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CHAPTER I 

INTRODUCTION 

1 .. 1 Statem.ent of the Problem 

A method of analysis is developed for determining the 

finite, inelastic deformation of a clamped rectangular mem-

brane subjected to either large transient pressures or high 

initial velocitieso Bending effects are neglectedo The 

material is assumed to be rigidly plastic-strain hardening 

in response to deforrnationo The incremental theory of 

plasticity is used and the total displacement of the mem-
_ _:.. .. 

brane is mathematically described as the accumulated 

effects of numerous. increments of deformations o Each in-

crement of deformation is approached in a manner similar 

to the Fliigge-Geyling;formulation for analyzing the static 
·fi' 

deformations of membrane shells of rectangular planformo 

Each displacement inc.rem en t is assumed to be small even 

though the total. displacements are finite o 

A dynamic equilibrium formulation leads to three 

coupled, nonlinear, partial differential equationso The 

constitutive eqll;ations are used to obtain these equations 

in terms of three rectangular displacement components .. 

An IBM 7040 digital computer is used to solve numeri­

cally the governing .. di.f.ferential equations for the 

1 

...... _._,-....... 



transient and final displacementso 

1o2 Historical Note 

The dynamic deformations of structural members have 

long been of interest to the technical community. The 

primary related areas of application today include high­

energy-rate metal forming processes and studies of struc­

tures responding to sudden energy releases of high inten­

sity (as in bomb blasts). 

2 

In forming metal components using high-energy-rate 

processes, velocity overshadows mass as the principal para­

meter affecting the transfer of energy to the membrane to 

be shaped. This substitute becomes especially desirable 

when the size, shape or number of the formed parts cannot 

justify economically the expenditure for suitable metal 

pressing equipment. There is much variation in the compo­

nent shapes and sizes which are required. The recent 

accelerated growth of this industry is due principally to 

the complexity in shapes of aerospace structures. 

There is also the need to analyze the deformation of 

structures subjected to sudden en.ergy releases of high 

intensity. One such demand is that to provide public shel­

ters for protection against nuclear bomb attacks. Some of 

the other examples are not so apparent. One such item 

would be the explosion of aircraft compartment bulkheads 

due to depressurization in an adjacent comparijment. Such 

a case would arise if a foreign object breeched the 
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fuselage while the aircraft was at a high_ altitude .. 

Another possible application would be the response of sub­

marine hulls. to. l.arge unde.rwater explosions. Stil.l another 

is the structural reaction to impulsive forces acting on 

the pontoons of seaplanes during landing or takeoff as well 

as to those acting on the hulls of hydrofoil s;tiips. There 

are certainly many 0th.er areas of direct interest.; more 

than enough to substantiate the need for satisfactory 
' ' ' . 

analytical methods. to determine the structural re~ponse of 

membranes to repres.entative impulsive loads. 

Of·the.basic configurations of membranes, th~ circular 

membrane has attracted most analytical investigators. From 

independent analyses for static loading by Mos.tow and 

Gleyzal (13) in 1948 up·to a recent investigation of 
' .. 

dynamic. loading by Boyd (1) the deformation response of a 

.circular membz:~e ~as been very thoroughly considered and 

analytically described. IVI~stow 'obtained •·an. analytical 

solution for static loading using, the stationary energy 

principle. Gleyzal 's a:i:;t~ly,~is differed in that the condi­

tions of static equilibrium were used to obtain governing 

differential equations which were then solved numerically. 

Both investiga,tors employed the deformation theory of 

plastic.i.ty. Hudson ( 11) in 1951 and Frederick ( 7) in 1959 

f ormula;ihed their pro bl.ems using a mechanism analogous to a 

circular hinge moving inward from the perimeter. Hudson 

used the deformation theory of plasticity and the principle 
. ,-!~ 

of .the conservation of energy in formulating his ,governing 



differential equati.ons o Frederick included the "incre­

mental theory" of plasticity as well while using the 

impulse~momentum.and. work-energy principles. Wang (24) 

in 1955 adopted a limit analysis approach with which he 

considered only bending stresseso As in all dynamic anal­

yses before his, Wang applied a uniform initial starting 

velocityo Witmer, Balmer, Leech and Pian (27) published 

their'w~rk regarding the large dynamic deformation of 

plates and shells during 1963. Their analysis was most 

general; including such features as bending and membrane 

stresses, elastic-plastic deformation responses, and the 

incremental theory of plasticity. While the results are 

4 

certainly very accurate, the. extensive compu.ter time 

required for each. pr()hlem is a serious deficiency and is 

not, as admitted by the authors, suitable for parametric 

investigations,.. In 1'966, Boyd ( 1) pub).ished 1lis analysis 

which, even though less gene_ral than the preceding study, 

provided an effective and very efficient means of per­

forming parametr-ic investig;ations for circular membranes. 

Comparisons with the work by YJitmer et al and with experi­

mental results verified the simpl:i,fing assumptions used in 
I 

his study .. 

Corresponding technical investigations of the. dynamic 

deformation response of rectangul_ar membr~es are practi­

cally nonexistent. In fact, the only dynamic analysis 

found during the present investigation ts that given by 

Timoshenko (23) for a vibrating elastic membrane which is 



uniformly prestretched to the extent that in-plane vari­

ations of tensil.e stress are negligibleo Thus, only a 

constant tens.ion is conside.redo Furthermore, only trans­

verse motion is al.l.owedo The problem, thus, is l;i.nearo 

Timoshenko formed expressions for the change in the poten­

tial and kinetic energies in terms of the transverse dis­

placements. By representtng the displacements with a 

double sine series with time-dependent coefficients and 

applying a form of the Principle of Virtual Displacements, 

the individual modes of vib.rations were obtained. The 

Rayleigh-Ritz method also was used in conjunction with a 

polynomial series to yield another form of the. solution. 

Such a_ ~elution applies to a rigid, perfectly plastic 

membrane if no elastic unloading is allowedo Of course, 

the small displacement theory used is also a very restric­

tive assumption .. 

5 

All other analytical and numerical investigations of 

rectangular membranes are related to static load conditions 

onlyo In 1921, Henky (41) derived a comprehensive numeri­

cal finite. difference solution but applied it only to 

square membranes. Three years later Foppl (36) assumed 

trigonometric functions for displacements which satisfied 

boundary and. symmetry conditions .. The unknown constant 

coefficients were solved using a variational principle. 

In this manner Foppl obtained stresses and deflections for 

square membranes only, but suggested an extension to the 

rectangular caseo Neubert and Sommer (45) extended Foppl's 
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development to rectangular membranes in 1940 .. Approxi­

mately eight years later, Mostow (13) determined the 

lateral displacement fields which were compatible with a 

given transverse displacem.ent field and .the stable equili­

brium of the membrane and loading system. He assumed both 

parabolic and membrane formulations of the distributions 

of transverse displacements which required that the center 

displacement be k:nowno A truncated power series represen­

tation of the in""".'plane displacements was assumed which 

satisfied all boundary c.o.ndi tionso The Principle of 

Stationary Potential Energy was used to evaluate the un­

known coefficients in each series. During 1966, Pope (17) 

published a paper on the application of finite element 

analysis to th.e rectangular membrane problem using an 

elastic-plastic material.. His development, however, was 

restricted to small defo.rmations. Also, during 1966, Oden 

and Sato (16) developed a finite element formulation for 

the finite strain and. displacements of elastic membranes 

of general shape .. 

Several experim.ental investigations have been reported 

[e"g. Day (4), Neubert and Sommer (46), and Head and 

Sechler (40)]. Neubert and Sommer experimentally verified 

the solutions·-: of".'.:- Foppl and Henky for a square membrane .. 

Head and Sechler obtained data for square and rectangular 

membranes" The res.ults confl:rmed the Foppl ap.d Henky solu­

tions· for square membranes but disagre.ed with Foppl' s solu­

tion for higµ widt.h. to leng~h~·1:ratios -of;~rectangular manber~. 



CHAPTER II 

FORMULATION OF THE PROBLEM 

2o1 Introduction 

This chapter includes the mathematical statement of 

the problem and the derivation of the equations which 

govern the motion of the membraneo More specifically, the 

fundamental approach of considering the _dynamic equilibrium 

of a differential element of the membrane is employedo 

This leads to three governing partial differential equations 

in terms of stress resultantso The incorporation of the 

appropriate constitutive and kinematic equations result in 

the desired restatement of the equilibrium equations in 

terms of orthogonal displacements., 

2o2 Interpretation of the Problem 

This problem is viewed as one in which the total defor­

mation must be provided by accumulated increments with the 
' ; ' 

process continuing until the motion ceaseso 'For some 

problems of finite defqrmations, this segmentation of the 

solution process can be most advantageouso That is, the 

·,·nonlinearity due to the kinematic relations can be avoided 

by using small deformation'theoryo Such, fortunately, is 

true in the case of this development" A set of linear 

7 



kinematic expressions is fanned with which the strains 

occurring during each increment of defonnation are refer-

enced to the configuration of the membrane surface at the 

start of the current incremento In this manner, the 

recording of the strain history and thus the proportion~ 

ality parameter relating stress to strain increment are 

kept current and valido Figures 1 and 2 illustrE\,te the 

accumulation of the strains and displacements occurring 

8 

during each of these steps. The magnitudes of these values 

depend upon the chosen time intervals 

Figure 1. Typical Defonnation Patte-rn 
of Membrane 
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t = o 1 

I t = T 

I t = T +OT I 

Figure 2o Progressive Incremental Deformation 
of Membrane Element 
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These comments indicate that each intermediate step 

in the deformation sequence is analogous to the t_otal small 

deformation process of a translational shell of rectangular 

plat).formo In order to emphasize this connection in theory, 

the rectangular membrane is referred to as a flpseudo-shell" 

during intermediate states in the deformation procedure. 

In addition to the accumulation of the str_ains and dis:­

placements at the end of each step in the incremental pro­

cess, the terminal conditions are reinstated as the initial 

conditions for the following deformati~n increment. Thus, 

established translational shelL theory is an advantage of 

the .. incremental character of the problem and allows the 

nonlinearity of large deformation theory to be avoided. 

2o3 Governing Equations 

a) Equations of Motion:- Using an orthogonal. coordi­

nate system exhibited in Figure 1, the deformed p~eudo­

shell surface is d~_fined by function, Z , of. the variables 

X and Yo The intersection of this surface with planes 

perpendicular to the x and y· axes de;fines a representative 

differential element. The dynamic equilibrium of this 

element is expressed using the appropriate skewed stress 

resultants and external .and inertial forces shown in ,--;--:-~· . . 

. . 
.Figure 3 •. The resulting governing differentialequations 

of motion are. written using Pucher' s Meth9_d { 6) .. With this 

method, the equilibrium of the pseudo-shell element is 

stated in terms of the horizontal proj~ctions of skewed 



1 1 

Y, V 

Figure 3o State of Dynamic Equilibrium 
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membrane forces, which are assumed to act on the horizontal 

line segments of the element''s projection in the xy plane. 

The derivation of the governing equation for static 

equilibrium using the Pucher Method is given in Appendix A 

,for convenience o The equations are. as follows: 

where 

a - a -
+ PX 0 Bx Nx + ay Nyx = ( 1 a) 

a - a -
+ Py 0 oy Ny + -N = ax xy (1b) 

- a2z - a 2z - a 2z -P Nx'.a 2 + 2Nxy axay + N - = Y ay2 z X 

- az az 
+ Px ax+ p -Y ay (1c) 

= horizontal projections of skewed 
stress resultants Nxy' Nx and NY 
respectively acting upon the 
sides of the projected ·element, dx 
and dy .. 

= the indicated derivatives of the 
function Z de.fining 'the reference 
undeformed configura~:i,on of the 
membrane shello 

= equivalent external loads per unit 
area of the proj.ected element. · 

These equations can easily be converted for use in 
' this problem by accounting for the inertial forces shown 

in Figure 3 and certain ,.c.hanges in notationo In this 

manner, the equations of m()tion gove;rri.ing the state of 
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dynamic equilibrium become 

a - a -
+ PX -I 0 ax Nx + ay Nyx = X ( 2a) 

a - a -
+ Py - I 0 ay Ny + ax Nxy = y (2b) 

and 

Nx 
a2R 

+ 2Nxy 
a2R 

+ Ny 
a2R -P + Iz 

ax2 axay 2= 
ay z 

+ (PX - )aR - I - + x ax 
(- - )aR p - I -

Y Y ay (2c) 

where 

Ix I Iz a.A ( 1 . 2 . 2 /3 )t ..1L _ - sin a sin 
Ix = Iy = I z = dxdy = ....._ __ co'""'s=-a-c_o..;;;;s.;;;,;;.,/3~;.....£,,(-3) 

This relation is deduced from equation A10 in Appendix Ao 

Also, in the above equations, 

R = replacement for notation Z used· 
above to define reference "unde­
formed" configuration of pseudo­
shell surfaceo 

= inertial forces per unit area 
acting on differential element in 
x, y and z directions respectivelyo 



dA 

a2w ,/z -p--p-
- at 2 - at2 

= inertial forces equivalents of Ix' 
Iy and Iz consid~red to be acting 
on the projected elemente 

= surface area of differential shell 
el_ement. 

In these equations, U, V, and Ware the incremental 

deformations in the x, y, and z directions respectivelyo 

The function Z defines the configuration of the pseudo-

shell in its deformed positiono 

Solutions to equations 2a, 2b, and 2c are now signi-

ficantly simplified by neglecting the x and y components 

of inertia~ As long as the slopes of the membrane sur-

face are not so great that these terms approach that of 

the transverse inertial term in magnitude, this is a fair 

14 

assumptiono Previous investigators have applied this 

assumption successfully to easel? of circular membranes (1) 

(7)o On the basis of the same argument, the x and y com­

ponents of the external loads are also omitted. The equa-

tions, in this manner, reduce to the forms 

(4a) 

(4b) 

( 4c) 
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b) Skewed Strain-Orthogonal Displacement Relations -

Flilgge and Geyling. · (5) used a skewed curvilinear coordi::-· 

nate system related to an orthogonal rectangular base 

system in developing a general deformation theory for mem­

brane shells other·than surfaces of revolution and cylin­

ders., This development is included in Appendix B for 

referenceo 

In terms of the variables U, V, W, a, {3, and w, as 

indicated in Figure 4, the following expressions for 

skewed strain components were derived., 

( 5a) 

2 ey = VY cos {3 + W y sin {3 cos {3 ( 5b) 

1 
sin w 

where 

·U, Y, W 

a, {3 

(Uy cos a cos {3 + V'x cos a cos {3 

+ W sin a cos 3 {3 + W sin {3 cos 3 a y X 

~ 

-V y 

2 sin {3 sin a cos '~ 

cos2 {3 sin {3 sin a J ( 5c) 

= total normal strains of the mem­
brane in the x and y directions 
( considered to lie in tangent plane .· 
and, thus, are skewed) 

= displacements in the x, y, and z 
directions respectively. 

= angles between the horizontal and 
the curved line segments bounding 
the differential element. 
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---dx-----, 

Figure 4. Geometry of Pseudo-Shell Element 

w = angle of skew between curved line 
segments in the plane tangent to 
the differential element. 

Fliigge and Geyling formulated these terms as the total 

~eformation response of a membrane shell. In the present 

problem, however, they correspond only to an increment of 

deformation., Changing the notation in equation (5) to 

reflect this adjustment yields for the pseudo-shell 

membrane, 

oe - u 2 w sin a, cos Cl! cos Cl! + X - -x X 
( 6a) 

oey V 2 
= coa Cl! y + w y sin Cl! cos Cl! ( 6b) 



1 
oyxy = sin w 

where 

u, v, w 

17 

[ ~ cos a cos f3 + V x cos a cos J3 

+ WY 

ux 

sin a cos3 {3 + Wx sin {3 cos3 a 

cos2 a sin {3 sin a -v y cos 2 {3 .sin a J 

= normal skewed strain increments 
associated with the .current incre­

. ment of deformat:fons .. 

= x, y, and z components, respec­
tively:, of the current_increment 
of q.isplacement., 

c) OrthogGnal Strain-Orthogonal Displacement Rela-
· .. 

tions - In the preceding section, the kinematic relations 

in terms of skewed strains were ~evelopedo In order to use 

the consti tutiyE! equations, how€3ver, _equivalent rela-tions 

in terms of orthogonal strains must be formulated. 

Flugge and Geyling, .as shovvn ~n Appendix B, developed 

the following relations between the orthogonal and skewed 

strains 

1 
Y = Yxy sin w + xy __ sin w 

e- cos w -
X 

e- cos w y 

Converting to the notation of this thesis, these relations 

become 

oe = oe-x X 
(7) 
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oy ---1- = oy- sin w + oe:: cos w - oe:: cos w xy sin w xy x y 
( 8) 

The remaining required relation is derived using geo-

metry from Figure 5 for the orthogonal strain increment, 

6 e-o y 

and 

'J!hus, 

or 

From this figure, 

AB sin w oey 
b 

= sin w 

tan w 

EB 

EB 

AB oe_ b 
= . 2 y sin w 

EC - 1--

EB 

= EC cot w 

b 
2 

= oe- cot w 
X 

= o~Y 2 
sin w 

b 2 oe- b cot w 
X· 

oe y 
1 

= oe- ---y . 2 sin w 

2 oe:x cot w ( 9) 
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b 

8 b . 
Yxy SIN w 

Figure 5o Skewed-Orthogonal Strain Relations 



From equation ( 8), 

1 
. 2 sin w 

[ oY xy - o ex .cot w + oey cot w ] 

Substituting equations (7) and (9) into (10) gives 

6Yxy = 1 
. 2 sin w 

[oYxy - ?ex cotw + oey cot w] 

Thus, the orthogonal strain increments in terms of 

skewed strain increments are 

oe- = x· oe· . 
X 

oe- 1 [oe oex cos 2 w] = . 2 -y sin w 
y 

oy- 1 [oY - oex cot w + oe cot w] = 2 xy sin w xy y 

;20 

( 10) 

( 11) . 

the 

(12a) 

(12b) 

(12c) 

With equations (12) and (6), the kinematic relations with 

orthogonal strains are written as follows: 

6 8x = ~· cos2 a + ~ sin a cos a ( 13) 

·o e- = ---1-y . 2 sin w 
[V-y .c.os2 f3 + WY sin f3 cos f3 

- ( 1Ix cos2 a + wx sin a cos a) cos2 w ] ( 14) 

1 6Y- = ---,;,.-
xy sin3w 

[-v ( cos2 /3 cos w - cos2 {3 sin /3 y . sin a) 

+ u.y cos a cos [3 + V X cos a cos [3 
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I1x ( cos2 a sin /3 sin a + 
2 cos a cos w) 

+ w y (sin a cos 3 /3 + sin /3 cos /3 cos w) 

+ wx ( sin /3 - COS3 a - sin a cos a COS w)] ( 15) 

d) Constitutive Equation - The constitutive equations 

for a rigid, work-hardening material involve consideration 

of the following: (a) an initial yield condition which 

the stresses must satisfy for initial yielding to begin; 

(b) a flow rule to associate the plastic strain increment 

with the current stress and (c) a hardening rule which 

serves to adjust the initial yield condition for continued 

plastic flow .. The development in Appendix D of the consti­

tu.tiye equations _combines the inix.ial yi~ld: .. cionditioaa of ';.' 

von lVIises-Henky and the Levy-:lVIises flow rule. These are 

dex = A11.(S 
X 

- !N-) y 

dey = AA(N-·y - ts) 
X 

( 16) 

dexy = iA11. T1 

or in keeping with the finite incremental character of this 

problem, equations (16) are rewritten as 

6ESc = AA ( Sx - !Ny) 

oe- = A11.(N- - ts ) y y X 

oe- - lAAT xy - 2 1 

(17) 



where 

Sx'. N­. Y 

I:!,,). 
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= normal stress resultants acting in 
the orthogonal x and y directions. 

= shear stress associated with Sx 
and N-y 

= plasticity para.meter 

6£ 
= at 

These equations are supplemented by the following 

work-hardeni¥g rule to describe the condition of continued 

yielding 

a- = H (E6£ ) ( 18) 

where His the universal stress-strain relationship usually 

taken to be the uniaxial stress-strain relationship for the 

material used .. Such a hardening rule is an extension of 

the Mises-Henky initial yield criterion and was proposed 

by Ros and Eichinger (9)o In this thesis, Ludwik's ~ower 

Law is chosen to represent the function and may be written 

0- = a + b (~ 6&) C ( 19) 

where a, b, and care material para.meters. 

Such a hardening rule describes the yield surface as 

uniformly increasing in size and retaining its form and 

center positiono When unloading, the material is assumed 

to continue to act -as a rigid-work-hardening solid. ?hus, 

the constitutive equations given above are valid regardless 

of whether the material is loading, unloading or reloading. 



From Appendix C, the following skew-to-orthogonal 

stress resul.tants are obtained 

sx = Nx csc w + Ny cot w cos w + 2Txy cotw 

N:.. = Ny sin.w y 

T1 = N N cos w xy + y 
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(20) 

Substituting equations (20) into equations (17) the 

following constitutive equations in terms of skewed stress 

resultants are formed. 

o ex = ~A[Nx si~ w + 2Nxy °.ot w + Ny sin w (_cot2 w - i)] 

o ey = ~A [ -Nx _2 _si.n w - Nxy cot w + Ny sin w ( 1 - i cot2 w ) J 

o.exy = ~~A[Nxy + NY cos w] (21) 

The existence of strain rate effects is still a con-

troversial issueo The most common viewpoint is given by a 

quotation from a contribution by Henriksen et al (42); 

"Strain rate effects are a r·eali ty and are evidenced by 

variations in the mechanical properties". Among the 

methods for analytically accounting for such effects, the 

one that appears most tractable is that employed by Witmer 

et al (26)o Basically, the yield stress of the material 

is assumed to increase with the strain rate while the 

strain hardening portion of the stress-strain curve retains 

the same shape of the static curve as indicated in Figure6o 

An account, thereby, can be made by considering the material 



u 
I­
<{ 
1-
Cf) 

Cl 
:z 
<{ 

u 
~ 
<{ 
:z 
>-
0 
I 

Cf) 
Cf) 
w 
a:: 
1-
Cf) 

0 

STRAIN 
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STRESS-STRAIN RELATIONSHIP 
FOR STATIC LOADS 

INCREASED STRESS LEVEL 
DUE TO INCREASED RATE OF 
STRAIN 

@-@-@ INITIAL POSITIVE LOADING 

@-© INITIAL UNLOADING 

@--@ INITIAL NEGATIVE LOADING 

@-© SECOND UNLOAD I NG, 

@-® INITIAL POSITIVE RELOADING 

Figure 60 Typical Dynamic and Static Stress­
Strain Relation 



25 

constants in equation (19) as functions of strain rate. 

The latter could be calculated at the end o.f each de:fonna-

tion increment using.projected strain increment values .. 

Other than this suggested procedure, no further considera­

tion will be given to strain rate effects in the following 

formulation of the problem. The brevity of the formulation 

is considered more important than the benefit of illustrat-

ing the inclusion of strain rate effects.· 

e) Governing Differential Equations of Motion - In 

matrix form, equations (21) can be written as follows .. 

1 sin w (cot2 w - t) 2 cot w Nx 6ei_/AA. sin w 

1 sin w ( 1 "'." t cot 2 w) - cot w Ny oe-/b..A. 2 sin w = . y 

0 cos w 1 Nxy 6exy//3A).. 

By inversion, the following expressions.of the skewed 

stress resultants as functions of orthogonal strain incre-

ments are obtained; 

Nx = 4 ~~oX:s w [ ( tan w + t cot w ) oex + ( t tan w + cot w) oey 

- oe-J xy 

Ny 
. 4 

[2 
1 oe- 1 oe- J = ·3A).. sin w + sin w X y 

Nxy = 3ix [-i cot oe- cotw oe- . 1 
oexy] w - + ~ X y 

From Appendix A, the ;h.or;i.zontal projection$ of the 

skewed stress resultants in terms of the latter are 

(22) 



- cos a 
Nx = Nx cos (3 

N = N cos /3 
y y cos a 
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( 23) 

By substitµting equations (22) in expressions (23) and 

substituting the results into the differential equation of 

motion, equations (4), the following governing differential 

equations of this problem are found; 

..Q..{4 cos w cos a [< tan w + 1 cot w) oe­
ax 3.6.A cos {3 1! x 

+ ( i tan w' + cot w} oe:-:. _.:. ae--J } 
• Y-- xy 

+ ~{3~AI~ cot w o-~x·"'"" cot w aey + iaexyJ} = o 

a i 4, . cos f3 . ( . 1 6 .1 6 )} 
ay"\).6.A. cos a 2 s~nw ex + sinw ey 

- /x{3lx< i cot-w oex + cot w oey - i ae-)} = o,. xy . . 

and 

a 2R cos a cos w [ ) 
2 -cos~ · (tanw + i cotw aex 
ax 

. .a:!L 
+ (t tanw.+ cotw)oey - aexy] - axay [cotwoei 

a2R cos (3 1 . ( 09:x: + 2 cotw oe- - 6e-] + - [---y · xy ay2 cos a · sin w 2 , 

2 2 2 ~ 
6 _) J = 3.6.A (p a Z. _ p ) [{1 _, sin a. sin (3) 2 J • 

+ 9 y 4 .. at2 z cos · a cos /:l · 

(24) 
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As shown, equations (24) are in terms of orthogonal 

strain incrementso This will permit the introduction of 

displacement boundary conditions through the intermediate 

kinematic relations, equations ( 13), (..14), and ( 15) e 



CHAPTER III 

NUMERICAL SOLUTION OF PROBLEM 

3~ 1. Introduction 

An analytical solution of the problem formulated in 

the preceding section appears to be highly improbableo 

This is due, of course, to the nonlinearity of the govern­

ing differential equations introduced through the equations 

relating stress to strain increment .. Thus, a numerical 

approach to the solution is considered necessaryo The 

selected method requires, first, the conversion of the 

governing differential equations to their finite difference 

equivalents and, second, the utilization of some numerical 

integratio.n method, which is i;ncremental in progressiono 

The numerical procedure fo.llowed in this study is described 

in the following sections .. 

3o2 Finite Difference. Formulation 

The orthogona+ strain-orthogonal displacement rela­

tions ( 13), ·( 1.4) ~ ( 15) can be written as follows: 

( 25) 

28 
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( 25) 

where the coefficients, tau ij , are given in Appendix Eo 

Substituting equations (25) into the gov.erning differ­

ential equations (24) and introducing, in addition, the D 

coefficient functioris. as defined in Appendix F, the former 

equations are converted to the following functions of dis-

placements., 

aax(D1Ux + D2Wx + D3Vy + ~4WY + D5Vx) ( 26) 

- ]Y(n6ux + D7Wx + D8~y + DgWy + D10Uy + D1ovx) = 0 

and 

D15ilx + D16Wx + D17Vy + D18Wy + D19Uy + D20Vx 

· a2z 
= D21 (p ~ - p z) 

at 

(27) 

( 28) 

In the above form, the govertj.ing differential equa­

tions are more comp.atible with both the use of displace­

ment boundary e:onditions and the anticipated finite dif-
... -

ference formulation procedureo 

Figure 7 defines the notation used in this developmento 



I=I 1=2. 1=3 

(a) GENERAL FINITE DIFFERENCE 
GRID SYSTEM 

30 

Ja2 ~~: J J=I~! 

J•3-~~ J 
Mx,My = NUMBE~ 9f 
FINITE GRID INCRE· 
MENTS IN X ANo''v 

DIRECTIONS, RESPEC· 
J = My TIVELY. ' 

J = My+ I 

;=My+2L-- ----0---

y 

DASHED GRID LINES REPRESENT PORTION OF 
GRID CONTAINING FICTITIOUS PERIMETER NODE 
POINTS, 

(b) REPRESENTATIVE FINITE DIFFERENCE GRID 
SUB SYSTEM USING FIRST QUADRANT OF 
MEMBRANE ONLY. 

Figure 7~ Finite Difference Repr,esentation 
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As shown the lines of the rectangular grid run parallel to 

the x and y axeso The intersection of these grid lines are 

lmown as node pointso Their locations are specified using 

the indices i and j. 

In order to transform equations (26) into finite dif-

ferences, conventional use is made of general second degree 

parabolas or Taylor expansions. Choosing to use the cen-

tral difference format as suggested by the reference 

system and position of the origin shown in Figure 7, the 

general finite difference equation becomes 

DU1 .. u. 1 . 1 + DU2 .. u. . 1 + DU3- .u. 1 . 1 1,J l- ,J- 1,J 1,J- 1,J 1+ ,J-

+ DU 4 . . U . 1 . + DU 5 . . U. . + DU 6 . . U . 1 . 1,J 1- ,J 1,J 1,J 1,J l+ ,J 

+ DU7. . U. 1 . 1 + DUS. . U. . 1 + DU9. . U. 1 . 1 1,J 1- ,J+ 1,J 1,J+ 1,J l+ ,J+ 

+ DV1 .. v. 1 . 1 + DV2 .. v .. 1 + nv3 .. v. 1 . 1 l,J 1- ,J- l,J l,J- l,J l+ ,J-

+ DV4 .. V. 1 . + DV5 .. v .. + DV6 .. V. 1 . 1,J 1- ,J 1,J 1,J l,J l+ ,J ( 29) 

+ DV7. .V. 1 . 1 + DV8. .V. 1 . ~ + DV9. .V. 1· . 1 1,J 1- ,J+ l,J 1- ,J+I 1,J l+ ,J+ 

+ DW 1 . . W. 1 . 1 + DW2 . . W. . ~ + DW 3 . . W. 1 . 1 1,J l- ,J-. 1,J l,J-1 1,J l+ ,J-

+ DW 4. . W. 1 . + DW5 . . W. . + DW6. . W. 1 . 1,J 1- ,·J 1,J 1,J . · 1,J l+ ,J 

+ DW7 . . W. 1 . 1 + DW8 . . W. . 1 + DW9 . . W. 1 . 1 = 0 1,J l~ ,J+ 1,J 1,J+ 1,J l+ ,J+ 

The variable coefficients introduced above are 

defined in Appendix G. This equation and others in its 

same general form will be referred to as pivotal equations. 



In a similar manner, the desired finite difference 

form of equati.on ( 27) can be obtained. It can be shown 

to be identical ~o equations ( 29) except that th.e D coef-

ficients are defined_differently as indicated ~n Appendix G. 

For the acceleration·equation, 

v. ' 1 - v .. 1 
+ D17, .[ i,J+ i,J-] 

1,J 2hy 

u .. 1 - u. ' 1 
+ D19 .. [ i,J+ .· i,J- ] 

1,J 2~ 

w .. 1 - w. ' 1 
+ D18 .. ( i,J+ i,J- ] 

_1,J 2hy . 

+ n20 .. [vi+1,j· - vi-1,jJ 
1,J 2~ 

c)2z = D21 . . [p-2 - Pz .. ] ( 30) 
i, J at i, J 

It should. be noted in equation (30) that the acceleration 

term is not put into .. finite difference form in the tim·e 

domain. The reason for this feature is explairi.ed in the 

next sectiono A side benefit, however, is that it facili­

tates the use of two general subscripts instead of the nor­

:mal three. 

3.3 Boundary Conditions 

Because the g9vexning differential equations are 

treated as first order li1:1earpartial differential equa­

tions in .. regards to spacial coordinates, the pertinent 

nodal points are those on the inter~_or, on the boundary and 

those ficticious exterior points immediately adjacent to 
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the boundary. Along the boundary, 

LX L 
U( :!: U(x, + ...Ji. 0 2,Y) :::; - 2) :::; 

(+ LX ) V - 2'y = V(x, 
L 

± i) 
2 

:::; 0 ( 31) 

+ LX L 
W(- '.'°2,Y) :::; W(x, ± ....Z.) :::; 0 . 2 

Also, boundary values must be prescribed for the function 

R which defines the. intermediate reference configuration 

of the membrane. The Z function is defined.as the sum of 

Rand W expressions._ These, however, are not required to 

be zero. The only restrictions, as previously mentioned, 

are that (1) the initial membrane configuration projects 

onto a rectangular plan.form in the xy.plane,rand (2) that 

there be a one-to-one functional correspondence between 

the membran.e surface and its plan.form. In this work, 

however, the initial. conf.iguration is such that 

L 
= R( X, ± -i) = 0 ( 32) 

Due to the symmetry of the problem with respect to each of 

its two._.axes, the first quadrant can be taken as repre­

sentative of the.deformation of the entire membrane .. 

Thus, compensating for such symmetry, the following condi­

tions are derived using a finite difference ..slopa,relation 

along the y axis o 
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U(2, J) = 0 

U( 1 ,. J) ·= -U( 3, J) 

V( 1, J) = V( 3, J) ( 33) 

W( 1, J) = W(3, j) 

R( 1, J) = R(3, J) 

and along the x axis 

V(I, 2) = 0 

U(I, 1) = U(I, 3). 

V(I, 1) = -V(I, 3) ( 34) 

W(I, 1) = W(I, 3) 

R(I, 1) = R(I, 3) 

For the ficticious nodal poin~s located adjacent to the 

membrane perimeter, the lack of bending rigidity of a com-

pletely pla~3tic membrane is considered by wr.i.,.ting 

U(lVIX + 1 , J) = ~(Mx + 3, J) 

V(lVIX + 1 , J) = -V(Mx + 3, J) 

W(Mx + 1 , J) = -W(~ + 3, J) 

R("Sc + 1 ' J) = -R(lVI + .x 3, J) ( 35) 

and 
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U(I, M y + 1) = -U( I, M + 3) y 

V(I, My + 1) = V(I, My + 3) 

W( I, My+ 1) = -W( I, My + 3) 

R(I, My + 1) = -R( I ,M + 3) y ( 36) 

Using equations ( 35) and ( 36), the ,exte'rior fictitious 

displacement values at external nodal points are replaced 

by their equivalent expressions in terms of the desired 

interior values. 

3e4 Initial Conditions 

At the beginning of the membrane motion, either a 

velocity or pressure field is prescribed. If initial vel-

ocities are applied, no pressure is assumed to act on the 

membrane at any timeo On the other hand, if a transient 

pressure distribution is prescribed, the initial velocity 

is taken as being zero. The determination of both of 

these sets of initial conditions is given in Appendix H. 

Thus, the implied initial conditions are 

Case I 

R(x, y, 0) = 0 

Initial Impulse 

az ( ) at x, Y, o = g(x, y) 
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Case II 

R(x, y, 0) = 0 

Applied Pressure 

az ( ) at x, y, o = o 

Upon the termination of each increment of deformation, the 

current velocities, accelerations and vertical displace-

ments are calculatedo These become the initial conditions 

for the following increment of deformationo These values 

will be referred to as the "subsequent initial" conditionso 

3.,5 Numerical Method of Solution 

In essence, the solution of this problem is repre-

sented by the accumulated effects of many individual incre­

ments of deformations. For the purpose of clarity, the 

solution for each increment of deformation will be referred 

to as a "sub-solution"o In the following discussion, a 

method will be deve;loped, first, for obtaining a general 

sub-solutiono This will be followed by the procedure with 

which each of these will be accumulated to adequately 

represent the total solutiono A consideration of the defi­

nitions of the D coefficien~s, as given in Appendix F and 

introduced in the preceding section, reveals that they 

also serve to couple the three equations, the coefficients 

being functions of strainso Thus, in order to solve this 

system of simultaneous partial differential equations, 

complete U, V and W displacement fields must be assumed 



initial;I.yo As will be shown later, the initial set of W 

displacements will be predicted using an established 

structural dynam.i.c procedure. The initial U and V dis-.. ,; 
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placement fields will be approximated using Mostow's deri­

vations contained in reference (13). Assuming the numeri­

cal procedure to be convergent, the solution of the equa­

tions will provide better approximations of th:ese depen­

dent variaples. Using the improved approximations, a 

repeat of the solution procedure would yield an even better 

set of approximations to the displacement fields. Such 

an iterative process would continue until the error induced 

by neglecting the differences in the present and the pre­

viously calculated displacement fields would be of a toler­

able magnitude. Here and in the following discussion, a 

"tolerable magnitude" of error is defined as ·an induced 

error which. is of the same relative magnitude as the 

err:ors caused by the general assumptions of Chapters I and 

II. Such. a convergen.ce marks the end of the particular 

increment of deformation. At this point, the determined:'. 

strain and displacement values are accumulated and a n~w 

increment commenced. 

_The question now enc9untered is that of which numeri­

cal method or combination of methods to use in constructing 

such an iterative procedure_ •. As shown; equation ( 30) is 

a direct function of ti~e. The other two are only in-
. .. ~. . .. 

directly related to the time variable; this dependency 

being due to the coupling effect of the dependent variabie, 
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Wo Noting this di_stin.ction, equation (29) and the similar 

expression formed from equation (27) are to be approached 

as boundary value problems whereas the solutions of equa­

tiqn (_30) is identified as a propagation pro1:>lem of a . 

continuous systemo 

With this acknowle.cigement, an iterative procedure sug­

gested by Boyd (1) is selected. The general procedure is 

to use the U and V displacement fields calculate.d in a 

particular increment as first estimates.in the following 

stage of deformation. The new displacement field is 

obtained using a sui.table predictor formula. Substituting 

these values in_~ finite difference form of,.equation (26), 

new values for the U displacements are·calculated~ 

Using this calculated set and carrying over the same V 

and· W terms, equation (27) is used to calculate an improved 

set of V displacements~ These calculated values are then 
'' 

used in equat:iqn (28) to calculate the acceleration field 

acting at the end of the present cycle. Next the newly 

calcula.ted acceleration ___ values are used in a corrector for-

mula to ,derive an improve.d W displacement field. .This 

entire sequen.ce is repeated until the calo.ulated differen­

ces betw$en the new and old dj,.splacement field converge to 

an acceptable minimum and then a new· increment of deforma-

tion is started. Thus, one sub-solution is completed and 

another is started.·. The intermediate step of revising 

initial conditions and accumulating strains and displace-

ments is also necessary. 
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The preceding description of the sub-solution proce­

dure is general. The necessary additional details are pro­

vided through the following discussion of the solution of 

each individual equation. The entire solution procedure 

is implied by the flow diagram given in Appendix I. In 

this development, equation (26) will be referred to as the 

"U displacement equation" implying the variable for which 

it is used to solve. Likewise, eiuatiolU3 (27) and (28) are 

designated the "V displacement" and .the "acceleration 

equations", respectively. 

a) Solution of the U and V Displacement Equation -

These equations are of the boundary value type. Applying 

the pivotal equation for the U displacement ( equation ( 29)) 

to each of the n, ... interi-or nodal po.ints con.tamed in the 

first quadrant and utilizing the boundary conditions given 

in Section 3. 3,, a set of n homogeneous, linear algebraic 

equation is derived in terms of the 3n unknown displace­

ments U, V, and W. In symbolic matrix form, this operation 

yields 

where 

[CJ, 

{u} 

{Y} 

{w} 

(cJ{u} + [DJ{v} + [EJ{w} = o 

[DJ, [EJ = first order finite differ~nce 
matrices (square) 

= U displacement matrix (vector) 

= V displacement matrix (vector) 

= W displacement matrix (vector) 

( 39) 
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The general format of the matrices products [CJ {U} 11 [DJ {V}, 

and [EJ{W} is identical. 

Assuming known V and W displacement fields 

[CJ {u} = -( [DJ {V} + [EJ {w}) (40) 

[C] {u} = {UDISP} ( 4.1) 

{u} = [CJ-1{UDISP} ( 42) 

The operation implied by equation (42) results in an im­

proved set of values for the U displacements. 

The finite difference equation established for the V 

displacements is used in the same manner to obtain 

[FJ{U} + [GJ{V} + [H]{W} = 0 

[G J {v} = -[HJ {W} - [F] {u} 

[G]{V} = {VDISP} 

and 

{v} = [G]-1 {VDISP} 

Equation (43) gives the V displa~ement field in terms of 

the U and W displacementso It is-appar~nt that if the 

correct value of the W displacement is assumed, if the pro­

cedure is convergent, and if. the most recently c·orrected 

values of the U and V displacement values are used, the 

continued cyclic us-e of.equations {42) and (43) would re-
. . 

sul t .in· progressively..::.iimp.r-0-ving P' and .V displ.a~ement values. 
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b) Solution of the Acceleration Eguatiop. - Pertinent 

methods of dynamic .analysis can be divided into three 

major categori~s.; open method, closed method, or a combina-

tion of the preaeding two methodso An open method is one 
.. 

with which the displacements for_the projected time incre-

ment are functions only of the displacement, velocity, and 

acceleration calculated for the past time increm.ent., As 

such, it is sometimes referred to as a forward methodo 

The closed method formulates the projected displacement as 
-

functions of the-velocities and accelerations of the pro-

jected time incremento Thus, a varying number of itera­

tions are required to converge with:in a reasonable toler­

ance to the true valueso The closed method is the more 

accurate of these two methodsa 

The joint use of open and closed methods in. solving 

problems of dynamic propagation is co~ventional., Boyd 

applied such a combination in his analysis of the circular 

membrane problemo Basically, an open method serves to 

predict a displacement field arid then a closed method is 

used to correct such a prediction., Unless the formulation 

is numerically unstable, repetition results in convergence" 

A.simple Euler finite.. difference approximation to the 

acceleration term, 

( 44) 
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yields the following predictor equation for the accumulated 

membrane configuration in the projected time period. 

( z • •) t At J. , J +L..l ( 45) 

2 
•• a z. . 

where z .. denotes J. z ,1 The desired predicted W 
J. 'J at2 • 

displacement values are obtained as follows 

( w • •) t A+ J. , J +L...111 
( 46) 

Therefore, by using equations (45) and (46), the W dis-

placement field for a new increment of deformation can be 

predicted entirely on the basis of known past values of 

displacement, velocity and acce.le!'ationo 

Consider now the acceleration equation written in an 

abbreviated form as 

6• 

z .. = f(U. 1 .; 0 i+1,j; u. . 1; u. . 1; 
J. 'J J.- 'J J. 'J- J., J + 

V. 1 . ; 1- ,J vi+1,j; vi,j-1; vi,j+1; 

w. 1 . ; 
J.- 'J wi+1,j; w. . 1; 1, J- w. . 1) 1, J+ (47) 

~ssuming that the U and V displacement fields are either 

known or have been predicted, equation (47) can be 

treated as a function of displacements onlyo Thus, 

•• 
z .. = f(w. 1 .; w. 1 .; w1. ,j-1 ; w1. ,J·+1) (48) 1,J 1- ,J 1+_,J 

By using predicted values of (Wi,j)t+At in equation (48), 
•• 

a set of values can be calculated for (zi,j)t+At" At this 
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point, a closed method sometimes designated as Stormer's 

Method, is introduced to obtain "corrected" values of the 

displacement fieldo This corrector formula is given by 

Crandall (29) as 

(Z .. )t At = 2(Z .. )t - (Z .. )t At 1,J +~ 1,J 1,J -~ 

from which the improved values are derived using the fol­

lowing equation 

( w . j ) t I At = ( z . . ) t At - ( z . . ) t i, ~ i,J + i,J 

As implied in the beginning of this section, these 

values and the calculated (Vi, j) t+At displacement fie~d 

( 50) 

are then subst.i tuted. into the U displacement equation and 

a more improved set of (Ui,j)t+At displacements calculatedo 

Then, of course, thi.s rev,ised set of U displacements and 

the same W displacements are used in the V displacements 

equation to obtain corrected values of. (Vi, j) t+At displace­

ments,, At this point, equation (48) can be used to cal­

culate a better value for the acceleration (zi,j)t+Ato 

Following this, from equations (49) and (50) a:t"._e obtained 

still better approximations to the (Wi,j)t+At displacement 

fieldo This procedure is repeated until the corrected 

acceleration yields an insignificant change in the 

(Wi,j)t+At displacement, field.o The computer program block 
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diagram in Appendix I illustrates more clearly this general 

iterative procedureo 

306 Selection of Space !;U'l.d Time Intervals 

The accuracy and execution time of the preceding solu­

tion procedure will be affected to a great extent by the 

selection of the space and time intervalso In the interest 

of computer programming efficiency, the selection of the 

largest intervals possible is desirableo The analytical 

determination of such optimum values for this problem 

appears to be highly improbable if not impossible., A 

numerical determination by trial is suggested in Figure 80 

As indicated in Figure 8a the optimum time interval 

was found by repeating the solution process with a steadily. 

decreasing time interval until t.he resulting deformation 

field varied to within a reasonable tolerance of the field 

corresponding to the preceding time intervalo Figure 8b 

indicates what variation could be expected with changes in 

the space intervals .. For the two trials plotted, no 

se~sitivity to moderate change in the latter is evident., 

Of course, no optimum space interval is concludedo In 

this case,, however, the sug.gested insensi ti vi ty made fur­

ther space interval investigation impracticableo The space 

and time intervals established by trial in this manner 

vary with the loading conditions and, of course, the physi­

cal properties of the-membra.neo A change in the initial 

velocity field would result in different stability data .. 
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The results in Figure 8 are still useful, however, as 

they often indicate possible corrective measures in other 

caseso 

The instability which occurred during this investiga­

tion occurred primarily at the center nodal pointo The 

other points appeared to converge in a relatively stable 

mannerQ Such behavior is indicated in Figure 9ao A com­

parison of this data with that given in Figure 8a indicates 

that a reduction in the size of the time interval might 

stabilize the response of the center point Ao Another 

indication of instability is given by the results illus­

trated in Figure 9b.o A reduction in the size of the time 

interval would probably also correct this response., If 

the reduction was made, a steadily reducing oscillatory 

motion about the final equilibrium position would prob­

ably resulto 

W't1ile desirable, such a refinement in stability can­

not justify the additional computer time for most problems 

of applicationo The results without the improvement are 

normally very satisfactoryo By interpolating using the 

relatively well behaved neighboring points, th\3 final dis­

placement of the fluctuating center point can be defined 

very wello In the cases of cosine distribution of initial 

velocity, no.significant numerical instability was exper­

iencedo 
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3o 7 Displacement Fu.notion Approximation 

At the end of an increment of deformation, the points 

on the membrane surface for which the displacement values 

have been calculated are no longer beneath their initial 

nodal pointo The continued use of the initial rectangular 

finite difference grid, then, requires some adjustment if 

the continuity of deformation is to be preserved exactlyo 

An elaborate interpolation scheme to re-establish the 

values at the grid intersections could be employedo How­

ever, this degree of accuracy is inconsistent with other 

assumptions of this developmento Certainly, the increased 

computing time would be undesirableo Instead, the incre­

ments will be accumulated at each intersection ass~uning 

that the displacement values at the beginning of an incre­

ment of deformation are equal to thos.e located at the same 

nodal point at the end of the previous deformation incre­

mento 



4., 1 General 

CHAPTER IV 

NUMERICAL RESULTS 

The computer program block diagram is shown in 

Appendix Io The associated general computer program uses 

data cards to introduce the particular membrane's physical 

properties, the initial velocity field, the initial mem­

brane configuration, and the transient pressures. The 

outpu,t gives the accumulated strains and displacementso 

A brief parametric investigation is used in the 

chapter to illustrate the preceding theoretical develop-

mentso The major areas include ( a) the variation of the 

initial velocity configuration, ( b) the variation of the 

transient pressure profile, (c) the variation of the 

aspect ratio and (d) the variation of initial impulses 

and stress-strain relationshipso In all cases, a rec­

tangular, initially plane membrane with fixed edges is 

used with the general finite diff'erence grid s;y-stem shown 

in Figure 100 

4o2 Variation of Initial Velocity Configuration 

The exact initial velocity distribution in most 

practical cases would be difficult if not impossible to 

49 
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describe mathematicallyo Useful approximations, however, 

are the cosine and uniform configurations. These are dis­

cussed in Appendix H. Also included is the least practi­

cal but interesting pyramid shape. To determine the 

effects of varying the initial velocity fields, these 

three configurations are used to deliver an impulse of 

25.92 lb-inches to a 24" square membrane. This equivalence 

of the velocity fields is described in Appendix Ho The 

velocity value V0 shown in Figure 11 is 2,000 inches/sec­

ondo 

Figure 11 illustrates the effects of varying the velo­

city configurations on the terminal transverse displace­

ment field .. The displacement of the membrane surface 

I· Lx 

Mx = My = 4 

Ly 

y 

Figure 100 Representative Finite Difference Grid System 



aJ_ong the x-axis is also showno The physical properties 

and membrane dimensions are given in the same figureo 

Figure 12 shows the variation in the horizontal "U" 

displacement field due to the change in initial velocity 

fieldso These values are given in the form of contour 

plots for the same square membrane used in Figure 110 

The effects of the same velocity variations on the 

transient transverse displacements are indicated in 

51 

Figure 130 The displacement progress in each case is 

plotted at 1/10 millisecond intervals for the duration of 

the motiono The final configuration is also giveno The 

data was taken from the same solutions reported in 

Figure 100 

A typical displacement response of a square membrane 

to a larger impulse is given in Figure 140 A contour 

plot of the transverse displacements with a profile along 

the x-axis is showno 

4o3 Variation of Transient Pressure 

As explained in Appendix H, the initial velocity 

field is taken as zero if a transient pressure is appliedo 

The distribution of such pressure is governed by equation 

H19 which is given belOWo 

where 
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PM = 
w1/3 J6 

k(-) R 

k,}6 = explosive material constantso Table H-1 gives 
some typical valueso 

w = weight in pounds of explosive materialo 

Ro = vertical distance of explosive material above 
membrane surfaceo 

p,q = spatial shape parameterso 

The distribution of the pressure at any time, t, can 

be varied using the spacial shape parameters p and qo 

Figure 15 illustrates the cases p = q = 1 and p = q = 3o 

The investigation of the response to pressure varia-

tions uses a membrane with the following material proper-

ties and dimensionso 

LX = L = 24 y inches 

t = 00075 inches 

w = 000214 lbso 

k = 2016 104 

J6 = 1o 13 

a= 00222 

b = Oo25 

C = 22,200 

For TNT from Table H-1 

For half-hard aluminum from 
Table D-1 

The impulse is generated by an explosive charge suspended 

in water at a height of 168 inches above the clamped mem-

braneo 
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The influence of pressure distribution on the transi-

ent transverse displacements is indicated in Figure 16. 

The transient displacements were plotted for the two cases 

given in Figure 1 5; p = q = 1 and p = q. =' 3. The delivered 

pressures are 

cos 

and 

Contour plots of the final horizontal TI-displace"'"'. 

ment field for each of the pressure loading cases are 

given in Figure 170 

The transient transverse displacement response of a 

square membrane to a typical pressure.loading is illus­

trated in Figure 180 The displacement profile along the 

x-axis is usedo The shaded curve represents the final 

configuration .. 

4.4 Variation of the Aspect Ratio 

The effects of changing from a square to a rectangular 

membrane configuration are indicated.in Figure 19, 20, and 

210 These give, respectively, the effects on the trans­

verse Z, th!lL,horizontal U, "'arid the horizontal V dis­

placement fields o An· initial velocity field of. a cosine · 
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TABLE 4-1 

ASPECT RATIO DATA 

Case Lx(in.) Ly( in .. ) Aspect 
Ratio 

1 24000 24000 1 

2 16 .. 98 33.96 1/2 

3 19060 29.,40 2/3 

distribution is prescribed in each case with the maximum 

velocity ordinate chosen so that the total delivered 

impulse is constanto The specific side lengths and aspect 

ratios are given in Table 4-1,. The use of half-hard 

aluminum is continuedo 

4o5 Variation of Initial Impulse and Stress~Strain 
Relationships 

The permanent transverse displacement response of the 

center node of a square membrane is plotted for several 

values of total impulse in Figure 220 The membrane is 

of half-hard aluminum and has the physical properties 

given in the figureo 

In Figure 23 the effects of varying the stress-strain 

relationships are illustrated using three different 

materialsa The latter include a 1020 hot rolled steel, 

a 70-30 annealed brass, and an 1100 annealed aluminumo 

All materials have been given a 10~ initial coldworkingo 

A 24 inch square membrane is usedo As in all of the 
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investigations, the edges are fixedo 
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INITIAL VELOCITY CONFIGURATIONS 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

5o1 Summary 

A method is developed for determining the finite, 

inelastic deformation of a clamped, rectangular membrane 

·subjected to impulsive loading. An accumulation of numer­

ous increments of deformation is assumed to represent the 

total deformation process~ In this manner, the nonline­

arity of the formulation is minimized through the use of 

kinematic relations for small displacement shell theory. 

The dynamic equilibrium of a representative differential 

element is mathematically formulated. The resulting three 

nonlinear, coupled, partial differential equations, con­

verted to functions of displacements, form the governing 

differential equations of motion. The numerical solution 

of this set of equations is obtained using a digital 

computer. 

The derivation is much more general than implied by 

the thesis title. The membrane can have initial curva­

ture and be prestrained. The incremental formulation also 

permits the recording of the total deformation response to 

repeated blast loadingso Also, the membrane, the pressure 

loadings, and/or the initial velocity field do not have to 
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be symmetrical with respect to the horizontal axeso If 

such is the case, a finite difference grid system for the 

entire membrane surface must be used. 

A limited parametri'c investigation is performed to 

illustrate the developmento 

5o2 Discussion of Results 

70 

An evaluation of the results is limited by the non­

availability of experimental data and other numerical 

investigations .. An objective discussion is still possible, 

however, through the use of comparable circular membrane 

studies and experimental reports on the static loading of 

rectangular membraneso 

Figures 11 through 14 indicate the effects of varying 

the configuration of the initial velocity field. The ter­

minal displacements in Figure 11 appear to be reasonable. 

The cosine distribution accounts for a larger quantity of 

initial kinetic energy within the center quarter section 

of the membraneo The uniform distribution places the 

smallest amount of kinetic energy in this center section .. 

This comparison supports the order of displacement magni­

tude illustrated; ioeo cosine, pyramid and finally the 

uniform velocity configurationo The pyramid configuration 

also accounts for less transverse displacement around the 

perimeter of the membraneo This also is to be expected. 

Figure 12 shows the change in the U displacement field 

accompanying a revised velocity configurationo The values 
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and contours are reasonableo The U displacements as well 

as the transverse displacements areexpected'to be'less 

for the uniform case because the associated initial 

kinetic energy, both for the center section and the mem­

brane as a whole is the smallest. The greater rate of 

change in the U displacement field being along the bound­

ary parallel t.o. the Y-axis (rather than the x-aJc:is) is 

consistent with statically loaded membrane results. The 

transient transverse displacement responses are depicted 

in Figure 130 Those shown for the cosine and pyramid 

cases approach their final values in a smooth mannero The 

response to the uniform configuration, however, takes the 

form of a perimeter wave moving inwardo The extent of its 

travel evidently varies directly with the magnitude of 

the transverse displacements. If the deformation sequence 

is continued, a travel distance would be encountered at 

which unloading would commence to follow the waveo Boyd 

reported a similar circumferential wave for circular mem­

braneso 

The transverse displacements shown in Figure 14 for 

a typical case of specified initial velocities are reason­

ableo The exhibited symmetry with respect to a diagonal 

through the origin is encouragingo The transition from 

circular contours at the center to those approaching a 

rectangular shape at the boundary is· also the expected 

behavior., 

The results of the pressure variation study are 
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reasonable? Figures 15, 16, 17, and 18 illustrate. The 

transverse displacements given in Figure 16 for the two 

cases, p = q = 1 and p = q = 3·, show the effects of favor-

ing the center section with delivered pressureo Greater 

center displacements for p = q = 3 case .are .. accompanied by 

a loss in ,:p:1.iformity as displayed in the other case. 

Such a transition in loading patterns could be affected 

by varying the height above the membrane of a pressure 

producing deviceo Figure 17 describes the related effect 

on the U displacement field. For the p = q = 1 case, the 

U displacements uniformly increase with the greater mag­

nitudes being at the midpoint between the origin and the 

boundaryo In the other case, a negative displacement 

region exists beyond.the midpoint for practically the 

entire first millisecond of motion. These results are 

very similar to Boyd's data for the circular membrane. 

As the latter ·indicated, this unusual activity is caused 

by the magnitude of the initial transverse displacements 
. : . . 

being much greater in the center portion of the membraneo 

The horizontal pull-in of the membrane:' s perimeter region 

continues until the transverse displacements start to 

displace UI1iformly. 

The aspect ratio study also. supports the general 

validity of the resultso The contours plotted in Figure 

19 for transverse displacements are as suggested by known 

rectangular plate responses (57)o For a square membrane 

the transition of the form from the center circle to a 
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boundary rectangle is entirely reasonableo The increasing 

dominance of the rectangular over the circular form as the 

aspect ratio increases is acceptableo As shown, the oval 
1x 2 contour configuration appears for Ly= / 3• The u_ 

and V displacement contours in Figures 20 and 21 are .. ':J 

also acceptableo The equivalence of the U and V 

displacement fields for square membranes is clearly re­

fle:cted.. The steeper gradient of that portion of U dis­

placement fteld located along the perimeter and parallel 

to the i axis is consistent with experimental results give 

given by Mostow (13)~ The magnitudes of the horizontal 

displacements seem to be reasonably consistent with the 

related transverse displacement field .. 

Finally, a linear relationship between the center 

transverse displacement of. a square membrane and the total 

applied impulse is depict·ed in Figure 22 o It appears to 

be consistent with comparable circular membrane data by 

Boydo 

5o3 General Conclusion and Possible Extensions 

The numerical results support the general validity of 

the method as a~means of analytically investigating the 

response of clamped rectangular membranes to impulsive 

loadso A detailed evaluation and confirmation of the 

method's accuracy is not presently possible .. Other ana­

lytical or some experimental results are needed .. At the 

present, however, it is believed that this is the first 
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and only general solution of the subject dynamic membrane 

problemo 

The only significant deficiency of the method appears 

to be scattered instances of numerical instability. These 

principally occurred when discontinuous functions were 

used to represent initial velocity fieldso 

Any extension of this. work should first include a 

numerical stability investigationo The stability investi-, 

gation on an individual problem basis is recommended ~nly 

as an interim measureQ A satisfactory general method of 

prescribing the optimum space and time intervals would 

not only reduce the amount of required computer time but 

would also allow the use of a greater variation in velo­

city field configurations., 

An adjustment to the present development to accomo­

date membrane surfaces of other plan.forms is also possibleo 

The Flugge and Geyling small deformation theory has 

already been applied to translational shell surfaces with 

other planform configurations sucp. as those triangular 

and trapezoidal in shape (29), (37)o These works could be 

extended to the dynamic problems as indicated in this dis­

sertationo 

In the design of many armaments, mass is used to dis­

sipate high quantities of kinetic energyo In other cases, 

thick plates of high tensile strength metals are used with 

strain energy accounting for the change in kinetic energyo 

The results of this dissertation suggest the possible 
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advantage of using a baffle arrangement of thin membranes 

in preference to the thick plates or objects of great 

masso The idea is based upon more efficiently producing 

strain energy to dissipate the kinetic energy. 

Also, the degeneration of the governing differential 

equations to those for the general case of static loadings 

is recommended. A satisfactory solution for the static 

finite deformation of membranes of rigidly plastic-strain 

hardening or elastic-plastic materials is not known to 

existo Such a conversion would involve solving all three 

equations using the matrix iteration scheme ~resently 
. ' 

' 
used for the U and V disp'l'a,gement ~qµ.ations,; ··. · ,. 

' 
Finally, ·an. experimental investigation is nee,ded to 

complete the evaluation of this development. 
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APPENDIX A 

PUCHER STRESS THEORY 

The Pucher solution ,of 'the<-shell:1niembra.n..e stress·­

problem greatly simplifies the general equilibrium equa­

tions of the membrane theory by stating them in terms of 

equivalent projected stress resultants acting on a hypo­

thetical projected element in the horizontal planeo Such 

a projection of the differential element is illustrated in 

Figure A-1 .. The curved line segments are related to the 

projected horizontal sides by 

ds 1 
dx = cos Cl:' 

ds2 = ~ A1 

The total forces on the sides of the curved element are 

found by multiplying the pertinent skew stress resultants, 

shown in Figure A-2, by the length of the related curved 

line segment. These fprces are inclined at an angle of 

either a or /3 with the horizontal pla.neo The components 

in the horizontal plane in the ·q~: direction form the equi-

valence 

cos Cl:' .A2, 
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· · · ·dx. 
X 

I 
I 
I ' .. 

I 
I 

y 

I ( 

I 
) 

X 

y 

Figure A-1. Projection of Element of. n·ouble Curvature 
. 4 
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X,u 
Z,w 

Y,v 

Figure A-2o State of Static Equilibrium 
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dx -
Nyx cos a cos a = Nyxdx A3. 

while those in they direction 

A4 

A5 

Thus, the following equalities are obtained 

Nx N cos a 
= cos f3 X 

A6a 

Nxy = iiyx = N = Nyx xy · A6b'. 

N Ny 
cos f3 = 

;f cos a _A6c, 

Px, Py, Pz are the x, y, and z components, respectively of 

the exterior load per unit shell areao These distributed 

external loads !:!,re now replaced by their equivalents act­

ing over the horizontal projected area, dxdyo Considering 

PX, 

Where 

= ho.rizontal projection of shell differential 
element 

dA = area of shell element 

component of Px which acts on the projected 
area dAz 9 

'A7. 



and 

p. 
X 

·px = 
dA 
d.Az 

it can be shown that 

( 1 - sin 2 a sin 2 f3 ) t 
cos a cos {3 

A8 

In general, then, the following relation exists between 

Px' Py, Pz and the forces Px, Py' Pz, per unit area of the 

differential shell elemento 

p x _ :I. p z .... ( .... 1_-_s_i,...n_2_a __ s_in_2 __ f3_....) -_~ 
P - P = P cos a cos ·/3 

X y Z 
A 10: 

Two of the equilibrium equations are formed by 

directly considering.the summation of forces acting on the 

projected element and in the·x and y directions .. 

Considering the x direction, the following is deriveda 

+ P dxdy = 0 x. 

Similarly, using they direction 

A1f 
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-N dx + y (Ny a - ) + ay Nydy dx - Nxydy + 

+ (Nxy 
a - ) + ax Nxydx dy + Pydxdy = 0 

A12 

For the third equat~on, equilibrium in the z direction is 

consideredo 

Nx sin a dq 

Ny sin /3 dp 

Nxy sin /3 dq 

Noting that, 

cos {3 
= N sin a dq 

X COS a 

= N tan a cos {3 dq 
X 

N· oz 
dx = ay-y 

= Nxy sin /3 cg;$ 
= Nxy tan {3 dy 

Nxy 
oz dy = ay 

Nyx sin (/) dp. Nyx sin r/J 
dx 

= (/) cos 

=N yx tan r/J dx 

N oz dx = ax yx 

Thus for equilibrium in the z directiono 

A 13a 

A. 1 Jc: 

A13d 
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- - z - oz 
+P z - PX x - Py oy = O 

or 

a (-N az) a (-N az) a (N az) + ..£... (N·- ~) ox X ox + &y. yxai_ + 8x xy By · oy · y oY 

A14. 

the moment equilibrium equati.on can be used to prove 

,A 15 

differentiating the products in equation (A14) gives 

incorporating the other two equilibrium.equations (Ai1) and 

(A 12) results in 
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A17 

Equations (A 11) , (A 12), and (A17) are known as Pucher' s equa­

tions of equilibrium for general translational shellso In 

summary, they are 

a - a - -
~ N + ~ N +PX= 0 ox ·x uy yx 

- a2 z az a + N - = -P + Px ,::,x + P ~ y ay2 z u y ay A 18 



APPENDIX B 

.. 
FLUGGE AND GEYLING KINEMATIC RELATIONS 

Flugge and Geyling (6) extended Pucher's method of 

stress analysis given in Appendix A by developing a general 

deformation theory for membrane shells. The purpose of 

this appendix is to summarize the development of the kine-

matic relations as initially given in the preceding work. 

The di£ferential shell element shown in Figure 4 

shows the three applicable displacement components; U, V, 

and W; as well as the parameters which are necessary to 

describe the reference geometry of the shell surface; a, 

{3 , and w. The displacements U, V, and W are the displace-

ment components acting in the x, y, and z directions 

respectively. a and {3 are the angles between the hori­

zontal and the curved line segments bounding the dif-

ferential element. The lines AC and BC are in the xz 

and "yz planes res.pecti vely. The angle w is the angle at 

which the curved lines segments are skewed in the pla.n,.e 

~angent to the differential element. Considering the 

angles a and {3 to be nonzero, the angle, w, which is 

formed by the intersection of the line segments must be 

other than 90 degrees in magnitude. With such geometric 

parameters, the need for the joint use of a skewed 

89 
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curvilinear coordinate system and an orthogonal rectangular 

base system becomes clear. The skewed strains will be 

related to the orthogonal displacements first. Then, by 

using geometric relations, the orthogonal strain-orthogonal 

displacement relationships will be derived. 

Considering Figure B-1'(b), the following relation is 

derived for skewed strain increment in the t direction, ex. 

B1 

Similarily, 

2 
e y = Vy c _o s {3 + W y sin {3 cos {3 

For y , consider Figure B-:1 (a). The shearing action has xy 
caused line segments AC and AB to relocate to AC 1 and AB 1 

respectfullyo Assuming the latter to be straight, the 

following condition can be used as written in vector nota-

tion. 

Substituting the equivalents 
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(a) ·' 

dx 

(b) 

Figure B-1o Deformation of Curvilinear Element 



leads to 

Substituting equations B1 and B2 into equation B5 and 

neglecting higher order terms gives 

[Uy + V x + ·tan f3 t.an a + WY tan a + Wx tan f3 ]cos a cos f3 

= [ 1 + Ux cos 2 a + Wx sin a cos a + WY sin f3 cos f3 + 

+ VY cos2 a ][cos w + sin w 'lxy] 

Again using the d.efini tion of a dot product as given in 

vector algebra, the following relation between w, a, and 

f3 is derived. 

92 

[dx i + dx tan a lt][dy J + dy tan /3 k] ..k_ dx cos w = cos {:$ cos a 
B7 

or 

tan f3 tan a = cos J cos a cos w 

Thus, 

cos w = sin f3 cos a B8 
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and considering 

( 1 . 2 . 2 /3)1 / 2 - sin a sin . 

sin ·a sin /3 

the following is formed 

sin w 
2 2 1 

= ( 1 - sin a sin [3 ) 2 B9 

After substi·tuting with equations B8 and B9 and 

neglecting higher o.rder terms, equation B6 is developed 

into 

y· 
xy 

1 = --,.---sin a [Uy cos a cos /3 + Vx cos a cos [3 B10 

+ WY sin a cos3 [3 + wx sin [3 cos3 a 

- Ux co.s2 a sin [3 sin a - Vy cos2 [3 sin [3 sin a J 

Thus, in summary, the kinematic relations for the skewed 

strain components are 

y 
xy 

1 = --,.----sin w 
[Uy cos a cos [3 : Vx cos a cos [3 

+ WY sin a cos 3 ~ +·wx sin {3 cos3 a 

B11a 

B11c 
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Ux cos2 a sin a s.in f3 - Vy cos2 f3 sin G sin a J B 11 c 

Flugge and Geyling also use Figure B-2 to deduce the 

following relations between the.orthogonal and the skewed 

strain components. 

B12 

Y ---1- - Y sin w + e- cos w - e- cos w xy sih · - xy x y 



b cot a 

b 

. C - ~ 
V X \ 1 dey b 

dj, b__/ \Q.....~C.,-'' __ ....._ 
xy 

. . 

. - ·"- dfxyb 
SIN a 

Figure B-2. Orthogonal-Skewed S.train 
Relations . 
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APPENDIX C 

STRESS RESULTANT TRANSFORMATION 

The following __ development of equations governing the 

transformation to orthogonal stress resultants from those 

in an oblique· or skewed coordinate system is by Morley ( 45). 

The notation has been changed to be consistent with Flugge 

and Geyling (6). Consid~r the orthogonal and skewed 

coordinate force $ystems represented in Figure C-1. 

y 

L 
p p Hx 

Jo----------- X "--------------x 

Figure C-1o Orthogonal-Skewed Force System 
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From geometry, 

N- = N X X + Ny cos a C1 

N-y = Ny sin a C2 

or 

Nx = N- - N- cot a 
X y C3 

Ny = N- csc. a y C4 

where 

= components of force in the skewed system 

= components of force in the orthogonal 
system. 

Considering equilibrium in the orthogonal system, 

thus, 

T F = ·"'" x F-- = x H- - y H- = 0 y y X 

and for the skewed system, 

thus, 

'EE' = F = x H - y H = 0 
X y y X 

Now consider Figure C-2. 

C5 

C6 



<r.­x 

a-;­x_ 

- -y 

y 

B 

O".­y 

( Q) ( b) 

p 

(c) (d) 

y 

y 

Figure C-2G Orthogonal- Skewed Stress System 
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Let stresses crx, cry, and .y xy at point P i n a plate be 

assumed to act on the sides of triangular element APB as 

shown in Figure C-2(a). Using equations C1 through 04 

the stresses on side PA are resolved into stresses cry and 

crxy as shown in Figure C-2(b) and d~rived below 

a- = (J" y sin w y C7 

Txy = Txy cos w C8 

or 

Txy = Txy - a- cot w y C9 

99 

(J" y = a-y cosec w C10 

In Fi gure C-2(a), the directional cosines of the inclined 

normal are 

1 = cos ( 90 - w ) = sin w C11 

m = cos ( 180 + w) = -cos w C12 

Let Nx and Ny be the components of stress parallel to the 

axes of the rectangular coordinates and acting on side AB. 

N- = crxl + T-m = a sin w - T- cos w x xy x xy C13 

N- = T-1 + cr,n = T- sin w - a- cos w y xy y -xy y C14 

as shown in Fi gure C-1 and stated in equations 03 and C4 . 



Nx and Ny can be put in terms of a y and Tyxo In this 

manner, 

= N- - N- cot w X y 

= N- cosec w y 
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C15 

016 

Substituting equations 013 and 014 into 015 and C16 gives 

a._ = a-x sin w + a- cos w cot w - 2T- cos w 
X y XY 017 

Tyx = T- - a- cot w xy y 018 

The quantities ax' ay' and Txy = Tyx are the components 

of stress for the skewedcoordinate system for they com­

pletely define the state of stress at point P provided 

w /. 0, TT o Oollecti vely, they · are 

a = a- sin w + a- cos w cot w 2T- cos w 
X X y . xy C19 

a = a- cosec w y y C20 

Txy = Txy - a-y cot w 021 

The rectangular components in terms of the skewed stresses 

are 

a-x 

a-
y 

= ax cosec w + a y cos w cot w + 2Txy cot w 

= a sin w y 



T- = T- = T + o- cos w xy yx xy y 
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C22 

In terms of stress resultants, the preceding equations are 

Sx = Nx cosec w + NY cos w cot w + 2Txy cot w 

C23 



APPENDIX D 

PLASTIC CONSTITUTIVE EQUATIONS 

There are two current theories of deformation from 

which the constitutive equations may be chosen; the incre-

mental theory and the deformation theory. The incremental 

theory requires that th~ current stress and strain incre-

ment be used to solve for the current strain increment 

whereas only the current stress state is necessary to find 

the current strain in the total deformation theory. The 

latter is the leas_t complex to apply in a mathematical 

sens e . This simplicity, however, is over ruled by its 

relatiye inaccuracy. As Hill (9) points out, the only 

case when the deformation theory satisfactorily describes 

the plastic behavior of a metal is when two conditions 

exist; (1) the principal axes of successive strain incre-

ments do not rotate relative to the element and (2) the 

components of any strain-increment bear constant ratios 
.i 

to one another. Such cases are not the most common and 

certainly do not pertain to this problem. Thus, the incre-

mental theory of plasticity is selected for use. 

Considering the membrane material to be an elastic-

per~ectly plastic solid, the Reuss-Prandtl equation is 

applicable. 
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de .. 
p e = de . . + de . . 

1J 1J 1J D1 

I 

I da .. 
~ 1 2V~ de .. = a . . d>.. + --1:.J. + o .. daM 1J 1J ZG E 1J D2 

where: 

I 

a . . = deviatoric stress tensor 1J 
d>.. = non-negative constant of proportionality 

0 . . = kronecker delta 1J 

d'\ir = hydrostatic stress increment 

E = modulus of elasticity 

G = mosulus of rigidity 

The equation, as given above, states that the plastic 

strain increment is at any instant proportional to the 

instantaneous stress deviation and the shear stresses. 

In problems __ of large deformations, the elastic strains 

are only evident during the first few increments of defor-

mation and then become part of the plastic response. The 

lat_ter strains account for practically the entire distor-

tion. On this basis, the elastic component of the strain 

is neglected and the less complex Levy-Mises equations 

replace equations D2. These assume only plastic strains 

are present and are written as follows 

I 

de . . = d>..a . . 1J 1J D3 

where dA. is a scalar factor of proportionalityo 
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In defining the state of stress caus ing initial yiel d, 

the condition bas.ed upon the energy of di stortion and 

lmown as Von Mises' yield criterion is used . This state-

ment is written as follows for the case of plane stress. 

D4 

where 

0-0 = yield stress in simple tension 

(J" ' (J" = normal stresses in the X and Y directions 
X y respectfully 

Txy = shearing stress in XY plane 

Equation D4 implies that whenever the indicated func-

tion of stresses equal o- 0 then initial yielding occurs. 

If the material was rigid perfectly plastic, such a condi­

t i on would also govern ani additional yielding. 

For subsequent yielding of a work hardening material, 

the constant o-0 is replaced by the parameter u defined as 

the effection stress. Thus, the yield condition becomes 

2 a = (a -
X 

2 
(J" (J" + (J" + 

X y y 

this condition can be rewritten as 

f ( a ' a 'T ) = o-x2 - a a + a 2 + 3T 2 = a-2 x y xy x y y xy 

or, if stated in terms of tensor notation, 

D5 

D6 
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D7 

The function f(aij) mathematically describes the 

expansion of the yield surface which occurs during work­

hardening. Such·a function depends both upon stresses and 

plastic strains. In addition, its argument should be 

expressed in terms of scalar quantities. Most authors 

acknowledge the existence of two hypotheses. The first is 
. . / ' 

that the amount of strain hardening is a function only of 

the total plastic work done. This is expressed mathematic­

ally as 

where 

f( a . . ) = F(S ) 
. J. J 

p s = a . . de .. 
J.J J.J 

D8 

D9 

The second hypothesis is that the same function, f(c,-ij), 

is a measure of the total plastic deformation. This is 

written 

f(a ij) = H(eP) D10 

where 

e p = effective strain 

= mJ jdcij deij D11 
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The. equati.oil D3 is. a statement that· the principal 
' ' ' r 

axes of stress and. the plastic strain increment are coin-

cident. Under the terms of this assumption, the two 

working-hardening hypotheses D8 and D10 are equivalent. 

That is, they reduce to~= H(fdeP). Hill shows that the 

equations D3 can then be written in terms of the following 

two statements. 

where 

' CI. • , 
1J D12 

= effective strain increment 

= £ (de2 + dexdey + de2 = 1 dy2 ) ~ 
. X Y 4 ·XY 3 ' 

H = function relating effective stress to effec­
tive strain and referred to as the "universal" 
stress-strain relationship. 

Instead of using the effec"!;_i ve stress and effecti.ve 

strain in the universal stress~strain relationship, at 

least-three other sets of quantities could have been used; 

the maximum shear stress vs. the maximum shear,strain, the 

maximum shear vs. the numerically largest strain,,or~the 

octahedral shear stress vs. the octahedral shear strain. 

The effective stress-effective strain relationship. was. 

chosen as its possible reduction t~ that of the uniaxial 

a.tress and strain makes it more convenient. 
" 

The uni.versal stress-strain relationship is taken as 

the uniaxial stress-strain curve_for the applicable 
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material. It is recognized that such a representation is 

not most accurate but current developments allow no re­

course. Biaxial tests which have been made (29), (9), 

(44) are limited in number and deficient in agreement with 

predicted results. Also, the constant stress ratios useq 

in most of these tests are not a true reflection of the 

v-ariable stress conditions of this problem. 

The constitutive equations D12 are expanded to give 

the following desired expressions. 

de 1 dex - - ( a - -a ) - a X 2 y 

or in terms of the orthogonal stress resultants, the con-

stitutive equations become 

dey = A).(N- - l S ) y 2 x; 

D14 

where 

D15 



and 

b..A = plasticity parameter 

d€ =-
&t 

TABLE D-1 

UNIVERSAL STRESS-STRAIN RELATIONSHIP PARAMETERS 

Material a b 

70-30 Annealed Brass 100,000 0 .. 105 
(10% prior coldwork) 

1100 Annealed Aluminum 
( 10% prio.r coldwork) 

26,000 0 .. 105 

1020 Hot Rolled Steel 115,000 0.105 
(10% prior coldwprk) 

Half-Hard Aluminum 22,200 0.222 
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C 

0.5 

0.20 

0.22 

0.25 



APPENDIX E 

TAU VALUES 

tau1 = cos2 -a 

tau2 = sin Cl cos a 

tau3 = 
cos2 -@._ 

. 2 sin w 

tau4 = cos2 f:3· 

tau5 = sin {3 cos ·/3 

tau6 cos 2 . 2 
= a cos w 

tau7 = sin 1A' C.08 
2 

a cos w 

taus 
2 {:3· 2 

/:3' sin '/3 sin ji = cos cos w - cos 

tau 2 a sin {:3 sin Q' + cos2 & = cos CQS w 9 

tau10 = cos a cos '{3 

tau11 = sin ,a COS3 /3 + sin_ 'f:3 cos '{3 cos w 

tau12 = sin f{3 COS3 Cl - sin a cos a cos w 
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tau13 = 0.2 
sin3 w 

tau14 = cos.w cos a 

tau15 sin w + 0.5 cos2 w = sin w 

2 
tau16 0.5 sin w + 

cos w = sin w 

tan17 
cos w = sin w 

2 
tau18 

cos w = . 2. sin w 

tau19 = cos@ 
cos 6' sin w 

tau20 
1 = sin w 

2 2 1 

- sin tau21 
{ 1.0 ~ sin 'f1f2 

= cos ,~ cos ·TJ 

tau22 
1 = . 2 sin w 

where 

sin 
f3 = (1 + z2)i 

.. y 

1 cosµ= ~------2--1 
(1 + zx)2 

cos /3 = 
( 1 + z2rl y 
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1 1 1 

tan2 tan2 
1 

sin w ~ 1 + (l' + tr)2 
I = 

tan2 tan2 tan.2 2 1 
( 1 + (l' + /3 + (l' tan /3 )2 

tan (l' tan /3 cos w = 2 . 
tan2 2 tan2 /3)! ( 1 + tan a + /3 + tan (l' 



A;l?PENDIX F 

D COEFFICIENTS 

D1 = [tau15 tau1 - tau16 tau22 tau6 + cos tau13 tau9J 

[(plas1) tau14 J 

D2 = [tau15 tau2 - tau16 tau22 tau7 - cos tau13 tau12 J 

[(plas1) tau14 J 

D3 = [tau16 tau22 tau4 - cos tau13 tau8J[(plas1) tau14 J 

D4 = [tau16 tau22 tau5 - cos tau13 tau11 J[(plasl) tau14.J 

D5 = [-cos tau13 tau10J tau14 plas1 

D6 = [0.5 tau1 tau17 - tau17 tau22 tau6 + 

+ 0.5 tau13 tau9]plas1 

D7 = [0.5 tau2 tau17 - tau17 _tau18 tau2 

- 0.5 tau13 tau12]plas1 

D8 = [tau17 tau4 tau22 - 0.5 tau13 taus]plas1 

D9 = [tau17 tau22 tau5 - 0.5 tau13 taul1]plas1 
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D10 = -0.5 tau13 tau10 plas1 

D11 = [0.5 tau1 - tau22 tau6Jtau19 plas1 

D12 = [0.5 tau2 - tau22 tau7Jtau19 plas1 

D13 = tau22 tau4 tau19 plas1 

D14 = tau22 tau5 tau19 plas1 

D15 = tau23 tau1 - tau24 tau22 tau6 - tau25 

D16 = tau23 tau2 - tau24 tau22 tau7 + tau25 

D17 = tau24 tau22 tau4 + ta"!-l25 tau13 tau3 

D18 = tau24 tau22 tau5 

D19 = tau25 tau13 tau10 

D20 = D19 

D21 = 0.75. tau21 

where 

- oe plas - at 

plas1 = _..,..4.:...:";...;;o_ 
3.0 plas 

plas 

+ tau25 tau13 tau11 

11 3 

tau13 tau9 

tau13 tau12 



APPENDIX G 

DUi, DV i, AND DWi COEFFICIENTS FOR THE DISPLACElVlENT EQUATIONS 

The coefficients used in the U displacement equation 

are defined as 

DU1 = ( D5. ·1 . + D5. . - D6. . 1 - D6. . ) Sh 1 h l- ,J l,J l,J- l,J X y 

DU2 = ( D5 . ·1 . - D 5 . 1 . ) 8h 1 h - ( D 1 0 . . + D 1 0 . . . 1 ) _J_2 l- ,J l+ ,J X l,J l,J- 2h . y y 

DU3 = ( -D 5 . 1 . - D 5 . . + D6 . . 1 + D6 . . ) Sh 1 h l+ ,J · l,J l,J- l,J X y 

DU4 (D6. . 1 - D6. . 1) 1 ( D1. 1 . + D1. .) 1 = 8hxhy 
+ 

2h2 l,J+ 1, J- . l- ,J . i,J 
X 

DU5 (D10 .. 1 2D10 .. + D10. . 1) 1 (D1. 1 . = + --1,J+ 1,J 1, J- 2h2 l+ ,J 
·y 

+ 2D1 .. + D1. 1 . ) 1 
i,J l- ,J 2h2 

X 

DU6 (D6. . 1 - D6. . 1) 1 ( D1 . 1 . + D1. .) 1 
= 8hxhy 

+ 
2h2 l ,J- 1, J+ l+ ,J l,J 

X 

DU7 -(D5. 1 . + D5 · ·) 
1 (D6. . 1 + D6 .. ) 1 

= 8hxhy 
+ 

8hxhy J.- 'J 1,J 1, J+ 1,J 
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DUB (D5 - D5 ) 8 1 - (D10 .. 1 + D10 .. ) _j_2 
= i + 1 , j i-1 , j hxhy 1 , J + . 1 , J 2h 

y 

DV2 = ( D 3. .1 . - D 31.· 1 J.) 8h 1 h 
. 1- , J + ' X y 

DV3 = (-DJ1.+1 J. - DJ1. J. + D10. , 1 + D10 .. ) 8~h . , . , 1,J- 1,J y 

DV4 = (D51. ,J· + D51._1 ,J.) _j_ + (D101 .. ,J·+1 - D10. , 1) 8~h 
2~ 1,~- y 

DV5 = (D8 .. 1 + 2D81. J. + D8. ·-1) 2h12 - (D5i+1,J. 1, J+ . , . ·. 1, J 
y 

1 + 2D5 .. + D51. ·1 J.) -2 
1,J - ' 2~ 

DV6 = (D5i+1,j + D5i,j) 2~2 - (D10i,j+1 - D10i,j-1) 8h:hy 
X 

1 
DV8 = (D3. 1 · - D31· 1 J.) 8h h 

1+ ,J ' - ' ' '·~ y 



DW3 = (D7 · · .1 + D71.· J.) 8h:hy - J.,J- ' (D4. 1 . + D41.· j) 8h 1h J.+ ,J 1 X y 

DW4 

DW5 = ( D9 + 2D9 · · + D9 · · 1 ) ~ i,j+1 J.,J J.,J- 2hy. 

) -1.... - (D2. 1 . + 2D2J.. J. + D2i-1 J. 2h2 
J.+ 'J ' . . ' 

X 

DW6 = (D2i+1 ,j + D2i,j) 2~2 - (D7i,j+1 - D?i,j-1) ·B~hy 
X 

116 



117 

The coeffici.ents used in the V displacement equation 

are defined as 

DV1 = -(D8. 1 . + D8i,j) 
1 

1- ,J 8llx11y 

DV2 (D13 .. 1 + D13. ·) _j_+ (D8. 1 . - D8. 1 . ) = l., J- 1,J 2h2 1+ ,J 1- ,J 
y 

DV 3 == ( D8. 1 . + D8 · ·) 8~hy 1+ ,J 1,J 

DV4 == -(D10_1._1 ,j + D10 .. ) _j_2 
1 ,J 2h 

X 

1 DV5 = -(n13 .. 1 + 2n13 .. + n13 .. 1) - 2 1.,J+ l.,J 1 ,J- 2h 
y 

+ (D10. 1 . + 2D10i J. + D10i_1 j) ~ 
:1. + ' J , . , 2~ 

DV6 = -(D10. 1 . + D1Q. ·) _j_2 
. ·' 1 + ,J 1.,J 2h 

X 

DV7 = ( D8 . .1 . + D8 . . ) 8h 1 h 
l.- ,J 1,J X y 

1 
8hxhy 

DV8 = (D13. . 1 + D13. .) _j_2 - (D8. 1 · - D8. 1 .) 8~h 
1,J+ 1,J 2h l.+ ,J 1- -,J y 

y 

DV9 = -(D8. 1 . + D8 .. ) 8h~ · 1+ ,J l~J y 
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DU1 = (D11 .. -1 + D11 .. ) Bh1h - (D10. 1 J. + D10i J.) 8h1h 
1.' J- 1.' J . X y 1.- ' ' X y 

DU2 

DU4 ) _L_ ( D6 . . + D6 . 1 . 2 1.,J 1.- ,J 2h 
X 

DU5 = (D6i+1 ,j + 2D6i,j + D6i-1 ,j) 2~2 
X 

DU6 

DUS 

DU9 

DW1 

DW2 

. 1 
= ( D 11 . . 1 - D 11 1- J. -1 ) 8h h 1.,J+ ' - xy 

= (D10. -,1 . - D10. 1 .) 8h1h 1.- ,J 1.+ ,J X y 

1 
= (D11 .. 1 + D11. J.) 8hh 1.,J+ 1., --x y 

( D6. 1 . + D61. J.) _1__2 
1.+ ,J ' 2h 

X 

( D 1 0 . 1 . + D 1 0 i J. ) 8h 1 h -
1.+ ,J ' x_y 



DW4 

DW5 

DW6 

DW7 

DW8 

DW9 
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1 
(D12 .. 1 + D121. J.) 8h h 1,J- , . X y 

= (D12 .... 1 - D12 .. 1) 8h 1h - (D71· J. + D71· 1 J.) _L2 
J.,J- 1,J+ X y ' - ' 2hX 

(D7i+1,j + 2D7i,j + D7. 1 . ) 1 
(D14i,j+1 = 

J.- 'J 2h2 -
X 

+ 2D14i,j + D14. . 1) 1 
.. J.,J- 2h2 

y 

- D12. . 1) 1 - (D7. 1 . + D7i,j) 
1 

= (D12i,j+1 . 1,J- 8hxhy 1+ ,J 2hxhy 

(D9. - 1 · + ng .. ) 1 
(D12i,j+1 + D12. . ) 1 

= 8hxhy 1,J 8hx11y 1- ,J 1,J 

+ D14. ·) 1 
(D9i+1,j - D9i-1,j) 

1 
= (D14i,j+1 2h2 - 8hxhy ]. , J ' 

y 

+ D12. . ) 1 
(D9i+1,j + ng .. ) 1 

= (D12. . 1 8hxhy :J.,J 8hxhy 1, J+ 1,J 



APPENDIX H 

INITIAL CONDITIONS 

H-1. Initial Velocity - No Transient Pressure 

Much experimental data C2) r.egardi:ng peak iinp_u'.J-se, 

intensities delivered to normal surface areas has been 

obtained.. For small charges, the best analy:tical fit to 

this data is given by the following. 

where 

I = 

F,B = 

Ro = 

w = 

Explosive 

Pentolite 
Tetryl 
TNT 

H.1 

peak imp.uls.e inte11,si ty (lb-sec./in2 .) 

material constants, given for typical materials 
in TABLE H-1. 

norm.al dist~ce to charge 

weight of explosive in pounds 

TA;BLE H-1 

EXPLOSIVE MATERIAL PROPERTIES 

Type B F ¢ 

2. 18 1 .05 1.13 

1.73 0.98 1 .15 

1.46 0.89 1.13 
#. '. 
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10'."'°4k 

2.25 

2.14 

.2.16 



Equation H1 written with units of lb-sec/ft2 , is 

F+1 

I= 144 BW3 
RF 

H2 

Consider Figure H-1. 
CHARGE 

Lx 

"-~--..,._--'~~--.~---x 

MEMBRANE 

Figure H-1. Development of Impulse for Deformation 
Process 

In this schematic, a rectangular membrane is shown 

positioned below an explosive chargeo Assuming that no 

membrane motion occurs until the spherical blast wave 

~ 21 

front has contacted each point on the membrane surface, 

the total impulse can be considered as having been applied 

~none instant of time. The initial velocities can there-

by be computed as given in the remaining part of this 

section,. 
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The distance from the charge to a typical element of 

the surface is 

substituting equation H3 into equation H2 gives 

F+1 

= 144 BW3 [ 2 
(Ro 

1 JF 2 2- dAR + X + y )2 

the projected area of the surface normal to the radius, 

1 
cos e d.xdy 

H3 

H4 

H5 

The differential impulse in a radial direction is found 

by substituting equation H5 into equation H4. 

F+1 

= 144 BW3 [ 
(R~ 

The vertical component of the differential impulse is 

diz = dIR cos g 

2 2 - d.xdy 1 J + X + y )2 

The vertical component of the total impulse is 

H6 

H7 
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LX L y 
F+1 ~ ~ 

+ y2)-F/2 dxdy Iz 144 BW 3 f f 2 x2 H8 = (Ro+ 

-~ -~ 2 2 

Except for a few values of F the double integration 

implied in equation H8 must be performed using a numerical 

method. For the present problem, Simpsons 1/3 Rule (22) 

was used and the integration of equation H8 programmed 

for a 24" x 24" membrane and all three sets of explosive 

material constants given in Table H-1o The result 

plotted for the form 

144 B ( 2 2 · 2) R0 + x + y dxdy H9 

is given in Figure H-2o 

Once the total impulse is formed the initial velocity 

field is found using the following impulse-momentum equa-

tion 

m(x,y) V(x,y)dxdy H10 

where 



m(x,y) 

V(x,y) 

= mass of membrane at the position (x,y)o 

= velocity of membrane immediately after 
impact at the position (x,y). 

With a uniform mass per unit surface area, equation H10 

becomes 

LX ~ 
2 2 

Iz = m f f V(x,y)dxdy 

-L L X _ _x 
-2 2 
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H11 

Three initial velocity configurations are used; the 

cosine, pyramid and uniform distributions. These are 

shown in Figure 100 To illustrate the general approach, 

the cosine distribution will be used. 

V = VO cos (f'")(~) 
X y 

the unknown V0 is found 

equation 

LX ~ 
2 2 

by 

I = pt f J V0 cos ( .ill£) 
LX 

LX L 
-2 --1 

where 

H12 

using the impulse-momentum 

cos (~)dxdy H13 



125 

p = mass per unit volume 

t = thickness membrane 

V0 = initial velocity at origin 

I = vertical component of total impulse. 

Integrating as implied in equation H13 gives 

4 t.LxLy_V 0 
I = . 2 

TT 
H14 

thus, 

Vo = 
I (TT 2) 

4 tLxLy H15 

Using equations H12 and H15, the expression for the initial 

velocity field is found to be 

cos HJ6 

In a similar manner, the uniform and pyramid configurations 

may be used .. 

H-2 Transient Pressure - No Initial Ve.loci ty 

Cole (2) has shown that for most practical cases, the 

peak pressure generated by an underwater explosion can be 

represented by the power law 

H17 
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where k and% are explosive material constantso Table H-1 

gives some typical values. The empirical pressure-time 

relationship 

P = P e-t/e H18 
M 

is also suggested. tis the time variable and G is 

another naterial constant which is represented in Table 

H-1o A typical plot of this exponential functton is given 

in Figure 14. As suggested by Boyd, the following distri-

bution of pressure is assumed 

( ) -t/e p (n_x) q (nv) P x,y = PMe cos cos ;.;.,L. 
lll LX Ly 

H19 

where p and q are parameters used to vary the distribution 

of pressure over the membrane surface. Figure 14 illus­

trates such an effect on the pressure distribution. 

Equation H19 is used with the initial conditions that 

the displacements and velocity are ze:roo 



:.,, 

I 

3000.--~~~~~"""T""~~-...~~--..--~~---~~--~~-.-~~---,.--~~---~~-

2000 

B = 1.73 
F = 0.98 

MEMBRANE SIZE 
2411 X 2411 

..fl:I. w3 B = 1.46 
F = 0. 89 

1000, 

-
O O 2 4 6 8 IO 12 14 I 6 18 . 20 

STANDOFF DISTANCE, R0 1 FEET 

Figure H-2,, Effect of Explosive Material Constants on Total Impulse 
...... 
f\) 
-.J 



STOP 

APPENDIX I 

COMPUTER FLOW DIAGRAM 
INPUT 

READ PHYSICAL PROPERTIES Of MATERIAL, INITIAL SUR· 
FAr.E CONFIGURATION, INITIAL VELOCITIES, PRESSURE 
PARAMETERS ANO CONTROL VALUES 

COMPUTE INITIAL VELOCITY, XZ T, ANO ACCELERATION, 
XZ TT FIELDS. · 

PREDICT U ANO V DISPLACEMENT fl ELDS FOR FIRST 
INCREMENT OF DEFORMATION . 

INCREMENT TIME ANO DEFORMATION 

L• t •Al 
INCRE I INCRE ... I 

ACCUMULATE DISPLACEMENTS AND STRAINS FOR REF· 
ERENCE STATE I i.e. XZ I XZ .. W) 

YES 

• GENERATE COEFFICIENT MATRIX, (CJ 
• REDUCE [CJ , {U). AND (UDISPj TO INCOPORATE 

INTERIOR BOUNDARY CONDITIONS 
• INVERT [CJ - [C"' I 
• FORM (U) • [c·•](UDISPj 
• E5TABL1SH NEW VALUES FOR U DISPLACEMENT 

FIELO 

COMPUTE V DISPLACEMENTS 

• GENERATE COEFFICIENT MATRIX,[C) 
• REDUCE [C]. (VJ. ANO (VDISP] TO INCOPORATE 

INTERIOR· BOUNDARY CONDITIONS 
• INVERT [CJ - [c·•J 
• FORM {vi O [c·•J{vD1sP) 
• ESTABLISH NEW VALUES FOR V DISPLACEMENT FIELD 

CORRECT 

NO 

TEST 

RESET "INITIAL" VALUES FOR NEW SURFACE CONFIGURA 
lie. XXZT =- XZT XZ "Z) 

YES 

YES 
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