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CHAPTER I 

INTRODUCTION 

Success or failure? Accept or reject? Yes or no? These are but 

three of the innumerable dichotomous decisions made daily in every 

field of endeavor. While the greatest percentage of these decisions 

are made almost instanteously by humans (and, for the most part, almos t 

as quickly forgotten), an increasing number of the more repetitive of 

them are being quantified and the results made the basis for poli cy 

determination, at times being incorporated directly into equipment . 

This investigation is concerned with such decisions. More partic

ularly, it examines methods for most economically determining the dis

tribution of the random variable which governs the outcome of the pro

blem . Knowledge of this distripution is considered to be available · 

f rom two sources: first, from the extant experience pertaining to it, 

a priori knowledge, and secondly, from samples drawn from the process 

itself . The a priori knowledge is assumed to include not only est i mates 

of the initial state of the governing variable but also predictions of 

its future behavior. It must be possible to categorize the samples 

taken into a dichotomy which parallels the decision space, i . e.: 

acceptable or unacceptable. To this knowledge must be added a third 

essential, a model of the problem which includes the gain or loss asso

ciated with each of the decisions. 

The problem which germinated the investigations of this paper was 

that of an adaptive communication system involving a binary symmetric 
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channel (1), The decision involved was the choice of one of two decod

ing schemes. The probability of correct transmission was the random 

variable concerned and the loss functions were determined by the channel 

entropy. While not treated specifically herein, this problem is embed

ded in the class of problems considered and the developments of this 

study can, with simple modification, be used in its solution. 

From the above, it is evident that the decision problems investi-

gated are subject to the following restrictions: 

a) The process must be amenable to meaningful sampling. 

b) The decision space and the samples must be dichotomous. 

c) The loss functions must be determinable. 

d) A priori knowledge of the governing state of nature, including 

possible change, must be available. 

Within this framework, we will consider first the problem of deter

mining a single optimum sample size when only a priori information is 

available and the state of nature remains the same throughout the period 

of consideration. This problem has been frequently considered for spe

cial cases. Here the method is generalized allowing adaptation to many 

problems and providing a foundation for the subsequent developments. 

The second major development considers an adaptive decision maker . 

That is, there is continuous feedback during the sampling process to the 

decision maker who, after evaluating each sample, can direct the taking 

of another sample prior to the final accept or reject decision. A 

dynamic programming approach is used and again, the state of nature is 

time invariant. The use of dynamic programming in adaptive systems has 

been suggested previously (2), (3) and the sequential sampling problem 

has been widely studied since Wald's initial work in the area (4). 
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The natural meld of dynamic programming with statistical decision theory 

in the sampling problem has also been suggested (5), (6). While neither 

sequential sampling nor the use of dynamic programming in adaptive sys

tems is unique, nothing has been found in the literature regarding the 

use of dynamic programming for sequential sampling decisions of the type 

considered in this paper. 

The last portion of this study involves consideration of the state 

of nature as a stochastic process. The effect of time on the random 

variable involved is described by a difference equation model and the 

resulting distributions of the random variable studied. Finally, these 

results are used in the decision theory formulation to determine practi

cal optimum sampling plans. 

Throughout this paper an example problem from the operations re

search area is included to illustrate the use of the techniques devel

oped. The problem, while relatively simple to facilitate the following 

of the techniques, is general enough to be directly adaptable to a large 

class of extant physical situations and, with minor modification, to 

many other situations both in operations research and other areas. 

Where appropriate, FORTRAN programs for a digital computer have 

been written and used. These programs and certain results from them, 

appear as appendices. 

It is assumed that the reader is familiar with the basic concepts 

of statistical decision theory such as those discussed in Weiss (7) . 

While not a prerequisite, an understanding of the rudiments of dynamic 

programming is helpful (8). 



CHAPTER II 

TIME INVARIANT, SINGLE SAMPLE SIZE DETERMINATION 

The.problem of determining the optimum sample size in the time-in

variant, non-sequential case is merely one of application of statistical 

decision theory techniques. 

For solution, three essentials must be known: 

(l) Set of possible decisions 

(2) Loss function 

(3) Description of nature 

In the binary non-sequential sampling problem, only two decisions are 

possible. These may be called yes - no, go - no go, accept or reject, 

1 or O, etc, bu,t in every case, the two decisions constitute the entire 

d.ecision space and are mutually exclusive. 

The loss functions involved are completeJ,.y determined.by and nor

mally unique to the particula~ problem under consideration. They may 

or may not be determined by the problem solver and, in many cases, in

volve subjective judgements on the part of the individuals tasked with 

making such a determination.· For our.purposes, the example chosen for 

illustrationwi)..l attempt to avoid controversy in the assignment of the 

loss functions. 

Distributions.of the Random Variables 

In this investigation, it · is .considere.d · that nature is completely 
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described by some distribtuion of a random variable, P, the probability 

of one sample being "ac;ceptabl.e". This distribtuion is determined by 

considering the method of sampling. Each sample is discrete, statisti-

cally independent, and can be placep in one of two definite categories, 

say "favorable" or "unfavorable". Letting the random variable A repre-

sent the number of favorable results, the distribution of A becomes the 

familiar Binomial: 

(2.1) 

where xis the total sample size. Note that this considers Pa known 

quantity between zero and one and represents the distribution of A 

given P. Since we are attempting to determine P having sampled x items 

and finding a favorable ones (the sampling experience being denoted&), 

we make use of Bayes Rule: 

Since 
00 

= fAjP;x(alp;x) fp(p) 

fA(a) 

fA = f fAIP;x(ale;x) fp($)d6 
-oo 

this a posteriori density becomes 

~fAIP;x(ale;x) fp(8)d8 
-00 

(2. 2) 

The problem now becomes one of selecting an appropriate a priori distri-

bution, fp (p). 

Since the number of favorable samples is distributed binomially, 

a reasonable candidate is the Beta distribution. It fulfills the 
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criteria of being a continuous distribution as well as having many simi-

larities with the discrete Binomial. 

Letting 

(2.3) 

with O ~ P i 1, 1jl > -1, A. > 1jl - 1, and & indicating the best extant 

prior knowledge about P, aquation 2~2 :'becomes 

(2.4) 

The denominator of 2,4 is recognized as a complete Beta function yielding 

1 

~ea(1-e) 6de = B(a+l,B+l) 
0 

r(a+1)r(e+1) 
:: ------------ (2.5) 

r(a+6t2) 

If a and 6 are non-negati\Te integers, ·say a and b, ,the integral becomes 

1 J. a b a!b! e c1 ... a, .. : de :: ...---.-<a+b+1> ! 
0 

if O! is defined as one. From 2,4 and 2,5, 

for O s p s l, 1jl > -1, 'X > lJ)- 1, a and K non-negative integers. 

(2.6) 

(These 

restrictions on the values of the parameters pertain throughout this 

paper and will no longer be explicitly stated except where necessary 

for clarity.) 

The density of equation 2.7 is again recognized as showing a Beta 

distribution for P which is further, and perhaps the strongest,. argument 

for choosing the Beta as the a priori, 
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When the parameters of the a priori distribution, A and w, are both 

zero, it reduces to the equally - likely or rectangular distribution 

f ( . ) f 1, ospsl 
Pl& p;o,o = l3 elsewhere. (2.8) 

for this initial development, the rectangular form for the a priori dis-

tribution will be assumed. Chapter IV will relax this restriction by 

allowing A and.W to take values.other than zero. 

Since a and x are non-negative integers, equation 2.6 pertains and 

equation 2.7 becomes 

( I ) = (xtl)! pa(l-p)x-a. 
fPI& p a;x,o,o a!(x-a)! (2.9) 

Risk Determination 

Having determined the probability distributions involved in the 

sampling problem, we are now prepared to formulate.the risk functions 

which we will be considering. 

The following notation will be adopted for use throughout this 

paper: 

z = lot size 

X = sample size 

y = nr. I'emaining after sampling 

a = nr, of acceptable samples 

b = nr. of · unacceptable samples 

p = probability of good 

q = ( 1-p)' probability of bad 

DA = decision A (accept, etc) 

DB = decision B (reject, etc) 
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Since sampling occurs prior to the decision the risk incurred during the 

sampling or testing process is normally the same regardless of the even

tual decision. If we know LT, the loss during sampling, we can deter

mine the sampling risk, RT, by calculating the expected value of the 

loss. Since RT must involve the number of samples taken, it is a func

tion of x as well as P. Thus 

(2.10) 

We are now prepared to calculate the risks incurred after sampling. Two 

different risks must be calculated here; one under decision A (accept, 

go, 1, yes, etc) or B (reject, no-go, zero, no, etc). Again, the 

losses, LoA and LoB' are determined by the problem and the associated 

risks are the expected values of these losses. 

and (2 . 11) 

These risks are functions of the variable y and the random variable P, 

Since, in general, y is a function of x (and possibly p), these risks 

can be expressed as functions of p and x, 

Having determined RoA and RoB, we can qetermine what sampling re

sults will be used to choose the best decision by setting up inequali

ties. For decision A, 

and, for B, 
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Since the only random variable involved in these risks is p (a, b, x, 

and y are, after testing, known integers, not random variables), and 

we have, from equation 2.8, the distribution of p given a favorables 

from x samples, these inequalities can be solved for the values of a in 

terms of x which will form the decision boundary. These will be of the 

form 

a S g(x), (2.12) 

the direction of the inequality indicating the decision. For this de-

velopment, with no loss in generality, a> g(x) will be used to choose 

decision A, accept, and as g(x) will choose B, reject, noting that when 

We can now write the expected value of the summation of these 

losses as follows: 

R (x,pl&) =RP (osasx) + RD P (g(x)<asx] + RD P [osasg(x)J 
T A B 

(2.13) 

where & indicates the a priori estimate on P. Since, from equation 2.1, 

A is discrete and binomially distributed, 

P [g(x)<asx] = 1 - P [osasg(x)] 

and 

w 

P [osasg(x)J =~·: pa(l-p)x-a 

a=o 

where w is the "greatest integer function111 of g(x). E(!Uation 2.13 · 

becomes 

1Apostol, T. M., Mathematical Analysis (Reading, Mass., 1957), 
p, 201: "The value of the 'greatest-integer function' of xis the 
greatest integer which is less than or equal to x, denoted by [x]." 
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w 

it Cx,pl&> \,(x) a x-a Rn~~ a P (1-p) • (2.14) 

a=o 

The expected value of this expression must now be considered. Since 

Pis the only random variable involved, this expected value is 
co 

E [Rcx,pl&1 = R(xl&> = ~R(x,el&> fPl&(el&) de 
co - w (2.15) 

= _ _fiR.r + RDA+ (1\ -11iJ to ~) ea(l-9)x-a] de, 

S . a(l e)x-a · · · · h l d · l ince e -. is continuous int e c ose interva zero to one 

when x and a are non-negative integers with asx, the integration and 

summation in equation 2.15 can be interchanged2 yielding 

Performing the indicated integrations and summation results in an 

expression for the total risk as a function of x and w. Since w is a 

function of x, the range of x in terms of w can be found by solution of 

the following inequality: · 

w ~ g(x0 ) < w+l. (2:.17) 

Selection of a value, x0 , within this range will give, upon substitution, 

an R(x0 I&). 

The value of x0 which minimizes R(x0 l&) can usually be found by 

simple techniques of differential calculus. Recalling that the optimum 

2rbid., p. 221. 
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value of x, x t' must be a non-negative integer, allowable values of x op 

near x0 should be substituted in equation 2.16 rot in the expression 

for R(x0 I&~ until that which produces a minimum for R(xl&) is found. 

This then is the optimum sample size in the time~invariant non-sequential 

case if sampling is done. This minimum expected risk with sampling must 

be compared with the appropriate risk when no sampling is accomplished. 

If the latter risk is less than the minimum sampling risk, no samples 

should be taken. 

In summary, the procedure is as follows: 

a) Determine the appropriate losses, ~, LpA and LDB• 

b) Calculate associated conditional risks, R = E [LIP]. 

c) Determine the decision rule. 

d) Find the total risk, R(x,PI&) = l E[R]. 
a 

e) Find the expected value of total risk; 

CIO 

i (xi&) = E [R(x,pl&>J = f R(x,pl&) fPl&(pl&) dp 

-cc 
(2.18) 

1 

=·J l E [E(L)] dp. 
O a 

f) Find the integer value of x which minimizes R(xl&), 

An Alternate Approach 

Howard (5) has developed a general model for solution of problems 

of this nature which could also be used in determining R(xl&). His 

model is based upon two equivalent trees, the "decision tree", and 

"nature's tree". For this problem, these trees take the forms shown in 

Figures 1 and 2. 
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E[R, xa0.p£] 

TEST RESULT ACTION OUTCOME 

Figure l. Decision Tree 

E[R I xaO~t] 

OUTCOME TEST RESULT 'ACTION 

Figure 2. Nature's Tree 

The script E symbol, &, again denotes previous experience which, in 

this case, is the a priori distribution of P, fp. The "test" is the 

selection of the x items to be sampled, the "result" is the number of 

acceptable items, a, of the x, the "action" is the decision, A or B, 

selected as a result of the sampling, and the "outcome" is determined by 

the random variable P. 

Howard shows that the expected risk, given only the a priori of P, 

can be expressed as 

E [Ri&J = s s;s s E [Rix,a,D,P,&] fx,A,D,P i&(x,a,D,pi&) 

X a D P 
(2.19) 

= S fxl&(x) S fAlx& 5 fnlx,A,& S fPlx,A,D,& E [Rlx,a,D,p,&] 
X A D p 
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where :) is a general summation operator over the set or variable on 

which it operates comparable to a Reimann Stieltjes integral. 

His procedure involves.the assign,ing of probabilities to Pl& and to 

AIPx&, in this case fPI& equally likely and fAlxP& binomial as shown in 

· equation 2. L He then finds f PI xA& by use of Bayes Theorem as shown in 

equations 2.2 thru 2.8. By selecting with probability one the best 

test - optimum x, and the best action, decision A or B, dicta.tedby the 

test results, he simplifies the decision tree to that shown in Figure 3. 

f I (GIX) 
A x,e 

Figure 3. 

E [RI Xopf a DoPrPe] 
fp1x,A,o,e 

Modified Decision .Tree 

Arguing that fPlxAD& = fPlxA& when the outcome, P, is governed by 

nature rather than an opponent, he reduces equation 2,19 to 

if~ 

E [RI&] = s fAlx,& s fPlxA& E [Rlxopt•a,Dopt'p,&] 
A 

(2.20) 

Comparison of equation 2.20 with equation 2.18 shows.the same result 

is substituted for E [Rix ·t;a,D t,p,&] since op ·. op 
1 

sf Aix,& s fPlx,A,& = s~f AixP& fPlx,& dp 
A P O A 

An Operations Research Example 

An example illustrating the procedures developed in this chapter 
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and also to be used in subsequent chapters has been chosen from the 

operations research field. 

The problem is as follows: An item is to be manufactured or pro-

cured in lots of size z. The total cost of one item, including material; 

labor, overhead, etc., is C. The item is to be sold or released for use 

for a gain equal to (l+a)C, where a represents the markup or other gain 

factor. A penalty of y times the total gain is forfeited for each defec-

tive item which remains after sampling. The items can be destructively 

tested prior to deciding whether or not to release the remainder of the 

lot at a testing cost of SC per item tested. The number to be tested is 

x, y is the number remaining after testing, (z-x), and Fis the number 

of defectives of they. The random variable Pis the probability of a 

good item, q is (1-p), a is the number of good samples, and bis the 

number of bad samples, The a priori distribution of Pis equally likely 

between zero and one. Decision A is the decision to accept the lot, i.e. 

market y of the items; decision Bis to reject the lot. Salvage value 

is considered negligible. 

Since the loss incurred during testing is independent of whether 

the untested items are accepted or rejected - decision A or B - it will 

be designated as LT. The losses after testing are dependent on the 

decision made and will be designated as L0 and L0 for the accept and 
A B 

reject decisions respectively. 

From the statement of the problem, these losses are as follows: 

LT= x(l+S)C 

L0 = y[C-(l+a)C] + Fy(l+a)C = -q.yC + Fy(l+a)C 
A 
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The expected values of the losses, the conditional (upon p) risks, are. 

RT = E [LT] = E [x(l+l3)C] = x(l+S)C 

RnA = E [LoJ = E [C(Fy(l+ci) -a.y)i =· -qiyC + Cy(l+aHl-p)y 

= Cy [y(l+a)-a-y(l+a)p] 

(2.21) 

(2~22) 

(2.23) 

Since.these risks are functions of the random variable P, the expected 

· value of the risks, RD, when no testing is done (x=O, y=z) and the a 

priori of Pis equally likely,can be easily calculated. 

1 
= J x(l+S)C de = o. 

0 

1 

r C ] Cz IY<ta) - "'·]· ~Alx=o :.: J Cy y(l+a)-a-y6(1ta) de = L ... 
. 0 l 

RD I · = J Cyde = . Cz. 
B x.:o 0 

(2.24) 

(2.25) 

Thus; when no testing is done·, the best decision depends on the value of 

gamma. The lot should be accepted if. 

Substituion from equations 2.24 and 2.25 gives 

or 

y(l+a) 
2 -a <.1 

y < 2. (2.26) 

. .. / 
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Similarly, with no testing, the lot. would be rejected if gamma is greater 

than two, and either decision would yield the same expected risk, Cz, 

when gamma is two. 

To determine which decision is best when we have performed some 

sampling to help determine the distribution of p, we set up a similar 

inequality as the criteria .for choosing decision A: 

< E 

Substituting from equation 2.22 .and 2.23 gives 

.E [Cy(y+ay-a-(l+a)yp)] < E [Cy] 

y(l+a)-a-y(l+a)E[p] < 1 

y(l+~)E[p] > (l+a)(y-1) 

y-1 
E[p].> - • 

y 

(2.27) 

Since the expected value of P desired here is that after sampling, equa"."' 

tion 2.27 becomes 

a > 

a+l > y-1 - -x.+2 y 

(y_;l)x + (y"."2) 
y 

(2.28) 

g(x). 

Note that this equation indicates that, for o$a!:;x, y must be greater 

than one. Similarly, the criteria for choosing the reject decision, B, 

is asg(x). 

The total risk;·R(x,pj&) can be written 

R (x,p I&) :;: ~ + RD P[a>g(x)J + RD P[a$g(x)J 
A . :a 



. = RT + RD +(Rn - RD ) P[a~g(x)] 
A B A 

. ~ 

= C [ (l+S)x + y[y(l+o;)-a.-y(l+cd pl 

+ y (l+a.)(1-y+y.p) P [a ~ g(x)]J. 

w 
Since P [a;::g(x)] = .L.(x)pa(l-p)x-a, where w is [g(x)], i.e.: 

a=o a 

greatest integer function of g(x), the risk becomes 

R (x,p I&) = C [ (l+·S)x + y(y(l+a.)-a.-y(l+a)p] 

+ y(l+a.)(1-y+yl?) ±. r:). pa(l-p)x-a]. 
a=o ~-

17 

(2.29) 

To determine the expected value of this risk as a function of the sample 

size, x, we proceed as in equation 2.15 

1 

R (xi&) = c J [ (l+S)x + y[y(l+a.)-et-y(l+a.)eJ 
0 

. w 
+ y(l+a.)(l-y+y6) ?:o (:) 6a(l-6)x-a J fPl&(6;o,o)d6. 

Substitution of the ap;propriate values, interchanging summation and inte-

gration, and performing the integration (See Appendix A), gives 

R(xl&> + Sx + y(l+a.) 
2 

[r-2 t (x+~1Zx+2) (2x + 4 - 2yx - 2y + rwjJ • (2.30) 

(y-l)x + (y-,2) 
~ince g(x) = y , there exists a range of interger values for 

X S\lCh that 
. '· 

w ~ (y-l)x + (y-2) < w+l 
y 
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for every integer w. Thus 

yw + 2 _ ...J__ < x < yw + 2 
y-1 y-1 - y~l 

Choosing, as a trial value for x, the value 

X 
0 

= yw + 2, 1 
y-1 - y-1 '> 

(2.31) 

we satisfy the inequality for all allowable values of y. 

Solving for w gives 

w = (y-l)x0 -l 
y • 

Substitution in equation 2.30 gives, after some algebra, 

= C [z + Sxo. + (z-x0 )(l+x)(y-x,r··3)} 
. 2y(x0 +2) • 

(2.32). 

(2.33) 

The value of x0 greater than or equal to zero which produces a 

minimum for equation 2.33 is 

x = ~l+a)(y ... l)(z+2)J 112 _2 
o [ 2Sy+a+l · " 

(2.34) 

The value of x0 found by equation 2.34 is an approximation only. 

To find the value of x which minimizes the risk requires substitution 

of i;nteger values of x near x0 . into equation 2.30 choosing as x ' opt'. 

that.which produces the minimum value of R(xl&). If this minimum is. 

less than the risk when no sampling is done (from equation 2.24 if gamma 

is less than two, or 2.25 when equal to or greater than two), a sample 

size xopt should be.taken; otherwise, no samples should be drawn and the 

lot accepted or rejected on the basis of the results of equations 2~24 

· and 2 •. 25. 
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A computer program for determining the optimum-sample size has been 

written to investigate the ·. effects of varying the parameters of this ex-

ample, a, S, y, and z. C was not varied as it has.no effect on the 

sample size but only on the magnitude of the resulting expected risk. 

Table. I _and Figure 4 show the effects of varying alpha and gamma 

when beta and z are constant at two and f'ifty respectively. The values 

of optimum sample size appear in the table and the concomitant risks are 

plotted in the figure. Note .. that.witq y = 1.1, 7, 8, 9, or 10, no sam-

pling would be done regardless of a and the risk is that from equation 

2.24 for y = J,.,1 and from equation 2~25 for the other gamma values. 

Varying beta and gamma produces the results of Table II and Figure 

5 for .x t arid risk respectiveJ..y. Alpha is held constant at 5.0 andz op 

is 50. Again, Y = 1,1 dictates no sampling for all·beta as do certain 

other combinations of beta and gamma. 

Table III shows the values of optimum.sample size when alpha and 

beta are constant (5 and 2 respectively) and gamma.and z.are varied. 

Figure.6 shows the expected risks for certain lot sizes resulting whe11, 

these optimums are used and gamma-is.varied~ In this figure, the risks 

· for the various le;,t sizes appear to·:t:>e nearly equal in the neighborhood 

of.gamma equal 2.3. This area was investigated to determine the actual 

values of gamma and risk wl:lere the various lot size curves intersected •. 

The results of this investigation are tabulated inTable IV. 

The final figures, 7 and 8, show the effects on the risk value when 

the lot size is varied, 8 being merely an expansion of the lower end of 

Figure 7. On both figures, tl1e upper line represents the risk for gamma. 

greater.than two when no testing is done and_gives a pictorial represen-' 

tation of the improvement in expected risk which can.be:attained when 
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TABLE I 

X FOR VARIOUS a AND y opt 

< a == 2, z == so) 

~ ' 
1.1 1. 5 2 3 4 5 6 7 8 9 10 

0 0 0 1 0 0 0 0 0 0 0 0 

1 0 0 1 2 0 0 0 0 0 0 0 

2 0 2 1 3 4 0 0 0 0 0 0 

3 0 2 3 3 4 0 0 0 0 0 0 

4 0 2 3 3 4 5 0 0 0 0 0 

5 0 2 3 3 4 5 0 0 0 0 0 

6 0 2 3 5 4 5 0 0 0 0 0 

7 o· 2 3 . 5 4 5 6 0 0 0 0 

8 0 2 3 5 4 5 6 0 0 0 0 

9 0 2 3 5 4 6 7 0 0 0 0 

10 0 2 3 5 4 6 7 0 0 0 0 
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TABLE II 

X t FOR VARIOUS a AND y 
op . 

(y = 5, Z = 50) 

la'x 1.1 1. 5 2 3 4 5 6 7 8 9 10 

0 0 3 5 .8 12 ll .13 15 17 19 .21 

l 0 2 3. 5 7 6 
.. 

·7 B 0 0 0 

2 o· 2 3 3 4 5 0 0 0 0 o. 

3 0 2 3 3 4 0 0 0 o. 0 0 

4 0 2 l 3 '+ 0 () 0 .o 0 0 

5 0 d l. 2 ,' 0 0 0 0 0 0 0 

6 0 0 J., 2 0 0 0 0 0 0 0 
., 

7 . 0 0 l 2 0 0 0 0 -0 0 0 

·a 0 0 ·1 2 0 .Q 0 0 0 0 0 

9 0 0 ·1, 2 0 o· 0. 0 0 0 0 

10 0 0 l 2 0 0 0 0 0 ·O 0 
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25 0 0 

50 0 2 

75 0 2 

100 0 3. 

150 .o 5 

200· .0 5 

300 0 6 

400· 0 8 

500 0 9 

600 0 .11 

700 0 ll 

800 0 . 12 

900 .0 . 14 .· 

1000 .o . 14 

TABLE III 

xopt FOR. VARIOUS y AND . z .. · 

(a = s, a = 2) . 

2 3 4 5. 6 

l 2 .3 0 0 

3 3 ·. 4 5 .0 

3 5 i+: 6 7 

5 6 a. 6. 7 
., 

7 .a 8 ... 10 B. 

7 9 12 11 13 

9 12 ··12 · 15 13 

ll 14 . 16 .. 16 19 

1~ 17 2.0 20 19 
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sampling ls used. 

TABLE IV 

VALUES OF y AND RISK AT CERTAIN Z 

INTERSECTIONS OF FIGURE 6 

z 50 75 100 150 

2.185 2.263 2,304 2,359 
25 

7.44 9.03 9.54 10.10 
-- 2.334 2.356 2,399 

50 

-- 12,06 12,70 13.82 

-- -- 2. 37.;J.. 2.420 
75 13.57 15. 71 -- --

-- -- -- 2.442 
100 -- -- -- 17.74 
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CHAPTER III 

SEQUENTIAL SAMPLING !N THE TIME INVARIANT CASE 

Having established the method of determining optimum sample size in 

the case where the random variable Pis time invariant and when the 

sample size must.be determined before any samples are taken, we are now 

ready to consider the situation when the decision maker has the option 

of another decision prior to making his final accept or reject decision. 

This other decision can be made after each individual sample has been 

drawn, if desired, and is to eithex- continue sampling orto stop sam

pling. The latter d,ecision of ~ourse implies a choice ··at that sampling 

point of either of the previously described decisions, A or B, accept 

or reject. 

Risk as a .Function of a and x 

In order to examine this probl-em, we must first be able to determine 

the risk involved a$ a function not.only of the sample size, x, but also 

of the number of favorable or unfavorable samples, a orb, encountered 

in the x samples. This can be done for each of the final.decisions, A 

or B, by·taking the expected values of RnA and RoB(as shown. in equations 

2.13 and 2.14)after the sampling experience. 
I 

Thus 

00 

fPI& <ela;x) de+ f R0A fPI& <ela;x) de : (3.1) 
-co 

and 
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so that 

1 

R (a,xlDA) = f 
0 

= (x+l)! pa(l-p)x-a 
a! (x-a)! 

(x+l)! (R +Rn) ea(l-8)x-a de 
a! (x-a)! T A 
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(3.2) 

( 3, 3) 

Perfox-ming the indicated .i,ntegration and similar operation for R(a,x!DB) 

will yield the desired risks as functions of x and a. Having determined, 

by the method described in Chapter II, the values of a which would re-

sult in the choice of decision A or B, we can·calculate the appropriate 

risk for each discrete value of a,.given the value of x. 

= .LR (a,xloB·)·' 
i (a,x) 

R (a,xlDA), 

o < a < g(x) 

g(x.) < a < X 

Probability That Next Sample Is Favorable 

(3.4) 

Consider the case where we have sampled m items and found k favor-

ables. If no more samples were taken, the risk incurred would be 

R(k,m) as shown in equation 3,4, We are interested now, however, in 

the risk incurred if one additional sample is drawn knowing that we have 

experienced k favorables of m samples, . 

To determine this, the probability that one sample will be favor-

able must first be calculated. The distribution governing this single 

sample is the point binomial: 

w 1-'!J.l c<I>, = <I> ( 1-.cp) . = . 
1-cp' 

w·=l 
(3. 5) 

w=O 

Since the¢> in this case is the same as the random variable; P, we can 



write its density function directly from equation 2.8 as 

fPl&<<Plk;m) = (m+l)! l<1-4>)m-k k! (m.;..k)! 
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We are now prepared to find the probability the Q.will equal one 

given the sampling experience. 
00 

P < Q= 1 I & ) = J P CQ= 1) f p I & < <P I k ; m) d <P = 
k+l 
m+2 (3.6) 

Similarly, the probability of Q being zero given the same sampling ex-

perience can be calculated as 

p (Q:OI&) = m-k+l 
m+2. 

The Recursion Relationship 

(3.7) 

Since the value of R(a,x) from equation 3.4 is the risk associated 

with discontinuing sampling after x sampl.es, the decision to continue 

or stop sampling can be made by merely comparing the values of risk asso-

ciated with each d,ecision and choosing that decision which minimizes the 

risk. Having made this "best" decision, the final value of the risk at 

any sampling point is established. 

R(a,x) = min {_R(a,x); R(a,xlcontinue)J 

The value of risk associated with continuing sampling, R(a,xl continue), 

can be calculated as follows: 

R(a,xlcontinue) = P(Q=lj&) R(a+l,x+l) 

(3.9) 

+ P(Q=Oj&) R(a,x+l) 



The decision tree applicable to the determination of R(a,x) is 

shown in Figure 9 fo:r one sampling point, a of x, 

TEST 

P.(A= "1 of ~Ia of x) 

---

RESULT 

· DoPT .-Jll-----o-----· R(Q +I, X + I ) 

ACTION OUTCOME 
j 

Figure 9. Sequential Decision Tree. 
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In the figure, the value of A is dependent on 'the previous decision used 

. to optimize R(a;x), being x if that decis'ion is to be stop· sampling and 

x+l if to_ continue sampling •. When A =x, D. tis the accept or reject . op 

decision and the distribution:is fPl&(pla,x). When A= x+l, :Oopt is the 

continue or stop sampling decis-ion which yielas the indicated risk with 

probability one. 

The Dynamic Programming Solution 

Equation 3.8 is a simplified recursion relation which is amendable 

to solution by dynamic programmina techniq\les (2). 

Consider the case when the sample size, x, is equal to the lot size, 

z. At this point,-it is impossible to continue sampling so that equation 
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3.8 reduces to_ 

osasg(z) 

R(a,z) = R(a,z) = (3.10) 

g(z)<a:sz 

Solution of this equation for all integer values of a between O and z 

gives a starting point for successive solutions of equations 3.9 and. 

3.8. As ~n example, the next step would be calculation of 

R(a,z-lloonti~ue) = :!i R(a+l,z) + =~i R(a,z) (3.11) 

for ever:ry a= o, 1, 2, ••• ; z-1, followed by calculation of R(a,z-1) 

from equation 3.9. 

The calculations are continued for z-2, z-3, etc., until the sample 

size, x, is zero, recording t~e appropriate sampling decision, stop or 

continue, after each R(a,x) is determined. This set of decisions to-

g.ether with the appropriate accept or reject decision at . each stop sam-

pling point constitutes a cc:,~plete policy yielding minimum risk for the 

problem at hand. 

While the individual calculations involved in this type solution 

are quite simple, a very large numb~ of them are required when the lot 

size, z, is appreciable, The.:use of a digital oomputer to assist in the 

policy determination is highly. 'desirable. Including only the probability 
. ' ~-, . 

computations of the next ·sample being acceptable and_igno:ring the com-

parisons involved;:. the :number of individual computations required is in 

excess of z( z+2.). · ·· 

The results of the calculations, the optimum.sequential sampling 

policy, cari best be shown by a graph of the policy. Such a sequential 

sampling diagram plots the sample size, x, versus the·number of favorable 
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results, a, for the reject and accept decision boundaries, the area be-, 

tween representing the continue sampling decis.ion. Such graphs are 

shown in the example which _follows, 

The Operations Research Ex~mple 

'l'he· operatiot:1s research problem described in Chapter II is amenable 
.. 

: to the dynamic programming solution of-. sequential sampling. 

· tion 2.23 _the risk associated with rejecting the lot. is RoB = 

that associated·with acceptance is~·from equation 2.22, 

From equa-

Cy whi_le 

(3.14) 

Using these, the sampling risk, _and the post-sampling distribution of P 

from eq1,1ation 3.2 gives the following risk.s as functions of a and, x: 

. 1 

R(_a,xlDB) = C(x+l)!Sc ( ) + ylea(l-e)x-a de a!(,t-a)! . x 1+13 
. 0 (3.15) 

= C(z+ex) 

1 
_ C(xtl)! 

a! (x.;.a) ! f [x(l+·S) + y [y(l+a.) ·-a -y 

0 

(l+a.le~ ea(l-e)x-a de 

(3.16) 

= C {z+Sx +. (z~x)(l+a) [y(x-a+l) - (x+_2)]) 
· x+2 ~ 

Using the :results of equation 2,30; equation 3.4 becomes 

R(a,x) 6R(a x!n..) 
' '."H ' 

= R(a,&IDa), 

' 

o<a< (y~l)x + (y-2) 
- - y 

(y-l)x + (y-2) 
y <a~x. 

(3.17) 

Using these equations with 3.6 and 3.7, a computer program was 

written to produce data for determination of the optimum seque11tial 
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sampling policy. (See Appendix B). Values of z=50 and 100 with y = 2 

and 5 were used as inputs to this program with alpha constant at 5 and 

beta constant at 2. The complete results are shown in Appendix C. 

Summaries of the results are shown in Figures 10, 11, 12, and 13. 

Discussion of Results 

Of interest is a comparison of the expected risks when a sequential 

sampling plan is used as opposed to the expected risks when an optimum 

sized single sample is taken as described in Chapter II. . These values 

are tabulated in Table V. The values for the sequential case are those 

which result when the sample size becomes zero. In each of the examples, 

sequential sampling indicated an improvement in the expected risk. 

TABLE V 

RISK COMPARISON~ SEQUENTIAL 

VERSUS SINGLE SAMPLE 

Expected Risk 
z .-

Single Sample .Sequential Sampling y 

50 - .40000C - 4.67833C 2 

50 47,14289C 39.95562C 5 

100 -l2.l4285C -21.02375C 2 

100 81. 78579C 68.90867C 5 
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A comparison of the results presented in the figures with seqµential 

sampl,i.ng graphs produced by conventional methods using the Wald (4) tech

nique reveals several differences. The conventional technique, using 

Neyman confidence limits, produces a pair of lines of the same slope 

separating the accept, continue, and reject regions. Thus, the maximum 

number of samples to be taken cannot be predetermined. The statistical 

decision-dynamic programming approach used here eliminates this undesir

able characteristic. As .shown in the figures, each example produces a 

definite maximum number of $amples (in these cases, always less than 

half the lot size) which will be taken under any sampling circumstances. 



CHAPT~R IV 

THE TIME VARYING PARAMETER 

We now consider the case where P describes a stochastic process. 

It will be assumed that the coefficients producing this change.are also 

random variables with some a priori distribution.· This dev~lopment will 

only consider equally spaced sampling intervals, i.e.: samples will be 

taken·at times t + m with m = o, l, 2, 3 ' •• I! • Fux-ther, while p is sub-

ject td-··change .. -;from t to t+l, it is considered time invariant during the 

time $amp ling .i.s being. done. · This, iri effect, means that the time taken 

to accomplish sampling at tirrie tis very small compared to the time in-

terval between t .and t+l. 

The A Priori Beta Distribution 

We must first review the previously developed forms of the distri-

butions on the random variables A, the _number of acceptable samples, and 

P. Consider the a priori distribution of Pas Beta, that is 

(4.l) 

where &p indicates _the pre~sampling a priori·estimate with parameters A 

and 1/J. From Chapter II~ it is recalled that, when the distt>ibuticm of A 

given Pis binomial~ application of Bayes Theorem gives, upon carrying 

out the integration of equation 2.5, 

41 
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( I ) r(x+A+2) Pa+tjl(l-p)x+A-a ... tji 
fpl&1 P a~x,tjl,A = r(a+tjl+l)f(x+A-a-tjl+l) (4.2) 

with &1 denoting the sampling experience, a favorables of x samples, at 

time one. The restrictions stated in Chapter II pertaining to the range 

of equation 4.2, (i.e.: valid for Pin the closed interval [O,l) and 

zero elsewhere), to the permissable values of " and tjl, (i.e.: tjl>-1, 

A>tji-1), and to x and.a being non-negative integers, still hold. 

When considering a time-varying P, equation 4.2 can be W?'itten 

(4.3) 

where the t subscript indicates the value of the variable at time t and 

&t denotes the pre-sampling estimate, &p, and all sampling experiences 

thru time t. This Beta density give the following moments: 

E [P(t)] (4.4) 

E ~(t) • E [P(t)~~ (4.5) 

To further simplify notation, moments will henceforth be su])scri~ted 
0 

with only the variable concerned followed by the integer time. As an 

example, µM 2, would, in this notation, represent the mean of Mat time 2. 

Thus·, equation l.f..4 becomes lJPt and 4.5 is ait• 
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The·Difference Bquation Model 

We now conside:r;' the problem of predicting the distribution of Pat 

time (t+l). The following difference equation .is established: 

P(t+l) - C(t)P(t). (4.6) 

In this equation,.the distribution of P(t+l) and P(t) are assumed to be 

Beta and C(t') is a sample at time t of random .variable'C, independent of 

P, with a priori mean, µC' and variance, a~. The sample values of C, 

C(t), are also considered to be independent so that no learning of C is 

possible. 

To determine the mean of P(t+l), we can write 

E [P(t+l)] = E [C(t)P(t)] 

which, due to independence, is 

" 
µP(t+l) = µC µPt (4.7) 

where the "hat" .i,ndicates an estimate made prior to time t+l. 

A similar procedure gives· 

(4.8) 

We now take advantage of the fact that the distribtuion of Pat time t+l 

is assumed to be Beta when Patt is Beta and A at. t+l is Binomial. 

Thus, our a priori of P for time t+l is of the form 

(4.9) 
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From this, proceeding as for equations 4.4 and 4.5, we can determine 

" 
µP( t+l) = (4.10) 

and 

"2 
0P(t+l) -

( 1.jlt+l +3) (\+1-1.jlt+l +l) 

( ).t+l +2 )2·.(At+l +3) 
(4.11) 

As shown in Appendix D, 1\(t+l) and oi(t+ll are sufficient to determine 

unique values for ).t+l and 1.jlt+l as 

µP(t+l)(l-µP(t+l)) _3 (4.12) 
"2 . 
0 P(t+l) 

and 

" 
-µP(t+l) -l 

(4.13) 

Using the results of equations 4. 7 and 4. 8 in 4 .12 and 4 •. 13 will thus 

give1 the parameters of the a priori distribution 0f P for time t+l in 

terms of the means and variances of P and Cat time t. It should be 

remembered that this was done prior to sampling at time t+l. This is 

1 indicated by the notation &t which indicates all experience; including 
f . 

a priori, thru time t. 

After sampling at time t+l, obtaining at+i favorables fromxt+l 

samples, we find, from equation 4.3 



r xt+l +\+1+2) = _,,~ ________ .,,..,,,.. _____ ....,..~------~-----
r (at+ l + 1/1 t + l +l y xt+l +\+1-at+l ... 1j,t+l +l 

~ "1:+ 1 + ~t+l ( 1-p) Xt+l + 't+1-•t+1 - ,P.,+ ~ ' 

From equation 4.4, the mean of this distribution is 

and its variance, from equations 4.4 and 4.5, 

= µP( t+l )(l-µP( t+l )) 

xt+1+\+1+3 
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(4.14) 

(4.15) 

(4.16) 

Expanding equations 4.15 and 4.16 from the results of equations 4.12 and 

4.13 gives 

µP(t+l) 

A2 · •2 A . A A2 
= at+l0 P(t+l) + µP(t+l) l-µP(t+l) - µP(t+1) 0 P(t+l) 

'\+1°ict+1> + µP<t+1> 1-µect+1>) - 0;<t+1> 

(4.17) 

and 

(4.18) 

Further substitution from equations 4.7.and 4.8 yields 



and 

0 6tµ~t + µ6tµit l-µCtµPt 

06tµit + µCtµPt i-µCtµPt) 

0 2 . = __ __,_µ_P .... ( t_+.,... l_).,...,(._1_-__ µP ... (.t_+_l .... )_)_· ....--
P ( t+ l) 

k2 2 2 2 2 2 J 
xt+l ["ct0 Pt + 0 Ptµct. + 0 ct1,1Pt . 
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(4.19) 

(4.20) 

While these e~pressions seem extremely unwieldy, calculation of 

µP(t+l) anc;l Q';(t+l) is relatively simple if ·carried out step:..by-step. 
A ~2 . 

Fir.§:t, calculate µ(t+l) and aP(t+l) from equations 4.7 and_4.8~ Next, 

calculate \+l and_ 1jlttl from equations 4_.12 _and 4.13. Finally, µP(t+l) 
2 . . 

and O'P(t+l) are computed using 4.15 and 4.16. 

· At this point, the relative weights; wt, implicitly assigned .to the 
A . . 

estimate, µPt' and to the sample result at time t.can be calculated as 

follows: 

= at+ljlt+l 
µP xt+X.t+2 

(4.21) 



Thus 

\., 

and 

t-1 

Lwti = 
i=o 
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(4.22) 

(4.23) 

With these equations, it is possible to find .the weight of any prior 

sampling experience, say at times, by 

(4.24) 

whezie s < t. To.detet1mine the weight of the a priori estimate·of P 

after sampling through time t, 

0 

= -rr(l-Wti) 

i=t 

Summary of the Procedure 

(4.25) 

The entire preceding development for a time-varying Pis summarized 

in the following set of equations: 

" 
µP(t+l) = µCµPt ( 4. 26) 

(4.27) 



;\, t = -1 
0 

µP(t+l) 

2 
0P(t+l) 

-1, t::o 
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(4.28) 

(4.29) 

(4.30) 

(4.31) 

These equations establish a method for predicting the distribution 

of a random variable, P(t+l), when the applicable model is P(t+l) = 

C(t)P(t), ancl binomial sampling is done •. It should be noted that this 

is possible without considering the actual distribution of the random 

variable Cbut merely its a priori mean and.variance. 

Computer Simulation 

A computer simulation program u::;ing the foregoing development was 

written and appears in Appendix E. For the simulation, the Monte Carlo 

method was used which requires an assumption of the density ef C. The 

form f/c) = (d+l)cd was arbitrarily chosen. With this density, P(C_:sc) = 

d+l c · so that, given the probabil.i ty, the value of C is the ( d+ 1) root of 

the probability. Probabilities are obtained using a random number gen-

erator. The number of favorabl,e samples, a, at this sampling time is 



similarly randomly generated using the binomial probability 

Gx) ·a · x-a P (A=a) = p 1 · (1-p') 
a. t t 

with pi= CtµPt' Ct being the previously descJ;>ibed randomly-obtained 

value of C, and llpt being calculated by equation 4.27 • 
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. Results of. this simulation using a constant Si:t.mple size, x, of 100, 

a priori Ao and 1jJ0 o.f 98, and d of 10, appear in Appendix F. The es-
. ' 

timated and calculated means of P(t) together with the calculated va:d-

ance of P(t) are shown in Figure 14. As expected, the figure indicates 

a decreasing variance and generally more accurate estimates as time, and 

thus the number of samples taken, increases. The relatively large dif-

ferencebetween the estimated and calculated mean at time 8 was caused 

by the low value of 'CRAN' randomly generated at that time •. It should 

be noted that this rathel' larg~ perturbation had only minor effects on 

the subseql,lent estimates, .t}le error of which approximated the magnitude_ 

of the errors in the e~timates immediately preceeding time 8. 
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CHAPTER V 

SAMPLING IN THE STOCHASTIC CASE 

. Having developed the methods of Chapter IV for a time-varying bi-, 

.nomial va:riable, we can consider optimum sampling of a stochastic pro-

cess when the sampling is to be done periodica],ly. As in Chapter IV, we· 

will consider the sampling time to·be small in relation to the time be-

tween samples so that Pis time-invariant during any one.sampiing period. 

A posteriori sampling results will also be considered available prior to 

subsequent sample.size decisions. If this were not.the·case, all deci-

sions would be made.on the a priori information, reducing the problem 

to essentially that considered in C)'lapters II and III. 

Sequential Block:'Sampling 

. .· . . . 

The decision tree i?lvolved in the sequential block: sampling situa-

tion is shown in Figure 15 for a two-stage problem. This modified tree 

incorporates the result of the test, the action, and·the outcome into 

one.of two portions of a stage. As .explained in Chapter II, this is 

permissible when the outcome is governed 1::>y nature(as described by fPI&) 

and the decision resulting. in minimum.risk: is selected with probability 

one. In the figure, the sampling results designated a are those which 

would result in acceptance while the b'.s are those which choose rejection 

as the best.decision. That is 
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wher.e g( Xt) is the decision boundary q.escribed in equation 2 .12. DA and 

DB are the accept and reject decisions respectively. The expected risks 

are as follows :. 

E [Rla.,x.,&,~1,nJ = Q:l P (Ai= ai lxi;Ai,~i•~ 

E tlbt,xt,&t-1 'nBJ 

(5.1) 

(5.2) · 

Where·the at and xt are the number.of acceptables and the sample size at 

.time t, &t indicates a priori and sampling experience·through time t. 

As before, &t .irnplies At+l and 1/lt+l' the a priori parameters for the 

Beta density of P for time t+l, calculated as shown in Chapter IV. Each 

of these risks is a function of the random variable P which -exists at 

that stage. The probabilities of A are calculated using the expected 

mean of P calculated by equation 4,26 for the appropriate stage. 

Thus, 

(5.3) 

where 

1\>t = (5.4) 



TEST(t-1) 
Xt-1 

E[Rlbt.1,Xt.1 ,et.2,Da]. 

RESULT(t+I) . TEST(t) 
At-I Xt 

E[RI bt, xt ,e:t.1, De] · 
RESULT( t) 

At 
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Figure 15. Stochastic Sequential Sampling Tree 

To perform these risk calculations, it is first necessary to calcu-

late the A, and~- pairs that result for each path thru the tree up to 
l, 1 

the final stage,. n. This can be done by the methods of Chapter IV. When 

A. and~. for a path have been determined, the appropriate risks for each 
n n 

Possible A for a given X · can then be calculated. When this has been · n · n 

done, theXn for which the summation of all An risks is less than or 

equal to that sum for every other Xn becomes the optimum value for xn~ 

x •. This.is the optimum sequential block sample size for stage n, that 
n 

is, the sampie size which would be seleoted if non-sequential sampling 

was to pe done. For this last stage only, the calculation of optimum 

x can be considerably simplified by adapting the method of Chapter n 
n 

for optimum single sample size determination to this problem. The equa-

tions necessary are developed later in this ohapter in the "Successive 

Block Sampling" section •. When the expected risk, R(xn) from this calcu

lation is found, it must be modified by pl"e-mUltiplication by the apprio-

priate probabilities, i.e. 

a.lx.,L,~J 
1 1 1 iJJ R(x) (5.5) 

n 

'·- .............. 
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Whichever method is used, a numerical value for the risk and an associ-

ated optimum xn result for each value of An-l for which the decision is 

accept. When An-l is a value resulting in rejection, An-l :! g(xn_1 ), 

then the lot is rejected and the sequential testing ends. This is also 

true of all prec~.4ing stages. 

The determination of the optimum xn-l requires the summation of the 

risk values for all the An-l pertaining to that value of xn-l" This is 

done for every xn~l and the one with the lowest expected risk is chosen 

as theoptimum. This is then x 1 for the given value of A 2 and its 
n- n-

concomitant expected risk is the expected risk if the results of testing · 

at t.ime n~2 give that value of A 2• 
. n-

This procedure is repeated down through the tree until an optimum 

value of x0 is determined. The result isari optimum.sequential policy 

when bloc~s of samples are to be taken at discrete time intervals and 

·the single sample size at time t must be determined.after time t-1 but 

before any sampling at-time t. 

While the above procedure for the sequential block sampling case is 

straightforwardand the calculations simple, the number of individual 

Calculations• required is enormous. · If every possible. combination is· 

investigated for an n-stage problem with a lot size of z, as many as 

(' 
z2~\2(n. -1) fJ sets of calculations couid be necessary. As each set of cal-

culations involves solution of six equations for determination of A and 
n. 

1/Jri, plus the probability and risk determination, thil';! m.eans (4z)2(n-l) 

possible computations. 

Fortunately, considerable reduction in this number is possible. 

Most importantly, the.maximum number of samples which will be taken at. 

any one stage will not exceed the optimum value of xtot calculated for 
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z = nz at the greatest P. When C is restricted to the range zero to tot 

one, this is the a priori P. For most realistic problems, this value of 

xtot will be on the order of the square root of ztot· This reduces the 

calculations to approximately (n;)n-l. 

The next reduction is possible by considering the fact that the pro-

biem terminates when a reject decision is made. Thus, no further calcu-

lations are necessary after a reject decision. While the exact number 

of computations eliminated by this is completely dependent on the pro:-<. 

blem, for this general consideration it will be assumed.that· the number 

of acceptable samples must be greater than one-half of the number sampled 

for an "accept" decision. This makes no more than (n~n-l sets of com

putations necessary. For a problem involving a lot size of 100 and ten 

19 stages, this reduces the number of computations required from 5xl0 ·· 

11 to 2.5xl0 • Further reductions are possible when the particular pro-

blem at hand is carefully examined and unnecessar:r computations elimi·~ 

nated but,reduction past one more order of magnitude than already 

achieved would probably not be possible. 

Since each set of computations involves at lea~t 15 multiplications 

and additions, the 100 item, 10 stage problem would require more than 

three year$ to solve on the latest commercially available digital com-

puters such as the IBM 360 series. A state-of-the-art computer designed 

especially for this problem would still require approximately 50 days to 

perform the necessary calculations. 

Thus, while the sequential block sampling problem can be easily 

solved theoretically, practical considerations make this approach imprac-

ticai. We are therefore forced to consider some sub-optimization scheme 

for. solution of the problem. While the sequential block problem can be 
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sub-optimized in many ways, such as considering only two or three stages 

at a time and applying the above development, there is generally little 

to be gained by any sequential sub-optimization vis-a-vis optimization 

at each stage. The following section discusses stage by stage optimiza-

tion when Pis time. varying. 

Successive Block Sampling 

To optimize the sample size to be drawn at time t considering only 

the experience prior tot requires the modification of the development 

of Chapter II in accordance with the method.of a priori parameter deter-

mination of Chapter IV. 

Assuming we have values for the parameters A and~ for time t based 

on experience through time t-.1, 

( 5. 6) 

with the previously described restrictions on pt, A:t and ~t obtaining. 

f ( >I is our present a priori for Pt. After sampling at t, ob-
pt &t-1 

serving at favorable items from a total of xt, our a posteriori density 

is, from equation 4.3,. 

r~xt+At+2) 
fP(t)j&t (plat;xt,At'~t) = r(at+~t+l)r<xt+At-at-~t+l) 

~at+~t (l-p)Xt+At-at-~~ 
(5.7) 

We use this latter density with RnA and· RDB from equation 2.11 to deter

mine the decision boundary, g(xt>, of equation 2~12, again choosing 

at s g( Xt) as the. cri ter:i,a for choosing decisiQ.tl B., reject, and at> g(xt) 
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for the accept decision, A. 

Equation 2.14 becomes 

(5.8) 

This equation implies certain assumptions. First;the risks'involved 

are considered time-invariant. Secondly, the sampling at time tis sta

tistically independent of sampling at past or future times. While this 

latter restriction will remain, the former.will be slightly relaxed in 

the examples. For this general development, to avoid the confusion of 

additional subscripting, the time invariant form will be used. 

With equations 5.7 and 5.8, we can find the expected risk as a 

function of xt: 

00 

i (xtlp,&t-1> = f 
-00 

(5.9) 

E'°t+,;t(l- elxt+Arar,;t d~ 

When R(xtlPt,&t) has been determined by solution of equations 5.9, 

the integer value of Xt which minimizes this risk must be found. Because. 
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of the comparative complexity of the factorial expressions·when At and 

~tare non-zero, an approximation of,the optimum xt_by differential cal

culus is usually not feasible. The most efficient method of solution 

depends upon tl)e form of.the risks, RnA and RnB• Selection of a methed 

of determination must consider that·many reasonable forms.of these 

risks produce an expected risk which is not unimodal, such as in the 

example which follows. As a last resort, when a digital computer is 

available, risk values for all xt'e can.be-calculated and that which 

produces a minimum,chosen. Whenever a computer is used, whatever the 

solution method, care must be exercised in calculation of the factorials 

to insure that the maqhine capacity is net·exceeded. As-an e)tample, 34! 

will_exceed the capacity of an IBM 7040, while 70! will exceed that of 

the IBM 1620. ·This limitation can be circumvented by taking advantage 

of the division by and of factorials in equation 5.9, 

The optimum sample size thus determined becomes.xt, After obse:r;,-
. . 

vation of at acceptable items from the xt samples, the procedures of 

Chapter IV can be utilized to determine the a prieri distribution of. 

P t+l • .With kt+l _and ~t+l' the above, eq1.1,atiops can again be utilized for 

determination of the optimum value of xt+l' 

This procedu;re:sheuld be successively applied until the sampling 

results ind,icate·the reject decision or, in the case where the same 

items are sampled, the lot depleted • 

. Successive Sequential Samp;t.ing 

If we now cons_ider the . case where the sampling at time t is to be 

sequential (as described in Chapter III) rather than that described 

above, we eliminate much of the com:putational·difficulty previously 
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encountered. Here, the future of the problempast·the current sampling 

time, t, does not in general, determine the sample size at t •. Rather, 

the expected risks and the sampling results at time t dictate how many 

samples will be drawn. A possible exc_eption to this would be when the 

risk at time twas .a function of tl:le future sampling results. This 

would require a special formulation, depending on the problem, beyond 

the scope of this study. For our purposes, we need merely modify the 

sequential sampling policy determination of,Chapter III to accommodate· 

the a priori parameters of Chapter IV. 

The determinations of expected risks under each of tl:le final deci-

sions, A and B, as functions of at and xt, can be accomplished by use of 

equation 3.1. Again, the density of Pt given at and xt from equation 

5.7 should be used. Thus, 

and 

r(xt+:\+2) 
R <at,Xt IDA&t) · = T(at+l/Jt+l)r(xt+At-at-:,1/Jt+l) 

1 

~ (R.r - RD~eat+~t(1~e)xt+At-at-$t d6 

0 

1 r cR.r 

(5.10) 

(5.11) 

With these risks, the R(at,xt) can be calculated as in equation 3.4. 
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(5.12) 

where g(xt) is as described above for successive block sampling. 

The probability of the next sample being acceptable give at of xt 

becomes the expected value of Pt when Pt has the density of equation 5.2. 

and 

xt+:>i.t-at-lj)t+l 

xt+:>i.t+2. 

(5.13) 

(5.14) 

The expected risk.incurred if sampling is continued is 

R Cat,xtl,con:tinue) 

(5.15) 

where 

(5.16) 

The policy for time t can J:,e·completely determined·with these equa-

tions and the dynamic programming techniques described in Chapter III. 

After sampling at t~ the results must be observed, and a. :>i.t+l and 

,,. calcu.lated by the method of Chapter IV. "'t+l At this point, it should 
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again be observed that, if the sample results at time t.result in a 

"reject" decision, no further sampling is necessary and the problem for 

this process or lot is terminated. 

If, sampling indicates an accept decision at time t, the sequential 

policy determination is repeated for time t+l and continued for t+2,t+3, 

etc. until a reject decision is made. 

Successive Block Sampling Example 

The example problem of.Chapters II and III can be readily modified 

according to the procedures described above for successive block samp

ling, Recalling from Chapter II. 

RT= C(l+!3)xt 

RnA = Cyt [y(l+a)-a.,-y(l+a)p] 

RnB = Cyt 

we have, with equations 5;6 through 5.9, all that is necessary for 

solution. For this example and for the successive sequential sampling 

example which follows we will consider that we are sampling the same lot 

of items, as, for instance; items subject to deterioration which are 

held in storage. This as opposed to items that are being produced by a 

process wheI'e the process itself is deteriorating. In ·the latter case, 

the lot size is not affected by the number of previous samples taken. 

In the "storage11 case, the number of items remaining after sampling at 

time tis zt - xt, which becomes zt+l' The effect of this is time 

modification of the risk functions. 



The equations of this example are as follows: 

xt!r(>..t+2)r(at+.t+l)r(xt+>..t-at~.t+l) 

at'! r( Wt+l)(xrat) ! r<At-•t+l) Cxt+>..t+2 5 

(y~l)(xt+)..t) + y(l~wt)-2 
y 
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(5.17) 

(5.18) 

(5.19) 

The value of xt which minimizes equation 5.18 is the optimum block 

sample size for this stage of sequence. 

Successive Sequential Sampling Example 

·using the same assumptions as in the above examples, equations for 

the successive sequential sampling can be written. These are as follows: 

p (n=l I&) = 
at+wt+l 

xt+>..t+2 

(5.21) 

(5.22) 

(5.23) 
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With these equations, equation 5.19 for g(xt) and the equations of 

Chapter IV, an optimum successive sequential sampling policy can be found 

using the techniques of Chapter III. 



CHAPTER VI 

SUMMARY .AND CONCLUSIONS 

Summary 

The problem of minimizing the expected risk 0f ·. a dichotomeus · process 

capable of being binomially sampled has been examined. Both the time-in

variant and stochastic cases have been considered and the methods of de

termining optimum sampling policies developed. 

Chapte?' II considered a.time-invariant process when an optimum 

single.sample size was·to be determined·in advance.of sampling. The 

statistical dedsion theory method of selutien as it·applied to this 

problem was explained by first considering the distributions of the 

random variables involved and.then by use of them in formulating the ex

pected risk functions. The Bayesian method of determining probability 

densities was used to quantify the available prior experience.and to 

fo.rm'll,late the c!fter-sarilpling density of the binomial parameter, P. Use 

of the Beta. distribution as· tl1e a priori of.p was proposed because it 

met the parameter criteria and is the Bayesian conjugate.of the distri

bution which applies te the samples, the binomial. The equally likely 

form of the .Beta was chosen for this initial development. 

Thei expected risk involved as a function of the sample size was 

developed.and a.parallel.drawn between the method of t}:lis paper and a, 

second Bayesian based method which oonsiders the distribution and risk 

determination simultaneously •. An example problemwas intr>oduced to 

64 



65 

illustrate an application of th~ preceding development and the effects 

of varying the parameters of the example investigated. 

Chapter III introduced the sequential sampling problem and the 

dynamic programming approacb to its solution in.the time-invariant case. 

The required form for. the expected risks was shown and the necessary 

recursion relation developed. The example was considered in the sequen

tial case, the equations.for it and a digital computer program incorpo

rating them written, and certain results from the program presented in 

graphical form. 

The method of determining probability densities when the random 

variable possessed certain stochastic qualities was .considered in Chap

ter IV. The distribution was assumed to remain Beta. Also assumed was 

a difference equation model for describing its time variation. A method 

for determining the time-modified Beta parameters for successive a priori 

densities was devised and a computer simulation program written and run. 

Finally, the stochastic developments were incorporated into the risk 

determinations in both the single sample and sequential sampling cases. 

The dynamic programming method of determining the optimum sequential 

single sample sizes was outlined. Sub-optimization in this case was. 

also considered and formulated. The sequential sampling method of Chap

ter III was modified to accommodate the stochastic case. Both the suc

cessive block sampling and stochastic sequential sampling developments 

were applied to the example problem and all pertinent equations developed •. 

Conclusions 

A Bayesian approach to the optimum sampling problem when the samples 

are discrete, independent and binomially distributed and the assumed P 
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distributions are Beta yields mathematically feasible and intuitively 

satisfactory results for both.the time-invariant and the stochastic case. 

Dynamic programming can be easily adapted to the problem of.sequen

tial sampling of a binomial variable. When used in conjunction with 

statistical decision theory techniques, it produces a sampling policy 

which, when used with finite lot sizes, results in a decision prior to 

exhaustion of the lot due to sampling. Further, the expected risks in 

the sequential sampling case are less than those in the single sample 

size case. A digital computer is required to feasibly produce a sequen

tial policy by the dynamic programming method. 

The stochastic case is relatively easy to solve conceptually when 

a differepce equation for uniform time intervals is the appropriate 

model and the random variable concerned is Beta distributed. Part of 

the ease .. of this determination is due to the fact that the Beta distri

bution is uniquely determined by its first two moments. 

The dynamic programming approach to the sequential block sampling 

problem, while not difficult.to formulate, results in computations too 

time consuming to be feasible. Sul:;>-optimization is.feasible.and eas,j.ly 

accomplished. 

Successive ~equential sampling produces optimum results in the 

stochastic case as future change in the random variable.does not effect 

present policy determinations. The improvement in expected risk when 

sequential sampling is used in both the time-invariant and stochastic 

situations argues strongly for its adoption whenever possible. 

Suggestions for Further Study 

The example of this study could be made nearly universal if 
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modified to include non-destructive testing~ The major problem would· 

arise in the stochastic case· of testing the same lot where the retu:m 

of only the favorabl~ survivors to the population would bias the subse

quent sampling. 

The· .methods · developed herein should· be. investigated for applicabil

ity when other distributions govern. For the stochastic case, the. 

Bayesian conjugate property and.that.of unique distribution d,etermina

tion by a finite number of determinable.moments are desirable. 

The problem of learning the distribution of the stochastic modifi

cation variable, C, perhaps on the basis of the learned distribut:i,.ons. 

of P, should be investigated. 
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APPENDIX A 

CALCULATION OF R(x!&) FOR THE EXAMPLE 

co 

R(x I&) = r Rp I &(p la,x) fp l&(p) dp 

l 

= f cf1+s)x + y [y(l+a) - a - y(l+a)pJ 

0 

[. y(l+a) = Cl x + Sx t y + yy(l+a) - y - ay - 2 · 

w[.l .1 ~ . ·. . · x a . x-a · x ·. a+l . x-a 
+ y(l+•) E (1-y{~ r p (.1-p) _ dp • YC~)J p (1-p) . dp 

. . a-o. o o 

·. w 

= C >z +. Sx + y(l+a)(y"'.'2) + y(l+a) ~. 111-y) ~! ~! (x-a~ ! l 2 L_ [<x+l). a, (x-a). 
a=o 

(x! )(a+l) ! (~-a);-} J 
+ (x+2)! a! (x-a)1jj 

Bx + y(l+aHy-2) + y(Ha) ~[(l-y) + y(a+l) .lu 
2 · L_ x+l .· (x+2Hx+l)J 

a=o 
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w 

= C(z +ax+ y(l+a;(y-2) + (l+ )~x+2-yx-y+y~) 
l_'. µ Y a~ (x+l)(x+2)~ 

£ y(l+a)(y-2) y(l+a)(w+l) r ywl] = Ct5z + x + 2 + (x+l)(x+2) L+2-yx-y+2J 

= c [z + ex + y(i;a) [y-2+ w+l (2x+4-2yx-2y+yw~D · ~ (x+l)(x+2) ~ 



APPENDIX B 

C 
C FORTRAN PROGRAM 
C 
C SEQUENTIAL SAMP.LING POLICY FOR AN OPERATIONS RESEARCH PROBLEM 
C USING DYNAMIC PROGRAMMING TECHNIQUES - W• c. MCCORMICKeJR. 
C 

C 

DIMENSION RSKEP (2001, RSK(200l 
1 FORMAT (5Fl0.4) 
2 FC.RMATC/3.lHSEQUENTIAL SAMPLING POLICY FOR F5.0el3H TOTAL ITEMS.> 
3FORMATC/51H NR OF NR OF RISK UNDER) 
4 FORMATC53HSAMPLES ONES RISK DECISION OTHER DECISION/I 
5 FORMATCI5el8,Fll•4,15H STOP - REJECTF12~41 
6 FORMATCI5•18tFlle4tl3H CONTINUEF14e41 
7 FORMATC/l 
8 FORMATCI5,18tF11•4tl5H STOP• ACCEPTF12a4t/) 
9 FORMATC9H ALPHA "' F7e4e9H, BETA = F7e4l 

91 FORMAT(8HGAMMA = F7e4tl4Ht MFGe COST°= F8e4l 
10 READ lt C, Ze ALPHA• BETA, GAMMA 

C C IS MFG COST, z rs LOT sriE, AL~HA IS MARK-UP, BETA IS SAMPLING COST 
C GAMMA rs PENALTY FACTOR 
C 

C 

1F (Zl 500, 500t 12 
12 PUNCH 21 Z 

PU~CH 9, ALPHA, BETA 
PUNCH 91, GA~MAe C 
Gl = GAMMA - leO 
G2 = Gl - leO 
EN• (CCZ~Gl> + G2)/GAMMA> + leO 
NREJ = EN 
'- '= i 
RSINT = C*CleO+BETAl*Z 

C INITIAL VALUES OF RSKEP CKEPT RISK! RESULT FROM 100 PER CENT SAMPLE 
C 

C 

DO 11 I= ltNREJ 
11 RSKEP(II c: RSlNT 

NPUN = NREJ •· 1 
PUNCH 5, Lt NPUN, RSJNT, RSINT 
DO 15 IAC = NREJtL . 
IDX = IAC + 1 

15 RSKEP(IOXl = RS INT 
PUNCH 8, L, NREJ, RSINT; RSINT 
PUNCH 7 
DO 50 J = ltL 
Y=J 
X = Z-Y 

C X IS NR OF SAMPLED ITEMS, Y IS NR OF NON-SAMPLED ITEMS. 
C 

C 

XREJ = (((X*Gll + G2lFGAMMA> + leO 
KREJ = XREJ 

C KREJ IS UPPER BOUND FOR REJECT DECISION PLUS ONE - FIX>+ 1 
C 

Cl= C*IZ+CBETA*XI) 
C2 = C*IALPHA+le01*Y/(X+2e0l 
KX = X 
IF IKREJl 27, 27, 16 

16 JIX·= OeO 
DO 25 KR• 1, KREJ 
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C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

KRl = KR - 1 
KR2 • KRl - 1 
A = KRl · 

A IS NR OF ACCEPTABLE SAMPLES 

KlR =KR+ 1 
RSKST = Cl 

72 

RISK INCURRED IF SAMPLING IS STOPPED W/ A ACCEPTABLE OF X SAMPLES 

18 

19 

20 

21 
22 
23 
25 

26 
27 

no 

PlAX = (A+l.Ol/CX+2.01 

PROBABILITY OF NEXT SAMPLE BEING OK GlVEN A o~·s OF X SAMPLES 

RSKCN = RSKEPIKR) +PlAX*IRSKEPIKlRl - RSKEPIKR)) 

RISK INCURRED IF SAMPLING IS CONTINUED 

IF JRSKST - RSKCN) 20t20tl8 
RSK C KR l = RSKCN 
JlX = JIX + 1 
IF IJJX - 1) 20• 21, 19 
PUNCH 6• ~Xt KRlt RSKCN, RSKST· 
GO TO 25 
RSKCKR> '* RSKST 
RSKO • RSKCN 
GO TO 25 . 
IF IKRli 23, 23, 22. 
PUNCH 5, KX, KR2, RSKCKRll, RSKO. 
PUNCH 6• KX, KRl, RSKCN, RSKST 
CONTINUE 
IF IJIX> 27t 2b, 27 
PUNCH 5, KX, KRl, RSKST, RSKCN 
KAX = OeO . 
IF CKX - KREJ> 35, 210, 270 
DO 35 KA= KREJ, KX 
A= KA 
K#1l = KA + 1 
KA2 =KA+ 2 
RSKST =Cl+ Ci*IIGAMMA*(X~A+leO)I - CX + 2~0)l 
PlAX = IA+le0)/IX+2.0I 
RSKCN = RSKEPIKAll + .P\AX*IRSKEPIKA21 - RSKEPIKAl)) 
IF IRSKST-RSKCNI 30,30,28 

28 RSKCKAl) = RSKCN 
PUNCH 6, KX, KA, RStCN, RSKST 
GO TO 35 

30 RSKIKAll = RSKST 
KAX = KAX + 1 
IF IKAX -1) 28, 31, 35 

31 PUNCH 8, KX, KA, RSKST, RSKCN 
35 CONTINUE 

MIND= KX + 1 
DO 40 M = lt MIND 

40 RSKEPIMl = RSKIMI 
PUNCH 7 

50 CONTINUE 
GO TO 10 

500 STOP · 
END 



APPENDIX C 

SEQUENTIAL SAMPLING POLICY FOR so. TOTAL ITEMSe 
ALPHA 11: 5eOOOO, BETA= 2.0000 

GAMMA= SeOOOO, MFG. COST " 10.0000 

NR OF NR OF RISK UNDER 
SAMPLES ONES · RI SK DECISION OTHER DECISION 

50 1+0 1500,0000 STOP - REJECT 1soo.oooo 
50 41 1500,0000 STOP - ACCEPT 1500.0000 

1+9 39 148000000 STOP - REJECT 1500.0000 
49 40 1478.8236 STOP - ACCEPT 1500.0000 

46 39 1460. .• 0000 STOP - REJECT 1479.0589 
48 40 1448.0000 STOP - ACCEPT 1474.0001 

47 38 144000000 STOP - REJECT 1460.0000 
47 39 142503062 STOP - ACCEPT 145002041 

46 37 1420,0000 STOP - REJECT 1440,0000 
46 38 1405.0000 STOP - ACCEPT 1428e0613 

45 36 1400.0000 STOP - REJECT 1420.0000 
45 37 1387,2341 STOP - ACCEPT 1407,8724 

44 35 1360.0000 STOP - REJECT 1400,0000 
44 36 1372,1740 STOP - ACCEPT 1389,7318 

43 35 1360,0000 STOP - REJECT 1373, 7392 
43 36 1313,3334 STOP - ACCEPT 1340.0001 

42 34 1340,0000 STOP - REJECT 1360.0000 
42 35 1296,3637 STOP - ACCEPT 1321,8183 

41 33 1320,0000 STOP - REJECT 1340,0000 
41 34 1282,3256 STOP - ACCEPT 1304.4821 

40 32 1300,0000 STOP - REJECT ~320.0000 
40 33 1271,4286 STOP - ACCEPT 1289,5017 

39 31 1280,0000 STOP - REJECT 1300.0000 
39 32 1263,9025 STOP - ACCEPT 1277,0036 

38 31 1260,0000 STOP - REJECT 1267, 1220 
38 32 1170,0000 STOP - ACCEPT 1197e5001 

37 30 1240.0000 STOP - REJECT 1260,0000 
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37 31 1160.0000 STOP - ACCEPT ll86el539 

36 29 1220.0000 STOP - REJECT 1240.0000 
36 30 115l.6843 STOP - ACCEPT 1174e7369 

35 28 1200.0000 STOP - REJECT 1220.0000 
35 29. 1151.3514 STOP - ACCEPT ll66e2306 

34 27 1180.0000 STOP - REJECT 1200.0000 
34 28 1153. 3334 STOP - ACCEPT 1160.8109 

33 25 1160.0000 STOP - REJECT uao.0000 
33 27 . 1158.6668 CONTINUE 1160•0000 
33 28 1014.2858 STOP -. ACCEPT 1042.8573 

32 26 1140.0000 STOP .. REJECT. 1158.9413 
32 27 1012.9412 STOP - ACCEPT 1039.7649 

31 25 1120.0000 STOP -REJECT 1140.0000 
31 26 1016e3637 STOP. - ACCEPT 1036e0429 

.30 24 1100.0000 STOP - REJECT 1120.0000 
30 25 1025.0000 STOP - ACCEPT 1035.7956 

29 22 1080.0000 STOP - REJECT 1100.0000 
29 23 1oao.oooo STOP - REJECT 1100.0000 

28 22 1060.0000 · STOP - REJECT 10&0.0000 
28 23 1047e4840 CONTINUE 1060.0000 
28 24 84().()000 STOP - ACCEPT 870.0001 

21 22 1040.0000 STOP - REJECT 1050.0736 
27 23 849e6552 STOP - ACCEPT 875•7732 

26 21 1020.0000 STOP - REJECT 1040.0000 
26 22 865.7143 STOP - ACCEPT 883e6454 

25 20 1000.0000 STOP - REJECT 1020.0000 
25 21 888.8889 STOP - ACCEPT 894e2858 

24 19 980.0000 STOP - REJECT 1000.0000 
24 20 910.2565 CONTINUE 920.0000 
24 21 620.0000 STOP - ACCEPT 653.8462 

23 18 960.0000 STOP - REJECT 980.0000 
23 19 924.2052 CONTINUE 960e0000 
23 20 636e0000 STOP - ACCEPT 666•4410 
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22 17 940.0000 STOP - REJECT 960e0000 
22 18 931.6624 CONTINUE 940.0000 
22 19 660.0000 STOP .. ACCEPT 684.0342 

21 17 920e0000 STOP - REJECT 933.4749 
21 18 693.0434 STOP - ACCEPT 707.2456 

20 16 900.0000 STOP - REJECT 920.0000 
20 17 734. 3083 CONTINUE 736.3636 
20 18 327.2727 STOP - ACCEPT 366;o3636 

19 15 880.0000 STOP - REJECT 900.0000 
19 16 765.8686 CONTINUE 791.4285 
19 17 348. 5714 STOP - ACCEPT 385.4206 

( 

18 14 860eOOOO STOP - REJl,::CT 880.0000 
18 15 788.6949 CONTINUE 860.0000 
18 16 380.0000 STOP - ACCEPT 4lle l660 

17 13 840.0000 STOP - REJECT 860.0000 
17 14 803.7065 CONTINUE 840.0000 
17 15 423e 157.9 STOP - ACCEPT 444e5307 

16 12 520.0000 STOP - REJECT 840.0000 
16 13 811.7717 CONTINUE a20.oooo 
16 14 480.0000 STOP - ACCEPT 486.5826 

15 12 500.0000 STOP - REJECT 813.7078 
15 13 538e5479 CONTINUE 552.9411 
15. 14 -64.7058 STOP - ACCEPT •19e9999 

14 11 780.0000 STOP - REJECT 900.0000 
14 12 587.5702 CONTINUE 645e0000 
14 13. -30.0000 STOP - ACCEPT 10.100.8 

13 10 760.0000 STOP_;_ REJECT 180.0000 
13 11 6.26.0561 CONTINUE 760.0000 
13 12 20.0000 STOP - ACCEPT 52.3427 

12 9 740.0000 STOP - REJECT 760.0000 
12 10 654.7584 CONTINUE 740.0000 
12 11 88.5714 STOP - ACCEPT 106•5794 

11 8 120.0000 STOP - REJECT 740.0000 
11 9 674.4295 CONTINUE 120 .• 0000 
11 10 175.6771 CONTINUE 180.0000 
11 11 -120.0000 STOP - ACCEPT -663•0768 

10 7 100.0000 STOP - REJECT 120.0000 
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10 8 685.8221 .· CONTINUE 100.0000 
10 9. 258.8025. CONTINUE· 300.0000 
10 10 -100.0000 STOP.- ACCEPT -645.3602 

9 7 680.0000 STOP - REJECT 689.6888 
9 8 336e4424' CONTINUE 456,3636 
9 9 -,,1.u81 STOP - ACCEPT -612e8S61 

8 6 660.0000 . STOP - REJECT 680eOOOO· 
8 7 405,1540 CONTINUE 660.0000 
8 8 -600,0000 STOP - ACCEPT -561,9920 

. ·. 1 5 640.0000 . STOP - REJECT 660,0000 
7 6 4{)1'7864 CONTINUE 640.0000 
.7 7 -506e6666 STOP. - ACCEPT -48ih3162 

6 .. 4 620,0000 STOP;_ REJECT 640e0000 
6 5 506.3398 CONTtNUE 620e0000 
6 6 -385.6099 CONTINUE.· ... 370,0000 

5 '.3 ,00.0000 STOP .. REJECT 620 .. 0000 
5 .4 5.3Be8141 CONTI.NUE 600.0000 
5 5 -258.1885 CONTINUE -111,ltZBS 

4. .2 sso.0000 $TOP .. REJECT 600e0000 
4 3· 559e2094 CONTINUE 590.0000 
.4 4 '."'125~3547 CONTINUE 120,0000 .· 

3 2 560e0000 STOP ... REJECT 567e5256 
'.3 '.3 lle5581 CONTINUE 560,0000 

2 l 540,0000 STOP - REJECT 560e0000 
2 2 148,6685 CONTINUE 540.0000 

1· 0 520e0000 STOP - REJECT 540.0000. 
1 1 279.112.3 CONTINUE 520.0000 

Q 0 399.5562 CONTJNUE soo.0000 



SEQUENTIAL SAMPLING POLICY FOR 50. TOTAL ITEMS. 
ALPHA~ 5.0000, BETA=. 2.0000 

GAMMA• 2eOOOO, MFG. COST= 10.0000 

NR OF NR·OF 
SAMPLES ONES RISK 

RISK UNDER 
DECISION OTHER DECISiON 

49 
49 

25 1500.0000 STOP - REJECT 
26 · 1soo.oooo STOP - ACCEPT 

24 1480e0000 STOP ·- REJECT 
25 l478e8l36 STOP - ACCEPT 

1500e0000 
1500.0000 

1soo.oooo 
1soo.oooo 

48 24 l460e0000 STOP - REJECT . 1479.4118 
48 25 1455e2000 STOP - ACCEPT 1477•6001 

47 
47 

46 
46 

45 
45 

44 
44 

43. 
43 

42 
42 

41 
41 

40 
40 

39 
39 

38 
38 

37 

23 ·· 1440•0000 STOP - REJECT 
24 1436.3266 STOP - ACCEPT 

23 i420e0000 STOP - REJECT 
24 1410.0000 STOP - ACCEPT 

22 1400.0000 STOP REJECT 
23 1393.617.1 STOP - ACCEPT 

22 1380.oooo · STOP - REJECT 
23 1364e3479 STOP - ACCEPT 

21 1360e0000 STOP - REJECT 
22 1350,6667 STOP - ACCEPT 

21 1340e0000 STOP - REJECT 
22 1318el819 STOP - ACCEPT 

20 1320e0000 STOP - REJECT 
21 1307e4419 STOP - ACCEPT 

20 1300.0000 STOP - REJECT 
21 127le4286 STOP - ACCEPT 

19 1280e0000 STOP - REJECT 
20 1263e9025 STOP - ACCEPT 

19 1260e0000 STOP - REJECT 
20 1224e0000 STOP - ACCEPT 

18 1240.0000 STOP - REJECT 

1460.0000 
1457 .• 5511 

1438.1633 
1432.5001 

1420.0000 
1414.8937 

1396.8086 
l386e9566 

1380.0000 
137.2.0001 

1355.3334 
1340.9092 

1340.0000 
1328.8373 

1313.7210 
1294e2858 

1300.0000 
l285e3659 

1271.9513 
1247.0001 

1260,0000 
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37 19 1220.0000 STOP - ACC.EPT 1241.5385 

36 18 1220.0000 STOP - REJECT 1230.0000 
36 19 1175.7895 STOP - ACCEPT 1198e9474 

35 17 1200.0000 STOP - REJECT 1220.0000 
35 18 1175.6757 STOP - ACCEPT 1197.29.74 

34 17 1180.0000 STOP - REJECT ll87e8379 
34 18 1l26e6667 STOP - ACCEPT 1150e0001 

33 16 ll60e0000 STOP - REJECT ll80e0000 
33 17 ll30e8572 STOP - ACCEPT ll52e5715 

32 16 1140.0000 STOP - REJECT 1145.4286 
32 17 1076.4706 STOP - ACCEPT 1100.0001 

3.1 15 '1120.0000 STOP - REJ.ECT l140e0000 
31 16 1085.4546 STOP - ACCEPT 1107e2728 

30. 15 1100.0000 STOP - REJECT 1102.7273 
30 16 1025.0000 STOP - ACCEPT l048e7501 

29 14 1oeo.oooo STOP - REJECT 1100.0000 
29 lS 1039.3549 STOP - ACCEPT· l06le2904 

28 13 1060.0000 STOP-:- REJECT 1oeo.oooo 
28 14 1059.6775 CONTINUE . l060e0000 
28 15 972e00()0 STOP - ACCEPT 996.00.01 

27 13 1040.0000 STOP - REJECT 1059.8444 
27 14 992.,+138 STOP - ACCEPT 1014. 3271 

26 12 1020.0000 STOP - REJECT 1040.0000 
· 26 13 1016.2069 CONTINUE 1020.0000 

26 14 917e1429 STOP - ACCEPT 94le4285 

25 12 1000.0000 STOP ... REJECT. l018e l737 
25 13 944•4445 STOP - ACCEPT 964.8404 

24 11 980,0000 STOP - REJECT 1000.0000 
24 12 972e22l3 CONTINUE 980e0000 
24 13 860.0000 STOP - ACCEPT 884e6154 

23 11 960e0000 STOP - REJECT 976.2667 
23 12 895.2000 STOP - ACCEPT 91'3.8667 
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22 10 940,0000 STOP -.REJECT 960,0000 
22 11 ,' 927.6000 CONTINUE 940.0000 
22 12 aoo.0000 STOP - ACCEPT 82s.oooo 

21 10 920.0000 STOP - REJECT. 934.0695 
. 21 , 11 844.3478 STOP -.ACCEPT 861.0260 

20 9 900.0000· STOP..; REJECT 920.0000 
20 10 882.1739 CONTl·NUE ,00.0000 
20 11 736e3636 · STOP· - ACCEPT 761.8182 

19 ,_ ·----9 
aao.0000 STOP - REJECT 89le5114 

19: 10 791.4285 SlfOP - ACCEPT 805e797l 

18 8 &60.0000 STOP - REJECT aao.0000 
18 9 835e7142 CONTINUE a,0.0000 
18 .10 668.0000 STOP --ACCEPT 694.0000 

11· B . 840e0000 ·· STOP - REJECT .848e4962 
H 9 ns.7894 STOP.- ACCEPT 747e4436 

16 ... 7 820.0000 STOP - REJECT 840.0000 
16 8 787.8947 · CONTINUE &20.0000 
16 9 ,593~3333 STOP - ACCEPT 620.0000 

15 .7 aoo.0000 STOP - REJECT 804.8916 
15 8 676e4705 STOP - ACCEPT 684.8916 

14 6 78.0,0000 STOP - RE.JECT • 800.0000 
14 7 738e.235~ CONTINUE 780e0000 
i4 8 510.0000 STOP - ACCEPT 537.5000 

13 6 760-eOOOO STOf> .. REJECT 760.5098 
13 7 ,12.0000· STOP - ACCEPT 6l6e5098 

12 5 740.0000 STOP - REJECT 760.0000 
u 6 686e0000 CONTINUE 740.0000 
12 7 4l4e2857 STOP - ACCEPT 442.8571 

11 4 120.0000 STOP - REJECT ·740.0000 
u 5 715e0769 CONTINUE 120.0000 
u 6 539.6923 CONTINUE 540.0000 
11 7 180,0000. STOP - ACCEPT 2Ue8461 

10 4 100.0000 STOP - REJECT 717e9487 
10 5 627.3846 CONTINUE · 100.0000 
10 6 · · 300.0000 ·sTOP - ACCEPT 329.8718 

9 3 .680.0000 STOP -REJECT 100.0000 
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9 4 666.9930 CONTINUE 680.0000 
9 5 448.8112 CONTINUE 456.3636 
9 6 9e0909 STOP - ACCEPT 45.4545 

8 3 660.0000 STOP - REJECT 674.7972 
8 4 557.9021 CONTINUE 660.0000 
8 5 156.oooo· STOP - ACCEPT 184.9790 

7 2 640e0000 STOP - REJECT· 660e0000 
7 3 614.6231 CONTINUE 640.0000 
7 4 334.6231 CONTINUE 353.3333 
7 5 -219.9999 STOP - ACCEPT -179.9999 

6 2 .620.0000 STOP - REJECT 630.4836 
6 3 4.74e6231 CONTINUE 620.0000 
6 4 -40.0000 STOP - ACCEPT -12.0162 

5 l . 600.0000 STOP - REJe;cT 620.0000 
5 2 557e6956 CONTINUE &00.0000 
5 3 180.5527 CONTINUE 214e2857 

.5 4 -557.1428 STOP - ACCEPT -5lle4285 

4 l 5ao.oooo STOP - REJECT 585.8985 
4 2 .· 369.1242 CONTINUE sao.0000 
4 3 -340.0000 STOP -.ACCEPT -31le2442 

3 0 560.0000 STOP - RE..,ECT 580.0000 
3 l 495.6496 CONTINUE 560.0000 
3 2 -56.3503 CONtINUE -4.0000 
3 3 --un.0000 STOP - ACCEPT -1076.0000 

2 0 540.0000 STOP ... REJECT 543.9124 
2 2 -900.0000 STOP - ACCEPT -863.0875 
2 1 219.6496 CONTINUE 540.0000 

1 O· 433 •. 2156 CONTINUE 520.0000 
1 1 -526.7833 CONTINUE -460.0000 

0 0 -46e7833 CONTINUE 500.0000 



SEQUENTIAL SAMPLING POLICY FOR 100. TOTAL ITEMS. 
ALPHA• 5eOOOO, BETA• 2e0000 

GAMMA• 2e0000t MFG. COST= 10.0000 

NR OF NR OF 
SAMPLES ONES RISK 

RISK UNDER 
DECISION OTHER DECISION 

100 
.. 100 

99 
,99 

98 
98 

97 
97 

50 3000.0000 STOP - REJECT 3000.0000 
· 51 3000.oooo STOP - ACCEPT 3000,0000 . 

49 2980e0000 STOP - REJECT 3000e0000 
50 2979,4060 STOP - ACCEPT 3000.0000 

49 29ft0,0000 STOP - REJECT 2979,7030 
5.0 2957,6000 STOP - ACCEPT 2978,8001 · 

48 2940,0000 STOP - REJECT 2960e0000 
49 2938el819 STOP - ACCEPT 2958,7879 

96 lt8 2920,0000 STOP - REJECT 2939,0910 
i:J6 49 2915,1021. STOP - ACCEPT 2936,3266 

95 
95 

94 
94 

93 
93 

92 
92 

91 
91 

90 
90 

89 
89 

88 
. 88 

87 

. 47 · 2900.0000 STOP - REJECT 
48 2896,9073 STOP.., ACCEPT 

47 2080.0000 
4~ 2872,5000 

STOP - REJECT 
STOP -.ACCEPT 

46 2860e.OOOO .STOP - REJECT 
4'7 2a5S.5790 STOP - ACCEPT 

46 2840.0000 STOP - REJECT 
47 2829,7873 STOP - ACCEPT 

45 2820,0000 STOP - REJECT 
46 2814el936 STOP - ACCEPT 

· 45 2800e0000 STOP - REJECT 
46 2786 .. 9566 . STOP - ACCEPT 

44 2780,0000 STOP - REJECT 
45 2772e7473 STOP - ACCEPT 

44 2760.0000 STOP - REJECT 
45 2744e0000 STOP-, ACCEPT 

43. 2740,0000 STOP - REJECT 

2,20.0000 
2917,5259 

2898,4537 
2893,7501 

2880,00.00 
2876,2106 

29,n,1a,s 
285.1,0639 

2840,0000 
2834,8388 

2817,0968 
2808e2610 

2800,0000 
2793e4067 

2776,3737 
2765,3334 

2760,0QOO 
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87 44 2731.2360 STOP - ACCEPT 2751.9102 

86 43 2120.0000 STOP - RE.JECT 2735.6180 
86 44 2700.9091 STOP - ACCEPT 2722.2728 

85 42 2100.0000 STOP - REJECT 2120.0000 
85 43 2689.6552 STOP - ACCEPT 2110.3449 

84 42 2680.0000 STOP - RE.JECT 2694e8276 
84 43 2657.6745 STOP - ACCEPT 267,9.0699 

83 41 2660.0000 STOP - RE.JECT 2680e0000 
83 42 2648.0000 STOP - ACCEPT 2668.7060 

82 41 2640.0000 STOP - RE.JECT 2654.0000 
82 42 2614.2858 STOP - ACCEPT 2635. 7143 

81 40 2620.0000 STOP - REJECT 2640.0000 
81 41 2606.2651 STOP - ACCEPT 2626.9880 

80 40 2600.0000 STOP - REJECT 2613.1326 
80 41 2570.7318 STOP - ACCEPT 2592.1952 

79 39 2580.0000 STOP - REJECT 2600.0000 
79 40 2564.4445 STOP - ACCEPT 2585.1853 

78 39 2560.0000 STOP - REJECT 2572.2223 
78 40 2527.0000 STOP - ACCEPT 2548.5001 

77 38 2540.0000 STOP - RE.JECT 2560e0000 
77 39 2522.5317 STOP - ACCEPT 2543.2912 

76 38 2520.0000 STOP - REJECT 2531.2659 
76 39 2483.0770 STOP - ACCEPT 2504e6155 

75 37 2soo.oooo STOP - REJECT 2520.0000 
75 38 2480.5195 STOP - ACCEPT 250le2988 

74 37 2480.0000 STOP - REJECT 2490.2598 
74 38 2438.9474 STOP - ACCEPT 2460.5264 

73 36 2460.0000 STOP - REJECT 2480.0000 
73 37 2438.4000 STOP - ACCEPT 2459.2001 

72 36 2440.0000 STOP - ACCEPT 2449.2000 
72 37 2394.5946 STOP - ACCEPT 2416.2163 
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71 35 2420.0000 STOP - REJECT 2440.0000 
71 36 2396.1644 STOP - ACCEPT 2416e9864 

70 35 2400.0000 STOP - REJECT 2408.0822 
70 36 2350.0000 STOP - ACCEPT 2371.6668 

69 34 2380.0000 STOP - REJECT 2400.0000 
(,9 35 2353.8029 STOP - ACCEPT 2374e6479 

68 34 2360.0000 STOP - REJECT 2366e9015 
68 35 2305.1429 STOP - ACCEPT 2326.8573 

67 33 2340.0000 STOP - REJECT 2360.0000 
67 34 2311.3044 STOP - ACCEPT 2332.1740 

66 33 2320.0000 STOP - REJECT 2325•6522 
66 34 2260e0000 STOP - ACCEPT 228le7648 

65 32 2300.0000 STOP - REJECT 2,20.0000 
65 33 2268.6568 STOP - ACCEPT 2289e5523 

64 32 2280.0000 STOP - REJECT 2284.3284 
64 33 2214.5455 STOP - ACCEPT 2236.3638 

63 31 2260.0000 STOP - REJECT 22ao.oooo 
63 32 2225.8462 STOP - ACCEPT 2246.7693 

62 31 2240.0000 STOP - REJECT 2242e9231 
62 32 2168.7500 STOP - ACCEPT 2190.6251 

61 30 2220.0000 STOP - REJECT 2240.0000 
61 31 2182.0572 STOP - ACCEPT 2203.8096 

60 30 2200.0000 STOP - REJECT 2201.4286 
60 31 2122.5807 STOP - ACCEPT 2144.5162 

59 29 2150.0000 STOP - REJECT 2200.0000 
59 30 2139.6722 STOP - ACCEPT 2160.6558 

58 28 2160.0000 STOP - REJECT 2180.0000 
58 29 2159.8361 CONTINUE 2160.0000 
58 30 2076.0000 STOP - ACCEPT 2098.0001 

57 28 2140e0000 STOP - REJECT 2159.9195 
57 29 2096.2712 STOP - ACCEPT 2117.2076 
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56 27 2120.0000 STOP - REJECT 2140.0000 
56 28 2118.1356 CONTINUE 2120.0000 
56 29 2028.9656 STOP - ACCEPT 2051.0346 

. 55 27 2100.0000 STOP - REJECT 2119.0842 
55 28 2052.6316 STOP - ACCEPT 2012. 7685 

54 26 2050.0000 STOP - REJECT 2100.0000 
54 27 2076.3158 CONTINUE 2080.0000 
54 28 1981.4286 STOP - ACCEPT 2003.5715 

53 ·-·-26 2060.0000 STOP - REJECT 2078.1914 
53 27 2008.7273 STOP - ACCEPT 2028.0096 

52 25 2040.0000 STOP - REJECT 2060.0000 
52 26 2034.3637 CONTINUE 2040.0000 
52 27 1933.3334 STOP - . ACCEPT 1955.5557 

51 25 2020.0000 STOP - REJECT 2037.2351 
51 26 1964.5284 STOP - ACCEPT 1982.8955 

50 24 2000.0000 STOP - REJECT 2020.0000 
50 25 1992.2642 CONTINUE 2000~0000 
50 26 1884.6154 STOP - ACCEPT 1906.9232 

49 24 1980.0000 STOP - REJECT 1996.2080 
49 25 1920.0000 STOP - ACCEPT 1937.3845 

48 23 1960.0000 STOP - REJECT 1980.0000 
48 24 1950.0000 CONTINUE 1960.0000 
48 25 1835.2000 SlOP - ACCEPT 1857.6000 

47 23 1940.0000 STOP - REJECT 1955.1021 
47 24 1875.1021 STOP - ACCEPT 1891.4286 

46 22 1920.0000 STOP - REJECT 1940.0000 
46 23 1907.5511 CONTINUE 1920.0000 
46 24 1785.0000 STOP - ACCEPT 1807e5001 

45 22 1900.0000 STOP - REJECT 1913.9080 
45 23 1829.7873 STOP - ACCEPT 1844.9719 

44 21 1880.0000 STOP - REJECT 1900.0000 
44 22 1864.8937 CONTINUE 1880.0000 
44 23 1733e9131 STOP - ACCEPT 1756.5219 

43 21 1860.0000 STOP - REJECT 1872.6147 
43 22 1784.0000 STOP - ACCEPT 1797.9481 
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42 20 1840.0000 STOP - REJECT 1860.0000 
42 21 1822.0000 CONTINUE 1840e0000 
42 22 1681.8182 STOP - ACCEPT 1704.5455 

41 20 1920.0000 STOP - REJECT 183le2094 
41 21 1737.6745 STOP - ACCEPT 1750.2791 

40 19 uoo.0000 STOP - REJECT 1820.0000 
40 20 1778.8373 CONTINUE 1900.0000 
40 21 1628.5715 STOP - ACCEPT 1651.4287 

39 19 1780e0000 STOP - REJECT 1789e6768 
39 20 1690.7318 STOP - ACCEPT 1701.8719 

38 18 1760.0000 STOP - REJECT 1780.0000 
38 19 1735.3659 CONTINUE 1760.0000 
38 20 1574e0000 STOP - ACCEPT 1597.0001 

37 18 1740e0000 STOP - REJECT . 1747.9988 
37 19 1643.0770 STOP - ACCEPT 1652.6142 

36 17 1120.0000 STOP - REJECT 1740.0000 
36 18 1691.5385 CONTINUE 1120.0000 
36 19 1517e8948 STOP - ACCEPT 1S4le0527 

35 17 1100.0000 STOP - REJECT 1706el539 
35 18 1594e5946 STOP - ACCEPT 1602.3702 

34 16 1680.0000 STOP - REJEC T 1100.0000 
34 17 1647.2973 CONTINUE 1680e0000 
34 18 1460e0000 STOP - ACCEPT 1483.3334 

33 16 1660.0000 STOP - REJECT 1664.1159 
33 17 1545.1429 STOP - ACCEPT 1550.9730 

32 15 1640.0000 STOP - REJECT 1660.0000 
32 16 1602e5715 CONTINUE 1640e0000 
32 17 1400.0000 STOP - ACCEPT 1423.5295 

31 15 1620.0000 STOP - REJECT 1621.8529 
31 16 1494.5455 STOP - ACCEPT 1498.2165 

30 14 1600.0000 STOP - RE.JECT 1620.0000 
30 15 1557.2728 CONTINUE 1600.0000 
30 16 1337.5000 STOP - ACCEPT 1361.2501 

29 13 1580e0000 STOP - REJECT 1600.0000 
29 14 1579.3256 CONTINUE 1580.0000 
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29 15 1442e5807 STOP - ACCEPT 1443e8417 

28 13 1560.0000 STOP - REJECT 1579.6853 
28 14 1510.9532 CONTINUE 1560.0000 
28 15 1212.0000 STOP - ACCEPT 1296.0001 

27 12 1540.0000 STOP - REJECT 1560e0000 
27 13 1536.3223 CONTINUE 1540.0000 
27 14 1387.3568 CONTINUE 1388e9656 
27 15 1086e8966 STOP - ACCEPT 1113.1035 

26 12 1520.0000 STOP - REJECT 1538.2925 
26 13 1461.8396 CONTINUE 1520.0000 
26 14 1202.8572 STOP - ACCEPT 1226.3960 

25 11 1500.0000 STOP - REJECT !520.0000 
25 12 1491.9969 CONTINUE 1500.0000 
25 13 1327.5525 CONTINUE 1333.3334 
25 14 1000.0001 STOP - ACCEPT 1026e6668 

24 11 1480.0000 STOP - REJECT 1496•3063 
24 l2 1409.7747 CONTINUE l480e0000 
24 13 1129.2308 STOP - ACCEPT 1151.1782 

23 10 1460.0000 STOP - REJECT 1480.0000 
23 11 14't6e2919 CONTINUE l460e0000 
23 12 1263e8919 CONTINUE 1275e2000 
23 13 905.6000 STOP - ACCEPT 932.8001 

22 10 l440e0000 STOP - REJECT 1453. 7172 
22 11 1355.0919 CONTINUE 1440.0000 
22 12 · 1050.0000 STOP - ACCEPT 1069.8172 

21 9 1420e0000 STOP - REJECT 1440.0000 
21 10 1399.3918 CONTINUE 1420.0000 
21 11 1195.9136 CONTINUE 1213.9131 
21 12 801.7392 STOP - ACCEPT 829.5653 

20 9 1400.0000 STOP - REJECT 1410.6327 
20 10 1297•6527 CONTINUE 1400.0000 
20 11 963.6364 STOP - ACCEPT 980.9094 

19 8 1380.0000 STOP - REJECT 1400.0000 
19 9 1351.2632 CONTINUE 1380.0000 
19 10 1122.6918 CONTINUE 1148.5715 
19 11 685.7143 STOP - ACCEPT 714.2857 

18 8 1360.0000 STOP - REJECT 1367.0685 
18 9 1236.9775 CONTINUE 1360.0000 
18 10 868e0000 STOP - ACCEPT 882e3542 
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17 1 1340e0000 STOP - REJECT 1360e0000 
17 8 1301.7262 CONTINUE 1340.0000 
17 9 1042.7789 CONTINUE 1071.8948 
17 10 553.6843 STOP - ACCEPT 583.1579 

16 7 1320.0000 STOP - REJECT 1322.9895 
16 8 1172.2526 CONTINUE 1320.0000 
16 9 760.0000 STOP - ACCEPT 771.0597 

15 6 1300.0000 STOP - REJECT 1320.0000 
15 7 1250.4719 CONTINUE 1300.0000 
15 8 954.0013 CONTINUE 1000.0000 
15 9 400.0000 STOP - ACCEPT 430.5882 

14 5 1280.0000 STOP - REJECT 1300.0000 
14 6 1278.3315 CONTINUE 1280.0000 
14 7 1102.2366 CONTINUE 1280.0000 
14 8 635.0000 STOP - ACCEPT 642.3755 

13 5 1260e0000 STOP - REJECT 1279e3326 
l3 6 ll96e l539 CONTINUE 1260e0000 
13 7 853.0438 CONTINUE 912.0000 
13 8 216.0000 STOP - ACCEPT 248.0000 

12 4 1240.0000 STOP - REJECT 1260.0000 
12 5 1232.6374 CONTINUE 1240.0000 
12 6 1024.5989 CONTINUE 1240.0000 
12 1 485e7143 STOP - ACCEPT 489e0187 

11 4 1220.0000 STOP - REJECT 1237.1683 
11 5 1136.6197 CONTINUE 1220.0000 
11 6 734e4303 CONTINUE 809e2308 
11 7 -12.3076 STOP - ACCEPT 21.5384 

10 3 1200.0000 STOP - REJECT 1220.0000 
10 4 1185.2583 CONTINUE 1200.0000 
10 5 935.5250 CONTINUE 1200.0000 
10 6 298.8332 CONTINUE 300.0000 
10 1 -600.0000 STOP - ACCEPT -559.9999 

9 3 1180.0000 STOP - REJECT ll94e6394 
9 4 1071.7432 CONTINUE 1180.0000 
9 5 588.2385 CONTINUE 683.6364 
9 6 -309.0908 STOP - ACCEPT -273.1515 

8 2 1160.0000 STOP - REJECT 1180.0000 
8 3 1136.6973 CONTINUE 1160.0000 
8 4 829.9909 CONTINUE 1160.0000 
8 5 49.8409 CONTINUE 56.0000 
8 6 -1048.0000 STOP - ACCEPT -1003.9999 
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7 2 l140e0000 STOP - REJECT 1152e2325 
7 3 1000.3834 CONTINUE 1140.0000 
7 4 396.5742 CONTINUE 520.0000 
7 5 -120.0000 STOP - ACCEPT -68,2.0529 

6 1 1120.0000 STOP - REJECT 1140.0000 
6 2 1087.6438 CONTINUE 1120.0000 
6 3 698.4788 CONTINUE 1120.0000 
6 4 -301.2846 CONTINUE -290.0000 
6 5 -1100.0000 STOP - ACCEPT -1650.0000 

5 1 1100.0000 STOP - REJECT 1110. 7554 
5 2 920e8·589 CONTINUE 1100.0000 
5 3 127.1854 CONTINUE 285.7143 
5 .. . -l342e8571 STOP - ACCEPT -1300.3670 

4 0 1080.0000 STOP - REJECT 1100.0000 
4 1 1040.2864 CONTINUE 1080e0000 .. 2 524.0221 CONTINUE 1080.0000 
4 3 -852.8428 CONTINUE -840.0000 
4 .. -2760.0000 STOP - ACCEPT -2699.9999 

3 0 1060.0000 STOP - REJECT 1072.0573 
3 1 833e7807 CONTINUE 1060e0000 
3 2 -302.0968 CONTINUE -104e0000 

' 3 -2432.0000 STOP - ACCEPT -2378.5685 

2 0 1003.4452 CONTINUE 1040.0000 
2 1 265.8419 CONTINUE 1040.0000 
2 2 -1900.0000 STOP - ACCEPT -1899.5242 

l 0 757.5775 CONTINUE 1020.0000 
l l -1178.0526 CONTINUE -960.~000 

0 0 -210.2375 CONTINUE 1000.0000 
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SEQUENTIAL SAMPLING POLICY FOR 100. TOTAL ITEMSe 
ALPHA• 5eOOOO, BETA• 2.0000 

GAMMA• 5eOOOO, MFG. COST• 10.0000 

HR OF NR OF RISK UNDER 
SAMPLES ONES RISK DECISION OTHER DECISION 

100 80 3000.0000 STOP - REJECT 3000.0000 
100 81 3000.0000 STOP - ACCEPT 3000.0000 

99 79 2980.0000 STOP - REJECT 3000.0000 
99 80 2979e4060 STOP - ACCEPT 3000.0000 

98 79 2960e0000 STOP - REJECT 2979.5248 
98 80 2954e0000 . STOP - ACCEPT 2977.0001 

97 78 2940.0000 STOP - REJECT 2960.0000 
97 79 2932.7273 STOP - ACCEPT 1?955.1516 

96 77 2920.0000 STOP - REJECT 2940.0000 
96 78 2912e6531 STOP - ACCEPT 2934.1374 

95 76 2900.0000 STOP - REJECT 2920.0000 
95 77 2893e8145 STOP - ACCEPT 2914.0922 

94 75 2880.0000 STOP - REJECT 2900.0000 
94 76 2876.2500 STOP - ACCEPT 2895.0388 

93 75 2860.0000 STOP - REJECT 2877.0000 
93 76 2837.8948 STOP - ACCEPT 2861-0527 

92 74 2840.0000 STOP - REJECT 2860.0000 
92 75 2819.5745 STOP - ACCEPT 2842.1278 

91 73 2a20.oooo STOP - REJECT 2840.0000 
91 74 2802.5807 STOP - ACCEPT 2823.5279 

90 72 2800.0000 STOP - REJECT 2s20.oooo 
90 73 2786.9566 STOP - ACCEPT 2805.9889 

89 71 2780.0000 STOP - REJECT 2eoo.oooo 
89 72 2772. 7473 STOP - ACCEPT 2789.5367 

88 71 2760.0000 STOP - REJECT 2774.1979 
88 72 2120.0000 STOP - ACCEPT 2743.3335 
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87 70 2740.0000 STOP - REJECT 2760.0000 
87 71 2704.9439 STOP - ACCEPT 2727.6405 

86 69 2120.0000 STOP - REJECT 2740.0000 
86 70 2691.3637 STOP - ACCEPT 2711.7162 

85 68 2100.0000 STOP - REJECT 2120.0000 
'i5 69 2679.3104 STOP - ACCEPT 2696.9593 

84 67 2680.0000 STOP - REJECT 2100.0000 
84 68 2668.8373 STOP - ACCEPT 2683.4003 

83 67 2660.0000 STOP - REJECT 2671.0699 
83 68 2600.0000 STOP - ACCEPT 2623.5295 

82 66 2640.0000 STOP - REJECT 2660.0000 
82 67 2588.5715 STOP - ACCEPT 2611.4286 

81 65 2620.0000 STOP - REJECT 2640.0000 
81 66 2578.7952 STOP - ACCEPT 2598e4855 

80 64 2600.0000 STOP - REJECT 2620.0000 
80 65 2570.7318 STOP - ACCEPT 25860 8352 

79 63 2580.0000 STOP - REJECT 2600.0000 
79 64 2564.4445 STOP - ACCEPT 2576.5132 

78 63 2560.0000 STOP - REJECT 2567.5556 
78 64 2477.5000 STOP - ACCEPT 2501.2501 

77 62 2540.0000 STOP - REJECT 2560.0000 
77 63 2470.1266 STOP - ACCEPT 2493.1646 

76 61 2520.0000 STOP - REJECT 2540.0000 
76 62 2464e6154 STOP - ACCEPT 2483.5638 

75 60 2500.0000 STOP - REJECT 2520.0000 
75 61 2461.0390 STOP - ACCEPT 2475.4Q47 

74 59 2480.0000 STOP - REJECT 2500.0000 
74 60 2459.4737 STOP - ACCEPT 2468.7287 

73 59 2460.0000 STOP - REJECT 2463.5790 
73 60 2352.0000 STOP - ACCEPT 2376.0001 

72 58 2440.0000 STOP - REJECT 2460.0000 
72 59 2349.1892 STOP - ACCEPT 2372.4325 



91 

71 57 2420.0000 STOP - REJECT 2440e0000 
71 58 2348.4932 STOP - ACCEPT 2366e6050 

70 56 2400.0000 STOP - REJECT 2420.0000 
70 57 2350.0000 STOP - ACCEPT 2362.3974 

69 55 2380.0000 STOP - REJECT 2400.0000 
&9 56 2353.8029 STOP - ACCEPT 2359.8592 

68 54 2360.0000 STOP - REJECT 2380e0000 
68 55 2359e0424 CONTINUE 2360.0000 
68 56 2222.8572 STOP - ACCEPT 2247el430 

67 54 2340.0000 STOP - REJECT 2359e2367 
67 55 2225e2174 STOP - ACCEPT 2248e5153 

66 53 2320.0000 STOP - REJECT 2340.0000 
66 5~ 2230.0000 STOP - ACCEPT 2247.1612 

65 52 2300.0000 STOP - REJECT 2320.0000 
65 53 2237.3135 STOP - ACCEPT 2247.4627 

64 51 2280e0000 STOP - REJECT 2300.0000 
64 52 2247.2728 STOP - ACCEPT 2249e6609 

63 50 2260.0000 STOP - REJECT 2280e0000 
63 51 2253.8183 CONTINUE 2260e0000 
63 52 2089.2308 STOP - ACCEPT 2113.8462 

62 50 2240.0000 STOP - REJECT 2255.0740 
62 51 2097.5000 STOP - ACCEPT 2120.0910 

61 49 2220.0000 STOP - REJECT 2240.0000 
61 50 2108.5715 STOP ACCEPT 2124.6429 

60 48 2200.0000 STOP - REJECT 2220.0000 
60 49 2122•5807 STOP - ACCEPT 2130.1384 

59 47 21eo.oooo STOP - REJECT 2200.0000 
59 48 2137.8108 CONTINUE 2139.6722 
59 49 1938.0328 STOP - ACCEPT 1963.9345 

58 46 2160.0000 STOP - REJECT 21eo.oooo 
58 47 2146e2487 CONTINUE 2160.0000 
58 48 1950.0000 STOP - ACCEPT 1974.6588 
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57 o\6 2140.0000 STOP - REJECT 2149.0456 
57 o\7 1965.0848 STOP - ACCEPT 1986.5888 

56 o\5 2120.0000 STOP - REJECT 2140.0000 
56 46 1983.4483 STOP - ACCEPT 1998.2584 

55 41\ 2100.0000 STOP - REJECT 2120.0000 
55 45 2005.2632 STOP - ACCEPT 2009.8004 

54 43 2080.0000 STOP - REJECT 2100.0000 
54 --{: 2023.8723 CONTINUE 2030. 7143 
54 1784.2858 STOP - ACCEPT 1810. 7144 

53 42 2060.0000 STOP - REJECT 2080.0000 
53 43 2035.0979 CONTINUE 2060.0000 
53 44 1803.6364 STOP - ACCEPT 1827.8470 

52 42 2040.0000 STOP - REJECT 2040.1706 
52 43 1826.6667 STOP - ACCEPT 1846.4997 

51 41 2020.0000 STOP - REJECT 2040.0000 
51 42 1853.5850 STOP - ACCEPT l866e9183 

50 40 2000.0000 STOP - REJECT 2020.0000 
50 41 1884•6154 STOP - ACCEPT 1885•5879 

49 39 1980.0000 STOP - REJECT 2000.0000 
49 40 1907.2399 CONTINUE 1920.0000 
49 41 1620.0000 STOP - ACCEPT 1647.0589 

48 38 1960eOOOO STOP - REJECT 1980.0000 
48 39 1921.7920 CONTINUE 1960.0000 
48 40 1648.0000 STOP - ACCEPT 1671.7032 

47 37 1940.0000 STOP - REJECT 1960.0000 
47 38 1929.5896 CONTINUE 1940.0000 
,. 7 39 1680.4082 STOP - ACCEPT 1698.2884 

46 37 1920.0000 STOP - REJECT 1931.7585 
46 38 1717e5000 STOP - ACCEPT 1727.1298 

45 36 1900.0000 STOP - REJECT 1920.0000 
45 37 1756.2766 CONTINUE 1759.5745 
45 38 1408.5107 STOP - ACCEPT 1437.4469 

44 35 1880.0000 STOP - REJECT 1900.0000 
44 36 1784.3964 CONTINUE 1806.9566 
44 37 1441.7392 STOP - ACCEPT 1468.9918 
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43 34 1860.0000 STOP - REJECT 1880.0000 
43 35 1803.5172 CONTINUE 1860.0000 
43 36 1480.0000 STOP - ACCEPT 1502.6561 

42 33 1840.0000 STOP - REJECT 1860.0000 
42 34 1815.0706 CONTINUE 1840.0000 
42 35 1523e6364 STOP - ACCEPT 1538.8214 

41 33 1820.0000 STOP - REJECT 1820.2884 
41 34 1573.0233 STOP - ACCEPT 1577.8568 

40 32 1800.0000 STOP - REJECT 1920.0000 
40 33 1620.0665 CONTINUE 1628.5715 
40 34 1200.0001 STOP - ACCEPT 1230.0001 

39 31 1780.0000 STOP - REJECT 1800.0000 
39 32 1655.1755 CONTINUE 1690. 7318 
39 33 1244.3903 STOP - ACCEPT 1211. 7188 

38 30 1760.0000 STOP - REJECT 1780.0000 
38 31 1680.1404 CONTINUE 1760e0000 
38 32 1295.0000 STOP - ACCEPT 1316e2778 

37 29 1740.0000 STOP - REJECT 1760.0000 
37 30 1696.5219 CONTINUE 1740e0000 
37 !l 1352e3077 STOP ACCEPT l364el278 

. 36 28 1120.0000 STOP - REJECT 1740.0000 
36 29 1705.6752 CONTINUE 1120.0000 
36 30 l4l'Se 7156 CONTINUE 1416e8422 
36 31 9lle5790 STOP - ACCEPT 944.2107 

35 28 1100.0000 STOP - REJECT 1708.7725 
35 29 1470.5729 CONTINUE 1489.1892 
35 30 962el622 STOP - ACCEPT 993.3309 

34 27 l680e0000 STOP - REJECT 1100.0000 
34 28 1515.1838 CONTINUE 1570.0000 
34 29 1020.0000 STOP - ACCEPT 1046.8974 

33 26 1660.0000 STOP - REJECT 1680.0000 
33 27 1548el471 CONTINUE l660e0000 
33 28 1085. 7143 STOP - ACCEPT 1104.8887 

32 25 1640.0000 STOP - REJECT 1660.0000 
32 26 1571.1757 CONTINUE l640e0000 
32 27 1160.0000 STOP - ACCEPT 1167.3201 

31 24 1620.0000 STOP - REJECT 1640.0000 
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31 25 1585.7748 CONTINUE 1620.0000 
31 26 . 1234.7593 CONTINUE 1243.6364 
31 27 616.3637 STOP - ACCEPT 650.9091 

30 23 1600.0000 STOP - REJECT 1620.0000 
30 24 1593.2616 CONTINUE 1600e0000 
30 25 1300.5748 CONTINUE 1337.5000 
30 26 681.2500 stoP - ACCEPT 712.9881 

29 23 1580.0000 STOP - REJECT 1594. 7832 
29 24 1357.2239 CONTINUE l442e5807 
29 25 755.4839 STOP - ACCEPT 781.1412 

28 22 1560e0000 STOP - REJECT 1580.0000 
28 23 140le7792 CONTINUE 1560.0000 
28 24 840.0000 STOP - ACCEPT 855.7740 

27 21 1S40e0000 STOP - REJECT 1560e0000 
27 22 1434e!H46 CONTINUE 1540 .. 0000 
27 23 935.8621 STOP - ACCEPT 936.8585 

26 20 1520.0000 STOP - REJECT 1540e0000 
26 21 1457.1187 CONTINUE 1520.0000 
26 22 1024.9072 CONTINUE 1044.2858 
26 23 251.4287 STOP - ACCEPT 286e5714 

25 19 1500.0000 STOP - REJECT 1520.0000 
25 20 147le0924 CONTINUE 1500.0000 
25 n 1104.9464 CONTINUE 1166.6667 
25 22 333.3334 STOP - ACCEPT 366.0182 

24 18 1480.0000 STOP - REJECT 1500.0000 
24 19 1477.7634 CONTINUE 1480.0000 
24 20 1175.3591 CONTINUE 1304e6154 
24 21 427.6924 STOP - ACCEPT 452.0431 

23 18 1460.0000 STOP - REJECT 1478.3002 
23 19 1235.8400 CONTINUE 1460.0000 
23 20 536.0000 STOP - ACCEPT 547.3191 

22 17 14i+Oe0000 STOP - REJECT 1460.0000 
22 18 1282.5401 CONTINUE 1440.0000 
22 19 652.6401 CONTINUE 660.0000 
22 20 -315.0000 STC'P - ACCEPT -212.5000 

21 16 1420.0000 STOP - REJECT 1440.0000 
21 17 1316.7706 CONTINUE 1420.0000 
21 18 762.1880 CONTINUE 801.7392 
21 19 -228.6956 STOP - ACCEPT -188.7860 

20 15 1400.0000 STOP - REJECT 1420.0000 
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20 16 1340.2319 CONTINUE 1400e0000 
20 17 863.0213 CONTINUE 963.6364 
20 18 -127.2726 STOP - ACCEPT -93e57S1 

19 14 1380.0000 STOP - REJECT 1400.0000 
19 15 1354.4625 CONTINUE 1380.0000 
19 16 953.9186 CONTINUE 1148.5715 
19 17 -8eS714 STOP - ACCEPT 14.1979 

18 14 1360.0000 STOP - REJECT 1360e8469 
18 15 1034.0274 CONTINUE 1360.0000 
18 16 uo. 0000 STOP - ACCEPT 135.8021 

17 13 1340e0000 STOP - REJECT 1360.0'000 
17 14 1102.6533 CONTINUE 1340.0000 
17 15 272.7412 CONTINUE 291.5790 
17 16 -1018e9473 STOP - ACCEPT -970e5263 

16 12 1320.0000 STOP - REJECT 1340.0000 
16 13 ll55e3971 CONTINUE 1320.0000 
16 14 4lle0599 CONTINUE 480.0000 
16 u -920.0000 STOP - ACCEPT -875.4263 

lS 11 1300.0000 STOP - REJECT 1320.0000 
15 12 ll94e ll72 CONTINUE 1300.0000 
15 13 542e4136 CONTINUE 100.0000 
15 14 -900.0000 STOP - ACCEPT -763.4047 

14 10 1280.0000 STOP - REJECT 1300.eOOOO 
14 11 1220.5954 CONTINUE 12so.oooo 
14 12 664.6099 CONTINUE 957.5000 
14 13 -65Se0000 STOP - ACCEPT - 632.1983 

13 9 1260.0000 STOP - REJECT 1280.0000 
13 10 1236.4367 CONTINUE 1260.0000 
13 11 775.8070 CONTINUE 1260.0000 
13 12 -480.0000 STOP - ACCEPT -479.0520 

12 9 1240.0000 STOP - REJECT 1243.1691 
12 10 874.5134 CONTINUE 1240.0000 
12 11 -300.5989 CONTINUE -268.5714 
12 12 - 2154e2856 STOP - ACCEPT - 2095. 7142 

11 8 1220.0000 STOP - REJECT 1240.0000 
11 9 958e8565 CONTINUE 1220.0000 
11 10 -119e8123 CONTINUE -12.3076 
11 11 -2066.1538 STOP - ACCEPT -2011.6943 

10 7 1200.0000 STOP - REJECT 1220. 0000 
10 8 1024.1424 CONTINUE 12 00.0000 
10 9 59.9658 CONTINUE 300.0000 
10 10 -1950.0000 STOP - ACCEPT -1903.9586 
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9 6 1180.0000 STOP - REJECT 1200.0000 
9 7 1012.1036 CONTINUE 1180.0000 
9 8 235.2707 CONTINUE 683.6364 
9 9 -1798e 1817 STOP - ACCEPT -1767•2758 

8 5 1160.0000 STOP - REJECT 1180.0000 
8 6 1104.4726 CONTINUE 1160.0000 
8 7 402.6373 CONTINUE 1160.0000 
8 8 -1600.0000 STOP - ACCEPT -1594.8364 

7 4 1140.0000 STOP - REJECT 1160.0000 
7 5 1122.9818 CONTINUE 1140.0000 
7 6 558.6008 CONTINUE 1140.0000 
7 7 -1377.4847 CONTINUE -1340.0000 

6 4 1120. 0000 STOP - REJECT 1129.3637 
6 5 699.6961 CONTINUE 1120.0000 
6 6 -1135.4740 CONTINUE -995e0000 

5 3 1100.0000 STOP - REJECT 1120.0000 
5 4 819.7830 CONTINUE 1100.0000 
5 5 -873e3068 CONTINUE -528.5714 

4 2 1080.0000 STOP - REJECT 1100.0000 
4 3 913e l887 CONTINUE 1080.0000 
4 4 -591.1251 CONTINUE 120.0000 

3 1 1060.0000 STOP - REJECT 1080.0000 
3 2 979.9133 CONTINUE 1060.0000 
3 3 -290.2623 CONTINUE 1060.0000 

2 0 1040.0000 STOP - REJECT 1060eOOOQ 
2 1 1019.9567 CONTINUE 1040.0000 
2 2 27.2816 CONTINUE 1040.0000 

l 0 1020.0000 STOP - REJECT 1033.3190 
1 1 358.1734 CONTINUE 1020.0000 

0 0 689.0867 CONTINUE 1000.0000 



APPENDIX D 

UNIQUE BETA DETERMINATION BY FIRST TWO MOMENTS 

Proof that the mean and variance of a Beta distribution are suffi-

cient to uniquely determine th~ parameters of the density. 

l. 
(A+l)! 

fp IA,B = A! (B.;.A) ! 

_ A+l 
2 • µ - B+2 

.· 3 ~ . 0 2 _ .. · (A+l)(B-A+l.) 
(B+2) 2 (B+3) 

4 •. From 2, A = µ(B+2) .:.c1 for every A > -1. 

5 • From 3 and 4 , 0 2 = µ(B+2)[B-µ(B+2)+2) = µ(B+2)[(B+2)(1-µ)] 

(B+2)i (B+3) (B+2) 2 ca+3) 

6. From J., B - A> -1 and A> -1 imply B > -2 andµ~ o, so that 

5 becomei;i . a2 = µ ( l'.'"Jl) 
B+3 

7. 

8. 

Since (B+3) > l, 

B = µ(l-µ) -3 
a2 

i.e.: unequal O, 

9. From 4 and B, A= µ(B+2) -1 
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B+3 = µ(1-µ) 
a2 
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10. Since, from land 2, µ # O, 1, A and Bare uniquely determined 

byµ and cr2 as shown in 8 and 9. 



APPENDIX E 

FORTRAN SIMULATION FOR STOCHASTIC 'P' 

C 
C FORTRAN PROGRAM 
C PROGRAM NAME - STOSIM 
C 
C SIMULATION OF A STOCHASTIC PROCESS IN WHICH THE PARAMETER •p• IS 
C DIMINISHING WITH TIME ACCORDING TO THE MODEL PCT+ll • C•PCTle •c• 
C IS ASSUMED TO HAVE THE DENSITY FUNCTION CD+l>C••D• AN A PRIORI 
C BETA DISTRIBUTION OF •P• IS ASSUMEOe - We C. MCCORMICK, JR. 
C 

C 

FORMAT 16Fl0e41 
2 FORMATC70H T A PSI PMU 

l CRAN I 
4 FORMATC70H WT X AMDA PVAR 

l ?RAN /I 
5 FORMAT 116, 19, Fl2e4t 4Fl0e41 
6 FORMAT IF8e5t 17, Fl2e4t 3Fl0.7, Fl0e4t/l 

10 READ l• X, AMOA, PSI, D, TMAX, AAA 

CMU 

CVAR 

EPMU 

EPVAR 

C •X• IS THE NUMBER OF SAMPL~S TO BE DRAWN EACH TIME. AMOA ANO PSI 
C ARE THE PARAMETERS OF THE A PRIORI DISTRIBUTION OF •p•. •D• IS THE 
C COEFFICIENT OF THE ASSUMED DENSITY OF •c•. TMAX IS THE NUMBER OF 
C TIMES SAMPLING IS TO BE DONE. AAA IS ANY TEN DIGIT NUMBER USED FOR 
C RANDOM NUMBER GENERATION. 
C 

C 

IF IX! 500e 500, 11 
11 (MU• CO+ leOl/10 + 2,01 

CVAR • CMU/ICD + 2,01 •CD+ 30011 
EPMU • CPS[+ loOI/CAMDA + 2,01 
EPVAR• CPMU•<l,O - PMU))/CAMDA + 3,01 
JMAX • TMAX 
L • X 
PUNCH 2 
PUNCH 4 

20 DO 50 J • 1, JMAX 
Jl .. J - l 
T • Jl 
RANC • RANDOMCAAAl 
XPON • 1,0/ID + 1.01 
CRAN• RANC••XPON 

C •~RAN• IS THE RANDOMLY GENERATED VALUE OF •C• THAT EXISTS NOW. 
C 

PPRIME • CRAN•EPMU 
C 
C 1 PPRIME• IS THE •P• WHICH EXISTS AT THIS TIME, 
C 

C 

QPRIME • CleO - PPRIMEI 
FAC • 1,0 
PPROB • Cl,0 - PPRIME>•*X 
PRAN • RANDOM (AAA) 

C •PRAN• IS THE RANDOM NUMBER USEp TO DETERMINE THIS •A•, 
C 

PTOA • 1,0 
QTOB • PPROB 
DO 3~ I • 1, L 
A • I 
PTOA • PTOA*PPRIME 
OTOB • QTOB/OPRIME 
FAC • CFAC*IX - A+ loOII/A 
PROBA • PPROB + CFAC*PTOA*OTOBl 
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C 

IF IPROBA - PRANI 35, 38, 36 
35 PPROB = PROBA 
36 IF(IPROBA - PRANI - CPRAN - PPROBII 38t 38, 37 
37 A., A - leO 
38 WTMU • X/CX+AMOA + 2e01 

PMU • CA+ PSI+ leOl/(X +AMOA+ 2e01 
PVAR • CPMU*4le0 - PMUIJ/CX +AMOA+ 3.01 
EPMU • PMU•CMU 
EPVAR • PVAR*CCVAR + CCMU**211 + CCVAR*IPMU**211 
PUNCH 5, Jl t .A, PSI; PMU, CMU, EPMU,. CRAN 
PUNCH 6, WTMU, X, AMOA, PVAR, CVAR, EPVAR, PRAN 

C AMOA AND PSI ARE THE PARAMETERS OF THE tpl DENSITY YIELDING THIS 
C RESULT• CMU AND CVAR ARE THE MEAN AND VARIANCE OF THE A PRIORI 
C Of •c•. PMU AND EPVAR ARE THE ESTIMATES OF MEAN AND VARIANCE FOR 
C THE NEXT •P•o WTMU AND WTVAR ARE THE RELATIVE WEIGHTS OF THE MEAN 
C AND VARIANCE OF THIS SAMPLE ONLY IN RELAUON TO THE PREVIOUS EX-
C PERIENCEo 
C 

AMOA " CIEPMU*CloO - EPMUI 1/EPVARI - 3.0 
50 PSI = CEPMU*IAMOA + 2eOII - loO 

GO TO 10 
500 STOP 

END 
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APPENDIX F 

SIMULATIQN RESULTS 

T A PSI PMU CMU EPMU CRAN 
WT X AMDA PVAR CVAR EPVAR PRAN 

0 81 98.0000 e9000 •9166 e8249 .8385 
.5000(; 100 98.0000 .0004477 ·.0058760 •00513"84 .3183 

1 71 21.3548 .7345 •9166 .· e6733 .9758 
.78680 100 25.0967 · .0015222 .0058760 . e0044583 .0137 

2 60 31.5.4.62 e6238 e9l66 e5718 .· .9234 
.67413 100 46.3378 .0015712 .• 0058760 •0036167 .3589 

3 57 37.1421 .5707 e9166 ·5231 .9599 
· . • 59990 100 64.6940 .0014609 .0058760 .0031504 .7311 

4 49 39e9054 .5045 •9166 •4625 .8541 
.56121 . 100 76e1838 .0013950 .0058760 .0026764 .8235 

5 43 41.4975 .4455 .9166 e4084 .9867 
.52115 100 89.8828 .• 0012807 .0058760 .00.22503 .• 3445 

6 42 42.4457 .4140 .9.16:6 .3795 e9948 
.48456 100 104.3698 .0011699 .0058760 .0019972 .6721 

7 38 4:h3696 · .• 3797 e9166 e3481 .9424 
.4610.3 100 114~9042 .001oeo9 .0058760 .0017620 e6939 

8 23 43.4835 .2962 .9166 .2.715 .7480 
e43900 100 125.7877 .0009112 .0058760 .0012868 .2647 

9 23 40.4762 .2ss1 .9166 .2338 .9895 
.39568 100 150.7283 .0007489 .0058760 .0010161 .2193 

10 20 39.9991 .2215 •9166 •2030 · .9524 
~36322 100 173e3l46· .0006241 .0058760 •000814,6 e36l3 
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