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CHAPTER l 

PROBABILITY AND BASIC CONCEPTS 

1.1 Introducti0n 

An individual's approach to probability depends to a 

great extent upon his interest in the subject. A pure 

mathematician might rely heavily upon the axiomatic ap

proach, while the applied statistician may prefer to take 

the intuitive approach. The latter might attempt to con

sider probability as the proportion of times that a certain 

event will occur if the experiment related to the event is 

repeated indefinitely. The approach which we shall pursue 

here is a blend of these two points of view. We shall 

attempt to present the basic concepts of probability intui-, 

tively through example, but we shall also strive to intro

duce certain topics without the loss of mathematical rigor. 

In most scientific· studies .the inductive procedureefsre 

employed to a great extent. By the inductive procedure, we 

mean studying particular cases and trying to draw generali

zations from them • . An example of inductive reasoning is: 

All sheep which I have seen are white; hence, all sheep are 

white. Although we see a great number of faults in this 

process, one will soon discover that the structure of this 

l 



kind of thinking is basic to all scientific thought. 

Scientific knowledge consists of generalizations which are 

based on observation and experimentation. We can see how 

limited we would be if we did not employ the inductive pro

cedure. We might be able to report what we have observed 

and measured, but we would never be able to put this infor

mation to work. Hence, if we are to learn from experimen

tation and use our knowledge of the past for predictions, 

we must face the gamble which is intrinsic in inductive 

statistics and the scientific method. 

After considering the preceding remarks we see that 

associated with any inductive process there is almost cer

tainly a degree of risk. Our purpose is to develop methods 

which will help to minimize this uncertainty. This is 

where probability will come to our aid. By using proba

bility we will be taking a calculated risk rather than 

trying to play the role of a fortune teller. 

Realizing it is almost impossible to understand the 

factors involved in chance, which form the basis of induc

tive statistics, without a sound understanding of the con

cept of probability, we shall devote a considerable amount 

of the following discussion to the meaning of probability. 

1.2 Probability 

When any discussion of prooability is endeavored, the 

most annoying obstacle is the multiplicity and vagueness of 

meaning which everyday language has given to such words as 

2 
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11 possible 1', "probable", ''likely", and "chance". As long 

as we are engaged in conversational language it may not 

matter whether we use these vague terms which may at times 

add a certain degree of color to our discussion. However, 

if we are in need of precise statements which we encounter 

in almost any study of mathematics, we must limit our

selves to well defined terms. It should also be remembered 

that the names we use for concepts are really irrelevant, 

the paramount thing being that we have a true understanding 

of the concepts or ideas for which they stand. 

The term "probability" is used for the important con-

cept of relative frequency, or more precisely, the limit of 

a relative frequency. The usual definition of relative 

frequency is given as follows: If an event can lead to the 

occurrence of N equally likely results of which Sare de-

noted as successes, the probability of a success is given 
s 

by the ratio N. This so-called definition has some very 

obvious shortcomings, since the term 11 equally likely" is 

also defined in terms of probability. If two events are 

said to be equally likely, this is usually meant to impl7 

that they are equally probable (they have the same proba

bility), and consequently we are using in this definition 

the word which we are trying to define. Even though we can 

not accept this as a definition, it does help us a great 

deal in calculating probabilities once we know or have 

assumed the various alternatives are equally likely. 

While considering the discussion given above, it is 
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evident that the proportion of successes can never be nega

tive, and since it can also never exceed unity, the proba

bility of an event is between O and 1, inclusive. A 

probability of O does not mean that the event is beyond the 

realm of possibility, we usually understand this to mean it 

is extremely unlikely. For example, it can be shown the 

probability is O that a point selected in a random fashion 

from the interval from Oto 1 will represent a rational 

number, even though it is conceivable that the point could 

represent a rational. Similarly, the probability of 1 

would be attached to the event of selecting an irrational 

even though it is not beyond the realm of possibility that 

the point would represent a rational number. 

Probability can be considered as a substitute for 

certainty and truth. By a substitute for truth we mean 

that using probability we can not generally make statements 

which are always true, we can only make statements which 

are usually true. Let us illustrate this concept with an 

example. Let us suppose that you are a farmer and you 

have planted a certain crop. You decide to consult an 

agricultural expert about your chances of its being a suc

cess. If the expert could tell you for sure that your crop 

will be a success, you would know exactly where you stand. 

Similarly, a negative reply would also tell you exactly 

what to expect. However, the kind of reply which you will 

receive will merely tell you that your chances for a suc

cess may be pretty good, average, or fairly poor. Now, 
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since these terms are fairly vague, you may decide to ask 

him to try to explain this in terms of probability. Let us 

suppose, for instance, that he tells us the probability 

that you will have a successful crop is .90. Now where do 

you stand? Would this entitle us to say that the expert 

was right if the crop succeeds, wrong if the crop fails? 

In order to answer this question,let us try to deter

mine what the expert meant by a probability of .90. Ac

cording to the discussion given above, a probability of .90 

means that in the long run something can be expected to 

happen about 90 per cent of the time. Consequently, when 

the expert told us that the probability of a successful 

crop was .90, he meant to say that among a large number of 

similar crops and under similar conditions such as weather, 

etc., about 90 per cent can be expected to succeed. 

The implication given above is that when we are dis

cussing the probability of a certain event, we must refer 

to what will happen in the long run in a large number of 

similar events. There is some objection to this concept in 

the absence of absolute certainty or absolute truths. But 

if we want to be scientific, i.e., if we want to obtain 

knowledge from observations and experiments, we must resign 

ourselves to the fact that almost all scientific predictions 

are of this type. 

One might get the impression from the above that it is 

perfectly safe to make scientific predictions, since no one 

can prove us right or wrong on the basis of a single event. 
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When we are told that there is a 90 per cent chance of an 

event taking place, this simply says that under similar 

conditions the event will occur 9 out of 10 times. It says 

nothing about what will happen for any given event. This 

does not imply that we should go about making wild predic

tions about a single event. It should be kept in mind that 

it is important in everyday life as well as in the scien

tific realm to make correct decisions as often as possible. 

It is necessary in each case to know the proper odds, i.e., 

which are the correct probabilities. For example, suppose 

we knew that the probability was .30 that we would catch a 

cold if we were to go quail hunting on a very cold day 

while not properly dressed, but the probability was .10 

that we would catch a cold if we wore the proper attire. 

We would probably play the odds and wear the proper dress. 

It should be evident that this would not protect us from 

catching a cold, but in the long run we would catch fewer 

colds if we wore the proper attire. Thus we would expect 

a larger per cent of success if we were to rely upon the 

odds. From this discussion it is evident that even though 

probability does not guarantee success, it acts as a very 

important guide in life to help in the long run to enjoy 

more success. 

In the last few paragraphs we have mentioned predic

tion and estimation, etc. Let us consider an example of 

how we might use the idea of prediction. Suppos e you are 

attending a large school and the administration has come to 
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the realization that they should let the student body de

cide upon a certain proposal by election. You have a 

statistician friend who lives in the same city. So you de

cide to try to predict the outcome of the election. You 

confer with your friend and he explains how to proceed. 

You follow his instructions and take a sample of opinions 

as suggested, and find 60 per cent of the people you ask 

favor the proposal. You then give the information to your 

statistician friend. He studies the data and proceeds to 

analyze it in a statistical manner. He reports that he is 

95 per cent confident that the proposal will carry. Now 

your friend has assigned a probability estimate of .95. He 

is telling you that using his procedure he can expect to be 

successful about 95 per cent of the time. In other words, 

we discuss the accuracy of our results by giving the suc

cess ratio of the methods which we have employed. 

In remaining chapters dealing with estimation,the 

"goodness" of decisions which is based on information we 

have at our disposal, usually a sample, shall be expressed 

in terms of the success ratio of the statistical techniques 

which we have employed. For example, suppose that two 

students take the entrance examination at a certain college. 

If from the results of this examination we could be 90 per 

cent confident that one student was better than the other, 

then we again imply that the statistical method employed 

promises to provide correct decisions about 90 per cent of 

the time. Hence from now on the probabilities which shall 



be assigned to the results of predictions and estimators 

will therefore always express the goodness of the methods 

employed. Another way of expressing this is that the pro

babilities will stand for the proportion of times that we 

can expect these methods to present us with the correct 

results if the methods are employed a large number of 

times. 

In the preceding discussion we have tried to intro

duce probability intuitively. Let us now consider proba

bility from a somewhat more mathematical point of view. 

Suppose that you are fairly proficient in the shooting of 

a shotgun and you decide to enter a trap-shoot sponsored 

by the local gun club. Suppose also that each time you 

shoot you receive a "l" marked on the score card if you hit, 

and a "0" if you miss. Let us consider this as an experi

ment and represent the point 1 on the x axis if the clay 

pigeon is hit and O for a miss. We now ask what are possi

ble outcomes of the experiment? It is easily seen that the 

only possible outcome is a zero or a one. These out

comes of ·an experiment are called the sample space. We now 

formalize the definition. 

Definition 1.1 The set of points representing the possible 

outcome of an experiment is called the sample space, or the 

event space, of the experiment. 

Let us now consider some of the basic rules of proba

bility which will be useful in the following chapters. 



From the discussions given earlier,it should be evident 

that if ~e denote the probability of the occurrence of an 

event A by P(A) then O~P(A)-<1 which expresses the fact 

that probabilities must be between O and 1, inclusive. 
I 

Another basic rule of probability which is immediate is 

that if the prebability of an event A/ is P(A) then the 

probability that A does not occur is 1-P(A). This means 

that the probability that A will happen plus the proba-

bility A will not happen is one. For example, if we are 

90 per cent sure of ·passing a test then the probability we 

will fail is 10 per cent; if the probability is .60 that a 

team will win a certain game then the probability the team 

will lose is .40. 

9 

Let us now turn our attention to problems which arise 

in studying probability where more than one event can occur 

simultaneously. When studying the occurrence of more than 

one event we must consider the concept of events being 

mutually exclusive. Two or more events are said to be mutu

ally exclusive if .they cannot occur -at the same time. For 

example, in our illustration you would either hit a clay 

pigeon or would not hit i,t when you shoot, you cannot hit it 

and also miss it simultaneously. Hence, the events of 

hitting or missing the target are mutually exclusive. Of 

course not all events are mutually exclusive. Suppose you 

are in the process of buying a new car, and you must decide 

between a Ford or a Chevrolet. Say the event is your 

getting a car. Since you could conceivably buy both, these 
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events are not mutually exclusive. 

Continuing our discussion of.mutually exclusive events, 

suppose the probability that a person will enroll at 

Oklahoma State University is known to be .40, while the 

probability is known to be .30 that he will enroll at the 

University of Texas. It seems reasonable that he cannot 

enroll in both universities, hence these events are mutu

ally exclusive. Also the probability that the person will 

enroll at Oklahoma State University or the University of 

Texas is the sum of the individual probabilities. This 

type of reasoning leads us to the next useful concept. If 

two events, A and B, are mutually exclusive, the proba

bility of A or B, written P(A or B), is equal to the sum of 

the individual probabilities, i.e., P(A or B) = P(A)+P(B). 

Our discussion thus far has been primarily centered 

around the concept of mutually exclusive events~ Let us 

now turn our attention to events which are not mutually 

exclusive, such as the events of wearing the proper cloth

ing in very cold weather and of catching a cold, or the 

events of cold weather and of snowfall. We see at once 

that these events are not mutually exclusive. In fact, it 

seems conceivable that the events are very much dependent 

on one another. Let us illustrate the meaning of depend

ence and independence of two events before we give a formal 

definition. An event Bis independent of another event A 

if the probability of the occurrence of Bis the same re

gardless of whether A has previously occurred or is occurring 
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at the same time. If, on the other hand, the probability 

of Bis in any way affected by the results of what happened 

in A, the two events are said to be dependent. 

The probability that a student will make an A on a 

test is surely very much dependent on the amount of prepar

ation he has made for ·the test. However, the probability 

that he passed the test is not dependent upon whether he 

uses cream in his coffee the morning before the test. In 

real life it is usually very hard to find events which are 

completely independent of every other possible event. For 

in the example of independence just stated, if someone had 

put poison in the cream than it would effect his passing the 

test that day. Therefore, when we speak of events being in

dependent we are assuming that the type of phenomena as 

mentioned above will not happen. Let us consider another 

example to illustrate dependence. Suppose we have a hat 

containing four pieces of paper, two labeled with the letter 

"a" and two with the letter "b". Event A is the drawing ofa 

slip of paper and looking at it and not replacing it in the 

hat. Suppose we get an a, then if P(B) is the probability 

of drawing ab, we see that the probability is differ~ 

ent before we drew the first piece of paper. Hence the 

event Bis dependent upon the event A. We shall now for

malize the definition of the independence of only two 
I 

events, which could be extended to any number of events. 
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Definition 1.2 The two events A -anc:l Bare independent if, 

and only if,the joint probability, written P(A and B) or 

P(A,B), is equal to the product of the individual proba

bilities, i.e., P(A,B) = P(A) P(A). 

So if we know two events are independent and we want 

to find the probability of the occurrence of both events, 

simultaneously, we find the product of the individual proba

bilities. For example, returning to the discussion of the 

man shooting clay pigeons,we can answer the question, 

"What is the probability that he will hit two clay pigeons 

in a succession?", assuming the probability of his hitting 

a pigeon is 9/10. The event of his hitting the second time 

would not depend upon his hitting the first time, i.e., the 

events would be independent. Hence, employing the above 

definition we see the probability of hitting two clay 

pigeons consecutively is (9/10)(9/10) which equals 81/100. 

We must be careful and not apply the above definition 

to events which are not independent. Let us consider the 

two events, A and B, where A is the event it will snow today, 

and B that the highways will be slick. It is obvious that 

the two events are dependent, i.e., if it snows the proba

bility that the roads will be slick is much higher than if 

it does not snow. This type of pro~lem leads us to the 

introduction of the concept of conditional probability. The 

probability that the event B will happen provide·d that A 

has taken place, is called the conditional probability of B 
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relative to A and is denoted by P(B j A). Using this concept 

we can define the joint probability of A and Bas follows: 

Definition 1.3 If A and Bare two events then the joint 

probability of A and Bis given by P(A and B) = P(A)P(BIA). 

It should be noted that this holds also if A and B 

are independent, since if A and Bare independent P(BIA) = 
~ 

P (B). For instance , w,e are given the event A that a man 

has received 5 traffic citations in the past 6 months and B 

the event that he will receive a citation in the next 6 

months, assuming he continues driving. It seems conceivable 

that the event B, i.e., P(BIA) would be much higher than 

P(B) where the man was just an ordinary driver. The 

latter makes no reference to the man's past driving record. 

Before concluding this brief discussion on probability, 

we shall illustrate another use of a relationship which exi$ts 

between two events A and B. To help illustrate the relation 

to be given, suppose P(A) and P(B) represent the probability 

that a certain student will ~ake the baseball and basketball 

teams, respectively, in a small school. It seems conceiv-

able these two events are dependent, i.e., if ·a person is a 

good athlete he would probably excel in several sports. 

T.he question might arise, "What is the probability that he 

will make at least one of the teams, i.e., what is P(A or B)?''. 

Before answering this question, let us prove the following 

theorem. 



Theorem 1.1 If A and Bare any two events in the sample 

space S, then 

P(A or B) = P(A) + P(B) - P(A,B) 

Proof: 

Now ~Y A or B we mean AU B and AU B = AU (An B) , 

where A is the set of paints in S which are not in A. 

However, A and XnB are disjoint so we have P(AUB) = 

14 

P [AU (AnB}] = P(A) + P(An B). Now B = (AnB) U (Ar\B), and 

the two sets (N'\B) and (A(JB) are disjoint. Hence, we have 

P(B) = P [(Af\B) U (Af'\13)} = P(Anl3) + P(Af"\B) or P(AnB} = 

P(B) - P(AnB). Substituting P(At1B) into the equation above 

gives P(AUB) = P(A) + P(B) - P(A()B). But P(A()B) = P(A,B). 

Thus we have the desired results, i.e., P(A or B) = 

P(A) + P(B)- P(A,B). 

To illustrate this theorem suppose in the preceding 

.example we have P (A) = . 70, P ( B) = • 80, and P (A, B) = • 6.3. 

From the theorem above we have P{A or B) = P(A) + P(B) -

P(A,B). For the example given, the probability P(Aor B) = 

.70 + .80 - .6.3 = .87. 

1.3 Finite Sums and Products 

Many_ times in the follewing chapters we shall be in 

need of ·an expre$sion for the sum of a certain qua~tity. 

Fer example, suppose we are given two hundred numbers 

N1 ,N2, ..• ~ 200 and we would like to express their sum. We 

shall designate the sum of these two hundred numbers by 



200 
I: Ni. Her , I: is the Greek capital letter sigma, and in 
i=l 

15 

this connection it is often called_the summation sign. The 

letter i is called the summation index, while the term 

following the I: is called the summand. The 1 below I: in

dicates that the first term of the sum is obtained by 

putting i=l in the summand. The 200 above the I: indicates 

that the last term of the sum is obtained by putting i=200 

in the summand. The other terms of the sum are obtained by 

giving i -the integral values between 1 and 200. We can see 

how this notation can save time and space when ' we are con-

cerned with writing the sum of a finite collection of terms. 

We should also note that one of the properties of a finite 

n n • n 
sum is I: 

i=l 
(N.+M.) = I: N.+ I: M., i.e., we can distribute 

1 1 . l 1 . l 1 1= 1= 

the I: over the finite sum. 

Many times we are concerned with sums over sets which 

are not finite. Generally, we will be summing over -a 

countable set, that is, a set which can be put in a one to 

one correspondence with the set of positive integers. We 

shall assume I:(a + b ) = I: a + I: b, since in all cases 
n n n n n n n 

we will be dealing with the an and bn will be greater than 

or equal to zero and the condition which must be placed 

upon I: a and 
n n 

I: b is that 
n n 

I: a and 
n n 

I: b must converge, 
n n 

that is, the sum over n must be some finite number. These 

conditions will generally be satisfied in developing the 



following theory since we will usually be sunµning over n 

where an represents a function whose sum over n is equal 

to one. 

16 

In several situations, to save space, we shall choose 

an analogous notation for a product by using the capital 

Greek letter TT instead of I: in the sums. In this case the 

terms resulting from substituting the integers for the 

index are multiplied instead of added. For example, 

6 n a = a1a a a a a6 . 
i=l i · 2 3 4 5 

1.4 Random Variable and Probability Functions 

In several examples we have used thus far, we usually 

associated a number with the outcome of ·an experiment, as 

in the example of the trap-shoot, where we associated the 

real number 1 with a success and the real number O with a 

failure. Let us try to find a function that will give 

some relation between the outcome and the probability of 

one of the events occurring. Suppose we know that the 

probability of a hit is, say p = .9, while the probability 

of a miss is 1 - p = .1. We need to find a function 

of x and p which will give the probability p of a given 

x happening. Consider f(x) = px (1-p}l-x, x=O, 1. Now 

1 0 f(l) = p (1-p) = p, hence, the probability that x = 1 is 

given by p(x = 1) = f(l),and p(x = 0) = f(O) = 1 - p. 

Thus this function gives us the desired probabilities 
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which we mentioned at the outset we wanted. 'I'he function 

X )1-X f(x) = p (1-p is called the probability function of X 

if certain conditions hold. Let us give formal definition 

of these concepts. 

Definition 1.4 Let S be a sample space and X a real valued 

function defined on S. Then Xis called a random variable. 

Xis a discrete random variable if it assumes a finite or 

countable number of points. Xis a continuous random 

variable if it assumes an uncountable number of points. 

After a random variable X has been defined on a sample 

space, interest usually centers on determining the proba-

bility that X will assume specified values in its range. 

The relationship between the value of X and its probability 

is expressed by means of a function called the frequency or 

probability function, which is defined as follows: 

Definition 1.5 A function f(x) that yields the probability 

that the discrete random variable X will assume any par-

ticular value or set of values in its range is called the 

frequency (probability) function of the random variable X. 

If Xis a continuous random variable then f(x) is referred 

to as a density function. 

Thus far in our discussion we have considered only 

one-dimensional probability functions. Many experiments 

involve several random variables rather than just one such 
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variable. The definitions concerning probability functions 

which involve more than one random variable are a straight 

forward extension of those of a one-dimensional random vari-

able. 

Definition 1.6 A function f(x1 ,x2 , ... ,xn) that yields the 

probability that the random variables x1 ,x2 , ••. ,Xn will 

assume any particular value or set of values in their range 

is called the joint density (probability) function of the 

random variables X, ••• ,X. 
1 n 

Also since we will be dealing with the joint proba-

bility functions which contain more than one random vari-

able it behooves us to define the joint probability 

function of n independent random variables. · This follows 

analogously to the probability of independent events. 

Definition 1.7 If the joint probability function 

f(x1 ,x , •.. ,x) can be factored in the form f(x ,x , ..• ,x) 
2 n 1 2 n 

= f (x) f (x ), ... ,f (x ), where f.(x.) is the probability 
1 1 2 2 n n i i 

function of X., then the random variables X ,X , ... ,X are 
i 1 2 n 

said to be independently distributed. 

A function closely related to the probability function 

f(x) is the cumulative distribution function. Since in the 

case of discrete variates the probabilities are given by 

sums, it often is convenient to deal with the sums of the 
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probability functions rather than the probability functions 

themselves. Suppose for example that Xis the number of 

tosses required to obtain a head with an ideal coin. 

) - 1 X Then the probability function is f(x -(2 ) , x = 1,2, ..•. 

2 X· 1 ' 2 
Now the p(l::;XS"2) = ~ (!) i = (!) + (!) = 3/4. Now 

Xi=l 

considerthep(X<.x) = ~ (!)Xj_ =F(x). 
x.=l 

l 

F(x) is the probability that the value of the random vari-

able will be less than or equal to x. Fis called the 

cumulative distribution function of X. Fis defined simi-

larly for a continuous random variable except in terms of 

integrals. A useful property of Fis as follows: 

Theorem 1.2 If Fis a cumulative distribution function 

of a random variable then (1) Fis non-decreasing 

( 2) F (- -co) = 0 

(3) F (-co)= 1 

The concept of a random variable is employed by the 

statistician in a manner very similar to that in which a 

mathematician uses the concept of a mathematical variable. 

Suppose for example we are flipping a coin and we record a 

1 if the coin lands with the head up and record a O if we 

get a tail. We have assigned a real number to all the 

possible outcomes of the given experiment. 

I n the example above if we let X denote the outcome 

when the coin was tossed we see that Xis a real valued 
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function defined on the sample space, i.e., X (heads)= 1, 

and X (tails)= 0. To consider another example to further 

illustrate this concept let the random variable denote the 

outcome from a cast of a die. Now X can take on the values 

1,2, •.• ,6, and is therefore a random variable since it is a 

real valued function defined on the sample space. It seems 

obvious that if this die is fair there should exist some 

probability that we can attach to the event of getting, say 

a 1, when the die is cast. Now the probability of getting 

a 1, written p(X = 1) is equal to 1/6. 

When such a function f(x) exists such that f(x) = 

p(x=X) we often say that Xis distributed as f(x) and we 

write Xrvf(x). In the example above concerning the casting 

of a die we see that f(x) = 1/6 (x=l,2, .. ,6) since p(X=l) 

= p(X=2) .•. = p(X=6) = 1/6 = f(x). Therefore we have a 

function f(x) = 1/6 which gives us the probability that the 

random variable X take on a specific value x. 

Throughout the remaining chapters we shall in many in-

stances be given a sample of size n, say x1 ,x , .. ,X and we 
2 n 

will be computing such functions as the mean of the sample 
2 ~ ( X. - X) 2 

Y, the sample variances = 1 and other functions 
n 

of observed random variables. 

Definition 1.$ A function g(x) of observed random vari-

ables which contains no unknown parameter is called a 

statistic. 

After considering the basic concepts of ~andom vari-



ables and p~obability functiorts,let us now consider an 

illustration in which we define a random variable and 

through repetition of an experiment try to determine the 

probability function for the random variable. 

21 

Suppose you are a member of an artillery group in a 

branch of our armed forces. Suppose further, that your 

group's assignment is usually attacking convoys of trucks, 

trains, or regiments of men, i.e., your targets are usually 

ob j ects which have considerable length. We see that to hit 

the target we must be accurate vertically, while horizon

tally we can score a hit even though we are not very close 

to the center of the target. So it is important to be sure 

that we have our gun adjusted at a correct elevation. Sup

pose we conduct an experiment where our target is a certain 

line at a given distance perpendicular to the gun. Now the 

experiment will consist of measuring the distance the shell 

falls from the line, where a shot that falls short of the 

distance will be a negative number and an over-shot will be · 

a positive number. If we are on the firing range for sev

eral days and keep track of how far each shell falls from 

the line, it is conceivable there would be a large concen

tration of shots close to the line you were trying to hit. 

Suppose that you take these measurements for several days 

and keep track of the~ Let us group them so that the ones 

which are within 5 yards of the given line and those at a 

distance of between 5 and 10 yards from the line, are to

gether for each 5 yards. We would probably get a histogram 
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similar to the one in Figure 1, where Xis the distance the 

shells fell from the given line and the vertical axis re

presents the number of X's appearing in any given interval. 

Number of Shots 

Distance of 
~ ...... ~--~~--~--~__..~ ..... ~~,.__~-+~~-+--Shot From 
-20 -15 -10 -5 0 5 10 15 20 Line 

Figure 1 

If ·after each day's shooting you make a histogram 

similar to the one in Figure 1, we would after a month or 

so have several histograms. Now if we would plot all of 

these different histograms on the same graph, more or less 

on top of each other, we would get a drawing similar to the 

one in Figure 2, which could be approximated by a bell 

shaped curve similar to the one shown there. 

Now after a large number of similar experiments we 

could make fairly accurate probability statements, such as, 

the probability that Xis between -5 and 5. The proportion 

of the shots in any given interval would be the total shots 

in the interval over the total shots. So the probability 
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that Xis in an interval is related to the area bounded by 

the curve and the given interval, since the number of ob

servations which appears in a given interval is reflected 

by the area of the rectangle which represents the frequency. 

So if we say 60 per cent of the shots fall in -5 to 5, we 

would be inf~rring that the area bounded by the rectangle, 

with base on -5 to 5, has about 60 per cent of the area of 

all the given rectangles considered together which is 100 

per cent or has an area of 1. 

Number of X's 

,. ______ _ ._. ___ _ _____ __._ _____ __._ _ _.... _ __.._.. __ .__._ _____ ...,,, 
-20 -15 -10 0 5 10 15 20 

Figure 2 

It is conceivable that the random variable X could 

take on any real number. And the graph of the frequency 

function for X would approximately be the curve given in 

Figure 2. Bell shaped curves of this type are called 

normal curves and 

f(x) = --1---1 
(2 rc) 2 er 

the density 

-! (x-µ) 2 

er 2 
e 

function, f(x), is given by 

where x can be any real 



24 

2 
number and a , which is called the variance of X, is non-

negative, while µ. represents the mean, which can also be any 

real number. In the example, we were using the mean, the 

reference line, as 0. 

In the paragraph above, we mentioned the variance of X. 

Let us devote some time to this concept. If, ·as in the ex-

ample, you were using very superior shells and your guns 

were in very good condition, you would expect most of the 

shells to hit very close together, i.e., there would be 

very little variation among the X's. However, if the shells 

were of ·poor grade, say they had got wet in the process of 

being shipped to the military post, then one shell might 

be very good while the next one might go only half the 

distance to the target. So we see that the values of X 

would have a large amount of variation. It seems likely 

that when the variability among the X's is large then the 

normal bell-shaped curve would be lower since a large num

ber of the X's would be at a greater distance from the mean. 

The most widely used measure of variation based upon a 

sample is the so-called standard deviation, which will be 

denoted by the letters. This statistic reflects a large 

difference among the X's and its square is written as 

2 
s 

n .. 2 
~(X. - X) 
1 l ------

n-1 

2 
where s is an estimate of the variance_, and X represents 

the mean of the sample. Now if·the mean of·the probability 



function is known we use for an estimate of the variance 

the statistic 

s 

n 2 
~(X. - µ,) 

2 = 1 l 

n 

The normal density function is very useful in many 
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proplems we shall consider in the following chapters. Many 

times we shall be concerned with random variables which 

have a certain probability function which is approximately 

that of the normal. Hence, in many instances we can apply 

normal theory in making probability statements which will 

be fairly accurate if the random variable whose density is 

approximately that of a normal. We shall consider in the 

next paragraph a probability function which can be approx

mated by the normal. 

Suppose you are participating in a trap shoot spon-

sored by the local gun club. Suppose further that you have 

been engaging in this sport for several years and you are 

sure you hit about 50 per cent of the clay pigeons. On this 

particular day the only type of contest in which you engage 

is where two clay pigeons are thrown at once and you have 

two shots to try to break them. Suppose for this partic

ular day you shoot at 200 clay pigeons (100 different sets 

of 2 clay pigeons each). The expected distribution of the 

number of hits will be represented by one-quarter, one-half, 

and one-quarter of 100, respectively. 
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The expected distribution of.the number of hits in 100 

·shots would be illustrated by the following histogram. 

25 

--··-

0 

50 
~ 

l 
Figure 3 
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2 

We could have had more clay pigeons thrown at once, 

but this would complicate our illustration and we could not 

realistically assume the probability of a hit did not change. 

Let us suppose that you decide to shoot at 3 pigeons, one 

at a time. The various events which could happen would be 

given as follows: 

MMM 

HMM 

M HM 

MMH 

HHM 

HM H 

M H H 

H H H 

We find that we can expect to get O hits one~eighth of 

the time, 1 hit three-eights of the time, 2 hits three

eights of the time, and finally, 3 hits about one~eighth 

of the time. These probabilities are obtained from the 

above table by cons_idering favorable outcomes divided by 

the total number of outcomes. If you shoot 80 times at sets 

of three clay pigeons, the resulting expected frequency 



distribution will be 

Number of Hits 

0 

1 

2 

3 

Frequency 

10 

30 

30 

10 

which is ·illustrated by the histogram in Figure 4. 

30 30 
.. 

•, 

) 

10 10 

0 1 2 3 

Figure 4 
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In Figure 4 if X represents the number of successes in 

a given number of trials theh Xis said to be distributed 

as a binomial f(x) given by 

f (x) = n! x ( )n,;,.x p l~p , X = 0,1,2, ••. ,n. 
( n..;x) !x ! 

It seems reasonable that if we repeated this experi

ment several times that the histogram might be approximated 

by the normal density with mean of 50. This c-an be shown by 

employing some advanced techniques beyond the scope of our 
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treatment of the subject here. In general it can be shown 

that the mean of the normal approximation of the binomial 

is np, and in this case we see the mean is 100(.50) = 50. 

In the following chapters we shall use these results 

on several occasions to apply normal theory to certain dis

tributions which are approximately normal. It is often 

much easier to make probability statements concerning a 

normal variable than probability statements concerning a 

discrete random variable. 

1.5. Sampling 

Up to this point we have been concerned with certain 

aspects of the theory of probability. Let us now give some 

of the basic concepts and definitions related to the theory 

of sampling which will be useful in the later development 

of this theory. 

Progress in science is ascribed to experimentation. 

The research worker performs an experiment and obtains some 

data. On the basis of the data, certain conclusions are 

drawn. The conclusions usually go beyond the material and 

operations of the particular experiment. In other words, 

the scientist may generalize from a particular experiment to 

the class of all such experiments. This type of extension 

from the particular to the general is called inductive 

inference. 

Inductive inferences are well known to be a hazardous 

process. We must be very careful how we collect the data 
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we plan to analyze and how we make inferences based on this 

data. One function of statistics is the provision of tech

niques for making inductive inferences and for measur:ing 

the degree of uncertainty of such inferences. This un

certainty is measured in terms of probability. 

Suppose it is desired to estimate the per cent of 

people who have televisions and who live in cities of one 

million or more. A person might select a certain city and 

take a sample of people in the city and determine the per 

cent of people in that city who own television sets. 

Before we can draw any valid conclusions we must pick the 

city and the sample in a certain manner. This line of 

thinking leads us to the following definition. 

Definition 1.9 The totality of elements which are under 

discussion and about which information is desired will be 

called the target population. 

In the above example the target population consisted 

of all people that live in cities with population over one 

million. The problem of inductive inference, from the 

point of view of statistics, is regarded as follows: the 

object of an investigation is to find out something about 

a certain target population. It is generally impossible or 

impractical to examine the entire population, but one may 

examine a part, or a sample, of ·it and, on the basis of 

this limited investigation, make inferences regarding the 

target population. · 
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The problem immediately arises as to how the sample of 

the population should be selected. We can make probability 

statements about the population if the sample is selected 

in a certain fashion. Of particular importance is the case 

where the sample is a random sample, which is defined as 

follows: 

Definition 1.10 Let the random variables x1 ,x2 , ••. ,Xn have 

joint probability (density) function g(x x , ••. ,x) = 
1 2 n 

f(x ) •.. ,f(x) where the probability function of each X is 
1 n i 

f(x ). Then X ,X , ... ,X is said to be a random sample of 
i 1 2 p 

size n from f{x). 

Definition 1.11 Let X ,X , .•. ,X be a random sample from a 
1 2 n 

population with probability function f(x), then this popu-

lation is called the sampled population. 

Valid probability statements can be made about the 

sample population based upon a random sample but inferences 

on the target populations are not always valid. 



CHAPTER II 

EXPECTED VALUES AND MOMENTS 

2.1 Introduction 

When attending elementary school, I am sure we were 

all introduced to the idea of finding the average of a set 

of numbers. We recall our teacher informed us that to find 

the average of a set of numbers we would add the numbers 

and divide by the number of numbers under consideration. 

Let us investigate this idea in depth and illustrate the 

connection between the average and the expected value. 

Suppose we are given the numbers 5,6,4,4,5,6,3,5,7,6,7,3, 

and 7 and we are asked to find the average. The average of 

these numbers is given by 5+6+4+4+5+6+3+5+7+6+3+7+7 

divided by 13. Let us commute and associate the numbers 

such that we have all like numbers together. We find the 

average is equal to 

= 

(5+5+5) + (6+6+6) + (4+4) + (3+3) + (7+7+7) 

13 

3(5) + 3(6) + 2(4) + 2(3) + 3(7) 

13 

= 3 /13 ( 5) + 3 /13 ( 6) + 2/13 ( 4) + 2/13 ( 3) + 3 /13 ( 7) . 

31 
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Let us call the coefficients of the numbers we started wit h 

f(X. ), and X. the numbers we started with to find the average. 
l l 

Now if we consider f(X.) = n ./n the frequency function of 
l l 

the numbers X., then we have an expression for the average 
l 

of thi s set of numbers. The average is given by 

13 
E X.f(X.) 
. l i i i= 

which we define to be the expected value of X, written E(X). 

To help us gain some insight into this concept, sup-

pose a man is engaged in a game of chance; say there are 

nine cards lying face down and these cards consist of 2 

spades, 3 hearts, 3 diamonds and 1 club. Suppose also that 

these cards are well shuffled and this man is equally 

likely to draw any one of ·these cards, i.e., the card will 

be drawn at random. We see that the probability of drawing 

a spade is 2/9, the probability of drawing a heart is 3/9, 

t he probability of a diamond is 3/9, and that of a club is 

1/9. We could illustrate the relation by the following 

table where x1 ,x2,x3,x4 represent the drawing of a spade, 

a heart, a diamond, a club, respectively. 

X. X x2 X x4 l 1 3 

p (X. ) 2/9 3/9 3/9 1/9 
l 
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Suppose the game consists of the man paying a certain 

amount of money to get to draw a card and if he draws an x1 

(a spade} he receives $18, otherwise he receives no prize. 

The question which we want to answer is,"What is his ex-

pected winning or his expectation'?". We see his proba

bility of winning is 2/9, hence his expected winnings would 

be 2/9 (18) + 3/9 (0) + 3/9 (0) + 1/9 (0) = 4, i.e., in the 

long run he would expect to average winning about $4 each 

time he played. We note that the expected value of a ran

dom variable need not be any actual value which X can 

take on. 

The concept of expectation is easily extended. If X 

denotes a discrete random variable which assumes the values 

x1 ,x2 , ... ,xn with respective probabilities f(x1 ),f(x2 ), 

... ,f(xn) where f(x1 ) + f(x2 ) + ... , + f(xn) = 1, the 

expected value of X, written E(X), is x1f(x1 ) + x2f(x2 ) 

+ •.. , + x f(x ). We shall now formalize the definition 
n n 

of expected value. 

Definition 2.1 Let X be a random variable with probability 

function f(x). Then the expected value of X, is E(X) = 

~xf(x) if Xis a discrete random variable. The expected 
X 

value for a continuous random variable is similarly defined 

except in terms of integrals. 

Many times in practice we are interested in the ex

pectations of some functions of a random variable. The 
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following discussion will be concerned with an example to 

help illustrate how we might deal with this problem. 

Suppose we are in the business of making bolts. Sup

pose also that we have a machine which manufactures bolts 

of one-half inch in length. We know that when we have a 

number of bolts manufactured by this machine, if we 

measured these with a very precise instrument, many of 

these would differ in length from one-half inch by various 

amounts. Suppose we decide to take a barrel of bolts and 

divide these into several groups. If the lengths of the 

bolts were between .49 and .51,they would be in one group, 

and if their lengths were between .48 and .49 or .51 and .52, 

and so on. We might expect a large number of these to be 

in the interval .49 to .51 if the machine is fairly accu-

rate. The histogram might be similar to the following: 

Number of Bolts 

----+------

Length 
~~---.~~~>--~~---~~-'-~~ ......... ~~---~~--~~of Bolts 

.47 .49 .50 .51 .52 .53 

Figure 5 

It seems reasonable that this would be approximated by a 

bell shaped curve with its maximum at the point x = !. 



This type of density function is given by 

1 
f(x) = ---1 

(2rr) 2 cr 

e 

1 ( )·2 -2 x-µ 
2 cr 

where x can be any real number while 2 cr andµ are para-
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meters, which we shall explain in greater detail later. 

Returning to the example, it seems reasonable to say that, 

if we draw a bolt out of a barrel of bolts at random, we 

would expect to get a bolt of one-half inch in length. 

Thus we would say that the expected value of X (where X 

represents the length of a randomly chosen bolt) would be 

one-half inch. 

Now suppose we want to study small differences in 

the lengths of the bolts. A possible way to do this is to 

square each value of X. (Square the length of the bolt). 
l 

So we take this barrel of bolts and measure each one of 

them and let X. 2 = y .. Now this new "barrel of Y. 's" has 
l l l 

a distribution, that is, we would probably expect a y. 
l 

drawn at random to be cl ose to one-fourth. It seems intu-

itively obvious that E(X2 ), i.e., E(y) would be defined 

very similarly to the expected value of X. We now f orm

alize the definition of the expected value of some function 

U(X) of the random variable X. This definition is actually 

redundant since it can be proven by using some advanced 

techniques. However, i t is consistent . 



Theorem 2.1 Let X be a random variable with probability 

function. The expected value of U(X), a function of X, is 

E (U(X)) = ~U(x) f(x} if Xis a discrete random variable. 
X 

To help understand a practical example, suppose you 
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and some of your friends are engaged in playing a game of 

monopoly. Suppose you are asked what is the number of spaces 

you would expect to move on any given roll of the dice. We 

would probably say 6. Let us find the expected value of X 

if we are given that Xis . the number appearing when a pair 

of dice is cast. To answer this question we must first de-

termine the probability function of X. We shall do this by 

constructing a table where x. represents the number of spots 
l 

appearing on the dice and f(x.) is the probability of 
l 

getting x. on a given cast of the dice. 
l 

x. 2 3 4 5 6 7 8 9 
l 

r(x.} 
1 2 i 4 --2. 6 --2. 4 

l 36 36 36 36 36 36 36 36 

10 11 12 

...1. 2 1 
36 36 36 

We found f(x.) by determining how many possible ways 
l 

we could get the number x. from the two numbers appearing 
l 

on the dice divided by the total number of possible out-

comes. Now employing definition 2.1, E(X} = ~ .xf(x) = 
X 

(2)(1/36)+(3)(2/36)+(4)(3/36)+(5)(4/36)+(6)(5/36)+(7)(6/36) 

+(8)(5/36)+(9)(4/36)+(10){3/36)+(11){2/36)+(12)(1/36). 
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Hence E(X) = 2+6+12+20+30+42+40+36+30+22+12 

36 
= 252 

~ 
= 7 . 

Thus the expected value of Xis 7, not 6 as we had thought 

it might be. From this we see that on the average we would 

move 7 spaces each move. 

We might also ask, "What is the expected value of 2X?". 

We are asking the question,"What would we expect 2 times an 

X value to be , 11 It appears that it should probably be 2E{X). 

Let us compute E(2X) using theorem 2.1. 

26xf(x) = 2E(X) = 2(7) = 14. 
X 

E(2X) = 62xf(x) = 
X 

Before considering more examples let us consider how 

we might construct a probability function. Suppose you are 

watching someone shooting a basketball at the goal. On 

any given shot he either hits the basket (the ball passes 

through the goal) or he misses. This operation describes 

a probability function if we let X = 1 if he hits the 

basket and X = 0 if he misses. If we watched him shoot 

at least 100 times each day for one year and each time he 

hit a basket we threw a small ball with a one on it into a 

large container, and each time he missed we threw a ball 

with a zero on it into the containe~ we would have a pop

ulation of zeros and ones. If we drew a bal l from this 

large container at random there would be some probability 

associated with it being a one or a zero. Let p be the 

probability that X = 1, then the probab i lity of a zero is 

1 - p. This probability function is given by f(x} = 
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x( )1-x p l;..p , x=0,1,0 s;;p~l. Let us investigate this proba-

bility function further. 

Example 2.1 Let the random variable X have the probability 
. X l~X 

function f(x) = p (l.:.p) , x=O,l,OS:p~l. What is the ex-

·pected value of X, E(X)? Employing definition 21, E(X)=~xf(x) 
X 

1 X 1-X Q 1 1 0 
= bx p (l;..p) = 0 p (l;..p) + lp (l;..p) = O+p = p. 

Hence the E(X) for this probability function is p. What 

is the E(X2 )? Using theorem 2.1, we see E(X2 )=~x2 f(x) = . X 

~ x2 x(l~ )l.;.x = 0 x=O p p 
0 1 1 0 

p (l;..p) + 1 p (l;..p) = p. 

A point concerning our terminology is now in order. 

When considering problems concerning discrete random vari-

ables, we discussed a probability function. When dealing 

with continuous random variables, such as the normal, we 

shall speak of the probability density function of the 

random variable. The random variables which will be con-

sidered as having a density function are precisely those 

whose cumulative distribution functions have a derivative 

at each point, and the derivative of the cumulative distri

bution function is the density function. 

2. 2 Moments 

Let us return to the example we discussed earlier 

·concerning the manufacturing· process which consisted of 
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making bolts one-half inch in length. Suppose you are in 

charge of operations at this factory and you have instructed 

one of your subordinates to take a sample of bolts manu

factured by this machine once each day. You have explained 

to him that he is to find the average lengths of these and 

report to you if the average deviates more t han .1 inch 

from one-half inch in length. Suppose everything goes well 

for ·a month, i.e., we have no report of the average devi-

ating from one-half inch by more t han .1. But after our 

bolts get on t he market we have several complaints that 

they differ in length by a great amount. So we decide to 

investigate the s i tuat ion ourselves. We take a sampl e of 

bolts and comput e the average. To confuse t he s i tuation 

more, we get an average of .495 which is acceptable under 

our requirements. So you examine a few bolts and find 

several are t hree-fourths an inch long and several are 

about one-fourth inch in length. This leads us to suspect 

that we need some other criteria for determining whether or 

not our manufacturing process is acc eptable . So we search 

for a statistic which will serve to help us detect a large 

amount of variability among the bolts. This leads us to 

the next statistic we shall consider. We could use a 
n 2 

statistic M=l/n ~ 1 (X. -!) , where X. represents the length 
1= l l 

of the ith bolt in the sample of s ize n. We can see that 

if Mis small (of course, the word "small11 would depend 

upon how large a sample we took and also how much deviat ion 

we would allow) then we could conclude that most of the 



40 

bolts in the sample are close to one-half inch, while if M 

were a large number we would conclude that the process 

should be investigated and possibly be changed. The pre

ceding statistic is called second sample moment about the 

mean. We shall now formally define some of the concepts 

int:roduced. 

Definition 2.2 The rth moment of a random variable X, 

usually denoted by µr', is defined as µr '=E(Xr)=;tr f(x), 

where f(x) is the probability function of X. And µr·= 

E(X-µ)r .= I:(x-µ)r f(x) is defined to be the rth moment 
X 

about the mean. 

We note that the first moment, i.e., where r is 

equal to one, µi', is just the expected value of X as de

fined earlier in this chapter. The concept of variation 

is of paramount importance in statistics as was indicated 

in the previous example concerning the manufacturing pro

cess. The second moment about the mean is a measure of 

variation among the random variables and is called the 

variance of·X. 

Let us investigate the first and second moments and 

observe some properties which will be useful in our study. 

First let us consider the first moment about the mean, 

usually denoted by µ1 and given by 

µ = E(X-µ) = I:(x-µ) f(x) 
1 X 



= ~xf(x) -µ~f(x) 
X X 

= E(x) -µ 

= µ - µ 

= 0 

since ~f(x) is one and E(X) is the mean. Thus we see the 
X 

first moment about the mean is zero. Also the second moment 

about the mean is given by 

= E(X-µ) 2 = ~(X-µ) 2f(x) 
X 

2 2 
= ~x f(x) -2µ~xf(x) + µ ~f(x) 

X X X 

2 2 
= µ 2 f -2µ + µ 
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So the second moment about the mean, called the vari-

ance of X, is the difference between the second moment and 

the square of the first moment. 

Before continuing our discussion of expected value 

and moment, we need to prove some basic properties of expected 

value which will be used through the remaining chapters. 



Theorem 2.2 Let X be a random variable with probability 

function f(x). If C is a constant then the E(C) = C. 

Proof: 
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Applying the definition of expected value we see that 

the E(C) = ~Cf(x) = C~f(x) . But~f(x) = 1 since f(x) is 
X X X 

a probability function. Hence E(C) = C. 

Theorem 2.3 Let X be a random variable with probability 

function f(x). Then the expected value of the sum of two 

functions of Xis the sum of the two expected values, that 

is, E [ u(X) + v(X)] = E(u(X)) + E(v(X)). 

Proof: 

Using the definition of expected value of some 

function X, i.e., E [g(X)] =~g(x) f(x), if we let g(X) = 
X 

u(X) + v(X), we have E (u(X) + v(X)) = E [g(X)] = 

~g ( X ) f ( X ) = i [u ( X) + V ( X ) ] f ( X ) = ~u ( X ) f ( X ) + ~ V ( X ) f ( X ) = 

E [u(X) ] + E [v(X)J • Hence we have E [~(X) + v(Xj = 

E [ u ( X) J + E t v ( X )J . 

2.3 Moment Generating Function 

In the last section we were concerned with finding 

the first and second moments of a distribution by applying 

the definition. But in many cases calculating the moments 
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by this method becomes very complicated for some proba

bility function. So we search for an alternate way of ob

taining the moments of ·a distribution when the method using 

only the definition becomes too involved. It turns out 

that in a great number of cases we can find a function 

which, when we apply a certain procedure to this function, 

will give us the moments of the distribution. 

Now in our search for this function we want to find 

some function so that when we apply a certain procedure we 
r 

f (x), will get I:x which is the rth moment of the distri-
X 

bution. It is assumed that the reader is familiar with 

differentiation of a polynomial and of functions which con

tain e to powers of a variable. We shall also assume that 

the reader is familiar with the expansion of e in the form 

of series, 
t t t 2 t3 tk 

i.e., e = l+ l! + 2! + 3! + ... + k! + •.• 

Let us consider 

tX [ ( tX) 2 ( tX) 3 
E(e )= E l+tX+ -- + -- + 

2 ! 3 ! 

r 2 2 
E l+tXlt X 

2! 

+ ( tX) k + .. , J = 
k! 

] . 
The theorem in the last section can also be verified for 

the infinite case. Hence, assuming the theorem is true for 

this case after distributing the expected values, we get 

the following: 



'· 

tX . t 2x·2 . t 3x3 t1x:k 
E(e }=E(l) +E(tX)+E(21)+E(3t}+ •.• ,+E(~)+ ••• = 

l+tµ. t2 ' t3 ' tk ' +-µ. + µ + + µ + 
2 t 2 TI:'.: 3 • • • , k 1 k • • • 

If we are to get µ.~out of the above expression, we 
i r 

must apply some procedure to eliminate!_. Suppose we 
r! 

take the derivative r ·times with respect tot, then we 

would have an expression as follows: 

' = µ 
r 

+ (r+l) (r) (r-1) ••. r-(r-2) tµ. + ••• 
r+l 

' Every term after µ.r hast as a factor. Now an 

' obvious way to getµ. by itself in the expression is to 
r 

Xt 
evaluate the expression at t=O. Let us denote E(e ) 

by m (t). 
r 

Let us now see if _d_. m(t) evaluated at t=O is the 
dtr 

rth moment as defined earlier, 

r 
~x f(x) where t=O. Consider 
X 

tx 

dr . 
i.e., is-· -- m(t} = 

dtr 

L m(t) = sLf;;etx f(x~ 
dt dt t J = 

~xe f(x). m(t) evaluated at t=O is given by 

[m(t)J · · 
t=O 

= 
r O(x} 

~x e f(x) = ~xr f(x). 
X X 
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So we see a logical choice for a moment generating 

function for a distribution is E(etx). We shall now give a 



formal definition of the moment generating function of a 

random variable X. 
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Definition 2.3 Let X be a random variable with probability 

function f(x). The expected value of etX is called the 

moment generating function of X if the expected value 

. f 1 f t . . . 1 k 2 k 2 exists or every va ue o in some interva - :s: t-C.:::. . 

The moment generating function is denoted by 

tX tx 
m(t) = E(e ) = ~e f(x) 

X 

if Xis a discrete random variable. In all the probability 

functions which we shall be dealing with the moment gen-

erating function will exist. 

Before leaving moment generating functions, there is 

one very useful theorem which we shall state. Many times 

we are confronted with the problem of proving a statistic 

has a certain. distribution. This problem is simplified to 

a great extent by using the following theorem. 

Theorem 2.4 Let X and Y be two random variables with 

densities f(x) and g(y), respectively. Suppose that the 

moment generating functions of X and Y both exist and are 
2 2 

equal for all t in some interval -h -st :S:h . Then the two 

densities are equal. 

So we see if we know the form of a moment generating 

function for a variate and we are given another random 
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variable, if we can show that its moment generating 

function is of the same form, then by the previous theorem 

we see that they will have the same probability function. 

To help us understand the concept of moment generating 

functions and to illustrate the preceding theorem let us 

consider another example. We will use the expans~on for 

ea which was given earlier. 

Example 2.2 Suppose that Xis a random variable and its 

probability function, the poisson, is defined by 

f(x) = 
X -m 

m e 

x! 
, x=O, 1, 2, .... 

The first question which might come to mind is to prove 

that this is a probability function, i.e., f(x)>o for every 

x, and that ~f(x} = 1. To prove the second part, consider 
X 

X -m X 
0 ~f (x) m e -m 

r-1!!_ e-m(e m) = I: = e = = e = 1. 
X X x! X x! 

Thus we see ~f (x) = 1. The first part is obvious since 
X 

x>O. 

What is the moment generating function for X? 

-m+met m(et-1) e = e . So the moment generating function 

for this random variable Xis m(t)= em(et-l). Now we 
' 

have the form of the moment generating function f or a 
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poisson, so if we were given a random variable Y and its 

moment generating function is of this form, say 

t 
-1) N(e 

my(t) = e then by the previous theorem we know that 

Y is distributed as a poisson and its probability function 

is given by 
y .;.N 

g{y) =Ne , y = 0,1,2, ••.. 
y! 

L·et us find the moment generating function of a 

variate X, where x·is distributed as .a binomial, that is, 

f(x) = (xn)pxqn~x, 0 1 2 d 1 N th x = ) , , ••. ,nan q = -p. ow e 

moment generating function is given by m(t) = E(etX) = 

n tx 
z:::. e n! 
i=l ) x!(n-x ! 

n n' = ~ . 
1-1 - x! (n~x) ! 

( t)x n-x pe q 

but this sum can be written as a binomial raised to the nth 

power because the expansion is purely algebraic and need 

not be interpreted in terms of ·probabilities. Hence 

The desire_d moments may be obtained by different

iation. If we differentiate -~(t) with respect tot, and 

combine terms we get 
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The values of these derivatives .at t=O are np and np(q+np) 

' respectively; hence, these are the values ofµ and µ2 , 

respectively. If ·q is replaced by 1~p, it will be observed 

' that µ2 here agrees with our previous results. For this 

problem, the moments are easier ·to obtain indirectly by 

means of ·the moment generating functions than directly 

from definition. 

Before terminating our consideration of moment gen

. erating functions, let us prove some theorems which will 

be useful in the following chapters. 

Theorem·2.5 The moment generating-function of·a linear 

combination of n independent variables is equal to the 

product of moment generating functions of the individual 

variables, evaluated·at a.t, that is, 
1 

~(a1x1+a2x2+ .•• +anxn) (t) =·M (a1t)M (a t). •.. ,M (a t ) 
x1 x2 2 xn n n 

Proof; 

. ( ·) [ (a1:x1+a2x2+ •••. +a x )tl 
Consider M{a1x1+ •.• +anxn) t =E e n n J 

(a1x1+ ••. +anxn)t 
= r; r .... r: e · f(x )f(x ) •••. f(x) 

x1x 2 xn 1 2 · n 

(M ( a 2t ) ). •. (M ( a t ) ) • 
x2 x n . n 



Hence we have the desired conclusion. 

Although we used a discrete random variable to prove 

this theorem, it may be proved just as easily for a con

tinuous random variable by using elementary properties of 

integration. So we shall assume this theorem is true for 

a continuous random variable. 

We are often confronted, when studying estimation 

and testing hypotheses, with the problem of determining 

the density of some statistic based on a random sample of 
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size n. A statistic which is encountered very frequently 

is the sample mean, X. Let us now employ theorems 2.3 and 

2.4 to determine the density o"f·the random variable X, 

where x1 ,x , ... ,X is a random sample of size n from a 
2 n 

2 normal with meanµ and variance a • 

Theorem 2.6 If X is normally distributed with mean µ and 

variance cr 2 and a random sample of size n is drawn, the 

sample mean, X, will be normally distributed with meanµ 
2 

and variance 0 

n 

Proof: 

Consider Mx (t} = M(:xi 

n 

x2 
+ - + ••• + 

n 

But by the previous theorem we have 

X )(t} • 
n 
n 

M-(t} =M (t/n) ... ,M (t/n). 
X x1 Xn 
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Bowever, since each Xi is normally distributed, we know 

that the moment generating furn;::ti.on for each X is given by 
i 

µ,t + 2 2 
Mxi (t) = e . cr2t 

Thus the moment ge.nerating function for· each X. is given by 
1 

t cr 2 t 2 t cr2t 2 
µ,- + --· -- µ,- + 

M ( e n 2 n ) ( e n 2n 2 
X(t}= 

= e 

= e 

= e 

n ( µ, t + cr 2t 2 
n 2n2 

2 2 
µ,t + cr t 

2n 

µ,t + (.!J._)2 .£ 
n 2 

So by examining the moment generating function of X, we 

see that it has a moment generating function which is in 

- cr2 the form of a normal variate with me:i.n µ, and variance 
n 

Another useful result is that the statistic 

z-X-µ, is distributed as a normal with µ,=0 and cr 2= 1 where cr 

X is a normal variable with mean µ, and variance cr 2 • This 

result is easily seen by using moment generating functions. 

The moment generating function of z is given by 

...;tµ, 
e cr E 



-tµ 
~ 

= e 

tµ +! CJ 2 t 2 
-cr- ~ 

e u = 

Hence z is a normal variable with mean O and variance 1. 

These results will be very useful in developing certain 

concepts in the following chapters. 
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CHAPTER III 

ESTIMATION 

J.l Introduction 

In the study of statistics we are often confronted 

with the problem of estimating the true value of a para-

meter in a density or probability function. For example, 

if we assumed the heights of students enrolled at Oklahoma 

State University are normally distributed, a statistical 

problem which could evolve from this is estimating the 

mean and variance of the random variable representing these 

heights. In this chapter we shall discuss methods which 

will give us ''good" estimates of these parameters. 

Estimation of population parameters is practically 

always based upon samples from the population involved. 

For example, we could estimate the mean of a population by 

taking a random sample of size n from the population and 

computing X, the sample mean. It seems obvious that if we 

use X as an estimate of population mean we are using all 

the information we have available, even though we could use 

as an estimate for the mean X, the first observation. It 
1 

seems in the latter case we have not utilized all the infor-

mation at our disposal, i.e., X would seem to be a better 

52 
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estimate of the mean than x1 . We shall, later in this 

chapter, give mathematical meaning to the word "better" or 

"good" estimates used in this context. Since the choice of 

the statistic which is to be used in a given problem must 

evidently be based on practical considerations, let us in

vestigate first what approach we should use so that our 

estimates will impart a maximum amount of information with 

a minimum risk of ambiguity or misinterpretation. We shall 

be led to one of the most fundamental problems of statis-

tics while trying to answer the question of how to state 

the results of a problem of estimation. The difficulties 

encountered in discussing the accuracy of an estimate are 

paralleled by the difficulties of explaining the relation

ship between an estimate and the parameter which it is 

supposed to estimate. These ideas are brought out more 

clearly in the following illustration. Let us consider the 

problem of estimation of the height of students at Oklahoma 

State University, mentioned at the outset of this chapter. 

Suppose we take a sample of size 20 of heights in inches of 

students selected in a random fashion and record the results 

as follows: 

73, 66, 68, 66 , 69, 66, 73, 70, 70, 73 

66, 61, 66, 70, 68, 58, 73 , 66, 65, 65 

We compute the sample mean and standard deviation of this 

sample to be 67 .6 and 3 .78 inches, respectively. 

Now if we want to estimate the true mean m of the 



heights of students on the basis of this sample, there is 

practically no limit to the variety of methods w~ could 
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use to state our results. Let us consider a few alternatives. 

Alternative 1. The mean of the population is esti

mated to be equal to 67.6 inches. 

Alternative 2. On the basis of a random sample of size 

20, the mean of the population is es

timated to be 67.6 inches. This esti

mate is the mean of the sample. 

Alternative 3. The mean of the population is esti

mated to be 67.6 inches, which is based 

on a sample of 20 measurements which 

have a standard deviation of 3.78 inches. 

Alte-rnative 4. We are 95 per cent confident that the 

interval from 65.74 to 69.46 inches 

contains the actuai mean of the 

population. 

While considering the alternatives, it should be ap

parent that whereas the first three alternatives are, in 

principle, much alike, the fourth is of an entirely differ

ent nature. The first alternative seems to have several 

shortcomings since it gives no indication how we arrived 

at the estimate. Thus, it would be very difficult to draw 

any conclusions whatsoever about the accuracy of our re

sults. We might have arrived at these results by just 

taking the average height of our best friend and ourself. 
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We see that the second alternative is an improvement 

over the first since it tells us the method by which the 

estimate was computed and how large a sample this estimate 

was based upon. However, it says nothing about the vari

ability of the measurements which made up the sample, and 

it still leaves us in no position to get a real appraisal 

of the accuracy of the estimate. 

The third alternative furnishes us with all the in

formation a trained statistician would need in order to 

discuss the reliability of our estimate. However, usually 

we will be supplying these estimates to non-statisticians 

so we must state the conclusion in terms that will be mean

ingful to them. Actually, alternative three is used to 

make the statement in alternative four. 

So it seems that if we are reporting to non-statis

ticians, alternative four would be the most meaningful to 

address to them. From our earlier consideration of proba

bility it is immediately obvious that if we assign an es

timate of probability .95, i.e., if we say that we are 95 

per cent confident, this means that we have used a method 

of estimation which is successful about 95 per cent of the 

time. Alternative four is actually implying that it would 

be a fair bet to give 19 to 1 odds that the interval from 

65.74 to 69.46 inches contains the mean of the population. 

Had we wanted to be more certain of alternative four 

being true, we could have made the statement that we are 

99 per cent confident that the mean of the population lies 
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in the interval from 65.06 to 70.14. Alternative four pre

sents us, therefore, with a method of stating our results 

in a form which is understood easily by laymen and requires 

no further calculations to inform us directly of the re

liability of our method of estimation. 

In the discussion on the preceding page, we mentioned 

two types of estimation; alternative three gave a number 

as an estimate of the population mean while alternative 

four gave a different type of estimation, an interval es

timation. The former ·type of estimation, called a point 

estimate, is very useful in developing the theory of sta

tistics. Generally speaking, a point estimate is the fa

milar kind of estimate, that is, it is a number obtained 

from computations on the observed values of the random 

variable which serves as an approximation to the parameter. 

For example, the observed proportion of defective parts 

in 50 consecutive parts turned out by a machine is a point 

estimate of the true proportion p for the machine. An in

terval estimate is an interval determined by two numbers 

obtained from computation on the observed values of the 

random variables that is expected to contain the true value 

of ·the parameter in its interior. Since point estimates 

play an important part in developing the theory of statis

tics, we shall devote some time to this concept on the 

following pages. 



57 

J.2 Maximum Likelihood Function 

In order to know how to use several observations of 

a random variable in an intelligent manner for constructing 

a point estimate of a parameter of a density function of 

the random variable, it is desirable to have some general 

principles to follow. The principle, or method, should be 

such that the estimates obtained by using the method will 

possess desirable properties. For example, if two dif

ferent methods are tried on the same sets of observations 

and if one method produces estimates that are consistently 

closer to the value of the parameter being estimated than 

those of the other method, then the first method would ob

viously be preferred. Properties of good point estimates 

will b e considered later; here it suffices to describe a 

method of obtaining point estimates that is usually pre

ferred by statisticians. This method of estimat ion, known 

as the maximum likelihood method, is used in the following 

chapter whenever problems arise of finding a point estimate 

of a parameter of a f requency function. We shall formalize 

the definition after some necessary notation has been 

introduced. 

Let f(x;Q) be a density function of the random vari

able X, where Q is the parameter to be estimated. Suppose 

that n observations are to be made of t he variable X. Let 

x1 ,x2 , ... ,Xn denote then random vari ables corresponding 

to these n observations. The function given by 
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L = f(x1 ;G) f(x ;G) ... ,f(x ;G) defines a function of 
2 n 

the variables x1 , ... ,xn and the parameter Q which is 

known as the likelihood function. 

For our purpose, we are supposing that the obser-

vational values are obtained from n independent trials of 

an experiment for which f(x;G) is the frequency function of 

a discrete random variable X. Then for any particular set 

of observational values, the likelihood function gives the 

probability of obtaining that set of values, since f(x. ;G) 
l 

is the frequency function of X .. If, however, Xis a con
l 

tinuous variable, the likelihood function gives the proba-

bility density of a sample (x1 ,x , ... ,x ), i.e., the joint 
2 n 

density of n independent random variables, where the sample 

point is thought of as being n dimensional. 

Now, for a given set of observational values, an 

estimate of Q is merely a number obtained from calculations 

made on the observational values, i.e., an estimate is 

simply a function of the observational values. For example, 

a useful estimator mentioned earlier is g(X ,X , ... ,X) = 
1 2 n 

(X1+X + •.. ,+X) 
2 n , which is a function of the observed 

n 

random variables. We shall usually refer to the function 

of observed random variables as an estimator, while the 

actual value computed will be called an estimate of the 

parameter. For example, in the illustration earlier in 

this chapter, we would call g(X ,X , ..• ,X) = X an 
1 2 n 



estimator of the true mean of the population while the 

value X = 67.6 is called an estimate of the mean. 

Using the notation and terminology of the preceding 

paragraphs, the method of maximum likelihood estimation 

may be defined in the following manner. 
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Definition 4.1 A maximum likelihood estimator'G' of the 

parameter Qin a density or probability function f(x;Q) is 

an estimator that maximizes the likelihood function 

L(x ,x , ... ,x ;Q), where Lis considered as a function of Q. 
1 2 n 

If the x. rs are treated as fixed, the likelihood 
l 

function becomes a function of Q only, say L ( Q)' conse-

quently, the problem of finding a maximum likelihood esti-

mator is the problem of finding the value of Q that 

maximizes L(Q). This type of problem can be handled in 

many instances by differentiating the likelihood function, 

L(Q), with respect to Q and setting the derivative equal to 

zero. However, any method of finding an estimator for Q 

which maximizes L(G) is acceptable. The functions which we 

shall need to differentiate will be very simple polynomials 

or functions of e to some power. 

Let us consider an example where we shall obtain 

the maximum likelihood estimator for a density function 

f(x;G). 

Example 4.1 Suppose Xis a random variable which has a 
1 density f(x;Q) = Q' 0 <xS:G. Now, the likelihood function 



60 

1 
for a random sample of size n is L(G) = n To 

Q 

maximize L(G) we must make Qn as small as possible. If 

our sample is x ,x , •.. ,x we must use as an estimate of Q 
1 2 n 

the largest observed value in the sample of size n, since 

Q cannot be smaller than the largest observed value. Hence, 

the maximum likelihood estimate of Q is the maximum ob-

served value. 

Many times when we are confronted with the problem of 

determining the maximum likelihood estimator, the likeli-

hood function involves e to some power of G. Hence, in our 

search for the estimators of Q which will maximize L(G), 

we might just as well search for estimators which will 

maximize ln(L(G) ) since, if a 'G" will maximize L(G) it will 

make ln(L(G) ) a maximum also. Sometimes it will simplify 

the algebra to a great extent to use ln(L(G) ) to de

termine rg-. 

Let us consider an example where Xis a random vari-

( ) X ( ) 1-X able with probability function f x;p .= p. 1-p ; x=O,l. 

Now, the likelihood function is 

. x1 . l-x1 x2 1-x ~ 1.-x 
L(x ,x , •.. ,x ;p)=p (1-p) p (1-p) 2 · ••• p (l.;.p) n 

1 2 n 

=p 

n 
~ x. 
i=l l 

(1-p) 

n 
n-~ x. 

. 1 l 1= 
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So to find the maximum likelihood estimator of p, we shall 

differentiate ln(L(p) ) with respect top and then set the 

derivative equal to zero. We get 

ln ( 1 ( p) ) = Ex. ln(p)+ ( n-Ex. ) ln ( 1-p) 
l l 

and differentiating ln(L(p) ) yields 

= 

d ln(L(p) 

dp 

Ex. -np 

p(l-p) 

=---
p l-,p p(l-p) 

Setting the derivative equal to O, we get 

which implies 

Ex. -n°l) 
l 

'p(l-'p) 

Ex. 
l 

p =---
n 

= 0 

= X 

Hence the maximum likelihood estimator,~ of pis the 

sample mean X. Suppose a sample of size 10 yields 6 ones 

and 4 zeros, then an estimate of the parameter p would be 

.6 . In the preceding remarks we mentioned that maximum 

likelihood estimation is the favorite method of many statis-

ticians for obtaining point estimates of a parameter. Let 

us now turn our attention to some desirable properties 
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which we want estimators to possess. 

3.3 Unbiased Estimates 

One of the properties which we hope an estimator 

possesses is that the value of estimates would consistently 

be close to the parameter that we are trying to estimate, 
/;,:,.. i.e., if we repeated sampling several times and compute Q 

for each sample, then most of these estimates would be con

centrated near the true parameter Q. We are actually 

saying that we would want the mean of the random variable 

'G to be Q. But the mean of i} is the E (t') which we want to 

be equal to Q, i.e., we shall insist that E(~) = Q. This 

property is called unbiasedness. Let us now give a formal 
I , 

definition of an unbiased estimator of a parameter Q. 

Definition 3.2 The statistic'Q =~ (X ,X , ... ,X) is 
1 2 n 

called an unbiased estimate (estimator) of the parameter Q 

if the expected value of~ is G, i.e., E(1}) = Q. 

This property merely states that the random variable 

i} possesses a distribution whose mean is the parameter Q 

being estimated. For example, we might expect X to be an 

unbiased estimator of the mean Q for a random variable X 

whose density or probability function is f(x;G). Now the 

expected value of Xis given by 

E (~X . ) 
E(X) = __ 1_ 

n 



But since the X. 's are independent, we have 
l 

E ( 2::X. ) 
___ i_ = 1 

n n 

n 
2::E(X.) = 1 2:: Q = nQ 

i n i=l n 
= Q. 

Hence E(X) = Q, i.e., Xis an unbiased estimator of the 

mean of the random variable X. 

Let us consider an illustration which shows the bias 
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of a statistic determined by employing the expected value. 

Consider the expected value of the sample variance based on 

a random sample of size n. From the properties of E and 

the definition of s2 , it follows that 

E ( S 2 ) = E [ l B ( X. -X) 2] 
n i=l i 

[ 
1 n ( 2 _ -2 )] = E - 2:: X. -2X X+X 
n i=l l i 

1 
= n 

= 

2 2 2 2 (J = (J +µ - - µ 
n 

2 2 n (J (J = 
n 



which yields 

2 
( n-1) a 

E(S 2 ) = ---

2 
This shows that S 

n 

is not an unbiased estimator of 2 
a ' 

which means that if repeated samples of size n are taken 
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and the resulting sample variance is averaged, the average 

will not approach the true variance in value but will be 

consistently too small by the factor n-l . For small 
n 

samples this factor becomes important; consequently, one 

must be careful how he combines samples in making an esti-

mate of the true variance when an unbiased estimate is 

desired. In order to overcome the bias in s 2 , it is merely 

necessary to multiply s 2 by n , i.e., 
n-1 

------ = 

which says that 
(X.-X) 2 

l 

n-1 

is an unbiased estimate of a 2 • 
n-1 

Let us now consider an example in which we will act-

ually compute the maximum likelihood estimator for a 

parameter in a density function. Suppose that (1,1,0,l) 

is a random sample taken from a point binomial distribution 

with parameter p. Let us obtain the maximum likelihood 

estimator of p. The likelihood function L(p) is given by 

L(p) = p 



also 

dL(p) 

dp 

LX 3-LX, 4-LX. LX.-1 
= -(4-LX.) p i (1-p) l + X. (1-p) lp l 

l l 

Settl·ng dL(p) O t bt . th 1 f h' h = o o ain e va ue o p w ic maximizes 
dp 

L(p) we get 

and 

-(4-Lx.) + LX (l-i) = 0 
l i i 

-'p ( 4-LX. ) + LX. -LX.'p = 0 
l l l 

-4p + LX. = 0 
l 

A LX p = __ i_ 

4 

Therefore the maximum likelihood estimate of pis 

l+l+O+l ----= 3/4, i.e., based upon this sample we would use 
4 

3/4 as an estimate of p. 

To help us become more proficient in determining the 

maximum likelihood estimates of a parameter in a probability 

function, let us consider another illustration. Suppose 

that (0,3,1,0,2,l,0,2) is a random sample taken from a 

poisson distribution. Let us obtain two unbiased estimates 

of m where 

f(x) = 

-m X 
e m 

x! 



Let us first determine the maximum likelihood estimator 

of m. The likelihood function is given by 

-nm I:x 
e m i 

L(m) = -----
n 
TT (x.)! 
i=l l 

and the log of L(m)is given by 

lnL(m) = -nm +I:x.lnm -I:ln(x. !) 
l .l 

Taking the derivative of the ln(L(m) ) with respect tom 

and setting it equal to zero yields 

solving for"rtt we get 

I:x. 
-n +__:_ = 0 

'n't = 

A m 

n 
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Hence, in this example the actual maximum likelihood esti-

mate of mis given by 

/', 3+1+2+1+2+0+0+0 9 m = ~~~~~~~---

Now that we have an estimate of m, we need to deter

mine if.this estimate is unbiased. Recalling from the last 

chapter we proved if Xis a poisson variate then the ex

pected value of X, E(X), is equal tom. Hence we have 
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Thus 'm =Xis an unbiased estimate of m. However, x1 , the 

first number of the sample, is also an unbiased estimate of 

m, since E(X) = m. 
1 

Thus any element in the sample would 

serve as an unbiased estimate of m, however the maximum 

likelihood estimator, X, has other desirable properties 

such as being a sufficient statistic form. Thus X seems 

to be a better unbiased estimate of m than just any element 

of the sample. The concept of sufficiency will be discussed 

in the latter part of the chapter. 

Although the property of being unbiased is a desirable 

one to seek in an estimator, it is not nearly so important 

as the property of an estimate being close in some sense to 

the parameter being estimated. Thus, if an estimator t 

gave estimates which were consistently closer to Q than 

another estimate t' in repeated samples of t he same size, 

thent would certainly be preferred tot', even if t were 

biased and t' were unbiased. Let us now consider some de-

sired properties which we shall want estimators t o possess. 

Suppose you are a manager of a big league baseball 

club and you are trying to find some way of determining how 

valuable a certain player is to your club. So you send for 

his record over the past two years. You have a mass of 

information showing how many hits he got in each game, but 

you realize how hard it is to draw any conclusion after 

considering this enormous amount of data. So you want to 

reduce this data to one number which will contain a ll the 



information about the player. We could say we would just 

look at the first 10 games in which he participated and 

find the per cent of hits and base our decision upon this 

number. However, it seems we have lost some information 
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which we had available. A more appropriate measure of the 

player's worth would be his per cent of hits in times at ba~ 

It seems that we have lost no information contained in the 

sample in computing an estimate of the player's worth. 

The example mentioned in the preceding paragraph leads 

us to an important property which we shall want estimators 

of a parameter to possess. In statistics we are usually 

furnished with a sample from a population whose density is 

f(x;-Q), and using it we want to reduce these n random vari

ables to a single random variable. Our objective is to try 

to find an estimator based upon the sample which gives as 

much "information" as possible about the parameter Q. If 

this is the case, we prefer to work with 'Q' rather than the 

n random variables x1 ,x2 , ... ,Xn for the simple reason that 

one random variable is usually easier to use than n random 

variables. 
~ .,...... 

If we find a statistic Q, where Q is an esti-

mator of the parameter Q, which contains all the infor-

mation about the parameter contained in a random sample of 

size n from a probability function f(x;Q), then we say that 

'G' is a sufficient statistic for Q. A formal definition of 

a sufficient statistic is given in almost any mathematical 

statistics _text, but the definition is nearly impossible to 



apply. In our consideration of the concept we shall in

vestigate some examples to help illustrate this idea and 

state a theorem which is much more workable than the def

inition. Let us consider another example to help illu

strate this concept of sufficiency. 

Suppose you are a senior at a high school which has 
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an enrollment of about 500. The administration decides to 

try to determine how its senior students compare with 

other seniors who attend high schools of similar size in a 

particular state. Suppose further that the administration 

has access to certain standardized tests which measure these 

desired properties, but these tests are costly so they de

cide to pick 20 seniors at random and administer the test 

to this group. Now, our problem is to try to obtain an es

timate of how your school compares to those other schools 

in your area. Suppose we know that the mean of the scores 

obtained on this test in the past has been 50. So the 

administration gives the test and obtains twenty scores. 

To help the administration's ego they might suggest that 

the highest score obtained on the test be used as an esti

mate of the school's worth. However, it seems that we have 

lost some information which was contained in the sample by 

using the highest score as an estimate. Hence, it would 

seem that this estimate is not sufficient. However, if we 

would compute the sample mean of the test scores it seems 

we would have an estimate of the school's worth which con-
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tains all the information in the sample of size 20. Thus 

we see that Xis a sufficient statistic for the unknown 

parameter in the population. 

Let us now turn to a somewhat more mathematical method 

for determining· whether an estimator "'Q'·• is a sufficient sta-

tistic for a parameter G. A relatively easy criteriop has 

been developed by J. Neyman which can be used,in many·cases, 

for examining a statistic 1)' for sufficiency. The following 

theorem gives us a relatively easy method for judging 

whether a certain statistic is sufficient. We shall state 

the theorem without proof. 

Theorem 3.1 Let X ,X , ... ,X be a random sample of size n 
1 2 n 

from the probability density f(x;Q) and let the joint den-

sity of these n random variables be g(x ,x , .•• ,x ·,Q) = 
· 1 2 n 

f(x1 ;G) f(x2 ;G) .•. f(xn;Q). If this density factors as 

follows: = h (1} ;· Q) k ( x , x , ... , x ) , where 
n 2 n 

k(x ,x , ... ,x) does not involve the parameter G, then 
1 2 n 

t' is a sufficient statistic for Q. 

To help recognize the usefulness of this theorem, let 

us consider an example. Suppose X ,X , ... ,X is a random 
1 2 n 

sample from the probability functiom f(x;p)n = px(l~p)l~x, 

x = 0,1. Now the joint probability function is the product 

of the probability function of each X., since the sample 
l 
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is random, therefore the probability function is given by 

I:x. n-I:x 
g(x,x, ... ,x;p)=p l(l-p) i 

1 2 n 

We shall show that Xis a sufficient statistic for p. To 

apply the theorem just stated, we must show that g factors 

into two functions, one of which contains only the para

meter p and the estimator X and one which contains only 

x. 's. Consider 
l 

I:x. n-I:x. 
g(x ,x2 , •.• ,x ;p) = p l (1--p) l 

1 n 

nI:x. 
l 

-n
= p 

nx 
= p 

n(l-I:x.) 
l --,,.,,.-

( 1-p) n 

( ) n ( 1-x ) 
1-p ·l 

(-") _ nx( . )n(l-x) ( ) If we let h x,p - p 1-p and k x ,x , ... ,x 
1 2 n 

= 1, 

we see that these functions satisfy the conditions of the 

theorems, hence Xis a sufficient statistic for the para

meter pin f(x;p). We are actually saying that X contains 

all the 11 information 11 about p which is contained in the 

sample of size n from f(x;p). 

Although we see that an estimator being a sufficient 

statistic is a desired property, this property alone is not 

always enough to give "goodn estimates for a parameter. For 

example, in the illustration just given, we could.use I:X. 
l 

as an estimator of p. We can see from the given theorem 
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that ~X. satisfies all the hypotheses of the theore~, hence 
l 

it is a suffic-ient stati&tic for p_. Therefore, we must 

s .earch for estimators which possess properties which will-

consistently give "good" es.~imators of the parameter, i.e., · 

close to the parameter. Because of the difficulty or im

possibility of determining whe~her one of two estimates is 

closer than the other to Q for any reasonable definition of 

closeness, i -t is ciistomary to substitute a · measure of the 

variability t (the estimate) about Qin place of closeness. 

Since the variance, or $'t-anq.ard deviation, has been used 

to measure variability throughout the preceding chapters, 

one might naturally think of qelecting one or the othe·r of 

these measures. However, unless Q happens to be the mean 

of the distribution oft, the variance will not measure the 

variability about~. The difficulty is easily overcome by 

using the second moment about Q as the desired measure. If 
, ,:J 

Q is the mean oft, then this measure reduces to the v~ri-

ance oft. In view of the preceding discuss,ion, the follow..:. 
' 

ing definition w'i.11 be introduced as a basis for choos~ng 

good estimators. 

Definition 3.3 A statistic twill . be called a best un-\ 

bi&sed estimat~ (or estim~tor) of a parameter Q if tis 
· 2 2 

such that E ( t-Q) ~E ( t' -G) , where. t' i .s any other ~nbiased 

estimate of Q. 

Aithough th~re are other d~finitions of a ~est es~ 

) . 



timate in use, the preceding definition is one that is 

frequently used. It should be realized that the variance 

was selected (above) because it was considered to measure 
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the concentration of the distribution oft about Q. Let us 

now consider an example in which we prove that a statistic 

is the best unbiased estimator in a class of estimators. 

Let us consider the problem of determining whether 

some weighted average of a random sample from a population 

can yield a better unbiased estimate of the population mean 

than the sample mean which we have already seen is an un-

biased estimator of the population mean. Suppose the two 

competing estimates are t 1=a1x1 + .•• + anXn and t 2= X. 

The unknown a's in t 1 are to be selected to make t 1 un

biased and to minimize E(t1-G) 2 so the estimator will 

satisfy the condition of the definition. In order that t 1 

be unbiased, calculate 

E(t )=a E(X )+ .•.. + a E(X) =aµ+ ... + a µ=(a+ •.• +a)µ. 
1 1 1 n n 1 n 1 n 

Sot will be unbiased if we have a1+a + .•• +a = 1, i.e., 
1 2 n 

the sum of the coefficients in t 1 must be 1. Thus this 

restriction may be ignored if t 1 is written in the form 

Now that we have t 1 unbiased, its second moment about µtl 

is simply its variance. Since the variables x1 ,x , ... ,X 
2 n 
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are independent and have the same variance, we have the 

variance of t 1 given by 

Now we must choose the e's to minimize this expression. 

To find the value of c which · will minimize 
2 

cr , we shall 
tl 2 

find the partial derivative of cr with respect to ck 
tl 

which gives 

2 2 
= 2(i:c.) ck-2(i:c. )i:c. = 0 

1 1 1 

Solving for ck we get 

which implies that 

2 
i:C. 

1 

i:c. 
1 

(k=l,2, ••. ,n) 

(k = 1,2, ... ,n) 

This result shows that the best linear combination to use 

is the one in which the coefficients are all equal, since 

the c does not depend on k, in which case t reduces to X. 
k 1 

Thus we have proved that no linear combination of the 

sample Gan yield a better unbiased estimate than the sample 

mean X. Therefore, the best unbiased estimator of the 

sample mean of a population is X. 
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CHAPTER IV 

THE TF,STING OF HYPOTHESES 

4.1 Introduction 

In the course of everyday living we are engaged in 

the process of decision making. We must decide in which 

courses we will concentrate our studies while in high 

school, what college we shall attend, what clothes we shall 

wear, where we shall live, what we shall eat for lunch, 

etc. · M:an y · · 'd ecis'iorrs depend almo.st entirely upon a 

person's likes and dislikes. Some decisions are so oriented 

that we must face a certain amount of risk of taking the 

wrong alternative. It is evident that decisions we make 

are usually highly influenced by our past experience, our 

individual tastes, scientific evidence, and the like. For 

·example, when a farmer is planting cotton, he must make a 

decision upon the depth he will plant the seeds. This de

cision is partly based upon his experience from past years 

when he planted cotton under similar conditions. He should 

also rely upon scientific evidence, such as; certain types 

of seeds might germinate more rapidly than other types, 

hence, he would probably not plant these as deep as those 

of slower germination. As mentioned earlier, some decisions 
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are based almost completely upon personal tastes. We 

shall exclude this type of decision making throughout 

this chapter. 

Let us consider an example, which, though it does 

not apply in the scientific realm, is typical of the 

types of situations which we can expect to meet in prob

lems in which we want to test a hypothesis. 

Suppose you are a member of ·a high school baseball 

team and you are participating in a ball game against 

a rival school. Suppose further that you have just 

singled into left field and are now standing on first 

base trying to decide if you should try to steal second. 

The coach has signaled that you are on your own, i.e., 

you may try to steal if you like. You might reason as 

follows. You recall that in an earlier inning another 

one of the boys on the team stole second base off this 

pitcher and you are almost as fast as that boy. You 

also reason that if you tried to steal, the batter might 

hit a line drive to one of the infielders and thus not 
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only get the batter out, but also you. If you choose to 

steal, you are gambling that you can beat the catcher's 

throw and that the batter does not hit a line drive to one 

of the fielders. Similarly, if you choose not to steal, 

you are gambling that the batter does not hit a grounder 

which could result in a double play. Our problem is to try, 

by employing some useful statistical procedure, to pick 
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the alternative which will have the smallest risk asso-

·ciated with it. The problem of evaluating these risks 

becomes very complicated if we permit situations in which 

we must choose between more than two different courses of 

action. In our consideration of decisions ·we shall limit 

our study to those of only two alternatives or those which 

can be alt·ered to have only two alternatives. 

In the example given, we see that it is not-easy to 

find a suitable, or most suitable, method of decision for 

-any given question. You might choose to try to steal 

second on the basis of your·recalling that one of your 

teammates stole a base earlier or you might decide to not 

attempt to steal.since the last time you tried for a stolen 

base you were unsuccessful. Or another alternative might 

be to flip a coin, 11 Tails you stay on. 1st, or heads you try 

to steal 2nd 11 • 

Our concern here is to try to pick from these three 

methods of decision (and conceivably more) the one which 

is more likely to be successful. We can easily see that the 

only method which we can attach a probability to is the 

third where we trusted our fate to the flip of a coin. If 

we trust our fate to the coin, we can expect to make the 

correct decision 50 per cent of.the time regardless of 

whether we should or·should not try to steal the base. It 

should be observed that when we attach a probability to a 

method of decision we are referring to the success ratio 
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of the given method of decisions if .it were employed a 

great number of times·. We note that we could use the 

method of a flip of a coin for every decision with which we 

are confronted. But the probability associated with the 

above type of decision making method is .50. We shall 

strive to develop methods which will give us correct de

cisions with a much higher probability associated with them. 

4.2 Statistical Hypotheses 

Very often in practice we are called upon to make de

cisions about a population on the basis of sample infor

mation. Such decisions are referred to as statistical 

decisions. For example, we may wish to decide on the basis 

of sample data, whether a new serum is real+y effective in 

curing a particular disease, whether one educational pro

cedure is oetter than another, whether -a given coin is 

loaded, etc. 

In attempting to reach decisions, it is useful to 

make assumptions or guesses about the populations involved. 

These assumptions, which may or may not be true, -are called 

statistical hypotheses and in general are statements -about 

the probability distributions of the populations •. 

In many instances, we fonnulate a statistical hypo

thesis for the sole purpose of rejecting or nullifying it. 

For ·example, if we want to decide whether -a given coin is 

loaded, we fo~ulate the hypothesis that the coin is fair, 
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i.e., p = .5, where pis the probability of heads. Simi-

larly, if we want to decide whether one procedure is better 

than another, we formulate the hypothesis that there is no 

difference between the procedures (i.e., any observed dif

ferences are merely due to fluctuations in sampling from 

the same population}. Such hypotheses are often called 

null hypotheses and we shall denote them by H. 
0 

Any hypothesis which differs from a given hypothesis 

is called an alternative hypothesis. For example, if one 

hypothesis is p = .5, alternative hypotheses are p = .7, 

p =I= 5 or p~. 5. We shall choose the notation H to re
l 

present the alternative to the null hypothesis. 

I~on the basis of ·a particular hypothesis, we find 

that results observed in a random sample differ markedly 

from those expected under·the hypothesis on the basis of 

pure chance using sampling theory, we would say that the 

observed differences are significant and we would be in

clined to reject the hypothesis (or at least not accept it 

on the basis of the evidence obtained). For example, if 

·20 tosses of a coin yield 16 heads, we would be inclined 

to reject the hypothesis that the coin.is fair, although it 

is conceivable that we might be vvrong. These types 0f 

problems will be our concern in this chapter. Let us now 

consider an example which will help illustrate these new 

concepts. 

The example presented at the outset of this chapter 
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is not one in which we would be concerned with the testing 

of a hypothesis. The methods used for testing hypotheses are 

usually a great deal more refined and at times also much 

more complicated. However, in principle they are all more 

or less the same. To help us visualize some of the diffi-

culties which we shall encounter when we are asked to ac-

cept or reject a scientific hypothesis, let us illustrate 

this concept with an example. 

Suppose you are the manager of a certified seed dis-

tributing company. Suppose further that your main income 

is from the selling of cotton seeds, which your company 

guarantees to have a germination of 70 per cent, i.e., 70 

per cent of these seeds will sprout when planted during 

favorable conditions. For some reason or another the USDA 

decides to investigate this claim and it assigns one of its 

agents to test the hypothesis that 70 per cent of these 

seeds will actually germinate . The agent has instructions 

from his superior to take a sample of seeds of size 100 and 

base his final decision on the following criterion: 

He should accept the hypothesis H if the 
. 0 

sample of 100 seeds contain 61 or more seeds 

which will germinate when planted under favorable 

conditions. 

He should reject the hypothesis H0 if the 

number of seeds that germinate are less than 61. 
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The investigator is actually going to base his deci

sion on the number of seeds he finds which germinate in a 

sample of size 100. If, after planting these seeds under 

ideal conditions, he observes 61 or more seeds which ger

minate, then we will conclude that the germination of the 

seed is probably .70. On the other hand, if less than 61 

of these seeds germinate, he will reject the hypothesis 

and charge the seed company with misleading claims about 

its product. 

Even though you are not trained in the field of sta

tistics, you agree reluctantly that the criterion seems 

fair, but you are still worried that bad luck might play 

tricks on you, i.e., for example, the sample might come 

from a sack which just by chance got wet during the process 

of shipment, which ruined most of the seed. You are con

cerned, even though the seeds usually test to have about 

70 per cent germination, about the possibility that the 

hypothesis H0 might be rejected. 

After our consideration in chapter one on probability 

we must agree that it is certainly possible that the inves

tigation might produce less than 61 good seeds despite the 

fact that the germination is actually . 70 . On the other 

hand, we know enough statistics to believe that such an 

occurrence would be extremely unlikely. Let us consider 

this example further and try to determine the actual proba-

bility that the hypothesis will prove unfavorable to you. 
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If we repeated the experiment many times we see that 

the proportion of successes would be concentrated close to 

.70 and few results would be outside of .65 to .75. It 

seems reasonable to assume the number of good seeds from a 

sample of size 100 would approach the normal density, which 

is actually the case since the number of successes inn 

trials is a binomial distribution and its limiting distri

bution is the normal. To simplify this example, we shall 

assume that X, which is equal to the number of good seeds 

in a sample of size 100, has a normal distribution. We 

need only make a small adjustment in our hypothesis to 

assume normality, since the normal is continuous and we 

must adjust the hypothesis as follows: 

Accept the hypothesis H if the number of 
0 

seeds that germinate is greater or equal to 60.5. 

Reject the hypothesis H0 if the number of 

good seeds is less than 60.5. 

If we investigate the change in criterion, we find 

this is the customary procedure of spreading a discrete 

variable over a continuous scale, and since we obviously 

cannot get 60.5 good seeds the criterion is, for all 

practical purposes, exactly the same as before. 

To help us determine the actual probability of this 

"bad luck", we ask the following question, "If the true pro-

portion of good seeds is . 70 , what i s the probability of 
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getting a sample which contains less than 61 good seeds?" . 

In other words, what is the probability of the rejection of 

hypothesis H0 when it is actually true. This probability 

is given by the shaded area in Figure 6, and can be eval

uated by using a normal table given in almost any statis

tics book. Since we have assumed that p=.70 and n=lOO, 

the mean and standard deviation of the sampling distribution 

of the number of good seeds in a sample of size 100 are, as 

mentioned early in Chapter I 

m = 100 (7/10) = 70 

and 

a = -y ( 100) ( 7 /10) ( 7 /10) = 7 • 

The z value which corresponds to the dividing line of our 

crit erion, i.e., to 60.5 is z =(60.5-70) = 1.36. The nor-
7 

mal curve area which corresponds to a z value of .4131 is 

·r'epresented · by the area bounded by the line z = 70 and 

z = 60.5 . Now since 70 is assumed to be the mean, the 

area to the left of z = 70 is .500Q. Hence the shaded area 

is .5000-4131 = .0869. 

ccept 

Reject 

Number of 
~-IJ.IJ'#+J.J'-'-~~~~'--~~~~~_;_~ Good Seeds 

Figure 6 
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Thus the probability of getting a sample for which the ob

served number of·seeds falls into the left tail of the dis-

tribution, i.e., into the rejection region, is .0869. Hence, 

the probability of the investig~tor rejecting the hypothesis 

H0 on the basis of this criterion is approximately .087 if 

the true proportion is actually .70, i.e., if the hypo

thesis H0 is actually true. So if by chance, H0 were to 

be rejected when it should have been accepted, we have 

committed an error usually referred to as a type I error, 

which we shall consider in more detail later. We see that 

it is type I error which concerns us. 

It is understandable why we are concerned, now that 

we know that in approximately one out of eleven experiments 

the results would be negative even though they should be 

affirmative. You feel that the risk is too high so you 

suggest to the investigator to use a criterion which has 

a smaller type of error. Actually the type I error can be 

made as small as we want, for instance we could always 

accept the hypothesis and in so doing never make type I 

error. Surely, this would be ideal for you, but in elimi-

nating type I error we have left ourselves wide open for 

another type of error, namely, the error of accepting the 

hyp0thesis H0 when it should have been rejected. This type 

of error is committed whenever we accept a hypothesis when 

actually it should be rejected and is called type II error. 

We can see, if we were in the investigator's position, that 

we would strive to make type II error small. 



You decide that the type I error is too high, so we 

search for .a method which will reduce this error. An ob-

vious method will be to enlarge the acceptance region and 

in so doing, reduce the rejection region. We could, for 

example, change the criterion to read 

Accept H0 if there are 50 or more good seeds 

in the sample of 100 seeds. 

Reject H if the sample has less than 50 
0 

good seeds. 

Now z = ( 50- 70 )= -4, which corresponds to the normal 
5 

area of .4990. Hence, the area to the left of z=-4 is 
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.5000-.4990 = .001. We see that this new criterion is much 

more favorable to you and your·company since the proba

bility of type I error is .001, but at the same time, it 

puts the USDA at a great disadvantage. It makes it very 

difficult to prove your company wrong even if the true 

per cent of good seeds is less than 70. 

It should be evident after considering this example, 

that when testing a hypothesis we must concern ourselves 

with both type I and type II errors. For if we were in 

the investigators position we would try to reduce type II 

error, so in practice we must strive to reduce both types 

of errors. Let us now turn to this problem from a more 

mathematical point of view. Some of the techniques de

veloped will be useful in Chapter 6. 
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4.3 Type I and Type II Errors 

In our study of testing hypotheses we shall be con

cerned mainly with tWD types of errors which are associated 

with statistical decisions, type I and type II errors. If 

we reject a hypothesis when it should be accepted, that is, 

when the hypothesis is actually true, we say that a type I 

error has been made. If, on the other hand, we accept a 

hypothesis (many statisticians never say they accept a 

hypothesis, they say that they do not reject the null 

hypothesis) when it should be rejected, we say that a type 

II error has been made. In either case, we see a wrong de

cision or error in judgment has occurred. 

Closely associated with the concept of type I error 

is the idea of level of significance. In testing a given 

hypothesis, the maximum probability with which we would be 

willing to risk a type I error is called the level of sig~ 

nificance of the test. This probability, often denoted 

by ol, is generally specified before any samples are drawn, 

so the results obtained will not influence our choice. 

In practice, a level of significance of .05 or .01 

is customary, although other values are used. If for ex-

ample a . 05 or· 5% level of significance is chosen in de

signing a test of hypothesis, then there are about 5 

chances in 100 that we would reject the hypothesis when it 

should be accepted, i.e., we are about 95 per cent confi

dent we have made the right decision. In such cases we say 
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that the hypothesis has been rejected at a .05 level of 

significance, which means we could be wrong with proba-

bility .05. 

In order for any tests of hypotheses or rules of de-

cision to be good, they must be designed so as to minimize 

errors of decisions. This is not a simple matter since, 

for a given sample size, an attempt to decrease one type of 

error is accompanied in general by an increase in the other 

type of error. In practice, we must remember what item we 

are dealing with. One type of error may be more serious 

than the other, and so a compromise should be reached in 

favor of ·a limitation of the more serious error. One of 

the best ways to reduce both types of error is to increase 

the sample size, which may or may not be possible. 

Let us consider an example involving a normal sta-

tistic. Suppose that under a given hypothesis the sampling 

distribution of a statistic Sis a normal distribution with 

the meanµ and variance a 2 . Then the distribution of the 

standardized variable z, as given by z = ~ is the a , 

standardized normal distribution (mean O, and variance 1) 

and is shown in Figure 7. ,..-

.025 .025 

Figure 7 
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As indicated in Figure 7, we can be 95 per cent con

fident that, if the hypothesis is true, i.e., z is actually 

a sample statistic, z will be between -1.96 and 1.96 (since 

the area under the normal curve between these values is .9 5). 

However, if on choosing a single sample at random, 

we find that the z score lies outside the range -l.96·to 

1.96, we would conclude that such an event could happen 

with probability of only .05 (total shaded area in the 

Figure 7) if the given hypothesis were true. We would then 

say that this z score differed significantly from what 

would be expected under·the hypothesis and we would be in

clined to reject the hypothesis. 

The total shaded area .05 is the level of signifi

cance of the test. It represents the probability of our 

being wrong in rejecting the hypothesis, i.e., the proba

bility of making a type I error. Thus we say the hypo

thesis is rejected at a .05 level of significanc~ or the 

z score of the given sample statistic is significant at a 

.05 level of significance. 

The set of z scores outside the range -1.96 to 1.96 

constitutes what is called the critical region or region 

of rejection of the hypothesis, or the region of signifi

cance. The set of z scores inside -1.96 to 1.96 could 

then be called the region of acceptance of the hypothesis, 

or the region of non-significance. 

On the basis of the above remarks, we can formulate 
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the following rule of decision or test of hypothesis or 

significance. 

Reject the hypothesis at .05 level of signif

icance if the z score of the statistic S lies outside 

the range -i.96 to 1.96 (i.e., either z)l.96 or 

z<-1.96 ). This is equivalent to saying that the 

observed sample statistic is significant at .05 

level. 

Accept the hypothesis (or do not reject) 

otherwise. 

4.4 Test of a Simple Hypothesis Against a Simple Alternative 

When we are concerned with testing a hypothesis that 

a parameter, G = G0 , against the alternative that 

G=Gi_+Q0, then this type of test of hypotheses is called a 

test of a simple hypothesis against a simple alternative. 

In the preceding section we mentioned briefly the 

idea of acceptance and critical region. The following de

finition is very useful in assisting us in determining this 

critical region when testing a simple hypothesis against a 

simple alternative. 

Definition 4.1 A test based on a random sample x1 , .•• ,Xn 

from a density f(x;G) for testing a simple hypothesis 

H0 ;G = G0 against a simple alternative, H1 ;G=G1is a likeli

hood ratio test, if there exists a number k such that the 

test calls for accepting H if A'l k, and rejecting H 
0 0 



if )l(k and either if A=k where ri is the likelihood-ratio 

given by 

)\= t(t , •.. ,x) = 
1 n 

f(x1 ;G0 )f(x2 ;G0 ) •.. f(xn;G0 ) 

f(x1 ;G1 )f(x2 ;G1 ) ... f(xn;G1 ) 

Let us consider this definition briefly. Since in 
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an actual test Q and Q are fixed numbers, the inequality 
0 1 

~ -,.k for a fixed k defines a set of x's, i.e., for a 

fixed value of k there is a set of x's that satisfies the 

inequality ;\ )>k. This set of x's is the acceptance region . 

s1 , and the set of x's defined by >,., <k is the critical 

region (rejection region) S for a particular value of k. 
2 

l 
Let us consider an example where we know k=e2 • The 

value of k is usually determined in a given problem or we 

are able to determine it in a specific example. 

Example 4.1 Suppose we have a distribution for a random 

variable X, such that Xis distributed as a normal with a O 

mean and a variance equal to 1. To help illustrate the pr~ 

ceding definition, suppose we take a random sample of size 

one, say X, from the density. Our object is to try to de

termine the critical region for testing the null hypo-

thesis , H0 ;µ=-l, against the alternative hypothesis, 

H1 ;µ=0. The likelihood ratio test gives 

1 1 ( ) 2 
( ) - 1- e - 2 x+ 1 f x.-, -1 

= __ i_ = ( 2TT ) 2 

f ( x.:O) 
l'. 

1 _1x2 
~e z 

( 2TT) 2 



and simplifying we get 

-!(x-1) 2 -!(x2+2x+l-x2 } = _e ____ = e 

= e 
-!(2x+l} 

l 

As mentioned on the preceding page, we shall choose k=e~ 

to illustrate the given definition; then 1>)k becomes 

-!(2x+l} ! 
e >e -x or e ::::,-e. 
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-x Our problem is to determine the set of x such that e >e. 

If we take the logarithm ( base e} of both sides, we get 

the set s1 = f x I x <-1 } • So from this we see the accept

ance region is all x which are less than -1, i.e., if the 

sample we took had a value less than -1, then we accept 

We would not reject H :µ=-1. 
0 

sample value of x were greater than -1, we would reject 

H0 :µ=-l and accept H1 :µ=0. ' . , ..• i 

Let us consider another example where we use the 

likelihood ratio· test. 

Example 4.2 Suppose a random sample of size n is taken 

from a normal population with meanµ and variance 1. 

Suppose we wish to test the null hypothesis, H0 :µ=2 

against the alternative hypothesis, H :µ=O. 
1 

' The density of each X. under the null hypothesis .is 
1 

~-



given by 

f ( X . ; 2 ) = --1---.-1 

1 (2TT)2 

-!(x.-2) 2 
e 1 , i=l,2, ••. ,n 

and under the alternative the density of each x:. is 
1 

given by 
l 2 

-;zX. 

thus 

A = 

f(x. ;O) = - 1---.-
1 (2TT)2 

e 1 

f(x1 ;2)f(x2 ;2) ••. f(xn;2) 

f(x1 ;0)f(x2 ;o) ... f(xn;O) 

in 2 2 
-2~ 1x1. -4x. + 4-x. 

1= 1 1 

n 

= 

i=l, 2, ••• ,n 

e 

n 2 
-!~ (x -2) 

i=l i 

2 -!~ X 
i=l i 

e 

in 
-2~ (-4x.+4) 

1=1 1 
-~ ( 2-2x. ) 

1=1 1 
-2n+2rx. 

1 
= e 

2nx - 2n 
= e 

= e = e 

The likelihood ratio test consists of accepting H . 0 

if~= e2nx-2n>-k, which is equivalent to the statement 
" 
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that 2nx-2n>ln k or x>1 1n k + 1. Hence, employing the 
' 2n 

likelihood ratio test calls for accepting (not rejecting) 

H0 :µ.=2 if the value of x, which we would compute from the 

sample, is greater than ~ · ln k + 1 and rejecting H :µ.= 2 
.2n 1 0 

and not rejecting H1 :µ.=0 if xis less than 2nln k + 1, 

for a given value of k. 
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4.5 Composite Hypotheses 

Thus far in the development of the theory of testing 

hypotheses we have concerned ourselves with the test of a 

simple hypothesis against a simple alternative. These are 

hypotheses of the form H :QE S with alternative H :QE S , 
0 , 1 1 2 

where s1 and s2 can be sets which contain one or more 

elements. 

In this section a method will be given for con

structing very useful tests for·a simple hypothesis which 

can be extended to include some composite hypothesis. The 

method of construction depends upon the use of·a theorem 

that was first proven and used by the two statisticians 

after whom it is named. The theorem, called the 

Neyman-Pearson lemma, will be stated without proof for.a 

probability function, f(x;Q), of a single continuous vari-

·able and a single parameter. It should be noted that the 

following theorem applies only to a simple hypothesis 

against a simple alternative. 

4.2 Neyman-Pearson Lemma If there exists a critical region 

A of size oL and a constant k such that (where JS_, ••• ,Xn is 

a random sample from t'(x; Q))' 

f ( xl ; Q O ) • • . f ( x n ; Q O ) 
t\=-----

f ( xl; Ql) f ( xn; Ql) 
< K inside A 



and 

f { xl ; Q O ) • • • f ( x n ; Q O ) 

f(xl;Ql) , ... • • f(xh;Ql) 
~ K outside 

then A is the best critical region of size o(_. 

A 

Even though the Neyman~Pearson fundamental lemma 

applies specifically to problems involving a simple 

hypothesis against a simple alternative, we shall show 

in the following illustrations it can sometimes be used 

to advantage in composite hypotheses. 

In the preceding lemma, we spoke of A as being the 
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best region of size ol. We mean it is the region in which 

p(I)S<l and 1-p(II) = B(Q) is a maximum for all Qin A. 

We shall refer to 1~p(II) = B(Q} as the power of the test. 

The usefulness and meaning of this lemma is best ex

plained by means of illustrations, hence, consider the 

random variable X· whose density function is given by 
-Qx 

f(x;Q) = Qe , x > O. In order·to discuss a problem 

somewhat more general than just testing .a simple hypo

thesis,. let us consider the hypothesis H0 : Q = Q , and the 
0 

alternative H1 :G<G0 • We can change this hypothesis to 

one which is a simple hypothesis Hct: Q=G0 , against the 

simple alternative H1,:,:: G = G1 <G0 • The corresponding 

likelihood functions are 
n 

-G0r: x. 
. · 1 n · 1=1 

= Qo e 



and 

n 
11 = TI f ( x. ; Ql) i=l l 

n 
-QI; X 

n li=l i 
= Ql e 
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According to the Neyman-Pearson lemma, the region A is the 

region where 
-Q I:x 

n O i 
Qo e 

>k. 

This inequality may be written in the form 

Taking logarithms, the inequality becomes 

Q n 
( Q -G ) I:x < ln 1 ( --1) 

1 o i - k g0 

Since H1 specifies that G <:: Q dividing both sides by 
1 0 

Q1-Q0 will reverse the inequality and yield 

Now suppose for example we let n = 1 and G0 = 2, 

and G1 = 1, hence for this problem the value of the best 

critical region would be that part of the x axis to the 
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right of the point 

where k is chosen to make any desired probability. 

Thus, the same critical region is used whatever the 

value of G1 , so long as G1 <:::G0 • The value of k necessary 

to produce the same x0 = ln(2k), of course, depends upon 
k 

the value of G. This shows that x0= ln2 gives the best 

critical region for testing the hypothesis H0 :G=G0 against 

the alternative H1 :G<:.G0 . Thus, the Neyman-Pearson lemma, 

although designed to test a simple hypothesis against a 

simple alternative, can sometimes be used to solve a 

problem in which the alternative hypothesis is composite. 

4.6 Likelihood Ratio Tests 

When the Neyyian:...Pearson lemma fails to yield a best 
.. /' 

test, or when the hypothesis is composite rather than 

simple, it is sometimes necessary to place further re-

strictions on the class of tests and then attempt to find 

a best test from among this restricted class, or else it 

is necessary to introduce some other principle for ob-

taining good tests. In this section a second principle 

for constructing good tests will be introduced and dis

cussed. Since any method for testing composite hypotheses 

will include the testing of simple hypotheses as a special 
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case, this principle will be introduced from the point of 

view of composite hypotheses. 

We shall start one discussion with the consideration 

of a probability or density function which has more than 

one parameter. Suppose that a random variable X has a 

density function f(x;G , ... ,Q ) that depends upon k para-
1 k 

meters. Let the composite hypothesis to be tested be de-

noted by H0 :G.=G. (i=l,2, •.. ,k) where G. may or may not 
l l l 

denote a numerical value. Thus, if there are two para-

meters, H0 might be the hypothesis that G1= 10 with G2 
' 'f' d th Q 10 d Q Q Wi'th the ai'd of unspeci ie , en 1 = an 2 = 2 . 

' ' this notation, f(x;G1 , ... ,Gh) will denote the density of 

X when H0 is true. 

Let 'G'". denote the maximum likelihood estimator of Q 
l i n 

for the likelihood function L(Q) = 1T f(x ;Q , .. . ,Q ), 
i=l i 1 k 

where the likelihood function is treated as a function of 

the parameters and the x. are fixed. Similarly, let 'G 
i 0 

denote the maximum likelihood estimator of Q when H is 
i 0 

true, that is, for the likelihood function L(G') = 
n , , 
'JT f(x. ;G , ... ,G ). Now let us consider the ratio 
i=l i 1 n 

'\.= L(Q') 
n L(Q) This is the ratio of two likelihood functions 

L(Q 1 ) and L(Q), where their parameters have been replaced 

by their maximum likelihood estimators. Since the maximum 

likelihood estimators are functions of the random variables 

x1 ,x , ... ,X, the ratio A is a function of X ,X , ... ,X 
2 n 1 2 n 
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only, and therefore is an obser~able random variable. 

The denominator of~ is the maximum of the likelihood 

function with respect to all the parameters, whereas the 

numerator is the maximum only after some or all of the 

parameters have been restricted by H0 ; consequently, it is 

clear that the numerator cannot exceed the denominator in 

value and therefore A can assume values only between O and 

1, inclusive. Now the likelihood function gives the proba

bility density (or probability in case xis a discrete 

variable) at the sample point X ,X , .•. ,X. Therefore, if 
1 2 n 

A is close to 1, it follows that the probability density 

(or probability) of the sample point could not be increased 

much by allowing the parameters to assume values other than 

those possible under H0 ; consequently, a value of~ near 1 

corresponds intuitively to considerable belief in the 

reasonableness of the hypothesis H0 . If, however, the 

value of A is close to O, it implies that the probability 

density (or probability) of the sample point is very low 

under H0 as contrasted to its value under certain other 

possible values of the parameters not permitted under H, 
0 

and therefore a value of A near O corresponds to consider-

able belief in the unreasonableness of the hypothesis. 

If increasing values of A are treated as corresponding to 

increasing degrees of belief in the truth of the hypothesis, 

then I\ may serve as a statistic for testing H0 , with small 

values of A leading to the rejection of H0 . 



Since we have agreed to use A as a test statistic, 

our next endeavor is to obtain a density function for the 

random variable A . In many applied problems we can find 

the distribution of the statistic~ and thus make valid 

probability statements concerning~. 

Now suppose that H is true and the density function 
0 
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of the random variable A, say g(A), has been found. This 

is theoretically possible if the explicit form of 
I I 

f(x;Q , .. ,G ) is known. Suppose, further, that g(A) 
1 k 

does not depend upon any unknown parameters. Then one can 

find a value of ~' say ~0 , such that 

(2) p(O~ /l ~ /'I ) = o( 
0 

The critical region of size oe'...for testing H by means of 
0 

the statistic A then is chosen to be the interval o-=::: .>i ~ A0 . 

The preceding explanation of how likelihood ratio 

tests are constructed may be summarized in the following 

form. 

Definition 4.2 To test a hypothesis H, simple or composite, 
L(G 1 ) O 

use the statistic A= L(G) and reject H0 if, and only if, 

the sample value of A satisfies the inequality 

where ~ is given by p(O~ /IS /1 0 ) = e>(. 

Although the use of I\ as a statistic for testing 

hypotheses has been justified largely on intuitive grounds, 



it can be shown that such tests possess several very de

sirable properties. 
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Our purpose is to acquaint the reader with some use

ful techniques in testing hypotheses. A more complete 

discussion of these concepts can be found in several 

mathematical statistics text, for instance, Mood and 

Graybill. However, the treatment given there is beyond 

the scope of our consideration. 



5.1 Introduction 

CHAPTER V 

REGRESSION 

Very often in practice we are concerned with the 

problem of determining whether there exists a relationship 

between two variables and, if a relationship does exist, 

what type of relationship it is. For example, weights of 

adult males depend to some degree upon their heights and 

areas of circles depend on their radii. We see from these 

examples that the relationships between variables are 

different. In the first example, the relation is probably 

linear, while in the second, the variables are related in 

such a way that one is proportional to the square of the 

other. In this chapter we shall be concerned with assumed 

relationships between variables and from these assumptions 

we will try to predict certain values of one variable when 

given a specific value for the other variable. 

Knowledge,which is based upon experimental or observed 

information,has the distinguishing feature of being pre

dictive knowledge. This means that the main value of 

scientific knowledge lies in the fact that, due to its 

very nature, it enables us to make predictions concerning 



the behavior of observable phenomena. However, we must 

realize that when a scientist predicts the occurrence of 

a certain event, his prediction is quite different in 
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nature from predictions made, for example, by prophets of 

ancient oracles. By this we mean a scientist does not 

claim to be able to predict with absolute certainty that a 

certain event will take place at some time in.the distant 

. future. As a matter of fact, he does not claim to be able 

to predict anything whatsoever with absolute certainty. In-

stead, he asserts his predictions in terms of probabilities, 

implying that he is satisfied if his predictions come true a 

certain percentage of the time or, better, he aims in his 

predictions for a success ratio which is as high as possible. 

Very often in practice we are faced with the problem 

of determining whether certain variables are linearly re-

lated. For example, if x. represents the score a high 
l 

school student achieves on a mathematics test, and y re
i 

presents the score achieved on a science examination, we 

might expect these variables to be related linearly, i.e., 

if a student scores well on a mathematics test, he would 

probably be capable of high achievement on a science test. 

Also, for another example, we might let x. be a student's 
l 

score on the college entrance examination and y, represent 
l 

his grade point average. Similarly, we might expect these 

variables to be related in a linear manner, i.e., if a stu-

dent scores high on the examination, we would expect him to 

excel in his college work, while if a student made a low 
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score, we would expect him to encounter difficulties. Thus 

we would say that x and y are directly related. One of the 

problems we shall encounter is trying to determine this re

lation, i.e., determining a function y = f(x). If we can 

find this function y = f(x), then for a given x we can 

predict a y value. In the preceding example, we would 

be given a score on the entrance examination and we could 

predict the student's success in his college work. 

When we have at our disposal information on two re

lated variables, it seems natural to seek a way of express

ing the form of the functional relationship. It is also 

desirable that we know the accuracy of this relationship. 

That is, we not only seek a mathematical function which 

tells us how the variables are interrelated, but also we 

wish to know how closely the values of one variable can be 

predicted if we are given the values of the associated 

variables. The techniques which shall be used to accom

plish these two objectives are known as regression methods 

and correlation methods. Regression methods will be used 

to determine the "best" functional relationship between the 

variables, while correlation methods are used to measure 

the degree to which the different variables are associated. 

In any analysisr it is hoped the assumed function re

presents some basic , or causal, mechanism associated with 

the factor under investigation. Because of the frequent 

uncertainty about basic variables and basic mechanisms, 

a word of warning must be sounded relative to the interpre-
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tation of analyses involving these variables. The warning 

is: just because a particular functional relationship has 

been assumed and a specific computational procedure followe~ 

do not assume that a causal relationship exists among the 

variables. We are actually implying that just because a 

particular function has been found that is a good fit to a 

set of observed data, we should not necessarily infer that 

a change in one variable causes a change in another vari.

able. A classical example which illustrates this is: It 

can be shown that over a period of years there exists a 

linear relationship between teacher's salaries and the con

sumption of liquor. However, it seems reasonable we would 

agree that an increase in teacher's salaries had little, if 

any, effect upon the liquor consumption. During this 

period of time there was a steady rise in the wages and 

salaries of all types and a general upward trend of good 

times. Under such conditions, teacher's salaries and 

liquor consumption would also increase, even though no 

causal relationship exists. 

Let us suppose that we know the average grades of six 

high school seniors who graduated two years ago, and also 

the grade point average attained the first year in college. 

Such an illustration may be seen in the table given on 

the following page. 
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High School Average Grade Point Average 

Student A 90 2.8 

Student B 65 2.1 

Student. C 95 3.7 

Student D 69 2.9 

Student E 76 2.6 

Student F 80 2.2 

Our problem now is to fit a curve to this data which 

will give us the best possible predictions. Since there 

is, logically speaking, no limit to the number of lines 

which can be drawn on a piece of paper, it is evident that 

we will need a criterion on the basis of which we can point 

to a single line as the one which presents us with the best 

fit to our data. This choice is not usually self-evident 

except in the special case where all points actually do 

fall in a straight J,ine. Since we can hardly expect this 

to happen often when dealing with experimental data, we 

must be satisfied with a straight line which, although it 

cannot possibly go through all points, will have some less 

perfectz. yet still desirable properties. Af:3 mentioned be

fore, we are interested in determining a curve which will 

give us a way of·predicting a value of one of·the variables 

when we are given a specific value for the other one. 

The first thing we must do when we want to fit a 

straight line to the data given above is to check whether 

it is at all reasonable to suppose that a straight line 
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will give a good fit. A very convenient way is to plot the 

points representing our data as we have done in Figure 8 

below. It is almost impossible to decide if it is reason-

able to treat the two variables as if· they were linearly 

related when we have only 6 data points, however, if we ex-

amine the data points, there appears to exist a linear re-

lation between a student's average grade in high school 

and his grade point in college. 

College grade point _, L 

High school 
· average 

50 60 70 80 90 100 

Figure 8 

First, let us draw a mor~ or less freehand line L 

which indicates the approximate linear relation between the 

variables as shown in Figure 8. We might ask ourselves how 

good our predictions would have been if we had actually 

used line L for the prediction of the college grade points 

for the given six students when we knew their high school 

grade averages. The predicted grade point for a given 

student could be found by considering the student's 

average and determining the functional value of that 
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particular average. 

If we had kno'W!l this line represented the relationship 

between the student's high school grade averages and their 

grade point average before our six students entered college., 

we could have used it to predict their expected success in 

college. For·example, the student who had a high school 

average of 80 would, according to Figure 8, have had a 

predicted grade point average of 2.5. But from our data 

we see the student who had an average of 80 achieved a 

grade point average of 2.2. Consequently, the error of 

this prediction would have been 2.5 - 2.2 = .3. 

Geometrically, the error of the prediction is meas

ured by the vertical deviation (distance) from the point 

representing the actual data to the line L which we used 

for our prediction. In Figure 9, below, this deviation is 

given by the distance from A to B. 

4 

3 

2 

1 

50 60 

L 

70 80 90 100 

Figure 9 
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If we apply this method of prediction to each of the six 

students used in this example, the six corresponding errors 

of our predictions are given by the s ix vertical deviations 

from the line L. (See Figure 9). If we denot e the ob

served grade point of the ith student by the symbo l ~ and 
l 

the corresponding predicted grade point by y . ' , the error 
l 

variance of the s ix predictions is given by t he expression 

6 , 2 
~ ( y . -y . ) 
1 i i 

6 

which is just the average of the squared vertical deviation 

from the line L. 

It should b e evi dent that if we assume a functional 

relationship between two variables then we s hould strive to 

find the particular function in which the error variance i s 

as small as possible. We now have at our disposal a cri-

teri on for the goodness of the fit of ·a straight line. It 

seems quite reasonable to require t he resulting errors to 

be small if we expect the line to be a good fit fo r the 

given data . 

The line having the di stinguishing property that the 

sum of squares of vertical deviations, the error variance 

of the y's, is minimum is call~d the regression line of y 

on x . If it had been desirous, instead , to predict x in 
~ 

terms of y we could in a similar manner have asked for a 

line whi ch minimizes t he sum of squares of devi ations of 

the x's, and we would have obtained the regression of x 
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on y. From the discussion above, it seems reasonable that 

it is completely arbitrary which variable is called x and 

which is called y, hence, we shall simplify our work by 

limiting our discussion to those lines which minimize the 

sum of squares of the vertical deviations, i.e., we shall 

consider only regression lines of yon x. 

Let us now suppose that we have a sample of size n of 

pairs of measurements, say (x1 ,y ) .•. ,(x ,y ), which might 
1 n n 

represent the weights and corresponding heights of n indi-

viduals of about the same age, and suppose further that we 

are convinced that there exists a linear relationship be-

tween the x's and y's. Our problem now is to try to deter-

mine the parameters m and bin the linear function y=rnx+b, 

so that the line has the property that the sum of squares 

of the vertical deviations will be a minimum. This means 

that we must find numerical values for the two constants 

m and b which appear in the equation y=rnx+b so that the 

line which is thus obtained has the stated properties. 

A certain function has been postulated as being the 

nbest" expression of the true state of affairs in the pop-

ulation, and it is now necessary to estimate the parameters 

of the function. The determination of these estimates and 

thus the specification of a particular function is commonly 

referred to as curve fitting. How do we go about fitting 

a curve to a set of data? That is, how are the estimators 

of the parameters obtained? Again we are faced with the 

problem of choosing among several methods of estimation. 
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The approach which we shall take should, of course, provide 

' us with the 11 best 11 estimates. Let y. represent the pre-
l 

dieted value corresponding toy .. This value must be 
l 

obtained from the equation 

y. = mx + b 
l i 

and if we substitute this predicted value into the expres-

sion for the error variance we can rewrite the expression as 

n 2 
I: (y . ...;mx. -b) 
l i i 

n 

This expression is called the error variance about the re-

gression line, and it shall be denoted bys 2 provided, of 
e 

course, that the two constants m and bare such that we do 
2 have a regression line. We note that in the expression se 

the only things which are unknown are them and the b since 

we were given n pairs (x. ,y.) of measurements which we 
l l 

assumed to be known from the start. 

As mentioned earlier in this chapter, we are in search 

of parameters m and b which will minimize the expression s:. 

To minimize se2 we shall find its partial derivatives with 

respect tom and then with respect to b yielding two equa-

tions which can be solved for m·and b. 

2 
...;2I:x. ( y. -mx. -b) ose 

l l . l 

3m = 
n 

and 
2 

...;2I:(y.'"'-mX.-b) ose 
= l l 

ob n 



If·we set these expressions equal to zero the resulting 

equations are 

~x.{y;-!rnx.ib) = 0 
J. J. J. 

and 

From the second equation we get 

{ 1) ~y.-1n~x. = rffi 
J. J. 

which gives 

~y. -Gi~x 
- J. i b = -+---

n n 

From the first equation, summing over n, we get 

(2) 

Now if we 

we get 

and 

A 2 ~x. y . .:..b~x. = 1ii~x 
J.J. J. i 

substitute into this equation 

2 
~x.y.-{~y. -1n~x) ~x. ="m~x. 

J. J. --2: +-- J. J. 

~x.y.
J. J. 

n n 

~x.~y. 
J. J. 

n 

/"-
for b 

Solving for~ we find 

~X.Y. 
J. J. -

~x.'f.y_ 
J. J. 

1n = 
n 

2 2 
'f.x. {'f.x. ) 

J. - J. 

n 

Therefore 

1n = 
n~x. y. { 'f.x. ) { ~y. ) 

J.J.- J. J. 

2 2 n~x. · _ {~x.) 
J. J. 

from (1) 
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Now considering equation (2) ·again, if we substitute the 

expression for~ into equation { 2} we get 

'b = 

A 
b= 

Ey, {Ex. y. Ex. r:y. ) 
l 

l 1- l , l r:x 
n i 

n 2 2 n 
r:x. - {Ex. } 

l l 

n 

r:y. [r:x1.
2 - (Ex. )2] ~ r:x.(r:x.y, - r:x.r:y.} 

l l l l l l l 

n n 

2 2 n ( r:x . } - ( r:x . ) 
, l l 

2 . 2 2 
r:y. Ex. - ( r:y. } ( r:x. ) - ( r:x. } ( r:x. y. } + ( r:x . } r:y . 

l l l l l .l l l l 
A n n b = ~~~~~~~--~~~~~~---~~~~~~~~ 

nr:x. 2 - ( r:x ) 2 
l i 

2 
r:y.r:x. - (r:x.} Ex.y. 

l l l l l 

n ( Ex . 2 ) - ( Ex . ) 2 
l l 

So if we are given n pairs of measurements and if we 
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assume we have a linear relationship existing between the 

variables then we can estimate the parameters of y = mx+b 

and obtain an estimate of that linear function by computing 

1a and~ when we are given a specific example. 

Returning now to the illustration mentioned earlier 

concerning ·the relationship between high school grade 
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averages and the grade point average obtained in college, 

we can use the expressions developed on the preceding page 

to find the actual equation of the regression line of yon 

x. The necessary calculations are usually performed by 

means of a table similar to the following: 

X 

90 

65 

95 

69 

76 

80 

471 

Thus we have 

2.8 

2.1 

3.7 

2.9 

2.6 

2.2 

16.3 

n = 6 

I:x = 471 
i 

I:y = 16.3 
i 

2 
z::x = 37695 

i 

z::xiyi = 1313.7 

2 
X X 

8100 252.0 

4225 136.5 

9025 351.5 

4761 200.1 

5184 197.6 

6400 176. 0 

37695 1313.7 

If we substitute these values into the expressions for'rri 

and ·i we get 

1n' = 6 ( 1313. 7) - ( 4 71) ( 16. 3) 
2 

6 ( 3 769 5) - ( 4 71) 

= 204.9 

4329 

= .047 



and 
(16.3)(37695)-(471)(1313.7) 

6(37695) - (471) 2 
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4324. 2 
= - = -.999 

4329 

and we can write the regression line as y = .047x - .999 . 

Now that we have determined the regression line of y 

on x we can predict a student's success (his grade point) 

in college. So if we are given a student's high school 

average we can substitute this x value into the equation 

y = .047x - .999 and get an estimate or prediction of his 

college grade point average. For example, if a student had 

a high school average grade of 70, his predicted grade 

' point average, y, would be found by calculating 

y = (.047)(70) - .999 = 2.291. 

Since the expressions given for'ln' and"S are somewhat 

tedious to calculate, it is often preferable to qalculate 

'm" and~ by using the equation (1) and (2). After dividing 

(1) and (2) by n we get 

and 

y - mx =t 

2 ~x.y.~b~x. ='ni~x .. 
l l l l 

We now have two equations in two unknowns, 'm'. and 15, 

which can be solved for the unknown after making substitu

tions for the known values determined from the given sample. 

In our example, which was given on the preceding page, the 

-resulting equations would be 2. 71 - 78. 5 ~ = 15 and 
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1313.7 - 47lt = 37695~. Solving we get 

~ = .047 

and 
/"-. 
b = -.999 

which agrees with our previous results. 

To help understand the concept of linear regression 

and curve fitting, let us consider another·example. 

Suppose you are a farmer whose chief income is from alfalfa 

hay. Suppose further that your farm is in a suitable area 

which is accessible to irrigation,if you feel it is worth-

while to finance the expenses of an irrigation system. You 

decide to consult someone at the state university whom you 

feel might have access to some data concerning the relation

ship between hay yields and irrigation. It turns out that 

the college has recently conducted an experiment on an ex

perimental farm and the following data is obtained concern-

ing the hay production in tons relative to the number of 

inches of water which was applied. The data obtained is 

given in the following table: 

---·-
' 

Water (x) 12 18 24 30 36 42 48 
(treatments) 

Yields ( y) 5.27 5. 68 6.25 7.21 8.02 8.71 8.42 

If we plot this data, there appears to exist roughly 

a linear relationship between the yields of alfalfa hay and 
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the number of inches of water applied, as shown below 

in Figure 10. 

y 

I 

9 

8 
7 
6 

f 5 
---·-·-~----'---+------>----!-

6 12 18 24 30 36 42 48 

Figure 10 

Since an approximate linear relation appears to exist, 

it should suffice to use a linear function of x. Thus the 

problem of prediction first requires the solution of the 

problem of fitting a straight line to the set of points, 

i.e., we must determine the values of the constants m and 

bin the equation y = mx + b. Using the methods already 

developed, we find that~= .10 and 1J' = 4.0. Hence, the 

equation of the regression line is given by 

y = ,lOx + 4.0. 

Thus there seems to exist a linear relationship between the 

hay yield and the amount of water applied. 

In fitting a straight line to a set of points, as in 

the preceding illustration, it is intuitively assumed that 

the resulting line is an estimate of a theoretical line of 

regression. This regression line, being an estimate of the 

actual or theoretical regression line, leads us to ask the 
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question, "How good an estimate of the true regression line 

is our estimate?'' . A thorough investigation of this ques

tion would lead us to some advanced techniques in mathema

tics and statistics which is beyond the scope of our treat

ment here. However, we shall discuss some of these 

concepts from an intuitive point of view without employing 

a great deal of mathematical rigor . 

To consider this idea of "goodness of estimate", let 

us return to the first example concerning the relationship 

between the high school student's grade average and his 

college grade point. Before we consider adopting the 

equation 

"Predicted college grade point=. 04 7 ( high school average)-.';f!)' 

even hypothetically as a method of predicting a student's 

future success in college, we must first check how accur

ate we can expect the resulting predictions to be. To help 

illustrate this idea, let us assume the above formula was 

known at the time the six students, who were the subjects 

of our investigation, entered college. This assumption 

might seem somewhat ridiculous since we actually calculated 

the value of 1rl' and~ on the basis of the records which these 

same six students established in college, and it would be 

impossible to know this formula in advance. What we are 

actually saying is that we are assuming y = .047x -.999 is 

the theoretical regression line. However, let us assume 

in spite of this obvious objection that as we said, to 

help illustrate this idea, we did have this formula when 
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the six students entered college. We could then have used 

it to predict the grade points which our students could 

have been expected to attain. Substituting their high 

school averages into the equation y = .047x-.999 we could 

have calculated the predicted value of y which, together 

with the indexes which the students actually obtained, are 

shown in the following table. 

Actual grade point Predicted grade point 

' y y 

Student A 2 .. 8 3.23 

Student B 2.1 2.06 

Student C 3.7 3.47 

Student D 2.9 2.24 

Student E 2.6 2.57 

Student F 2.2 2.77 

If the theoretical regression line is actually a lin-

. ear function of the form y = mx + b the values of~ and '1 
which we calculate from a set of experimental observed data 

and since the calculation will change when we use a dif

ferent sample, we must consider .,m and~ as random variables. 

Since~ and t are random variables it is possible to de

termine the distribution of these statistics and thus make 

probability statements concerning them. However, we will 

not endeavor to enter into a discussion concerning the 

distribution of these random variables. 
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When discussing the goodness of the estimates 1rt and "'S, 

we must realize that'rrt and11:i, just as most estimates, in-

crease in accuracy for increasing values of n, i.e., good 

estimates of m and bare obtained only if we have a large 

number of pairs (x.y . ) of measurements of the two variables 
l l 

x and y. We should realize in actual practice, if we want 

to obtain good estimates, we would seldom use samples as 

small as the ones employed here to illustrate the tech-

niques used in the computation of these estimates. 

As mentioned earlier, a formal study of the accuracy 

of estimates of the regression coefficients m and bis 

considerably beyond the scope of our treatment here. 

However, as long as we base the equations which we intend 

to use for our predictions on reasonably large samples, 

our estimates of m and b will usually be sufficiently close 

to the true values of the regression coefficients. There-

fore, if we are dealing with large samples, there would 

seem to be no serious objection to evaluating the goodness 

of the predictions by applying the equation to t he i denti-

cal data from which it was originally obtained. We can use 

as a test stat i stic n T 2 
z:: ( y . -y . ) 

2 1 l l 
s = ~~~~~~ 

n 

where Y. and Y. are the actual and the predicted responses, 
l l 

respect i vely. If s 2 is large we would conclude that our 

estimates fo r m and b are bad, while if s 2 i s small we 

would conclude that our estimates are good. 
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Our method, which we have employed in the determi

nation of 'hi' and 1;, has consisted of minimizing the sum of 

squares of deviations from the straight lines, and hence, 

this method is referred to as the method of least squares. 

This method enables us to select one line as the line which 

provides us with the best fit to a given set of points. It 

is really in this sense that we define what we mean by a 

good fit. Although we have used the method of least 

squares only for the determination of a best-fitting 

straight line, it can also be used to give us best-fitting 

curves in general even though their equations may be of a 

much more complicated nature. 

We now have at our disposal estimates of the para-

meters m and bin the linear relationship y = mx + b which 

we hope are good estimates of these parameters. As men-

tioned earlier, it is desirable that good estimates have 

the property of being unoiased. Let us see if these esti

mates possess this property. If we let"'nl andli:i represent 

the estimates of m and b, respectively, we want to know if 

E ('hi) = m and E ("13) = b. 

Consider 



Thus we have 

E ('m') tI: ( X, .,.;X) ( y, -y )] 
= E 1 1 

I:(x.-x) 2 
1 

= --1-- E [r(x,y . ...;x. y-xy. +xyj 
2 1 1 1 1 ~ 

I:(x . ..;.i) 
1 
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=---- [I: x. E ( y. )-x. E ( y) ...;xE ( y. ) +xE ( y) J . 
2 1 1 1 1 

1 

I: (x. -x) 
1 

But we assumed the linear relationship such that E(y, )= 
1 

b+mx. Thus we have 
i 

= 1rE( y. ) 
n i 

= 1r(b+mx.) = 1 (nb+mr:x.) 
n 1 n 1 

,=b+mx. 

Substituting this back into the expression above we have 

E(m) = 1 
2 [i:: ( xi (b+mxi) ~xi (b+mx) ~x(b+mx1 )+x(ll+mx)~ 

r: (x. -x) 
1 

Thus 

E(m) = 1 [~ ( 2 2 L, mx. 
I:(x ...;x) 1 

i 

- -2] ...:2mxxi + mx ) • 



Hence we have 

m 

E(~) = ---
2 

!:(x. -x) 
l 

m!: (x. -x) 2 
l 

=----

= m 

_)2 r(x -x 
i 

122 

( 2 - -2) r: x. -2x x +x 
l i 

Therefore E ('nt) = m, i.e. , 1ri"- is an unbiased estimate of the 

parameter m. Also one expression for 'b' is ~=y.rm.x. Thus 

E ('b') = E ( y) -E ( xfrl) 

= b+mx - x E(1rt) 

But we have shown above that E('irt) = m, hence we have 

E(1}) = b+mx xm = b • 

Thus~ is an unbiased estimate of b. So we see that these 

estimators possess the desirable property of being unbiased. 

5.2 Correlation 

In the last section we devoted a great.amount of time 

to the probiem of finding the regression line and the error 

variance which we employed as a measuring device to deter

mine the goodness of the resulting predictions, i.e., the 

degree to which the regression.line fits a given set of 
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measurements. However, we observed the error variance was 

often difficult to compute and the goodness of fit was de-

pendent upon the units which were used, i.e.; if the error 

variance came out to be 10 feet this would seem suffi-

ciently large to worry about; however, if the units under 

consideration were miles, then it would probably not be 

sufficient to cause much concern. Hence, we search for a 

·measuring device which is independent of the particular 

units used in the data, i.e., we want a method which will 

give us a number so we can decide immediately whether it is 

sufficiently large or not. We shall now define another 

measure of the goodness of the fit of the regression line, 

which is called the coefficient of correlation defined by 

,J 2 2 r=+ · 1- s /s 
e y 

A considerable amount of time will now be devoted to ex

plaining the quantities r, se2 and sy2 

We shall denote the error variance about the regress

ion line bys 2 and define it by the expression 
e 

2 s 
e 

n , 2 
!: ( y. -Y. ) 
i=l l J. =------

n 

where y. 1 is the predicted value and Y. is the observed 
l l 

value. We can easily see thats 2 depends on the scale of e . 
measurement of y and it can therefore happen that the re-

gression line will provide us with a very poor fit even 



though 

small. 

s 2 is small, simply because the quantities y are 
e 
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Similarly, it can also happen if the y's are large. 

The error variance may be large in spite of the fact that 

we have an excellent fit. This obvious shortcoming of the 

error variance about the regression line as a measure of the 

goodness of fit suggests a modification which leads us to 

the so-called "coefficient of correlation". This new 

measure can be understood readily if we define it as a 

measure which is a combination of·the following two methods 

of prediction. 

Method 1. We shall predict each y by means of the re-
I 

gression line y, = mx.+ b which was deter-
l l 

mined from the identical set of data which 

will also be used to evaluate the goodness 

of the resulting prediction. 

Method 2. We shall predict for each y that it is equal 

to the mean of they, , i.e., our·predic
i 

I -tions are now based on the formula y. = y, 
'l 

where y is the mean of the same set of data 

which is used in method 1. 

The appropriateness of method 1, discussed in the last 

section, is simply the error variance about the regression 

line given by 

s 
e 

2 
2 

~ ( y. -mx. -b) 
l l 

=------
n 
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while the appropriateness of method 2 is expressed by the 

error variance 
. f 2 -, 2 I:(y.-y. ) I:(y.-y 

2 l l l 
s = = 

y n n 

which is simply the sample variance of the y's. 

The errors which are made by these two methods of pre

dictions are reflected by the two quantities s 2 ands 2 
e Y 

We shall now show how these two quantities may be employed 

to define a new measure of the goodness of fit of the 

regression line. 

Let us now consider an example to help us understand 

the merit of these two methods. Suppose we are given the 

foll·owing data which shows the personal savings of people 

of the United States and the number of strikes in eight 

different years. 

Savings in billions of dollars 

2.9 

4.9 

10.9 

16.1 

17.5 

19.0 

11.9 

3.0 

Number of strikes 

2862 

2509 

4288 

2968 

4956 

4750 

4985 

3693 
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We might suspect that if people have a large amount 

of personal savings that there would probably be a larger 

number of strikes, i.e., there exists a linear relation-

ship between personal savings and the number of strikes. 

Suppose you are called upon to predict the number of 

strikes for any one year on the basis of the total savings 

recorded for that year. If we use both methods 1 and 2, 

we must first calculate the regression line and the mean 

of the y's, where y represents the number of strikes. 

A~er some necessary calculations, we find the equation 

' of the regression to bey = 95x + 2852, while the mean of 

the y's is y = 3876, hence using method 2 we see that 

' y = 3876. 

Now to see the relative merit of the two methods of 

prediction, let us compare the vertical deviations from 

the two lines. 

y Number of strikes 

4000 

3000 

2000 

1000 

5 10 15 20 

Figure 11 

25 

Savings in 
x billions of 

dollars 
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Figure 12 

Using the second method to predict the number of 

strikes for a given year, we just compute the average of 

the given number of strikes in the preceding years, i.e., 

' y = y. Now to decide which method seems to have more 

merit, we must remember our criterion for deciding when a 

method is good. We recall that, for a method to be a good 

one, it must minimize the expression 

n 1 2 
z: (y.-y. ) 
i=l l l 

n 

If we consider the two Figures, 11 and 12, we might get 

the impression that the deviations in the Figure 11 are 

slightly smaller than in Figure 12, implying that method 

1 is slightly more accurate than method 2. To convince 
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ourselves that this actually is 

th . 2 d e two error variances, s an 
e 

2 2 

the case, let us calculate 

s 2 • Using the expression 
y 

given earlier for·s ands we find the values to be 

arid 

e Y 

2 
Se = 549,012 

2 
s = 887,200. 

y 

This parallels our previous rough judgment that the first 

method of prediction was slightly better than the second. 

Before we try to decirle how much better the first method 

is, let us consider another illustration. 

Suppose seven students, whose I.Q.'s are known, are 

given a test and the test scores and the I.Q.'s ·are 

as follows: 

Test Scores I.Q. 

22 113 

27 116 

32 119 

37 122 

42 126 

47 129 

52 131 

Using the same methods as before, we must determine the 

regression line, of y or x where y represents the I.Q. · and 

x represents the score on the test. -After some calculations 
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we find these to be as follows: 

y = 122.3 

and 

' 6 . y =. 2x + 99.34. 

The errors which are made by methods 1 and 2 are reflected 

by the vertical deviations from the line in the figures 

below. 

140 

130 

120 

110 

140 

130 

120 

110 

I.Q. 

y 

10 

I.Q. 

y 

10 

20 

I 
20 

30 40 50 

Figure 13 

l l ~ 
r r 

x Test score 
30 40 50 

Figure-14 
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In Figure 13 we observe a small amount of difference 

between the errors of methods 1 and 2, however in t his 

illustration we see there exists a marked difference be-

tween the deviations using the two different methods. The 

two actual error variances can be computed by methods 

mentioned earlier and are found to be 

s 2 = .1584 

and 
e 

2 
s = 38.0. 

y 

This indicates strongly that the predictions which were 

based on the regression line were far superior to those 

which were based on the mean y. 

If we recall how we found the regression line, we 
2 found the coefficients to minimize the expressions 

e 
hence, if we use any other estimate for a predicted value 

2 2 
other than y = mx + b, we see thats never exceeds s 

e Y 
Also, we note that if the regression line fits a set of 

data very closely, the error variance of method 1 should 

be much smaller than method 2. If, on the other hand, the 

~it of the regression line is poor, method 1 provides us 

with only a slight improvement over method 2. This type 

of reasoning and the two preceding illustrations suggest 

a comparison of the given two methods of prediction might 

provide us with a new measure of the goodness of the fit 

for the regression line, which does not actually depend 

on the scale of the y's. 



Now that we have decided to employ 2 
and 2 to s s 

e y 
define a new measure of the goodness of the fit of the 

regression line, we must decide how to define this new 

measure. It has been the custom to define the following 

measure of goodness of fit of the regression line as the 

coefficient of correlation as defined earlier by the 

expression 

r = +1/1-s 2/ s 2 
- f e y 

2 
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As noted before, if the fit is poor, s will be almost as 
2 e 

large ass , so the ratios 2/s 2 will be close to 1 and 
Y e Y 

the coefficient of correlation r will be close to 0. How-

ever, if the fit is good, s 2 will be much smaller than 
e 

2 0 2 2 
s and the ratios /s will be close to 0. Thus the 
Y e Y 

coefficient of correlation will be close to either plus or 

minus 1. 

The coefficient of correlation can be computed by 

using the expression 

r = +~1-s 2/s 2 . 
- .. e y 

However, to computer by this method we note it is neces-

sary to first compute an estimate using the expression 

given earlier for1n' and/Sin the regression line. Since 

the computation of these regression coefficients, 1ri'> and '1, 
involves a considerable amount of work, we search for an 

expression for r which is easier to compute. To avoid a 

good p~rt of this work, we shall now give an alternative 
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expression for r which can be shown to be equivalent to the 

expression for r given on the preceding page. This ex-

pression is as follows: 

nEx,y. - (Ex. )(Ey,) 
l l l l r = ~~~~~~~~~~~~~~~~~~ 

~ nExi 2 - (Ex. )2 I nEy. 2 - (Ey. 2 
i 1 i i 

Many times r is also written in the form 

2 2 

E(x...;x) (y, -y) 
l 

n s s 
X y 

wheres ands are the sample variances of x and y, 
X y 

respectively. 

The coefficient of correlation, with which we have 

been concerned in the preceding remarks, is by far the most 

widely used measure of the strength of the linear relation

ship between two variables. It not only expresses the good

ness of the fit of the regression line, but it also tells 

us whether or not it is reasonable to say that there exists 

a linear relationship (correlation) between the two vari

ables x and y. The magnitude of r determines the strength 

of the relationship, whereas the sign of r tells one 

whether y tends to increase or decrease, with x, i~e., 

if y increases as x increases, or decreases as x decreases, 

then r will be positive, wpile if y decreases as x in-

creases, or increases as x decreases, r will be negative. 

If the numerical value of' r, which has been computed from 
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a certain set of data, is close to O, we say that the re

lationship is weak or nonexistent. If r is close to either 

+ 1 or - 1, however, we say that the relationship is strong, 

with the tacit understanding that we are referring to a 

linear relationship and nothing ~lse. 

Let us now calculate r for the two examples presented 

earlier in this chapter. We must first determine whether 

r is positive or negative. As mentioned on the preceding 

page, r is positive if x increases as y increases, hence 

from the data and regression line we would surely agreer 

·should be positive. In the first example, employing the 

expression 

we get 

2/ 2 s s 
e Y 

549,012 = .62 
887,200 

whereas in the second illustration the value of r is 

given by 

r =i 1- .158 
JS.O 

= .9913. 

The value of r for the two expressions shows what we had 

suspected, namely, that the relationship between the test 

score and I.Q. is very strong (at least for this particular 

group of students who were included in this study) while 

the relationship in the first illustration does not show a 

strong linear relationship. We should note that we used 
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in both illustrations samples which were too small to 

permit us to make far-reaching generalizations, thus con

fining ourselves to descriptive statistics, we can safely 

say only that the second set of data fits a regression line 

much better than the first. This does not reveal to us a 

great deal of information about the variables. However, it 

is about as far as we can go without assuming the risk of 

inductive generalizations. 

It is always advisable to be extremely careful in the 

analysis and interpretation of the value of r which has 

been calculated from a given sample. The interpretation 

of a correlation coefficient as a measure of the strength 

of the linear relationship between two variables is a 

purely mathematical interpretation and is completely devoid 

of ·any cause or effect implications. The fact that two 

variables tend to increase or decrease together does not 

imply that one has direct or indirect effect on the other. 

Both may be influenced by other variables in such a manner 

as to give rise to a strong mathematical relationship. A 

classical example, mentioned earlier, illustrates this. It 

can be shown that over a period of years the correlation 

coefficient between teacher's salaries and liquor consump

tion is .90. However, during this period of time, there was 

a steady rise in the wages and salaries of all types and a 

general upward trend of good times. Under such conditions, 

teacher's salaries and liquor sales would also increase. 

Moreover, the general upward trend in wages and buying 



135 

power would be reflected in increased purchases of liquor. 

Thus, this hi~h correlation merely reflects the common 

effect of the upward trend of the two variables. Hence, 

correlation coefficients must be handled with care if they 

are to give sensible information concerning relationships 

between pairs of variables. Success with correlation co

efficients requires familiarity with the field·of appli

cations as well as with .their mathematical properties. 

Let us consider an example in which we will calculate· 

the correlation coefficient of two variables. Suppose we 

are given·the following data wh:ere x represents the 

father's height in inches, while y represents the son's 

height. 

l 
X 65 63 67 64 68 i 62 70 66 68 67 69 71 

y 68 66 68 65 li 69 i 66 l 68 l 65 i 71 67 168 70 
I ·. l I !. 

We would probably expect that there would exist a strong 

linear relation between these two variables. Let us use 

the expression for r given by 

nz::x.Y. - z::x.z::y_ 
l l l l. 

J 2 2 2 2 
"\;. ( nz::x. - ( Z::x. ) ) ( nZ::y. - ( Z::y. ) ) 

l l· l l 
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To compute these different values, let us construct another 

table which will be useful in computing r. Such a table is 

illustrated below. 

' 
X y x2 . xy y2 

65 68 4225 4420 4624 

63 66 3969 4158 4356 

67 68 4489 4556 4624 

64 65 4096 4160 4225 

68 69 4624 4692 4761 

62 66 ·3844 4092 4356 

70 68 4900 4760 4624 

66 65 4356 4290 4225 

68 71 4624 4828 5041 

67 67 4489 4489 4489 

69 68 4761 4692 4624 
·-

?l 70 5041 4970 4900 

I; X = 800 I: y = 811 I:x2= 53,418 I:xy=54,10? 2 8 I:y =54, 49 I 

Using the calculations we see that r is given by 

(12)(54,107) - (800)(811) 
--------·-··-

_, · 2 2 
-v((12)(53,418)-(800) ) ((12)(54,849)-(811) ) 

= .7027, 
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We can also determine the regression equation very easily 

by using ·these calculations. We see that"rn is given by 

and 

n~X.Y.-(~Y. )(~x.) 
"rri= ll l l 

2 
n~y. - (~y.) 

l l 

= 1.036 

2 ~y ~x - (~x )(~y) 
~ i i i i b = ~~~~~~~~~-

. 2 2 
n ( ~x. ) - ( ~x. ) 

l l 

= ..;3.38 • 

' Hence the regression line is y = l.036x -3.38. So if we 

are given that a father's height is 70 inches, we would 

predict the son's height to bey= (1.036)(70) ~3.38, 

which yields y = 69.14. 

There is little difficulty in explaining the meaning 

of the coefficient of correlation when it is either O or 

+ 1. Since if r = O, we can see that the fit of the re

gression line is so poor that we would be just as well off 

not using it at all in predicting values of y. A corre

lation of +l or ~1, on the other hand, tells us that all 

points fall precisely on a straight line, and we can make 

extremely accurate predictions of y by employing the re-

gression line. However, values of r which fall between 



138 

0 and 1 and O and -1, are somewhat more difficult to ex

·plain. Each time we take a sample of·size n we get an r 

value, which will probably be different in each case. Thus 

we see that r could take on any value between -1 and 1, 

hence r is a random variable. If we view r as a random 

variable it would lead to the question, "What is the 

probability function of r?" • If we could determine the 

probability functions for-r, we would then be in the 

position to make probability statements relating tor. We 

could formulate and test hypotheses and draw other ·useful 

conclusions concerning r. However, a thorough discussion 

of these topics, which can be found in·. several more ad

vanced statistic books, such as one by Mood and Graybill, 

is beyond the scope of this treatise. 



CHAPTER VI 

SEQUENTIAL ANALYSIS 

Thus far in our consideration of testing hypotheses, 

we started with a fixed sample size and from this sample 

we constructed estimates and formulated procedures for 

testing hypotheses based upon this fixed sample size. How

ever, in general practice, it might be feasible to make 

certain statistical inferences based upon a sample smaller 

than the original intended sample. For example, suppose we 

are investigating a certain manufacturing process in which 

we have a criterion for determining whether a produced item 

will be accepted or rejected. Suppose further that at the 

outset we had decided to take a sample of size 100 and if 

we found 70 acceptable items we would continue the process, 

but if we found more than 30 defective items, we would stop 

the manufacturing process and investigate it. If the sam

pling process is extremely costly, we might try to mini

mize the sample size required to test the original hypo

thesis. If, after we sampled 50 items, we found almost all 

of these items were acceptable we might feel we had su.ffi

cient evidence to accept the original hypothesis and thus 

reduce the cost of the sampling procedure. Similarly, if. 

after sampling 50 items, we observed a large part of these 

139 
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to be defective, it seems feasible that we might be able to 

save on both sampling cost and loss of material by discon

tinuing the manufacturing process for investigation. This 

type of formulation of test of hypotheses is called a 

sequential test of statistical hypotheses. We shall de~ 

vote a small amount of time to explaining the basic con

cepts concerning sequential analysis and illustrate by an 

example some theory which will be useful in testing hypo

theses of this type. An essential feature of the sequential 

test, as distinguished from the current test procedure, is 

that the number of observations required by the sequential 

test depends on the outcome of the observations and is, 

therefore, not predetermined, but a random variable since 

for each experiment n may be different. 

Formally, the sequential method of testing a hypothe

sis H may be described as follows: A rule is given for 

making one of the following three decisions at any state 

of the experiment (at the nth trial for each integer n): 

( 1) to -accept the hypothesis H 

( 2) to reject hypothesis H 

( 3 ) to continue the experiment by making additional 

observations 

Thus, such a test procedure is carried out sequentially . 

On the basis of the first observation, one of the afore

mentioned three decisions is made. If the first or second 

decision is made, the process is terminated. If the third 

decision is made, a third trial is performed , and so on. 
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The process is continued until either the first or the 

second decision is made. The number n of observations 

required by such a test procedure is a random variable, 

since the value of n depends on the outcome of the ob-

servations. 

From the discussion above we see that sequential 

· analysis is a method of statistical inferences whose 

characteristic feature is that the number of observations 

required by the procedure is not determined in advance of 

the experiment. The decision to terminate the experiment 

depends, at each stage, on the results of the observations 

previously made. A merit of the sequential method; as 

applied to testing statistical hypotheses, is that the test 

procedure can be constructed which requires, on the average, 

a substantially smaller number of observations than equally 

reliable test procedures based on·a predetermined number 

of observations. 

We shall now employ a method developed by Wald which 

will provide us with a procedure for testing a simple 

hypothesis. This procedure will employ techniques which 

are very similar to the likelihood ratio test discussed in 

an earlier chapter. After giving a formal definition for 

this test procedure, we will illustrate its usefulness by 

considering a simple example. 

If we are given that, for a positive integer n, the 

probability that sample x1 ,x , .. ,X is obtained is given 
2 .n 

by pln when H1 is true, i.e., pln is the likelihood 
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function when the alternative hypothesis is true, and by 

Pon when H0 is true, i.e., the likelihood function"when 

H0 is true, then the sequential probability ratio test for 

testing H0 against H is defined as follows: 
1 

Definition 6.1 The positive constants A and B(B<:A) are 

chos.en. At each stage of the experimeht (at the end of the 

nth trial for any integer n), the probability ratio 

P Ip = R is computed. Then one of these three decisions ln On n 
is made: 

( 1) If B <R:<. A, the experiment is continued by taking 
n 

( 2 ) 

an additional observation (or set of observations) 

If R")>'A, the process if terminated with reject
rr-

ion of H0 (acceptance of H1 ) 

(3) If RI?B, the process is terminated with the 

acceptance of H . 
0 

If, for a particular sample, p = p = O, then R is 
. ln an n 

defined as 1. 

If, for some sample, P1J> 0 but Pon= O, the inequal

ity Rn>A is considered fulfilled and H0 is rejected. 

One of the first questions which comes to mind is, 

"How do we determine these positive constants A and B?" • 

A complete discussion of the derivation of these constants 

can be found in [6]. This derivation is beyond the scope 

of our treatment and hence, we shall only state and use 

the results. The constants A and Bare determined accord-

ing to the desired values of a and b, where a is the 
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probability of making a type I error, i.e., a is the 

probability of rejecting H0 when H0 is actually true, and 

bis the probability of making a type II error; i.e., bis 

the probability of accepting H0 when it should be rejected. 

Usually when we are engaged in an experiment, we have al

ready determined in advance the values of a and b whi,ch 

will be used, hence, if we know how A and B depend upon 

a and b, we could determine A and Bin advance. It can be 

shown, [6], that a and bare known functions of A and B, 

and a very simple but accurate approximation is given by 

the following: 

A= 1-b 
' --

b B--
1-a 

This definition is very long and involved sd let us 

now consider .an example which will 'help us to recognize 

its usefulness. Suppose you are in the manufacturing 

business and you have a machine produc·ing certain items. 

Suppose further, that you have decided .upon a criterion by 

which you determine if a product is accepted or rejected. 

Let us define a random variable to help us determine a 

probability function which describes this process by 

letting x = 1 if the item is good,and x = 0 if.the item is 

rejected. The probability function which gives the desired 

probabilities is given by f(x:p) = px (l~p)l~x ,x = 0,1 
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where p represents the true proportion of good items of 

any given number of items. 

To apply the procedure mentioned at the outset of 

this chapter, we must determine A and B mentioned in defi

nition 6.1. Suppose we agree that we can tolerate a type I 

error and type II error of a= .05 and b = .05. Thus we can 

calculate A and B which are given by 

and 

A= 1-.05 
.05 

B = .05 

1-.05 

or A = 19 

or B = .053 

Suppose that the desired test of hypothesis is given as 

follows: 

H :p = .7 
0 

H :p = .3 . 
1 

Suppose you take a sample of size one and observe 

that it is a 1, i.e., an acceptable item. We might be in

clined to think that on the basis of this observation 

that our sequential probability ratio test would yield a 

value which would lead to the acceptance of H. Let us 
0 

compute R and see if this is actually the case. Now R 
1 1 

is given by 

R = 
1 

1 0 
(.3) (1-3) 

( • 7) 1 ( 1-. 7) O 



Hence 

R = 3/7. 
1 
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But B <R-< A, hence we must make additional observations. 
1 

Suppose you take nine more observations which turn out to 

be given as follows:(including the first observation taken 

before) 

(1,o,1,1,o,o,1,1,1,1) 

Now R10 is given by the following expression: 

(.3) 7 (1-.3) 3 

( • 7) 7 ( 1-. 7) 3 

Simplifying, we get 

and 

R = 
10 

(.3)7 (.7)3 

(.7)7 (.3)3 

Thus we see that R <: B, hence we would accept H :p=.7. 
10 0 

From the above discussion, we see how useful this 

type of test of hypotheses can be in applied problems. 

Our aim in the treatment of the procedure here is to ac-

quaint the reader with some of the basic techniques which 

can be implemented in testing hypotheses of this nature. 

A more advanced and complete development of the theory 

concerning this concept can be found in [6]. 
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