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CHAPTER I
INTRODUCTION

1.1 Statement of the Problem

A method of analysis is developed for determining the
finite, inelastic deformation of a clamped rectangular mem-
brane subjected to either lérge transient pressures or high
initial velocities. Bending effects are neglected. The
material is assumed to bé rigidly plastic-strain hardening
in response to deformation; The incremental theory of
plasticity is used and the total displacement of the mem-
brane 1s mathematically described as the accumulated
effécts of numerous increments of deformations. Fach in-
crement of deformation is approached in a manner similar
to the Flﬁgge—Geylingﬂformulation for analyzing the static
deformations of membrahe shells of rectangular planform.
Fach displacement increment is assumed to be small even
though the total displacements are finite.

A dynamic equilibrium formulation 1eads to three
coupled, nonlinear, partial differential eguations. The
constitutive equations are used to obtain these equations
in terms of three rectangular_displacement components.

An IBM 7040 digital computer is used to solve numeri-

cally the governing differential equations for the



transient and final displacements.

1.2 Historical Note

The dynamic deformations of structural members have
long been of interest to the technical community. The
primary related areas of application today include high-~
energy—-rate metal forming processes and studies of struc-
tures responding to sudden energy releases of high inten—
sity (as in bomb blasts).

In forming metal components using high-energy-rate
processes, veloclity overshadows mass as the principal para-
meter affecting the transfer of energy to the membrane to
be shaped. This substitute becomes especially desirable
when the size, shape or number of the fofmed parts cannot
justify economically the expenditure for suitable metal
pressing equipment. There is much variation in the compo-
nent shapes and sizes which are required. The recent
accelerated growth of this industry is due principally to
the complexity in shapes of aerospace structures. |

There is also the need to analyze the deformation of
structures subjected to sudden energy releases of high
intensity. One such demand is that to provide public shel-
ters for protection against nuclear bomb attacks. Some of
the other examples are not so apparent. One such item
would be the explosion of aircraft compartment bulkheads
due to depressurigzation in an adjacent comparﬁment. Such

a case would arise if a foreign object breechéd the



fuselage while the aircraft was at a high altitude.

Another possible‘applieation,would be the response of sub-
marine hulls to large underwater explosions. Still another
is the struetural reaction to impulsive fofces acting on
the pontoons of seaplanes during landing or takeoff as well
as to those acting on the hulls of hydrofoil ships. There
are certainly many other areas of direct interest; more .
than enough to substantiate the need for satisfactory
analyticel methods. to determine the strﬁctural reSpbnse of
’membranes'to.representative impuleive loads.

Of "the basic eonfiguretions of membranes, the circular
membrane has'attracted most analytical investigators. From
independent analyses for static loading by Mostow and
Gleyzal (13) in 1948 up*to a recent investigation of
dynamiexloading by Boyd (1) the deformation response of a
circular membrgne has been very thoroughly considered and
analytically described. Mdstow obtained an analytical
solution for statie loading using the stationary energy
principle. Gleyzal's analysis differed in that the condi-
tions of static equilibrium were used_td obtain governing
differential equations which were then solved numerically.
Both investigators employed the deformation theory of
plasticity. Hudson (11) in 1951 and Frederick (7) in 1959
formulated their problems using a mechanism analogous to a
circular hinge moving inward from the perimeter. Hudsoﬁ
used the deformation theory of plasticity and the principle

of the conservation of eﬁergy in formuwlating his governing



differential equations. Frederick included the "incre-
mental theory"” of plasticity as well while using the
impulse-momentum and work-energy principles. Wang (24)
in 1955 adopted a limit analysis approach with which he
considered only bending stresses. As in all dynamic anal-
yses before his, Wang applied a uniform initial starting
velocifys ’Witmer, Balmer, Leech and Pian (27) published
theirZWQrk regarding the large dynamic deformation of
plates and shells during 1963. Their analysis was most
general; including such features as bending and membrane
stresses, elastic—-plastic deformation responses, and the
incremental theory of plasticity. While the results are
certainly very accurate, thevextensive‘computer time
required for each problem is a serious deficiency and is
not, as admitted byithe authors, suitable for parametric
invesfigationso In 1966, Boyd (1) published his analysis
which, even though less general than the preceding study,
provided an effective and very efficient means of per-
formiﬁg'ﬁarametric investigations for circular membranes.
Compafisons with the work by,Witmer et al and with experi-
mental results verified the simplifing assumptions used in
his study . )

Corresponding technical investigations of the dynamic
- deformation response of rectangular membrapes are practi-
cally nonexisténf; In fact, the only dynémic analysis
found_during the present investigation is that given by

Timoshenko (23) for a vibrating elastic membrane which is



uniformly prestretched to the extent that in-plane vari-
ations of tensile stress are negligible. Thus, only a
constant tension is considered° Furthermore, only trans-—
verse motion is allowed. The problem, thus, is linear,
Timoshenko formed expressions for the change in the poten-
tial and kinetic energies in terms of the transverse dis-
placements. By representing the displacements with a
double sine series with time-dependent coefficients and
applying a form of the Principle of Virtual Displacements,
the individual modes of vibrations were obtalneda The
Rayleigh—Ritz methed also was used in conjunction with a
polynohial series o yield another form of the solution.
Such a solution applies to a rigid, perfectly plastic
.membraﬁe if no elastic unloading is allowed. Of course,
the small displacement theory used is also a very restric-—
tive assumption. |

All other analytieal and numerical investigations of
rectangular membranes sre related to static load coneitions
only. In 1921, Henky (41) derived a comprehensive numeri-
cal finite difference solution but applied it enly to
square membranes. Three years later Foppl (36) assumed
trigonometric functions for displacements which satisfied
boundary and symmetry conditions. The unknown constant
coefficients were solved using a variational principle.
In this manner Foppl obtained stresses and deflections for
square membranes only, but sﬁggested an extension to the

rectangular case. Neubert and Sommer (45) extended Foppl's



development to rectangular membranes in 1940. Approxi-

" mately eight years later, Mostow (13) determined the
lateral displacement fields which were compatible with a
given transverse displacement field and the stable equili-
brium of the membraﬁe and loading system. He assumed both
parabolic and membrane formulations of the distributions
of transverse displacements which required that the center
displacement be known. A truncated pswer series represen-—
tation of the in-plane displacements was assumed which
satisfied all boundary conditions. The Principle of
Stationary fotential Energy was used to evaluate the un-
known coefficients in each series. During 1966, Pope (17)
published a paper on the application of finite element
analysis to the rectangular membrane problem using an
elastic-plastic materisl° His development, however, was
restricted to small deformations. Also, during 1966, Oden
and éato (16) developed a finite element formﬁiation fbr
the finite strain and displacements of elastic membranes
of general shape.

Several experimental investigations have been reported
[e.g. Day (4), Neubert and Sommef (46), and Head and |
Sechler (40)]. Néubeit and Sommer experimentally verified
the solutions of’ Foppl and Henky for a square membrane.
Head and Sechler obtained data for square and rectangular
membranes. The results confirmed the Foppl agd Henky solu-
tions for sQuare membranes but disagreed with Foppl's solu-

tion for high width to length:ratios-of. rectangular members,



CHAPTER IT
FORMULATION OF THE PROBLEM

2°1A Introduction

This chapter includes the mathematical statement of
the problem and the derivation of the equations which
govern the motion of the membrane., More specifically, the
‘fundamental approach of considering the dynamic equilibrium
of a differential element of the membrane is employed.
This leads to three governing partial differential equations
in terms of stress resultants. The incorporation of the
appropriate constitutive and kinematic equations result in
the desired restatement Qf the equiiibrium equations in

terms of orthogonal displacements.,

2.2 Interpretation of the Problem

This prqblem_is viewed as one in which the total defor-
mation must b§ perided by accumulated increments with the
process contihuing until the motion ceases. “For some
problems of finite deformations, this segmentation of the
solution process can be most advantageous. That is, the
ﬁnonlinearity due to the kinematic relations can be avoided
by using small deformation' theory. Such, fortunately, is

true in the case of this development. A set of linear



kinematic expressions is formed with which the strains
occﬁrring during each increment of deformation are refer-
enced to the configuration of the membrane surface at the
start of the current increment. In this ﬁénner, the
recording of the strain history and thus the proportion-
ality parameter relating stress to strain increment-afe
kept current and vaiido Figures 1 and 2 illustrate the
accumulation of the strains and displacements occurring
during each of these steps. The magnitudes of these values

depend upon the chosen time interval.

Figure 1. Typical Deformétion Pattern
of Membrane



Figure 2, Progressive Incremental Deformation
of Membrane Element



10

These comments indicate that each intermediate step
in the deformation sequence 1s analogous to the total small
deformation precess of a translational shell of rectangular
planform. In order to emphasize this connection in theory,
the rectangular membrane is referred to as a “pseudo-shell"
during intermediate states in fhe deformation procedufe.
In addition to the accumulation of the strains ahd disf
placements at the end of each step in.the incremental”pro—
cess, the terminal conditions are reinstated as the initial
conditions fof the following deformation increment. Thus,
established translational shell theory ie an advantage of
the incremental character of the problem and allows the

nonlinearity of large deformation theory to be avoided.

2.3 Governing Equations

a) Eguations of Motion - Using an orthogonalwcoordi-
nate system exhibited in Figure 1, the deformed pseudOQ
shell surface is defined by fuﬁction, Z, ef,the variabies
Vx and y. The intersection of this_surface with.planes
pefpendicular to the X and y axes defines a representative
differential element. The dynamic equilibrium of this :
element is expressed using the appropriate skewed stress
resultants and external and. 1nert1al forces shown in
,Flgure 3. -The’ resulting governing differential,equations
of motion are written using Pucher's Method (6);; With this
method, the equilibrium of the pseudo-shell element is

stated in terms of the horizontal projections of skewed
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membrane forces, which are assumed to act on the horizontal

line segments of the element's projection in the xy plane,

The derivation of the governing equation for static

equilibrium using the Pucher Method is given in Appendix A

for convenience.

9

9 =
Tx Vx Yoy Nyx * P =0 (12)
9 = 9 = -
WNy"'ﬁny*’Py:O (1b)_
2 2 2
= 079 = 07% = 077 5
N=5 + 2N__ 5—5— + —5 = —-P
XQXZ Xy 0x0y y ay2 Z
5 92 .5 92
+ P, 52+ Py 5y (1e)
where
ﬁi , ﬁ%, N = horizontal projections of skewed
J J stress resultants NX y N, and N
y X y
respectively acting upon the
sides of the projected element, dx
and dy.
2 \Cp 2
2 %, 2%, 24 = the indicated derivatives of the
9x oy ¥ function Z defining the reference
' undeformed configuration. of the
membrane shell.
?%} ?&, ?Z = equivalent externmal loads per unit

The equations are as follows:

area:bf the projected element.

These equations can easily be converted for use in

this pféblem by accéuhting for the inertiallforces shown

in Figure 3 and certain

,changes in notation. In this

manner, the equations of motion governing the state of
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dynamic equilibrium become

9 = 9 = =
5% NX + 57 Nyx + PX - IX =0 (2a)

o

5 = 5 -
2 2R T ~-T =0
5y Ny *ox Vxy * Py ~ 1y (2p)

and
, 2 2
Né 22% * ZNXY gxgy ¥ ﬁ& :yg = ——z + Tz
+ (P, - T%)QE + (?& - T&)g% | (2¢)
where
?é B ?& L L, I, s (1 - sinfe sin2g)?
Py TPy TP T I I, T I, axdy © cos @ cos b (3)

This relation is deduced from equation A10 in Appendix A.

Also, in the above equations,

R = replacement for notation Z used -
above to define reference "unde-
formed" configuration of pseudo-
shell surface.

IX, I, IZ = inertial forces per unit area
J acting on differential element in
X, ¥y and z directions respectively.

2
0°U

I =p =5

X aJGZ
2

t2

o
(o>
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: W 8°g
=p 25 =p 5
b 4

=

i
i

inertial forces equivalents of IX,

Iy and IZ considered to be acting

on the projected element,
dA = gurface area of differential shell
element.
In these equations, U, V, and W are the incremental
deformations in the x, y, and z directions respectively.
The function Z defines the configuration of the pseudo-
shell in its deformed position.

Solutions to equations 2a, 2b, and 2crare now signi-
ficantly simplified by neglecting the x and y components
of inertia. As long as the slopes of the membrane sur-—
face are not so great that these terms approach that of
the transverse inertial term in magnitude, this is a fair
assumption. Previous investigators have applied this
assumption successfully to cases of circular membranes (1)
(7). On the basis of the same argument, the x and y com-
ponents of the external loads are also omitted. The equa-

tions, in this manner, reduce to the forms

0 == 0 =

X Nx + 57 Nyx = O (4a)
9 — 9 —

B_Y'Ny +8_}.('ny = 0 (4v)

2 2 2

- O°R — 9°R —  8°R — - :

N — 3+ 2 ——— 4 N == = =P 4+ T (40)
X 8x2 Xy Oxoy y 3y2 z Z
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b) Skewed Straln—Orthogonal Displacement Relations -
Fligge and Geyllng (5) used a skewed curvilinear coordl-.
nate system related to an orthogonal rectangular base
system in developing a general deformation theory for mem-
brane shells other-than surfaces of revolution and cylin-
ders. This development is included in Appendix B for
reference,

In terms ofbthe variables U, V, W, ¢, B, and w, as
indicated in Figure 4, the following expressions for

skewed strain components were derived.

2 .
= 04 03 o
e, = Uy cos + W, sin @ cos (5a)

ey ='Vy 003213 +W.y sin 8 cos B (5b)

<
!

= 4 V- a
xy 51n<u [U cos @ cos B + YV, cosa cosPB

3

+ W& sin o cos3 B + WX sin B cos” a

2 . .
- Ui cos o sinfi sin «

—'Vy 003213 sin f sin o ] (5¢)
where
eys © = total normal strains of the mem-

Y brane in the x and y directions
(considered to lie in tangent plane
and, thus, areé skewed)

u, v, W = displacements in the x, y, and z
directions respectively.,
a, B = angles between the horizontal and

the curved line segments bounding
the differential element.
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Y =CONST.

-

/ x = cons.

Pigure 4. Geometry of Pseudo-Shell Element

w = angle of skew between curved line
segments in the plane tangent to
the differential element.

Flugge and Geyling formulated these terms as the total
"deformationvre$ponse of a membrane shell. In the present
problem, however, they correspond only to an increment of
deformation. Changing the notation in equation (5) to
reflect this adjustment yields for the pseudo-shell

membrane,

oe

it

2 .
x U, cos” a + WX 51n.q cos « (6a)

oe

V& cos® a + Wy sin @ cos « (6D)
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_ 1
Xy sinw

[qy cos @ cosfB + V, cosa cos B

30

+ W, sin @ 0053 B + W sinB cos

- U, cos? a sin B sin o - Vy cos213vsin o]

~where
éex, Se = normal skewed strain increments
J associated with the current incre-—
ment of deformations.
u, VvV, W = X, ¥, and z components, respec-

tively, of the current_increment
of dlsplacementq

c) Orthogdnal Strain—-Orthogonal Displacement Rela-—
j;gégn— In the preceding Section, the kinemafic reiations
in terms of skewed strains were developed. In order to uge
the cohstitutive equations, however, equivalent relations
in terms of orthogonal strains must be formulated.

Fligge and Geyling, as shown in Appendix B, developed

the following relations between the orthogonal and skewed

strains
exze—

] = Y—— sinw + e-cosw — e— cosw
ny“sin w Xy X 7 y

Converting to the notation of this thesis, these relations

become

6eX .:: 6e§ (7)



] = 0Y— gin w + 6e§ COS W = 5e§ cos w (8)

6ny sin w Xy

The remaining required relation is derived using geo-

metry from Figure 5 for the orthogonal strain increment,

Sde—,
¥
From this figure,
- . b
‘AB sinw = 6ey =Th o
KB = de. S
sin w
and
tan o = 22
EB
EB = EC cot w
EB = 6e= b CO‘tzw
- X
Thus,
se.b = AB - EB
y
se.b = ez —2— ~ Se= b cot? w
y y sin w
or
1 2
6ey = 6e—§ ~———s— = bey cot” w (9)



de,b

8yx"y SINw

Y

\\\-Segbcdtw

Figure 5. Skewed-Orthogonal Strain Relations
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From equation (8),

8Y o = —— LY

- $e= cot w + 6e= cotw J (10)
XY "~ gin? © X y

xy
Substituting equations (7) and (9) into (10) gives

5 -——-72_,—- [6Y4y = 65 cotw + bey cot w] (1)

'Y__ =
Xy sin™ ¥

Thus, the orthogonal strain increments in terms of the

skewed strain increments are

5 1 2 -
ex = —5— [6e. - e, cos w] . (12b)
y sin” w y .
1 . ;
OY —— = ————m—m— | &Y - e + 6 t 12
AR [ xy y cotw ey €O w] (12¢)

With equations (12) and (6), the kinematic relations with

_ortho_gonal strains are written as follows:

]

ses = U cos®a + W _sina cosa. (13)

1 2 .

e~ = ———=— [V cos“B + W._ sin B cos B
y sin2 w ' 'Yv _ y

- (Ui cos2

@ + W, sin @ cos a) coszw] (14)

Y — = —-——;——- [v (coszﬁ cosw =— cosz_B sin B sin @)
X sin W y '

+U.y cos o cos B +V, cos @ cos B
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- U& (coszcr sin B sin o + coszcx cos w )

+ Wy (sin a cos> B + sinB cosfB cos w)

3

+ W, (sin B cos” @ - sine cosae cos w)] (15)

d) Constitutive Equation - The constitutive equations
for a rigid, work-hardening material involve consideration
of the following: (&) an initial yield condition which
the stresses must satisfy for initial yieiding to begin;
(v) a flow rule to associate the plastic strain increment
with the current stress and (c¢) a hardening rule which
serves to‘adjust the ihitial yield condition for continued
plastic flow. The development in Appendix D of the consti-
tutive equations combines the?inimialuyigld;dondifidnxof::

von Mises-Henky and the Levy-Mises flow rule. These are

AM(S, - #)

deX = ¥

dey = AK(N§ - %Sx) (16)
_ _ 3 '
dexy = 2AkT1

or in keeping with the finite incremental character of this
problem, equations (16) are rewritten as
= - iN_—

bez = AM(Ng - s,) | (17

_ _ 3
begy = 34Ty
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where
Sx’ N= = normal stress resultants acting in
Y the orthogonal x and y directions.
T1 = shear stress associated with S
Vx
and N—-
y
A = plasticity parameter
_ B |
T ot

These equations are supplemented by the following
work-hardening rule to describe the condition of continued

yielding
o=H (b€ ) (18)

where H is the universal stress-strain relationship usually
taken to be the uniaxial stress-strain relationship for the
material used. Such a hardening rule is an extension of
the Mises—Heﬁky initial yield criterion and was proposed
by Ros and Eichinger (9). In this thesis, Ludwik's Power

Law is chosen to represent the function and may be written
c=a+ b (ZTE)°C (19)

where a, b, and ¢ are material parameters.

Such a hardening rule describes the yield surface as
uniformly increasing in size and retaining its.form-and
center pos_ifion° When unloading, the material is assumed
to continue to act as a figid—work—hardening solid. Thus,
the constitutive equations given above are valid regardless

of whether the material is loading, unloading or reloading.
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Prom Appendix C, the following skew~to-orthogonal

stress resultanﬁs are obtained

SX = NX cC8C w + Ny cotw cosw + ZTXy cotw
N; = Ny gin w (20)
T N‘ + Ny CcoS w

It

Xy

Substituting equations (20) into equations (17) the
following constitutive equations in terms of skewed stress

resultants are formed.

1

_ , . 2 _ 1
be = AX[NX —— + 2ny gqt w + Ny s1no)(pot w 2) ]
- N e - -1 2
6ey = AA[-N_ 5 — s ny cot @ + Ny sin w(1 - % cot® w)]
_ 3
&%W_‘ZA{&W +Nycosw] (21)

The existence of strain rate effects is still a con-
troversial issue. The most common viewpoint is given by a
gquotation from a contributién by Henrikéen et al (42);
"Strain rate effects are a reality and are évidenqed by
variations in the mechanical properties". Among the
methods for analytically accounting for such effects, the
one that appears most tractable is that employed by Witmer
et al (26)., Basically, the yield stress of the material
is assumed to increase with the strain rate while the
strain hardening portion of the stress—strain curve retaiﬁs
the same shape of the static curve as indicated in Figure 6.

An account, thereby, can be made by considering the material
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constants in equation (19) as functions of strain rate.

The iatter could be calculated at the end of each deforma-
tion increment using projected strain increment véiuesa
Other than this suggested procedure, no fur?her considera-
tion will be given to strain rate effects in the following
formulafidn of the problem. The breﬁity of“the formulationﬁ
is considered more important than the benefit of illustrat-

ing the inclusion of strain rate effects. -

e) Governing Differential Equations of Motion - In

matrix form, equations (21) can be written as follows.

1 . 2 4 -
8in w | sin w (cot” w z) | 2 cotw NX 6eJ—AC/A)".
-t sinw(1- 2 cotzaﬂ - cot w N. |= |se-/Ar
] 0 CcoS w | 1. | _NK[ feiy/BAi#

By inversion, the following expressions of the skewed
stress resultants as functions of orthogonal strain incre-
ments are obtained; |

N, = 4\009“’[(tan w+ % cotw)ses + (% tan w + cot w) se-
x = T3a% z* (2 7

- 69}?3;]

=i [ ' 1 .
Yy © 34 [2 sin w 665[ * Sin o 6e$r] (22)

[-% cot o Sez — cot'y 6ej + % 6ei§]

=

|
W
EJA

Xy -

From Appendix A, the horizontal projections of the

skewed stress resultants in terms of the latter are
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= cos @

Nx - Nx cos BB

Ney = Nyy = Ny = Noy (23)
= cos B

Ny - Ny CoS «

By substituting equations (22) in expressions (23) and
substituting the results into the differential equation of
motion, equations (4), the following governing differentvial

equations of this.problem are found;

AN

9. [4 cos w cosa [ N
{ 3ANcos (3 (tan w + % cot w) sez

+ ($ tanw + cot w)be- - 6e-_”
c y. Xy

el . i -
+ 5—3—;{3%7\ -5 cot w 6e}-{ cotw 6ey + zéeﬁ,]} 0

9 ) 4: cosB 1 1
{3Ax cos a (2 sinw %z * 5inw 665’)}

- ga-{ 4 (‘%‘ cotw 6ei'+ cotw Ge- "'%‘ 685{3',)} = O)‘. (24)

X |3AM ¥
and
82R COS @ CcoOS w '[(tanw + —%— cotw)ée—
ax2 cos B X
+ (—-12- 'ta_n:wv‘i— cot w')ﬁey - ] - axay [co-twéei
2 be=
9°R cos B_ X
+ 2 cotw ﬁe& - 69-_,5,] + 8y2 cos o [31nw ( 2
sez)] = 392 0 2% - p )1 ~ sin o _sin® 6%,
+ Ge- 81; cos acos P :



As shown, equations (24} are in terms of orthogonal
strain increments. This will permit the introduction of
displacement boundary conditions through the intermediate

kinematic relations, equations (13), (14), and (15).



CHAPTER III
NUMERICAL SOLUTION OF PROBLEM

3.1  Introduction

An analytical solution of the problem formulated in
the preceding section appears tolbe highly improbable,
This is due, of course, to the nonlinearity of the govern-—
ing differential equations introduced through the equations
relating stress to strain increment. Thus, a numericai
approach to the solution is considered necessary. The
selected method requires, first, the conversion of the
governing differéntial equations to their finite difference
equivalents and, second, the utilization of some numerical
integration method, which is incremental in progression.
The numerical procedure followed in this study is described

in the following sections.

3.2 Finite Difference-Formulation

The orthogonal strain-orthogonal displacement rela—

tions (13), (14), (15) can be written as follows:

éei = tau1UX + tau, W (25)

X

6e-
y

it

tau,, (tauA'Vy + taug W, - taug U, - tau7 WX)

v

28
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<Se}_{;.y = tau13(tau8 Vy + tau9 U, + tau, g Uy + tauyq V.

+ tau,, W, + tau,, WX) (25)

where the coefficients, tau y are given in Appendix E.

ij
Substituting equations (25) into the governing differ-

ential equations (24) and introducing, in addition, the D

coefficient functions as defined in Appendix F, the former

equations are converted to the following functions of dis-

placements,

9
5—-(}3111 + DLW, + D3Vy + DAWy + D5VX) (26)
9 I . . _
- -537(1)611}{ + DgW + DV + D+ Dol + Dyg¥y ) = 0
9 :
-53-;<D11IIX + Dyl + Dyt + way) (27)
) , _
- -5—};(1)611}{ + DoW, + Dg¥_ + Dl + pmuy + Dmvx) =0
and

D15UX + D16WX + D17Vy + D18wy + D19Uy + DQOVX

2 -
9
=D, (0%% - P ) (28)
2t
In the above form, the governing differential equa-
tions are more compatible with both the use of displace-
ment boundary conditions and the anticipated finite dif-

ference formulation procedure,

Figure 7 defines the notation used in this development.
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//—, i A i P /
[ L7 7L L L L L V4

Y 4 {a) ‘GENERAL FINITE DIFFERENCE
x GRID SYSTEM :

1= 1:2 123 CTEMc DMl TsMee2
J:lz | TIomGINI j [ [ # I ?;'L ‘x

Mx,My = NUMBER OF
FINITE GRID INCRE-
MENTS N X AND Y
DIRECTIONS, RESPEC-
TIVELY.

J=My 1 @ > ] j _
4 SN N L D UMD (SO G
) DASHED GRID LINES REPRESENT PORTION OF

: GRID CONTAINING FICTITIOUS PERIMETER NODE
Y ) POINTS.

(b) REPRESENTATIVE FINITE DIFFERENCE GRID
SUB SYSTEM USING FIRST QUADRANT OF
MEMBRANE ONLY.

Figure 7, Finite Difference Representation
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As shown the lines of the rectangular grid run parallel to
the x and y axes. The intersection of these grid lines are
known as node points. Their locations are specified using
the indices 1 and j.

In order to transform equations (26) into finite dif-
ferences, conventional use is made of general seéond degree
parabolas or Taylor expansions. Choosing to use the cen-
tral difference format as suggested by the reference
system and position of the origin shown in Figure 7, the

general finite difference equation becomes

+ DU2. .U + DU3. .U

pU1i,jUi—1,j—1 i, 1,31 1,3 0+1,3~1

+ D4y U5 g g+ DUS; SUs 5+ DU6; JUs g

+ D075 505 g, 540+ DU8 305 g + DU9s 3¥540, 5

+ DV 1 + DV2. .V + DV3i Vv

i,37i-1,3-1 i,3V4,5-1 y3Vie1, 31

# DVA Va5 + V5 Vs gt V6, Viq,j (29)

VT Vs, g ¥ VO Vi ger D95V, g

+ DW1 + DW2. .W. . . + DW3;

1,301,341 1,574, 3-1 1,341, 31

+ Dw4i,jwi—1,j + DWSi,jWi,j + D‘JSI‘6J-_“_]Wi+,|’j

+ DW7 + DW8.1 W + DW9i v =0

1,3%i-1, 41 i1, 541 i1, 541

The variable coefficients introduced above are
defined in Appendix G. This equation and others in its

same general form will be referred to as pivotal equations.
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In a similar manner, the desired finite difference'
form of equation (27) can be obtained. It can be shown
to be idehtical to equations'(29) except that the D coef-
ficients are defined differently as indicafed in Appendix G.

For the acceleration équation,

U. . - UL . W. . - W .
i+1,] i=-1,] 1+1,7 i-1,3
D15i’j[ T 1+ D16i’j[ ~ ohy 24 ]
V. . - V. . w. . - W. .
i,3+1 i,3~1 i,d+1 i,3=1
+ D17y sl i 1+ D18, [—=y—=—]
y y
U. . - U. . V. ..o= V. .
i,i+1 1,3=-1 i+1,] 1i-1,3
+ D19, 4L 2 1+ p20; I . ]
.2
8" 2Z
= N . —""'—P. .
D211’3[pat2 21,3] (30)

It should be noted in equation (30) that the acceleration
term is not put into finifte difference form in the tiﬁev
domain. The reason for this feature is explained in the
next section. A side benefit, however, is that it facili-
tates the use of two general subscripts instead of the nor-

mal three.

3.3 Boundary Conditions

Because the gbverning differential equations are
treated as first order linear parfial differential equa-—
- tions inhrégards to:spacial‘coordinates, the pertinent A
nodal pbints are those on the ihter;or, onrthe bdundary and

those ficticious exterior points'immediately adjacent to
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the boundary. Along the boundary,

- L L
Ui%,y) = U(x, i—%) =0
L ' L
V(5 =W(x, ) =0 (31)
L L
W Z,y) =wx, T =0

Also, boundary values must be prescribed for the_fﬁnction
R which defines the intermediate reference configuration
of the membrane. The Z function is défined_as the sum of
R and W expressions. . These, however, are not required to
be zero. The ohly restrictions, as previously mentioned,
are thét (1) the initiél membrane configuration projects
onto atrectangular planform in the xy plane,' and (2) that
there be.a one;to—one functional correspondence‘between
the membrane surface and its planform. In this work,
however, the initial configuration is such that

L

L
R(E-5,y) =R(x, T4 =0 (32)

Due to the symmetry of the problem with respect to each of
its two.axes, the first quadrant can be taken as repre-
sentative of the deformation of the entire membrane.

Thus, compensating for such symmetry, the following condi-
tions are derived'using a finite difference Qlopewrelation

along the y axis.



34

(2, J) =0

(1, 3) = -U(3, 3)

v(1, J) =V(3, J) (33)
W(1, 3) = W(3, )

R(1, J) = R(3, J)

and along the x axis

V(I, 2) =0

u(I, 1) =u(1, 3).

v(I, 1) = -V(I, 3) (34)
w(I, 1) =w(I, 3)

R(I, 1) = R(I, 3)

For the ficticious nodal points located adjacent to the
membrane perimeter, the lack of bending rigidity of a com-—

pletely plastic membrane is considered by writing

u(M, + 1, J)

i

b U(Mx + 3, J)

v, + 1, J) = --V(Mx + 3, J)

X

WM, + 1, J) = WM + 3, J)

X

R(M, + 1, J)

X -R(M_ + 3, J) (35)

and



u(I1, My + 1) = -U(I, My + 3)

V(I, M, + 1) = V(I, U + 3)

y
w(I, M+ 1) = -W(I, My + 3)
R(I, M+ 1) = -R(I,My + 3) (36)

Using equations (35) and (36), the exterior fictitious
displacement values at extermal nodal points are replaced
by their equivalent expressions in terms of the desired

interior values.

3.4 Initial Conditions

At thevbeginning‘of the membrane motion, either a
velocity or pressure field is prescribed. If initial vel-
ocities are applied, no pressure is assumed to act on the
membrane at any time, On the other hand, 1f a transient
pressure distribution is prescribed, the initial velocity
is taken as being zero. The determination of both of
these sets of initial conditions is given in Appendix H.

Thus, the implied initial conditions are
Case 1

R(x, y, 0) =0
Initial Impulse

%% (x, v, 0) = g(x, y)



Case IT

R(X, y, O) = O
.Applied Pressure

%%(X,y;o)=0

Upon the termination of eaéh increment of deformation, the
current velocities, accelerations and vertical displace—

ments are calculated. These become the initial conditions
for the following increment of deformation. These values

will be referred to as the "subsequent initial" conditions.

3.5 Numerical Method of Solution

In essence, the solution of this problem is repre-
sented by the accumulated effects of many individual incre-
ments of deformations. For the purpose of clarify, the
solution for each increment of defqrmation will be referred
to as a "sub—-;solution"o In the following discussion, a
methad will be developed, first, for obtaining a generél
sub-solution. This wiil be followed byvthe procedure with
which each of these will be accumulated to adequately
represent the total solution. A consideration of the defi-
nitions of the D coefficiéﬁts, as given in Appehdix F and
introducgd in the preceding section, reveals that they
also ser%e to couple the three equations, the coefficients
being functions of strainsf Thus, in order to solve this
system of simultaneous partial differential equations,

complete U, V and W displacement fields must be aSsumed
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initiallyo As will be shown later, the initial set of W
dlsplacemeﬁts will be predlcted using an established
structural dynamic procedure. The'initial U and V dis-
placement fields will be appfokimated using Mostow'é'deri—
vations contained in reference (13). Assuming the numeri-
cal procedure to be convergent, the solution of the equa-
tions‘Will provide better approkimations of these depen-
dent_varia_bles° Using the improved approximations, a
repeét of the solution procedure would yield an even better
set of approxima£ions to the‘displacement fields. Such

an 1terat1ve process would continue until the error induced
by neglectlng the differences in the present and the pre-
viously calculated displacement fields would be of a toler-
able magnitude. Here and in the following discussion, a
"tolerable magnitude" of error is defined as an induced
error which is of the same relative magnitude as the

errors caused by the general assumptions of Chapters I and
IT. Such.é convergence marks the end of the particular
increment of deformation. At this point, the determined.
strain and displacement values are accumulated and a new
increment commenced,

‘The question now-encguntered is that of which numeri-
cal method or combination of methods to use in constructing
such an iterative.procedure,q As éhown;'equation (30) is
a direct function of time} The_otheﬁ:two are only in-
directly related to the'time variable; this depéndency
being due to the coupling effect of the dependent variable,
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W, Noting this distinction, equation (29) and the similar
expfession‘formed from equation (27) are to be approached
as boundary value problems whereas the solutions of equa-
tlon (30) is 1dent1f1ed as a propagatlon problem of a
contlnuous system.

With this acknowledgement, an iterative procedure sug-
gested by Boyd (1) is selected. The general procedure is |
t0 use the U and V displacement.fields calculated in a
particular increment as first estimatesein the following
stage of deformation. The new displacement field is
obtained using a suitable predictor formula. Substituting
these values in a finite difference form of . eqaation (26),
new values for the U dlsplacements are’ calculated° 7;
U31ng thls calculated set and carrylng over the same V
and W terms, equation (27) is used to calculate an improved
set of V displacements; These calculated values are then
used in equaticn (28) to calculate the acceleration field
acting at the end of the present cycle. Next the newly
calculated acceleration values are used in a corrector for-
mula to derive an improved W displacement field. This
entire sequence is repeated'until the calculated differen-
ces between the new and old displacement.field converge to
an acceptable miniﬁum and then a new increment of deforma~-
tion ie started. Thus, one sub-solution is completed and
another is startedo-'The intermedlate step of revising
initial conditions and accumulating‘strains and displace-

ments is also necessary.
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The preceding description of the sub-solution proce=-
dure is general. The necessary additional detaiis are pro-
vided through the following discussion of the,solution of
each individual equation. The entire solution‘procedure
is implied‘by the flow diagram given in Appendix I. In
this development, equation (26) will be referred to as the
"U displaéement equation” implying the variable for which
it is used to solve. Likewise, eduations(27) and (28) are
designated the "V displacement® and .the "acéeleration
equations", respectively.

a) Solution of the U and V Displacement Equation -

These equatioﬁs are of the boundary value type. Applying
the pivotal equation for the U displacement (equation (29))
to each of the n.interior nodal points contained in the
first quadrant and utilizing the boundary conditions given
in Section 3.3, a set of n homogeneous, linear algebraic
equéfion is derived in terms of the 3n unknown displace-

ments U, V, and W. In symbolic matrix form, this operation

yields‘
[c1{u} + [D)v} + [El{w} =0 | (39)
where
fc], [p]l, [E] = first order finite difference
matrices (square)
{U} = U displacement matrix (vector)
{V} = V displacement matrix (vector)

{W} = W displacement matrix (vector)
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The general format of the matrices products [c]{U}, [DI{V},
and [E]{W]} is identical.

Assuming known V and W displacement fields

(c1{u} = ~([p1{v} + [EI{wW}) (40)
[c]1{u} = {upIsp} (41)
{v} = [c]™"{up1sp} (42)

The operation implied by equation (42) results in an im-
proved set of values for the U displacements.
The finite difference equation established for the V

displacements is used in the same manner to obtain

[el{v} + [H]{w} =0

[r1{U} +
(e1{v} = (81} - [F1{u)
[e1{v} = {vDISP}

(v] = 617" {vDIsp}

~ Equation (43) gives the V displadémentlfield in terms of
the U and W displé_.‘cemenfs° It is apparent that if the
correétAvalue 6f the W displacement is assumed, if“tﬁe pro-
cedure is convergent, and if the most recently cbfrected
values of the U and V displaéement values are used, the
continued cyelic use of,equétions (42) and (43) would re-

éultﬂin'progressivélx;imppoving U and V displacement values.
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b) Soluticn of the Acceleration Eguation - Pertinent

methods of dynamic«analysis can be divided into three
ﬁéjor categories; open method; closed method, or a éombina_
tion of the preceding two methods. An open method is one
with which thehaispiacements forwﬁhe projected time incre-
ment are functions only of the displacement, veloéity, and
acceleration calculatediforlthe past time increment. As
such, it is sometimes referred to as a forward method.
The closed method formulates the projected displacement as
functions of the velocities and accelerations of the pro- '
jécted time increment. Thus, a varying number of itera-
tions are required %o converge within a reésonabie tolér—
ance fo the true values. The closea method 1s the more‘
accurate of these tWo'methodsa

The joint use of open and closed methods in solving
- problems of dynamic propagation is conventionalov Boyd
applied such a combinétion in his analysis'ofrthe circular
vmembrane problem, Basiéally,_an-open méthod serves to
predict a displacement field and then a closed method is
used’torcorrecf such a predictidna wUnless the formulation
is numerically unstable, repetifion results in convergence,

A simpie Eulervfinité.differénce approximationvto the

acceleration term,

2
8°%. . ,
_.___LL.;L — - —-——1
atZ - [(Ziyj)t“At (Ziaj)t * (Zi,j)‘t-i-A‘t:lc_tZ (44)
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yields the following predictor equation for the accumulated

membrane configuration in the projected time period.

2 L2
82Z. .
where 2, i denotes ———iél . The desired predicted W
’ ot

‘displacement values are obtained as follows

(w = (2

i,3) t+at 1,70+t ~ (i34 (46)

Therefore, by using equations (45) and (46), the W dis-
placement field for a néw increment of deformation can be
predictéd entirely on the basis of known past values of
displacement, velocity and acceleration.

Consider now the acceleration equation written in an

abbreviated form as

U U U

Zi g = f(Ui-1,j‘ ie1,j0 “i,3-17 Yi,j+17

v P Vien, 50 Vi, -1 Vi, 4410

i—11j

W w

im1,35 Wip1, 35 Wi, 5-15 Wi 540 (47)

A.ssuming that the U and V displacement fields‘aye either
known or have been prediéted, equation (47) can be
treated as a function of displacements only. 'Thus,

Zi,5 = TWiq,55 W

i+1,50 Wi, 5-19 Wi, 541) (48)

By using predicted values of (wi,j)t+Ax in equation (48),

a set of values can be calculated for Cé. At this

1,j)t+At°
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point, a closed method sometimes designated as Stormer's
Method, is introduced to obtain "corrected" values of the
displacement field. This corrector formula is given by

Crandall (29) as

(Z. ) = 2(2 - (z

i,3t+At i34 1,3 t-at

2 L
At e .o

from which the improved values are derived using the fol-

lowing equation

(z

(W ) pat =

As implied in the beginning of this section, these
values and the calculated (Vi,j)t+£¢ displacement field
are then substituted into the U displacement equation and
. more improved set of (Ui,j)t_'_AJG displacements calculated.
Then, of course, this revised set of U displacements and
the same W displacements are used in the V displacements

, ‘ ,j)t+A¢
ments. At this point, equation (48) can be used to cal-

equation to obtain corrected values of (Vi displace~

culate a hetter value for the acceleration (Zi,j)tfat°

Following this, from equétions (49) and (50) are obtained
still better approximations to the (Wi,j)t+£¢
field. This procedure is repeated until the corrected

displacement

acceleration yields an insignificant change in the

(Wi,j)t+At dlsplacement f1eldj The computer program block
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diagram in Appendix I illustrates more clearly this general

iterative procedure.

3.6 Selection of Space and Time Intervals

The accuracy and execution time of the preceding solu;
tion procedure will be affected to a great extent by the
selection of“the space and‘time intervals. In the interest
of compufer programming efficiency, the selection of %he
largest intervals possible is desirable. The analytical
determination of such optimum values for this problem
appears to be highly improbable if not impossible. A
numerical determination by trial is suggested in Figure 8.

As indicated in.Figure 8a the optimum time interval
was found by repeating the solution pfocess with a steadily
decredsing time interval until the resulting deformation
field varied té within a reasonable tolerance of the field
corresponding to the preceding time interval. Figure 8b
indicates what variation could be expected with changes in
the space intervals. For the two trials'plotted, no
sensitivity to moderate change in the latter is evident,
of coufse, no optimum space interval is concluded. In
this case, however, the suggested insensitivity made fur-
ther space interval investigation impracticable. The space
and time iﬁtervals established by trial in this manner
vary with.the loadingvconditions and, of course,; the physi~
cal pfoperties of thé»membrane° A change in the initial

velocity field would resﬁlt in different stability data.
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The results in Figure 8 are still useful, however, as
they often indicate possible corrective measures in other
cases.

The instability which occurred during this investiga-
tion occurred primarily at the center nodal point. The
other points appeared to converge in a relatively stable
menner. sSuch behavior is indicated in Figure 9a. A com-
parison of this data with that given in Figure 8a indicates
that a reduction in the size of the time interval might
stabilize the response of the center point A. Another
indication of instability is given by the results illus-
trated in Figure‘9b. A reduction in the size of the time
interval would probably also correct this response. If
the reduction was madé, a steadily reducing oscillatory
motion about the final equilibrium poéition would prob-
ably result. |

While desirable, such a refinement in stability can-
not justify the additional computer timé for most problems
of application. The results without the impro&ement are
normally very satisfactbry° By interpolating using the
relatively ﬁell behaved neighboring pointé, the final dis-
placement of the fluctuating Céﬁter point can be defined
Vefy well. In the cases of cosine distribution of initial
Velocity,.no,significant numefical instability was exper-

ienced.
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N Displacement Function Approximation

At the end of an increment of deformation, the points
on the membrane surface for which the displacement values
havé been calculated are no longer béneath their initial
nodal point. The continued use of the initial recfangular
finite difference grid, then, requires some adjustment if
the continuity of deformation is to be preserved exactly.
An elaborate interpolation scﬂéme to_re—eétablish the
values at the grid intersections could be employed. How-
ever, this degree of accuracy is inconsistent with other
agssumptions of this development. Certainly, the increased
computing time would be undesirable. Instead, the incre-
ments will be accumulated at each intersection assuming
that the displacement valués at the beginning of an incre-~
ment of deformation are equal to those located at the same
nodal point at the end of the previoué deformation incré~

ment.



CHAPTER IV
NUMERICAL RESULTS
4.1 General

The computer program block diagram is shown in
Appendix I. The associated general computer program uses
data cards to introduce the particular membrane's physical
properties, the initial velocity field, the initial mem-
brane configuration, and the transient pressures. The
output gives the accumulated strains and displacements.

A brief parametric'invéstigation is used in the
chapter to illustrate the preceding theoretical develop-~
ments. The major areas include (a) the variation of the
initial velocity configuration, (b) the variation of the
transient pressure profile, (c) the variation of the
aspect ratio and (d) the variation of initial impulses
and stress—-gtrain relationships. In all cases, a rec=-
tangular, initially plane membrane with fixed edges 1is
used with the general finite difference grid system shown

in Figure 10,

4.2 Variation of Initial Velocity Configuration

The exact initial velocity distribution in most

practical cases would be difficult if not impossible to
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describe mathematically. Useful approximatioﬁs, however,
are the cosine and unifofm configurations. These are dis-
cussed in Appendix H. Also included is the least practi-
cal but interesting pyramid shaﬁe. vTo determine the
effects of varying the initial velocity fields, these
three configurations are used to deliver an impulse of
25.92 lb-inches to a 24" square membrane. This equivalence
of the velocity fields is described in Appendix H. The
velocity value Vo shown in Figure 11 is 2,000 inches/sec-
ond.

Figure 11 illustrates the effects of varying the velo-
city configurations on the terminal transverse displace—

ment field. The displacement of the membrane surface

Lx

| (1,0 (20 (30 @0 (5,0 {1 (1)
Ly 2y’ LN A
L1 w3 AP IS
Vv LYY
s’ N LY LSS LA
e NN
0 YN A SN AL

—

Y

Pigure 10. Representative Finite Difference Grid System
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along the x-axis is also shown. The physical properties
and membrane dimensions are given in the same figure.

Figure 12 shows the variation in the horizontal "U*
displacement field due to the change in initial velocity
fields. These values are given in the form of contour
plots for the same square membrane used in Figure 11.

The effects of the same velocity variations on the
transient transverse displacements are indicated in
Figure 13. The displacement progress in each case is
plotted at 1/10 millisecond intervals for the duration of
the motion. The final configuration is also givenn The
data was taken from the same solutions>reported'in
FPigure 10,

A typical displacement response of a square membrane
to a larger impulse is given in Figure 14. A contour
plot of +the transverse displacements with a profile along

the x-axis 1s shown.

4.3 Variation of Transient Pressure

As explained in Appendix H, the initial velocity
field is taken as zero if a transient pressure is applied.
The distributicn of such pressure is governed by eguation

H19 which is given below.

P(x,y) = PMe~t/9 cogP (%59 cosd (%l)
x v

where
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W1/3)¢

= K5

= explosive material constants. Table H~1 gives
some typlcal values,

= weight in pounds of explosive material.

= vertical distance of explosive material above
membrane surface.

= spatial shape parameters.

distribution of the pressure at any time, t, can

be varied using the spacial shape parameters p and q.

Figure 15 illustrates the cases Pp=g=7Tand p=gq-= 3

The investigation of the response to pressure varia-

tions uses a membrane with the following material proper-

ties and dimensions.

™

= R O= o

il

L. = 24 inches
¥ 4

0,075 inches
0.0214 lbs.

2,16 10%
For TNT from Table H-1
1.13
0.222
0.25 For half-hard aluminum from
: Table D-1
22,200

The impulse is generated by an explosive charge suspended

in water at a height of 168 inches above the clamped mem-—

brane,
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The influence of pressure distribution on the transi-
ent transverse displacements is indicated in PFigure 16.

The transient displacements were plotted for the two éases

given in Figure 15; p=q = 1 and p = q»=‘3.} The deiivered

pressures are

-5
P (x,y,t) = e~4-87x10 7% o (%5) cos (%I)
X y

and

PZ(ny,t)

i

L

-5
e~4-87x10 7% .3 (%3) cos> (2X)

Contour plots of the final horizontal U,displace; :
ment field for each of the pressure loading cases are
given in Figure‘17° .

The transient transverse displacement response of a
square membrane to a typical pressure loading is illus-
trated in Figure 18. The displacement profile along the
x-axis is used. The shaded curve represents the final

configuration,

4.4 Variation of the Aspect Ratio

The effects of changing from a square to a rectangular
membrane configuration are indicated in Figure 19, 20, and
21. These give, respéctively, the effects on the trans-
verse Z,’;héxhorizontalvﬂ,*aﬁd the horizontal V dis-

placement fields. An’initial velocity field of .a cosine



54

TABLE 4-1

ASPECT RATIO DATA

Case LX(in.) Ly(in.) gzgigt
1 | 24000 24,00 S

2 16.98 33.96 1/2

3 19,60 29.40 2/3

distribution is prescribed in each case with the maximum
velocity ordinate chosen so that the total delivered
impulse is constant. The specific side lengths and aspect
ratios are given in Table 4-1., The use of half-hard
aluminum is continued.

4,5 Variation of Initial Impulse and Stress—Strain
Relationships -

Thé permanent transverse displacement response of the
center node of a square membrane is plotted for several
values of total impulse in Figure 22, The membrane is
of half-hard aluminum and has the physical properties
given in the figure.

In Pigure 23 the effects of varying the stress—-strain
relationships are illustrated using three different
materials. The latter include a 1020 hot rolled steel,

a T0-30 annealed brass, and an 1100 anneaied aluminum.
A1l materials have been given a 10% initial coldworking.

A 24 inch square membrane is used. As in all of the



investigations, the edges are fixed.
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INITIAL VELOCITY CONFIGURATIONS
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Figure 11. Variation of Terminal Transverse

Displacements with Initial Velocity
Configuration
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NORMALIZED DISTANCE, X/0.5L
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TRANSVERSE DISPLACEMENT, Z, INCHES
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-ACO

TSCO

B (x.y,1) = TSCO Cos{¥)costy)

Y / : '
(b)

Pigure 15. Transient Pressure Profile
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NORMALIZED TRANSIENT TRANSVERSE
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TRANSVERSE TRANSIENT DISPLACEMENT, IN.
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Figure 19. Effect of Aspect Ratio on the Transverse Displacement-
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CHAPTER V

SUMMARY AND CONCLUSIONS

5ol Summary

A method is developed for determining the finite,
inelastic deformation of a clamped, rectangular membrane
-subjected to impulsive loading. An accumulation of numer-
ous increments of deformation is assumed to represent the
total deformation process., In this manner, the nonline-
arity of the formulation is minimized through the use of
kinematic relations for small displacement shell theory.
The dYnamic equilibrium of a representative differential
elemenf is mathematically formulated. The resulting three
nonlinear, coupled, partial differential equations, con-
verted to functions of displacements, form the governing
differential equations of motion. The numerical solution
of this set of equations is obtained using a digital
computer.

The derivation is much more general than implied by
the thesié title. The membrane caﬁ have initial curva-
ture and be prestrained, The incremental formulation also
permits the recording of the total deformation response to
repeated blast loadings. Also, the membrane, the pressure

loadings, and/or the initial velocity field do not have to
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be symmetrical with respect to the horizontal axes, If
such is the case, a finite difference grid system for the
entire membrane surface must be used.

A limited parametric investigation is performed to

illustrate the developmeﬁt°

5.2 Discussion of Results

An evaluation of the results is limited by the non-
availability of experimental data and other numerical
investigations. An objective discussion is still possible,
however, through the use of comparable circular membrane
studies and experimental reports on the static loading of
recténgular membranes,

Figures 11 through 14 indicate the effects of varying
the configuration of the initial velocity field. The ter-
minal displacements in Figure 11 appear to be reasonable.
The cosine distribution accounts for a larger quantity of
initial kinetic energy within the center quarter section
of the membrane. The uniform distribution places the
smallest amount of kinetic energy in this center section.
This comparison supports the ofder of displacement magni-
tude illustrated; i.e. cosine, pyramid and finally the
uniform velocity configuration. ‘The pyramid configuration
also accounts fqr less transverse displacement around the
perimeter of the membrane. This also is to be expected.
Figure 12 shows the change in the U displacement field

accompanying a revised velocity configuration. The values
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and contours are reasonable. The U displacements as well
as the transverse displacements‘arewexpectéd“to be less
for the uniform case because the associated initial
kinetic energy, both for the center section and the mem;
brane as a whole is the smallest. The greater rate of
change in the U displacement field being along the bound-
ary parallel to.the y-axis (rather than the x-axis) is
consistent with statically loaded membrane results. The
transient transverse displacement responses are depicted
in Figﬁre 13, Those shown for the cosine and pyramid
cases approach their final values in a smooth mamner. The
response to the uniform configuration, however, takes the
form of a pefimeter wave moving inward. The extent of its
travel evidently varies directly with the magnitude of
the trénsverse displacements. If the deformation sequence
is continued, a travel distance would be encountered at
which unloading would commencevtd follow the wave. Boyd
reported a similarvcircumferehtial wave for circular mem-
branes.

The transverse displacements shown in Figure 14 for
a typical case of specified initial velocities are reason-
able., The exhibited symmetry with respéct to a diagonal
through the origin is encouraging. The transition from
circular contours at the center to those approaching a
rectangular'shape at the boundary is also the expected
behavior. |

The results of the pressure variation study are
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reasonable; PFigures 15, 16, 17, and 18 illustrate. The
transverse displacements given in Figure 16 for the two
cases, p=q =1and p = q = 35 show the effects of favor-
ing the center section with delivered pressure. Greater
center displacements for p = q = 3 case are accompanied by
a loss in uniformity as displayed in the other case.
Such a transitiqn in loading patterns could be affected
by varying the height above the membrane of a pressure
producing device., PFigure 17 describes the related effect
on the U displacement field° For the p = q = 1 case, the
U dispiacements uniformly increase with the greater mag-—
nitudes being at the midpoint between the origin and the
boundary. In the other case, a negative displacement
region exists beyond the midpoint for practically the
entire first millisecond of motion. These results are
very similar tb Boyd's data for the circular membrane.
As the latter indicated, this unusual activity is caused
by the magnitude of the initial transverse displacements
being much greater in the center portion of ﬁhe membrane;
The horizontal pﬁll—in of the membrane’'s perimefer region
continues until the transverse displacements start to
displace uijliformlyo

The aspect ratio study also. supports the general
validity of the results. The contours plotted in Figure
19 for transverse displacements éfe as suggested by kﬁde
rectangular plate responses (57). For a square membrane

the transition of the form from the center circle to a
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boundary rectangle is entirely reasonable. The increasing
dominance of the rectangular over the circular form as the
aspect ratio increases is acceptable. As shown, the oval
contour configuration appears for %% = 2/3. The U.

and Vfdisplaoementvoontours in Figures 20 and 21 are: c
also acceptable. The equivalence of the U.and V
displacement fields for square membranes is clearly re-
flected. The steeper gradient of that portion of U dis-
placement field located along the perimeter and parallel
to the y axis is consistent with experimental results give
given by Mostow (13). The magnitudes of the horizontal
displacements seem to be reasonably consistent with the
related transverse displacement field.

Finally, a linear relationship between the center
transverse displacement”of a square membrane and the totel
applied impulse is depicted in Figure 22. It appears to
be consistent with comparable circular membrane data by

Boyd.

5.3 General Conolusion and Possible Extensions

The numerical results support the general validity of
the method as a means of analytically investigating the
response of clamped rectangular membranes to impulsive
loads. A detailed evaluation and confirmation of the
method's accuracy is not presently possible. Other ana-
lytical or some experimental results are needed. At the

present, however, it is believed that this is the first
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and only general solution of the subject dynamic membrane
problem.

The only significant deficiency of the method appears
to be scattered instances of numerical instability. These
principally occurred when discontinuous functions were
used to represent initial velocity fields..

Any extension of this work should first include a
numerical stability.investigation° The stability investi- .
gation on ah individual problem basis is recommended only
as an interim measure. A satisfactory general method of
prescribing the optimum space and time intervals would
- not only‘reduce the @mount of required computer time but
would also allow the use of a gréater Variation in velo-
cify field coﬁfigurations°

An adjustmeﬁt to the present development to accomo;
date membrane surfaces of other planforms is also possible,
The Flugge andvGeyling‘small deformation theory has
already been applied to translational shell surfaces with
other planform configurations such as those triangular
and trapezoidal in shape (29), (37). These works could be
extended to the dynamic problems as indicated in this dis-
sertatiohob

In the design of many armaments, mass is used to dis-
sipate high quantities of kinetic energy. In other cases,
thick plates of high tensile strength metals are used with
strain energy accounting for the chénge in kinetic energy.

The results of this dissertation suggest the possible
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advantage of using a baffle arrangement of thin membranes
in preference to the thick plates or objects of great
mass. The ideg is based upon more efficiently producing
strain energy to dissipate the kinetic energy.

Also, the degeneration of the governing differential
equations to those for the general case of static loadings
is recommended. .A satisfaétory solution for the stafic
fihite deformation of membranes of rigidly plastic—stfain
hardening or elastic-plastic:materials is not known to
exist. Such a conversion would involve solving all three
equations usigg the matrix iteration scheme presently
used for the U and V displacement aq@ationsgv“si

Finally, ran. experimental investigatioh'is needed to

complete the evaluation of this development.
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APPENDIX A
PUCHER STRESS THEORY

The Pucher solution of the shell ‘membrane stress-~
problem greatly simplifies the general equilibrium équa—
tions of the membrane theory by stating them in terms of
equivalent projected stress resultants acting on a hypo-
thetical projected element in the horizontal plane. Such
~a projection of the differential element is illustrated in
Figure A-1. The curved line segments are related to the

projected horizontal sides by

ax
ds1 T cos @
ds, = 508 AT

The total forces on the sides of the curved element are
found by multiplying the pertinent skew stress resultants,
shown in Figure A%Z, by the length of the related curved
line segment. Thesé forces are inclined at an angle of
either o or B with the hbrizontal plane. The components
in the horizontal plane in the-:X direction form the e@ui—

valence

Ay - |
Nx cos B cos a = Nxdy A2,
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Pigure A-1. ~ Projection of Element of-D"ouble Curvature
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| Figure A-2, State of Static Equilibrium
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dx = :
Nyx Sos o cos @ = Nyxdx A3

while those in the y direction

dx = |

Ny Sos o COS B = yq A4

N d cosB = N__dy AS
Xy cos fB Xy .

Thus, the following equalities are obtained

= cos a
Ny =Ty cos B Aba
ny = Nyx = ny = Nyx Abb
= cos B
Ny = Ny Sos @ Abc.
PX, Py’ PZ are the x, y, and z components, respectively of

the exterior load per unit shell area., These distributed
external loads are now replaced by their equivalents act-

ing over the horizontal projected area, dxdy. .Considering

P_dA = P_dxdy = P _dA | AT

dA_ = horizontal projection of shell differential
element

dA = area of shell element

P_ = component of PX which acts on the projected
area dA,,



and

=% AB.

it can be shown that

XL
2

Fle"dl

_ = sin® @ sin® B)

p:d cos a cos f AS.

In general, then, the following relation exists between
7 F,
differential shell element.

?z and the forces P, P

5 PZ, ver unit area of the

Hl

.2 . 2 onE
"z (1 - sin“ @ sin“B)
cos a cos @

"le*dI

A10,

kz"dlk:*dl
HJ

Z

Two of the equilibrium equations are formed by
directly considering the summation of forces acting on the
projected element and in the x and y directions.

Considering the x direction, the following is derived.

N ol
X i X - T —_—
N dy +®, + —5% dx)dy Nyxdx + (Nyx * 5 dy)dx
+ ?dedy =0
ol aﬁVX _ |
55 * 6& -fPX==O A11,

Similarly, using the y direction
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—_— 9 —
-N_dx + (Ny * 35 ydy)dx -»nydy +
+ (N PRI dx)dy + P dxdy = O
Xy 0X Xy I J =
LF +2N_+F =0 SUNF)

For the third equation, equilibrium in the z direction is

ponéidered. Noting that,

— coS
N B
X cos «

i

NX sin @ dq gin @ dg

= N_ tan o cos B dg

X

- ¥, %}% dy : A13a
N, sin B dp = N, g—; ix A13D

. = . d

ny sin B dgq = Nyy sin B o5

= ny tan B dy

. = . ax

NyX sin ¢ dp = Nyx sin @ Sos5 0

= Wyx tan ¢ dx

=N 92 gx A13d

Thus for equilibrium in the z direction.



87

‘"—X%%dy'*'ﬁx%}% dy*'é‘a;(ﬁx%dy)dx
-_yg—;dx+ﬁyg_§dx+‘5%(ﬁyg—§&)dy
N%y g§ dy + N g; dy + é% (ﬁky %% dy ) dx
—_yx %% ax + ﬁ&x §§ ax + g% (ﬁ&x g% ax)d
+§z*-x—%"?y%=o

or

+P -P —}%-'ﬁ—:o A4

the moment equilibrium equation can be used to prove

i —

ny = Nyx A15

differentiating the products in equation (£14) gives

i 822 + oN 822 + T 822
X 8x2 Xy oxdy y dy
- oN oN
= -7 - X Xy y9z _ (2§ D F 2z e
- Pz (ax T3 vy )ax (ax Xy * oy Ny)ay rAT6

incorporating the other two equilibrium equations (A11) and

(812) results in
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v %2,y 25§ 22 5,3 &3 2 |
Nx X2 * Xy O0xdy * y 8y2 - z T tx ox T y oy AT
Equations (A11), (419, and (A17) are known as Pucher's equa~

tions of equilibrium for general translational shells. In

summary, they are

Xy y
2 2 2
T 87z .5 9z ¥ 2z2_ p ,P 2z .7 2z
N, on? + 2NXy 5X0y y 8y2 =-P_ + P 3o+ Py 5y A18



APPENDIX B
FLUGGE AND GEYLING KINEMATIC RELATIONS

Flugge and Geyling (6) extended Pucher's method of
stress analysis given in Appendix A by developing a general
deformation theory for membrane shells. The purpose of
this appendix is to summarize the development of the kine-
matic relations as initially given in the preceding work.

The differential shell element shown in Figure 4
shows the three applicable displacement components; U, V,
and W; as well as the parameters which are necessary to
describe the reference geometry of the shell surface; «,
B, and w. The displacements U, V, and W are the displace-
ment components acting in the X, ¥y, and 2z directions
respectively. @ and B are the angles between the hori-
zontal and the curved line segments bounding the dif-
ferential element. The lines AC and BC are in the k=z
and yz planes respectively. The angle w is the angle at
which the curved lines segments are skewed in the plane
tangent to the differential element. Considering the
angles @ and B to be nonzero, the angle, w, which is
formed by the intersection of the line segménts must be
other than 90 degrees in magnitude. With such geometric

parameters, the need for the joint use of a skewed
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curvilinear coordinate system and an orthogonal rectangular
base system becomes clear. The skewed strains will be
related to the orthogonal displacements first. Then, by
using geometric relations, the orthogonal strain-orthogonal
displacement relationships will be derived.

Considering Figure B-1(b), the following relation is

derived for skewed strain increment in the ¥ direction, eye

(1 + ex)ds1 = ds; + U,dx cos a + W dx sin e

2 .
ey = Ux cos” o + Wx sin o cos a B1
Similarily,
e =V 0082 B +W_sin B cos B
y y Y

For ny, consider Figure B-1(a). The shearing action has
caused line segments AC and AB to relocate to AC1 and AB1
respectfully. Assuming the latter to be straight, the
following condition can be used as written in vector nota-
tion.

! 1B = |AC1| |AB.1| COS Yy B2

Substituting the equivalents

It - (U,a)f + (1 +V)ay 3 + (tanp + W)ay "

=

(1 +0)ax T + vV dx 7+ (tan o+ W, )ax k B4
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Deformation of Curvilinear Element

Figure B-1.
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leads to

(Uydy)(1 + U )ax + (1 + Vy)dnydx + (tan B + Wy)dyx B5

(tan @ + Wx)dx = (1 +-€x)ds1(1 + ey)ds2 cos (W - Y4 )

¥

Substituting equations B1 and B2 into equation B5 and

neglecting higher order terms gives

[Uy +V, + tan B tan a + Wy tan o + W tan B Jcos @ cos B

2 . . |
[1 + U, cos“a + W _sin a cos a + Wy sin B cos B +

¥ Vy cos? @ Jlcos w + sin o -ny] B6
Again using the definition of a dot product as given in
Vector algebra, the following relation between w, @, and

B is derived.

cos w
B7

A A S dy ax
[dx i+ ax tane k1)[dy J + dy tan B k] = cos B cos «a

or

1
cos B cos «

tan B tan a = cos w

Thus,

cos w = sin B cos a B8
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and considering

1
w
(1- sin2 @ sin? B)l'/z
sin @ sin B
the following is formed
. L2 2.3
sinw = (1 - sin“ e sin®“B) B9

After substituting with equations B8 and B9 and
neglecting higher order terms; equation B6 is developed
into '

1
Xy ~ sina

'[Uy cos @ cos B + V_ cos @ cos B B10

3

+ Wy gin «a cos3B + WX sin 8 cos” «a
b 2 , , 2 . .
- U, cos” @ sin B sin a - Vy cos® B sin B sin o]

Thus, in summary, the kinematic relations for the skewed

strain components are

2

ey = Ux cos o + Wx sin @ cos « B11a
e. =V cos‘2 B + W_sin B cos B
y y y
- 1 ,
xy = 300 l:Uy cos a cos B + Vg cos a cos B B11e

3 3

+ W sina cos” B + W, sin g cos” «

y
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- U cosz o sin ¢ sin B - Vy coszl3 sin © sin ] Blile

Plugge and Geyling also use Pigure B~2 to deduce the
following relations between the. orthogonal and the skewed

strain components.

e =e§ B12

=Y s$in o + ey coS w —e; COS w B13
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b cot a

dey b

Figure B-2. Orthogonal-Skewed Strain
_ Relations . o



APPENDIX C
STRESS RESULTANT TRANSFORMATION

The following development of equations governing the
transformation to orthogonal stress resultants from those
in an oblique'or skewed coordinate system is by Morley (45).
The n&tation has been changed to be consistent with Fligge
and Geyling (6). Consider the orthogonal and skewed

coordinate force systems represented in Figure C¥1.

Figure C-1. Orthogonal-Skewed Force System
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From geometry,

NE = N + Ny cos « C1

N§ = Ny sin o | c2
or

NX = N; - N; cot o | C3

Ny = N§ csc. o c4
where

Nx’ Ny = components of force in the skewed system

NE’ N= = components of force in the orthogonal

J system.

Considering equilibrium in the orthogonal system,
TM@ 0=0-=x H§ -y HE

thus,

',ZF§= F‘sr':XHy—yHE:O Cc5

and for the skewed system,

TM@® 0=0=x Hy -y Hx

thus,

P, = P_=xH_ -yH =0 Cé6

Now consider Figure C-2.
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Figure C-2. Orthogonal-Skewed Stress System
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Let stresses o1 OF and.ysc—y at point P in a plate be
assumed to act on the sides of triangular element APB as
shown in Figure C-2(a). Using equations C1 through C4

the stresses on side PA are resolved into stresses oy and

0.. @s shown in Figure C-2(b) and derived below

Xy
oy = oy sin w CT
Tx—y = Txy cos w c8
or
Txy = Tﬁ - oy cot w Cc9
o, =0F cosec w C10

In Figure C-2(a), the directional cosines of the inclined

normal are

cos (90 —w) = sinw C11

'_l
Il

cos (180 +w) = —cosw c12

B
Il

Let Ni' and N-:; be the components of stress parallel to the

axes of the rectangular coordinates and acting on side AB.

N;:crxld-tl‘x—ym:cxsinm—T-fy—cosw C13
N§=Tﬁl+a§m=T—x-3—rsinw-U§cosw C14

as shown in Figure C-1 and stated in equations C3 and C4.
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N-}-{- and N— can be put in terms of oy and T__ . In this

y yx
manner,
O‘XZN-}-{-—N&' cot w c15
'.T.‘yx = N&' gcosec w C16

Substituting equations C13 and C14 into C15 and C16 gives

i

a o sin w + G? cosw cotw - ZTE COS w C17

TyszE—c&‘COtw Cc18

The guantities o 0., and TX =T are the components

x’ Ty y yx
of stress for the skewed coordinate system for they com-
pletely define the state of stress af point P prb_vided

w# 0,7 . Collectively, they are

o, = 0% sin o + G§ gos w. cotw -— 2,T3-§3f' cos w C19
Gy = G-i cosec w C20
Txy = 'TE - 037 cot w 021>

The rectangular components in térms of the skewed stresses

are

0— = 0_ cOoSecw + 0_ cosw cobtw + 27T cot w
X X y Xy

O— = 0_ sin o
y y '
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P = P = T +cy cosS w c22

In terms of stress resultants, the preceding equations are

SX = Nx cosec w + Ny cos w ¢ot w + 2Txy cot w
NS; = Ny sin w
T, =N + N_ cos c23



APPENDIX D
PLASTIC CONSTITUTIVE EQUATIONS

There are two current theories of deformation from
which the constitutive equations may be chosen; the incre-
mental theory and the deformation theory. The incremental
theory requires that the current stress and strain incre-
ment be used to solve for the current strain increment
whereas only the current stress state is necessary to find
the current strain in the total deformation theory. The
latter is the least complex to apply in a mathematical
sense. This simplicity, however, is over ruled by its
relative inaccuracy. As Hill (9) points out, the only
case when the deformation theory satisfactorily describes
the plastic behavior of a metal is when two conditions
exist; (1) the principal axes of successive strain incre-
ments do not rotate relative to the element and (2) the
components of any strain-increment bear constant ratios
to one another. Such:cases are not the most common and
certainly do not pertain to this problem. Thus, the incre-
mental theory of plasticity is selected for use.

Considering the membrane material to be an elastic-
perfectly plastic solid, the Reuss—-Prandtl equation is

applicable.
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dsij = deij + deij D1
'

de;; = 00N + %1 + -(%l 6 ;a0 D2
where:

Uij = deviatoric stress tensor

dx = non-negative constant of proportionality

Sij = kronecker delta

doy = hydrostatic stress increment

E = modulus of elasticity

G = mosulus of rigidity

The equation, as given above, states that the plastic
strain increment is at any instant proportional to the
instantaneous stress deviation and the shear stresses.

In problems of large deformations, the elastic strains
are only evident during the first few increments of defor-
mation and then become part of the plastic response. The
latter strains account for practically the entire distor-
tion. On this basis, the elastic component of the strain
is neglected and the less complex Levy-Mises equations
replace equations D2. These assume only plastic strains

are present and are written as follows

1

where d\ is a scalar factor of proportionality.
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In defining the state of stress causing initial yield,
the condition based upon the energy of distortion and
known as Von Mises' yield criterion is used. This state-
ment is written as follows for the case of plane stress.

i 2 2.3
o, = (o POy G 3Txy) D4

where

g, = yield stress in simple tension
040 = normal stresses in the X and Y directions
J respectfully
Txy = shearing stress in XY plane

Equation D4 implies that whenever the indicated func-

tion of stresses equal o_ then initial yielding occurs.

o}
If the material was rigid perfectly plastic, such a condi-
tion would also govern any additional yielding.

For subsequent yielding of a work hardening material,
the constant o, is replaced by the parameter ¢ defined as
the effection stress. Thus, the yield condition becomes

= 2 2,1
a:(a’x—- OO & 032r+3Txy)2 D5

this condition can be rewritten as

£l ;8 1 )=02—crcr +02+3T2 3‘2 D6

X'y Xy x Xy y Xy ~

or, if stated in terms of tensor notation,
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flog..) =@ D7

The function f(Gij)‘mathematically describes the
expansion of the yield surface which occurs during work-
hardening. Such a function depends both upon stresses and
plastic strains. In addition, its argument should be
expressed in terms of scalar quantities. Most authors
acknowledge tpe existence of two hypotheses. The first is
that the amount of strain hardening is a function only of

the total plastic work done. This is expressed mathematic-

ally as
where
P
€ = Gijdeij D9
The second hypothesis is that the same function, f(dij),

is a measure of the total plastic deformation. This is

written

f(oij) = H(eP) D10

Where

= effective strain

J 3’3_[ de 5 dey g D11
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The équation D3 is a statement that the principal
axes of stress and the plastic strain incremeﬁt'are coin;/
cident. Under the terms of this assumption; the two
working-hardening hypotheses D8 and D10 are equivalent.
That is, they reduce to o = H(fdeP). Hill shows that the

equations D3 can then be written in terms of the following

twq statements.

P

cteiljD - e aij , o =H(fdeT) D12
where
deP = effective strain increment
= % (dei * dexdey + de§ = % dyiy)%
H = function relating effective stress to effec-

tive strain and referred to as the "universal"
stress~strain relationship.

Instead of using the effective stress and effective
strain iﬁ the universal streés~strain relationship, at
least. three other sets of quantities could have been used;
the maximum shear stress vs. the maximum shear;strain, the
maximum shear vs. the numerically largest strain,  or- the
octahedral shear stress vs. the octahedral shear strain.
The effective stressQeffectivé strain relationship was
chosen as its possible reduction to that of the uniaxial
stress and strain makes it more éonvenient. |

The univgrsal stress-stréin felétionship is taken as

the uniaxial stress-strain curve for the applicable
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material. It is recognized that such a representation is
not most accurate but current developments allow no re-—
course. Biaxialvtests which have been made (29), (9),
(44) are limited in number and deficient in agreement with
predicted results. Aiso, the constant stress ratios used -
in most of these tests aré not a true reflection of,thé
variable stréss éonditiohs‘of_this‘problem.

vThe constitutive equétions.D12 are expanded to give

the following desired expressions.,

de 1
dey, = 35 (ox B §°y)
_ de _ 1
dey = == (oy 20&)
_ 3 (g
dexy =2 ( a)oky

or in terms of the orthogonal stress resultants, the con-

stitutive equations become

X X y
dey = AA(N? -3 Sx)
2
deXy = ZAXP1 D14
where
- =P
g = H(Zde ) D15
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and
A) = plasticity parameter
ot
TABLE D-1
UNIVERSAL STRESS-STRAIN RELATIONSHIP PARAMETERS
Material a b c
70-30 Annealed Brass 100,000 0.105 0.5
(10% prior coldwork)
1100 Annealed Aluminum 26,000 0.105 0.20
(10% prior coldwork)
1020 Hot Rolled Steel 115,000 0.105 0.22
(10% prior coldwork)
Half-Hard Aluminum 22,200 0.222 0.25




APPENDIX E
TAU VALUES
tau1 = 0032 o

tau2 = g8in a cos o

cosz“
tau3 =

sin” o
tau, = 0032 B
4
tau5 = gin B cos B
taug = 0032 o 0082w
tau7 = gin @ cos « coszw
2 2 . . . :
tau8 = cos” B cos w — cos” B sin B sin &

2 . . . 2
tau9 = cos” a sin B sin a + cos” & cosw
tau1o = COS a coSs 3

3

tau,, = sin @ cos® B+ sin B cos B cos o

3

tau,, = sin @ cos @ - sin @ cos a cos w
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tau13

tau14

tau15

tau16

tam17
tau18
tau19
tauzo
tau21
tau22
where

sin a

sin B

It

i

|

i

(1 + Z

0.5

3

sin~

cOS w COS «
sin w + 0.5

0.5 sinw +

£OS w
sin w

2
COS W

.2
sin w

cos B

cos @ sin w

1
sin w

2
cCOoS8 w

sin

2
CosS” w

sin o

(1.0 - sin® o sin® 8)

x
2

cos /@ cos B

sin” w

X

)®

X

2_
1 + Z°)%
( + y)

-9

y

cos a

cos fB

2 T
(1 + ZX)2

2 _I
(1 + Zy)2
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. 2 2 1
sin w = (1+‘tan o + tan @

(1 +ta.n2

A - " . —J:-
@ tan® p)?
tan @ tan B

cCOo8 w =

(1 + tan® @ + tan® B + tan®

@ ‘tan2 B)%’



D3

D4

D5

D6

D7

D8

D3

APPENDIX F
D COEFFICIENTS
[tau15 tau1>f tau, o tau,, taug + cos tau13 tau9]
[(pla$1) tauy ]
[tau15 tau, _ tau16 tag22 tau, - cos tau, 5 tau12]
[(plas1) tau

14:I

[tau16 tau,, tau, - cos tau13 tausj[(plas1) tau14]
[tau16 tau,, tau5 - oS tau13 tau11][(plas1) tau14]
[~cos tag13 tau10] tau14 plas1

[0.5 tau, tau17-- tau17 tau,, taug +

+ 0.5 tau13 tau9]p13s1

[0.5 tau, tau17 - tau17_tau18 tau,

- 0.5 tau13 tau12]plaS1
[tau17 tau, tauy, - 0.5 taug, taugJplas1

[tau17 tgu22 taug - 0.5 tau13 taulljplas1
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D10 = ~0.5 tag13 tau1o plasi

D11 = [0.5 tau, - tauy, tau6]tau19 plas1

D12 f-[O.B tauz‘—'tau22 tau7]tau19 plas1

D13 = tau22 tau4 tau19 plasi

D14 = tau22 tau5ftau19 plasi

D15 = tau23 tau1 - tau24 tau22 tau6 - tau25 tau13 tau9
D16 = tau23 tau, - tau24 tau,, tau7 + tag25 tau13 tau, 5
D17 = fauz4 tau,, tau4 %»tau25 fau13 tau3

D18 = tau24 tau,, tau5 + tau25 tau13 tau11-

D19 = tau25 tau13 tau1o

D20 = D19

D21 = 0.75 tau,, plas

where

plas = 9%
g

_ 4.0
plasi = 3.0 plas



APPENDIX G
DUi’ DVi, AND DWi COEFFICIENTS FOR THE DISPLACEMENT EQUATIONS

The coefficients used in the U displacement equation

are defined as

: 1
DU1 = (D5i—1,j + D5i,j - D6i,j—1 - D6i,j) gﬁ;ﬁ;
DU2 = (D5. - D5 ) mb— ~ (D10, . + D10, ...,) —t=
T i1, i+1,j BhA, 1,3 1,§=17 52
. _ .
- 1
DU3 = (—]35i+1,j = D5 4 + D6y g+ DGi,j) B,
» o 1 . 1
DU4 = (D63 5,q = D6 5_q) a * (D131,5 * P,y 52
X
A
DUS = (D1Oi,j+1 + 2D10; 4 + D1Oi,j_1) . (])1i+1“.j
hy ,
+ 2D1, . + D1 ) —-s
Y, i-1,37 5p2
X
, N 1
DU6 = (D6; 54 - D6i,j+1) EE;H; + (D15,4,5 + D1y 5) o2
X
. , 1 1
DUT = —(D51-1,j + D5i,j) gﬁ;ﬁ; + (D6i,j+1 + DGi,j) gﬁ;ﬁ;-

114



o 1 :

5
on
y y
,
DU9 = (D5i+1’j + D5i’j - D6i’j+1 - D6i,j) gﬁ;ﬁ;
‘ 1 _ . D10, . 1
V1 = (D3;_q 5 + D3y 4) B (D10; 4 4 + D10; ) B-Hx_h;

- 1 N
W2 = (D3i—1,j - D3i+1,j) gﬁ;ﬁ; - (D81,3-1 + Dsi,g) —_—

_ _ ;
V3 = (—D3i+1,j - D3i,j + D1Oi,j—1 + D1Oi,j) SK;E;

1 1
0. ., =D10. . .)
DV4 = (D55 4 + D554, 5) 22 * (D103 541 " 1%, 517 Bm.A,
1
: ) s - (D5s .
DUS = (D8 jyq + 208y 5 + DBy 5q) 22 (P3i41,5
2D5 + D5 ) s
* i’j i‘1aj 2h2
X
1 1
- . ) —hs = (D10, ... = D10; . _.)
DV6 = (D544q,5 * Doy, 5) 2n2 P10 g 1,§=17 Bhehy
1 | 1
o - (D3. .+ D3. )
V7 = (D101,3+1 + D101,3) gﬁ;ﬁ;» ( 3.1, i,j ‘gﬁgﬁ;
- D3 .). l— - (08, .., + D8 .) =5
DV8 = (D3;,4,5 ~ D341, B, 1,41 113" on2
b .+ D10, L) et
V9 = (D3i+1,j + D3i,j) Bn h_ (D101,3+1 i,] =8~;E;

Xy



DW1

we,

DW3

Dw4

DW5

= (D4i—1,j +'D4i,j) EE;E; (D7i,j—1 + in,j)

= (D7

DW6 =

w7

DW8

DwWo

I

i

, ' 1
(D4i-1;j D4i+1,j) 8E;E; - (Dgirj“1 * Dgit

i

7j—1

J

)

) B, B, (D4; 9,5 + D4y ;
) —= + (D7, . D7
op2 1,41 i,j-1
X
]
3+ D,5-1) 5o
. Yy
1
+ D2, ) —=
i,] i1, 2
137 ons
) =y = (D74 ar = DTy 5o0) T
2hX ’d »d xy
) g ~ (D4 + D4
hxhy ) 1—1’,] l’j
,
,3) = (D94 54q + DY; ) I~
) m— - (D7, ..., + D7
thhy i,J+1 1,
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The coefficients used in the V displacement equation

are defined as

. ) :
V1 = —(D8i__1 .+ D8i,j) BE~H~

rd Xy
_ . 1 _ 1
V2 = (D13 s 4 + D13; ) o2 (D8; 1,5 = D854 5) EH;E;
y
_ 1
DV3 = (D8 ,q,5 + D8 3) 8,0,
V4 = ;(D1o. ,j + D10, .) —
X
| , 1
DV5 = (D13, 5,4 + 2D13; 4 + D13i’j_1) o2
y
1
+ (D10, 4 4 + 2D10; 4 + D1Oi_1’j) =7
X
-
DV6 = -(D10; 4 5 + D10; ) -
X
- 1
V7 = (D8i—1,j + D8i’j) 8hxhy
— - 1.
V8 = (D1 3i,j+1 + D13i,j) 2h2 (D8i+1,j D8j__.1,,j) thhy
y
o 1
V9 = (D8i+1,j + D81ﬁ3) o



DU1
U2
DU3

DU4
DU5
DU6

DU7
DU8
DUY
DWA

Dw2

il
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. 1 1
(D11; 5 + D11y J) Bh, " (D10, _q 5 + D1Oi,j) Bn i
(D10, .. . - D10, ) g—l-

i1, ] i-1,37 Shehy

| 1 1
(D11 sy + D11; ) Wy * (D10, 4 5 + D103 gy

_ 1 1
(D115 53 = D113 5,4) BEE. " (D6; 5 + D6; 4 5) =3
. - X

l_\

(D6 + 2D6; . + D6 )

i+1,] ) J i-1,37 oy

Mo

|A

1
(D11i,j+1 - D11i’j_1) gE;E; - (D6i+1’j + D6i’j) -

M N

1 T
=Dy 44q * D11i,j) Bhh, " (D10 4,5 + D105 4) hylly
. 1
(D10, 4 5 = D105 4 3 Bh, 5y
] 1
(D11i,j+1 + Dﬂi,j) 8n_n_ ~ (D1Oi+1,j * D1Oi’j) Ehthr

: 1 —
(D125 54 + D125 ) gy — (D954, 5 + D9; 5) 8h, b,

- 1 - 1
(D145 gor * DM5,5) 22 * POnar,5 = Pien,y) BEE]



;
DW3 = (D9i+1,j + Dgi,j) _%—X—@ - (D12i,j-1 + D12i,j) Bh h

=
DW4 = (D12i’j;1 - D121’j+1) gﬁiK; - (D7i,j + D7i—1,j) Ei§
X
WS = (D7i+1,j + 2D7i,j + D7i—1,j) Eiz - (D14i,j+1
+ 2D14i,j + Dj4i,j-1) Eiﬁ
I
DWG = (D12 ;.4 = D12y s ) gﬁiﬁ; = (DT5,q,5 + D73, 5) 2h;hy
DW7 =

- 1 1
(D91_1’j + D9i,j) gﬁ;ﬁ; —~ (D12i,j+1 + D12i,j) gﬁ;ﬂ;

IA

N

DW8 = (D14y 4.4 + D145 ) - (D9,

- D9, . ) g
J. on i+1,] i-1,] hxhy

]

_ 1 1
WY = (D124 guq * D125 ) gmm ~ (Pi4q,5 + D9,5) Bmm




APPENDIX H

INITIAL CONDITIONS

H-1. Initial Velocity — No Transient Pressure

Much experimental data (2) regarding peak impulse;

intensities delivered to normal surface areas has heen

obtained.

For small charges, the best analytical fit to

this data is given by the following.

1/3 F
I= BW1/3(W 1
where
I = peak impulse intensity (lb—sec./inz,)
F,B = material constants, given for typical materials
in TABLE H-1.
Ro = normal disfance to charge
W = weight of explosive ih pounds
TABLE H-1
EXPLOSIVE MATERIAL PROPERTIES
— _ —
Explosive Type B F g 10" 'k
Pentolite 2.18 1.05 1.13 2.25
‘Tetryl 1.73 0.98 1.15 2.14
TNT 1.46 0.89 1.13 2.16

120



~21

Equation H1 written with units of lb-sec/ft°, is

P+
3
I = 144 B H2
. R ,

Consider Figure H-1.

' CHARGE
R0
.\ L

X 1\

L\ \ N — X
\\\\\k\\\\\ : X 41/)' ,l\gMEMBRANE
——_— \\\ S—dA=dxdy

, . o

Figure H-1. Development of Impulse for Deformation
, Process

In this schematic, a rectangular membrane is shown
- positioned below an explosive charge. Assuming that no
membrane motion occurs until the spherical blast wave
front has contacted each point on the membrane sﬁrfaoe,
the tofal impulse‘can be considered as having been applied
in one instant of time. The initial velocities can there-
by be computed as given in the remaining part of this

section.
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The distance from the charge to a typical element of

the surface is

2

A
L = (Rg + X%+ y,)® H3

substituting equation H3 into equation H2 gives

F+1 7
3 1 e
dI, = 144 BW - | aa H4
R [kRg +x2 4 yz)z} R

the projected area of the surface normal to the radius,
Ro'

1 .
dAp = G558 B H5

The differential impulse in a radial direction is found

by substifuting equation H5 into equation H4.

F+1 F
3 1 1
dI, = 144 BW y dxdy H6
R . l:(Rg + X2 + yZ)Z:I cos ©

The vertical component of the differential impulse is

al

7 dIR cos ©

P+

3 1
144 BW 5 5 5L dxdy H7
(Ro + X5+ y°9)

The vertical component of the total impulse is
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L L
x 1y
+1 2 Tz
I, = 144 BW Jf j' (Rg + x2 4 yz)-F/2 dxdy H8
L L
A
2 2

Except for a few values of F the double integration
implied in equation HB must be performed using a numerical
method, For the present problem, Simpsons 1/3 Rule (22)
was used and the integration of equation H8 programmed
for a 24" x 24" membrane and all three sets of explosive
material constants given in Table H-1. The result

plotted for the form

EzEx
1z 2 2
7.7 = 144 B (R + X% +y )dXdy H9
w 3

_}E.;Y.

2 2

is given in Figure H-2.
Once the total impulse is formed the initial veloecity
field is found using the following impulse-momentum equa-

tion

L
_X
{ m(x,y) V(x,y)dxdy H10
JX
2

f\)l Nt‘r\\. NINH

where
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m(x,y) = mass of membrane at the position (x,y).

V(x,y) = velocity of membrane immediately after
impact at the position (x,y).

With a uniform mass per unit surface area, equation H10

becomes

Bx Ly
2 2

=m .[ Jf V(x,y)adxdy ' H11
2 2

Three initial velocity configurations are used; the
cosine, pyramid and uniform distributions. These are
shown in PFigure 10, To illustrate the general approach,

the cosine distribution will be used.

_ oxy (oY
V =7V cos (LX)(Ly) H12

the wunmknown VO is found by using the impulse-momentum

equation

l
N N

=

I =pt jﬂ cos ( ) cos (El)dxdy H13
L
L
2

mlx

where
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p = mass per unit volume
t = thickness membrane
VO = 1initial velocity at origin

= vertical component of total impulse.

Integrating as implied in equation H13 gives

4 tL,L_V
1:—-.—35..2_3’—9 H14
- |

thus,

2
v .J___Iﬁ ) H15

o 4 tLXLy

Using equations H12 and H15, the expression for the initial

velocity field is found to be

2
V = {Zl%%—%r-} cos (%ﬁ) cos (%l) H16
Xy X J

In a similar manner, the uniform and pyfamid configurations

may be used.

H-2 Transient Pressure - No Initial Velocity

Cole (2) has shown that for most practical cases, the
peak pressure generated by an underwater explosion can be

represented by the power law

wl/3
By = k(L0P H17
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where k and @ are explosive material constants. Table H-1

gives some typical values. The empirical pressure-time

relationship
P = PMe_t/e H18

is also suggested. 1t is the time variable and © 1is
another naterial constant which is represented in Table
H-;1° A typical plot of this exponential function is given
in Figure 14. As suggested by Boyd, the following distri-
bution of pressure is assumed
P(x,y) =P e-t/e cos? (%&) cos? (ZL) H19

M x Ly

where p and g are parameters used to vary the distribution

of pressure over the membrane surface. Figure 14 illué~

trates such an effect on the pressure distribution.
Equation H19 is:used with the initial conditions that

the displacements and velocity are zero.
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Figure H-2. Effect of Explosive Material Constants on Total Impulse
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APPENDIX I
COMPUTER FLOW DIAGRAM

INPUT
READ PHYSICAL PROPERTIES OF MATERIAL, INITIAL SUR-
FAZE CONFIGURATION, INITIAL VELOCITIES, PRESSURE
PARAMETERS AND CONTROL VALUES

COMPUTE INITIAL VELOCITY, XZT, AND ACCELERATION,
XZTVT, FIELOS.

PREDICT U AND v DiSPLACEMENT FIELDS FOR FiRST
INCREMENT OF DEFORMATION

INCREMENT TIME AND DEFORMATION

tstrat -t
INCRE = INCRE + I

ACCUMULATE DISPLACEMENTS AND STRAINS FOR REF- ] e
ERENCE STATE {ie XZ:XZ+rW) I

‘ STOP ; —at ES

f _ PREDICT W DISPLACEMENTS ]
[ {TERT : 0 e } 1
]

[ RESEY PERIMETER DiSPLACEMENT VALUES{ie Uli,3) =Uti,l) )]—4—-—

SOLUTION
COMPLETE
?

l CALCULATE PLASITICITY PARAMETER { PLAS } —I

] CALCULATE D COEFFICIENTS ]

[}

COMPUTE U DISPLACEMENTS

® GENERATE COEFFICIENT MATRIX, (C]

® REDUCE {C] , {u},AND {UDISP} TO INCOPORATE
INTERIOR BOUNDARY CONDITIONS

® INVERT [¢] — [C}

o forRmM {U} = [c'J{uD1IsP)

o ESTABLISH NEW VALUES FOR U DIiSPLACEMENT
FIELD

1]

[ JTERT = {TERT + ]
¥ [

COMPUTE Vv DISPLACEMENTS

e GENERATE COLFFICIENT MATRIX,[C]

s REDUCE [C], {v}, aAND {VDISP} TO INCOPORATE

INTERIOR - BOUNDARY CONDITIONS

© INVERT [C] — [C™] .

o FORM {v} = [C'}{vDiSP}

» ESTABLISH NEW VALUES FOR Vv DISPLACEMENT FIELD

ITERT=1 YES -
?
ND
| CALCULATE ACCELERAT!ON, 2TT ]
[]
f CORRECT W U1SPLACEMENTS 1

NO

. YES

RESET “iiTiaL" VALUES FOR NEW SURFACE conneunmml
(ie AXZT=XZT, X2 :2Z)

YES
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