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CHAPTER I 

INTRODUCTION 

This investigation was undertaken with a two-fold objective: 

1) the design and construction of an experimental facility for the 

determination of precise Pressure-Volume-Temperature (PVT) data for 

a fluid• and the subsequent operation of the facility to obtain such 

data for a selected binary mixture; 2) a comparison of the resultant 

data with existing virial coefficient data and with equations of 

state. The purpose of the comparison was to emphasize the need for 

further equation of state improvements and to recommend future methods 

for such improvements. 

Volumetric data are of industrial interest in process design 

calculations. The data are also of value in the calculation of derived 

properties such as the thermodynamic quantities enthalpy and entropy, 

and in the further development of generalized methods for estimating 

thermodynamic properties from a minimum of direct data. 

In the experimental determination of PVT (or compressibility 

factor) data it is generally necessary to have a simultaneous knowledge 

of the following five quantities: pressure, temperature• composition, 

mass, and volume. Of these five quantities, the latter two are generally 

the most troublesome to measure; and their resultant measurement is 

frequently the least accurate. This characteristic led to the design 

and operation of a PVT apparatus that requires no direct experimental 

1 
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measurement of either of the two quantities mass or volume, The apparatus 

is of the isochoric (constant volume-constant mass) type, and was 

operated at temperatures from 77 to 20°F, with pressures from 260 to 

2400 psia, The apparatus is described herein, 

In the study of compressibility factor data from the virial 

coefficient and equation of state approach, it was desirable to select 

for study a system whose pure component properties ,have been previously 

reported in the literature. It was further desirable to make a prac-

tical contribution by reporting mixture data on a system that has not been 

previously studied. This led to the selection of the methane-ethylene 

binary system. Methane and ethylene and their mixtures are of industrial 

importance and are encountered frequently in the petrochemical industry. 

Although both methane and ethylene have been widely studied, no experimental 

investigation of the methane-ethylene binary system has been reported in 

the literature. 



CHAPTER, II 

PREVIOUS PVT INVESTIGATIONS 

In this chapter various types of PVT investigations, past and 

present, are discussed. These involve experimental measurements on 

apparatus classified as follows: 

1) constant volume-variable mass 

2) constant mass-variable volume 

3) variable volume-variable mass 

4) constant volume-constant mass 

These types of apparatus will be discussed in this order. The 

constant volume-constant mass apparatus of Michels (37, 47) is quite 

similar to the isochoric apparatus reported in this thesis; thus 

special emphasis is placed on this apparatus. 

For each type of apparatus, the operating conditions, accuracies, 

and specific applications are stated. Lastly, a survey is given of 

PVT determinations for methane and for ethylene. 

A. General CoDIJllents Regarding PVT Determinations 

The early studies of the effects of pressure and temperature on the 

volume of a confined gas were made at pressures and temperatures not 

greatly removed from ambient conditions. 

One of the earlier investigations of PVT behavior of a confined 

fluid at extreme conditions of pressure and temperature was reported by 

3 
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Amagat (1) in 1893. Amagat made accurate determinations of the isotherms 

of carbon dioxide over the temperature range O to 250°C, with pressures ,as 

high as 3000 atmospheres. The importance of PVT data was emphasized by 

this work, and the field has progressed rapidly throughout the present 

century. 

As stated above, the variables associated with the experimental 

determination of PVT data are pressure, volume, mass, temperature. and 

composition. Before discussing in detail the various types of PVT 

apparatus, several introdU:ctory comments regarding the determination of 

these five quantities are in order. 

Measurement of Pressure 

The pressure is determined precisely by means of the pressure 

balance, or dead weight piston gage. The dead weight gage principle 

is simple, consisting of a cylinder with an accurately fitted piston 

which is loaded by weights. Oil is injected into the cylinder beneath 

the piston until the load is balanced. The mass of the loading weights 

and the known piston area are sufficient to determine the pressure, making 

the necessary corrections. 

Gages of th.is general nature may be calibrated quite accurately 

.over wide ranges of pressure; instruments having an absolute accuracy 

of one part in 10,000 parts are commercially available. 

Dead weight gages have been discussed adequately in the literatureo 

In particular, gages and their characteristics have been discussed by 

Keyes (28), Bridgman (8) 1 and Johnson et al (27). 
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Determination of Volume 

The determination of volume and mass is done separately in some 

cases. In others only the ratio, mass/volume, is determined. 
~ 

If the volume of an apparatus is to be separately determined, this 

is commonly done in two ways. The first method involves the direct 

weighing of the volumetric portion of the apparatus when filled with 

a fluid of precisely known density, such as water or triple-distilled 

mercury. The second method involves the charging of the apparatus to 

a high pressure with a known mass of gas whose PVT properties have 

previously been established, and measuring the pressure and tempera-

ture. The density of the gas is determined from the known PVT properties 

of the gas and is then combined with the mass to determine the volumec 

Determination of Mass 

The mass of sample may similarly be determined in one of two ways¢ 

The first method involves the direct determination by weighing. If 

the sample is a gas, the weighing must usually be done in a light-

weight thin-walled glass pipet if high accuracy is to be obtained. 

This necessitates the prtsssure of the gas being approximately one 

atmosphere; thus a relatively large volume is required. The second 

method assumes that the PVT properties of the sample are established 

along some reference isotherm (frequently near ambient conditions). 

Further, the volume of the apparatus must be accurately known. The 

sample is then charged to the apparatus at high pressure and allowed 

to come to equilibrium at the temperature of the reference isotherm, 

whereuppn the pressure of the sample is measured. The pressure and 

temperature of the sample are then combined with the known volume and 



the properties of the reference isotherm to yield the mass. 

Measurement of Temperature 

The primary standard for temperature measurement is the platinum 

resistance thermometer. Such instruments may be calibrated with a 

precision of 0.001 degree, and the platinum metal has a high order of 

stability for several years. Thermometers are calibrated by the 

National Bureau of Standards (NBS) at several fixed temperatures, and 

a resulting practical working scale, known as the International Practi­

cal Centigrade Scale (65) is established, 

Composition Determinations 

For most investigations the composition is varied only in the 

sense that samples of different fixed composition are studied in a 

similar manner. In this manner the composition parameter becomes 

established. Composition determinations are commonly carried out by 

chromatographic or mass spectrometry methods, with compositions being 

frequently reported to 0,1%. The accuracy is dependent upon the 

number and type of components present. For binary mixtures higher 

accuracies may be obtained with very careful work. In the experi­

mental determinations reported in this thesis, the samples were 

blended and were analyzed by mass spectrometry before being 

received. 

The four types of apparatus will be considered in more detail 

in the following. 

6 
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B. Constant Volume-Variable Mass Apparatus 

The Bean Apparatus 

An apparatus of the constant volume-variable mass type was reported 

by Bean (3) in 1930. An unknown mass of gas was expanded in successive 

increments from a high pressure bomb of known volume into a cali-

brated buret at roughly atmospheric pressure, where the volumetric 

properties of the gas were presumed known. The mass of gas at each 

step of the procedure was determined by summing the increments of mass. 

The compressibility of the gas in the high pressure bomb was 

determined at each step of the procedure by measuring the pressure and 

temperature and from a knowledge of the bomb volume and the calculated 

sample mass. The mass of the gas in the buret was determined from the 

known volume of the buret, the pressure of the gas in the buret (near 

atmospheric), and the known low pressure compressibility of the gas. 

A series of runs consisted of charging the bomb initially to a 

high pressure and measuring the pressure and temperature. A small 

increment of the gas was then expanded into the calibrated buret and 

its pressure and temperature measured to determine the mass of the 

incremento Then the pressure and temperature of the sample in the 

bomb were again measured, and the second increment was expanded into the 

pipeto In this manner the compressibilities were determined along an 

isotherm. 

It would have been equally feasible, at each successive increment, 

to determine the pressure and temperature inside the high pressure 

bomb at several different levels of temperature, thus determining the 

data at constant densities as well as along an isotherm. This was not 
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done in the original Bean apparatus as the apparatus operated in a water 

bath, and only temperatures near ambient were tllaintained, 

There was no provision in this apparatus to make an independent 

check of the mass. The accuracy of.the mass determination obviously 

depends upon the knowledge of the compressibility near atmospheric 

pressure. All errors made in this step will be reflected, since the 

incremental masses are directly summed to obtain the total mass. This 

factor is one of the disadvantages of the apparatus. 

Bloomer (7) reports data on natural gases accurate to Oc1% at 

pressures up to 1000 psi and temperatures near ambient for an apparatus 

pf this type. 

The Solbrig-Ellington Apparatus 

A similar apparatus was reported by Solbrig and Ellington (64) 

at the Institute of Gas Technology. This apparatus further permitted 

the independent check on the sample mass, as the mass was determined 

both before it was charged into the high pressure vessel and as it was 

released from it, Data was taken at constant density at several 

different temperatures before expanding a portion of the sample into 

the measuring buret. This reduced the effort for a given amount of data. 

This apparatus has been applied to hydrogen-methane and hydrogen-ethane 

mixtures 9 and the data have a reported accuracy of 0.1%. The appara-

tus is applicable for the temperature range -300 to +300°F 9 for 

pressures up to 3000 psi. 

c. Constant Mass-Variable Volume Apparatus 

Since the early work of Amagat (1) with a constant mass-variable 
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volume apparatus, several apparatus of this type have been reportedo 

The Michels Original Cryostat 

The original Michels cryostat was described by Michels and 

Gibson (40} in 1928. The gas under investigation was contained within 

a glass piezometer, the piezometer being contained within a steel 

pressure vesselo The glass piezometer consisted of a large reservoir 

and several small reservoirs connected by narrow capillaries. A platinum 

wire was sealed through each of these capillaries, and all capillaries 

made contact with a second platinum wire wound around the outside of 

' the capillary and connected to leadso The piezometer volumes above 

each of these contacts were calibrated by weighing with mercury. The 

steel vessel contained mercury for compressing the gas in the piezo-

meter» the remainder of the fluid being oilo Pressure was applied to 

the oil, forcing the mercury up inside the piezometer and compressing 

the gas until the mercµry surface made contact with the platinum 

wireso Contact was indicated by a drop in the electrical resistance 

of the platinum wire wound around the capillaryo 

The fixed mass of gas was determined separately by expanding the 

entire sample into a large piezometer and measuring the normal volume of 

the gas at 25°C and a pressure of one atmosphereo 

A series of runs consisted of charging the apparatus to the de-

sired density and measuring the pressure and temperature at a known 

volume. The density of the sample was then varied by injecting or 

withdrawing oil from the system until the next selected volume was 

arrived at, whereupon the pressure and temperature were again 
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measured. In this manner isothermal data for a fixed amount of mass were 

taken. After an isotherm had been established, the above series of 

measurements could be repeated at other temperatures. 

This apparatus was operational over the temperature range Oto 

150°C and at densities as high as 200 Amagat.l/ 

The above apparatus was limited in range of applica~ion, howevero 

For higher densities the apparatus had the disadvantage that either 

the final volumes of the sample must be very small or the initial 

volume must be very large. The first disadvantage would cause inaccurate 

density measurements, the second would necessitate a large bulky appa-

ratus for withstanding high pressures. 

The Michels Improved Cryostat 

The above disadvantages led to the alteration of the apparatus so 

that it could operate as high as 3000 atmospheres. The improved appa-

ratus was described by Michels, Michels, and Wouters (43). In this 

design the piezometer was filled to an initial pressure of 20 to 50 

atmospheres, and the amount of gas was determined under pressure. 

This assumed that data were available from a previous source for the 

pressure range 20 to 50 atmospheres. 

The top portion of the piezometer containing the electrical con-

tacts was similar to the original cryostat. The bottom half was 

altered to allow the piezometer to be filled under pressure and to 

1/ Characteristically, the Dutch and German workers express 
volumetric properties in Amagat units. The Amagat volume of a given 
amount of sample is obtained by dividing the actual volume of sample 
by the corresponding volume at 0°C and one atmosphere. The Amagat 
density is defined as the reciprocal of the Amagat volume. 



11 

provide a contact for the determination of the normal volume 0 Other 

general features of the original cryostat were preserved. 

This apparatus was applicable in the pressure range 70 to 3000 

atmospheres and at temperatures from O to 150°C. The apparatus was 
·, 

claimed by the authors to have an accuracy of one part in 2000 parts 

at 3000 atmospheres, with higher accuracy at pressures lower than 

3000 atmospheres. 

In both the priginal and later MichErls~piezometers the sample 

mass was ultimately determined by measuring the pressure and tempera-

ture of the sample in a known volume and by combining the measurements 

with the known PVT relations of the gas under those conditions. In 

the technique described below the sample mass is determined by direct 

weighing in a glass pipet. 

The Beattie Apparatus 

In the constant mass-variable volume apparatus used by Beattie (4) 

in 1934 a known amount of sample (determined by direct weighing) was 

placed within a glass liner or pipet of accurately known volume. The 

glass pipet was inverted and placed within a pressure vessel, which 

was so constructed as to allow a space between the pipet and the 

pressure vessel. The pipet was provided with a thin glass tip which 

confined the sample to the known volume. At the beginning of a 

series of runs the space between the pressure vessel and pipet was 

filled with mercury, and the tip of the inverted pipet was snapped off. 

During the course of a series of runs more mercury was injected into 

the inverted pipet via a volumetrically calibrated·spoke device. The 

decrease in the original pipet volume was given by the amount of mercury 



displaced through the spoke device, the necessary corrections to the 

density of mercury being made. 

12 

A "blank run" (using a gas with known compressibility factors) was 

first made for a series of pressures at each bomb temperature to determine 

the effect of pressure and temperature on the apparent volume of the 

pressure vessel, including the confining mercury. This was one advantage 

of the method. The apparatus operated in the temperature range Oto 

325 °C and at pressures from 10 to 500 atmospheres. Compressibilities 

of a substance could be determined along isochors as well as isotherms. 

The overall uncertainty in the compressibility data ranged from 0.3% 

at the lower pres.sures and temperatures to O .1 to O. 2% at the higher 

pressures and temperatures. 

An apparatus after the design of Beattie has been in recent use 

by Douslin et al (17) on fluorocarbons, hydrocarbons, and their binary 

mixtures, This apparatus has a temperature range of from Oto 350°C 

and an operating pressure as high as 400 atmospheres, The overall 

accuracy in the compressibility measurements is reported to be ··0.03% 

at the lowest temperature and pressure and 0.3% at the highest temper­

ature and pressure. 

Also, a Beattie type apparatus has been constructed at the Univer­

sity of Texas (25). The operating temperature range is reported as 

35 to 225°C, with pressures from 6 to 310 atmospheres, An accuracy 

of 0,1 to 0,3% in the compressibility measurements is realized. 

Other accurate versions of constant mass-variable volume type 

apparatus have been repqrted by Doolittle, Simon, and Cornish ·(15) 

and by Connolly and Kandalic (13). 
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Do Variable Volume-Variable Mass {The Burnett Apparatus) 

The Burnett (9) apparatus was introduced in 1936, and is a 

variable volume-variable mass apparatus. This apparatus provides an 

accurate means of determining the volumetric properties of a gas 

without making volume or mass meas~rements; only the measurement of 

pressure and temperature is required, The apparatus is equally appli-

cable to pure components or to mixtures. 

As will be discussed below, the Burnett apparatus is interrelated 

with the isochoric apparatus of this work, as the densities for the 

isochoric runs are calculated from the experimental data from the 

Burnett apparatuso 

General Principl~s of the Burnett Apparatus 

Essentially the apparatus consists of two high pressure chambers, 

connected through an expansion valve, The volumes may be referred to 

as VI and VII' respectively,, The bombs are enclosed in a constant 

temperature medium. Chamber I is initially filled to a pressure p0 , 

with the expansion valve being closed and chamber II evacuatedo The 

pressure p0 is determined; then the expansion valve is opened and the 

gas allowed to expand into chamber II. After the attainment of thermal 

equilibrium the expansion valve is closed, chamber II is evacuated, 

and the new pressure p1 in chamber I is determined. The pressure 

measurement, expansion, and evacuation are repeated, the result after r 

expansions being p0 , p1, p2, ••• , pr-l' Pr• along an isothermo 

By making a simple material balance it may be shown that the 

ratio p /2 may be determined from 
0 0 
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lim 
p+O 
r 

r Po 
p N •­r Z 

0 

(II-1) 

Here z0 is the compressibility factor of the gas at p0 , and N is an 

apparatus constant, determined experimentally1 and defined as 

Once p /Z bas been determined for·a particular 
0 0 

run the compressibility factor Zr may be calculated from 

r Po 
prN • - Z Z r 

0 

Here Zr is the compressibility factor at the pressure Pr• 

(II-2) 

No correction for the effect of temperature on the bomb volumes 

is required, as the expansions are made isothermally. The apparatus 

constant N is sliahtly temperature dependent, and must be determined 

at each isotherm of the pressure expansions. Thus the accuracy of 

the Burnett apparatus depends primarily upon the measurement of two 

quantities--pressure and temperature. the apparatus is potentially 

most applicable to gases having a linear compreHibiU,ty isotherm; 

however, it may be applied to any gas. Measurements with a calculated 

maximum error of 0.15% over a wide range of temperature and pressure 

have been reported by Canfield et al (10). 

the Burnett apparatus has come into prominence within the last 

10-15 years (7 1 48 1 531 62, 63). Miller et al (48) determined com-

pressibilities near room temperature at pressures up to 4000 psia for 

helium-nitrogen mixtures. Pfefferle, Goff, and Miller (53) applied a 

Burnett apparatus at 30°c, at pressures up to 120 atmospheres, to the 



determination of compressibilities of helium, nitrogen, and carbon 

dioxideo Silberberg, Kobe, and McKetta (63) reported compreseibility 

factor isotherllll of isopentane from SO to 200°C at pressures up to 

65 atmospperes. Bloomer (7) reported compressibility isotherms, 

near ambient temperature. of two natural gases at pressures up to 

1000 psia using a Burnett apparatus. Canfield et al (10) studied 

the helium-nitrogen system at temperatures from Oto -140°C and at 

pressures ranging up to 10.000 psi, 

The OSU Burnett Apparatus 
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The Burnett apparatus at Oklahoma State University consists of two 

s,tainless steel bombs• of approximately the same volume (85 cc' s each) • 

located in a constant temperature air bath. The bombs are of the same 

design as the jacketed bomb used for the isochoric apparatus of this 

worko The bombs are separated from the pressure measuring device by 

a differential pressure indicator (DPI) cell. 

The apparatus is designed for use at room temperature and above. 

Since no low temperatures are involved, no limitations arise due to 

the DPI cell, The DPI cell is thus situated directly alongside the high 

pressure bombs in the air bath, The bomb volumes are maintained con­

stant by filling the jackets with high-pressure oilo The apparatus 

was used for studies of the methane-ethylene system and for estab­

lishing the reference isotherm for the isochoric- apparatus reported 

hereino 

The pressure measuring equipment is connected between the Burnett 

apparatus and the isochoric apparatus so as to serve for either appa­

ratus by the proper valving arrang~mento 
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E. ·constant Volume-Constant Mass Apparatus 

The Apparatus of Goodwin 

A modified Reichsanstalt apparatus!/ has been described by 

Goodwin (22) for the determination of PVT and specific heat data of 

hydrogen. This constant volume-constant mass apparatus consists of 

a heavy-walled copper pipet situated in a cryostat and connected 

through stainless steel capillary tubing to a null pressure detector 

(or DPI cell). The null pressure detector, connecting valves, and 

tubing are at room temperature. No temperature control arrangement is 

provided for the null pressure detector and connecting valves, and 

their volumes are calibrated independently. 

An experimental run consists of the measurement of a sequence of 

pressure versus temperature points beginning at the lowest temperature. 

The total mass of sample is determined by releasing the total quantity 

of confined fluid into a calibrated volumetric system and measuring 

P, v, and Tat about normal conditions. Finally, the copper pipet 

volume must be known in order to compute the density of the gas, 

The normal (25°C) pipet volume is first determined by expanding a gas 

with known PVT properties (in this case, hydrogen) into the calibrated 

volumetric system, the necessary corrections being made. The pressure 

and temperature dependence of the pipet volume is then calculated by 

conventional equations. 

ll The term Reichsanstalt apparatus is d.erived from PVT work done 
by Holborn et al (24) at the Physikalische Technische Reichsanstalt, 
Berlin, around 1920. 



The copper pipet is situated inside an evacuable copper can, the 

copper can being inside of and soldered to a protected refrigeration 

tank containing liquid hydrogen refrigerant. The PVT data taken with 

this apparatus was for parahydrogen from 16 to 100°K and at pressures 

from 2 to 350 atmospheres. 

The Isochoric Apparatus of Michels 

The constant mass-variable volume cryostats of the design of 

Michels have been previously discussed in this chapter. Although 

suitable to the measurement of properties of fluids to high densities, 

this equipment was applicable only at temperatures of 0°C and above 

largely due to the freezing of the mercury or oil which confined the 

sample. 

To allow operation at lower temperatures, a new type apparatus 

was constructed (37, 47), In this case the sample (at high pressure 

and low temperature) was separated from the oil of the pressure 

measuring device by a DPI cell, connected.· through a fine capillary 

and placed in a thermostat outside the low temperature cryostat, The 

DPI cell contained a thin diaphragm whose null or zero position was 

detected electronically, As the DPI cell was always operated in its 

null position the DPI cell volume, and thus the total volume of the 

sample, remained constant, 

A series of runs consisted of charging the system to a high den-. 

sity and observing the pressures corresponding to a series of selected 

temperature levels, The density of the sample remained constant 

since the sample mass and volume remained unchanged, ln order to 

17 
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uniquely determine the volumetric properties of the sample along the 

isochoric path it was sufficient to know values of three quantities-­

pressure. temperature, and density. The pressure and temperature of the 

sample were directly measured during the course of the experiment; the 

density, however, was determined indirectly as follows. 

The volumetric properties of the sample were presumed known from 

an independent source at s9me ~eference temperature level. Reference 

temperatures of 25 and 0°C wete used by Michels, The cryostat was 

initially charged and allow~d to equilibrate at the reference tempera­

ture, whereupon the exact values of temperature and pressure were 

measured. From the reference temperature and pressure, and from a 

knowledge of the.volumetric pro~erties along the reference isotherm, 

the density of the sample was determined. 

After all desired points were taken along an isochor the cryostat 

~as brought back to the reference temperature level, and a small 

amount of sample mass was vented from the system, thus lowering the 

dens~ty. After equilibrium was achieved, the temperature and 

pressure were again measured, and the new lower value of density was 

computed from the known volumetric properties along the reference iso­

therm. The above procedure was repeated. 

In this manner, volumetric properties along a series of isochoric 

pa~hs were determined. For many applications it is convenient if the 

data are available along an isotherm; for this reason the same series 

of temperature levels was selected along each isochor so that the 

final results could be presented in both isothermal as well as iso­

choric form. 
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In principle there ~re three corrections which 1p.ust be made to the 

experimental data. These are: 1) the change in volume of the bomb 

with internal pressure, 2) the change in volume of the bomb due to 

temperature changes, and 3) the mass correction for the small amount 

of sample trapped in the DP! cell outside the low temperature cryostat~ 

The volume change due to internal pressure was determined experi­

mentally. The method (36) involved calculating the change in inside 

volume from the measured change in external volumeo The effect of 

temperature on the bomb volume was calculated from the dimensions of 

the bomb and the experimentally determined linear temperature coeffi­

cient of the material. 

The DP! cell was located outside the cryostat, because the oil 

from the pressure balance would freeze if subjected to the low tempera­

tures. Thus, corrections must be made for the amount of gas sample in 

the DPI cell and interconnecting capillariese As the volumetric 

properties of the sample were presumed known at the reference tempera­

ture, it was convenient to maintain the DP! cell thermostat at or near 

the reference temperature. A simple mass balance shows that the 

correction may be made from two quantities--!) the volumetric 

properties of the sample confined in the DP! cell, and 2) the ratio 

of the volume of the DP! cell to the volume of the bomb. 

To facilitate determining the volume ratio between the cells, 

Michels placed a valve between the DP! cell and the bomb. The 

cryostat was brought to the reference temperature, the connecting 

valve opened, and the system charged to abou; one atmosphere with a 

sample of known volumetric properties. The exact pressure and 



temperature of the bomb were noted, and the valve was closed. The DPI 

cell only was then charged to a high pressure, and its pressure and 

temperature carefully noted. The interconnecting valve was then 

openedp allowing the gas to expand into the bomb, and the final 
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pressure was.noted. The knowledge of the two different pressures before 

the expansion and after the expansion, combined with the known volu­

metric properties of the gas, are sufficient to calculate the required 

ratio from a mass balance. 

The correction for the amount of gas in the capillary was 

determined from scale drawings of the apparatus. 

An apparatus of this design has the advantage that no direct 

determination of either mass or volume of the sample is necessary. TQ.e 

accuracy of the technique is ultimately limited only by the accuracy 

of measurement of temperature and pressure, and by the accuracy of 

the volumetric data of the sample along the reference isotherm. The 

temperature and pressure may be accurately determined without undue 

difficulty. The dependence of this technique on the reference iso­

therm, measured by an independent method, dictates that the technique 

can 0 in the limiting case~ never be made more accurate than is the 

related independent method of obtaining the reference isotherm. 

Depend~ng upon the design of the cryostat, the characteristic 

that only one data point is taken at each temperature level can cause 

the data taking to proceed at a slow rate. It is mandatory that the 

cryostat be completely lined out at the next temperature level before 

the data point is taken. Types of apparatus that operate along an 

isotherm (such as those of Beattie and of Burnett) do not have this 

objectionable feature. 



The apparatus was operational over the temperature range 25 to 

-180°C and at pressures from five to 1000 atmospheres. The reported 

accuracy of the determina,tions was given as one part in 10,000 parts. 
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This apparatus has been further discussed by Levelt (32) in an 

investigation of the volumetric properties of argon in the gaseous and 

liquid phases at temperatures from -25 to -155°C, pressures from five to 

1000 atmospheres. T~is work is reported by Michels, Levelt, and 

De Graaff (41). The compressibility isotherms of air.w~re determined 

with this apparatus at -25 to -155°C at pressures up to 1000 atmos­

pheres (densities up to 560 Amagat units) and. were reported by Michels, 

Wassenaar, Levelt, and De Graaff (46). 

Fo Existing PVT Data for Methane and Ethylene 

Experimental Data for Methane 

Tqe volumetric properties of the methane system have been exten­

sively reported. The system has been studied from -170°C (-274°F) 

to +350°C (+650°F) and at pressures as high as 1000 atmospheres. 

Most experimental data is reported above the critical temperature 

(-115.8°F); the work of Mueller et al (49, 50), Vennix (67), and 

Pavlovich and Timrot (52) extends below the critical temperature. A 

summary of volumetric data for methane is given in Table I. 

Experimental Data for Ethylene 

The ethylene system has not been as widely studied as has 

methane, one reason being that its critical temperature (+49.8°F) 

is not far removed from ambient conditions. An extensive source of 
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data is that of Michels (39) 1 extending from 32 to 302°F with pressures 

as high as 45 1 000 psi. 

No significant amount of data, except at or near atmospheric 

pressure, has been taken for this system at temperatures below 32°F. 

A summary of available data from the literature is given in Table 11. 

Experimental Data for the Methane-Ethylene Mixture 

There are no vapor phase PVT data for the methane-ethylene system 

reported in the literature. 

TABLE I 

SUMMARY OF LITERATURE VOLUMETRIC DATA FOR METHANE 

Temperature lange Pressure Range 
OF psi a Investigator Reference 

57 to 212 575 - 4,400 Amagat (2) 

32 to 650 220 - 5,900 Douslin (16) 

36 to 68 250 - 3,150 Freeth and Verschoyle (21) 

32 to 392 470 - 3,700 Keyes and Burks (29) 

-94 to 392 300 - 15,000 Kvalnes and Gaddy (30) 

77 to 167 30 - 12,000 Lee (31) 

-260 to 500 10 - 1,500 Matthews and Hurd (34) 

32 to 302 295 - 1,175 Michels et al (44) 

32 to 302 270 - 5 1 600 Michels et al (45) 

-200 to 50 40 - 7,000 Mueller et al (49, 50) 

100 to 460 200 - 10,000 Olds, Reamer, Sage (51) 
and Lacey 

-274 to 140 150 - 2,800 . Pavlovich and Timrot (52) 

32 to 302 295 - 3,400 Schamp, Mason, Richard- (61) 
son, and Altman 

-226 to 32 - 10,000 Vennix (67) 



Temperature Range 
OF 

32 to 70 

77 to 167 

77 

32 to 302 

32 to 302 

90 to 150 

40 to 100 

-140 to 500 

TABLE II 

SUMMARY OF LITERATURE VOLUMETRIC DATA FOR ETHYLENE 

Pressure Range 
p_sia 

20 - 60 

30 - 12,000 

75 - 1,850 

295 - 4,000 

240 - 45,000 

0 - 30 

50 - 600 

15 - 4,400 

In~ettigator 

Cawood and Patterson 

Lee 

Masson and Dolley 

Michels et al 

Michels et al 

Pfennig aQ.d McKetta 

Walters et al 

York and White 

Reference. 

(11) 

(31). 

(33) 

(38) 

(39) 

(54) 

(68) 

(69) 

I\) 
\>l 



CHAPTER III 

THEORETICAL CONSIDERATIONS 

In this chapter all theoretical relationships underlying the 

treatment of the experimental data (Chapter VI) are presented. 

As stated in Chapter I, one of the goals of this thesis is to 

emphasize the need for further development of an equation of state, 

This is done by comparing experimental virial coefficients and 

compressibility factors versus empirical equations of state. For 

this reason primary emphasis in this chapter is given to the virial 

equation of state and to empirical equations of state, These 

.equations are discussed with respect to both pure components and 

to mixtures. In addition, several methods are presented for 

estimating virial coefficients. 

A, General Comments Regarding Equations of State 

In the most gen~ral terms an equation of state mathematically 

relates the pressure, volume, temperature, and composition of a 

substance. For a constant composition process only a relationship 

between pressure, volume, and temµerature is necessary. 

There have been many attempts to represent the volumetric be­

havior of substances, but no equation has been entirely successful 

in accurately representing actual gas behavior over the complete 

range of conditions of practical interest, 

24 



The simplest equation of state is the so-called "perfect gas" 

equation, i.e., PV = RT. Here P = absolute pressure, V = molar 

volume, R = the ideal gas constant, and T = temperature, degrees 

absolute. No gases exactly obey this equation; however, real gases 

approach this relationship at low pressures. 
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Volumetric properties of gases and vapors are frequently expressed 

in terms of the compressibility factor, z, defined as the ratio of the 

actual specific gas volume, V, to the perfect gas volume RT/P. Only two 

of the quantities P, V, and Tare independent; thus the compressibility 

factor may be considered to be a function only of T and P for a 

constant composition system. 

Equations of state generally are of the closed-form type, con­

taining several constants which are determined empirically. Such 

equations may be made fairly accurate by proper determination of the 

constants. In their present state of development, however, these 

equations may lead to serious error if used in the treatment and 

interpretation of compressibility data from a fundamental (virial 

coefficient) standpoint, A more theoretical relationship is necessary. 

The desired relationship is furnished by the virial equation of state. 

This equation is of fundamental significance, and may be derived from 

first principles, using the formulations of statistical mechanics. 

As the virial equation forms the theoretical basis for a substantial 

portion of the work reported herein it will be discussed in the 

following section; a detailed discussion of closed-form equations 

of state will be delayed until Section D, below. 
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B. Jlte Virial Eguation of State 

The virial equation of state is an open-ended expression of the form 

Z • 1 + B(T)/V + C(T)/V~ + D(T)/Vl + • • • (III;..l) 

where for a pure component the coefficients B(T). C(T). D{T), • • • t 

are the second, third, fourth, ••• etc., virial coefficients, which are 

functions of temperature only. 

The complete derivation of Equation III-1 is given in Chapter II! 

of reference (23). This procedure considers interactions between all 

possible configurations of particles, both pairwise and higher-ordered 

interactions. The derivation is quite lengthy, and will not be pre­

sented here. 

The virial equation may be given either as the open-ended series 

in reciprocal volume (as above) or as an open-ended series in 

pressure. The reciprocal volume series is said to be the Leiden form of 

the virial equation. The coefficients are said to be the Leiden virial 

coefficients. 

The power series in pressure is given below, and is termed the 

Berlin form of the virial equation. 

Z = 1 + B' (T)P + C' (T)P2 + D' (T)P·J + • • • (III-2) 

Here the coefficients are termed the Berlin virial coefficients, and 

are also functions of temperature only. The Berlin form was used 

extensively by the early German workers for representing volumetric 

properties of a gas, while the Leiden form was used in The Netherlands. 



The Leiden form has the advantage of having theoretical signi-

ficance, Also, fewer terms are usually required in the Leiden form 

than in the Berlin form to obtain the same degree of fit to a given 

set of data. Only the Leiden form will be considered in the following 

discussions. 

The virial equation of state for a mixture may also be determined 

from theoretical considerations, and the result, given below, is 

analogous to Equation III-1 for a pure component. 

Z • l + B (T)/V + c· (T)/V2 + D (T)/VJ +, m mm mm mm • • (III-3) 

Here the subscript m refers to a mixture. The virial coefficients 

are functions of both temperature and of the composition of the mixture. 

Methods of determining viriai coefficients are given in the 

following section; also relationships between mixture virial coeffi-

cients and the coefficients for pure components are discussed. 

c. Virial Coefficients 

In this thesis second virial coefficients are determined graphi-

cally by the following rearrangement of Equation III-1. 

(Z - l)V • B(T) + C(T)/V + D(T)/v2 -+ • • • (III-4) 

Here (Z - l)V is plotted versus (1/V) along an isotherm. The intercept 

at infinite volume (1/V ~ O) equals the second virial coefficient, 

After B(T) is known, C(T) may also be determined graphically from 

the expression 

lim [(Z - l)V - B(T)]V • C(T) 
(1/V~) 

(III-5) 
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For the fourth virial coefficient, using previously determined 

B(T) and C(T) values, 

lim [(Z - l)V2 - B(T)V - C(T) JV• D(T) 
(1/V-+O) 

(Ill-6) 

This procedure is referred to as the slope-intercept method, and 

has been employed extensively by previous investigators. This procedure 

is very sensitive to inaccuracies in the experimental data, especially 

in the low density region. The advantage of the procedure is that 

coefficients so determined (for pure components) are functions of 

temperature only. 

Virial Coefficients of Mixtures 

For mixtures, virial coefficients may similarly be determined 

by the slope-intercept method. The second, third, and fourth virial 

coefficients are determined from Equation III-3 according to the 

expressions 

lim 
(1/V -+0) 

m 

(Z - l)V • B (T) m m m 

[(Z - l)V - B (T)]V • C (T) m m m m m 

1 i.m [ (Z - l)v! - Bm (T)Vm - Cm (T) ]Vm • Dm_(T) 
(1/V +O) m 

m 

(IU-7) 

(IIl-8) 

(111-9) 

As stated previously the virial coefficients in this case are 

functions of both temperature Jnd of the composition of the mixture. 
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It has been shown by Mayer (35) that the virial coefficients for 

a mixture of N components may be expressed as 

N N 
B (T) = 
m l l (IU-10) 

i j 

C (T) • 
m 

(III-11) 

In this case xi, xj• and~ are the mole fractions, respectively, of 

species i, j, and kin the mixture. The coefficient Bii(T) represents 

the second virial coefficient for i in its pure state. The term B .• (T) 
lJ 

represents the interaction between molecules of species i and j, and 

is sai.d to be the second interaction or cross coefficient between i 

. and j. Similar comments apply to the .terms in Equation III-11. Here 

Cijk(T) represents ternary interactions between molecules i, j, and k. 

If i = j = k, the resulting c111 r.epresents the third virial coe~fi­

cient for component i in its pure state. 

It is important to note that, although the virial coefficients 

on the left side of Equations III-10 and III-11 are functions of both 

temperature and composition, the coefficients on the right side 

(including the cross coefficients) are functions of temperature only. 

For a binary mixture Equations III-10 and III-11 take the form 

B (T) 
m (III-12) 
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(111-13) 

Here it la aaaumacl that 112 • 121' and that Cijk 11 the aame for all 

permutationi of the indicea. 

Empirical llelation1hip1 for Predicting VS.rial Coefficient, 

Methods of predicting virial coefficients are al•o of interest and 

will be considered in the following. The prediction of interaction 

second vitial coefficient, (for binary ayat ... ) will receive particular 

attention. 

One method fo~ estimating second virial coefficients is baaed on 

Pitzer'• modified theorem of correapond'-111 atatea (55). Here a 

characterizing parameter,~, ii defined by the reduced vapor preaaure 

,: at Tl.• 0.1. The expreaaion ii aa follows 

0 
w • - (log •a+ 1.oo)Ta. 007 (III-14) 

ln this expression TR and PR are the reduced temperature (T/Tc) and 

~educed presaure (P/Pc)• respectively, and~ 1• termed the accentric 

factor. A simple fluid is defined as one having w • o.o; thus w is 

a measure of the deviation from a limp~e fluid. Tbe compressibility 

factor la then given by the relationship 

Z • z0 + •' (111-15) 

where z0 • t~ compre11ibility factor for a simple fJuid 

z• • the compresaibility factor correction for deviation from 
a aimple fluid. 
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Based upon thi1 generalized data, an analytical expre11ion for the 

f-BPc) reduced second virial coefficient wa1 al10 pre1ented by Pitzer. 
• ITc 

The expression 11 a1 follow• 

BP c . 0 1445 . 0 07 (0.33 • 0.46CA1l 
b • RTC • • + • 3 CAI • TR 'J 

(III-16) 

_ (o.13as + o.so .. ~- (2·0121 + o.097c.o~ _ (2·0073c.o~ 
T2 .. T3 TS 

R · I It 

Another mean• of estimating virial coefficient• wa1 presented by 

Prausnitz (56, 57). Thia work con,iata of a auitable extension to 

mixtures of.Pitzer'• (55) aeneraliaed result•, and ia deacribed as follows. 

For a pure coaponent i the 1econd virial coefficient is given as 

where V and T repreaent the component's critical volume and 
cii cii 

temperature, re1pectively, and c.oii 11 the accentric factor. The 

function e8 is given in tabular form. 

The interaction 1econd virial coefficient Bij is given by 

The parameters V , T , and c.oij characterize the interactions 
cij cij 

(111-17) 

(III-18) 

between dissimilar 1pecie1; combining rules are given by Prausnitz 

for estimating these parameter,. 

The third virial coefficients were also given by Prausnitz; these 

coefficients are given in the form of a graph and are somewhat less 
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accurate than the results for second virial coefficients. 

The direct estimation of the interaction second virial coefficient 

B12 from the virial coefficients B11 and B22 is also considered here. 

In principle B12 may be calculated from a selected mathematical combina­

tion of B11 and B22 , and the result substituted into Equation III-12 

to yield B (T)o As a test of the combining rule, the calculated value m 

of B (T) is then compared with the experimental value. m 

In addition to being of theoretical interest a reliable combining 

rule of this type would be of utility in engineering calculationso If 

mixture second virial coefficients could be accurately determined, 

compressibility factors of the mixture could also be calculated to 

moderate pressures by use of the truncated form of the virial equation 

(using only the second virial coefficient). Of even greater importance, 

however, increased knowledge of combining rules could be used to 

provide additional insight into the development of an improved equation 

of state for mixtures. Several such combining rules for.B12 are presented 

below. 

The·linear combination of B11 and B22 has the form 

(III-19) 

Substituting B12 from Equation III-19 into Equation III-12, Bm takes 

the simplified form 

(III-20) 

The square !.2.2! combination is given as 

(III-21) 



Substituting this equation into Equation III-12, there results 

2 
8m • (xl ' 811 + x2 l:s22 ) 

'. 

(III-22) 

The above two combining rules are the simplest expressions that 

could be expected to provide a reasonable estimation of B12 • In 

addition, two slightly more complex expressions are considered below. 

The Lorentz combination for B12 is 

3 
B12 • [(B )1/3 + (B )1/3] /8 

11 ,22 
(III-23) 

With this combining rule no simplification is obtained if Equation 

III-23 is substituted into Equation III-12, Thus the value of B12 

is calculated from Equation III-23, and the numerical result is 

substituted directly into Equation III-12 to obtain B. m 

The linear square root rule was considered only because it is 

similar in mathematical form to the Lorentz combination. As far as 

is known to the author this particular mathematical form has not been 

previously used for equation of state combinations of this type. 

The rule is 

(III-24) 

As was the case with the Lorentz combining rule, no simplification is 

obtained by substituting this equation into Equation III-12. 

In Chapter VI results are given for testing the four above com-
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bining rules versus the experimental methane-ethylene virial coefficients. 

One additional method will be considered for making empirical 

estimates of virial coefficients, This method involves calculating 

virial coefficients directly from the virial form of empirical equations 

of state. The procedure will be described in Section D. 



D. Empirical Equations of State 

Empirical equations of state wer~ mentioned briefly, above. 

Such equations are very numerous; in this work it is not proposed 

to present a large number of equations as examples. Moreover, three 

of the most important equations of state were selected for evaluation 

versus the experimental data. These equations are 1) the Benedict-

Webb-Rubin (BWR) equation(~), 2) the Edmister generalized form of the 

BWR equation (20), and 3) the Redlich-Kwong (RK) equation (58). The 

equations will be discussed in this order. 

The BWR Equation 

The BWR equation is an eight constant relationship expressing 

pressure or compressibility factor as a function of density (reciprocal 

volume). The form of the equation is a power series ending with an 

exponential density term, the coefficients of density being functions 

of temperature. The equation is written as 

co 2 3 
P = RTd + (B RT - A - ---2)d + (bRT - a)d 

o o T 

(III-25) 

where d = density. 

In terms of compressibility factor the equation has the form 

A C 
Z = 1 + (B - ...2. - .....2-)d + (b - ..!..)d2 

o RT RT3 RT 
(III-26) 



The empirical constants A, B, C, a, b, c. Y, and a are deter­o O 0 

mined·for a specific compound from PVT, critical, and vapor pressure 

data, This equation was developed primarily for hydrocarbons and 

their mixtures, and provides a satisfactory representation of 
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experimental data for densities up to about twice the critical density. 

For application to mixtures, the constants are determined from the 

corresponding constants for the pure components by the relationships 

N 

B = l xiB 
0 m i 0 i 

(Linear) 

N 3 
B = l xixj [(B ) 113 + (B ) 1/ 3] /8 

om ij oi oj 

N 2 
A = [ l x (A ) 1121 

om i 1 oi 

N 2 
C = IX (C )1/2] 

om i i oi 

C = m 

a = m 

a. = m 

(Lorentz) 

(III-27) 



Here the subscript m refers to properties of the mixture, and i refers 

to properties of component i of the mixture, present at composition 

xi. Although these rules are based on statistical mechanical con­

siderations, they must be regarded as somewhat empirical, Both the 

linear and Lorentz forms for B are frequently used. In some cases 
0 
m 

these mixing rules have been shown to fit the experimental data for 

mixtures almost as well as the original equation of state fits the 

pure component data, 

The BWR equation.may be rearranged into open-endedvirial form 

as follows. The exponential term in Equation III-26 may be expanded 

into a infinite power series, giving 
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2 2 2d~ 3d6 
exp (-yd ) • l - yd + :J.f- - J.f- + • • • (III-28) 

Substituting Equation III-28 into Equation III-26 and rearranging 

according to increasing powers of d (reciprocal volume), there results 

A C 
Z = l + (B - ...2. - ...2...) d + (b - !.. + ...S..) i 

o RT RT3 RT RT3 · 

2 6 + ,2 d5 _ cy d + 
RT 2RT3 

(III-29) 

• • • 

Comparing corresponding terms of Equations IIl-29 and III-1, the 

second and third virial coefficients are given by the BWR equation as 

B(T) = B 
0 

C(T) = b 

A C 
0 0 -----RT RT3 

(III-30) 

(III-31) 



It i1 to be noted that. due to the mathematical form of the BWR 

equation, the third and fourth virial coefficients (and al10 other 

higher ordered coefficients) are missing from Equation 111-29. 

This equation was selected for theoretical analy1i1 a1 it aives 

an indication of the accuracy and application obtainable from rela-

tively complex equations of state. 

The Edmister Generalized Form of the BWI. Equation 

The Edmister gen~ralized form (20) of the BWI. equation presents 

the eight constants in the equation in terms of Pitzer'• (55) 

modified theorem of corre1pondina 1tate1. Here Equati_on III-26 ii 

aiven in reduced form as 

A' C'' 
Z • 1 + (B' • .J!. - .S.)p + (b' - £!.)p2 

o e 83 e 
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(III-32) 

where 

• reduced density, e is defined as T/Tc • reduced temperature, and 

B' A' c• b' a' c', a', and y' are reduced con1tants, o• o• o• • • 

The reduced constants were determined from the oriainal BWB. con• 

stants for 12 hydrocarbons by plottina them ver1us ~. obtainina 

straiaht line,, the equations of the1e line• are given as 

B' • 0.1306 
0 

A'• 0,35 • 0.30~ 
0 



C' • 0.10 + 0,40w 
0 

b' • 0,031 + 0,081.11 

a' • 0,036 + 0,161.11 (III-3.3) 

c' • 0,042 + 0,105w 

a'a' • 0,0000875 

y' • 0,049 - 0,05w 

The specific constants are determined from these reduced constants 

by the expressions 

R2T4 

C • C' 
Ci 

oi 0 p 
(III-34) Ci 

R2T2 

bi ... b' 
Ci 

p2 
Ci 

R3T3 

a • a' 
Ci 

i p2 
Ci 



a • a' 1 

C • C 1 
i . 

Additional relationships similar to Equations III-33 above, but 

giving the red~ced constants as functions of critical compressibility 

factor Zc• were also developed b_y Edmister (~O). These relationships 

are not.utilized in this work, however. 
-
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Due; to the manner 'in which the reduced constants (Equations III-33) 

were determined, it was unnecessary to develop new combining rules for 

mixtures. From Equations III-33 and III-34 specific constants may be 

determined; these constants are combined for mixtures using the 
.• 

original BWR combining rules (Equations III-27). 

In a similar manner the second and third virial coefficients for 

the generalized equation are given by the same expressions as before 

(Equations III-30 and III-31). 

By evaluation of this equation the applicability of a generalized 

relationship is demonstrated. At the same time an opportunity is 

afforded to compare a aeneralized equation directly with a similar 

equation for a s~ecific compound, Jthe equations differing only in the 
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value of the constants, The comparison of the two equations, both against 

each other and against the experimental data, gives indications of 

future methods for improving the equations, 

The RK Equation 

The RK equation is a two constant relationship of the form 

a 

with the two constants a and b given as 

0 4278 R2T 2•5 
• C 

a = -------------P 
C 

0.0867 RT 
C 

b =--... p--­
c 

(III-35) 

(III-36) 

For application, the equation is frequently used in the equivalent form 

(III-37) 

where 

2 0,4278 
A = 

p T2,5 
c R 

B = 0,0867 (III-38) 
Pc TR 

BP 
h. - = z 

This equation was developed primarily for use at temperatures above 

the critical. 

For mixtures, the constants a and bare combined according to the· 

relations 



41 

(III-39) 

whereas the constants A and Bare determined from 

N 
A • I xiAi m i 

N 
(lII-40) 

B • I xiB1 m i 

The virial form of the equation is obtained as follows. Equation 

III-35 is written as 

1 1 a 1 2 1 
P • RT -~ ) - l/2 (y") (----) (III-41) 

V1-!. T l+.2. 
V V 

1 1' 
Expanding the terms ~ b) and ~ .. b) into an infinite series, and 

i-v i+v 
rearranging terms, the RK equation may be written as 

(III-42) 

• • • 

Comparing corresponding terms between Equation III-42 and 

Equation III-1, the second and third virial coefficients are given 

for the RK equation as 



a 
B(T) • b • l/2 

RT 
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(III-43) 

C(T) • b2 + ab 
RT3/2 

As contrasted to the BWI. equation, all higher-ordered virial 

coefficients are present in this expansion. This equation differs 

further from the BWI. equation in that the constants a and bare 

functions only of the critical properties of the components; the BWR 

constants are somewhat dependent upon the range of data covered. 

In the past the RIC equation has found application where highest 

accuracy was not required, and where relative ease of computation was 

desired. 

No further attempt to discuss equations of state will be made 

at this point. A wide variety of publications and thermodynamics 

texts is.readily available; in particular, applications of equations 

of state are discussed by Dodge (14) and by Edmister (19). 



CWTEI. IV 

IXPII.IHDTAL APPARATUS 

The physical description ancl operating characteristics of the 

experimental equipment are presented in this chapter, Mathematical 

equations that cbaract•riae the apparatus are preeented, and the 

advantages and di1aclvantages of the apparatus are diJcusaed. 

A, Description qf Baui,-nt 

General operating features of the entire syat• will be di.acussed 

first, before- the detailed cle1criptions of each section of tbe apparat~s. 

General Description of ~pparat,u~ 

The apparatus to be described is of the constant volume-constant 

mass {isochoric) type,, which type of apparatus for PVT measurements 

has been discussed in Chapter II, Thia particular apparatus is 

.similar in design to that of Michels (47), the principal difference 

being in the constant temperature bath, The ttichels cryostat used 

a stirred liquid t~ insur~ thermal equilibrium; the·present design 
I 

uses an air tbermoatat, 

The apparatus is •hown achematically in Figure 1; connections to 

the interrelated Burnett apparatu1--are also shown in this figure, 
. ' 

The apparat~a ccnasi1t1 of· a double-walled air thermostat containing 

a jacke·ted conata~t dume cell, The controlled temper.ature region 
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of the thermostat, containing the constant volume cell, consists of 

a recirculating air stream whose temperature is controlled by the 

addition of a small amount of heat through an electronic temperature 

regulating.device. The double-walled vessel is placed in a dewar 

vessel, containing a constant temperature refrigerated liquid such 

as ethylene glycol, the liquid serving as a heat sink for the 

thermostat. 

The pressure of the sample is determined by means of the Ruska 

Instrument Corporation piston gage. The oil of the pressure balance 

system is separated from the gas sample by the thermostated differen­

tial pressure indicator (DPI) cell.!/ This cell consists of two 

chambers, separated by a flexible metal diaphragm, the zero position 

of which is detected electronically and indicated by the DPI readout. 
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The DPI cell is placed outside the air thermostat because the high 

pressure oil would solidify if subjected to the prevailing low tempera-

tures. The DPI cell was continuously maintained at a temperature 

slightly above ambient; a temperature of approximately 95°F was found 

to be practical. An interconnecting valve was placed outside the air 

thermostat between the DPI cell and bomb. The necessary balancing 

pressure of the oil is generated by the screw pump. 

A hand-operated gas compressor is used for charging the cell and 

its surrounding pressure jacket to the desired pressures, the nominal 

!/ The jacketed constant volume cell will be referred to as the 
"bomb", whereas the differential pressure indicator cell will be 
termed the "DPI cell," The controlled.temperature region of the air 
thermostat will be referred to as the ''cryostat," 



value of pressure being indicated on the bourdon gage, The pressure 

jacket around the bomb is used to offset any change of bomb volume 

due to the stresses set up by the internal sample pressure. The gas 

sample is injected into the main chamber of the bomb through the gas 

line shown leading into the top of the bomb. Gas is injected into the 

surrounding pressure jacket of the bomb via the gas line leading into 

the bottom of the bomb. 

Provision is made for subjecting the necessary portion of the 

apparatus to the vacuum system. The temperatures of the cryostat and 

DPI cell are determined by calibrated thermocouples. 

46 

A run consists of charging the bomb and DPI cell to a high 

density and observing the pressures corresponding to a pre-selected 

series of temperature.levels. Since the mass and volume are constant, 

the run thus follows an isochor, or constant density path. At any 

point on the isochor the simultaneous knowledge of the three quantities 

pressure, temperature, and density is sufficient to determine the vol­

umetric properties at that temperature and pressure. The density is 

determined as follows. 

A reference temperature of 77°F is established; along this isotherm 

the compressibility of the sample has been independently determined 

from the Burnett apparatus. Each isochoric run includes the reference 

isotherm as the upper temperature; at this temperature the pressure, 

temperature, and density are simultaneously known, and the value of 



. 11 density for.the entire iaochor may thus be determined, 

Additional i.sochors are run, at successively decreasing densities. 

The density for each i1ocbor is established at the beginning of each ,.. 

run by e~austing a small amount of the sample to the atmosphere. 

The same series of temperature levels js selected along each isochor 

so that the final results may be given as either isothermal or iso-

c.horic data. Temperatures of 77, 60, 40, and 20°F were used in this 

work. 

A small correction is zequired for the amount of sample in the 

DPI cell. A mass balance., given in Appendix N, shows that this 

correction requires the value of the ratio of the volume of the DPI 

cell to the volume of the bomb. It is convenient if this ratio fs 

determined when the DPI cell.and bomb are at the same temperature. 

· To determine the volume ratio the system is rinsed with a gas 

of known volumetric properties, evacuated, and the cryostat 

temperature is ,adjuited.to that of the DPI cell (95°F)~ The valve' 

between the bomb and DPI cell is closed, and the DPI cell only is 

charged with a sample of the same gas. After equilibrium has been 

attained the DPI cell pressure is measured, and the temperatures 

of both bomb and DPI cell are measured. 
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2/ . 
- As will be shown later, the value so calculated at the reference 

isotherm is not a true density, but a run constant. The difference is 
due to the volume of gas in the DPI cell and capillary lines. Only the 
run constant is required in the calculations along the isochor; the 
true density exists as a constant known fraction of the run constant, 
and could be simply calculated if desired. 



The valve is then opened, and the sample allowed to expand into 

the bomb, The system is allowed to equilibrate, and the final 

pressure and the temperatures of both volumes are measured. The 
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known volumetric properties of the sample at each of the above pressures 

allow the volume ratio to be calculated, 

A small correction for the amount of gas in the capillary line is 

also required, This correction is discussed in Appendix N. 

For all values of pressure, the jacket pressure must be continu­

ously maintained at the proper value to eliminate the effect of 

internal pressure on the bomb volume, This correction is discussed 

in Appendix K. The effect of temperature on the bomb volume must be 

considered, This correction is calculated from the dimensions of the 

bomb and the linear temperature expansion coefficient for the 

material; the equation is derived in Appendix H. 

Additional details of specific sections of the apparatus are 

given in the following. 

Cryostat 

For maintenance of low temperatures a double-walled copper can, 

26 inches in height and 11 1/8 inches in outside diameter, was used. 

This vessel is shown in Plate I and was illustrated schematically in 

Figure 1. The can was formed from a 1/16 inch sheet of hard copper 

by Spincraft, Inc., of Milwaukee, Wisconsin. The double walls were 

firmly braced .internally by supporting strips of heat resistant Johns­

Mansville transite, before joining the walls together at the top by 

silver soldering. A single steel support was located in the space 

between the double walls at the bottom of the cans. 



Plate I 

Double-walled Vessel with Upper Chamber 
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A 1/8 inch OD stainless steel vacuum line was silver soldered 

between the double walls of the can and connected to the vacuum system. 

An absolute pressure of.approximately 25 microns was maintained in the 

space between the outer surface of the inside wall and the inner sur-

face of the outside wall. All walls of the vessel were plated with 

nickel and then polished. The plating and polishing of the walls 

and the maintenance of a vacuum between the walls thus insured the 

desired small amount of heat transfer by conduction and radiation 

through the annular space. 

An evacuated upper chamber waa fitted into the mouth of the 

double-walled cans. This chamber was formed from stainless steel 

and was then nickel plated and polished to minimize radiation. heat 

transfer. The chamber was evacuated and sealed at an .absolute 

pressure of about one micron. The upper portion of the evacuated 

chamber serves as a container for a refr:lgerating medium such as 
. . 

liquid nitrogen or a mixture of dry ice and iao-octane, 

The heat sink for the cryostat was maintained by an ordinary 

Freon-12 closed loop refrigeration system. Twenty turns of 1/2 inch 

OD refrigeration type copper tubing were concentrically wrapped and 

soldered around the outer surface of the outside wall of the double-

walled cans. These coils served as the evaporator for the refri-

geration system. The double-walled vessel with refrigeration coils was 

then placed inside a stainless steel dewar (Sulfrian Model No. SJ-2, 76 

liter, 13 inches inside diameter). The outer wall of the steel dewar 

was insulated from the surrounding with a layer of fibre-1lass 

insulating material. A four-inch thick section of styrofoaa inaulating 

material was fitted into the top of the dewar, to further minimize 
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heat transfer between the surroundings and the cryostat. A disassembled 

view of the insulated dewar, double-walled copper can, and bomb is shown 

in Plate II. 

The space between the outside wall of the double-walled vessel 

and the inside wall of the dewar was filled with approximately three 

gallons of ethylene glycol solution which could be circulated by an 

external centrifugal pump (Figure 1), The solution consisted of 60% 

by volume commercial "Prestone" antifreeze and 40% by volume water, 

thus providing a liquid with a freezing point of approximately -50°F, 

The refrigeration system used a PAR 1/3 HP refrigeration compressor 

unit~ The 1/2 ton Freon-12 expansion valve (Plate I) was .adjusted 

so as to provide a suction side pressure of about zero psig to the 

compressor and a discharge side pressure of about 120 psig. 

The compressor was allowed to run continuously, reaching equi­

librium with the surroundings~and with the particular temperature of 

the cryostat. The temperature of the ethylene glycol solution was 

affected by ambient temperature and by the level of the cryostat 

temperature. Any changes in ambient temperature were gradual and 

thus did not markedly upset the temperature control. The effect of 

the cryostat temperature on the ethylene glycol solution temperature 

(Table III) gives an indication of the rate of heat transfer between 

these two regions. The change in ethylene glycol solution temperature 

is considerable, and is indicative of conduction heat transfer to 

the ethylene glycol solution through the upper portion of the cryostat, 

This has a small effect on the temperature control inside the cryostat. 
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Plate II 

Major Components of Cryostat--Disassembled View 
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TABLE III 

EFFECT OF CRYOSTAT TEMPERATURE ON THE ETHYLENE 
GLYCOL SOLUTION TEMPERATURE 

Cryostat Temperature, °F 

Ethylene Glycol· 
Solution Temperature, 0 P 

20 

-18 

40 · 60 

-13 -9 

77 

-6 

The air in the cryostat was continuously circulated.at atmospheric 

pressure by •ans of a squirrel-cage type air blower supp.orted on a 

mounting plate about three inches above the top of the bomb. A view 

of the bomb and the internal arrangement of tbe cryostat is given in 
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Plate III. The air is recirculated via a two-inch ID aluminum air duct. 

The return air is distributed over a baffle located in the bottom part 

of the controlled temperature region; this distributing baffle helps 

insure uniformity of_temperature by thorough mixing of t~e return air. 
•.' 

The blower was rated at 100 CFM of air at no-load conditions, with a 

blower speed of 1750 RP". 

It was necessary to place the driving motor for t~e.blower 
. \ ' •\ 

completely outside the cryostat (Figure 1) or .~he dissi~ated heat would 
.. ,.; . 

upset the temperature control. 
.. ' 

The motor w~s.separated from the blower 
~ ' . ' 

by means of a s~eel sh~ft, supported by.bearings at the top, bottom, 
. . ~ . . ' ' 

and center, and i~terrupted in the center by a flexi.ble coupling. 

Initially a 1/45 HP series-type motor was used. Th;l.s arrangement 

was found to be unsatisfactory, as any changes in line voltage or changes 

in loading characteristics produced a change of speed in the motor. 

This was observed to affect the temperature control. 



Plate III 

Internal Arrangement of Cryostat 
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This motor was thus replaced by a 1/15 HP constant speed hystere-

sis synchronous motor. This unit had a rated speed of 1800 RPM, and 

was observed periodically with a stroboscope to operate precisely at 

rated speed, both at full load and at no load. 

No convenient method to measure the rate of air circulation was 

available, but it was thought to be somewhat less (perhaps by a factor ! ., 

of 50%) than the rated circulatton rate at no load (100 CFM) due to 

the pressure drop through the return air duct and across the air 

distribution baffles. 

The bomb is shown in Plate III resting on alumiJium supports 

approximately two inches above the distribution air baffleo 

The optimum control of temperat~re is achieved by removing only 

a small amount of heat from the system via the heat sink and by adding 

a corresponding small amount of heat through a temperature controller. 

The control heater consisted of approximately 45 feet of nichrome wire 

(Driver.Company "Tophet A" size 40) having a resistance of 20 ohmsn 

This control wire was supported in the main circulating air stream by 
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vertical glass rods (Plate III) which were located concentrically around 

the bomb. The entire amount of heat to the cryostat was added through 

these control heaters, no auxiliary heaters being used. The automatic 

temperature controller for the process will be described presentlyo 

The location of the sensing thermocouple was quite important in 

the control of temperature, The thermocouple was located in the return 

air duct, located vertically about midway in the duct. It was found 

helpful to lag the bare thermocouple lightly with a thin piece of 

absorbent cotton. With this arrangement the temperature of the cryostat 



could be maintained constant to within+ 0.02°K for a period of four 
,, -

to six hours, sufficiently long to make a corresponding equilibrium 

reading of pressure and temperature. 

All high pressure valves in that portion of the apparatus between 

the bomb and the DPI cell were lS,000 psi 1/8 inch Ermeto-type valves 

(High Pressure Equipment Co.). The valves have a freely rotating 

stem and turn easily under maximum pressure. All tubing, unions, 

and tees were Autoclave Engineering Company "Tubeline" series. 

The Jacketed Bomb 

The bomb was fabricated from type 303 stainless steel in the OSU 

Research Apparatus Development Laboratory. An assembly drawing of the 

bomb is shown in Fiaure 2. The bomb assembly is .circular in cross 

sectioo and is formed from three parts--a lower part, an upper part, 

and the jacket. The upper and lower parts were welded together at 

.. A and. B, and the welds were ma~ined flush. to the cyli'-der walls. 

This portion of .the bomb was then tested with oil to 15,000 psi. 

After pressure testing, this inner portion of the bomb was inserted 

into the pressure jacket and was welded at C and D. These welds were 

then machined flush to tae wall, and the jacket portion of the bomb 

was pressure tested with oil to 15 1 000 psi. Seats for Ruska connectors 

were provided for the tubing connections for both inner bomb volume and 

jacket volume. The internal di•nsions of the completed bomb assembly 

·are such that the outer jacket pressure P0 should be 0.8024 times the 

inner pressure Pi for the elimination o.f volume changes due to wall 

stresses. This relationship is developed in Appendix K. 

S6 
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The DPI Cell and Thermostat 

The DPI cell is of Ruaka design (Cat. No. 2413), The cell 

consists of two pressure chambers separated by a thin stainless steel 

diaphragm, The diaphragm deflecta vertically as a result of any 

differential pressure, and the deflection positions a core within a 

differential transformer coil located within the upper pressure 

chamber, The coil-core relationship causes an electrical output which 

is a function of the diaphragm displacement. The electrical output 

is detected and indicated by an electronic null indicator, or readout 

box (Ruska Cat, No, 2416), 

The DPI cell will withstand a maximum overpressure of 15,000 psi. 

The cell and readout bo~ arrangement can detect a differential pressure 

of 0,0002 psi. 

For purposes of establishing the zero reference point of the DPI 

cell and readout box, an oil filled open-end manometer was connected 

into the oil system between the DPI cell and the Ruska piston gage 

(Figure l), Tne manometer was constructed from approximately 30 

inches of 7 DDD OD soft glass tubing. A short end was sealed with 

epoxy resin into a standard high-pressure valve. By means of a 

cathetometer, the exact point on the vertical section of the manometer 

was located to correspond with the height of the diaphragm inside 

the DPI cell, This point was marked for future reference, 

The zero shift of the DPI cell with operating pressure was deter­

mined by Ruska, and a calibration curve was furnished by them. This 

correction is on the order of two to three parts per million parts, 



In order to measure the temperature of the thermostated DPI cell, 

a calibrated copper-constantan adjustable pipe clamp thermocouple 

(Conax Cat, No. CL-64-CC) was clampled around the DPI cell near the 

bottom of the cell in the section where the sample was confine4, 

Several turns of refrigeration-type 1/4 inch OD copper tubing were then 

clamped around the cell and pipe clamp thermocouple, and provision was 

made to circulate controlled temperature water through the copper coils. 

The entire DPI cell, thermocouple, and copper tubing were placed 

inside an insulated thermostated box (illustrated schematically in 

Figure 1). The outer walls of the thermostated box were made of 

transite; the transite walls were then lined on the inside with sections 

of one-inch thick styrofoam, 
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The controlled temperature water to the copper coils was circulated 

via a constant temperature circulating system (Precision Scientific 

Company), This unit uses a mercury-in-glass regulating mechanism 

and is designed to circulate a liquid at a rate of three GPM at a 

six foot head, Using tap water as a heat sink, this bath would main­

tain a constancy of circulated water temperature of 0,05°F for 

several hours, depending on the temperature changes of the surrounding 

room. 

The DPI cell and surrounding thermostat were maintained at a con­

stant temperature for all values of temperature of the bomb; thus, no 

change in the cell zero point with tempe"rature must be considered. It 

is convenient to maintain a temperature sli'ghtly above ambient condi­

tions; in this case 95°F was used, 
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With this arrangement the DP! cell temperature was constant to 

about 0.1°F for a period of four to six hours. 

Control of Temperature 

The automatic temperature control system consists of six major 

components: 1) primary element, 2) set point unit, 3) null detector, 

4) current adjusting type (C.A.T.) control unit, 5) silicon controlled 

' rectifier (SCR), and 6) control heaterso These are discussed in more 

detail as follows, with reference to Figure 3. 

The primary elemenE, (or sensing device) provides an emf output 

proportional to the value of the controlled variable (in this case, 
'' .. ' 

temperature). A copper.-constantan thermocouple was used for the primary 

element here. 

The set point unit is basically a potentiometer with an emf output 

that can be set to a given signal level. The emf output from the set 

point unit is connected in series opposition with the emf output from 

the primary element. The emf difference, if any, between the primary 

element and the set point unit is a measure of the deviation of the 

controlled temperature from its set point. This emf difference, or 

error voltage, is then fed into a null detector. 

The range of application of the control arrangement is determ.ined 

by the range of emf output to which the set point unit potentiometer can 

be set. The subject potentiometer is setable directly to any value 

within the range -10 to+ 45 millivolts. The direct setability of the 

s~t point unit is 0.0005 millivolts (mv), which corresponds to about 

0.1°K. By interpolation, the unit may be set to within approximately 

0,00005 mv, or 0.01°K. 
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The null detector is a high gain, high sensitivity, microvolt 

amplifier, It detects any error voltage from the set point unit and 

amplifies it to a level suitable for use as an input to the control unit, 

The null detector for this system is a Leeds and Northrup electronic 

DC null detector (Cat, No, 9834-2), This unit contains a variable 

sensitivity and a readout scale for the error voltage. 

The control unit is a Leeds and Northrup s.eries 60 C,Ao'I, model* 

This unit has three modes of control action (proportional, reset, and 

rate controls), and its function- is to provide continuous corrective 

control action based on the size, rate of change, and duration of the 

error voltage, It does this by providing an output current (0 to 5 

milliamps DC) which is proportional to the input heat requirement 

for the controlled temperature process, This output current goes to 

the final control device, which is a silicon controlled rectifier-unito 

It was necessary to ground electrically this portion of the 

temperature control system, For this purpose a 1/2 inch diameter 

solid copper rod was driven 10 feet into the earth, and was connected 

to an insulated 12-gauge copper lead-in wire, This wire served to 

ground only the electrical gear in the Thermodynamics Laboratoryo 

The SCR is a Fincor power package (Model No. 1200-2.2-llA) -
manufactured exclusively for the Leeds and Northrup Co, This unit 

produces an AC output voltage that is proportional to the DC current 

from the C,A,T. control unit, This output voltage supplies current to 

the process control heaters, and may range from zero to 110 volts. 

For a particular application, the minimum and maximum values of the 

SCR output are adjusted by means of potentiometers in the circuit. 



For this application, the output voltage varies linearly from zero to 

a maximum of 40 volts, 

Measurement of Temperature 

For the determination of temperature of the sample in the bomb, a 

calibrated copper-constantan thermocouple was fastened to its outside 

surface. The thermocouple was calibrated over the temperature range 

-40 to +9~°F versus an NBS platinum resistance thermometer. 

The temperature of the sample in the DPI cell (nominally 95°F) was 

determined by the copper-constantan thermocouple fastened to the outside 

surface of the DPI cell. The thermocouple was calibrated over the 

temperature range 80 to 115°F versus the NBS thermometer. Illustrations 

of the potentiometer and thermocouple circuitry are given in Figures 4 

and 5. 

The potentiometer is a Leeds and Northrup type K-3 universal 

potentiometer, with a scale range of zero to 1.6110 volts. The scale 

may be read directly to 0.0005 mv, and may be read by interpolation to 

within 0.0001 mv. For this application 0.0001 mv is roughly equivalent 

to 0,002°K. The galvanometer is a standard Leeds and Northrup DC 

galvanometer with self-contained lamp and scale reading device. 

The accuracy of the potentiometer is 0.0005 mv or,0,01°K. 

The accuracy of the thermocouple calibrations for the bomb and for 

the DPI cell is estimated at 0.01 to 0.02°K, or roughly equivalent to 

the accuracy of the potentiometer. Details on the NBS thermometer and 

the thermocouple calibrations are given in Appendix A. 
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It is necessary to make a mass correction for the small amount 

of the sample contained in the capillary tube, as discussed pre­

viouslyo For this purpose the average temperatures of different 

sections of the capillary are required. To estimate the average 

temperatures, three copper-constantan thermocouples (TCl, TC2, and 

TCJ--Figure 4) were fastened at equidistant intervals along the 

length of the tubeo Standard thermocouple charts were used to deter­

mine the temperatures from these thermocouples. The ambient 

temperature of the laboratory was determined from standard mercury­

in-glass thermometers, which were certified to be accurate to Oo05°F. 

Measurement of Pressure 

As stated previously, the gas sample is separated from the high 

pressure oil system by the DPI cell. The oil pressure is generated 

with the screw pump and is measured with the Ruska piston gage. The 

instrument has a stated accuracy of one part in 10,000 parts over the 

range six - 12,140 psi, with the calibration being directly traceable 

to NBSo The calibration data and specifications .for the gage are 

presented in Appendix Jo A sample calculation of a pressure point is 

given in Appendix B. 

Although the assembled apparatus was satisfactorily tested at 

pressures up to 12,000 psia, data was taken only to pressures of 

66 

2400 psia. In the derivation of virial coefficients by the slope­

intercept procedure it is important to have a considerable amount of 

data in the low pressure region. Points at higher pressures have little 

effect on the determination of virial coefficients by this procedure. 



The oil used in the system is a specially developed oil with a 

density of 0.85 grams/cc and a viscosity of 160 S~U at 2,5°C. A head 

correction of o.031 psi per vertical inch of oil head is given by 

Ruska for use in making head corrections. 

Standard Ruska 1/8 inch needle valves (Cat No. 2005) were used 

throughout the Ruska equipment. 

A 16,000 psi Acco Helicoid bourdon gage with 200 psi subdivisions 
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was mounted on the screwpump. Two alternate bourdon gages were connected 

into the gas,, side of the high pressure sys temi. These bourdon gages 

were used principally during the charging of the bomb, and were valved 

off from the system after the charging was completed. These two gages 

are 1) a 20 9000 psi XFO Maxisafe gage with 200 psi subdivisions, and 

2) a Crosby AIH 5,000 psi ~age with. SO psi subdivisions, For .clarity 

the Crosby AIH 5,000 psi gage is omitted from Fi~ure l. All three of 
'. 

the above bourdon gages were calibrated versus the Ruska piston gage. 

The calibrations. are given in Appendix D, 
. ' 

Barometric pressure was determined qy means of a Texas Instfumeut:s 
t ' • L. • 

servo-nulling pressure gage, The instrument has an a.ccuracy of 0.015%; 

operating characteristics and calibration of the gage .are presented in 

Appendix C, 

Auxilia~y Apparatus 

The vacuum system consisted of a mechanical pump (WelchScientific) 

and a eve ~1pe VMF-10 diffusion pump. .The V!a-10 p~ has an ul t1111:a.t~ 

-6 rated fressure of 10 millimete~s ~ercury. 
. ' 

The McLeod gage is a Virt~s ?oO millimeter r~nge unit. The gage 

was located so as to be able to measure the absolute pressure at any 
'· . 
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portion Qf the apparatus connected to the vacuum system, 

A Gaertner cathetometer was used for all vertical measurementso By 

means of a verni~r scale. attachment 1 this instrument could be read 

di.rectly to OoOOS centimeters. The instrument was used for making all 
·. 1' 

vertical measurements associated with the cal~bration of the apparatuso 

The _gas compressor is a 15 1 000 psi hand operated pump (Autoclave 

Engineers)o This unit was used both for charging the sample into the 

celle and also for injecting gas into the jacket itselfo The pump is a 
.. 

po~~tive. displacement 1 ·reciprocating piston type with displacement per 

stroke of Ooll5 cubic inc~es. 

Bo Advantages and Disadvantages of the Isochoric Apparatus 

The chief advantage of the apparatus is that, given the volumetric 

properties of the sample along the reference is.otherm (77°F), the. vol-

umetric properties at lower temperatures may be determined solely from 

the experimental measurement of pressure and temperatureo The temperature 
.\ 

may be determined to within Oo02°K,· and the pressure may be determined 

to one part in 10,00.0 partso 

Due to the insulating effect of the gas-filled pressure jacket 

surrounding the bomb, the temperature fluctuations in the air bath 

(±Oo02°K) are largely damped ou~ before affecting the inner sample 

temperature. By observing the pressure fluctuations inside the cell, 

it was estimated that the actual temperature fluctuations of the 

sample were approximately± 0,01°K1 or roughly one-half the fluctua-

tions in the air bath. 



It is of practical interest to measure the volumetric properties 

of mixtures within the two-phase and the subcooled liquid regionso 

For many types of PVT apparatus (such as the Burnett apparatus) this 

is difficult 9 due to possible non-equilibrium conditions prevailing in 

the mixturec For the isochoric apparatus, an isochor may be cooled 

directly into the liquid or two-phase regions, without additional 

complicatiot1s o 

The use of the air bath, rather than the liquid bath (as used by 

Michels) 9 introduces the disadvantage of a long period of time required 

to obtain equilibrium following a change of temperatureo This is due 

to the relatively low overall heat transfer coefficient between the 

circulating air and the bombo Also, the insulating effect of the 

surrounding pressure jacket further complicates this effecto As the 

data are taken isochorically, rather than isothermally 9 only one data 

point is taken between temperature changes. 

Each successive isochor is r,un as nearly as possible at the same 

levels of temperature as the previous run. With the most careful 

work& it is yet necessary to make a small temperature correction in 

combining the volumetric observations to obtain final densities for 

each isothermo 

Any inaccuracies in the compressibility factors of the refereuce 

isotherm will introduce corresponding inaccuracies into the isochoric 

datao For this reason the accuracy of the isochoric data cannot be 

greater than the accuracy of the reference isotherm compressibility 

factorso 
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c. Characterizing Equations for the Apparatus 

All equations that characterize the apparatus are developed in 

App~ndix No The equations will be briefly s':1mmarized in the following~ 

To determine the isochoric run constant D the cryostat is charged. 

and all.owed to reach equiliprium at 77°F t · and the temperatures and 

pressures of all portions of the system are measuredo The run co11.stm:1t 
! 

is then determined from 

D = [F(TB - 95) + o.003868]DBT + o.,01263 DD + 

0.01537 o5 + 0 0 01511 D4 + 0.003794 (D3 + D2) + (N-20) 

0.003273 D1 

DBT is.the density of the sample in the bomb at 77°F (determined from 

the compressibility factor from the reference isotherm). The quantities 

D00 D59 D4 e D3 P D2, and D1 are densities representing the correction for 

the amount of sample in the DPI cell and exposed capillary line. The 

function F(T8 - 95) is the correction for the effect of temperature on 

the bomb volume. 

The quantity Dis constant along the isochor. From a knowledge of 

D~ the compressibility factors at other temperatures along the isochor 

are determined from 

p F(TB - 95) + 0.003868 
ZBT = (irf) [ DEN ] 

BT 
(N-21) 



where 

DEN= D - 0.01263 DD - 0.01537 D5 • 

{N-22) 

The densities D0, n5 , D4, o3, o2, and D1 involve the unknown 

compressibility factors ZD' z5 , z4, z3, z2, and z1 at the temperatures 

T09 T59 T4, T3, T2, and Tl' respectively. These temperatures lie 

approximately in the rang~ from ambient temperature to 0°F. Since 

the terms involving these densities are relatively small compared to 
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the other terms, Equations N-20 and N-21 are first solved using the 

approximation z0 = z5 = z4 = z3 = z2 = z1 = unity. From the assumptions 

a value of D may be calc~lated at the reference isotherm from 

Equation N-20; · then _values of ZBT may be calculated over the experi­

mental temperature range of 77 to 20°F, using Equation N-21. From these 

calculated values more accurate values of z0 , z5 , z4, z3, z2, and z1 may 

be interpolated and used to recalculate values of D and ZBT from 

Equations N-20 and N-21. 

This iterative procedure is continued until no significant cha~ge 

in the calculated value of D and ZBT ~c~urs, Since the terms involving 

D09 D59 D4, D3, D2, and D1 are small, normally aQout two iterations are 

sufficient for this convergence. A sample calculation is given in 

Appendix F. 



Do Som~.~xperimental Difficulties 

The Heat Sink Temperature 

Initially it was desired to maintain temperatures from ambient down 

to about the sublimation temperature (-78°C) of dry ice. A mixture 

of dry ice and liquid iso-octane was used as a heat sink in the space 

between the outer wall of the copper can and the inner wall of the 

dewar. This arrangement was found to be unsatisfactory for periods 

of time in excess of about two hours; as the dry ice: began to sublime, 

considerable temperature gradients formed in the cold liquid, up­

setting the temperature control. 

The installation of the mechanical refrigeration system with 

copper evaporator coils helped considerably in elimating these tempera=· 

ture gradients. A thermistor-operated on-off unit was initially 

placed in the compressor circuit, controlling the temperature of the 

refrigerant ethylene glycol solution; howeverP the on-off cycle of the 

refrigeration unit was observed to upset the temperature control 

system. The on-off control unit was thus abandoned, and the refrigera= 

ti.on unit was allowed to operate continuously. This arrangement was 

found to provide the most satisfactory heat sink. 

Vibrations in the Blower Shaft 

The excessive length (about 20 inches) of shaft between the air 

blower and motor was found to cause pronounced vibrations in the shaft. 

To overcome this problem it was necessary to support the shaft at the 

top with a close-fitting "oil-lite'' type bronze bearingp and at the 

bottom and center by steel roller bearings. Between the center and 
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upper bearings the shaft was interrupted by a steel flexible universal-

joint type coupling. 

Temperature Control 

Considerable difficulty was encountered in the temperature control 

of the cryostat due to small voltage fluctuations within the automatic 

temperature control. system. These fluctuations were principally du~ to 
I • \' 

two separate factors: lJ the relatively high inherent electrical 

"noise" in the primary temperature circuit, and 2) the instability 

of the automatic reference junction compensa~or. These diJturbances 

are discussed as follows. 

-T~ electrical noise in the circuit results in improper corrections 

being made to the output voltage to the final control device. With 

reference to Figure 3 9 the emf output from the set point unit is 

connected in series opposition ~i th t~e gener.ated thermocouple emf. 

The emf difference is continuously monitored, and is used to determi~e 

the output control voltage. For the range of temperatur!! encountered 
,: 

in this work the generated thermocouple emf was between -0.2 and +1.2 

mv. When compared to this relatively low value of emf 9 the electrical 

no~se level in the primary circuit was sufficiently high to affect 

the proper operation of the entire temperature control system. The 

problem of the inherently high electrical noise level in the system 

was never eliminated. Temperature control of within ;t0~02°K could be 

achieved with this arrangement. 

The automatic reference junction compensator between the sensing 

thermocouple and the set point unit was observed to be sensitive 1:·o 

rapi~ fluctuations in ambient temperature. A flu~tuation in ambient 



temperature caused by opening a door into the main laboratory was 

observable almost immediately on the null detecting device. This 

problem was largely overcome by insulating the automatic reference 

junction compensator with fibre glass insulation. Also, the installa­

tion of additional air. conditioning equipment helped damp out rapid 

changes in the ambient temperature. 

Elimination of High Pressure Leaks 

Considerable effort was required to elimi.nate all leaks in the 

gas s14e portion of the system. S_eparate portions of the system were 

successively isolated and charged to a high pressureo The pressure 

was then measured and the system allowed to stand for 24 to 48 hours 9 

whereupon the pressure was remeasured. These tests were quite time 

consum.ing 9 and were further complicated by any day-to-day change in 

ambient temperature, especially in the portions of th, appara~us 

containing the exposed capillaries. All leaks were eliminated. 
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CHAPTER V 

EXPERIMENTAL PROCEDURE 

The preliminary adjustments to the automatic temperature. control 

system are discussed at the first of this chapter, as this phase of the 

experimental work was quite important. 

This is followed by a discussion of the experimental details of 

the measurement of pressure and temperature. Considerable attention 

is given to the operati,on of the Ruska piston gage. 

Nextl) the preparation of the apparatus for taking a data point 

is discussed 9 followed by the details of the actual ~aking of the data 

point and the lining out of the apparatus for the next data pointo 

Lastly 9 the experimental determination of isochoric volumetric 

properties in the two-phase region is discussed. 

Ao General Experimental Details 

Adjusting Automatic Temperature Control System to the Process 

The automatic temperature control system is illustrated schemat-

ically in Figure 3. The control unit uses three modes of control 

action--proportional, reset, and rate modes of control. The combined 

settings for these modes of control establish the characteristics of the 

heat input to the cryostat; the proper setting of each particular mode 

of control action is determined separatelyo 

7--5_ 
1' .. 



The proper setting for the pro2ortional mode of control was first 

determined. For the determination of this setting, the reset and rate 

modes of control were set to zero. The "proportional band" setting 

is a measure of the amount that the controlled variable (temperature) 

must change (from its set point position) in order to produce a full 

scale change in the output voltage to the control hea_ters. 

In adjusting the proportional band it is desirable to start with 

a fairly wide setting and thel!- d_ecrease the setting in a stepwise 

fashion until the optimu~ value is reachec;l. It is generally desirable 

to use a relatively nar~ow proportional band, thus making the 

temperature control system sensitive to small temperature variationso 

16 

At each succe.ssively lower setting of the proportional band 11 small 

"upsets" were thrown in.to the process by slightly moving the l,evel 

of the set point temperature. If the effect of such an upset caused 
• I 

;· 

the controlled temperature to "cycle" excessivelY,, the proportional 

band setting was too narrow. The optimum setting is the lowest value 

that may be continuously used without introducing a cycling tendency 

into the pr~~ess. 

For this applJcation a proportional band of al:>out 40% ;was 

found- to be adequate. There was no observable cha11:ge in the 

reqt1ired proportional band with the level of tempe;rature; thu.s the 

40% setting was used exclusively. 

After selecting the proper propor~ional b~nd, the setting for 

the !!l!. mode of control action was determined. Here the proportional 

band was maintained at its 40% position and the reset control action 

remained at zero. Rate control setting involves the proper determination 



of the "rate time," expressed in minutes. The effect of rate control 

action is to produce a magnitude of change in the output voltage 
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that is proportional to the rate of deviation of the controlled temper­

ature from the set pointo 

The proper procedure for determining the rate time setting is to 

increase the rate time setting (in a stepwise fashion) from its zero 

positiono At each setting an upset is manually introduced into the 

process to detect any tendency to cycle. The rate time should be set 

as high as possible without inducing cycling. In this case the rate 

action was observed to introduce some cycling tendency at low rate. 

times of Oo05 to 0.10 minutes. This was indicative that 0 due to the 

physical nature of the processt rate action was undesirable. Accord= 

ingly the rate time setting was permanently turned back to its zero 

position. 

After selecting the proper settings for proportional band and 

rate time 0 the setting for the reset mode of control was determinedo 

In reset control 9 ~he rate of change of the control voltage is con­

tinuously proportional to the magnitude of the deviation of the con= 

trolled temperature from its set point. The "reset rate" is expressed 

in repeats per minutep ioeo 9 the number of times per minute that the 

effect of the proportional control is repeated by the control action. 

Reset action is connnonly used for temperature control application 9 

and imparts a stability to the process. 

The reset rate should be as high as practical without causing the 

controlled variable to cycle continuously. A reset rate of from 0.1 

to Oo3 repeats per minute was found to be adequate for this 
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application, after the process had become completely "lined outo" During 

the period of time when the system was rapidly approaching thermal equi-

librium (after a set point change.), reset rates as high as 1.0 repeat/ 

minute were used with the 40% proportional band setting. In this case 

the higher reset rate helped significantly in stabilizing the process 

and in bringing the process to equilibrium more quickly. The reset 

rate was then gradually decreased to Ool to 0.3 repeats per minute 9 

when the system had attained equilibrium. 

The variable sensitivity of the null detector (Figure 3) has a 

maximum setting of ten units. The proper setting is that in which the 

output control voltage is as steady as possible, considering all 

upsets encountered by the entire control system. A setting of 7.5 to 

8.5 units was found to be optimum. Initially the maximum setting of_ 

ten units was used; occasionally, however, this setting was observed 

to produce an increased fluctuation in the control voltage, resulting 

in instability of the system. 

AcUustment of DPI Cell Temperature 

In general 9 very little attention was required for this portion 

of the systemo Since the insulated lead-in lines from the circulating 

water bath would absorb a small amount of heat from the surroundings 

(depending upon the ambi_ent te~perature) it was periodically necessary . . 

to adjust the set point tempera_ture of the water bath. Regulation of 

the temp.erature level was accomplished by simply adjusting a leveling 

screw in the mercury-in-glass mechanism. 
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Operation of the Ruska Piston Gage and DPI Cell 

Periodically, it was necessary to check the zero position of 

the DPI cell and readout. The.oil-filled reference manometer for this 

purpose was described in Chapter IV. The procedure is given as follows. 

After bleeding the oil system and making certain that no air was 

present, the gas side of the DPI cell was opened to the atmosphere via 

the exhaust valve (Figure 1). With the DPI readout set at a low 

sensitivity value, the oil of the pressure balance system was main­

tained at about one atmosphere pressure via the screw pump, and the 

valve to the reference manometer was opened, 

The oil was brought to the reference mark of the manometer, and the 

DPI readout was zeroed ~t low sensitivity by means of the "zero adjust" 

knob. The sensitivity was then increased to its normal operating 

range (about 3/4 maximum sensitivity) and the readout was more finely 

zeroed. After the zeroing procedure was completed, the isolating 

valve between the manometer and the high pressure system was closed. 

The shift of the DPI cell zero point with operating temperature 

did not have to be considered, as the DPI cell remained at the same 

temperature level for all values of the cryostat temperature. As a 

high overpressure of the DPI cell might tend to shift the zero point, 

the DPI cell was always overpressured from the same side (the oil side), 

and the overpressure was held to within 100 psi in most cases. 

The zero point was redetermined each time the entire system was 

opened to the at~osphere; generally this occurred each time a new 

sample was charged to the system. Any change in the zero point was 

observed to be negligible, 



Initially~ in the determination of a pressure 9 the valves between 

the screw pump and Ruska piston gage were closed (Figure l); then the 

DPI cell was balanced at low sensitivity versus the screw pumpo The 

necessary balancing pressure of the oil was then read as accurately as 

possible from the calibrated bourdon gage atop the screw pump; and the 

DPI c.ell 9 containing the high pressure oil 9 was also valved off. 

The screw pump was then brought back to atmospheric pressure!)) aud 

the valve to the piston gage opened. Proper masses were added to the 

piston gage 9 and the gage balanced versus the screw pumpp until the 

same oil balancing pressure as above was indicated by the calibrated 

bourdon gage 0 

The pressure of the oil of the piston gage was then approxi.mately 

equal to the oil pressure of the isolated DPI cell; thus the valve 

separating the piston gage and the DPI cell was opened carefully. The 

approximate balance was then indicated by the readout box. At this 

point the masses of the piston gage were set in rotation 8 with the 

readout box remaining set at low sensitivity. 

By increasing the readout box sensitivity 9 with the masse~ in 

rotation 9 it could be determined whether mass needed to be added or 

subtracted from the piston gage. In general the masses of O.Ol 

pound and below were directly placed on (or taken from) the gage 9 

without stopping the rotation. 

For masses larger than 0.01 pound it was necessary to use the 

following procedure in adjusting the amount of mass o The DPI (~ell 

(mt approximate balance) was valved off, the rotation of the masses 

w,i.;; stopped 9 and the masses on the gage were lowered with the sc.rew 
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pump. After the necessary adjustments to the amount of mass were made, 

the masses were again raised, the valve to the DPI cell was reopened, 

and approximate balance was again confirmed on the readout box. The 

masses were then placed in rotation again. 
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As the DPI cell was balanced at each value of sensitivity setting, 

the sensitivity was increased and the above balancing procedure repeated. 

The DPI cell was assu~d to be completely balanced, and .the pressure 

point was taken, whenever the DPI readout was maintained at balance for 

fifteen minutes at normal operating sensitivity (3/4 maximum) with the 

masses being in rotation. The pressure was always determined at 3/4 

maximum sensitivity, since the DPI zero point was determined at this 

setting. 

The point was taken with the line on the rotating sleeve weight 

corresponding as nea~ly as possible with the engraved reference mark on 

the index post of the piston gage. 

The piston gage temperature was then read and recorded to the 

nearest 0,1°C, and a reading was made of the Texas Instruments baro­

meter and its temperature. 

The calculational procedure for the pressure determination, 

including corrections for the head of oil, gives the absolute pressure, 

psia, at the level of the diaphragm of the DPI cell. The sample 

calculation of an experimental pressure point is presented in 

Appendix B. 

Measurement of Temperature 

The following temperatures were measured with thermocouples, 

using the K-3 potentiometer. 



1) TD' the temperature of the DP! cell 

2) TBT' the temperature of the bomb 

3) · T3, T2• and T1, the temperatures along the capillary tube. 

A diagram of the thermocouple circuit and potentiometer is given 

. in Figures 4 .and 5; _the. thermocouple calibrations are discussed in 

Appendix A. The temperatures TD and TBT were determined both before 

and after a pressure measurement, and an average value was taken. 

The potentiometer standard cell was zeroed before each indivi­

dual measurement, and normal balancing procedures were followed with 

the potentiometer. 

The temperatures T4 and T5 were determined from ordinary mercury­

in-glass thermometers. 

Volume Ratio Calibration 

The significance of the ratio of the volume of the DP! cell to the 

. volume of the bomb has been discussed previously. The experimental 

details of this determination will be given below, 
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This determination requires that a gas of known volumetric properties 

be available. Airco prepurified nitrogen was used in this case; specifi­

cations and purities for thi_s gas are presented in Appendix E. Also 

it was convenient if the ratio was determined with the bomb and DPI 

cell at the same temperature; the cryostat was thus adjusted to a 

temperature of 95°F. 

The entire gaseous portion of the system, including the gas 

compressor, was successively evacuated (to 100 microns or less) and 

rinsed with the nitrogen; finally the interconnecting valve between 

the bomb and the DPI cell was closed and the gas compressor was filled 

with the nitrogen, 



The DPI cell was then charged to about 2500 psio After equili= 

brium was attained the pressure of the gas in the DPI cell was 

measured with the piston gage, and the small residual gas pressure in 

the bomb (about 100 microns) was measured with the McLeod gage.l/ 

Temperatures of all portions of the system were read and recorded» and 

the barometric pressure was noted. The interconnecting valve was then 

opened 9 allowing the nitrogen to expand into the bomb. 

After the system had again reached equilibrium the pressure was 

determined on the piston gage; from this reading the proper bomb jacket 

pressure was determined 9 and gas to this pressure was admitted to the 

pressure jacket. The calibrated 5 9 000 psi Crosby bourdon gage was 

used to determine the jacket pressure. 

After the bomb had again attained equilibrium~ the system pressure 

was again determined 9 and all temperatures were measured. The barometer 

was again read and recordedo 

From the above readings and the known volumetric properties of 

the nitrogen 9 the volume ratio v0 /VB was then determined from Equation 

N=lOo After several such calibrations the average value (VD/VB= 

0001263) was determinedo A sample calculation is given in Appendix Eo 

,.LI Caution must be exercised in the use of the glass McLeod gage~ 
especially when one portion of the system is open to the McLeod gage 
and the other portion of the system is under a pressureo For safety an 
auxiliary needle valve was placed between the McLeod gage and the systemo 
The valve remains closed unless the gage is being u.sedo 



Bo lfepa~ing Apparatus for Taking a Data Point 

Estimation of .Charging Pressures 

In the treatment of the experimental data, the isochoric com­

pressibility .factors are presented as isotherms. In the theoretical 

treatment of the data the points along the isotherm should 9 for 

convenience 0 be spaced at approximately equal intervals of density. 

As the cell is charged for each isochor to a known pressure (as 

indicated by the bourdon gage), rather than to a known density, the 

required charging pressure may only be estimated. 

In this series of measurements the Redlich-Kwong equation of 

state was used to estimate the charging pressures required to produce 

compressibility factors at equally spaced values of density. The com= 

pressibility factor Z was first calculated as a function of pressure 
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P along an isotherm. Secondly9 the compressibility factor was calculated 

as a function of the density along the same isotherm. Two plots we,re 

then made--one of Z versus P 9 the second of Z versus density. The 

calculated compressibilities corresponding to evenly spaced values of 

density were read from the first plot; then the pressures corresponding 

to each of these values of compressibility factor were read from the 

second plot. The pressures so determined were used as the experimental 

charging pressures for the isochoric determinations. 

The same procedure was .used for each system studied. For the 

four intermediate mixtures the conventional mixing rules (Equation 

III-39) were used. It should be emphasized that any inaccuracies in 

the RK equation do not affect the accuracy of the experimental 

measurements. This proced,ure only represents a simple approximation 



for spacing the compressibility factors equally with respect to 

density. 

Cha.rging Procedure 

Prior to charging the system for an isochoric measu~ement 9 the 

gas compressor was rinsed, evacuated, and filled with the sample 

from the gas supply bottles. The entire gaseous portion of the 

system was then rinsed and evacuated, and the cryostat temperature 

was adjusted to the reference temperature (77°F). With the 

interconnecting valve remaining open the DPI cell and bomb were 

charged to the pre-selected initial pressureo The required pressure 

for the jacket of the bomb was determined (as described in Appendix K) 

and.was admitted to the jacket. This pressure was measured with the 

5000 psi calibrated bourdon gage. 

c. Taking a Data Poi~~ 

After the bomb had been allowed to line out for about ten hours 9 

a data point was taken. The actual taking of the data point 

requires 

. 1) determination of the temperature of all portions of the 
systemP 

2) measurement of the system gage pressure 9 and 

3) measurement of the barometric pressure. 

The operation of the pressure and temperature measuring apparatus 

was discussed above. Details of the operation of the Texas Instruments 

barometer are given in Appendix c. 



86 

The total time required for determination of the pressure with the 

piston gage was from 30 minutes to one hour. Due to this expiration 

of time the temperat~res were determined both before and after the 

pressure measurement, and the average value taken. 

The data point at the reference temperature was used to c.ompute 

the run constant 9 D9 for that isochor, using Equation N-200 The 

measurements at the other temperature levels on that isochor were 

in Equation N-21 to compute the compressibility factor at that tempen:aturee 

Do Preparing Apparatus for Next Data Point 

After completing the .taking of a data point 11 the temperature of 

the cryostat was changed to the next value as follows. 

The sensitivity of the null detector portion of the control system 

was set to a low value (about three units), and the set point unit was 

set at the proper value corresponding to the desired temperatureo The 

reset. rate of the control unit was increased from its normal operating 

value of ab~ut Oo2 repeats per minute to a higher value of loO repea.t 

per mim.llteo The proportional band setting was unchanged from its normal 

operating value of 40%. With these settings, the control system 

exhibited an increased stability during the period that the circu= 

lating air temperature was changing rapidly. 

As the air temperature began t.o closely approach the set point 

temperature (as indicated by the null detector) the null detector 

sensitivity was increased in a stepwise fashion, allowing time for 

the system to stabilize after each sehsitivity increase. With each 



sensitivity increase the reset rate was decreased 9 also in a stepwise 

manner, until the normal reset rate setting was again reached. 
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A considerable time was required for changing temperatures within 

the bomb itself. After the set point temperature was changed by 20°F 

the circulating air would restabilize within an hour; the temperature 

of the sample within the bomb, how~ver, required a much longer period. 

The most sensitive test of constancy of temperature within the inner 

portion of the bomb was the pressure change as indicated by the DPI 

readout. Experimental observations of the DPI readout after a 20°F 

temperature change indicated that about six to eight hours were required 

for complete equilibrium to be attained. It was desirable to take the 

data according to a regular schedule; hence it was decided to take one 

single data point each 12 hours. This schedule allowed roughly two 

hours for taking the data point and changing the temperature of the 

circulating air to the next level; the remaining ten hours were utilized 

for o~taining equilibrium inside the bomb. 

Expansion to the Next Isochor 

The above procedure was continued until all temperature levels 

on the isochor had been covered. The experimental procedure for the 

first isochor had then been completed. The density for the next isochor 

was obtained by exhausting slowly a small portion of the sample to the 

atmosphere 1 via the exhaust valve. 

In this case there are two convenient temperatures at which this 

expansion may be made. 

1) The bomb may be returned to the starting temperature of the 

reference isotherm (77°F) and the expansion of the sample to the 

second isochor made at this temperatureo 



2) Alternately the expansion may be made at the existing lower 

temperature (20°F); the second isochor is then run in the reverse 

direction of the first. starting at 20°F and increasing the temperature 

stepwise to 77°F, thus including the reference isotherm as the last 

point on the isochor. 

Several attempts were made to raise the temperature to 77°F 

from 20°F before making the expansion, These attempts showed that 

the apparatus was more difficult to resta~ilize after this large 

change in temperature. This was thought to be due to the insulating 

effect of the gas in the surrounding pressure jacket, Thus, the 

second 9 fourth (and all even-numbered) isochors were determined 

starting from 20°F and increasing the temperature to 77°F. The 

first, third, fifth (and all odd-numbered) isochors were determined 

in the normal manner, starting at 77°F and decreasing the temperature 

to 20°F. The temperature at which the expansion is made has no effect 

on the data;lf the only requirement is that the reference isotherm be 

included on the isochor, 

Isotherms 

The temperature levels along each isochor were maintained as 

closely as possible to the even temperature levels 77• 60, 40, and 

b£1 .. wt& 

l/ An exception is made for the case ·of the two-phase region, 
See Section F, below. 
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20°Fo After all isochors had been determined for a given sample it 

was desirable to combine the experimental data points into isothermso 

This made necessary the correction of the compressibility factors to 

the exact even temperature levels. Normally this correction was on 

the order of Ool to 0.2°F. 

If an experimental compressibility factor ZP T is determined at 
9 X 

,pressure P and temperature T, the compressibility factor Z at 
X PpT 

pressure P and the exact temperature level T is given by 
0 

..... ... 

J 
0 

T 
X 

(E) dT 
aT p T 

t X 

0 

(V-1) 

As the temperature T was very close to the temperature T, Equation 
X 0 

V-1 is written as 

= Zp T + (li) (T - T ) 
» X ar p T O X 

t X 

(V-2) 

The term <H,) was evaluated graphically from the datao 
P9 T 

X At each pressure large plots of Z versus T were made 9 and the slope 

of the lin~ read off at each of the temperatures 77 9 60 9 40 9 and 20°F. 

az These slopes ("'a'T) were then plotted versus pressure at each of 
P9 T 

X the above four temperatures, and smooth curves drawn through the 

points. This procedure was quite satisfactory, as the last term of 

Equation V-2 is small compared to the other two terms in the equa-

tion. 
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Isochors 

Due to the effect of the sample in the exposed capillary line, 

the experimental data does not follow an exact isochor. For use in 

future equation of state development the isothermal data (from above) 

was also smoothed to isochors. By using a procedure similar to that 

above 9 the compressibility factor ZT (at temperature T and density 
o'Px 0 

p) was corrected to the compressibility factor ZT (at temperature 
X o'p 

T and the exact value of density p for the sample at the reference 
0 

isotherm) from the equation 

z 
T ,P 

0 

(V-3) 

As with the corrections to isotherms the last term in the above 

equation was relatively small; thus the term(~) 
ilp T 

o'Px 
evaluated graphically from the data. 

F. Special Procedure for the Two-phase Region 

was satisfactorily 

As has been discussed in Chapter IV, no theoretical reason exists 

why the isochoric apparatus may not be used for determining volumetric 

properties of pure components or of mixtures in the two-phase region. 

In general the experimental procedure is the same as for a 

sample above its critical temperature, except for the temperature of 

expansion to th,e next isochor, For a pure compound, after an isochor has 

been run into the two-phase region, the sample must be heated back to 

the single..phase region before changing to the next isochor by 

removal of a portion of sample, This is because there is no change in 



the sample pressure with the expansion in the two-phase region; thus 

there is no way to ascertain from the pressure measurements when the 

desired density has been reached. For a mixture this expansion must 

also be made in the single-phase region, to avoid composition changes 

of the sample. 
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CHAPTER. VI 

PRESENTATION AND CALCVLATIONAL TIIATMENT OF EXPERIMENTAL DATA 

In this chapter the experimental compressibility factor data from 

the isochoric measurements is presented. The data for methane, ethylene, 

and four intermediate mixtures covers the range 260 to ~400 psia at 

temperatures of 20, 40, 60, and 77°F. For the pure ethylene, the 

measurements extend into the two-phase i:egion. The 77°F data repre­

sents the reference isother• from the Burnett apparatus. 

The compressibility factors were compared versus the BWR equa~ 

tion (6) and the Edmister generalized form of the BWR equation (20). 

The second apd third Leiden virial coefficients were derived by the 

slope-intercept method, and were used to calculate interaction second 

virial coefficients. Th.e experimental second and third virial coeffi­

cients were compared versus the BWR equation (both original and 

generalized forms) and the RK equation (58). Four empirical rules 

were evaluated for estimating B12 from the pure component virial 

coefficients B11 and B22 • 

A. Presentation of Data 

Volumetric Data 

The experimental compressibility factor data is shown in Tables IV 

and V, The reference isotherm (77°F) data from the Burnett apparatus 
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TABLE IV 

METHANE-ETHYLENE COMPRESSIBILITY FACTOR DATA 

99,0 per cent methane 

p z (Z - l)V 1/V 
psi a ft3 /lb mo.!!_ ~.J.t3. 

11.00°~1 2346.859 0.8230 -0.3575 o.i.9513 
2106.929 0.8241 -0.3962 0~44392 
1787.913 0.8352 -0.4434 0937170 
1521.457 0.8523 -0.4765 0~30996 
1233.124 0.8742 -0.5136 0.24492 
920.962 0.9023 -0.5513 0.17722 
643.814 0.9295 -0.5862 0.12027 
294.144 0.9672 -0.6212 0~05281 

. 60 0 00°F 2198.660 0,8002 -0.4056 0.49270 
1973.511 0,8044 -0.4447 0&43995 
1685.260 0,8183 -0.4921 0.36931 
1440.195 0.8379 -0.5258 0,30819 
1172.875 0,8631 -0,5619 0.24370 

879,878 0,8955 -0.5933 0.17619 
617.179 0.9241 -0.6337 0.11976 

283.240 0,9653 -0.6591 0.05261 

40,00°F 2040.432 0,7695 -0.4662 0.49453 
184_1.992 0.7763 -0,5056 0.44251 . 
1575.790 0.7945 _.0.5555 0,36986 
1355.413 0,8176 -0.5901 0.30918 
1109,302 0.8465 -0.6282 0.24440 

837,025 0,8832 -0,660.9 0,17674 
589,651 0.9156 -0.7027 0.12010 
272,087 0,9616 -o. 7282 0,05277 

20,00°F 1876.944 0,7337 -0.5358 0,49695 
1698.841 0,7440 -0.5771 0.44359 
1464,603 0,7663 -0.6295 0.37132 
1266,041 0,7934 -0.6665 0.30999 
1043.526 ·o.s261 -0.7068 0.24522 

792.452 0.8681 -0.7440 0.17735 
560.900 0,9049 -0.7895 0.12041 
260,247 0,9560 -0.8329 0,05289 

!/ Reference isotherm data (31), 
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TABLE IV (CONTINUED) 

78,8 per cent methane 

p z (Z - l)V 1/V 
psi a ft3/lb mole 11?, ipole/ft3 

77,00°p!/ 2316,386 0.7492 -0.4672 0.53684 
2008,996 0,7538 -0 .• 5320 0.46276 

·"''1758,562 0,7678 -0.5839 0.39769 
'1498,063 0,7907 -0,6362 0.32897 
1238.213 0~8196 -0.6877 0,26232 
969.847 0,8552 -0.7350 0.19684 
694,161 0,8949 -0.7803 0.13469 
319,019 0,9513 -0.8360 0.05820 

60,00°F 2140.096 0,7194 -0.5260 o.53342 
1868.855 o. 7282 -0.5906 0.46017 
1643.159 0.7458 -0.6435 0.39508 
1408,976 0,7725 -0.6956 0,32706 
1170,654 0.8047 -0.7487 0.26087 

922.510 0,8440 -0.7958 0.19598 
663,507 0,8873 -0.8405 o.13409 
306,943 0,9486 -0.8855 0.05802 

40,00°F 1956,938 0.6804 -0.5958 o.53637 
1717.497 0,6937 -0.6633 0,46170 
1521,246 0.7154 -o. 7177 0,39657 
1313.980 0,7464 -o. 7724 0.32829 
1099.708 0,7833 -0,8276 0,26181 

872.425 0,8273 -0.8780 0.19665 
631.520 0.8753 -0.9266 o.13455 
294~121 0,9431 -0,9777 0,05816 

20.00°F 1761,730 0,6358 -0.6766 0,53826 
1562.079 0,6545 -0.7452 0,46365 
1393.956 0,6805 -0,8028 0.39792 
1214,260 0,7160 -0,8620 0.32945 
1026,410 0,7577 -0.9208 Oa26317 
821,081 0,8072 -0.9758 0.19762 
598,192 0,8609 -1.0307 0.,13499 
280,963 0,9358 -1.1oro 0.05833 

!I Reference isotherm data (31). 
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TABLE IV (CONTINUED) 

57.2 per cent methane 

p z (Z - l)V 1/V 
psi a ft3/lb mole lb mole/ft3 -

n.00°rl1 2227.785 0.6564 -0.5831 0.58930 
1952.979 0.6602 -0.6616 0.51363 
1712.099 0.6746 -0.7384 0.44067 
1526.559 o.6968 -o. 7971 0.38040 
1229.021 o. 7471 -0.8854 0.28564 
988.482 0.7949 -0,9499 0.21592 
675.034 0.8609 -1.0217 0013615 
349.326 0.9292 -1.0855 0.06518 

60.00°F 2041.475 0.6186 -0.6445 0.59175 
1804,906 0,6268 -o. 7228 0.51635 
1592,594 0,6449 -0.8019 0.44283 
1432. 770 0,6698 -0.8609 0.38359 
1160,848 0,7268 -0,9539 0.28639 
941.507 0. 7788 -1.0206 0.21679 
647,201 0.8504 -1,0964 o.13647 
337.506 0,9243 -1.1563 0.06548 

40,00°F 1817.319 0,5690 -o. 7236 Oc59563 
1618.876 0.5817 -0,8060 0@51901 
1445.548 0,6057 -0.8859 0.44509 
1309,766 0,6333 -0,9507 0.38568 
1079,373 0.6977 -1.0477 0.28849 

882,112 0,7554 -1.1232 0.21777 
613.304 0.8348 -1.2057 Ocl3701 
322.507 0,9161 -1.2782 0.06565 

20,00°F 1584,507 0,5124 -0.8117 0.60078 
1428.087 0,5305 -0.8978 0.52300 
1293,648 0,5587 -0.9811 0.44978 
1186,06T 0,5913 -1.0489 0.38969 
988. 770 0.6642 -1.1612 0.28920 
819,825 0,7282 -1.2427 0.21870 
577,547 0.8164 -1.3361 0013744 
307.065 0.9057 -1.4316 0.06586 

ll Reference isotherm data (31). 



TABLE IV (CONTINUED) 

38.4 per cent methane 

p z (Z - l)V 1/V 
psi a ft3/lb mole lb mole/ft3 

77 .ooop!/ 2l42.716 o .• 5677 -0.6596 0,65536 
1967.034 0.5608 -o. 72ll 0~60903 
1515,253 0.5871 -0,9214 o.44813 
1471.531 0,5947 -0,9433 0. l;,2964 
12ll. 778 0.6557 -1~0730 0.32089 
1013~872 o. 7121 -1.1628 0.24739 

738.983 o. 7961 -1.2651 0.16118 
412.744 0,8907 -1.3584 0.08046 

60,00°F 1911.035 0,5204 -o. 7283 0.65843 
1768.497 0.5165 -0.7875 0.61398 
1386.246 0,5523 -0.9947 0.45008 
1353.163 0.5605 -1.of53 0.43291 
1129.740 0,6279 -1.1534 0.32265 

9.56.435 0.6899 -1.2475 0.24860 
704,301 0.7806 -1.3563 0~16180 
397. 772 0,8828 -1.4509 0.08080 

40.00°F 1636.795 0.4583 -0,8133 0.66607 
1519,081 0.4584 -0.8764 o.61797 
1230. 777 0.5048 -1.0891 0.45471 
1203.197 0.5145 -l. ll32 0.43612 
1028.869 0.5902 -1.2605 0.32509 
882.701 0,6589 -1.3654 0.24984 
661,690 0.7589 -1.4829 0,16261 
378.107 0,8706 -1.5974 0.08099 

20,00°F 1343.923 0.3895 -0.9108 0.67035 
1266.777 0,3927 -0.9691 o.62664 
1065,097 0.4516 -1.1969 0.45814 
1046.383 0.4624 -1.2229 0.43957 
919.727 0,5472 -1.3868 0.32653 
805.823 0.6226 -1.5011 0.25146 
615.589 0.7330 -1.6366 0.16315 
358,209 0.8558 -1. 7738 0.08132 

1/ Reference isotherm data {31). 
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TABLE IV (CONTINUED) 

18.4 per cent methane 

p z iz • l)V 1/V 
psi a ft /lb mole lb mole/ft3 

11.00•1 2285.548 0.4648 -0.6269 0.85379 
1894.508 0.4363 -o. 7477 o. 75394 
1537 .437 0.4401 -0.9231 0.60656 
1287.002 0.4757 -1.1161 0.,46976 
1154.221 0.5210 -1.2453 0.38466 
1072.243 o.5588 -1~3243 0033317 

765.436 0.1120 -1.5450 0.18630 
454.276 0.8422 -1.6849 o.09366 

60.00°1 1931.400 0.4038 -0.6951 0.85773 
1620.145 0,;·3810 -0.8118 0.76244 
1332.245 o.3916 -0.9973 0.61004 
1139.865 0.4296 -1.1989 0.47573 
1041.131 0.4802 -1.3370 0.38874 
980.449 0.5181 -1.4202 0,33936 
721.265 0.6910 -1.6511 0.18718 
435.270 0.8298 -1.8093 0.09406 

40.00°1 1526.336 0.3277 -0.7740 0.86868 
1279.820 0.3098 -0~8960 o. 77030 
1082.616 0.3259 -1.0881 0.61955 
953.565 0.3699 -1.3093 0.48195 
900.272 o.4246 -1.4551 0.39546 
855.580 0.469.4 -1.5610 0.339-92 

'665.797 o.6586 -1.8108 0.18852 
410~818 0.8117 -1.99,54 0.09439 

20.00°r 1108.631 0.2448 -0.8583 0.87992 
936.589 0.2317 -0.9784 0.78530 
827.228 0.2577 -1.1904 0.62358 
771.330 0.3088 -1.4243 o .• 48532 
742.455 0.3637 -1.6046 0.39654 

. 715.U3 0.4030 -1.7319 o.34469 
604.362 0.6212 -2.0043 0.18902 
385.233 0.7896 -2.2200 0.09478 

!/ Reference isotherm data (31) 
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TABLE IV (CONTINUED) 

ethylene 

p z (Z - l)V 1/V 
psi a ft3/lb mole lb mole/ft3 

11.00°p!/ 1669.761 0.3714 -0.8052 0,.78063 
1259.190 0.3252 -1.0037 0.67232 
1037.278 0.3437 -1.2524 0.52402 
925.779 o.4523 -1.5411 Os35540 
753.259 o,.~011 -1.8237 0.21544 
469.314 0.7931 -2.0137 0.10275 

60.00°F 1311.832 0.2992 -0.8914 Oe78624 
1001,621 . 0.2630 -1.0792 0068294 

870,902 0.2932 -1.3270 0.53264 
826.468 0,410~ -1.6326 0.36120 
698,690 0,5746 -l,9510 0.21803 
447,465 O, 7776 -2.1554 0.10318 

40,00°F 911,0l~ 0,2118 -0.9824 0080233 
688,26~ 0,1846 -1,1725 0.69545 
682.02 3/ 0.2306 -1.3949 0055159 
680. 791.r" 0,3450 -1.7798 0.36803 
629.469 0.5326 -2.1206 0.22040 
419.560 0.7553 -2.3621 0010359 

20,00°F 524.62e¥t 0.1257 -1.0780 0.81109 
524.30~ 0,1452 -1.2185 0.70155 
527,61 3/ 0,1842 -1.4663 0.55632 
528,80~ 0,2742 -1.9374 0.37462 
519,92 0.4563 ..;2.4563 0.22135 
389,754 0,7281 -2.6146 0.10399 

t' Reference ia>therm ~ata (31) , 
ll Single~phase .liquid point, The critical temperature and critical 

pressure of ethylene are 49,82°F and 742.1 psia, respectively (69). 
· lf T'7o-phase point. · 



TABLE V 

METUANE ... ETHYLENE DATA, SMOOTHED TO ISOCHORS 

. 99.0 per cent 
methane 

60.00°F 40.00°F 20.00°1 

11v!' p p p 
lb moles/ft3 psia z psia z psi.a z 

0.49513 2208.985 0.8000 2042.749 0.7694 1870.758 0.7340 
o.44392 1989.944 0.8038 1847.183 0,7760 1699.895 0.7439 
0,37170 1694,801 0,8176 1582,344 0,7939 1466.009 0,7662 
0,30996 1447.351 0.8373 1358.408 0,8173 1265.902 o.7934 
0.24492 1178.207 0,8626 1111.457 0.8463 1042.384 0.8268 
0, 17722 884.553- 0,8950 839.014 0,8829 792.016 0,8682 
0,12027 619,614 0.9238 . 590,417 0,9155 560,283 o.9oso 
0.05281 284.264 0,9652 272.304 0,9616 25.9,883 0,9560 

78.8 per cent 
methane 

0,53684 2152.893 0,7191 1958.346 0,6803 1757 .811 0,6361 
0,46276 1878.003 o. 7277 1720.858 0.6935 1559.793 0.6548 
0,39769 1652.208 0,7449 1524.738 o. 7150 1393.693 0,6806 
0.32897 1415.769 o. 7717 1316.124 0.7461 1212.981 o. 7163 
0.26232 1176,041 0,8039 1101.383 0.7830 1023.942 0.7583 
0,19684 925. 724 0.8433 873.004 0,8271 818.300 0,8076 
0.13469 -- 666. 190 0.8869 632.101 0.8752 597.093 0,8612 
0,05820 307.824 0.9484 294.323 0.9431 280.385 Oa9359 

!/·Density values correspond to those of the reference isotherm, Table IV. '° '° 



TABLE V (CONTINUED) 

S7.2 per cent 
methane 

60.00°!' 40.00°1' 20.00°, 

. 11v!I p p p 
lb mAles/ft3 psi a z · psia z psi a z 

O.S8930 2033.643 0.6188 1800.855 0.5699 1561.022 0.5146 
o.51363 1802.013 0.6291 1605.142 0.5828 1408.961 0.5329 
o.44067 1586.591 0.6456 1435.500 0.6075 1276.873 0.5629 
0.38040 · 1424.539 0.6715 1297.914 0.6363 1169.204 0.5971 
0.28564 1158.565 0.7273 1011.550 0.6996 980.579 0.6669 
0.21592 938.635 0.7795 876.460 o. 7570 812.258 0.7308 
0.13615 645.925 0.8507 610.845 0.8367 573.219 o.8179 
o.06518 336.090 0.9246 320.395 0.9167 304.215 0.9067 

38.4 per cent 
methane 

o.65536 . 1901.246 005202 1609.844 0.4581 1313.845 0.3895 
0.60903 1756.495 0.5169 1502.983 0.4600 1246.474 0.3974 
0.44813 13810 779 005529 1218.306 005070 1050.048 004552 
0.42964 13450372 0.5615 1190.613 0.5168 1031.493 0.4664 
0.32089 1125c807 0.6291 1020.879 0.5933 911.467 0.5518 
0.24739 953.341 0.6910 877.384 0.6614 7980 713 0.6272 
0.1611s 702.291 0.7813 657.458 0.7607 610.400 007357 
o.oso46 396.348 0.8833 375.916 · 0.8713 355.071 0.8573 

1/ - Density values correspond to those of the reference isotherm, Table IVe 
I--' 
0 
0 



TABLE V {CONTINUED) 

18.4 per cent 
.methane 

60.00°F 4o.oo°F 20.00°F 

11v!' p p p 

.lb moles/ft3 --l!!!• - _Z_ - -----1:t1.ia. z _c__Hl&' z 

o.85379 1918:387 0.4029 1495.697 0.3267 10S4.348 0.2399 
o. 75394 1601.953 0.3810 1252.454 0,3098 899.219 0.2317 
o.60656 1325.336 0,3918 1065,844 0.3277 816.173 0,2614 
o.U.976 1131,219 0.4318 944.103 0,3748 763.160 0.3156 
o.384~6 1035,696 0,4828 890,230 0.4316 735.991 0.3717 
0.33317 974.354 0.5244 850.923 0.476-3 ·110.361. 0.4142 
0.18630 719.067 0.6921 660.925 o.6616 599.659 0.6253 
0,09366 433.792 0.8305 408.409 0.8132 381.889 0.7921 

ethylene 

o.78063 1291,232 002966 863 .• 970 0,2064 524.002 0.1309 
0,67232 986.097 0,2630 680,505 0,1846 519,815 0.,1502 
0.52402 867 .068 0.2967 681 .• 964 0,2427 526.539 0,1952 
0.35540 823.326 9.4154 675~580 0.3545 527.808 0~2896 
0.21544 694.692 0.5782 625.328 0,5413 516.348 0,4656 
0,10275 446.096 o. 7785 417.247 0.7573 . 386.900 0,7315 

!/ Density values correspond to those of the reference isotherm, Table IV. 
' . 

I-' 
0 
I-' 
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is shown in Table IV, Table IV represents the data before smoothing to 

exact isochors; in Table V the data (at 60, 40, and 20°F) has been 

smoothed to the densities of the reference isotherm. The data was 

smoothed to isocho~s, as isochoric data is frequently used in equation 

of state development, All calculations reported herein, however, were 

based on the data of Table IV, 

An error analysis of the data is given in Section C below, and a 

sample cal~ula,tion of a compressibility·fac~or is presented .in 

Appendix F, 
. I 

Second Vir:t.al Coefficients 

' . Leiden, s~cond vi rial coef ficienu"' were determined from the d$t:a 

using the.dope.intercept techniq1.1e, desc;:ribed previously. 
I ' ., 

Initially, values of B(T) w~re determine~ at each temperature as 

intercepts on a plot of (Z - l)V ~ersus 1/V (Equation III-4). These 
' ; . ' ;.~ ·.. ' 

initial values of B(T) were improved somewhat in the determination of 

third virial'coefficieno. This is explained as follows, According 
. i, .. 

to Equation lII-5 plots:·of [Z - l)V - B(T))V versus 1/V were constructed, . . 

the intercept being the third viri~l ~~efficient. At each .temperature 
\ i. 

several values of B(T) were assumed, using the initial value of B(T) 

.as a starting value, The ~djustment:.s ~o B~T) were made in step~is~ 

fashion,with increme~ts of 0,001 ~t3/1b.~ole, (approximately 0.06 
3 . ·h,•'·. 

cm /gm mole), · i:t was found that a smau·.~djustment in B(T) resulted· · 

in ''a consid~rable change iu the function l(Z -· l)V - B(T) ]Vo This 

pro~edure was coptinued until the value· of B(T) was determined.that 

would produce the most linearity of, the f~nction [ (Z .. l)V - B(T).]V 
\ : . 

at low 4e:;i~ities, The maximum revision in B(T) from the initial value 
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was +o.5 cm3 /gm. mole. - ' 
This revision cor;esponds to approximately ±,0.3 

.. . l ' 

to ±1.2%, depending on temperature and composition. 

The second virial coefficients were determined in units of 

ft3/lb mole, and were then converted to units of cm3/gm. mole for analysiso 

The virial coefficien~s represe.nting the 99.0% methane are compared 

below (Table VI) with the published values of Douslin (16) for 

methane. Douslin's data is given in 25°C intervals, the lowest tempera= 

ture being 0°C, The only direct comparison is at 77°F, Values for 

comparison at the other temperatures were determined by carefully 

plotting Douslin's data on large (22 inch x 34 inch) sheets, and 

interpolating the values. Errors introduced by this procedure are 

3 estimated to be less that 0,1 cm /gm mole. The estimated accuracy of 

Douslin's data is 0,1 to 0,7 cm3/gm. mole. 

TABLE VI 

COMPARISON OF METHANE VIRIAL COEFFICIENTS 

-B(T), cm3/gm. mole 

T OF 

77 

60 

40 

32 

20 

per cent methane 

Douslin (16) 

42.82 

46,50 

51.24 

53.35 

56.65 

99.994 

This Investigation 

41.14 

44,,64 

49.32 

54.94 

99.0 
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From the composition analysis (Appendix G) the chief impurity in the 

methane sample is seen to be nitrogen (0.6%) with lesser amounts of the 

impurities carbon dioxide, ethane, and propane. 

In principle the effect of impurities is described by Equation 111=10~ 

given as 

N N 
B (T) • 
m r r 

i j 
(111=10) 

For the 99.0% methane sample only the coefficients involving interactions 

with methane (methane-nitrogen, methane-carbon dioxide, methane-ethane~ 

and methane-propane) need be considered, the sum of all other terms being 

less than the total correcti.on by at least two orders of magnitude. 

All of.the above coefficients were available from the literature 

with the exception of the methane-nitrogen coefficients. These 

coefficients were evaluated by the method of Prausnitz (56 9 57) discussed 

previously. A sample calculation is given in Appendix M. 

Using Equation III-10 and the above interaction coefficients the 

composition corrections to the 99.0% methane coefficients (Table VI) 

were evaluated, The calculation produced a negligible correction to 

the coefficient at each temperature level. As an example 9 the total 

correction at 77°F was +0.13 cm3/gm mole. In this case the correction 

is of the incorrect sign; to explain the difference between the 

experimental value and Douslin's value (at 77°F), a total correction 

of -1.68 cm3gm mole would be required. It was generally concluded 

that the difference between experimental (99.0%) coefficients and. 

Douslin's coefficients cannot be explained by Equation III-10. 
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From the above comparisons the experimental cqefficients are con~ 

sistently higher (algebraically) than Douslin's values by an average 

3 of approximately 1,8 cm /gm mole, Considering the accuracy of Douslin's 

values, the e~perimental coefficients are estimated to be accurate to 
'' .. '' 3 

approximately 1,5 cm /gm mole, 

For the calculational analysis of the virial coefficient data 

(Section B) the pure component virial coefficients :a11 (methane) and 

B22 (ethylene) are combined empirically to obtain estimates of the 

methane-ethylene interaction coefficient B12 • In order to make reli= 

able. tests of these empirical rules it was desired to avoid intro-

ducing any uncertainty due to differences in thepure component 

coefficients, Accordingly, the virial coefficient data of Douslin 

was used to represent the pure methane, both for second and third 

virial coeffici~nts, 

The ethylene virial coefficients were also determined by the slope= 

intercept method, The critical temperature of ethylene is 49.82°F (69); 

thus it was seen (Table IV) that a considerable portion of the low 

temperature ethylene data (at 20 and 40°F) consists of points in the 

two-phase region. At these sub-critical temperatures the slope-

intercept procedure proved unsatisfactory, and the virial coefficients 

could not be determined, A plot of the function (Z - l)V versus 

1/V exhibits pronounced curvature through the two-phase region, making 

extrapolation to the origin impossible. 

As the 77 and 60°F isotherms lie close to the critical isotherm, 

these points also exhibit a certain degree of curvatureo This is 

to be expected. It was possible, however, to determine the virial 
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coeff.:f.cients at these temperatures by the slope-intercept method. 

The values at 77 and 60°F are shown in Table VII, compared with the 

results of Michels (39)., As with Douslin's methane data the only exact 

comparison between these two sets of data is at 77°F. Michels' value 

at 60°F was determined graphically, by interpolation of the data. 

The error introduced by this procedure is less than 0.1 cm3/gm mole. 

As was the case with the methane data the values from this investigation 

are higher (algebraically) than the literature values. From these 

comparisons the ethylene coefficients are estimated to be accurate to 

approximately 1.4 cm3/gm mole, 

TABLE VII 

COMPARISON OF ETHYLENE VIRIAL COEFFICIENTS 

-B(T), cm3/gm mole 

77 

60 

Michels (39) 

140,33 

149.95 

This Investiga~!.2..~ 

139.0 

148.4 

As stated above, the virial coefficients at 40 and 20°F could not 

be satisfactorily determined from the isochoric data. For this reason the 

results of Michels were used at these temperatures. For the calculational 

analysis of the data (Section B) it was decided to also use the values 

of Michels at 77 and 60°F, in order to preserve all possible internal 

consistency of the data. 



The second virial coefficients for the four intermediate mixtures 

were determined by the elope-intercept procedure. The impurit~es in 

the int.ermediate mixture, are all hydrocarbons that are similar in 

characteristics to the methane and ethylene. The largest impurity is 

the 0,41 propane that is present in the 78.81 methane/20.7% ethylene . ' 

mixture. The correction for the impurities was made using Equation 

III-10. For this correction the required interaction coefficients 

are available in the literature, with the exception of the ethylene­

ethane and ethylene-propane coefficients. These coefficients were 

estimated from the method of Prausnitz; the total correction ranges 

from +o,69 to +1,70 cm3/am mole. The resultant coefficients are 

shown in Tables VIII and IX• both before and after making the com-

position corrections, 
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The second virial coefficients from Table IX (corrected for impur­

ities) are illustrated graphically in Figures 6 and 7. In Figure 6 

the virial coefficients are plotted versus temperature at constant 

composition; in Figure 7 the coefficients are plotted versus compost-

tion at constant temperature, 

Third Virial Coefficients 

Leiden type third virial coefficients were determined, using 

the slope-intercept technique (Equation III-5). The derivation of 

third virial coefficients is similar to that of second virial coeffi;.. 

cients in that the initial estimate of the third coefficient is 

further improved via deriving fourth virial coefficients, and adjusting . ' 

thirds to obtain reasonable fourths. In each case slightly different 
' ' J ' 

.values of. C(T) (in s'teps of ±() 1 005 ft6 /lb mole 2, or approximately 



TABJ,E VIII 

METHANE-ETHYLENE SECOND VIRIAL COEFFICIENTS, UNCORRECTED FOR COMPOSITION 

per cent methan~ 100.o!' 78.a!' 57.~/ 38.t).I 1s.,.3.'~-- .~J!.ol' 
3 -B I cm /gm mole m -

I 
T °F a.....:.. 

I 77 42.82 54.81 71.36 90.71 114.06 140.33 

60 I 46.50 58.87 76.47 97.20 121~61 149.95 

40 I 51.24 64.61 84.03 106.38 133.22 162.58 

20 I 56.65 71.54 93.08 117.43 145e52 175.95 

1.1 Douslin (16). 

l.l This investigation. 

11 Michels (39)p ethyleneo 

I-' 
0 
00 



TABLE IX 

METHANE-ETHYLENE SECOND VIRIAL COEFFICIENTS, CORRECTED FOR COMPOSITION 

ger cent methane 100.o!-' 79.?)/ 57.,.Y 38.# 1s,,l./ 
3 -Bm' cm /gm mole 

I 
T °F ~ 

77 42.82 53.44 70.17 90.02 114.06 

60 46.50 57.41 75.19 96.45 121,61 

40 51.24 63.03 82.65 105.57 133.22 

20 I 56.65 69.84 91.58 116.56 145.52 

1/ Douslin (16). 

l:l This investigation. 

1./ Michels (39)~ ethylene. 

o.ol.l 

140.33 

149.95 

162.58 

175.95 

I-' 
0 

'° 
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2 6 2 0.2 >e 10 cm /p mole )were aaaumed at each temperature, using the 

o~iginal value as an initial eatimate. 

Due to conaider~ble acatter of the values of the term 

[(Z - l)v2 • B(T)V - C(T)JV in the plot versus 1/V it was difficult 

to determine reliable value• of thefourtb virial coefficients. By 

proper choice of the third virial coefficient, the values of the 

f.uriction [ (Z - ·l)v2 - B(T) V - C(T) ]V were determined which exhibited 
' . ·... ' . .. . 
the most syatematic variation with both t~mperature and compositio~. 

Although this method was valuable in improving the third virial 

.coefficients, the reaulting f~urtb,virial coefficients exhibited 

CO?Siderable scatter. Thus the fourth virial coefficients are not 

reported, 

The maximum adju1tme11t to the third virial coefficients by this 

procedure was 2.0 ,c 102 cm6/gm mole2• This value corresponds to 

roughly 2.0 to a.oz, depending on temperature and composition. The 

absolute accuracies of the third virial coefficients are difficult to 

evaluate, as theae coefficients are quite sensitive to errors in both 

compressibility factor data and second virial coefficients. 
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In principle, correction for impurities in the third virial 

coefficients can be made by use of Equation III-11. This correction was 

not made in this case, as a sufficiently reliable means is not avail-

able for estimating the interaction third virial coefficients. 

Values of the third ~ria~ coefficie~t are presented in Table x. 
. . 6 2 

The values were determined in units of ft /~b mole, and were then 

converted. to cm6/gm mole2 for analysis. 



TABLE X 

METHANE-ETHYLENE THIRD VIRIAL COEFFICIENTS 

per cent methane 100.o!' 
~~~~ 

78.a!' 57 .iJ=.I 38.t).I 

c., cm6 /gra mole2 x 10-2 

I 
T °F :.a......:.. 

77 23.70 28.2 34.7 45.S 

60 I 24.60 29.2 36.6 48.S 

40 I 25.60 30.9 40.0 S3.3 

I 20 26.85 33.6 44.5 59.0 

ll Douslin (16) o 

1:/ This investigationo 

l/ Michels (39) 9 ethyleneo 

18.,/:./ 

60.0 

62.8 

68.3 

74.6 

o.o1' 

76.43 

80.S 

85.9 

91.7 

I-' 
I-' 
\.N 
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B. Theoretical and Calculational Analysis of Data 

In this section the data is treated from four separate viewpoints. 

These· are: 

1) the theoretical determination of B12 from Equation III-12, 

2).· empirical.methods of estimating B12 , 

3) comparisons of compressibility factors versus equations of state, 

and 4) comparisons of virial coefficients with equations of state. The 

viewpoints are discussed in this order. 

Theoretical Determination of B12 

As discussed in Chapter III the virial coefficients for a mixture 

are expressed in terms of the pure component coefficients and inter-

action coefficients by Equation III-12. As mixture coefficients and pure 

component coefficients are known, the interaction coefficients may be 

calculated directly. 

For these calculations the virial coefficient data of Table IX was 

used. Equation III-12 was rearranged to the form 

(VI-1) 

and values. of a12 were calculated at each temperature for each composi­

tion. The results are given in Table XI. 

Theoreti~ally B12 is a function of temperature only. In Table XI 

the B12 are seen to vary slightly with composition. This v~riation is 
i 



TABLE XI 

METHANE-ETHYLENE INTERACTION SECOND VIRIAL COEFFICIENTS 

units cm3 /gm mole 

x1, mole 
fraction 
11l8thane 

x2, mole B B 1( B ?:I· B ll B difference 
fraction m 12 12 m m · 
ethylene (experimental) ~~~~lms) (calculated) · · (calc - exp) 

77°F 1.000 0.000 -42.82 --

60°F 

0.792 
0.574 
0.385 
0.184 
0.000 

1.000 
0.792 
0.574 
0.385 
0.184 
0.000 

0.208 
0.426 
o.615 
0.816 
1.000 

0.000 
0.208 
o.426 
00615 
0.,816 
1.000 

,;.53.44 -62.25 
-70.17 -62.25 
-90.02 -64.61 

-114.06 -63.84 
-140.33 -
-46.50 --
-57.41 -66.03 
-75.19 -66.78 
-96.45 -69.35 

-121.61 -67.24 
-149.95 

ll Calculations based on Equation VI-1 and data of Table IX. 

ll Least mean squares value. 

l/ From Equation III-12, using B12 (lms). 

-63.38 -53.81 -0 .. 37 
-10.s1 . -0.40 
-89.43 o.s, 

-113.92 0.14 

-
-67.59 -57.92 -0.Sl 

-75.59 -0.40 
-95.62 0.83 

-121.12 -0.11 

I-' 
I-' 
\Jl . 



TABLE XI (CONTINUED) 

units cm3/gm mole 

x1 , mole 
fraction 
methane 

40°F 1.000 

20°F 

o.792 
0.574 
0.385 
0.184 
0,000 

1.000 
0.792 
0.574 
0,385 
0,184 
0.000 

x2 , mole d·f 
f ti B B B12 B B 1 ference rac on m 12 m m 
ethylene (experimental} (lms) (calculated) (calc - exp) 

0.000 -51.24 
0.208 -63.03 -72.40 -75.28 
0.426 -82.65 -74.15 
o.615 -105.57 -77.04 
0,816 -133.22 -77.36 
1.000 -162.58 

0.000 -56.65 
0.208 -69,84 -81.02 -85.31 
0.426 -91.S8 -83.81 
0.615 -116.56 -87.88 
0,816 -145.52 -88.06 
1.000 -175.95 

-63.98 -0.95 
-83.20 -0.55 

-104.73 0.84 
-132.60 0.62 

-71.25 -1.41 
-92.32 -0.74 

-115.35 1.21 
-144.69 0.83 

standard deviation= 

0.74 cm3/gm mole 

1--' 
1--' 
CJ'\ 



not unexpected, however, and is relatively small for interaction 

coefficients determined in this manner. 

Values of B12 were also calculated from Equation III-12, using 

the method of least squares. The resulting values are also shown in 

Table XI. Using these least squares values of B12 , values of Bm were 

recalculated from Equation III-12. The values so calculated are seen 

to agree reasonably well with the experimental values of B • for all m 

temperatures and compositions, The agreement between the experimental 

data and Equation III-12 is indicative of a fairly high degree of 

internal consistency in the data. 

Empirical Estimations of B12 

Several methods were evaluated for estimating s12 from the pure 

component B11 and s22 • The different empirical methods were discussed 

in Chapter III; they will be briefly sunnnarized belowo 
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linear: Bl2 
1 = 2(Bll + B22) (III-19) 

square root: 812 = {BllB22 (III-21) 

3 
Lorentz: Bl2 = [(Bll )1/3 + (B )1/3) /S (III-23) 22 

2 
linear square root: Bl2 = [(Bll )1/2 + (B )1/2} 14 (III-24) 22 

The results of the empirical estimations are shown in Tables XII 

through XV. The B12 values so estimated were used in Equation III-12 

to recalculate values of B, These B values were then compared versus 
m m 

the experimental values of B. Using this procedure the best fit to m 

the experimental values was provided by the square root combining rule; 

this rule gave a standard deviation of 6.2 cm3/gm mole. In order of 



77°F 

60°F 

TARLE XII 

LINEAR COMBINING RULE ESTIMATION OF B12 

3 units cm /gm mole 

x1 , mole 
fraction 
methane 

1.000 
0.792 
0.574 
0.385 

. o.184 
0.000 

1.000 
0,792 
0.574 
0.385 
o.184 
0.000 

1/ Table IX. 

l/ Equation TTT-19A 
3 
- 1 Equation III-120 

x2 mole 1/ 2/ 3/ 
' B - · B - B - B difference fraction m 12 m m 

ethylene · ~xperimental) {linear) {calculated) (calc - exp) 

0.000 
0.208 
0.426 
0.615 
0.816 
1.000 

0,000 
0.208 
0.406 
0.615 
0.816 
1.000 

-42.82 
-53.44 
-70.17 
-90.02 

-114.06 
-140.33 

-46.50 
-57.41 
-75019 
-96.45 

-121.61 
-149095 

-91.57 

--

-98,23 

-63.10 -9.66 
-84.36 -14.19 

-102.79 -12,77 
-122.39 -8.33 

. --

-68.02 -10·.61 
-90.57 -15.38· 

-110.12 -13.67 
-130.92 -9.31 

I-' 
I-' 
00 



TABLE XII (CONTINUED) 

40°F 1.000 0.000 -51.24 
0.792 0.208 -63.03 
0.574 o.426 -82.65 
0.385 0.615 -105.57 
0.184 0.816 -133.22 
0.000 1.000 -162.58 

20°F 1.000 0.000 -56.65 
0.792 0.208 -69.84 
0,574 0.426 -91.58 
0.385 o.615 -116.56 
0.184 0.816 -145.52 
0.000 1.000 -175.95 

-106.91 

-116.30 

-74.40 -11.37 
-98.67 -16.02 

-119. 71 -14.14 
-142.09 -8.87 

-81.46 -11.37 
-107.47 -15.89 
-130,02 -13.46 
-154.00 -8.48 

standard deviation= 

3 12.4 cm /gm mole 

I-' 
I-' 
\.0 



77°F 

60°F 

TABLE XIII 

SQUARE ROOT COMBINING RULE ESTIMATION OF B12 

3 units cm /gm mole 

x1, mole 
fraction 
methane 

1/ Table IX. 

1,000 
0.792 
0,574 
0,385 
0,184 
0,000 

1,000 
0,792 
0.574 
0.385 
o.184 
0.000 

1/ Equation III-21. 

ll Equation III-12. 

x2, m?le B 1/ B 1/ B ll B difference 
fraction m 12 m m 
ethylene (experimental) (square root) (calculated) (calc - exp) 

0,000 
0,208 
0,426 
0,615 
0.816 
1.000 

0.000 
0.208 
0,426 
o.615 
0.816 
1.000 

-42,82 
-53,44 
-70.17 
-90,02 

-114,06 
-140,33 

-46.50 
-57.41 
-75.19 
-96.45 

-121.61 
-149,95 

-77 ,52 -58.47 -5,03 
-77 ,48 -7.31 
-96.13 -6,ll 

-118.17 -4.11 

-83.50 -63,17 -5.76 
-83.37 -8,18 

-103.15 -6.70 
-126.49 -4.88 

f--' 
!\) 

0 



TABLE XIII (CONTINUED) 

40°F 1.000 OoOOO -51.24 
0.792 Oa208 -63.03 -91.27 
o.574 O 426 -82.65 
0.385 0.615 -116.56 
o.184 0.816 -133.22 
0.000 1.000 -162.58 

20°F 1,000 0.000 -56.56 
0.792 0.208 -69.84 -99.84 
0.574 0 426 "."'91.58 
0.385 0.615 -116 .56 
o.1s4 0.816 -145.52 
0.000 1.000 -175.95 

-69.25 -6.22 
-91.02 -8.37 

-112. 31 -6.74 
-137.40 -4.18 

-76.04 -6.20 
-99.42 -7.84 

-122.22 -5.66 
-149.06 -3.54 

standard deviation= 

3 6.2 cm /gm mole 

f-l 
I\) 
f-l 



77°F 

60°F 

TABLE XIV 

LORENTZ COMBINING RULE ESTIMATION OF B12 

units cm3/gm mole 

x1, mole 
fraction 
methane 

1,000 
0,792 
0.574 
0,385 
o.184 
0,000 

1.000 
o.792 
0,574 
0,385 
0,184 
0.000 

1/ Table IX. 

1:.,/ Equation III-23. 

ll Equation III-12. 

x2, mole B !/ B 1:./ B 1/ B difference 
fraction m 12 m m 
ethylene (experimental) (Lorentz) (calculated) (calc - exp) 

0.000 
0.208 
0,426 
0,615 
0.816 
1.000 

0.000 
0.208 
0,426 
Oo615 
0,816 
1.000 

-42.82 
-53.44 
-70.17 
-90.02 

-114.06 
-140,33 

-46.50 
-57.41 
-75.19 
-96.45 

-121.61 
-149.95 

-82.17 

-88.38 

-60,00 -6.56 
-79.76 -9.59 
-98,34 -8.32 

-119,56 -5.50 

-64.77 -7.36 
-85. 75 -10,56 

-105.46 -9.01 
-127.96 -6.35 

I-' 
f\) 
f\) 



TABLE XIV (-CONTINUED) 

40°F 1,000 0.000 -51.24 
o.792 0,208 -63,03 -96.45 
0,574 0,426 -82,65 
0,385 0.615 -105.57 
0,184 0,816 -133.22 
0.000 1,000 -162.58 --

20°F 1,000 0.000 -56,65 --
0.792 0.208 -69,84 -105,29 
0,574 0.426 -91,58 
0,385 0,615 -116.56 
0,184 0,816 -145,52 
0.000 1.000 -175.95 

-70,95 -7.92 
-93,56 -11.00 

-114, 76 -9,19 
-138,95 -5.73 -- ... -

-77 ,84 -8,00 
-102,09 -10.51 
-124,81 -8.25 
-150,69 -5.17 

standard deviation• 

8,3 cm3/gm mole 

I-' 
('J 



77°F 

60°F 

TABLE XV 

LINEAR SQUARE ROOT ESTIMATION OF B12 

units cm3/gm mole 

x1, mole 
fraction 
methane 

1.000 
o.792 
o.574 
o.385 
o.1s4 
0.000 

1,000 
0.792 
0,574 
0.385 
0.184 
0.000 

1/ Table IX. 

1:./ Equation III-24. 
3/ - Equation III-12. 

x2 mole 1/ 2/ . 3/ ' B - B - (Linear B - B difference fraction m 12 . · m m 
ethylene (experimental) square root) (calculated) ·(calc - exp) 

0.000 
0.208 
0,426 
0.615 
0.816 
1.000 

0.000 
0.208 
0.426 
0.61s 
0,816 
1.000 

-42,82 
-53.44 -84.55 
-70,.17 
-90,02 

-114.06 
-140,33 

-46,50 
-57.41 -90.86 
-75.19 
-96.45 

-121.61 
-149.95 

-60,79 -7.35 
-80,92 -10.75 
-99,46 -9.44 

-120.28 -6.22 

-65.59 -8.18 
-86,97 -11. 78 

-106,64 -10.19 
-128.70 -6.22 

f-' 
I\) 

+ 



TABLE XV (CONTINUED) 

40°F 1.000 0.000 -51.24 
o. 792 0.208 -63.03 
o.574 o.426 -82.65 
0.385 0,615 -105.57 
0.184 0.816 -133,22 
0.000 1.000 -162.58 

20°F 1.000 0.000 -56.65 
o.792 0.208 -69.84 
0.574 0~426 -91.58 
0.385 0.615 -116.56 
0,184 0.816 ... 145,52 
0.000 1.000 -175,95 

-99.09 

-.-
-108.07 

-71.82 -8.79 
-94.85 -12.20 

.-116.01 -10.44 
~139.75 -6.53 

-78. 75 -8.91 
-103,45 -11.87 
-126.12 -9.56 
-151,53 -6,01 

standard deviation= 

3 9.3 cm /gm mole 

I-' 
!\) 
\J1 



126 

increasing standard deviations the remaining three methods are arranged 

3 · 3 as Lorentz (8,3 cm /gm mole), linear square root (9.3 cm /gm mole), and 

linear (12.4 cm3/gm mole) •. The poor fit given by the linear method is not 

surprising, as this method represents an oversimplification. 

Comparisons of Compressibility Factors Versus Equations of State 

The experimental compressibility factors (Table IV) were compared 

versus the BWR equation and the Edmister generalized BWR equation. The 

results are shown in Table XVI. 

For the BWR equation the constants, in English units, as tabulated 

by Benedict et al (5) were used for the hydrocarbons. For the 99.0% 

methane sample the constants for carbon dioxide as tabulated by Eakin 

and Ellington (18) were used, For the mixtures the constant B was 
0 
m 

determined by the linear combining rule, For use in the generalized 

BWR equation the accentric factor for ethylene was required. This value 

was determined from the definition (Equation I~I-14), using the vapor 

pressure data of York and White (69). The resulting value was w = +0.087. 

From Table XVI it is seen that both of the equations generally 

predict compressibility factors that are lower than the experimental 

values. For the 99,0% methane sample and the four intermediate mixtures 

the generalized BWR equation provides a slightly better fit than does 

the original BWR equation, For the ethylene sample the original BWR 

equation provides the better fit, Considering all of the data points 

together, the standard deviat.ions from the experimental compressibility 

factors are given as 0,015 for the generalized BWR equation and 0.022 

for the original equation, 



TABLE XVI 

COMPARISONS OF COMPRESSIBILITY FACTORS VERSUS EQUATIONS OF STATE 

_99, 0 per c~ metha,!:_e_ 

1/V , l/ 2 Z difference 3 Z difference 
.lb molt:s/ft3_,_,,~--~l£Xp)- . __ u= ,_ Z ill}:@1:/ =~£tl!::~) · Z(GEN BWR);_/ (calc-exp) 

77,00°F 0049513 0,8230 0,8143 -0.0087 0.8176 -0.0054 
o.44392 0.8241 0.8176 -0.0065 0.8222 -0.0019 
0.37170 0.8352 0.8288 -0.0064 0.8347 -0.0005 
0,30996 0.8523 0,8443 -0.0080 0.8506 -0.0017 
0.24492 0,8742 0.8663 -0.0079 0.8725 -0.0017 
0.17722 0,9023 0,8954 -0.0069 0.9007 -0.0016 
0.12027 0,9295 0.9245 -0.0050 0.9287 -0.0008 
0.05281 0,9672 0. 9645 -0.0027 0.9666 -0,0006 

60,00°F 0.49270 0,8002 0.7894 -0.0108 0. 7928 -0.0074 
0.43995 0,8044 0,7954 -0.0089 0.8002 -0.0042 
0,36931 0,8183 0,8101 -0,0082 0,8161 -0.0022 
0,30819 0.8379 0.8285 -0.0094 0.8350 -0,0029 
0.24370 0.8631 0,8537 -0.0094 0.8600 -0.0031 
0.17619 0,8955 0.8862 -0,0093 0.8917 -0,0038 
o.11976 0 ., 9241 0,9181 -0.0060 0.9224 -0.0017 
0.05261 0.9653 0.9617 -0.0036 0. 9638 -0.0015 

1/ Table IV, 

1./ Equation III-26. 

1/ Equation III-32. I-' 
i\) 
--.J 



TABLE XVI (CONTINUED) 

40.00°F 0.49453 0.7695 o. 7575 -0.0120 
0,44251 0.1763 0,7663 -0.0100 
0,36986 0,7945 0.7854 -0.0091 
0~30918 0.8176 0.8073 -0,0103 
0.24440 o.8465 0,8366 -o.·0099 
o.17674 0,8832 0.8735 -0.0097 
0.12010 0,9156 0.9094 -0.0062 
0,05277 0.9616 0.9577 -0.0039 

20.00°F 0,49695 0.7337 0.7226 -0.0111 
0.44359 0,7440 0,7346 -0.0094 
0,37132 0,7663 0.7580 -0.0083 
0.30999 o. 7934 0,7840 -0.0094 
0.24522 0,8267 0,8176 -0.0091 
0,17735 0,8681 0,8594 -0.0087 
0,12041 0,9049 098996 -0.0053 
0,05289 0.9560 0.9534 -0.0026 

standard deviations o.ooa 

0,7610 
0.7712 
0.7916 
0,8140 
0,8431 
0,8792 
0,9138 
0,9600 

o. 7263 
0,7399 
o. 7646 
o. 7911 
0,8245 
0,8654 
0,9043 
0,9557 

-0.0085 
-0.0051 
-0.0029 
-0.0036 
-0.0034 
-0.0040 
-0.0018 
-0.0016 

-0.0074 
-O.Q041 
-0.0017 
-0,0023 
-0.0022 
-0.0027 
-0.0006 
-0.0003 -

0.094 

I-' 
!\) 
00 



TABLE XVI (CONTINUED) 

78.8 per cent methane 

1/V Z difference Z difference 
lb moles/ft3 Z(exp) Z(BWR) (calc-exp) · Z{GEN BWR) (calc-exp) 

77.00°F 0.53684 0.7492 0.7317 -0.0175 0.7328 -0,0164 
0.46276 0.7538 0.7383 -0.0156 0.7427 -0.0111 
0.39769 0.7678 0.7524 -0.0154 o. 7588 -0.0090 
0.32897 0.7907 o. 7757 -0.0150 0.7832 -0.0075 
0.26232 0.8196 0.8062 -0.0134 0.8139 -0,0057 
0.19684 o.8552 o.8437 -0.0115 0.8508 -0.0045 
o.13469 0.8949 0.886Q. -0.0089 0.8917 -0.0032 
0.05820 . 0.9513 o.9470 -0.0043 0.9499 -0.0014 

60.00°F 0.53342 o. 7194 0.6995 -0~0199 0,7013 -0.0181 
o.46017 0.7282 o. 7102 -0.0180 o. 7152 -0.0130 
0.39508 0.7458 o. 7281 -0.0177 0.7351 -0.0107 
o.32706 o. 7725 0.7551 -0.0174 o. 7632 -0.0093 
0.26087 0.8047 0.7895 -0.0153 0.7976 -0.0071 
0.19598 0.8440 0.8307 -0.0133 o.8381 -0.0059 
0.13409 0.8873 o.ano -0.0103 0.8829 -0.0044 
0.05802 0.9486 0.9430 -0.0006 0.9459 -0.0027 

I-' 
I\) 
'-.0 



TABLE XVI (CONTINUED) 

40.00°F 0.53637 0.6804 0.6583 -0.0221 
0.46170 o.6937 o.6735 -0.0202 
o.39657 o. 7154 0.6955 -0.0199 
0.32829 0.7464 o. 7272 -0.0192 
0.26181 0.7833 0.7664 -0.0169 
0.19665 0.8273 0.8128 -0.0145 
0.13455 o.8753 0.8643 -0.0110 
o.oss16 0.9431 0.9373 -0.0058 

20.00°F o.53826 0.6358 0.6134 -0.0224 
0.46365 o.6545 o.6333 -0.0212 
0.39792 0.6805 0.6598 -0.0201 
0.32945 o. 7160 0.6964 -0.0197 
o.26317 o. 7577 0.7405 -0.0172 
0.19762 0.8072 0.7926 -0.0146 
0.13499 0.8609 0.8502 -0.0107 
0.05833 0.9358 0.9310 -0.0048 

standard deviations: 0.016 

0.6608 
0.6795 
0,7033 
0,7360 
0.7752 
0.8207 
0.8706 
0.9405 

0.6171 
0.640.4 
0.6687 
0.7061 
0,7501 
0.8012 
0.8570 
0.9344 

-0,0196 
-0.0143 
-0.0121 
-0.0105 
-0.0081 
-0.0066 
-:0.0047 
-0.0026 

-0.0187 
-0.0143 
-0,0118 
-0.0099 
-0,0076 
-0.0060 
-0.0039 
-0.0014 

0.010 

I-' 
\.N 
0 



57.2 per cent methane 

1/V 
lb moleslft3 

77 .00°F 0.58930 
0.51363 
o.44067 
0.38040 
0.28564 
0.21592 
0.13615 
0.06518 

60.00°F 0.59175 
o.51635 
0.44283 
0.38359 
0.28639 
0.21679 
0.13647 
0.06548 

TABLE XVI (CONTINUED) 

Z difference Z difference 
Z(exo) Z(BWR) (calc-exp) Z(GEN BWR) (calc-exp) 

o.6564 0.6346 -000218 0.6320 -0.0244 
0.6602 0.6385 -0.0218 0.6415 -0.0187 
o.6746 0.6546 -0.0200 o.6613 -0.0133 
o.6968 o.6768 -0.0200 o.6853 -0.0115 
o. 7471 0.7279 -0.0192 o. 7375 -0.0097 
0.7949 o. 7780 -0.0169 0.7870 -0.0079 
0.8609 0.8484 -0.0125 0.8553 -0.0056 
0,9292 009225 -0.0067 0.9263 -0.0029 

o.6186 0.5935 -0.0251 0.5918 -0.0268 
0.6268 0.6012 -0.0256 0.6051 -0.0217 
o.6449 0.6212 -0.0237 o.6288 -0.0161 
0.6698 o.6461 -0.0237 o.6555 -0.0143 
o. 7268 0.7042 -0.0226 o. 7146 -0.0122 
0. 7788 0.7590 -0.0198 0.7686 -0.·0102 
0.8504 0,8360 -0.0144 0,.8433 -0.0071 
0.9243 0.9161 -0.0082 0.9202 -0.0041 

I-' 
\.N 
I-' 



TABLE XVI (CONTINUED) 

40.00°F 0.59563 0.5690 0.5412 -0.0278 
0.51901 o.5817 0.5538 -0.0279 
0.44509 0.6057 0.5786 -0.0271 
0.38568 0.6333 0.6075 -0.0258 
0.28849 0.6977 0.6727 -0.0250 
0.21777 0.7554 0.7344 -0.0210 
0.13701 o.8348 0.8196 -0.0152 
0.06565 0.9161 0.9080 -0.0081 

20.00°F 0.60078 0.5124 0.4841 -0.0283 
0.52300 0.5305 0.5017 -0.0288 
0.44978 0.5587 0.5307 -0.0279 
0.38969 0.5913 0.5638 -0.0275 . 
0.28920 0.6642 0.6389 -0.0253 
0.21870 0.7282 0.1010 -0.0212 
o.13744 0.8164 0.8014 -0.0150 
0.06586 0.9057 0.8988 -0.0069 

standard deviations: 0.022 

0.5409 
0.5593 
0.5877 
0.6184 
0.6843 
0.7450 
0,8276 
o.9124 

o.4857 
OS092 
0.5418 
0.5765 
0.6520 
0.7188 
0.8102 
0;9036 

-0.0281 
-0.0224 
-0.0180 
-0.0149 
-0.0134 
-0.0104 
-0.0072 
-0.0037 

-0.0267 
.-0.0213 
-0.0169 
-0.0148 
-0.0122 
-0.0094 
-0.0062 
-0.0021 

0.01s 

I-' 
\J.J 
I\) 



TABLE XVI (CONTINUED) 

38.4 per cent methane 

1/~ 3 Z difference Z diffe~ence 
lb 1DOles/ft Z{exp) Z(BWR) (calc-exp) Z(GEN BWR) (calc-exp) 

77,00°F o.65536 Q.5677 0,5461 -0.0216 0.5374 -0.0304 
0,60903 0,5608 0.5408 -0.0200 0,5379 -0.0229 
o.44813 0,5871 0,5686 -0.0185 0,,5780 -0.0092 
o.42964 0,5947 0.5760 -0.0187 o.5861 -0.0086 
0.32089 0.6557 o.6373 -0.0185 0,6494. -0.0063 
0.24739 o. 7121 0.6962 -0.0159 0.1019 -0 .. 0042 
0·.16118 o.7961 0.7837 -0.0124 o. 7930 -0~0031 
0~08046 0,8907 0,8835 -0.0012 0.8889 -0.0018 

60,00°F 0,658~3 0.5204 o.4957 -0.0247 o.4882 -0,0322 
0~61398 0.5165 o.4932 -0.0233 o.4915 -0.0250 
o.4soos 0.5523 0,5302 -0.0221 0,5410 -0.0113 
o.43291 o.5605 o.5380 -0.0225 0,5495 -0.0110 
0.32265 0.6279 0,6064 -0.0216 0,6198 -0.0081 
0.24860 0,6899 0.6708 -0.0190 0.6836 -0.0063 
o.16l80 0.7806 0,7661 -0.0145 0,7762 -0.0044 
0.08080 0,8828 0,8740 -0.0088 0.8799 -0.0029 

~ 
\JJ 



TABLE XVI (CONTINUED) 

40.00°F o.66607 0.4583 0.4322 -0.0261 
0.61797 o.4584 0,4329 -0.0255 
o.45471 o.5048 0.4802 -0.0246 
o.43612 0.5145 0.4897 -0,0248 
0.32509 0.5902 0.5663 -0.0239 
0.24984 0.6589 0.6383 -0.0206 
0.16261 o. 7589 0.7431 -0.0158 
0.08100 0,8706 - o. 8620 -0.0086 

20.00°F 0,67035 0.3895 0,3628 -0.0267 
0,62664 0.3927 0.3668 -0.0259 
0045814 0.4516 0.4260 -0.0256 
0.43957 0.4624 0.4368 -0.0256 
0.32653 o.5472 o.s229 ... 0.0243 
0.25146 o.6226 0.6016 -0.0210 
0,16315 0.7330 0.7177 -0.0153 
0,08132 o.ssss 0.8483 -0.0075 

standard deviations: 0.021 

o.4261 
0.4332 
0.4931 
0.5034 
o.ss16 
o.6526 
0,7542 
o.8685 

0.3594 
o. 3693 
0.4416 
0.4530 
o.s4os 
0,6178 
0.7301 
o.sss4 

-0.0322 
-0,0251 
-0.0117 
-0.0111 
-0.0086 
-0.0063 
-0,0047 
-0.0021 

-0.0301 
-0.0234 
-0.0010 
-0.0094 
-0.0067 
-0.0048 
-0.0029 

....:.Q.:0004 

0.015 

I-' 
\)',I 

+-



TABLE XVI (CONTINUED) 

1824 per cent.methane 

1/V 3 Z difference Z difference 
lb moles/ft Z(exp) Z(BWR) (calc-exp} Z(BEN BWR) (calc-exp) 

77.00°F o. 85379 0.4648 0.5795 0.1147 0.5229 o.os81 
o.75394 0.4363 004709 0.0346 o.4456 0.0093 
o.60656 o.4401 . 0.4317 -0.0084 0.4336 -0.0065 
0.46976 0.4757 0.4637 -0.0120 0.4772 0,,0015 
0.38466 0.5210 0.5096 -0.0114 0.525'8 0.0048 
0.33317 o.5588 0.5477 -0.0111 0.5641 0.0053 
0.18630 0.1120 0.7023 -0.0097 0.7150 0.0030 
0.,09366 0.8422 0._8361 -0.0061 o.8436 0.0014 

60 0 00°F 0.85773 0.4038 0.5061 0.1023 0.4496 0.0458 
o.76244 0.3810 0.4090 o.02so 0.3836 0.0026 
0.61004 0.3916 .0.3787 -0.0129 0.3824 -0.0092 
o.47573 0.4296 0.4175 -0.0121 0.4328 060032 
o.38874 0.4802 0.4685 -0.0117 0.4865 0.0063 
o.33936 o.51s1 0.5075 -0.0106 0~5257 0.0076 
0.18718 o.6910 o.6785 -0.0125 0.6925 0.0015 
0.09406 o. 8298 0.8231 -0.0067 0.8312 0.0014 

I-' 
\.N 
\Jl 



TABLE XVI (CONTINUED) 

40.00°F 0.86868 003277 0.4213 0.0935 0.3628 0.0351 
0.11030 0.,3098 0.3281 0.0183 0.3036 -0.0062 
o.61955 0.3259 0.3110 -0.0149 0.3167 -0.0092 
o.48195 003699 003590 -O.O;l.09 0.3171 0.0012 
0.39546 o.4246 0.4144 -0.0102 o.4351 0.0105 
0.33992 o.4694 0.4619 -0.0075 o.4827 0.0133 
o.1ss52 0.6586 · o.6472 -0.0114 0.6628 0.0042 
0.09439 0.8117 0.8063 -0.0054 0.8153 ·0.0036 

20.00°1 0.87992 0.2448 0.3262 o.os14 0.2662 0.0214 
o. 78530 0.2317 0.2422 0.0105 0.217~ -0,0147 
o.62358 0.2577 0.2385 -0.0192 0.2476 -0.0100 
o.48532 0.3088 • 0~2971 -0.0118 0.3187 0.0099 
o.39654 0.3637 0.3596 -0.0041 0.3837 0.0200 
0.34469 o.4030 0.4076 0.0046 0.4315 0.0285 
0.18902 0.6212 o.6134 -0.0078 0.6310 0.009s 
0.09478 0.7896 o .• 7872 -0,0024 0.7973 0.0077 

standard deviations: 0.037 0.017 

t: 
O'\ 



ethylene 

77.00°F 

60,00°F 

TABLE XVI (CONTINUED) 

1/V Z difference Z<difference 
lb moles/ft3 Z(exp) · Z{BWR) (calc-expl Z(GEN BWR) {calc-exp) 

0 .. 78063 0.3714 · 0.3773 0.0059 0 .. 3485 -0.0229 
0,67232 0.3252 0.3226 -0.0026 0.3208 -0.0044 
0.52402 0.3437 0,3435 -0.0002 0.3606 0,0169 
0,35540 0,4523 0.4468 -0.0055 o.4687 0,.0164 
0,21544 0.6071 o.60S3 -0.0018 0.6227 --O.OlS6 
o.1oi75 0.7931 0,7887 -0.0044 0.7984 0.0053 

0.78624 0.,2992 0.3033 0.0041 0.2150 -0.0242 
o.68294 0.2630 0.2591 -0.0039 0.2578 -0.0052 
0.53264 0.,2932 0.2889 -0.0043 0.3080 0,0148 
0.36120 o.4103 0.4010 -0.0093 0,4254 o.01so 
0.21803· 0.5746 0.5725 -0.0021 0.,5917 0.0111 
0.1031s o. 7776 0.1122 -0.0055 0.7828 0.,0051 

f-' 
\..N 
'3 



40.00°F 

20.00°F 

TABLE XVI (CONTINUED) 

0.80233 0.2118 0.2159 
o.69545 o.1846 0.1775 
o.ss1s9 0.2306 0.2156 
0.36803 0~3450 0.3425 
0.22040 9.5326 0.5309 
0.10359 0.7553 o.1so1 

0.81109 0.1257 0.1116. 
o.101ss o.14s2 0.0883 
0.5'5632 0.1842 0.1430 
o.37460 . 0.2742 . 0.27,86 
0.22135 0.4563 0.4868 
0.10399 0,7281 0.7264 

standard deviations: 

Total standard deviations (a~l compositions): 

0.0041 
-0.0011 
-0.,0150 
-0.0025 
-0.0011 
-0.0046 

-0.0141 
-0.0569 
-0.0412 

0.0044 
0.0305 

-0,0017 

0.011 

Z(BWR) 

0.022 

o.1sss 
0.1.112 
0.-2369 
0.3701 
0~5525 
0.7625 

0.0820 
0.0911 
0.1683 
0.3102 
0.5113 
0.7398 

-0.0263 
-0.0074 

0.0063 
o.02si 
0.0199 
0.0072 

-0.0437 
-o.0541 
-0.0159 

0.0360 
0.0549 

_0.0117 

0,024 

Z(GEN BWR) 

0.015 

I-' 
\J,J 
00 



Comparisons of Ezperi•ntal Second Vi.rial Coefficients with Equations 
of State 
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In Table XVII the experimental aeconcl virial coefficients are com­

p~r~d with the coefficient, from the BWll equation, the Edmister generalized 

form ot'· the BWll equation, ad the U. equation. 

For the original and the generalized forma of the BWR equation both 
,· 

linear and Lorentz combining rulea for B0 were used. For all equations 

the coefficient, were calculated in units of ft3/lb mole, and were then 
3 . . . 

converted to· cm / gm mole for anal71is. ~e tabulated e.xperimental 

coefficients correspond to those in Table IX, corrected.for impurities. 
' 

To make a direct comparison, therefore, the mixing rules for a two~, . ' 

component system were applied in all of the above equations. 

The Edmister ge~eralized form of the BWll equation is seen to provide 

a better.fit than the other equations teated. Usin• the linear combining 

rule for B0 , the standard deviation from the 24 experimental data points 

was 3.14 cm3/gm. mole. Using the original BWR equation the corresponding 

standard deviation was S,99 cm3/gm mole (linear B0 ), and for. the RK 

equation a val\18 of 7, 37 cm3 /gm mole1 resulted. 

The agreement of the generalized BWll equation is quite good, 

although the value of 3.14 cm3gm/mole is larger than the estimated 

error of the experimental virial coefficients (1,5 cm3/gm mole), Both 

for the generalized and original forms of the BWR equation the linear 

combination rule for B appears to be slightly better than the Lorentz 
. 0 

rule, The difference in standard deviations between the two combining 

rules is small, however (0,08 cm3,im mole for the general~zed form, and 

0.10 cm3/gm .,1e for the original form) and does not.represent a signi­

ficant improv,..-nt. 



TABLE XVII 

SECOND VIRIAL COEFFICIENTS FROM EQUATIONS OF STATE 

-B, cm3/gm mole 
m .. 

Bwal' Composition, BWR Generalizect!' Gener,alized (Linear (Lorentz per cent 
'.[~ hl,e_ri_menJ:al.!/ B!) '8 ) BWR BWB. ' !I 

methane 0 0 (Lineai- . B0) (Loreutz.B0 ) u. -
100.0 11.00 42.82 43.60 A/ 43.60 40.70 40.70 45.43 

(-0. 78) (-0. ~8) (+2.12) (+2.12) (-2.61) 

60.00 46.50 47.13 47.13 44.14 44,14 49.15 
(-0.63) (-0.63) (+2.36) (+2.36) (-2.65) 

40.00 51,24 51.69 · 51.69 48,59 48.59 53,93 
(-0.45) (-0~45) (+2.65) (+2.65) (-2.·69) 

20.00 56.65 56.76 56.76 53.52 53,52 59.21 
(-0.11) (-0.11) (+3.13) (+3.13) (-2.56) 

79.2 77.00 53.44 59,02 59,12 55,62 55.74 61.71 
(-5.58) (-5.68) (-2,18) (-2.30) (-8.27) 

60 •. 00 57.41 63,63 63.72 60,08 60.20 66,34 
(-6.22) (--6. 31) (-2.67) (-.2. 79) (-8.93) 

40.00 63.03 69.61 69. 71 65.86 65.99 72.29 
(-6.58) (-6.,68) (-2.·83) (-2.96) (-9.26) 

J/ Table IX, 
2/ ' - Equation III-30. 

1/ Differe~ce (calculated - experimental). i--' 
+" 

if Equation III-43~ 
0 



TABLE XVII (CQNT.INUED) 

20000 69.84 76.31 76.41 
(-6.47) (-6.57) 

57.4 77.00 70~17 77.92 78.07 
(-7. 75) (-7.90) 

60.00 75019 83.88 84.02 
(.;..8.69) (-8.83) 

40.00 82.65 91.65 91.79 
(-9 •. 00) (-9.14) 

20.00 91.58 100.40 100.s5 
(-8.82) (-8.97) 

38.5 n.oo -90.02 96.58 96.72 
(-6.56) (-6.70) 

60.00 96.45 103.89 104.02 
(-7.44) (.;.7 .57) 

40.00 105.57 113.46 113.60 
(-7 .89) (-8.03) 

20.00 116.56 124028 124.42 
(-7.72) (-7, 86) 

72.33 72.45 
(-2.49) (-2.61) 

73.84 74.03 
(-3.67) (-3.86) 

79.56 79.75 
(-4.37) C-4.56) 

87.02 87.20 
(-4.37) (-4.55) 

95.39 95.58 
(-3.81) (-4.00) 

91.78 91.96 
(-1. 76) (-1.94) 

98.76 98.94 
(-2.31) (-2.49) 

107.88 108.06 
(-2.31) (-2.49) 

118.16 118.34 
(-1.60) (-1. 78) 

78.87 
(-9.03) 

80.94 
c-10. 77) 

86.62 
(-11.43) 

93.94 
(-11.29) 

102.02 
(-l~.44) 

99.39 
(-9.37) 

106.09 
(-9.64) 

114.70 
(-9.13) 

124.22 
(-7 .66) 

f-' 
+'" 
f-' 



. TABLE XVII (CONTINUED) 

18.4 77.00 114.06 118.74 118.83 113.03 113.15 120.84 
(-4.68) (-4. 77) (+l.03) (-f-0.91) (~.78) .. , 

60.00 121.61 127 .• 67 127.75 121.52 121.~3 128.70 
(-6.06) (-6.14) (+o.09) (-0.02) (-7.09) 

40.00 133.22 139.40 139.49 132.64 132.75 138.81 
(-6.18) (-6.27). (+o.58) (+o.47) (-5.~9) 

20.00 145.52 152.71 152.80 145.21 145.33 149.98 
(-7.19) (7.28) (+o.31) . (+o.19) (-4.46) 

o.o 11.00 14Q.33 141.11 141.11 134.46 134.46 142.13 ... 
(-0. 78) (-0. 78) (+5.87) (+5.87) (-1._80) 

60.00 149.95 151.69 151.69 144.47 144.47 151.14 
(-1. 74) (-1. 74.) (+5.48) (+5.48) (-1.19) 

40.00 162~58 165.64' 165.64 157.62 .157.62 162.72 
(-3.06) (;..3.06) (+4.96) (+4.96) (~0.14) 

20.00 175.95 181.49 181.49 172.Sl 172.53 11s.s2· 
(-5.54) (-5.54) {+3.42) (+3.42) (+o.431 

standard deviation, cm3/gm mole, S.99 6.09 3.14 3.22 7.37 

I--' 

~ 



The experimental virial coefficients are compared graphically versus 

the three equations of state in Figures 8, 9t and 10. Due to the small 

difference between linear and Lorentz forms of B, only the linear form 
0 . 

Comparisons of Experimental Third Virial Coefficients with 
Equations of State 

In Table XVIII the experimental third virial coefficients· are 

compared with the above three equations of state. 

The expressions for the third virial coefficient from these equations 

are given by Equations III-31 and III-43. For both forms of the BWR 

equation the third virial coefficient is independent of the linear and 

Lorentz combining rules, as the constant B does not appear in the 
0 

expression. 

The experimental third virial coefficients were not corrected for 

impurities. In order to make a direct comparison with equations of state, 

therefore• the mixing rules were written so as to include the impurities. 

This procedure involves expanding the mixing rules to N terms (N being 

the number of components in the system), each term containing a composi-

tion term and a pure component constant, From Appendix G the maximum 

value of N = 4 for both the 57.2% methane and the 78.8% methane system. 

As with the second virial coefficients the overall fit of the Edmister 

generalized form of the BWR equation is better than that of the other 

equations, For the 24 experimental points the standard deviations were 

6 2 2 6 2 cm /gm mole (generalized BWR), 3.7 x 10 cm /gm mole 

(o.riginal 2 6 2 BWR), and 12 0 8 x 10 cm /gm mole (RK). In Figures 11, 12, 

and 13 the experimental coefficients are compared graphically versus 

coefficients from the equations of state. 
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TABLE XVIII 

THIRD VIRIAL COEFFICIENTS FROM EQUATIONS OF STATE 

6 2 -2 C, cm /gm mole x 10 m , 

Composition, 
Generalized~/ per cent 

ExperimentalY BwaJ:/ metha~ _L__~ BWR 

100.0 11.00 23.70 25.3 11 22.3 
(+1.60) (-1.40) 

60.00 24.60 25.8 22.7 
(+1.20) c~1.901 

40.00 25.60 26.6 23.4 
(+1.00) (-2.20) 

20.00 26.85 27.6 24.3 
(+o. 75) (-2.55) 

78.8 11.00 28.2 32.5 28.7 
(+4.3) (+o.5) 

60.00 29.2 33.6 29.7 
(+4.4) (+o.5) 

!/ Table x. 
1:./ Equation III-31. 

ll Difference (calculated - experimental)o 
4/ . . . 
- Equation III-43. 

BK!/ -
31.1 

(+7.40) 

32.2 
(+7.60) 

33.6 
(+8.00) 

35.2 
(+8.35) 

40.4 
(+12.2) . 

41.9 
(+12. 7) 

f-' 
+­

----..] 



TABLE XVIII (CONTINUED). 

40.00 30o9 35o3 31.3 43.8 
(+4.4) {+o.4) {+12.9) 

20.00 33.6 37.3 33.2 45.9 
{+3.7) (-0.4) (+12.3) 

57.2 77.QO 34.7 41.4 37.1 51.1 
(+6. 7) .(+2.4) (+16.4) 

60.00 36.6 43.5 39.0 53.0 ,,-
(+6.9.> {+2.4) (+16.4) 

40.00 40.0 46.4 41.8 55.6 
(+6.4) (+1.8l (+15.6) 

20.00 44.5 50.0 45.3 58.3 
(+5.5) c+o.-s> (+13.8) 

.38.4 77.00 45.5 51.1 46.4 61.9 
(+,5.6) (+o.9) (+16.4) 

60000 48.5 54.2 49.4 64.3 
(+5. 7) (+o.9) (+15.8) 

40.00 53o3 58.7 53.7 67.4 
~+5.4) (+oe4} (+14.1) 

20.00 59.0 64.1 58.9 70.8 
{+Sol) (-Ool) (+11.8) 

f-' 
..[::-
00 



T~LE XVIII (CONTINUED) 

18,4 77000 60,0 63.4 
(+3.4) 

60.00 62.8 68.0 
(+S.2) 

40.00 68.3 74.6 
(+6.3) 

20.00 74.6 82.6 
(+8.0) 

o.o 11.00 76.43 77.27 
(+o.84) 

60.00 80,5 83.7 
(+3.2) 

40.00 · 85 •. 9 92.6 
(+6. 7) 

20.00 91.7 103.6 
(+11.9) 
-

6 2 -2 standard deviation, cm /gm mole x 10 : 3.7 

58.6 
(-1.4) 

63.l 
. (+o.3) 

69.4 
(+1.1) 

77.0 
(+2.4) 

72.65 
<~3.78) .... 

78.8 
(-1.7) 

87.4 
(+1~5) 

97.8 
(+6.1) 

2.1 

74.8 
(+14.8) 

77.8 
(+15.0) 

81.6 
(+13.3) 

85.9 
(+11.3) 

88.48 
(+12.05) 

92.1 
(+11.6) 

96.7 
(+10.8) 

101.8 
(+10.1) 

12.8 

1--' 
-i:::­
\.0 
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General Remarks on Equation of State Comparisons 

For the compressibility factor comparisons it was seen that the 

generalized BWR equation provides a better overall fit to the data than 

does the original BWR equation. For the pure component points the 

aeneralized equation provide• the better fit to the methane data, while 

the original BWR equation provides a better fit to the ethylene data. 

The fact should be emphasized, however, t~at the above comparison, repre-

sent only one binary system over a fairly narrow temperature range. The 

generalized equation should be tested for other binary systems before 

additional conclusions can be reached. 

The objective of the compari1ona was to determine and emphasize the 

need for further work on methods of improving equations of state. One 

criteria for an equation .of state is the accurate prediction of virial 

coefficient,. For this reason, experimental virial coefficients were 

compared directly versus coefficients predicted by equations of state. 

For the second virial coefficients (Table XVII) the original BWB. 

equation provided the best fit to the pure component data. Considering 

pure component and mixture data together, however, the generalized 

BWR equation provided the best fit. This difference is due in large 

part to the form of the mixing rules (Equations III-27), Although 

based on theoretical considerations these rules are still somewhat 

empirical. 

For the third virial coefficients (Table XVIII) the generalized 

BWR equation provided the best fit, both for the pure components and 

for the mixtures. For the pure component points the standard deviations 

2 6 2 2 6 2 were 3,04 x 10 cm /gm mole (generalized BWB.), 5,04 x 10 cm /gm mole 
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(original BWR), and 9.66 x 102 cm6/gm mole2 (RK), Considering all points 

together the standard deviations were also lowest for the generalized equa-

For both the second and the third virial coefficient comparisonsp 

the fact should be pointed out that the constants for the original BWR 

equation wer.e determined largely from compressibility factor data; 

the equation was then expanded into virial form. A small adjustment iri the 

constants could produce a relatively latge change in the calculated vir:lal 

coefficient. 

From the above comparisons several approaches were suggested for 

future equation of state improvements, These approaches are presented 

in the following. 

Comments on Further Improvements of Equations of State 

One criteria in the development of a closed-form equation of state 

is that it should accurately predict the second and third virial 

coefficientso Ideally the equation would accurately predict higher-

ordered coefficients also, but these coefficients are seldom available for. 

comparison. With this approach in mind several arguments may be given' 

in favor of the BWR (generalized or original) form of equation rather 

than the RK form. 

The second and third virial coefficients in the BWR equation have 

the form 

A C 
B(T) = B ....2. -2. 

o - RT - RT3 
(III-30) 

C(T) = b - ..!. + ....£.. 
RT RT3 

(III-31) 
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It is important here that the constants B, A, and C appear in 
0 0 0 

Equation III-30 whereas the different constants b, a, and c appear 

in Equation III-31. For this reason the constants B, A, and C 
0 0 0 

may be adjusted to fit experimental second virial coefficients with-

out any effect on the expression for the third virial coefficients, 

and conversely¢ 

For the RK equation the second and third virial coefficients are 

given as 

B(T) b -
a 

= 
RT3/2 

(III-liJ) 

C(T) b2 + ab 
= 

RTJT2 

The second virial coefficient contains only two constants, and appears 

to be an oversimplification, even if the expression were fit directly 

to second virial coefficient data, In addition, the third virial 

coefficient is uniquely dependent upon the constants chosen for the 

second coefficient. 

It is of further importance that the BWR expressions for B(T) and 

C(T) do not contain the constants a and y. It would be possible to 

determine the six constants in Equations III-30 and III-31 from virial 

coefficient data (either experimental or generalized values). The 

equation could then be recombined into the normal closed form, .given 

below. 
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A C 
Z • 1 + (B - ..2. - ..;.2...)d + (b - .!..)d2 

o RT RT3 RT 
(III-26) 

5 cd2 · 2 2 + .!!! d + - 3 (l + yd ) exp (-yd ) 
RT RT 

In this equation the remaining unknown constants a and y could be 

determined by regression analrsis so as to produce the best fit to a 

set of compressibility factor data. 

In principle both the ·generalized form and the original form 

of the BWR equation could be evaluated in this manner. The primary 

goal 1 however, is the development of an improved equation that would 

be of value from an engineering standpoint, particularly for binary 

and multicomponent mixtureso For this purpose the gener~lized form 

would have greater application, 

c. Error Analysis of Data 

In this section the accuracy of the data and of the isochoric 

apparatus is examined from two different viewpoints. These are: 

1) making mathematical estimates of the error of the isochoric apparatus 

from the estimated errors of each measured quantity (such as temperature 

and pressure), and 2) ·· comparing th~ resultant data directly with 

corresponding values from the literature. These two approaches are 

discussed in this order. 



Estimated Experimental Error 

Estimates of the experimental error in the compressibility factors 

were made by the method of propagation of errors (60)~ This method 

enables the.estimation of the error in a function of directly measured 

quantities, provided that individual errors may be established for 
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each of the directly measured quantities. As described· prev:f.ously the 

isochoric compressibility factors ZBT are determined from Equation N~-H 

after first determining the isochoric run constant D from Equation. N-200 

For this calculation estimates were made of the error in each of the 

measured quantities in these equations. The errors in these quantities 

were then combined to estimate the resultant error in the compressibility 

factors ZBTo 

Fractional errors were estimated for the measured quantities in the 

equations as ts shown in Table XIX. 

The most important remaining factors are the measured pressure and 

temperature of the sample inside the bomb, the determination of the 

1sochoric run constant D, and the correction for the sample in the DPI 

cell and exposed capillary line. The correction for the sample in the 

capillary line and DP! cell is given by the terms 0.01263 DD' 0.01537 n50 

etcop in the equations. Errors of 0,01% in the pressure measurements 

and 0.02°K in the temperature TB of the sample inside the bomb were used 

in the calculationsa The error in the run constant Dis dependent upon 

the error in the compressibility factor from the reference isotherm. 

The run constant is also affected by errors due to the capillary line. 

In order to make error calculations it is necessary to assume 

errors in the reference isotherm. Three different fractional errors 



TABLE XIX 

ESTIMATED FRACTIONAL ERRORS 

Average 
Volume Ratioa Fractional Errors 

VD/VB 0.012 

VS/VB 0.021 

V4/VB 0.0~1 

V3'VB 0.02a 

Vl/VB 0,028 

V/VB 0.02a 

Temperatures of Capillary 
Lines and DPI Cell 

TD 0.0001a (0.10°F) 

TS 0.0001a (0.10°F) 

T4 0.00018 (O,l0°F) 

Tl 0.0021 (l.0°F) 

T2 0.0021 (l.0°F) 

Tl 0.0021 (l .0°F) 

Miscellaneous Constants 

R 

a. ll o.os 

ll Coeffic.ient of thermal expansion for the bomb, Equation H-5~ 
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were assumed and the corresponding error in the isochoric ·compressibility 

factor was estimated, Results are given in Table XX for the ethylene 

sample at 698,690 paia and 60°F; similar results are obtained 1£ other 

mixture compositions or temperatures on the isochor are used. 

TAB;LE ··xx 

RESULTS OF ERROR ANALYSIS 

,l1Z 1/ 
·'""""") ,. Z 77oF 

(assumed) 

0.0000 

0.0010 

000050 

ll Reference isotherm, 

1:./ Run constant. 

ADY 
(-) 

D 

(calculated) 

o.ooos 

0.0011 

o.ooso 

J/ lsochoric compressibility factor, 

tiz ll 
(Z)60°F --

(c$lculated) 

0.0007 

0.0013 

o.ooso 
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As an estimate of the limiting accuracy of the isochoric apparatus 

an error of zero was assumed in the reference isotherm, The correspond-

ing fractional error in the run constant was 0,0005, and the error in 

the isochoric compressibility factor was 0.0007. In this case 

essentially all of the error (both in the run constant determination 

and in the final compressibility factor) was shown to be due to errors 

•'. contributed by the sample in the capillary line and DPI cell, 

The assumption of a fractional error of 0.0010 in the reference 

isotherm produced an error of 0.0011 in the run constant, with a 

final fractional error of 0.0013 in the compressibility factor. The 

error in this case was attributed approximately equally to errors in 

the reference isotherm and errors caused by the capillary line. The 

assumed errors of 0.01% and 0,02°K in the pressure measurement and 

bomb temperature, respectively, have only a small effect here. 

For the assumed fractional error of 0,0050 in the reference iso-

therm the error in the run constant and final compressibility factor 

was essentially all attributed to the reference isotherm error. These 

calculations illustrate the fact that the accuracy of the isochoric 

apparatus will never exceed the accuracy of the compressibility factor 

from the reference isotherm. 

Comparisons with Published Methane Data 

In Figure 14, the methane data of Table IV are compared with the 

published data of Mueller et al (50) and Matthews and Hurd (34) 

The data of Mueller were taken over the interval -200 to +50°F, 

with pressures from 40 to 7000 psia. The compressibility data is 

stated to be accurate to 0.13%. By using a large sheet of graph 
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paper the data was interpolated to the temperatures 60, 40~ and 20°F. 

The maximum error introduced by the interpolation procedure was estimated 

as 0.1%; the errors in the interpolated data points are thus 0.2% or 

less. 

The superheated methane data of Matthews and Hurd cover the temper­

ature range -260 to. +500°F, with pressures from 10 to 1500 psia. These 

data represent a compilation of the data of Kvalnes and Gaddy (30) 

and of Olds, Reamer. Sage, and Lacey (51). The data of Kvalnes and 

Gaddy cover the temperature range -70 to +200°C, with pressures from 

300 to 15 1 000 psia. The data are reported accurate to 0.2%. The 

temperatures of the Sage and Lacey data (+100 to +460°F) are highet: 

than the temperatut:es of this investigation; the corresponding 

pressures are from 200 to 10,000 psia, with the ~eported accuracy of 

the data being 0.2%. From an examination of Figure 14 the data of 

Mueller et al and Matthews and Hurd are seen to be in agreement to 

within the stated accuracy (0.2%) from both sources. 

From a large plot similar to Figure 14 the above literature values 

were compared at even values of pressure with the data of this investi­

gation. For the Matthews and Hurd data 17 corresponding data points 

were compared at pressures up to 1500 psia (the limit of the Matthews 

and Hurd data). For each pair of points the data of this investiga­

tion were consistently higher than the literature values, with the 

average deviation being 0.7%. 

For the comparison with the Mueller data, the 24 data points of 

this investigation were higher in each case than the literature values. 

The average deviation was approximately 0.7%. 
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Comparisons with Published Ethylene Data 

In Figure 15 the vapor-phase ethylene data from Table IV are com­

pared with the literature data of Walters et al.(68) and York and White 

(69) o, 

The data of Walters cover the range +20 to +100°F, with pressures 

from 50 to 600 psia, The data are presented in the form of an equation, 

which has an estimated accuracy of 0.25%. The data of York and White 

cover the range -140 to +500°F, with pressures from 14.7 to 4400 psia •. 

These data represent an interpolation and extension of the data of 

Michels (38). An.accuracy of 0,3% is claimed by York and White, From 

Figure 15 the literature values from the two sources are seen to agree 

within the accuracy (0.25 to 0.3%) claimed by both investigators. 

Using a large plot similar to Figure 15 these literature values 

were compared at even values of pressure with the data of this investi­

gation, In all cases the data of this investigation were higher than 

the literature data, The average difference between compressibility fac­

tors was approximately 0,6%. The York and White data above 600 psia were 

not used in this direct comparison, as these data below 77°F represent 

an extrapolation by York and White of the data of Michels. 

The pronounced curvature of the 60°F isotherm in the region 700 to 

1200 psia deserves some comment. The curvature arises since the points 

are in the neighborhood of the critical point (49.82°F, 742.l psia). 

Considering the accuracy of the published literature data and the 

differences between the literature data and the data of this investiga­

tion, the following conclusion can be made, The data of this investiga­

tion appear high by as much as 0.4 to 0.5% for methane, and are high 

by 0.3 to 0.4% for ethylene, 



1.00 

0.90 

0.80 

N 

~·o. 10 
,I.I ' 
ti 

:! 
:>,.0.60 
,I.I .... .... .... ao.so 
re 
re 
a, 
k 
i<>-.40 
0 
u 

0.30. 

0.20 

0.10 
0 200 

\ 
40°F 

400 600 800 
P, psia 

Figure 15 

--e- This work 

A Walters et al {68) 

'T Yo.rk and White (69) 

~ooo 1200 

. .--- V 

60°F 

1400 

Vapor Phase Compressibility Factor Comparisons for Ethylene 

1600 

I-' 
O"\ 
-i::-



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

The purposes of this investigation were: 

1) to develop and operate an experimental PVT apparatus for the 
determination of precise volumetric data for a binary system, 

2) to compare the resultant data with existing virial coefficients 
and equations of state in an effort to determine and emphasize 
the need for further work on methods of improving these equations. 

Experimental data were taken for the methane-ethylene binary system, 

and virial coefficients were derived. The data were compared with 

equations of state and with theoretical virial coefficient relationships. 

Conclusions and recommendations from this investigation are summarized 

in the following,. 

A. Calculational 

Conclusions 

1. The experimental compressibility factors were compared versus the 
( 

original BWR equation and the Edmister generalized BWR equation. The 

standard deviations from the experimental values were determined to be 

0.015 for the generalized BWR equation and 0,022 for the original BWR 

equation. 

2. Experimental second and third virial coefficients for the 

methane-ethylene system were compared with the BWR equation (6), the 

Edmister generalized form of the BWR equation (20), and the RK 
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equation (58), The Edmister generalized form fits this syst~m,better than 

do the other two equations tested, For second virial coefficients, 

standard deviations from the experimental data are summarized as BWR 

(5.99 cm3/gm mole), generalized BWR (3,14cm3/gm mole), and RK (7.37 cm3/ 

gm mole). For third vi rial coefficients, the resultant standar.d deviations 

2 6 2 , 2 6 2 are BWR(,3. 7 x 10 cm /gm mole ) , generalized BWR{2, l x 10 cm /gm mole ) , 

and RK(l2.8 x 102 cm6/gm mole2), 

3, For each of the six systems· investigated, the reference isotherm 

data from the Burnett apparatus (31) was used. The densities for the 

isochoric., runs were determined directly from the reference isotherm. 

Indications are that this data is somewhat high; the data is subject 

to a later revision, 

4. No accurate methods were found for the estimation of the inter-

action coefficient B12 from the pure component coefficients. The 

estimated values were used in Equation III-12 to recalculate values 

of B; the resulting B were compared versus the experimental B. Of m m . •., m 

the methods tested the square root method (Equation III-21) gi~es the 

lowest standard deviation (6,2 cm3/gm mole) from the experimental B. 
m 

5. Least squares values of the interaction coefficient B12 were 

determined by fitting Equation III-12 to the experimental data. The 

values of Bm were then recalculated using the least squares B12 • The 

B so calculated agree with the experimental coefficients to within 
m 

the estimated accuracy (1.5 cm3/gm mole) of the coefficients. The 

standard deviation from the experimental data was 0,74 cm3/gm mole 

over the entire range of temperature and composition, This method 

is quite useful in evaluating the internal consistency of the data. 
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6. The above conclusions indicate the need for further development 

of an equati~n of stat~. For practicality in calculations and for 

maximum utility in the application to mixtures, the equation should be 

generalized and in closed form,· To conform with theoretical considera-

tions, the equation should be expressable in "open-ended" form, and the 

resultant second and third. virial coefficients should agree with 

experimental data. 

7. The derivation of virial coefficients by the slope-intercept 

method was discussed in Chapter III, In this investigation a modifica-
1 

tion to the method was used in which the original approximation to the 

second coefficient was significantly improved upon in the derivation 

of third virial coefficients. This procedure has been used by previous 

investigators, but its use has not been extensive. The method is 

sufficiently useful to be re-emphasized at this point. 

Recommendations 

1. Additional calculational work should be undertaken toward 

the development of an improyed equation of state. The developmental 

procedure outlined below should be tested on a preliminary basis, 

using only selected systems for which data is available over an 

extended range of conditions. 

a) The second and third virial coefficients in the 

BWR equation (Equation III-30 and III-31) should be 

fitted to experimental pure component virial coefficients, 

thus evaluating the constants B, A, C, b, a, and c. 
0 0 0 



b) Using the above values of the constants, the re­

maining constants a and y should then be determined by 

fitting the closed form BWR equation (Equation III-26) 

to the experimental compressibility factor data. 

c) The resulting BWR constants shoul.d then be 

generalized by plotting versus w, as was done by 

Edmister in the present genera,lized form of the BWR 

equation~ 

2. The new generalized equation should be tested against mixture 

compressibility factor data, using the standard mixing rules (Equation 

III-27). No attempt should be made to improve upon the mathematical 

form of these mixing rules, however, until definite values are 

established for the constants for pure components. 

3. Programs undertaken to develop improved equations of state 

should be concentrated only on the generalized BWR eq~ation mentioned 

above. The two-constant RK equation has the disadvantage that the 

.second and third virial coefficients (Equations III-43) are not 

independent 9 as both equations contain both of the constants a and bo 

Conclusions 

1. The isochoric method is satisfactory for the experimental 

determination of compressibility factors. The only significant 

requirement is that the reference isotherm be established from an 

independent source. The apparatus is suited to determinations in 

the gaseous or two-phase region; this particular apparatus was 
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satisfactorily operated over the temperature range 77 to 20°F, with 

pressures from 260 to 2400 psia. 

2. The long time required to attain thermal equilibrium between 

successive experimental points is an inherent disadvantage of the 

procedure< During normal operation, data is taken at the rate of 

one point per 12 hour period; thus,in order to take a significant 

amount of data a period of several months is required. 

Recommendations 

lo For future use in equation of state and virial coefficient 

work, additional data should be taken with the apparatus. A binary 

hydrocarbon system is preferable for study, as the resultant data 

would be of greatest value for comparisons with equations of state. 

2. If the data is to be used primarily in the derivation and 

analysis of virial coefficients. primary emphasis should be placed 

on the region 100 to 3000 psia. Experimental data taken outside 

this range has little effect on the determination of virial coefficients 

by the slope-intercept method. The reference isotherm temperature (77°F) 

is satisfactory for the upper limit of temperature. The lower tempera­

ture limit, however, should be extended. A lower temperature of -50°F 

is recommended; this temperature would provide a considerably larger 

temperature range, thus allowing a more thorough theoreti.cal analysis 

of the resultant data. 

3. For the pure components as well as the mixtures, samples of 

the highest purity should be obtained. Analyzed mixtures of "prep 

grade" gases are readily available from commercial suppliers. 
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For future use of the apparatua ·. the following modifications are 

recomnended •• 

4a Using the existing •chanica~ refrigeration system (containing 
. ,, . 

Fi'eon-12) the appa~a~ua may be operated as low as Oto 10°Fo · This 

·operating range could be.extended •• low as -50°F or below by using a 

system containing a different .refrigerant such as Freon 22 (BaP. -41.4°F) 

or poaaibly Freon 13 (1.P. •l14·.6°F) • A closed loop system of this . . . . . 

type has the advantage of .both convenience and economy as compared 

.to liquid nitrogen•CQoled ayatema. 

s. As a circulating liquid in the annular apace containing the 

copper refrigeration coils, the use of the 601 ethylene glycol/401 : 

water solution should be continued. The flammability Characteristics 

of other frequently used liquids, such as i·ao-pentane or iao-octane, 

make their use undesirable. 

6. If the attainment of temperatures aignifica,ntly below -S0°F 

is desired, the use of liquid nitrogen (B.P. -322°1!') should be 

attempted. The direct use of acetone and dry ice (sublimation 

po~nt .. 112°F).for_lo11g periods of ti• was found to give poor tempera­

ture control inside the cryostat, Thia was due to considerable 

thermal gradients that occurred in the acetone solution. 

1. One source · of ~xper.imental error was ,the DPI · cell, which 

contained a small amount of gu and was loc·ated outside · the low 

temp~rature cryostat (Figure 1,.Chapter IV). Thia particular type 

J>PI cell was designed for operating temperature no lower than +40°F. 

consideration should be given to replacing this cell with a cryogenic 

type cell, which could be placed directly inside the cryostat. Such 
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cryogenic cells have recently been developed by Ruska, and are similar 

to the Ruska cell used in the present investigation. With the cryogenic 

cell situated inside the low-temperature cryostat it would still be 

necessary to separate the fluid in the upper portion of the DPI cell 

frotn the oil in the Ruska gage by means of a high pressure mercury 

u-tube. The fluid in the DPI cell must have a freezing point below 

the lowest temperature investigated. For this application methyl­

cyclopentane (freezing point -224°F) is recommended. 

8. In this investigation the DPI cell and the bomb were connected 

via 1/8 inch OD stainless steel tubing.· As the inner volume of this 

tubing is significant, the tubing should be replaced by 1/16 inch 

OD tubing. 

9. In the present apparatus the measuring thermometer and thermo­

couple were located in the controlled temperature air bath 9 immediately 

adjacent to the bomb. For increased accuracy in temperature measure­

ments, it is recommended that a calibrated platinum thermometer be 

installed inside the bomb. The mounting of this thermometer inside 

the bomb (Figure 2, Chapter IV) could be accomplished by using special 

packing glands developed by the Conax Corporation 9 Buffalo, New Yorko 

The glands may be.mounted through the wall with ordinary 1/4 inch 

NPT mounting threads, and will withstand temperatures as low as 

=300°F at working pressures up to 10,000 psi, 

A metal-enclosed platinum thermometer is available from the Leeds 

and Northrup Company (Catalog No. 8160) that would likely serve for 

this application for temperatures as low as -40°F. For much wider 

ranges of application (-436° to +900°F) platinum resistance tempera­

ture sensors are available from the Sostman Company, 
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Cranford, New Jersey. These sensors have a reported temperature stability 

of 0,001°C and could easily be calibrated over the desired working range 

The entire platinum thermometer and packing gland assembly could 

thus be mounted into the bomb through its top part. This would require 

a modification to the upper part of t~e bomb due to the 7/64 inch drill 

and due also to the seat for the Ruska connector. 

lOo The bottom and center bearings on the steel blower shaft 

(Plate III, Chapter IV) should be replaced by bearings designed for 

continuous operation at lower temperatures, 

llo As mentioned previously, the temperature control inside the 

cryostat was affected by rapid fluctuations in the laboratory air 

temperature. For future work the apparatus should be located so that 

temperature control of approximately±. 1°F could be attained in the 

immediate vicinity of the cryostat, 
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APPENDIX A 

THEIMOMETRY STANDARDS AND TBEBMOCOUPLE CALIBRATIONS 

Calibration of Thermocouples 

The copper-constantan thermocouple B2 was connected to the potentio-
! I . 

meter through a double pole-double throw (DPDT) swi~ch as is illustrated 
. ·, 

in Figure 4. The thermocouple and J>.latinum resistance thermometer 

were situated in the c~~stat (Figure 1), directly beside the bombo To 
' . ' 

further insure thermal equilibriµm between the thermocouple and thermo-

meter, a small glass container was filled with liquid iso-octane, and 
. ' 

the thermocouple and platinum thermometer were immersed into the liquid 

at a distance of separation of about one inch, 
.... 

The thermoco_uple was calibrated at approximately 40°F increments 

over the temperature range -40 to +95°~. Twent~ readings· of thermocouple 
,, 

!! 

output (mv) ·versus thermometer resistance (absoiute ohms) were made at 

each successive temperature level. The calibration is expressed over 

the above temperature.range as, 

T°F = 29.382 + 45o938(POT) - 0 1 49224(POT) 2 + 0 0 59268(POT) 3 (A-1) 

w~ere POT• t~e thermocouple·output, mv, with reference to an ice bath. 

The accuracy of the calibration is estimated-as 0.01 to o.02°i. 

The DPI cell thermocouple was connected to the potentiomet~r as 

shown in Figure 4. For purposes of calibration, the thermocoupl~ 
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and platinum thermometer were placed inside an insulated, high-temperature 

air thermost,t. This thermostat was in use for phase equilibria determi­

nations, and was located adjacent to the isochoric apparatus, Thermal 

equilibrium was insured by immersing both the thermocouple and thermo­

meter in a beaker containing heavy hydrocarbon oil. 

The thermocouple was calibrated at three temperature levels over 

the range 80 to 115°F1 with twenty calibration points being taken at 

each temperature level. The calibr•tion is expressed over the above 

temperatu.re range as 

T°F • 24.987 + S6.86l(POT) - 4.8565(POT) 2 (A-2) 

The accuracy of the calibration is estimated as 0.01 to 0.02°K. 

Reference Junction 

The reference junction thermocouples (Figure 4) were maintained 

inside a covered, one liter, vacuum type flask filled with an equilibrium 

solution of water and iceo Distilled water for preparing ice was 

obtained from a Barnstead still located in the laboratories of the 

School of Civil Engineering. 

The vacuum flask was periodically cleaned with soap and water and 

then rinsed with ethyl ether to remove any traces of impuritieso 

Platinum Resistance Thermometer 

The resistance thermometer is a Model 8163 Leeds and Northrup four 

lead instrument (Serial Number 1576919). The thermometer was calibrated 

by NBS on May 71 1964, for the temperature range -190 to 445°C. The 

temperatures are given in degrees Celsius (centigrade) on the 
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International Practical Temperature Scale of 1948 (65). The calibration 

points are the triple point of water. the steam point. the sulfur point, 

and the oxygen point, These pointe are measured with a continuous 

current of 2,0 IDf.lliaaaperes throup the platinum element-, The 

thermometer waa certified bJ IBS to be a satisfactory defining standard 

for temperature in accordance with the text of the International Practical 

Temperature Scale, The calibration is defined by the following formul6, 

(A-3) 

where tis the temperature. at the outside surface of the tube protect-

ing the platinum re~istor. in degrees Celsius; and Rt and R0 are the 

resistances of the platinum resistor at t• and o•c. respectively. 

The following values are given for the four constantso 

Cl 0,003925284 

cS 1,49164 

0, 11033 r below 0°C 
8 

0 t above o•c 

R 25,5168 absolute ohms 
0 

Temperature Bridge 

The temperature bridge is a Leeds and Northrup Mueller temperature 

bridge (Cat, No, 8069-B), The operating range of the bridge is from 

zero to 111,111 ohms• the bridge balance being obtained by six step-by-

step dial switches to within 0,0001 absolute ohms, The null detector 

for the bridge ia a Leeds and Northrup high sensitivity ballistic 

1alvanometer (Cat. Ro, 2284-d), used with a Leeds and Northrup lamp 
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and scale reading device (Cat. No. 2170), The galvanometer was located 

atop a concrete vibration-free pedestal which was sunk into the earth. 



APPINDIXB 

SANPLI CALCULATIOlC OFPUSSUU 

. The preHure to. be calculated ia the ab1olute pre11ure, paia, in 

the lower chamber of the l>Pl cell. 

The ma•••• are lilted by llu1ka a• "Apparent Haas versus Brass," 

or the mass MA which they appear t.o .have when compared i1', air under 

normal condition, againat no.rmal braH 1tandard1 (no correction 

being made for the buoyant effect of the air), 

The approximate relation1hip 

. p. 
W • .&.(1 • .::A!)N 

le ·. . PB .~ 

•I 

(B-1) 

is recommended by au1ka as being accurate to within one part per million~ 

Here W • the actual weight load on.the pi1ton, lb 

p.AB • the denaity of air at Hou1ton • 0,0012 gm/cc 

P1 • the density of bra11 • 8.4 aa/cc 

g • the acceleration clue to aravity at Stillwater!' • ;79. 777 cm/sec:.2 

g • the atandard acceleration clue to gravity• 980,665 cm/sec2 
C · · i, 

!I See Appeaclix L. 
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. . 

The e_al~bration data . for the &uska u11ea ,. HA, 1• tabulated . in Appendix 

J. 

The pre1alire Pat the reference urt on the lluaka gage ia given bJ. 

·. w 
P ·-... 

where P • pressure, p1i1. 

Ag •the effective area of the piston ~t P psig and t•c. 

The area of the. pi1.ton 111118t be corrected for thermal expansion and . .. .. . . 
~ . . 

for pressuie distortion. The followin1 equationa are reco111Dended 

by lluska. 

A0 • A0 [1 + C(t. • 25) J 
t . . 

~ • A0 (1 + bP) 
. . .. t . ' 

Here A0 • area of piston at 2s•c a~ sero psig 

. C • coefficient of ther111l e:apans~on for the piston 
·. . · ... . ·.:. 

t • lluska temperature, •c 

A0 • area of pistOII at zero pres1ure and t•c 
t 

b • coefficien.t of pressure distortion. 

' 

.(B-2) 

(B-3) 

The oil head correction BCOll be.tween the reference mark on the 

1t.us~a .gage and the diaphragm of the DPI cell'is give~ by 

BCOlll • hp· 

where h · • beight • inches, between the reference mark and leve.l 
. of diaphragm, 

p • .0;31 psi/vertical inch of oil height, as recoanended 
: by lluska. -



From FigQre N-1., h • -(13.819 - 2.0) inches; thus HCORR • -(13,819 -2,0) 

(0.031) • -.366 psi, 

The zero shift of the DPl cell wi.th pre1&ure was determined by Ruska. 

The results may be expressed by the linear relationship 

(B-5) 

where P • the pressure, psi, of the upper ch~er of the DPI cell, and 

PL• the pressure, psi, of the lower Chamber of the DPI cell. 

Combining the above corrections with Equation B-2 gives 

. ·. ' -6 
PL• (W/Ag - 0.366)(1 + 2.08 x 10 ) psig, or (B-6) 

PL• (W/Ag -~.366)(1 + 2.oa x 10-6) + ATM psia (B-7) 

where ATM • the barometric;· pressure, as determined by the Texas lnstru-

ments barometer. 

A sam~le calculation is given_b~~ow. ;, _The required data 1s listed in 

Table B-1, 

For the low range cylinder 

From Equation B-1 

A0 • 0,130219 in2 

c • 1.1 x 10-51°c 

b • -5,4 x 10-8/psi 

W 979,777 (l _ o,:~!2~ M 
• 980,665 1 A 

• (0,99895176)(231,22625) • 230,98387 lb. 
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From Equation B-3 

Ag. 0.13021, c1 + 1.1 x 10-5c2s., - 2s.0))[1 - s.4 x 10-8(1788)1 

• 0,1302084 in2• 

Prom Equation 1-7 

PL• 1787.765 p1ia, 

Run No. 9A 

t • 25,9°c 

MaHel 

A 
B 
C 
D 
E 
r 
G 
B 
L 
M 
0 
p 
w 
B Bar 
C Bar 
Low Tare 

ATM• 14.172 p11ia 

TAil.i B•I 

DATA roa·PUSSUU CALCULATION 

Cylinder: Low Range 

Apparent Mass Versus Brass 
· (MA) pounds 

26.03509 
26.03537 
26,03.571 
26.03570 
26,03536 
26.03592 
26.03603 
26 .• 03558 
13.01794 
5,20714 
2.60359 
1030181 

.0,02604 
0.00260 
0.00130 
o, 78107 . 

MA• 231,22625 



APPENDIX C 

OPERATING CHARACTERISTICS or THE TEXAS INSTRUMENTS BAROMETER 

A Texas Instruments servo-nulling precision pressure gage (Model 

No. 141A) was used for determining barometric pressure. 

This gage consists of a zero to 100 c11t-Hg range fused (low hysteres~s) 

quartz bourdon tube contained within a capsule. A small mirror is­

suspended from the lower portion of the bourdon tube, An optical trans-

ducer is mounted on a gear which ~ravels concentrically around the 

s,uspended mirror. Light reflected from the mirror falls on a pair of 

balanced photocells which are connected to a microammeter readout scale. 

A closed-loop motor-driven aervo ayatem continuously accomplishe~ the 

nulling by aut.omatically positioning the gear so that the microammeter 

reading_is zero. 

The tube has full scale rotation of 100 degrees, and the corre­

sponding position of the gear is digitally presented on a counter 

readout. The null position is constantly maintained for minute vari-

ations in the pressure being measured. The counter reading may then be 
' ' 

multiplied by a scale factor (determined by calibration) to determine 

the gage pressure. As this instrument is used exclusively for the 

measurement of absoiute pressure, .the capsule surrounding the bourdon 

tube is permanently evacuated. 
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To determine the barometric pre11ure oaly two readings are necessary; 

1) the counter reading, ad 2) tbe temperature of.the instrument (for 

making a ••11 correction for very precise readings).; 

The i111trU11Bnt. bas been calU,ra~e, ·. o,,er the entire range (zero to 

100 cm-Hg) versu1 a Texaa Iastr11119at1 dead vel1ht gage. The dead weight 
' ' I . ' ' 

gage has an accunc, of o.OUI, with a calibration that is directly 

traceable to NBS. Aa.recomieacled 1'-, Texas Iutruments, the calibra-
~ • • '/' ',, • I 

tion data wu fitted.to an -,lrlcal equation. The equation ls 

P • 0.019~36842 [1.+ 1.3 x 10·4~T i.:2,0 - 24.0)] • 

co.03161 + 9.9358826 a - o.&743147 x 10·31.i - o.1,11s319 x 10·5a31 . . .. ' 

where P • p1la 
,, ... '' . 

. R • scale reacllng (app~ox~ute) ca-Ila 
.~ r-. 

.. T.• temperature at•••• •r. 



APPENDIX D 

CALIBRATION OF BOURDON GAGES 



TABLE D-1 

CALIBRATION OF REFERENCE BOURDON GAGES 

Ruska Pressure!' 
psi a 

610 

1140 

1950 

Acco Helicoid 
Bourdon Gage 

p•ia 

790 

1310 

215S 

XFO Maxisafe 
Bourdon Gage 

psi a 

705 

1225 

2045 

188 

!/ All units psia, Barometric pressure determined by Texas Instru­
ments barometer. 

Ruska Pressure 
psia 

165 

280 

365 

465 

10~0 

1515 

2010 

TABLED-II 

CALIBRATION OF CllOSBY BOUIDON GAGE 

Crosby AIH Bourdon Gage 
psi a 

200 

305 

390 

495 

1005 

1500 

1985 



APPENDIX E 

SAMPU ~TIOB.01' VOLUME IATIO VD/VB 

The determination of the ratio of the v~lume VD of the DPI cell 

to the volume v1 of the bomb was .discussed in Chapter IV. A sample 

calculation of this ratio is given as follows .• 

Before the expansion the temperature at each section of the 

apparatus was determined, and the pressure P0 at the diaphragm of 

·the DPI cell was •aeured. Pre1&ures for each section of the 

apparatus were corrected for heads of gas udng Equations N-14 

through N-16 1 and the corresi,onding compressibility factors for the 

. nitrogen were determined from the literature. values of Michels (42) e 

·. Airco prepurified nitroge~·:.,as used. The i-esults. are tabulated 

as follows. 

!I The prepurified nitrogen was ob_tained from a local supplier, 
The maximum oxygen content was given as 0.001%, and the moisture 
content was 0.0012% with a trace of argon. The remainder was 
nitrogen. · 
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TABLE E-I 
; 

DATA, BEFORE EXPANSION, FOB. DETERMINATION OF VOLUME RATIO 

Run 14 

Tj,(°F) T' 5 T' _4 T' 3 T' 2 T' 1 T' B 

93,875 72.7 72.7 79.73 ·a3.24 86,76 93,799 

P0(psia) P' 5 P4 P' 3 P' 2 P' 1 P' 
B 

2052.353 2052.387 0,00151 o.001s1 O,OQ1S1 0.00151 0,00151 

Z' D Z' s Z4 z• 3 
z• 2 z• 1 z• ·B 

1.0328 1.·()243 1,0 1.0 1.0 1.0 1.0 

After the expansion the results az:e giveii as.follows. 

TABLE··"E-II 

l)ATA, AFTER EXPANSION, 101 DETDKINATION OF VOLUME RATIO 

B.un.#4 

TD(OF) TS T4 Tl T2 Tl TB 

93.967 73,2 73.2 . ao.97 ..... 83.51 86.95 .. _93.828 

PD(psia) PS P4 pl p2 pl PB 

54,11103 54.11195 54.11195 54.11331 54.11427 54.11514 54.11686 

ZD z s Z4 . Z3 ·Z 2 zl ZB 

1,0057 1,0053 1,0053 1,0055 1.ooss 1,0056 1,0057 



191 

Equation N-10 was used to determine the volume ratio. 

p p ' p p ' 
vo cr<TB-95> + o.003s6a1 cw - <zt> 1 + 0.01531c <z'T> - <u> 1 _ • -{ -------------B,..T ...... _______ .,.;.5 + 
VB p p ' 

l <TT> - <TT> l , 
. D 

p P I P ·. P' P P ' l 
o.Ol511[(ZT) - <-zT> ] + 0,003794{[<-zT>-<-zT>] + C<u>·<rt> ] J 

4 3 2 
-----------------------------------------------~ + 

p p ' 
.t((-) - (-zT) ) 

·Zt D 

p p I 

0.003213 c <u> - <rt> 1 ________________ 1 } 

p p ' c <u> - <w> 1 
D 

where F(T8 - 95) is given by Equation N-9. 

F(T8 - 95) 
3 

[l + 9,5 x 10-6(TB - 95)] 

(N-10) 

(N-9) 

Substituting the data from Tables E-I and E-II in Equation N-10, 

[F(TB - 95) + 0,003868) x 

54,11686 0.00151 
Lc1.oos7) (93.828 + 459.670) - 1.0(93. 799 + 459.670) 1 • 0•098822 
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· 54.11195 . 2052.387 
0•01537 lc1.oos3)(73.2 + 459.670) - 1.02¥3(72.7 + 459.670)) • - 0•056296 

54.11195 01001S1 ·J +o 001526 
o.OlSll[l.0053(73.2 + 459.670) • 1.0(72,7 + 459,670) • • 

{ s4.11331 0.00151 
o.oo3794 C1.0055(ao.01 + 459.670) - 1.0(79.73 + 459.610> 1 + 

54.11427 0.00151 } 
[1.0055(83.51 + 459,670) • 1.0055(83.51 + 459,670)] • o.ooo754 

54.11514 . 0,00151 
0•003273l1.0056(86.95 + 459.670) - 1.0(86.76·+ 459.670)) • 0•000322 

54.11103 2052.353 
[1.0057(93.967 + 459.670) - 1.0328(93.875 + 459,670)) • - 3•492121 

V /V = -[0.098822 - 0.056296 + 0.001526 + 0.000754 + 0.000322] 
D B -3.492721 . . 

The corresponding results for additional determinations are given 

as follows. 



Run No. 

TABLE E•Ill 

TABULATION or VOLUME RATIOS 

VD/VB 

0.01267 

0.012,2 

0.0122s 
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• 0,01263 

The average value, 0.01263, wa, used in all determinations in this 

thesis .• 



APPENDIX F 

SAMPLE CALCULATION or A COMPRESSIBILITY FACTOR . . 

··1n Appendix N, Equations N-20 and N•21 are derived for calculating 

-the final compressibility factors from experimental d~t.8:• A sample 

calculation is presented below for the 57.2% methane system. 

For di~ferent temperature levels along the isochor, pressures and 

temperatures corresponding to each se~tion of the apparatus are given 

in Table F-I. 

TABLE F•I 

DATA FOR COMPRESSIBILITY FACTOR CALCULATION--FIRST ITERATION 

Isochor number 36 Sample: 57.2% methane 

T • 77°F 
B (P8 • 675.,035 psia) z8(REF) .. 0,8609 

T, °F Tl T2 Tl T4 TS TD 
88.74 61.Sj 64.81 76.4 76.4 95.696 

P, psia pl p2 P3 P4 PS PD 
675.009 675.000 674,991 674.978 674,978 674.969 

z1. .z2 Z3 Z4 ZS ZD 

1.0 1.0 1.0 1.0 1.0 1.0 
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T1 • 60°F (P8 • 647,201 psia) 

T °F t Tl T2 Tl T4 TS TD 
80.49 · S8.64 64,00 74.2 74,2 95,242 

P, psia '1 p2 P3 P4 PS PD 
647.175 647 .167 647.158 647,145 647.145 647.137 

z1 Zz Z3 Z4 ZS ZD 

1.0 1.0 1.0 1,0 1.0 1.0 

T • 40°F B (P1 • 613.305 psia) 

T °F t Tl T2· T3 T4 T5 TD 
71,20 57.23 64.90 74.8 74,8 95,385 

P, psia pl p2 P3 P4 PS PD 
613.279 613,272 613,263 613,251 613,251 613.243 

zl Z2. Z3 Z4 ZS ZD 

1.0 1,0 1.0 1,0 1,0 1.0 . 

t 8 • 20°F (P8 • 577~547 psia) 

T, °F Tl T2 T3 T4 TS TD 
61.53 55.24 65,74 74.3 74.3 95,182 

P, psia pl p2 P3 P4 PS TD 
577.522 577,515 577,507 577,495 577,495 577,488 

zl z2 Z3 Z4 ZS ZD 
1,0 1,0 1.0 1.0 1.0 1.0 
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Here the value of z8(REF) • 0,8609 (77°F and 675,035 psia) was 

taken from the reference isotherm data from the Burnett apparatus (31), 

All temperatures given above were determined from the thermocouple 

calibration, given in Appendix A; a ~ample calculation of a pressure 
. . . 

point is given in Appendix B, For the fir1t iteration the values 

of z1, z2, z3, z4, z5, and z0 were assumed to be unit~, as shown. 

Equation N-20 was determined to be 

D • [F(T1 • 9S) + 0,003868]DBT + 0,01263 DD+ 0,01537 D5 

(N-20) 
+ 0,01511 D4 + 0,0~3794(D3 + D2) + 0,003273 D1 

• I • . 

where DBT' DD' D5, D4, D3, D2, and D1 are densities, In a similar 

manner Equation N•21 ia given as 

where 

. . p F(T8 • 9S) + 0,003868 
~T • (if~T [ DIN ] 

DEN• D - 0,01263 DD• 0,01537 D5 -

0,01Sl1 »4 • 0,00379,4 (D3 + D2) - 0,003273 D1 

(N-21) 

(N-22) 

The first 1tep in the calculation is the determination of the run 

constant, D, Thia detendnation is made at 77°F, The values of 

t 8(77°F), P8(675,03S psia) and z8(REF), from above and all correspond­

ing values of T, P1 and Z are substituted in Equation N-20, The 

resulting value of the run constant ii 

D • 0,14390 (F-1) 
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Using this value of D, the compressibility factors on this same isochor 

are calculated at the lower temperature levels 60, 40, and 20°F by 

substituting the above values of temperature and pressure into 

Equation N-21. The results are summarized in Table F-II. 

TABLE F-II 

CALCULATED COMPRESSIBILITY FACTORS••RESULTS OF FIRST ITERATION 

Isochor number 36 

T, °F 

77 
60 
40 
20 

Sample: 57,2% methane 

PB' psia Z 

675.035 
647.201 
613.305 
S17 .S47 

0,8609 (REF) 
0.85035 
0.83478 
0,81638 

This procedure was repeated for all other isochors for the 57.2% 

methane system, and the results were used to interpolate improved values 

of z1, z2, z3, z4, z5, and z0 for use in the next iteration. The inter­

polation was performed by cross-plotting the data, and the results are 

given in Table F-III. 

TABLE F-III 

DATA FOR COMPRESSIBILITY FACTOR CALCULATION--SECOND ITERATION 

lsochor number 36 Sample: 57.2% methane 

T • 
B 

77°F (PB• 675.035 psia) ZB(REF) = 0,8609 

T °F t Tl T2 T3 T4 TS TD 
88.84 61.53 64.81 76.4 76.4 95.696 

P, psia l\ p2 P3 P4 PS PD 
675.016 675.006 674.995 674.979 674.979 674.969 

zl z2 z3 Z4 ZS ZD 

o.8692 0,8450 0,8489 0,8602 0.8602 0,8730 
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TB• 60°F 
p 

( B • 647,201 psia) 

T °F . . Tl . T2 T3 T4 TS TD 
80,49 58,64 64,00 74,2 74,2 95,242 

P, psia pl p2 pl P4 PS PD 
647.182 647.172 6,7.162 647.147 647,147 647.137 

zl z2 Z3 , Z4 ZS ZD , 
0,8692 0,8450 0,84.89 0,8602 0,8602 0,87,30 

T • 40°F B (PB• 613,3~5 pJi~j 

T •r • Tl T2 Tl T4 TS TD 
71,20 57.23 64.90 74.8 74,8 95.385 

P, psia pl p2 pl P4 PS PD 
613.285 613.276 613,266 613.252 613.252 613,243 

zl z2 Z3 Z4 ZS ZD 

0,8702 0,8466 0,8646 0,8973 0,8732 0,8867 

T • 20°F B 
(P8 • 577,547 psia) 

T •p • Tl T2 Tl T4 TS TD 
61.53 55.24 65.74 74,3 74,3 95.182 

P, psia pl p2 pl P4 PS PD 
577,529 577,520 577,510 577,497 577,497 577,488 

zl z2 Z3 Z4 ZS ZD 

0,8700 0,8633 0,8740 0,8808 0,8808 0,8932 
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Using these improved values of compressibility factor. all above 

calculations were repeated, From Equation N-20 the value of D was 

de.termined to be 

D == 0,14390 (F-2) 

This value agrees to five significant figures with the original 

calculation of D (Equation F-1). 

Using this value of D the compressibility factors at lower tempera-

tures on the isochor were recalculated, using Equation N-21. The resu!ts 

are given in Table F-IV, below. 

TABLE F-IV 

CALCULATED COMPIU:SSIBILITY FACTOR--RESULTS OF SECOND ITERATION 

Isochor number 36 Sample: 57.2% methane 

T, °F PB' psia z Z (rounded) -- -· UAW.: J:bc.:$ 

77 675.034 0.8609 (REF) 0.8609 (REF) 
60 647.201 0,85037 0.8504. 
40 613.304 0.83481 0~8348 
20 577.547 0.81637 0.8164 

In this case the maximum change in Z was three units in the fifth 

significant digit, which is negligible. Also, very small changes in PB 

arise since the pressure correction due to the difference in head is 

dependent on the compressibility factors. Generally the rounded 

compressibility factors after the second iteration agreed to four signi-

ficant figures with the results of the first iteration, In a few cases 

the calculations were taken through the third iteration in order to 

obtain results consistent to four significant figures. In the fourth 

column the final compressibility factors are shown rounded to four 

significant figures. All compressibility factors given in Table IV 

(Chapter VI) were determined in this manner. 



APPENDIX G 

FUNDAMENTAL CONSTANTS AND MIXTURE COMPOSITIONS 

The latest defined value of the universal gas constant R is given 

(59) as 82,0567 cm3 -atm/deg K-mole, Converting this value to 

engineering units, R = 10.731496 (psia - ft 3)/(lb mole 0 R). 

The most recent (65) definition of absolute temperature is expressed 

as T(°K) = t(°C) + 273,150. Converting this expression directly to the 

absolute Rankine scale gives T( 0 R) = t(°F) + 459,670., 

The six gas samples used in this investigation were blended and 

analyzed by the donor, Phillips Petroleum Company~ Bartlesville, 

Oklahoma. The samples were Phillips "pure grade<" The Phillips' 

analyses were performed by mass spectrometry and were reported to the 

nearest 0,1 mole per cent, The 99.9% ethylene sample and the 99.0% 

methane sample were independently analyzed by gas chromatography in the 

laboratories of the School of Chemical Engineering. For each of the 

components in the two samples the results of these independent analyses 

differed by less than O ,.1%. Results of the entire analysis are given 

in Table G-I below; all molecular weights were based on the Carbon 12 

International Scale of Atomic.Weights (26). 
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Components _t!ole % 

Methane Trace 
Ethylene 99.9+ 
Ethane Trace 

Total 100.0 

Methane 18.4 
Ethylene 81.6 
Ethane Trace 
Propane Trace 

Total 100.0 

Methane 38.4 
Ethylene 61.4 
Propane 0.2 
Ethane Trace 
Propylene Trace 

Total 100.0 

Methane 57,2 
Ethylene 42.4 
Propane 0.3 
Ethane 0,1 
Propylene Trace 

Total 100.0 

TABLE G-I 

COMPOSITION ANALYSIS OF MIXTURES 

Phillips Petroleum Company Sample Transmittals 
No, 44043 through 44048 

(Methane% - Ethylene%) 

0 - 100 

20 - 80 

40 - 60 

60 - 40 

Average 
Molecular Weight 

28.054 

25.844 

23.474 

21.234 

Phillips 
Cylinder No, 

MG-3943 

MG-4174 

MG-1605 

MG-576 

I\)' 0 
f-' 



·Components Mole% -
Methane 78.8 
Ethylene io.1 
Propane 0.4 
Ethane 0.1 
Propylene Trace 

Total 100.0 

Methane 99.0 
Nitrogen 0.6 
Propane 0.1 
Ethane 0.1 
Isobutane Trace 
Carbon.Dioxide 0,2 

Total 100.0 

TABLE G-I (CONTINUED) 

(Methane% - Ethylene%) 

80 - 20 

100 - 0 

Average 
Molecular Weight 

18.656 

16.213 

Phillips 
Cylinder No. 

MG-4083 

MG-265 

I\) 

2 



APPENDIX H 

CALCULATION OF EFFECT OF TEMPERATURE ON THE BOMB VOLUME 

The effect of temperature on the bomb volume is determined by 

assuming the inner volume of the bomb (Figure 2) to be a cylinder of 

circ·umference CBT and length LBT at. temperature T8 (°F). 

The volume VBT at temperature T8 is thus given by 

(H-1) 

and the volume VB at 95°F is 

(H-2) 

where CB and LB represent the circumference and length, respectively, 

at 95°F, 

The effect of temperature on the circumference and length of the 

inner volume is expressed by 

-1 Here a is the coefficient of thermal expansion, (°F) , 
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(H-3) 
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The expressions for CBT and LBT may be substituted into Equation H-1 

to give 

Dividing Equation H-4 by Equation H-2 gives 

VBT 3 
- • [l + e1(TB - 95)] 

VB 

The value of Cl for type 303 austenitic steel (Oto 600°F) is 

(H•4) 

(li-5) 

: -6 0 -1 9,5 x 10 ( F) • Substituting this value into Equation H-S gives 

-6 3 
[l + 9,5 x 10 (TB - 95)] • F(T8 - 95) (N-9). 



APPENDIX J 

RUS1CA PISTON GAGE CALIBRATION DATA 

The Ruaka piston gage is a dual range instrument (model 2400HL}. 

The instrument usea two piston-cylinder combinations (low range 6 -

2428 psi; high range 30 - 12,140 psi). Ruska calibrated the gage 

versus a Ruska laboratory master dead weight gage (No, 7544) which was 

itself calibrated to an accuracy of one part in 10,000 parts versus 

an NBS controlled-clearance piston. The NBS identification numbers 

for the calibration are P6694A/2.6/161365 and P6694B/2.6/161365. 

The instrument uses a total of 32 type-303 stainless steel 

loading weights, their masses being determined by Ruska. The final 

mass calibratio.n data is given in Table J-I. The calibration is 

reported to a precision of one part .in 50,000 for masses greater than 

O.l pound, one part in 20,000 for masses 0.01 to 0.1 pound, and 

one part in 10,000 for masses 0.001 to 0.01 pound. Additional gage 

specifications are given in Table J-II, and a sample pressure calcula­

tion is given in Appendix B. 
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Designation 

Low Tare 
High Tare 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
p 

Q 
R 
s 
T 
u 
V 
w 
X 
A 
A 
B 
C 
D 
D 
E 
F 

TABLE J-I 

RUSKA MASS CALIBRATION DATA 

Calibration--Pressure Gage Masses 
Calibrat~on date 3-22-63 
Ruska Serial No. 10381 
Job No. A3567/C2630 

30 psi 

1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
500 
200 
200 
100 
50 
20 
20 
10 
5 
2 
2 
l 
0,5 
0.2 
0.2 
0.1 
0.05 
0,02 
0,02 
0,01 
0,005 

6 psi 

200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
100 

40 
40 
20 
10 
4 
4 
2 
1 
0,4 
0.4 
0;2 
0.1 
0.04 
0,04 
0,02 
0.01 
0,004 
0,004 
0,002 
0,001 
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Apparent Mass 
versus Brass 
(MA) pound:._ 

o. 78107 
0.78107 

26,03509 
26,03537 
26,03571 
26,03570 
26.03536 
26,03592 
26.03603 
26.03558 
26,03563 
26,03608 
26,03568 
13.01794 

5,20714 
5, 20715 
2,60359 
1,30181 
0,52072 
0,52074 
0,26035 
0,13020 
0,05208 
0,05209 
0,02604 
0,01302 
0,005203 
0 005202 
0,002601 
0,001301 
0,000520 
0,000521 
0,000260 
0,000130 
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TABLE J•ll 

RUS1CA GAGE SPECIFICATIONS 

Absolute accuracy 1:10,000 
Resolution 5:1,000 1000 

Piston area 
25°c;· 0 psig 

Coefficient of 
thumal expansion 

CoefficJ,ent of 
pressure distortion 

Cylinder No, 

Low Range Piston-cyl High Range Piston-cyl, 

0,130219 in2 0.0260440 1112 

1. 7 x 10-5 re 

-s -5.4 x 10 /psi -8 -3.6 x 10 /psi 

LC-142 HC-133 



APPENDIX K 

DETERMINATION OF BOMB JACKET PRESSURE REQUIRED 

FOR ELIMINATION OF PRESSURE DISTORTION 

The inner chamber of the bomb is assumed to be a cylinder with 

inner radius.! containing a gas at pressure Pi psia, The bomb is 

a. o.s" 

b • 1,2511 

Figure K-1 

Drawing of Bomb and Surrounding Jacket 

208 
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surrounded by a thin cylindrically shaped jacket with inner radius~. and 

confining a gas at pressure P psia. (See Figure K-1). 
0 

Making a free•body diagram across a horizontal section of the bomb 

(See Figure K-2, below) and summing up the forces on an element in the 

radial direction gives 

P.~ '¢ -
fl/IA. 

I 

Figure K-2 

Free Body Diagram Across Section of Bomb 



do 
arrdt + atdrd, - (a + -..I. dr)(r + dr)d+ • O r dr 
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(K-1) 

where 

or • normal radial stress acting on the differential element 

at.• normal hoop stress acting on the differential element 

r = radius of the di£ ferential .element 

cj) • angle between sides of the differential element 

The weight of the element is neglec·ted here .. 

Neglecting small quantities of higher order, 

do 
r a -a -r- 111 0 

t r di' 
(K-2) 

Let u be the deformation of the cylinder in the radial direction at 

radius r. The deformation of the cylinder in the radial direction at 

du r + dr is thus u + dr dr, and the total elongation on the element is 

du dr dr. 
du The strain in the radial direction is thus e = -- , and the r dr 

strain et in the circumferential direction is 

u 
e ·• -t r 

The stresses in terms of strains are given (66) by the relatio11s 

where 

(J = 
r 

E (~+ .!!.) 
. 2 dr µ r 

1 - µ 

- .... E...,__ (.!!. + ~) 
0 t • 2 r µ dr 

1 - µ 

E = modulus of elasticity in tension and compression 

µ•Poisson's ratio. 

(K-3) 

(K-4) 

(K-5) 
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Substituting Equations K-4 and K-5 into. Equation K-2, the following 

equation results 

(K-6) 

which may be solved to give 

(K-7) 

Here c1 and c2 are constants to be .determined from the following condi­

tions on the inner and outer surfaces of the bomb, 

E 
2CC1(l.+ l!} - c2 

1 - ll_ a ... I I ] 

r 
1 - l! 

2 
r 

E 
2 [Cl (1 + l!) + c2 l - H (K-8) (J ... 2 ] t 

l - l! r 

(a ) • -P 
r b o r= 

(a) • -P 
r i r•a 

Solving for c1 and c2 gives 

(K-9) 

(K-10) 

Substituting Equations K-9 and K-10 into Equatio~ K-7 gives the deforma-

tion of the cylinder as 

u. (K-11) 



The deformation 'i. due to the axial stresses aL must be added to the 

deformation given by Equation K-11 

e: ·-.!:La 
u E L 
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(K-13) 

Here e:u is the axial strain. uL is of opposite sign to u in Equation 

K-11 above, as it is in opposite direction to the deformation u. The 

total deformation from both Equations K-11 and K-13 is 

u ... l -
E 

a2p - b2P 2b2(P p) (P a2 - p b2) 
µ i · or+ (1 + ~)a i - o • 1 _ J;!. i o 

(b2 _ a2) E (b2 _ a2) r E (b2 _ a2) 
r 

(K-14) 

At the inner radius r = a this deformation must be zero. 

u = 0 at r • a (K-15) 

This gives 

(K-16) 

which may be rearranged to 

2 2 
P ... a (1 - 2µ) + b (1 + µ) • P 

0 b2(2 - µ) i 
(K-17) . 
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For a• 1/2", b • 1 1/4", andµ• 0,3 (for type 303 stainless steel), 

Equation K-17 becomes 

(K-18) 



APPENDIX L 

ACCELERATION DUE TO GRAVITY AT STILLWATER, OKLAHOMA 

The local acceleration due to gravity h given by Condon and 

Odishaw (12) as 

2 
g • 978.0524[1 + 0.005297 sin ~ -

0,0000059 sin2 (2~) + 0,0000276 cos2 ~ cos 

2(A + 25°)) - 0,000060 h (L-1) 

where 

~ • latitude 

A• longitude (positive east of Greewich) 

h • feet above sea level 

At Stillwater, ip '"'. 36°7' N,, ;\, • 97°4' W,, and h • 930 ft. This 

gives a value for g of / 

. . 2 
g • 979,777 cm/sec 
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APPENDIX M 

ESTIMATION OF INTERACTION SECOND VIRIAL COEFFICIENTS 

In correcting the experimental second virial coefficients for 

impurities (Chapter VI) it was necessary to estimate interaction second 

virial coefficients B12 for the following molecular pairs: 1) methane­

nitrogen, 2) ethylene-ethane, and 3) ethylene-propane. The 

estimations were made using the method proposed by Prausnitz (56, 57). 

Sample calculations are given below. 

Sample Calculation of Methane-Nitrogen Coefficient 

The following equation was presented in Chapter III. 

(III-18) 

The combining rules for e~timating the interaction parameters V 0 
cij 

T , and wij were given by Prausnitz as 
cij 

215 

(M-1) 
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where the temperature correction factor kij is presented graphically as 

a function of the ·critical volume ratio V /V , 
. c1 Cj 

Denoting methane by subscript i and nitrogen by subscript j, th~.re . 

results 

V • l.S7e!/ 
Ci 

V • 1.443 
cj 

V • -21(1~578 + 1,443) • l,SlOS 
cij 

V /V • 1,578/1,443 • 1.09 
Ci Cj . , . 

(&Ii• 0,013 

(&)j = 0.04 
. l 

(&)ij = 1<0.013 + 0.04) • 0,0265 

From Figure l of reference (56), using a value of V /V of 1,09, 
Ci . Cj 

Tc • 226, 71 
j 

1/ In the following calculations all units will be £t3/lb mole, 
psia, and 0 R unless otherwise stated, 
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The generalized function (-Q8) is given in tabular form (56) as a 

function of T/T and w1· j' 
cij 

At T • 536,670 (77°F), T/Tcij • 5~~6~~0 • l.9S; and ooij • 0,0265. 

From graphs of the tabular values of (-88), 98 • -0.202, 

Substituting into Equation III-18, 

Bij • 9BVcij • (-0,202)(1.5105) • -0,30~ 

Converting to cgs units, 

3 Bij • (62.428)(-0,305) • -19,l cm /gm mole. 

Results for all temperatures are sUD111arized as follows. 

TABLE M-I 

Methane-Nitrogen Interaction Coefficients 

T°F -
77 
60 
.40 
20 

-19.1 
-22.0 
-25.3 
-29.0 

For the ethylene-ethane and the ethylene-propane coefficients 

the same calculational procedure was used, The results are summarized 

below. 



TABLE M-II 

Ethylene-Ethane Interaction Coefficients 

T°F -
77 
60 
40 
20 

TABLE M-III 

3 .s,m /gm mole 

-150. 
-162. 
-175. 
-191. 

Eth)'.:lene-Propane Interaction Coefficients 

T°F -
77 
60 
40 
20 

3 cm /gm mole 

-200. 
-216. 
-234. 
-254. 
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The results for the ethylene-ethane and ethylene-propane 

coefficients are markedly lower (alge~~aically) than the results for 

the methane-nitrogen coefficients. This difference is to be 

expected• however. and is largely due to the fact that the critical 

temperatures of ethylene, ethane~ and propane are considerably higher 

than those for methane and nitrogen. 
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APPENDIX N 

DERIVATION OF CHARACTERIZING EQUATIONS FOR THE APPARATUS 

Det.ermination of the Volume Ratio VD/VB 

The determination of the volume ratio was discussed in Chapter IV. 

The equition for this ratio is developed in the following. 

Basically, the bomb and DPI cell are allowed to reach equilibriumt 

the interconnecting valve between the two cells is closed, and the bomb 

is rinsed with nitrogen and evacuated, The DPI cell is rinsed and is 

then filled to about 2500 psia with the nitrogen, 

The temperatures and pressures of all portions of the system are 

measured and the interconnecting valve is then opened, After the gas is 

allowed to equilibrate throughout the system, the temperatures and 

pressures of all portions of the system are again measured. This 

information is sufficient to determine the volume ratio as is discussed 

below. 

The dimensioned schematic diagram of the cryostat and DPI cell is 

shown in Figure N-1; the following quantities are defined with reference 

to this figure, 

VBT = volume of bomb at T°F 

= volume of bomb at 95°F 

= volume of DPI cell and capillary tubing contained within 
the DPI celi thermostat at 95°F, 
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THERMOSTATED 
DPI CELL I.. Vs ·1 • -......-..v 4 

I r----, 

Vo L.....1""11 . 8.0 I!~~ 
----' . 

I l.067~-

+ ---
RUSKA REFERENa MAR~ 

(All DIMENSIONS SHOWN 
ARE IN INCHES) 

----------- T 

~-
'• 

'• I 

CRYOSTAT 

Figure N-1 

I 
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v5 = volume of capillary and fittin¥s extending from the outside 
of the DPI cell thermostat to the interconnecting valve, as 
shown 

v4 = volume of capillary and fittings extending from the inter­
connecting valve to the b.ottom of the connecting union~ as 
shown 

v3,. v2, and v1 • volumes, respectively, of the sections of the 
capillary extending from the bottom of the connecting union 
to the baffle immediately above the bomb 

V = volume of capillary between the baffle and the bomb a 

Before opening the expansion valve, 

P' = pressure, psia, of gas in volume vi i 

T' = temperature of gas in volume Vi i 

Z! = compressibility factor (PV/RT) at T1 and P' 
1 1 

n' i = moles of gas in volume vi 

n' = total moles of gas in system, = l ni 

Before the valve is opened, a material b,alance gives 

n' = \' n! = n' + n' + n' + n' + n' + n' + n' + n' 
l 1 BT D 5 4 3 2 1 a 

Pi.Vi 
Making the substitution n' • -.~-­

i z1RTi 
' PV 

• CzRT), we have 
i 

n' = PV ' PV I PV I PV 1 

<zRT) + <zRT) + <zRT) + <zRT) 
BT D 5 4 

PV ' PV I PV ' PV ' 
+ (ZRT) + <zRT) + <zRT) + (ZRT) 

· 3 2 1 · a 

After opening the valve, a mate.rial balance gives 

(N-1) 

(N-2) 

(N-3) 
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where n1 • moles of gas in volume Vi after opening the valve: 

n = total moles of gas in system after opening the valve, = l n. • 
l. 

PjVi PV · 
Making the substitution n. = = (ZRT)i, we have 

1. ZiRTi 

PV PV PV PV 
n · = (ZRT) + (ZRT) + (ziff) + (ZRT) 

BT· D 5 4 
(N-4) 

PV PV PV PV 
+ <zRT) + <zRT) + <zRT) + <zRT) 

3 2 1 a 

Since the total amount of gas in the system is constant, both before and 

after opening the expansion valve, we may write n' = n. Thus the right-

hand sides of Equations N-2 and N-4 may be equated. 

-- PV ' PV ' PV ' PV ' PV ' PV ' PV ' PV ' 
(ZRT) + <zRT) + (ZRT) + <zRT) + {ZRT) + <zRT) + (ZRT) + <zRT) "' 

BT D 5 4 3 2 1 a 

PV PV PV PV PV PV PV PV 
(ZRT) + (ZRT) + <zRT) + <zRT) + <zRT) + (ZRT) + (ZRT) + (ZRT) 

BT D . S 4 3 2 1 a 

(N-5) 

Multiplying both sides of Equation N-5 by R/VB' we have 

c'f-) 'VBT + p 'VD p ,vs P ,v4 P ,v3 P 'v2 P ,vl 
<rr> v + <zr> v + <rr> v + <zt> v + <zr> v + <zr> v + ZTBT VB D B 5 B 4 B 3 B 2 B 1 B 

p 'Va V p VD p vs p V4 p VJ P v2 
<zr> v = cL> -E + <n> v + <n> v + <zr> v + <rr> v + <zr> v + 

a B ZTBTVB D B 5 B 4 B 3 B 2 B 

(N-6) 

Equation N-6 may be rearranged to the form 



P , V V V 
v t <-> l • ...!! + c cLzT> - cLzT> ' 1 s. ,....Bs + cc!..> - c!..> ' J • ...! 
_j2, • -{ ZT BT VB _ v: ZT ZT 4 VB 
VB p p ' 

c <u> - <u> 1 
D 

p p ' 
· c <zt> - <iT> 1 

D 

p p ' Va 
c <zt> - <rt> l; v"; 

+ } 
p p ' [ <rt> - <rt> ] 

D 

(N-7) 
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The pressure and temperature of the capillary volume V is assumed a 

to be the same as the pressure and temperature of the bomb both before 

and after the expansion valve is opened. Also, v3 = v2 (Figure N-1). 

This allows Equation N-7 to be written as 

. p p , VT V p p , v5 p p , V4 v ·· lZT - <rt> 1 BT <v: + v;> + Cz'T - <rt> l 5 • v;- + lz'T - Cz'T) l 4 • v; 
..E.=-{----------..::;..---------------------------------VB p p ' . 

[if - <rt> 1 
D 

p p ' p p ' V 3 p p ' Vl 
{[TT - <zt> l + Czt - <rt> l } • v + lzf - <rr> l • v +----------~3 ...... __________ 2 ____ B _____________ 1 _____ B} 

p p ' 
Crt - <TT> l 

D 

(N•8) 



In order to calculate the required ratio from Equation N-8, the 

volume ratios V8T/V8, Va/VB, v5/VB' v4tv8, v3/v8, and V1/v8 must be 

known. As these ratios are relatively small the accuracy of their 

determination does not have to be a's great as with other directly 

measured quantities such as pressure and temperature. 

The volume ratio v8T/V8 is by definition the effect of tempera­

ture on the volume of the bomb. It is shown in Appendix H that 

VBT 3 
VB = [l + 9,5 x l0-6(TB - 95)] • F(TB - 95) (N-9) 

The volumes Va• v5 , v4, v3, and v1 were determined by direct 

measuring of the length of capillary tubing between the DPI cell and 

the bomb, The inner volume VB was determined from the scale drawing 

(Figure 2) of the bomb, The results are given in Table N-I. Using 

these ratios the final form of Equation N-8 is thus. 

p p ' p p ' 
V [F(TB - 95) + 0.003868][RT - (RT) ] + 0,01537[ZT - Czf) ] 
~ = -{--------------B-T __________ S + 
VB p p ' 

lzr - <u> 1 
D 

P P' P P' P P' 
o.01s11c"iT - <if> 1 + 0.003194 { c"iT - <u> 1 + err - <rr> 1 l 

4 · · 3 2 

p . p t 

o.003213czf - <zr> 1 _________ 1} 

p p ' 
£TT - <zt> l 

D 

+ 

(N-10) 
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Volumes VB 

cubic inches 5.1542 

Volume 

ratios 

TABLE N-I 

. VOLUMES AND VOLUME RATIOS FOR CAPILLARY CORRECTIONS 

V .. a 

0,01994 

Va/VB 

0,003868 

vs 

0.07923 

VS/VB. 

0,01537 

v4 I v3 

0~01194- I 0.01956 

V4/VB 

0.01511 

ViVB 

0.003794 

v2 

0.01956 

V/VB 

0,003794 

vl 

0,01687 

Vl/VB 

0,003273 

I\) 
I\) 
O'\ 
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Equation N-10 was used in this work to determine the volume ratio. 

A sample calculation is given in Appendix E, 

p p ' The smaller terms in the expression such,as 0,015ll[ZT - (ZT) ] • 
4 

represent the correction for the quantity of gas·tn the interconnecting 

capillary, In order ·to evaluate these terms it is necessary that the 

compressibility factors z5, z4, z3, z2, and z1 be known. For the 

volume ratio calibration these compressibili.ty factors are also 

determined from the known volumetric properties of nitrogen, 

It is worthwhile to point out that the ratio VD/VB is a constant 

for the apparatus and does not change with temperature or with each 

particular sample as different isochors are being run, 

After the volume ratio determination has been completed, the 

interconnecting valve is allowed to remain open for all further com-

pressibility determinations with the apparatus, 

Pressure Corrections for Differences in Vertical Height 

The pressure as determined at the reference mark of the Ruska 

piston gage (Figure N-1) is corrected by the factor -0.366 psi (discussed 

in Appendix B) to yield the pressure at the level of the diaphragm of 

the DPI cell, The pressure correction for the head of gas between the 

diaphragm level and each separate section of the high pressure gas system 

is discussed as follows. 

The pressure correction 6P between any two points 1 and 2, 

separated by a vertical displacement h 1 is given by 

h 
pdh. L f pdh 

gc o 
(N-11) 



where p • the density of the gas between points 1 and 2,and 

g/g = the correction to local acceleration due to gravity, 
C 

If the density is assumed to be constant over the interval ht 

Equation N-11 may be written as 
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AP • ~h (N-12) 
gc . 

P(MW} The density of a gas is given by p • ZRT • Comb:1,ning this express:i.f>n 

with Equation N-12, it is seen that 

/J.P • hP(MW) L 
(12) 3ZRT le 

where AP• the pressure correction, psi 

(N-13) 

h = the vertical displacement between the two points, inches 

P • pressure, psia 

MW• the molecular weight of the gas 

T = temperature, 0 R 

With reference to Figure N-1, it is seen that the pressure P5 of 

the gas in the capillary volume v5 may be calculated from a knowledge 

of the pressure PD at the diaphragm, and the expression 

Cl 6.0(MW) 
= PD + 1728 Z RT 

5 5 

(N-14) 

Similar expressions for the pressures at volumes v4 , v3• v2, and v1 

of the capillary are given by 



229 

P • P [l + 9.002(MW) .&...] 
3 4 1728 z3RT3 le 

(N-15) 

In each case the vertical distance to the centroid of each particular 

section is used. 

Finally the pressure PB at the centroid of the bomb is given by 

· p • p [l + 11.SOO(MW) · .L] 
B 1 1728 ZBRTB gc 

(N-16) 

In the application of the above equations (Equations N-14 through 

N-16) for the calculation of pressure corrections, it is seen that 

these corrections are very small. In the application of Equations 

N-10, N-20, and N"'.'2.1• the above equations are utilized. 

Development of Equations for the Compressibility Factors 

As was discussed in Chapter IV, the volumetric properties of the 

sample along each isochoric path are determined by utilizing the known 

volumetric. properties of the sample at the reference temperature. 

The cryostat is maintained at 77°F, the system is rinsed and 

evacuated, and is then charged to the desired dens~ty with the sample. 

After equilibrium has been attained the temperatures and pressures of 

all portions of the system are measured. 
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Since the interconnecting valve of the system is open, Equation 

N-4, derived previously, applies: 

PV PV PV PV 
n • <zat> + <zat> + <zat> + <zat> + 

BT D 5 4 

(N-4) 

PV. PV PV PV 
<zat>- + <zat> + <za.T> + <zaT> 

3 2 1 a 

Dividing both sides of Equation N-4 by VB gives 

n P VBT p VD p vs p V4 
-= tzRT> v + <zRT> v + <za.T> v + <zaT> v + VB BT B D B S B 4 B 

(N-17) 
P v3 P v2 P vl p V a 

<zRT> v + <zRT> v + <za.T> v + (ZRT) -
3 B 2 B 1 B a VB 

The expr~ssion for VBT/VB has been given in Equation N-9. The 

value for VD/VB is known from calibration, using Equation N-10. Values 
VS V4 V3 V2 Vl Va 

of the volume ratios v• v• v• v• v• and V are given in Table N-Io 
B B B B B B 

Equation N-17 may thus be written as 

D - n - -= - V 
. B 

p p VD 
<zRT> [F(T8 - 95) + 0.003868] + <zaT> v + 

BT D B 

p p p p 
0.01537 (ZRT) + 0.01511 (ZRT) + 0,003794 [ (ZT) + Czr) ] + 

5 4 3 2 

p 
0.003273 <.zaT> 

1 
(N-18) 

The quantity D (defined, as n/VB) was mentioned in Chapter IV. Dis 

not a true density, but a run constant, since the number of moles n 

applies to the entir~ syst~n.i, including the DPI cell, whereas VB 
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•. 

represents the volume of the bomb only. Although Dis not a true density 

it does have a constant value along an iaochor since the total number of 

moles n of the system and the volume VB remain constant, In the 

equations th,-t follow, the overall density for the entire system 

(including the· DPI cell) is not required. 
. ' 

A more .convenient form of Equation N-18 is obtained by making the 

substitutions 

p = D ~ZRT) D D 

p 
• D .(ZRT) 

s 5 

p 
• D4 {N-19) (ZRT) 

4 

p 
• D (ZRT) 

. 3 3 

( p :\ • D m' 2 . 2 

The quantities DBT' ~D' n5 , n4, D3, n2, and D1 a;~ true densities 

by definition, and are not to be confused with the quantity D, With 

these substitutions, Equation N-18 thus becomes 

D • [F(TB - 95) + 0.003868]DBT + 0.01263 DD+ 0,01537 D5 

(N-20) 
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Equation N-20 was the form used in this work for the determination 

·of the quantity D from the reference isotherm. 

For the determination of comp,reBSibility factors along the iso-

chor at lower temperatures, it is convenient to rearrange Equation 

N-20 to the form 

p F(T~ '"". 95) .+ 0.003868 
ZBT .. (RT) [ DEN ] 

. BT 
(N-21) 

Here DEN represents the denominator of the expression in brackets 

and is given by 

DEN. D - 0001263 DD - .0.01537 Ds ~ o.01511 D4 ~ 

00003794 (D3 + D2) - 0.003273 Dl (N-22) 

The quantity D appears in the denominator of Equation N-21. Thus 

corresponding values of PBT and TBT (the preBSure and temperature in 

.the bomb) are sufficient to calculate the compressibility factor ZBT 

for any point on the isochor, Equation N-21 was the form used in. 

this work for the experimental determination of cpmpressibility factorsc 



NOMENCLATURE 

a, A ' a' A' • constants in empirical equations of state 
0 t 0 

A = area of piston at t°C and zero psig 
ot 

~ • effective area of piston 

ATM = barometric pressure 

b, B , b' B' 
0 ' 0 

-B(T) • Leiden second vi~ial coefficient 

B' (T) = Berlin second virial coefficient 

• interaction second virial coefficient 

• coefficient of pressure distortion 

• reduc.ed second virial coefficient 

c, C , c' C' 
0 ' 0 

= constants in empirical equations of state 

C(T) • Leiden third virial coefficient 

C' (T) • Berlin third virial coefficient 

Cijk(T) • interaction third virial coefficient 

C = coefficient of thermal expansion for Ruska piston 

d •density,• 1/V 

D(T) • Leiden fourth virial coefficient 

D' (T) = Berlin fourth virial coefficient 

DBT ·• true density as defined by Equation N-19 

DD • true density as defined by Equation N-19 

DS = true density as defined by Equation N-19 
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E 

F 

g 

HCORR 

n 

N 

p 
0 

• true density as defined by Equation N-19 

• true density as defined by Equati.on N-19 

• true density as defined by Equation N-19 

• true density as defined by ·,Equation N-19 

• isochoric run ~onstant, n/v8• defined by Equation N-18 

• modulus of elasticity in Equation K-4 

• volume correction of bomb, defined by Equation N-9 

• local acceleration du~ to gravity 

• standard acceleration due to gravity 

• parameter in RK equation,• BP/Z 

• vertical displacement in Equation N•ll 

= oil head correction, Equation B-4 

• temperature correction factor, Equation M-1 

• Ruska masses as "apparent mass versus mass" 

• molecular weight 

• number of moles 

• number of components 

• initial value of pressure for Burnett apparatus 
(Equation II-1) 

• r•th value of pressure for Burnett apparatus 

• pressure 

• inner pressure of, constant volume bomb in 
Equation K-18 

• jacket pressure of constant volume bomb in 
Equation K-18 

• reduced vapor pressure 

• pressure of lower chamber of DPI cell, Equation B-5 



POT 

R 

Rt 

R 
0 

T 

u 

V 

V a 

VB 

VBT 

VD 

VI' VII 

vl 

v2 

v3 

V4 

vs 
w 

X 

z 

z 
0 

zo 

Z' 

• potentiometer reading 

• universal gas constant 

• scale reading of Texas Instruments barometer 

• resistance of platinum resistor at temperature t 

• resistance of platinum resistor at 0°C 

• temperature 

• cylinder deformation in Equation K-3 

• molar volume 

• volume of capillary as shown.in Figure N-1 

• total volume of bomb at 95°F 

• total volume of bomb at T°F 

• volume of DPI cell and capillary tubing 

= total volumes, respectively, of the. Burnett 
apparatus bombs 

• volume of capillary tubing as shown in Figure N-1 

• volume of capillary tul;>ing as shown in Figure N-1 

• volume of capillary tubing as shown in Figure.N-1 

• volume of capillary tubing as shown in Figure N-1 

• volume of capillary tubing as shown in Figure N-1 

= actual weight load on Ruska piston 

• composition 

•. compressibility factor,. PV/RT 

= compress~bility factor at pressure p for Burnett 
0 apparatus 

= compressibility factor for a simple fluid in 
Equation III-15· 
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• compressibility factor correction in Equation III-15 



Greek Letters 

a 

a' 

y 

y' 

µ 

p 

w 

Subscripts 

avg 

B,BT 

C 

D 

• constant in BWR equation of state 

= coefficient of thermal expansion in Equation H-5 

= constant in platinum thermometer calibratopm 

= constant in generalized BWll equatfop of state 

= constant in platinum thermometer calibration 

= constant in BWR equation of sta{e 

= constant in generalized JWR equation of state· 

= constant in platinum thermometer calibration 

= finite change in a quantity 

• reduced temperature, T/Tc 

= function in Equation 111~17 

= longitude in Equation L-1 

= Poisson's ratio 

= density 

= normal radial stress in Equation K-1 

= normal hoop stress in Equation K-1 

= summation 

= latitude in Equation L-1 

= accentric factor 

= average value 

• bomb 

= critical property 

= DPI cell 
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E • effective 

i, j, k • component• of a mixture. 

m • mixture 

r • number of expansion for Burnett apparatus 
(Equation 11•1) 

B. • reduced property 

s, 4, 3, 2, l • propertiea of expo1ed . .-pparatus 1ectiona s. 4, 3, 
2 and l, respectively (l'i1ure 1-1)· 

Superscri_pts 

' • property of apparatus before opening expansion value 
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