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CHAPTER I
INTRODUCTION

The history of mathematics in the nineteenth century is punctuated
by three significant events., [7: 366]1 The first of these was the
discovery, about 1829, of self consistent geometries other than
Buclidean geometry. The postulates of geometry became, for the mathe-
matician, mere hypothesis whose truth or falsity need not concern him.
The geometries other than Euclidsan have found many applications in the
sciences.

The second of the three events occurred in algebra beginning about
1843. At this time non~commutative algebras were discovered. William
Rowan Hamilton, after struggling with a physical problem for years, in-
vented the quaternicn algebra in which the commutative law of multipli-
cation does not hold. Until this time algebra was‘thought ofvas
generalized arithmetics that is letfers were used for arbitrary numbers.
After 1842 mathematicians began noticing the structure properties of
number systems such as the associative and commutative laws.

By weakening postulates, replacing postulates, or adding new
postulateé for the real number system new abstract systems were

studied. Some of the mathematical systems studied were groups, rings,

lNumerals included in brackets will refer to items listed in the
Bibliography. If two numerals separated by a colon are used, the first
is the item in the Bibliography and the second is the page number.



integral domains, lattices, division rings, flelds, and vector spaces.
Mathematicians to date have studied over 200 such abstract algebraic
structures.

The third profound mathematical event of the nineteenth century
was the so-called arithmetization of analysis. Slignificant contribu-
tions were the developing of an acceptable theory of limits by Cauchy
in 1821, and the derivation of real numbers from natural numbers in the
last half of the nineteenth century.

Most mathematics was closely tied to geometry before Decartes pub-
lished his first book on analytic geometry in 1873, Meserve states:

Previously, (before Descartes work) linear terms such as x

or 2y had been considered as line segments, quadratic terms

such as x° or xy had been considered as areas, and cubic

terms such as x® or x°y had been consldered as volume, The

old interpretations were restrictive in the sense that only

like gquantities could be added. For example, it was per-

missible to add x® and xy (areas), but it was not permissible

to add x® and x (i.e., an area and a line segment).

[12: 377]

At this time polynomials with degree greater than three were not
considered since there was no geometrical significance to x*. Not
until Dedekind gave the first definition of V2 in 1872 could the
domination by geometry be said to have ended.

Before the events in the nineteenth century, mathematics was
studied in small bits and pieces without the advantages of studying the
generalizing concepts. Since these events the objectives in mathe-
matics have shifted to the studying of structure. About this shift
in objectives, Bell states:

The shift of objective is typical of modern abstract

mathematics. Specimens are no longer prized for their

own curious saske as they were in the nineteenth century.

eso Their interesting but somewhat meaningless collec-

tions would simplify themselves in an unsuspected
coherence. [5: 23%6]



As stated above, one of the unifying concepts of mathematics is
that of a vector space. In the last thirty years, this concept has
assumed a major role in college undergraduate instruction and possibly
will play a greater role in the future. As Athen has stated:

More and more it is becoming evident that in the modern-
ization of mathematical instruction, through the use of
sets and structures, the topic of vectors and vector
spaces will play a major role. [3: 382]

Some reasons given for the introduction of vectors and algebralce
methods in secondary mathematics are:

1. The following mathematical topilcs offer great opportun~
ities for the use of vectors: affine geometry, plane
and spherical trigonometry, analytic geometry of linear
manifolds and ecircles, conic sections, geometrical
mappings and transformations and descriptive gesometry.
In teaching all these topics at the secondary school
level, vector spaces would be limited to real vector
spaces (linear vector algebra and the scalar product).

[3: 383]

2., The fewer axioms in a mathematical system the better.
In mathematics axioms are essential but in large num=-
bers they become troublesome. For example, by the
use of vectors the number of axioms in geometry can be
greatly reduced.

%, The use of coordinates is more related to the mathe-
matics high school students will encounter later.

i, The concept of function is central in the algebraic
approach.

5. Congruence is a unified concept in a Euclidean vector
space where in some present geometry courses con-
gruence is defined separately for different point
sets.

6. In addition to the applications of wectors, the
concept of a vector space can serve to relate the
study of algebra and geometry in the secondary
school mathematics curriculum. In many instances

2The points listed in items 2-5 are essentially those given by
Professor G. P. Johnson in a talk at the 50%% Annual Meeting of The
Mathematical Association of America; Houston, Texas, January 28, 1967.



the study of geometry turns out to be merely a strange
interliude between the study of algebra in the ninth
grade and the continued study of algebra in the
eleventh grade. [20: 218]

7. Vectors in the beginning years of mathematics will
probably be taught by intuitive or informal methods.
Since wvector theory can easily be axiomatized, it
serves as a tople which the teacher can use to pre-
sent a mathematical structure.

Algebraic methods and the use of linear algebra is gaining in
geceptance in the high school curriculum. A text in analytic geometry
and a text in geometry by coordinates have been published by the School
Mathematics Study Group (SMSG). At least two texts in linear algebra
for high school students have been published, A text for secondary
school geometry presenting Buclldean geometry through vectors is now
bedng prepared by the Universlty of Illinoils Commlttee on School
Mathematics (UICSM). [20] The Committee on the Undergraduate Program
in Mathematics (CUPM) has recommended courses in both abstract algebra
and linear algebra for secondary mathematics teachers. [6]

In 1959 the Report of the Commission on Mathematics (College

Entrance Boar‘d)9 Program for College Preparatory Mathematics listed

proposals for the high school geometry course. [15] One proposal was
an introduction of coordinate geometry and, cnce coordinate geometry
has been introduced, the use of analytic (algebraic) as well as
synthetic methods in proving geometric theorems and exercises.

Some twenty years ago, the teachers of mathematics of the German
Gymnasium instituted a serious study of the role that vector theory
should play in the mathematics curriculum. [3] In 1965 the German
Association for‘the Advancement of Mathematics and Science Instruction
published recommendations for the teaching of vectors from the primary

grades through the Gymnasium. Their point of view is that vector theory



should not be introduced into the syllabus as a new isolated topic, it
should penetrate all the mathematics instructlon. In the lower years
of elementary school they recommend that vectors be thought of as sim-
ple translations (directed 1line segments) wlth the formalization of a
definition of a real vector space omitted until the latter years of the
upper'gradesu The vector concept penetrates the whole of mathematics
instruction, not as an exclusive method but as one that gives simplic-
ity, clarificaticn, and unification to the study when it is applied.

During the last ten years the teaching of vestors, in

German schools, has been introduced into the middle

years (school years 8 through 10) with complete success.

In the last few years experimental studies have been

carried out in teaching vectors informally in the lower

years (school years 5 to 7) with encouraging resulbs.

[3: 382]
The 1963 Report of The Cambridge Conference on School Mathematics,

Goals for School Mathematics, recommends the study of linear algebra in

the curriculum for grades seven through twelve. [8] In their recom-
mended program linear spaces are encountered in two rounds.

The first encounter is in connection with motions of

Euclidean space and the presentation is restricted to

finite dimensional linear spaces composed of pairs,

triples, or perhaps n-=tuples of real numbers. The

second round takes up the general study of linear

spaces. [8: 149]

One topic usually covered when studying vectors is an Euclidean
vector space. The use of the word Euclidean suggests Buclidean geome-
try. But, a Euclidean vector space is formally defined as a real
vector space with an immer product defined on it. (Each of these terms
will be defined in Chapter II.) One assumption of this dissertation is
that college students preparing to be secondary mathematics teachers

should understand, especially in the three dimensional case, the rela-

tionship between these two uses of the word Euclideawn.



The main purpose of this dissertaion will be to show that a
Euclidean vector space is Euclidean in the geometric sense. A three
dimensional vector space with inner product will be assumed. The unde-
fined terms of SMSG geometry [17: 10] will be defined in terms of
vectors in this vector space. With these definitions, the twenty-twe
postulates of SMSG geometry will be proved, thus making a three dimen-
sional vector space a model for Euclidean geometry.

The reasons for doing this dissertation are twofold:

1. Although much of the material covered has been developed

in segments in the literature hefore, in a search of the
literature the writer could not find where these ideas
were tied together to give a complete proof that a
Euclicean vector space was Euclidean in the sense of
high school geometry.

2. The material should have application for the prospec-
tive secondary mathematics teachers in their prepara-
tion both in geometry and algebra. It is expected
that in the future high school teachers will be called
upon to teach g course in linear algebra. The eminent

algebraist E. Artin, in his book Geometric Algebra

[2: 13] warns against using purely algebraic tech-
-niques in teaching such a course. Geometry sometimes
helps a student "see™ what is happening in the algebra.
It is hoped that this material, relating vector spaces
and high school geometry, will provide a teacher with
materials useful in teaching a course in linear algebra

or a course in geometry by vectors.



The development of the succeeding chapters will be as follows:
Chapter II will give the assumptions on the background of the reader
together with other preliminary considerations needed in the develop-
ment., In Chapter III the assumptlons of a three dimensional real
vector space with inner produet will be glven. In the subsequent four
chapters, the undefined terms of SMSG geometry will be defiuned, in
terms of vectors in the vector space, and the twenty-two postulates of
SMSG geometry will be proved in thls vector space setting.

The topics in Chapter III were adapted from a doctoral disserta-
tion at Oklahoma State University. This dissertation is entitled

Foundations in Geometry for High School Teachers, authored by James

Smith, 1963. [19] Chapter VI will cover area and volume in three

space. Some amalysis is used in Chapter VI.



CHAPTER II
LINEAR ALGEBRA BAGKGROUND
Introduction and Notational Devices

This chapter will 4include the information about wvector spaces ne¢-
essary to develop the material in subsequent chapters. Also, there
will be a brief discussion on how vectors are thought of geometrically.

In the material that follows, unless specifically stated otherwise,
the capital letter R will designate the real number system. The capital
letter V will designate a real vector space and the capital letters U
and W will be subspaces of V. Vectors will be designated by capital
letters other than U, V, and W. Lower-case English letters will be
used to designate real numbers, O will be used to denote the real
number zero exclusively.

Theorems and definitions, except for the twenty-two theorems which
are postulates of SMSG Geometry, will be numbered consecutively by
chapter. For example, Theorem 2.7 will be the seventh theorem in
Chapter II. The twenty-two theorems which are postulates of SMSG
Geometry will follow the numbering of SMSG Geometry. For example,
Theorem VIII will be Postulate 8 of SMSG Geometry.

It is assumed that the reader has had some experience with real
vector spaces: Therefore, a statement of some of the theorems in this

chapter has been included for completeness but the proofs have been



omitted. Most of these proofs can be found in any text on linear

algebra, such as Baumont's text [4], or in a text on beginning abstract

algebra such as Mostow, Sampson and Meyer's. (147
Definiticns and Theorems on Vector Spaces

Definition 2.,1. A real vector space V is a non-empty set of ele~

ments, called vectors, and two operations; addition and multiplication
by a real number (scalar multiplication)9 which sstisfy the following
axioms: For all A, B, C € V; r, 8 € R:

1. A+ B is a unique element in V, called the sum of A and B.

2. rA is a unique element in V, called the scalar product of

r and A,
2, A+ B =B+ A,
4, (A +B) +C=4+ (B +C)

5. There exist a vector 6 € V such that 6 + A = A for

i

each A € V.
6. For each A € V, there exists a vector =A € V such
that A + (-A) = 6, Notation: A + (-B) = A - B.

7. r(sA) = (rs)A.

8. (r + s)h = rA + sh,
9, r(A + B) = rA + rB,
10. 1A = A,

The term vector space in this dissertation will always refer to a
real vector space. One example of a vector space, probably the most

often encountered in elementary mathematics, is

anz{(219 Xgy coog xn)‘xﬂ €R, 1 =1, 2, ooy 1}
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with (x1; Xp, coey %) + (y1, Jo5 coos ¥u) =

(x1 + y15 Xz + Y2y cooy Xy + ¥u) and (X1 Xp, coey Xp) =

(rxl, TXpy cosy TXy)e The reader will probably profit by keeping in
mind the space Ry. Examples from time~to-time will come from this
space.

The following three computational theorems will be useful.

Theorem 2.2. r ° O =0 and OA = O [4: 41]

4

[

Theorem 2,3. r(-A) = (-r)A = =(rA). In particular (-1)A = -A.

[4:  41)]

[}

Theorem 2,4, If rA = 6, then r = 0 or A = 8 [4: 41]

A set of vectors, {A;, Az, oo, A}, in a vector space V are
linearly dependent if there exists scalars ri, gy cooy Fpe not all
zerc, such that ryd; + rols + oo + ryAy = 0. If no such set of
scalars exists, the set {A1, Bz, ccoy A,} is said to be linearly
independent.

A set of vectors {Ayy Azs ooo, Ay} C V is said to span the vector
space V if for all A € V there exist scalars r14 Tz, o00y Ty such that
A= rihy + rahy + ooo # rphy. The set {Ayy Az, c0oy Ay} is a basis
for V if it spans V and is linearly independent. A vector space is
finite dimensional if it has a finite basis. In this chapter all vector
spaces will be assumed to be Tinite dimensional. The dimension of a

vector space V, written dim V,; is the number of elements in a basis.

Theorem 2.5. All bases of a finite dimensional vector space con-

tain the same number of elements. [4: 49]
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Theorem 2.6. If {A1, Asy cooy Ay, coey Ay} is a basis for a vector
space V and r # O, then {A1, A3, oooy TAyy oeo, Ay} is a basis for V.
[4: 59]

Theorem 2,7, If A is a non-zero vector in a vector space V then

{A} is linearly independent. [4: 46]

Theorem 2,8, Any linearly independent subset of a vector space V

can be completed to a basis for V. [4: 51]

Definition 2,9. An inner product on a real vector space V is a

function mapping V X V into R satisfying:
lo. A+ A>0, and A ° A= 0 4if and only if A = O,
Note: A - A is the image of the pair (A, A) under
this map.
2. r(A < B) = {rA) - 8.
3, A-B=B- A,
b A - (B+C)=A°B+4A-C.

Easy consequences of this definition are:

Theorem 2,10, B o A = O for all A € V. [hs 53]

Theorem 2,11, A B

it

0 if and only if, for each r ¥ O,

(rA) < B = 0. [b4: 52]

Definition 2.12. In terms of this inner product a norm, which is a

map with domain the vector space V and range the reals, is defined by
|Al =VA - A, Since A > A€ Rand A » A >0, then VA - A € B, Notes
iAq is the norm of a vector. If r € R, then ‘r] is the absclute value

of v,



An example of an inner product on the space R; is

(ﬁahe%)AWHYMYQmXW1+%%+XﬁM

This inner product is called the usual or dot product on Ry. In terms

of this inner product the norm becomes, (%1, Xz, Xa)| =

Vi13 + %32 + %32, the usual norm.
Let V be a vector space with inner product A ° B and norm defined

IA! = VA * A, Four theorems concerning this norm follow.

Theorem 2.13. |[A| >0, and |A| = 0 4f and only if A =0, This

theorem follows directly from condition one on the inner product.

Theorem 2,1k, [rA| = |r|]A].

Theorem 2.15. a) |A o B} < |A]|B| (Schwartz inequality)

b) |A - B|] = |A||B] if and only if one vector is a

scalar multiple of the other.

Proof: a) If A =0, then A © B =0 and |A||B| = O. Thus
A - B| = |A]|B]. Suppose A # 6. Then, |A] > 0. For any real number &
[tA + B[® = (tA + B) » (tA + B) = t®A - A+ 2tA - B+ B - B =
[4]2 2 + (2a . B)t + |B|® >0, Since the quadratic polynomial in t is
always non-negative, its discriminant is non-positive. Thus,
(24 - B)® - 4]A[% |B]2 <0 or (A - B)® < [A]® |B|®. Tnus,
Ia - B| < |a]]8].

b) If rA =B, then A - B= A - vA = rAh » A = r|Al|A] =
Z |a]|lra] = £ |A]|B| the sign being + if r is positive and - if r is
negative. Thus, |A * B| = [A]|B].

If {A - B| = |A]|B| and A = 6, then A = OB. If A # 0, then

[A] >0 and the quadratic equation |A|?t® + 24 > Bt + |B|® = O has a
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multiple root r since (24 - B)® - 4]|A|2|B|%2 = 0. Since

(tA + B) » (tA + B) = |A|®t® + 2A - Bt + |B|® = O has a root r,

i}

]

(rA + B) ¢« (rA + B) = 0. Thus, rA + B =0 or B = (-r)A.
Two vectors, A and B, in an inner product space are orthogonal if
A - B=0. Avector A is said to be normalized if |A| = 1. A basis

{A1, Asy «cey Ay} Of an inner product space V is an orthonormal basis if

[Ag] =1, 1=1,2, coo, nand A; » Ay = 0 if 1 # i,

Theorem 2,16, Any subset of orthogonal vectors in V is linearly

independent, In particular any set of n orthogonal vectors in an n
dimensional vector space is a basis. [4: 53]
A non-empty subset W of a vector space V is a subspace of V 4f and

only if W, with the operations of V, is a vector space.

Theorem 2,17. A non-empty subset of a wector space V is a sub-

space of V if and only if rA + sB € W, for all A, B€ Wy r, s € R,

[4: 42]

Theorem 2.18. If W is a subspace of a vector space, then 8 € W,

[he: b2]

Theorem 2,19. If U and W are subspaces of a vector space V, then

UN Wis a subspace of V. [4: . 43]

If Wis a subspace of V with basis {A1, Az, coos An}, then the
notation W = [A;, Az, oooq A, ] will be used. That is, [A1, Agy coecy Apl
is the subspace of V with {A;, Az, .co, A } as a basis.

The next theorem will be used frequently.

Theorem 2.20. Each subspace W # {8} of an inner product vector

space V has an orthonormal basis. If {A3, Ags o0y Ay} is an
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orthonormal basis of Wand B = rA; + rghs + .. + rph,,
C =514 + S5pA; + o0 + S5pAp, then B ° C = s + oSy + coo + ISy

Proof: The proof will be given for a three dimensional subspace
of V. The method will generalize to any finite dimension. The con-
structive process used in the proof is known as the Gram-Schmidt
orthogonalization process.

Let W= [By, Ba, Byl. Let A = T%rT Bi. Then, Ay * A =
<T§-TT51>'<TB~11TBD mT:—.BJTz-Bl o By RTB-%TQ'IBJ.leo

Let cg'm By - (A; © By)Aj. Then Ay ° Cy = Ay ° By =
(Ay « Ba){Ay * A&y) = Ay ° By = (A, » By)l = 0. Let Ay = Tg;T Cp. Then,
by Theorem 2,11, Ay ° Az = O and Ay ° Az = 1.

Let C3 = By = (A ° By)Ay = (A - BylAs. Then,

Al . 03 = Aj_ ° Ba = (A]_ ° Bs)(A]_ ° Al) = (Ag ° B3)(A2 ° Aj_) =

i

Ay ¢ By - (A ® By)l -~ (A3 ° By)O = O, Similarly, Az » C3 = 0. Thus,
letting Ag = Tg%T Cay b Mo =0, ho + hg = O and hy * Ao = L.

For the second part of the theorem
B Cx= (riAy + Tohp + ooo + rph;) @ (8141 + Sphp + oo + 554;) =
[pysidy ° Ay + rispht ° Ag + coo + P1SgAr ° Agl + [rosidy ° A +
PaSahn ° Ag + ooe + ToaSpghny © Ayl 4 cee + [TasiAy A 4+
TaSshy © By + eoo + TpSphn ° Ayl = [rysy 1+ risp; O+ ooo + 118y 0] +
[rasy O # Iasp 1l + oo # r55,0] + coo + [rasy O+ rpSp O 4 coo + rysy 1]=
1Sy + PpSp +* coo * rpSpo

One of the concepts of linear algebra, which had its founding in
geometry, is that of a coset or translate of a subspace. Let W be a
subspace of a vector space V. Define a relation, ~, on V by A ~ B if

and only if A = B € W, It is seen that ~ is an equivalence relation

since :
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lo. A~ A=0€W., Therefore, A ~ A, for each A in V.

2, If A~B, then A - B€ W, Thus, (-1)(A - B) =
B~ A € Wor B~ A,

2, If A~Band B~ C, then A = B and B - C are in W,
Therefore, (A - B) + (B~-C) = A~ C€ Wor A~C,

This equivalence relation partitions V into disjoint subsets
called equivalence classes. The equivalence class containing A is
denoted A + W. If A and B are two distinct vectors in V, then A + W
and B + W are either identical or disjoint. The union of the equiva-
lence classes is V.

Let A + W be the equlvalence class containing A, What other

vectors are in A + W? If B€ A+ W, then B~ A, Thus, B - A€ Wor

B-A=C,CEWorB=A+C, CEW, Also, if B= A + C, C € W, then
B-«A=CorB~A€W Therefore, B~ Aor B€ A+ W. Thus,
A+wWw=1{A+C ‘ C € W}o This is the reason the notation A + W is used

for the equivalence class containing A. The equivalence class A + W
is called a coset of W,
Cosets will be used frequently and the preceding discussion con=-

stitutes a proof of the following theorem.

Theorem 2,21, If W is a subspace of a vector space V, then V is

partitioned into disjoint cosets of the form A + W = {A+C | C € W}
vhere A + W =B + W if and only if A - B € W,

It is possible to show that the set of cosets of a subspace W is
a vector space by defining (A + W) + (B + W) = (A + B) + W and
r(A + W) = rA + W,

The following is a geometrical example for Theorem 2.21: Let
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V= Rau (Figure 1) Let W =

[(1,0,0),(0,1,0)]. That 1is,

W is the subspace bf Ry AX3
spanned by the vectors
(1,0,0) and (0,1,0). Thus,
W is the X% plane. } b (0,00

The coset (0,0,1) + W 1s

the set {(0,0,1) + (x,7,0)} = (4,0,9 i
{(x,y,1)}. Thus, (0,0,1) + W (0,1,0
is the plane parallel to the
#1Xp plane and one unit above.
Similarily, it is seen that ‘ X3
Figure 1,

(a,byc) + W is the plane
parallel to the x;x3; plane and

¢ units from the x3xp plane.

Theorem 2.22. If W and U are subspaces of a vector space V and

A+ W, B+ U are cosets of W and U, respectively, then (A + W) N (B + U)
15 either empty or (A + W) N (B + U) is a coset of the subspace W N U,

Proof: Suppose (A + W) N (B + U) # #. Then, there exists
PeE(A+WN(B+U), Thus, P=A+C=B+D, CEW DEUor
A=P-C,B=P-D,

(A+W)N(B+TV) =P+ (WN U becauses T € (A + W) N (B+ V)
implies T = A+ X =B+ Y, X € W, Y € U, Therefore, T =P + (X = C) =
P+(Y~D). Thus, since X -C =Y -DEWNU, TEP+ (WN V).

IfQEP+(WNTU), then Q = P + E, E€ W and E € U, Therefore,
Q=A+ (C+E)=B+(D+E) and since C+E€ W, D+ E€ U,

Q€A+ Wand Q € B+ U, Thus, the statement is proved.



Illustrating this theorem, consider again | ‘
W= [(1,0,0), (0,1,0)] c Ra. Let U = [(1,0,0), (0,0,1)]. (0,0,1) + W,
aslin the last example, 1s a plane one unit above the x;xz plane.
(0,2,0) + U = {(0,2,0) + (x,0,2)} = {(x,2,2)} is a plane two units from
the X;xz plane. The intersection of these two cosets is the coset
(0,2,1) + [(1,0,0)] since WN U = [(1,0,0)] and (0,2,1) € ((0,0,1) #+ W)
n (0,2,0) + U).

A linear transformation on a vector space V into a vector space W
is a map £ from V into W satisfying f(rA + sB) = rf(4) + sf(B), for all
ry s € R, and for all A, B € V., That is, f preserves addition and
scalar multiplication.

Some theorems about linear transformations such as f£f: V — W follow.

Theorem 2.2%3, If f: V -+ W is a linear transformation, then

'f(e) = 0, [4: 80]

Theorem 2,24, f(V) is a subspace of W,

(£(v) = {B€ W | B= £(A) for some A € V},) [k: 80]

Theorem 2.25. fml(e) is a subspace of V. (f_l(e) =

{aev | £a) =0}.) [4: 80]

Theorem 2.26. Let V and W be vector spaces. Let {Aj; Agy cooy Ag)
be a basis for V and By, Bz, c0o, By, be any n vectors in W. Then, there
exists one and only one linear transformation f from V into W such that

f(Ay) = By f(A2) = Bay oooy £(4,) = By [1h: 225]

Theorem 2,27, dim V = dim f(V) + dim f“'l(e)° [4: 85]

For a fixed vector A in an inner product space V9 the map

£:V - R defined by £(B) = A » B is a linear transformation. This
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follows from properties two and four of the definition of inner product.
That is, f(rB + sC) = A « (rB + sC) = r(A o B) + s(A - C) =
rf(B) + sf(C), If A # B, then f is onto R because if r € R, then

f’(jﬁ%g A=A (Jng L) = T A - A= Tae AP = r. Stnce Risa

one dimensional vector space oﬁer itself, by Theorem 2.27:

Theorem 2.28. dim f—l(e) = dim V-dim R = dim V - 1,

As an example of this theorem consider the vector space Ry with
the usual inner product. Let A = (1,1,1). Then, £7(0) =
{(%14%a,%) | 1 o % +1 ¢ xp + 1 °~X3 = 0} which is the two dimen-
sional subspace W = [(1,-1,0), (1,0,-1)]. That is £71(0) s the plane
containing the origin which is spanned by the two vectors (1,-1,0) and

(1,0,=1).

Definition 2.29. An isomorphism between two vector spaces V and W

is a linear transformation from V into W which is one-to-one and onto.
If there exists an isomorphism between V and W, then V and W are said

to be iscmorphic.

Theorem 2,30, If f: V - W is an isomorphism and U is a subspace

of V, then £(U) = {B € W| B = £(A) for some A € U} is a subspace of W.
The dimension of £(U) equals the dimension of U, [k: 83]

Let V = [A;,45,A5] be a three dimensional vector space. Then each
vector A € V can be written uniquely as A = riAy + rphs + rzAz. Using
this fact, an isomorphism f: V = Ry can be defined by £(A) =
(rys5 3, ra)o Thus, under this isomorphism, f(4;) = (1,0,0),
f{Ay) = (0,1,0) and £(A;) = (0,0,1). Such an isomorphism f is called
a coordinate systém for V with respect to the basis {Al, Az, As}o

f(A) = (xry, T3, rs) is called the coordinate of A relative to the
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basis {A1, Az, As}.
A particular type of linear transformation, which will be used in

Chapter V, is an orthogonal linear transformation.

Definition 2.31. A linear transformation f, from a Euclidean

vector space V into 1tself, is an orthogonal linear transformation if

and only 1f f(A) * £(B) = A » B for all A and B in V.

Theorem 2.32., Let {Ay, Ay, ...y A,} be an orthonormal basis for a

Euclidean vector space V. Theny a linear transformation f:V - V is an
orthogonal linear .transformation if and only if

{f(A), £(A2), oooy £(A,)} is an orthonormal basis for V. In particu-
lar, if {1, Asy eeo, Ay} and {By, By, co., By} are orthonormal basis
for V then there exists exactly one orthogonal linear transformation

£:V — V such that £(A;) = By, £(A3) = Bs, oeo, F(A,) = By. [4: 180]

Theorem 2.%%., An orthogonal linear transformation f:V -+ V is an

isomorphism. [4: 172]

Theorem 2.3%, Let f:V = V be an orthogenal linear transformation,

Then, fﬁls V - V is an orthogonal linear transformation. [4: 180]
Geometrical Vectors

In the literature there are essentially two ways of considering
vectors in Rg. The first is as "directed line segments™ and the second
as "points, "

The approach used in this dissertation will be to consider points
as elements of a vector space. In Ry the vector (191$1) would simply

be a point. If the line segment with endpoints (0,0,0) and (1,1,1) was
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being considered this would be the set {{x1, X2, %3) | (x1, Xz, X3) =
£(1,1,1), 0 < t <1},

The "directed line segment™ approach is sometimes presented with
an assumed geometric background. In this case vectors are equivalence
classes of line segments having the same length and direction. The

interested reader is referred to items [4] and [14] in the Bibliography.



CHAPTER III
LINES, PLANES, COORDINATE SYSTEMS AND SEPARATION
Iines and Planes

The preliminary results about vector spaces have been included in
Chapter II. This chapter will include material on the first ten postu-
lates of SMSG geometry.

The basic assumption throughout the development will be the exist-
ence of a three dimensional inner product vector space V. The inner
product space Rz could have been assumed as the vector space V. The
reason this is not done is that Bz would give more information about
the vectors than is needed to do the proofs (i.e., the vectors in R,
are 3=tuples).

Definitiahs of terms used in the SMSG geometry text will be taken
verbatim from the text to keep from distorting their meanings. The
terms point, line, and plane are defined in terms of vectors in this
development. In the SMSG development they are undefined terms. After
some of the SMSG definitions, a short comment will be included con-

verting the definitions of SMSG to vector terms.

Definition 3.1. A point is defined to be a wvector in V.,

Since V is a three dimensional vector space, the subspaces of V

will be either three, two, one, or zero dimensional. Clearly, if W is

21
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a three dimensional subspace of V, then V = W. The trivial subspace,

containing only the zero vector, is the only subspace of dimension zero.

Definition %3.2. A line is defined to be a coset of a one dimen~

sional subspace of V. Equivalently, if W = [B] is a one dimensional

subspace of V, then a line 1s a set of points
A+We=A+[B)={A+tBlt €R].

Definition 3.3, A plane 1s defined to be a coset of a two dimen-

sional subspace V., That is, if W = (B, C] is a two dimensional sub-

space of V, then A + W= A + [B, C] = {A + tB + sC|t, s € R} is a plane.

Definition 3.4, The set of all points is called space. [17: 53]

Thus, space is the set V.,

The purpose of the first eight theorems in this chapter is to show
that the one and two dimensional cosets in a three dimensional space
are analogous to planes and lines of Euclidean three dimensional

geometry. As defined in Chapter II, the subspace W = [B, C] is the set

{P|P = rB + sC, r, s € R}.
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Intuitively, the subset W= 0 + W is a plane containing the origin.
The coset A + W= A+ [B, C] = {P|P = A+ rB+ sC, r, s € R} is the
plane W, containing the origin, "translated” parallel to W and con-
taining the point A. Two cosets A + [B, C] and D + [B, C] are equal if
and only if D = A € [B, C]. That is, D is A added to some vector in
EB9 Cl]. Similar remarks would hold for cosets of one dimensional sub-
spaces and lines.

The first postulate of SMSG geometry is proved as Theorem I in the

vector space V.

Theorem I, Given any two different points there is exactly one
line which contaius them.

Proof: Let A and B be two different points in V. Then A = B ¥ O,
Thus, {A - B} is independent and [A - B] is a one dimensional subspace
of Vo Thus, A + [A = B] is a line and, since A = A = 6 € [A - B],

A€ A+ [A-B]. Similariy, A - B € [A - B] implies B € A + [A - B],
Thus, A + [A - B] is a line containing A and B.

Let D + [C] be a line containing A and B. Then A - B € [C] and
this implies, since A « B # 6, that [A - B] = [C]. Since A € D + [C],
D+ [C]l=44+([C]=A+T[A-B]

The next three postulates of SMSG geometry are concerned with
distance and coordinate systems. An {inner product on V has been
assumed thus giving a norm on V defined by ‘Al = VA - A. This norm

wiil be used in proving the next theorem.

Theorem II. (The Distance Postulate) To every pair of different
points there corresponds a unique positive number.

Proof: If A, B € V are different points, then A = B ¥ G.
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|A - B] = |-1]|A - B] = |(<1)(A - B)| = |B - A]. Let the positive
number corresponding to A and B be |A - B|, Since |A - B| = |B - 4],
the number does not depend on the order of the points. Since

|A - Bl > 0, this number satisfies the requirements of thé theorem.

Definition %.5. The distance between two points is the positive

number given by the Distance Postulate (Theorem II). If the points are
P and Q, then the distance is denoted by PQ. [17: 34]
Thus, the number |P - Q| = |Q - P| is denoted PQ,

Postulate three of SMSG geometry is proved next.

Theorem III. The points of a line can be placed in correspondence
with the real numbers in such a way that
(1) To every point of the line there corresponds
exactly one real number,
(2) To every real number there corresponds exactly
one point of the line, and
(%) The distance between two points is the absolute
value of the difference of the corresponding
numbers.
Proof: The first two requirements of this theorem are that there
exists a one-to-one correspondence, f, between the points on the line
and the real numbers. The third is that if A and B are on the line,

then AB = |£(A) - £(B)

Let A + [B] be the given line. Since [B] = [T%T B] one may assume

that |B|

8

10
P € A+ [B] implies P = A + tB where A + tB is the only represen-

tation of P. That is, if P = A + t;B = A + t2B, then t; = t3. Thus,
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define a map f:A + [B] = R by £f(P) = t. £(P) = £(Q) implies

P

it

A+ f(P)B=A+ £f(Q)B = Q, Thus, f is one~to-one. r € R implies

P=A+rB€A+ [B] and £f(P) = r. Thus, f is onto R and, consequently,

4]

f is a one-to-one correspondence.

If P=A+ tBand Q = A + sB are on A + [B], then

PQ = |A+tB-(A+sB) =|(t -s)B|=|t-s||Bl=[t-s]-1=

|£(P) - £(Q)

|t - s

Definition 3.6. A correspondence of the sort described in

Postulate 3 (Theorem III) is called a coordinate system for the line.
The number corresponding to a given point is called the coordinate of

the point. [17: 37]

A line (coset) A + [B] has many names. In the last theorem the
coordinate system was defined in terms of a particular name, If C and
D are two distinct points on A + [B], then D - C € [B]., Since
D-C#86, [D-C]=[B]., Thus, A+ [D~C] =4+ [B]. Since
C€A+([B], C+[D=C]=A+[B]. Thus, the following theorem has

been proved.

Theorem 3.7. If C and D are distinct elements of coset A + [B]?

then C + [D - C] = A + [B].

Theorem IV, (The Ruler Placement Postulate) Given two points P
and @ of a line, the coordinate system can be chosen in such a way that
the coordinate of P is zero and the coordinate of Q@ is positive.

Proof: Let P, Q € A + [B]. Then, A + [B] =P + [Q = P] =

P+ [Ta-%;ﬁT (Q - P):lo Since P =P + 0 <j§—%—§T (Q = Pi) and

_ | 1
Q =P + |Q - PI <'T§—:—§T (Q - Pi), by the definition of a coordinate
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system and Theorem III, the coordinate of P is zero and the coordinate

of Q1s | - P| > 0.

Definition 3.8. B is between A and C if (1) A, B and C are dis-

tinct points on the same line and (2) AB + BC = AC. [17: 41]
B is between A and C will be denoted by A o B ° C.

Theorem 3.9. If on the line A + [C - A] a coordinate is chosen so
that the coordinate of A is zero and the coordinate of C is |C - Al,

then the line A + [C - A] is partitioned into four disjoint sets given

by:
1) {BJaA o B o C} = {B|B=A+t(C-4), 0<t<1},
34) {BJA o C ° B} = {B|B=A+ t(C-4A), 1<t}
i11) {B|B o A o C} = {B|B = A + t(C - 4), t < O},
iv) {B|[B=AorB=C}={B|B=A+t(C-A),t=00rt =1}

Proof: Let B be a point on the line A + [C - A] =
A+ |:~|—C—%-KT (c - A):]., B#Cand B#A. Then, B=A +s<TE%H(C—A)>
for some real number s, s # O and s # |C - A|. "By Definition 3.6, the
coordinate of A is zero; the coordinate of C is ]C - A| and the coordi-
nate of B is s.

By the definition of betweeness for points on a line, A o B o C if
and only if AB + BC = AC. This is equivalent to |s - O]+ ||C=A|-s]| =
[lc = A]] 0] or |s] + ||c - A] - s| = |C - A]. This implies that

s
O<s<|c=-4]lorox< Te - AT <1. Thus, B = A+ t(C -~ A) vhere

S

LR reay

and 0 <t <1. Similar arguments would show A ¢ C ¢ B if

S : S
and only if 1 < oY and B o A o C if and only if TE—:—KT < 0.

Definition 3.10. For any two points A and B the segment AB is the
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set whose points are A and B, together with all points that are between
A and B. The points A and B are called the endpoints of AB, [17: 45]

Thus, in vector space V, AB = {C[C = A + t(B - A), 0<t <1].

Definition 3.11l. The distance AB is called the length of the

segment AB. [17: 45]

Definition 3.12. Let A and B be polnts of a line L. The ray AB

is the set which is the union of (1) the segment AB and (2) the set of

all points C for which B is between A and C. [17: 46]

Definition 3.13. If A is between B and C, then AB and AC are

called opposite rays. [17: 46]

Thus, AB = {C|C

A+ t(B-A), O<t}. IfBoAoC, then

{PIP =2+ t(C -4, 0

IA

t} and {P|P = A + t(C - A), t <0} =

{p|p

i

A+ t(B - A), t >0} are opposite rays.

Definition 3914a A set of points is collinear if there is a line

which contains all the points of the set. [17: 54]

Definition 3.15. A set of points is cqplanar if there is a plane

which contains all the points of the set. [17: 54]

The next theorem, which is postulate 5 in SMSG geometry, is based
upon the definiticn of a plane as a coset of a two dimensional subspace

and the assumption that space is a three dimensional vector space.

Theorem V. (a) Every plane contains at least three non-collinear
points. (b) Space contains at least four non-coplanar points.
Proof: (a) Let A + [B, C] be a plane. Then A + 0 = A,

A+1B=A+Band A+ 1C = A+ C are in A + {B, CJ.
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Suppose D + [E] is a line containing each of these points. Then,
(A+B)~A=B€[E)]and (A+C) - A=2CE€[E]. But since [E] is a
“one dimensional subspace and [B, c} is linearly'independent, this is a
contradiction. Thus, A, A + B and A + C are non-colllinear and in the
plane A + [B, CJ.

(b) Since V is three dimensional, V = [A1, Ay, As] for some 51, As
and Ag. Ay + Ag, Ay + Ag, Ay and Ay are four points of V.

Suppose B + [C, D] 1s a plane containing each of these points.
Then (Ay + Ag) - Ay = As, (Ay + Ag) = Ay = Ag and (Ay + Ag) = Ay = Ay
are in [C, D] contradicting the fact that [C, D] is two dimensional.
Thus, Ay + Apy Ay + Ay, Ay, and A; are four non-coplanar points in V.

Using Theorem 2.22 of Chapter II, which states that the non-empty

intersection of two cosets is a coset, the next theorem is proved.

Theorem VI. If two points lie in a plane, then the line containing
these points lies in the same plane.,

Proof: Let D and E be two points in plane A + [B, C]. Since
"DE€A+[B,C], A+[B, C] =D+ [B, C]. Since D, E € D + [B, C],
D-EE€I[B, C]. Thus, [D - E] c [B, C]. Therefore, (D + [D - E]) N
(D+[B,C]) =D+ ([D=E]NI[B, C] =D+ [D~ E] or the line,

D + [D = E], is contained in the plane D + [B, C] containing D and E.

Theorem VII. Any three points lie in at least one plane, and any
three non-collinear points lie in exactly one plane.

Proof: Let Ay B, and C be three points of space. If A, By, and C
are collinear, then they are in some line A + [D]. Therefore,
B-CEé€[D] or [B-C] =[D], Thus, the three points are in

A+ [B-C]=A4+[D]. Since V is three dimensional, there exists a
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point B such that [B - C, E] is two dimensional. Thus, A, B and C are
in A + [B - C, E].

| If A, B and C are non-collinear, then {A - C, B = C} is linearly
independent. If not, then A - C = (B - C) implies A = C # r(B « C) or
A€C + [B~C], which is a line containing B and C. Thus, since
C=C+0(A-C)+0(B-C)y A=C+ 1(A-C)+ 0B~ C), and

B

i

C+0(A-~C)+1(B=-C),C+[A-C, B=~C]is a plane containing
A, B and C.

If D + [E, F] is another plane containing A, B, and C, then A ~ C
and B = C are linearly independent and in [E, F],‘ Thus, [E, F] =
[A-C, B-C] and, since C € D + [E, F], D + [E, F] =
C+[A=-C, B=~Cl.

In the next theorem the assumption that V is three dimensional
assumes a paramount role. The next theorem requires that the inter-
section of two different cosets of two dimensional subspaces, whose
intersection is not emptj, is a coset of a one dimensional subspace.
This statement is not necessarily true in highgr_dimensional subspaces.
This can be seen by looking at the cosets (1,1,1,1) +
[(1,0,0,0), (0,1,0,0)1 and (1,1,1,1) + [(0,0,1,0), (0,0,0,1)] of the
two subspaces [(1,0,0,0), (0,1,0,0)] and [(0,0,1,0), (0,0,0,1)] of Rs.
The intersection of these two cosets is {(1,1,1,1)} since (1,1,191) +

r1(1,0,0,0) + rz(0,1,0,0) = (1,1,1,1) + r3(0,0,1,0) + re(0,0,0,1)

[

implies 1 = rs = ra = ra = O.
It is proved, in the next theorem, that in three dimensional space

this intersection must be a line,

Theorem VIII. If two different planes intersect, then their

intersection is a line.
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Proof: Let A + [B, C] and D + [E, F] be two different planes.
Since these planes intersect there is a point P in the intersection.
Then, by Theorem 2.22, (A + [B, C]) N (D + [E, F]) =
P+ ([B, c] N [E, F]). However, [B, C] N [E, F] cannot be the zero
subspace because if so then 1B + rzC + rzE + r F = 0 would imply that
B + raC = «rgk « ryF., This gives ry = 12 = 1y = z"‘ = O or
[B, C, E, F} is linearly independent. This contradicts V being three
dimensional. [B, C] N tE, F] cannot be either of the two subspaces
since different cosets of the same subspace do not intersect. Thus,
[B, ¢] N [E, F] is a one dimensional subspace and P + ([B, C] n [E, F])

is a line.

Convex Sets and Separation

Definition 3.16. A set A is called convex if for every two points
P and Q of A, the entire segment PQ lies in A. [17: 62]
In a vector space a set A is convex if for every two points P and

Q of A, the set {B|B=Q + t(P -~ Q)y, 0 <t <1} is a subset of A,

Theorem %.17. A line, a plane, and space is each a convex set.

Proof: (a) If C, D€ A+ [B], then C = D € [B]

Therefore, A + [B] = C + [C - D] = {C + t(C - D) | t € R}.

[}

Therefore, {C + t(C = D) | 0 <t <1} c A+ [B].
(b) If E, FE€ A+ [B, C], then E+ [E~ F] c A + [B, C]. Therefore,
EF c A + [B, C].
(c) Space contains all points.

The next two theorems will be proved in reverse order from their
presentation in SMSG geometry. Before proving them, and example will

be given (Figure 3).
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Example:

' MO0

Figure 3

. Consider Ry with its usual inner product, (%1, Xz, Xa) ° (y15 Y25 ¥Ya) =
X3y1 * Xa¥z + XaY¥a. The next theorem requires that a plane, such as
£(1,1,1) + [(1,0,0)(0,1,0)], t € R, "separates" space into three parts,
the plane and the two "half-spaces,'" such that each "half-space® is
convex, How can these half-spaces be defined?

The basis {(1,0,0), (0,1,0)} for the subspace [(1,0,0), (0,1,0)]
can be completed to an orthogonal basis for Rz. Since the basis for
[(1,0,0), (0,1,0)] was chosen so nicely it is seen that an orthogonal
basis for Ry could be the set, {(1,0,0), (0,1,0), (0,0,1)}.

Define a map f: Rz —~ R by f(x1, Xz, Xa) = (x1, X2, Xa) - (0,0,1)
where (0,0,1) is the vector used to complete the basis. By Theorem
2.28, f is a linear transformation and f_l(O) is a two dimensional sub-
space of Rgz. Since (1,0,0) ° (0,0,1) = 0 and (0,1,0) ° (0,0,1) = O,

this two dimensional space must be [(1,0,0), (0,1,0)]. Thus,
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(%1, %2, %3) € [(1,0,0), (0,1,0)] if and only if (x3, Xz, x3) ° (0,0,1)
= 0,

Consider the cosets t(1,1,1) + [(1,0,0) (0,1,0)], t € R. Two dif~-
ferent t give different cosets for if £;(1,1,1) - £2(1,1,1) =
(ty - t2)(1,1,1) € [(1,0,0), (0,1,0)], then t1 - tz = O or 1 = tg. If
(xy, X2, X3) is a given point, then (%1, Xz, x3) - t(1,1,1) =
r(1,0,0) + s(0,1,0) always has solutions in t, r, s. Therefore, every
coset (X1, %2, ¥3) + [(1,0,0), (0,1,0)] has a vector of the form
t(1,1,1) in it. Thus, as the subspace [(1,0,0), (0,1,0)] is translated
parallel to itself along the line {t(1,1,1)} every coset of
[(1,0,0), (0,1,0)] 4s obtained.

One can define the coset t(1,1,1) + [(1,0,0), (0,1,0)] in terms of
the inner product. Since, if (x1, Xz, xa) € t(1,1,1) +
[(1,0,0), (0,1,0)], then (x1, X5, Xz) = t(1,1,1) + r(1,0,0) + &(0,1,0),
for some r, s € R, Therefore, (x1, Xz, x3) ° (0,0,1) = (£(1,1,1) +
r{1,0,0) + s(0,1,0)) - (0,0,1) = t(1,1,1) - (0,0,1)., Also, if
(%1, %z, Xg) ° (0,0,1) = £(1,1,1) - (0,0,1), then
({x1, %2, xa) = t(1,1,1)) ° (0,0,1) = 0. This means,
((x1, %z, x3) - t(1,1,1)) € [(1,0,0), (0,1,0)] or (x15 Xgy Xz) +
[(1,0,0), (0,1,0)] = t(1,1,1) + [(2,0,0), (0,1,0)]. Thus, the coset

£(1,1,1) + [(1,0,0), (0,1,0)] = {(x1, %2, %3) | (x1, X2, xa) - (0,0,1) =

i

£(1,1,1) - (0,0,1)}.
For a fixed t, such as t = 1, the plane (1,1,1) +
[(1,0,0), (0,1,0)] = {(x1, %2, x3) | (xa, %z, X3) » (0,0,1) =
(1,1,1) ° (0,0,1)} is obtained. If P is a point in space, then P is in
some coset t(1,1,1) + [(1,0,0), (0,1,0)]. Therefore, P ° (0,0,1) =

£(1,1,1) » (0,0,1). It seems reasonable to expect that the points in
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cosets with t < 1 will be in one "half-space® determined by (1,1,1) +
[(1,0,0), (0,1,0)] while the points in cosets with t > 1 will be in the
other'“halfQSPace”. This is what the proof of Theorem X proves. Before

proving this theorem a lemma is proved first.

Lemma 3,18. If A + [B, C] is a plane with {B, C} an orthogonal set
and {B, C, D} an orthogonal basis of V, then A + [B, C] =
{PlP . D=4 . D},

Proof: The proof is similar to the example. Define a map
f: V4 Rby f(P) =P » D, f is a linear tranaformation having £1(0) a

two dimensional subspace of V. Since by assumption f(B) = B « D = O and

3

£(C) = C D=0, £75(0) = [B, C]. That is, [B, C] = {q]@ * D = 0}.

To prove A + [B, C] = {P|P - D= A - D}, let P € A + [B, C]. Then,

#

P=A+ sB+ tC for some s, t € R. Therefore, P o D =A D+ sB - D +
#C > D= A - D, Thus, P€ {P|P - D=4 . D}, IfPE {P|P D=4 . D},
then (P -~ A) » D = O, Therefore, P~ A€ [B, C] or P € A + [B, CJ.

Thus, the sets are equal by definition of equality of sets.

Theorem X. (The Space Separation Postulate.) The points of space
that do not lie in a given plane form two sets such that

(1) each of the sets is convex and

(2) 4f P is in one set and Q is in the other, then the segment

53 intersects the plane.

Proof: (1) Let A + [B, C] be the plane and {B, C, D} be a basis
for V as in Lemma 3.18. Then A + [B, C] = {P|P « D = A - D}, Let
H ={P|P-D>A-D} and Hy = {P[P - D<A - D}.

H; is convex for if P, Q € H; and E € §§, then E=P + t(Q = P) =

(L-t)P+tQ 0O<t<l. Therefore, E+ D= (P+ t(Q =P)) ° D=
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(L-t)P -D+tQ +D>(1 ~t)A+D+th:D=4-¢+D, Thus, E€ H or
PQ © Hy. Therefore, H, is convex, Similarly, Hy is convex.
(2) If Q€ H and P€ Hy, then P - D< A°*Dand Q * D>A4A ° D,

Therefore, P e D<A - D<Q:DorO<A°D-P-D<Q*D-P=°D,

A-D-P.D ‘ _ A+*D-P- ?})
Thus, 0 < 3-D-P-D <1, Consider E = <} "\ Q°D-P-D P+
&
QD
A

-PODon NowEGl—’-QandE“Dz(l— AOD_P°D>(PeD)+

TP D Q- D-P-D
« P o D (Q » D)(P « D) = (A -« D)P - D)
£—=-2)(Q - D) = +
(A_- D)(QQ°°D% - §P°°DD)(Q D) . 4. D. Thus, E € A + [B, C] and the

Q- D-P D
segment §§ intersects the plane. The proof is complete.

oic oo

The sets H; and H; of Theorem X are independent of the nams,
A + [B, C], of the plane. Because, if A + [B, C] = E + [B, C], then
A - E € [B, C]. Therefore, (A~ E) e D=Qor A-D=E- D. Thus,
Hy and Hy; are independent of the point in the coset chosen to name it.
Alsc, there are exactly two unit vectorsy; D and -D, orthogonal to both
B and C. Therefore, if ~D is chosen instead of D, then

Hy

i

{Plp - D>4 D} = {P|P + (<D) <A . (-D)} and

B

Hy = {P|[P - D<A - D} = {P|P « (-D) >A - (~«D)}. Thus, H; and H, are

i
i

independent of the vector D chosen to complete {B9 C} to a basis for V.
If [B, C] = [By, C1], then D is also orthogonal to both B; and Cj.

Therefore, H; and H; are independent of the basis chosen for [B9 cl.

Definition 3.19. The two sets determined by Postulate 10 (Theorem

X) are called half-spaces, and the given plane is called the face of

each of them. [17: 66]

The next theorem is similar to the last. It requires that a line

in a given plane separate the plane into two ""half-planes.” The idea
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of the proof is to characterize the line as the intersection of another
plane with the given plane. Then, the two half-spaces of the plane are
used to determine the two "“half-planes™ of the line. Before proving the

main theorem, a lemma is proved.

Lemma 3.20. Let A + [B] be a line in the plane A + [B, C]. If B
1s orthogonal to C, then A + [B] = {P[P € A+ [B, C] and P * C=4 . CJ.

Proof: First 1t should be noted that 1f B 1s not orthogonal to C,
then a vector C; can be chosen such that A + [B, C] = A + [B, C;] with
B orthogonal to C;. o

{Q]Q -+ ¢ = 0} 15 a two dimensional subspace of V. Since B * C = O,
{B} can be completed to a basis {B, D} for this space. Thus,
{elq - ¢ =0} = [B, D].

(A+ B, ¢]D)N (a+ [B, D]) is a coset of [B, C] N [B, D]. Since
C-C>0, C#[B, D]. Therefore, [B, C] n [B, D] # (B, C]. Thus,
[B, c] N [B, D] = [B] and (A + [B, C]) N (A + [B, D]) = A + [B].
Therefore, P € A + [B] implies P € A + [B, Dj or P=A+Q, Q€ [B, DI.
Thus, P - C=A°C+Q C=A4-C, Also, if P€ A + [B - C] and

P-C

i

A - C, then (P - A) = C = 0. Therefore P - 4 € [B, D] or
PE€A+([B, D]. Thus, P € (A+ [B, C]) n (A + [B, D]) = A + [B],
Since both inclusions have been shown, A + [B] = {P|P € A + [B, C] and

P-C=4-Cl,

Theorem IX. (The Plane Separation Postulate.) Given a line and a
plane containing it, the points of the'plane that do not lie on the
line form two sets such that

(1) each of the sets is convex and

(2) if P is in one set and Q is in the other, then the
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segment §§ intersects the line.

Proof: Let the line be A + [B] and the plane containing it be
A + [B, C] where C is orthogonal to B. By Lemma 3.20, A + [B] =
{PlPeAr+[B,Cland P -C=4 - C},

Let Hy

]

{PlpeA+[B,Cland P - C>A * C} and
Hy = {P[P€ A+ [B, Cland P * C< A - C}. Let P and Q be in Hy. Then,

PeC>A-CandQ ¢+« C>A"*C. The segment 5@ = [D|D

il

P+ t(Q - P),
0<t<1) = {D|D=(1-1t)P+tq, 0<t <1} |
If E€ 53 , then E = (1 - t)P + tQ. Therefore,

EoeCx=(1l=t)P C+t(Q-C)>(L-t)A*C+tA>C=A-+C, Since

it

P, Q € A + [B, C], by Theorem VI, PQ < A + [B, C]. Thus,
E€A+[B, Cland E- C>A * C, Therefore, E € Hy. Thus, PQ C H,
and Hy is convex. Similarly, Hy is convex.

If PEH and Q€ Hy, thenP - C > A « C >Q - C, Therefore, as

A-C=-9Q-C
P-C-Q.C 0. Let

Then, B = tP + (L - t)Qis inPQ. E - C =

in the proof of Theorem X, 1 >

A°C=-Q-C
"P.C-Qq.-cC°

tP e C+ (1 -1t)Q-C= (ﬁ - g — g - g}:p - C+

Q-7 De o= e oo
G

> (A>c)P -C)-(a-0C)Q-C)_
; g>Q G- P.C-Q -0 =4 - C.
Therefore, E € PQ N A + [B]. Thus, the sets H and Hy satisfy the

t

°

©

°

Qi Yix
Ol QIO

requirements of the theorem. By arguments similar to thosé at the end
of Theorem X, it can be shown that the sets H; and Hy are independent

of the names of the plane and line.

Definition 3.21., Given a line L and plane E containing it, the

two sets determined by Postulate 9 (Theorem IX) are called half-planes,

and L is called the edge of each of them. It is said that L separates
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E into the two half-planes. If two points P and Q of E lie in the same

half-plane, it is said that they lie on the same side of L; if P lies

in one of the half-planes and Q in the other, they lie on gpposite
sldes of L, [17: 64]

The constructive steps used to determine the half«planes deter-
mined by a line will be used so often in the next chapter that they are
listed below:

le If A+ [B] 1s a line 4n plane D + [E, F], then change the name

of the plane D + [E, F] to A + [B, C] where C is orthogonal to
B.
2. The half-planes of the line are then

H ={PlP€A+[B, ClandP - C>A - C} and

it

Hy

i

{PlPe A+ [B,ClandP - C<4A - Cl.



CHAPTER IV
ANGLES IN A EUCLIDEAN SPACE

This chapter will include the definition of an angle and the de-
fining of a measure for the angles that will satisfy the postulates of
SMSG geometry.

In Chapter III the ray with endpoint A and containing B was de-
fined. This definition was shown to be equivalent to AB =

(P|P=2a+t(B-2),t>0}

Definition 4,1. An angle is the union of two rays which have the

same end-point but do not lie in the same line. The two rays are
called the sides of the angle, and their common end-point is called the
vertex. [17: 71]

The notation for the angle whose sldes are rays A% and &6 is ¢ BAC
or & CAB, It is noted that an angle is a set of points. "Sensed®
angles are not considered in the geometry text published by 8MsG, That
is, there is no distinction made in the sides of the angles such as the
initial or‘terminal side., Also note that the definition of angle does

not allow a "straight® angle or a "zero" angle.

Definition 4.2. Let & BAC be an angle lying in plane E. A point

P of E 1lies in the interior of ¥ BAC if (1) P and B are on the same
side of the line AG and also (2) P and C are on the same side of the

-
line AB. The exterior of ¥ BAC 1s the set of all points of E that do

38
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not lie in the interior and do not lie on the angle itself. [17: 73]

A measure for angles will be a set function, m, defined on the set
of all angles with range contained in the real numbers, Postulates
eleven through fourteen of SMSG geometry determine the other properties
thls measure should have. They include: (1) the range of m should be
the real numbers between O and 180, (2) m should be additive, (3) angles
with two sides collinear and a common vertex should have measures whose
sum is 180, and (4) a ray on the edge of a half-plane should be a side
of exactly two angles in this plane with a given measure.

The cosine functien will be used to define the measure of an angle.
Facts about this function which will be assumed are:

(1) Cosine is a function whose domain is the set of all

real numbers and range is the closed interval [-1, 1].

(2) Cosine is periodic with period 2m.

(3) Cosine has minimum value of negative one at real:
numbers of the form (2n + 1)T, 0 = cooy =1, Oy 1,
vooo and maximum values of one at real numbers of the
form 2nmy, n = o0 =1y Oy 1, caco

(4) Cosine is continuous and one-to-one on the open
interval (O,n) taking on every real number in the
interval (-1,1).

(5) Cosine (r + s) = cos r cos s - sin r sin s.

(6) Ifa® +b® =1, 1 <a<1landas=cosr, then
b =2 ginr.

(7) The sine function is positive on the interval
(0, m) and negative on the interval (m, 21n).

(8) sin (r + s) = sin »r cos s + cos r sin s.
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Consider an angle ¢ BAC, By Definition 4.1, ¥ BAC =
{A+t(B-24), 0<t} U{A+t(C-A), O<t} where A, B, and C are

distinct non-collinear pcints.

Definition 4.3. The measure of angle ¢ BAC, written m ¥ BAC, is
(B~ A) - (C-A)

the real number r, with O { r<mg, wherecos:am‘B oy [c <A

Two things should be noticed about this definition. The first is

that cos r only takes on values between ~1 and 1. By the Schwartz
inequality, Theorem 2,15, |(B ~ A) * (C - A)| < |B - A]|Cc - A] with
equality if and only if one of the vectors B - A or C - A is a secalar
multiple of the other., Since A, B, and C are non-collinear, equality
cannot hold. Thus, |(B = A) * (C -~ A)| < |B = A}|C = A]. Therefore,
%g = 2? - %g = i% < 1 and the number r referred to in the defini-

tion always exists. Since cosine is one-to-one on (O,n) there is

=1 <

exactly one r satisfying the conditions of the definition,

The second thing to notice about the definition is that the number
r is defined in terms of a name, & BAC, for the angle. But if & BAC =
¥ DAF, then D is on ray &% gnd F is on ray &a, or F is on A& and D is
on AB. Suppose the first case occurs. Theny D= A + t(B = A) and
F= A+ s(C«A) for some t >0 and s > O. Therefore,

(B=A) + (C=A) t(B=4a) s s(C~4a) (DwA)o (F-A4)
[B = Al JC - Al " [6(B-A)] |s(C - &) [D=A] [F - A|° and the

measure of the angle is independent of the name used for the angle.

Theorem XI., (The Angle Measurement Postulate). To every angle
& BAC there corresponds a real number between O and 180.
Proof: In the remarks preceding this theorem, it was shown that

for every angle ¥ BAC there exists a unique real number m & BAC where
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§§ : 2? . %g : ﬁ? and O < m ¢ BAC < n. The inequality
180

involving m ¥ BAC can be multiplied by 129 to get 0 <==m X BAC < 180.

Define a new measure, m’, for angles by m’ = l%Q m. This new measure

cos (m ¥ BAC) =

would give the desired result. This proves the theorem.

The 1limits on the measure of an angle are quite arbitrary. The
measure m, defined in Definition Lk,3, has the measure of an angle be-
tween zero and w. Postulate 11, of SMSG, requires that the SMSG measure
of an angle be between zero and 180. The measure m’ = l%Q m gives the
correct limits. Hereafter, in each theorem requiring
0 <m’ ¥ ABC < 180, the writer will demonstrate that
O <m & ABC < n. The required result would be immediate.

The point P = A + Tﬁ_%_KT (B - A) is the unique point 4in ray AB

with |P = A] = 1. This fact is used in the following definition.

Definition 4.4, Let AB be a ray. The vector P - A with |P = A]l=1

and P in ray AB is called the direction vector for ray AB. Note: The

direction vector is not necessarily a point in ray AB.

Theorem 4.5. Let ¢ BAC and & DEF be two angles. If the rays AB
- - -
and AC have the same direction vectors as the rays ED and EF, then

m ¢ BAC = m ¢ DEF,

Proof: By hypothesis AB = {A + tQ, t >0}, AC = {A + tP, t > 0},
ﬁb = {E + tQ, t >0} and T = {E + tP, t > 0} where P and Q are direc-
tion vectors. A + Q € Aé, A+PE 569 E+QE€E EF and E + P € EF.
Therefore, by definition of the measure of an angle, cos (m & BAC) =

(A+Q=p) c(A+P-A) QP (E+Q=-FE) < (E+P «E) _
jA+Q-4a] JA+P=-A] Q[P " |E+Q~-E| |E+P -E| "

cos (m < DEF). Thus m € BAC = m ¢ DEF,



Lo

(1,1,1),

Example: Let V = Ry with usual inner product. Let A =
_ . ' (B-A) - (C-4A)
= (1 +2y3, 3, 1) and C = (4, 1 + 33, 1), B=Al Jc-a]

(23, 2,0) - (3, 33, 0) V3

@3, 3,0|[G, 335, 0 2 .
Therefore, since cos & \[:g-,

- &
m (& BAC) = Zo

N

The directlon vector on

rayﬁis&:-r—!"—-—T(B_A)m '\

@, 2, O> and the direction

-

vector on ray AC is C, =

E%H(C-A)z@:,v—;., 0).

Any angle & DEF with E =

(%1, Xz, Xa)y D= E + B

and F = E + G, would have the

Figure 4,

same measure as ¥ BAC,

< BAC is in plane (1,1,1) + [(1,0,0), (0,1,0)]. Since A + By is
in this plane (1,1,1) + [(1,0,0), (0,1,0)], By is in [(1,0,0), (0,1,0)]
Therefore, {Bl] can be completed to an orthonormal basis for the plane
[(1,0,0), (0,1,0)]. That is [(1,0,0), (0,1,0)] = [By, D]. In this

example, since By = G—’z %-9 O> the possible choices for D are

'ns =f> ’ O> < 2 s> O> Suppose D = < 55 O> is chosen.,

Since Cy € [319 D], there are scalars a and b such that Cy =

aB; + bD or 2, 29 O> (» s 3o O>+b< 5 O> It is seen that
a ﬁ\gi and b = %1-50 Therefore, a = M;n cos m ¥ BAC = cos% and
=b = % = gin m ¢ BAC, If the vector =D were chosen to complete the

basis instead of D, then the results would have been that sin ¢ BAC =b.

The last part of the example serves as an illustration of the
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following two general theorems.

Theorem 4.6, If ¢ BAC is an angle with By and C; as direction
vectorskfor rays Aﬁ and ;6, respectively, then ¢ BAC is in plane
A+ [By, D] and C; € [B,, D] where D is a vector used to complete {B;}
to an orthonormal basis for the subspace [B -~ A, C - A].

Proof: Since A, B, and C are three non-collinear points, there
exists exactly one plane, A + [B = A, C - A], containing them. Since
By = Tg-%—KT (B-A), B € [B~A, C-~A]. Therefore, {By} can be
completed to an orthonormal basis {By, D} for [B - A, C = A] or
[B-A, C~A] = [B, D]. Therefore; A, B, and C are in A + [B,, D] =
A+[B~A, C=~A]. Since two points of each of the rays AC and AB are
in A + [B,, D], ¥ BAC is contained in A + [B,, D]. Also,

1 o .
C, = Te=aT (C -~ A) implies C; € [By, D] = [B - A, C - A],

Theorem 4.7. With the information given in Theorem 4,6, if

e
-
i

: aBy + bD, then cos m ¥ BAC = a and sin m ¢ BAC = ¥ b,

Proof: Since {B;, D} is an orthonormal basis for [B;, D], by
Theorem 2,19, C1 ° G = a® + b2, Since |G| = 1, this implies
2 + 12 = 1. Now AB = AE and AC = AF where E = A + By and F= A+ Cy .~
Théfefore, cos (m & BAC) = %%;%T%fT = B ° (aB, + bD) = aB; ° By +

bB, » D = a. Also, since a® + b2 =1, b = * sin (m & BAC).

Theorem XII. (The Angle Construction Postulate) Let AB be a ray
on the edge of half-plane H. For every number r between O and 180
there is exactly one ray AP with P in H, such that m ¢ PAB = r.

Proof: For some D in V, the plane containing ray &ﬁ and half-
plane H is A + [Bl, D] where B, is the direction vector for ray Aé and

{Bi, D} is an orthonormal basis for [B,, D]. IFP € A + [By, D] and P
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is not collinear with A and B, then ray Ai has a direction vector
P, € [By, D] with P = aB, + bD where b # 0. Since |P;| = 1, a® + b=
1. By Theorem 4.7, cos (m ¥ PAB) = a and since b # 0, =1 < a <1,

For the given r there is exactly one real number a such that
¢os r = a, There are exactly two b's such that a® + v® = 1. That is,
bstV1< a2,

From Chapter III the two half-planes of plane A + [B,, D] deter-
mined by 1ine AB are By = {P|P D> A » D and P € A + [B;, D]} and
H; = {P[P D<A °Dand P€ A+ [B, D]}. Now (A+Py) » D=
(A+aB+bD) *D=A°D+aBoD+DbD°D= A ° D+ b. Therefore, if
b=V1-2a®, then (A+P,) oD>A-Dand A+ P €H, If
b=~ VE#Zf;EE then A + Py € Hy. Thus, there is exactly one ray A%,
where A + P; € &;, in each of the half-planes H; and ngsuch that
m ¥ PAB = r,

A plane has been defined as a coset of a two dimensional subspace
of Vo If A, B, and C are three non-collinear points, then the coset
A+ [B~A, C~ A] is the unique coset (plane) containing these points.

The following theorem gives another characterization of this coset.

Theorem 4.8, If A, B, and C are three non-collinear points, then
the set {aA + bB + ¢C | a + b + ¢ = 1} is the plane containing A, B, and
C.

Proof: Since it is known that the unique plane containing A, B,
and C is A + [B = A, C = A], the theorem will be proved if it is shown
that {aA + BB+ cC | a+b+c =1} = A+ [B =~ A, C~ Al

Let P€ {aA +bB+cC | a+b+c=1}., Then, P= al + bB + cC =
(L -b=c)A+DbB+cC=A4+b(B-~A)+c(C-A). Therefore,

PEA+[B-A, C=Al
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IfPE€ A+ [B- A, C - A], then there exists real numbers s and t

such that P = A + s(B -~ A) + t(C - A4)

(1 -5-t)A+ sB+ tC. Letting
a=l-gs-t,b=sandc=t,a+b+c=1-8=-t+s+t=1,
Consequently, P € {aA + VB + cC l a+b+c=1}. Therefore, the sets

are equal.

Theorem 4.9. Let ¢ BAC be an angle in plane A + [B - A, C ~ A].
The interior of ¢ BAC is the set of points
T=f{aAh+btB+cC|la+b+c=1,b>0, c>0}.
Proof: The half-planes determined by lines Kg and Xﬁ are:
H ={P|P<E>A-Eand PE€ A+ [B - A, C- Al
Al}
Al}

Hy'={P|[P - F<A*FandP€A+[B-a4a, C-all

&
i

- {P[P*E<A-Eand PEA+[B-A, C

R
;

‘= {P|P-F>A°Fand PEA+[B=A,C

In the above E is chosen so that [B - A, C - A] = [B - A, E] with E
orthogonal to B -~ A, Also, F is chosen so that [B'= 4, C - A] =
[F, C - A] with F orthogonal to C - A.
The interior of ¢ BAC is the intersection of the half-plane, Hy, or
Hy, containing C and the half-plane, H;' or Hy’, containing B, The
proof will be given for one case. The other three cases are similar.
Suppose the interior of X BAC 4s H; N Hy'. Then C € H; and
B € Hy', Therefore, C » E>A * Eand (C - A) « E >0 with
BeF<A-°*Fand (B=4A) - F<0, Let P € H N Hy' By Theorem 4.8,

P

aA + bB + ¢C with a + b+ ¢ = 1. Therefore,

P=(l-b=~c)A+bB+cCorP=-A=Db(B~A)+c(C-A). Thus,

i

(P=4) *E=b(B-A) E+c(C-A4) E=Db-0+c(C=4)°E=
¢(C -~ A) ° E, Since P€ Hy, (P-A4) « E>0, Since (C - A) * E >0, it

follows that ¢ > 0. Alsoy, (P =A4) * F=Db(B=-A) “F+¢c(C=-A4) *F=
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b(B=-A) e F+c¢:0=%bB-A)F, Since PE€ Hy, (P - 4) » F < 0,
Therefore, since (B - A) = F < 0, it follows that b > 0. Thus,
PET={aAh+DbB+cC|a+b+c=1,b>0, c>0].

Let PET, Then P=aA +bB+cC, a+b+c=1, >0, ¢c >0,
Thus, P = A = b(B - A) + ¢(C ~ A). As before, (P~ A) - E =
c(C-A) cEand (P-A) °F=b(B=-A4) »F, Since (C - A) ° E >0 and
¢>0, (P-A4) *"E>OcrP€H. Since (B-A) °F<O0andb>0,
(P~-A) cF<OorP € H". Thus, P € H N Hy. Therefore, T = H N H'
and the theorem is proved for this case.

In a beginning course in geometry it is usually assumed that the
bisector of an angle of a trlangle intersects the opposite side. In
synthetic geometry the proof is rather difficult. For example, see
[13]. The previous theorem provides means for a rather simple proof of
this statement in vector geometry. The next theorem will also imply
that if a ray AD is in the interior of & BAC, then B and C are on

[
opposite sides of 1line AD. This fact will be used in Theorem XIII.

Theorem 4.10. If D is a point in the interior of ¢ BAC, then

ségmenb BC intersects ray &bo

Proof: AB = {A+ t(D < A)y t >0). The interior of ¥ BAC is the
set, {aA + BB+ o6C | a+b+e¢ =1, b>0, ¢ >0}, BC = {B+ r(C - B),
O <r <1l)}. The existence of real numbers t and r such that t > O,
Ovs r<1and

A+ t(D~-4) =B+r(C~B) (1)

is sufficient to prove the theorem. .

Since D is in the interior of ¢ BAC, D = aA + bB + ¢C with b > 0
and ¢ > 0, Therefore, A + t(D = A) = B + r(C = B) implies

A+ t(aA+bB+c¢C-A) =B+r(C-~B)and sincea=1=5b «2¢
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A« tbA - tcA + tbB + tcC = B+ r(C - B) or A = B + tb(B - A) +

te(C - A) = r(C - B) =8, Since C =B = (C - A) = (B - A) it follows
that, -1(B = A) + tb(B = A) + tc(C = A) = r(C = A) + r(B = A) = 6 or
(tb + r = 1)(B = A) + (tc = r)(C - A) = B. Since {B ~ A, C = A} is

linearly Independent, this implies that tb + r = 1 = O and tc = r = O,

Thus, t = 35— >Oand r = 7 = with 0 < r < 1.
A direct substitution in Equation (1) yilelds:
A+ %"%“E (D=4) = A+ o % = (ah + BB + cC = A)
= o= (DA + cA + ah + bB + oG - A)
=3 i o (bB + cC)
= B+ =—t— (bB + cC - (bB + cB))
=B+3 i p (C - B).
Therefore, . and T o ave solutions and the theorem is proved.

Theorem XIII. (The Angle Addition Postulate) If D is a point in
the interior of & BAC, then m & BAC = m & BAD + m ¢ DAC. |
Proof: The measure of an angie does not depend upon the points
used to name the angle. Therefore, it can be assumed that
[B~A] = [C=A] = |D~ A] = 1. A plane containing % BAC can be
chosen, A + [D - A, E], where {D ~ A, E} is a orthonormal basis for
(D - A, E].
Thus, there are real numbers a, b, ¢ and d such that B = A =
a(D -~ A) + bE and C - A = ¢(D = A) + dE, By Theorem 4.7,
cosm ¥ BAD = a, sinm ¥ BAD = % b, cosm ¥ CAD = ¢ and sinm & CAD =
* d. The halfmplaﬁes of A+ [D - A, E] determined by line AD are
H = {P[P-E>A°EandP€A+[D-A, E]} and H, = (P[P  E<A - E

and P € A + [D - A, E]}.
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By Theorem 4,10, B and C are in the different half-planes deter-
mined by line AD. Since (B - A) * E = (a(D - A) +#+ bE) * E = |
a(D-A) *E+bE*E=band (C-4) - E=(c(D=A) +dE) - E =4,

b and d are of opposite signs. Since O <m & BAD < g and
O<m¢DAC € g5, both sin m & BAD and sin m & CAD are positive. Thus,
sinm ¥ BAD = -b and sln m ¥ DAC = d or sin m ¥ BAD = b and

sin m ¢ DAC

i

-dn
Consider the case in which sin m & BAD = -b and sin m ¥ DAC = d.

Sin (m ¢ BAD + m & DAC) = sin m ¢ BAD cos m & DAC +

i

cosm < BAD sinm ¢ DAC = =bc + ad. Since B - A = a(D - A) + bE and

C-A=c(D-A)+dE (ad - bc)D = dB-bC + (b - d + ad ~ be)A. If

. | b -d+ad-be d b
ad = be # O,thenD= ~ad - be A+ Py B+ oA - bo C. &8ince D
is in the interior of ¥ ABC, by Theorem 4.9, ;E—%-EE >0, Since @ > O,

ad - bc >0, Since O <m ¥ BAD <5, O <m & DAC < g and sin is nega-
tive on {n, 2n)y m ¢ BAD + m & DAC < n. This is all under the condi-
tion that ad - be # 0. If ad = be = O then, since on (0, 27) sin is
only zero at m, m & BAD 4+ m & DAC = 5, In either case, m & BAD +
m ¢ DAC < 7.

Now cos m ¢ BAC = (a(D = A) + bE) ° (c(D - A) + dE) = ac + bd =
a¢c = (=b)d = cos m ¥ BAD cos m & CAD - sin m ¢ BAD sin m ¢ CAD =
cos (m & BAD + m & CAD)., Since the cosine is one-to-one on (O,m),
m< BAC = m & BAD + m ¢ CAD as was to be proved.

The case where sinm ¥ BAD = b and sin m ¥ DAC = -d would be

proved in a similar manner.

Definition 4,11, If AB and AC aré opposite rays, and AD is an~-

other ray, then ¢ BAD and ¢ DAC form a linear pair. [17: 82]
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Definition 4,12. If the sum of the measures of two angles is 180,

then the angles are called supplementary, and each is called a supple-

ment of the other. [17: 82]

Theorem XIV. (The Supplement Postulate) If two angles form a
linear pair, then they are supplementary.

Proof: Let & BAD and ¢ CAD be two angles of a linear pair where
&é and &6 are opposite rays. It is assumed, without loss of generality,
that |B - A' = |C = 4] = ID - A] = 1. The rays are in the plane
A+ [B =~ A, E] where {B = A, E} is an orthonormal basis for the sub=
space [B - A, E],

There exist real numbers a and b such that D = A = a(B = A) + bE,
Since AC is opposite to ray A%s D~ A= (-a)(C - A) + bE, Therefore,

cos m_& BAD = (D = A) o (B = A) = (a(B - A) + DE) » (B = A) =

H

a(B =~ A) o (B= A) +bE o (B = A) = a. Similarly cos m ¥ CAD = ~a,
Since |B - A] =1, a® + b® = 1 and since |C - A| = 1,

(«a)® + »® = 1. Thus, b =% sinm ¥ BAD and b = £ sin m & CAD. Since

0 < 8in x < 1 for all x such that 0 < x < n, if b < O, then both sligns

are minus. If b > O, then both signs are plus. Thue, b° =

sin m & BAD sin m & CAD in either case. Therefore,

cos (m ¢ BAD + m & CAD) = cos m € BAD cos m & CAD =

sin m ¥ BAD sin m & CAD = a(-a) - b® = - (a® + b®) = -1, This implies

that m & BAD + m & CAD = n which was to be proved.



CHAPTER V
CONGRUENCE AND PARALLEL LINES

One of the fundamental concepts of Euclidean geometry is con-
gruence., From the time of Euclid this concept has carried with it the
idea of "motion®. That is, two point sets were considered congruent if
one ¢can be "moved", by a "rigid motion", so as to coincide with the
other., It has always seemed incredible té some mathematicians and
philosophers that geometry, a creation of the mind, should be so fied
up with the physical and concrete idea of motion.

The SMSG geometry program excluded the concept of "“motion™ by
defining congruence separately for different types of point sets. The
definitions of congruence of angles, segments, and triangles are in-

cluded in Definition 5.1,

Definition 5.1. i) Angles are congruent if they have the same

measure, 1i) Segments are congruent if they have the same length

[17: 109], i4i) Given a correspondence, ABC « DEF (A corresponds to

D; B corresponds to E; and C corresponds to F), between the vertices of
two triangles. If every pair of corresponding sides are congruent, and
every pair of cofresponding angles are congruent, then the correspond-=

ence ABC & DEF is a congruence between the two triangles. [17: 111]

The first part of this chapfer will include the proof of Postulate

15 of SMSG geometry, using the definitions of congruence of SMSG

50
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geometry. The parallel postulate, Postulate 16, will also be proved in
this section. This statement could have been proved following the
definitions of a plane and a line. However, following the numbering of
the SMSG postulates, it is included here. After parallel lines are
introduced, a short discussion of parallelograms and fectangles will
follow.

The second part of the chapter wlll deal with isometries of V. An
isometry is a mathematical formulation of the physical notion of "rigid
motion". Point sets of SMSG geometry will be shown to be congruent if
and only if there is an isometry of V mapping one point set onto the
other., This formulation of congruence will be used in Chapter VI to

show that congruent point sets have the same "area'.
S.A.8. and Parallel Postulates

Definition 5.2, If A, B, and C are any three non-collinear

points, then the union of segments Kﬁ, ﬁE, and AC is called a triangle,
and is denoted by AABC; the polnts A, B, and C are called its vertices,
and segments Kﬁ, EE; and AC are called its sides. <°°° AABC determines
the angles, ¥ BAC, % ABC, and % ACB, which are called the angles of
MBC. [17: 72]

Using the definition of the measure of an angle given in Ghaptér
IV and the definition of a triangle, the following theorem, called the

law of cosines, is proved.

Theorem 5.3. Let AABC be a triangle in V. Then, (BC)® = (AB)Z
+ (AC)® ~ 2(AB)(AC) cos (m ¥ BAC). |
Proof: AABC = {A + t(B =~ A), 0<t <1} U

fA+t(C-A);, 0<t<1}U{B+t(C~B), 0<t<1]).
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) o (C - A)
(AB)(AC)

2 2(BwA) o (CmA) =2(BsCawA+sCw=DBeA+As A and

2(AB)(AC) cos (m ¢ BAC) = 2(AB)(AC) (8- 4

2 Boe Cw= 2(AB)(AC) cos (m X BAC) + 2 Ao C+ 2B A =24 A,

Thus, (BC)® = (C «B) + (C~«B) =C+*Cw2Be«C+B:+B

C e Cw (2(AB)(AC) cos (m ¢ BAC) + 24 ¢ C + 2B ¢ A~ 2A ¢« A) + B+ B
# (AeA-20°C+CeC)+(A+A=~24¢B+Bo+B)«
2(AB)(AC) cos (m ¢ BAC)

m (A-C) « (A=C)+ (A-B) » (A~B) - 2(AB)(AC) cos (m ¢ BAC)

i

(AC)? + (AB)? - 2(AB)(AC) cos (m ¥ BAC).
This theoren is used in proving the SAS congruence postulate of

SMSG geometry.

Theorem XV. (The S.A.S. Postulate.) Given a correspondence be=
tween two triangles (or between a triangle and itself). If two sides
and the included angle of the first triangle are congruent to the
corresponding parts of the second triangle, then the correspondence is
a congruence.

Proof: Let ABC % DEF be the given correspondence between AABC
and ADEF with ¢ A= ¢ D, AB ¥ DE and AC ¥ DF. Then, by the definitions
of congruence, m ¥ A = m ¢ D, AB = DE and AC = DF. By Theorem 5.3,
(BC)? = (AB)® + (AC)? - 2(AB)(AC) cos m ¥ A = (DE)® + (DF)® «

2(DE)(DF) cos m ¢ D = (EF)3,

Since BC and EF are positive, BC = EF., Thus, by the definition of

congruence, BC % EF,
(AC)® - (BC)® = (AB)® _

By Theorem 5.3, cos m ¥ B = 5 (BC)(AB) =
2 2
(DF) 22E§§?%E)= (PE)2 . cos m X E. Thus, m ¥B=m X E and, by

definition of congruent angles, ¥ B ¥ ¢ E., Similarly, ¥ C ¥ ¢ F. Thus,

since corresponding sides and angles of the two triangles are congruent,
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AABC = ADEF as was to be proved.

Definition 504._ Two lines are parallel if they are coplanar and do

not intersect. [17: 2417 Two planes, or a plane and a line, are
parallel if they do not intersect. [17: 291]

In the SMSG development of geometry it is possible to prove, using
the first fifteen postulate, that if C is not in line-zé then there
exists at least one line through C which is parallel to ﬁ%e A vector

proof is included here.

Theorem 5.5, Let C be a point not in line K%. Then, there exists
~ -
a line CD parallel to line AB.

Proof: Since A, B, and C are distinct vectors, A, By and C are in
the plane A + [B = A, C - AJ., AB = {A+t(B-A), £t €R}. Let Ch =
{C+t(B-A), t €R}. IfPE AB N CD then there exists real numbers t
and s such that P = A + t(B = A) = C + s(B - A). Therefore, C - A =
(t = s)(B - A). Since {B~- A, C - A} is a basis for [B - A, C - A],
this is a contradiction, Therefore, X% N 55 is empty. Also, each line
is in plane A + [B = A, C - A] = C + [B - A, C - A]. Therefore, 1ine CD
is parallel to line Zﬁ»

The next theorem, which is Postulate 16 of SMSG geometry shows that

& . L2
CD is the only line containing C and parallel to line AB,

Theorem XVI, (The Parallel Postulate.) Through a given external
point, there is at most one line parallel to a given line,

Proof: Let Zﬁ be a given line and C an external point. That is,
G 4s not in line X%o B = {A+ t(B~A), t €R}. As in the proof of
Theorem 5.5, &b = fc + t(B - A), t € R} is a line containing C and

[ nd «
parallel to line AB. Let CE = {C + t(E -~ C), t € R} be a line
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containinguc and parallel to line Kﬁ. Since C and E are each in plane
A+[B-A,C=~A], E~Cisin the subspace [B ~ A, C - A], Therefore,
there exists scalars s and t such that E ~ C = s(B -« A) + t(C ~ A).

Since E £Cy8#0o0rt#O0. Suppose t £ 0. Then, the vector
C - %(E ~C)=4A- %(B ~ A) would be on both line CE snd AB. But these
lines are parallel. Therefore, t = O and s ¥ O, Thus, E~ C = s(B=4A)
and 1ine GD = {C + t(B = A), t € R} = (C + £(E - ), t € R} = R, That
is, 55 1s the only line containing C and parallel to line Kéa

The definition of a rectangle is needed in Chapter V. Before de-

fining a rectangle, three preliminary definitions are given.

Definition 5.6. Let A, B, C, and D be four points lying in the

game plane, such that no three of -them are collinear, and such that the
segments Zﬁ, 55, EB, and DA intersect only in their end-points. Then

the union of these four segments is a guadrilateral. [17: 263]

Definition 5.7. A parallelogram is a quadrilateral in which both

pair of opposite sides are parallel. [17: 265]

Let ABCD be a parallelogram with sides AB, BC, CD, and DA, Since
C is not collinear with A and B, C is not on AB = {A + t(B - A)|t € R}.
~As in the proof of Theorem 5.5, the line through C parallel to Xé is
{C + t(B -~ A)|t € R}. Similarly, the line through A parallel to line
BC 4s {A + £(C - B)|t € R}. D being on both of these lines implies
D=A+al(C~-B)=C+b(B=A) for some a and b in R. Thus, D = A =
a(C = B) and D = C = b(B = A). Now, since A, B, aﬁd C are non-collinear
B - Aand C - B are linearly independent.  Thus, since A + a(C - B) =
¢ + b(B - A) implies A - C + a(C - B) = b(B - A) =0 or (a - 1)(C - B)+

(-1 -b)(B~-A)=0,a2a-1=0and1l~b=0, Thus, a =1 and b = =1,



Therefore, since D = A = a(C - B) = (C = B) and D - C = b(C - B)

-1(C - B), |[D - A] =

alc = B| = |c - B} and |D - C| = |b]|B - A]

|B - A]. Therefore, AB = CD and BC = DA.

i

L]

Definition 5.8, A right angle is an angle of 90° (measure ).

'[17: 86)

Let & ABC be a right angle.

(A - B) « (C = B)

Since cos (m & ABC) =

[T BT 16 =BT a0d cos (x) = 0, O < x < m, 1f and only 1f x

& ABC is a right angle if and only if (A = B) » (C = B) = 0O,

mEY
o1

squivalent vector space definition of a right angle is, & ABC is a

right angle if and only if (A - B) » (C = B) = O,

Definition 5.9. A rectangle is a

parallelogram all of whose angles are

right angles. [17: 268]

Let ABCD be a rectangle with sides

7B, TG, ©D, and DA.

a parallelogram, AB = {A + t(B -

{A+s %%—f—%%[o <s
[B+s %g—f—g%lo <s
{D+s %%“f‘%%lo <s
{A+s %%—f—%%lo <s

Then, since

<

£

<

<

(A-B) - (C=-B) =0,

dependent. Since A, B, and C are in the plane P + [Q,S] containing

Q@ w
b B

W
i

o -

By Theorem 2.16, {B -« A, C = B} is linearly

All,
B[3,

A|} and

B|}.

ABCD is

i)

Mlo<t <)

BC

H]
~
lsv
+
L1
~~
Q
&

B)lo < t <1}

. {D + t(B

gl
H

Ao <t <1}

o

A={A+t(C-Bo<t<

Since ¥ ABC is a right angle,

the rectangle, this implies B - A and C = B are in [Q,8] and

A

C - B

P+ [Q,5] = A+ [lg

B~ A C

gona19 {'B ~ A]9 |C

A To - 8]

i

H]
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Thus, the

]o Since B - A and C = B are ortho-

gl} is an orthonormal basis for [Q,S]. Thus, if
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ABCD is a rectangle, then ABCD is in the plane

A+ [‘g ~ ﬁ}, ‘g ~ g[] where {Ig - ﬁl, ‘g — g'} is an orthonormal basis

for the subspace [[g : ﬁ‘, [g : g‘]. A rectangular reglon is 1lnvesti-

gated next.

Definitlon 5,10, A point lies in the interior of a triangle if it

lies in the interior of each of the angles of the triangle. A point
lles in the exterior of a triangle 1f 1t lies in the plane of the

triangle but is not a point of the triangle or its interior. [17:74].

Definition 5.11. i) A triangular reglon is the union of a

triangle and its interior; ii) A polygonal region is the union of a

finite number of coplanar triangular regions, such that if any two of
these intersect the intersection is either a segment or a point.
(17: 317]

By the definition of a polygonal region, if ABCD is a rectangle,
.then the rectangular region is the union of triangular regions ABC and
ADC, The intersection of these two triangular regions is segment AC,
By Theorem 4.9, the interior of X ABC = {aA + bB + cCla + b+ ¢ = 1,
a >0, b >0}. Similar remarks hold for the interior of the other
angles of AABC, If P=aA +bB+cC,a+b+c=1, and a, b, or ¢
equals zero, say ¢ = O, then P = aA 4+ bB = (1 - bJA + bB =
A+ v(B - A)., Thus, P would be in the triangle. Thus, any triangular
region ABC is the set {aA + VB + cCla+ b +c =1, a >0, b >0,

¢ >0},

Theorem 5.12. Let ABCD be a rectangle. Then, the rectangular

(B - 4) N (C = B)
[B- Al ¥ °[c- 8]

region ABCD is the set {A + t lo <t <|B- a4l
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0gss|c- B}

Proof: It will be shown that the rectangular reglon is the set
T={A+t(B-A)+s(C-B)logct<l, 0<s<1l). This implies the
theorem.

By definition, the rectangular region is the union of triangular
regions ABC and ADC, Denote these by ABC and ADC, Then,

ABC = {ah + BB+ cCla+b+c=1,a2>0, b >0, ¢c >0} and

i

ADC = {ah + dD + cCla+ b+ ¢ =1, a >0, d >0, ¢c >0}. Since ABCD is
a rectangle, D= A+ (C-B)orB=A4A+C~ D,

It PE€ABC then P=ah + bB+cC = (a+ b+ c)A + (b + c)(B - A) +
¢(C-B) =A+ (b+c)(B=-A)+c(C~B) which is in T, If P € AIC,
then P = aA + dD + cC and aA + dD + ¢C = aA + b(A + (C = B)) + cC =
(a +b)A+b(C-B)+cC=1(a+Db)A+(b+c)(C=~B)+cB
=(a+b+c)h+ (b+c)C-B)+c(B-A) which is in T, Thus,

ABC U AC < T.

If PET, then P = A + t(B - A) + s(C = B), ols t <1 and

0<s<1l. Therefore, P = (1L -« t)A + (t - 8)B+ sC, If t -82>0,

(1L -t)A+(t-8)A+C-D) +

i

then P.€ ABC, If t - s < O, then P
€= (1~ t)A+ (s~ t)D+ (t-s)A+ (t-8)C+sCse(la-s)A¢+

(s = t)D + £C, which is in ADC. Thus, the theorem is proved.
Isometries

This section will dezl with transformations of V into V. A trans-
formation from V into V is a function, f, assigning to each vector A in
V- a unique vector £(A) in V. An isometry is a particular type of

transformations.

Definition 5,1%. A transformation f from V intec V is an isometry
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1f and only 12 |£(A) - 2(B)| = [A = B| for all A and B in V.

Theorem 5.14. If £:V = V is an isometry, then (£f(A) - £(B)) -

(£(C) - £(D)) = (A - B)(C - D) for all A, B, C, and D in V. In particu-
lar (£(A) - £(8)) « (£(B) - £(B)) = A - B,
Proof: Since f is an isometry, for each A and B in V, 1)
|£(A) = £(B)|® = |A « B|?. Tnis implies that
11) £(A) o £(B) = ~#(A + A =~ 24 ¢« B+ B+ Bw £(A) * £(A) =
£(B) » £(B)). Thus, (£(A) - £(B)) » (£(C) ~ £(D)) = £(A) - £(C) =
f(A) o £(D) = £(B) « £(C) + £(B) « £(D). Substituting for
£(A) - £(c), £(A) « £(D), £(B) - £(C) and £(B) * £(D) using ii) above
and simplifying gives (£f(A) - £(B)) ° (£(C) - £(D)) = (A - B) » (C = D),
The next two theorems describe the image and pre-image of an

crthonormal basis under an isometry.

Theorem 5.,15. Let £:V - V be an isometry. If {A;,Az,43} is an

orthonormal basis for V then {f(A;) - £(8), £(Az) - £(0), £(4;) - #(8)}
is an orthonormal basis for V.

Proof: Since {A;,A;,43)} is an orthonormal basis, A, ° A = 0 if
i # 3, and Ay ° A, = 1. By Theorem 5.1k, (£(4;) - £(8)) - (£(4,) -
£(8)) = A, ° Ay, Thus, by Theorem 2,16, {f(4) - £(8), £(43) -

£(8), £(A;) = £(B)} is an orthonormal basis for V.

Theorem 5.16. Let f:V - V be an isometry. If {A;,A5,A3} is an

orthonormal basis for V with f(B,) = A,, 1 = 1, 2, 3, and £(P) = 8,
then {B; = P, By = P, By = P} is an orthonormal basis for V.
Proof: (By = P) ° (By = P) = (£(B,) - £(P)) - (£(By) = £(P))

w Ay o Ay, 1, J =1, 2, 3.
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By Theorem 2,16, { B, =P Ii =1, 2, 3} is an orthonormal basis

for V.

Theorem 5,17. Let £f:V - V be an isometry. If {A;,A3,A3} is an

orthonormal basis for V and A = ayA; + aghs + agAs then f(A) -~ £(8) =
ap (£(A1) = £(8)) + ag(£(Az) - £(B)) + az(£(Az) - £(6)).

Proof: By Theorem 5,15, {£f(A;) - £(8), £(Az) - £(8), £(Ag) - £(8)}
is an orthonormal basis for V. Thus, there are real numbers by, bz, and

by such that £(A) = £(0) = by (£(4A;) = £(8)) + by (£f(A;) - £(8)) +

)

b (£(Az) - £(8)).

By Theorem 5.14, (A = 0) - (A, - 8) = (£(4) - £(8)) - (£(4,) =

(£(8)) or (a1Ay + aghz + azhs) ° A, = (b (£(Ay) = £(8)) + ba(£(A) -
£(8)) + ba(£(Ag) = £(8)) o (£(A;) - £(8)), 1 = 1, 2, 3. Since each of
the bases i1s orthonormal, distributing the inner product implies that

Theorem 5.18. If f:V + V is an isometry then f is one-to-one and

ento V.

Proof: Let {A;,A3,A3} be an orthonormal basis for V. Let A, B be
two distinet vectors of V. Then there exlsts real numbers a;,az;aa,
by,bz and bz such that A = ajA) + aghs+ azlz and B = biA; + bghs +
bahs. Since A ¥ B, at least one a, does not equal the corresponding b, .
Now, by Theorem 5.17, f(A) - £(8) = a) (£(4;) = £(8)) + az(£(Az) - £(8))
+ ag(£(A) = £(8)) # by (£(Ay) = £(8)) + ba(£(A) = £(8)) + by (£(As) -
£(6)) = £(B) - £(8). Thus, £f(A) # £(B) or f is one-to-one.

Let B€ V. Then, B ~ £(8) is in V. Since, by Theorem 5.15,

{r(A;) - £(8)]1 = 1, 2, 3} is a basis for V, there exists scalars aj,

a3, and ag such that B = £(8) = & (£(4;) - £(8) + ax(£(Az) - £(8)) +
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aa(f(Ag) - £(8)). Now, A = ayA; + aphAz + aghs is in V and, by Theorem

5.17, £(A) - £(6) = B - £(6). Thus, £(A) = B. Therefore, f is onto V.

Definition 5.19. A transformation f:V - V is a translation if and
only if there exlsts a fixed vector P in V such that f£(A) = A 4+ P for
all A in V.

In Theorem 5.15, £:V = V was an 1sometry with [Ay,As,As} an ortho-
normal basis for V. f mapped the basis {Ay,Az,45) onto the set
{£(Ay), £(A3), £(A3))}. To obtain an orthonormal basis, £(f) was sub-
tracted from each of these vectors, f(Ai). That is, f followed by the
translation h(A) = A - £(B) mapped an orthonormal basis into an ortho-
normal basis.

The next four theorems will characterize an isometry as the compo-
sition of an orthogonal linear transformation and a translation. In the
following, orthogonal linear transformations are used. .The necessary

information on these transformations was presented in Chapter II.

Theorem 5.20. If h:V - V is a translation, then h is an isometry.

Proof: h(A)

A + P for some P in V. Therefore, |A - B| =

A +P - (B+P)| = |2(a) - £(B)| for all A and B in V, Thus, f is an

1]

isometry.

Theorem 5.21. If g:V - V is an orthogonal transformation, then g

is an isometry.
Proof: By definition of an orthogonal transformation, A - B =

g(A) o g(B) for all A and B in V. If A and B are in V then, since

g(A - B) = g(A) - g(B), [A=B®=(A-B) « (A-B) =
g(A = B) ¢ g(A =« B) = (g(A) - g(B)) - (g(a) - g(B)) = |g(A) - g(B)]?.
Thus, |A = B] = |g(A) - g(B)|, and g is an isometry.
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Theorem 5.22. If f:V = V and h:V - V are isometries, then

hf:V = V (.e., hf(A) = 0(£(A))) is an isometry. In particular, the
composition of an orthogonal linear transformation and a translation or
a translation and an orthogonal transformation is an isometry. ‘
Proof: For all A and B in V, |A - B| = |£(A) = £(B)|. Since,
£(A) and £(B) are in V and h is an isometry, |£(A) « £(B)| =
|n£(A) « hf(B)|. Thus, |A ~ B| = |nf(A) « hf(B)|. Therefore, hf is an
isometry.
This theorem states that the composition of an orthogonal transfor-
mation and a translation is an isometry. The next theorem states that

these are the only isometries.

Theorem 5.2%3. A transformation f:V - V is an isometry if and

only if f = hg where h is a translation and g is an orthogonal linear
transformation. Also h(A) = A + £(8) and g maps an orthonormal basis
{A1,A2,45} onto an orthonormal basis {f(A;) - £(8), £(4) = £(8),
£(Ay) - f(@)}°

Proof: If g is an orthogonal transformation, then by Theorem
2.31, g maps an orthonormal basis {A; ,Az,A3} onto an orthonermal basis
{g(a), g(A2), g(Az)}. Let h:V - V be the translation defined by
h(A) = P for some fixed P in V. Let f = hg. By Theorem 5.22, f is an
isometry. £(0) = hg(8) = n(B) = P. Also, £(A,) = hg(A,) = g(A,) + P =
g(A,) + £(0). Thus, £(4) - £(0) = g(A,) and {£(a) - £(0)|
i =1, 2, 3} is an orthonormal basis for V.

Let f:V - V be an isometry. Define h:V - V by h(A) = A + £(8).
Let {A; ,A2,A3} be an orthonormal basis for V. By Theorem 5.15,
{£(a,) - £(8)y, 4 = 1, 2, 3} is an orthonormal basis for V. If A€ V

then A = ajA; + aghp + agA; for some a;, ag, az in R. Define
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g:V - V by g(A) = a, (£(4) - £(8)) + éz(f(Ag) - £(0)) + az(£(Ay) -
_f(e)).
If B = byAy + bpAp + bgAy 1s in V, then g(rA + sB) =

(ray + sy )(£(Ay) - £(8)) + (ray + sba)(f(4A2) - £(0)) +

(rag + sbg)(£(45) - £(8)) = rg(A) + sg(B). Thus, g is a linear trans-
formation, Since A, =1 + Ay, 1 =1, 2, 3, g(A,) = £(A,) - £(6).
Thus, g maps an orthonormal basis onto an orthonormal basis of V.
Therefore, by Theorem 2,31, g is an orthogonal linear transformation.
By Theorem 5.17, £(A) - £(8)) = a3 (£(Ay) = £(0)) + ax(£(Ap) ~ £(0)) +
a3 (£f(Az) = £(B8)). Therefore, £(A) = £(6) = g(A). Thus, hg(A) = g(A) +
£(6) = £f(A). This completes the proof.

If f3V - V is an isometry then, by Theorem 5.18, f is one=to-one
and onto V. Thus, fnle -V is a well defined transformation.
If A,B € V then, since f is onto V, A = £(C) and B = £(D) for some
C, D€ V. Therefore, £73(A) = € and £7X(B) = D. Since f is an
isometry, If_l(A) - f_l(B)I = |C = D| = |£(C) - £(D)]| = |A - B|. Thus,

Theorem 5.24 has been proved.

Theorem 5.24., If f:V - V is an isometry, then fale - Vis an

isometry.
Theorem 5,23 states that every isometry f:V - V is the composition

1 is

of an orthogonal 1inear transformation and a translation. Since £~
an isometry f=1 = hy gy where gy is an orthogonal linear transformation
and hy is a translation. Since, hy(A) = A + P, for some P in V,

hfl(A) = A - P is also a translation. By Theorem 2.%3, the inverse of

an orthogonal linear transformation is an orthogonal linear

transformation,
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Therefore, since the inverse of the composition of two functions is
the composition of their inverses in reverse order, f = (=hH-t -

(hlgl)ﬁl = gflh;l. Thus, any isometry is also the composition of a

translation and an orthogonal linear transformation.

Theorem 5.2%. A transformation f:V - V is an isometry 1f and only

if f = gh where h is a translation and g 1s en orthogonal linear
transformation,

Proof: In the remarks preceding the theorem, it was shown that if
f is an isometry, then f has the desired form. The converse follows by
Theorem 5.22.

Under an isometry planes and lines are mapped into planes aﬁd
lines. In the following proof of this statement h(A + W) is the set

{P|P = h(A + Q) for some Q in W].

Theorem 5.26, If f:V - V is an isometry and A + W is a coset of a

subspace W, then f(A + W) is a coset of a subspace having the same
dimension as W,

Proof: By Theorem 5.25, there exists a translation h and an
orthogonal linear transformation g such that f = gh. Suppose
n(A) = A+ P. Then, f(A + W) = ghlA + W) = g({(P + A) + W) =
g(P + A) + g(W). But, by Theorem 2.29, g(W) is a subspace of V having
the same dimension as W. Thus, f(A + W) is the coset g(P + A) + g(W)

of the subspace g(W).

Theorem 5.27. Let £:V — V be an isometry. Let & BAC be an angle

with £(B) = E, f(A) = D, and £(C) = F. Then, m & BAC = m & EDF.,

(B=A) o (C~A) (f(B)=£(A)) - (£(C)=7F(A))
[B=A] fC-A]" j£(B)~£(A)] [£(C)-£CA)] -

Proof: cos m ¢ BAC=
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(E-D) - (F-D)

= |E—D| ]F—D = cos m ¥ EDF,

Thus, m ¢ BAC = m & EDF,
Congruence by Isometries

This section will include a definitlon of congruence using
isometry.  For triangles this definition will be shown to be equivalent

to the SMSG definition of congruence.

Definition 5,28, Let W and U be point sets of V. Let h:W = U be

a one-to-one correspondence between the points of W and the points of
U. Then, h is a congruence between W and U if and only if there exists
an isoﬁetry f:V = V such that f restricted to W equals h. W is said to
be congruent to U if and only if there exists a congruence between W
and U.

This is a much more general definition of congruence than that of
SMSG geometry. This dgfinition would include the definition of
congruence of segments, angles, triangles, circles and three dimen=-
sional point sets.

It is possible for twp point sets to have morehthan one congruence
between them. For example, two isosceles triangles, AABC and ADEF,

could be congruent with ABC & DEF and with ABC & EDF,

Theorem 5.,29. If AABC is congruent to ADEF by Definition 5,28,

then the triangles are congruent by Definition 5;101

Proof: Since AABC is congruent to ADEF by Definition 5.28, there
exists a one-to-one correspondence h between AABC and ADEF, Let A,B,C
correspond to D E,F, respectively. h is also the restriction to AABC

of an isometry f with f(A) = D, £(B) = E and f(C) = E,
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Therefore, AB = |B-A| = |£(B) - £(A)| = |E-D| = DE. Thus, AB ¥

|
DF. Also,

~
=

DE by Definition 5.1, Similarly, BC = EF and AC

(B=4) » (Cw4A)
A [C-Al"

(£(B) ~ £(A)) ¢« (£(C) = £(A)) = (E«D) * (F=D), Thus, cos m ¥ BAC =

%: 2? - %g:ﬁ = %—E—g—%—:‘%—iﬁ% = cos m ¥ EDF, Since cosine is one-

cos m ¥ BAC =

By Theorem 5.14%, (B=A) ¢ (C=A) =

to-one on (O,m), m & BAC = m & EDF. Thus, by the Definition 5.1 of
songruence of angles, ¢ BAC ¥ & EDF, Similarly, & BCA = ¥ EFD and

& ABC ¥ & DEF, Thus, by the SMSG definition of congruence of triangle
AABC ¥ ADEF under the correspondence ABC « DEF,

The next theorems willl be used to show that for triangles Defini-
tion 5.1 implies Definition 5.28. Only the condition that the two
triangles have two sides and the included angles congruent is used.
Since this is all that is used, at the same time, Postulate XV of SMSG

geometry will be proved as a theorem for triangles in V.

Definition 5.30. Let {X,Y,2} be an orthonormal basis for V. An

angle, ¥ BAC, is in standard position with respect to the basis

{X,Y,2} if and only if A = 6, B is on ray 6X and C is in the half-plane
-

containing ¥ of plane [X,Y] determined by line 6X.

Theorem 5.31. Let {X,Y,Z} be an orthonormal basis for V. Let

% BAC be an angle in plane A + [B-A; C-A]. Then, there exists an
isometry mapping ¥ BAC into an angle ¥ EOF in standard position with
respect to the basis {X,Y,2}.

Proof: Define the translation h:V - V by h(P) = P~ A. Then,
h(A + [B-A, C=A]) = [B=A, C=A],

1 1 ’
m(B..A) is in [B-4, C-A]. Letm(BmA)zBo Then,

{B'} can be completed to an orthonormal basis {B’; ¢’} for [B-4, C=4A],



66

The set {B’, C'} can be completed to an orthonormal basis
{B'9C'3D'} for V. Since {B',C’,D’} and {X,Y,Z} are orthonormal bases
for V, by Theorem 2.31, there exists an orthogonal linear transforma-
tion g such that g(B’) = X, g(C’) = Y and g(D') = Z.

Let f = gh. Then, by Theorem 5.22, f is an isometry. f(C) =
gh(C) = g(C-A). Since C-A is an element of [B',C'] and, by Theorem
2.29, g maps subspaces of V into subspaces of V, £(C) = g(C - A) €

g(B - A) = Hg:ﬁ g(B - A) =

IB"‘A‘Xo £(A) = gh(A) -

i

g[B',C’) w [X,¥). Also, £(B) = gh(B)

lBaﬂgcﬁ%jT<Bum>w13sMgmﬂ

g(8) = 6, By Theorem 5.26, £(AB) 1s a line and £(40) is a 1line. Thus,

i

£(£B) must be the line containing 6 and Tg%fKT X and f(ia) must be the
line containing 6 and £(C)., Since AP + PB = AB or |[A=P| + |P-B]| =
|A~B| implies [£(4) = £(P)| + |£(P) - £(B)| = |£(A) -~ £(B)]|, f pre-
serves betweeness for sets of points on a line. Thus, f(&é) is the ray
with endpoint O and containing |B- AlX and f(i&) is the ray with end-
point 6 and containing £(C).

Let B = [B«=A[X and N = £(C), Since f(C) is in [X,Y] there are
real numbers s and t such that f(C) = sX + tY. Since f(B) € 6x
implies f(C) is not an element of ék? t # 0. The half-plane of [X,Y],
determined by line éis containing Y is the set H = {P|P> ¥ >0 and
P € [X,Y]}. Now £(C) » Y = (sX # tY) » Y =t, If t >0, then £(C) is
in H and f is the desired isometry. If t < 0, then the orthogonal
linear transformation fi(aX + bY + ¢Z) = aX - bY + cZ will map £(C)
into sX = tY¥., Thus, f followed by the orthogonal transformation f; is

the required transformation.

Theorem 5.32. Let ABC « DEF be a one-~to-one correspondence be-

tween the vertices of AABC and ADEF. Suppose ¥ BAC = & EDF,
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B

DE and BC

n}
"

BF according to Definition 5.1. Let {X,Y,2} be an
orthonormal basis for V. Then, there 1s a triangle AMON with  MON in
standard position and isometries f and £’ such that f maps AABC into
AMON and f' maps ADEF into AMON with £(B) = £'(D) = M and £(C) =
£'(F) = N, |

Proof: By Theorem 5.31 there 1s an isometry f mapping & BAC into
¢ XO6R 4n standard position. S8imilarly, there is an lsometry £’ maypping
& EDF into an angle ¢ XBT in standard position. By Definitien 5.1,
since ¥ BAC 5 & EDF, m ¢ BAC = m ¢ EDF. By Theorem XII, there is
exactly one angle in the half-plane of (X,¥] containing ¥ with one ray

ey
0X having measure m & BAC. Thus, ¢ XBR = ¢ XOT.

By Definition 5.1, since BA = DE and BC = EF, |B - A| = |E - D|
and |C - A] = |F - D|. Since £(B) and £'(E) are each on ray OX,
£(A) = £'(D) = © and |£(B)| = |£(B) - £(A)] = |B = A| = |E - D] =
|£(E) - £'(D)| = |£(B)|, £(B) = £'(E). Similarly, £(C) = £'(F).

Let f(B) = M and f(C) = N, Then, since f and f’ preserve be-
tweeness, f maps AABC onto AMON and t’ maps ADEF onto AMON as was to be

proved.

Theorem 5.3%. Let A,B,C » D,E%F be»a correspondence between the
vertices of triangles AABC and ADEF. If ¥ ABC T & DEF, AB T DE and
BC g'ﬁf, then AABC is congruent to ADEF using Definition 5.28 for
congruence.

Proof: An isometry mapping AABC into ADEF is needed to prove the
theorem., By Theorem 5.32, there is an isometry f; mapping AABC into a
triangle AMON, with ¢ MON in standard position, and an isometry f

mapping ADEF into AMON. Since £l is an isometry mapping AMBN into



68

ADEF, by Theorem 5,22, f-lfl is the desired isometry establishing the
congruence.

This theorem gives another proof of Theorem XV using congruence
by similarities.

The last theorem in this chapter will be used in the proof of

Theorem XVIII in Chapter VI.

Theorem 5.%4%, Let ABC be the triangular reglon of AABC and DEF

the triangular regioﬁ of ADEF, If f:V - V is an isometry mapping AABC
into ADEF, then f maps the triangular region ABC into the triangular
region DEF.

Proof: By the remarks preceding Theorem 5.12, ABC =
{ah + B+ cCla+b+c =1, 2a>0, b >0, ¢ >0} and DEF =

{aD + E + cFla + b + ¢ 0, ¢ >0}. Now, f = gh where h

i

e
-

[

20, b

v

is a translation and g an orthogonal linear transformation. Let h(Q) =
Q + P, Thus, since a + b + ¢ zvl,
n(ABC) = {aA + bBB+ cC+Pla+b+c =1, a >0, b >0, ¢ >0}
= {a(A+P)+b(B+P)+c(C+P)la+b+c=1,a>0, b >0,
c > 0}, |
Therefore, £{ABC) = gh(ABC) =

{gla(d + P) + b(B+P) +c(C+P))|a+b+c

i
&
I\
(AY
2
o'
iv
Q
~>
Q
Vv
2

fag(A + P) + bg(B + P) + cg(C +P)|a+b+c

]
-
o

v
wo

o'

v
‘oo

[+]

\Y
O
(o)

{af(A) + bf(B) + cf(C)la+b+c=1,a>0,b>0, ¢ >0} =
{aD+ bE+ cFla+b+c=1,a>0, >0, c>0}=

e

DEF.,



CHAPTER VI
AREA AND VOLUME

This chapter will include the definition of area for certain co-
planar sets of points and yolume for certain sets of points in V.
Area and volume are examples of set functions whose range is the
set of extended real numbers. Ideally, a set function C such as area
‘would have the following properties:
(1) The domain of definition of C would be the set of
all coplanér sets of points.
(2) If I is a rectangle, then C(I) is the usual value,
the length of the rectangle times its width.
(3) If U and W are disjoint cbplanar sets such that
C(U) and C(W) exist, then C(U) + C(W) = C(U U W).
(4) 1If Ups =1y 2, 200y is a sequence of sets such
that U, € Uy4y and n§1 U, = W, then %linéoc(un) =
C(W), This is the property sometimes used in
elementary geometry to find the area of a circle.
The c¢ircle is approximated by polygons. Theiarea
of the circle is the limit of the areas of the
polygons.
(5) If a point set U is congruent to a point set W,
then C(U) = C(W), -

If the axiom of choice is accepted, it has been shown that such a

69
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function does not exist. [16: 68]

| In 1902, Herni Lebesgue constructed a measure for n dimensional
vector spaces satisfying (2), (3), (4), and (5). [21] The measure was
not defined for all subsets of the vector space. The domain of defini-
tion was a subset of the power set which included‘the vector space
itself, and was closed under set theoretic differeﬁces and countable
unions. v

The measure Lebesgue defined would satisfy Postulates 16 through
22 of SMSG for area and volume. But, for the point sets that SMSG re-
quires have area, a simpler set function can be used. For this purpose
the writer will use Jordan content. This work was first done by Jordan
about 1892, [16: 33] If a set has Jordan content, then it has
Lebesgue measure and they are numerically equal. [10:82]

Jordan content will satisfy (2), (3), and (5). Only under re-
strictive conditions does it satisfy (4).

The area and volume of certain sets of points in V will be defined
in terms of a coordinate system for V. In Chapter II a coordinate sys~
fem for V was defined as an isomorphism between V and Rz, In this
chapter Ry and R; will be studied first. Then, the area and volume of
point sets in V will be defined in terms of the area or volume of points
of Rz and Rg which correspond under certain types of coordinate
systenms.

Since most of the postulates of SMSG concern area of coplanar sets
of points, most of the theorems in this chapter will be proved for the
two dimensional space Ra. They have obvious generalizations to Ry and

even to R,. The usual inner product (x1, x2) °» (y1, y2) = Xay1 + Xa¥2

and the usual norm |(x1, %2)| = V(xj,%2) * (x14%z) =Vx° + *3° will be
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used for Ry,

Topics From Topology

A few topics from topelogy will be used in the development that

follows.

Definition 6.1. Let V be an inner product vector space. A set of

polnts S(Py, r) = {P| |P « Po| < »} 1s called an open sphere with center

Py and radius r.

Definition 6.2. Let E be a set of points in V. E is a Veopen set

of points if and only i1f, for every P € E, there exists an open sphere
S(P, r) such that S(P, r) € E. A set of points E is V-closed if and

only if V - E = {P|P £ E} is V-open.

Theorem 6.3. The union of any collection of V-open sets is V-open.
The intersection of any finite collection of V-open sets is V-open.

Proof: If P is a point in the union of a collection of V-open
sets, then P is a point in at least one of the sets E. Since B is
open, there exists an open sphere S(P, r) such that P € S(P, r) ¢ E.
Therefore, S(P, r) is contained in the unionof the sets of the collec-
tion. Thus, the union is V-open.

Let By B3, co0o, E; be a finite collection of V-open sets. Suppose
P e iﬁl B, Thus, P is an element of each E;. Since each E; is V-open,
there—éxists an open sphere S(P, r,) such that P € S(P, r;) c E; for

each i. Let r be the minimum of the ry. Then, S(P, r) < S(P, r;) for

i

n n
each 1 = 1, 2, o.o, no, Thus, P € S(P, r) C',ﬂl S(P, r,) © iﬂl E o
i= =

Thus, E, is V-open.

B
DB
H
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Theorem 6.4. The intersection of any collection of closed sets is
closed. The union of any finite collection of closed sets is closed.
Proof: Let {Fi} be a collection of closed sets. By the definition
of closed sets, V - F, is V-open for each i. Thus, by Theorem 6.3,
E(V - Fy) 1s V-open. But, V - (Q F,) = 4 (V- F,). Thus, Q F, is
closed,
Let Fyy Fgy sssy Ty be a finlte collestlon of closed sets. Then
V = F; 18 V=open. Thus, by Theorem 6.3, V = <1§1 F,) = 1!31 (V-F) is

n
V~open. Therefore, iUl Fy 1s closed.

Definition 6.5, Let E be a set of points in V. A point P in E is

an interior point of E if and only if there exists an open sphere con=-
taining P that is contained in E, The interior of E, denoted E°, is the

set of all interior points of E.

Theorem 6.6. The interior of any subset E of V ié Veopen. If K
is a V-open set and E; € E, then E; C E°,

Proof: Let P € E°., The first part of the theorem is proved if it
is shown that there exists an open sphere containing P that is contained
in E°., Since P € E°, there exists an open sphere S containing P that is
contained in E. Since, by definition of E°, each point of S is a point
of E°, § is contained in E°; Thus, E° is open.

If E, is V-open, then for each P € E,, there exists a sphere
S(P, r) € By, Since K, ¢ E; 8(P, r) c E. Thus, by definition of E°,

P € E°. Therefore, E, < E°, and the theorem is proved.

Corollary 6,7. If E is V-open, then E° = E.

Proof: By Theorem 6,6, since E is V-open, E ¢ E®°. By definition

of E°) E° C E. Thus, E = E°.
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Definition 6.8. Let E be a subset of V. The closure of E, denoted

ﬁ, is the intersection of all V-closed sets containing E.

Theorem 6.9. If E is a V-closed subset of V, then E = E,

Proof: By definition of E, E < E since E is contained in each of
the closed sets in the intersection. Since E is closed and E < E,
E < E. Thus, E = E. The theorem is proved.

By the definition of ﬁ, i1f F 1s any closed set containing E, then
E, the intersection of all closed sets containing E, is contained in F.
Also, since arbltrary intersectlion of closed sets is closed, E1s

¢losed.

Definition 6.10. Let E be a subset of V. A point P is a boundary

point of E if and only if every open sphere with P as center contains a
point of E and a point of V that is not in E. The set of all boundary

points of E, denoted Eb, is called the boundary of E.

Theorem 6,11, Let E be a subset of V. Then, E = E° U E .

Proof: If P € E° U E , then P € E°or P € E. IfP € E°, then,

since E°cEcCE, P € E. Suppose P € E, and P # E. Since P £ E,
P€EV-E SinceE is closed, V - E is open. Therefore, there exists
an open sphere S which contains P and is contained in V - Eo Thus, S
contains né points of E and, hence, no points of E. This contradicts
that P € E . Thus, if P € E, then P € E. Therefore, E° U E_ < E.

To prove that E C E° U E , the equivalent statement, V - (E° U Eb)
cV - E will be proved. Let P € V - (E° U E ). Then, P £ E° and
P g Ebo Since P & Eb’ there exists an open sphere S which contains P
and only points of E or only points of V -« E. If S contains only

points of E, then P € E°, But P € E°. Therefore, S contains only
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point; of V - E. Since S is open, V - S is closed and contains E.
Hence, EcV-SorsScvVv-E Thus, P € V = E. Therefore,

V-(E°UE)cV-E Thus, E=E° UE.

Theorem 6,12, If ECF and F 48 closed, then E C F.

o
Proof: By definition of E, EcF, Since E= E° UE, E cF.

Definition 6.1}; Two subsets E and F of V are non-overlapping if
and only 1f they have at most boundary poilnts in common.

A point, line, or plane is defined in the real vector space Ry as
they were for the general Buclidean space V. The half-planes, which
were determined by Theorem IX in Chapter III, would be exactly the same
for the space Ry except that this plane would contain all points. This

statement is used in the next theorem.

Theorem 6.14. Let A + [B] be a line in Ry. Let H; and Hy be the

half-planes determined by A + [B]. Then, H; and H, are Ry - open,

it

(Hl)b = A + [B] and (Hp) A + [B].

b

Proof: It may be assumed that ]Bl = 1, There exists a vector C
such that {B, C} is an orthonormal basis for Ry. By Definition 3.21,
H = {P|(P-4) - C>0} and Hy = {P|(P - 4) - C< 0}, IfP € H, then
P-A=DbB+cC for some b and ¢ in R. Since (P - A) * C = ¢, ¢ > O.
If Q is an element of the sphere S(P, c), then IP - Ql < c¢c. Now,

Q-A=b'B+c’Cfor some b’ and ¢’. Thus |P - Q| = [P-4A=-(Q=-4)] <

cor [(b-b)B+ (c-c’)C] <c. That is, V(b=b)Z+(c-c’)® < c.
This implies that V(c = ¢ )2 = |c = ¢’ <c. Thus, =c <¢c ~c¢' <¢ or
0<c¢’ <2, Therefore, (Q - A) « C=c’ >0, Hence, Q € Hy. Thus,
s(p, ¢) Cc Hy. By definition of Rp-open sets, Hy is Rp~open.

Similarly, since S(P, -c) would be contained in Hp if P € Hp,
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Hy is Rg=-open.

Now Hy U Hp U (A + [B]) = Ry and the sets are disjoint. If P € Hg,
then, since Hy is open, P 1s not a boundary point for Hy. If P € H,
since Hy is open, P 1s not a boundary point for Hy. Therefore,

(Hl)b c A+ [B], Let P € A + [B] and 5(P, r) be any open sphere with
center P. Let Q1 = P + g Cand Qg = P = g C. Since |Q1 - Pl =

l"g" c| = -g <r, @ €8P, r). Similarly, Qs € S(P, r). Since

P € A+ [B], by Lemma 3.20, (P - A) - C= 0O, Thus, (§ =~ A) * C =
(P-A+Z0) +C=%C+C=%>0. Similarly, (§ - A) - C<O.
Therefore, Q1 € Hy and Qz £ H;. Thus, P is a boundary point for Hy or
A+ [B]c (Hl)bo Therefore, A + [B] = (Hl)b° Similarly, it can be

shown that A + [B] = (Hp) This completes the proof of the theorem.

.bh
By Definition 5.10, the interior of a triangle is the intersection
of the intericr of the three angles determined by the triangle., The

exterior is the set of points in the plane which are not in the interior

of the triangle or in the triangle.

Figure 5.

Let AABC be a triangle in Rz. Let H; be the half-plane determined
“ &
by line AB which contains C, Hy the half-plane determined by line BC

“
containing A, and Hy the half-plane determined by line AC containing B.
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Then, the interior of AABC 4s Hy N Hy N Hy., If H, Hy, and Hy are the
other half-planes determined by these lines, then the exterior of AABC

is HY U Hy U Hy.

Theorem 6,15. The boundary of a triangular region in Ry is the

triangle.

Proof: Let the triangle be AABC. The interlor of the triangle is
the intersection of three half-planes. Since, by Theorem 6.14, the
half-planes are open, the interior of the triangle is open. The exteri-
or of the triangle is the union of three half-planes. Therefore, the
exterior of the triangle is open. Thus, the exterior of the triangle
and the interior of the triangle contain no boundary points of the
triangle., Since, any point on the triangle is a boundary point for each
of the half-planes determined by the segment containing the point, any
point of the triangle is a boundary point for the triangular region.

Hence, the triangle is the boundary of the triangular region.
Jordan Content in Rs

Definition 6.16. A closed interval I = {(ay, az); (b1, by)) in Ry

is the set {(x, x2)|ay <% < by, ég < X3 < bz}. An open interval

I= ((ayy az), (b1, bz)) is the set {P = (x3, xz)|ay < % < by,

a2 < Xz < ba}. The measure of I is defined to be (by = a3 )(bs = az).

The measure of I is denoted M(I). A subset of E of Ry is called

bounded if and only if there exists a closed interval I such that E C Io
If I = {(a1, 3a5)s (by, by)) is a closed interval and P = (a, b) is

not a point of I, then it is not true that a3y < a < by and azg < b < bs.

Thus, suppose a < @ . Then, the sphere S(:a, §L234?> is contained in

Ry -~ I. Thus, a closed interval is Rg-closed. - Similarly, an open
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interval is Rgp-open.,

If the interval I is degenerate, that‘is a; = by or az = by, then
W(I) = 0., Otherwise W(I) > 0.

Infervals will be used to approximate other point sets in R; and,
where possible, these approximations will be used to define the content

of the set of points.

Definition 6.17. Let I = {(a;, ag)(by, bs)) be a closed interval

in Rz. A partition of I is a set P = {(x;, yy)|a = % <% < ..o <
Xy :.ag, and by = Yo €71 € s00 < Yy = bz}, A partition determines

mn intervals Iy = {(x;y ¥y), (%41, ¥s+2)05 L =0y 1, o0ey =1, j = O,
1y ceoy m=l. These intervals are called subintervals of I determined
by P. A partition P’ of I is called finer than P if P C P’. The set

of all partitions of an interval I is denoted £(I).

Definition 6,18, Let E be a bounded subset of Ry and I be a

closed interval containing E. For P a partition of I, denote the sum
of the measures of all subintervals confaining points of E by E(P, B).
Denote the sum of the measures of all intervals which contain only
points of E° by J(P, E). If E° = ¢, then J(P, E) is taken to be zero.
Then ¢(E) = inf {J(P, E)|P € &XI)} and ¢c(E) = sup {J(P, E)[P € 1))
are defined to be the outer (Jordan) content and inner (Jordan) content
of E, respectively.

It is an exercise using the definition of infimum and supremum to
show that c(E) and ¢(E) depend only on E and not on the interval I
containing E.

Let E be a bounded set and I = {((ay, by), (az, b2)) be a closed

interval containing E. Let P and P’ be partitions of I with P’ finer
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then P. Then J(P, E) > J(P’, E) and J(P’, E) > J(P, E), (6.18)
Let the partition.P = {(%1, y3)]a1 = X0 < 400 <X, = D1, a3 < J1 < coo
<y, = ba}. To show that J(P, E) > J(P’, E) it is sufficient to take
P’ with one extra point, say x, such that a3 = Xg < ¢e0 < %X <x <
X441 < ees < X, = b and show J(P, E) > J(P’, E). The same proof could.
be done a finite number of times for any P’,

Now the interval I;y = ((x;, ¥yy)y (X141, ¥y+1)) is separated into
two intervals Iy = ((xy, ¥yy), (x, yy+1)) and Iy = (%, ¥;),
(%415 ¥y+1)) and M(IIJ) + p(I{Q) = (x = x )(yye1 = y3) +
(%441 = %) (Fge1 = ¥9) = (xg41 = % )(yye1 = y3) = P(I). Now, I,; con=
tains points of E. But not both of I,y and I,y need contain points of
E. Thus, J(P, E) > J(P’, E). A similar argument shows J(P', E) >
J(P, E). |

Clearly, since each J(P, E) >0 and each J(P, E) >0, ¢(E) > 0 and
e(E) >0, : (6.19)

The outer and inner content of a bounded set will also be charac-

terized by the use of interval unions.

Definition 6.20, An intervai union S is a finite union of non-

overlapping closed intervals S = I, U I Uoeo U I,.
Any finite set is an interval union. For, if E = {x;, y,)} take
I, to be the degenerate interval I, = ((x;, y,), (x4, y,)). The empty

set is also considered an interval union.

Theorem 6,21, Let S =I; UIy U ..o U I, be a union of non-

degenerate closed intervals in Rpy. Then, there exists a finite number
of intervals Jdy4 Jog ooy Jq with the following properties:

(1) J, and J; have no interior points in common i # j,
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(2) If s is an integer from 1 to k, then Ig contains
all those intervals Jy that have an interlor point
in common with I, and
(3) p(Ig) is the sum of the measure of those intervals
that have interior points in common with I.
Proof: Suppose I, = ((azps app)y (bypy bop))sT =1, 2, cooy Ko
Let Xp; X145 oooy Xy be the set of all the numbers aj,, blr’ r = 1,‘2,
cesy k arranged so that x < x < oos < x,. Similarly, let yo, ¥1,

voey yw be the Set Of the a,

op? b2r arranged so that yo < ¥y1 < eoo < Fye

Define J(m, r) = {(x

m‘=’19 yr(-’l)9 (Xm9 yr)> a.nd let Jl’ Ja, coayg Jq be

the v w intervals so obtained. Clearly, J; and J; have no interlor
points in common if 1 # j. Let I_ = ((a,, aZS), (bygs b2$)> be one of
the Intervals In, Izy oo0y Iy. Since Ig is not a degenerate interval,
X = a, < bls = xj and Yy = 2og < b25 = ¥ for some 1, j, u, and t.

Then, I, contalns all those intervals J(m, r) for which i1 + 1 <m < J

and u + 1 £ r < t. The sum of the contents of these intervals is

3 t . 3 t
Gy = %)y = yrwl) = ( et xm'xm-lDCN%"ﬂ(yr”yr-l))

(
R =1+l
L 8.25) = p-(Is)n

= (x;1 - xi)(yt - yu) = (bls - als)(bQS
It remains to show that if I_ has interior points in common with

J(my, r), then 4 + 1 <m< jandu+1l<r<t. Suppose ((xm_‘l, yr._l),

(xm, yr)) N ((als, ags), (b159 b2r)> # @, Then, there is an x and y

such that X <x<x with a s <x < bls and Yro1 <y< Y. with

-1 m 1
o > o S =
8y <Y < b?r Therefore, a o <X and bls X1 ince, a;. = X
and bls =Xy Xy <X and X1 < %y. Therefore, i +1 <m < j.

Similarly, u + 1 < r < t. This completes the proof.

An interval union S = I, UIz U ..o U I, may be expressed as an
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. n :
interval union in many ways. If p(S) is defined by u(s) = 1le,(I,),

n
then % p(I;) would have to be independent of the particular interval
1=1

union used to represent S.

IfS=1) UI; U...UI, =1/ UIJ U ... U I; are two representa-
tions of S as an interval union, then 8 =1, U ... UI, U I{ U... U I;,
By Theorem 6.21, there are nonwpverlapping intervals Jy, Jgy scay Jq
such that each of the I; and the I; have the property each contalns all
those interval J; which have Interlor points in common with the interval

and the content of the interval 1s the sum of the content of the sub-
n m
intervals. Therefore, 1le(I,) and iﬁlp(I{) is each equal the sum of

the p(J,) which have points in common with S. Thus, p(S) may unambigu~-
ously be defined as P(S) = p(I;) + ... + p(I,;). (6.22)
If S; and S; are interval unions, then by consldering the sub-
intervals of 8; U Sp given by Theorem 6.21, it can be shown that S; U S
and Sy N Sy are interval unions and P(S; U S;) + p(S; N 83) = |
(S ) + p(sy). (6.23)
The boundary Sb of an interval union is itself a degenerste inter-
val union and p(Sb) = 0, (6.24)
It follows from 6.23 and 6.24 that if 5y and S, are non-
overlapping interval unions, then p(S; U Sz) = p(S;) + p(Sz). It fol-
lows that if Sy, Sy, .00y S, are mutually non-overlapping interval
unions then,
M(S; U Sy U oow U S,) = p(8) + p(S3) + oo + P(S,)e (6.25)
The difference Sy ~ Sz of two interval unions need not be an
interval unlon. The difference of two different intervals need not

contain all of its boundary points. But S; - S;, the closure of
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81 - Sz, 1s an interval union and Sz and S, - S; have at most boundary

points in common, so that, by (6.25), p(S; - Sz) + u(Sz) = p(s;) or

p-(31 - Sa) = IJ:(S]_) - H(Sg)- (6.26)

Also, if S; and S5 are interval uﬁions with S; € S;, then

(Ss) < w(8;). (6.27)

Let E be a bounded subset of Ry and I an interval containing E.
Then, by definition of a partition and an interval union, the union of
the subintervals I, determined by P and containing points of E is an
interval union., Also, if S = I UI; U ... U I, is an interval union,
then, as in the proof of Theorem 6.21, I, s=1,2, cocy 0, 1s the
unicn of some of the inte#vals Jig Jzy ooy Jq where J, is determined
by the partition xp < x3 < cco0o <xvand Yo <1 < ooe <y, of the

interval (%o, yo), (x5 ¥,))> Therefore, S is the union of intervals

v

of a partition. Thus, the following theorem has been proved.

Theorem 6.28. Let E be a bounded set in Ry. Then c¢(E) is the

infimum of the set of P(S) where S is an interval union of non-
overlapping intervals containing E,

Similarly, it can be shown that g(E) is the supremum of the set of
p(S) where S is an interval union of non-overlapping intervals contain-
ing only intefior points of E.

Let E be a bounded set in Ry. Then ¢(E) < c(E). (6.29)
This follows because:

Let I be an interval containing E. By definition of inner content,
for each t > O there exists a partition Py of I such that J(Py, E) >
o Also, there exists a partition P; such that 3(P29 E) <

« Nowy, Py UP; = P is a partition of I which is at least as
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fine as P, or Pz. Therefore, by 6.18, J(P, E) > J(P;, E) and
3(P, E) < J(Py, E). Since each addend of J(P, E) is an addend of

(e, B), 3@, B) <T(P, B). Thus, o(B) - £<g(m, B S 4@, ) <

L
2-

is arbitrary, ¢(E) < ¢(E) as was to be shown.

J(P, E) < J(P; E) < 5(E) + Therefore, ¢(E) < G(E) + t. Since t

If B, and B are bounded sets with Ep < Ey, then c¢(E) < ¢(E,) and
a(Es) S o(my), (6.30)
This follows from the faet that any interval union contalning E, con=
tains Ey and any interval union contalned in the interior of Ey 1s con-
tained in the interior of E;.

If E is a bounded subset of Ry, then c(E) = ¢(E) (E is the closure
of E). | (6.31)
This follows since E c E implies ¢(E) < ¢(E). Also, since any interval
union is closed, any interval union containing E contains E. Therefore,
c(E) < &(E). Thus, &(E) = o(E).

Also, ¢(E°) = ¢(E), (6.32)
This follows since E° € E implies ¢(E°) < ¢(E). Also, any interval
union containing only interior points of E contaihs only interior

points of E°. Therefore, ¢(E) < ¢(E°), Thus, ¢(E) = ¢(E°).

Theorem 6.33, If E and Ep are bounded sets, then c(E, U Ey) +

c(E N E) < c(B) + c(By).

Proof: Let t > O be given. By Theorem 6.28, there exists an
interval union S; containing E; and an interval union Sz containing E;
such that &(E,) + -;- >p(8)) and 3(Bz) + £ > p(S;). Now S, U S, and
Sy N S3 are interval unions with By, U B; © S, US,; and B} N By € Sy N Sz.
Therefore, c(B U Ey) + c(B N Ey) < pu(S; U Sz) + p(S, N Sz). By 6.23,

R(Sy U 85) + p(S; N Sy) = w(sy) + u(S;). Therefore,
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-
=

5B UB) 4 5(E N E) g u(8) + u(s) < 3(E) + £+ 5(E:) +

N et

¢(Ey) + c(Ez) + t. Since t is arbitrary,

E(E]. U Ea) + E(E]_ N Eg) S E(El) + (-Z(Eg)u

Theorem 6.34. If E, and E; are bounded sets, then ¢(E, U Ey) +

e(Ey N Ey) >¢(E) + ¢(Ey).

Proof: Let t > 0O be given. By Theorem 6.28, there exists interval
unfons Sy and S, such that §; € B, S, € BS, o(B) = & < u(5;) and
c(B) - -g- < p(Sz). 8 U Sy is an interval union contained in
(B, UE;)° and S; N S is an interval union contained in (B N E3)°.
Thus, ¢(Ey U Ez) > p(S; U Sy) and c(E N Ey) > (S, N Sz). Therefore,

c(Ey UEy) + c(Ey NEy) >pls; USy) +pls NSy

i

R(S1) ."' R(sz) > c(F) - g— + c(Ep) -.,22

#

c(By) + c(Ez) - t. Since t is arbitrary,
e(Ey UB) + c(By NE) >c(B) + c(Ep).

An example will show that the less than or equal to in Theorems
6.33 and 6.34 cannot be replaced by equality. Let E =

{(x, y)J]o<x <1, 0<y<1withx and y rational}. Let I =

IA

{(x, )/ogx<1, 0

1A

y<1}. Let Ep =I - E;. Now, E; and E; are
dense in I, That is, every neighborhood of a point (x, y) in I con-
tains infinitely many points of both E, and E;. Thus,

E =5 = I, Therefore, (B) =c(E) =1, and c(B) = 1. E N E

i

g. Therefore, c(E N BE;) = 0. Ey UE, = I. Thus, ¢(B U ) = 1.
Therefore, ¢c(Ey U Ey) + ¢(By NEy) =1 +0<1+1=c(E)+c(E).
B In a similar fashion, c(Ey) = 0, ¢c(Ez) = 0, c(E; N E3) = O and
¢(Ey U Ey) = 1. Therefore, c(E) + ¢(B;) =0+ 0<1+0-=

c(E, UE) + c(Ey N E).



Definition 6.35. Let E be a bounded subset of Rg. Then E has

content if and only if ¢(E) = ¢(E). If E has content, then the content

of E is denoted by c(E) and ¢(E) = ¢(E) = c(E).

Theorem 6,36. Let E be a bounded set in Rz and let Eb denote its

boundary. Then, g¢(E) + ¢(E) = c(E).

Proof: Let I be a closéd interval contalning E. Since I is
closed, by Theorem 6.12, E < I. Let P be a partition of I. J(P, E,)
is the sum of the measures of thqse subintervals containing points of
Eb’ E(P, E) is the sum of the heasures of those subintervals containing
points of E, and J(P, E) is the sum of the measures of those subinter-
vals containing only interior points of E.

Since E = E° U E , J(P, E ) = J(P, E) - J(P, E) = J(P, E) -

J(P, E). Therefore, J(P, E) > Sup(:ng, E) - Iné(Jgp, E) =
PEQ(I PEQ(I

¢(E) - ¢(E). Since this is true for each partition P, then E(P,,Eb) =
Sup J(P, E ) > 3(E) - c(E). |
PeLX( 1)

To prove the reverse inequality, let t > O be given. Choose a
partition Py such that E(Pl, E) < ¢(E) + g and choose a partition Py
go Let P be the partition P, U Pz. Since

refinement of partitions increases inner sums J and decreases outer

such that J(Pz, E) > ¢(E) -

suns J, &(E ) < J(P, E) = J(P, E) - J(P, E) < (P, E) - J(P3, E) <
¢(E) - ¢(E) + t. Since t is arbitrary, c¢(E ) < ¢(E) - ¢(E). Therefore,

E(Eb) = ¢(E) - ¢(E), and the proof is complete.

Corollary 6.37. Let E be a bounded set in Ry and E_ be the

boundary of E. Then, E has content if and only if E(Eb) = O,
Proof: E has content if and only if ¢(E) = ¢(E) or c¢(E) = ¢(E) =

0. But by Theorem 6.36, c(E) - c(E) = E(Eb)o This proves the theorem.
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By 6.29, c(E) < c(E). Thus, to prove a set E has content it is
sufficient to show that ¢(E) > c(E). (6.38)
Also, since ¢c(E) > 0 and c(E) > 0, for all bounded sets having

content, c(E) >0,
If ¢(E) = O, then, since O < ¢(E) < ¢(E) = O, E has content and

¢(E) = 0. (6.39)

- Theorem 6,40. If E, and E; have content, then so have B, U E; and

E, N Es. Also, c(B, UEy) + c(B N Ep) = c(Ey) + c(E).
Proof: By Theorem 6.34, c(Ey U B3) + c(Ey N Ez) > ¢c(By) + c(Ep)
= ¢(Ey) + ¢(Ey). By Theorem 6.33, c(Ey) + c(E) = c(B) + c(B) >
5(E, UEy) + 3(B N E). Therefore, o(Ey U Ep)+o(E NE) >3(E N By) +
¢c(Ey N BEz). Since ¢(EBy U Ey) < c(Ey U Ey) and ¢(E N E) < c(By N E),
this 1ﬁp11es that ¢(E, U Ep) = ¢(E; UEy) and ¢(Ey A Ep) = c(Ey N By).
Thus, E, U B, and E; N E; have content.
Since c(Ey, U Eg) + c(By N Ep) > c(By) + e(By) > 3(B UE,) +
¢(By NEy) and c(By UE) + c(By NEy) = (B UE) + ¢(By N EB) =
(B U E;) + c(Ealn E;), it follows that c(E, U E;) + o(E, N Ey) =
c(B) + c(B).

Theorem 6.41. If I = {(a1, az)y (by, bz)) is an interval, then I

has content and ¢(I) = p(I).
Proof: 8Since I is an interval containing I and for any partition

P of I, J(P, I) = w(I), o(I) = p(I).

o[ by = ay)
> - U _ L2
Let ¢t 0 be given. Let t min:_. (o # bp = 21 = 8g)” 3 7 ¢
(bp =~ 8p)]
3 BN

Consider the partition P of I given by ay = % <% = a + t/ <
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I

Xz = by =t <X3 =1 andap =¥ <y = ap ¢ t'<yp =bp -t <yy =
bz. Now, J(P, I) = (by - & - 2t")(bz - &z - 2t') = (by - & )(by - &3)
-2t'(by - &y + by - @z) + 4(t")% >p(I) - t. Since ¢(I) > J(P, I),
e(I) >p(I) - t. Since t is arbitrary, ¢(I) >u(I), But p(I) = o(I).
Therefore, ¢(I) > ¢(I) and I has content. Since p(I) = e(I), u(I) =

c(I).

Definition 6.42. A one-to-one transformation f:Rs — Ry is content

preserving if and only if for each set E having content, f(E) has con-
tent and ¢(E) = c(f(E)).

If £ and g are two content preserving maps, then fg is content
preserving., That is, the composition of content preserving maps is
content preserving. This follows because if E has content, then g(E)
has content and ¢(g(E)) = ¢(E). Therefore, since f is content pre-

serving, fg(E) has content and ¢(fg(E)) = c¢(g(E)) = ¢(E).

Theorem 6,43, If fi:Rg — Ry 15 a one-to-one transformation and f

preserves the content of each interval, then f is content preserving.

Proof: Let E be any set having content. Then, there exists a
closed interval I such that E < I. Therefore, f(E) < £(I)., Since £(I)
has content, there exists an interval I’ such that f£(E) ¢ £(I) c I’.
Therefore, f(E) is bounded. Since E has content, ¢c(E) = ¢(E). Thus,
for t > 0 there exists an interval union S = I; UI; U ... U I, such
that EC I UIp U ..o UI, and c(E) + t > c(Iy) + o(Iz) + oo + ().
Since f(E) ¢ (I, U Ip U..o U I,) = £(I,) U £(I3) U ... U £(I,),
c(£(E)) < c(f(Iy) U £(I3) U .00 U £(I,)).

By Theorem 6.33, c¢(£(Iy) U £(I3) U ... U £(I,)) < c(£(I,)) +

cf((Iz)) + ooo + c(£(I,)). But, c(£(Iy)) + c(f(Iz)) + ..o + c(£(I,))
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i

c(Iy) + c(Iz) + vuu + c(I,). Therefore, ¢(£(I,) U £(Iz) U ...

U £(I,)) g e(Iy) + o(I2) + ooo + c(I,) < G(E) + t. Thus, c(£(E))

< ¢(BE) + t = ¢c(E) + t. Since t was arbitrary, c(£(E)) < c(E).
Similarly, there exists an interval union S =1y UI; U ... UI,

such that I) U I U ... U I, € E° and ¢(E) - t < 1§1 ¢(I,;). Since

f(I, UIa U.eo UI) = £(I,) U £(I5) U .o U £(I,) < £(E°) © £(E),

e(f(Ly) U £(I3) U ... U £(I,)) < c(£(E)). By Theorem 6,34,

e(f(1y)) + c(£(I2)) + oo + c(£(I,)) < c(£(Iy) U ... U £(I,)) + d where

d is the content of the intersection of the image of some of the inter-

vals Iy Igy oeey I But the intersection of the image of any two of

no
these intervals is the image of the intersection. Any two of these
intervals intersect in a degenerate interval, hence, has content zero.
Thus, since the image of an interval has the same content, d = O.

Therefore, ¢(f(I;)) + ..o + c(f(I,)) < c(£(Iy) U ... U £(I,)). Thus,

o(Iy) + o(Is) + vou + olI,)

il

c(£(Iy)) + c(£(I3)) + ooo + e(£(I,))
< c(£(E)). Therefore, c(E) - t < c(£(E)) or c(E) = c(E) < c(£(E)).
Therefore, since c(f(E)) < ¢(E) < c¢(£(E)), c(£(E)) = ¢(£(E)) = c(E).

Thus, f(E) has content and c¢(f{E)) = c(E).

Theorem 6.44. The transformations

0) folxyy x3) = (%3, = Xz) or (=%, x3)

a) f(x, %) = (x5, %X2) + (¢, )

b) falxy, %) = (%3, x1)

c) f£3(x1, x2) = (¢ x, % X5) or (% X1, ¢ X3) and

d) f4(xy, x2) = (% + dxp, X5) or (¥, Xz + dxl)
are each content preserving.

Proof: Let I = ((ay, az), (b1, b)) = {(x1, x3)]|as € % < by and
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az < Xz < ba} be an interval in Rz. Then c(I) = (by = & )(bz = az).

Now, £o(I) = {(x;, %2)|ay €% < by and -by < %> < -2z} or

{(x1, x2)| =~ 1y <% < -2 and a3 £ Xz < b},
£,(I) = {(x, xa)| & +c <% <by +candag +d<xs < by + 4},
£2(I) = {(x, xa)| ag <x <bs and a3 < %Xz < b} and
£a(I) = {(x, x3)| cay < x < cby and % gz < Xz < % bz} or

{(x, xz)‘cal >x > cﬁl and % az > Xp > % bal)e
In each case, fo(I); £1(I), f2(I),and f,(I) is an interval and has
content (by - a3 )(by = az) = ¢(I). Thus, each of f5, f1, £z, and £,
are content preserving by Theorem 6.43.
The proof that f, is content preserving is quite long. Therefore,
the steps used in the proof will be outlined.
(1) If I is an interval, it will be shown that c(I) <
c(fe (1)),
(2) The reverse inequality, c(f,(I)) s c(I) will then
be shown giving c(I) = c(£.(I)).
(3) Next, it will be shown that the boundary of £4(I)
has content zero. This implies that f4(I) has
content and ¢(f (I)) = c(£4(I)) = c(I). This will
complete the proof.
(1) Let folxa, x3) = (x3 + dxz, %x2) = (y1, ¥2)-.
The other case for f4 would be similar. Also, assume d > O. The
interval I is mapped by f4 into the set of points E = v
{(y15 y2)|a1 + dys <31 <11 + dys and a; < jg_s bs}. E is contained
in the interval I = ((a; + das, az), (by + dby, bz)). Hence, E is
bounded.

Now, a3 € %3 < by and as < X3 < by implies, for each positive
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integer N and for some integer K, where 1 < K < N, that

K -1
N

as + (ba -az)SX2sa2 +‘I§(b2 -ag)., Thus‘,

d(ay + £ ivl (by = @) < dxp < d(ap +

% (by = ag)). Therefore,

K=-1
N

gy + d(ag + (b = 82)) <% + dxz < by + d(ag + % (bg = a5)).

Thus, the set E is contained in the N intervals, S, = {y1, y2)l|ay +

K -1
N

d(ay + (bz - a2)) < ;1 < by + dlag +,§ (by = 2z)) and

as + & N L (b, - ap) S¥2Lapt "}1% (bs - az)}. The content of each 5

is (by = 2y + % (by = ag)) - % (bs - az). Summing over the K intervals

N
gives, 5 e(8) = (by ~ a1) * (by - az) + % (bg - az)®. Since E =
K=1

N -
Fa (1) Kgl Sey c{f4(I)) < (by = 23)(by = ay) + % (by = ap)?. Since,

by choosing N large enough, 3 (b, = a3)® may be made arbitrarily

d
N
small, ¢(f4(I)) < (by = a3 )(by = ap) = c¢(I). The assumption that d was
positive in the ébove argument affects only the inequalities on the

interval S,. If d is negative, then ¢(S,) = (by = a1 )(bg = az) -

% (bz - 85)%. Thus, in either case, c(£4(I)) < c(I).

(2) Now to show that &(£,(I)) > (I).
The inverse transformation of f, is fhe transformation fg where
f5(X;, X)) = (X3 - dXz, X3). This is the same type transformation as
Ty. Thus, by what has been proved for fy, c(£5(I)) < ¢(I) for any
interval I.

For any t > 0, there exist intervals Iy, Iz, ¢.. I, such that

n Co
£.(I) © ’Ul I, and e(£,(I)) + t > c(Iy) + o(Iz) + ooo + o(I,).
1=

For each i = 1, 2, o.., n, c(£5(I,)) < ¢(I;). Thus, since
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n ' n - .. n
f,(I)c U I,, Ic U £5(I,). Therefore, c(I) <c(,U f5(I;)) g
i=1 i=1 = =1 -

§' c(fs(1,)) < fgl c(I,) < c(£,(I)) + t. Therefore, c(I) < c(f (I)).

=

Putting this together with ¢(£,(I)) > c(I), it follows that c(I) =

c(r, (1)),
N 5
E
(0, b)) -~ - ’ b
(O,ag)—"" i ‘ T
| | | Eb
' |
! . |
¢ ! | 1 N
) (23 ,0) (ty,0) (@ +dag,0) 7

Figure 6.

(3) The set £,(I) is the set
E = {(yl9 yg)l ag +dys <y1 <by +dyz and ap < yz2 < ba}. (See Figure
6.) The boundary Eb of E is the union of the four sets E; =
{(325 y2)| a2 + dag <31 < by + dap and y2 = a2}, E% = {y1, ¥2)| & +
dbz €31 < by + dby and yz = b2}, B = {(31, y2)|n = a1 + dye and
az < ¥yo < bp} and E% = {(y1, Y2)|Y1 = by + dys and ag < ¥z < by}. Now,

Ell’-) is the image of I]_ = {X]_, Xa)lalbs Xl S bl’ Xp = az}o Il is a

degenerate interval and, hence, has content zero. By part (1),

[

E(E%) = ¢(I;) = 0. Similarly, E(E%) = E(E%) = E(E;) = O. Thus,
c(Eb) = 0. Therefore, by Corollary 6.37, E = f4(I) has content. Thus,
c(£.(I)) = c(£4(I)) = ¢(I). Therefore, by Theorem 6.43, f, is content

preserving and the theorem is complete.
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In Chapter V, Theorem 5.23, it was shown that any isometry of V
was the composition of an orthogonal linear transformation and a trans-
| lation. By a similar argument, it can be shown that any iscmetry f of Ry
is the composition of an orthogonal linear transformation g and a
translation h. Let g be an orthogonal linear transformation from Rz
into Ry. Let g(l, O) = (ay1, apy) and g(0,1) = (ayz, 2zz). Since g is‘
a linear tranéformation, g((xy, x3)) = g(x (1, 0) + x5(0, 1)) =
%1 8(1, 0) + x3g(0.1) = (aj1%1 + 815X, 831%1 + 8s3%a). Since g is
orthogonal, g maps the orthonormal bases {(1,0), (0,1)} into an
orthonormal basis {(ayy, as1), (213, @z2)}. Thus, aly + a3, = 1,
afs + a3z = 1 and ay1 ajp + azy aps = O. Now, if h(xy, xz) =
(21, x2) + (b, d) then £(x3, x3) = hg(xy, %x2) = (a11%1 + a12%3, amix1
+ agaxz) + (b, d). |

These comments are used in the proof of the next theorem.

Theorem 6,45, If f:R, ~ Ry is an isometry, then f is content

preserving.

Proof: f = hg where hg(x;, xs) =
(aa1 X1 + a12 Xp, agy X3 + aps Xz) + (b, d). By Theorem 6.44, h is
content preserving. Therefore, if g is content preserving, the
composition f = hg is content preserving.

If a;7 = O, then, since afy, + a3; = 1, af, + a3z = 1 and
a11 @1z * 831 @z = 0, ays # O. Thus, g = g182 where ga(x;, X3) =
(%2, %1) and gy (%1, X3) = (@12 x1 + a1 Xa, @z X1 + @21 X3). Since
8z is a transformation of type b) in Theorem 6.44, g, is content pre-
serving. Thus, g is content preserving if g, is content preserving.
g1 1s a transformation like g except that the coefficient ayg of %, is

non-zero. Therefore, one may assume a3 # O for g.
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Since a1y # O, g = 8z & where g (x, x3) = (a11 X1, i‘-l- xz) and
g2(Xy, X2) = (% + a3y a1z Xa, gff Xy + ags a11 Xa). g is a transfor-
mation of type ¢) in Theorem 6.4%; thus, gy is content preserving.
Therefore, g is content preserving if g» 1s content preserving. -

Since afy + 28 = 1, af, + af2 = 1 and sy1 ayp + 221 8gp = d,
multiplying the first two and squaring the last gives (1) af, af, +
a2, aBs + a8, af, + af, ady = 1 and (2) ef, afs +
2211 a1z 81 @zz + a3y afs = O. Thus, afy afy + af; a8 =
-2a11 a1z 8g1 Aagp. Substituting in (1) gives af, af; -
2a11 @1z az1 asz + a8y afs = 1 or (a;1 ape - as1 az)® = 1. Thus,

211 agz - az ap = Il,

Now, gz = gs8s where ga(x;,%z) = (x; + a1y a5 X2, X3) and
galx1, x2) = (xp, iff ¥, + (agz a11 = a1z agz1)%2) = (x;, zft X o+
(¥x5)). If the sign on x; is +, then each of the transformations gj
and g, is a transformation of type d) in Theorem 6.44. Thus, each is
content preserving. If the sign is =, then g, = geég where gs(xy, X3) =

(%1, =Xp) and ge(x;,%2) = (%9, gﬁf Xy, + X5). Bach of these is content

preserving. Thus, g is content preserving, and the proof is finished.
Area in V

Let [B,C] be a two dimensional subspace in V with {B,C} a fixed
orthonormal basis for [B,C]. Let f:[B,C] = Ry be a coordinate system
for [B,C]. That is, £(B) = (1,0), £(C) = (0,1) and £(x3B + x3C) =
(X1, X2) are the coordinates of the points, Sﬁch a coordinate system,
with {B,C} orthonormal, is called a cartesian coordinate system for the

plane [B,C].

Definition 6,46, Let S be a set of points in a plane [B,C] such
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that £(S) = {x,x2)|(x; B + x,C) € 8} has content. The area of S is
defined to be the content of f(S). In this chapter, the area of a set
S will be denoted, A(S).

Does A(S) depend on the particular orthonormal basis {B,C} chosen
for [B,C]? Let {B,,Cy} be any other orthonormal basis for [B,C]. Then,
Bwmayg By + ag; C; and C = a35 By + az3 C;. Since IBI =1, af, + af) =
1; since |C| = 1, afy + &85 = 1, and since B - C = 0, ay1 &g +
Bay ass = 0,

Let T be the cartesian coordinate system for [B,C] such that
f(x;B + x5 C) = (x7,x3). Let f£; be the coordinate system for [B,C]
such that f1(y; By + y2 C1) = (y1,y2). Since B = a3y By + az; Gy,
f1(B) = (a31,221) and, since C = ayp By + az2 C1, £1(C) = (a12,222)

Let P=x B+ xp C=y B, + ya Ci be in [B,C]. Then, f(P) =
(x1,%5) and £1(P) = (y1,78)+ Now, (y1,ya) = £2(B) = £1(xy B +x 0 =
x; £1(B) + x5 £1(C) = x3(a1, az1) + x2(ay2, azz) =
(ay3 x3 *+ a1z Xz, agy X1 + azz Xz). Define the linear transformation
g:Ry - Rz by g(x1, x2) = (11 x1 + a12 X2, 821 X1 + @asz Xa). Then,
#11(P) = (y1,52) = glxy,%3) = gf(P). Since g(1,0) = (a31,a21) and
g(0,1) = (a2, 322), |g(1,0)] =Vaf, + a5y =1, lg(o,1)] =
Valz + agz = 1 and g(1,0) - g(0,1) ﬁlail ajs * ap1 azz = 0. Thus, g
maps an orthonormal basis {(1,0), (0,1)} onto an orthonormal basis
{g(1,0), g(0,1)}. Therefore, g is an orthogonal linear transformation.
Thus, by Theorem 6.45, g preserves content of sets in Rz.

A(S) was defined to be the content of £(S). Since g preserves
content, the content of gf(S) equals the content of £(8). But gf = £’
Therefore, the content of f£’(S) equals the content of £(8). In a simi=

lar fashion it can be shown that f = glf' where gy is an orthogonal
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linear transformation of Rz. Therefore, f£(S) would have content if and
only if f’(8) has content and c(f(8)) = c¢(£'(S)). Thus, the area of S
is independent of the particular orthonormal basis chosen in Definition

6.46 for the subspace [B,C]. This is listed as Theorem 6.47.

Theorem 6.47. The area of a set of points S in a plane [B,C] is

independent of the orthogonal basis used for [B,C] in Definition 6.46.
If S 1s a set of points in a plane D + [B,C], then the set of

points S - D = {P|P = Q - D, Q € S} 1s a subset of [B,C]. If D+

[B,C] = E + [B,C], then (D - E) € [B,C]. Thus, the set § - E =

{Q - E|Q € s}

is, the set S

{(@Q-D)+(D-E)|Q€ 8} =(s=-D)+(D=-E). That

E is the set S - D translated by the vector D - E. If
f is the fixed coordinate system for [B,c] and £ -~ E) = (y1,y2) then
£(8 = D) = {(x3, x2)|(xs B+ x5 C) € (S = D)} and £(S - E) =

£(S = D) + (E = D)] = {(21,22)|(21,25) = (x3,%) + (y1,¥2),

(%3 ,%2) € £(S - D)}. Since, by Theorem 6,44, content is invariant
under a translation, f(S - D) has content if and only if £(S - E) has
content and c(£(S = D)) = c(£(S - E)). This shows that if the set

S = D has area, the area of a set S in D + [B,C] may be defined as the
area of the set S - D and the area does not depend upon the D used to

name the plane D + [B,C].,

Definition 6.48. Let S be a set in D + [B,C]. If the set S - D

has content then, by definition, A(S) = A(S - D),

Technically, this gives two uses of the letter A for the coset
[B,C]. But since [B,C] = 6 + [B,C] and S -~ O = S, the uses are the
same for subsets of [B,Cl.

Let f:V - V be an isometry. Then, by Theorem 5.25, £ = gh where h
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is a translatipn and g an orthogonal linear transformationf Under h
a coset D + [B,C] is mapped into the coset (D + h(@))_+ [B,C] =
h(D) + [B,C]. For any set S in D + [B,C] having area, A(S) = A(S - D).
Now, h(S) = S + h(B) is in plane h(D) + [B,C]. Thus, A(S + h(B)) =
A(S 4 n(B)) - h(D)) = A(S + n(B) - (D + n(6))) = A(S - D), Thus
A(8) = A(h(S)). Therefore, h preserves area.

Now, g, being an orthogonal linear transformation, maps [B,C] into
[g(B), g(C)] where {g(B), g(C)} 1s an orthonormal basis for
[g(B), g(C)]. Let S be a subset of [B,C] having area. Let £ be the
coordinate system for [B,C] such that f1(x3B + x3C) = (% ,%) and £ be
the coordinate system for [g(B), g(C)] such that fz(y18(B) + y,g(C)) =
(y15, y2)o If S = {P|P = xyB + x3C}, then £,(8) =
{(X19Xa)‘(x1B + %x5C) € 8}. Now, g(8) = {QlQ = g(P), P € 8} =
{QlQ = x,8(B) + x28(C), % B + %,C = P € S}. Therefore, f3(g(s)) =
{(x1, %2)|(x8(B) + x,2(C)) € g(8)} = {(x, x)|(xyB + x,C) € 8},
Therefore, f1(S) = fpg(8). Thus, A(8) = c(£;(8)) = c(£zg(8)) =
A(g(s)).

Now, if S © D + [B,C] has area, then g(8) c g(D) +

[g(B), g(C)]. Therefore, A(S)

1

A(S - D) by definition of the area of

1}

S and A(g(S)) = A(g(8) - g(D)) = A(g(S - D). Since S - D is a subset
of [B,C] and g(S) - g(D) = g(S - D) is a subset of [g(B), g(C)], by the
arguments in the last paragraph, A(S) = A(g(S8)). Since the composition

of areé preserving maps is area preserving, the following theorem has

been proved.

Theorem 6.49. If f:V - V is an isometry and S is a subset of the

plane D + [B,C] having area, then f(S) is a subset of the plane

£(D + [B,C]) having area and A(S) = A(£(S)).
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Theorem 6,50. Let T = {(a,b) + t(d,e)|0 < t < 1} be a segment in

Ry;. Then ¢(T) =
 Proof: The translation hi:Rs = Ry, defined by h(x,xp) = (%5,%3) -
(a,b), 15 a content preserving map and h(T) = {t(d,e)] 0 <t <1}, The

map g:Re = Ry, defined by g(xy,xz) =

d e - t)
CV@-F@ V@ e Ve Vﬁ-»& )

d
Vg2 4 3 Vaa + e®

transformation and g(1,0) = (: .> with g(0,1) =

[N

= j
. Now QLo =1 (0,1)] = 1 and
<:Vd3 v ot V@& + o2 » 18,0)] > e(o,0)]
g(l,O) ° g(O,l) = 0. Thus, g is an orthogonal linear transformation.

By Theorem 6.45, g is content preserving. Now g(h(T)) =

{f V,f;_i_f_, d) 0<tc< 1} {tl(d e)| (2 o)lo <t< 1} Since this
a

is a degenerate interval, c(g(h(T))) = 0. Since c¢(T) = c(g(h(T))),

c(T) = 0 as was to be proved.

Theorem 6.51. Every point and every segment in V has area zero.

Proof: Let PQ = {P + t(Q - P)|0 < t < 1} be a segment in plane
P + [B,C]. Then, A(PQ) = A(PQ - P) = A({t(Q -P)|o<t <1} =
c(£{t(q - P)|0 < t <1}). Let £(Q - P) = (3,e). Then, A(PQ) =
¢{t(d,e)]0 < t < 1}. By Theorem 6.50, A(FR) = 0. Since the coordinate

of any point is in a point in R,, the area of a point is zero.

Theorem 6.52. Every triangular region has area.

Proof: Let AEFG be a triangle in a plane D + [B,C] where {B,C} is

an orthonormal basis for [B,C]. By the remarks preceding Theorem 5.12,
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the triangular region EFG, denoted‘ffa, is EFG =

{aE + bF + cGla+ b+ c=1, a >0, b >0, c >0}. Now, since
a+b+c=1, BFG-D={a(E=-D) +b(F-D) +c(G-Dla+b+c=1l,
a>0, b>0, ¢ >0}, Let f be a coordinate system for [B,C] with
respect to the orthonormal basis {B,C}. Suppose £(E = D) = (xy,%s),
£(F « D) = (yy,ys) and £(G = D) = (zy,25). Then, £(EFG = D) =
{a(x;,xg) + b(y1,¥y2) + c(z3,25)|]a+b+c=1,a>0, >0, c >0},
Thus, f(EFG - D) is a triangular region in Rg.

By Theorem 6.15, the boundary of the triangular region is the
tfiangle or the union of three segments.‘ By Theorem 6.50, the content
of each segment is zero.> Hence, the content of the union of the three
segments is zero. Therefore, since the boundary of f(EFG - D) has
content zero, by Corollary 6.37, f(EFG - D) has content. Thus,

triangular region EFG has area.

Theorem 6.53., If Sy, Spy sesy S, are coplanar sets of points each

having area, then Sy U S, U ..o US, and 83 N S N ... N S, have area.
Proof: Since Sy, Sz, ..., S, are coplanar, there exists a plane,

D + [B,C] containing each of the sets. By definition, the area of each

of these sets is the area of the sets 8; = D ¢ [B,C]. Therefore, one

may assume Sy, Sp, seey S, are in [B,C]. Let f be a cartesian coordi-

nate system for [B,C]. Since Sy, Sp, ..., S, have area, f£(S;), £(S,),

cosy T(S;) have content. Now, £(S; U S; U ... U S,) =

£(S) U £(83) U ..o U £(S,). By Theorem 6.40, since £(S;), f(sz); coog

£(S,) have content, £(8;) U £(8;) U ... U £(S,) has content. Thus,

Sy USy; U .oo US, has area. The proof for S N S35 N ... N 5, is

similar.
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v Theorem XVII. To every polygonal region there corresponds a

unigue positive number.

Proof: A polygonal region is the union of a finite number of
triangular regipns. By Theorem 6.52, every triangular region has area.
By Theorem 6.53, the union of a finite number of triangular regions has
ares. Since the set of coordinates of a triangular reglon contains a
non-degenerate interval, the area of a polygonal reglon 1ls positive.
Thus, let the number required by the theorem be what has been called the
area of a set of points in V.

SMSG at this point gives the following definition.

Definition 6.54, The area of a polygonal region is the number

assigned to it by Postulate 17 (Theorem XVII). [17: 320]
Since the area function has been constructed in this chapter, the
term area has been used previously. The two definitions of area,

Definitions 6.48 and 6,54, are the same for polygonal regions.

Theorem XVIII. If two triangles are congruent, then the triangular

regions have the same area.

Proof: By Theorem 5.33, there exists an isometry mapping one of
the triangles into the other. By Theorem 5.34, the isometry maps the
triangular region of one triangle onto the triangular region of the
other triangle. By Theorem 6.49, isometries preserve area. Thus, the

fheorem is proved,

Theorem 6.55. Let S be the union of two coplanar point sets $

and Sy each having area. If A(S; N Sz) = O, then A(S) = A(S;) + A(Sz).
Proof: Without loss of generality, it is assumed that S; and S;

are in some subspace [B,C]. Let f be a cartesian coordinate system for
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[B,C]. By hypothesis, c(£f(S; N Sz)) = b. Since f is one-to-one,

£(8) N'S3) = £(8) N £(Sy) and £(S) = £(8 U Sp) = £(S;) U £(S3). Thus,
o(2(8y) N £(55)) = 0. Trerefore, by Theorem 6.40, o(£(8,) U £(53)) +
e(£(81) N £(83)) = e(£(51)) + c(£(82)) or c(£(8)) = o(£(5,)) + c(£(Sa)).

Thus, A(S) = A(S;) + A(S3).

Theorem XIX. Suppose that the region R is the union of two reglons
Ry and Rp. Suppose that Ry and Ry intersect at most in a finlte number
of segments and points. Then, the area of R 1s the sum of the areas of
Ry and Rz,

Proof: By Theorem 6.51, the area of a segment or a point 1s zero.
Therefore, the area of a finite number of segments and points is zeroc.

Thus, by Theorem 6.55, A(R) = A(Ry) + A(R,).

Theorem XX. The area of a rectangle is the product of the length
of its base and the length of its altitude.
Proof: Let EFGH be a rectangle in plane E + [B,C]. Denote the

rectangular region by EFGH. By Theorem 5.12 and the remarks preceding

it, {]F Elé G FI} is an orthonormal basis for [B,C]. Thus,

F-F G-F
F-E] Ta- 7]

E + [B,C] = B + [ ]o Also, rectangular region

F-F G-F
EFGH = {E+ tTFoE] smﬂosts |F-E], 0O<ss |G_F|},

F-F G=-F
[F-2 * ° Te-7F]

Thus, EFGH - E = {t lo<t< | F-E|,

O0<s<« |G-F|}. Under the coordinate system f with respect to the

basis {l§2g|9 12:%_‘, £(EFGH - E) = {(t,8)|0 <t < |F - E|,

0<s< |G-F|}. Since this is an interval, by Theorem 6.41,

c(£(EFGH - E)) = |F-E| |G-F| which is the product of the length of
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the base of rectangle EFGH and its altitude. Thus, A(EFGH) =

|F-E| |G-F| as was required.

from

Volume in V

SMSG Postulates 21 and 22 concern volume. The following quote is
the text,

A vigorous treatment of volumes requires a careful definition
of something analogous to polygonal regions in a plane
(polyhedral regions is the name) and the introduction of
postulates similar to the four area postulates. We will not
give such a treatment, ... However, we will state explicitly
the two numerical postulates we need. [17: S46]

An approach similar to this will be taken here, The definition of

a rectangular parallelepiped will not be the one given by SMSG, but an

equivalent definiticn., To prove the definition equivalent would be

similar to the development used to prove Theorem 5.12 for rectangular

regions.

The theorems about content in Ry have there obvious generalizations

to Ry, In Rs an interval I would be set, I = {(a),az,a5),(by,bs,bs))

{(x14,%2,%3) |21 <% < by, @z <Xy < by and a; < xa < ba}. Therefore,

the proofs of most of the theorems about content in Rz would only in-

volve adding a third coordinate to the interval. For a general proof

that

isometries preserve content in R,, see [21: 29]. All of the

theorems about content in Ry will be used for Rz.

Let {B;, By, B3} be an orthonormal basis for V and B =

X1 By + %X Bo + %3 By be an element of V. A cartesian coordinate system

for V is an isomorphism f:V - By with £(B) = (%, X5, Xa)o

Definition 6.56. Let f be a cartesian coordinate system for V. If

S is a subset of V, then S has volume if and only if £(S) has content
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and the volume of S is defined to be ¢(£(S)). The volume of S is
denoted v(S). |

As in Theorem 6.47, the volume of a set S is independent of the
orthonormal basis chosen for the coordinate system f. That is, if £’
is another coordinate systenm, thén f’ = gf and f = g1’ where g and g
are orthogonal linear transformations on Rz. By the three dimensional
analogue of Theorem 6.45, g and gy preserve content. Thus, £(S) has

content if and only if f£’(S) has content and c(f£(S)) = ¢(£'(8)).

Definition 6.57. A rectangular parallelepiped is a set of points

Sw{A+rB +sBy+tB|0<r<a, 0<s<hb, 0<t<c and

{Bi, By, By} is an orthonormal basls for V}° Any of the six rectangu-
lar regions, {A + rB; + sBal0<r <a, 0<s<bl, {A+ cBy + rB1.+ sB, |
O<r<a, 0<s<b), cooy [A+5B; + tBy]0<s<b, 0<t<b)is
called a base of S. The altitude corresponding to a base is,
respectively, the length of one of the six segments {A + tB3|O <t < cl,

{A+tBglo<t <cly eooy (A+1rB]O<r <al

Theorem XXI. The volume of a rectangular parallelepiped is the
product of the altitude and the area of the base.

Proof: The rectangular parallelepliped is a set 8 of the form
S=fA+1rB + 8By + tB;]/0<r<a, 0<s<b,0<t<dand
{By, Bg, Bz} is an orthonormal basis for V}. Let f be the coordinate
system for V with respect to the basis [Bl, Ba, Bs}. The coordinate of
A is some (m, n, p). Thus, £(8) = {(m, n, p) + (r, s, t)|O<r < a,
0<s<b, 0<t<d), Since hiRy = Ry defined by hixy, Xz, X3) =
(x1, Xz, %3) = (m, n, p) is content preserving, c(£(8)) = c(£(8) =

(my ny p)) = cf(r, s, t)|J0<r<a, 0<s<b, 0<t<d}. But thisis
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an interval and, by the three dimensional analogue of Theorem 6.41,
¢(£(8)) = abd.

Now the base of S is the rectangle {A + rB; + sBz|0 <r < a,
‘0 <5 <Y} and the altitude is the length of the segment
{A + tB3]|0 <t < d}. By Theorem XX, the area of the rectangle is ab and
the length of the segment is d. Thus, the theorem is proved.

To prove the next theorem, some theory of Riemann integration is
used. The materlal on Rlemann integration which follows is taken from
[1]. In this text, the author uses E, for what has been called R, in

this dissertation.

Definition 6.58. Let T be deflned and bounded on s closed interval
IcE. IfPisa partition of I into m subintervals Iy, veey Iy, let
me (£) = dnf{f(x)|x € I, }, M (£) = sup{f(x)|x € I,}. The numbers

m m
U(p,f£) = glek(f)u(Ik) and L(P,f) = ﬁElmk(f)u(Ik) are called upper and

lower Riemann sums. The upper and lower Riemann integrals of f over I

are defined as follows:

i

]}fdx inf{U(P,£)|P is a partition of I}

sup{L(P,£) |P is a partition of I}. [1: 2547,

#

l}fdx
The function f has a Riemann integral on I if and only if
LifdX = 7&fdx, and if f;fdX =‘TIde; the Riemanu integral of f over I,
denoted [ifdX, is [fdX = F fax. [1: 255].

For S a subset of E, (in this chapter E; and E; are being consid-

1if X € s

1 H - X = .
ered), define the function X :E = R by XS( ) 0if X € &

X is
s

called the characteristic function of S.

Theorem 6.59. Let S be a bounded subset of Es or E; and I be an




103

interval containing S. S has Jordan content if and only if f}Xde
exists. Also, if S has content, then [iX dX = c(8).

Proof: Let P be a partition of I and I, ..., Iy the subintervals
of I determined by P. Now, U(P,XB) = kglnk (XJB(I). If I, contains
points of S, then MR(XB) = 1, If I, does not contain points of S, then
My (X)) = 0. Therefore, U(P,X ) =Zp(I;) where the sum is taken over
all subintervals of I which contain points of S. Thus, U(P,XB) =
J(P,8) for each partition P of I. Therefore, JrX ax = &(s).

Also, for any partition P of I, J(P,8) is the sum of the measures
of those subintervals of I which contain only interior points of S. If
I, contains only interior points of S, then m,,(Xu) = 1. Thus, J(P,8) <
L(P,X_) for each partition P of I. Therefore, g(8) < [;X dX. How can
J(P,8) be less than L(P,Xs)? If I, contains only points of S, but not
just interior points of S, then m,(f) is still one. Thus, p(I,) is
included as an addend in L(P,XSJ and not included as an addend in
J(P,S). But, let t >0 be given, then there exists a partition P of I
such that L(P,f) > f1X dX - t. L(P,f) = kglmk (X Jp(I ). When m,(xs) #
0, then I, contains only points of S. By Theorem 6.6, the open inter-
val I, (i.e., the interval excluding its boundary) is contained in the
interior of S. Each of the intervals I, can be approximated as closely
as is needed to get closed intervals I, — I, and a partition P’ of I
which has the interval I, as subintervals with J(P’,S) > L(P,f) - t.
Thus, c(S) > L(P,f) - t >I£IXst- 2t. Since t is arbitrary,

c(8) > [;X dX. Thus, c(8) = [1X dX.

Putting ¢(S) = [[X_dX together with (S) = f[Xst, it follows

that S has content if and only if j}Xsdx exists and they are equal.

Let S be a subset of Ey. The coordinate hyperplane mz of E; is
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the Subspace {(x1 4%24%3) x5 = 0}. ma is isomorphic to By where the
isomorphism is the map mapping (¥;,%z,0) into (xy,%z). For all prac-
tical pprfoses, these two spaces, ms and Bz, are the same. If I =
{(x14%24%3) | &1 <% <1y, 83 < Xp < Day 83 < X < bz} 1s an interval
in E, then the projection of I onto the coordinate hyperplane ng 1s

Is = {(x1,%2,0)|ay €% < by, @3 < X3 < bg}. The following theorem
has been taken from [1: 264]. Modifications have been made in the
notation to change from E, to E;. The interested reader is directed to

the reference for a proof.

Theorem 6.60. Let f be defined on a closed interval I =

{(x1y%a0%) |a1 S %1 € b1y 8p € Xa € byy 8s € %3 € by} in By, Assume
that [, £(x)dX exists. Then [ £(x)aX = ,Q:a[]: £ d(xl,xg)]dxa.

Before stating Theorem XXII, parallel planis in V will be dis-
cussed. Parallel planes were defined in Definition 5.4 as planes which
do not intersect.

Planes were defined in Chapter III as cosets of two dimensional
subspaces. Since two different cosets of the same subspace do not
intersect, they are parallel. Suppose A + [B,C] and D + [E,F] are
cosets of two different subspaces [B,C] and [E,F]. Then, at least one
of Eor F is not an element of [B,C]. Suppose E is not an element of
[B,C]. Then, {E,B,C} is a linearly independent subset of V. Since V
is three dimensional, {E,B,C} is a basis for V. Since D - A is in V,
there exist real numbers e, b, and ¢ such that D = A = eE + bB + ¢C.
Thus, D - ¢E = A + bB + ¢C. Since D - ¢E is in D + [E,F] and A + bB +
¢C is in A + [B,C] these two planes intersect. Thus, the following

theorem has been proved.
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Theorem 6.61. Two planes are parallel if and only if they are
different cosets of the same two dimensional subspace of V.,

Let A + [B;,B;] be a fixed plane in V with {B;,B;} an orthonormal
basis for (By,Ba]. {B;,By} can be completed to an orthonormal basis
{Bl,Ba,Bs} for V. Let f be the coordinate system with respect to this
basis for V. Then, A = a By + b B + ¢ By for some a, b, and ¢. Thus,
A-oBy =aB +bByorA-cBy € [B,By]. Therefore,

A+ [B,Ba] = ¢ By + [By,By]. Now, £(c By + [By,By]) 18 the set of
coordinates of points 4n ¢By + [B;,By]. But, c¢By + [By,By] =
{cBs + x; By + Xp By|xy, X are in R}, Therefore, £(cBy + [By ,By]) =

[(xi,x.,c)lx;,, X are in R}, The following theorem has been proved.

Theorem 6.62. Let A + [B;,By] be a fixed plane in V and
{By ,B5,Bs} be an orthonormal basis for V. Then A + [B;,By] =
cBy + [B;, B,] for some ¢ in R. If f is the coordinate system for V
with respect to the basis {B,, By, By}, then the set of coordinates of
the plane A + [B,,B;] is the set {(x;,x3,¢)|%;, X are in R}.

Now, let D + W be a plane parallel to A + [By,B;]. Then, by
Theorem 6.61, D + W is a coset of [B,,Bz] or D+ W=D + [B,,B;].
By Theorem 6.62, D + [By Bo] = dB; + [B;,B;] for some d in R. Since
dB; + [By,B;] does not intersect ¢cBs + [B,,B5], d # ¢c. The set of
coordinates with respect to the basis {B,,B,,B;} for dB; + [B,,B,] is

the set £(dBy + [By,By]) = {(x; 4%5,d)|x%;, Xz are in R}.

Theorem 6.63. Let A + [By,B;] = ¢By + [B;,B3] be a fixed plane in

V where {B;,B;,B;} be an orthonormal basis for V and f the coordinate
system with respect to this basis. Then, the plane D + [B; ,By] is

parallel to the plane c¢By + [B;,Bz] if and only if the coordinate set
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for D+ [By, B2] is of the form {(x ,Xz,d)|%;1,%z in R and d # c}.

Proof: By the remarks preceding the theorem, if D + W is parallelv'
to ¢Bs + [By,Bs], then its coordinate set has the desired form.
Conversely, if the coordinate set of D + W is {(xl,xa,d)lxl, Xg are In
Rand d # c}, then for P € D + W, P = dBy + 4By + x3B;. That is, P is
in the coset dBy + [By,Bz]. If P € d By + [By,Bp], then P has coordi-
nate of the form (x1,xz,d). Thus, P € E + W, Therefore, D + W = d By +
[B1,B,]. Since ¢ #d, dBy + [By,B;] # ¢By + [B,,Bs] or the two cosets
D+ W and cﬁs + [By 4B;] are different cosets of the same subspace.
Therefore, they are parallel. This completes the proof.

Theorem XXII (SMSG Postulate 22) is stated next. Some comments

about the theorem follow the statement and precede the proof.

Theorem XXII. (Cavaliere's Principle.) Given two solids and a

plane, 3?, for every plane which Intersects the solids and is parallel
to the given plane, the two intersections have equal areas, then the
two solids have the same volume.,

SMSG does not define solids. Therefore, in the proof, it will be
assumed that a solid is a bounded set. Also, without some further
restriction on the term solid content does not have this property. For
example, let Sy = {(x1,%X3,%3)|0 <% €1, 0<% <1, 0<x3 <1 and x5
is rational} and Sz = {(%)4Xa;%3) |1 <% €2, 0<% <1, 0<% <1
and x3 is rational}. Each plane parallel to the X1 X; plane intersects
each of these "s01ids" in sets which have area zero or one. But each
of the sets have outer Jordan content one andiinner Jordan content zero.
Hence, the sets have no volume as defined in this chapter° The added
assumption that a solid has volume will be made in the proof.

Proof of Theorem XXII: Let the solids be $; and Sz and the fixed
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plane be A + [B;,Bs] where {B;,B;,Bs} is an orthonormal basis for V.
Let £ be the coordinate system with respect to the basis {Bl,Ba,Ba}.
Now, £(S;) and £(S;) are contained in some interval. Let I =
{a1 €% < by, ag <%z <bsy 85 < X3 < by} be an interval containing
both of the sets. By Theorem 6.62, the coordinate set of every plane
parallel to A + [By,B,] is of the form {(x; ,%5,d)|d 1s fixed].

Let 8y = £(S;) and S5 = £(S;). By Theorem 6.59, v(S) =

S X s X and v(82) =[] X dX. By Theorem 6.60,

ba
v(8y) = fI XS]_' dX = faa [II XS:_’ a(xy ,xa)] dxg and
3

baf
v(8,) = j& Xsé dX = 4; [}; Xs{ d(xi,xa)] dxg »
a
Now 7}3 Xs{ d(xl,xz) is a function g; defined on the interval

[aaébaj with range the reals. For each fixed d such that azg < d < by,

O [14f (x;,%5,d) € 8 ‘ .
Xs{ (%1 X2 ,d) = ﬂ) 1f (xyxp.d) £ S° If dBy + [By,B;] is a plane

parallel to A + [B;,B,], then the area of (dB; + [B;,Bz]) N S, is the
content of the coordinate set of the set {(dBy + [B1,B;]) N S;) -~ dBs}.
This coordinate set is By = {(x,%5,d) - (0,0,d) =

(%1 5%2,0) | (x1 ,%2,d) € £((dBs + [B;,B,]) N S;)}. By Theorem 6.58, the

area of the set {((dBs + [B1,B5]) N S ) - dB} is fI X, d(xy,x2).
3

B

But for each fixed d, XE = Xs;e Since the area of each plane inter-
1

1

sected with S exists, j} Xg d(x; y%3) exists. Since X, =
3 1

. B
Xs{* g (d) = j}a XEl d(xy 4%5) = fI3 Xs{ a(x, ,xz) is the area of the

plane dBs + [By,B,] intersected with S. Similarly, for each fixed d,

aa < d < bz, ga2(d) = 7} L d(xy ,x3) is the area of the plane
a Sz
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dBy + [B;,Bs] intersected with S,. Since it is given in the hypothesis

that gy(x3) = ga(xa) for each X3 such that az < x3 < by and since

by ba
v(8) = _/;3 g1 dx; and v(Sy) = fae g2dxa, 1t follows that v(s;) =

V(SQ) .



CHAPTER VII
SUMMARY AND EDUCATIONAL IMPLICATION
Summery

In this paper, Buclidean vector spaces were discussed. The writer
has assumed an abstract three dimensional Euclidean vector space. In
the vector space, the terms "point," '"line," and "plane' were defined.
With these definitions, the writer has shown that the twenty-two postu-
lates of SMSG geometry are satisfied.

In Chapter I the statement of the problems, procedure, and scope
of the paper were presented. In this chapter recent advances in the use
of algebra in the high school curriculum were documented. Chapter II
included an outline of the linear algebra background the reader of the
paper would probably need. Particular emphasis was put on cosets of
subspaces of a vector space.

In Chapter III lines and planes were defined as cosets of one and
two dimensional subspaces. These cosets were shown to satisfy the
incidence, coordinate system, and separation pfoperties of pbstulgtes
one through ten of SMSG geometry.

In Chapter IV the inner product, which the vector space was
assumed to have, and the cosine function were used to define a measure
on the set of angles. This measure was shown to satisfy Postulates

eleven through fourteen of SMSG geometry. In the development of these

109
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theorems, a second vector formulation for a plane.and the interior of an
angle were presented.

In Chapter V .the concept of congruence of triangles ‘
was investigated. Using SMSG's definition of congruent triangles and
the law of cosines, the S.A.S. congruence postulate for triangles was
proved. Because a broader definition of congruence was used by the
writer to prove some area theorems in Chapter VI, a secénd formulation
of congruence was presented in Chapter V. Congruence was defined in
terms of isometrles of the vector space. For triangles, the two
definitions of congruence were shown to be equivalent.

In Chapter VI area and volume were defined using Jordan content in
Rs and Ry and cartesian coordinate systems for V. It was shown that
each of the polnt sets that has area in SMSG has area using this formu-
lation of area., Cavaliere's principle connecting area and volume was

proved for certain "solids."
Educational Implications

Algebraic methods are becoming more evident in the high school
curriculum each year. A prospective high school teacher of mathematics
will probably need more training in algebra than received by teachers
who attended college a few years ago. This paper has presented a
developmentvof Euclidean vector spaces at a level within the domain of
experience of a prospective high school teacher. Most of the theorems
in the paper could have been proved in an n-~dimensional Euclidean
vector space. The writer chose a three dimensional vector space in
light of the intended audience.

The reader, who is a potential high school teacher of mathematics,
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may find material in this paper that would help him in teaching
Euclidean vector spaces at the high school level. This paper might also
be of use in the training of teachers of geometry. CUPM, in its outline
for the training of teachers, suggests the study of pure analytic geo~
metry in its course on geometry. They further suggest the following be
included in thls course in geometry:

Points, lines and so on may be defined and treated in terms

of an algebraic model without the use of any synthetic

postulates ... This is quite different from conventional

analytic geometry wherein the synthetio postulates are used

in proving that coordinate systems exist. The "purely

analytic" treatment can be used to glve a consistensy proof

for the synthetic postulates. [6:.22].

This paper has presented one such approasch to Euclidean geometry.

Several colleges have seminars for undergraduate students in
mathematics. The material in this paper could possibly be used in such
a seminar for prospective high school teachers of mathematics.

Undoubtedly, the most immediate benefit of this paper is the

experience gained by the writer in its preparation.
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APPENDIX A
SMSG GEOMETRY POSTULATES

This Appendix 1=z a listing of the postulates used by SMSG in the
high school geometry text [17]. In the list, the numeral in parenthesis
following the SMSG postulate number indicates the page on which the
poétulate is stated in the SMSG text. The numeral in parenthesis at the
end of the postulate corresponds to the number of the page on which the
proof of thils postulate originates in this dissertation.

1. (P, 30) Given any two different points, there is exactly one
line which contains both of them. (p. 23)

2, (P, 34) To every pair of different points there corresponds a
unique positive number. (p. 23)

3. (P. 36) The points of a line can be placed in correspondence
with the real numbers in such a way that

(1) To every point of the line there corresponds exactly one

real number,

(2) To every real number there corresponds exactly one point

of the line, and

(3) The distance between two points is the absolute value of

the difference of fhe corresponding numbers. (p. 24)

4. (P. 40) Given two points P and Q of a line, the coordinate

system can be chosen in such a way that the coordinate of P is zero and

the coordinate of Q is positive. (p. 25)
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5. (P. 54) (a) Every plane contains at least three non-
¢ollinear points.

(b) Space contains at least four non-coplanar points. (p. 27)

6. (P; 56) If two points lie in a plane, then the line containing
thege points lles in the same place. (p. 28)

7. (P. 57) Any three polnts lle in at least one plane, and any
three non-collinear points lle in exactly one plane. More briefly, any
three points are coplanar, and sny three nonecolllinear polnts determine
& plane. (p. 28) |

8, (P. 58) 1If two different planes intersect, then their inter-
sectlon is a line. (p. 29)

9. (P. 64) Given a line and a plane containing it, the points of
the plane that do not lie on the line form two sets such that

(1) eéch of the sets is convex and

(2) 4f P is in one set and Q is in the other then the

segment 55 intersects the line. (p. 35)
10. (P, 66) The points of space that do not lie in a given plane
form two sets suqh that

(1) each of the sets is convex and

(2) 4if P is in one set and Q is in the other then the

segment PQ intersects the plane. (p. 33)
11, (P, 80) To every angle ¥BAC there corresponds a real number
between 0 and 180. (p. 40)
12, (P. 81) Let AB be a ray on the edge of the half-plane H. For
every number T between O and 180 there is exactly one ray &5, with P in
H, such that m¥PAB = r, (p. 43)

13, (P, 81) If D is a point in the interior of ¢BAC, then
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mYBAC = mdBAD + mIDAC. (p. 47) -

14, (P, 82) 1If two angles form a linear pair, then they are
supplementary. (p. 49)

15, (P. 115) Given a correspondence between two triangles (or
between a triangle and itself). If two sides and the 1ﬁcluded angle of
the first trlangle are congruent to the corresponding parts of the
second triangle, then the correspondence is a congruence, (p. 52)

16. (P, 252) Through a glven external polnt there is at most one
line parallel to a given line. (p. 53)

17. (P. 320) To every polygonal region there corresponds a unique
positive number. (p. 98

18. (P. 320) If two triangleé are congruent, then the triangular
regions have the same area. (p. 98)

19. (P. 320) Suppose that the region R is the union of two regioﬂs
Ry and Ry, Suppose that Ry and Ry intersect at most in a finite number
of segments and points. Then the area of R is the sum of the areas of
Ry and Rz. (p. 99)

20. (P. 322) The area of a rectangle is the product of the length
of its base and the length of its altitude. (p. 99)

| 21. (P, 546) The volume of a rectangular parallelepiped is the
product of the altitude and the area of the base. (p. 101)

22, (P, 548) Given two solids and a plane. If for every plane
which intersects the solids and is parallel to the given plane the two
intersections have equal areas, then the two solids have the same

volume. (p. 106)
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