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CHAPTER I
INTRODUCTION

 The prediction of stresses and deflections,of airf:ames
is a critical phase of sﬁructural anaiysis in the'airéraft'__
indusﬁry. Preliminary design is usually based on elementafyﬂ
stréngth-of materials methods. Final design is usually
based on finite element methods which,reQUire large computer
programs. A need exists for methods‘which»will yield |
results as accurate as finite element meﬁhods and are
simple to apply. ‘

Ritz (1) developed the energy method at the turn éfwthe
twentieth century. -Bédéuse no suitable general method was
available to determihé the magnitude of‘the error in;thé
resﬁlts;'a laék of,confidencé in the method delayed its
application until Gerald Pickett (2) determined tﬁe natural
frequencies of a c¢lamped plate subjected to a lateral load.
_Sinée thaﬁ time sevéfai investigators have used the energy
method to determiné-the'natural frequencies of vibfation,of
plates.with various sh%pés and boundary conditions.

' AnderSOn (3) determined the natural.frequencies for two
symmetric and two'antisymmetric modes for triahgular plates
clamped at the base. His results pointed out that reason-

»ablé accuracy could be obtained uSing an eight term series



to approximéte deflections. Young (4) determined the
natural frequencies of a square plate clamped at’all’edges,
'a square plate clamped at two adjacent edges and free along
the1other two edges, and a square plate clamped along one
edge and free along the other three edges. A nine term
'series_yielded'exceptionally good results.  Little, Stolsz,
and Schmerda (5) used the Ritz Method to determine the
natural frequencies of a composite structure in the form of
a circuit-board assembly. The results compared well with
experimental data.

Investigations have been performed to detefmine the
~stresses and deflections of flat plates subjected to static
transverse loads. Liessa and Niedenfuhr (6) determined the
deflections of a cantilevered plate with the Ritz Method.
Their results compared favorably with solutions obtéined-by
beam theory,»finite‘differences,band experimental'methdds.

TimoShenko (7) Obtained‘a solution for the stresses
and deflections of a rectangular panel.subjected to a
~parabdlic'tensioh. Pickett (2) examined these results and
found the deflections to be in excellent agreement with
those determined by the Multiple Fourier Method. However,
boundary stresses differed up to two percent.

The analysis of stiffened panels is a relatively
‘recent development. Afgyfis (8) formulated a:solution,
based on the Force Method, using matrix‘notation for
cdmplicated structures. Turner, et al. (9) developed a

method of analysis.for stiffened panels based on the



Stiffness Method.

Ayres (10) investigated the stresses and deflections in
stiffened rectangular panels subjected to various load
conditions. At approximately the same time, Stone (11)
investigated the stresses and deflections in a stiffened
trapezoidal panel subjected to various load conditions.

Both investigators report results which compare favorably
with their experimental data.

A survey of the various methods has been conducted by
Rigsby (12) in which an attempt was made to determine which
method of solution should be used. This survey had
applicability to stringer stresses only. The conclusion
drawn was that energy methods were preferable to other
methods in determining stringer stresses.

The Force Method and the Stiffness Method are the two
popular methods of analysis now being used in the aircraft
industry.

The Force Method is based on the premise that there are
an infinite number of force systems for a given structure
which will satisfy the conditions of equilibrium, but that
only the correct force system will also satisfy the condi-
tions of compatibility with regard to displacements. The
structure can be idealized as webs (which sustain only shear
loads) and stringers (which sustain only direct loads) as
illustrated in Figure 1. This idealization requires that
an "effective" stringer be used. The "effective" stringer

is composed of the original stringer plus an effective area



—

———
——————

e

. I

a o a
Figure 1. Force Method
Assumption
g
I B O
-(—. v >
T = l'l‘p — O
'*—f T e
I by b
o
O-—-e———{ ' l——->-G

Figure 2. Stiffness Method
‘Assumption



added because of the assumption that the web sustains only
shear loads. The amount of web area added to the stringers
depends on the stress levels to be encountered, the panel
material, and the type of loading (13).

The unknown quantities in the Force Method are the
redundant forces in the structure. The total potential
energy is expressed in terms of the redundant forces and
the external forces. The deformations are determined from
an assumed stress-strain relationship and the kinematic
relationships. Compatibility is then used to obtain a set
of simultaneous equations from which the redundant forces
are calculated. Additional calculations yield the displace-
ments.

The second popular method is the Stiffness Method which
requires that the structure be idealized by considering the
structure to be connected only at the nodes chosen for the
analysis. The forces and deflections of each member are
related by an assumed stress-strain relationship. The
displacements of the nodes are considered as the unknown
quantities.

A further assumption is made that the webs transmit
axial stresses as well as shear stresses as shown in Figure
2, however the assumed stress distribution is usually a
simple one.

There are an infinite number of sets of compatible
nodal displacements but only the correct one satisfies the

equilibrium conditions. Once the displacements have been



determined, an additional set of calculstions yields the
forces.

Both the Force Method and the Stiffness Method require
that the elements of the structure be connected so that no
discontinuities of deformation occur and so that the
elements are in equilibrium with the external reactions and
the forces they exert on each other.

Although the Force Method and .the Stiffness Method are
the two primary methods used by the aircraft industry, these
methods are seriously limited in that they yield results
that differ unless identical mathematical models are used
for each. Ideﬁtical mathematical models are not always
practicable, If dissimilar mathematical models are used,
the Stiffness Method yields the more satisfactory stress
values and the Force Method yields the more sétisfactory
deflections (9).

In anytfinite element method, the size of the element
is a critical factor., The confidence one can place in the
results depends on the element size. Since many elements
are usually required to obtain reasonable results, lafge,
complicated computer programs are necessary to aid in the
computations.

In order to circumvent these limitations, two other
analytical methods, the Mbthod of Timoshenko and the
Rayleigh-Ritz Méthod,vwere explored in this study. The
limitatibn of these methods is the assumption of stress or

displacement functions. The more accurate the stress or



displacement functions, the better the results.
The position of a vibrating system which is periodic in

time may be expressed by the relationship
X = fxy) VT

in which X must satisfy equilibrium conditions for the time
'vafiable forces. X must satisfy the law of conservation of
energy, that is, the sum of the changes of all forms bf
gnergy must be constant with time., The function f(Xj) is
- the shape of the deflection curve for the system: the modal
shape function. The modal shape function undergoes changes
~only in amplitude in order to define X. In other words,
: f(xj) aids X in satisfying equilibrium condiﬁions and the
law of-conséfvation of energy. For static problems, the
elWt term is equal to unitj. Therefore, f(xj), being
identical\to;X, must itself satisfy enetgy conservation and
equilibrium.’ When a solution fOT'f(Xj) is readily apparent,
there is no direct use.of the law of conservation of energy
or equilibrium; however, one or both laws are involved as
an essential to the solution. N

When a.SOIutidn for»f(xj)’is_not readily apparent, a
soiutioh can be obtained by properly selécting the optimum
f(Xj) of all conceivable:functions whiéh satisfy boundary
conditions or system constraints. To aid in the proper
selection of f(XJ), one shbuld first examine the Lagrangian
equations. For a conservative_system, a differential

- equation of an energy term is equivalént to the equilibrium



~equation. The energy equation is written as
L=T-T0,

where, L = the Lagrangian function,

U = the potential energy from a fixed datum, and

T = the kinetic energy.
Both terms are positive because they represent only quadratic
terms of space.variables, that is, every term .in T and U is

. positive. The logical requirement in this case is
T + U = constant >0
which may be wriﬁten as
T-U=-20+C
‘ori
U-T:'=”-2T+c.'

These forms indicate that a difference of the‘energies can
be_dependént on either T or U. This discussion assumes that
"both T and U are precisely known and that the sum'of both
must be a constant to satisfyvthe law of consérvation of
 energy.

Both T and U may be calculated from aﬁ-f(xj) which is
different from the correct value. Then T and U may be

expressed as

T="T"' + 8T,,and



U=TU'+§U,
where T' and U' are the correct values. Then
T+U=2¢C
‘becomes
T' + QT + U +OU = C
or
T' + U' = ¢ - OT - OU.

Since the arbitrary choice of T and U did not recognize how
the correct value is separated from the erroneous one,éST
and SU cannot vanish. However, the least value may be

selected by minimizing the energy, that is,
d(T' + U') =-dOU + OT) = 0.

- In this respect the error is reduced to a minimum. The
quantities ST and SU will have a least value which is

constant,-with theJconsequence,
T+U=¢C+ Cyq.

This indicates that the energy equation is in error by Cq,
therefore (T + U) is in error as f(xj) is in error.

It should be noticed that

T o U =-20+C~- (OU +OT)
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leads to
d(T - U) = -2dU - d(SU +8T) = 0.

The preceding analysis conforms with the natural phenomenon
that nature seeks an equilibrium condition which requires a
minimum overall change of energy. The application of this
fact does not necessarily yield the correct answer. It has
been shown that an error in f(xj) introduces the error Cj in
the energy equation. This is an arbitrary error because the
chosen f(XJ) is arbitrary. Because of the quadratic form of
T and U, both C and C; would be greater than zero. A more
correct solution could be obtained by minimizing the error

with a better choice of modal shape, i. e.,

bCl 0
ST Txj]

A slight variation in analysis is required when one
form of energy is not a quadratic function of f(xj). As
long as the conservation of energy is assumed, the sum of
the positive changes must be a constant; therefore, the
previous discussion applies to any system which has signifi-
cant changes in energy.

In order to apply the minimizing condition,
@il + )y =@,

f(xj) is expressed as a function of an undefined parameter,

that is, a constant factor aj. Then the condition



i i

g%m
aj =0

provides all the equations necessary to determine aj. If
(T + U) is a homogeneous function, aj cannot be uniquely
determined, however all aj's can be determined in terms of
one aj, say ag. It then becomes necessary to find some
additional condition to find ag.

Thus, the Rayleigh-Ritz Method is an approximation
which depends on the principle of stationary potential
energy. Deflection functions are assumed in the form of a
polynomial series with undetermined coefficients. This
method evades the compatibility conditions, satisfying them
only approximately. Although deflection equations may be
obtained which are usually very accurate, no reliability can
be placed on the stresses which are obtained by the differ-
entiation of the deflection functions. Generally, the
deflection functions chosen are approximations to the exact
functions. Because the deflection functions are in error,
the stress functions obtained by differentiating these
functions will be in greater error. Therefore, when
stresses are of primary interest, a method other than the
Rayleigh-Ritz Method should be used. A similar method
employing the principle of least work can be used. This
method is usually referred to as the Method of Timoshenko.
The Method of Timoshenko involves the selection of a stress
function which satisfies the equilibrium and stress boundary

conditions identically and compatibility approximately. If
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the stresses are of primary interest, the Method of
Timoshenko provides a direct method of solution.

The Rayleigh-Ritz Method and the Method of Timoshenko
yield identical results provided the exact deflection
functions are used in the Rayleigh-Ritz solution, the exact
stress function is used in the Method of Timoshenko, and an
infinite number of terms is taken for both.

The stress function derived in this dissertation is
approximate, as are the deflection functions. Stresses
derived from the deflection functions using the Rayleigh-
Ritz Method cannot be expected to compare with the stresses
obtained from the Method of Timoshenko. Conversely, the
deflections obtained by the integration of the stress
function contain large discrepancies. This is not to say
that the stresses obtained by the Method of Timoshenko are
not acceptable. The stresses will be accurate because
boundary conditions and equilibrium conditions are satisfied.
On the other hand, the deflections obtained by the Rayleigh-
Ritz Method should be a good approximation to the actual
deflections.

This study was undertaken to examine the desirability
of using the Method of Timoshenko and the Rayleigh-Ritz
Method to calculate the stresses and deflections of canti-
levered skin panels, both stiffened and unstiffened. The
study is primarily theoretical; however, experimental and
analytical results of other investigators are available for

comparison.
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The study includes stress and deflection analyses of a
cantilevered panel (shown in Figure 3). The results of the
cantilevered panel analyses are compared with a solution of
Timoshenko (7), which was obtained using a uniform shear
stress, having a resultant P, on the free end of a canti-
levered panel as shown in Figure 4. The stress equations

used by Timoshenko were

Pxy
Lk ™ "Taree! (1-1)
O_y = 0 s (1-2)
and
P
Txy = _ﬁ(bz_yz)' (1-3)

The deflection equations obtained by Timoshenko were

Pty _ uPy® Py  |Pa’ Dbz) s
~GET ~Cer *eeT *\zET 287y M

=

and

pluytc.  Px®  Patx Pa’
el T gET T eEr t gET (1-5)

The analysis was then extended to a study of a stiff-
ened cantilevered panel (shown in Figure 5) which is the
same panel used by Ayres (10). The panel was chosen so that
the results could be compared to the analytical and experi-
mental results of Ayres, who used a stiffness analysis in

his study.
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‘Figure 3. Unstiffened Panel Configuration
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MATERIAL: ALUMINUM

E=107 PSI; JM=0.333

1000 L84
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Figure 5. Stiffened Cantilevered Panel
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CHAPTER II

THE DERIVATION OF A STRESS FUNCTION
FOR A CANTILEVERED PANEL

The Method of Timoshenko provides a direct method of
solution for the stresses in the panel. In order to
implement this method a stress function is required. This
chapter is concerned with the derivation of an initial
stress function which satisfies all stress boundary condi-
tions of a cantilevered panel of uniform thickness. A
polynomial series containing undetermined coefficients is
then added to the initial stress function in such a manner
that the boundary stresses are unaffected by the series.
Differentiation of the stress function yields the stresses
in the panel.

In order to obtain suitable stresses and deflections,
and consequently a suitable stress function, the investiga-
tion was initiated by assuming the deflection functions
given in Appendix B. This approach was taken because it
was believed that the Rayleigh-Ritz Method was simpler to
apply and would yield accurate results. The most critical
assumption in the Rayleigh-Ritz Method is the selection of
the deflection functions. The effectiveness of any energy

method depends upon the satisfaction of boundary conditions

17
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as closely as possible. The functions given in Appendix B
were unacceptable because the only boundary conditions
satisfied were the deflection conditions at the fixed
support, that is, uw =0, v=0, at x = 0, y = y. No other
deflection boundary conditions were available. The selec-
tion of these functions was based on unpublished notes by
Pickett (14) in which the hypothesis is put forth that
certain minimum conditions are required for the effective
use of the Rayleigh-Ritz Method. The minimum conditions
prescribed were those of geometric boundary conditions.
None of the deflection functions of Appendix B yielded
satisfactory results which indicated that additional condi-
tions were required. Since no additional conditions were
available, this approach was discarded and the problem was
approached from the standpoint of stresses because more
boundary conditions could be prescribed.

The most critical factor in an analysis using the
Method of Timoshenko is the choice of the stress function.
The stress function should satisfy all stress boundary
conditions and as many physical conditions as possible.
However, the implementation of this requirement is not
always feasible. The stress function, equation (A-1)
given in Appendix A, was expressed to incorporate as many
variables as possible. The mathematical manipulations
became so cumbersome that the presumed advantage of sim-
plicity desired by the use of the Method of Timoshenko was

negated.
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The stress expressions, equations (A-4), were then
selected to determine the feasibility of using uncomplicated
stress equations. However, the application of the minimiza-
tion procedure showed that the coefficients, B and D, were
too sensitive to round-off error. The stress function
finally selected for the analysis which follows was select-
ed after equations (A-1) and (A-4) proved to be unsatisfac-

tory.
Formulation of an Initial Stress Function

The normal and shear stresses on an exposed surface
must be zero if the surface is unloaded. If the exposed
surface is loaded, the surface stresses must correspond to
the applied load. These facts required that the boundary
conditions be specified as follows:

(a) at y =b, x =x, Oy= f(x),

(b) at y=-b, x =x, Oy= 0,

(e) at x =0, v =y, T=0,

(d) at x =0, y=y, Txy =0,

(e) at y=b, x =x, Txy =0, and

(f) at y=-b, x =x,Txy = 0.
The above boundary conditions are shown in Figure 6. 1In
addition to these boundary conditions the stress function

should satisfy

I

external moment and

b
S yd
(e) Jox yy

b
(h)_,[ Txy dy

external load



20
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' Figure 6. Stress Boundary Conditions
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at any vertical cross section.

The f(x) in (a) above was determined by replacing
the concentrated load at the free end of the panel with a
normal stress distribution in the y direction along the
upper edge of the panel. This stress distribution was
selected in such a manner that at least ninety-five per-
cent of the area under the curve was located within one
half inch of the free end in order to approximate load con-
ditions on Ayres' experimental model. The assumed loading
of the panel is shown in Figure 7. The function selected

was

f(x)= Jy = [AX(X +a)2_ B(x+a)'80i||:'4b3jl, (2~1)

The constants A and B were determined by equating the area
under the Jy curve to the load P and by equating the moment
of the area of the Oy curve to the moment of the applied

- load about the free end. These calculations were made in
the following manner. The force due to the first term in

equation (2-1) was obtained from

4.3
fo(x+a.)z(-4b3)dx = —A%E-’— . (2-2)
o

The force due to the second term of equation (2-1) was ob-

tained from

f8(><+a)'80(4b3)dx = -4BB O'T . (2-3)
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Figure 7. Assumed Loading of Panel
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The moment of the first term of equatlon (2-1) about an axis

perpendicular to the panel at x = O,,y b was obtained from

- -a | | ]
| fo(x+a)2(.—4bs)><dx =4Ab3% . (2-4)
o

The moment of the second term of equation (2-1) about the
same axis was obtained.from
- | 3 182
180, .3 _ 48Bba 3
‘O
The sum of equations (2-2) and (2-3) must balance the load

P and the sum of equations (2-4) and (2-5) must be zero.

In other words,

181 3 4
4BE 5 + A5 - (2-6)
and
4BPa®* | 4APa® ., (2-7)

181(182) 30

Equations (2-6) and (2-7) were solved simultaneously which

yielded

_ =30P
A' 718 a*&®

and
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_ (181)(182) P
B= < a® -

The initial stress function which satisfied all

boundary conditions became

20 ' 12 12 <3 30

182 18I 182
" B g N AT T 2

Equation (2-8) was differentiated twice with respect to y

¢ =|A { (x+a)® _ axra)? o it a® }
o

to obtain the stress Ox. The differentiation yielded

5 4 4 5
LA (x+a) _ a(x+a) ax a
W 4’”’ [A{ 20 12 % 12 # 30

(x+a)f82 ai&'lx a-h?z (2-9)
-B{(;e:)(raz) = e Gen@(||®|

Equation (2-8) was differentiated twice with respect to x to

obtain the stress Oy. The differentiation yielded

Oy = Pxx= [A x (x+a)'- B (x+a)w°] l:y5- 3b27-2b3] ot fR-20)

Equation (2-8) was differentiated once with respect to x and
once with respect to y to obtain the stress -Txy. The dif-

ferentiation yielded
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4 4
—Txy=¢xy=[A{(xza) - a(,:-a)’ + ;}

| s e

Formulation of the Second and Third Stress Functions

An infinite number of stress functions exist which
will satisfy stress boundary conditions. The proper function
is that one which minimizes the strain energy. Because the
initial stress function, @,, was not necessarily the proper
stress function, it was altered by adding an infinite poly-
nomial series which contained undetermined coefficients.

The coefficients were determined by the minimization of the
strain energy. The infinite series was selected so that
the stresses corresponding to it vanished at the boundaries.

The form of the complete stress function was

o0

Cmn xmyn‘ (2-12)
)

P =, +x* (- S

m=o nN=

Equation (2-12) was differentiated to obtain

¢ =| A (X+a)5 __a(x+a)4+ a4x % a’®
Yy 20 12 12 30

o hbeea)™ @, g -
B{(:a:)(:a:a) 131 7ancia) (1| ©”




R6

+ x* (y&b )ZZ A(n=Crnn X"y
F8x y(y2 bz)ZZnCmnx y'!
+4X4(3y bZZZC,m x‘ yr; | (2-13)
| c75x><=\:,1\{(x+a)3»—cz(xancz.)z}-B(a‘<+a-)’a<j[y3-3197' ~253:}
; xé(yé; Eﬁ)zzzm et G X2

: +8X3(>/2 bz)zzzmcmn m-I n

12 x* (y> bz)ZZZCmn - o (-1

and

R T PV B
%{A{ Eahi al ‘FZ‘*}
ra)f® o |
B{ /81 '757}}[37 3"]
| + X (yz-—bz_-)ZZZmn Cmnx‘m_lyn-“
+ IGX y(y ZZCmnX )’
+ 4x*y (vyz-bz)ZIZm Cm‘n XMy"

F (=)D 20 Con ™y s




The_strain‘energy'inbthe plate was written as
o ~a b ’ . : v _

v — . / ‘ 2-16) . -
V=) (8 by vt s
- X=0 ya=b - ' g - :
'.Equaﬁions (2-13), (2-14) and'(2~15)_wére'substitutédvinto

equation (2-16) to determine the compléted strain energy
expreSsion és a function of the Cpp,. This expresSion was

" minimized with respect to each C

mn’ i. e,

oV

— =0
O Cmn

“_whiCh‘yielded a set of iﬁdependent linear‘eqéétions in Cpp .
At‘this bointvin ﬁhe défivatidn a limifation on the number
fof‘undetefmihed coeffiéieﬁts to be evaluated was necessary
in order to facilitaté the solufion of theée‘equations.
The number of.coéffiéiehté was limited to one to obtain the
':secohd stress function, then to four to obﬁain the third |
stress function. | | | |
__;Thq}use»of Qne undetermined.coefficiént resulted in the

equation

(5.6888a%05 + 22.2912a7b7 + 468114509 )cy,
= 0.0333Pa?p5. IR (2-17)

‘The-lengph of the-panel, a, was twice the height, 2b. This
relationship was substituted into equation (2-17) which

‘”yielded_
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Coo = 0.0046 P/a?,

Cop was substifutéd into equations (2-13) through (2-15)
to obtain the stresses from the second stress function.

The use of four undetermined coefficients resulted in
the equations |

~(5.6888a7b° + 22.2912a7b7 + 46.8114a°b%)Cop

6

-3.7926a%0°C01 + (46.4863a%7 + 21.3809a%7

+ 5.1200a%)c10 + 3.4133a1%70); =

- 0.0333 Pa®b”, | | (2-18)
and | |

- 3.7926a%0°Cqg -(5.1471a%b + 1.8608a"b7

+ 1,.2556a”bten; + 3.4133a %01 + (11.377825%7

+ 4,.6324a%7 + 5.9105a%11)011 = - 0.00782s Pa%?

6

+ 0.000148 Pa?b® + 0.000221 Palp¥, © (2-19)

and

8

(65.01592%7 + 15.6038a%7 + 5.1200a1%7)cqq

+3.4133a1%5%co; - (92.8798a7b7 + 27.0900a%7

+ L.65452110°)C o - 3.1030atp70;; =
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0.01356 Pa3b’, " (2-20)
and

413321005000 + (6.9892a%7 + 4632421007

w

+ 5.9105a%11)co1 - 3.1030al105014 - (8.3227a%7

+ 4.2113a 07 + 8.4436a7b1L)0 ) =

0.000002 Pa3b® + 0.018047 Padvh. (2-21)
- The relationship, a‘= 4b, was substituted into equations
(2-18) through (2-21) which yielded the matrix equation
(7265 -3.793  204.762  102.400] [oog| [-0.0333]
f] -0.032  2.856 0.853  67.968| |co1| |-0.1250

6.34,9  3.413 -201.450 -93.091| [Cyo| | 0.0136
| 0.004  0.317 0.103 - €.920| |C13| |-0.0130

—
lw

. —— =

(2-22)
The solution of equation (2-22) yielded

Coo = 0.00883 P/a’,
Cgy = 0.50708 ‘P/a?,
C10 = -0.00019 P/a7, and
C11 = 0.01947 P/a’.

These coefficients were substituted into equations (2-13)
through‘(2415) to obtain the stresses from the third stress

function.
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The values of the Ok stresses aré’shown in Table I.
The first two columns locate the point at which the Ok
stresses were calculated. Column three shows the Ok stresses
calculated from the results of Timoshenko giVen by equation
(1-1). Column fouf shéws the Ox stfesses calculated with
the initial stress function, i. e;,’equation (2;9).
Column. five shows ﬁhe Ox stresses calculated with the
second stress fuﬁction; i. e., equation (2-13) with one
Cmn’ Column six shows the OUx stresses calculgted with the
~third stress funétion,.i. e., equation (2-l§5lwith four -
Cmn's.

The values of the Oy stresses are shown in Table II.
The first two columns locate the point at which‘the Oy
stresses Were calcuiated. }Golumn three shows the Oy
stresses calculated from the‘reSults‘of Timoshenko as given
by equation (1-2). Column,four'sh@ws the Oy stresses cal-
culated with the initial‘streSS function,ﬂi; e., equation
(2-10). Column five shows the Oy stresses calculated with
‘the second stress function, i. e., equation (2-14) with one
Con - Célumn six'Shows the'O?‘stresses calculated with the
'third-étress‘function, i. e.; equation (2-14) with four
‘Cmn's, | |

The values of the 7§y stfésses are shown in Table IIT.
The first two columns locateythé point at which the Txy
stresses were calculated. Column three‘shows the 7§y
stresses calculated from the results of Timoshenko as

given by equation (1-3). Column four shows the Txy stresses
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TABLE. I
Ox STRESSES IN PANEL

Initial  Second Third
Stress Stress Stress
b'd y Timoshenko Function Function ~Function
0 7.5 0 0 0 0
5.0 0 0 0 0
2.5 0 0 0 0
0.0 0 0 0 0
2.5 0 0 0 0
-5.0 0 0 0 0
-7.5 0 0 0 0
-5.0 7.5  =133.3 -132.5 -132.5 -132.4
5.0 - 88.9 - 88.3 - 88.3 - 88.3
2.5 - LL.5 - 442 - 442 -
0.0 0 0 0 . 0
2.5 bh.5 b2 b2 by .2
-5.0 88.9 88.3 88.3 88.3
7.5 133.3 132.5 132.5 132.5
210.0 7.5 -266.7 ~268.9 _268.9 _268.1,
5.0  -177.8 -179.7 ~179.7 ~179.8
2.5 - 88.9 - 90.0 - 90.0 - 89,8
0.0° 0 0 o 0

2.5 88.9 90.0 90.0 89.8



TABLE I (Continued)

' = o Tnitial §econd - Third

. Stress - Stress Stress
_ X y ;_Timoshenko *Function FunctiongtiFunction
-5.0  177.8 . 179.7 179.7 179.5
7.5 266.7 268.9 268.9 268.5
- -15,0 7.5 -400,0 -4,05.8 -4,05.8 ~40L4.1
| 5.0  -266.7 -270.5 ~270.5 -271.0
2.5 -133.3 | -135.3 -135.3 ~136.0
0.0 0 o0 0 0
-2.5  133.3 135.3 © 135.3 135.9
-5.0  266.7  270.5 270.5 271.0
-7.5  L00.0  405.8 1,05.8 1O . 1
-20.0 7.5 -533.3 -531.8 5318 -528.9
5.0  -355.6 -354.5 ~354.5 -355.3
2.5 -177.8 -177.3  -177.3 ~178.5
0.0 0 o 0 - 0.02
2.5 w78 1773 177.3  178.4
-5.0  355.6 354.5 354.5 355.3
47.5 533.3 531.8 531.8 528.9
-25.0 7.5 -666.7 ~653.5 -653.5  -652.2
5.0 -hbh.L -L35.7  -k35.7  -A36.0
2.5 -222.2 -217.8 217.8  -218.4

0.0 0 0 . - 0.03 - 0.05



(Continued)
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TABLE I
~Tnitial ~ Secomd  Third
4 v Stress Stress .Stress
X ¥y Timoshenko  Function = Function Function
-2.5 222.2 217.8 217.8 218.3
-5.0 Lbb.L 435.7 435.7 436.0
7.5 666.7 653.5 653.6 652 .4
-30.0 7.5 -800.0 -800.0 -799.9 -809.4
| 5.0 -533.3 -533.3 -533.3 -530.8
2.5 -266.7 -266.7 -266.7 _262.8
0.0 0 0 - 0.04 - 0.06
-2.5 266.7 1266.7 266.6 262.7
-5.0  533.3 533.3 533.3 530.9
1800.0 800.0 800.1

809.9



L TABLE.TT

Oy STRESSES IN PANEL

3L

= Initial Second _ Third
o v Stress Stress Stress
X y Timoshenko Funcetion - Function  Function
o 7.5 0 6117.0 6117.0 6117.0
5.0 0 5661 .0 5661 .0 5664 .0
2.5 0 4531.0 4531.0 4531.0
0.0 0 3059.0 3059.0° 3059.0
-2.5 0 1586.0 1586.0 1586.0
-5.0 0 453.0  453.0 453.0
-7.5 0 0 0 0
-5.0 = 7.5 0 - 0.6 - 0.6 - 0.6
5.0 0 - 0.6 - 0.6 - 0.6
2.5 0 - 0.5 - 0.5 - 0.4
2.5 0 - 0.2 - 0.2 - 0.2
5.0 0 0 0 - 0.4
7.5 o 0 0 0
110.0 7.5 0 - 0.8 - 0.8 - 0.8
5.0 0 - 0.8 - 0.8 - 0.7
2.5 o - 0.6 - 0.6 - 0.5
0.0 o - 0.4 - 04 - 0.
S 2.5 0 - 0.2 - 0.2 - 0.3
-5.0 0 - 0.1 - 0.1

- 0.1



TABLE II (Continued)

Tnitial "§ecdnd | Tiird
' ' Stress ~Stress Stress
X vy - Timoshenko Function Furiction. Function
75 0 0 o 0
-15.0 7.5 0 - 0.7 - 0.7 - 0.7
5.0 0 - 0.6 - 0.6 - 0.6
2.5 0 - 0.5 - 0.5 - 0.5
0.0 0 - 0.4 - 0.4 - 0.
-2.5 0 - 0.2 - 0.2 - 0.2
~5.0 0 - 0.1 - 0.1 - 0.1
_7,51‘ 0 0 0 0
-20,0 7.5 0 0 0 0
5.0 0 0 0 - 0.2
2.5 0 0 0 - 0.2
0.0 0 0 0 0
=2.5 0 0 0 0.2
-5.0 0 0 0 0.2
7.5 0 0 0 0
-25,0 7.5 0 0 0 - 0.5
5.0 0 0. 0 - 0.6
2.5 0 0 0 0
0.0 0 0 0 0
-2.5 0 0 0 0.7



TABLE II (Continued)

» Initial Second  Third
: ~Stress Stress Stress
Xy ‘Timoshenko " Function Function Function
-5.0 0 0 0 0.5
=745 0 0 0 0
-30.0 7.5 0 0 0 0
5.0 0 0 0 - 1.1
2.5 0 0 0 - 1.
0.0 0 0 0 0
-2.5 0 0 0 1.5
-5.0 0 0 0 1.1
0 0 0 0

=7.5



. TABLE IIT
“Txy STRESSES IN PANEL

= ‘Initial = Second Third
: . Stress Stress - Stress
X y Timoshengg__ Funetion Echtion Function
o 7.5 0 0 0 0
5.0 55.6 0 0 0
2.5 . 88.9 0 0 0
0.0  100.0 0 0 0
-2.5  88.9 0 0 0
5.0 55.6 0 0 0
7.5 0 0 0 0
-5.0 7.5 0 0 0 0
5.0 55.6 56.2 56.2 56.2
2.5 88.9 89.9  89.9 90.0
0.0 100.0 101.2 - 101.2 101.2
2.5 88,9 89.9  89.9 90.0
~5.0 55.6 56.2 56.2 56.2
75 0 0 o 0
-10.0 . 7.5 0 0. - o o0
5.0 55.6 56.0 56,0 56.0
2.5 88.9 89.6  89.6  89.7
0.0  100.0 ~100.8 - 100.8 101.0
2.5 88,9  89.6  89.6 89.8



. TABLE IIT (Continued)

100.0

Tnitial Second - "Third
Stress Stress Stress

X y  Timoshenko Funcﬁion Funct%ggﬁ giisﬁion

5.0 55.6 56.0 56,0 56.1
-7.5 0 0 0 0
-15.0 7.5 0 0 0 0

5.0 55.6 55.8 55.8 55.9

2.5 88.9 89.3 89.3 89.5

0.0  100.0 100,14 - 100.4 100.7

-2.5  88.9 89.3 89.3 89.6

25.0  55.6 55,8 55.8 56.1
750 o 0 0
-20.07.5 0 0 o 0

5.0 55.6 55.6 - 55,6 56.0

2.5 8.9 89.0  89.0 89.1

0.0  100.0 100.1  100.1 100.2

2.5 88.9 890 89.0 - 89.3

5.0 55.6 - 55.6 55.6. 56.2
-7.5 -0 0o ) 0
-25.0 7.5 Q 0 0 -0

5.0 55.6 55.6 .55.6. 56,3

2.5 ‘,88;9 | 88.9 - 88.9 85.6

0.0  100.0 100.0- | 99.1



"TABLE III (Continued)

39

B " Initial
Stress
X v TMQwaw Function
-2.5 88.9 88.9
-5.0 55.6 55.6
-7.5 0 0
-30.0 7.5 0 0
5.0 55.6 55.6
2.5  88.9 8.9
0.0 100.0 100.0
-2.5  88.9 88.9
5.0 55.6 55.6
7.5 0 o

Third

Second
Stress Stress
.Function Function
88.9 88.6
55.6 56.4
-0 0
0 0
55.6 57.0
88.9" 87.2
100.0 96.5
88.9 86.8
55.6 56.5
. . .
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~calculated with the iﬁitial stress function, i. e., equation
(2-11). Column five shows the Txy stresses calculated with
the second stress function, i.ve.,'equation (2-15) with one
" Con - Coiumnrsix'shows the Txy stresses calculated with the
third stress function, i. e.; equétion (2-15) with four
Cyn's. '

The Ox results indicated in Table I show slight devi—
ations from the results of Timoéhenko. There is little
difference in the results regardless of whether the initial
stress function, secdnd stréss function, or third stress
-function is used. Apparently the use of the initial stress
function will result in only a slight error in any calcu-

- lation. The maximum difference between the initial stress
function and the third Stress function is 1.24 peréent at
the point x = =30, v = —7.5."The maximum deviation should
OCCur'someWhere}along the fixedvend,because the fixed end
Vis farthest removed from the boundary at which the@Ik
- stresses‘were,sﬁecified»invthe fbrmulatidn of ﬁhe stress
function. The maximum difference between the sblution of
Timoshenko and the third stress function is 2.1 percent at
the pdint X = =25, y = <7.5. |

7 The<7y,results indicated in Tablé IIvshdw a sharp devi-
-ation from the results of Timoshenko. The simplicity of the
" assumed ioading in the analysis'of Timoshenko excludes the
- possibility of Oy stresses anywheré,in the panel. The
assumed loading in this analysis‘recognizés the‘existence

of Oy throughout‘thé panel., The three stress functions
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derived in this analysis yield nearlyvidenticalvoy results.
The maximum value of O&.naturally occurs at the point Of
application ofvthe load. |
The 7kyjresults indicated in Table III differ slightly
from the éolution‘of Timoshenko. The largest deviation
~ occurs at the free end where the load is not well defined.
Once again,;thé results of the three stress functions fit
the phySical loading 'in this analysis more closely than
Timoshenko. Thé free end of the panel is a free surface
which can hardly support a shear stress as indicated by
Timoshenko. The results. of all three stress functions
throughout the rest of the structure differ Only slightly
from Timoshenko's resuits, The largest deviationIOf 3.2%
~occurs at x = -30, y = 0, in the third stress function.
| The O&.stressvdistribution_at_severél cross sections is
shown in-Figﬁre 8; the Oy distribution at several cross
sections is shown in Figure 9; and the‘rky distribution at
“several éross seétions is shown in Figure 10.
N The selected stress function resulted ih»stresses
which are within 2% of Timoéhenko's vélues wherever compar-
ison is proper. Additional terms to the initial stress

function change the stresses by 2.1% or less.
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CHAPTER IIT

" THE DERIVATION OF DEFLECTION EQUATIONS
| FOR A CANTILEVERED PANEL

Thevmethod of Timoshenko can be extended directly,to
obtain the deflections; provided the stress function is
»exact ‘The stress functions chosen .in Chapter IT are net
exact, therefore another approach was necessary to obtaln

the deflectlon.equatlens.' The Rayleigh ~Ritz Method prov1des
_ va direct~soiutionafor the deflectlons of the panel. In
‘[order'tovimplement this method»defleetion equations.with_
‘undetermined ceefficients.mﬁst be selected. ‘The'initial'
stress function of Chapter II was used to determine the de- -

flection equétions.
Formulation of Deflection Equations

v'The-u_and.vvdeflections may be expressed as
Euw =f¢yydx'.-_ #f?bxxdx | ~(3-1)
and"'

Evefbudy —uf by G

L5
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~ Substitution of equations (2-8) and (2-9) into equations

(3-1) and (3-2) yielded

120 %0 24 30

[ (x+2)E3 %2 2% |
_B{(/as)(/az)ual) - 2(181) _(/82)(/8/)‘ Gy]
_ (x+a)*_ a(x+a? |
(et st

-B Qﬂ)ja]{yg-—abzy—zg] +fy) (3-3)

/81
~ and
E v :,:A {(x +a)’-a(x +a32}— B (x+a)lao} [—;-‘3—!;—?12- 2 bsy:’

_#I:A{(x-ga)s _ a(x+a.)4-+ a%x + a‘E‘} |

Zo . I2 12 30
-B (x+a)v’82' _a®x _ 2’ | 303 + £x), (3-4)
(182)(/81) 81 (eaen(||°” |- .

Difficulty was encountered in the attempt to determine

£(y) in equation (3-3) and £(x) in equation (3-4). This
difficulty was due to the inability of the stress function
to satisfy compatibility. The relationship for shearing

stress,

T du dv ' '
XY = + (3"5)
G dy dx '
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could not be satisfied becayse the stress function used in
this analysis was an approximation, not an exact function.
‘Underbthe classical apprdach with an exact stress function,
equation (3-5) would be automatically satisfied. Equation
(3-5)'contained, not only functions of x and functions of y,
but functions of the product, xy, as well. The functions
f(x) and f(y) cbuld not be determined.
| The difficulty was circumvented in the folloWihg manner:
1. u was compietely»defined by imposing the boundary
~condition that u was zero everywhere along the
'support.

2. v was determined by means of various expressions
for f(x) ih the formnof polynomials with undeter-
mined coefficients..

3. The undetermined coefficients wefe'evaluated with
the Rayleigh;Ritz procedure. o

The boundary condition,
T u=0at x = -a, ¥y = Y,

was applied and the expression for u became

O 6 5 4.2 5,
- (x+a) _ a(x+a)” , a’x a’>x
E“‘[A{ 120 60 a4 T 30}

-B (x+a)® a/8lxz.; o2 y |
- \183)(182)(181) 2(1) ~ (182)Cig)f 2%

v LatF 3 L \/8
-H[A {sza) - alua) }_ g Lrsa 'J[ya_bbzy_zsz
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[4a% | 908Ba® |
"[/20 +(/a/)(usz) K | (3-6)

The deflection of a cantilevered beam can be ¢losely approxi-

mated by a cubic equation therefore the f(x) in equation

(3-4) was replaced with the expression
| ' 2 3
fix) = Ao + Az (x+a) +A3(x+a.)

in which each A coefficient was undetermined. Ao was
evaluated by imposing the condltion that the average v

deflectlon at the support was zero, 1. e.

b

f v:] dy = 0.

b X=-&

The procedure yielded Ay = 8550. The strain energy for the

plate was. written in the form

v- 5[ {52 13

+ _E du
21+;_1,)_ d_)’

The potential energy of the external load was expressed as

. PE f Oy V dex. | (3-8)
- yeb |

du ov  [avl]
3% oy +(dyn
du dv (9 |
dy Ox

+ 2

Equations (3-4) and (3—6) were substituted into equation -
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(3-7). Equation (2-8), evaluated at the uppér edge, and

equation (3-4), also evaluated at the upper edge, were sub-

stituted inte equation (3-8). The resulting expression was

substituted into the Rayleigh-Ritz condition
o) ( |
i V— PE) - On
JdAn \" T
This yielded two simultaneous equations,:

0= 25.689 - A2 - 33.75A3

and

(@]
I

”1.435 - Ap -»36.OOA3,
which in tﬁrn yielded

Ap = 89.477
and

Az = _1.89.

(3-9)

(3-10)

(3-11)

Ap and A3 were substituted into equation (3-4) to determine

 the v-deflections. These results, along with the evaluation

of the u-deflections, are compared with the results of

Timoshenko in Table IV.



TABLE IV
 DEFLECTIONS OF CANTILEVERED PANEL

u v

_ , Rayleigh- Rayleigh-
X vy Timoshenko Ritz Timoshenko Ritz Adjusted
0.0 7.5  -0.00104 © ~0.00126 0.00320 0.00755  0.00660
0.0 0.0 ~0.00002 0.00320 '0.00380  0.00300
~7.5 0.00104 0.00120 0.00320 0.00295  0.00200
' 415,0-_7.5 0.00074  -0.00117 0.00105 0.00243  0.00148
0.0 0.0 0.0 ~0.00100 0.00223  0.00138
-7.5 0.00074 0.00117 0.00105 0.00243  0.00148
-30.0 7.5  -0.00016 0.0 0.00100 0.00096 0.0
0.0 0.0 0.0 0.0 0.00086 0.0
-7.5 - 0.00016 0.0 0.00100 0.00096 0.0

0¢
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Table IV also contains a column of adjusted values for
the,v—deflections. The v-deflections at the support should
be zero, however this condition could‘not be obtained from
the assuméd Stress function. Although an average v-deflec-
tion of zero at the fixed support was imposed, and other
attempts to help v vanish did not succeed, the v-deflections
at the fixed support were aséuméd to be the reference null
values. |
| The results.iﬁdicated in Table IV compare favorably
with the results of Timoshenko. The differences are caused
primérilysby‘the difference in loading used in this investi-
gatioh and that used by Timoshenko and by failure to satisfy -
compatibility precisely. As pointed out in Chapter II, the
| application Qf a shear load on the free end of the panel
does hot_accurately approximate the actual loading, there-
fore the.resu1ts of Timoshenko do not show a difference in
-v-deflections between the upper free edge and the lower free
edge. With the assumed lbading.éf this study a difference
,in v-deflections between.the'two edges does exisf; The v-
deflectibn atvﬁhe center of the free end does compare favor-
ably with the value givén by Timoshenko. It éhould’also be
noted tha# the average value of the v-deflections at the
 free end compares with the vélue given by Timoshenko. The

u-déflections,differ in a similar manner. Those given by
’>the methods used in this investigation are slightly largér
than those given by Timoshenko. Deflections at several

- cross sec¢tions are shown in Figures 11 and 12.
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CHAPTER IV

THE DERIVATION OF STRESSES IN A CANTILEVERED
STIFFENED PANEL

The method of Chapter I was extended to a stiffened
.panel by evaluating the effects of a change in cross section
oh various parameters of the physical configuration. The
initial assumption in this investigation was that the
problem was one bf plane stress for which the significant
parameters are the thickness, the moment of inertia, and the

first moment of area about the neutral axis.
Ox Stresses

The nature of the applied load suggested that the most
" significant parameter in the determinatioh of the OXx
 stresses was the moment of inertia because bending was a
'dominant feature. The Ok stresses ih the stiffened panel
were determined from the equation‘ |

_ Ip . '
Txsp ™ Ton T - o )

This procedure resulted in an épproximation to the Ox
stresses in the stiffened panel.

-The analytical values shown in Table V were calculated

5, | |



TABLE V
Ox STRESSES IN STIFFENED PANEL

Ayres' Ayres'
X 'y Analytical Experimental Theoretical

0.0 7.5 0 - -
5.0 0 - | -
2.5 0 - -
0.0 0 - -
-2.5 0 - -
-5.0 0 - -
7.5 0 - -

-5.0 7.5 - 829 ~1050 ' -1050
| 5.0 - 553 - 178 -

2.5 Sam 50 - 300
0.0 0 339 -

2.5 274 300 450
-5.0 553 . 488 -

| -7.5 829 S 850 o 650
-10.0 7.5 -1682 - | -
500 -1126 T .
2.5 - 563 - -
0.0 0 | - | -
2.5 563 | N - | _



TABLE V- (Continued)
: : AyreSf*=r Ayres'
x. . ¥ _épalytical Experimental Theoretical
-5.0 1126 - -
-7.5 1682 - -
-15.0 7.5 -2531 2050 ~24,00
5.0 1697 S146h 1625
2.5 - 851 - 650 - 725
0.0 - 0.04 112 | 50
-2.5 851 750 875
-5.0 1697 1518 1600
7.5 2531 2050 24,00
-20.0 7.5 -3313 - -
5.0 2225 - -
2.5 1118 - -
0.0 -~ 0.12 - ,
-2.5 1117 - _
-5.0 2225 - -
7.5 3313 - -
25,0 7.5  -4085 -3200 -3950
5.0 2731 -2425 -
2.5 -1368  -1150 ~1075
0.0 - 0.3 - 80 -
2.5 1367 950 1075 -



TABLE V (Continued)

_ . - AYres'».: » Ayres!
X y Analytical Experimental Theoretical

~5.0 2731 2430 -

7.5 LO85 3650 3950
-30.0 7.5 -5072 - -
5.0 -3324 - -

2.5  -1646 - -

0.0 - 0.75 - -

-2.5 1645 - | -

-5.0 3325 | - | -

7.5 5072 - | -
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from equation (4L-1). The numérical valués of the moments of
inertia were Isp = b9 ink and I, = 281.25 ink. Ayres'
experimentél.values were obtained by calculating the
stresses baséd on éxial strain gage readings at the points
shown. Ayres' theoretical-Values‘were‘obtained.with a |
- stiffness analysis. |

Generally, the analytical Ox values of this investiga-
tion compafe favorably with Ayres' theoretical values. How-
ever, Ayres! experime%tal values vary greatly from the
values obtained in this analysis. The largest difference
between the analytical values and Ayres' theoretical values
occursvat a cross section five.inches from the free end.
The feasOn.fOr this difference will be discussed later.
These results are shown in Figure 13.

A comparison 6f the Ok stresses at a vertical cross
sectién through the middle of the panel is shown in Figure
'lh. ‘The section was chosen.so that the values from the beam

éqﬁation,
o = 4, (4-2)

bcould.be included. The Principle of StbuVenant should
| apply atfthié cross section, therefore the results obtained
from‘equatioh (4-2) should closely approximate the true
values, The analytical results of this inveéstigation
compare very well with‘the values obtained,from equation

(4-2). The theoretical values of Ayres are less everywhere
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#byxapproximately 5%; Ayres' experimental values are'less
by approximately 18%.  The resisting mament bn the cross
section, calculated from the results of this investigation,
:was within 5% of the actual momenﬁ. The moment'éalculated
from the experimental results of Ayres was 18% less than the
actual moﬁent. ‘'These observations indicate that the experi-
mental results were in error because moment equilibrium is
not satisfied.

A coﬁparison of the values obtained in this analysis
and the theoretical and experimental values of Ayres at a
section twenty-five inches from the free end is shown in
Figure 15. Again, the results of this analysis compére more
favorably with Ayres' theoretical values than with Ayres!
experimental values. |

Sevéral factors could be responsible for the apparent
error in Ayres' experimental results. The experimental
stresses were obtained by calculations based on surface
strain readings. The surface strains developed in the panel,
particularly in the stringers, do not represent the true
strains over the entire thickness. A variation of strain
may exiét with the maximﬁm‘value occurring at the mid-point
of the section. A photoelastic analysis of a "T" section
beam subjected to purevbending was performed by Shah (15),
Whose results show‘that the axialvsurface stresses in the
large.portion-of the "T" are approximately 7% less than the
axial stresses at the center of the section.

A slight error could have been incurred because of an
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error ih the appliedfload. A serious error in this respect
is improbable however, bécause the load was applied through
a calibrated strain gage load cell. |

The difference between the résults of this investiga-
tion and.the theoretical results of Ayres could partly
result because of the approximations used in each analysis.
-The Stiffness Method is a finite element approximatioh and,
as sﬁch,;the number of elements has a direct bearing on the
accuracy of the results. The Method of Timoshenko is also
ah approximation. The accuracy of the stress function,
hencé the stress values, depénds on the number of terms used

in the approximation,
7§y Stresses

The shear stress in a cantilevered beam is evaluated

from the equation

_va
T

‘ Thevsignificant pérameters are I, the moment of inertia of.
the cross section, Q, the first moment of the area above the
v,point at which the stress is to be evaluaﬁed, and t, the
thickness at the point at which the shear stress is evalu-
ated. |

| The shear stresses in the unstiffened panel were

extended to the stiffened panel by means of the equation
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7f<v_=,,; = K Taypy | (4-3)

where k was determined from‘the'equation,

VER

- This procédure resulted in an approximation to the 7%y'
streéses in the stiffened panel. The value of k varies with
¥y at any vertical cross.section. Values of k for various
points on a vertical cross séction are shown in Table VI.

The results bf equation (A-B)’and the‘experimental data
of‘Ayres'.are'shown'in Table VII. The data of Ayres Were_>
obtained by calcﬁlating the‘stresses based on strain rosette.
-~ values at thé points shown. A lafge difference between the
ahalyticél 7§y values and Ayres' ekperimental‘values exists
at évery cross section,‘ |

A cqmparisoh of ‘the 7§y stresses at a section five
inches from ﬁhe free end is shown in Figure 16. There
‘appears4to be no correlation between the data at all.

A comparison -of the analytical values and Ayfes' exper-
-imental values at a sectioh fifteen inches from.the freé end
is shown in Figure 17. Once again, no correlation is evi-
dent. | |

A comparison of the shéar stresses at a point 17.5.
inches from the free end of the panel is shown in Table VIII

and in Figure 18. The results of this investigation compare
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'k VALUES

Vertiéallseotions at .

Vertical Sectiéns at

T+ 1+ 1+ 1+

I+

| 6.{25 . |
'5’.0‘

3.75

2.5
xlas
 L;;O;O5  s

x=0,-10,-20,-30
6.38‘ =
6.88
6.88
6.88.
6.88

all other x's
| 29.16
- 17.35 |
kA3
'tl;76
 '13§65  |
' ,‘;lg.hh‘



7’xy STRESSES IN STIFFENED PANEL

TABLE  VII

66

— Ayres'
X 'y Analytical ,‘Experimental

0.0 7.5 0 -
5.0 0 -
2.5 0 -
0.0 0 -
2.5 0 -
-5.0 0 -
s 0 ]
- 5.0 7.5 0 -
5.0 975 599
2.5 158 -
0.0 “,1361 1065
2.5 158 -
- =5.0 975 751
-7.5 0 -
-10.0 7.5 o -
5.0 385 -
2.5 617 -
0.0 695 -
- -2.5 618 -
-5.0Q 386 -



TABLE VII (Continued)

.  Ayres'
b4 v ' Analytical _ Expegimeg_t;_a_l

=75 0 -
-15.0 7.5 0 -
5.0 970 | 726
2.5 157 -

0.0 1354 1070

2.5 157 | -
-5.0 973 871
-7.5 0 -
-20.0 7.5 0 -
’ 5.0 385 ‘ -
2.5 613 -
0.0 689 - -
2.5 6 -
-5.0 386 | ;
. -7}5 o -
-25.0 7.5 0 -
o 5.0 o7 751
2.5 150 S

0.0 1332 . 981
-2.5 156 -
-5.0 o9 - 915




TABLE VII (Continued)
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‘ o Ayrés'
X Analytical _ Experimental
=7.5 0 -
-30.0 7.5 0 -
5.0 392 -
2.5 600 -
0.0 664 -
~2.5 597 -
-5.0 389 -
5 0 -



69

/ e TC
| /) 1000 NG |
/’ | \\f
& 800 :
4 %
é.
600
| 400
—— ANALYTICAL
o 4 AYRES'
200 EXPERIMENTAL
ol ¥l | 1 ]
75 50 °2>5' o 28 $0 75
Figure 16 Comparison of 7§y Stresses at a Section 5

Inches from the Free End



70

yd T
» 7__li200 \ \
/ 0o, | N
v ¢ \\
1 _
€ 800 |
>
r 4
600
400 —— ANALYTICAL
A AYRES'
200 EXPERIMENTAL
i ol Y| | | |
75 50 25 o 25 5.0 75

Figure 17. Comparison of 7§y Stresses at a Section 15
‘ Inches from the Free End



TABLE VIII
COMPARISON OF 7xy STRESSES AT A CROSS-SECTION

17.5 INCHES ' FROM THE FREE END

71

o ~Ayres’ Ayres' o
_y Experimental Thgoretiqal Analytical
6.25 750 - 892
5.0 800 1020 970
3.75 860 - 11085
1.25 940 - 1331
0.0 960 1320 1348
S o-l.25 980 - 1331
-3.75 1900 - 1085
-5.0 800 960 970
-6.25 760 - 892
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vfavorably w1th the theoretlcal values of Ayres, The largest
:dlfference between these values is 5%. The experimental‘
values differ by as much as 43% with the analytical values.
’Expefimentel data»were not reported for the stringers,
therefore an evaluation of the results in impossible. The
summation of the shear forces on any‘vertical Cross seetion
‘should balance the external load. The analytical data are
Within 5% of this requirement. The summation of the shear
'fOrees based on experimental data cannot balance the extern-
al load'because all data points are less than those obtained
in this analysis. This evidence seems to indicate thet the
experimental data are in error. Possible reaeons for the
 errefrhave been discussed previously. A comparison of the
analytical and experimental-7&y‘values at a section twenty-
- five inches from the free end’is shewn in Figure 19. The
dlfference in all values is extremely large
The sallent features of the previous dlscu831on are:
lu_eAnalytlcal results differed from experimental
| “results by 18% for Ox stresses and by 43% for Tky
stresses.v Experimental results do not satisfy the
fundamental equilibriﬁm-reQuiréments;l
2. Analytical results compare favorably with elemen—
v-tary theory | |
3. Analytical‘results'compafe favofably with Ayres'
| etheoreficalvenalysis,'
“4. Analytical fesults.satisfy'equilibrium'more closely

than Ayres' experimental results.
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CHAPTER V

THE DERIVATION OF DEFLECTIONS FOR A
CANTILEVERED STIFFENED PANEL

The deflections of a panel depend upon several param-
eters of the panel. These parameters are the moment of
inertia. of the cross section, the modulus of elasticity, and
the shearing modulus. The unstiffened panel was of the same
material as the stiffened panel, therefore the most signifi-
cant parameter is the cross‘sectional moment of inertia.

The method of Chapter III was extended to a stiffened panel
by evaluating the effect of a change in cross section on the

deflections.
- Formulation of Deflection Equations

.~ The deflections of the stiffened panel were determined

from the equations

I, o _
Usp * ——P—ISP Up (5-1)
and
Vep = %:P Ve (5-2)

75
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'This‘precedure resulted in an approximation to the deflec-
tions of the stiffened panel.

© The results of equatione (5-1) and (5-2) are shown in
Table IX. The numerical values of the moments of inertia
were Igp = k.9 ink and Ip = 281.25 ink. ‘Experimentel data
were available from a study by_AYresvar a few selected
points. A comparison of the v-deflections along the top
stringer is shown in Figure 20. No experimental data for
u-deflections were reported BybAyres, therefore a Comparison
was impossible.

The results shown in Figure 20 indicate a variance in
the v-deflections ef Ayres' data with the results of this
investigation. - The deflection of a cantilevered beam may be
accuraﬁely represented in the form of a cubic equation. A
~cantilevered panel should exhibit similar characteristics.
Ayres' data appears 0 represent a straight line. A deflec-
“tion curve of this type should be exhibited by a panel in
pure shear; however the loading_enfthe panel in this investi-
gation induced shear and moment'at every section, The
‘expefimental curve‘is defined by only three data points} An
error in one dataepoinp could markedly change the shape of
-'thevcurve, therefore the accuraey‘of such a curve could be
“questioned. 'The.analytical»results shown.in Figure 20
',appeer to exhibiﬁ the trend expected because of the nature
“of the physical loading. An evaluation of the accuracy of
the results is difficult because the error involved . in the

Rayleigh-Ritz Method cannot be evaluated.



TABLE IX

w AND v DEFLECTIONS OF

STIFFENED PANEL

77

- =7.5

u v
0.0 7.5 ~0.00793 0.0413
3.75 -0.00392 0.0279
0.0 -0.00012 0.0188
-3.75 0.00373 0.0136
-7.5 0.00753 0.0125
-15.0 7.5 -0.00735 0.0093
3.75 -0.00282 0.0085
0.0 0.Q 0.0085
-3.75 10.00282 0.00854
7.5 0.00735 - -0.0093
©-30.0 7.5 0.0 0.0
3.75 0.0 0.0
0.0 0.0 0.0
-3.75 0.0 0.0
0.0 0.0
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Several factors were evideﬂt1which:would‘tend to cause
the analytical results and Ayres' éxpefimenfal results to
differ. The mathematical model and the physical model
differed in the maﬁner in which the fixed end of the panel
was represented. Four bolts were used to clamp the panel in
'place. Whether this method'of clamping actually represents
a fixed support is subject to debate. Indeed, Ayres
reported .some rotétion of the panel at the'support.v This
rotation was subtracted from the readings of the dial indi-
cators to determine the deflections. The accuracy of the
dial indicators is also subject to'question.

Some error is inherent in the mathematical model because
of the manner in which the concentrated load was representéd
by a distributed load, however the error should be very
slight. | |

- The analytical resﬁlts shown in Figure R0 exhibit the
trends expected with the type of loading of this analysis.

" Large strains shouldvbe evident. at the applied'loéd and
dec;ease rapidly as the fixed support is approached. Ayres'
experimental reSults do not appear to yield trends which are

consistént-with the physical loading.:



CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

. The resulting Ox and T&y stresses obtained with the
Method of Timoshenko differ by as much as 18% and 43%
respectively from Ayres' experimental values. However,
Ayres' experimental values for Ox stresses did not satisfy

moment equilibrium and his 7§y.stresses did not satisfy
vforce.equilibriumo The Ox and 7iy stresses obtained with
the Method of Timoshenko compare within 5% of Ayres'
theoretical values which were obtained with a stiffness
analysis. Ayres' theoretical Ox values and the Ox values
obtained with the Method of Timoshenko both satiSfy moment
equilibrium within 5%. Ayres' theoretical 7&y-values and
-the‘T&y values obtained with the Method of Timoshenko
both satisfy force equilibrium within 5%. ‘From these
results it can be concluded that the Method of Timoshenko
can be successfully applied to a cantilevered stiffened
panel.

The Rayleigh-Ritz Method produced deflections for the
cantilevered stiffened panel. A valid evaluation of these
deflections was impossible because of the lack of suffi-
cient experimental data. The available experimental data

were of questionable reliability because of the manner in

80
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which they were obtained. The magnitude of the deflections
~and the deflection characteristics of this study were
~reasonably realistic. The conclusion drawn from these
results is that the RayleigheRitz Method can be successfully
~ applied to a cantilevered stiffened panel.‘

There are no specific gnidelines to indicate the pre-
eise distance from the applied load at which St. Venant's
Principle may be invoked. The results of the analysis
indicate-that St. Venant's Principle may be applied in the
~central portion of the panel; however, there is no evidence
“to indicate that such is the case near the applied load.
The results of this investigation apply near the applied
'loadvas_well‘as_in-other’sections of the panel.

Both‘selutions, for stresses and deflections, have
_been‘ehecked.with the classical Timoshenko analysis of an

unstiffened cantilever problem. The resulting Ox stresses

 were within 1.24% of those obtained from the Timoshenko

analysis. The resulting Oy stresses deviate sharply from
~the results of Timoshenko, but this deviation arises because
of the difference in the description of the applied load.
The resulting 7%y sStresses were.within-B,é% of the results
_Qf the Timoshenko analysis. ThefefOre, itiis concluded
that the Method of Timoshenko and the Rayleigh-Ritz Method
can be successfully applied.to an unstiffened cantilevered

- panel. |

The difficulties encountered in this investigation

-were the result of the selection eflthe stress functions
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and the deflection functions; These difficulties have been
discussed in Chapter II. Thevfunctions should satisfy as
many boundary éonditions aﬁd‘physical conditions as possi-
ble, yet be expresséd in a simple form. Otherwise the
mathematical manipulations become extfemely.cumbersome, if
not impossible. The investigation which was begun usihg
the deflection functions in Appendix B with the Rayleigh-
Ritz Method yilelded unsatisfactory-results because it was
impossible to define sufficient boundary conditions. The
Method of Timoshenko was then used with the stress function
of Appendix A. The nature of this particular function re-
‘sulted in unwieldy expressions.in aﬁtempting'to minimize
the strain energy. o
| Thus, it is now apparent that the Method of Timoshenko
and the Rayleigh-Ritz Method,.subje¢t\to the restrictions
given above; fulfills the need for a methodehich will yield
results as accurate as finite element methods. This method
céuldfbe‘applied to other areas such as: |
1. An investigation of the effects éf various aspect
ratios on the stress and deflectibn vaiues of a
rectangular stiffened panel.
- 2. An investigation of,fhe stresses and deflections
of skin panels of various geometricvshapés and
various load conditions. The Method of Neou (16)
should be examined before selecting a stress
function. Tt is a simplified procedure for re-

ducing stress functions expressed as doubly in-
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finite power sefies;to desired polynomial forms
on the basis of compatibility and boundary con-
ditions. The Method of Neou was not directly
applicable to this anaiysis.

An investigation of skin panels with cutout
sections using the methods outlined in this
analysis. A serious problem could arise in the

selection of a stress function which will satisfy

. boundary conditions, including those of the cut-

out section.

A photoelastic analysis of skin panels of various
geometric shapes and load conditions. Such
analyses would be invaluable in order to cor-
roborate the results of previous investigations.
A thorough similitude study of the parameters of

panels with various cross sections.
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~APPENDIX A

THE USE OF POLYNOMIAL EXPRESSIONS TO
APPROXIMATE STRESS FUNCTIONS

The Method of Timoshenko will yield excellent fesults
if the stress function completely describes physical condi-
tions. The stress function selected in this appendix was
written in.geheral terms to take advantage of this fact.
‘The -polynomial expression used £0 approximate-the stress

function for the unstiffened panel was
' _ 29+2 2p+l Z\2  29+2 2‘p+l -
b= Ao € (€T a b (A-1)

'with'the coordinate axes shown in Figure 21. -Equation
" (A-1) was differentiated to obtainOx, Jy, and Txy. These

expreSsions were substituted into the stress-strain relation-

ships

€= S = £ (G -1) (h-2)
and

€, = ély:_é(o},—pa}). (A-3)
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Figure 21. Coordinate Axes for Stress Function
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‘Equation (A-2) was integrated to obtain the eiprq?sibnffor 
‘u which contained a function of y, f(y). -EquatioﬁvYA-jj waé
»intégréted to Bbtain an expression for v.which contained a
function of x, g(x). These functions, f(y) and g(x), were
evaluated by applying the boundary conditions on the expres-
sions fof u and v. The’pdfential energy of the applied load
- was calculated using the v-deflection equation. The strain
energy in the panel, based on stresses, was calculated. At
this point the equations became too unwieldy to be of any
further use. This stress function was discarded.

| A second approximation was attempted by defining
indiVidual stresses with undetermined coefficients. The

assumed stresses were

]

oy = 6Dxy,

g, 6B(x+a)(y+b).,

and
Tey =3 D(bi- y’)-3 B(x+a):

The procedufe‘was the same as that used in the'previous
Iapproximation. -No satisfactory values for the coefficients
B and D were obtained, therefore these equations were dis-

carded.



APPENDIX B

THE USE OF TRIGONOMETRIC EXPRESSIONS TO

APPROXIMATE DEFLECTION EQUATIONS

The Rayleigh-Ritz Method will yield exceptionally accu-

rate results if the deflection functions closely approximate

.physical conditions,

The fixed conditions at the support

were the only boundary conditions available.

Several trigonometric expressions were used to approxi-

mate the deflection equations for the stiffened panel.

These deflection equations were

kY T miT X
(a) LL-ZZZZ Qnm.SM‘EEr
\ - rmx
V::Z:;Zlbﬁ?Slﬂ—zg—

2mirx

u:zza’hnSln T
_ . - 2rrx
V= ;z;; brs SN B

. X

(c) u = E E amnswwgir
: X

= Z 2. brs s
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and

‘(dﬁ | .LL=ZZ A, (1=COs ﬂ;—%ﬁ) cos G
E ZZ b,.5 (1- Cos——&) cos Z—}

The reference axes used in this appendix are shown in
Figure 2.
The deflection equations given above were applied in
the following manner:
| 1. The strain energy, based on strains, was written
for'thebweb section of the étiffened panel,
2. The strain énergy of bending and the axial strain
energy was written for the stringers.
3. The poténtial energy of the applied load was
written. | | |
L. The total energy of‘the'system was minimized with
respect to the undetefmined coefficients in the
deflection equations which yielded a set of linear
simultaneous equations from which the coefficients
were evaluated. |
The'calculations Were performed on a digital computer using
- as many as thirty-nine coéfficients. The deflections were
from ten to three hundred times too small. ‘No further

calculations were considered.
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Coordinate Axes for Deflection Functions
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