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GENERALIZATIONS OP CONNEXIONS ON
MANIFOLDS AND SUBMANIFOLDS

CHAPTER I 

INTRODUCTION

The principal object of study in the following work 
is a connexion on a differentiable manifold. This concept 
is a very old one, having its origin in the work of Levi- 
Civita on parallel displacement, and its roots in the geom­
etry of Euclid, Loosely, a connexion is a structure on a 
manifold vhich permits one to compare tangent spaces to the 
manifold at different points. It has been employed in 
classical differential geometry in a two-fold manners to 
define a parallelism of vector fields on a manifold, and to 
introduce a differentiation of tensor fields on a manifold 
with respect to vhich the derivative of a tensor field is 
another field of the same sort.

Suppose that M denote a differentiable manifold 
(of class C®), and that ^ ( M )  be the totality of C® 
vector fields on M, A connexion, in the broadest sense, 
is a mapping D; JS(M) x <90(M) - JC(M). One generally writes 
DjY for the image under D of a pair (X,Y) of vector 
fields. Then a field Y 6 «5C(M) may be styled parallel with 
respect to a field X provided D^Y = 0, where 0 is
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2
the zero field.

In order to obtain a tensor-differentiation, it is 
necessary to place restrictions on D. One class of such 
restricted connexions is that of affine connexionsj the study 
of which has dominated connexion theory since the 1920®s.
A very pleasant discussion of these connexions, and the 
theory of connexions in fibre bundles, together with an 
historical overview and citations of relevant papers, may 
be found in Kobayashi"s work [8].

In the present work, three connexion-related con­
cepts are studies; A-congruences, (and their use in in­
ducing connexions on submanifolds) in Chapter II, and non­
linear and direction-dependent connexions in Chapter III.

The A-oongruenoes are believed by the author to be 
a new structure, though the idea is based on the classical 
concept of a rigging of a submanifold, and is a simple 
generalization of the well-known normal distribution on a 
submanifold of a Riemannian space. The characterization 
of riggings and A-congruences as cross sections of certain 
fibre bundles is new, and the derivation of this charac­
terization constitutes a large portion of Chapter II.

Non-linear connexions of a rather restricted sort 
have been studied recently by A. Kandatu [7] and by K, Yano 
and S. Ishlhara [23]. Chapter III begins with an investi­
gation of a more general non-linear connexion. The study 
of these leads quickly into questions about direction-
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dependent tensor fields on a manifold, and to a theory of 
connexions related to such objects. The connexion defined 
in this context is identical with an entity studied by 
Makoto Matsumoto [9, 10, 11, 12], It is studied in quite 
different a fashion from his approach, however, and is 
given an invariant, coordinate-free characterization in 
Chapter III, Further, one observes that the rôle played 
by the tangent bundle in linear connexion theory is taken 
by thç square of the tangent bundle in direction-dependent 
theory; the results on the square of the tangent bundle 
are all new.

Throu^out, standard techniques of differential 
geometry are used. Notation is frequently heavy, and will 
be explained as it is encountered, but in general, the nota­
tion of Springer [19] will be employed for local analysis, 
and that of Hicks [5] for coordinate-free analysis. A few 
notâtional peculiarities should be noted. First, in a 
bundle (P,p,B), if a function g;B -* M (M a manifold) is 
under discussion, the function g ® p will also be denoted 
by g. And in many equations of Chapter III, functions are 
denoted by their values at a (generic) point. For example, 
the expression [(ax^/ay^) <> tt] will be denoted by 
rJ^(m,X) ax^/ay^. This is not logically proper, but it is 
convenient, and is occasionally done to emphasize domains.
In a similar- manner, pointwise expressions will sometimes 
fail to have the point of evaluation expressed, where this
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is obvious. Purists should have no especial difficulty in 
rewriting such statements in a more precise fashion, and 
it is to he hoped that less careful readers will not be lead 
into confusion by these devices.

The word "differentiable" will always mean C®. 
Occasionally, the useful phrase, "over a coordinate patch 
Ü on M", will be used prior to a piece of local analysis, 
in place of "over a coordinate patch (U,cp) on M with 

= u^ c cp, u^ being the canonical coordinate maps of 
R^", This will be done only where no confusion will result. 
The s ^ e  phrase will be used if the analysis is to be done 
in tt“  ̂ (U), where tt:P -* M is the projection map of a 
bundle with total space P over M,

Displayed equations or expressions are numbered 
serially in each section, as are lemmas and theorems. If 
Theorem 2 of Section 5, Chapter II, is referred to in the 
section in which it first appears, it is called "Theorem 2", 
If it is referred to in another section of the same chapter, 
it is cited as "Theorem 5,2", and if mentioned in a dif­
ferent chapter, as "Theorem 11.5,2", The same conventions 
apply to displayed equations.



CHAPTER II

A-CONGRUENCES AND INDUCED CONNEXIONS

1. Introduction

Early in the development of differential geometry, 
it was recognized that inducing a connexion on a submanifold 
of a differentiable manifold with connexion requires an in­
terplay between the tangent spaces of the submanifold and 
those of the ambient space» The standard technique of pro­
viding this interplay was to equip the submanifold with a 
global rigging (German; Einspannung) [15; p. 234 and p» 158].

let M be a C“ m- dimens ional manifold and N a 
C® n-submanifold of M. A rigging of N in M is a set 
of (m-n) C“ , non-vanishing vector fields X^, »o., X^_^ of M 
defined over N with the property that, if , » » », are 
vectors at p € N spanning the tangent space N^, then 
[Xp X^_^, Y^, ooo, Y^] form a basis of the tangent
space to M at p.

Given a rigging of N in M, a connexion on M in­
duces one on N by decomposition» Unfortunately, many 
manifolds do not support a global rigging; the Mobius 
band, imbedded in Euclidean three-space in the usual way, 
provides an example » But it is always possible to induce a 
Riemannian connexion on a submanifold N of a Riemannian
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space M by using, at each point p in N, the subspace
of the tangent space to M at p consisting of vectors
normal to with respect to the Riemannian metric. For
one may simply split the covariant derivative into its nor­
mal and tangential components [5j p, 75], The A-congruences, 
defined in section 2, are an obvious extension of this nor­
mal splitting.

In section 3, existence and uniqueness of A-con­
gruences are discussed, and section 4, the main part of this 
chapter, is devoted to a characterization of both riggings 
and A-congruences as cross-sections of certain fibre bundles. 

Sections 5 and 6 are given to a consideration of the 
connexion induced by a A-congruence, and concepts related 
to it,

2, Definition of a A-congruence,

Let M be an m-dmensional C“ manifold, and N an 
n- dimens ional C“ submanifold of M, let A be a function 
vdiich assigns to each point p € N a subspace A^ of 
(the tangent space ot M at p) such that = A^ 0  
(direct sum). Then A will be called a A-congruence, The 
A-congruence A is said to be C® provided it has the 
C°* splitting property for vector fields, as follows:

Suppose X is a C“ field of vectors in M de­
fined on a nei^borhood U of N; that is, each point of 
U has a neighborhood V E  U such that X extends to a
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C* field on a neightorhood V in M with V n N 2  V. For 
p € U, the definition of A shows that

(1) Ij, = Aj, Bp,

vihere € Ap and Bp € Np. Then A has the C* splitting 
property provided the vector fields A and B defined by
(1) are C* on their domains, for every such field X,

3, Existence and Uniqueness of A-congruences

The following theorem is trivial;

Theorem If N is a C* submanifold of a C®, para- 
compact, Hausdorff manifold M, then N supports 
a C* A-congruence.

Proof; Since M is paracompact and Hausdorff, it 
supports a Riemannian metric tensor < >, and the normal 
distribution to N is defined. The normal distribution has 
the C“ splitting property [5; pp. 75-76], and is therefore 
a C® A-congruence, Q.E.D.

A more interesting question is; to vdiat extent does 
Theorem 1 characterize A-congruences? In other words, is 
every A-congruence on N the normal distribution over N 
defined by some Riemannian metric on M? In general (not 
to keep the reader in suspense) the answer is "No", But, 
for a large class of submanifolds, one may give an affir­
mative reply.
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Call a 0“ n-submanifold N of a C“ m-manlfold M

widely imbedded provided tbat, for each point p e N, there
exist special coordinate nei^borhoods U and U about p, 
on M and N respectively, such that U n N = Uo Recall
that a special coordinate pair U,U consists of a coordinate
patch ( u,(p) on M with = u^ o jp, vwiere u “ are the
canonical coordinate maps on R°, such that, if

Ü = € TJ I (Q,) 0, j = n + 1, eoo, m],

then TJ is a coordinate neiÿiborhood on N with coordinate 
maps x^ ly, ..., x^ly. The following easy lemma shows that 
the property of being widely imbedded characterizes sub­
manifolds with the subspace topology:

hemma Let N be a C* n-submanif old of the C" m-mani-
fold M. Then N is widely imbedded in M iff N
has the subspace topology inherited from M.

Proof ; The necessity of the condition is trivial.
To show sufficiency, let p Ç N, and let (U,qp) be a co­
ordinate patch on M such that (TJ,cp) is a coordinate patch 
on N, where

U = { q € U  I U.3 o ? ( q ) = 0 ,  ] = n + 1, ,,,,m}

and cp : U -* :: cp<q) = (u^ o cp(q), ..., u^ <* cp(q)),. These
exist since N is an n-sulwnaiiifold of M.

Now U is a nei^borhood of p in N, and since N
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has the subspace topology, there exists an open set in
M such that Vg n N E  U. Let V = fi U, and consider 
(V,t), vdiere J  = ç|y » Then since domain(Y) is a subset of 
domain(ç), and 7 and ç are C“-related, (V,*) is a 
coordinate patch on M* For the same reasons, (V,*), vdaere

V = {q € V I u^ o 7(q) = 0 ,  j = n+1, m}

and where * = qpĵ » is a coordinate patch on N. Note that 
V = V n N, For that V E  V n N is trivial, while, if
q 6 V n N, one has from the definition of V,

q e V n N = Vg n ï ï n N E ï ï .

Thus V E  V n N, and V = V n N by double inclusiono Be­
cause p was an arbitrary point of N, N is widely im­
bedded in M. Q.E.D.

One can now prove:

Theorem 2: Let N be a C® n-submanif old of the C®
m-^manifold M, such that N is a closed topological 
subspace of M, and M is paracompact and Hausdorff, 
Then every C* A-congruence to N is the normal 
distribution to N of some Riemannian metric on M»

Proof ; Let TJ and TJ be special coordinate nei^- 
borhoods on M and N respectively, with TJ n N = TJ, These 
exist about any point in N by Lemma 1. Let ÿ: TJ -* R°̂  be 
the coordinate map of TJ, write x^ = u^ o m for 
i = 1, .,,, m, and let x“ = x°^i^ for a = 1, «.«, n. In
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wàiat follows, lower case Roman letters will take on values 
from 1 to m; lower case Greek letters from a through \  will 
take on values from 1 to n; and lower case Greek letters 
from n onward will take on values from n+1 to m.

Let , i = 1, , m, be the coordinate vectors

on Ü, and for p 6 Ü, let- Ap be spanned by vectors

(1) ,a,-1
d X

+ C^(x1(p), i^(p))— , ,
ax

so that g® and c^ are C* R-valued maps on TJ. In-V V
troduce a mapping 9: «p(ü) -* r ”̂ by

Write = u^ o e, and notice that the determinant of the

matrix
az'
ôy‘

is given at (y^’’"' = ... = y^ = 0) bym



‘0 f ^®P =

[0] I
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L^zÇj
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the final statement following since and ô/ôx® form a
linearly independent set of vectors at every point of U.
It follows from (3) that in a nei^borhood Q of the slab 
{(y\ •••! y^) €«p(U) I = ... = y™ = 03» 8 is in­
vertible, Since @ is C®, will be so also. One may
assume e(Q) £«p(U), as this can always be arranged.

Now define ♦ : <p"̂  [e(Q) ] - by * = ® q>, and
i iwrite ÿ  = u « ♦, One has

y®|^ = u®̂  o 0"^ o cp = X®, a = 1, n,
and
(5) = uH o e"’’ • cp = 0, M = n+1, m.

Equations (4) and (5) show that the maps y^ form a special 
system of coordinates for M and N, Write V =T**^(Q), so 
(V,T) is a coordinate patch on M.

Since T  is a diffeomorphism of its domain onto its 
range, T  is non-singular. Suppose p € V n N; then one
has

T(p) p

i l '
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But

u^ o 8 =
+ u^g^(u\.,,,u^) if i=1,,.,,n 

u*^c^(u^,.,.,u^) if i = n+1,...,m.

Therefore, in particular,

Ô . f if i=l,...,n,
  (u^ 0 0 ) = /
dû * I o^(u\...,u^) if i = n+1,..,,m,

so that one has for p € V n N ,

 1 = fiS(x^(p),...,^(p))----+ cJ!(x^(p),...fX^(p))---- »
ôÿ»^p ar'

or

-i-l - v . > -
. f .

It was precisely to obtain (10) that the definition (2) of 
8 was given. The effect of e is to normalize the A-con­
gruence over the patch V,

Introduce a local metric tensor <, >__, defined on
V

V by requiring that y  be an isometry. Note that, from 
(10),

SO that A is normal to N in V, re the metric <, >_.

Cover N by coordinate neighborhoods {(V ,* )) ,
Y Y Y € 0
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where G is an index set, and each pair is con­
structed as (V,*) ahove. Each may be taken to be
open; hence, the union U V is onen. Now, N is closed,

Y€G ^
and Î5, being a Hausdorff, paracompact manifold, is normal, 
so that there exists an open nei^borhood S of N in M 
such that

(12) 01(8) =  u V  ,
y6Cr ^

vdiere 01 denotes the topological closure. Then 15 ~ 01(5 )
is an open subset of M and can be expressed as the union of
coordinate pat dies 1(U»i9a)} » idiere G* is an index

°  ̂ ago'
set disjoint from G. The totality of patches and
form an open cover of M which may be assumed locally finite, 
by the paracompactness of M. Let <,>^,y€G, be local
metric tensors defined on for each ygG, as <,>_

was defined for V, And let <,>^, for 6€G', be a metric
tensor defined on by requiring that cp̂  be an isometry,
for each 6€G',

Next, let {g : V -»i} u (g,: H - 1} , be a
” » yeG 0 ° aeG'

C® partition of unity subordinate to the cover
[V ] U fU. ) of M; here, I is the unit interval,

Y ?€G ‘ S€g'
[0,1]. Define

( « )  *=>=■= E  ®ï
Y€G a€G'
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Then <,> is a Riemannian metric tensor for M, If p 6 N,

6 A- and Y € N . then for y € G such that p € V ,
P  XT X* Xr Y
one has <X^;Yp>^ = 0  by the construction of <»>y> a.s in
(11), And for y € G such that p )é V^, g^Cp) = 0. Since 
P € N, p Uj for every 6 € G', and g^(p) s= 0; therefore

(14) <Xp, Yp> = 0 ,

and A is the normal distribution to N induced by the
Riemannian metric <,> , Q.E.D.

Two examples will be presented to show that the
hypotheses of Theorem 2 are critical. First, consider the

2case in vhich M = R with the usual structure, and N is
the open unit interval on the u^-axis. Note that N has
the subspace topology, but fails to be closed. For a A-con-

1 1gruence, take at the point (u ,0), 0 < u < 1, the sub­
space spanned by the vector

(15) 1 Ô 1 aL  ̂ — u ' ■" + ( 1 —u ) ■ ' «
au’

Suppose X is any C“ vector field on N; then X may be
written

(16) 1 b 1 a
X  ̂ = h(u ) ——  + k(u ) ——  ,

.0) au’ au2

and (15) and (16) yield

(17) k(u1) r  ̂ k(u')(l-u') 1 a
X 4 = "■ ■ Il I + I b(u ) ------------------ •
(u\0) ^1 (u\0) I J  J^^l
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Prom (17), we see that the A-congruence so defined splits X 
into two C“ fields on N, since (0,0) fé N. If <»> be 
any Riemannian metric tensor on M such that A is normal 
to N under <,>, one must have

(18) Ô . Ô à
0 = <L 4 ,  >  =  ( U  —1) <   ---, >  a

su’ su’ su’
2Since <,> is C® on R , (18) must hold in the limit as

tends to zero:

(19) lim , a Ô Ô<Ii  ̂ — — <—— I > = 0 *
u^-O ôu^ ôu^ àu^

But (19) contradicts the positive-definiteness of the 
Riemannian metric, and it is seen that A is not induced
as the normal distribution to N of any Riemannian metric 
on M.

The next example is closed, but fails to have the
2subspace topology. Let M again be R with the usual 

structure, and let N be the disjoint union of a denu- 
merable set of real lines, imbedded in M as lines perpen­
dicular to the u^-axis, and crossing that axis at points 
(1,0), (3 ,0 ), (3 ,0 ), etc., and at (0,0). Define a A-con­
gruence A by using as a basis at each point p € R the 
vector Lp given by
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(20)

a
(0,U^)

That; this is a p® A-congraencs on N is trivial.
If <,> be a Riemannian metric tensor for M with 

respect to lAiich A is nonnal to N, one must have:

(21) a<L . j > = 0 I
('4.0) ,„2

for every k. Then

. ^ = 0 .  
k -  ('4.0)

while

(23) a a a a a
<Il J f ■ ' > = <— — y > + <■ ' — y  > •J . y ^  ■ ÿ ^  T ^

 ̂ /k*°) au^ au^ Bu^ au^ 2au au

Prom (20)y  > = 0, so that (22) and (23)
au^ au^ (0,0)

together imply 

(24)
^  = 0 , 

au au (0,0)

miich again contradicts the positive-definitcnsss of the 
tensor <,>. Again, one concludes that A is not normal
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to N re any Riemannian metric on M.

It is to be noted that Theorem 2 applies to any com­
pact submanifold of a paracompact Hausdorff manifold.

4. A-congruences as Sections of a Fibre Bundle

The objective of this section is to show how both 
riggings of, and A-congruences to, a submanifold of a dif­
ferentiable manifold can be regarded as cross-sections of 
certain fibre bundles. The appropriate bundle for riggings 
is developed from the Stiefel bundle o:̂  k-frames over a 
manifold M, and that for A-congruences from the (Jrassmann 
bundle of k-planes over M. The Stiefel and Grassmann 
bundles and spaces will be described as they are encountered, 
primarily in order to fix the notation.

One begins with the Stiefel bundle; the exposition 
will follow, rou^ly, the treatment of Steenrod [20, p. 33].

A k-f rame, v^, in R^ is an ordered set of linearly 
independent vectors in R^; one writes v^ = (v^, ..., v^). 
Any fixed k-frame v^ can be transformed to any other by 
the action of some element of the full linear group on 
R^, Gl(n,R). Let Vĵ (R*̂ ) be the set of all k-frames in 
R^, and let y. be the subgroup of Gl(n,R) leaving 
fixed each vector of a fixed k-frame v^. Then is a
closed subgroup (the isotropy group of v^) of Gl(n,R).

Suppose v^ € (R^) ; associate with v^ an
element a 6 Gl(n,R) such that o(v^) = v^. If
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T € (rl(n,R) also maps to v^, then o“  ̂t leaves each
vector of v^ fixed, and a”^T € Also, if
T € Gl(n,R) is such that € G^ then t (v^) = v^.
The association

(1) » ®n,k « Gl(n,E)/Gn,k
is a bisection, idiich will be denoted by cp; thus,

(2) (p: \  {R̂ ) -* Gl(n,R)/G^^jj. .

Since the quotient space in (2) is a C® manifold, (R^) 
inherits a C® structure vhen it is required that qp be 
a diff eomorphism; then, (R^) becomes an nk-dimens ional
C* manifold.

Let L denote the suttspace of R^ spanned by the
vectors , ..., ê^), vdierê (ë^, ë^) is the
canonical basis of R^. Henceforth, the first k vectors 
of this canonical basis will be ta^cen as the standard ref­
erence frame v^ for G„ Thus, a representative of a 

3 3-k-frame (g^ëj, ..., ĝ ê̂ ) is a matrix with the first
k rows given by g^( j = 1, ..., n; a = 1, ..., k), and
other entries arbitrary.

Notice that in the writing of matrices, the upper 
index has been taken as a row-counter, and the lower index 
as a column-counter. This convention will be adhered to 
unless it is specifically noted otherwise.

Now 1st Qĵ  (R^) be the subspace (topological) of
(R^) consisting of all k-frames vdiich span subspaces
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complementary to L, that is, subspaces H such that 
may be expressed as L ®  H, One has the easy

lemma 1 ; The set (R^) is open in (R^).

Proof ; The natural projection 
T|: 01(n,R) - Gl(n,R)/G^ ^ is an open map (see, e.g.,
[2; p. 37]). Say a € Gl(n,R) represents an arbitrary, 
but fixed, point € Qĵ. (R^). Then
the subspace spanned by meets L trivially. Since
L is itself closed in R^, there is a neighborhood V of 
a in Grl(n,R) such that, if t 6 V, then the sub space of 
R°; spanned by t(v^q^) meets L trivially. Then
cp“  ̂ o n (V) is a nei^borhood of v^qj in Vĵ  (R^), each
k-frame in lAiich spans a space meeting 1 trivially, so 
9“"’ o Ti(V) £  Qjj (R^). Hence (R^) is open in (R^) 
as claimed. Q.E.D.

Corollary; Q^ (R^) is an open submanifold of (R^).

This is immediate, since any open subset of a G“ manifold 
inherits a C® structure. The manifold Q^ (R^) will be 
the fibre of the bundle vdiose cross-sections are riggings.

Because of the manner in vfliich a 0® structure is 
defined for Y ' (R^), the group Grl(n,R) acts to the left
on (R^) in a C® manner; to be precise, if
0, T € Gl(n,R), then o(t = o t This action
is carried to Y-^ (R^) via the diffeomorphism cp.
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The "bundle of bases over M, where M is a C“ 

n-manifold, is a principal C® fibre bundle over M with 
structure group (rl(n,R); accordingly, one defines the 
Stiefel bundle of k-frames over M as the fibre bundle with 
fibre (R^) associated tp the bundle of bases over 
M [1; pp. 45 -49].

Recall that the bundle of bases over M . has total 
space B(M) given by
(3) B(M) = ((m, e^, | ti Ç M, (e^, 6^)

an ordered base of
It also has projection p;B(M)-.M p(m, e^, ,,,, e^) = m,
and r i ^ t  Gl(n,R)-action defined by

(4) (m, e^, o = (m, OgS^) »

vdiere a = (ot) € Gl(n,R). Over a coordinate patch U with
i —1coordinates x on M, a point (m, e^, e^) 6 p” (U)

has coordinates (x^(m), x^(m), ç],

?2» •••V §n» •••» Sn)' ^ e r e  e^ = *

^Properly, one should say here that the point 
b = (m, e , e ) € p"^(U) has coordinates
(B(b), B(b), lj(b), l^Cb)), vbere
X' :̂p““(U) -* R Î; x̂  = x̂  0 p, and (b) = §*, vdiere 
e = ô/ôx«:, ..Thus the slot-functions of the coordinate map 
are maps on p“^(U), as is correct. However, for convenience, 
the functions W  will be written x̂  , the appropriate do­
main being clear from context, and similarly for ,

This.convention will be employed vfaenever coordinates 
in a bundle are defined using lifts of coordinate domains in 
the base manifold.
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The total space of the Stiefel bundle, which will be 

denoted by Vj^(M), is given by

(5) V^(M) ^ (B(M) X V^(R^))/Gl(n,R),

where Gl(n,R) acts on B(M) % V^(R^) by o(p,f) = (po,o"^f), 
for o € Gl(n,R), p 6 B(M), and f € Vy(R^). Association of a 
point in space V^(M) with a k-frame in the tangent space of 
M at the base of the fibre on which the point lies is accom­
plished by considering structure maps over coordinate patches 
on M« Let U be a coordinate patch on M as above, and let 

-* M be the projection of the Stiefel bundle. Then 
the structure map : (tt')”^(U) -* Vj^(R^) is given by

■ """T 9 oooj h^ ——r) 9 oooj -j ) ) Gl(n,R)] =

j ®-ç» o c « 9 h^ gĵ  e^).

Over U, Fy shows how the required association may be made; 
indeed, if one chooses as a representative of a point of 
V^(M) the point

(7) i Ô i Ô _
b = ( (m, h^ ' ̂ 9 ooo h ), (s-19 ooo, ®i{-) )' 0x1 " 0x1 I ^

in B(M) X V^(R^), then (6) shows that

Fy (b Gl(n,R)) = (h^ ®i* o.o, h^ ®i^ °

Thus, one may associate the point b Gl(n,R) with the 
k-frcme (h^ ô/ôx^, ..., h^ ô/ôx^) in and this corre­
spondence is well-defined over U.

Now, in order to construct a fibre bundle with fibre
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Qj^(R^), one must select an appropriate structure group, 
let CL _ , be the subgroup of Gl(n,R) which leaves the 
subspace I spanned by the vectors in­
variant. Then ^ ̂  is a closed subgroup of Gl(n,R),
hence, a Lie group [2; pp. 123-125], and elements of 
send k-frames spanning complements to L in R^ to other 
"1-complementary” k-f rame s. Since acts on Qj^(R^)
by restriction of the Gl(n,R)-action on V^(R^), the
G ,-action is C“ . It is to be noted that this actionn,n—k
is not free.

The total space of the desired bundle for riggings 
can now be obtained, using the structure maps Py. Indeed, 
let N be a C* (n-k)-dimensional submanifold of M, let 
g denote the Stiefel bundle of k-f rames over M, and
i: W -♦ M the inclusion map. Attention is now restricted to
the bundle over N induced by i from g, vdiich will be 
denoted by i*g. This may be identified with the restriction 
of g to N [6 ; p. 19]. The total space V^(N) of i*g 
is given by
(9) V*(K) = {((P, e,, (si .... g^ëj^)) 01(>l,E) €V^(M) |

p e N] o
let (U,i|i) be a special coordinate patch on M, with

= u^ o so that

(10) Ü = {q € Ü } x^(q) = 0  for j = 1, ..., k]

is a coordinate patch on N with coordinate maps
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lù» •••» ^ be cpvered with such special

coordinate patches U, Let w be the projection of i*g,
and introduce structure maps Gr' : (ü) -* V/(R^) for

Ü ^
i*ç by Gr' = Pj. » i %  vhere V  : V^(N) -» V/(M) is the U U X. s.
inclusion map. Then,
(1 1 )
G^[((p,h^ô/ôx^, ...,hjô/ôx^), (g^ê^, g^ëj^)) Gl(n,R)] =

(^j ^1 ®i» •••* ^j ^  ®i^*
Row, Cry is C“ , and hence continuous, on its domain. The 
manifold (^(R^) is open in V^(R^), so (Qjj.(R̂ )) is
open in (U), and therefore, since (Ü) is itself
open, -open in 1^(N), Thus, if Q̂ (̂N) is defined by

(12) Qfe(H) = y  G^~’ (Qfc(s“ )),

vAiere the union is taken over the special coordinate cover, 
one has that Qjj-(R) is an open submanifold of V^(N). A 
point of Qjj(R) over the ' nei^borhood U may be represented
by

(13) -((p» ô/dx , ,,,, ô/ôx ), ( Sĵ , ,,,, g^ 6j_) ) (il(n,R),

Under Gry, the point (13) goes to the point
(gl ©i, g^ ëĵ ) in Qj^(R^), so one may identify (13)
with the k-frame (g^ ô/ôx^, ,,,, g^ ô/ôx^) in Since
the map a : BL -♦ R^ by a(ô/dx^) = ë^ is an isomorphism.
and since N is snanned bv ( a/ax̂ '*'̂ ...... ô/ôx^)_ by; p " ' ' ' ' p
the choice of the nei^borhoods U, one has that the
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k-frame corresponding to (13) is indeed complementary to N^, 

The manifold Q^(N) is the required total space; 
write TT : -* N for the obvious projection^ and notice
that tt = ttIq (Q); so that tt is C®.

A left ^ ,-action is defined on by firstn I AL
defining it over a special coordinate nqi^borhood ü, and 
then gluing these local actions together by means of tran­
sition functions [6 ; pp. 60-63]. Over a special patch Ü,

^  ^ ^n,n-k» 1st
(14)

o[((P; f •••) b / b X  ) f  ( g^ • • •} ® j_) ) =
((p, a/3%1, ..., ô/ôx^), (o^gjê., ..., a^g,^ë.)) Gl(n,R),

3 1 -̂  d K

vûiere a = (o^3« Since the ^n,n-k”®’°^^°“‘
this action is C“ on tt”^(ü ) by local triviality,

and by the fact that structure maps commute with actions.
Suppose now that U and V are two special co-

ordinate nei^borhoods on M with coordinates (x ) and 
(y ) respectively, an a with U and V the associated 
patches on N. Let p 6 Ü fl V, and let a € tt”^(p) be any 
point of the fibre over p. Suppose a has the repre­
sentations
(15)
a = ((p, b / b x  , ... , b / b y ^ )  f (gj 6ĵ, ..« » gjÿ. 6^)) Gl(n,E) 

and
(16)

a = ((p, ô/ôy\ «•. > ; ô/ôy^) » (b^ e^, ..., h^ e^} ) Gl(n,E)
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over ü and V respectiyely. Since â/ôy^ = (ax^/ay^) a/ax^,
(16) yields

ax^ a^ ax^ a
a- = ((p, — r — •••> — g — Ï")* (111 e-, ..., h? e.)) Gl(n,R) 

ayi ax^ ay^ ax^ ' ^ ^ ^
(17) a ax  ̂ . ax" .,3 Ô    -h3 Ô= ((p>  Tt •••»  n) » ( T 1̂ 4 ®i» •••» ------- 6^)) Gl(n,R)gx1 zir:1 I ■*■ avJ ^ax" ay] ay]

From the Toniqueness of the particular coordinate expression
(13); (17) implies that

(18)

Accordingly, it appears natural to define the transition 
function ; U n V - by

(19)
®uv ~

ax
ayi

11

The matrix [axVôy^]p represents a member of G^ by
choice of the coordinate structure on U and V,

If W is yet another special patch on M with co­
ordinates (z^) and associated patch W on N, and if 
p 6 U n V n W, then

^uv ( ° “
ax"
ay]

^ay^‘
az‘

ax^ ay]' 
ay] az" 
ax^' 
az®
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or
( 20 ) gyy ( P ) ® P ) = ( P ) »

and ggy are acceptable transition functions. From
(17), it is clear that these maps are compatible with the
local G- ^ ,-actions defined in (14), so that one has n,n—ic ' ' '

Theorem The bundle with base N, total space Q^.(N), 
fibre Qj^(R^), and projection n is a C“ 
fibre bundle tijj with structure group .
A C" cross section of tijj is a rigging of N 
in M.

The last statement of the theorem is immediate from the 
construction of tiĵ . The bundle T|̂  may be styled the 
Stiefel Tangent-0omplement bundle, or simply STG-bundle, 
over N.

The plan for obtaining a fibre bundle, cross 
sections of vhich will be A-congruences to the submanifold 
N, consists of three major steps. First, the principal 
G„ „ ,-bundle associated to the STG-bundle is described. 
Second, a particular submanifold of the Grassmann manifold 
of k-planes in is singled out, and a left G^ n-k“
action defined on it. Then, finally, the required bundle 
will be that vdiose fibre is this special Grassmann sub­
manifold, and vfliich is associated to the principal 
G^ ^_^-bundle over N.

The principal fibre bundle associated to the
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STC-b\indle is constructed as follows (c.f. [6 ; pp. 62-63]);
Let act on itself by r i ^ t  translation. Let
[U } ; vdiere G is an index set, be a special coordinate
^ yCG

cover of the submanifold N as described by (10), and define

Where ©  denotes the disjoint topological sum. A point 
z € Z may then be denoted by an indexed pair; (m,a)^,
There y e G, m € and o € G^ . An equivalence re­
lation R is defined on Z by setting (m,a)^ and (p,?)^
R-related provided m = p, and t = a • Sn t t  (”̂ ) • Then theUy 6
total space of is given by

(22) %  = 2 mod R.

The group G^ acts on Eĵ  to the r i ^ t  by

(23) (m,G)y T = (m,0T)^ ,

where (m,o)^ is the R-equivalence class of (m,a)^ € Z.
Let q s Z -► Ejj be the natural projection, and for

each y € G, let q ; U x (L ̂  v ** 2 be the natural in-' y y n,n—X
elusion map. If one defines h^ ; % G^ -» Ejj by
h^ = q * q^, then h^ is a G^ ^_j^-isomorphism of
Ü X and , and requiring the local iso-Y y
morphisms h^ to be diffeomorphisms gives E^ the structure
of a C® manifold, and becomes a 0® principal
G^ ^ ,-bundle over N. n,n—X

Next, the Grassmann manifold G^(R^) of k-planes
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in will be examined. The approach used here is a mixture
of the expositions of Steenrod [20; p. 35] and Husemoller 
[6 ; p. 13],

The Stiefel manifold of orthonormal k-f rames in R^, 
denoted by Vj^(R^), is given by

(24) V^.(e“ ) = [(V,, v^) € (3“-’)'' I <v^, ,

lAiere <,> is the usual inner product in and S^”
denotes the (n-1 )-sphere. The space Vj^(R^) has the rel­
ative topology as a subspace of Let <v^, ,,,,Vj^>
denote the subspace of R^ spanned by the k-frame
(v^; ,,,, v^) 6 Vj^(R^). Then the set G^(R^) is given the 
quotient topology from the map

(25) 6 : Vj^(R ) -* Gj^(R ) ss 8(v^; »,* » ~ •••»

Lemma 2 g The mapping e given in (25) is open.

Proof g Suppose U is an open set in Vĵ (r”‘), and 
consider e’“̂ [0(TJ)], If (v^, .,,, Vĵ ) € e“ ^[0(U)], then
<v-], . Vjj.> 6 0(U), and there exists a k-frame
(v^, . Vĵ ) 6 U such that

( 26 ) <V ̂ } o o , y V̂ >̂ = <v ̂ f , , , y V^> ,

Since U is open, there is a real number e > 0 such that,
if 0 = (Vg X ... X V^) n Vj^(R^), where is an open
e-nei^borhood of v^ in S^“  ̂ for a = 1, ,«,, k, then
(v^, ,,,, v^) € 0 E  U, It follows from (26) that
Vo = Go V , where the lower case Greek letters run over the p p a



30
range (1, . k), and (op) is an orthogonal matrix, hence,

le ""Q-a length-preservitig map of R » Define quantities o^ by

(27) ^

Next, take > 0 so that

(28) max ^  _
c ,  <  m i n  [ s / (  a  L  I II  s ;  1 ) ,  e ]  .

6,T]

Then consider the nei^borhood Q of (v^, v^) in
Vj^(R^) given by Q = (v] x ... X V^) H Vj^(R^), inhere

1 1  1

is an open e -neigjiborhood in of v , for
X O'

a = 1, ••., ko And suppose that (v^ + a^, o.., Vĵ  + a^) € Q, 
so that (Spl < , for p = 1, ««o, k. Then there exists
an element t € Grl(n,R) such that t Cv ^) = + a^ , One has
from (26) that

(29) <t(v^), t(Vjj.)> = <t(v^), t(Vj^)> ,

Write t (v  ) = v + then, since t is a linear map,P P P
(30) T(?,) = r(5^ v^) = t (v ^) . 4. s ;  .

This shows that "E. = a , so one may compute:p p Œ

l ^ g l ^  s  6 ^ .  I II  ô j  I ( a  n o t  smmnea)

Z  I 3^ 11 I ( %  |a^|^] (a not suimned)&
6, Y

or
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from (28)o Here, = (a ^ ^ , o.», a^^)) 6 E^. It follows 
that the point (v^ + + "Ê ) is in U, so that,
from (29), one has (v̂  + a^, + a^) € e“^[e(U)]*
Thus, Q E 0~^[0(U)], and therefore, 0"^[0(U)] is open in 
Vjj.(R̂ ), vdiich means that a(U) is open in G^(R^), hy 
the quotient topology, and 6 is indeed an open map, Q.E.D,

Let Oj, S  Gl(n,R) he the orthogonal subgroup, and 
note that 0^ acts continuously and transitively on 
G^(R^). Let be the isotropy group of the k-plane
spanned by (e"̂ , o«o, ^ )  ; then is a closed sub­
group of 0^, and since 0^ is compact, the natural map 
Gft(R^) “* ^  k homeomorphism [20; p, 30], The
topological space Gjj.(R̂ ) is made a C“ manifold by re­
quiring this homeomorphism to be a diff eomorphism.

Next, let H^^(R^) denote the subset of Gĵ (R̂ ) 
consisting of all k-planes in R^ complementary to 
L = i • o o, e^> . The following lemma is readily es­
tablished:

Lemma 3s The subspace Hj^(R^) is open in Gj^(R^).

Proof : The space Vj^(R^) is homeomorphic to
®n/®n-k* itie natural projection 0^ - is an
open map [20; p. 34],^ Say (v^, v^) € Vjj.(R̂ ) spans

^The fiTouo 0 .̂ acts on V,.,(R ). and 0„ -i. is the“ * n Ü. - - " 11—ji.1°̂
isotropy group of some fixed element of V^(R^)o The nota 
tion is used because this isotropy group is C“-isomorphic 
to the orthogonal subgroup of Gl(n-k,R).
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a complement to L, and suppose o € represents this
element. Then^ since c v ^  . Vĵ > n L = 0 and L is 
closed, there is a nei^borhood V of o in 0^ such that 
T 6 V implies that <t(v^), . t(v^) > n L = 0. Then 

is an open neighborhood of (v^, Vĵ ) in
Vj^(R^), each element of which spans a complement to L. 
Finally, Lemma 2 shows that 8 is a nei^borhood
of <v-j Î oo., Vĵ >» each element of vdiich is a k-plane 
complementary to L, so 8[[V]0^_^^] S  E^), and
is open as claimed. Q.E,D.

Corollary g Hjj.(R̂ ) is an open submanifold of »
This is immédiate.

The left G„ „ ,-action on Ht,(R^) is defined by n ÿ £
cutting down the Gl(n,R)-action on Gj^(R^); if 
<Vi, ..., Vĵ > 6 and a 6
o<v^, .. =, Vĵ > = <ov^, OOOJ cVĵ > . It is clear that this 
action is C“ , since the Gl(n,R)-action and various in­
clusion maps are.

The 0“ fibre bundle with fibre H^^(R^) as­
sociated to the principal fibre bundle may now be con­
structed, The total space Hj^(N) of this bundle is given 
by

(31) Hj^(N) = (E^ X H^(E°) ) / ,

SO that a typical point of H^(N) is
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 ̂ ((m,(aj)^5> < V p  o,c, Vĵ >) Gn,n-k ”

let be one of the patches of the special coordinate
cover of N, with coordinates (x^), so that for p 6 U^, 
the tangent space is spanned by (a/ax^^^, . a/ax")p.
A complementary k-space in î.îp is spanned by 
(g| a/ax^, g^ a/ax^)p, with (g^) a matrix in
This k-plane may be identified with the point

®i» %  Gi>) ^n^n-k

in Hj^(N); the correspondence is clearly well-defined.
One may now state

Theorem £s The bundle with base N, total space
Hjj.(N), fibre and structure group
is a C® fibre bundle over N. A C" cross section 
of is a C“ A“Congruence to N in Mo

Proofs This is complete when the final statement of
the theorem has been established. From the construction of 

it is clear that a cross section is a A-congruence ; it 
is necessary to check the C” splitting property.

To that end, let 0  s N -» H^(N) be a C“ cross
section of and let T  be a C“ vector field along
N in Mo Thus, over a special coordinate patch on M
with coordinates (x^), and with associated patch U on 
N , one has
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(34) i ô

Y  (m) = 'I' (m) — =-
ôx

for m € ü, uriiere the R-valued functions ijî are C“ on 
U. The cross section (9 may he written

(^5) /g)(m) = ((mX6j))^; <@^(m)ê_ = ' ° ^n,n-k

over Uo Because (5̂  is C“ , the R-valued maps
0^ (j = 1, ooo, n; a = 1, ooo, k) are C“ on ü, and since,
for each point m € U, (e^(m)) is representative of a 
matrix in G , , the matrix (8o(%)) is non-singular,XII p
where a, p = 1, ooo, k„ Then s U - R are defined andP
C® on ü, vihere

(36) 8p(m) 0^(m) = ô® o

Now S { m )  is spanned by 
(e^(m) ô/àx^, ooo, e%(m) a/ôx3)^, so the decomposition

(37) Y(n^) = A(m) + B(m)

induced by (9(m) and the tangent distribution over N per­
mits one to write

. a
A(m) = X°'(m) 8 (m) — ? ,

“ axJ

(^8 ) , a
B(m) = Y (ni) — T » axi

Mdiere lower case Greek letters range over {1, ooo, k}, 
lower case Roman range over {1, ooo, n}, and upper case
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Roman over {k+1, n} o The coefficients x®" and
are to be determined; this is strai^tforward. From (3?) and
(38) ,  one has

*^(m) = Y^(m) + X*(m) ej(m) ,
(39)

t^(m) = X°'(m) 8^(m) .
Hence
(40) X^ = 5jx* = = *^8̂  ,
and
(41) yi = .

Since X^ and y^ are thus seen to be C® R-valued 
functions on U, it follows from (37) and (38) that has
the C“ splitting property, and is a 0“ A-congruence. Q.E.D.

The bundle Çjj will be called the Grassmann Tangent- 
Complement bundle, or simply the GTC-bundle, over N. The 
study of A-congruences per se will be terminated at this 
point, thou^ it is to be remarked that one would hope the 
bundles constructed to prove of some value in making state­
ments about submanifolds in the context of algebraic to­
pology, In order to make such statements, it would be im­
portant to know much more about the topology of Qj^(R^) and 
H^(R^). For example, what can be said about the homology 
and homotopy groups of these manifolds? This is a possible 
area for future work.
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5. The A-connexion and Union Curves

It is, of course, the C“ splitting property of a 
C® A-congruence that makes it a suitable vehicle for inducing 
connexions on submanifolds of manifolds with connexion. In­
deed, let M be a C* m-manifold upon vdiich a linear con­
nexion D is defined, and N a C® n-submanifold of M, 
with A a C“ A-congruence on N. If X and Y are C® 
vector fields tangent to N, one applies the decomposition
induced by A to the field D^Y:

(1) A ADjY = DjY + V(X,Y) ,

A A
where 6 for p € N, and V^(X,Y) € A^. It is
strai^tforward to establish

A
Theorem The function D defined by (1) is a linear con-

A
nexion on N, and V is a covariant 2-tensor
(c.f. [5j p. 75])»

Proof ; Recall that, if 3G (R) denote the set of all 
C® vector fields defined on N, a ,linear connexion ^  on 
N is a mapping SJz c5C(N) x <9C(N) - tSe(N) satisfying the 
following axioms:

( 2) Vx+y 2 = Vx^ + Vy2 ,

VyCY + Z) = V x Y  + V x 2  »

Vfx 2 = f  Vx 2 ,
Vx fZ = X(f) Z + f Vx Z ,
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wâaere X, Y, and Z are in cjG(N) , and f is any C*
R-valued map on N.

Consider the first of axioms (2); since D is a 
linear connexion, if X, Y, Z € J6 (N), one has

Z = Z + By Z, and the decomposition (1) yields

(3) A A A A
^ + Y  Z = Z + V(X,Z) + By Z + V(Y,Zj .

Therefore, since and A^ are line^ spaces for each
p € N, and since the tangential and A-components given by 
the decomposition (1) are unique, (3) gives

(4) A A A
% + Y  Z = By Z + Dy Z

and

(5) A A A
V(X + Y,Z) = V(X,Z) + V(Y,Z) .

In precisely the same way, the rest of axioms (2)
A

are established for D, showing it to be a linear connexion 
A

on N, vhile V is an M-vector valued bilinear map on JG(N),
where % ( N )  is regarded as a module over the ring of C®

A
R-valued maps on N, and hence V is an y-vector valued 
2-co tensor. Q.E.B.

Note that, in contradistinction to the case in vhich
D is a Riemannian connexion and A the normal distribution

A A
to N, the connexion B and the tensor V are not gen­
erally symmetric.

Let attention now be turned to a class of curves in



38
N v&lich have been studied rather widely in the case vôiere 
D is Riemannian. Suppose that N is a surface in R^, upon 
which a A-congruence (here, a congruence of lines) has been 
defined. Then a union curve on N is a curve on N having 
the property that the osculating plane at each point of the 
curve contains the line of the congruence passing through 
that point.^

The osculating plane to a curve a : I -* N, where 
I is a compact real interval, is determined by the tangent 
T = a^(d/dt), where t is the usual coordinate of R^, and 
by"the first curvature vector T = of o, where-
ever Rg, T ^ 0. Here, D is the usual connexion on R^, 
and is a unit vector. It is possible to choose
independently of Rg, T, in which case, setting R^ T = 
defines the function k^ [5; p. 74].

One has the following result:

Theorem £; A curve a : I -* N, as above, is a union curve 
of the surface N re the A-congruence A iff

(6) A
R% T = g T,

where g is a C® R-valued function along o .

Proof : If a is a union curve, then at a point

-Pauline Sperry [16]. Miss Sperry does not make the 
requirement that no line of the congruence be tangent to N, 
but this case is degenerate, and other authors have gen­
erally avoided it. See, e.g., C. E. Springer [1?; p. 688].
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P € a[I], lies in the plane determined by N, and T,

^ A
80 one may write V(T,T) = k T + 1̂ 2 , From

(7) A Ak^ T = D̂ . T + V(T,T) ,

one has
A

(8) T = (k^ - kg) - k T .
A

Since (D^ I)^ € Np, k^ must equal kg, and (6 ) holds with 
g = -k.

Suppose, on the other hand, that (6 ) holds; then one 
has from (7 ) that

(9) A
V(T,T) = k^ - g T.

If k, / 0, then o is a union curve, by (9). If, however,
A

k^ = 0 , then g = 0 also, since Vp(T,T) € Ap, and (7 ) 
shows that a is a strai^t line in R^, so that the 
osculating plane is indeterminate. Let the convention be 
adopted that su^h rulings in N are union curves. Then the 
argument is complete, Q.E.D.

With Theorem 2 for motivation, return to the case of 
an m-manif old M with linear connexion D, and an n-sub- 
manifold N with A-congruence A, and define a union 
curve of N to be any curve a s I -* N with tangent T 
vdiich satisfies

(10) A
T = g T ,
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for some C" R-valued function g along o*^

In the case vdiere D is Riemannia^ and A the nor-
A

mal distribution to N, V(X,X) has been called the normal
or asymptotic curvature vector of X, and a curve o : I N

Awith tangent T such that V(T,T) = 0  along o is an
asymptotic line [5; p. 76]. Therefore, in the general case

- A
of D linear and A a A-congruence, V(X,X) may be styled
the A-relative asymptotic curvature vector of X, and a

A
curve o Î I -* N with tangent T such that V(T,T) = 0
along o, a A-relative asymptotic line. If and only if 
A
Dÿ T = 0, 0 will be named a A-geodesic.

The following theorem is immediate:

Theorem 3 : Let N be a C® n-submanif old of the C®
m-manifold M, vhere M has a linear connexion D, 
and N a C® A-congruence A. Then a curve in N 
Tdiich is a geodesic in M is a union curve in N 
iff it is a A-geodesic and a A-relative asymptotic 
line in N. A curve in N vdiich is not a geodesic 
of M is a A-geodesic iff (D^ T)^ lies in A^ 
for each point p of the curve.

It is to be noted that Theorem 3 generalizes well-known 
properties of induced Riemannian connexions [5; p. 2y and 

p. 77].

^This agrees with a generalization foi; hyper surf aces 
given by Kent arc Yano [22].
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6. Union Connexions

In his doctoral dissertation [3], Roy,B. Deal intro­
duced a connexion on a metric surface in R^, the geodesics
of vAiioh are the union curves of the surface relative to

■ ..

some congruence of lines. In a later paper [18],
C. E. Springer developed part of a theory of curvature based 
on Deal's connexion. This connexion was discovered by 
writing the differential equations of union curves in the form

(1) d^x® dx dx^ dx^
— ) —  —  = °

ds ds ds ds

(vdiere x*̂  are coordinates in N), and styling the functions 
the "coefficients of the connexion".

In this section, a coordinate-free derivation of a 
union connexion for an n-submanif old N of a Riemannian 
m-manifold M is given. The local coefficients of this con­
nexion will also be calculated.

Let M be endowed with a Riemannian metric tensor 
<;>; and associated Riemannian connexion D, vdiile the sub­
manifold N carries a C® A-congruence A. Then one has

Theorem 1_s A curve a : I -* N with tangent T is a union 
curve of N iff

(2) A A
Dg T = -<V(T,T),T>T ,

vdiere a is parametrized by arc-length.
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Proof : By definition, a is a union curve iff

(3) A
Dq, T = g T ,

vdiere g is a C® R-valued function along a. From the 
definition of D one has also

(4) A A
Dp T = Dp T + V(T,T) .

Because the parametrization of a is hy arc-length, T is
a unit vector, and since D is the Riemannian connexion 
associated with the metric <,>, one has

(5) <Dj T, T> = 0 ,

Then, from (3), (4), and (5),

A A
0 = <Dy T, T> + <V(T,T),T>

(6)
A

= g + <V(T,T),T> ,

The theorem follows immediately from (6 ). QoE.B.
Accordingly, the union covariant derivative Y 

of a C“ vector field Y in the direction X may be de­
fined by

(7) V. A A
Dg Y = Y + <V(X,Y) ,Y>Y ,

The choice of vfliich slots are to be filled by X and which 
by Y in (7 ) is governed by a desire to have first-slot 
linearityj other choices are, of course, possible» From
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(7 ), one sees at once

Theorem 2: A curve in the submanifold N is a geodesic of
the union connexion relative to the A-congruence A 
iff it is a union curve relative to the congruencej 
inhere N is a submanifold of a Riemannian space 
M, and the union connexion is defined by (7).

It is to be noted that definition (7) depends 
critically on (2), and (2) requires a metric of a fairly
special sort to be defined on M for its derivation. It
would not appear likely that a union connexion could be de­
fined for a submanifold of an arbitrary manifold M with a 
linear connexion. The difficulty is, of course, that a union 
curve is a parametrized curve, rather than a point set, and 
that the function g in (3) can be chosen with great freedom, 
in general.

From equation (7), it is a simple matter to derive 
local egressions for the union connexion. The conventions 
regarding valuation of various indices mentioned in the proof 
of Theorem 3.2 will be followed. Attention is now restricted 
to a patch U on M with coordinates (x^) and a patch
V E  U on N with coordinates (u°'). Write

a.. = o/ôx^, ô/ôx^>^ J
and

(9) g^p = O/au^, ô/ôuP> ,
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It may be supposed that ü and V are chosen so 

both A and the normal distribution to N have C® bases 
over V, with.the normal distribution spanned by unit vectors 

(|i = n+1, m), with

(10) i Ô

and A spanned at each point of V by (t = n+1, .o., m), 
where

(11) . 3  „
^  “î » .

If a vector field X of M defined along V is given by

(12) _ Ô _
X = o — rr + p^ N ,

then

vdiere t®’ and are to be determined» From (13) and (11), 
one obtains

(14) a
X = Ct“ + ql' »,“) —  + ql' 0^ « .u au“ ^  T

Therefore

(15) {
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Let C“ R-valued functions on V be defined by the re-T
lation c]JJ c® = 6^ 0 Then (15) may be written

(16)
= cljl p'T ,

= 0^ _ ci; ,

vôiich is vAiat is desired.
Now let D be the induced Riemannian connexion on 

No For vector fields X and Y tangent to N, one has

(17) Y = Y + (X,Y) N^ ,

#iere are certain symmetric 2-covariant tensors over V
[5; p, 75].

Prom (16) and (17), it follows that

Dj Y = BjY - ^  ^  ^  V' (X.Y) .

Write

(19) (X,Y) = qJ. Y^ ,dp

vAiere X = X°̂  ô/bu°' and Y = Y^ ô/ôu^ , The quantities 0 ^
are the second fundamental tensors over V with respect to 
the normals N^ of classical differential geometry [21; p. 
164]. One obtains from (18) and (19)

V(Ï,Y) = njp x“ Y^ ,

wdaich, together with (11), shows that
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<V(X,Y),Ï> = cW njp m l X“ Y^

Therefore, from (18) and (21), one may write the required
local expressions

(22) Y = X°-[ôY V ôu® + rjp Y^

where r \  are the coefficients of the induced Riemannian ap
connexion D. Write q]|[ = then the direction-de­
pendent "coefficients of the union connexion" can he picked
off from (22) and written in the form

( <  -
A

Note that the coefficients of the linear connexion D are 
given by

(24) 4 - V  T VrJs = rjp - njg q; .

These are to be compared with coefficients introduced by 
K. Yano [22; p„ 55].

If, using (23), one writes the differential equations 
of union curves of N after the form of (1), he obtains

(25) ^2^a ^  au^ duY
+ r.ds^ Py as ds

du^ du°' du^ du Y
( S  " ^c6 as ds  ̂ ds ds °
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which are precisely the differential equations of union 
curves of a subspace of a Riemannian space as derived by 
T, Ko Pan, vidio begins from another definition than than em­
ployed here [13],

The introduction of the union connexion D permits 
yet another decomposition of the vector field Y, 
vdiere X and Y are C“ fields on, Ns

(26) ^ A A
Dg Y = Dg Y + [V(X,Y) - <V(X,Y),Y>Y] .

Write U(X,Y) for the quantity in the square brackets in
the r i ^ t  member of (26). Then TJ(X,X) may be styled the

1relative curvature vector of X, and <U(X,X) ,TJ(X,X)>® may 
be called the relative curvature of X. Also, a curve in N 
with the property that the relative curvature of its tangent 
vector is zero at each point of the curve m i ^ t  be called a 
union-asymptotic curve of N; then (26) shows that a curve 
in N is simultaneously a union curve and a union-asymp­
totic curve of N iff it is a geodesic of M.

Prom (11), (20), and (21), one observes that U(X,X) 
is given in local coordinates by

(27) ü(X,X) = xP X^ {q® - q' x ‘ X®] a/su®

+ S'v “t '
Prom (27), one may recognize that U(X,X) coincides with 
an identically named vector described by Pan [13; p. 7]«
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It would be possible to continue with the discussion 

of the union connexion, but the writer prefers to pass now 
to a consideration of a class of connexions which will in­
clude the union connexion as a specific example.



CHAPTER III

1. Introduction

Recently, K« Yano and S» Ishihara, and A, Kandatu, 
have studied vôiat they refer to as a non-linear connexion 
on a differentiable manifold [23, 7]» This is defined by a 
distribution on the tangent bundle, transversal to fibres 
over the base manifold, and invariant under the action of 
the group of non-zepo real numbers » Much of vdaat these 
workers derive is not actually dependent on this invariance 
condition, which is reflected in the homogeneity (of degree 
1) of the connexion coefficients in their directional ar­
guments, Since the union connexion of equation (11.6,7) 
provides a geometrically non-trivial example of a con­
nexion Tôiose coefficients are not homogeneous in the di­
rectional arguments in any degree, it appears reasonable to 
study connexions defined by fibre-transversal distributions 
on the tangent bundle lAiich do not necessarily satisfy any 
invariance properties. This is done in the present chapter, 
in sections 2 and 3,

In the study of such non-linear connexions, those 
objects classically referred to as "direction-dependent" 
tensor fields will be encountered, A new definition of

49
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such entities is given, in the context of fibre bundle 
theory, in section 4* In the following sections, con­
nexions for such objects are studied. Rather remarkably, 
and pleasantly, one is lead to a type of connexion intro­
duced from quite different a launching point by T, Okada, 
and employed in an interesting series of papers by 
Makoto Matsumoto [9, 10, 11, 12].  ̂ In sections 5 through 
7, these connexions are studied from rather different a 
standpoint from that adopted by these workers.

The remainder of the chapter is devoted to showing 
how, for direction-dependent connexions, the rôle played 
in the theory of linear connexions by the tangent bundle 
is taken by the square of the tangent bundle (in the 
terminology of Steenrod [20; p. 49]). The results of 
these sections (8 throu^ 11) provide analogues of results 
known for linear connexions and tangent bundles, in par­
ticular, that of Yano and Ledger on linear connexions on 
the tangent bundle [24].

2. Definition of a Non-linear Connexion

A. Kandatu has offered the following coordinate- 
fre^ characterization of a non-linear connexion: let M be
a C“ n-manifold, and 3C (M) the totality of C“ vector

^T, Okada, "A formulation of Pinsler connections 
with the use of fibre bundles," (graduation thesis, Uni­
versity of Kyoto, Kyoto, Japan, no date), cited by 
M, Matsumoto [9; p. 1].
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fields on M, Then a mapping \ / t  O C W  xc%T(M) -»c^(M) is 
a non-linear connexion provided it satisfies the following 
axioms :

(1 ) a) Vy+g X = V y  X + V z  X .

b) Vjy X = f V y  X ,

o) Vy fX = ï(f) X + f X ,

d) ( V y X ) p  = ( 7 y  X)p , if Xj, = 0

e) { V y  CX + Z))p . ( Vy X)p + ( V y  Z)p , if Xp + Z^^O, 

vdiere X,Y, and Z are inc3G(M), f is a C“ R-valued
Ofunction on M, and y  is an arbitrary linear connexion on 

M.^
Equivalently, such a connexion may be defined by an 

n-dimensional, fibre-transversal, C® distribution on the 
tangent bundle T(M) of M, vdiich is invariant under the 
action of the group of non-zero real numbers, and vdiich may 
have singularities across the zero cross section of T(M) 
[23; p« 272],3 If, indeed, the distribution does not 
possess singularities, a simple lemma of Peter Dombrowski 
shows that the connexion is actually linear [4; p» 76], In 
the present work, however, no distribution will have singu-

^Kandatu [7; pp„ 259-260]. Kandatu credits 
Professor S. Ishihara with suggesting this definition.

3The word ’’singularity" here refers to a point at 
imich the distribution fails to be C®. In particular, 
it does not imply a dimensional change at any point.
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larities, and the connexion described by (1) is linear. The 
direction of generalization will be rather different from 
that of Yano and Ishihara,

let the union connexion (11,6,7) be tested against 
axioms (1); it is easily seen that (a), (b), ( d), and (e) 
are satisfied, but instead of (c), D satisfies only the 
weaker condition

(2) ^y(-X) = - SJY

let mappings JIS(M) x J6(M) - S£(M) satisfying (a),
(b), (d), and (e) of (1), and (2), be referred to as 
NH-connexions, the prefix "NH” deriving from "non-homo- 
geneous", Of course, linear connexions are included in the 
class of NH-connexions,

The local representation of an NH-connexion follows 
readily from its defining properties. Consider a coordinate 
patch U on M with coordinates (x^); if X = ô/ôx^,
write

( V  1 %)m = t(5xVax^)„ + (d/âx^)^.ô/ôx

Then the functions are well-defined functions on the
tangent bundle T(M), or, more precisely, on n"^(U), 
where tts T(M) -» M is the projection map. For suppose

= 2^ for two 0“ vector fields X and 2 on M, with 
m 6 M, From (2) and (I.e) one has
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(4) ( V  ô (% - Z))m = ( V a  D m  - ( a Z)m'
ÔX^ ôxi

while hy ( 1, d),

( V  a (% - Z))m = (T7 a (X-Z)) m
ôx^ ôx^

(5) 4 4ax*’ aZ'̂  a
ax^ ax^ axJ

From (3), (4), and (5), the conclusion follows;

 ̂  ̂ î °

Using (3), (l.a) and (l.b), one may write the desired local 
expressions

Vy X = {axVôx^ + (m,X)3 a/9x^ .

Prom the fact that ^  X is itself a C* vector 
field; one concludes from (7) that the functions trans­
form according to the law

(8) - . 0 ^  ax^ a^xi ax^ ai^
Î?(.,X) = l i W )  ^  ̂  . XP ,

where i. € U n Ü, U is another coordinate patch on M with 
coordinates (x^), and are functions to R on Tr”^(U)
defined by the analogue of (7) that holds over U,

Conversely, if, for each coordinate patch U in a 
cover of M, functions s tt”^(U) -* R are given so that
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(8) holds, and such that = - r^(m,X), then theseJ J
functions define, via (7), a global NH-connexion.

Consider now the tangent bundle T(M), and recall 
that if Ü is a coordinate patch on M with coordinates 
(x^), then TT^^CU) is a coordinate patch on T(M), a 
point (m,X) € tt”^(U) having coordinates
(x^(m), o.., X^(m), .oo, 5^), where X = ô/ax^.^
suppose V is another coordinate patch on M with co­
ordinates (y^); then, if X = d/ax^ = r\^ a/ay^, one has

(10) T1̂  = (ayi/axi) .

The tangent spaces of T(M) are, over U, spanned
by the coordinate vectors
(a/ax\ ..., a/ax“ , a/à§\ a/ai^)« suppose a vector
field Q be given on T(K[), with representation

(11) i a i -a
Q = a (m,X) r + p (ni,X) .

ax^ a§3

over Uo Then, if m € U fi V, (10) smd (11) yield 

i ayj Ô i a
Q = (a — r) — ? + (a § — q r + P — r) — r «

ax^ ay«̂  ax^ axO axJ an

Equation (12) is the transformation equation for vectors on 
T(M).

If X = X^ a/ax^ is a vector field on M, the
field X on T(M) defined, over U by

^See footnote, page 21
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X(m,Y) = X^(m){ô/ôx^ - rj^(m,Y) ô/ô§^}

is called the horizontal lift of X (c«f. [7; p. 263]),
Using (12) and (8), and writing for the connexion coef­
ficients over the patch V, one sees that

-i ôy- Ô i i ô^y- 11, i ôy^ ô
X(m,Y) = ^ + {X^ §3 — r-- r - r^m.Y) X^

ax3 ay^ ax^ axO ax^ atî

ay ax^ axJ

ax^ ay"*̂ ay^ . . ay® a V  ax^ ax̂ i ay^ a
^ ay^ ax3 ax^ ax? ax^ axi ay^ ay® ax^ atî

On using the fact that

ay^ ax^ ^
â ^ â ?  " ^® '

one finds that the first and last terms in the braces in (14) 
subtract out, and what is left may be written

x(m,Y) = P  a/ay^ - rj (m,Y) x^ a/an^,

where X = X^ a/ay^. It follows that (13) defines a global 
lift of X to a field on T(M),

Notice that the horizontal lifts to T(M) of vector 
fields on M define a smooth n-dimensional distribution on 
T(M) which is transversal to fibres. This distribution is 
spanned locally by horizontal lifts of coordinate vector 
fields on a coordinate patch U; thus, in tt~^(U), it is



56
spanned by the vectors (i = 1, n), where

(16) Ô h, s ^= — r - n  (m,X) — ^  .

Now turn the situation around, and suppose given a 
C*® fibre-transversal distribution H of dimension n on 
T(M), The fibre-transversality implies that re­
stricted to H(m,Z), is an isomorphism. The unique vector 
X in H(m,Z) such that ir* (X) = X for some X € may
be styled the horizontal lift of X, and if X is a C“
vector field, the lifts X define a C® field on T(M), 
since H is C“ , In particular, the horizontal lifts 
of coordinate vector fields a/ôx^ over a patch U on M 
span H on n” ^(U). Write

(17) + a + a
Bj = ttj (m,X) + Pi (ni)X) t

^ ax^ ^ a§^

wdiere and are functions to be investigated.
Since rr* (B^) = a/ax^, it follows that 

a^(m,X) = for all (m,X) Ç tt“^(U). And the trans­
formation equation (12) shows that over U n V, where V 
is a coordinate patch on M with coordinates (y^), B^ is

(18) ay^ Ô ax"̂  g a V  ax^ ay^ s ^

If the horizontal lifts of the vectors d/dy^ be denoted by 
B^, then (18) shows B^ to be the vector in braces in (18).
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But if be defined over V as p? are defined over U
by (17), one must have

g ôyP ôx^ a^yP
^  ^  ^  Ç .

since "lifting" is an isomorphism.
Equations (I9) show that -p®(m,X) transform like the 

in (8), so a covariant derivative \/ may be defined,
V

after the pattern of equation (7), using these functions as 
coefficients. This operator is a reasonable sort of con­
nexion.

Henceforward, connexions induced by C®, n-dimen- 
sional, fibre-transversal distributions H on T(M) will be 
called non-linear connexions. Notice that the covariauit de­
rivative y  defined by such a distribution need not satisfy
(2); in order that this hold, one must require

P®(m,-X) = -p®(m,X) ,

This means that H must satisfy a species of symmetry about 
the null cross section of T(M):

(21) H(m,-X) = -H(m,X) .

The minus sign before H(m,X) in (21) denotes the mapping

(22) B^(m,-X) K -Y^ B^^(m,X) .

It seems reasonable to remark at this point why one
cannot give an invariant, coordinate-free characterization



58
like (1) for an arbitrary non-linear connexion. The con­
nexion concept is a very broad one, and essentially any map 
D:JG (M) x<^(M) c9C(M) may be called a connexion. If one 
is given such a mapping, and writes

D i z = ax^/ôx^ (a/ax^) + Am,x)(a/ax^) »
a/ax-

idiere first-slot linearity is being assumed for convenience, 
he does not know that are^ well-defined functions in the
tangent bundle. For a trivial -example, let

_  a
D i X = [— j-+ if (m.X) ) f (m,X) —  , 
a/ax ax^ ax“

where are, say, coefficients of some linear connexion,
and f is an arbitrary but fixed C® H-valued map on T(M).
If one puts the covariant derivative (24) into the form (23), 
then the "functions" are given by

(25) aih
n  = f(m,X) n  (m,X) + [f(m,X) - 1 ] — r,
^ ^ exp­

and thus depend bn values of X in a neigtiborhood of
m, and are not well-defined functions on T(M).

If enou^ is included in the list of axioms charac­
terizing a connexion to insure that the in (23) are
well-defined in tt'"̂ (ü ), enou^ is included to make the con­
nexion rather special. Indeed, the axioms for an HH-con­
nexion seem to this writer to be minimal in this respect.
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3. Integrability Conditions

Consider now the distribution H of a non-linear 
connexion; conditions under which H is integrable are 
sou^ti By the Probenius Theorem on the integrability of 
distributions (see, e.g., [1; p. 23]), H is integrable 
iff

(1) [%'Y](m,Z)  ̂H(m,Z) V I,Y € H(m,Z).

Since the fields (i = 1, . n) of (2.16) form a
local spanning set of H, (1) holds iff

[B^^Bj] = (y^j R-valued maps on (U)),

over the coordinate patch U, From (2.16), one obtains 

[Bi,B.] = [Bj^,B-](x^)(ô/ôx^) + [Bi,B.] (§^)(â/ô§^)

or

Thus one sees that [B^,B^] is a vertical vector,Ü
that is, n*([B^^Bj]) = 0. In order that [B^,B^] be
horizontal, then, it is necessary and sufficient that
[BU,B.] = 0; hence, one has ^ J

Theorem l̂s The horizontal distribution H of a non-linear 
connexion, with coefficients i^(m,X) over a co­
ordinate patch Ü on M, is integrable iff, over 
each such patch.
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where denotes the quantity appearing in curly
braces in equation (3),

This result is to be compared with that of Kandatu [7; p. 
267].

The quantities RK(m,X) appearing in (4) are^ J
R-valued functions on tt”*^(U) E  T(M), and the operators 

and ô/â|^ involved in the definition of them are 
coordinate vectors in n"^(U), so that they transform in 

n V) by
k 2 iÔ ÔX^ Ô ^  Ô X** Ô

3yi ôy^ ôx^ ^ ôy^ ôy^ '

(5)

ô ôx^ ô

vdiere V is a coordinate patch on M with coordinates 
(y^), and (y^,p^) are the induced coordinates in 
Using (5) and (2.8), one finds that, under such a change of 
canonical coordinates in T(M), the quantities R.^.(m,X)1J
in Ü are related to similarly defined entities R.^.(m,X)^ J
in V by

-jj. p ÔX® ôy^
R^ .(m,X) = H^g(si,X) _  _  _  ,
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vAiich follows by straigbtforward, if quite tedious, compu­
tation.

In spite of the appearance of (6), cannot be
regarded as components of a tensor field on M, since they 
are functions in Nor can these functions be thou^t
of as components of a tensor on T(M)j there are not even 
enough functions given to determine one! But it ^  possible 
to associate the functions r K  with a tensor field on T(M), 
using the distribution of the non-linear connexion. Let

(i = 1, ..., n) be the basis dual to the basis
(i = 1, n) of H(m,X) for m € tJ. Then a tensor

R is defined on T(M) by

R = R^(m,X) B^ 0  Bjj. 0  B^ ,

This approach is due to Yano and Ishihara [23; pp. 281-283]. 
Classically, however, such collections of functions as 
R. . have been referred to as "direction-dependent tensor 
fields on M", or as "tensor fields on M with coefficients 
in the tangent bundle". (See, for example, H, Rund's book 
[14], in vhich such objects abound.)

The approach employed here will be to retain as much 
as possible of the classical point of view, idiile attempting 
to put the concept on a more rigorous mathematical foundation. 
A detailed consideration of this subject begins in the next 
section; for now, consider the following purely local defi­
nition, the significance of vhich is more terminological 
than fundamental;
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Definition Is Let {(TJ ,cp )} , G an index set, bé a co-
------------- Y 'Y€G

ordinate cover of the 0“ n-manifold M, with 

X = u o cp . Let T(M) be the tangent bundle over
y y

o m 9 1
M, with projection tt. If I . ■ are m k  C=Y J 1 o o o
R-valued functions defined on for each

Y € G, these functions are said to define a 

DR-tensor field of type (k,m) on M, provided 

that in w^^TJ^ n D^), the relationships

4 — ..•̂-1- + • • • • - • o • ,* Jl'"°3k Y 3kÔXg dXg dx^ aXy

hold, for each y » 6 € G such that n / cp .
The name, DR-tensor, derives from "DiRection-

dependent tensor”o In particular, the DR-tensor defined by
R .. will be referred to as the curvature DR-tensor of the ^ J. .

non-linear connexion. Also, one other DR-tensor associated 
with a non-linear connexion m i ^ t  be mentioned, vdiich appears, 
in particular, if one examines integrability conditions for 
the almost-complex structure induced on the tangent bundle by 
the distribution of a non-linear connexion» This is defined 
in n"^(U) by

(8) _ ar> , a ÿ
= — —  (m,X)----^ »- a§3
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and it will be called the torsion DR-tensor of the non- 
linear connexion (c.f. [7; p. 268]). Note that, upon dif­
ferentiating equation (2,8) with respect to one sees
that transform like ordinary Christ off el symbols
of the second kind (see, e.g., [19; pp. 111-112]). Prom

—» Icthis, it follows at once that r .. satisfy the trans-- J1
formation equation (7) and define globally a DR-tensor,

4. DR-vectors

A careful look at the local definition of DR- 
tensors given in section 3 suggests the following coordinate- 
free characterization of a DR-vector field: a DR-vector
field on a C® n-manifold M is a function vhich assigns to 
each point (m,X) of the tangent bundle T(M) over M, a 
vector in 1/̂ . Beyond its intrinsic simplicity and close 
similarity to the definition of an ordinary vector field on 
M, this definition has the advantage of leading at once to 
a formulation of DR-vectors in terms of fibre bundles, so 
that faintly artificial statements as to what is meant by 
the smoothness of a DR-vector field can be avoided. This 
is now described.

Let T^(M) be the set of all triples (m,X,Y),
2where m € M, and X, Y 6 I/L, The set T (M) is made a

C® 3n-manifold as follows: suppose (TJ,cp) is a coordinate
i i  2patch on M w ith x = u ® cp. Let tt2 °  ̂ (®5) "* M lay

iT2(m,X,Y) = m, and introduce a coordinate map
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cp ï U = TT2 ^(ü) -» so:

(1)
cp(oitX|Y) = (x (m) f o o Q f X (m), § * ooo> §

where X = ô/ôx^ and Y = d/ôx^„ Suppose, too, that
(V,ij() is a coordinate patch on M with <> $, and
U n V ^ cp. Define * : V = 112”"^(V) - R^^ precisely in 
analogy to (1)s

(2)
l (̂ni,X,Y) = (y (ni), ..., y (m), p , ..., 3 » y > o.», y ) > 

vdiere X = p^ô/ôy^ and Y = Y^ô/&y^. Then, since

i ôy^ ô 
X = § — ? — T

ôx^ ay3
and J:

i By^ ô
Y = T1    — T ,ôxi ayJ

it follows that 7  » ç : ^{tt2”^(U n V)} -♦ R^^ is given by

T* “  / «1 H —1 gH 1 ïl\f®Cp y 000; X g y » ooo) g y T| y oooy T| J =

(3) (ŷ  » cp“'’ (x\ ..., x^), ..., y^ o cp-1 (x\ ..., x̂ ) ,

ay^ ay“ ay^ ay“
g — -, 00., g — -, r\ — -, r\ ‘— -) o

ôxP axP axP axP

The expression for ç o 7 is similar. Thus one sees that
the patches (Û,ç) and (V,7) are C"-related. Since
2T (M) is covered by such patches, this procedure endows 
2T (M) with a differentiable structure, making it a C® 3n-
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manifold. It is clear that tt2 is C" with respect to this 
structure.

Consider now the bundle gjj = (T^(M), ïï, T(M)),
where TT(m,X,y) = (m,X), Prom the definition of the C®
structures of and T(M), it is trivial that tt is

1C®, Further, since the fibre n " (m,S) has the structure
of an n-dimensional vector space, the group Gl(n,E) acts

2fibre-wise on T (M) by

(4) c(m,X,Y) = (m,X,oY)

for a 6 Gl(n,R); this action is clearly 0®. The local 
triviality of the bundle is immediately apparent from the 
coordinate structure (1). Therefore, gjj is a C® fibre 
bundle over T(M) with structure group Gl(n,R) and fibre

It is to be remarked that is just the square of
the tangent bundle; that is, it is the bundle induced from 
the tangent bundle over M by the projection tts T(M) - M.
It would have been possible to begin the discussion of 
DR-vector fields with this notion, but the description given 
has the advantage of detail, displays coordinates, and fixes 
notation, which is useful, as much of the analysis which 
follows is local.

From the definition of a DR-vector field given at 
the beginning of this section, it is now clear that a cross- 
section of the bundle gjj ^  a DR-vector field. A 
DR-vector field will therefore be defined to be C® iff it
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is a C“ cross-section. The usual techniques of multilinear 
algebra permit the construction of such bundles for DR-objects 
of all sorts.

2Note that if os T(M) -• T (M) is a C® cross-section, 
then one may write a(m,X) = (m,X, T(m,X)), so that

T(m,X) = cp^(m,X) (ô/ôx^) 

over a coordinate patch U on M. Thus cp^(m,X) = T(m,X)(x^);

M ’and, since o is a C" as a cross-section of cp̂  are
C® maps on If V is a second coordinate patch on
M with coordinates (y^), then for m € Ü n V, 

T(m,X) = (p\m,X)
ayj 3
ôx^ Sy3

Equation (6) shows that t (or o) is a DR-vector in the
sense of the local definition of section 3.

Prom the discussion above, one sees that the totality 
^(M) of C® DR-vector fields on M is a module over the 
ring C® (T(M),R) of R-valued differentiable maps on T(M). 
Since a DR-vector at a point is just a vector on M, it can­
not operate on C® (T(M),R), and therefore, the Lie product 
cannot be defined on 2)(M).

5o The Bundle n,, and DR-connexions

Next, the C® principal fibre bundle over T(M) 
with structure group Gl(n,R) associated to the bundle
of section 4 will be described. Let B^(M) be the set of
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all (n + 2)-tuples (m,Xse^, oo», where (m,X) € T(M)
and (e^, .„o, e^) is an ordered base of And let
iTg s B^(M) “♦ T(M) by ng(m,X,e2, o. » , e^) = (m,X), vdiile 
Pg % -» M is defined by Pg(m,X,e^, . e^) = m. The
diagi'am below should help in permitting one to visualize the 
relationships among the spaces under considerationo

TTr

The diagram is commutative»
The map Pg is used to lift coordinate patches on 

M to B^(M), to give B^(M) the structure of a C® (2n+n^)- 
manifold. Indeed, let U be a coordinate patch on M with 
coordinates (x^), and let ü = Pg“^(U). Define 
Ï  Î ÏÏ ̂  g2n+n2

(1) cp(m, X, e^ y o o o, e^) =(x (m), ..., x (m), ç , ..o, ç ,

-1 -n ,1S19 oooj Si? ooo, 9̂ 5) CO., »

i  i  i ivdiere X = § ô/ôx and e - = § ■ â/ôx . Just as in the
J J2case of T (M), one can see that the coordinate patches 

(UjiCp) so defined on Bĵ (M) are 0®-related, and since 
these patches cover B*(M), it becomes a C® (2n + n )~ 
manifold. It is clear that both Ug and pg are C“ with 
respect to this structure.
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Let Rg denote the r i ^ t  action on B^(M) hy an

element g = (g^) of Gl(n,R); then R is defined hy 
J o

(2) R j 3 . ( m , X , e i ,  • • • )  6 ^ )  — I ( m p X p g ^ e ^ ;  o * * ) *

This action is clearly 0“ 'and free, For coordinate patches 
U with coordinates (x^) on M, structure maps 

-* Grl(n,R) are defined by

(3) P-jj(mjXje^, » » * * € Gl(n,R),

where eu = ô/ôx^. Note that j J

(4-) Py oR^(nijX,e^,o• • |e^) = Fy(m;X,g^e^;,,*,g^e^) = (gj §ĵ ) 
while

(5) Rg ® Rg-(®>X,ê  J,,, jê )̂ = Rg(§j[) = (Sj 5j_̂*

Therefore,

(6) " Bg = Rg ' Fn-

Finally, define ; ng“'*(U) -» U x Gl(n,R) by

(7) ÿ » » « = ((ni>X)» (§j))»

vdiere U = tt”  (U) for the coordinate patch U, and 
Cj = ô/ôx^. Then is a diffeomorphism.

It follows from these observations that the bundle 
%  “ üg, T(M)) is a C“ principal fibre bundle
with structure group Gl(n,R), It is easy to see that 
is, in fact, the principal Gl(n,R)-bundle associated to
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Since the diagram

f
B^( M)--------------------^B( M)

^B 1 P

T(M)-----------------
TT

commutes, where f(mpZ,e^, oo,, e^) = (m,e^, o.., e^) and p 
is the projection of the bundle of bases over M, one has 
that Tijj is the bundle induced from the bundle of bases by 
the projection of the tangent bundle. Since the bundle,of 
bases is principal, one has at once that is principal.
The more circuitous approach used above is employed for the 
same reasons as given in section 4 in the case of

Since r\^ is a principal bundle, if T(M) is para-
compact (which it wrill be if M is paracompact), Tî  will 
admit a connexion in the sense of fibre bundle theory [1j p. 
83], that is, a 2n-dimensional C“ distribution H on 
B^(M) transversal to fibres over T(M) and invariant under 
rigbt actionss

(8) (Rg)* Hp = Hji^(p) »

for p 6 B^(M) and g g Gl(n,R), It follows from the fibre-
transversality that the restriction of (n^)* to is an
isomorphism onto the tangent space of T(M) at TTg(p) ,

It is interesting to note that, given a connexion H 
on tim» there exists a well-defined concept of a horizontal 
lift of a curve in M to a curve in B^(M), Let
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o s I M be a 0“ curve j then one has the natural lift 
0* : I - T(M) ÎS (t) = (o(t), Then let

a ? I be the unique horizontal lift of throu^
a point p in the fibre Then Pg ° o = O:
The curve a will be called the canonical lift of a 
through p.

Given this lift, one may define canonical parallel
translation along curves in M to be a diffeomorphism of
fibres in let o ; I -* M again be any 0“ curve,
and let p = (a(0), o,((d/dt)^, e^,.o«,6j^) be a point of the 
fibre over a^(0) € T(M)« If a be the canonical lift of
a throu^ p, define T^(p) = o(l) in ),
■where, for convenience, I has been taken to be the unit 
interval. Then, as T^ is simply ordinary parallel trans­
lation along in T(M) by the connexion H, T^ is a
diff eomorphism, and T^ « ^g “ ^g “ ?8].

Suppose Xg € \(0)* ^0 = a^e^, where
(e^,.,„,e^) is an arbitrarily chosen, but fixed, tjase of

^c(O)* ^o (o(0); c^( d/dt)g, e^, . is
(a(1), o*(d/dt)i, ë p  ë^), then the vector 6
where X^ = a^ë^, will be said to result from X^ by
canonical parallel translation along a« This transla.tion 
is independent of the particular canonical lift chosen, that 
is, of the particular basis (ey, ê )̂. For if
(ê^, è^) is another basis of and
 ̂ -Î  ̂Xe . = h^e., define quantities h- by the equation

^  d u
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(9 ) 4  £! = ;

then X- = h? e .. Since T o R = R o T „ one has
° 1 3  0 g g o*

(10) 
c(0);(7^( â/dt)qpê^poa»,ê^) = (a( 1 ) yo^( d/dt)  ̂,h^e^j « o o ;h^e^) o

ThuSj if X^ is the vector resulting from canonical parallel 
translation of X^ along a using the basis (ê^), one has

X^ = a^ h^ h^ e^ = a^e^ = X^ ,

from (9)«
If X(t) is a vector field along o, X(t) will be 

said to be canonically parallel along a provided that, for 
each u, V € I, X(u) result from X(v) by canonical parallel 
displacement along v] °^[v u]» case may be).
In particular, a curve a may be styled a canonical path in 
M iff o,j(d/dt) is canonically parallel along a. Thus, in 
one sense, a canonical path is a direct generalization of a 
geodesic of a linear connexion.

Except for its naturality , there is nothing sacred 
about using the tangent to the curve a to obtain the lift 
of a to a curve in T(M) which is so vital to the foregoing 
constructions. Thus, if X(t) be any vector field along a, 
one has the lift ô  : I -* T(M) by o(t) = (a(t),X(t)); the 
unique horizontal lift of F to Bŷ (M) may be called the 
X(t)-relative horizontal lift of a. Obviously, there is also 
a concept of X(t)-relative parallel translation along curves
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in M, and of X(t)~relative parallel fields along curves in 
M. A curve o whose tangent vector field is X(t)-relative 
parallel along a could he named an X(t)~relative path re 
the connexion H»

Not surprisingly, canonical parallel translation does 
not induce a covariant differentiation of tensor fields, nor 
of DE-tensor fields, on Mo The reason for this is that, 
given a curve a s I -* M, the tangent T to

Ï I -* T(M), and therefore the tangent to the canonical 
lift o, depend to the second order on as

(12) dx^ Ô d^x^ a
dt ax^ dt'̂  a§^

vAiere x^(t) = x^ o a(t) in a coordinate patch U on Mo 
Otherwise expressed, what is critical here is that the natural 
lifts do not determine a C® n-distribution on T(M)o

Accordingly, let a non-linear connexion r be intro­
duced on T(M), with r spanned by the vectors of
(2.16) over a ebordinate patch U. The connexion r will be 
referred to in the present context as a non-linear support 
for the connexion H in tijjo

The introduction of the non-linear support permits 
not only a unique lifting of tensor fields on M to tensor 
fields on T(M), but also the association of DR-fields with 
fields on T(H) after the fashion of Yano and Ishlhara 
mentioned in section 3. In particular, suppose
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2T s T(M) -• T (M) is a DR-vector field given in the coordinate 

patch U by T(m,X) = cp (m,X) ô/ôx ; then one may associate 
with T the "lift"

T(m,X) = qj^(m,X) Bj^(m,X) ,

This will be called the r-lift of T o One also has the "lift"

(14) T(m,X) = cp^(m,X) Bj^^(m,X) .

where Bu* = ô/ôç^ over the patch The field 7 will
be called the vertical lift of T o It is easily verified that 
each of (13) and (14) defines a global vector field on T(M), 
given a global DR-vector field T.

Now suppose (W,P,Gl(n,R),T(M)) is a vector bundle 
associated to the principal bundle t]jj, with total space W, 
fibre P, and projection p^ ? W -* T(M), Let U be a 
neighborhood of a point (m,X) € T(M), and let Q s U -* W 
be a cross-section over U, It is desired to define a co-

rvariant derivative yj(ni x) ^ to be an element of the fibre 
of W over (m^X), iiAiere T(m,X) is the value at (m,X) 
of a (possibly local) cross-section of

Recall that the connexion H induces a C“ fibre- 
transversal distribution H' on W in the following way:
By definition, \V = (B^(M) % P) / Gl(n,R), with
Ag(p,f) = (Rg(p),L _i(f)) for p€B^(M), f €P, g€Gl(n,R),

^In discussions on the tangent bundle, the index 
i*5 and others like it, take on values n+1, ooo, 2n. The 
asterisk is used so that the summation convention may be 
applied with dissimilar index-domains, as in (14).
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Ag the action by g on B^(M) x F, Rg the right action
by g on and Lg the left action by g on P.
Let Kp s P -» W by Kp(f) = (p,f)Gl(n,R); then Kp is an 
isomorphism of the vector space P and the fibre

%  (p) = Ep(lg(f)).

Now consider b 6 Wj p € B^(M) such that
p^(b) = ng(p). The space is defined thus: let

Î B^(M) - B^(M) X P by t^(p) = (p,f), so that 
is a diffeomorphism of B^(M) into B^(M) x P. If then, 
f € P be such that Kp(f) = b,

(15) <  = X, • (tf). H p ,
where \  t B^(M) x P - W is the natural projection [1 ; p. 84],
The function H' is called the horizontal distribution on W.

The horizontal distribution on W is spanned at each 
point b by tangents to horizontal lifts of curves in T(M) 
throu#! p^(b)o These lifts will be described.

Let b € P^T^(d(0)); where o : I -* T(M) is a C“ 
curve. Choose f € P and p e B^(M) so that iTg(p) = a(0) 
and Kp(f) = b. Let o be the horizontal lift of o to 
B^(M) by H; passing through, p. Then â  : I - W is de­
fined by

(16) a i t )  = (f) o

The rij^t invariance of H and the manner in which K„
behaves with respect to Gl(n,R)-action show cF to depend
only on o, b, and H, Now
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a a
)= 0 (*f)* 0 G* (— )dt G. V

since (f) = (a(t),f) Gl(n,R) = X » (o(t)), ana so
â  is H'-horizontal.

The fibre-transversality of H ' shows that the tan­
gent space of W at the point h 6 ÏÏ decomposes into
a direct sim:

(17)

indiere is the suhspace of vertical vectors, that is,
vectors Z 6 such that (p^J* Z = 0. If Z 6 W^, write

(18) Z = H'(Z) + V(Z) ,

v&iere H'(Z) 6 and V(Z) 6 V^, for the decomposition of 
Z induced by (17). r

One may now define Vx(m X) requiring that it
measure how far Q fails to be horizontal in the "direction" 
Ti

(IS) r
V^Cm.X) « = V(Q,(T(m,X))) 

= Q,(T(m,Z)) - H'(Q,(T(m,X))).

Here, x(m,X) is the r-lift of t given by (13). Since the 
fibre of W over (m,X) is a vector space, the fibre may be 
identified with its tangent space, and (19) may be regardedras defining as an element of the fibre. Let
p  T \ —ÿ — ,
U  Q be called the horizontal covariant derivative of"T\ m,JLy " """ ™
Q in the direction T.
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One may define a second type of covariant derivative, 

independent of the non-linear support r, by employing the 
vertical lift of equation (14). Thus, one sets

C^O) Q = V(Q*(T(m,X))),

vshere T(m,X) is the vertical lift of t . This derivative 
will be referred to as the vertical covariant derivative of 
Q in the direction t .

Since, with the aid of the non-linear support, one 
can define these covariant derivatives in strict analogy with 
the case of linear connexions (compare the foregoing with 
[1; p, 111]), a connexion H in tijj, together with a non­
linear support r on T(M), will be named a DR-connexion 
on

6, Coordinate Description of DR-connexions

Let M be a C* n-manif old with a DR-connexion 
(H,r)y vAiere H is a connexion in t)jj and r a non­
linear support on T(M), Attention will now be restricted

^As thus defined, the DR-connexion is identical with 
an entity studied by M. Matsumoto in, e.g., [9; pp. 1-6]. 
Matsumoto calls such structures "Pinsler connections", and 
the spaces Tdiich carry them, "Pinsler spaces", since the 
concept arose in the work of T. Okada on Pinsler manifolds. 
Nonetheless, the terminology seems unfortunate, as "Pinsler 
space" in the literature has signified a manifold with a 
Pinsler metric. Note that a space with a linear connexion 
is not called a "Riemannian space", thou^ such spaces stand 
in the same relationship with manifolds with Riemannian 
metric as do spaces with DR-connexion re Pinsler spaces.
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to nei^borhoods over a coordinate patch U on M with 
coordinates (x^).

Recall that the tangent spaces of T(M) are spanned 
over rT^(U) by the vectors and of (2.16) and
(5.14). Consequently, the distribution H of the DR-con­
nexion is spanned over pg"'(U) by the horizontal lifts of 

and B^*. In terms of the coordinates (5.1) on Pg"*^(U),
write

(1 )
(=i)p = ^  ^

where p = (m,X,e^, e^) ç Pg~^(U) 2  B^(M). The right
invariance of H, and its fibre-transversality, imply that 
for g = (gj) € Gl(n,R),

(2) (Rg)* B^(P) = B^(Rg(p))o

Prom (1), and the definition (5.2) of Rg, (2) shows that

(3) *

Hence, the functions ; Pg"^(U) -* R are linear in the
basis argument, and one may write

(4) G^(p) = P^(m,X) §^(p) .

A similar argument with the vectors B^^ shows that one
may write
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D^(p) = 0^g(m,X) S?(p) ,

SO that equations (1) become

/ ̂  \   t -------  -tr \   TT% h  /   V  \ .-S /   \ __

9 axi ^ a C   ̂ a§j

(6)

^  Sj^P) Z h "d§ a§j

The functions i^, F ^ ,  and are called the coef­
ficients of the DR-connexion. They coincide with those 
given by Matsumoto [9; p. 4],

Prom the definition of the coordinate structure in 
Pg”^(U), if a vector tangent to B^(M) at
p=(m,X,e^, ê j) is given by

(7) i a i B i a
V = a (p)  T + p (p) ------ + Y-:(p)  T »P axi a§^  ̂ agj

and if p 6 Pg“  ̂ (U n W), vdiere W is another coordinate 
patch on M with coordinates (y^) and induced coordinates 
(y^, Dj) 0^ Pb"^(W), then is given by

1 ayo a V i  aZyi ay^ a
"p = “ ^

(8)
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If, over pg~1(W), the coefficients of the DR-con­

nexion are given by P ^ ,  and C ^ ,  the transformât ion
equation (8) shows that one must have, for examples

(9) ,2,^
irh /_ s rr,q/_ _k _k

vfeich follows upon applying (8) to the first of equations
(6). Therefore,

(1°) ôy® ^  dy^ dx'̂  d^y^ ôx^

Similarly, one has the transformation equations 

0 “  (m,X) = C ^ ( m , I )  ^

and
- jj. ÔX® ôy^ . ax®

(12) I^(m,X) =r,(m,X)

Note that (11) showa C A  to be the components of a DR-1J
tensor, which will be denoted by C, and that (12) agrees 
with (2,8) —  it would be quite upsetting if it did not!

Clearly, given functions i^, P ^ ,  and on
each patch TJ of a coordinate cover of M, with values 
in R, lAiich satisfy the transformation equations (12), 
(10), and (11) respectively, a DR-connexion on M is 
uniouelv determined,

rNext, a coordinate expression for SJ j Q and 
Q will be constructed, where Y and Q are DR-vector
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fields on M, The local form of the horizontal lift of a 
vector X = + X^* 3^* in (T(M))^^^p^ to Xt(B^(M))p

will he first determined. Since the lifting operation is an 
isomorphism, X = X^ + X^* so one has

X = x^ A -  + (x"-* -
ôx^

(13)
d

lAiere functions on the tangent bundle are all evaluated at
TTg(p}.

Now, recall from section 5 that the horizontal sub- 
2space at q € T (M) is spanned by tangents of horizontal 

lifts of curires; this fact will be used to obtain the local 
form of the horizontal lift of a vector
X = ô/ax^ + a/a§^ on T(M) to T^(M}. In fact, let
Y : I - T(M) be a curve in T(M) with tangent X at y(0) 
Choose p = ( y ^( o ), y ^ * ( o ), a / a x \  ...,a/ax%) e b^(m), s o  

that TTg(p) =  y (0). Then Kp(f) =  (p,f) Gl(n,R) in T^(M) 
for f = (f\ .,,,f^) € R^; in local coordinates, one has

(14) K p ( f )  =  ( y ^ ( 0), y ^ * ( 0 ) ,  f"-) .

Say q = (y ^(0), € ÏÏ"1(y(0)) E T^(M). Then by
(14), Kp(f) = q iff f = (tî  , Tî ). So if Y be the
horizontal lift of y to B^(M) through p, then the 
horizontal lift y of y to T^(M) through q is
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Ÿ(t) = (f); from section 5, with f = (ti\  ..., ti“ ) .
Write

(15) j j ô j ô
y(t) = (y (t), Y (t), 8-|(t) — @n(t) — T) .' ax^ “ axi

Then

(^^^ (f) = (Y^ft), y ''*(T), tî  0j(t))

in local coordinates, from (14). The desired lift of X is 
7^(d/dt)Q, Prom (16), one sees that

a , i dY^
  (x O y ) =  ----  ,
dt dt

(17) d i dyi*
—  (Ç^ • 7) = -----,dt dt

d j j d •
—  (ti * Y) = % —  0-Î» dt dt

At t = 0, dYVdt = a^, dY^^/dt = p^, and (dej/dt) are the 
last n components of the horizontal lift to p € B^(M) of 
the vector X; from (13):

(1®) (ae^/«)t^o = I'ij + Gii + r? ,

vdiere the choice of p made set §^(p) = 6^. Then from (17)
J J

and (18), it is seen that the required lift to 
q = (m,Z,Y) € T^(M) of X at (m,Z) € T(M) is
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(19) —  i / i k
; iTi - "id

vAiere all functions in the tangent bundle are evaluated at
(m,Z).

In particular, (19) shows that the horizontal sub- 
2space at q 6 T (M) is spanned by the vectors;

Si = I;; - ' 4  *ii

(20)

vAiere q = (m,Z,Y), Y = a/ax^, and the tangent bundle
functions are evaluated at (m,Z).

—  2Now suppose Q : U -* T (M) is a DR-vector field,
where U = tt“^(U) E  T(M), and Q is given locally by

(21) Q(m,X) = (x^, Q^(m,I)),

yhile Y = Y^(m,X) d/ax^ is another such field. The r-lift
of Y is given by

(22) _ - a . . a
Y(m,X) = Y^(m,X) —  - Y^(m,X) F. (m,X) — ^ .

ax^ agi

Prom (21) and (22) one sees that
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(23)
. ÔQ^ V 8Q^ a 

+ Y (ni»X)[— ? - n  (ni,X) — r]—Sx3 *) 35^ 3r,̂

This may he expressed in terms of the hasis ( ,ô/ôri^)
2of the tangent space to T (M) at (m,X,Q(m,X) ) :

a,(Y)= f  ^  S i .

(24) i i
4 ôQ V ôQ h i ®

" ■ ’'3 I ?  " ® '

vdiere the tangent bundle functions are evaluated at (m,X).
One can now pick off the vertical part of Q*(Y) froni 
equation (24), as this is simply the last term in the r i ^ t  
member of (24). Making the identification of the vertical 
fibre and its tangent space, one has

(25) r 4 k h i ®
Vy(m,x) Q = + Q -

rThe local expression (25) shows that y  so defined coincides 
with the "absolute covariant derivative" of Matsumoto [11; 
p. 364]o

If the vertical lift Y is used in place of the 
f-fclift Y in the computations above, one obtains

(26) _  i 4 3Q 4 k 4 a
Q*(Y) = Y^m,X) + (Y^ — ^ + y V  cl)

^ an
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whence

(27) V i k i ô
^Y(m,X) Q = + Q^(m,X) Cj^(m,X))— .

7, Invariant Characterization, Curvature,
r V

and Torsion of y  and V»

Having derived the covariant derivatives y  and ̂  

associated with a DR-connexion (H,r) on a C* n-manifold 
M, one finds it natural to ask to vhat extent specifying the 
values of such derivatives determines the connexion. It 
turns out that, provided the non-linear support be specified 
independently, the values of the derivatives determine the 
connexion completely.

r
From the local representation (6.25) of y, one 

sees immediately that

(1) r r r
V y  + z 0 - V y Q + Vz Q »

(2) r r r
V y  (P + Q) = V y ^ + V y  Q »

and
(3) r r

V f  Y Q = ^ V y  ^ *

where P, Q, Y, and Z are C« DR-vector fields on M and 
f is a C* R-valued function on T(m). Also,
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r 4 i sf k k i afVy fQ = Y3[Ql .--r+ f --ï-lf f --r-lf Q -i;ôx^ ôx^  ̂ôç^  ̂ ôç^

80 that

(4) r r
Vy fQ = f Vy Q + (Yf)Q ,

where Y is the r-lift of Y»
r

Conversely, suppose a map V  • X S)(M) -* £)(M)
be given, where iO(M) denotes the totality of C* DR-vector

r
fields on M, so that V  satisfies (1) - (4). Introduce
0" functions : tt” ^ ( U )  - E, where U is a coordinate
patch on M with coordinates (x^), by

(5) r Ô k B

Then if Q = Q^(m,X) ô/ôx^ and Y = Y^(m,X) ô/ôx^ are 
DR-vector fields, using (1) - (5) results in:

or

r r . 3  
V y  « = V^i s « ^

3x

t ^ 4 & A T Ô
= Y ^ C - ^  ( q 3)  _  + V  —  

dx^ ôxJ a ôx«J
ôxi

.V . ̂ k
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y

Next, from the local representation (6.27) of V y  Q* one 
has immediately that

(7)

(8)

and

Vy  ̂2 Q -  Vy Q + Vg Q > 

(P + Q) = Vy P + Vy Q ,

(9) V y y Q  = f V y Q ,

vhere Y, Z, P, and Q are C* DR-vector fields and 
f : I(M) - R is C*. Further,

V i i af k i ^Vy f Q = Y^[f _  + ^ + fôç3 axi
or

(10) V _  V
Vy f Q = (Yf) Q + f V y  Q ,

vAiere Y is the vertical lift of Y. Conversely, suppose 
that a map V= ^  (M) x S(M) -* 0  (M) be given, satisfying
(7) _ (10). As above, introduce C* maps t tt” ^(U) -* R
by

(11) V Ô k a

Then, if Q and Y are given as above, one uses (7) - (11) 
to comnute
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V m b  -i  ̂ -î^ ^Q = Y ^  . 5

ÔX^
or

V Y « = Y ^ [ g + « j  0 ^ ^ ] ^ .

Further, equations (5) and (11) show F - • and C. . to havexj Xj
appropriate transformation properties, and comparing the re­
sults above with those of section 6, one has

Theorem 1 : If mappings y, y  : £)(M) x ^ ( M )  -* S ( M )  be
given, satisfying (1) - (4) and (7) - (10) respec­
tively, a non-linear support on T(M) having been 
specified in advance, then there exists a unique

r
DR-connexion on M with respect to vdiich is

V
the horizontal, and y  the vertical, covariant 
derivative.

Using this invariant characterization, it is a simple 
matter to define and test curvature and torsion DR-tensors 
for a DR-connexion, One has the horizontal torsion DR-tensor
rT, defined by

(13) r r r
T (X,Y) = y ^  Y - ÿ y  X - [X,Y]

Vand the vertical torsion DR-tensor T, defined by

(14) V V V
T (X,Y) = V x  Y - y ^  X ,
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where X and Y are C® vector fields on M, The tensor

r Vcharacter of T and T is trivial to check, using the prop- 
r V

erties of y  and y .  For example, if f s M R is G®,

T (fX,Y) = Vfx Y - V y  fX - [fX,Y]

r r 
= f V x ^ - f  V y ^ “

r
= f T (X,Y) ,

since Ÿ f = Y f, as f is direction-independent.
It is important to he aware that the DR-vector valued

r  VDR-tensors T and T operate on vectors on M; in particular,
(13) is meaningless if X and Y are (non-trivially)
DR-vector .fields, since 0(M) is not a Lie algebra.

If one writes T (ô/ôx^, ô/ôx^) = T.^-(m^X)(ô/ôx^) overJ-J
a coordinate patch U on M, then

F v  r ô r ô ô ô
■̂ ij = ^  “ V__^ ̂

ôx^ axJ
or

( 1 5 )  F v  Ir VT^.(m,X) = F^(m,X) - Fj^(m,X) .

Similarly, if T (ô/ôx^, d/ôx^) = T^(m,X) ô/ôx^ then

(16) Vb -  V VT^(m,X) = o4.(m,X) - C^(m,X) ,
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after the classical fashion.

One has also three curvature DR-tensors; these have 
values in the (linear) space of linear transformations on K 

The first of these is the horizontal curvature
r

DR-tensor R, defined by

(17) r r r r r r
R(X,Y) z = Vy ^ ” Vy Vx ^ ” V[x,y] ^ *

where X, Y, and Z are C® vector fields on M. Also,
Vthere is the vertical curvature DR-tensor R defined by

(18) V ^  X, X, X,R(X,Y) Z = Vx Vy Z - Vy V% Z .
r

The third curvature DR-tensor involves both y  ^nd
VV, and will be called the mixed curvature DR-tensor, de­

noted by Rc Recall that the DR-vector valued DR-tensor C 
is given by

(19) V 1 1 a
“(m,Z) U.Ï) =

Also, introduce a map V  vifliich sends a pair of 0“ vector 
fields X and Y on M to a DR-vector field by

Then the mixed curvature DR-tensor is given by

(21) , V r r V -
R(X,Y) Z = Vx Vy Z — Vy Vy Z + C( Vy Z)
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It is a simple matter to check the multilinearity of 

r V o •R, fij and R over the C“ (M,R)-module of 0“ vector
r V

fields on M, using the properties of V V» The
DR-tensor nature of these entities is also evidenced by their 
expression in local coordinates. By entirely strai^tfor- 
ward, but remarkably tedious, computation, one has over a 
coordinate patch U on M the equations;

r , i j
R(X,Y) Z = A ^ Z ^ [ - ----------- —  ÿ  -----

ôx^ ôx^

a

ô§

X, , , 1 k  ' ' / k  ""p'kR(X,Y) Z = X^Y^Z^C--------   —

and

ji th ^a§ ax

8 k S S k ®
+ ^  ■*■ °is ^3h “ ^ih 'ax“
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+ "t iwhere /ô§ . The quantities in curly brackets in (22),

(23), and (24) will he denoted hy and
respectively.

Some of the algebraic significance of classical cur­
vature tensors is lost in the more general setting of DR-con­
nexions, which is, of course, only to be expected. In 
particular, if D is a linear connexion on M, its cur­
vature tensor measures how far D fails to be a Lie algebra
homomorphism [1 ; p. 116]. No such interpretation can be

r V o r Vplaced on R, R, or R, since y  and y  are not Lie
algebra valued maps,

28, DR-connexions as Distributiqns on T (M)

In this section begins what is the primary function
of this chapter: the investigation of the rôle played by
2T (M) in the theory of DR-connexions. In section 5, it was 

seen how a DR-connexion determines a C“ , 2n-dimensional, 
fibre-transversal distribution on T (M), just as a (linear) 
connexion in the bundle of bases determines a distribution 
in the tangent bundle. The converse is also true, provided 
that a non-linear support be specified, as is shown in this 
section.

Let M be, as usual, a C® n-manifold, T(M) and
2T (M) denoting the usual spaces. Let H be a C“ 2n-dis-

2 ̂tribution on T (m), transversal to fibres over T(M) and 
invariant under the action of Gl(n,R). The fibre-trans-
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versality implies that vector fields on T(M) can be lifted

2to vector fields on T (M) in a unique manner, via the in­
verse of the restriction to H of the Jacobian of the pro­
jection TT s T^(M) -* T(M).

2The vertical spaces on T (M) are spanned over a
Vcoordinate patch U on M by the vectors ô/ôt]"", 

k = 1, ..., n, as in section 4, and H is spanned over U 
by the lifts of the coordinate vectors (ô/ôx^) and 
(ô/ô§^) on tt”^(U). These lifts may be written

L.(m,X,Y) = -rr - G^(m,X,Y) — ,

(1)
a ^ a

K.(m,X,Y) = - ^  - ]T(m,X,Y)
as i r f

The requirement that H be invariant under left action is

(2) (Lg)* ^(m,X,Y) = ^(m,X,gY) '

In terms of and this means that

(lg)* li(m,X,Y) = L^(m,X,gY) ,
(3)

(lg)* K.(m,X,Y) = K^(m,X,gY) , 

since "lifting" and (lg)* are isomorphisms. Now
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(Lg)* &i(m,X,Y) - L  = G^(m,X,Y) (n^ <> L ) - L
® brf  ̂ ÔTî  ^ ÔT1

(4) ^  a t 8 a
s  G^(m,X,Y) — r  (Sg n ) — r »

^ a f  ® br\̂

* Ô= G^(m,X,Y) g" — .
^ ^ br\̂

It follows from (1), (3), and (4) that

G^(m,X,gY) = a|(m,X,Y) g^ »

and the functions are linear in the third slot, so
one may write

G^(m,X,Y) = H^(m,X)

over U, vshere Y = ô/àx^. Similarly, one arrives at 
linearity in the third slot of D^, and writes

D^(m,X,Y) = C^(m,X) .

Consider now the lift of the vector of (2.16),
TAfaere a non-linear support r is supposed given with coef­
ficients over U, This lift is

(7 )
Li - f  %

a
- f

a
a § ^ ( « 1 3 - i f  ^hj)

j ^

^  br\^ ’

: tt” ''(u) - R hy

F^(m,X) = H^.(m,X) - I^(m,X) 0^(m,X) .
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Prom the fact that Lĵ  and are vector fields over

and from the defining equation (8), it follows that 
n  , P ^ - , and C. . transform properly, and may be taken asi J-çJ
the coefficients of a DR-connexion on M, Purther, the hori­
zontal distribution H' of this connexion is spanned over 
U by the vectors

(9)

and

(10)

ô V

as given by equations (6.20). But, from (1), one sees that 
and so H' = H. The explicit form of

the DR-connexion which it was necessary to take shows it to 
be uniquely determined, and one has

Theorem 1_; Given a non-linear support r on the tangent 
bundle T(M) of a 0® n-manif old M, a DR-con­
nexion on M is uniquely determined by a G®,
2n-dimensional, fibre-transversal distribution on 
T fMl. invariant under Gl(n.R)-action.
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9. Paths Relative to a DR-connexion

Makoto Matsumoto has studied various curves, most of 
them curves in the tangent bundle, which are associated with 
a DR-connexion [10], In this section are proved, for some of 
these curves, theorems analogous to the well-known result 
that a curve y : I - M in a manifold with a linear con­
nexion is a geodesic iff its natural lift

; I - T(M) : : Y*(t) = (Y(%), Y*(&/dt)) is horizontal 
(see, e.g., [23; pp. 290-291]). Also, the canonical paths 
introduced in section 5 are studied in greater detail. In­
deed, the study begins at that point, with

Theorem If a curve y  ̂ f ^ is a canonical path, then 
in a coordinate patch U on M with coordinates 
(x^), and x^(t) = x^ * y(t), the curve satisfies 
the differential equations:

d^x^ d^x^ dx^ ^ ^ ^ , dx^ dx^

vdiere the tangent bundle functions are evaluated at

Proof : Let y^ : I -* T(M) be the natural lift of
y to T(M), as above, and let



96
Y* : I : : t -* (y(t), y*( &/&%),

t a 1 a
9i(t) --î*» •••» 6n,(t)  ï)

' è x ^  “  Ô X ^

be a horizontal lift of y ^ , define C* R-valued maps

n  -
(2) e j ei . «1.

Then one has, for u g I,

O )  a a^i
Y*(— ) C^) = ---

at
0i(u) 8j(u) ^

t =u y (u )

Since y is a canonical path, the vector d/dt)(v), for 
V € I, must result from y*( d/dt)(u) by canonical parallel 
translation:

(4)
Y*(— ) (v) = dt

dx"
dt C =U y (v )

But

(5) d dx^
Y*(— )(v) = -----dt dt t =v

d

y (v )

so that from (4) and (5), one obtains

3 / ••• \ \
(6) dxk dx^

dt t =v dt t =u
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Differentiating (6) with respect to v yields

(7)

dt^ t =v

dx-"
dt t =ii

Equation (7) holds in the limit as v -♦ u in the form

(8)
—
dt2 u

dx-"
dt

(—  8 ̂ )(u) ,
u dt

since (7) must hold for all u, v e I, and all the functions 
involved are C*.

Now the horizontal lift of (Y*)*(&/&t) to y*(t) 
is given hy the vector p^:

dx^ Ô d^x^ Ô k

d V  , dx^ k i, \ a
- p - “id 1 7  °hj]

where the tangent bundle functions are evaluated at y*(t) 

Since Ÿ* is horizontal, (ÿ^)^ (d/dt) = P^, and since

(10) dx^ h d^x^ a
(Y*)* (— )  ----------   +dt

d z a
T • o T + (—  9^)(t) — - ,dt ax^ dt2 ôçi dt aç|

one has, on using (9),

n
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or

._s à  ^  k  k6-i(t) (—  8g)(t) = -(------  +  —  Cj^. +   C^.) .
] dt G d-G dt2 dt

On substituting the expression (11) in (8), one obtains the
desired equations (1). Q.E.D.

Unfortunately, the converse of Theorem 1 does not
appear to hold, in general, because the rather complex in-

2 i 2volvement of the quantities d x /dt in ( 1 ) indicates that 
solutions of (1) may not be unique (or even exist!), and 
therefore, the gap between equations (8) and (6) cannot be 
bridged by the usual sort of uniqueness argument. Also, one 
cannot conclude from geometric considerations that there is 
a unique canonical path through each point in M in each 
direction, and equations (1) provide no help in this regard. 
This is not at all surprizing, however; one encounters here 
once again the difficulties that prevent the use of canonical 
parallel translation in defining a covariant derivative,

A possible way out of some of these difficulties is 
suggested by

Theorem 2 i If a curve y ! ^ M in a C“ n-manifold M is 
a canonical path, its natural lift

Y ; I - T^(M) y(t) = (y(t), y*(d/dt), y^(d/dt))

is horizontal.

Proof: The tangent field T~(t) to y is given by
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(12) dx^ ô a d^x^ a
Y dt ax̂ - dt2 dt2 Gî i

over a coordinate patch U on M, In terms of the hasis
/ <5 C3 3

(12) reads
(S^, S^*f ô/ôTi^) of the tangent space to T^/M) at y^t).

dx^ d^x^
V ^ >  = 1 7  * i ; r

(13) a%3 aij

d^x^ a
dt2 dt '*' dt2 \ r \ ^

Thus, T~(t) is horizontal iff equations (1) are satisfied. 
Since a canonical path satisfies equations (1) by Theorem 1, 
Y(t) is horizontal, Q.E.D,

The natural course suggested by Theorem 2 is to re­
define a canonical path to be a curve y v&iose natural lift 
Y is horizontal. Again, this directly generalizes a usual 
property of geodesics of a linear connexion, and such ca­
nonical paths would include the canonically auto-parallel 
curves, thou^ perhaps adding others. Under this course, 
both Theorems 1 and 2 would hold with "iff” in place of 
"if", but existence and uniqueness questions would remain 
open nonetheless.

Consider now other paths related to the DR-connexion.
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Mat sumo to defines a horizontal (re r) curve o : I -* T(M)
to be a horizontal path provided it is the projection of an
integral curve o : I -• B^(M) of each of the vector fields

â , a . a

and shows that o is a horizontal path iff it satisfies 
the equations

d^x^ - dx^ dx^
dt2 dt dt

(14)

dç^ . dx^
  + (o(t)) --- = 0 ,
dt ^ dt

over a coordinate patch ü on M [10; pp. 309-310], Then
one has

Theorem 3; A curve o : I -* T(M) by a(t) = (x^(t), ç^(t)) 
over a coordinate patch U is a horizontal path 
iff it is horizontal re r and its lift

F : I T^(M) :: 0(t) = (x^t), g'(t), dx^/dt)

is horizontal.

Proof: The tangent field T—(t) to o is giveno
by
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dx^ ô d d
°  dt ôx^ dt dt2 a fly­

over the patch U. Relative to the basis (S^, a/ôT)^),
this reads

^ /le ̂  /IV̂  /IV 3dx" ds" dx UA
= 1 7  1 7  [ 1 7  7 7 ^ ^ 3

(15)

dx^ dxi % , dç^ dx^ , d^x^ d
dt dt ^ ^  dt dt dt2 a^

The tangent field T^ to a is given by

(1G) dx^ d§^ dx^ . a
T =   + (  +  L ) — r-
0 dt dt dt as*

over ü. In both (15) and (16), the tangent bundle functions 
are evaluated at a(t). By (16), a is horizontal iff the 
second of equations (14) holds, and from (15), a is hori­
zontal iff

a%i azi % dç^ dxi ^  d̂ x*'
17 17 [̂13 + °hj] + 17 17 * i;F

Upon substituting - ( dx^/dt) for dç^/dt in (17), from 
the second of (14), one obtains the first equation of (14), 
and the theorem follows, Q.E.D.

Mat sumo to calls a curve a : I -* M, given by 
x^(t) = x^ o a(t) in a coordinate patch U, a quasi-path
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iff it satisfies the (differential equations

(18) ^2^1 d dx^ dx^
 T  + ^ik (o(t), G*(— ) ) --------   0dt2 dt dt dt

over U [10; pp. 314-317]. It is to he noted, from (6.23), 
that if the tangent field to a he T, equations (18) are 
just

(19)
( ^^(a(t),T) - ° »

which gives a ’'geometrical” meaning to the curve. This 
discusrsion of paths relative to a DR-connexion will he con­
cluded hy noting the following two simple theorems, vAiich 
give an indication of the relationship between canonical 
paths and paths defined using the helpful non-linear support,

Theorem 4; If the DR-tensor C of (7.19) is a zero DR- 
tensor, then every canonical path is a quasi-path.

This is immediate from equations (1) and (18). If 
the redefinition of canonical paths suggested hy Theorem 2 
is taken, then if C is a zero DR-tensor, every quasi-path 
is also a canonical path.

Call a geodesic of the non-linear connexion r a 
r-path. Then one has;

Theorem A canonical path which is also a r-path is a 
quasi-path.
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Proof ; If o ; I -♦ M : Ï o( t) = (x^(t)) in a patch 

U is a canonical path, it satisfies

( 2 0 ) 2 ^  i 4 i i  4 2 i, dx^ dxJ , , dx^ dxJ , dx^ d^x^
—  + F 4 4 -------- + if C f i ------- + C4 4 --------T  = 0.dt<=: dt dt " dt dt dt dt^

If it is also a r-path, then

(21) d2^i _ ^ 3

■dP” ' ■'3 I T  ’
2 i 2and replacing d x /dt in the last term of (20) with the 

expression from (21), the last two terms of (20) cancel, 
yielding equations (18). Q.E.D.

10. Integrahility Conditions for the DR-connexion

For the remainder of this chapter, the basis
i 2(Si, S^*, ô/ôTi ) of the tangent spaces to T (M) over a

coordinate patch Ü will no longer be convenient to use. An
obvious extension of the method of adapted frames of Yano and
Ishihara [23; pp. 275-277] will be employed instead. An

2adapted frame for DR-theory in T (M) is

a  ̂ k i ^

(1) h  ̂ b
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over ü, where the coordinates in U are (x^) and the in­
duced coordinates in tt2~^(U) are (x^, tî ) , as in
section 4. All tangent bundle functions are evaluated at a
point (m,X); as this will be true throughout this section, 
the arguments of such functions will be omitted without com­
ment, In this section and the next, lower case Roman indices 
will run over the range [1, ..., n], such indices with an 
asterisk are valued from n + 1  to 2n, and lower case
Roman letters with a prime take on values from 2n+ 1 to 
3n, The summation convention will apply to such expressions 
as Lower case Greek letters will range from 1 to
3n.

The formal advantages of the adapted frame (A^) will
become quite evident in section 11, where linear connexions on 
2T (M) are discussed. The goal of the present section is the
determination of integrahility conditions for the distribution 

2in T (M) corresponding to a DR-connexion (H,r) on M with
local Itcoefficients P .-,

V
C ^ ,  and

1 J
One begins with

Lemma 1 : With (A„) —  a
as in (1),

( 2 ) V  +

(3) t
T1 V ’

(4) it A p '  '
(5) ^ k '  ».

( 6 ) - c
j k  »

(7) 0  ,
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Irwhere  ̂ are the components of the curvature

DR-tensor of the non-linear support relative to
i i ^(a/ax , ô/a§ ); R^^^^ the components of the hori-

V Vzontal curvature DR-tensor, from (7.22); R  ̂

those of the vertical curvature DR-tensor, from 
(7.23); and R^^^^ those of the mixed curvature 
DR-tensor, from (7.24). Also, = ai^/a§^.

Proof; This is straightforward computation. Equa­
tion (3) will he derived; the remaining equations follow 
from entirely similar arguments. For (3), compute

= A.*Ai(xk) = 0 ,

while

and

Finally,
Ai A^^(tî ) = (-cj^ Ti®)

a c ^

ax^
and

V  A^(n^) = Aj^ (-f .̂3 n^)
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Therefore,

(8) 3 ac%
[Ai.Aj,] = r^j —  + [—  ------ -

ax

- if - P Î  - cf, pf,] — .
a? ail

From (7,24), equations (8) yield

(9) ®k k t s ^[Ai.Aj,] = ^  + (H Pij) n

If (9) be written in terms of the adapted frame, the result 
is equation (3). Q.E.D.

When one has Lemma 1 at his disposal, the following
theorem

2Theorem Jj_: The horizontal distribution on T (M) corre­
sponding to the DR-connexion (H,r) is integrable 
iff

= 0

(10) " = &  = °

over each coordinate patch U on M.

Proof ; The distribution is integrable iff 
[Aj_,Aj], aiid. [A^^,Aj*] are horizontal, by the
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Frobenius Theorem, Equations (10) are simply the statement 
that the vertical part of these vectors vanish, by Lemma 1, 
Q.E.D.

In particular, one has the

Corollary; Suppose either that the DR-tensor C of (7.19) 
is a zero DR-tensor, or that the non-linear sup­
port is flat. Then the horizontal distribution in
2 r u oT (M) is integrable iff R, R, and R are zero

DR-tensors.

211. Linear Connexions on T (M)

The object of this section is to prove for DR-con­
nexion theory a theorem analogous to that of Yano and Ledger 
on the existence and uniqueness of a certain symmetric linear 
connexion on T(M), induced by a linear connexion on M 
[24; p. 498], The C“ n-manif old M is assumed to be en­
dowed with a DR-connexion, with (A^) as in (10.1) the
adapted frame over a coordinate patch U on M,

2Suppose that D is a linear connexion on T (M), 
with coefficients with respect to the adapted frame;
that is.

D* = A 2  A . .

Then one has

Lemma 1: The following subsets of the set (a X )  of co-" " " ■” —  dp
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2efficients of a linear connexion on T (M), relative 

to the adapted frame, transform like tensors on M 
with a change of adapted frame:

(-) A Y A Y A .t* .t^ . t . t* . t'"i*p' Ai'p' Ajk*, Aj%,, Aj%,,

The remaining coefficients

transform like (linear) connexion coefficients on 
M. Conversely, of course, any collection of coef­
ficients wftiich transform in this manner determines a

2linear connexion on T (M).

Proof: Suppose Ü and V are coordinate patches
on M with coordinates (x^) and (y^) respectively, and 
Ü n V ^ q>. Let (A^) denote the adapted frome over U, and 
(A^) that over V, Then, with induced coordinates 
(x^, 7)̂ ) in tî2“^(ü), one has

( 4) 4 B ^ Ô 1̂ 4 8
A- = 5 jj — r- - n  (ni,X) — r - P^^(m,X) n — r *
^ 1 ax3 ^ art

Let (y^, cp̂ , denote the induced coordinates in
Then, if a vector Q on n2~^(UnV) is given hy

(5) i B i 0 i a
Q = a — ^ + P — T + Y — 7 > 

ôx^ ÔTl̂

one finds
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i ôy^ ô , i k a^y^ i, ay^ a

Q = a — r — ? + (a § — T r + P — r) — jôx^ ôyJ axd ôx^ ôx^ âcp̂

(6) 2 i i
, i k a 1, y"" a

+ (a  Ti — \— r  + Y “ T - r - r  >ÔXJ ôx“ X"- ôx*

from the coordinate transformation (5.3). Applying (6) to
(4) yields

ay^ a - ay* _& a ay^ . a
■ i ? i ?  ■ i ?  i ? ’

lAiere the transformation equations (6.10) and (6.12) have 
been applied. Thus

(7) a /  _

In an entirely similar fashion, one finds 

(») ay>^_
V  -

and

(9) _
A - / = — T A. / .
^ 0x1 ic

Equations (7), (8), and (9) are the reason for the introduction 
of the adapted frame. They may be summarized in the single 
statement
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vdaere (G^) are given by the (3n x 3n)-matrix

(11) [Gg] =

(ôyVôx^)

(0)
(0)

Define functions G^ hy G^ G%d u p

(12) [%] =

(axVôy^)

(0)
(0)

(0)
(ôy^/ôx^)

(0)

6^, so that a

(0)

(ôxVôy^)

(0)

(0)

(0)
(ôyVôx^)

(0)

(0)

( ô x V ô / )

In G^, p is a column-counting index, and a a 
counting index. From (10), one has

\ \ \  h i \ \  'a  Y

row-

whence

(13)

idiich is the basic transformation equation of the coefficients 
of the connexion D, under a change of adapted frame. But, 
from (11), the quantities

V k J '  V ° k ' ) >

) * ^j( ^j^ ̂ k*^
are all zero. Using this fact, together with equations (13), 
yields, for example.
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so that transform in the tensor manner. That the same
is true of each of the quantities in (2) follows in the same 
way, from (13) and (14), The second assertion of the lemma 
is clear from (11) and (13). while the final statement is 
trivial, Q.E.D,

Some notational conventions will now be established 
which will be convenient in what follows. First, if X is 
a C* vector field on M, there exist three naturally de­
fined lifts of X to a global field on T^(M). If, indeed, 
X = X^ a/ax^, let

i

(16) Xg X = X^ A^^ ,

X3 X = X^ A^, .

By equations (10), the form of equations (16) is independent
of the particular coordinate system used in defining the lifts,

2so that (16) do define global vector fields on T (M), Equa­
tions (16) may also be applied to a DR-vector field; for ex­
ample, if X = X^(m,Y) a/ax^, then

(17) (X^ X)(m,Y^z) = X^(m,Y) A-(m,Y,Z) ,

and similarly for Xg ^ a^d X- X,
Next, suppose that K is a 0“ p-covariant DR-tensor 

with values in the space of linear transf0rmations on M ,
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Define h^K to a C*, vector-valued, p-covariant tensor on 
T^(M), by

(18) •••» ̂ p))(m,X,Y) =

'l^~(in,X) '1' " ' '"2'* ^p) >
plAiere (m,X,Y) € T"(M), and , ...,Qp are vectors in 

(T^(M))^^ X Y)* Similarly, hgK and vK are defined by

(^2^)(m,X,Y) (Qi ,  Qp) =

^2[^(m,x)((^2)* Q;» •••» (*2)* Qp) (Y)] ,(19) 

and

(20)
(̂ )(m,X,Y) (Qi»«»«>Qp) -

^3^^(m,X) ^1» ' * (*2)* Qp) (Y)] •

In addition, write

S'jis ■ + «"jls >

and define the linear-transformation valued 2-covariant 
1

DR-tensor R by

(22) 1 i i T, aR (X,Y) Z = X3 Y^ ZP R ® .. —
3-P ÔX®

over each coordinate patch U on M.
Then one may prove

Lemma 2: If X and Y are C“ vector fields on M, M
having a DR-connexion (H,r), then
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(23) 1

[\^X, X^Y] = X^[X,Y] + Xg B (Z,Y) + v R (l,X, X^Y) ,

(24)

(25)

(26) 

(27)

[Xl%, XgY] = Xg( V x  Y) + V R (X^X, X^Y) ,

[X.X, XjY] = X^( Vx Y) ,

[X2^ f X2Y] = V R (X^X; X-jY) ,

[X2X, XjY] — V C (X-jX) X-jY) I 

and

(28)
[X^X; X^Y] = 0 f

iidiere V is the operator of (7.20), R the curvature 
DR-tensor of the non-linear support, and C is given
hy (7 .29).

Proof ; The relationships of Lemma 2 follow from those 
of Lemma 10.1 hy easy computation. For example.

[X^X, X^Y] = [ X \ ,  Y^A.]

= X^ Y^[A^, A.] + X^(Y^)Aj^ - Y^A.(X^)A^■ j -r ^ X

ii] "k* ■ " “ ijs= y 3

,,j£ .^kT 0 X  ̂ OA
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viflaence (23). The other computations are similar, Q.E.D, 

One may now establish the desired theorem:

Theorem 1_: Given a DR-connexion on M, there exists a
2unique syoimetrio linear- connexion D on T (M) 

such that

(29) Dĵ ĵ X3Y = 0 , ^2^ = °» ° '

(30) ^1̂  = O'

(31) = (X^X, X^Y) ,

r r
(32) D^^x = kiC V x  ^  - a T (X,Y)] + BXgBCK/Y)

1
+ a V R (X-jXy X-jY) •

2
Proof: A linear connexion D on T (M) is com­

pletely determined by its values on the lifts X^X, X2X,
and X3X of vector fields on M, since these provide

2spanning sets for the tangent spaces of T (M). Therefore, 
D is symmetric iff

(33) x̂-|X ^1^ ” \ ^ Y  ^1^ = [>-1̂ » ^1^] =
1

X^[X,Y] + XgBvX/Y) + V R(X^X, X^Y) ,

(34) D^^^ XgY - D^^y X^X = [X^X, XgY] =

^2( Vx ^) + ^ ® (X-|X, X-jY) ,



(35)

(36)
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2% ^2 ^ ” ^X2% ^2^ ~ 2^) ^2^3 ~ ^ ^ (X^X, X^Y) *

(37) X3Y - ^2^ = [XgX, X3Y] = V C (X^X, X^Y) ,

and

(38) ^3^ — ^3^ “ [X3X, X3Y] = 0 •

Now, setting ^ X3Y = 0 is consistent with (38);
3 Vequation (31) is consistent with (36), since R is skew- 

symmetric, and (32) is consistent with (33), since
r r r i

[X,Y] = V x  ^ ” V y  ^ ^ (X,Y), and since both R and R
are skew-symmetric.

But setting ^ 2^  = 0 is consistent with (37)
iff

(39) X3Y = V C (X-jX, X-jY) ;

and setting ^ X^Y = 0 is consistent with (35) iff

(40) Dx^x X3Y = %3( V x  T) ,

and finally, setting X - j Y  = 0 is consistent with (34)
iff

(41) XgY = Xg( Vx Y) + V R (X-,X, X-,Y) .

2Thus, one sees that a linear connexion D on T (M) vdiich



116
is symmetric and satisfies equations (2g), (30), (31), and 
(32) is completely determined, and therefore unique, provided 
it exist at all.

The existence of D may he proved by displaying its 
coefficients, and applying Lemma 1, Let attention be re­
stricted to tt2”^(U) for U a coordinate patch on M.

In terms of the adapted frame, let D. A„ = A A  A .
a " "'P Y

Then, locally,

(«) .

+ Ajj, + \ i )

But equation (32) reads, re the adapted frame, 

“xiX ^ 4c

(43) + à X^ yi (Rk + È \ . 3  n®

Equations (42) and (43) together show that one must have

(44) Aij(m,X,Y) = F^(m,X) ,

(45) Aij(m,X,Y) = \ RK(m,X) ,

and

(46) Aij(m,X,Y) = 1 R\.g(m,X) -p® .

Entirely similar reasoning leads to the remaining coefficients:
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(47) ,k* _ .k' _ |k. k* J L * k'

ij* ii*

k" „ k A k'
i-i' ^ii' i*i* - » n' .

' = “l"j -

with the rest zero. Testing these coefficients against the
requirements of Lemma 1, one sees that they do determine a

2linear connexion on T (M), and D exists, as stated. 
Q.E.D.

This theorem may be employed, in the same manner as
its analogue in the work of Yano and Ledger, to give geo-

2metric results connecting T (M), T(M), and M. The fol­
lowing two corollaries are examples; Corollary 1 is to be 
compared with Yano and Ledger's Corollary 2 [24; p. 499], 
and Corollary 2 below with their Corollary 3 [24; p. 500]. 
Throu^out, D is the connexion of Theorem 1.

Corollary Let and Vg be C* vector fields on
T^(M) such that tt̂ (V^) = (X̂ )̂ for i = 1,2,
Kdiere and X2 are C" fields on M, and
k^ denotes the r-lifting operation. Then, if

rthe non-linear support is flat and V is torsion- 
free,

(48) _ r
^2) = ^i( Vx^ ^ 2)

and
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(49) r 

(tt2)*(I>v̂ V2)(m,X,Y) =  ̂Vx̂  2̂̂ (m,X) '

Proof; Since ïï^(V^) = k^(X^), = X^X^ + ,
2where are vectors on T (M) which are vertical over

T(M), This permits the calculation:

Vg = D,,x, ll%2 + «2 >̂3 ( Vz^ Zj)
(50) , ,

+ X^ (wj) (W^) ,

where Z. = d/ôx^. Upon applying Theorem 1 again, and 
J

noting that the last three terms in the ri ^ t  member of (50) 
are vertical, both over T(M) and M, one obtains

or

(51) _ _ r r
TT^(Dy^ ^2) = ^2 - 3 T (X^,X2)]}

+ ^*(3 ^2 ®(X-| >^2^ ̂ *
r

By hypothesis, T = 0; since r is flat, R = 0. Therefore,

(52) _ r
^2) = n* * x^ ( Vx^ ^2) *

Both statements of the corollary are immediate from (52), 
Q.E.D.
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2Corollary 2: Let a î I * * T ( M )  be a geodesic of the con­

nexion D of Theorem 1 which is nowhere tangent to 
fibres over T(M) and such that ïr « o is
r-horizontal on T(M), Then if ® o is a horizontal
path.

Proof; Since o is nowâiere tangent to fibres over 
T(M), TT 0 o is a regular curve. Also, since n ® o is 
horizontal, the tangent T to o is of the same type as 
the vectors of Corollary 1, so that, from (51),

(53) r r
ÏÏ^(Dt T) = ÏÏ^{X^[ V t T - è T (T,T)] + I Xg R(T,T)3 .

rBut T and R are skew-symmetric, so (53) yields

(54) _  r
(^*(^T ( Vï . •TT 0 0( t) TT o o( t;

Since o is a geodesic of D, T = 0, and

(55) r
k^ ( T) = 0

along n ® a. The corollary follows from (55), Q.E.D,
The relative heaviness of the hypotheses in these two 

corollaries, as compared with the analogous results of Yano 
and Ledger, arises from the complexity of the interplay be­
tween DR-vector fields on M and r-lifts of these to 
vector fields on T(M), A C® DR-vector field is not a
vector field on any manifold; the analogy between T(M) and 
2T (M), for linear and DR-connexion theory respectively, can­

not be stretched indefinitely for just this reason.
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APPENDIX 

LIST OF SYMBOLS

The list helow is designed to assist the reader 
who finds himself floundering under the deluge of symbols in 
this work. It is broken into two parts, one for Chapter II, 
and another for Chapter III. The reason for this is that the 
two chapters are nearly disjoint with respect to special 
notation, and a few symbols in the chapters are similar in 
appearance, while similarity in meaning is entirely fortu­
itous.

Symbols are listed in order of appearance.

CHAPTER II:
oC(M): set of C® vector fields on M p, 1
Grl(n,R): full linear group on p, 18
Vj^(R^): Stiefel manifold of k-frames in R^ p, 18
G isotropy group of an element of

 nV]^(R") p. 18
Q^(R^) : iqanif old of L-complementary k-f rames p. 19
B(M): total space of the bundle of bases

over M p. 21
Vj^(M): total space of Stiefel bundle of

k-frames over M p, 22
^n n-k* subgroup of Gl(n,R) leaving L

invariant p. 23
Stiefel bundle of k-frames over M p. 23

V^(N): total space of restriction to
N of § p. 23

Q^(N): total space of STC-bundle p. 24
123
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n.

H.n,k"

n̂ ‘
\ W i

A
D:
A
V;
\J
Dï

STC-bimdle
principal bundle associated to 

STC-btindle
total space of
Grrassmann manif old of k-planes 

in
isotropy group in 0^ of element 

in
orthogonal subgroup of Gl(n,R)
manifold of L-complementary 

k-planes in R^
G-TC-bundle
total space of GTC-bundle

A-connexion

A-component tensor

union connexion

p.
P-

P«
p.

p.
p.
P«

27

27

28

28

31
31

31
32 
32

36

36

42

projections of bundles: 
p: B(M) - M 
TT^ V^(M) - M 
v t  V*(N) - N 
TTS Qjj.(N) - N

CHAPTER III:
T(M): total space of tangent bundle

over M p. 51
coefficients of non-linear connexion p« 52
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X: horizontal lift of X (r-lift) PP. 55, 73
square of tangent bundle over M p. 65

2T (M): total space of square of tangent
bundle over M p. 65

total space of augmented bundle
of bases over M p, 66

0(M)s totality of C DR-vector fields
on M p. 66

a

augmented bundle of bases over M p. 68
natural lift of a to T(M) P» 70

a: canonical lift of a to B^(M) P« 70
r: non-linear support for a

DR-connexion P« 72
r
ÿ: horizontal oovariant derivative Po 75
V
y: vertical covariant derivative p. 76
P.̂ .I coefficients of DR-connexion p« 77

^ J

C-^.: coefficients of DR-connexion p. 78^ J
rR; horizontal curvature DR-tensor p. 89

R: vertical curvature DR-tensor p. 89

R: mixed curvature DR-tensor p« 89

y  : DR-vector valued operator p. 89
1-]» X-2» X3: lifting operators p. I'll

h^, hg, vs lifting operators p. ^12
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: coefficients of linear connexionuy P
on T^(M) p. 116

projections of bundles:
TT Ï T(M) M 
TT2Î T^(M) - M 
ÏÏ : - T(M)
Pg: B^(M) - M 
TTg: B^(M) -* T(M)


