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NOMENCLATURE· 

The following symbols ~ve been adopted for use in the thesis~· 

A, B., C., D. ~· • . . • i • Classif1ca1;ions of. ~boundary conditions .i · 
' ' ' 

a, b • • • • • .. • • • Plate dimensions; 

. . . th ' ••••• Modulus of .elasticity of 1 membrane layer; 
' ' 

• • • • • • • • Modulus ·of rigidity of J th core layer; 
'', ', ' th ' 

• • • • • • • • Thic1meE1s of j core .. layer; 

i 
th .. • • • • • • • • • Index, designates i meml::lrane layer; . 

j •' • • • • • 
th, '' ' 

•. Index,. designates j ·core layer; 

M, M, M ••••• Moment stress resultants; 
X . y' xy. 

m 9 0 e .. 0 ' .• • • • • Total number of core layers; 

n ........... Total number of membrane layers; 

Qx' Qy • • • • • • •• Transverse shear stress resultants; 

T G·ee.,eoooe • • Total plate thickness; 

T 
C 

•· . .. . '. • • • • • Dimension to core layer .. ex;t;remities; 

tot Iii, 0 9 0 . . . . . Th. kn ,, f ith . b l • 1c ess ,o mem rane ayer; l. ' 

U • •. • • • •' • • • • Strain energy; 

o e • 9·r o • • Displacem,ents; 

V • • • .. • • • • • • Potential . energy;. 

w • • • ; .• • • • ~·. • • Exter~r. work; 

x, y, z .. .. • • • • • Co~rdinates; . 

0 • $' • • • • Distance measured from the weighted neutral 
surface to the midd,le plane of the· 1th membrane' 
layer; · · 

·· vii 



z ' j • C, • 
. . .. ..... Dis'tancemea&ured from the ceritroidal.surface 

. ti- t-he middle pl~e of the ,1th.· core layer; 

n • • • • • • .. • TotaJ; :c·omplementary energy; 

f3' • • • • ·- " 

•••• Coefficients o~ ctl:splacement f'unc:tion ~ssumed 
for ·lrending s:ti:rfness; · 

• • ••. Coefficients. of' stress functions assumed for 
bending .stiffness ·modifier; 

7 • • • • • • • • • • Shear strain; 

. . •· . . .. . • • • Extensional strain; 

'111, .]~, _··113 • 0 . . • -. ·Plate.property r·elationships;, 

9 •· o· e • • • tt ...... 0 Rotation; 

"-1 , . "-2 , ~ • • • • • • • Pl.ate property relationships; 

"1 '". • • • ,,. 8 ., • • 
.1 •.) 

• Poisson's ratio for 1th membrane~_l.ay~;; 

• • • e • • • • .. • . Coefficients of stress -functions assumed for 
in~p~ane stiff~ess; 

a a --x J y 
-: i 1. 

• • 

,..xy 
. i 

. . . . 

. . 

.. . . •• Nbnna.i.° ~tresses at the 1th membran_e la~er; 
. . . , 

• • • • • In..:.p~ane shear . str_ess at:~ th membrane layer; 

T' T 
· xz ' yz 

: ... . Transverse shear stresses.at ,1th co~~ layer. 
J .1 
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INTRODUCTION 

I 

lo,l Background 

. . . . ' 

The development of sandwich plate theory_and finite e1ement 
' . 

investiga.tion'.s provides, the ba_ckground for the content of' this th·esis. 
. '·. '. I .. ,. ' 

. ~ . . .. . ~ . . . . .. . . 

· T};le · connotation of sandwich_ plate a.s used here,. and aEf g-en~ra.lly · 
,. •, . ,. :· ., , , . . . . ' •' - . 

u·nderstood, is ·a plat~. composed· oi ·thre_e· layers. The interi~r layer 
•. I • ', • • 

provides res~stance tptra.nsverse·s:tiear only~ while the exterior lay-
. . 

ers resist pending and ,twisting·, moments ih the :f'orni of' ~n-pla.ne 
, I' . . ' " ' 

forces. 

Multilayer plates are e;enerally, al.though not always, considered 

to ·be constructed of several layers whos-e propertie~ :a.lterna;t;,_e. 'The 
' '\ ' . ' ' ' 1 .. ' I ' ·, ' ' . • ' ·.~ ,' • • :· • ' 

alt~rnating properties coincide_ with _those descrp.>ed for· sandwich 

pl~tes .. 

'Th~ -.early theoretical work 1:i:i this ;f'iel'd. was done by Re:i.ssner 
' . . . • . ', . ·1 .• . . 

(:1, 2~,, :Hoff_. (3) an(l Erin.gen (4). -One o~her art1cle of pa,rticular 

;tnterest is by Kuenz~., Norris, a.nd 'Jenkinsen (5). · · · 
,,,'r 

. Reissner -(2) demonstrated thS:t the transver.se normal ·stress 
. . . . .. •.. ' 

cont~ibution: can be rieglected-in solving sa.ndwich_p~ates. · He also 
.,·, 

developed an expression defintng the valid region of h,is "small de-
. . -~ . ., ' ' . ' . . . . . ~ . . . 

flect;lon 11 theory. Ho,:f'f' (3) ·used a:'vari~tiona.l t~clmique :for·.solving 

both bend:J.,ng. ancf buckl;l:rig problelI).s. . Eringen (4) included the ,, 

1 
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possibility of thick facings and hence did not neglect the b~nding 

stiffness of each individual layer. Subsequent papers considered or-

thotropy. 

The primary limitation of these papers and those that follow is 

that solutions are only available for a few boundary or support con-

ditions. 

The solution presented here is not based on any particular 

layer arrangement. It can, in· fact, accommodate superimposed or over-

lapping layers, or as in the case of a homogeneous plate, all layers 

may have identical properties. 

Previous work on multilayer plates has been done by Liaw (6) 

and Wong (7). Both of these papers applied variatiortal technj_ques to 

develop the system of governing differential equations. Examples were 

solved-for simply supported boundary· conditions. 

Pomazi (8) presented results for simply-supported multilayer 

plates. He solved Bolotin's (9) equilibrium equations by finite dif-

fer enc es • 

. The concept of using finite elements to solve structures and 

mechanics problems has a rather vague origin. Because the slope-

deflection method can really be categorized as a "finite element method" 

it could be considered as the beginning. However, as now used the 

''finite element method"' usually pertains to plate, shell, and compound 

structures and in this form is of rather recent vintage. In 1956 Turner 3 

et al (10) presented what is probably most appropriately considered the 
L 

cornerstone of the current technique. Following papers by Melosh 

(11, 12), Best (13), Pian (14, 15), Zienkiewicz and Cheung (16), and 
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Severn and Taylor (17) refined and expanded the method but did·n.ot--

alter the original concept. 

1.2· Finite Element Method 

The basic premise of the method is that the structure is subdivided 

into a number of elements. The properties of the materials being 

known, the behavior characteristics of the elements can be determined. 

Now, with some variation depending upon the.part\cular method being 
. ·, 

employed, the stiffnesses of the.neighboring elements can be related 

through the generalized coordinates and forces at the nodes. Finally 

the ~lements are assembled to represent a structure as.nearly like the 

original as possible. The problem becomes one of satisfying equilibri-

um and compatibility of the element, both internally and externally. 

The difference between this method and other approximate methods now 

becomes apparent. Wherein the other methods are applied to the govern-

ing differential equations and the approximations are mathematical, the 

:finite element method provides an exact solution of a mathematical mod-

el which is an approximation of the real structure. If the model be-

haves exactly like the real structure., then an "exact'' solution can be 

achieved. This is so in the case of beams and the slope-deflection 

method. In more complex st-ructures this exact representation is gen-

erally not possible. 

The successful construction of this mathematical model will permit 

the solution of many problems not solvable by existing methods. In 

addition to a variety of boundary conditions some discontinuity condi­

tions can be handled. 
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There are two basic finite element methods by which stiffness of 

an element can be obtained. Either a displacement function or a stress 

function can be assumed. The assumption of a displacement function as 

the fundamental method imposes compatibility only. In this thesis ·both 

approaches are utilized. It is believed that the stress function pro-

vides greater accuracy and therefore is used in the determination or· 

the bending stiffness. This development is presented in Chapter II.· 

The use of a displacement function, however, is found to be much more 

direct for the determination of the stiffness modifying matrix in 

Chapter ·III, Section ~· The in-plane stiffness matrix in Chapter III, 

Section 2 utilizes a stress function. 

Rectangular elements are used since only rectangular plates are to 

be considered. 

1.3 Solution Procedure 

Fol~QWing are the steps in the determination of the critical stress 

of mul tilayered sandwich plates: 

(a) Determine,)(o.~·J;J assume) the in-plane stress distribution; 
. . .~ i:{ . ·l 

(b) Determine the elemental berl~ng ~tiffnesses; 
. 1, 

( C) Detel'lin~ne the stif'.fness'. modifying matrix for each element 

reflecting the effect o"f the in-plane loads; 

(d) Combine the elemental bending stiffness and elemental 

stiffness modifier; 

(e) Assemble the modified elemental stiffnesses to obtain 

a total structure stiffness matrix; 

(:f) Apply boundary conditions and tok~n-lateral loads 



and determine resulting d~flections; 

(g) Repeat prediction-correction procedure described in 

Chapter V to find critical stress. 

1.4 Assumptions and Limitations 

The layers designated as "membrane layers" have relatively high 

moduli of·· elasticity~ · They are .considered to be sufficiently. thin 

5 

that the bending stiffness of the individual layer is negligible and 

the normal stress is a constant over the section. The layers designat­

ed as "core layers" are considered to have negligible normal stress 

stiffness. The method is applicable to orthotropic cores and membrane 

layers, although the presentation herein is for isotrop~c materials. 

The total plate thickness is consi~ered to be sufficiently thin for the 

ordinary plate assumptions to be applicable. Hooke's Law is considered 

valid. Bond failures and local buckling will not be considered. 



ClfAlJTER II 

ELEMENTAL.BEtiJD!NG STIFFNESS 

An.element with four facing layers and three core la.rers is shown 

in Figures 1, 2, and ,3 to illustrate the dime:nsiorrs. Subscr4>t i is . . . 

' • I ' L • (' ~ • •. 

associated throughout this :thesis'with.the 'membrane layers, while J is 
·.\ ., . . • . . i : . . . 

. . th 
· associated ~.ith core layers. The thicknesses of the i . membrane layer 

,J 

'th. , .. 
and J core 1a.yer · are, respect1ve1Y, t 1 w:id hJ. 

The neutral surface..may_be located such that 

~1t1zi = 0-
1 - 'V . (l) 

where z1 ·is the distance from the neutral surface to the mid-:plane of 

, the membrane layers· for n membrane layers, •. 

The stresses on atypical ·iayer are shown in Figure 4. The 'in­

tensity of the in-pla~e str~sses in the ~embrane la;y-~r:s; constant 

within any layer, Vl:l.ries linearly from the .neutral surface. This is 
• I. 

shown in Figure 5. The transverse shear stresses are assumed to·be 

parabolically distril:rnted ~cross the section. The validi.ty of this 

assumption requires relatively· thin membrane layers and a fai;r0ly ;egu-

la:r distribution of membrane and, core layers since, as used here, the 

distribution of stresses across the section is independent of' the in-
i . : ' 

ii.lane stress distribution. This · is appr~ximately so :for the afore­

mentioned distribution. Fig~e 6 shows this distribution. 
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I 
I 

·1", 
,/ I .~, 

/. .,J......1··,. "' . . / ...... 
"'· ..... , 

/ . ' . 
·,,/ . z ' .. ' 

• ! 

Figure _l. Dimensions 1a.nd Axis Designation of Rec~an~ Element 
' ,· ,' . • ( ! ' ! . • 1 • i 'I .' 
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- -

- --
_ _LNEUTRAL SURFACE . T 

- -

-

--,-- h I 
Tc z, Z2 2 1~ ·. _i_:_ - • .L.:,:ENTROIOAL SURFACE --·-n- Tc 

23 
----- I,"-- h3 

Figure 3q Core !ayer Dimensions 



9 

O"ix 

i th MEMBRANE LAYER 

'jyz 

jth CORE LAYER 

Figure 4.. Stresses ori Typical Layers 



/ 
/ 

NEUTRAL ,suRFACE 

,. 

Membrane Stress Distribution 
., . ... \ 

Figure 6~ Core layer Stress Distribution 
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So far only the stress distribution across the section has been 

considered. To describe the stress distribution in the xy plane a 

stress funct.ion is assumed. ··· This stress function is of the same J?Oly = 

nomiai form as that used by Severn and Taylor (17) although containing 
' . 

additional terms to better define the distribution of the transv.erse 

shear stress. The resulting stress functions are 

ax1 = [f31 + f32x +.f33Y + f34x2 + f35xy + f36y2 + f325x3 

-2- --2 A. -3J 8zt 
+ f326x y + f327XY ~ ~28Y ~ (2) 

·aY1 = [f37 + f3sx + f39Y .+ f3iox2 + f311xff + f312Y2 + f329x3 

.-2- --2 · -3J 8z1 
+ f330X y + f331XY + f332Y T (3) 

-rxy 1 = [f313 + 1314x + 1315Y + 1316x2· + ·1317:xy + 131sY2 + 1333x3 . 

where 

+ 1334x2y + 1335x:y2 + 1336Y3] s;1 

= [ 1319 + 132ox + 132iY t f337x~. + 13 38:icy 

2 
+ 1339:12] (1 - ~~J ) 

C 

,.y.zJ = [1322 + 1323x ~ 1324Y + 131i.ox2:+ f341xy 

2 
+ .f342Y2] (1 - 4;.1 ) 

... X 
X=-

a 

y =·f 

~ 

(4) 

(5) 

(6) 
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T = total thickness of the plate 

T = dimension from top of top core to bottom of bottom core 
C 

layer 

~l through ~36 are constants. 

/ 
y 

· Ffgure 7. Elemental Edge Forces 

From Figure 7 the equilibrium equations may be written as 

(7) . 

~+~My: - Q = 0 ox y y (8) 

oMx + ~Mxi _ Q = 0 
o3c y X 

(9) 

Formulating the stress resultants: 



n 

M:k = it axi ziti . 

n 

M =) T ziti 
xy ,' 1~ xyi 

m 

Q = ~T zJtJ X XZJ J : 
·M, . 

Q = )-,. ' z t ,' 
Y J1;;i yzj j j 

13 

(10) 

(11) 

(12), 

(13) 

· (14) 

and substituting from equations (2) through (6) into equations (10) 

through (14) .and thence into (7), (8) and (9) and introducing the fol-

lowing notation 

Tl1 = f (1 - 4;J:.) hj 
J=l C 

(15) 

. 112 =k. (Bf) ti (16) 

(17) 

' ' 

the following relationships are established between the .coefficients 

resulting in the elimination of fifteen of the original thirty-six 

coefficients • · 
\ 

A ... b A a A 

.... 11 · = - a .... 4 - E" .... 12 (18a) 

13 = 11 [~ + lliJ 19 3 a b (18b) 
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f3 ' = 11 [$4 + ~ J 20 3 a b 
(18c) 

f321 = 113 [~ffi+· 2@~8] (18d) 

f3 = 11 [~· •. t3.l!L J · 22 3 b a (18e) 

f3 . _ 1l [f311 + $16] 
23 - 3 o ~ (l8f) 

1324 = 11.3 [$t~ .+ f3~7 J (18g) 

3b a (18h) 13 34 = - 2a 1325 - 2i' 1331 
\.'t ' 

f3 b f3 3a f3 
35 · = - 2a . 26 - 2b 32 (181) 

f337 = 113 [~ f325 +. f3£4] (18J) 

13 33 = T13 [~ ~26' +: i ~,5] (18k) 
' J 

I 

1339 = '113 [f3;7 + ~ 1336] (181) 

f34 = /fl [~ + 1 f3 J o · 3 b a 33 (18m) 

f341 C 113 [i f331 + f 1334] (18n) 

1342 = 113 [~ 1332 + f3t5-} (180) 



Substituting th~se r.elationships back into the stress ex:pressj,ons 

(2), .(}),, (4), (5}, (6) yields: 

ax = 12 [!:\ + f32~ + f3"ri + f34:i? + f35xy + f36¥2 ~.f325i3 
~ . . 

+ f326i2y: ~ f32--(xi2 + f32aY3j. (19) 

(20) 

(21) 

(23) 

where:-



These equations can be expressed in matrix form as 

where 

and [P] 

-and- Y• 

[a]= [P][t3]. 

[ a] =, {a a T T T } 
· xi yi xyi xzJ yzJ 

[~] "" {131 132 _ t33 t34 13 5 136 131 138 t39 

1310 1311 t312 1313 1314 1315 1316 13i8 1325 

1326 1327 t328 t329 13 :;o 13 31 13 32 ~33 13 36} 

-is .a coefficient matrix containing algebraic terms in x 

16 •. 

(24) 

(25) 

(26) 

The internal strain energy can be formulated in matrix form as 

u = - [ a] [:e) dv • 1 I \ 
. 2. . \. (27) 

For the :required finite summation of the l,ayers this formulation 

becomes 

u = ~ J A lrr [ a H~ J z i, J a.A (28) 

in which I. • • • zi,J indicates summation over both core and membrane 
T 

;layers. 

Letting 



1 
Ei 

\I 

·-~ 
[N] ::::: 0 

0 

0 

where 

\I = 2(1 + V) 

and 

-~ 

€ 
y 

Ei 

ii. 
Ei 

0 

0 

0 

0 0 0 

0 0 0 

v 
0 ·O. r. i 

0 
l 

0 
Gj 

0 0 
1 

Gj 

it follows from the stress-strain relationship given hy 

[e] = [N][a] 

that 
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(29) 

(30) 

It should be noted at this point that it would be possible to provide 

a sol);.ution to plates with orthotropic col:'es and membrane layers by 

· using · E , E , V , V , G , and G 
xi ·yi xi Yi xj YJ 

in [N] • This· has not 

been. done in the present sol:ution, therefore it is limited to isotro-

pie layers. Each layer may have different.; prope:r,,t:j.es, however • 

. Utilizing equation (26) and its transpose, the strain energy can 

now be expressed 
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(31) 

. • I , 
which may, be rewritten' in ·the :torm 

l . T 
U = t [~] [H][l3] (32) 

in which 

Performing the.indicated integrations and summation, the (H] 

matrix .. can be formed. 

(H] 

in which ' ' 

[~l) is shown in Figure 8a, 

[H12] is shown in Figure 8b, 

[H22]: is shown in Figure He, 

[B:21] , is equal to the transpose of ~~2]. 

Next, an e;xPression for the external energy of the element is 

developed. T~e total work done by the forces acting on the surface of 

the.element is given by 

. W = f [S] [id ds (34) 

:wher·e [S] and · [ u] are, respectively, the force~ and displac.~ments 

at.the edge' of the element. The positive directions of the edge forces 

are. shown in Figure 9. 
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3 b b. 4 2 4 3 'b. b 4 

R-wba~a R-IBb R -W -w·. -W-Sb· ..w -W-Sb -W-PI-Sa-Sb · . ._v .,;Vb-Bb8 -Vb-15 . -Vb-Sha. -Vb-15 
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Figure 8b. · Sub..:matrix [ 11:l.2] 
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-Va +.J§. -Va -Sa2 

24b 8 30b~ 

-Va +.S 
. a -x~-r; 10b2 

y~ V 
7 5a lb 

y~ 
7 5b 

I\) 
fJ 



· F'i.gure 9. Nodal Displacements 

In order to determine [u] an edge displacement function is 

·. assumed for each edge of' the element . 

22 

:x 

· in which .. k and . l are the nodes at the ends of the element edge. 

The constants -\:i, can be determined in terms of the generalized dis­

placements [q]J where 

[ql = {e e wl e a w e 
Xl yl. x2 Y2 2 x, 

a w3 e a ''\} (35) 
Y3 X4 Y4 

and are.shown on Figure 9 in their positive directions. For any given 

edge the constants are a function of the adjacent nodal displacements 
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and the tangential. slppe (paraJ..lel to the element edge) evaluated at 

the noq'es. Since the resulting equation expresses the displacement of 

the element edge in terms of the nodal displacements and since·the nodal 

displacements of two bordering elements are identical., then compatibil­

ity of displacement and of the tangential. slope are assured at the com-

mon bounda_.;-Y. In addi tipn, a linear normal slope· (perpendicular to th~ 

'' element edge) is assumed between node points. This caus·es compatibility 
. . . 

to be satisfied with regard to the normal slopes of the adjacent ele-

ments although the linearization of the)va.riation introduces·an apprc;,xi-

mation. 

The~e relationships can be formulated in, matrices as follows 

[ti] =_ . .(L][gJ • (36)·_ 

The moments and. forces on the element· ·edge can be derived from the 

stress resul.tants developed earlier (,equations (10) through (14)) thus 

yielding 

M = (M ) O 
Y12 YY':" 

(37a) 

(37c) 
(. ,; 

' · ay· -2 
... ·i, 1312 + 13isY • * 13:;:; 

~ 
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3by ay •. · "6y2, 
= 2a f:325 - 2b ~31 - 2i"""" f:326 

-2 -~r f3 32 + ·13 36Y3] (37d) 

Mx24 =' f M:,cJ:~=a = 'rl2 [f31 + f32 + f33Y + 134 + f35Y · + f36Y2 

+ 1325 + f:326:r: + f32f§"2 + 1328:('] (37e) 

( ) 'I\ [l ' l y a. 
Qx24 : = ' ~x .x=a. .. = · '12 · a f32 + a t3ii; + i 135. - ~ 1312 

. 1 ·. l 2y 
+ b 1315+ b 1317+ b (318 

3 y y2 
+ 2a f:325 + a f:326 + a f:327 

- -2 
a 3ay .-3Y· J 

- 2b8 f:331 - V 13 32 + T f3;6 (37f) 

MY; = · (My)y,,;b = i12 [t37 + 13gi + f:39 + f31ox2 + 1311:x + 1312 

+ fJ29;} ,+ f3i/2 +}331i + 1332] (37g) 

Mxy 34 == (Mxy)y=b = 'T12 [i:313 + 1311~i + 1315 + f316x2 - bf 
1 

£34 

/:!.:X . 3bi2 
- b .1312 + 1318 - . ,2a. 13 25. 

bx · ax2 · . , : 3a::x 
- 2a 13 26 - 2b f31 .. 2b _1332 

(37h) 
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(371) 

(371) 

The preceding equations may be arranged in matrix fprm as 

[S] = [R l[f3] • . (38) 

Substit\lting equation (35) and equatio:p ·(38) · into equation ·(34) 

yields 

(39) 

which may be rew~itten as. 

W = [~t [T][q] . (40) 

in which 

[T] = f [Rf [L] ds • (41) 

The resulting T matrix is shown in Figure 10. 
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0 -b 0 Cl b 0 0 -b 0 0 b 0 
2 2 2 2 

ba 0 ·-b -ba b b -ba 0 -b lL b b 
12a 2a E 2 2a 12a 2a 12a 2 2a 

0 .;.b 0 0 b 0 0 -b 0 0 b 0 
b. b J J 

0 0 0 0 b 0 0 b -~ 0 b ~ 2 b a J a 

ba 0 -2!2.... -ba b 2!L -ba 0 -1.!L ba b ~ 
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0 -b 0 0 b 0 0 -b 0 0 b 0 
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JOb 20b 20b 20b b 30b 20b J 20b 20b 

0 0 0 a 0 -a a 0 0 a 0 .! b b 2 J b 
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ba 0 -ba -ba b b -b'" 0 -4b ba b 4b 
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·o -b 0 0 b 0 0 -b 0 0 b 0 
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Figure 10. Matri;:x: [T] 
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The total complementary energy :ts 

1 .·. -, 
. u ,+w = n = 2 rn ~HJ(f31 - [f3TITHql • (4.2) 

,, ·.· 
Since the total complementary energy is_statio~y., :lt~s.variat:ton 

:wtib 1respe~t ii~ the stress coefficients f3 m~~t vanisn. 
. I .. . .· . 

\ 
' 

; .... 0 ,;; ~- ([HHf3 l + [~ TIU]) - .(Tl[q] 
' •. 

or 

[H](f3], = [T][q] • 

Solving for [f3 ~-' 

(f3] = [H] ""1 (T] [q] • 

Substituting this value of · [f3] · into equation (32) yields . ·, 

··· 1 ~.:r:.-·.J. l 
U = ::; [qJ [T HHl [H][Hr [T][q] 

C. . 
' 

a.lid hence 

(43) 

The internal strain.' energy ~an also be expressed in terms of the 

cqrner displacements ~-q] . __ ,and the related :f'orcea, [Q] 

P,onsequently:, uti,lizing the def'initio:rf of stiffness, 

'· 

[Ql =:=:[k][q] ' 

one ob~~ins 



l . ·T · 
u =, 2 {q] [ltl[ql • (li:5) 

. Co~aring equations (43) and (45), the elemental stiffness is 

therefore found to. be·· 

(46) 



· CHAPTER rp: . 

STIFFNESS.MODI~ING ~RIX 

3· •. 1 Stiffness. Modifying Matrix 

The elemental stiffness ·developed in the p;eceding.chapt~r·will 
. . •, •. .' / •. 

r{ow be modified to.· inqlude the; ~'ffect··. ~f the -i.n-plane loads on the 
: • . ! ' / ' • 

s~i.ffness. 

·Assuming a third· order polynomial in x and y ·as a d.1.splacement 
' . ,,. . 

function, 

'.: (41) 

The pot~tial energy due to the in-plane forces acting through the 
. . .· . . 1 

bending displacements 1e. 

This can b_e formulated, matrix-wise, as 

(~9) 

where 

f,. 'f ] [O] = X xy 
,. fl 

xy y 

and 
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. 30-

[X] = 

Evaluating the assumed displacement function of' eqll$.ti~n, (4 7) . and :tts 
./ 

derivatives results in the 'set of' equations 

w = a l l 

ex3 = ~ a3 ~ 211l'6 - 3b2a10 

.· 2 3 
e,Y; = - a2 - ba5 - b a9 - b a12 

w3 == al + ba3- t b2a6 +- b3alo 
'· 

w4 = a1 + aa2 + ba3 + ,la4 + abQ'5 + b2a6 + a3a7 :+ a2ta-8 

+ ab~9 + b3aio + a·\all + ab3al2 ( ::;o} 
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Or in:ma.trix· forin, 

[q] = [A][a] (51) 

where [q] is,, as before, the nodal displacements, 

Solving (46)- for [a] 

(52) 

Also, [x] can be expressed 

(x] = = [BJ [a] = [B] [A] .. l[q] (53) 

where [BJ is 

~ 
l 0 2x 0 3x2 2xy 2 

0 ~2y ·Y3 ~ y y 

0 l 0 2y .o 2 2xy 3y2 · x3 3xy2 X X 

-
Now inserting the expression :f'or [ x.] into equation (49) yields 

Again by comparing to equation (45), 

[km] = t it [A-l]T[B]T[al[B] [A-1] ti ds • 

Since [A] and hence [A-1) are constant matric~s, they can be 

excluded from the integration. Therefore, 
- I• . 

·Let 



J 2.; [B)'l' [a] [B] ti ds 
S 1=1 

[BS]. 

Then [BS] can be evaluated for any specific [c,J, 
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(9,) 

For example, 
(J ' X 

a y' and 'i can be taken as constants or as xy 

functions of x or y or both, representing the d.:i.stribution of in-

plane stresses in the element. Also; the modifying stiffnesses can be 

added together_thereby making it possible to accomodate virtually any 

stress distribution in the element, This in turn means that any varia-

tion of in-plane forces may be applied, both at the edges and as sur-

face tractions. 

As an example, [BS] will be evaluated for cr = constant within 
X 

the element and cr = T = 0 throughout the element. This would be 
Y xy 

the case of a uniform uniaxial in-plane loading, 

Since cr and th.e sum of the thickness of membrane cores are 
X 

constant throughout the element, they can be removed as scalar ll1Ulti-

pliers of matrix [BS]. Matrix [BS] is shown in Figure 11. 

[k ] is now determinate and can be used to modify an elemental m 

bending stiffness thereby• including the effect ()f the in-pla:ne loads 

upon the stiffness, 

3,2 .. In ... pl~ne Stif'fness 

It should now be noted that although in most cases a proper 

assumption can be made for the stress distribution, it is not always 

so. For instance-9 concentrated loads in.the plane of the plate applied 

in an irregular pattern would make it difficult to be sure that the 

stress pattern assumed was appropriate .• 
. 

For this reason the in-plane stiffness matrix is developed here 

after the method of Pian (.13) ht,i.t modified to apply to layered plates 



0 0 0 0 0 0 0 0 0 0 0 0 

ab 0 a2b. · ab2 0 a3 b a2b2 ab3 0 aaba ab4 
2 -2- T -y- T 

0 0 0 0 0 0 0 0 0 0 
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T -2- -3- T -J- T 

0 0 0 0 0 0 0 
n 
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5 4 T 10 -ir-· 
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SIMMEI'RICAL at>5 0 aab4 6 ab 

5 -r T 

0 0 0 

3a5ba aab5 
5 T 
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T 

Figure 11. Matrix LBS] 
\>I 
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and including all second order terms in the stress function since the 

application of the results will be to describe the stress pattern as 

closely ~s possible. 

The strain energy Up due to the deformation of the middle plane 

of the plate by in-pla.ne forces ;is 

U "' ~- f' [ O' E + a E + t )' ] dv , p 2 . x x y y xy xy 
V 

(55) 

,Since only small deflections are to be acknowledged, then CJ x' 

cry' and 'f may be considered to remain unchanged during bendi:pg. 
xy 

The preceding statement of Up can be expressed in matrix form as 

where 

1 j~ U = 2 [ o: HE ] dv 
p V p 

CJ 
X 

[crp] ""' CJ y 

,.. 
xy 

~ l ( a ][N H cr ] dv 
V p p p 

and [N] 
p is the upper left 3 X 3 matrix portion of 

fined in Chapter II. 

(56) 

[N] as de-

Proceeding as in Chapter II this leads to an equatton similar to 

(33) 

where 

[H ] 
p 

[O'] "" [P ][p] • 
p p 

The assumed stress functions are 

(57) 

(58) 
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(59) 

(60) 

(61) 

From the equilibrium of the in-plane forces on the elements, 

(62) 

(63) 

Taking the appropriate partial derivatives, six of the eighteen 

coefficients assumed in the stress functions can be eliminated, result-

ing in the following equilibriated stress functions 

From this formulation the matrix [P ] 
p 

(64) 

(65) 

of equation (58) can be 

written and [H] is then determinate ftrom equation (57). Performing 
p 

the appropriate integrations and summations-' 

uated and is shown in Figure 12. 

[H] can·now be eval­
P · 

· Following the procedure that was outlined iri Chapter II, 

(67) 

where the relationships 



A A A A-Wab2 

2 2 3 Ja2""" 
A+vb2 A A-WAb2 -tWab2 

3 )a2 4 4 6tf. jtr 

A A-WAb2 

3 6 4a2""" 
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SYMMETRIC 
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6 a;:z- 6 T T 
A A .J.iA .J.iA 
6 4 T 4 
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8 a:' 87"" 9~ 33a2 4~ 

A-f¥Ab2 A -WA -WA 
9 20a2 8 4 T 

A ..:WA -WA 
5 T b 

A A 
2 

A 
3 

Figure 12. Matrix [H] p 

.J.iA . ..J.rlA. ..WA 0 
T T 4 

-WAb-fVA -WA .J.iA-fVA -VAb 
44 4 b]2 2a 

...WA · -WA -WA 0 
T b b 

-WA~b2 -f¥A ..J.rlA.~b:a .J.iA ~ b 2 -f¥ A -VAb 
T4&7T T 9a2 88a2 8 2a 

.JtlA..VA -WA .JtiA+vA -VAb 
TE 8 9Jb ra 

..J.rlA. -WA -WA 0 
4 9 8 

A A A 0 
2 3 4 

.A A A 0 
4 l}" 6 

A-f¥Aa2 A A-f¥Aa2 -VAa 
3W" 6 6 a'i;T" 2b 

A A 0 
5 8 

A-+VAa2 -VAa 
9 20b2 rr 

VA 

~ 



[S ] 
p 

are used, and not'ing 

s 
x12 

s 
Y12 .. 

s 
x24 

s 
[S ]. = Y24 
·P 

s 
X34· 

s· 
Y:34 

s 
XJ:3 

s 
Y13 

- 1'12· 

:-" 0'12 

0'24 · 

n T24 
= ~ti :[ 

1' 34 

<134 

- a13 

- T 13 

[R ] may be calculated and is shown in Figure 13. 
p 
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(68) 

(69) 

If ii is dei:i;ned as displacement in the x-direction and v as 

displacement in'the y-direction, 

[ u ] = 
p 

-· 
V:34 

~13 

' 
[q] 

.. 
ul 

vl 

u2 

= 
v2. 

u3 

v· 
3 

U4 

V4 



0 0 0 0 0 0 0 0 ax 0 -·a ax -1 
b 2b 

0 o. 0 0 0 0 -1 - 0 -a 0 0. -x -x 

1 1 1 - ~ y y 0 0 Q 0 0 0 

0 -1?! 0 -2by· -~ 0 0 0 -a. 0 -a 1 f tl I a a. 2a ·b 2b 

L=l I O -b 0 -2bi -b 0 0 0 - 0 -a? 1 -ax - 2a b 2b a a 

ba 1 - 1 ia - 0 0 0 0 0 0 .x X 
·~ 

a 

-1 0 --y 0 0 -? 0 0 0 0 0 0 

0 . .!?i o. 0 Er. 0 0 .0 0 0 0 -1 
a 2a 

Figure 13. Matrix · [RP] 

~ 



I 
equation (69) [1' ] may be formed. Then,' f:pom p 

l - 0 - 0 0 0 - X X 

1,· - x· 0 - 0 0 0 X 

0 0 l - y 0 0 0 

0 0 0 l - 0 0 - y 

0 0 0 0 l -
- X 0 

-0 0 0 0 0 l .- X 

l -- y 0 0 0 y 0 

0 l - y 0 0 0 y 

Performing the manipulat:i,Onl3 · indicated in (67),. 

be. determin~d and is shown in: Figure 14. 

39 

0 0 

0 0 

-y 0 

0 y 

X 0 

0 
,-
X 

0 0 

0 0 

[ T ] - · can now 
p . 

Consequently, adding the p · subscripts to equation (46) yields 

(70) 

and j;hE; in-plane stiffness of the element can be computed. 
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- !! 0 !! 0 b 
0 g 

0 2 2 -2 2 
2 g b2 b2 - b2 0 b b 

0 6a 2 -6a - 2' Ja Ja 

b .o b 0 - !! 0 b 0 -6 6 J 3 
0 0 b b2 _g b2 b b2 

2 - Ja J 2a -6 - ba 

0 
b2 b b2 b b2 !L b2 
24a b - ilia -1;: 8a 12 -Ba 

h -lL 0 !L 0 _g 
0 b 0 12 12 4 4 

~t :1 1 
0 a 0 a 0 .! 0 a -2 -2 2 2 

0 a 0 a 
0 a 0 !. -6 -J 6 J 

a2 2 a a2 a a2 0 a 
0 6b Jb -2 - 6b 2 ... 3b 

0 -L 0 a 0 a 
0 a 

12 -4· 12 4 
2 a2 a a2 a _ t_ a a 0 24b 8b -4 - 24b 6 Sb 12 

- .! b a b a b a b 
2 -2 -2 2 2 -2 2 2 

Figure 14. Matrix · [Tp] 



CHAPI'ER IV 

COMPl1l'ATION OF PIATE DEFLECTIONS 

4.1 Assembly of Elements 

.In the previous _secti~ns, the necessary steps for the computation 

of the elemental stiffnesses of multilayer plates in bending including 

consideration of the effect of in-plane loads have been developed. 

They can now be assembled to provide :the stif'fness.· of' the ~,ntir_\: plate. 

The stiffness of the entire plate is formed by constructing a new 

stiffness matrix whose dimensions are equal to the total numl;)er of de-

grees of freedom for the entire plate, Each term of the matrix is 

found by adding the ·corresponding values of the·elemental stiffnesses 

for each degree of freedom. 

For example,· a 4 X 4 grid would result in_ 25, nodes. _Since eac:tt 

node.is considered to have three degrees of freedom, this would require 

a 75 X .'.75 matrix. It is in handling. support conditions that this 

method demonstrates its great~st justification compared to the more 

classicai procedures. 

· Any of the generalized ~oordina.te or generalized f.orces can be 

specified. 'i1h0is provides for most of the physically pdssible condi_: 
! \. -

tio_ns. Some examples of boundary condition applications !;I.I'~ as follows, 

(a) For a simply supported edge, the deflection at th~ riode and· 

either the tangential slope or the·edge twisting moment· may 

41 
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be taken as zero. 

(b) Clamped edge - all three generalized coordinates are 

taken to be zero. 

(c) Column support - deflection only is set equal to zero. 

The stiffness matrix is now reordered according to the following 

procedure. Designating 

zero generalized coordinates~ q, 
0 

specified non-zero generalized coordinates= qn' 

unknown generalized forces= q, 
u 

zero generalized forces= Q, 
0 

specified non-zero generalized forces= Q, 
n 

unknown generalized forces= Q, 
u 

the stiffness relationship can be partitioned and written as 

and 

Qo 1S.1 IS.2 1S_3 · 1S_4 ,q 
ul 

Qn K21 K22 K23 K24 qu 
= 2 

Qu 
l 

K31 K32· K33 K34 qn 

Qu 
2 

K4l K42 K43 K44 qo 

Multiplying out the first line, 

Qo _= Kllqu1 +·Kl2qu2 + Kl3qn + 1S.4qo 

:Noting that Kll' 1S.2' Kl3' Kl4) 

specifically that q is zero, 
0 

Qo "' Kll ~l +. 1S.2q,u2 + 1S_3qn • 

From the s_econd line of (63), 

qn' 

. 
qo' and Qo 

(71) 

are known 1 

(72) 



However, again Q = o, therefore, 
0 

Solving' ·this . express ion f'or ~ . , 
2 

-le ) ~ 2 = K22 Qn - K2lqu1 - K23qn • 

substituting into equat'ion (72), 

(7'3) 

(74). 

where all the terms on the right side are specified, thus making it 

possible to solve for Substituting these values back into equa-

tion (74) provides a solution for the remainder of the unknown general-

ized coordinates, 

If all of the specified generalized coordinates are of zero value, 
. . 

a simpler procedure is. possible. Letting Q now represent apy spe-
o ' 

cified,_ generalized forces;i the partitioning now results in 

(76) 

and, from the first line, 

But since q0 = Oy 
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or 

(T7) 

The unknown generalized coordinates may now be solved for directly. 

Loads corresponding to the generalized coordinates· (My' Mx., 

Q) may be applied at any node where the generalized displacement has 
z 

been designated as unknown. 

In the partitioning of equation (71) these would be the forces 

denoted Qn. In the simpler formulation of equation (76) they could be 

any of those in the submatrix Q. 
0 

4.2 Loads 

Loads in the plane o:f the plate can be accommodated by combining 

the bending stiffness matrix developed in Chapter II with the bending 

stiffness modifier developed in Section 3.1 and the in-plane stiffness 

matrix developed in Section 3.2. This result.s in five degrees of free-

dom at each node, and loads can be applied both at the nodes and as 

stresses. If the in-plane stiffness matrix of Section 3.2 is not con-

sidered, the number of degrees of freedom per node can be reduced to 

three. This a substantial savings in computer storage, while neglect-

ing a relatively minor effect. This reduc,ed form has been used in this 

thesis. The loads are then applied as stresses. 



CF.APrER V 

CRITICAL STRESS SOLUTION 

5~1 General 

Once the total stiffness matrix of the .layered plate has been 

established, a characteristic equation form can be obtained, A solu­

tion procedure has been presented in papers by Hartz (17) and by Kapur 

and Hartz (18) and has been credited to Bolotin (19). Essentially the 

same method is used by Gallagher anq. Pad.log· (20) and by Archer (21) 
.. 

with some variations. Some complicati9ns arise because the sti-ffness 

matrix yields'the'highesi'i mode first in an iterative solution. Stnce 

interest is usually centerei around the lower modes, it may be desir-

al;lle to change the form to a flexibility type. providing the lower 

modes first. The preceding method will yield the critical stresses 

utilizing·the foregoing stiffness matrices and is particularly appro­

priate if all of the modes are required • 

. Another approach will be investigated here. It tends to be very 

efficient for determination of the critical stress corresponding to 

the fundamental mode and fairly -good for other low order modes. It 

also has the advantage of being physical in nature and provides some 

opportunity to study the behavior during unbounded deflection. The 

method consists of predicting .the critical load by using a fast con-

verging prediction-correction ·method. 
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5.2 Magnification Factor 

Timoshenko (18) sl).ows that the following differential equation 

governs a plate that is subjected to: an initial deflection w; 
0 

an 

additional deflection w1 caused by the transverse loads; and in-

plane loads and N • xy 

N ol:l(wp.+w;i.) 
' + y .. (5ya 

+ 2 Nxy_aa ~i~y+ w1 )] • 

For multilayer plates the equation will be similar and is approxi-

mated by 

I:f the initial deflection surface, represented by 

' ; . tll1!'. X 
sin'...,­a (79) 

. r 

is substituted into equat;ion {78) the expression for additional de-

fletti.ons pf a uniaxially loadedJ simply supported :plate is :found to 
. I 

be 



in which 

The total deflection is 

___ a ..... m-n ... · ------ sin ~art x sin nbrt Y 
ax· 

l ·· Tfr - ·u2·· 1a' 2 

Hence as 

:n: ____ •. (m + ~~) 
aa , mbc1 

O' approaches its critical value 
X 

w becomes very large. 

For a simply supported rectangular plate, ~ssuming 

the total deflection becomes 

: a · 11'.x -- · rcy 
w "" - ll - ·sin ~- sin ----

1 - ex - a b 

where 

For ·-maximum deflection -at a 
X = -2' 

w max 

b 
y =·2, 

(80) 
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Noting that 

then a can also be .t~ken ~s 

. . O'x {a ) .. . ....• 
x critical 

This then is a c·orollary to .Southwell I s. development for col-urnns 

(22). 

Therefore, if a11 is an initial di,_splacemep.t :pattern ~imila.r to 
-... 

the bu_ckled .configuration sought, then 

or 

W=~ l ..;O: 

(81) 

This development is based.upon the deforma.tions conf9r!fling to a 

· doub).e sine series. It will be shown, however, tha,t good results can 

be ac;:hieved :for some plates for which the. displacement conf.igura.tion 

: is not very well represented by the assumed ~eries • 

. 5.3, Application of Magnification Factor 

TJ;l~ solution.used herein ;proc~eds as foll.ows: 

(a). 

'(b) 

(c) 

deflection is comput~d due to a. transverse load; 

.a token :l,ri-plane :1oad is applied Srlld the- deflection. q.~e 
. . . . ' . . . 

to the combined loading is · computed; 
J ' ! • 

. I I . 

I 

the critical ·load is predicted using equation (81); 
• • t J • '. 



(d) the applied in-plane load and the resulting predicted 

critical load are compared. If the ratio of the former 

to the latter is less than some. predetermined value 

( .995 £'or the problems in Chapter VII) then the pre-

dieted critical stress is used as the initial stress 

and a new critical stress computeq. The two stresses 

are a.gain compared and the procedure is repeated until 

the prescribed ratio is satisfied •. 

5.4 Mode Determination 

If a single concentrated load or a uniformly distributed.load is 

applied to the given plate, then the critical load .will be for the most 

basic mode consistent with the constraints. 

For example, a simply supported plate transversely loaded with a 

uniform load will yield the configuration conforming to the first buck-

ling mode and hence the corresponding buckling.load. The second mode 

can be.found by considering the plate to be anti-symmetrically ·de-

formed. · This can be accomplished by taking one-half of the plate and 

apply:in.g the constraints required to properly form the buckled mode, 

Succeedingly higher modes can be found in the same·manner.as long 

as the dimensions ,of the segments are known. Unfortunately, the di-

mensions can be accurately predicted for only a few configurations. . . 

Therefore another means is required to determine higher modes. 

One possible method would be to estimate the division of the 

plate into modesy determine the critical load of each segment, redi­

mension the segments ;1 and continue until the budtling load of each 

segment is the same, This has some obvious .disadvantages. The method 
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that will be used here is to initially deform the plate into 

approximately the desired buckling mode by selective .application of the 

transverse lot:;J.d.s ~ A;p:pliqation of. the in-plane loads will then fprce 

the plate i_nto the mode sought and the solution will yield the critical 

load for that mode. This provides a relatively simple soluti'on for 

the :first few modes, As mentioned in Section 5.1, the eigenvalue solu­

tion is most appropriate when all the modes or some of the higli'er modes 

are required. 

The displacement used in equation (74) may be any of the deflec­

tions or rotations representing the degrees of freedom of the plate. 

For the examples in Chapter VI the anticipated point of maximum de­

flection is used, 

5/5 · Convergence 

The convergence o; the ~ethod appears to_ be excellent •. A;Lthough 

a relatively few problems .have been solved.? .it does appear as though 

the convergence may be influenced by the selection·of some arbitrary 

pa.rameters involved in the solution, In extreme cases the accuracy 

may also be affected. 

In a few cases the first prediction was within one-half of one 

per cent of the ul.timate answer. For almost all examples two or three 

iterations sufficed for first mode determinations. Second and third 

mode solutions required more iterations, al though too few problems 

were worked to formulate decisive conclusions. The maximum number of 

iterations encountered was six. 

Two initial conditions that appear to effect the solution are: 

(1) proximity of the ini ti.al de'flect ed · shape of th.~ plate 



(due to transverse loads only) to the· buckled mode. 

This is discussed in the Conclusions. 

(2) Selection of a degree of freedom as the displacement 

to be compared in equation (81). Scattered, results in­

dfoate that deflections give better accuracy. tnan rota­

tions. 
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CHAP.rER VI 

EXAMPLES 

6,.1 Procedure 

The met~od as described in the preceding chapters has·been 

programmed on the Int·ernational Business Machine .7040 electronic digi-

tal computer. 

The program is divided fnto two segments. The firat segment 

developp the elem~ntal stiffnesses. The second segment combines the 

elemental stiffnesses into a structural stiffness matrix and solves for 

·deflections and critical load. 

The basic grid ·used in the following examples is four 'by ·four. 

If the plate is· symmetric with respect to both the x and y axes j 

th.en a quarter of the plate is actually used and the eff·ective grid is 

eight by eight. If :there is symmetry with respect to.only one axis, 

. then the grid is .. four by eight.. If no symmetry exists, then the actual 

as well as effective grid is four by four. The grid can.i of course, 

be varied depending pr:Lmar~ly on available computer storag~. 

Four sets of boundary conditions are examined in the exam:ples. 

They are 

Type .A s 

i s 
y 
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F ~= 

I 
X 

Type B F F ..,. X 4't.,. 

iy 
F 

X 

s 
X 

Type C ,., F ~x X 

iy s 
Fx 

X 

· Type D s s 

ty 
]<' 
r 

where 

s - simple support 

Fx = fixed'Support 

Fr = free edge. 

6,2 Ho1Y1ogene011s. Plates 
- - " --- -

This group of problems is a control on the accuracy o:f the method, 

Results are compared with those of reference (25), 

The plate used here has the following dimensions and properties: 

Ly is the dimension of the plate in the y-direction and is 

taken. equal to 10011 , 

Lx. is the dimension of the plate in the x-direction and is 

defined by the aspect ratio. 



6 . 
· E = 30 X 10 psi. 

E ·_ 6 
G = 2 (1 + ~J = 11.5 x ~o psi. 

t ,;;; plate thickness .= 2 .011 • 

In Ta.ble .I only the \:!ritical modes are tabulated. Unless other-

wise noted the critical mode is the primary mode. The loadi_ng is a 
' ' 

uniformly distributed stress in the x-direction. For some low· aspect ,. 

cases the comparative results. have been o_mitted becia;use they did n6t 

·fall within the range of· Gerard's solution. Adding a uniformly dis-

tributed stress i;i the y-di:rection equal to on.e-half of the x-direction 

stress yields . the results shown in Tabl,e II. Several· 'i:miaxial )?ro-

bletl).s were solved for more. than one mode. These are tabulated in 

Table III. 

6,3 Sandwich Plates 

Although the method developed in previous chapters is valid for 

multilayered plates.i the illustrative examples used .. in this section 

assume a tp.ree· layered plate composed. of a core sandwiched between two 

aluminum facing layers~ The group of examples solved here also serves 

to sub'stantiate the method although it includes some cases for which 

exlsting solutiqns were not. found in the literature~ The plate .dimen-

s1ons and properties. ar~ -as follows: 

Lx. is defined by the aspect ratio 
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TABLE I 

CRITICAL STRESSES FOR HOMOGENEOUS PLATES UNIAXIALLY 
LOADED IN THE X-DIRECTION 

Aspect Ratio 

.5 

.5 

.5 ' 

.5 

.75 

.75 

0 75 

.75 

LOO 

1.00 

1.00 

1.00 

2.00 

2.00 

2.00 

2.00 

:Boundary 
Conditions 

A 

B 

C 

D 

A 

B 

C 

D 

A 

B 

C 

D 

A* 

B** 

C* 

D 

* Second mode· critical 

** Third mode critical 

.Finite Element 
Solution 

66033 

203934 

190903 

48050 

46925 

123945 

104000 

25862 

42743 

110034 

74687 

17751 

45930 

85428 

59368 -

14353 

Existing 
Soluti.on (25) 

67717 

47652 

105000 

27085 

43338 

111590 

73590 

17334 

43338 

86130 

52550 

14084 



Aspect Ratio 

.5 

.5 

.5 

.5 

.75 

.75 

.75 

1.00 

1.00 

1.00 

2.00 

2900 

2qod. 

TABLE II 

CRITICAL STRESSES FOR B~IALLY 
LOADED HOMOGENEOUS PLATES· · 

Boundary 
Conditions 

A 

B 

C 

D 

A 

B 

C 

A 

B 

C 

A 

:S· 

C 

Finite Element 
Solution 

58694 

183:380 

. 174497 

45915 

35826 

· 98846 

83211 

28494 

75191 

64343 

22156 

684.47 

·26484 

Existing 
Solution (25) 

60670 

188511 

186000 

36800 

102000 

90000 

28893 

76367 

53700 

22534 

61735 

26400 
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TABLE III 

CRITICAL STRESSES.FOR VARIOUS r.lODFS OF UNJ.AXIALLY 

Aspect Ratio 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

LOADED HOMOGENEOUS PLATES . 

Bqundary 
Conditions 

A 

A 

B 

B 

B 

C 

C 

C 

Mode 

l 

2 

l 

2 

3 

l 

2 

3 

.. Buckling Load . 

.66468. 

45930 

110034 

102424 

85428 

112661 

60001 

59368 



two aluminum facing membrane layers 

thickn'ess = .021 11 

E = 9.5 X 106 pst. 

V = .25 

balsa core layer 

thickness= .181" 

.G"" 19000 psi. 

As before, only the critic~l load is shown i:r;i Table IV for a 

uniformly distributed stress appli_ed in the x-direction. 

The same sandwich plate is loaded biaxially with a uniformly dis­

.• tributed stress in the y-direction equal to one-half· the· x-direction 

stress resulting in the critical loads shown in the Table v. 
A uniaxiaJ,.ly loaded square sandwich plate example used by Hoff (4) 

was also checked. Hoff obtained a· critiQal stress of 7220 psi. while 

the method ·presen:ted here yielded.7483 as the critical stress. 

6.4 .. Muitilayer Plates 

A series of related problems are 'solved and the results are 
. , 

plotted to -demonstrate the application pf the method to the deter­

mination of critical stress for multilayer plates. 
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':I.'AJ3LE IV 

CRITICAL STRESSES·FOR THREE LAYERED SANIMICH PLATES 
UNIAXIALLY LOADED IN TRE X-DIRECTION 

·, 
Aspect ~atio 

•5. 

.5. 

.5 

.7 

.7 

.7 

.7 

1.0 

L.O 

LO 

2.0 

2.0 

2.0 

Boundary 
Conditions 

A 

B 

.c 

A 

B 

C 

.p 

A 

B 

C 

A* 

B** 

C*. 

* Second mode critical 

** Third mode critical 

Finite Elem.ent 
Solution 

11420 

32209 

30405 

8076 

21018 

17879 

·9722 

7268 

17194 

11887 

7268 

13016 

9442 

f • 

Existtilg 
Solu.:tion (5) . 

10077' 

7930 

~9074 

15704 

7091 

16235 

11012 

7091 

12786 

8397 



i .. 
TAB~ V 

· CRlTICAL STRESSES FOR !fHREE LAYERED BIAXIALLY 

Aspect·· Ratio 

.5 

.5 

.5 

.7 

·'·} 

.1 

.r 
. l:.·O 

1.0, 

LO 

2.b 

2.0 

2.0 

. LOADED SANIWICH PLATES . 

~undary 
Conditions 

A 

B 

C 

A 

B 

C 

D 

A 

B 

C 

A 

B 

C 

Finite Element 
Solution 

10274 

29253 

28600 

6487 · 

17265 

15075 

6927 

4834 

12208 

e615 

3761 

16952 

4333 

60 

Existing 
Solution (26) 

0 ·4750 

li362 



The plate propert=l:es and dimensions are 

Membrane 
Ia.yers 

1 

2 

3 

4 

Core 
Layers 

·1 

.2 

Distance 
·to 

Neutral 
·s1.:1rface 
(inches) 

.486 

.223 

.114 

.• 494 

.Distance 
to 

Centroid 
( :ttlc)!l es ) 

,' 

.36? 

· .• 062 

.:312 

Ly = 100 inches 

Thick!;less 
(inches) 

.075 

.100 

.060 

Thidknes-s 
(inches) 

.200 

.250 

.200 

Lx varies from 40 ·1nches to 200 inches. 

Modulus of 
Elasticity 

(psi) · 

30 X 106 

10 X 106 

10 X 106 

30 X 106 

Shear 
Moduli 

(psi) 

10000 

8000 

12000 

61 

Poisson's 
Ratio 

.3 

.3 

.3 

.3 

The results of loading 1,he plate with a ·uniformly distributed 
I ,• ', 

uniaxial stress in the x-direction are plot,ted in Figure 15 for both a 

4 X J+ and an 8 X 8 . grid. 

To further demonstrate the method th~ critical stress for the· first 

mode of a plate wit4 the same cross-sectional properties is determined 

for the support conditions :shown in Figure 16.' The resulting critical 

stress for the first. '!IlOde is 26102 psi. 
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Figure 1,. Critical Stresses for Simply Supported 
Rectangular Multilayer Plate 
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10011 

j: 
12011 

60 11 

FIXED EDGES 

1-- 7511 

Figure 16. Support Conditions for Mu.l~ilayer 
Plate Problem 

.,_ 
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CHAPl'ER XII 

SUMMARY AND CONCLUSIONS 

7.1 Summary 

A. method fox determining the cri~ic~ buckling load of .. multilayer 

sandwich plates has been developed in this thesis. The method consists 

of the application·· of the finite· element ,method to layered :plates. It 

provides for ~pproxima.te soluti(?ns to three layered sandwich plates 

whose boundary conditions can not ·be accommodated by existing analyti­

cal methods as \.Tell as solutions of m:ultilayer sandwich plates. 

The material proper;ty assutii:ptions ·made -~re consis.tent with 

experimental inv~stigation of sandwich construction: The _solution is 

based upon small deflection theory of thin plates and ther~foreis not 

applicable in the case of thick or flexible plates·. Also., -the bending 

stiffn~ss of the individual .membrane layers is neglected, therefore 

plates with t.hick membrane layers would not yieid .dependable results. 
' ' 

The weighted neutral surface ~oncept (7) allows the bending 

' ' I ' \ 

properties of the layered section to be treated. as an equivalent ho .. 

mogeneous section~ 

Stress functions were assumed in developing both the·. bending and 

in-plane stiffnesses. ' The functions used are · o:f higher e>rder than 

those previously utilized for homogeneous plates in order to provide 

more accurate representation of the. shearing deformation. 
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A displacement function was assumed for determining the stiffness 

modifier bec~use the formulation seemed to be niuch more direct. 

Theoretically it appears that the stress functi_on should give 

-better results than a displacement function· (15). There has not yet 

been enough comparative work done ·t·o conclud.e that it is always so. -
. . 

The vertical component of the in-plane forces due to displacement· . . ' 

has been neglected because of it's higher order. Also,. it is f~lt 

'. 
- that its inclusion would req-uire a more complex solution procedure and 

therefore- negate some of the advantages o.f' the method. 
', '.. . 

· The analyt.ical use of the magnification procedure provides a 

quickly converging method of detiermining the critical stresses for the 

low modes. Eigenvalue solutions are available, however, to which the 

stH'fness matrices deveJ.oped in thi.s thesis may be applied_ when the· 
·- , 

- critical· stress.es fo! higher modes ar:e desii:ea -(17, 18), 

7 .;:: Discussion of, R_e~ults 

Wher~. other· solutions are ayailable for comparison, results ap:r;:>ear 

to be quite good •. It is somewhat difficult to conclude conclusively 

because most of the existing solutions are also approximate. 

For the uniaxially loaded homogeneous plate problems worked} the 

largest deviation from the existing soluti?n is_ 13';0. The next largest 

deviation is 6.01,. The mean deviatibn is 1.6%, It should be no.ted 

that both the high deviations are for modes greater than the first, 

This same trend was noticed in 9andwich plate :r·esults. However, some 

excelle!lt agreement was found in higher mode solutions. Another char- -
' J • 

I I 

. . . . 
acteristic is noticeable, The Type C boundary condition tends to pro-

' ' 

duce greater deviation from existing results than Type B, This i_s 
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surprising since Type C deformation conforms more closely to the 

assumed double sine series than does Type B, 

The deviations for homogeneous biaxially loaded platei;, run 

slightly great,er, The mean is 2, 7''/;. 

For the uniaxially loaded5andwich plates the mean deviation is 

5, 5dj,. 

The curves plotted for the multilayer plate take on the, same 

characteristics as homogeneous plates. 

The solution, as a function of grid size, converges from below.· 

There are not any tabulations of critical stress computations o_f multi-

layer plates although methods for analysis of simple support condi­

tions have been developed in two papers' (7, 8). 

The multilayer problem with fixed support on a portion_of one 

edge and two column supports described in Figure 15 has been included 

to demonstrate the capacity of the method to accomp1odate irregular 

support conditions, 

U Conclusions 

The results have demonstrated that the m,ethod of finite elements 

can provide solutions of reason~bly good accuracy for sandwich plate 

critical stress prob,lems, Some experimental results.are needed to 

futly evaluate the usefulness of the technique, since rigorous solu-

tions are sparse, 

It should be rioted that the grid used here is relatively course. 

It is believed that a finer grid should be used if dependable results 

are to be expected from plates with irregular support conditions. 
' . 

The mechani,cs of the method allows plates with holes or irregular 
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boundaries .to be solv.ed. However,. a .f.ine grid is again indicated and 

more corroborative work needs to be done. 

ThE.: magnification method utilized. to determine the critical stress 

has been succes~ful with some reservations. In addition to the dis­

cussion within the text relative to obtaining higher modes, ;,evl=rai 

pertinent facets of the method. should be mentioned, The prediction 

factor -is based upon the .assumption of a sine wave shaped displacement. 

It has been shown in this thesis that it yields good results for dis­

placement configurations that are not especially close to a sine curve. 

This does not, of course, mean that good convergence will occur for 

all mode shapes, One.advantage of the magnification method as compared 

to an eigenvalue solution is that by controlled iteration the deforma­

tion response of the plate can pe examined. 

The solut.iqns presented. :ln C~apter VI used a set of' stress· 

functions containing twenty-seven independent coefficients~· Stress 

functions with seven and with seventeen indeI,endent. coeffic.:ieI\tS were 

formulated but were not used because they .reflected only constant and 

linear, respectivelyJ variation of the transverse shear stresses. For 

problems where the transverse shear stress is not deemed important, 

. the full twenty-seven term expressions would probably not be necessary, 

The results of this thesis and the similarity of problem 

characteristics lead to vibration analysis of sandwich plates as a 

natural sequential. step in the ap;plication of the method of finite 

elements. Studies in elasto-plastic behavior appear to also be 

possible. 
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APPENDIX A 

COMPUTER PROGRAM BLOCK DIAGRAM 
start· 

Dimension arrays 

~ead plate properties. 
and element dimensions 

Print plate properties 
and element dimensions 

. Compute elements of [ T] 

Compute elements of 

'!'ranspose (r]-.. ·rY 

·· Co1nouto elernents of .[ A· 

lteo.d boundary collt1'lls 

Read. loads [ Q] 

Print boundary controls 
arid loads 

~'ormulate. ptr· ctur.~l 
stiffness LK. ·= LKt 

Set P = Pc 
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Solve for disnlacements · 

rdu1 to[tr!!Y][eJse loads Uo = Ke· . Q 
. . 

Read ini9'a in-plan~ 
stl-ess e· 
Nodi.· fy struojural stiffness · ( [Kr ) per(P --t[K~] 

Compute predicted critical 
stress us:l.ni'. magnification 
formula= Pc · 
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