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CHAPTER I 

INTRODUCTION 

lol Statement of the Problemo In the early part of this century, 

the work on noise was mainly theoreticalo Schottky (23) in 1918 first 

reported the shot effect found in temperature-limited vacuum diodes 

caused by the plate current fluctuations. Fluctuations of the voltage 

across a resistor due to the thermal motion of the electrons were dis­

covered by Nyquist (20) in 1928. Four years later in 1932• Williams 

and Thatcher (34) reported noise in excess of thermal noise. Bernamont 

( l) made a thorough study of this type of noise in 19 37 where he found 

a power spectrum of the type 1/fo As semiconductor crystals became 

available, much work went into the theoretical and applied aspects of 

these crystalso In 1951 9 Herzog and van der Ziel (13) were the first 

to report a spectrum of the type C/(1 + f 2 ~2 ) for germanium single 

crystalso As discussed in Chapter II 9 Burgess (3, 49 5) in 1954 pro= 

vided the theory for the magnitude of the mean square fluctuations; and 

two years later, van Vliet and Blok (32) extended the theory to include 

the frequency dependence and introduced the term, generation­

recombination (g~r) noise. Today, the entire history and theories of 

g~r noise are well summarized (6, 15 9 17 9 26 9 29• 30 9 31); and much of 

the theory has been verified by experimental evidence (6). In this 

thesis 9 a unique tool is developed for testing some of the features of 

g~r noise. The lifetime 0 and apparent doping may be varied in a 

l 



controlled and reversible mannero For example• the lifetime was varied 

by a factor of 10 3; and the crystal changed from n top and back to no 

2 

Secondly, a new type of noise spectrum has been found in gamma­

irradiated crystals which is not explainable by the older theories and 

should open the door for further refinement in the noise theory of semi• 

conductors with traps and recombination centerso 

lo2 Scope of Investigationo With the use of monoenergetic l4o7 

MeV neutrons and GOco gamma rays. variations in the lifetime of a 

germanium single crystal of up to 103 and apparent doping changes from 

n type top type have been accomplishedo As can be seen from the 

theory in Chapter II 1 these are the most important parameters in the 

g-r noise theoryo By annealing, these changes have been reversed so 

that the original properties of the crystal are once more obtainedo The 

methods used in this process are such that 1/f type noise has been vir­

tually eliminated from the noise studies (in the frequency range used, 

20 Hz to lo5 MHz)o The crystal dimensions and surface properties re­

main the same through the experiment within the measurement 

capabilities a 

Noise measurement techniques for determining the spectra have been 

used for measuring noise at very low amplitudes with an amplifier whose 

Req is 95 ohms (this corresponds to Oa04 µVin a bandwidth of 1 KHz) 

and with good accuracy using a wave analyzer with only a 6075 Hz band­

width (see Appendix A)o Spectra with a l/(1 + w2 T2) dependence have 

been obtained in germanium single crystals with cutoff frequencies 

(si (f cutoff)/Si (f + 0) = l/2) down to 88 Hz which, to the author 9 s 

knowledge, is the lowest reported to dateo The details of these methods 



are given in Chapter IIIo 

Further confirmation of the g ... r noise theory is given by the 

experimental results discussed in Chapter IVo In addition• spectra are 

presented which indicate a resonance effect occurring in a gamma­

irradiated p .. type crystal. This effect is not explainable by either 

the present g•r noise theory or the theory of ambipolar drift. An 

explanation of this effect has not been attempted, but it probably will 

have to make use of the fact that irradiation creates recombination 

centers with a multiple level structure in the forbidden band with 

overlapping wave functions. 

3 



CRAFTER II 

THEORY OF GENERATION-RECOMBINATION NOISE 

IN A SEMICONDUCTOR 

2ol Introductiono A treatment of g•r noise with three and more 

reservoirs of electrons and holes (levels), based on the theory of 

stationary Markoffian processes, has been given by van Vliet (30) and 

van der Ziel (26)o Since no original work on the theory of g*r noise 

is presented in this thesis, only an outline of the pertinent aspects 

of g ... r noise is given 9 together with the underlying assumptions: 

(a) The noise is not necessarily Gaussiano 

(b) The fluctuations are from a non-equilibrium, steady-state 

value (n0 ) o 

(c) The system is linear; ioeo 9 its responses to external forces 

are linear in these forceso 

A critical examination can be found in Chapter VII of Burgess (6)0 

2o2 Method of Solving Markoff Random Processeso We will now con­

sider the fluctuations caused by generation and recombination of elec­

trons and holes in a semiconductor with recombination centers at a 

single energy level lying in the forbidden band as shown in Figure 

2o2olo 

Let the rate of generation be g(n) when there are n carriers in 

the conduction band and the rate of recombination be r(n)o For a near 

4 
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intrinsic n-type semiconductor with N0 donors, we will take with Burgess 

g(n) = 'Y r(n) = cSpn 

where y and cS are constants. Burgess (3• 49 5) was the first to find 

the mean square fluctuation~ 

< lm2 > 
no Po =----

Ee 

I 
0--- Er 

Ev I 
+ + 

Figure 2o2olo Semiconductor Forbidden Band With Recombination Center 

If the concentration of one type of carrier is very small 9 then 

we have either< 6n2 > = n0 or< An2 > = p00 which is the fluctuation 

of a Poisson distribution (implies independence of events). Lax (18 9 

19) shows that the distribution in lifetimes results in an exponential 

decay of the carrier concentration as given by: 

< An(t) > = An0 exp= t/t 

where An(t) is the fluctuation at time t and An0 is the fluctuation at 



time t = Oo The autocorrelation function follows as 

< 6n(t) 6n > = < 6n2 >exp• t/T · 
0 

The important Wiener-Khintchine theorem can then be applied to the 

correlation function to obtain the spectral density as followsg 

00 

S(f) = 4 / < 6n(t) 6n0 > cos (wt) dt 
0 

which results in 

S(f) 

Van Roosbroeck and Shockley ( 2 8) have found that the direct tran-

sitions between the valence and conduction band result in lifetimes> 

100 ms in Ge at room temperatureso These are never found in practice 

because of lattice imperfectionso 

If one of the two transitions involving the recombination center 

results in a much larger T than the other transition, then a simple g=r 

spectrum follow~ (see van Vliet (29)) where the T happens to be the 

Shockley=Read lifetimeo 

One can readily convert Equation 20206 to Si(!)• the spectral 

density of the current noise, by noting that 

The fluctuation of the current follows as 

< 6i2 > = q2 µ2 (l + b)2 < 6n2 
p 0 

6 
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where b: µn/µp and where we have used the fact that An0 = b.p0 o Apply= 

ing Equations 2.2o7 and 20208 to the Wiener~Khintchine theorem, Equation 

2o2o5 results in 

= 4 12 . (? + 1)2 o no Po 
de (bno + Po)2 no+ Po l + (on) 2 

The spectral density of the thermal noise Si(R) or Nyquist (20) 

noise 9 as it is often called 9 is given as 

2 By applying the principle of detailed balance (np = n.) and the 
1 

Einstein relation D = µkT/q in conjunction with Equations 2o2o9 and 

2o2ol0• we can readily arrive at the noise ratio nr as given in Equation 

where 

S1(I) = spectral density of current noise (A2s) 

S1(R) = spectral density of thermal noise (A2s) 

b = µn/µp = ratio of electron and hole mobilities 

q = electron charge (lo6 X 10 .. 19 As) 

Wa = cross section of the crystal (m2 ) 

1dc = direct current through the crystal (A) 

DP = diffusion coefficient of holes (m2 /s) 

ni9 D9 p = intrinsic, electron 9 hole concentrations (m-3) 

,: = Shockley=Read lifetime (s) 



8 

The equations in this thesis are always in the MKS system; whereas, 

for convenience, numbers are sometimes given in other units Ct in µs• 

mobilities in cm2/Vs, etc.)o 

2o3 Multilevel Generation-Recombination. A very elegant treatment 

to multilevel g=r noise using a thermodynamic approach has been given 

by van Vliet (29)o Figure 2o3ol illustrates the energy level distribu• 

tion under consideration. 

Pji Pij 

Pij = transition probabilities (sec· 1 ) 

Ek(mk): k~th energy level with a concentration of electrons= nk 

Figure 2o3olo Multilevel Energy Distribution 

. 
The variances of the carrier fluctuations (a) are given by the 

generalized g=r theorem as 

T 
a < a a > + < a a > a = - B 

edl!I _._ --*" ... 

where< 2.!:. > is the matrix with elements< ai aj >o The elements of 

matrix a are given by -
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s 

ait = j ! 1 (a Pij/a a1 - a Pij/a a1)0 (2o3o2) 

j ~ j 

and.the elements of matrix Bare given by -

(i ; j) 

The superscript o means the equilibrium rateso A matrix C is then -
found which diagonalizes a with the eigenvalues of a being the elements - -
of the diagonal matrix -r~ 1 lo The spectral density is then given by· 

From this it can be seen that the resultant spectra will always be 

relatively smooth with no peaks or resonanceso 

In this derivation, the a 9s are taken as independent (no inteI""' 

action with each other)o It should be noted that interacting levels in 

the forbidden zone could produce something totally different from the 

relatively smooth superposition of simple g=r spectrao Taking the 

special case for a semiconductor with only one recombination center and 

letting the direct transitions between valence and conduction bands 

have very low probability so that they may be neglected (which is the 

actual case in Ge) 0 then Equation 2o3o5 takes the following form for 

the spectral densities of< An2 >, < Ap2 >•and< An Ap >: 



10 

(2.3.7) 

where l means that a similar term is added with • 1 and • 2 inter-
192 

changed and i 0 is N (l + n1/n0 )- 1 where N is the number of centers. 

Figure 2o3o2 shows a calculated example for Gi where 
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CHAPTER III 

EXPERIMENTAL ARRANGEMENTS 

.~."t Genera_.!:,_J?roced}lre pf the Experiments o The noise signals are 

generated in a single crystal which is mounted in a thermostatically-

controlled chamber. They are amplified and passed through a wave ana-

lyzer which selects a narrow frequency range and rectifies the resultant 

output. The rectified output voltage is displayed on a built-in volt-

meter for the 3 KHz to 1.5 MHz wave analyzer, is integrated (see Appen-

dix A)~ ahd subsequently displayed on an external voltmeter for the 20 

Hz to 50 KHz wave analyzer. A block diagram is outlined in Figure 

FILAMENT PLATE REGULATED 

SUPPLY SUPPLY 
POWER 

SUPPLY 

I I 
WAVE PRECISION 

CRYSTAL INPUT VACUUM 
CHAMBER 

,__ 
AMPLIFIER ANALYZER - INTEGRATOR ,___ 

TUBE 20-50000 H~ VOLTMETER ,___ ------, 
I 

I 

NOISE CRYSTAL WAVE 
TEMPERATURE DIODE CURRENT .___ ANALYZER 

CONTROL -CONTROL SO.URGE 3KHi! -L5 MHi! CIRCUIT 

Figure 3o l. lo Block Diagram of Experimental Arrangement for Noise 
Studies 

12 
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~!\,,2 . ~permostatically-Contpollec:l. Charnbero. The crystal to be 

measured is placed in a copper chamber which is well shielded, both 

electrically and thermallyo The temperature of the chamber is sensed 

by a Fenwall thermal switch which controls the power via a transistor .. 

ized regulator to a 100 .. watt heating element located in the chambero 

Thermal damping is provided between the heating element and the thermal 

switch (by partial insulation) to critically damp the system. For 

cooling 9 either dry ice or natural ice is placed in the chamber and the 

temperature controlled with the heating element. The chamber tempera­

ture is controlled to ±o.2°c for temperatures above room temperature 

and ±0.5°C for temperatures below room temperature. 

The entire copper chamber is suspended in a system (with low 

mechanical resonance frequency ( about 2 Hz)) to prevent external vibra .. 

tions from affecting the measurements. Figure s.2.1 shows the amplifier 

and copper chamber with the suspension system. The DC feeding resis­

tors are placed inside the copper chamber as shown in Figure s.a.1. A 

floating power supply is used for the DC crystal current, and the 

current leads are routed through the amplifier to eliminate external 

noise pickup. 

3o3 Input ,AmJ2lifie£.2,_ A common input amplifier is used to drive 

both the high .. frequency and the low ... frequency wave analyzer. This 

amplifier is illustrated in Figure 3o3olo The first tube is a selected 

EBlOF, which is a Phillips (Amperex) tube made in Holland. This tube 

is capable of operating with a Sm of 5 O mA/Vol t; but • in order to obtain 

a good compromise at high and low frequencies, an operating point was 

chosen which resulted in a Sm of 33 mA/Volt. The theoretical equivalent 



Figure 3.2.1. Amplifier and Suspended Copper Chamber 
a. Amplifier c. Suspension Hose 
b. Copper Block d. Thermometer ...... 

~ 



CRYSTAL 
.CHAMBER 

CRYSTAL 
CURRENTt 

t,1 

JI 

R1e 

I 
1 
I 
] 
l 
l 
I 
I 

R1 - IOOK 

R2-221K 

H3-JM 

~-47K 

Rs-820 

\ 
l~I 

5722 ~ 17 E·81 OF ~-. 
,·-·c · . .LI I I MM 
~ l ~ C4, f ....... _____ [:_::_,.+ 125 

· E·810F E88CC 

'12 
R1.3 

R4 

Cg c1 
Ru 

R3 R7 

Ca 

Rs - 5.6 Rn - IOOK R16- 75 .Cz-0.5µ.F C7 - 20µ.F C13 - 0.5µ.F 

R1 -IOOK R12-5to R17- !OK C3.-20µ.F Ca - 1000µ.F C14 - 20µ.F 

Rs -!OK R13-2.2K Ria- !OK TO IM C4 -60µ.F C9 - 0.5µ.F T1 - TRIAD G IOI 

R9 -IK 

R1o-56 

R14- 180 R19- 10K TO IM C5 ~0.5µ.F C10 - 100µ.F lf - 10 TURNS 

R15.,.510 C1 -0.5µ.F C6 -1000µ.F C11 - 4µ.F ( '" . '--1! ) T DIA. X 2 L 
· C1_2 - 20µ.F L2 - 23.5µ.H_ 

FiguJ:1e 3o3elo Input Amplifier and Crystal Chamber Wiring Diagram 

.... 
(J1 



noise resistance (Req) for a pentode is given by Glassford (12) as 

where 

R = 2 o 5 ( l + ,8 Isg 
eq gm · Sm ) 

I 9 g = screen grid current 1 (A) 

im = transconductance (A/V) 

The first tube is operated with an Isg = lol mA which results in a 

calculated Req of 104 ohmso By comparing the tube noise with the 

Nyquist (20) noise 

v2 = 4 kT R !J.f 

where 

k :.: Boltzmann's constant ( joule/°K) 

T = temperature (OK) 

R = (equivalent) resistance (ohms) 

IH = effective bandwidth (Hz) 

V : RMS voltage referred to input (V) 

Req: 95 ohms was obtained which is <:lose to the calculated valueo At 

lower frequencies g l/f noise occurs o At 40 Hz II the Req has increased 

to 950 ohmso 

16 

Metal film and wire=wound resistors are used in the grid, cathode 9 

and plate circuits of the input stageto prevent any excess noise from 

these elementso A small inductor is connected between the grid and 

input circuit which prohibits parasitic oscillations in the input stage. 

A 23o5 µH inductor is connected in series with the plate resistor to 

increase the overall amplifier bandwidth to 80 5 MHzo The low-frequency 



cutoff point is 10 Hz t which is achieved by using large cathode and 

screen grid bypass capacitors and adequate coupling capacitors. 

17 

A second EBlOF tube increases the gain of the amplifier to 685 o An 

E810F was chosen for this position in the amplifier because of its high 

gmo The third tube is an E88CC with both sections paralleled• which 

doubles the Sm of the staget and gives a resultant output impedance of 

70 ohmso A lOgl attenuator which is independent of frequency is pro= 

vided to attenuate large output signals and for test purposeso The 

third stage is decoupled in the plate supply source from the first two 

stages 9 which prevents int.ernal oscillation in the amplifier. 

The input circuit is arranged to keep the input impedance as high 

as possible, which reduces attenuation of the input signals. As noted 

from Figuve 3o3,l~ a Hi=Lo switch is provided on the input circuitc1 The 

Hi position is R=C coupled to the input tube and is primarily for use 

when measuring high resistance crystals whose Nyquist noise is greater 

than or equal to the noise due to the amplifier Reqd For low :resistance 

crystals whose Nyquist noise is less than the noise due to the ampli"" 

fier Req (at low frequencies where 1/f noise predominates)~ a trans­

former is switched into the input circuito The amplifier Req in this 

mode of operation is then 240 ohms over the frequency range of 20 Hz to 

25 KHzo A 20 µF capacitor is p:r,ovided in the transformer primary circuit 

which. blocks crystal c:urrEmt from the transformer input circuit o The 

secondary winding of the transformer is damped with a 221 Kohm resistor 

which makes the transfor~er gain of 1208 constant over the above frequency 

range 9 excluding the tailing off at the high and low ends of the :r.angec1 

~""' w:1ve Analyze:r.s and Indicating Ci:rcuitryo The amplifier output 
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is connected to two wave analyzers in parallel (HP 310A and HP 302A)o 

The high-frequency analyzer (3lOA) is usually operated with the 3 KHz 

bandwidtho The rectified output meter reading is smoothed by an addi~ 

tional 1.000 µF capacitanceo The low-frequency analyzer (302A) uses 

only a 6075 Hz bandwidth• so the rectified signal is integrated (see 

Figure 3o4ol and Appendix A) over 100 seconds and the results read on an 

accurate DC voltmeter (HP 4l2A)o Figure 3.4.2 shows the complete noise 

measuring setupo 

3a5 Calibration Procedureo The calibration procedure using a 

temperature limited diode is given by van Vliet (3l)o In order to in­

sure that the 5722 noise diode acts as it should• q was measured using 

the following equation (see van der Ziel (27)) for the mean square 

noise current from a temperature limited diode& 

where 

q = charge of an electron (l.602095 x 10- 19 As) 

Io= diode plate current (A) 

6f = effective bandwidth of measuring equipment (Hz) 

When the 5722 is on 9 operating at Io= o.9 mA 9 the added plate 

conductance is l/800 Kohms and the total input capacitance changes by 

6 a 7 pF. This does, not affect the measurements. The wave analyzer out ... 

put is full=wave rectified. A conversion to RMS (see Equation 3.5.l) 

was calculated and checked 9 using sine waves. The bandwidth in equa­

tion 3o5ol was evaluated by graphical integration of the measured 

squared response for a sine input. Using the data as shown in Figure 
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~re 3.4.2. Noise Measuring Apparatus 
a. Integrator Power Supply f. High-Frequency Wave Analyzer 
b. Integrator g. Control Panel 
c. Low-Frequency Wave Analyzer h. Copper Crystal Chamber 
d. Output VTVM i. Input Amplifier 
e. Oscilloscope Monitor j. Power Supply for Heating Element 
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3o5ol~ q was measured as 

A measurement of q was also made at 30 Hz which confirmed the 

results at 20 KHzo This is in agreement with the results of van 

Wijngaarden (33) (ioeot the 5722 shows no 1/f noise at 30 Hz)o 

306 Method of Measurementso In these measurements we will be 

interested in the spectral density Si(f) of the current passing through 

a noise object Ro 

where i 2 in Equation 30602 is measured over a bandwidth 6fo According 

to van Vliet (28), Si(f) can be evaluated by making three measurementsi 

-Measure u2 with no current flowing through R. 
l 

Nyquist noise of both Rand the amplifier Reqo) 

(This is the 

2o Apply current to R from an external source and make a second 

measurement U2 o 
2 

3 0 Apply current to the noise diode and obtain a third measurement 

U~ with no current flowing through R. 

The noise due 
2 2 

to the current through R is U2 = U1 a The noise due 

to the noise diode is ~ = ~ = 2q In 6f R2 o Using these results in 

Equation 30602 yields the following~ 

Another useful quantity is the noise ratio (nr)& 
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Figure 3o5olo Mean Square Amplifier Output Voltage Vs. Diode DC Plate 
Current for 5722 Diode Using High-Frequency Wave 
Analyzer at 20 KHz 



Si(f) 
nr = si~R5 
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Si(R) is the spectral density of the noise due to the thermal 

agitation of the electrons in Ro This can be evaluated with the aid of 

a fourth measurement when R is small (R < IZ1nl/lO) compared to the 

amplifier input impedance Zino 

4. Short circuit the amplifier input and measure~ (this is the 

-2 2 
The Nyquist noise due to R is then u1 ~ U0 o Using this result in 

Equation 30602 and combining with Equations 30603 and 3.6.4 yields 

n = r 

2" 2 
U2 = Ul 

7 -u2 l 0 

(3.6.5) 

If R is> Zin/10• then an alternate method must be used which 

entails the direct calculation of Si(R) as shown by Equation 2.2.10 

which can then be used in Equation 3.6.4 to obtain nr• 

3o7 Hall Effect Measurement. In order to determine free carrier-

type and concentration 9 we measure the Hall effect of the crystals. The 

Hall coefficient RH~ given by (24) 

where 

J = current density (A/m2) 

B = magnetic flux density (Vs/m2) 

EHall = Hall field intensity ( V /m) 
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is 

o .(nb2 ... p) 1,i=.. -
q (nb + p)2 

(3.7.2) 

where (16) 

is used and 

C = 31T/8 

(Phonon-scattering• see Shockley (24) 9 Po 278). 

Figure 3.7.l shows the experimental arrangement for measuring the 

Hall effect. The arrangement is essentially an AC bridge (operating 

frequency"' l KHz) which gives Rx= Rii • B/deff after balancing (where 

deff = effective crystal thickness) 0 

Figure 3o7o2 shows the experimental arrangement. The electromagnet 

is capable of magnetic flux densities up to 8 KGauss; o.s Vs/m2• This 

arrangement allows the number of free carriers to be determined with an 

accuracy of 5 percent. 

3.B Resistivity Measurement. The resistivity measurement is use-

ful in computing the value of nr as seen in Equation 3.6.4 as well as 

giving a confirmation of the Hall effect measurement. Balancing the AC 

bridge gives the crystal resistance~· 

3.9 Lifetime Measurement. In addition to the lifetime Ct) as 

determined from Si(f) in Equation 2.2.9• Twas measured with the appa-

ratus as shown in Figure 3.9.l. The "Semiconductor Lifetime Measuring 

Equipment" emits. a short duration (<l µs) high intensity light pulse 
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Figure 3.7.2. Hall Effect Measuring 
a. Tektronix 545 
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which is focused on the crystalo The decay of carriers induced by this 

light pulse is observed on the calibrated oscilloscopeo, A set of teflon 

filters was fabricated to allow variation of the light intensity in a 

controlled mannero The crystal current supplied by internal batteries 

or by an external well=regulated power supply can also be varied by a 

front panel controlo 

3ol0 Cpy:stal F~parationo A great deal of care is necessary in 

preparing a crystal with all of the necessary qualities for making a 

good noise measuremento The crystal piece is first cut into slices of 

the required thickness• and then an ultrasonic cutter is used to cut 

the sample shapes as shown in Figure 3.lOol (the help of the Department 

of Electrical Engineering, University of Minnesota, is gratefully ac~ 

knowledged for these two steps)o The sample is then drilled in each 

contact area to provide a clearance hole for a 0.012 in. dia. stainless 

steel wire. As. So White industrial abrasive cutter is used for this 

operation. The air pressure is then. reduced on the cutter from 100 psi 

to 60 psi• and the entire 'crystal is lightly sand blasted. Taking ex .. 

trerne care to keep the surface clean after the sand blasting, one-half 

of the sample is rhodium plated with an A-31 plating solution available 

from the Sigmund Cohn Corporationo A current of 4 mA for 30 minutes is 

used with a platinum anode during the platingo The sample is then 

washed in water; dried 9 and the unplated portion of the sample is sand 

blasted and platedo The sample is again washed and the contact areas 

painted with a polystyrene dope such as "Q ... DOPE," manufactured by G .. c 

Electronics Corporationo An additional sand blasting is now applied to 

remove all plating material not covered by the polystyrene. A 
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b--------

Figure 3.10.1 Short Bodied Ge-Single Crystal 
a. Silica Gel 
b. Crystal 
c. Wires 



polystyrene thinneris·th.en applied to the sample which dissolves the 

polystyrene from the contact·areaso 
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A sample holder is prepared using a glass vial, a brass plate with 

contact feedthroughs and a teflon gasketo Stainless steel wires (0.012 

ino diao) are attached to the crystal and feedthroughs as shown in 

Figure 3ol0olo The sample is then preheated to approximately 200°c and 

subsequently soldered using 60•40 tin lead high-quality solder and SAL­

MET soldering flux (manufactured by Hascol Enterprises)o 

An etching solution of cp ... 10 is used to remove surface impurities 

and bring the crystal body down to the required sizeo The contact 

areas are coated with paraffin wax during this operation for protection 

against the etchanto When the sample body is reduced to the desired 

size• the wax is removed by heating, scraping, and then bathing the 

crystal in petroleum ethero The sample is then given an additional 

slight etch (5 seconds)• 'Washed i~ deionized water• rinsed in anhydrous 

methyl alcohol• and placed in the vial with a small quantity of silica 

gel crystals fol:' deying purposes4 The vial is then evacuated and filled 

with helium gas to a pressure of one atmosphereo A waiting time of 

approximately 48 hours is requi:t'ed before good noise measurements can 

be made due to the drying by the silica gelo 

Samples with a much longer body are shown in Figure 3o 10o2o These 

samples were formed using a pantograph in conjunction with the abrasive 

cutter 0 After the cutting, procedures as outlined above were followed 

in the final preparation of this type ceystalo 
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Figure 3.10.2. Long Bodied Ge-Single Crystal 
a. Crystal 
b. Silica Gel 
c. Wires 



CHAPTER IV 

EXPERIMENTAL RESULTS OF IRRADIATED 

GERMANIUM SINGLE CRYSTALS 

4ol Introductiono The observed lifetime ('t') ·of a semiconductor 

containing two lifetimes t 0 and ,- 1 is given by Kittel (16) as 

l l l -=-+-
'r -ro •1-· 

Letting -t0 be the initial lifetime and -r 1 = l/aw (see Curtis­

Cleland ( 9)) be the. irradiation ... i.nduced lifetime, we have 

where 

aueutrons = 1 0 7 x 10 ... a (cm2/neutron second) (9) 

aGo gammas= lc67 x 10-13 (cm2 /gamma secon~) (10) 
Co 

~=flux density (neutrons/cm2 9 garnmas/cm2) 

As an example 9 with an initial lifetime of 2 ms and 10 12 14.7 MeV 

neutrons/cm2 irradiation, one would. observe a lifetime of -r = 57 µso 

If the same sample were irradiated with' 1017 60co gammas, then a -r = 
58 µs would be observedo 

For the particular effects that we wish to investigate in this 

thesis, a crystal is desired which has a low initial cutoff frequency 

(which corresponds to a large lifetirne)o This is desired because 
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T = 1 µsis a reasonable lower limit of lifetime which can be achieved .. 

with fast neutron irradiation and with conventional gamma sources of 

10~ to 105 curieso Also, much less radiation damage need be introduced 

to achieve a given decrease in the initial. lifetimeo It is the purpose 

of this chapter to discuss some of the problems associated with obtain~ 

ing a low initial cutoff frequency• how they were overcome, and the 

experimental results of a large (>10 3) change in the resulting cutoff 

frequency of fast neutron irradiated crystalso Some very interesting 

results will also be discussed regarding spectra obtained with gamma .. 

irradiated crystals which cannot be explained by either multilevel re-

combination or ambipolar transport phenomenon. 

4o2 _Ambipolar Drift in Near Intrinsic c::xstalso The first crystal 

samples which were prepared for measurement were of the type shown in 

Figure 3ol0olo Even though these samples were cut from a crystal whose 

bulk lifetime was 400 µs 1 the lifetime as measured first with the life-

time equipment (Figure 3o9ol) and second from the noise spectra 9 always 

fell short of this value by at least a factor of 3o This inconsistency 

was believed to be caused by the ambipolar (14) drift of the minority 

carriers (which we wish to avoid in this investigation), and the hypoth• 

esis was subsequently proven by three independent experimentso 

where 

The ambipolar drift time is given by 

L = path length (m) 

.,. - L ·a--JJ E a 

µ = ambipolar mobility (m2 /s) a 



E = field strength (volt/m) 

As shown by Hill and van Vliet (14), •a is infinite in either a 

strongly n•type or intrinsic semiconductor but reduces to 

in a near intrinsic n-type semiconductor which is our particular case 
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for the region of interest in g•r noise measurementso The reasoning is 

as followsi Fluctuations in a near intrinsic semiconductor are gener~ 

ated as electrondhole pairso If a fluctuation,is generated at a par-

ticular spot in the semiconductor, the increase in conductivity causes 

electrons to move eve:rywhere in the c:rystal simultaneously towards the 

positive end of the crystalo Therefore• electrons flowing out of the 

region of increased conductivity will not cause an increase in the adja-

cent region because electrons are leaving the ad?acent region at the 

same :riate o Howeve:ri ~ the holes f.lowing tow.ard the negative terminal are 

ma.inly neutralized by electrons flowing in the opposite directiono The 

carriers arrange. themselves continually so that 6n = 6p. The.region of 

increased conductivity, therefore, moves toward the negative terminal 

with approximately th~ hole mobility and decays in amplitude with the 

minority carrier lifetimeo 

The ambipolar effect was confirmed by directing the light pulse in 

the lifetime meter on opposite ends of the long crystals as shown in Fig• 

ure 3ol0.2o • readings of 130 and'sao µs were obtained as the light was 

directed near the negative and positive ends of the crystal• respectively. 

A further confirmation was made by measuring Si(f) as a function 

of I for the small crystal as shown in Figure 3al0olo Since I is 
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proportional to E• we can confirm the dependence of ta through Equation 

4o2ol and the noise spectrumo The results are given in Table Io 

TABLE I 

CURRENT DEPENDENCE OF CUTOFF FREQUENCY AND NOISE 

RATIO OF CRYSTAL NOo 2 

I fc nr -
mA KHz Relative 

Ooll 2.5 1 

00315 4o7 308 

1.0 15 12 

It can be readily seen that the decrease in ta(= l/2nfc) compen­

sates the increase in I so that nr is proportional to Io 

The third confirmation was obtained with the g-r spectrum of a 

long crystal as in Figure 3ol0o2o After preparing the surface and con-

tacts the same way as the shorter crystal, a much lowe~ cutoff frequency 

( = l/2n-r) was imme-diately obtained'o The spectra obtained with this 

type crystal will be.discussed in the next section. 

4.3 Results of Fast-Neutron Irradiation Experimentso The experi­

ments with fast=neutron irradiation were conducted on the long type 

cryst~ls. Two crystals·of this type were prepared for the purpose of 

serving as a check against each other. The results of crystal no. 9, 

which received the largest neutron dose, will be discussed first. 

Crystal no. 9 was irradiated in four steps. Although no precise 
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measurements of the neutron flux could be made at the time of irradia ... 

tion due to inability in determining the exact distance from the source 

to the sample, a good indication .is obtained from correlation with life .. 

time 'lfSo neutron dose data (2, 9) and from Cleland-Bass (7) who report 

12 electron removals (cm- 1 ) per incident 14.l MeV neutron. l4o7 MeV 

neutrons were used in this thesiso Our experiments show that 2.4 x 1014 

electrons have been removed which indicates an effective total dose of 

2 x 10 13 n/cm2 • From the Curtis-Cleland (9) data 0 this corresponds to 

at of~ us 9 which moderately agrees with our measured value of 2 :t o.s 

from the Si{f) data (the given uncertainty arises mainly from measure­

ments at different temperatures). 

Before and after each irradiation step, the g-r spectra, Hall 

effect 9 and resistivity were measured. The results of the g-r spectra 

were used to plot T as shown in Figure 4o3olo These data are presented 

in this form which allows· the results of the cutoff frequencies of all 

the g-r spectra to be viewed on one compact figure while avoiding the 

confusion of many overlapping g-r curveso 

The lifetime data from Figure 4o3ol was obtained from the g ... r 

spectra by picking the points on the curves corresponding to Si(f0 )/ 

Si(f ~ 0) = l/2o In the majority of the cases, the curves were of the 

form l/(1 + w2 T2 ) with one exception being at some temperatures before 

irradiationo At the temperature of 39°C (1/T = 3.04 x 10- 3 0 1<'"' 1 )t the 

data fit the theoretical form very well before irradiation; however~ at 

the other temperatures, the data in the region w > 1/t went as 1/wn 

where n < 2o Another exception occurred after the third irradiation. 

Here the crystal has been converted to slightly p=type with an effective 

doping of lo6 x 101 2 acceptorso The spectra for 23o5°C (l/T = 
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Figure 4o3olo Lifetime Vso l/T for Crystal Noa 9 Before Irradiation, 
After Various Degrees of Neutron !?'radiation, and After 
Annealing for 70 Minutes at 550°C 



3o38 x 10- 3 °K- 1) followed l/w2 at the higher frequencies 9 but for 

lower temperatures the slope 'became increasingly less until at -ll°C 

(l/T = 3oBl x 10- 3 °K- 1) the curve contained a slope of l/2 beyond the 
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corner frequencyo Also• more scatter is observed in the t measurements 

after the third irradiation than in the other caseso The t vso l/T 

curves agree with the Shockley-Read (25) theory of having a maximum 
. -~ ,.. . ,. .: . I- _. . 

when the Fermi~level is in the center of the energy gapo A lifetime 

change from an initial value of 2 ms to a final value of 2 J..lS after 

2o7 x 1013 neutrons/cm2 has been accornplishedo 

4o4 Results of Annealingo The crystal was then annealed at 550°C 

for 70 minuteso The glass vial and teflon gasket were removed, and the 

crystal assembly placed inside a ceramic cylinder which shielded the 

crystal from the heating elemento The heat was accomplished by three 

turns of Oo040 ino tungsten wire around the ceramic cylindero Approxi= 

mately 25 amperes through the wire was required to reach 550°Co An 

external copper shield was provided for the entire assembly which acted 

as an infrared reflector and allowed a lower operating temperature to 

be used on the tungsten heating element. The entire system was in a 

lOJ..t Hg vacuum during the annealing processo A~er annealing, the crys= 

tal was given a slight etch to restore the surface lifetime 9 subse-

quently placed in the vial, and allowed to dry 24 hours before measure-

ments were resumed. 

4o5 Discussion of Fast=Neutron Irradiation and Annealing Resultso 

Figures 4o5ol and 4o5o2 show the nr curveso The theoretical shape of 

these curves is illustrated in a paper by Bilger and Mccarter (2) and 

the location of the peak given as~ 
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Figure 4o5olo Measured nr Vso T Curves for Crystal Noo 9o All Curves 
are Normalized for Oal mA Crystal Current· 
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Figure 4o5.o2o Measured nr Vso T Curves for Crystal Noc 9o All Curves 
are Normalized for Ool mA Crystal Current 



n materiali (p/n)peak = 0.21 or ni = 3/5 Nn 

p materiali (p/n}peak = a.2 or ni = 2/5 NA 

These curves give a good match to the theoretical curves except after 

annealing where nr remains -high at temperatures below the peak valueo 

This deviation was also reported by Bilger and Mccarter (2) after. 

annealing of neutron irradiated gold doped Ge-crystals. A very large 
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nr range of 107 can be seen from Figure 4o5o2o This range was probably 

even larger than the measurements indicate as the peak was never reached 

after the third irradiation due to temperature limitations of the 

measuring equipment. 

Hall effect results are shown on Figures 4o5o3 and 4o5o4o The 

crystal converted from n top type after the third irradiation. The 

reversal in RH provides a point independent of crystal dimensions for 

determining the amount of each kind of free carriers as can be seen 

from Equation 3o7o2o This method (using b = 2oll) was used to calcu­

late the effective doping for the p-type crystals in Table II. For the 

n-type crystals• RH is proportional to 1/n in the extrinsic range; so 9 

knowing the initial value of 4 x 101 3 antimony atoms/cm3, one can 

readily estimate the effective doping using the Hall effect data. In 

some cases the curve is not flat in the extrinsic range, so the estimate 

could have a much greater error than cases where a flat portion is 

obtained. Equation 3.7.2 was always used to calculate doping changes 9 

even though it is very possible that the mode of scattering may change 

with irradiation and cause achange in the coefficient of Rii• The 
. ' 

manufactures doping (4 x 10 13 Nn/cm3) was used for normalization. After 

annealing 0 the effective doping returned to within 20 percent of tpe 
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Figure 4o5o3o Hall Effect Vso 1/T for Crystal Noo 9 Before Irradiation!) 
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initial n~type valueo 

Resistivity data are shown in Figures 4a5o5 and 405060 These data 

give a confirmation of the Hall effect in determining the number of 

carrierso The resistance data are also used in the determination of 

Table II gives a compilation of the lifetime data (t) as determined 

by the photoconductive ii'fetime meter, the cutoff frequency (fc) from 

the g-r noise spectra, the Dr values, and the effective dopingo Values 

from measurements near room temperature were used for the data in this 

TABLE II 

SUMMARY OF RESULTS FROM CRYSTAL NOo 9 

nr 
t(µs) fc (KHz)_ <Inc = o o 1 mA) Effective Doping 

Before Irrado 580 0.12 38 n-type 4 x 1013 

After 1-st II'rado 56 40 4 Oa9 n-type 2o7 X 1013 

After 2=nd Irrado 36 708 loO n .. type·l.7 x 1013 

After 3 ... rd Irrado 24 12 1,0 p-type 106 X 10 12 

After 4=th Irrado 5 85 Oo02 p-type 2 X 10 14 

After Annealing 320 Ool 18 n-type 3o2 x 1013 
I 

Representative g-r spectra for near=r_oom temperatures and Inc of 

Ool mA are shown in Figure 4o5o7o The increase in cutoff frequency by 

a factor -of 103 and a corresponding decrease in Si ( f) is readily appar-

_ent as the irradiation is increasedo Annealing returns the spectra -- --
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very near to the initial valueo The slope is not 2 in the region above 

cutoff for the initial spectra; but 11 after each i:t1radiation 9 we have 

slopes of 2 in the corresponding regions despite the fact that we know 

we c:reate complicated lattice defects with irradiation ( 10) a After 

annealing, we obtain almost an identical spectrum to the initial 11 which 

indicates that the initial defects are of a consistent natureo 

Sample noo 10 was cut from the same crystal as noo 9 and was also 

used in the neutron irradiation experiments as confirmation of the 

results from noo 9o Figure 40508 shows that the lifetime agrees well 

with the results from sample noo 9 before irradiation and after anneal­

ingo The total neutron dose for noo 10 was much less than for noo 9 11 

so the lifetime was only reduced to 20 µs (a factor of 102 from the 

initial point) at room temperatureo 

One of the differences in the two crystals can be noted on Figure 

4a5o9 where nr (peak) was a factor of 20 larger than the nr (peak) from 

noo 9 before irradiationo Correspondingly, the slope of the g•r spectra 

for noo 10 was 2o2 as compared with lo8 for noo 9 and fc(9)/fc(l0) was 

lo37o However, after annealing (500°C 11 30 minutes)• the lifetimes and 

slopes of noo 10 compared favorably with those of noo 9 before irradi= 

ation 11 which indicates that the neutrons produce some defects which do 

not annealo One additional difference occurred in that the nr of noo 

10 after annealing returned again to the theoretical shapeo This is 

attributed to the lighter neutron doseo 

The Hall effect and resistance data for crystal noo 10 are shown 

in Figures 4a5ol0 and 4o5ollo Using this data, we obtain an electron 

removal of 2o7 x 1013 cm= 3 which corresponds to a neutron dose of 2a25 x 

1012 n/cm2 and a lifetime of 25 µso This agrees well with the lifetime 
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of 20 µs calculated from the g-r data at room temperature. Representa• 

tive data are listed in Table I.II., 

TABLE III 

SUMMARY OF RESULTS FROM CRYSTAL NOo 10 

-r(µs) fc (KHz) 
Dr 

(IDC = 0 0 l mA) Effective Doping 

Before Irrado 580 00088 700 n-type 4 X 1013 

After 1-st Irrado 100 2o75 2 n-type 308 X 1013 

After 2 ... nd Irrado 23 ll 6 n-type la3 X 10 13 

After Annealing 320 00064 40 n-type 3o9 X 10 13 

406 Results of 60co Gamma Irradiation Experimentso Crystal noo 2 9 

which was of the type shown in Figure 3ol0ol, was used for the gamma 

irradiation experiments. This crystal was given a total dose of lo3 x 

1018 gammas/cm2 in three steps. Unlike the neutron-irradiated crystals 9 

the gamma-irradiated crystals indicated some annealing at room tempera"' 

tures (22); so the irradiation effects were no.t eptirely cumulative. 

However 9 crystal noo 2 exhibited some interesting deviati9ns from t~e 
I 

simple g=r spe.ct:rum which were not observed in the neutron=irradiated 

crystals. Figure 40601 shows the lifetime calculations from the g=r 

spectra. After the third irradiation (the crystal is now p=type) 9 an 

extra hump appeared at some temperatures as shown in Figure 406020 

These humps change with temperature which excludes measurement errors. 

This type spect:ria cannot be explained by either the multilevel re-

combination theory or the ambipolar drift which results in a spectra of 
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for Ta<< to The multilevel theory gives rather smooth spectra 9 where= 

as these experiments show a resonant type effecto The peak of the ambi-

polar drift corresponding tow ta/2 = 3ff/2 ·is down 22 times from the 

maximum as compared to 4 times in our experimental resultso These humps 

also occur in a very narrow temperature rangeo From the slope of the 

lifetimes in Figure 40601 9 the depth of the recombination center can be 

calculated as Oo27 eV above the valence bando This is in good agreement 

with Curtis and Crawford (10) who found the recombination level Oo27 eV 

above the valence band after 9 x 10 16 gammas/cm2 on a 15 ohmcm antimony­

doped germanium crystal (the T3/ 2 term in the density of states has been 

neglected in the above calculations for the energy of the recombination 

center)o The upward bend of the lifetime at l~w temperature is also in 

good agreement with Curtis-Crawford (10) and is introduced by the influ= 

ence of a trapping level in addition to recombination centerso 

Another interesting feature is seen on Figure 4.6o3 after the 

third irradiation. Here the curve has a definite upward trend at lower 

temperatureso It is also interesting to note that the points of devia= 

tion from a 1/(l + w2 t 2) type spectra occur at the three points about· 

the local maximum of the nr curveo 

Figure 40604 gives the results of the Hall effect measurementsg 

where the conversion top-type after the third irradiation is readily 

seen. The slope of the Hall curve at low temperatures indicates a re~ 

combination center at Oo29 eV which agrees well with the value found 

from the lifetime measurementso The resistivity data are given in 
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A compilation of the measurement results at room temperature is 

given in Table !Vo 

TABLE IV 

SUMMARY OF RESULTS FROM CRYSTAL NOo 2 

-r(µs) fc (KHz) <1oc 
nr 
= Ool mA) Effective Doping 

Before Irrado 130 2ol 12 n-type 4 x 1013 

After 4 x 1016 
y 9s/.cm2 65 45 9 n-type 3ol x 1013 

After lo3 X 10 17 
y 9s/cm2 58 37 12 n-type lo3 x 1013 

After lo4 x 1018 
y 0s/cm2 36 12 6 p-type 2o7 X 10l3 

After Annealing 144 2o4 30 n ... type 2 X 1013 

Oen and Holmes (21) have calculated a theoretical value approxi­

mately 10·3/cm3 defects per incident 60co gamma ray; and Cleland• 

Crawford 0 and Holmes (8) have found experimentally 10-4/cm3 defects 0 · 

The discrepancy is attributed to extensive relaxation of defects at 

60 

room temperatureso We have 607 x 10 13 electron removals per cm3 (3 035 x 

1013 vacancy-interstitial pairs) for a total irradiation of lo4 x 1018 

gammas/cm2o This corresponds to 2o4 x 10=5 (cm- 1) defects per incident 

gamma rayo This discrepancy with the above findings is attributed to 

additional annealing at room temperatureo A period of three months 

elapsed between the first irradiation and final measuremento 



CH.APTER V 

SUMMARY 

s.1 Results and Conclusions. The experiments with neutron­

irradiated germanium crystals have. in general• agreed with the theory 

except for the deviations found in crystal no. 9 after it became 

slightly p-type. Although only two crystals were used for the neutron 

irradiation portion of this thesis 1 generality can be claimed (except 

for the deviation just mentioned) as indicated in a previous paper by 

Bilger and Mccarter (2). 

Initial cutoff frequencies of 120 and 88 Hz have been obtained with 

crystals no. 9 and 10 which 9 to the knowledge of this author. is the 

lowest yet reported in the literature for g-r spectra. After irradia­

tion by 14.7 MeV neutrons with a total dose of 2 x 10 1 3 neutrons/cm2, 

the cutoff frequency of crystal no. 9 changed to 85 KHz, an increase of 

3 decades. By annealing crystal no. 9 to 550°C, the cutoff frequency 

was returned to 100 Hz. This procedure provides a reversible process 

for the crystal with respect to apparent doping, bulk lifetime• and g-r 

noise. 

During this process 11 the noise ratio Cnr) varied over a range of 

10 7 • . The picture of a simple g ... r curve occurring from recombination at 

a single level is adequate to explain the nr curves with the exception 

of the increase of nr at lower temperatures after annealing. 

The shift in lifetime and the corresponding change in doping as a 
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result of the neutron irradiation is in good agreement with the findings 

of others o This is the first time that a reversible g-r spectra and 

corresponding T-change of many orders of magnitude have been accomplished 

with the same crystal. 

The 60co gamma""irradiated crystal noo 2 did not undergo as large 

lifetime and apparent doping changes as the neutron-irradiated crystal, 

but some interesting results were obtained which are not explainable by 

today's theory of g-r spectra and arnbipolar drifto Although arnbipolar 

drift effects were shown to be in the picture, the arnbipolar lifetime 

did not appreciably alter the spectra from a type of 1/(1 + w2 T2 ) at 

the initial and after annealing conditions when the bulk lifetime is the 

largest. The spectra were only altered after the crystal had changed 

to. P"'type. This suggests that some new theory must be developed in 

order t.o explain this phenomenon. 

Crystal noo 2 was changed from n top after an irradiation of lo4 x 

1018 gammas/cm2 from a 60 co source. and the lifetime decreased to 20 µs 

at 40°C. A subsequent annealing at 350°C returned the g-r spectra and 

(within a factor of 2) the apparent doping to the initial values. The 

irradiation defects from a 60 co source are much easier annealed than 

those defects produced with fast neutrons (10)., 

s.2 Recommendation for Additional Study. The extension of the 

work on the gamma=irradiated crystal will be very helpful in developing 

an adequate theory which will explain the observed spectra after con~ 

version top-type. The nature of these spectra indicate that a type of 

resonance is occurring in the crystal over a very narrow temperature 

1•ange. One possible explanation is a close coupling between several 
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levels in a multilevel recombination centero 

The Fermi levels for the six temperatures of these g-r spectra are 

listed in Table Vo 

TABLE V 

FERMI LEVELS OF CRYSTAL NO. 2 AFTER 

THIRD IRRADIATION 

Temperature (OC) Ef Above Valence Band (eV) 

39 00322 

23o5 00315 

5 00293 

-5o5 0.28 

-22 o.2ss 

=41 0.23 

The resonance points occur when the Fet'mi level is at or near Oo29 

eV above the valence bando This is the energy of the recombination 

center as determined from the Hall effect data on Figure 406040 The 

theoretical peak of a nr spectrum with NA= 2.7 x 10 13 cm- 3 occurs at 

280°K according to theoryo This corresponds to the local maximum ob= 

served for crystal no. 2 in the nr curveo The new theory should explain 

the increase oft and nr at low temperatures as well as the resonance 

effectso 
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APPENDIX A 

ERROR ANALYSIS 

Aol Theoretical Investigationa The output voltage of the narrow 

band {6075 Hz) wave analyzer has fluctuations which are of the order of 

the amplitude of the desired reading itself. In order to obtain a 

reading with an expected error of only 1.36 percentf the output voltage 

is integrated (using operational amplifiers) for 100 seconds and subse­

quently read out on a precision VTVMo This has the following advantages 

over an RC integrator: 

a. Only one time constant of waiting is needed. 

bo The output does not fluctuate while readingo 

Co (To be shown) the relative error is smaller than with an RC 

integrator of the same time constant o 

Using the methods of Davenport and Root (11) and van der Ziel 

(27) 0 a narrow band noise voltage of width B centered about a frequency 

fc (narrow band means B < fc/5) can be represented by the following 

expressionsi 

x(t) = V(t) cos [wet+ ~(t)] 

and 

(Aolo2) 

where 
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From Equation Aolo3 it is obvious that V(t) > Oo The wave analyzer 
' -

full-wave=rectifies x(t) and filters the result so that th~ envelope 

V(t) is retained 9 and the carrier frequency and its components are ree 

movedo It can easily be shown that the normalized frequency response 

of an integrator is 

h(f) = sin 2,rfT 
2,rfT 

where Tis the integration timeo Following Sec. 13 of van der Ziel 

(27), the expected error (a1/ 2 ) is given by 

= l a 8BT 

This is the same as the expected e:ttror for an RC integrator with the 

same time constant$ but one must wait an infinite time (in practice~ 

several time constants) before achieving this error with an RC inte-

grator; so, in only one time period (T)• an integrator has much less 

error than an RC integrator. 

To verify Equation AoloS, 100 measurements were made of a noise 

due to a 10 KQ resistor attached at the input of the amplifier and 600 

µA flowing through the noise diode. From these measurements a mean of 

17404 (arbitrary units) and a standard deviation of 2.67 was calcu~ 

latedo This results in a relative standard error ( la = o/x) of 1.53 

percent. Applying the measured RMS bandwidth of 6.75 Hz and the inte• 

gration time of 100 seconds to Equation A.1.5 results in a relative 

error of 1.36 percent 9 which is in good agreement with the measured 

results. The experimental data, a Gaussian with the same mean and 
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variance., and the theoretical Gaussian is shown in Figure Ao2olo Since 

these 100 measurements were taken consecutively (total time of experi­

ment >10 4 seconds), Figure Ao2ol demonstrates also absence of drift in 

the whole noise spectrometero 
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