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CHAPTER I
INTRODUCTION

1.1 Background

The deﬁelopment of sandwilch ﬁiate théory.and,finite eleﬁeﬁf‘
investigations proﬁdé.s; th;e:’ba,c'k:gl‘round for the content of this thesis.

"?he:connofatioh pf sgﬁ&wich;platé as used hére,vand as‘généraily'v
ﬁhdérsﬁdod, iS"g plate.éémposediof thré§1layers.‘ fhe inferiqr layer
provides resistance f&itransverse'shéar oﬁly; vhile the ¢xteriof léy-
ers regist bending End:ﬁwisting moments iﬁrthe-form of in—plaﬁe
forces. | | |

Mult;layef plates aré‘génerally; aiﬁhoqgh not aiﬁays, cpnsidéféd
to'be'gdnétrucyed of seyeraiila&ers.ﬁhoSgrpropértieéfaltergate. 'The
alféfhating'érdpértiés?cdincide,with,thOSé desqribed’fpf sandwich |
'platés; N | | |

'Théaéarlyithed:etical'wdrk in thisvfiéId'wg§ done by,Beiésher.
(1; 2),‘Hbfff(5)_and:Eringenv(h);\-One other article of éarticuiar
inteféstJis by Kuenzi, Norri$,'and‘Jenkins;n (5). |
,Reissner~(2) déﬁéngtraped thdt thé t;ansVensglpormaiﬁsﬁress
ccnt?ibﬁﬁion'canibe,ﬁeglected{in sOlving sandwiph‘p;ates.g'He also
deyélopéd éq éxbréssibn;defining the valid reéién of:ﬁis "small de-
fleétidnﬁ theé:&a' Hoff (3) used quariatioﬁal tgchnique‘for'solving

‘both bending and buckling problems. PBringen (4) included the "



possibility of thick facings and hence did not neglect the bending
stiffness of each individual layer. Subsequent papers considered or-
thotropy-.

The primary liﬁitation of these ﬁapers and those that follow is
that éolutioné are oﬁly.available'for a few boundary or support con-
ditions.

The solution presented here is not based on any particular
layer arrangement. It can, in fact, accommodate sﬁperimposed or over-
1apping layers, or as in the case of a homogeneous plate, all layers
may have identical properties.

Previous work on multilayer plates has been done by Liaw (6)
and Wong (7). Both of these papers applied variational techniqués to
develop the system of governing differential equations. Examplés were
solved for simply supported boundary conditions.

Pomazi (8) presented results for simply-supported multilayer
plates. He‘solved.Bolotin's 59) equilibrium equations by finite dif-
ferences.

. The concept of using finite elements to solve structures and
mechanics problems has a rather vague origin. _Because the slope-
deflection method can really be categoriéed as a ffinite element method”
it could be considered as. the beginningu H0wever; aé now used the
"finite element method" ﬁSually pertains to plate, shell, and compound
structures and in this form is of rather recent vintage. In 1956 Turner,
et al (10) presented what is probably most appropriately considefed ?he
cornerstone of the current techniqué« Foliowing papers.by Melosh

(11, 12), Best (13), Pian (14, 15), Zienkiewilcz and Cheung (16), and



Severn and Taylor (17) refined and expanded the method but did not

alter the original concept.

1.2 Finite Element Method

The ﬂésic premise of the method is thé£ the structure is subdivided
into a number of elements. The properties of the materials being
known, the behavior characteristics of the elements can be determined.
Now, with some variation depending upon thé,parfgcular“metﬁbd-being
.employed,.the stiffﬁésses of the5neighboriﬂé.eleﬁents can be related
through the generalized coordinates and forces at the nodes. Fiﬂally
the elements are assembled to represent a structure as.nearly like the
original as-possible. The problem becomes one of satisfylng equilibri-
um and compatibility of the element, both 1nternally.anq eXternally.
The difference between this method and other approximate methods now
bécomes apparent. Wherein the other methods are applied tb_the govern-
ing differential equations and the approximations are mathematical, the
finite element method provides an exact solution of étmathematical mod-
vei which is an approximation of the real structure. If the model be-
haves exactly like the real structure, then an "exact" solution can be
achieved. This is so in the‘case of beams and the slopemdefléction
method. In more complex structures this exact representation is gen-
erally not possible.

The successful construction of ﬁhis mathematical model will permit
the solution of many p;oblems not solvable by existing methods. In
addition to a variety of boundary conditions some discontinuity condi-

tions can be handled.



There are two basic finite element methbds by which stiffness_of
an element can be obtained. Eithér a displacement function or a sgress
function can be assumed. The assumption of a displacement function as
the fundamental method iﬁposes compatibility only. In this thesis Dboth
approaches are utilized. It is believed that the stress function pro-
vides greater accuracy and therefore is used in the determination of’
the bending stiffness. This development‘is presehted in Chapter II.
The use of a displacemeht function, hdwever, is found to be much more
direct for the determination of the stiffness modifylng matrix in
Chabter III, Section i. The in-plane stiffness matrix in Chapter IIT,
Section 2 utilizes & stress function.

Rectangular elements are used since only rectangular plates are to

be consldered.

l.3 Solution Procedure

Following are the steps in the determination of the critical stress
of multilayered sandwich plates:

(a) DetermihéﬁQQr“:assume) the in-plane stress dlstribution;

(b) Determine the elemental bending stiffnesses;
, 3

(c) Détenmine the stiﬁfneSSimbdifying maetrix for each element
reflecting the efféct of the in-plane loads;

(d) Combine the elemental bending stiffness and elemental
stiffness modifier; |

(e) Assemble the modified elemental stiffnesses to obtain

a total structure stiffness matrix;

(f)AApply boundary conditions and token lateral loads



and determine résulting deflections;
{(g) Repeat prediction-correction procedure described in

Chapter V.to find eritical stress.

1.4 Assumptions and Limitations

The léyers designated as "membrane layers” have relatively high
modull of elasticity. They are considered to be suffilciently. thin
that the bending stiffness of the individual layer 1s neglligible and
the normal stress is a cdnstant over the section. The layers designat-
ed as "care layers" are considered to have negliglble normal stress
stiffness. The method is applicable to orthotropic cores and membrane
layers,; although the presentatlion herein 1s for isotropic materials.
The total plate thickness 1s comsidered to be sufficientxy thin for the
ordinary plate assumptions to be applicable. Hooke's Iaw is considered

valid. Bond failures and local buckling will not be considered.



" CHAPTER II
ELEMENTAL, BENDING STIFFNESS.

An element with four facing layers and three core layers is shown
in Figures 1, 2, and 5 to illustrate the dimensions. Subscript i is
associated througnout this thesis with the membrane layers, while J is
associated with core layers. The thicknesses of the 1. hvmemprane layer
- and J ‘core layer are, respectively, 't"-and h

i J°
The neutral surfaceumay Dbe lOCated such’ that

Eitizs _ . ‘ ' :
Yuum.o W

uhere Zi "is the distance from the neutral surface to the mid-plane of
. the membrane layers for n membrane layersl ‘

| The stresses on a'tynical'layeriare shown in Figure 4. The in-
tensity of tne in-plane stresses in the-membrane layers; constaﬂt
uithin any layer, varieswlinearly'from the neutral surface. Tnis is
shown in Figure 5. The tranSverse shear stresses are assumed to*be
parabolically distributed across the section. The yalidity' of'th-i-s
assumption requires relatively thin membrane layers ‘and a fairly regua
lar distribution of membrane and core layers since, as used here, the
(distribution‘of stresses across:the section is independent of the in-
plane stress distfinution“. This is approximately so for the afore-

‘o _ A . .
‘mentioned distributlon. Figure 6 shows this distribution.

6



Figure 1. Dimenéions and Axis Dgsignétioﬂ’ of Rectangular FElement
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So far only the stress distribntion across the section has heen
considered. To describe the stress diétribuéion in the Xy ©plane a
stress-functﬁon is assumed., This stress function 1s of the‘same‘polya
nomial form as that used by Severn and Taylor (17) although containing
.additional terms to better define the distribution of the transverse

Vshear gtress. The resulting stress functions are
o =[B +B£+B'§<+B£2+B'£§+§3'§2+Bx
17 Pt TP TR w5 & 25
2. 37 824 ,
+ 626x Y+ Ba7xy + Bogy ] (2)

= [B + BgX + BGF + By & + By FF + 6125'2 + B

2.
+ 530x v+ Bley + ﬁ32y3] 821 (3)

T - - - . - -2 -
~-37 824
+ B3ux Y+ 655xy + By ] == (%)

. - - -2 -
= [619 +BopX *t Byt 537x'.+ B2gXy

2
F By ] @ - D )

C
To vp 54p. 3 2 -
= lif522~+ Pog* + Boyy + Bhox Py

_ 2
*Byf ] (@ - ) (6)

where

M1
]

i
o< X
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=
i

total thickness of the plate

=3
il

dimension from top of top core to bottomAOf bottom core

layer

Bl through 556 are constants.

Yy
My M
,.// Xy
-—
L/ + BM
X
M+ BM__ _
Xy Xy QX + BQ,X
+ & M __ + %M
° Q’Y xy Xy
¥
'Figﬁre 7. Elemental Edge Forces
From Figure 7 the equilibrium equations may be written as
3, , %y _
s * y 0 (7).
oM oM, -
EEEX M-l Qy =0 (8)
My My . ’ :
sx T v Q=0 ?9)

Formulating the stress resultants:
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n
M 7L % %1% | (10)
n o
‘My = °yﬁziti (11)
1= L
e}
Mey = 1’xyiziti (12)
=
n .
U =_;sz ZJt,j : (13)
J J
I (N . ‘
Q:Zv.zt' (k)
Vo T2 373

and substituting from equations (2) through (6) into equations (10)

through (1%) .and thence into (7), (8) and (9) and introducing the fol-

lowing notation

n =), - L—*-;-J:_.) h, (15)
=2 e ;

M, =) ) (16)

s =% (17)

the following relationships are established between thewcoefficients
resulting in the elimination of fifteen of the origilnal ﬁhirty;six

coefficiepts;

. Db a
P17 = -aPy - %P2 (182)

25 , B1
Brg = M5 [ 22 + BL2] (18b)



- _ 3b a
Pz = - 25 Pes ~ 2 Pa

b 3&
35 =~ 55 Pog = 55 P

Pyr = s [g“ Bos + 9%&“]

P = 113[ Bog * % 535]

p

B =My 222+ 28]

39

Puo =M [E%Q’+ 3'553]

2

By = T3 [% Bz + 5"'33&]

Bup =15 [ 2 Bsp + 222].

1h

(180)

(184)

(18e)

(1871)

(18g)

(18h)

(181)

(185)

(18x)

(181)

(18m)

(18n)

(180)
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, Substituting these relationships back into the stress expresslons
(2), (.3)3 (_1")5 -(5)_‘, (6) yilelds:

[B + B X + 3537 + Buig + 355?37 + 66?2 fBesiz’ '

%3 :
+ Bk T + BT + Bl | (29)
g E 4 Bk + BoF + Bo T2 4 By XY + BT
y,  2Llf7 78 9 * Pio 11 12
_3 _2- _.2 3
+Bogh + BagR T + By R + By | (20)
_ axy
"xyi = [ Bu ‘312 ¥ Py * By Xt By
b2 3bx.y bxy2
. 26

+r3‘5’”‘53.83" “Tm P -3

"'29-
ax y 3axy -3 =3
- L 1 2y
sz3“7‘1“3 [a Py + Bh*a Bs - g Bio * P15 + 3 Pig
N N ax-
TZa Pas ta Pos T E 327 55 Py
- 2
Jaxy 2y -
- T B B36_] (22)
_ by ., 1 . ¥ 1
Tyzj = M0y [" FP Pyt E r311 s P Blu
2x 3bxy ' 'by‘ . X
t 3 Prs - T Pos 2 Pas t 3P0
(23)

5 3y N
* 5 Py TGPt a.‘ﬁaaj

where -
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iz .2
_ Bzy
Ay =5 (25)

These equatiohs can be expressed in matrix form as
[e] = [PlIB]" ‘ (26)

wheré
[u]‘n,{ogi 0&1 Txyi szj Tyzj}
(8] = {8, B, By By Bg Bg B, Bg By
P1o P11 P12 Pz Py Pys Pig Pig Pas
Pas Pa7 Pog Pag Pso P31 Pap Pss 2

and [P] is a coefficlent matrix containing algebralc terms in x
and. S’: .

The internal strain energy can be formulated in matrix form as
, 1 ;
U=3 (o] [ﬁ] av . (27)

For the required finite summation of the layers this formulation

becomes
. o _
U=—2~fA2T[a][e.] 2y, OA (28)

indicates summation over both core and membrane

in which Z
nw 4] T Zi,J

layers.

Letting
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R - Y 0 0 0
E, E
i i
;.ﬁl %; 0 0 0
i "1
[N] =| O o} A 0 0
E
1
C (] .0 on 0
- d
0] 0] ] G éL
where
V=21 +V)
and

[e] = {ex S Yiy Txa ;7&2}1:

it follows from the stress-straln relationship given éy

[e']«-# [N](g] ' (29)
that

v - SN HICERNRTS | (30)

It should be noted at this point that it would be possible to provide
a se&ution to plates.with orthotroplc cores and membrane layers by
: ?sing \Exi, Eyi, 'vki, V&if GXJ, and GyJ in [N]. Tyie'has not
been, done in the present solution, therefore it is limited teo isotro-
pic_laiers.' Each layer may have different, properties, howe{er.

. Utllizing eguation (26) and its transpose,.the strain energy can

H

now be expressed
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" which may be rewritten in'the form

]

ARy (32)
in which

[H)

i

[ ), e e o (33)

. Performing the indicated integrations and summation, the [H]

i

matrix .can be formed.

[H]Zii .11.-H12
) ié:_*: HAH21v H

in which ro

[Hll] is shown in Figure 8a,
N [H12] is shown in Figure 8b,
[H22], is shown in Figure 8c,

[Hzl]* is equal to the transpose of [H1 1.

2

Next, an expression for the external energy of the element 1s
developed. The total work done by the forces-actiﬁg on,ﬁhe surface of

the element is given by
W= [s]la] as . (34)

where IS] and : [u] are, respectively, the forces and displacements
at the edge of the element. The positive dlrections of the edge forces

are shown in Figure 9.
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‘Figure 9. Uodal Displacements

TIn order to determine {[u] an edge displacement function is

' assumed for each edge of the element

: : 3
Vi = Ao * ATt R A
“in which k and 1 are the nodes at the ends of the element edge.

The constants Akl can be determined in terms of the generalized dis-

placements {q], where

hﬂ'ﬁ{exl eyl v 0, 8y YV, 8

o vy @ @yu ‘wh}' (35)

and are shown on Figure 9 in thelr positive directions. - For any given

édge the constants are a function of the adjacent nodal displacements
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and the tangential slope (paralle; to the éiemént edge) evaluated at
the nodbs. Since the resulting-eqﬁation expresseg the displacement of
- the element édge in terms of the nodal displacements and since'the nodal
displacements of two bordering elements are identical, then compatibil-
ity of displacement.and of the tangentiél slgpe are assured at the com-
mén boundary; In addition, & linear normal slope (perpendicular to the
‘' element edge) is assumed between node points.' This causes compatibility
vvto be satisfled with regard to the normal sldﬁes of thé adJjacent ele-
ments although the linearization of the variation introduces ‘an approxi -
mation.

Thﬁée relgtioﬁshibs'can be formplated injmatriées_aé follows

l = (o)a) - e

_The moments and forces on the elemenf“édge can be derived from the

stress resultants developed earlier (equations (10) through (14)) thus

ylelding
- (M _ 5
Yo T M)yo = =T 2% Bk + Bio¥ + Bogt I
= (@ ) R ] o5
o T ‘(%),Y-?Q =T [5" P * Blb- B11 3 P16
, a o
X 3x _
, *5 Pz +’55?'533] S  (370)
Yl = Mey)xea = M2 [ﬁli * Blh * '5153' t Es16 - Bu
- -2
T P+ Pyg¥ 555



2k
3by &y, by~ .-
2a B 25 2b i331 "‘"“326

07° 0 g
- Py B | (572)

=
i

E . - - - —2
).], = ;(Mx?)xg_.a = T'2 [Bl + B2 + Bjy + B)_‘_ + B5y + B6y

- N D _3 .
*Bos +Bogl + By + Bogi’] (7€)
x2)+ N ‘ (QX)X“a

b 2}’
‘315 b‘317 7 Pig

Q

1l v a.
=Ty [ 52 %"355'5?‘3_12

3 ¥ 72
* 55 Pos + P26 * T Poy

a Bay 33'

- J -2 -
=M, [‘37 * Bgx + By + Blox *Byyx + By

,,..3 r‘
+629 +[350 +B x+652] (37g

ax .
- % P1p + Pig- 2a Pos

b - a%e Bax

- 75 Pog - '2"5“?3\1 =55 Psp

-3 _
+Bagk + By (370).
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-2 -
b X , b4
- mE Pt TP 5 Pa
-2
3 S
* 55 Bap G 533] (371)
o L -2 =3
Mxyl3 K (MXY)x=O -7 ne [6154'?l5y + gV * Pag ] (512)
Mil3 = (Mi)x=0 = -1, [Bl + ﬁ3§ + 5652‘+ 628§3] (37k)
} ~ 1 ¥ 1 |
Qx13 - (Qx)x=0 - n2 [5'§2 +'E'B5 * 5.615
- -2 -2
r ey L é%’ (371)

The preceding equations may be arranged in mat:ix form as
[s] = [R1B] . (38)

Substituting equation (35) and équatiop’(}B)'into'equation'(3h)b

yields
i=¢ sl [Rl?ft,p’lgé] s | (39)
"which. may be:reﬁnitten &S 
v = (8] [10a] | (x0)
in which
21 - ¢ tF (21 as | (1)

The resulting T matrix 1s shown in Figure 10.
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The totai complementary(energy is
u+w=0=3 e - [sﬁm[q] )

Since bhe total complementary energy 1is statlonary, it s variation

with respect to the etress coefficients B must vanish.

g!l.. 0 = 5 ([ul(e} + [81{H]) - [T]la]

or

it

) = (2l
Solving for [BL
(8] = (E17M[T][a] .
Substi_tuping this value of [B] into e;';uation (32) yields

v = & lafirfiarttm s rita)

and hence

[n]
it
oj =

lafirfim) "t iria) o (43)

The internal strain’ energy can also be expressed in terms of the

corner displacements [qq_;and the'releted forces, EQ]
o= tefta | g
Qonsquently, utilizing the.definition"of stiffness,
Q] ;,;[k][qi ,

one dbtéins
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U= %.{qjm[klﬁq}-- ‘ | (L5)

- Comparing equations (43) and (45), the elemental stiffness is

therefore found to be"

k) = (01¥m) 1Tl O 6)



- CHAPTER III,

STIFFNESS MODIFYING MATRIX

,3}1 Stiffﬁess\Modifying Maﬁrix

The elementél stiffnéss'deveidped in the piéCedith;héitér’wili
;f,oyr be modi_-fi’ed to include ﬁheié’f;t’ect': Qf the ,.in;pla,n'e loads on tile
" stiffness. | |
Assuming.a.third'orde: polynpm;al in x and vy as a éispLacement

functibn,

e 2 2 .3 2
w o= al + a2x1+ agy.f ahx + qsxy + a6y + a7x + agx Y
PSS . | 3 R
+ agxy *OpYT + XY+ 0y | : *7
The potential enérgj due to the in-plane forces abting through the
: i

bending displacements 16

1, L RwR o dwn2 v A | |
'te L 12[6"(37)' o ey S e (48)
This can be formulated, matrix-wise, as
veg| Z[xJTm[xJ 5, s (49)
515 | |
vhere ’
() L4
[0] = X Xy
g
Xy y
and

29



[x]

Evaluating the assumed displacement functibn of equation (47) and its

derivatives

b

results in the set of equations

S

=

i

=

f#

ft

#

4

2 3 :
- 05 - aa5 - 8 08 - 8 all

22
-'02 - 2aah i 3a, 07

| 3.
a, + ao @,

2
1 +a(1)+‘_+a.

2

e’

s 2
3 = 2% - 3o,

2
- 04
b G

_.b21

b 12

- - b

2 33
Q. + b3.>f b a6 + b alO

1 3

o,

- 1

Y5 - 8% 9 10
2.
- 3ab ozl2

. .. 2 .
- - 2ba6'f a a8" 2abl

o D P
- -2 - - -
A : a0y, DOy - Zaboy,
- b,

: 2
bas - ja,q7 -A2abag

2 2 3
al +a ah + asz + b a6 + a8«

3 )
+ 8 ball + ab 012

+ax, + ba, + a2b08

2 3
2 3,
+ ab%a9 +D aio

7
(50)
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Or in matrix form,
[a] = [Allc] (51)

where [q] 1is, as before, the nodal displacements.

Solving (46) for [&]
[a] = [A]7Mq] © (52)
Also, [%] can be expressed

v

Z ox 1

[x] = 5 = [Blla] = [B][A] T [q] - (53)
W : :

oy
where [B] is

0 1 C 2x Yy C - 3x2 2xy y’2 0 3x2y y3

0 C 1 0 X 2y 0 x2 axy 3y2' x3 3xy2

Now inserting the expression for ([%] into equation (49) ylelds.
v-1¢ i[q]T[A'l]T[B]T[0][B]-[A'l][q] ty ds .
Si= , .

Again by comparing to equation (45),

[x ] =5£ iZ[A'l]T[B]T[U][B][A'l] t, ds .

Since [A) and hence [A'l] are constant matrices, they can be

excluded from the integration. Therefore,

(k] = [A‘*lf{gg iZ[B]T[o]]B]ti as} (a™ .

‘Let
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fi (81" [01(B] t; ds = [BS]. (5h
S 1=l

\J1
N

Then. [BS] can be evaluated for any specific [UJ.

, 0., and Txt can be taken as constants or as

For example c
or exampie, S %y y

functions of x or y “or both, representing the distribution of in-
plané stresses in the element. Also, the modifying stiffnesses can be
added together_thereby making it possible to aqcomodate virtually-any
stress distribution in the elément. This in turn means that any varia-
tion of in-plane forces may be applied, both at the edges and as sur-
face ﬁractions.

As aﬁ examble, [BS] will be evaluated for o, = constant within
the element and cy = Txy = 0 throughout the element. This would be
the case of a uniform uniaxial in-plane loading. -

_vSince o, and the sum of the thickness of’membrane cores are
constant throughout the element, they can be reméved as.scalar mualti-
pliers of matrix [BS]. Matrix [BS] 1is shown in F‘:“LgureAll°

[kﬁ] is_now determinate and can be used to modify an eiemental
bending stiffness therebyjincluding the effect of'the inwplahe loads

 upon the stiffness.

3,2 In-.plane Stiffness

It should now be noted thaﬁ although in most cases a proper
assumption can be made for the streéé distribution, it is not always
so. For instance, concentrated loads in.the.plane of the plate applied
in an irregular pattern would make it difficult to be sure that the
stress pattern éssumed was appropriater‘ |

For this reason the in-plane stiffnesé matrix is developed here

after the method of Pilan (13) bﬁt modified to apply to layered plates
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and including all second order terms in the stress function since the
application of the results will be to describe the stress pattern as
closely as possible.

The strain energy Up due to the deformation of the middle plane

of the plate by in-plane forces is

st yey + Txyyxyj dv . (55)

.Bince only small deflections are to be acknowledged, then UX,

g, and Txy may be considered to remain unchanged during bending.

The preceding statement of Up can be expressed in matrix form as

oa 1:. ¥ -ﬁ & ’ ‘s = :-L- y ) \
U= 3 Jv[cpj[c] av efv[op][Np][cp] av (56)
where
- -
o
X
| [cp] = oy
Tey
.

and [Np} is the upper left 3 X 3 matrix portion of [N] as de-

fined in Chapter IIl.

Proceeding gs in Chapter II thls leads to an equation similar to

X le; (e, JINI(R} %, . aa (57)

=

e

where

SRR (58)

—
Q

[—1
i

The assumed stress functions are



- - -2 - -2
Oy = Py PoX + PsF + PXT + 0XT + Py (59)
= + PpX + PV + P 2 4 P, XY + Py 52" (60)
o, =P+ Pg 9 *Pio 1179 * P1o
T =P, +P X+ Py +P §2 + P, XY + P §2 . - (61)
xy 13 1k 15 16 17° 18

From the equilibrium of the in-plane forces on the elements,

dox ' ¥Txy . _
2t = O (62)

i

Mav , ¥ o, (63)

Taking the appropriate partial derivatives, six of the eighteen
coefficients assumed in the stress functions can be eliminated, result-

ing in the following equilibriated stress functions

- - w2 - e '
ok :.pl + p2x + p5y + phx + p5xy + p6y (6h)
. b2§2 - - -2 - ,
Uy = ""a—’g‘“" p)_'_ + p7 + p8x + 99}’ + plox + Pllxy (65)
by 2bxy b§2 ax ax®
Ty ST @ Pt T Pz P5 % gt H Py tPys - (66)

From this formulation the matrix [Pp] of_equation (58) can be
written and [Hp] is then determinate firom equation (57). Performing
the appropriate integrations and summations, ‘[Hbl can-now be evalf
uated and’is showp in Figure 1l2.

‘Following the procedufe that was outlined in Chapter II,
(2.1 = ¢ [RIF(L] as | (67)
p J P tTp

where the relationships
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[Rp] may be calculated and is shown in Figure 13.

[YRP]LM'

[Lp][qp]

P

- %12

-

T1o

Tl |

Ton

0'3}4_
0'13

713
)

57
(68)

(69)

If U is defined as displacement in the x-direction and v as

displaceﬁent in‘the ymdirection;

[up]' -

Yo

V1o

Uy,
Vol
i,
W,
e

v .

13

(a]

wi)

<
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0 0 0 0
0 0 -1 -X
y 7 0 0
=23
-b§2 0 0 0
-5 0 0 0
2a
0 0 1 x
0 -y? 0 0

Figure 13. Matrix ~[Rp]
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Then; from equation (69) [Lb] ‘may be formed.

——l - X 0 X | 0 o o 0 o-_
0 1'-% o0 X 0 0 o o0
0 0 1-73 0 0 0 5 0
0 0 ¢, l1-vy 0 0 o} v
0 0 0 0 1-x 0 X 0
0 o 0 0 0 1-x 0 X
1.y 0 0 0 y 0 0 0
0 1-7% 0 0 0 7 0 0

i -

Perfbrmihg the ménipulations'indicated“in (67), [TP]"can now
be determined and is shown in Figure 1k.

Consequently, adding the p'lsubséfipts to'equétion (46) yields
o i P

= |T T 0

[kp] { pJ [H.p 1 p] _ (7 )

ahd;phe in-plane stiffness of the element can be computédJ
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CHAPTER TV
COMPUTATION OF PLATE DEFLECTTONS

k.1 ‘Assembiy of Elements

In the previous sectlons, the necéssany steps for the.computation
of the elemental stiffnesses of muitilayer plates in bending including
considerafion of the effect of in-plane loads have been developed.

They can now be assembled to provide the stiffness of the entire plate.

The stiffness of the enﬁire plate is formed by constructing a new
stiffness matrix.whose dimensions are equal to the total nﬁmber of de-
grees of freedom for the entire plate. Each term of the matrix»is
found by adding the corresponding values of the‘elemental stiffnesses
‘ for each degree of freedom, |

For example, a U4 X 4 grid would result in‘25 nodes. Since each
node is considered to have three degrees of freedom, this woﬁld re@uire
a 75 x5 matrix. It is in handling support conditions that this
method demOnsfnates its greatest Justification compared to the more
\olassioai procedures .

»Any of'tne generalized coordinate or generalized forces can be
R specifi‘ede ‘ This prov1des for most of the physically possible condi-
tions, Some examples of boundary condition applications are as follows .

| (a) For a simply supported edge, the deflectiOn at the node and-

either the tangential slope or the -edge twisting'moment‘may

b1
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be takeﬁ as zero.
(b) Clamped edge - all three generalized coordinates are
taken to.be zéro,
(¢c) Column support - deflection only is set equal to zero.
The stiffness matrix is now recrdered according>to the following
procedure. Designating |
zero generglized coordinates = 9q9
~ specified non-zero generalized coordinates = q,.

-unknown generalized forces = q_,

u

zero generalized forces = QO,
specified non-zero generalized forces = Qn’
unknown generalized forces =-Qu,

the stiffness rélationship can be partitioned and written as

r N ‘ LT

% b1 % K5 Ky Ty

| K K Koz Ky o, (71)
Sl [ f S S5 B 4
_ng_ _Kul Ko Kz Kuuq | % |

Multiplying out the first line,

Qo‘é'Kilqul +'Ki2qu2 +'K13qn'+ Kihqo ’
Noting that K., Ki?’ Ki}’ Kih’ 4,5 4, and Q_ are known,

and spécifically that 4 is zero,

= ., . {
W = 1%, Kieq,u2 + K59, (72)

From the ‘second line of (63),
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U = K21qu1'+ Kezqug Eyza +Kga .

However, again QO = 0, théerefore,

Q, = Kelqui * Kezqug + Koaa - (73)

Solvingfthis.expression for qu s
N 2
-1 ~ .
Y, = Kop @ - Ky, - Koxay) (7).
2. ) 1
Substititting into equation (72),
0. = (K KooKy - Ky V(K KSR - Ko - Q) (75)
w T oleteiel T 1t thietestn o3y < g/ :
where all the terms on the right slde are specified, %hus making it
possible to solve for 9 Substituting these values back into egua-
, 1 .
tion (74) provides a solution for the remainder of the unknown general-
ized coordinates, g -
b S
If all of the specified generalized coordinates are of zero value,

a simpler.procedure is.poésible. Letting QO now répresent'any spe-

cifié@ngeneralized forces, the partitioning now results in

Qo ,Kil-. Kie qu
= (76)
U Koy | Ko [l %

and, from the first line, °
9 = Kilq“u * Ki2qo )
But since 9, = 0,

_ Qo - llqu_
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or
-1
qu * KllQO ¢ (7()
The unknown generalized coordinates may now be solved for directly.
loads corresponding to the generallized coordinates (My, Mx,
QZ) may be applied at any node where the generalized dilsplacement has
been designated as unknown.
In the partitioning of equation (71) these would be the forces

denoted Q . In the simpler formulation of equation (76) they could be

any of those in the submatrix QO.
k.2 Loads

Loads in the plane of the.plate can be accommodated by combining
the bending stiffness matrix developed in Chapter‘II with the bending
stiffness modifier developed in Section 3.1 and the in-plene stiffnéss
matrix developed in Section 3.2. This results in five degrees of free-
dom at each node; and loads can be applied both at the nodes and as
stfesses° If the in-plane stiffness matrix of Section 3.2 is not con-
sidered, the number ofudégrees of freedom per nsae can be reduced to
three. This a substantial savings in computer storage, while neglect-
ing a relatively minor effect. This reduced form has been used in this

thesis. The loads are then applied as stresses.



CHAPTER V
CRITICAL STRESS SOLUTION

- 5:1 General

Once the total stiffness matrix of the layered plafe has been
established; a characteriétic equation form éan'be.obtaineda A solu-
tion procedure has been presented iﬁ-papers by Hartz (17) and by Kapur
and Hartz (18) and has been credited to Bolotin (19). Essentially the
same method 1s used by Gallagher and Padlog‘(eo) and by Archer. (21)
with some variations. Some complicatipns'arise beééuse the stiffness
matrix'yiéldsithe'highesﬁ mode first'in an iterative solution. Since
interesfris usually centered éround the'lower modeé,‘it'mayrbe desifn
able-éb cﬁangeitﬁe form to a flexibility type providing the lower
mddesafirétoﬂ The preceding method will yield the critical stresses
utiliiing'the foregoing.sﬁiffness matrices and 1s particﬁlarly apprdu

priatefif‘all of tﬁé modes are required.

Another approach will be investigated here. It tends to be veri
efficient for determination of the critical stress corresponding to
the fundamental mode and fgifly'good for other ‘low order modes. It
. also has the advantage of beiﬁg physical in nature and prdvides some
opportunity to study the behavior during unbounded deflection. The

‘mefhod consists of predicting the critical load by using'a fast con-

verging prediction.correction method.

b5
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5.2 Magnification Factor

Timoshenko (18) shows that the followlng differential equation
- governs a plate that is subjected to: an initial deflection w_; an
additional deflection Wy caused by the transverse loads; and in-

plane loads Nx’ Ny’» and N__ .

Xy
0%y oy Dy x{ 2 (v _+ vy )
52T EsmtE tsy T vl Tom

¥ .
AN BI(W S+ Wy )

y TTeyE

2 .

P -Lﬁzi%mt&_g ,
xy  oxady

For multilayer plates the equation will be simllar and 1s approxl-

mated by

ot

3%, 3w, dtw, 1
SE-te5mayE TeE T b

- 32 (v +VW')
AR« LA W
ti [q + ox Ax2

!
:ﬂ\/}n

+o Ba(wg + Wy )

3% (w, + wy)7 [
+2Txy ey i :] (78)

If the initial deflection surface, represented.by
© [

Yo = l§;' E;émn siﬁ'witx' sin E%QZ, . (79)
m=l n= .

»

is substituted into equation (78)‘the expression for additional de-
flections of a uniaxia;ly loaded, simply supported plate 1s found to

be’



by

in which

D:n —

iz by

The total deflection is

o A
WoE Wy + Wy o= 14 - gin BTX sin ESLX
. M= n= l - zﬁ dx Ila '5““5‘" &
: * T 1R & '
o+ ) + (80)

Hence as dx approaches its critical value

2D ‘nRgR R
w*D e e
)

w becomes very large.

For a simply supported recféngular plate, assuming
' U S
W = 833 sin“?;-51n 1?-,
the total deflection becomes

W sdd gl X ogin W

I a b
where
O = = Ze, e SN
e, ae . @
fgg’(l +v5§)
o - . a b
For-maximum deflection at x = 57 =5y
' i
W 3 _E.lL, .
.max 1 - O
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Noting that
, o ﬂaﬁ a® 2:
(cx)critical T a2 (1 f'EEJ.,

then ¢ can also be taken as

Ox B
O eritical

v

‘This then is a dorollafy to‘SQuthwell‘s development for columns

(22).

Théref_orej if apy is_én initial displacement pattern éimilarlto

the buckled configuration sought, then

W,
- Yo
R wers’.

or

(G)critical =9 (ﬁ‘¥'§§0 ‘ (81)

‘This development is based"upon the deformations conforming to a
. double sine series. It will be shown, however, that good results can
be achieved for some plates.for'which the displacement configuration

“-is not very well represented by the éssumed¢$eries.

5.3 Application of Magnification Factor

The solution.used herein proéeeds as foilows:
(a) deflection is cémbuted due to a,ffénSver;e lbad;
(b) -aAtOKEn.inap;énetldad is applied and the deflection due
to tﬁe éﬂmbinedlloading is computed;

(c) the cfitical‘load is predicted using equation (81);

{ H



{d) the applied in-plane load and the resulting predicted
critical Joad are compared. If the ratio of the former
to the latter 1s less than some.predetérmined value
(.995 for the problemé in Chépter VII) then~the7pfe;
dicted critical stress is used as the initial stréss
and a new.criticairétress computed. The twé stresses
are ag&in'éompared and the procedure is repeated until

the prescribed ratio is satisfied. .

§ah Mode Detefminatiqn

If a single concentrated load or a unifofmly distribﬁted»load.is
applied to the givgn plate, thén the critical load will be for the most
basic mode consisteﬁt with the constrain‘cs°

For example, a simply supported plate transversely loaded with a
unif&rm load will,yield the configufation coﬁforming_to the first.buck-
ling mode and hencé the'corresponding buckiing.load. The second mode
can be found by coﬁsidering the élaté to be anti_syﬁmetrically'de-
formed. - This can be écco@plished by taking one-half of the plate and
applying the consirainfs required to proﬁerly form the bﬁckied'mode,

Succeedingly higher modes cah be found in the same‘manner.as long
‘as the dimensions:of the segments are known. Unfortunately, the di-
mensions can be_accurateiy predicted for only a few configurations.
Thefefofe another means -1s reQuireq to_deterﬁing‘higher modes .

One possible méﬁﬁod:would be to.esfim&te the division of the
_plate into modes, determine the critical load of each segment, redi-
méqsion the segﬁents, and continue until the bubkling load of each

segment is the same. This has some obvious disadvantages. The method
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thét will be used.here is to inltislly deform ﬁhe piate into
approximately the desired buckling mode by selective application of the
_trgnsvérse«lo@dse Application of the in-plane loads will then force
the plate into the mode sought and the solution will yleld the critical
loadufor that_méden This proVides a relatively siﬁple solution for
. the first few modes. As mentioned in Section 5ul, the elgenvalue solu-
tion is most appropriate when all the modes or gome of the highér.modes_
are réqﬁiredg

The displacement used in equation (74) may be any of the deflec-
tions or rotafions representing the degreeslpf:ffeedom of the plate.
For the exahplés in Chaﬁter VI the anticipated’point‘of maximun de;

flection is used.

5.5 - Convergence

The‘éonVergence o; the method appears-tq be excellent._?Although
a réla£ively few.problems_haVe been solvedy,it does éppear.as though
: ﬁhe convergénde may be iﬁfluénced'by ﬁhe'selection'of'sdméAarbitrary
paraneters involved in thé éolutionq In extreme caseé the'aéﬁuracy
‘may also be affeqteéf

In a few_casés the first pfédicﬁion was within one-half of one-
- per cent of the ul(timatev'a;nsiwer° For almost all examples two or three
iterations sufficed;for first mode détefminationsa Sécond and third
mode soiutibns required more itéraﬁions, although too feW»problems
were worked toffofmulafe decisi&é conclusions. The maximum number of
iterations encountered was six.

Two initial conditions that appear to effect the solution are:

(1) proximity of the initial-deflected shape of the plate
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‘v (due;to transvérse>loads only) to the'buckléd mode.
This 1s discussed in the Conclusions.

(2) Selection of a degree of freédom as the displacement
to be compared in equation (81). Scattered.results in-
dicate that deflections give better accuracy. than rota.-

tions.



CHAPTER VI
EXAMPIES -

6.1 Procedure

The methiod as described in the precediﬁg chapters has been
programﬁed on the Internationél Business Maéhinel70h0 electronic digi;
tal computer.

The programvis divided ihﬁo two segﬁéntsa The first éeéménﬁ
'deQeldpé.the eleméntal.stiffnessesa The segond~segmént combipés phe'
elemeﬁtal stiffnesses'info a struétural stiffness matrix aﬁd‘éolves for
‘deflections and critical load.

Thé basie grid-used-fn the following examples 1s four %y“fdur.
If the plate is’symmefric with respect to bbfh the x and y axeéy
then a quarter of the plate is actually'uSéd and the effective grid is
eighihby eight. If there is symmetry with resbect tp;only one'axis;
,fhen fhe,grid<is:four by eight.. vano*smegtfy.exists, th¢n~thé écﬁual
as well as effective grid is four by four. The grid can, of éogrse,
be varied dépepding_primérily on available computer storagg.

Four sets of boundary conditions are examined'in £h¢ ekampleS@

They aré 3

X

Type A S s

o



Fv
= -4
Type B F, 'Fx
F
X
-
S X
Type C Fy Ex
S5
J
/ Fk
X
- Type D S S
F
X
VY
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i

= simple support

fixed support

2

3

free edge.

6.2 Homogeneous Plates

This group of problems is a control on the accuracy of the method.
Results are compared with those of reférence (25).
The plate used here has the following dimensions and properties:
Ly 1is the dimension of the plate in the y-direction and is
taken equal to 106",
Ix is the dimension of the plate in the x-direction and is

defined by the aspect ratio.



sk

=
il

= 30 X 106 psi.

E

6
b G- X L)
‘ G ‘—(]—-—I—MT 11.5 lO pSl

1

t' plate thickness = 2.0"%.

In Table I only the critical modes are. tabulated. Unless .other-
wise uoted the critical mode is the prlmary modeo The loading is a
: uuiformly dlstributed.stress_in the xudireotdona For sode low‘aspect
cases the comparative results. have teen omitted oecause they did ndét
fall within the range of-Gerard}s solution. Adding-a.uniformly dis- :
trituted‘stress in the &~direction equal to oueihalf of'the x;dlreotioﬁ—
- ptress yieldsuthe results'shown:in Table IIef Several”uniaxiel pro-
biemsiwere solved:for more. than one mode. - Tﬁese»ere.tabuléted in

Table III,

6.3 Sandwich Plates

Although the method developed ln previous chapters is valid for
,>multilayered plates, the lllustratlve examples used in this sectlon
assume”a three-layered plate composed of a core sandwiched betueen two
aluminum facing layefs; The group‘of examples solved hefe also serves
to subStantiéte the method although it'inoludes some cases for which
exnstlng solutions wer not, found in the litera,turew The plate .dimen-

sions and propertles are as follows:
Ly = 23.5"

Ix 1s defined by the aspect ratio



TABLE I

25

CRITICAL STRESSES FOR HOMOGENEOUS PLATES UNIAXIALLY
LOADED IN THE X-DIRECTION

Aspect Ratio Boundary Finite Element Existing
Conditions Solution Solution (25)

5 A 66033 67717

.5 B 20393k

.5 C 190903

5 D 48050 |

75 A L6925 L7652

<75 B 123945

5 | C 104000 105000

;75 D 25862 27085':
1.00 A Lo7h3 43338
1.00 B 11C03k4 111590
1.00 c TH68T 73590
1.00 D 17751 17334
2.00 A% 45930 43338
2.00 Bxx* 85&28 86130
2.00 C* 59368 52550
2.00 : D 14353 14084

* Second mode critical

*% Third mode critical
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TABLE II

CRITICAL STRESSES FOR BIAXTALLY
LOADED HOMOGENEOUS PLATES -

Aspect Ratio Boundary Finite Element - vExisting

Conditions Solution Solution (25)

.5 A 58694 60670
5 B 183380 - 1885i1
5 } © 17hko7 186000
5 b 45915

NG ’ A 35826 36800
‘.75 ‘ B 98Bke - ioeo¢o
75 c o 83211 90000
1.00 A - 2849k 28893
1.00 B 3 : 75191 76367
1.00 o Eh3h3 53700
2.00 | A 22156 2253k
2.00 | B. 68U LT 61735

2,00 . 26484 26100
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TABLE III

CRITICAL STRESSES FOR VARIOUS MODES OF UNIAXTALLY
LOADED HOMOGENEOUS PLATES

Aépeét Ratio | ] Boundary ) Mode o : -,Buckliﬁg Load .
; .LQOnditionsi : - _
2.0 o | 1 '56h6,8."
2.0 | A 2 | h59_$o
2;0 ‘B o 1 1;003&

2.0 B 2 10242k
2.0 1 B 3 5 85428
2.0 | c 1 112661

2.0 ¢ 2 o 60001

2.0 c 3 59368



two aluminum facing membrane layers

thickness = .021"

6

E=9.5X%X 10" psi.

1

V= .25
balsa core layer
thickness = .181"
.Gv= iQOOO psi.
As befdre, only the cfitiégl load‘is_shbwn\ié Table IV for a
uniformly diétributed stréss applied in thé x—directiéna
The saﬁe saﬁdwich plate 1s loaded bilaxlally w;th a'uniformlj dis-
:tributed stress in the y-directibn equal to one-hgif'the-x-difgcﬁion
, sﬁféss resultipg in the-crifical loads shown in the Table Vf H
A_uniaiially ioaded square éandwich plate‘example uééd by Héff.(h)
was also checkéd. Hoff obtained a’cfitical"stress_of 7220 psi. while

the method'presented here yielded“7h83 as the critical stress.

6.4 Muiﬁilayer Plates

A series of reiafed pr@blems are ‘solved and the results are
plotted to demonstraté the application of the method to the-deter-

mination of critical étress for multilayer plates.
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TABLE IV

CRITICAL STRESSES FOR THREE LAYERED SANIWICH PLATES
UNIAXIALLY LOADED IN THE X-DIRECTION

Al

| Aspé&t Ratio R Boundary Finite Element‘ R Exiétiﬁg
IR . Conditions . Solution ¢ Solution (5)
5 A | koo j ‘10977?
.5 B 32209 -
.5 ) - C 59&65
T | A 8076 o 79%0
7 | B 21018 o 1907k
T C 17879 , is7oh
7 D 9722
1.0 | A | v7268 - - 7o9i
1.0 B 1719% | 16235
1.0 c 3 11887 - 11012
2.0 Ax 7288 7091
2.0 \ | B** 13016 12786
2.0 ox Oy 8397

%* Second mode critical

**,Third;mode eritical



TABLE V

(CRITICAL STRESSES FOR THREE LAYERED BIAXTALLY

LOADED SANDWICH PLATES

60

AspéctVRatio Boundary

Finite Element

Existing

Conditions = Solution Solution (26)

.5 A 10274
5 B 29253
.5 c 28600
7 A 6487
T B 17265
.7 C 15075
e D 6927

- 1.0 A L83k " 4750

1.0, B 12208 11362
1.0 C 8615
2.0 A 3761
2.0 B 16952
2.0 c 1333



The plate properties and dimensions are

Membrane
Tayers

Core
Layers

"
o

‘5J

‘Distance

Tt

Neubral
‘Surface
‘(inches)

- 486
.223v
Jd1h

hoh

,Distance

to
Centroid
(iftches)
362
.06

W32

Iy = 100 inches

Ix varies from 40 ‘inches te 200 inches.

Thickness

(inches)

050
075
.100

.060

.Thiékneés

(1nches)

1,200
250

.200

Modulus of
Elasticity
" (psi)

30 X 10

10 x 10

10 x 10

()

30 X 10

Shear
Moduli
(psi)
10000
8000

12000

o O O
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Poisson's
Ratio

,The results of loading the plate with a uniformly distributed

uniaxial stress in the x-direction are plotjed in Figure 15 for_both a

4 x4 and an 8 X 8 grid.

To further demonstrate the method the critical stress for the first

mode of a‘pldte with the same cross-sectlonal properties is determined

for the sﬁpport conditiOns:showh in Figure 16, The resulting critical

stress for the first mode is 26102 psi.
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CHAPTER XII
SUMMARY AND CONCLUSIONS

T.l Summery

A method for determining the critical buckling load of multilayer
: sandwich plates has been developed in this thesis° The method consists
of the application of the finite element;method to layered plates. It
providesbfor‘approximate solutions to threé‘layered‘sandwichvplates
whose:boundary conditions.can not ‘be accommodated by existing analyti-
cal methods as well as.solutions:of multilayer sandwich’plates.

The material property assumptions made -are con51stent with
experimental investigation of sandwich construction. The-solution is
based upon small deflection theory’of thin plates and thereforehis not .
applicable in the case -of thick or flexible plates. Also,‘the bending
'stiffness of the indlvidual membrane layers is neglected therefore
"plates w1th-thick membrane‘layers would not yield dependable results{

The weighted neutral surface concept (7) allows the bending
properties of the layered section to be treated as an equivalent ho-
'mogeneous section.’

Stress functions were ggsumed in developing both the bending and
1n~plane stiffnesses. ’ * The functions used are of higher order’ than
those prev1ously utilized for homogeneous plates in order to provide '

more accurate representation of the shearing deformation.

6l
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A displacement function Was.asenmed for determining the stiffness
modifier because the formnl&tion~seemed'to_he much more direct.

Theoretically it appears that the stress funotipn shbuld give
-better\reSults than a displacement f‘unotion'(l5)° There has not yet
been enough comparative work done to oonclndelthatiit-is always 0.

.The vertical oomponent_of.thehin_plane forces dne tO'displaoement*
has been negleeted because of itfe"higher order} Also,.it‘is felt
fthat its inclnsidn would require & more complex‘solution procedure and
therefore negate some of the advantages"of the methodd

"The analytical use of the megnifioation ﬁrocedure provides a
quickly converging method of determining the critical stresses ‘for the
low modese Figenvalue solutions are available, however, to which the ~
stiffness matrices”deyeloped in this thesis may be appliedgwhen the

- critiéal'stresees for higher modes are desired (17, 18).

7.2 ‘Discussion of Results

t Where.otherisolntions'are eyailablebfor comparison, results appear
to be quite good. It is somemhat difficult'to conclude conclusively
because most ofbthe existing solu+ions are also approximete;

For the uniaxially load=d homogeneous plate problems worked the
largest dev1ation from the ex1sting solution 1s l5p. The next largest
deviation is " 6.0%. The mean deviation is 1. 6% It should be noted
that both the high deviations are for modes greater than the first,
This sane trend_nas‘noticed in sandwich blate results;‘ Howevery eome
excellent agreement was found in higher mode solutlons° Another ehare-

. N
acteristic is'noticeable, The Type, C boundary condltion tends to pro—

duce greater deviatlon from ex1sting results than Type B. This is
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sﬁrprising since T&pe C deformation conforms mdre closely to the
assumed double sine series than does Type B.

The deviations fqr homogeneous biaxially loéded_plates run
élightly greater. The mean is 2.7%.

N For the uniaxiall& loadeq“;andwich plates fhe mean:deviatiqn is |
5.5%. | |

The curves plotted for the multilayer plate take oﬁ fhe”same
éharacferistics as homogeneous’plates.

The solution, as a function of grid slze, converges from belqw;
There‘are not any tabulations of critical stress computations of multi-
layer plates although methods for analysis of simple support condi -
tions have béen developed in two papers (7, 8). |

The multiiayér pfoblemiﬁith fiied éupéort_on a éortiéﬁ»of one
edge and two column supports described-in Figuré'l5 has been Included
to demonstrate the capacity of the hethod\to accommodate irregulér

support conditions.

7.3 Conclusions

The results'have demonstrated that the method 6f finite elements
can provide solutions of reason@bly good accuracy for sandwich plate
critical stress problems. Some experimental results_afe needed to
fully evaluate fhe usefulness of the téchniquej since figdroué.solu-
tions afe sparse.

it should be noted that the érid used here is relatively course.
It is believed that'a finer grid should be used if depend;bie results
are to be expected from plates with irregular support-conditionso

The mechanlcs of the method allows‘plates with holes or irregular
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boundaries’to be solved. Howevef,’a,ﬁine grid is sgain indicated and
more corroborstive wonk needs to te done.

Tne magnification method utilized, to determine the critical stress
has been successful with some reservations. In addition to the dis%
cussion within the text relative to obtaining highef modes , seueral
pertinent facets of.the method, should bevmentioned° The prediction
factor 1s based upon the assumption of a sine wave shaped displacementg
It has been shown in this thesis that it yields good results for dis- '
placement configurations that are not espeCially close to a sine curveu
This does not, of course, mean that good convergence will occur for
ell mode shapese.‘One.advantage of the magnification method as compared
to an eigenvalue solution is that by controlled'iteration the deformas
tion response of the plate'oan‘be examinedn |

'The‘solutions presented:in Cnapter VI used a set of’stress'
funetions.containing twentygseven'independent coefficientsl' St;ess.
functions with seven and with seventeen.independentlcoeffiCients uere
formulated but were not used because they reflected only constant and
linear, respective1y9 variation of'the transverse shear stresses. For
problens'where the transverse shear stress is not deened important,

nthemfull tuentynseven term'expressions would probably not be necessary.

The results of this thesis and the similarity of;nroblem |
characteristics lead to vibration analysis of sandwich'plates as a-
naturaIYSequential.step in the application of the method of finite
elements. Studies in'elasto-plestic behavior aépear to also be ’

possible.
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A.PPENDIX A

COMPUTER PROGRAM BLOCK DIAGRAM

start

LDimension arrays j
1 .

HRead -plate vronerties.
and element dimensions

Print plate properties
and element dimensions

{

3

Solve for displacements
dug to traxiu; verse loads
(o =]

“Read initial in-plans
stress [P

Compute elements of [T]

l Compute elements of [H] 1
_ T

Tnvert [#] — {H'f

- e ¢ : =

Transpose [T —)[‘I‘]T

tiodify structural stiffness
([Kr]) per[P -—)[Krm

Salve for displacements
.due to transverse and

i

Compute predieted critical
stress usinz magnificatio

formula = Pec —

Fora [i{eJ = [fr]T [H ‘1][T]
. e 2 '
Cowoute elements of [Aj

*
Comnute: vlenrnts of |BS

Invort [A]‘—)[:'.i]'

Transpose [A '\:]v—p[;\'l]r

Form [K}n] [A'f]'r[ss][A‘i:
{

lteﬁd boundary contrbls ) l

e

gr—

Read . lnads [(] .

Print boundary contréls
and loads

Add. [:(e and [Km: -v[K;]

. Formulate gtructural
stiffness fx1= [Kt]

Heducc[k(]-)[l(rl by
applyin> boundary conditions

70

l Set P.= Pe i‘-no

yes

[ Print Po

end



VITA
Harry Richard Lundgren
Candidate for the Degree of

Doctor of Philosophy

Thesis: BUCKLING OF MULTILAYER PLATES BY FINITE ELEMENTS
Major Field: Engineeriné
Biogrephical: |

Personal Data: .Born May 2, 1928, in Chicago, Illinois.

Education: Graduated from Crown Point High School, Crown Point,
Indiana, in June, 1946. Received the Bachelor of Science
in Civil Engineering, Purdue University, West Lafayette,
Indiana, in June, 1950. Received the Master of Science of
Engineering, Arizona State University, Tempe, Arizona, May,
19629

Profe551onal Experience: Design Fngineer and Project Engineer for
‘The Kawneer Company, Niles, Michigan, 1953-1958. Vice-
Preslident of Engineering, R. B. Feffer and Sons, Phoenix,
Arizone, 1958-1959. Civil Engineer, Salt River Project,
Phoenix, Arizona, 1959-1961. Graduate Assistant, Instructor,
and Assistant Professor,: ‘Arizona State University, 19611967,
Member " of ASGE N.S.P.E., A.S3.E.E., and Arizona Society of -
VStrue;ural:Engineers. Registered Civil and Structural
Engideer in Arizona. ‘ :



