship of bias and V—  is such that if the bias is 

positive, V—  is less than the corresponding variance for a random samp­

ling, but if the bias is negative V_ is greater than that for random
8

sampling. The effect of the bias on V—  is such that V_ does not neces-
8 g

sarily decrease monotonically with increasing sample size as in random 

sampling, but a sharp downward trend is found in all studies.

Frequency Distributions 

For the frequency distributions of the within subject running 

means at each sample size, the interval -1 to +1 was partitioned into 13 

equal length intervals and a computer program used to tabulate, for each 

sample size within each study, the number of means which fell into each 

interval. Since the means for the samples at size one are random samples 

from the functions over one period, histograms or frequency polygons 

constructed from the frequency distribution output would be expected to 

be the density functions derived in CHAPTER III for the sampled functions. 

This was, indeed, the case for each study. From examination of the fre­

quency distributions obtained it would seem that within each study the 

densities of within subject running means change progressively with
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increasing sample size from the original densities at sample size one 

to symmetric, unimodal densities with mean zero. The densities associ­

ated with the larger sample sizes seem to become very "peaked" about 

zero. The rapid (in terms of sample size) convergence from the original 

frequency distributions at sample size one to the unimodal form was one 

of the more surprising results of the simulation. The pattern described 

may be seen in Table 14 which gives abbreviated forms of the frequency 

distributions obtained from three studies. In addition to the tabular 

values presented, the pattern is illustrated in the graphs of the fre­

quency polygons for sample sizes from 1 to 10 in Figure 5.

The differences in the variances of the three functions pre­

sented a problem in selecting intervals for the frequency distribution of 
2S . Clearly, intervals suitable for displaying the distribution for FI, 

say, are not appropriate for FIX and Fill. After preliminary trials 

with several different selections, the decision was made to use 13 in­

tervals for each function, but with different interval widths for each 

function. Thus, within a given function, frequency counts for intervals 

are directly comparable, but for across function comparisons the dif­

ferences in width must be noted. The definitions of the sets of inter­

vals for each function are given below.

For FI the interval from zero to 1.274 was partitioned into 12 

equal length intervals and these were used to define the first 12 inter­
vals for the frequency distribution. All values greater than 1.274 were

tabulated in interval 13. For FIX the interval partitioned was from zero 

to 1.140 and for Fill from zero to .840. For these functions, as for 

FI, all values not in any of the first 12 intervals were tabulated in



TABLE 14
FREQUENCY DISTRIBUTIONS OF WITHIN SUBJECT RUNNING 

MEANS FOR THREE STUDIES

Min
Function Time Range

Type
Sampling Size 1 2 3 4

Interval Number 
5 6 7 8 9 10 11 12 13

1 296 107 82 77 77 71 66 79 78 75 96 125 271
2 153 164 121 106 71 81 78 87 84 95 134 168 158

FI .75 .25 PR 3 58 116 155 120 141 103 91 106 111 146 150 136 67
4 22 70 110 143 151 158 152 161 149 158 134 71 21
10 0 1 1 11 155 337 439 384 155 16 0 0 1
20 0 0 0 1 40 337 727 361 34 0 0 0 0
1 113 121 93 113 127 117 121 118 112 125 118 108 114
2 15 29 51 111 187 237 233 201 201 110 71 40 14

FII .25 .75 PA 3 6 21 48 117 166 226 273 224 194 129 70 22 4
4 3 11 48 79 187 252 296 275 176 116 41 16 0

10 0 0 0 17 124 338 493 397 114 16 1 0 0
20 0 0 0 1 43 373 685 349 49 0 0 0 0
1 120 44 49 54 54 107 607 96 60 55 63 69 122
2 11 21 35 145 137 175 415 157 137 188 37 27 15

Fill .5 .5 PA 3 3 2 15 37 168 276 427 266 200 67 37 2 0
4 0 1 8 41 141 302 448 318 165 57 17 2 0

10 0 0 0 2 52 330 690 356 67 3 0 0 0
20 0 0 0 1 7 247 937 299 9 0 0 0 0

VO00
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Figure 5— Frequency polygons of within subject running means for FI sampled under PR with 
minimum time .25 and range .75.



100
interval 13.

Using these sets of intervals, the variance of FI is a number 

in interval number 5 while the variances of FII and Fill lie in interval 

number 4.

With the exception of the studies using a PA sampling with mini­

mum time .5 and range .25, which will be discussed below, the frequency 

distributions within each study followed a pattern with increasing sample 

size similar to that for the frequency distributions of the running means 

in that, as sample sizes become large, the distributions become unimodal 

with a "peaking" at the interval containing the population value being 

estimated as the bias becomes small. The symmetry noted for the means, 

however, was not a characteristic of these distributions. The general 

pattern of change with increasing sample size observed in each study 

may be described as progressing from a frequency distribution with exces­

sive counts in the extreme intervals for sample size 2, to a more nearly 

uniform distribution for size 3 or 4, thence to the unimodal form men­

tioned above. This pattern may be observed in the three sets of fre­

quency distributions selected as typical and presented in Table 15 and 

in the graphical presentation of the frequency polygons in Figure 6.

In the PR sampling with minimum time .75 and range .5 the change

to a unimodal form of the frequency distribution did not occur until a

much larger sample size than for the other studies. Also, the influence

of the relatively large negative bias is seen in that even for sample

sizes where the distribution may be considered unimodal, the inteirval 

having the most counts is not the interval containing the variance of the 

function sampled until the sample size is quite large. The sets of fre­

quency distributions obtained under this plan given in Table 16 illustrate



TABLE 15
FREQUENCY DISTRIBUTIONS OF S FOR THREE STUDIES

Function
Min
Time Range

Type
Sampling Size 1 2 3 4

Interval Number 
5 6 7 8 9 10 11 12 13

2 248 100 83 73 62 77 68 56 87 67 73 71 435
3 15 39 58 95 149 211 219 240 223 139 65 38 9

FI .25 .25 PA 5 1 19 61 157 317 444 272 145 58 17 9 0 0
10 0 5 27 153 471 576 223 41 4 0 0 0 0
15 0 0 10 119 611 648 106 6 0 0 0 0 0
25 0 0 2 85 828 557 27 1 0 0 0 0 0
2 685 198 156 113 84 51 27 33 29 17 23 16 68
3 395 288 233 149 122 78 76 64 46 27 12 7 3

FII .5 .75 PR 5 140 279 309 266 249 147 74 26 8 1 1 0 0
10 8 138 424 495 311 109 15 0 0 0 0 0 0
15 0 64 390 679 312 54 1 0 0 0 0 0 0
25 0 8 342 857 282 11 0 0 0 0 0 0 0
2 602 132 96 96 82 103 133 74 28 21 15 8 110
3 382 172 160 202 209 85 51 44 39 29 32 19 76

Fill .25 .75 PR 5 197 197 318 229 162 126 119 73 44 18 9 4 4
10 50 208 300 347 300 169 85 33 6 1 1 0 0
15 22 129 354 451 338 154 40 10 1 1 0 0 0
25 2 61 360 616 364 82 13 2 0 0 0 0 0

MO
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Figure 6— Frequency polygons of within subject variance estimates for FI sampled under PR with 
minimum time <>5 and range 1.25.



TABLE 16
FREQUENCY DISTRIBUTIONS OF S^ FOR PR SAMPLING 

WITH MINIMUM TIME .75 AND RANGE .5

Min
Function Time Range

Type
Sampling Size 1 2 3 4

Interval 
5 6

Number 
7 8 9 10 11 12 13

2 830 207 142 102 66 60 42 36 14 1 0 0 0
3 631 268 200 149 106 50 40 27 27 2 0 0 0

FI .75 .5 PR 5 376 297 267 213 145 111 63 23 5 0 0 0 0
10 129 212 267 314 301 215 54 8 0 0 0 0 0
15 62 124 234 365 449 220 42 4 0 0 0 0 0
25 10 43 147 409 629 251 11 0 0 0 0 0 0
2 813 288 107 114 94 21 0 0 0 0 0 0 0
3 652 390 250 50 30 20 6 5 2 0 0 0 0

FII .75 .5 PR 5 423 488 285 154 81 48 18 3 0 0 0 0 0
10 149 426 396 329 159 33 7 1 0 0 0 0 0
15 59 292 469 489 107 21 0 0 0 0 0 0 0
25 14 131 536 645 171 3 0 0 0 0 0 0 0
2 805 203 103 105 79 87 94 24 0 0 0 0 0
3 528 278 229 276 147 19 7 5 2 5 1 0 3

Fill .75 .5 PR 5 300 370 479 193 65 43 25 12 7 5 0 1 0
10 82 391 516 228 168 77 26 10 1 1 0 0 0
15 31 303 520 344 194 83 21 2 1 1 0 0 0
25 2 137 527 560 222 49 2 1 0 0 0 0 0

oU)



104

these remarks.

Exceptions to the general pattern were obtained in PA sampling 

with minimum time .5 and range .25. Under this plan the frequency dis­

tributions remained bimodal even for the larger sample sizes with one 

"mode" lying to the left and one to the right of the variance of the 

sampled function. This characteristic may be seen in the sets of distri­

butions presented in Table 17.

Four Group Sampling
As described in CHAPTER IV, four groups of 20 subjects each were 

randomly selected from each study and the group mean and plotted 

against sample size. Each graph for each group, then, represents a plot 

of the group characteristic as might be obtained in a real investigation 

where the variable being measured has a pattern over time similar to the 

sampled function.

Two of the graphs of the group means of the within subject run­

ning means are reproduced in Figures 7 and 8. The former is from a study 

with a positive bias and the latter from a study with a negative bias.

At. each sample size the four plotted points represent four means based 

upon a random sampling of size 20 from the distribution associated with 

that sample size, function, and sampling plan. The spread of the four 

points, then, reflects the magnitude of the variance. This remark applies 

to both group means and graphs. In Figure 7 the spread among the 

group means decreases rapidly as sample size increases. This is a re­

flection of the reduction in variance of the distribution when positive 

bias is present. The group means are relatively widespread until the



TABLE 17

FREQUENCY DISTRIBUTIONS OF S^ FOR PA SAMPLING 
WITH MINIMUM TIME .b AND RANGE .25

Min
Function Time Range

Type
Sampling Size 1 2 3 4 5

Interval Number 
6 7 8 9 10 11 12 13

2 265 99 78 79 82 65 71 60 66 73 74 66 422
3 122 116 124 134 138 125 107 127 143 173 114 59 18

FI .5 .25 PA 5 50 152 175 155 156 156 137 170 188 126 35 0 0
10 12 144 285 154 148 142 161 138 194 22 0 0 0
15 2 152 287 186 135 169 178 261 128 2 0 0 0
25 1 174 307 144 152 171 185 300 66 0 0 0 0
2 336 130 116 94 83 106 123 87 83 64 56 58 164
3 200 210 208 147 142 140 152 107 88 51 35 15 5

FII .5 .25 PA 5 140 313 170 166 162 176 188 110 51 21 3 0 0
10 122 349 187 151 187 219 207 69 9 0 0 0 0
15 123 377 183 139 192 246 208 32 0 0 0 0 0
25 137 364 179 156 190 254 212 8 0 0 0 0 0

2 542 100 92 87 82 101 102 89 44 32 32 28 168
3 456 111 122 166 140 95 80 54 35 37 49 38 117

Fill .5 .25 PA 5 412 128 152 130 108 117 115 104 89 60 32 26 27
10 416 100 110 102 140 172 167 107 92 33 18 3 0
15 417 143 102 116 136 163 179 139 59 26 2 0 0
25 420 142 116 115 112 177 219 149 47 8 0 0 0

h-»oLn



t i  i

U

in
*
*z
M
m

0 * ■

,1 - M  M  I M  I I H  -M - M H  I M  » k H  I I I- # I I- I I > K I- I I I I

1 SAMPLE SIZE 25
FIGURE 7 - l%JWING IwGANS FBR 4 GR0UPS 0F SIZE 20 FF0M FUNCTIBN Fill 

SAMPLED UNDER A PA SAMPLING PLAN WITH RANGE -5 AND MINIMJM T I Æ  *25

sa>



I— I
-1

1 SAMPLE SIZE 25
FIGURE 0 - RUhNINB MEANS F0R 4 GR0UPS 0F SIZE 20 FR0M FUNCTION Fill 

SAMPLED UrCBR A PA SAMPLING PLAN WITH RANGE -75 ATO MINIMUM TIME -75



108

larger sample sizes in the study with negative bias depicted in Figure 8. 

Note that in both figures the spread is around zero, the mean of the 

sampled function, and that the means of each group lie close to this 

value as sample size becomes large. These results were to be expected 

from the unbiasedness of the estimator and the increase of precision with 

sample size noted in the discussion of the summary statistics. The pat­

terns observed in these two graphs are typical of those observed for the 

graphs of group means in all studies.

At each sample size in the ̂  graphs, the spread of the four 

plotted points reflects the variance as in the mean graphs, but the ex­

pected value is the same at each sample point for the mean graph, while 

the expected value is a function of sample size for the graphs. Thus, 

the patterns over sample size reflect the pattern of the expected values 

of over sample size, and the distances from the line parallel to the 

sample size axis at a distance equal to the variance of the sampled 

function reflect the relationship of sample size and bias.

In Figures 9 through 16 eight sets of graphs are given to 

illustrate how the pattern over sample size exhibited by of the four 

groups recapitulates the findings concerning in the above discussion 

of summary statistics and frequency distributions.

In the discussions above it was noted that in PR sampling of 

each function with minimum time .75 and range .3a relatively large nega­

tive bias was present even for larger sample sizes, while for the PA samp­

ling with the same parameters the magnitude of the bias becomes small for 

larger sample size. The effect of the difference in the two sampling 

types for these parameters is illustrated for FI in Figures 9 and 10.
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Another sampling plan that was noted to yield results somewhat

different from the others was the PA sampling with minimum time .5 and
_2range .25. Figure 11 gives the S graphs for the four groups from the 

FIX study using this plan. Notice the spread of the points at each 

sample size remains relatively large even at size 25 whereas the four 

groups from the PR sampling with the same parameters graphed in Figure 

12 are close together for the larger sizes.

Figures 13 and 14 illustrate the greater bias found for the 

smaller sample sizes for the plan with the smaller range even though 

the expected time between measurements is the same in both studies.

Figures15 and 16 contrast the pattern for the function with the 

greatest variance with that of the function having the smallest when both 

are sampled under the same plan.

Discussion of Results

The findings of the simulation were in agreement with the

theoretical results for pseudo-systematic sampling of periodic functions

developed in CHAPTER III. The unbiased property of the within subject

sample mean as an estimator of the function mean» the biasedness of with- 
2in subject S as an estimator of function variance, the dependency of

bias on sample size, sampling plan, and function sampled, and the rela-
2tionship of the variance of sample mean and bias of S were demonstrated

by the simulation.

In addition to the empirical evidence in support of the theore-
2tical results, the simulation suggests certain characteristics of S as 

an estimator of the function variance and the within subject sample mean
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as an estimator of function mean that were not necessarily investigated 

directly in CHAPTER III. Given below are several impressions concerning 

the estimators given by the evidence of the simulation viewed in the 

framework of the results of CHAPTER III and known properties of estima­

tion and sampling in general. All remarks are in reference to sampling 

periodic functions under PA and PR with an Initial time selected randomly 

from an interval with length the period of the function and a uniform 

distribution of delays. For some of the problems and the recommendations 

made so as to minimize the difficulties, there would, of course, exist 

combinations of minimum times, ranges, and functions which would circum­

vent the undesirable aspects, but this, in general, would be possible 

only if a great deal of specific information concerning the functions 

were available. Certainly, the impressions are somewhat speculative in 

nature, but the results of the simulation offer considerable support for 

each of them.
Estimation of variance based upon sample size less than 5 seem

undesirable not only because of the relatively large magnitude of the
2bias of S often found for the small sample sizes, but also because of

2the characteristics of the distribution of S for the small number of 

within subject measurements. Note that characteristics such as a high 

probability of obtaining extreme values for a given subject is present 

even in random sampling of many functions. The undesirable character­

istics of these distributions (except for the bias) is seemingly inherent 

in the problem of sampling functions and not, exclusively, a problem of 

pseudo-systematic sampling. Analogous remarks may be made concerning 

the estimates of within subject means.
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For sample size 5 or greater and range one quarter period or more,
2S seems to be a relatively stable (although perhaps biased) estimation

of the variance of periodic functions if certain conditions are avoided.

In PA sampling with minimum time near one-half the period and range less
2than one-half the period, the variance of S seems excessive and the fre­

quency distribution seems bimodal. Both of these conditions would be

undesirable properties for an estimator. With the exception of this
2one sampling condition, the distribution of S seems to be such that for

2larger sample sizes S would have the desirable properties of a unimodal
2density and relatively small variance. Support for the stability of S

as an estimator is found in the frequency distributions, the downward
2trend of the variance of S , and the upper bounds of the variance for 

sample size 5 or more discussed earlier. Also, the graphs of the four 

groups indicate the generally good precision obtained for groups of size 

20.
2In the use of S as an estimator for the within subject variance 

of a group, as in the four group portion of the simulation, two alterna­

tives are available for increasing the precision. The downward trend of 
2the variance of S with increased sample size would indicate that taking

more within subject measurements would increase precision. Also, since

the group is a mean based upon a sample size equal to the number of

subjects in the group, increasing the number of subjects would increase

precision if the subjects are truly homogeneous relative to the pattern

over time of the sampled variable. Once again, note that the expected 
2value of S is, in general, a function of sample size. Therefore, in 

computing a group S^, all subjects must have the same number of within
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2subject measurements if each within subject S is to have the same 

expected value.

Although for fixed expected time between measurements, an in-
2crease in range may decrease the precision of S for a given sample size, 

employing a larger range seems to be a method for decreasing bias. As 

was noted above studies with minimum time .25 and range .75 have the same 

expected time between measurements as do studies with minimum time .5 

and range .25. Examination of the summary statistics and critical sizes 

for these studies shows the magnitude of the bias much smaller for a 

fixed sample size in the studies with the larger range. Similar results 

are.noted in contrasting studies with minimum time .5 and r^ge .75 with 

those studies with minimum time .75 and r^ge .25. Further evidence 

that larger range aids in decreasing bias may be seen by noting that in 

every study with PA sampling with range .75 the associated N is 5

or less.

At the cost of a small.loss in precision, then, the undesirable
2bias property of S may be alleviated somewhat by increasing the range 

of the delays. Another alternative.is to increase the sample size.

Under certain sampling plans, the number of within subject measurements 

necessary to "drive" the magnitude of the bias down to tolerable limits 

may be so large as to be impracticable. In the PR sampling with minimum 

time .75 and range .5, for example, the bias was greater than 10%.of the 

total variance even at sample size 23 for all functions. This sampling 

plan was, of course, the worst in terms of the decline of magnitude of 

bias with increased sample size and if this plan is avoided increase in 

sample size does offer a practical method of reducing bias. The decrease
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of magnitude of bias with sample size seems much more pronounced in the 

PA samplings than in the corresponding PR samplings with the same minimum 

time and range whenever the range was one-half the period or more.

In the discussion of the empirical portion of this investigation 

given in CHAPTER III it was noted that the function FI was intended to 

model a variable whose pattern over time is such that most of the time 

is spent away from its mean, FII models a variable which spends an equal 

amount of time in all its states, and Fill models a variable which spends 

most of the time near its mean, but with pulse-like excursions to its 

extreme values. It would seem, then, that these functions span, in some 

sense, a large set of the types of periodic variation and that attributes 

of PA and PR sampling which hold for all three functions should be attri­

butes of the same type of sampling of variables whose time course is 

either similar to one of the three or intermediate to two of them. Thus, 

the results discussed here inay be useful as guidelines for the design of 

studies which are attempting to estimate within subject means and/or 

variance of physiological quantities whose time course is known or sus­

pected to be periodic. If even a crude approximation of the period is 

available, then the kind of sampling used in the simulation seems to 

offer a practical method of obtaining reasonably reliable estimates of 

mean and variance. Of course, the practical conditions associated with 

a particular investigation will dictate the feasibility of employing some 

of the indicated results; however, the recommendations listed below may 

serve as basic principles in designing sampling plans for such studies 

using pseudo-systematic sampling with the initial time point regarded 

as a random selection.
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1. At least five measurements per subject should be made.

2. If two or more estimates of variance are to be combined to form 

estimates for a group, the number of measurements must be the 

same for each subject.

3. In comparing two or more estimates of variance, all variance 

estimates mus^ be based upon the same number of within subject 

measurements for each subject involved.

4. Sampling under PR with expected times between samples near an 

integral multiple of the period should be avoided.

5. Sampling under PA with expected time between measurements near 

one-half or an odd multiple of half the period should be avoided, 

but if circumstances necessitate this condition, then the range 

.of delays should be at least one-half the period.

6. If the range is more than one quarter the period, PA sampling

is preferable to PR with the exception of the condition discussed 

in 5 above. This preference.is extended even to the smaller 

ranges for functions that are intermediate to FI and FII.

7. Table 12 may be used as a guide for determining the number of 

within subject measurements necessary so as to reduce the bias 

to tolerable limits.

8. The tables for the summary statistics may be used to indicate 

the number of measurements necessary to achieve the desired 

stability of the estimates.

9. The range of the delays should be as large as possible commensur­

ate with the practical conditions of the investigation.

A PA sampling plan with à range approximately three-fourths the
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period, minimum time approximately one-fourth the period, and ten 

measurements per subject would be an example of a plan which incorporates 
the above recommendations.



CHAPTER VI

SUMMARY

It Is shown that an analysis of variance with time viewed as 

a factor (or classification) and the times of measurements viewed as 

levels of this factor may be an appropriate and fruitful approach for 

extracting information from many biological studies concerned with the 

response pattern of a variable over time whenever a meaningful definition 

of equivalence of time points across experimental units or subjects may 

be made. The technique of an analysis of variance is applied to data 

from a previously published biological investigation to demonstrate the 

applicability of this approach and to indicate how this analysis not only 

allows appropriate tests of hypotheses essentially equivalent to those 

tested by the more elementary statistical methods of the original analyses, 

but also gives information relevant to questions discussed but left un­

resolved in the publication.

A second part of the study is the consideration of some of the 

difficulties in obtaining appropriate estimates of within subject vari­

ance and means for variables which exhibit a periodic fluctuation over

time. It is shown that under sampling schemes often employed in bio-
2logical investigations the usual estimator, S , of within subject vari­

ance is biased with the bias being a function of sample size, sampling 

scheme, and characteristics of the pattern over time. Under these same
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sampling schemes, the usual estimate of within subject mean, x is shown 

to be unbiased, but the variance of the estimator is a function of the 
bias of S^.

The theoretical considerations of sampling functions is ampli­

fied by computer simulation of the sampling of three periodic functions 

under various sampling plans. Both the theoretical and empirical find­

ings are used to construct a set of guidelines for the design of samp­

ling schemes which may minimize some of the undesirable aspects of the 

estimators so that the sampling schemes advocated provide a practical 

method of obtaining estimates of within subject variance and mean when 

the variable of interest varies periodically over time. The results of 

this investigation indicate that these same guidelines would aid in 

obtaining reliable estimates whenever the variable executes a rhythmic 

but not necessarily periodic variation. However, this conjecture is 

not specifically investigated at this time.
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