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GENERALIZATIONS OF CONNEXIONS ON
MANTFOLDS AND SUBMANIFOLDS

CHAPTER I
INTRODUCTION

The principal object of study in the following work
is a connexion on a differentiable manifold. This concept
‘is a very old one, having its origin in the work of Levi-
Civita on paréllel displacement, and its roots in the geom-
etry of Euclid. Loosely, a connexion is a structure on a
manifold which permits one to compare tangent spaces to the
manifold at different poin.i:s° It has been employed in
classical differential geometry in a two-fold manner: to
define a parallelism of vector fields on a manifold, and to
introduce a differentiation of tensor fields on a manifold
with respect to which the derivative of a tensor field is
another field of the same sort.

Suppose that M denote a differentiable manifold
(of class C®), and that J(M) be the totality of C*
vector fields on M. A connexion, in the broadest sense,
is a mapping D: & (M) x (M) -~ ¥E(M). One generally writes
D;Y for the image under D of a pair (X,Y) of vector
fields, Then a field Y € (M) may be styled parallel with

respect to a field X provided I4zY =0, where 0 1is

1



the zero field.

In order to obtain a tensor-differentiation, it is
necessary to place restrictions on D, One class of such
restricted connexions is that of affine connexions, the study
of which has dominated connexion theory since the 1920°s,
A very pleasant discussion of these connexions, and the
theory of connexions in fibre bundles, together with an
historical overview and citations of relevant papers, may
be found in Kobayashi‘s werk [8].

In the present work, three connexion-related con;
cepts are studies: A-~congruences, (and their use in in-
ducing connexions on submanifolds) in Chapter 1I, and non-
linear and direction-dependent connexions in Chapter III.

The A;congruences are believed by the author to be
a new structure, though the idea is based on the classical
concept of a rigging of a submanifold, and is a simple
generalization of the well-known normal distribution on a
submanifold of a Riemannian space, The characterization
of riggings and A-congruences as cross sections of certain
fibre bundles is new, and the derivation of this charac-
terization constitutes a large portion of Chapter II.

Non-linear connexions of a rather restricted sort
have been studied recently by A. Kandatu [7] and by K. Yano
and S, Ishihara [23]. Chapter III begins with an investi-
gation of a more general non-linéar connexion., The study

of these leads quickly inte questions about direction-
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dependent tensor fields on a manifold, and to a theory of
connexions related to such objects, The connexion defined
in this context is identical with an entity studied by
Makoto Matsumoto [9, 10, 11, 12]. It is studied in quite
different a fashion from his approach, however, and is
given an invariant, coordinate-free characterization in
Chapter III, Further, one observes that the rdle played
by the tangent bundle in linear connexion theory is taken
by the square of the tangent bundle in direction-dependent
theory; the results on the square of the tangent bundle
are all new,

Throughout, standard techniques of differential
geometry are used. Notation is frequently heavy, and will
be explained as it is encountered, but in general, the nota-
tion of Springer [19] will be employed for local analysis,
and that of Hicks [5] for coordinate-free analysis, A few
notational peculiérities should be noted, First, in a
bundle (P,p,B), if a function g:B -+ M (M a manifold) is
under discussion, the function g ° p will also be denoted
by &. And in many equations of Chapter III, functions are
denoted by their values at a (generic) point., TFor example,
the expression [(axi/ayj) ° n] Qf will be denoted by
Qf(m,x) axi/ayj. This is not logically proper, but it is
convenient, and is occasionally done to emphasize domains,
In a similar manner, pointwi (s 5101 i1l sSomevimes

fail to have the point of evaluation expressed, where this
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is obvious, Purists should have no especial difficulty in
rewriting such statements in a more precise fashion, and
it is to be hoped that less careful readers will not be lead
into confusion by these devices,

The word "differentiable" will always mean C%,
Occasionally, the useful phrase, "over & coordinate patch
U on M", will be used prior to a piece of local analysis,
in place of "over a coordinate patch (U,p) on M with

xt = ut e Qs u' being the canonical coordinate maps of

R™, This will be done only where no confusion will result,
The same phrase will be used if the analysis is to be done
in n'1 (U), where n:P - M is the projection map of a
bundle with total space P over N,

Displayed equations or expressions are numbered
serially in each section, as are lemmas and theorems., If
Theorem 2 of Section 5, Chapter II, is referred to in the
section in which it first appears, it is called "Theorem 2",
If it is referred to in another section of the same chapter,
it is cited as "Theorem 5.2", and if mentioned in a dif-

ferent chapter, as "Theorem II,5.2". The same conventions

apply to displayed equations,



CHAPTER II

1) warmhls adas — - wetatadie s Wt

A-CONGRUENCES AND INDICED CONNEXTONS

1. Introduction

Early in the development of differential geometry,
it was recognized that inducing a connexion on a submanifold
of a differentiable manifold with connexion requires an in-
terplay between the tangent spaces of the submanifold and
those of the ambient space, The standard technique of pro-
viding this interplay was to equip the submanifold with a

global rigging (German: Einspannung) [15; p. 234 and p. 158].

et M be a C® m-dimensional manifold and N a

" C® n-submanifold of M. A riggingof N in ‘M is a set

of (m-n) C®, non-vanishing vector fields X, cco, X _, of M
defined over N with the property that, if Y1, ooy Y, are

vectors at p € N spanning the tangent space Np, then

(X1s vees X

men’ Y1, 000y Yh} form a basis of the tangent

space to M at p.

Given a rigging of N in M, a connexion on M in-
duces one on N by decompcsition, Unfortunately, many
manifolds do not support a global rigging; the Mobius
band, imbedded in Euclidean three-space in the usual way,
provides an example. But it is always possible to induce a

Riemannian connexion on a submanifold N of a Riemannian

5



6
space M by using, at each point p in N, the subspace
of the tangent space to M at p consisting of vectors
normal to Np with respect to the Riemannian metric, For
one may simply split the covariant derivative into its nor-
mal and tangential components [5; p. 75]. The A-congruences,
defined in section 2, are an obvious extension of this nor;
mal splitting,

In section 3, existence and uniqueness of A-con-
gruences are discussed, and section 4, the main part of this
chapter, is devoted to a characterization of both riggings
and A-congruences as cross-sections of certain fibre bundles,

Sections 5 and 6 are given to a consideration of the
connexion induced by a A-congruence, and concepts related

to it.

2, Definition of a A-congruence,

Let M be an m-dimensional C® manifold, and N an
n-dimensional C® submanifold of M. ILet A be a function
which assigns to each point p € N a subspace Ap of Mt
(the tangent space ot M at p) such that Mp = Ap ® N

b
(direct sum), Then A will be called a A-congruence., The

A-congruence A 1is said te be C® provided it has the

C® splitting property for vector fields, as follows:

Suppose X is a C® field of vectors in M de-
fined on a neighborhood U of N; that is, each point of

U has a neighborhood V. £ U such that X extends to a
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C® field on & neighborhood V in M with Vn N 2 V. For

p € U, ths definition of A shows that

(1) Xp = Ap +,Bp,

where Ap € Ap and Bp € Np. Then A has the C® splitting
property provided the vector fields A and B defined by

(1) are C* on their domains, for every such field X.

3. Existence and Unigqueness of A-congruences

The following theorem is trivial:

Theorem 1: If N is a C® submanifold of a C®, para-
compact, Hausdorff manifoid M, then N supports

a (C® pA-congruence,

Proof: Since M 1is paracompact and Hausdorff, it
supports a Riemannian metric tensor <,>, and the normal
distribution to N is defined. The normal distribution has
the C® splitting property [5; pp. 75-~76], and is therefore
a C° A;congruence. Q.E.D,

A more interesting question is: +to what extent does
Theorem 1 characterize A-congruences? In other words, is
EVETY A;congruence oin N +the normal distribution over N
defined by some Riemannian metric on M? 1In general (not
t0 keep the reader in suspense) the answer is "No», But,
for a large class of submanifolds, one may give an affir-

mative reply.
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Call a C® n-submanifold N of a C® m-manifeld M
widely imbedded provided that, for each point p € N, there

exist special coordinate neighborhoods U and U about p,

on M and N respectively, such that UnN="U, Recall
that a special coordinate pair E,U consists of a coordinate
patch (U,p) on H with o uto ©, where ul are the
canonical coordinate maps on Rm, sych that, if

U={q€le3 () =0, J =n+ 1, coo, m},
then U 1is a coordinate neighborhood on N with coordinate
maps §1|U, cons §n1U. The following easy lemma shows that
the property of being widely imbedded characterizes sub-

manifolds with the subspace topology:

Lemma 1: Let N bhe a C® n-submanifold of the C* m-mani-
fold M., Then N 1is widely imbedded in M iff N

has the subspace topology inherited from M,

Proof: The necessity of the conditiocn is trivial,
To show sufficiency, let p € N, and let (E;;) be a co-
ordinate patch on M such that (U,p) is a coordinate patch

on N, where

U={q€.{f!uao$(q_)=o,j=n+1’ Q.O’m}

and @ : U~ R :: ®(q) = (u" o 9(a); ceo, U  ° (q)). These
a

exist since N is an n-submanifold of M

-~

Now U 1s a neighborhood of p in N, and since N
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has the subspace topology, there existg an open set '\_I-o in
M such that Vo ANEU. Let V= Vo n ff, and consider
(V,y), where V = '{5]7. Then since domain(¥y) is a subset of
domein(gp), and § and @ are C%-related, (V,y) is a

coordinate patch on M, For the same reasons, (V,y), where
V={qgeV | wd o ¥(q) =0, j =n+l, eeo, m}

and where § = q)|v9 is a coordinate patch on N, Note that
V=VnAN., For that VEV NN is trivial, while, if

@ € VNN, onehas from the definition of -\'f,

Q€EVANN=V, NnUNNET,

Thus V2V AN, and V=V AN by double inclusion, Be-
cause p was an arbitrary point of N, N 1is widely im-
bedded in M. Q.E.D.

One can now prove:

Theorem 2: Let N be a C® n-submanifold of the C®
m=manifold M, such that N is a closed topological
subspace of M, and M 1is paracompact and Hausdorff,
Then every C® A-congruence to N 1is the normal

distribution to N of some Riemarmian metric on M,

Proof: Let U and U be special coordinate neigh-
borhoods on M and N respectively, with T nNN=0U, These
exist about any point in N by I.t;,mma. 1. ILet o: U -R" be
write ¥ = ut o o for

i = 1, ceey I, and let x~ = EG.IU for a = 1, ceocy I, In
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what follows, lower case Roman letters will take on values
from 1 to m; lower case Greek letters from a through )\ will
take on values from 1 to n; and lower case Greek letters

from y onward will take on values from n+!1 to m.

-

o

Let —, i=1, ..., m, be the coordinate vectors
a-i
x

on E, and for p € U, let- Ap be spanned by vectors

=1, °
(1) L, = 8T (P)) eoey 3:"‘(19));?,L

-1 >
+ QYEURYs wees TR =, s

so that gg and ct are C® R-valued maps on U, In-

troduce a mapping 9: E(E) - B® by
(2) B(F yeeesd™) = (3 + y“gl(y1,o-o,yn), coss YO
+ y“gnu(y1,...,;¥n) '
y“cﬁ+1(y1,...,yn),..,,y“cﬁ(y1,...,yn)).

Write z'-j = u:j o §, and notice that the determinant of the

-

i

z~ ] . _

matrix is given at (yn"” = ocee = ym =0) by
y

[}

[+ %4
[



: ‘0 # [(uﬁ Cooe ‘aﬁ)go] 18D

l:[(TIK Cooo ‘LK);:O] [(IIK Cooe 4L£):':g]]iap
(o] I

[cﬂQ] (O.:m‘{___... L+u£)

19p
7 (€)
J0
m ¢e 0 m LK N J ]
w’ Lu° £ | 2z 12
u L N u I!+ [N X ] l+ L+
w’ P+’ e 7 e
e ke e A8 oA
——— f‘l'K coe “K P ﬂK+L [ N ) —— ﬂK — ﬂK
ﬁoe n ﬂSQ ﬁ? “S
o L+ o 7€ 3¢
 £e ke ke fe Ke
——— K se e K —— K see K mt— K.‘.L
ﬂoQ " ﬂoQ " ge " ﬂ?Q " ﬂSQ "
o L+u 2 A _L
(0 = mK - 009 = l+u£)
18P

L
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the final statement following since L and 3/3x* form a
linearly independent set of vectors at every point of U,
It follows from (3) that in a neighborhood Q of the slab
(T eeer ¥ €0(D) I ¥ o .. =y"=0}, o is in-
vertible, Since ¢ is C%, 9-1 will be so also. One may
assume 0(Q) S;(E), as this can always be arranged,

Now define ¥: o '[8(Q)]~R® by ¥ =o' o, and

~write ¥ =u' o ¥. One has

(4) ?'U . R ;|U =%, a=1, ..., n,
and
(5) i‘-l'U:uu:° 9_1°;|U=0, ‘J:n'l'*‘l’ eeey I

Equations (4) and (5) show that the maps ?i form a special
system of coordinates for M and N, Write v =T"1(Q), 80
(V,'f') is a coordinate patch on M,

Since ¥ is a diffeomorphism of its domain onto its

range, ¥. is non-singular, Suppose p € Vn N; then one

*
has
-] -}
—| = ()" —
379 * au’
P ¥(p)
(6) 3 _ d
AR A -
3(p) P
-] s -]
= -—j-(ulo e) ':i' °
ou Tl w) oxX n
Y\¥J r
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ut 4 u"g&(u1,...,un) if i=1,40e,n

uu'c&(u‘l’...’un) if i=n+1,ooo,m.

Therefore, in particular,

(8) 3 [gia(n1,...,un) if i=1,e0e,0,
—— (ui ° e) = u
auM es(u1,...,un) if i=n+l1,.00,0,

so that one has for p € V N N,

(9) @ d . d
—| = &E @, )= + YE @) B ) —
T, %" ox”

or

(10)

2 L
M_’ul = 1,(p).

p
It was precisely to obtain (10) that the definition (2) of
6 was given, The effect of ¢ is to normalize the A-con-
gruence over the patch V.
Introduce a local metric tensor <, >Tf , defined on

v by requiring that § be an isometry. Note that, from
(10),

o
(11) <L § == >_=0,

" —
axa v

so that A is normal to N in V, re the metric <,>_,

Cover N by coordinate neighborhoods {(VY,.;Y)} ’
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where G is an index set, and each pair (VY’;Y) is con-
structed as (V,;). above, Each VY may be taken to be

open; hence, the union y V_ is open. Now, N is closed,
yEG
end M, Ybeing a Hausdorff, paracompact manifold, is normal,

so that there exists an open neighborhood S of N in M

such that

(12) S s v v,
vee Y

vwhere Cl denotes the topological closure, Then M ~ Cl(§)
is an open subset of M and can be expressed as the union of

coordinate patches {(56,;6)} __,» Where G’ is an index
°b€G

6
form an open cover of M which may be assumed locally finite,

set disjoint from G, The totality of patches VY and U

by the paracompactness of M. ILet <,>Y,yeG, be local

metric tensors defined on VY for each yeG, as <,>_
v

was defined for -\7. And let <,> for 6€G’, be a metric

6’
tensor defined on E& by requiring that q? 5 be an isometry,
for each §€G’,

Next, let {g :V -1 U { :E - 1} be a
’ y iy " €G %' 6 €6’

Y
C*® partition of unity subordinate to the cover
{V} v {ﬁa} of M; here, I is the unit interval,
Yyee s€G’

[0,1]. Define

(13) _
<,> = Z gy <>y + Z 8y <1>g o
YEG 5€G’
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Then <,> is a Riemannian metric tensor for M, If p € N,

% € Ap and Yp € Np, then for y € G such that p € VY’

one has <XP,YP>Y = 0 by the construction of <’>Y’ as. in

(11), And for y € G such that p £ Vy, g,(p) = 0. Since
peEN, p £ E& for every & € G', and ga(p) = 0; ‘therefore

(14) X, Y > =0,

and A is the normal distribution to N induced by the
Riemannian metric <,> . Q.E.D.
Two examples will be presented to show that the

hypotheses of Theorem 2 are critical, First, consider the

case in which M = R2 with the usual structure, and N is

1

the open unit interval on the u -axis, Note that N has

the subspace topology, but fails to be closed, For a A-con-
gruence, take at the point (v.1 0), 0 < u! < 1, the sub-

space spanned by the vector

(15) d

a -
=u — + (1-u1) —_—
(u',0)
! du du

Suppose X is any C® vector field on N; then X may be

written

(16)

1. d ;. d
X =h(u') = + k(W) ~—,
(u’,0) du 5u2
end (15) and (16) yield
(17) k(u1) 1. k(ui)(l;ui) 3
X ¢ ==L 4 ~+ [h(u ) - ] .
u ,0) al (u’,0). ul au1
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From (17), we see that the A-congruence so defined splits X
into two C® fields on N, since (0,0) £ N. If <,> be
any Riemannian metric tenser on M such that A 1is normal

to N under <,>, one must have

(18) ? 1
y —> = (U =1) € —m) —>,

1
(u’,0) au1 du  au

0 = <§

2 3
1 1

N

Since <,> is C® on R", (18) must hold in the limit as

u1 tends to zero:

(19) : d d )
1im L 1 g ———> S - Cmmm—y —D = 0.
u1~0 (u,0) au1 au1 au

But (19) contradicts the positive;definiteness of the
Riemannian metric, and it is seen that A is not induced
as the normal distribution to N of any Riemannian metric
on N,

The next example is closed, but fails to have the
subspace topology. Let M again be 32 with the usual
structure, and let N be the disjoint union of a denu-
merable set of real lines, imbedded in M as lines perpen-

dicular to the u1

-axis, and crossing that axis at points
(1,0), (3,0), (3,0), etc., and at (0,0). Define a A-con-
gruenca A by using as a basis at each point p € N the

vector Lp given by
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(20) d 3
=——-+—-—’
1 2

L
1 2

t—— o

L
(0,u°) 1

A
N

That this is a p” A-congruence on N is trivial,
If <,> be a Riemannian metric tensor for M with

respect to which A is rormal to N, one must have:

(21) 3 |
< -'_->=0’

L \

for every k. Then

(22) . . d
lm <L 1 9 —-> - ’
while
(23) , ° 9 .} ) -}
<L 1 ) — = Ky —D G Ky ———D
€/ k’Ao) au2 au1 au2 au2 au2
From (20) ° 3
LD SR — = 0, so that (22) and (23)
au' au? (0,0)
together imply
(24) 3 )
ey > =0,
2 2

X - - - ax ‘s ‘s
winich again contradicts the positive-definiteness of the

tensor <,>, Again, one concludes that A 1is not normal



18
to N re any Riemannian metric on M.
It is to be noted that Theorem 2 applies to any com-

pact submanifold of a paracompact Hausdorff manifold,

A A -~ ————
4, A=-COngrusnces as Sect
==

The objective of this section is to show how both
riggings of, and A-congruences to, a submanifold of a dif-
ferentiable manifold can be regarded as cross-—-sections of
certain fibre bundles, The appropriate bundle for riggings
is developed from the Stiefel bundle of k-frames over a
manifold M, and that for A-congruences from the Grassmann
pundle of k-planes over M, The Stiefel and Grassmann
bundles and spaces will be described as they are encountered,
primarily in order to fix the notgtion,

One begins with the Stiefel bundle; the exposition
will follow, roughly, the treatment of Steenrod [20, p.33].

A k;frame, vk, in R® is an ordered set of linearly
independent vectors in R®; one writes v = (Vis eees vk).
Any fixed k-frame vf can be transformed to any other by
the action of some element of the full linear group on
R®, G1(n,R). Let v;:(Rn) be the set of all k-frames in
Rn, and let Gn,k be the subgroup of Gl(n,R) 1leaving -

fixed each vector of a fixed k-~frame vf. Then Gn k is a
?

closed subgroup (the isotropy group of vf) of Gl(n,R).

Suppose Vv € Vi \R7J; ass iate wig vk an

element ¢ € Gl(n,R) such that o(vf) = vk° If



19

r € Gl(n,R) also maps vf to vk, then ¢
1

1 T leaves each

vector of V& fixed, and o

o T € Gh,k‘ Also, if

then T(Vf) = vk.

T € GL(n,R) is such that o 't € G,
?

The association
(1) ¥ < Gp,ic € GL(0,R)/Gy
is a bijection, which will be denoted by ¢; thus,

(2) p: Vy (R") - GL(n,R)/Gy s «

Since the quotient space in (2) is a C® manifold, Vé (R%)
inherits a C® structure when it is required that ¢ be

a diffeomorphism; then, Vi (R®) becomes an nk-dimensional
C*® manifold.

Let L denote the subspace of R spanned by the
vectors (§k+1, veey €,), wherg- (€5 oeey €;) is the
canonical basis of R, Henceforth, the first k vectors
of this canonical basis will be taken as the sténdard ref-
erence frame vf for _Gn,k° Thué; a representative of a
k:frame (giEj, cosy giaj) is a matrix with the first
k rows given by g&(j =1, ceey N3 @ =1, seey k), and
other entries arbitrary,

Notice that in the writing of matrices, the upper
index has been taken as a row;counter, and the lower index

as a column-counter., This convention will be adhered to

unless it is specifically noted otherwise,

B

Vé (Rn) consisting of all k-frames which span subspaces



20
complementary to L, that is, subspaces H such that R

may be expressed as L @ H. One has the easy

Lemma 1: The set Q (R®) is open in Vé (rR™).

Proof: The natural projection
n: GL(n,R) - G-:L(n,l.i)/(}n,k is an open map (see, €.8.,
[2; p. 37]). Say o € Gl(n R) represents an arbitrary,
but fixed, point v%o) ), ey vﬁo)) € Q (R"). Then
the subspace spanned by V%O) meets I trivially, Since
1L is itself closed in R®, there is a neighborhood V of
¢ in Gl(n,R) such that, if 1 € V, then the subspace of
R® spanned by T(V%o)) meets I trivially. Then
@ ' o m (V) is a neighborhood of vk in Vé (R™), each
k;frame in which spans a space méetlng L trivially, so
@'1 o (V) Qe (R®). Hence Qe (Rp) is open in Vi (Rn)

as claimed. Q.E.D.
Corollary: Q. (Rp) is an open submanifold of Vé (R™).

This is immediate, since any open subset of a C® manifold

inherits a C® structure., The manifold Qe (Rn) will be

the fibre of the bundle whose cross-sections are riggings.
Because of the manner in which a C* structure is

defined for Vﬁ (R®), the group GL(n,R) acts to the left

on Vé (R®) in a C® manner; to be precise, if

g, T € GL(n,R), then o(r G, ) =071 G Jk* This action

is carried to Vé (Rn) via the diffeomorphism o.
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The bundle of bases over M, where M is a C®
n;ﬁanifold; is a principal C® fibre bundle over M with
structure group Gl(n,R); accdrdingly, one defines the
Stiefel bunale of k-frames over M as the fibre bundle with
fibre Vé (R®) associated to the bund;exofvbases over
M [1; pp. 45-49]. |

Recall that the bundle of bases over M has total
space B(M) given by ‘

(3) B(M) = {(m, 91’ seey € ) l m € M, (31’ eoey € )
an ordered base of M L '

It also has projection p:B(M)-M :: p(m, €11 soey en) = m,
and right Gl(n,R)-action defined by

i
(4) (m, €19 ceey © ) ¢ = (m, 01910 ooy 0 ),

where o (o ) € Gl(n,R). Over a coordinate patch U with
coordlnates x:L on M, a point (m, e1, cecy € ) € p 1(U)

has coordlnates (x (m), eoey X (m), g1, 0soy 51, 52’ coey
gz, ooo,‘gn’ oeey gn), where. ei = gi-a-}ac—:l .

! Properly, one should say here that the point
= (m, €y seey € ) € p~*(U) has coordinates
(x (D), oeey T(D), € (D), oeey E2(D)), where
X p~*(U) » R s X = "X o D, and g t(v) = g , Where
. g: 3/3x* , .Thus the slot-functions of the coordinate map
are maps on p<*(U), as is correct, However, for convenience,
the functions X! will be written x', the appropriate do-

main being clear from context, and s1m1'|a.r'lv for g

- asa W ee= DTS [EALLLSL LR

This, convention will be employed whenever coordlnates

in a bundle are defined using lifts of coordinate domains in
the base manifold. ’
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The total space of the Stiefel bundle, which will be
denoted by Vé(M), is given by

(5) V(M) = (B(M) x V,(R"))/G1(n,R),

’oh
(n,R) acts on B(M) x V. (R") vy ofp,

for ¢ € Gl(n,R), p € B(M), and £ ¢ V. (R®). Association of a

~‘1r\
~77?

Y = (e
-~/ \MV Vv

point in space VQ(M) with a k-frame in the tangent space of
M at the base of the fibre on which the point lies is accom-
plished by considering structure maps over coordinate patches
on M. Let U be a coordinate patch on M as above, and let
n’:Vé(M) - M be the projection of the Stiefel bundle, Then
the structure map Eﬁ g (q’)'T(U) - Vi(Rn) is given by
- d S .
‘ 1 1 j— Iz -
FU[(mr h1 """"axiv 000y hn -a-x—l), (g1ej’ 000y gkej)) G1l(n,R)] =

Tt J - t  J=
(hj 81 €gy coey hj &x et)‘

Over U, Fé shows how the required association may be made;
indeed;, if one chooses as a representative of a point of

Vé(M) the point

(7) i - - -
b= ((m, h1 ‘a";';‘i'g 0o h;; ‘8;-1'); (819 co0o0y ek))
in B(M) x V,(R"), then (6) shows that

FI} (b G’l(n,R)) - (h?].- .é-ig ooy h _e.-) °

1

b

Thus, one may associate the point b Gl(n,R) with the
k-frome (h% a/éxi, ceay h; a/axi) in Mm’ and this corre-
spondence is well-defined over U.

Now, in order to construct a fibre bundle with fibre
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Qk(Rn), one must select an appropriate structure group.

Let G, be the subgroup of Gl(n,R) which leaves the

subspace L spamned by the vectors (Ek+1, ceey €7) in-
variant, Then G, . . 1is a closed subgroup of Gl(n,R),
. . .

hence, a Lie group [2; pp. 123-125], and elements of G
’ ?
send k-frames spanning complements to 1 i R© %o other

"L-complementary" k-frames, Since G acts on Qk(Rn)

n,n-k
by restriction of the Gl(n,R)-action on Vﬁ(Rn), the
qn‘n_k-action is C®, It is to be noted that this action
?

is not free,

The total space of the desired bundle for riggings
can now be obtained, uSing the structure maps Féo Indeed,
let N be a C® (n-k)-dimensional submanifold of M. Let
g denote the Stiefel bundle of k-~frames over M, and
i: N - M the inclusion map. Attention is now restricted to
the bundle over N induced by i from g, which will be
denoted by i*g. This may be identified with the restriction
of g to N [6; p. 19]. The total space V;(N) of i¥eg
is given by

(9) VE(N) = (((D) €4y eoes &)y (87 Typ ooy & ;) GL(0,R) € V(M) |

p € N} .
Let (ﬁ,w) be a special coordinate patch on M, with

x. = u. o ¥, sSo that
(10) U={qeU | x(a) =0 for j =1, cou, k)

is a coordinate patch on N with coordinate maps
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ik+1|U, ooy xnlU._ Let N be cqvered with such special
coordinate patches U, Let m be the projection of i¥*g,
and introduce structure maps G’ : F'q (U) - Vi(Rn) for
8)
i*g by G’ =F_e° i’, where i’ : Vi(N) - v]':(m) is the
U 1)
inclusion map, Then, '
(11)
.1 i i i i i—
G’{J[((P’IL] 3/3x", ‘onhna/ax )s (81 €i9 000y gkei)) Gl(n,R)] =
i j= i j=
(hj €1 €i1 eees hj gk ei}'
Now, Gﬁ is C®, and hence continuous, on its domain, The
manifold Q(R") is open in VZ(R"), so Gﬁ'1 (Qk(Rn)) is
oven in '1_7-1 (U), and therefore, since F'1 (U) is itself

open, open in VE(N). Thus, if Q. (N) is defined by

(12) Q(N) = LUJ 6 ™1 (Qu(RY)),

where the union is taken over the special coordinate cover,
one has thaf Q(N) is an open submanifold of VE(N). A
éoint of Q(N) over the‘neighbbrhodd U may be represented
by | |

(13) -((P, B/3X1, seey a/axn)’ (8211‘ ai’ ceey gli‘_ 31)) G1(n,R).

Under Gﬁ, the point (13) goes to the point
(é%nnia)m%@hwmmwmmwm)
‘with the k-frame (g% 3/3%, veey gi 3/3x%) in M. Since
the map « : Mﬁ -~ R® vy a(a/Bxi) = Ei
and since N, is spamned by (a/ax*l, ..., a/axp)P by

is an isomorphism,

!

~ the choice of the neighborhoods U, one has that the
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k-frame corresponding to (13) is indeed complementary to Np.
| The manifold Qk(N) is the required total space;
write g« Qk(N) - N for the obvious projection, and notice
that w=Tm so that is €=, |
™ = Tlo,(m) "
A left Gy .y
dgfining it over a special coordinate neighbornood U, and

-action. is defined on Qk(N) by first

then gluing these local actions together by means of tran-
sition functions [6; pp. 60-63]. Over a special patch U,
if o € Gn
(14)
' 1 n i= i
U[((P? /30X, sesy 3/3X), (31 iy eeey & ei)) Gl(n,R)] =

((py 6/31(1, ceey a/axn): (0’; g? Eis eoey 0% gli.e-i)) Gl(I}’R):

,n-k? let

where o= (°§)° Since the Qn,n-k7a°t1°? is C= on
Qk(Bn), this action is C° on pn—1(U) by local triviality,
and by the fact that structure méps commute with actions.
Suppose now that T and V are two special co-

ordihaﬁe neighborhoods on M Qith coordinates (xi) and
(yi) fespectively,_and with U and V the associated
patches on N, Let p €U NV, andlet ace¢ n"1(p) be any
point of the fibre over p. Suppose a has the repre-
sentatipns
(15)

a = ((p, 3/2%'y vesy 3/32%), (&} &5, ouey g §;)) GU(n,R)
and
(16)

a = ((p, 3/3Y "5 oees,3/05™), (h} €y eeey h; €;)) 61(n,R)
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over U and V reSpect;‘.yely. Since a/ayj = (axi/a‘yj) a/axi,
(16) yields

i i

a = ((p, ;}Ta_x—l’ seey gr—a_x-)’ (h_ 0 eeer By ei)) ¢1(n,R)
17 . .
) 2 I L

= ((p, ;'x—,"'! ecey ;?1'): ('3;5 h1 i1 eoey 'aﬁh'k ei)) Gl(nyR)-

From the uniqueness of the particular coordinate exXpression

(13), (17) implies that

(18) . oaxt
gl = o ha 'y
Q aya a

Accordingly, it appears natural to define the transition

function &gy * onv- Gn,n-k by
(19) (5) [axl]
ng‘ P = | — *
d
oy P
The matrix [axi/ayj]p represents a member of Gn nkx BY

choice of the coordinate structure on U and V,
If W is yet another special patch on M with co-
ordinates (zl) and associated patch W on N, and if

peUNVAW, then

[ax™ 2y
gUV (p) - ng (p) —] . l_ '

dYyJ zs
i y' p ]
axt a2yl
LayJ 32 Jp
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or
(20) ggy () ° &yy(p) = gyy (P,

and ggy @are acceptable transition functions, From
(17), it is clear that these maps are compatible with the

local G, , ,~actions defined in (14), so that one has
, D=

Theorem 1: The bundle with base N, totel space QK(N),
| fibre Qk(Rn), and projection § is a C°%

fibre bundle N with structure group Gh

sn=k °
A C® cross section of Ty is a rigging of N

in M.

The last statement of the theorem is immediate from the

construction of ny. The bundle ny may be styled the

Stiefel_Tangent—Complement bundle, or simply STC-~bundle,
over N,

The plan for obtaining a fibre bundle, cross
sections of which will be A;congruences to the submanifold
N, consists of three major steps., First, the principal
Gn’n’k-bundle associated to the STC-~bundle is described,
Second, a particular submanifold of the Grassmann manifold
of k~planes in R® is singled out, and a left Gn,n~k“
action defined on it., Then, finally, the required bundle
will be that whose fibre is this special Grassmann sub-
manifold, and which is associated to the principal
Gn’n_k—bundle over N,

The principal fibre bundle &y associated to the
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STC-bundle is constructed as follows (c.f. [6; pp. 62-63]):

Let Gn ek

[UY} , where G 1is an index set, be a special coordinate
YEG

cover of the submanifold N as described by (10), and define

(21) Z=§2}ny(}nnk,

act on itself by right translation. Let

vwhere @ denotes the disjoint topological sum. A point
Z € 2 may then be denoted by an indexed pair: (m,o)Y

where y € G, m € UY’ and ¢ € G An equivalence re-

n,n=k °

lation R is defined on Z by setting (m,o) and (p,'r)5

R—related provided m=p, and 1T =0+ g g (m). Then the
Yo

total space EN of Ex is given by

(22) Ey = % mod R.

The group Gn n-k acts on EN to the right by
o T

(23) m,o y T = (mpUT)Y [}

whe?e '(T,a')'Y is the R-:equivalence class of (m,c;)Y € 2.
Let q ¢ 2 - EN be the natural projection, and for
each y € G, 1let a, U xGnk"Z be the natural in-
clusion map. If one defmes h S UY X Gn,nwk - EN by
hY =q o q_ s ‘hen hY is a Gn - k-lsomorphism of
U x Gy Dk and gNlU , and requiring the local iso-
morph:Lsms hY to be d:i‘feomorphlsms gives EN the structure
of a C® manifold, and g, becomes a C® principal
Gn,n_k-bundle over N,
Next, the Grassmann manifold Gk(Rn) of k-planes
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in R% will be examined, The approach used here is a mixture
of the expositions of Steenrod [20; p. 35] and Husemoller
(6; p. 13].

The Stiefel manifold of orthonormal k-frames in R,

denoted by Vk(Rn), is given by

(24) Vi(B®) = {(Vqy oeey W) € (57T | <vyy vo> = 8441,

where <,> is the usual inner product in R® ana s%!

denotes the (n-1)-sphere., The space Vk(Rn) has the rel-
ative topology as a subspace of (Sn'1)k. Let <Vyy e0ey V>
denote the subspace of R? spanned by the k-frame

(v1, veey Vk) € Vk(Rn). Then the set Gk(Rn) is given the

quotient topology from the map

(25) o Vk(Rn) - Gk(Rn) $3 e(v1, coey vk) = V45 ooy V>
Lemma 2: The mapping ¢ given in (25) is open.

Proof: Suppose U is an open set in Vk(Rn), and
consigder 6”1[9(U)]° If (v1, cooy Vi) € 9“1[9(U)], then
<Viy eeey V> € 9(U), and there exists a k-frame

(V‘IS 000y vk) E U SuCh that
(26) <v1’ cooy Vk>=<v1, eeoy vk>°

Since U is open, there is a real number ¢ > 0 such that,

if 0 = (Vl X eoe X VE) n vk(gn), where V% is an open

e-neighborhood of V& in s?-1

for a =1y oeoy k, then
(V15 eeey V) €0 S U, It follows from (26) that

vs = og V& , where the lower case Greek letters run over the
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range (1, ooy k), and (og) is an orthogonal matrix, hence,
k

a length-preserving map of R, Define quantities 3% by
2 =0 B - 60' .
(27) % %% T %y
Navt +olra o =N an that
AV Wan W ’ el A g w 1 - ~ - O hdwe w
(28) max

<
€4 < min [e/( o 2, 32 I 32 |}y €]
6ym
Then consider the neighborhood Q of (v1, cosy vk) in

n . 1 k
Vk(R ) given by Q = (Ve X eoo X VGB n Vk(Rn)9 where Vz

1 1

is an open el-neighborhood in s*1 of v, for

@ =1, ceoy ko And suppose that (v1 + 8y ooy Vi + ak) € Q,
so that |aB|2 <e for B =1, ecoy ko Then there ex}sts
an element 7 € Gl(n,R) such that T(VB) =V, + a, o One has

B p
from (26) that

(29) <T(V1)9 ooy T(“—’k)> = <T(V1): coey T(Vk)>e

Write T(VB) =V_+ b, ;s then, since 7 is a linear map,

B
=y _ (= _=a _ = =a
(30) ™(Fg) = 1(5g V) =755 7(v) = V5 + 05 a .
This shows that Fb = Eg a,s S0 one may compute:
2 =5 1| =n | (1) (%)
1P 1" s 854 | oy |l o | 2% 'l (¢ not summed)
2
< 62 | Eg | E’g | {m?]x |an| } (o not summed)
Y

or

lEalz <€ 9



31

from (28). Here, a; = (a(61), cooy a(én)) € R®, It follows
that the point (¥, + By, coey ¥ + B) 1is in U, so that,
from (29), one has Cv1 + 815 ocooy v£ + ak) € 9“1[6(U)].
Thus, QS 6"1[9(U)], and therefore, 6“1[9(U)] is open in
Vk(Rn), which means that 6(U) is open in qk(Rn), by
the quotient topology, and 6 1is indeed ar open map., Q.E.D.

Let 0, S G1(n,R) Dbe the orthogonal subgroup, and
note that On acts continuously and transitively on
Gk(Rn). Let Hn,k be the isotropy group of the k;plane

spanned by (€4, cooy €.); then H is a closed sub-

n,k
group of 0,, and gince 0,, 1is compact, the natural map
Gk(Rn) -0,/ Hn,k is a homeomorphism [20; p. 30]. The
topological space Gk(Rp) is made a C” manifold by re-
quiring this homeomorphism to be a diffeomorphism,

Next, let H,(R") denote the subset of G, (R")
consisting of all k-planes in R® complementary to
L = <Ek+1, cooy €,>. The following lemma is readily es-

tablisheds
Lemma 3: The subspace Hk(Rn) is open in Gk(Rn).

Proof: The space Vk(Rn) is homeomorphic to
On/bn_k, and the natural projection 0, - On/on;k is an

open map [203 p. 34].* Say (V49 oees Vk) € Vk(Rn) spans

‘1The group 0, acts on Vk(Rn), and On;k is the
isotropy group of some fixed element of Vk(Rn)o The nota-—
tion is used because this isotropy group is C®-isomorphic
to the orthogonal subgroup of Gl(n-k,R).
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a complement to L, and suppose ¢ € 0,, Trepresents this
element. Then, since <V, ..., Vi >NL=0 and L is
closed, there is a neighborhood V of ¢ in 0, such that
v € V implies that <T(v1), cooy T(Vk) >N L =0, Then
[V]On_'k is an open neighborhood of (V4, c.sy V) in
Vk(Rn), each element of which spans a complement to L.
Finally, Lemma 2 shows that e{[V]On_k} is a neighborhood
of <V45 ooy V> each element of which is a k-plane
complementary to L, so 8{[VI0, ] E,Hk(Rn), and Hk(Rn)

is open as claimed. Q.E.D.

Corollary: Hk(Rn) is an open submanifold of Gk(Rn)°

This is immediate,

The left Gh,npk

cutting down the Gl(n,R)-action on Gk(Rn); if

-action on Hk(Rn) is defined by

<Vis oeey V> € Hk(Rn), and ¢ € Gn,n-k' then

O<V4yy oeoy V> = <0Vq; cooy OVy> o It is clear that this
action is C®, since the Gl(n,R);action and various ine
clusion maps are,

The C® fibre bundle () with fibre H/(R") as-
sociated to the principal fibre bundle Ey [may now be con-
structed. The total space Hk(N) of this bundle is given
by

(31) Hy(N) = (By x B(BY) / 6y ppes

so that a typical point of Hk(N) is
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(32) (my(07))\s Vg5 wves %) G ooy -

Let UY be one of the patches of the special coordinate

cover of N, with coordinates (xi), so that for p € UY’
. r..1 . -~

the tangent space N_ 1is spanned by (3/3x" 7', ..., a/ax“)po

p
4 ary k-space in M is spanned by

A complemen

(g} 3/axt

This k-plane may be identified with the point

i i . i ix §
s ooy 8 3/3x )pg with (gj) a matrix in Gh,n—k°

B3 Wm0, <e} T5y vees 8 852) Gy oy

in Hk(N); the correspondence is clearly well-defined.

One may now state

Theorem 2: The bundle (, with base N, total space

- n
H (N), fibre H.(R"), and structure group Gn,nmk’
is a C® fibre bundle over N, A C*® cross section

of ¢y isa C® A-~congruence to N in M,

Proofs This is complete when the final statement of
the theorem has been established. From the construction of
D) it is clear that a cross section is a A-congruence; 1t

is necessary to check the C® splitting property.

To that end, let @3z N - H(N) be a C® cross
section of (y, and let T be a C® wvector field along
N in M. Thus, over a special coordinate patch EY on M
with coordinates (xi), and with associated patch U on

N, one has
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(34) : d
P (m) = yH(m) —
X

for m € U, vwhere the R-valued functions ¢i are C* on

U. The cross section & may be written

(35) @(m) = ((m (o3 (m)s J(m)E
J‘} \I!l) = \\mi(éjl)Yi <e1(m)ej$ seoy ek(‘m)ea>) Gn,n—k

over U. Because CD is C®, the R-valued maps
63 (j =1y cooy D a =1, .00, k) 8re C® on U, and since,
for each point m € U, (eg(m)) is representative of a

matrix in @ the matrix (eg(m)) is non~singular,

n,n-k?
where ay, B =1, 200, ko Then Eg ¢ U=~ R are defined and
C® on U, where
(36) 6g(m) 63(m) Y

Now ég(m) is spanned by
(Gg(m) a/axj, 0coy eﬂ(m) a/axj)m, so the decomposition
(37) V¥ (m) = A(m) + B(m)

induced by éy(m) and the tangent distribution over N per-

mits one to write

: .
A(m) =% m) -,
(m) = 2%m) o3(m) —
(38) >
B(m) = y'(m) —,
dxX

where lower case (Greek letters range over {1, cocoy K},

-

lower case Roman range over {1, ..., n}, and upper case
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a I

Roman over {k+1, ...; n}. The coefficients A~ and vy
are to be determined; this is straightforward. From (37) and

(38), one has

vi(m) = yi(m) + A%m) el(m),
(39)

¢P(m) = 2%(m) oP(m) .
Hence
(40) AY = 5% = x%ga'g - 'BE\B( ,
and
(41) o=t - x“eé - - ts‘é‘é‘ei o

Since AY and YI are thus seen to be C® R-valued
functions on U, it follows from (37) and (38) that @ has
the C® splitting property, and is a C® A-congruence, Q.E.D.

The bundle Cx will be callded the Grassmann Tangent-

Complement bundle, or simply the GTC~bundle, over N, The

study of A:congruences per se will be terminated at this
point, though it is to be remarked that one would hope the
bundles constructed to prove of some value in making state-
ments about submanifolds in the context of algebraic to-
pology. In order to make such statements, it would be im-
portant to know much more about the topology of Qk(Rn) and
Hk(Rn)° For example, what can be said about the homology
and homotopy groups of these manifolds? This is a possible

area for future work,
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5. The A-connexion and Union .Curves

It is, of course, the C® splitting property of a
C® A-congruence that makes it a syitable vehicle for inducing
connexions on submanifolds of manifolds with connexion. In-
deed, let M be a C® m-manifold upon which a linear con-
nexion D 1is defined, and N a C® n-submanifold of M,
with A a C® A-congruence on N, If X and Y are (C°®
vector fields tangent to N, one applies the decomposition

induced by A to the field DXY:

(1) A A
DY = DY + V(X,Y),

A A
where (DXY)p € Np for p € N, and Vp(X,Y) €A

. 1t is
D i
straightforward to establish
A
Theorem 1: The function D defined by (1) is a linear con-
A

nexion on N, and V is a covariant 2-tensor

(Cof. [5; Pe 75])0

Proof: Recall that, if S (N) denote the set of all

C® vector fields defined on N, a linear connexion ‘7 on

N is a mapping V/: C(N) x &(N) - 3(N) satisfying the

following axioms:
(2) Vi,y 2 = Vg2 + |2,
V(Y + 2) =V4Y +Vx2,

\wr} - ~ ™ ~
Veg 4 =TVyyg 3,

VX £2 = X(f) 2 + £V 2,
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where X, Y, and Z are in J5(N), and f is any C%
R:valued map on N,
Consider the first of axioms (2); since D is a
linear connexion, if X, Y, Z € 5(N), one has

DX+Y 2=DgZ+ Dy Z, and the decomposition (1) yields

(3) A A A A
Dy.y % =Dy Z+ V(X,2) + Dy 2 + V(Y,Z) .

Therefore, since Np and AP are linear spaces for each

p € N, and since the tangential and A-components given by

the decomposition (1) are unique, (3) gives

(4) A A A

Dxey Z =Dy 2+ DyZ
and
(5) A A A

V(X + Y,2) = V(X,2) + V(Y,2).
In precisely the same way, the rest of axioms (2)
A

are established for D, showing it to be a linear connexion

A
on N, while V is an M-vector valued bilinear map on SE(N),

where (N) is regarded as a module over the ring of C*
R;valued maps on N, and hence 0 is an ¥-vector valued
2-co tensor. Q.E.D.

Note that, in contradistinction to the case in which
D is a Riemannian connexion and A the normal distribution
to N, the connexion % and the tensor e are not gen-
erally symmetrie,

Let attention now be turned to a class of curves in
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N which have been studied rather widely in the case where
D is Riemannian, Suppose that N 1is a surface in R3, upon
which a A-congruence (here, a congruence of lines) has been

defined, Then a union curve on N is a curve on N having

the property that the 6scu1ating plane at each point of the
curve contains the line of the congruence passing through
that point,?

The osculating plane to a curve ¢ : I - N, where
I is a compact real interval, is determined by the tangent
T = g,(d/d%), where t is the usual coordinate of R1, and
by‘the first curvature vector Dn T = k1 N1 of o, where-
ever Dp T # 0, Here, D is the usual connexion on R3,
and N1 is a unit vector, It is possible to choose N1
independently of Dy T, in which case, setting Dy T = k, N,
defines the function k, (55 p. 74].

One has the following result:

Theorem 2: A curve ¢ : I - N, as above, is a union curve

of the surface N re the A-congruence A iff

(6) A
DTT=gT,

where g is a (C® Rwvalued function along o .

Proof: If ¢ 1s a union curve, then at a point

*Pauline Sperry [ 16]. Miss Sperry does not make T
requirement that no line of the congruence be tangent to
but this case is degenerate, and other authors have gen-

erally avoided it, See, e.&., C. E. Springer [17; p. 688].

=2y
o M
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p € o[I], Ap lies in the plane determined by N, and T,
A

so one may write V(T,T) =k T + k, N, . From

(1) - A A
one has
A .

A
Since (DT T)p €N k, must equal k,, and (6) holds with

p’
g = =K.
Suppose, on the other hand, that (6) holds; then one

has from (7) that

(9) A
v(1,7) =k, Ny - g T,

If ky #0, then ¢ is a union cuive, by (9). If, however,
k, = 0, then g =0 also, since VP(T,T) € Ap,
shows that ¢ 1is a straight line in R3, so that the

and (7)

osculating plane is indeterminate, Let the convention be
adopted that su¢h rulings in N are union curves, Then the
argument is complete, Q.E.D, !

With Theorem 2 for motivation, return to the case of
an m-manifold M with linear comnexion D, and an n-sub-

manifold N with A-corngruence A, and define a union

curve of N to be any curve ¢ : I - N with tangent T

which satisfies

(10) A
DTT=gT,
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for some C° R;valued function g along o.l
In the case where D is Riemannian and A the nor-
mal distribution to N, %(X,X) has been called the normal

or asymptotic curvature vector of X, and a curve c:I-N

A
with tangent T such that V(T,T) =0 along ¢ is an

asymptotic line [5; p. 76j. Therefore, in the general case

A
of D 1linear and A a A-congruence, V(X,X) may be styled

the A-relative asymptotic curvature vector of X, and a

A
curve ¢ ¢+ I - N with tangent T such that V(T,T) =0

along o, & A-relative asymptotic line. If and only if

A
Dp T =0, o will be named a A-geodesic.

The following theorem is immediate:

Theorem 3: Let N be a C® n-submanifold of the C°
m;manifold M, where M has a linear connexion D,
and N a C® A-congruence A. Then a curve in N
which is a geodesic in M is a ﬁnion curve in N
iff it is a AQgeodesic and a A-relative asymptotic
line in N, A curve in N which is not a geodesic
of M is a A;geodesic iff (Dg T)p lies in A

b
for each point p of the curve,

It is to be noted that Theorem 3 generalizes well-known
properties of induced Riemannian commexions [5; p. 27 and

Pe T7]e

1This agrees with a generalization for, hypersurfaces
given by Kentaro Yano [22].
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6. Union Connexions

In his doctoral dissertation [3], Roy B. Deal intro-
duced a connexion on a metric surface in R3, the geodesics
of which are the union curves of the surface relative to
some congruence of lines, In a later paper f;éj,

C. E. Springer developed part of a theory of curvature based
on Deal's connexion. This connexion was discovered by

writing the differential equations of union curves in the form

(1) a%g® . ax axP axY
— U (x, =) — — =0
ds ds ds ds

(where x* are coordinates in N), and styling the functions
Ué; the "qoefficients of the connexion",.

In this section, a coordinate-free derivation of a
union connexion for an n;submanifold N of a Riemannian
m:manifold M is given, The local coefficients of this con-
nexion will also be calculated,

Let M be endowed with a Riemannian metric tensor
<,>, and associated Riemannian connexion D, while the sub-

manifold N carries a C® A-congruence A. Then one has
Theorem 1: A curve ¢ : I ~ N with tangent T is a union
curve of N iff |

(2) A A
Dpy T = -<V(T,T7),T>T,

where ¢ is parametrized by arc-length.
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Proof: By definition, ¢ 1is a union curve iff

(3) A
DTT=gT,
where g is a C® R-valued function along ¢. From the

definition of D one has also

(4)

A A
DT T =DT T +V(T,T)o

Because the parametrization of ¢ is by arc-length, T is
a unit vector, and since D is the Riemannian connexion

associated with the metric <,>, one has
(5) <DT T, T> 4 O o
Then, from (3), (4), and (5),

A A
0 = <Dy T, T> + <V(T,T),T>

(6) .
g + <V(T,T),T>.

The theorem follows immediately from (6). Q.E.D,

A\
Accordingly, the union covariant derivative 'DX Y

of a C® vector field Y in the direction X may be de-

fined by

A

(7) o A
Dy Y = Dy Y + <V(X,Y),0>Y,

The cheoice of which slots are to be filled by X and which
by Y in (7) is governed by a desire to have first-slot

linearity; other choices are, of course, possible., From
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(7), one sees at once

Theorem 2: A curve in the submanifold N is a geodesic of

the union connexion relative to the A-congruence A

wihere N is a submanifold of a Riemannian space

M, and the union connexion is defined by (7).

It is to be noted that definition (7) depends
critically on (2), and (2) requires a metric of a fairly
special sort to be defined on M for its derivation. It
would not appear likely that a union connexion could be de-
fined for a submanifold of an arbitrary manifold M with a
linear connexion. The difficulty is, of course, that a union

curve is a parametrized curve, rather than a point set, and

that the function g in (3) can be chosen with great freedom,
in general.

From equation (7), it is a simple matter to derive
local expressions for the union connexion. The conventions
regarding valuation of various indices mentioned in the proof
of Theorem 3.2 will be followed. Attention is now restricted
to a patch U on M with coordinates (xi) and a patch

VEU on N with coordinates (u®*)., Write

(8) .

i J
ij <d/3x", 3/3x’>

and

(9)

a B
€up <d/3u”, 3/3u">.
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It may be supposed that U and V are chosen so
both A and the normal distribution to N have C® bases
over V, with. the normal distribution spanned by unit vectors

N“ (u = n+1, ecoy m), with

(10) i ©
N = £ oo
H H 3x

and A spanned at each point of V by A, (v = 041, oo, m),

where

(11) 2
a K
= ——— c* N
A, =0y - + ¢ Ny

If a vector field X of M defined along V is given by

(12) )
= % (]
X—Oaua'i'P Nl-l’
then
(13) 3
X=1%—+g"*2
au” H

where 1* and g are to be determined. From (13) and (11),

one obtains

(14) d
= (7% — K
X= (1 + u) =t q Cu N, -
Therefore
o _ a _ M
T [+ q U)pp

(15) |
o’ =q"c
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Let C” R-valued functions E: on V be defined by the re-
lation ) ¢ = 67 . Then(15) may be written
qu=E‘:PT7

(16)

o _ a
l T =0 - Eﬁ P ow

which is what is desired.
Now let D be the induced Riemannian connexion on

N. For vector fields X and Y tangent to N, one has

(17) DXY=BXY+VH (X,Y) NU’

where VM are certain symmetric 2-covariant tensors over V
[5; p. 751
From (16) and (17), it follows that

(18) - o 2
_ T 41 T
DXY_DXY-E*T“wuV (X,Y) a—-ua+ VT (X,Y) My o
Write
(19) VT (%,Y) = o X Y8,

where X = X* 3/ou® and Y = YP a/3uP . The quantities Qé;
are the second fundamental tensors over V with respect to
the normals ﬁT of classical differential geometry [21; p.

164]., One obtains from (18) and (19)

(20) A
V(X.Y) =¥ o x% 8y,
‘ T ap TR

which, together with (11), shows that
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(21) A
- oM 4 T Y & B b
<V(X,Y),Y> = cy gY5 QaB w, X" YP Yo,

Therefore, from (18) and (21), one may write the required

local expression:

(22) D, ¥ = x*{ayY/ou” + ana P

_vBaT (sH,.Y - =M € yOyY Y
o (Sral geacTquY)}a/au ,

where fi: are the coefficients of the induced Riemannian

B

connexion f. Write Y - ¥ wY; then the direction-de-—
Ay T M

pendent "coefficients of the union connexion" can be picked

off from (22) and written in the form

(23) T‘JB(m,Y) = I“'GYB - 04 (af - g4 af Y ¥Y).

A
Note that the coefficients of the linear connexion I are
given by
(24)

A -
Y - 1Y T 4Y

These are to be compared with coefficients introduced by
K. Yano [225 p. 55].
If, using (23), one writes the differential equations

of union curves of N after the form of (1), he obtains
(25) a%u® —a P auY

——— 4 T o —

as2 " PY gs as

aud a® auf auY
€ —_— — =0

- (¢* -8, qf — — =
By ~ 7 €0 7T 35 as ds ds
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which are precisely the differential equations of union
curves of a subspace of a Riemannian space as derived by
T. K. Pan, who begins from another definition than than em-
ployed here [13].
The introduction of the union connexion D permits

yet another decomposition of the vector field DX Y,

where X and Y are C® fields on, N:

(26) o A A

Dy ¥ = D Y + [V(X,Y) - <V(X,Y),¥>Y].

Write U(X,Y) for the quantity in the square brackets in
- the right member of (26)., Then U(X,X) may be styled the

1
relative curvature vector of X, and <U(X,X),U(X,X)>® may

be called the relative curvature of X, Also, a curve in N

with the property that the relative curvature of its tangent
vector is zero at each point of the curve might be called a

union-asymptotic curve of N; +then (26) shows that a curve

in N is simultaneously a union curve and a union-asymp-
totic curve of N iff it is a geodesic of M.

From (11), (20), and (21), one observes that U(X,X)
is given in local coordinates by

(27) U(X,X) = o %P XV (o - of g, X° X*} a/eu”

BY 6

T vB ¢Y
+QBYX X NT°

From (27), one may recognize that U(X,X) coincides with

an identically named vector described by Pan [13; p. 7].
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It would be possible to continue with the discussion
of the union connexion, but the writer prefers to pass now
to a consideration of a class of connexions which will in-

clude the union connexion as a specific example.



CHAPTER III
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1. Introduction

Recently, K. Yano and S, Ishihara, and A, Kandatu,
have studied what they refer to as a noaninear connexion
on a differentiable manifold [23, 7]. This is defined by a
distribution on the tangent bundle, transversal to fibres
over the base manifold, and invariant under the action of
the group of non;zggo real numbers. Much of what these
workers derive is not actually dependent on this invariance
condition, Whicﬁ is reflected in the homogeneity (of degree
1) of the connexion coefficients in their directional ar-
guments, Since the union connexion of equation (I1.6.7)
provides a geometrically non;trivial example of a con-
nexion whose coefficients are not homogeneous in the di-
rectional arguments in any degree, it appears reasonable to
study connexions defined by fibre-transversal distributions
on the tangent bundle'ﬁhich do nof nécessarily satisfy any
invariance properties. This is done in the present chapter,
in sections 2 and 3,

In the study of such non-linear connexions, those
objects classically referred to as "direction-dependent"

tensor fields will be encountered, A new definition of

49
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such entities is given, in the context of fibre bundle
theory, in section 4, In the following sections, con-
nexions for such objects are studied. Rather remarkably,
and pleasantly, one is lead to a type of connexion intro-
duced from quite different a 1aunching point by T, Okada,
and employed in an interesting éeries of papers by
Makoto Matsumoto [9, 10, 11, 12].! In sections 5 through
7, these connexions are studied from rather different a
standpoint from that adopted by théée workers,

The remainder of the chaptér ig devoted to showing
how, for direction-dependent comnexions, the rdle played
in the theory of linear connexions by the tangent bundle
is taken by the square of the tangent bundle (in the
terminology of Steenrod [20; p. 49]). The results of
these sections (8 through 11) provide analogues of results
known for linear connexions and tangent bundles, in par-
ticular, that of Yano and Ledger on linear connexions on

the tangent bundle [24].

2. Definition of a Non-linear Connexion

A. Kandatu has offered the following coordinate-
free- characterization of a non-linear connexion: let M be

a C® n-manifold, and 3 (M) the totality of C® vector

17, Okada, "A formulation of Finsler connections
with the use of fibre bundles," (graduation thesis, Uni-
versity of Kyoto, Kyoto, Japan, no date), cited by
M. Matsumoto [9; p. 1],
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fields on M. Then a mapping \/: SG(M) xS&8(M) - S&(M) is
a non-linear connexion provided it satisfies the following

axioms:

(1) a) VY+ZX=VVX+V7.X9

b) V_YX=f va,

c) vaX=Y(f)X+fVYX,.

a) (VYX)p=(§YX)p, if X =0

e) (Vy (X+2));=(VyX),+(Vy2),,if X,+2,=0,

where X,Y, and Z are in (M), f is a C® R-valued
function on M, and \7 is an arbitrary linear connexion on
M2

Equivalently, such a connexion may be defined by an
n;dimensional, fibre-transversal, C® distribution on the
tangent bundle T(M) of M, which is invariant under the
action of the group of non-zero real numbers, and which may
have singularities across the zero cross section of T(M)
(235 p. 272].2 1If, indeed, the distribution does not
possess singularities, a simple lemmg of Peter Dombrowski
shows that the connexion is actually linear [4; p. 76]. In

the present work, however, no distribution will have singu-

1Randatu [7; pp. 259-260]., Kandatu credits
Professor S, Ishihara with suggesting this definition.

2The word "singularity" here refers to a point at
which the distribution fails to be C®, In particular,
it does not imply a dimensional change at any point.
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larities, and the connexion described by (1) is linear., The
direction of generalization will be rather different from
that of Yano and Ishihara,
Let the union comnexion (II.6.7) be tested against
axioms (1); it is easily seen that (a), (b), (d), and (e)
are satisfied, but instead of (c), D satisfies only the

weaker condition

(2) V(%) = - Vy X.

Let mappings V/: FB(M) x (M) -~ (M) satisfying (a),
(b)y, (d), and (e) of (1), and (2), be referred to as

NH-.connexions, the prefix "NH" deriving from "non-homo-

geneous", Of course, linear connexions are included in the
class of NH-.connexionms,

The local representation of an NH~connexion follows
readily from its definiﬁg properties. Consider a coordinate
patch U on M with coordinates (x'); if X = X* a/axiy

write

G (7. g = 1exexh)y + ) (07 (a/exd),
d/dx

Then the functions qf are well-defined functions on the

tangent bundle T(M), or, more precisely, on n-1(U),

wnere s T(M) - M is the projection map. For suppose

X, = Zm for two C® vector fields X and 2 on M, with

Fres

m € M, From (2) and (1.e) one has
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(1) (F , ®=2)p=(V 4 By=-(V, 2y,

while by (1.4),

(V 5, (x-12),

axi ax*

i
—~
|04

(5)

From (3), (4), and (5), the conclusion follows:
(6) i (m%y) =1 (m,2,).

Using (3), (1.a) and (1.b), one may write the desired local

expressions
(7) Vy X = ¥* axd/ex® + 1) (m,X)} a/0x? .

From the fact that VY X is itself a C*® vector
field, one concludes from (7) that the functions 1‘13 trans-

form according to the law

N P axt %) oF ox"
L*(m,X) = Y(myX) = = 4+ X : -
T 17777 33 3%t 3%° 3% axd axP’

where i € U N ﬁ, U 1is another coordinate patch on M with

coordinates (fi), a.ndftq are functions to R on n°1(ff)

defined by the analogue of (7) that holds over U,
Conversely, if, for each ccordinate patch U in a

cover of M, functions I‘j1 3 n'1(U) - R are given so that
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(8) holds, and such that Qﬁ(m,éx) = - q?(m,x), then these
functions define, via (7), a global NH-connexion.

Consider now the tangent bundle T(M), and recall
that if U is a coordinate patch on M with coordinates
(xi), then n'i(U) is a coordinate patch on T(M), a
point (m,X} € n'1(U) having coordinates
(x1(m), ceoy Xo(m), §1, vooy E), where X = gi a/axiol
Suppose V is another coordinate patch on M with co-
ordinates (yi); then, if X = gi a/axi = ni a/ayi, one has
(10) = = g3 (ayt/exd)

The tangent spaces of T(M) are, over U, spanned
by the coordinate vectors

(a/ax1, ceoy /37, a/ég1, veoy 3/3ET). Suppose a vector

field Q ©be given on T(M),  with representation

Q = o (myX) — + g°(m,X) —
axt . dgd

over U, Then, if m e U nV, (10) and (11) yield

(12) iy .2k K

oy Y . dY d
Q= (at —) — + (et —m0  — & gy —) —.
1 J i k
axt ay axt axd 3xd  an

Equation (12) is the transformation equation for vectors on
T(M).
If X = XJ 3/ax? is a vector field on M, the

field X on T(M) defined over U by

1See footnote, page 21,



55

(13) X(m,¥) = X(m)(a/ox) ~ TP(m,Y) 2/28™

is called the horizontal lift of X (c.f. [7; p. 263]).

Using (12) and (8), and writing ﬁ? for the connexion coef-

ficients over the patch V, one sees that

o ay® 3 sy~ ay~ ?
axd ayd axt 3x ax2 an
(14) - O i3 a2yt
=X —~r + (X" § -
dy axt axd
oyt eyt 5 o wr® eyt ex axd ayk} 3
L : xJ - x'e :
¥ ooy axd axt axP axl axq ay® ay® ax? ank

On using the fact that

ay axd |
— — =8,

axd ay°®

one finds that the first and last terms in the braces in (14)

subtract out, and what is left may be writien

ﬁ

G20 F(@my) =T eyt - §F (1) X7 a/en”,

where X = X* 3/ayt. It follows that (13) defines a global
1lift of X to a field on T(M).

Notice that the horizontal lifts to T(M) of vector
fields on M define a smooth n-dimensional distribution on
T(M) which is transversal to fibres. This distribution is
spanned locally by horizontal lifts of coordinate vector

fields on a coordinate patch U; thus, in n"1(U), it is
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spanned by the vectors B; (1 =1, eeoy, n), where

(16) S e 2
B. = e =T (m —
1 axl 1 ’ agh

Now turn the situation around, and suppose given a
ce fibreétransversal distribution H of dimension n on
T(M). The fibre-transversality implies that w,, Tre-
stricted to H(m,Z), is an isomorphism. The unique vector
i in H(m,2) such that n, (¥) = X for some X € M, may
be styled the horizontal lift of X, and if X is a C®

vector field, the lifts ¥ define a C® field on (M),
since H 1is C%®, In particular, the horizontal lifts By
of coordinate vector fields a/axi over a patch U on M

span H on n'1(U). Write

(17) % 3 + 3
Bi = a;(myX) —— + B;(m,X) —
i i ’ axt i L agt ’
where az and sz are functions to be investigated.

Since 1, (Bi) = a/axl, it follows that
aﬁ(m,X) = 52 for all (m,X) € ﬂ'1(U). And the trans-
formation equation (12) shows that over U N V, where V

is a coordinate patch on M with coordinates (yl), Bi is

2
(18) aykf 3 [axt L %P ax’ ayP . 3 }
i § + g + B —1e
ax® ayk  ay¥ T ax® ax® ayK ax® U anf
i

If the horizontal lifts of the vectors 3a/ay

then (18) shows B. to be the vector in braces in (18

B i

Se”
-]

i?



57
But if Eﬁ be defined over V as az are defined over U

by (17), one must have

(19) ax® ay?  ax® %P

’

82(m,X) = g3(m,X) +
Pt T vk ax®  ayk axt ancsg

gince "lifting" is an isomorphisnm.

Equations (19) show that -a:(m,x) transform like the
Q; in (8), 80 a covariant derivative |/ may be defined,
after the pattern of equation (7), using these functions as
coefficients, This operator is a reasonable sort of con-
nexion,

Henceforward, connexions induced by C*®, n-dimen-
sional, fibre-transversal distributions H on T(M) will be

called non-linear connexions, Notice that the covariant de-

rivative K7 defined by such a distribution need not satisfy

(2); in order that this hold, one must require

(20) B3(m,-X) = -Bo(m,X) .

This means that H must satisfy a species of symmetry about
the null cross section of T(M):
The minus sign before H(m,X) in (21) denotes the mapping

(22) v Bi(m,qx) oYt Bi(m,X)u

It seems reasonable to remark at this point why one

cannot give an invariant, coordinate~free characterization
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like (1) for an arbitrary non-linear connexion. The con-
nexion concept is a very broad one, and essentially any map
D: & (M) xB(M) - L£(M) may be called a connexion. If one
is given such a mapping, and writes

(23) s X = 2X%/ax (3/ax%) + pf(myx)(a/ﬁih)’
a/ax”

where first-slot linearity is being assumed for convenience,
he does not know that 1"51.1 are well-defined functions in the
tangent bundle. For a trivial example, let

(24)

X , 2
D X = [—{ + I (m,X)} £(m,X) ;xi’

3/ax* ?xX

where Ff are, say, coefficients of some linear connexion,
and f is an arbitrary but fixed C® R-valued map on T(M).
If one puts the covariant derivative (24) into the form (23),
then the "functions" rf are given by

(25) ax"

= @) FlwX) + [fmn) - 11—,

and thus rih ‘depend on .values of X in a neighborhood of
m, and are not well;defined functions on T(M).

If enough is included in the list of axioms charac-
terizing a connexion %o insure that the rih in (23) are
well-defined in 1~ '(U), enough is included to make the con-
nexion rather special. Indeed, the axioms for an NH--con-

nexion seem to this writer to be minimal in this respect.
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3. Integrability Conditions

Consider now the distribution H of a non-linear
connexion; conditions under which H 1is integrable are
sought, Ry the Frobenius Theorem on the integrability of
distributions (see, e.g., [1; p. 23]), H is integrable
iff
(1) [X,Y](m’z) € H(m,2) V X,Y € H(m,Z).

Since the fields B; (i=1, ooy n) of (2.16) form a

local spanning set of H, (1) holds iff

2 k k -1
(2) [B;,B;] = Yij Bk (v R-valued maps on n (0)),

over the coordinate patch U, From (2.16), one obtains

[BirBj] = [Bi’Bj](xk)(a/axk) + [Binj] (gk)(a/agk)

or
(3) k k k k
o or: or. ol -}
[BirB'] = {"i- J.-"' I‘f ,—‘L"' TJ-II -}-]——E°
J axd  axi dgh 2eh ag

Thus one sees that [Bi’Bj] is a vertical vector,
that is, "*([Bi9Bj]) = 0. In order that [Bi’Bj] be
horizontal, then, it is necessary and sufficient that

[Bi'BjJ = 03 hence, one has

Theorem 1: The horizontal distribution H of a non-linear
connexion, with coefficients RF(m,X) over a co-
ordinate patch U on M, is integrable iff, over

each such patch,



(4) rRE -0,

where R%% denotes the quantity appearing in curly

braces in equation (3).

This result is to be compared with that of Kandatu [7; p.
2677,

The quantities R%%(m,x) appearing in (4) are
R:&alued functions on n-1(U) € T(M), and the operators
a/axi and a/agk involved in the definition of them are
coordinate vectors in n"(U), so that they transform in
n-1(U nv) by

k 2_j
S S K 2%

- - + 1 - -
ayl oyl axk ayt ayk agd’
(5)

3 X

ant  ayk agh’

where V is a coordinate patch on M with coordinates

(yi), and (yi,ni) are the induced coordinates in n"1(V)°
Using (5) and (2.8), one finds that, under such a change of

canonical coordinates in T(M), the guantities R%%(m,x)

in U are related to similarly defined entities ﬁg%(m,x)
in V by
(6) -k axt ax® Byk
R (m,X) = RP (mX) — — :
1] ts ayl aya axp
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which follows by straightforward, if quite tedious, compu-
tation.

In spite of the appearance of (6), R%% cannot be
regarded as components of a tensor field on M, since they
are functions in n“j(U). Nor can these functions be thought
of as components of a tensor on T(M); there are not even
enough functions given to determine one! But it is possible
to associate the functions Ri% with a tensor field on T(M),
using the distribution of the non?linear connexion, Let
Bt (i=1, «0.y n) Dbe the basis dual to the basis
By (i=1, ¢eey n) of H(m,X) for m € U. Then a tensor

R is defined on T(M) by
= -k i j
R_Rij(m,x) B® B & B“.

This approach is due to Yano and Ishihara [23; pp. 281-283].

Classically, however, such collections of functions as

k
Rij

fields on MY, or as "tensor fields on M with coefficients

have been referred to as rdirection-dependent tensor

in the tangent bundle". (See, for example, H. Rund's book
[14], in which such objects abound.)

The approach employed here will be to retain as much
as possible of the classical point of view, while attempting
to put the concept on a more rigorous mathematical foundation.
A detailed consideration of this subject begins in the next
section; for now, consider the following purely local defi-
nition, the significance of which is more terminological

than fundamentals
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Definition 1: TLet {(U_,9 )} y G an index set, bé a co-
YV 'yea

ordinate cover of the C® n-manifold M, with

i i

X, =0 g Let T(M) be the tangent bundle over
i10.¢im
M, with projection w, If _T. : are mk O
Y a1°°°3k

-1

R-valued functions defined on '\UY) for eachn
Yy € G, these functions are said to define a

DR-tensor field of type (k,m) on M, provided

that in n'"1(UY N U,), the relationships

t t i i

(7) 1 k 1 m
igeeedy  hy..n Oy 3%y 3% 8%,

o .= = Tt tm n XX oy h ®0e h

o J1°°°Jk Y 1000 % 31 Jk 1 m

3X6 3X6 BXY BXY

hold, for each y, 6§ € G such that UY n U, £o.
The name, DR-tensor, derives from "DiRection-
dependent tensor"., In particular, the DR-tensor defined by
k
R
non-linear connexion. Also, one other DR-tensor associated

will be referred to as the curvature DR-tensor of the

with a non-linear connexion might be mentioned, which appears,
in particular, if one examines integrability conditions for
the almost-complex structure induced on the tangent bundle by
the distribution of a non-linear connexion, This is defined

in n-1(U) by

i i
(8) . -
T5.(m,X) = — (m,X) - —= (m,X) ,
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i
and it will be called the torsion DR-tensor of the non-
!

linear connexion (c.f. [7; p. 268]). Note that, upon dif-
ferentiating equation (2.8) with respect to gs, one sees
that aqf/ags transform like ordinary Christoffel symbols

of the second kind (see, e.g., [19; pp. 111-112])., From
k
ji
formation equation (7) and define globally a DR-tensor.

this, it follows at once that T satisfy the trans-

4, DR-vectors

A careful look at the local definition of DR-
tensors given in séction 3 suggests the following coordinate-
free characterization of.a DR€vector field: a DR-vector
field on 2 C® n-manifold M is a function which assigns to
each point (m,X) of the tangent bundle T(M) over M, a
vector in Mm‘ Beyond its intrinsic simplicity and close
similarity to the definition of an ordinary vector field on
M, this definition has the advantage of leading at once to
a formulation of DR-vectors in terms of fibre bundles, so
that faintly artificial statements as to what is meant by
the smoothness of a DR-vector field can be avoided, This
is now described.,

Let T2(H) be the set of all triples (m,X,Y),
where m € M, and X, Y € M . The set TZ(M) is made a

C® 3n-manifold as follows: suppose (U,p) is a coordinate

¥t —ulo u, ILet T2

patch on M with u P

i v Vaa an

‘.T2=
nz(m,X,Y) = m, and introduce a coordinate map

(M) - M by
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@ s U = ﬂ2_1(U) = B0 so:

(1)
¢(m,X,Y) = (x1(m), cooy xn(m)s §19 evoy gna ﬂ19 °ooy ﬂn)’

where X = gl a/ax1 and Y = nl a/axlo Suppose, too, that
(V,¥) 1is a coordinate patch on M with vyt =uto ¥, and
UnvV#g. Define V:V= n2“1(V) - 3P precisely in

analogy to (1):

(2)
¥(m,X,Y) = (y1(m)’ vooy yn(m)v 517 000y Bn, Y19 so00y Yn)v

where X = gia/byi and Y = y'a/ay’. Then, since
J
N A
X=§1——-.-——.-
3xt ayd
and j
dyY 9
Y=7n ~——,
3x1 3yd

3n

it follows that F o @ g E{n2"1(U nv)} -R is given by

_— = ] 1 n 1 n 1 n
Voo (X'y cooy £ 5y B g cooy E 9y Mg coey M ) =

- 1 n n -1 1
(3) (y1 ° @ ! (X'y cooy X )y 000y ¥ ° @ (X'y oooy xn)’
ay1 o ayn o ay1 o ayn
S——— ooy g ——o 'n =9 o000y T] em————) o

e —,
2xP axP axP 3%

The expression for g ° ¥ “1 is similar. Thus one sees that
the patches (ﬁ;;) and (V,¥y) are C®-related. Since

TZ(M) is covered by such patches, this procedure endows

TZ(M) with a differentiable structure, making it a C*® 3n-
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manifold, It is clear that n, iB C® with respect to this
structure,
Consider now the bundle gy = (TZ(M), T, T(M)),

where 7(m,X,Y) = (m,X). From the definition of the C®

24
[

structures of T°(M) and T(M), it is trivial that w is

C®. Purth i the fibre 7 ~\(m,X) has th
of an n-dimensional vector space, the group Gl(n,R) acts

fibre;wise on Tz(m) by
(4) o(m,X,Y) = (m,X,0Y)

for o € Gl(n,R); this action is clearly C®. The local
triviality of the bundle is immediately apparent from the

coordinate structure (1). Therefore, is a C® fibre

S
bundle over T(M) with structure group Gl(n,R) and fibre
R%,

It is to be remarked that Sm is just the square of
the tanéant bundle; that is, it is the bundle induced from
the téngent bundle over M by‘the projection w: T(M) - M,
It would have been possible to begin the discussion of
DR;vector fields with this notion, but the description given
has the advantage of detail, displays coordinates, and fixes
notation, which is useful, as much of the analysis which
follows is local,

From the definition of a DR-vector field given at
the beginning of this section, it is now clear that a cross-

section of the bundle g, is a DR-vector field. 4

DR-vector field will therefore be defined to be C*® Iiff it
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is a C% cross-section. The usual techniques of multilinear
algebra permit the construction of such bundles for DR-objects
of all sorts,
Note that if o3 T(M) =~ Tz(m) is a C® cross-section,

then one may write ¢(m,X) = (m,X, t(m,X)), So that

(5) r(m,X) = oi(m,X) (a3/2x)

over a coordinate patch U on M. Thus ¢1(m,X) = T(m,X)(xi);
and, since ¢ is a C® as a cross-section of E? mi are
C® maps on n'1(U)° If V is a second coordinate patch on

M with coordinates (yl), then for me U nV,

(6) . ayd 2
‘l‘(m,X) = ¢ (m,X) O S————5 0
axt 3yd
Equation (6) shows that 7 (or ¢) is a DR-vector in the
sense of the local definition of section 3,
From the discussion above, one sees that the %totality
D(M) of C® DR-vector fields on M is a module over the
ring C® (P(M),R) of R~valued differentiable maps on T(M).

Since a DR-vector at a point is just a vector on M, it can-

not operate on C® (T(M),R), and therefore, the Lie product

cannot be defined ou 9.

5. The Bundle Ty and DR-connexions

Next, the C® principal fibre bundle over T(M)

with structure group Gl(n,R) associated to the bundle Ex

of section 4 will be described., Let BA(M) be the set of



67
all (n + 2)=tuples (m,Xvel,ooo, e ), where (m,X) € T(M)

and (el,ooc, e,) 1is an ordered base of M . And let

(1]

iz}
Py * BA(M) - M is defined by pB(m,X,el, °“,en) = m, The

By(M) = T(H) by mp(mX,eqs .0, ey) = (m,X), while

diagram below should help in permitting one to visualize the

relationships among the spaces under consideration,

B, (M)
Ty / \ Py
T(M)‘(/ I > M
T \ / To
()

The diagram is commutative.

The map Pp is used to 1lift coordinate patches on
M to BA(M), to give BA(M) the structure of a C*® (2n+n2)_
manifold. Indeed, let U be a coordinate patch on M with
coordinates (xi), and let U = pB"1(U)° Define

= 2n+n2

; ¢t U=~-R by

- o] 1 n
(1) ¢ (m, X, €19 oooy en)=(x (m)y ooos xn(m)s €'y cooy §
1 1
€19 ooy g?s cooy Epy cooy gﬁ) ’

where X = gi a/axi and ey = g% a/axi° Just as in the
case of TZ(M), one can see that the coordinate patches
(E};) so defined on B,(M) are C®-related, and since
these patches cover BA(M), it becomes a C® (2n + nz)m
manifold, It is clear that both g and pp are C® with

respect to this structure,
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Let Rg denote the right action on BA(M) by an

element g = (g;) of Gl(n,R); then R_ 1is defined by

)

(2) i i
Rg(m7X191: evey en) =!(myxyg1eir voey gnei)‘
This action is clearly OC= - "and free, For cocordinate patches

U with coordinates (xi) on M, structure meps
Py ¢ pB'1(U) - Gl(n,R) are defined by

i
(3) FU(m,X9e1, soey en) = (gj) € G1(n,R),

where e = g; 3/ax*., Note that

‘ i i i
(4) Fk}°Rg(m’X:e11°--’en) = FU(m’ng1eiv-o-agnei) = (gj §§)

while

(5) Ry e FylmE,eqpeesey) = Ry(eh) = (&5 £5).
Therefore,

(6) F,o R_=R_o F

U g g u*

Finally, define Sy : my (U) » U x Gl(n,R) by

03 TTB
(7) SU(maX,e1s°-°9en) = ((m,X), (gg))’

where U = n'1(U) for the coordinate patch U, and
e. = g? 3/ox*. Then §; is a diffeomorphism.

It follows from these observations that the bundle
g = (By(M), m, TM)) is a C° principel fibre bundle
with structure group Gl(n,R). It is easy to see that i

is, in fact, the principal Gl(n,R)-bundle associated to Eyre
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Since the diagram

f
N
BA(M) >B(M)
Ty l l )Y
T(M) =M
o

commutes, where f(mQX,319oo,, e,) = (m,e1, cesy €) and p
is the projection of the bundle of bases over M, one has

that n, is the bundle induced from the bundle of bases by
the projection of the tangent bundle. Since the bundle.of

bases is principal, one has at once that m is principal.
The more circuitous approach used above is employed for the
same reasons as given in section 4 in the case of e

Since my is a principal bundle, if T(M) is para-

compact (which it will be if M is paracompact), will

g
admit a connexion in the sense of fibre bundle theory [1; p.
83], that is, a 2n-dimensional C® distribution H on

By(M) transversal %o fibres over T(M) and invariant under

right actions:

(8) (Rg)y Hp = HRg(p) ’
for p € BA(M) and g e GlL(n,R). It follows from the fibre-
transversality that the restriction of (nB)* to Hp is an
isomorphism onto the tangent space of T(H) at nB(p)°

It is interesting to note that, given a connexion H
on mny, there exists a well-defined concept of a horizontal

1ift of a curve in M %o a curve in BA(M). Let
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g : I ~M bea C® curve; then one has the natural 1ift

o, 3 I = T(M) 33 o, () = (a(%), o*(é%lt)). Then let

G ¢ I~ By(M) be the unique horizontal 1ift of ¢, through

a = Oz

al

 peint p in th t \c*(O)); Then Py °

The curve ¢ will be called the canonical 1lift of ¢

through p.

Given this 1ift, one may define canonical parallel

translation along curves in M +to be a diffeomorphism of

fibres in BA(M). et 0 ¢: I~ M again be any C® curve,
and let p = (o(0), o*(d/dt)o, €1se00s8y) be a point of the
fibre over ¢,(0) € T(M). If G be the canonical 1ift of

c through p, define T (p) =3(1) in nB"1(0*(1)),
where, for convenience, I has been taken to be the unit
interval, Then, as To is simply ordinary parallel trans-
lation along o, in T(M) by the connexion H, T 1is a

o

diffeomorphism, and Tc ° Rg = Rg ° Tc [1? P. 78]

i
Suppose X, € MO(O), and X, = a’e where

i
(eqsee0se,) 1is an arbitrarily chosen, but fixed, hase of
M30)° i T (0(0)y 0,(d/at)5, €9y ceoy €y) is

(a(1), 0x(3/at) 1, By5 «eey €,)); then the vector X, € M1y
where X, = aIEi, will be said to result from X by
canonical parallel translation along ¢. This translation
is independent of the particular canonical lift chosen, that
is, of the particular basis (e1, coesy en)° For if

(é1, «eey 8.) 1is another basis ?f Mo(O)’ and
i

é; = hie define quantities ﬁa by the equation

j’



(9) Jpk _ k.
hy hj = 84
I S . N
then X, = a” hy €5e Since To ° Rg = Rg ° Tog one has
(10)
TO(G(O),U*( d/dt)oyéﬂ“o’én) = (0(1)90*( d/dt)ph%‘giwonh:‘lgi)o

Thus, if X; is the vector resulting from canonical parallel

translation of X 5 along ¢ using the basis (éi), one has

¢ 1.k
X1 =8 hi hj

e, = ae; = X1,
from (9),
If X(t) is a vector field along o, X(t) will be

said to be canonically parallel along ¢ provided that, for

each u, v € I, X(u) result from X(v) by canonical parallel
displacement along °|[u,v] (or ol[v,u]’ as the case may be).

In particular, a curve ¢ may be styled a canonical path in

M iff o¢,(d/dt) is canonically parallel along ¢. Thus, in
one sensg, a cancnical path is a direct generalization of a
geodesic of a linear connexion,

Except for its naturality, there is nothing sacred
about using the tangent to the curve ¢ to obtain the 1ift
of o to a curve in T(M) which is so vital tc the foregoing
constructions. Thus, if X(%) be any vector field along a,
one has the 1lift g ¢ I = (M) by o(t) = (o(t),X(t)); the
unigue horizontal 1ift of g to BA(M) may be called the

¥(t)=-relative horizontal 1lift of o¢. Obviously, there is also

a concept of X(t)-relative parallel translation along curves
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in M, and of X(t)-~relative parallel fields along curves in
M. A curve ¢ whose tangent vector field is X(t)-relative

parallel along ¢ could be named an X(t)-relative path re

the connexion H,

Not surprizingly, canonical parallel translation does
not induce a covariant differentiation of tensor fields, nor
of DR;tensor fields, on M. The reason for this is that,

given a curve ¢ ¢ I - M, the tangent Tc to
*

o, ¢ I » T(M), and therefore the tangent to the canonical

lift 3§, depend to the second order on o¢:

(12) axt 3 a%xt

To_*(t) = +

s 9

dt axi  at? ael

where xi(t) = X o o(t) in a coordinate patch U on M.
Otherwise expressed, what is critical here is that the natural
lifts o, do not determine a C® n-distribution on T(H).
Accordingly, let a non-linear commexion T be intro-
duced on T(M), with T spanned by the vectors B; of
(2,16) over a egordinate patch U, The connexion I will be

referred to in the present context as a non-linear support

for the connexion H in uite

The introduction of the non-linear support permits
not only a unique lifting of tensor fields on M to tensor
fields on T(M), but also the association of DR-fields with
fieids on T(i rion of Yano and Ishihara

mentioned in section 3. 1In particular, suppose
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T ¢ T(M) - TZ(M) is a DR-vector field given in the cccrdinate
patch U by +(m,X) = o (m,X) a/axi; then one may assqciate

with ¢+ the "lift"

(13)

~Ny o ary [ .. v\ [ \

T(yX) = @ (m,X) B;{i,X) o

Thnis wilil be called the I'=lift of 1. One also has the “lifst"
14 - i

(14) T(m,X) = o™(m,X) By, (m,X) .

where B., = 3/3f> over the patch U.* The field 7 will

be called the vertical lift of . It is easily verified that

each of (13) and (14) defines a global vector field on T(M),
given a global DR-vector field 7.

Now suppose (W,F,Gl(n,R),T(M)) is a vector bundle
associated to the principal bundle e with total space W,
fibre F, and projection py 3 W = (M), Let U be a
neighborhood of a point (m,X) € T(M), and let Q : T-W
be a cross-section over U, It is desired to define a co-
variant derivative 6@(m,X) Q to be an element of the fibre
of W over (m,X), where 7(m,X) is the value at (m,X)
of a (possibly local) cross-section of gmo

Recall that the connexion H induces a (® fibre-
transversal distribution H’ on W in the following way:
By definition, W = (B,(M) x F) / Gl(n,R), with
Ag(p,f) = (Rg(p),Lg_1(f)) for peBA(M), fer, g€ Gl(n,R),

1In discussions on the tangent bundle, the index
i*, and others like it, take on values n+1, ..., 2n. The
asterisk is used so that the summation convention may be
applied with dissimilar index-domains, as in (14).
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Ag the action by & on BA(M) x F, Rg the right action

by & on BA(M), and Lg the left action by g on F,

Let Kp : F-VW by Kp(f) = (p,f)Gl(n,R); then Kp is an
isomorphism of the vector space F and the fibre

Py (mp(p))s amd Kp (p) (£) = Ky(Lg(f).

Now consider b € W, p € BA(M) such that
pw(b) = nB(p). The space Hg is defined thus: let
¥p ¢ Bp(M) = By(M) x P by ¥p(p) = (p,f), s0 that y,
is a diffeomorphism of BA(M) into BA(M) x F, If then,
f € F be such that Kp(f) = b,

(15) Hy = Ay © (4p)y Hy,

where ) BA(M) x F - W is the natural projection [1; p. 84].

The function H’ is called the horizontal distribution on W.

The horizontal distribution on W 1is spanned at each
point b by tangents to horizontal lifts of curves in T(M)
through pg(b). These lifts will be described.

Let b € pw"1(d(0)), where ¢ ¢ I - (M) is a C*
curve, Choose f € F and p € BA(M) so that nB(p) = og(0)
and Kp(f) = b. Let G be the horizontal 1lift of ¢ to
By(M) by H, passing through p. Then o s I=-W is de=-
fined by

(16) o(t) = Kx(qy (£)

The right invariance of H and the manner in which KX _
g
behaves with respect to GL(n,R)-action show g to depend

only on g, b, and H. Now
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_a . é
o*(E;J= Ae © (pdy o Ok (E;)

since Kg(t) (f) = (5(%),f) GL(n,R) = A o Ve (5(%)), and so
o is H’=horizontal.

The fibre-transversality of H’ shows that the tan.
gent space Wb of W at the point b € W decomposes into

a direct sum:
(17) Wb=H{)®Vb9

where Vb

vectors Z € Wy such that (pw)* Z=0, If Z €W, write

is the subspace of vertical vectors, that is,

(18) Z =H'(2Z) + V(2),

where H'(Z) € Hy and V(2) € V,s for the decomposition of
Z induced by (17).
T

One may now define V-r( m,X) Q by requiring that it
measure how far Q fails to be horizontal in the "direction"
T3
{19) T

VT(myx) Q

V(Qu(T(m,yX)))
Q(T(m,X)) = H'(Qe(F(myX)))o

Here, T(m,X) is the I<lift of + given by (13), Since the
fibre of W over (m,X) is a vector space, the fibre may be
identified with its tangent space, and (19) may be regarded
as defining 6,'(1“_;1) Q as an element of the fibre. Let

I" H
VT(m X) Q ©be called the horizontal covariant derivative of
H

Q in the direction T,
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One may define a second type of covariant derivative,
independent of the non-linear support I, by employing the

vertical lift of equation (14). Thus, one sets

(20) Ve(m,zy @ = V(Q(T(m,X))),

7~

ot

where 7T(m,X) is the vertical lift of <+, This derivative

will be referred %o as the vertical covariant derivative of

Q in the direction 7.
Since, with the aid of the non-linear support, one
can define these covariant derivatives in strict analogy with

the case of linear connexions (compare the foregoing with

[1; po 111]), a connexion H in ny» together with a non-

linear support I’ on T(M), will be named a DR-connexion

on M.}

6. Coordinate Description of DR-connexions

Let M be a C® n-manifold with a DR-connexion
(H,r), where H is a connexion in ny and I a non-

linear support on T(M). Attention will now be restricted

1As thus defined, the DR-—connexion is identical with
an entity studied by M. Matsumoto in, e.g., [9; pp. 1=6].
Matsumoto calls such structures "Finsler connections™, and
the spaces which carry them, "Finsler spaces", since the
concept arose in the work of T, Okada on Finsler manifolds,
Nonetheless, the terminology seems unfortunate, as "Finsler
space™ in the literature has signified a manifold with a
Finsler metric, Note that a space with a linear connexion
is not calied a "Riemannian space™, though such spaces stand
in the same relationship with manifolds with Riemannian
metric as do spaces with DR-connexion re Finsler spaces,
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to neighborhoods over a coordinate patch U on M with
coordinates (xi). |
Recall that the tangent spaces of T(M) are spanned
over n-1(U) by the vectors B; and B;, of (2.16) and
(5.14). Consequently, the distribution H of the DR-con-
nexion is spanned over pB_1(U) by the horizontal 1lifts of

B; and Bj,. In terms of the coordinates (5.1) on pB'1(U),

write
-] .} d
- h n
(1)
(Bye) = — - DE(p) —
P el M a%ljl ’

_ iy '
where p = (m,X,¢1, cesy ) € Py (U) € BA(M)° The right
invariance of H, and its fibre-transversality, imply that

for g= (&) € 6l(n,R),

(2) (Rg)y Bi(p) = Bj(R,(p)).

From (1); and the definition (5.2) of Rg, (2) shows that
) 65y (Rg(p) = Gi(p) &5

Hence, the functions Ggg : pB'1(U) - R are linear in the

basis argument, and one may write
h h s
(4) Gij(P) = Fis(m,X) gj(P) °

A similar argument with the vectors Bi* shows that one

may write
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(5) Dfi(p) = Ofi(m,X) g3(p)

so that equations (1) become

3 ° L
(By)p = — - Bim%) —f - Pia(mX) £5(p) —»
o = — < {m, h ; -
1p 7 4 i € is J agj
(6)
- ° 3
B, = — X —
(Bix)yp 2l (m ) € (p) gh
The functions I'jl_1 ' Fn‘?s’ and CiI; are called the coef-

ficients of the DR-comnnexion. They coincide with those
given by Matsumoto [9; p. 4].

From the definition of the coordinate structure in.
pB"'1(U),‘ if a vector V

P
p=(m,X,eq, eesyey) is given by

tangent to BA(M) at

(7) d )
v =a(p)—-+s(p)—+v(p)
ael 2

b i L
ox gJ

end if p € pB"'1 (UNnWwW), where W is another coordinate

patch on M with coordinates (yl) and induced coordinates

(375 n's n3) on py~ (W), then v, is given by

i ayd 2 a2yi . 3y~ d
V,=¢ *(p) a—xfg;i+ [a (p)§ ;xk==axj+ B (p) ;;1?];{
(8)
a2yt ayt 2
+ [0- (P)ga “““"""EX - +Y (P) BX‘{}an_i'e
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If, over pB'1(W), the coefficients of the DR-con-

nexion are given by ﬁ? Fg;, and Ei;, the transformation

equation (8) shows that one must have, for example:

(9) :vt ayh

h s ¥ k k 325
F = —Jfp4
F;g(m,X) nj = ayi[Ftk(m’x) ¥

—_— 7.
axd %5 axX ax?

which follows upon applying (8) to the first of equations
(6). Therefore,

(10) 'ﬁh( 5 ay" . ay® ax? a?yh axt
- m —— 2
ig\™? axd

ax¥ ayl  ax¥ ax® ayi’

Similarly, one has the transformation equations

( C2 (m,X) = Cf (m,X) ox” ax? oy’
gt T Ayl oy axk

and

(12) SiaD) = e o ST g
q S ayd axf  axd ax® ayd

h
ij
tensor, which will be denoted by C, and that (12) agrees

Note that (11) shows C to be the components of a DR

with (2.8) — it would be quite upsetting if it did not!

Clearly, given functions ;5, F%L, and C;L on
each patch U of a coordinate cover of M, with values
in R, which satisfy the transformation equations (12),
(10), and (11) respectively, a DR;connekion on M is
uniquely determined.

T
Next, a coordinate expression for VQ.Q and

6& Q will be constructed, where Y and Q are DR-vector
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fields on M., The local form of the horizontal 1lift of a

i i . ¥,
vector X = X" B; + X~ B;, in (T(M))"B(p) t0 Xle(BA(M))p

will be first determined. Since the 1lifting operation is an
i* =

isomorphism, X = X B + X7 Bj,, SO one has
d : -
?:Xi—-'- (yl* Xk Tkl) —
d agt
(13)
ipk | yi* gk gl o
-« (X" P, + X7 Ci. + X ) g
13 ij ¥ ag
S

where functions on the tangent bundle are all evaluated at
ng(p).

Now, recall from section 5 that the horizontal sub-
space at q € TZ(M) is spanned by tangents of horizontal
lifts of curtves; this fact will be used to obtain the local
form of the horizontal 1ift of a vector
X = ai a/axi + Bi a/bgi on T(M) to TZ(M). In fact, let

.0

y : I - T(M) be a curve in T(M) with tangent X at v(0).
Choose 1 = (y7(0), v*(0), 3/ex’, «.., 3/2%™) € By(M), so
that np(p) = y(0). Then K (£) = (p,f) G1(n,R) in 72 ()

for f = (f1, ...,fn) € Rn; in local coordinates, one has
i 1% i
(14) K, (£) = (v}(0), y™(0), £ .

say a = (y2(0), y¥(0), n%) e“’u(o)) < 7°(M). Then by
(14), K (£) =q iff £ = (n 1 oo, ). So if ¥ be the

horizontal 1ift of y to B,(M) through p, then the
horizontal 1ift y of y to TZ(M) through q is
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Y(t) = K?(t) (f), from section 5, with f = (n1, coes M)

Write

(15) ; ix 1 3 ; d
Y(t) = (y7(%), v~ (), 83(t) — eees 8(T) -

Then

(16) K';(t) (f) = (Yi(t)s Yi*(T)’ 'ﬂj ela.(t))

in local coordinates, from (14)., The desired 1lift of X 1is

7;(q/dt)0. From (16), one sees that

i
a . dy
- (xl ° Y) = ———y
dt dt
(17) a 4 in*
— (70 ¥) =
dt at
a . . 4 -
o—— (nl -] Y) = T]J — e; o
at dat

At t =0, dy2/dt = at, dy>*/dt = >, and (d83/dt) are the
last n2 components of the horizontal 1lift to p € BA(M) of

the vector X; from (13):

k

k i h
i:l a I

(18) (delg/dt)tzo = =la* 755 + 87 O cﬁ‘j] .

where the choice of p made set g?(p) = 6§° Then from (17)

and (18), it is seen that the required lift to

q = (m,%,Y) € T2(M) of X at (m,2) € T(M) is
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(19) — g @ i 9 L
_ - o md(al k.
X, =a o + B pr n°(a Fij
w8t cE , giphch °
- . - - _’
ij i "hj aﬂk

where all functions in the tangent bundle are evaluated at
(m,2).
In particular, (19) shows that the horizontal sub-

space at q € TZ(M) is spanned by the vectors:

o ; °
k h .k
S =_._nJ(F+I‘.C)__
i axl ij i “hj Bnk’
(20)
9 ; 9
k
S. = e— - na [0 S p— ’

where q = (m,%,Y), Y ni a/axi, and the tangent bundle
functions are evaluated at (m,2).

Now suppose Q : U~ TZ(M) is a DR-vector field,

where U = n“1(U) € T(M), and Q is given locally by
(21) Q(m,X) = (xl’ gly Ql(m,X)),
while Y = Y(m,X) 3/ax> is another such field. The TI-lift

of Y 1is given by

(22) ~ 1 o 1 3 9

¥(m,X) = YH(m,X) — - Y(m,X) I‘jl(m,X) — .
X o8

Prom (21) and (22) one sees that
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~ i o 3 i ]
(Q*(Y))(m,X,Q) = Y (m,X) 3" ¥¢(m,X) rj (m,X) —

X 2et
(23) ] .
. 3T Q3
+ YJ(m,X) [;;' - rj (m,X) g';'i{']a-ii .

This may be expressed in terms of the basis (S,

of the tangent space to TZ(M) at (m,X,Q(m,X)):

S i i
(D=1, + ¥* 5 s

i
(24) . .
Yj[an e pi; 3
+ —_— - I3 + F3 J—
axd U agF B ant’

where the tangent bundle functions are evaluated at (m,X).
One can now pick off the vertical part of Q*(?) fron
equation (24), as this is simply the last term in the right
member of (24). Making the identification of the vertical

fibre and its tangent space, one has

(25) T : aQ? aQt Y
v — k i h i,
Vi(n,x) ¢ = V(mEog - Iy =+ O Pyl

The local expression (25) shows that <§ so defined coincides
with the “"absolute covariant derivative" of Matsumoto [11;
p. 364].

If the vertical 1ift Y is used in place of the

Pelift Y in the computations above, one obtains

(26) -— i s aQ'L p - =)
d Jnk A~ 1
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whence
(27) 6 j aQi . s 3
Y(m,x) ¢=7 (m,X){;EE + Q(m,X) Cjk(m’X)};;E-

7. Invariant Characterization, Curvature,

v
and Torsicn of |/ and V.

Having derived the covariant derivatives YI7‘ and é
associated with a DR:connexion (H,r) on a C*® n-manifold
M, one finds it natural to ask to what extent specifying the
values of such derivatives determines the connexion., It
turns out that, provided the non-iinear support be specified
independently, the values of the derivatives determine the
connexion completely.

T
From the local representation (6.25) of |/, one

sees immediately that

(1)

T T r
Vy,z2e=Vyr e+ VzQ,

(2)

T T T
Vy (B+Q) = VyP+Vy Q,

and

(3) r r

where P, Q, ¥, and 2 are C* DR-vector fields on M and

f is a C* ER~vaiued functvion on T(i). Also,



T . . of aQ aQ . of
Jral k k i
VfQ:Y[Q - 4+ T = = [ e - Q7 e
: °
h i
+ T Q th]'a—xi,

so that
(4)

T r ~

where Y is the r;li.ft of Y,

Conversely, suppose & map 5 s D(M) x D(M) = D(M)
be given, where O (M) denotes the totality of C® DR-vector
fields on M, so thatwg satisfies (1) - (4). Introduce

C® functions F2 : n'1(U) - R, where U is a coordinate
ik '
patch on M with coordinates (x%), by
(5) T ) « d
(V ; (—=)) = F;i(m,X) —.
a/axt axd (m,x) 7T axk

Then if Q = Qi(m,X) a/axi and Y = Yi(m,X) a/axi are

DR-vector fields, using (1) = (5) results in:

Vo Q 5 Q2
= VYl—-—--a1 axd
3x
3 2 T d
= er'—— (QJ) — QJ V ——-—]
ax* ?axJ > oxd
or axt
. Al Ak R
(6) T 1.0Q% n o9 j k4
VYQ=Y[;x_i_ri;-_gi-+Q Fij];{io
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\4
Next, from the local representation (6.27) of VY Q, one

has immediately that

(7) v v v
VY+ZQ=VYQ+VZ Q,
(8) ' v v
VY (P+Q) =VYP +VY Q.
and
v v
(9) VfYQ=vKQ’

where Y, Z, P, and Q are (% DR-vector fields and
.f: (M) = R is C=, Further,

v - BQi . of .
Vo £ Q=Y[f — 40— +fQ¥ciij—
Y : 289~ 289 Jk]axl
or
(10)

v — v
Vy £Q=(¥)Q+fVyQ,

where Y is the vertical 1ift of Y. Conversely, suppose

that a map - %: D (M) x D(M) ~ D (M) be given, satisfying

(7) - (10). As above, introduce C* maps Cj{;{ : n"1(U) - R
by
(11) v o Kk 3
( L (=) = cX(mx) —.
va/axl 3xd (m,x) T axk

Then, if Q and Y are given as above, one uses (7) - (11)

to compute
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Vy @ Y[ (@) =l Y,
= B el ——— —
Y axll _a_. axJ
ax?
or
(12) v Qk
Vya=¥Y [ + QY Iy ] -
§ ox
Further, equations (5) and (11) show FkJ and cf:l to have

appropriate transformation propertne; and comparing the re-

sults above with those of section 6, one has

Theorem 1: If mappings 6, 6 : D(H) x D(M) » D(M) be
given, satisfying (1) - (4) and ("7) - (10) reSpec:
tively, a non-linear support on T(M) having been
specified in advance, then there exists a unique
DR-connexion on M with respect to which |/ is

\4

the horizontal, and |/ the vertical, covariant

derivative,

Using this invariant characterization, it is a simple
matter to define and test curvature and torsion DR-tensors

for a DR-connexion., One has the horizontal torsion DR-tensor

r
T, defined by

(13) r T T
T (X%,Y) = Vx ¥ - Vy X - [X,Y]

' v
and the vertical torsion DR-temnsor T, defined by

{i4) v v v
T (X,Y) = Vg ¥ - Vy X,
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where X and Y are C® vector fields on M., The tensor

r v
character of T and T is trivial to check, using the prop-

r v
erties of \/ and Y. For example, if f : M- R is C=,

*—ln —an
(PR VN

(fX,Y) = éfx Y - f]“Y fX - [fX,Y]

3"

f éxy-uf 6Yx-. (¥£)X + (Y£)X - £[X,Y]

r
fT(X,Y),

since Yf =Y f, as f 1is direction-independent.

It is important to be aware that the DR-vector valued

R r v
DR~tensors T and T operate on vectors on M; in particular,

(13) is meaningless if X and Y are (non-trivially)
DR-vector .fields, since (M) is not a Lie algebra.
r
If one writes T (a/ax g a/axa) = T (m X)(a/axk) over

a coordinate patch U on M, then

Ty T 3 r 2 : 3 2 :
T. « = ——— a0 relibd s I
13 v-i.- 3xd V__a‘___ axt  axi’ axd

axt axd

or

15 T
(15) 1 (m X) = F“(m X) - ;&(m,x)e

Similarly, if T (a/ax s a/axa) = T (m X) a/ax then

6
el £5(mX) = efmX) - Cf(mX)
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after the classical fashion,
One has also three curvature DR-tensors; these have
values in the (linear) space of linear transformations on Mm'
The first of these is the horizontal curvature

- r
DR-tensor R, defined by

(17) r r T r T L
R(X,Y) 2= Vgx Vy2- Vy Vg 2- Vix,y1 %>

where X, Y, and Z are C® vector fields on M. Also,

v
there is the vertical curvature IR-tensor R defined by

18
(18) i’z(x,ar)zJVX %Yz_%']Y f]xz.

r
The third curvature DR-tensor involves both Y and

v
Vs, and will be called the mixed curvature DR-tensor, de-
noted by ﬁ. Recall that the DR-vector valued DR-tensor C

is given by

(19) .. 0d
C(m,z) (¥o¥) = cfj(m,Z) xtyd

axk

Also, introduce a map V which sends a pair of C® vector

fields X and Y on M +to a DR-vector field by

(20) (ﬁ . *Yi{axa | a1y - 3
Y */(m,2) = ;;{*;gf(m, ) X7 ke

Then the mixed curvature DR-tensor is given by

(21) . v T r v 2
R(X,Y) Z2 = vXVY Z - VYVX Z + C( VY X, Z).°
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Ip is a simple matter to check the multilinearity of
g, Ivi, and R over the C® (M,R)-;module of C® vector
fields on M, using the properties of 6 and % The
DR;tensor nature of these entities is also evidenced by their
expression in local coordinates, By entirely straightfor-
ward, but remarkably tedious, computation, one has over a

coordinate patch U on K the equations:

(22) p P p
r ijaFij oy R
R(X,Y) z = x¥yizd{ - -r
K i By
ax ax 2E
oF, L.
+ I —--—J- + F-t- Fp F }
i t ij "kt kJ axk ’
L1
(23) o act LS
R(X,Y) 2 = xPyiz¥{ -—
. . ?
1 1 t i
. - ¢ty
CJk Cpt Cpk Jt}axl
and
(24) aFjli1 ack
[
R(X,Y) Z = xvzhr ok . -
ji th i .
14 axa
k
3C;
+ TS 2 L cE pS LS Fk}a
J s is “jh T Yih " js axk
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where q;.= aqf/agi. The quantities in curly brackets in (22),
(23), and (24) will be denoted by gpkij’ ﬁipjk’ and ikijh’
respectively.

Some of the algebraic significance of classical cur-
vature tensors is lost in the more general setting of DR-con-
nexions, which is, o% course, only to be expected., In
particular, if D is a linear connexion on M, its cur-
vature tensor measures how far D fails to be a Lie algebra
homomorphis? [1; p. 116]. No s?ch interpretation can be

v 0 v

placed on R, R, or R, since |/ and |/ are not Lie

algebra valued maps,

8. Qgrconnexions as Distributigons on TZQMQ

In this section begins what is the primary function
of this chapter: the invgstigation of the rdle played by
. TZ(M) in the theory of DR;connexions. In section 5, it was
seen how a DR—connexioﬂ determines a C=, 2n-dimensional,
fibre-transversal distribution on TZ(M), just as a (linear)
connexion in the bundle of bases determines a distribution
in the tangent bundle, The converse is also true, provided
that a non-linear support be specified, as is shown in this
section,

Let M be, as usual, a C® n-manifold, T(M) and
TZ(M) denoting the usual spaces, Let H be a C%® 2n-dis-

2,

tribution on T°(Ii), transversal to fibres over T(M) and

invariant under the action of Gl(n,R). The fibre-trans-
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versality implies that vector fields on T(M) can be lifted
to vector fields on T2(M) in a wnique manner, via the in-
verse of the restriction to H of the Jacobian of the pro-
jection ¥ : TE(M) - T(M).

The vertical spaces on TZ(M) are spanned over a
coordinate patch U on M by the vectors a/énk,
k=1, e00yn, as in section 4, and H 1is spanned over U
by the 1lifts of the coordinate vectors (a/axi) and

(a/agi) on n-1(U). These lifts may be written

3 Xk °
Li(m’XyY) = ’é‘; - i(m’XyY) 'a? ’
(1)
3 9
K;(m,X,Y) = — - D¥(m,X,¥) — -
of on

The requirement that H be invariant under left action is
2 H = .

(2) (Lg)* (m,X,Y) H(msxng)

In terms of Ly and Ki» this means that

(I’g)* Li(m’X’Y) = I‘i(msxng) ’
(3‘) Caty B

(Lg)* Ki(m!X,Y) Ki(myxng) ’

since "lifting" and (Lg)* are isomorphisms, Now



93

(1), E5(m,X,Y) — = ¢5(m,X,Y) —= (n¥ o I,) —
-\m _=G.m Y-——-n (] D e
gle T1rTIT a,nk i Bnk g Bnt
(4) d d
k vt s
= Gi(m,X,Y) — (8. 1) —,
i Al ank s ant

. d
G3(m,X,Y) g —=.

It follows from (1), (3), and (4) that

k t
Gi(m,X,gY) = Gi(myny) gl-é ’

k

and the functions Gi are linear in the third slot, so

one may write
(5) ¢5(m,X,Y) = H{ (m X) 1

over U, where Y = ni a/axi. Similarly, one arrives at

linearity in the third slot of Di, and writes
(6) D%(m,X,Y) = cX (mX)n

Consider now the 1ift of the vector B, of (2.16),
where a non-linear support I is supposed given with coef-

ficients r} over U, This lift is

J
(7) n d n o ;@
k
L- - K = —r - o - (H:: r C ) ﬂ .
i ~h 3xt i agh ij hj Bnk
k -1
Define functions Fj ig i m (U) - R by

(8) (m X) = HE J(m,X) - Iy N (m,x) cha(m X) .
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From the fact that L; and K; are vector fields over

mo"'(U), and from the defining equation (8), it follows that

h k k
L Fij’ and Cij

the coefficients of a DR-connexion on M, Further, the hori-

transform properly, and may be taken as

zontal distribution H’ of this connexion is spanned over

U by the vectors

d : d
k h .k
S, = — = (PSS + I ) —
17 34t 1) 771 ThT gk
(9)
d - d
J gk
= e— T] H .
axi 13 3nE
and
(10) 3 i ok O
s.*=—-_--n1cij—-
¥ ael ank

as given by equations (6.20). But, from (1), one sees that

L; =S; and Ky = S, so H’ = H. The explicit form of

i i ix?
the DR-connexion which it was necessary to take shows it to

be uniquely determined, and one has

Theorem 1: Given a non-linear support [ on the tangent
bundle T(M) of a C*® n-manifold M, a DR-con-
nexion on M is uniquely determined by a C%,
2n-dimensional, fibre-transversal distribution on

TQ(M), invariant under Gl(n,R)-action.
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9, Paths Relative 1o a DR-connexion

Makoto Matsumoto has studied various curves, most of
them curves in the tangent bundle, which are associated with
a DR;connexion [10]. In this section are proved, for some of
these curves, theorems analogous to the well-known result
that a curve y : I - M in a manifold with a linear con-
nexion is a geodesic iff its natural 1lift
Yo ¢ I = T(M) :: vy, (t) = (y(%), v,(d/dt)) is horizontal
(see, e.g., [23; pp. 290-291]). Also, the canonical paths
introduced in section 5 are studied in greater detail, In-

deed, the study begins at that point, with

Theorem 1: If a curve y : I - M is a canonical path, then
in a coordinate patch U on M with coordinates
(xi), and xi(t) = x- o y(t), the curve satisfies

the differential equations:

(1) g2 §% axd ax* axd
k k h ~k
+ Cij + (Fij + I‘i Cha) ————= 0 y
dt2 at2 a4t dt dt

where the tangent bundle functions are evaluated at

(v(%), y.(d/a%)).

Proof: Let vy, : I - T(M) be the natural 1ift of

y to T(M), as above, and let
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;; I BA(M) tr v = (y(%), Y*(d/dt)’

9 .}
0 (t) ‘-’ veey 0 (t) ‘_-)
x ax

be a horizontal 1ift of vy,. define C® R-valued maps

=i
85 by

(2) 3t od _ 51
83 0p = 6 «

Then one has, for u ¢ I,

(3) a axt . K . ®
Yu(—=) (u) = — 83(u) o3(u) — .
dt a axk
T =u y(u)

Since y is a canonical path, the vector vy,(4/dt)(v), for

v € I, must result from y,(d/dt)(u) by canonical parallel

translation:
(4) a i 3
Yoel—) (V) = — 83(u) o (V) — .
dat- dv | . o v(¥)
But
(5) a ax 3
Y*(;)(V) = -d-t- ey axk (v)

so that from (4) and (5), one obtains

(6) gk
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Differentiating (6) with respect to v yields

(7) a2k

at2

dxi

. d
ei(u) (E; Bj)(V).

T =V Tt =u

Equation (7) holds in the limit as v = u in the form

(8) 125K i s &
— = — 85(u) (— ej)(u) ’
a2 | as |, at

since (7) must hold for all u, v € I, and all the functions
involved are (<,
Now the horizontal 1ift of (y,),(d/dt) to y,(%)

is given by the vector Pt’

(9) axt 3 a’xt a ax*
Pt= - 4 - = [ Fjlf
ot axl dt2 gt it *d
ok ok ol
o G = G L] BE(T) =
a2 137 gy BT ST ek

S
where the tangent bundle functions are evaluated at y,(t).

Since Y, is horizontal, (Y,), (d4/dt) = P, and since

(10) e at o o a 2oy
(? _—) = - <+ =+ (= 83)(%) —
**last av axt a2 sl aw Y ag%’
one has, on using (9),
i 2.1 h
d dx a'x ax
k k k k J
(— 8E)(t) = =(— P~ + Ciuz+—Cr:) 85(7%)
at ° at 7 gg2 T gy RIT TSV
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or

(11)

i 2.3 i
d dx d™x dx
-g k k k
{1t on— t = el —— o C.. —_ C. .
ea( ) (dt 85)(%) (dt Fig+ w7 Ci] + " 13)

On substituting the expression (11) in (8), one obtains the
desired equations {(1). Q.E.D.

Unfortunately, the converse of Theorem 1 does not
appear to hold, in general, because the rather complex in-
volvement of the quantities dzxi/dtz in (1) indicates that
solutions of (1) may not be unigque (or even exist!), and
therefore, the gap between equations (8) and (6) cannot be
bridged by the usual sort of uniqueness argument, Also, one
cannot conclude from geometric considerations that there is
a unique canonical path through each point in M in each
direction, and equations (1) provide no help in this regard.
This is not at all surprizing, however; one encounters here
once again the difficulties that prevent the use of canonical
parallel translation in defining a covariant derivative,

A possible way out of some of these difficulties is

suggested by

Theorem 2: If a curve y : I = M in a C® n-manifold M is

& canonical path, its natural 1ift

¥ i T 120 :: §(t) = (v(%), v, (d/dt), v, (d/dt))

is horizontal.

Proof: The tangent field T?(t) to Y is given by
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(12) axt 2 %t s &%t a
Tn(t) = - + - + -
Y at ax*  dt2 gt  dt2 snt

over a coordinate patch U on M, In terms of the basis

. 2 .
{Sis Syx» 3/377) of the tengent space to T(M) =t F(%),
(12) reads
dxfL dle
T T) = = S. S.
7®) dt b1t a2
(13) axt axd n ok
+ [— — (F + I Con)
dt  dt 1 "hj
axt axd % o
+ —C + —_—

at2 dt Y9 a1 ank

Thus, Tv(t) is horizontal iff equations (1) are satisfied.
Since a canonical path satisfies equations (1) by Theorem 1,
¥(t) is horizontal, Q.E.D.

The natural course suggested by Theorem 2 is to re-
define a canonical path to be a curve vy whose natural 1lift
Y 1is horizontal, Again, this directly generalizes a usual
property of geodesics of a linear connexion, and such ca-
nonical paths would include the canonically auto-parallel
curves, though perhaps adding others. Under this course,
both Theorems 1 and 2 would hold with "iff% in place of
wjifr, but existence and uniqueness questions would remain
open nonetheless,

Consider now other paths related to the DR-comnnexion,
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Matsumoto defines a horizontal (re TI) curve ¢ : I - T(M)

to be a horizontal path provided it is the projection of an

integral curve g : I = B,(M) of each of the vector fields

a j 3 K
T. = == =LY == ~ F.o —_
i i ij °s k'’
ax agd g
and shows that ¢ is a horizontal path iff it satisfies

the equations

Bk e
+ Py (o(t)) =——=0
dt2 Jk dt  dt ’
(14)

gt . ax

— 4+ T (o(8)) — =0,
dt J at

over a coordinate patch U on M [10; pp. 309-310]. Then

one has

Theorem 3: A curve o : I = T(M) by o(t) = (x3(%), £X(%))
over a coordinate patch U 1is a horizontal path

iff it is horizontal re I and its 1lift

- 2 - i 3. i

c: I = T9(M :: 5(t) = (x7(%), (), ax /as)
is horizontal,

Proof: The tangent field T—(t) to ¢ 1is given
o

by
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axt 2 aet » @%b a

+

T'E(TS) =

y = + -
at ax*  at agt  at2 anmi

over the patch U. Relative to the basis (Si, Sixs a/ani)’

this reads

o) ax? agt axt ax?
T t = e— S- 4 —— S. + —— G— F
o at *  ay at az 9
(15)
x> dx? et dx? 3
+ -——--——-p? Cﬁf b —_—— Cf--+ J—-
dt  as gt dat T at2 Tank

The tangent field T° to o 1is given by

(16) ok ol \
T=-—-Bi+(——+—1‘f)——-
o at at  dt agh

over U, In both (15) and (16), the tangent bundle functions
are evaluated at ¢(t)s By (16), o is horizontal iff the

second of equations (14) holds, and from (15), ¢ is hori-

zontal iff
(17) 5 .
axt ax? Bk L ok ok ag® axd | a%E
—_— e [P+ T G 4 — ——C .+ =0,
at ag 9 1 Thd at az B3 gg2
Upon substituting -rgl(dxi/dt) for dgh/dt in (17), from

the second of (14), one obtains the first equation of (14),
and the theorem follows. Q.E.D.

Matsumoto calls a curve ¢ : I - M, given by

xi(t) = xT o o(t) 1in a coordinate patch U, a guasi-path
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iff it satisfies the differential equations

(18) ax* a  axd axf
+ P (o(1), o (-—))-———=0
gg2 | ok a0 av at

over U [10; pp. 314=317]. It is to be noted, from (6.25
)

that if the tangent field to ¢ be T, eguations (18) are
just
(19)

I
(Vo Dig(s),m) =0

which gives a "geometrical" meaning to the curve, This
discuszion of paths relative to a DR-connexion will be con-
cluded by noting the following two simple theorems, which
give an indgcation of the relationship between canonical

paths and pathé defined using the helpful non-linear support.

Theorem 4: If the DR-tensor C of (7.19) is a zero DR~

tensor, then every canonical path is a quasi-path.

This is immediate from equations (1) and (18). If
the redefinition of canonical paths suggested by Theorem 2
is taken, then if C is a zZero DR-~tensor, every quasi-path
is also a canonical path.

Call - geodesic of the non-linear connexion I a

I'-path. Then one has:

Theorem 5: A canonical path which is also a rI-path is a

quasi-path,
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Proof: If o : I - M:: o(t) = (xi(t)) in a patch

U 1is a canonical

(20) 2 k

path, it satisfies

a°x ax® ax? axt ax? axd a°xt
k h .k k
—+F; — —+T; Gy ——+Cj; — —5 =0,
dte 4y at * 0 a1 g 3 gt at?
If it is also a [-path, then
(21) 2y  axd
= =l T
ate J gt

and replacing dzxi/dt2 in the last term of (20) with the

expression from (21), the last two terms of (20) cancel,

yielding equations (18). Q.E.D.

10. Integrability Conditions for the DR-connexion

For the remainder of this chapter, the basis

(55 Syys 3/3n%)
coordinate patch
obvious extension
Ishihara [23; pp.

adapted frame for

(1)

of the tangent spaces to T2(M) over a
U will no longer be convenient to use. An

of the method of adapted frames of Yano and

275-277] will be employed instead. An
DR-theory in T2(M) is

> _m® x5

- - 1 -_— S 2 -—,
axl 1 oag® 1 ank
3 2
— -ck —
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over U, where the coordinates in U are (xi) and the in-
duced coordinates in n2“1(U) are (xi, gi, ni), as in
section 4, All tangent bundle functions are evaluated at a
point (m,X); as this will be true throughout this section,
the arguments of such functions will be omitted without com=-
ment, In this section and the next, lower case Roman indices
will run over the range {1, ...,n}, such indices with an
asterisk are valued from n+1 to 2n, and lower case
Roman letters with a prime take on values from 2n+1 to
3n, The summation convention will apply to such expressions
as aibi*. Lower case Greek letters will range from 1 to
3n.

The formal advantages of the adapted frame (Aa) will
become quite evident in section 11, where linear comnexions on
TZ(M) are discussed, The goal of the present section is the
determination of integrability conditions for the distribution
in TZ(M) corresponding to a DR-connexion (H,I’) on M with

locul coefficients F}t ;3, and Q;. One begins with

ij? Y

Lemma 1: With (Aa) as in (1),

(2) [Ai’Aj] = R;% Ay + (Cﬁi Ri% + gpjit) n’ AP"
(3) [Ai’Aj*] = rig A, + ﬁpjit n Ay

(4) [A500855] = 1v{k;i:u: n’ Bpe

(5) [Ai’Aj*] = Fjl,{j Aoy

(6)  [Ayrrhs] == Caf Ao

(7) [Ai',Aj’] O ]



105

k
where Ri j

are the components of the curvature
DR-tensor of the non-linear support relative to

; ; r
(a/axl, a/agl); RP the components of the hori-
Yk

zontal curvature DR-tensor, from (7.22); R

jit
jiv
those of the vertical curvature DR-tensor, from
-]
“D

{(7.23); anda R° ji¢ vhose of the mixed curvature
i

DR~-tensor, from (7.24). Also, Tjk = arjl/agk.
Proof: This is straightforward computation. Equa-
tion (3) will be derived; the remaining equations follow

from entirely similar arguments, For (3), compute

k k
while
k
and
k k -k
Finally,
k k s
Ai Aj*('rl ) = Ai ("st n )
ack ac X
_ IS p I8 ¢ pl ok, S
ST TN s Vel
9X 14
and
k k s
oF X
_ 18 S Ct Fk s
== R TR R
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Therefore,
(8) k k
. 9 aFiS Bst
[AiaAj*] = Iij " + [ — = :
g 289 ax
ac X 3
O R p57 8
+ I h+ is Yjt T VYis Tit- M k.
dE on
From (7.24), equations (8) yield
(9) x ° °k k _t s O
[Aiohgd = T3y o+ (Fyis ~ Cos Tag) ™ o

If (9) be written in terms of the adapted frame, the result
is equation (3). Q.E.D.
When one has Lemma 1 at his disposal, the following

theorem

Theorem 1: The horizontal distribution on TZ(M) corre-

3

sponding to the DR-comnexion (H,I’) is integrable

iff
Vi S
Bryigm =0
(10) (¢ RE +RP.. )n® =0
ks “ij ¥ 3is/M
RD S _
Bysn =0,

over each coordinate patch U on M,

Proof: The distribution is integrable iff

[Ai,Aj], [Ai’Aj*]’ and [Ai*’Aj*] are horizontal, by the
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Frobenius Theorem, Equations (10) are simply the Statement
that the vertical part of these vectors vanish, by Lemma 1,
Q.E.D,

In particular, one has the

Corollary: Suppose either that the DR-tensor C of (7.19)
is a zero DR-tensor, or that the non-linear sup-
port is flat, Then the horizontal distribution in

o

T
TZ(M) is integrable iff R, ﬁ, and R are zero

DR-~tensors,

11, Linear Connexions on TZ(M)

The object of this section is to prove for DR-con-
nexion theory a theorem analogous to that of Yano and Ledger
on the existence and uniqueness of a certain symmetric linear
comnexion on T(M), induced by a linear connexion on M
[24; p. 498]. The C® n-manifold M is assumed to be en-
dowed with a DR-connexion, with (Aa) as in (10.1) the
adapted frame over a coordinate patch U on N,

Suppose that D 1is a linear connexion on T2(M),

with coefficients Aéz with respect to the adapted frame;

that is,
(1) =AY A
DAOL g = Agp Ay

Then one has

Lemma 1: The following subsets of the set (A;%) of co-
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N
N

(3)
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efficients of a linear connexion on Tz(M), relative
to the adapted frame, transform like tensors on M
with a change of adapted frame:
Y aY A + At* ! t i At'
Aixg? Mivgr Ajioxs Agier Bgies Agices Agicrs Ayiex
The remaining coefficients

t % t!
Ajk, Aak*’ an.d Ajkl ]

transform like (linear) connexion coefficients on
M. Conversely, of course, any collection of coef-
ficients which transform in this manner determines a

linear connexion on T2(M).

Proof: Suppose U and V are coordinate patches

on M with coordinates (xi) and (yi) respectively, and

UNnV#ope. Let (4,) denote the adapted frome over U, and

(K&) that over V, Then, with induced coordinates

(xi, gl, nl) in ﬂ2"1(U), one has

(4)

Let (y%, o5, X°)

A. = §

: 9 o . 9
J h k J
._.._._I‘.(mX).___F..(mX)n —y
i 1 3% ire agh it ank

denote the induced coordinates in n2_1(V).

Then, if a2 vector Q on n2“1(Ur]V) is given by

(5)

.} . 9 P
1 1 1
el T Y o
x n

one finds



3y Kk 27 L 3D
Q=0 — — + (a? ¢ - + BT —=) —
ax? ayd axd axk axk’ apl
(6) 22,1 i
i k kY
+ (e’ n —+ Y == T
3Xd 3x~ X ax*

from the coordinate transformation (5.3). Applying (6) to

(4) yielas

% %
ay* 8 - ay a a3y’ _. . @
A, =h F11 Jj

= = - = I - q i X )

where the transformation equations (6.10) and (6.12) have

been applied, Thus

(7) ay® _

Ai=-——Ak.

axl
In an entirely similar fashion, one finds

(8) ok

Bax = 5 Ben
and

(9) .~

Ail‘:;Akl.

Equations (7), (8), and (9) are the reason for the introduction
of the adapted frame, They may be summarized in the single

statement

(10) - T
4, =G B s
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where (Gg) are given by the (3n x 3n)-matrix

(a5 /ax%) (0) 0)
(11) ref] = (0) (3y/ax") (0)

(0 (0) (3y*/axh) | .
Define functions G by Eﬁ 6f =&Y, so that

(ax*/a5) (0) 0) ]
(12) (1= | (0 (ax*/2y") (0)

| (0) (0) (ox/oy®)| .

In Gg, g is a colum-counting index, and o a row-

counting index, From (10), one has

=cY 3 5y & Y @b N
DAa AB-GG- AY (GB) A, +Gf GB DKY A,
whence
(13) Y _ o Y o6 TO
A E$ = 4, (62) + 6F G5 A7y

which is the basic transformation equation of the coefficients
of the connexion D, under a change of adapted frame, But,
from (11), the quantities
a a i ix i
i’ ix i/
Aj(Gk )s Aj(G )y and Aj(Gk*)
are all zero, Using this fact, together with equatiomns {13),

yields, for example,
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(15) a2 Y [O o_ k* .6 — ¢

so that Ai transform in the tensor manner, That the same

b
is true of each of the quantities in (2) follows in the same
way, from (i3) and (14)., The second assertion of the lemma
is clear from (11) and (13), while the final statement is
trivial, Q.E.D.

Some notational conventions will now be established
which will be convenient in what follows, First, if X is
a C® vector field on M, there exist three naturally de-

fined lifts of X to a global field on TZ(M). If, indeed,
X = X* a/axt, let

(16)

By equations (10), the form of equations (16) is independent

of the particular coordinate system used in defining the 1lifts,
so that (16) do define global vector fields on T2(M). Equa-
tions (16) may also be applied to a DR-vector field; for ex-

ample, if X = Xl(m,Y) a/axl, then

7 = x*(m,Y) A (m,Y,3) ,

Next, suppose that K is a C® p-covariant DR-tensor

with values in the space of linear transformations on Mm‘
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Define h1K to a (%, vector-valued, p-covariant tensor on

(M), by

(18)  (BgK(Qqy eees Q) x v) =

O
.

AjlK

(m,X) {mo)x Q) (V)1
H

. . 2
where (m,X,Y) € T°(M), and Qs ...,Qp are vectors in

2 i .
(T (M))(m,X,Y)' Similarly, h,K and VK are defined by

(hZK)(m,X,Y) (Q1’ LR ] Qp) =

(19) )‘Z[K(m,X)((nz)* qu, ceey (TT2)* Qp) (M1,
and

(VK)(m,X,Y) (Q—]i -0'.9 Qp) =
(20)

x3[K(m,X) ((ﬂg)* Qs ooy (M0)y Qp) (D].

In addition, write

Jjis ks i jis?
and define the linear-transformation valued 2-~covariant

1
DR-tensor R by

(22) 1 . . 1 .}
— xJd vyt gP pS
R (X,Y) 2=XY Z°R jip o8

over each coordinate patch U on M,

Then one may prove

Lemma 2: If X and Y are C® vector fields on M, WM

having a DR-connexion (H,I'), then



(23)

(24)

(25)

(26)

(27)

(28)

[ng: X2Y] =

[a X, A3Y]

and

[X3X, X3Y]

where V is
DR-tensor of

by (7.29).
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1

= M[Z, Y] 4 A B (5,Y) + VR (A%, AY),

b ]
);2( VX Y) + VR (7\1Xy }\1Y) ’

T
)»3( IVX Y) 1

N
VR ()wlxy )~1Y) ’

v e (}\1}(9 X1Y) )

0,

the operator of (7.20),

R the curvature

the non-linear support, and C 1is given

Proof: The relationships of Lemma 2 follow from those

of Lemma 10.1 by easy computation,

n

[x*a

J
i? Y AJJ

For example,

2 Yia,, a51+ XjAj(Yk)Ak - YjAj(Xk)Ak

L .o. 1
14 pk -1 J pk S]

\W’k N
+ [Xj 3ie - Yj
axJ

K
ok

axd

14,
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whence (23), The other computations are similar. Q.E.D.

One may now establish the desired theorem:

Theorem 1: Given a DR-connexion on M, there exists a

urigue sSymmevric linear commexion D on TZ(M)
such that
(29‘) 1))‘3X Y =0, D)‘}X oY = 0, th MY =0,
(30) DAZX MY =0,
(31) Dy x Ao¥ = FvE (0%, A1),

- T
(32) B g aT=nD g Y-} ED] 4 BREY)

1
+ % v R ()s-]xy X‘IY) .

Proof: A linear connexion D on TZ(M) is com-
pletely determined by its values on the 1lifts x1X, x2X,
and A3X of vector fields on M, since these provide
spanning sets for the tangent spaces of TQ(M). Therefore,

D is symmetric iff

s 1
11[X1Y] + MLR(X,Y) + v R(X1X, X«lY) ’

(34) 1))‘1X AoY - D)~1Y ME o= X, AY] =

~ o
Ao( VX Y) + VR (7\1X9 7\1Y) y
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(35) T
A Vg 1),

Dagx 3% = Dy ME = D%y AgY]

(36) v
szx AoY — D"ZY X = [AX, A,Y] = VR (x1x, x1Y) ’

(37) ngx Y - DX3Y AX = [AX, A¥] = v C (A X, AY),

and

(38) D)‘Bx )L3Y - DX3Y ).3X = [X3X, X3Y] =0,

Now, setting Dx3X MY = 0 is consistent with (38);
v
equation (31) is consistent with (36), since R is skew-
symmetric, and (32) is consistent with (33), since
' T T Iy - 1

[X Y] = Yy ¥ - Vy £ =T (X,Y), and since both R and R
are skew-symmetric,

But setting Dx3X MY = 0 is consistent with (37)
iff

(39) DX2X )~3Y =vC ().,1X, A.‘EY) y

and setting Dx3X AY = 0 1is consistent with (35) iff
T

(40) D)‘1X X3Y = 13( VX Y) ’

and finally, setting thx XY = 0 1is consistent with (34)
iff

(41) D, 4 12- = 12( VX -1) + VR (X']A’ .A-‘]‘l

Thus, one sees that a linear connexion D on T2(M) which
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is symmetric and satisfies equations (29), (30), (31), and
(32) is completely determined, and therefore unique, provided
it exist at all,
The existence of D may be proved by displaying its
coefficients, and applying Lemma 1, Let attention be re-
stricted to n2=1(U) for U a coordinate patch on ¥.

=AY A

In terms of the adapted frame, let DA AB B
a y*

Then, locally,

(42) aYk
T = 2 )
1 ax J

4

+ X YJ(A Ak* k Akl) °
But equation (32) reads, re the adapted frame,

S
D, x MY = (X — + X' ¥ E)

A
A ax?t 1

k

(43) s 1
+ 3 X000 (R A + RS0 n° A0,

Equations (42) and (43) together show that one must have

(44) AS(m,X,Y) = FiS(m,X) ,
(45) P55 (m,%,Y) = 3 RE(m,0)
and
'’ "
(46) Aij(m’X’Y) = % R 1as(m X) n °

Entirely similar reasoning leads to the remaining coefficients:
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(47) k* _ k- k' _ %k s
Aije = Tijr Aije = Byyem
k! _ -k k‘ _; ¥k S
Aijr =Fijr Aiwge = 3 k ijs M o
'k
Ai*jl - (’la ’

with the rest zero. Testing these coefficients against the
requirements of Lemma 1, one sees that they do determine a
linear connexion on T2(M), and D exists, as stated.
Q.E.D,

This theorem may be employed, in the same manner as
its analogue in the work of Yano and Ledger, to give geo-
metric results connecting T2(M), T(M), and M. The fol-
lowing two corollaries are examples; Corollary 1 is to be
compared with Yano and Ledger's Corollary 2 [24; p. 499],
and Corollary 2 below with their Corollary 3 [24; p. 500].

Throughout, D is the connexion of Theorem 1.

Corollary 1: Let V1 and V, be C® vector fields on
2%(M) such that wW(V,) =k, (X;) for is=1,2,
vhere X1 and X, are C® fields on M, and
k, denotes the r-lifting operatvion. Then, if
the non-linear support is flat and él is torsion-

free,

(48) - T
me(Dy Vp) = kqe( Vg %)

and
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(49) T
('“2)*(:DV1 V2)(m,X,Y) = (VX1 X2)(m,X) .
Proof: Since m (Vi) =k (X;), V; =2X; + Wy,
where Wi are vectors on Tz(M) which are vertical gver

T(M)., This permits the calculation:

o T
= 1 wd

(50) i i
+ X1 (Wz) Ai/ + W1 (wz) Ai’ ’

where Zj = a/axa. Upon applying Theorem 1 again, and

noting that the last three terms in the right member of (50)

are vertical, both over T(M) and M, one obtains

F;(DV1 V,) = FQ(Dx1x1 A qXy)
or
(51) _ _ r Iy
Tu(Dy, Vo) = Helnq[ Vg, Xp =3 T (X1, %) 03
T3 My R(X,Ep)).
T

By hypothesis, T = 0; since T is flat, R = O. Therefore,
(52) - _ r
"*(DV1 Vz) = TI’* ° l..] ( VX1 Xz) °

Both statements of the corollary are immediate from (52).

Q.E.D.



119
Corollary 2: Let ¢ 3 I = TZ(M) be a geodesic of the cone
nexion D of Theorem 1 which is nowhere tangent to
fibres over T(M) and such that w° ¢ 1is
I'-horizontal on T(M). Then we ¢ is a horizontal
path,
Proof: Since ¢ 1is nowhere tangent to fibres over
(M), w o‘o is a regular curve. Also, since we ¢ is
horizontal, the tangent T to ¢ 1is of the same type as

the vectors V; of Corollary 1, so that, from (51),

(53) _ _ Iy r

Te(Dp T) = MM [Vp T -3 T (T,1)] + 3 Ay R(T,T)} .
But g and R are skew-symmetric, so (53) yields
o8 (1,(Dp T)) k (I‘ T)

I G L L N

Since ¢ 1is a geodesic of D, DT T =0, and

(55) Iy
k, (X]T T) =0
along 1w ° o. The corollary follows from (55). Q.E.D.

The relative heaviness of the hypotheses in these two
corollaries, as compared with the analogous results of Yano
and Ledger, arises from the complexity of the interplay be-
tween DR-vector fields on M and r-l1ifts of these to
vector fields on T(M)., A C® DR-vector field is not a
vector field on any manifold; the analogy between T(M) and
TZ(M), for linear and DR-~connexion theory respectively, can-

not be stretched indefinitely for just this reason,
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APPENDIX
LIST 7r SYMBOLS

The list below is designed to assist tThe reader
who finds himself floundering under the deluge of symbols in
this work. It is broken into two parts, one for Chapter II,
and another for Chapter III., The reason for this is that the
two chapters are nearly disjoint with respect to special
notation, and a few symbols in the chapters are similar in
appearance, while similarity in meaning is entirely fortu-
itous.

Symbols are listed in order of appearance,

CHAPTER II:
(M) set of C® vector fields on M De 1
Gl(n,R): full linear group on R" De 18
Vy(R™): Stiefel manifold of k-frames in R®  p. 18
Gh,k: isotropy group of an element of

vy (R?) p. 18
Qk(Rn): manifold of L-complementary k-frames Po 19
B(M): total space of the bundle of bases

over M P 21
Vé(M): total space of Stiefel bundle of

k-frames over M P 22
G. . .3 subgroup of Gl(n,R) 1leaving L
n,n-k

invariant Do 23
g Stiefel bundle of k-frames over M D. 23
V;(N): total space of restriction to

N of ¢ Po 23
Qk(N): total space of STC~bundle Do 24
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STC~bundle

principal bundle associated to
STC—bundle

total space of gy
Grassmann manifoid of k-planes
in R"
isotropy group in 0n of element
in G (R™)
k
orthogonal subgroup of Gl(n,R)

manifold of L-complementary
k-planes in R"

GTC-<bundle

total space of GTC~bundle
A=Cconnexion
A-component tensor

union connexion

projections of bundles:

p: B(M) - M
t, ! -
n's Vk(M) M

=1

*
3 Vk(N) - N

e Qk(N) - N

CHAPTER I11:

T(M):

[ 20

total space of tangent bundle
over M

coefficients of non-linear connexion

Po

Pe

P

E.
Po

Po.

Po

Po

27

27
28

28

31
31

31
32
32

36

36

42

52
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X horizontal 1ift of X (r-1ift) ppe 35, 73
St square of tangent bundle over M b. 65
TZ(M): total space of square of tangent

bundle over M Pe 65
BA(M): total space of augmented bundle

of bases over W Do 6¢
(M) totality of C DR~vector fields

on M Pe €6
Nyt augmented bundle of bases over M De 68
Oyt natural lift of o to T(M) Pe 70
o canonical 1lift of o %o B,(M) Do 70
T: non-linear support for a

DR-connexion P. 72
T
V: horizontal covariant derivative Pe 75
v
V: vertical covariant derivative De 76
FfS: coefficients of DR-connexion Do 17
C;E: coefficients of DR-connexion DPe 78
T
R: horizontal curvature DR-tensor Do 89
v
R: vertical curvature DR-tensor Do 89
o
R: mixed curvature DR-tensor Pe 89
V: DR-vector valued operator P. 89
x1, k2, k3: lifting operators Be G

h,, hy, v: 1lifting operators De 112
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Auayz coefficients of linear connexion
on TZ(M) Do 116

projections of bundles:
me: (M) - M
ot TE(M) - M
7 ¢ T2(M) - T(1)
Pgs BA(M) - M

: By (M) = T(M)



