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CHAPrER I 

INTRODUCTION 

1.1 Statement of the Problem 

In recent years efforts have been made to extend the plastic 

design method to more complex structures such as multi-story building 

frames (5, 6, 18). For these structures, the plastic method of analysis 

may be highly unconservative if the nonlinear effects are not taken 

into consideration. Most significant are the effects of reduction in 

plastic moment values and changes in frame geometry. Also of some 

influence are the effects of nonlinear moment-curvature relationship 

and "bowing" of individual members (beam-column effect). In this 

thesis is developed a method of accounting for these nonlinear effects 

by applying corrections to a conventional elastic flexibility analysis. 

1 • 2 Assumptions 

The development of the method is based on the following assump

tions: 

1. Torsional buckling and deformations out of the plane 

of the structure are prevented. 

2. Axial and shearing deformations are small and may be 

neglected. 

3. The members are steel wide-flange shapes for which the 

moment-curvature relationship is known. 
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4. The frame i s subjected to horizontal wind loads and 

failure is by the format i on of a collapse mechanism . 

5. Strain hardening is neglec t ed. 

1.3 Background 

2 

Several investigators have presented methods for the nonlinear 

analysis of frames. Among these Goldberg and Richard (11, 25) con

sidered the effect of a nonlinear moment-curvature relationship by 

treating the problem as an initial value problem. Gerstle and Zarboulas 

(10) determined deflections using an elastic-plastic and then a non

linear moment-curvature relationship and compared the results. The 

buckling of inelastic portal frames has been studied by Chu and 

Parbarcius (3) and by Moses (21) using essentially a trial and error 

procedure to determine the relationship between sidesway deflection and 

the applied loads. 

Ojalvo (22) analyzed elasto-plastic frames by constructing moment

rotation curves for the members and then finding the points of inter

section of the curves to determine the moments at the joints. Lu (20) 

considered the inelastic buckling of symmetrically loaded frames using 

a modified moment distribution procedure. Nonlinear elastic frames 

were analyzed by Saafan (26) by relaxing imaginary external restraints 

at the joints. His method includes the effects of finite deflections, 

bowing, and changes in the stiffness of the members. 

Lind (17, 18) has analyzed tall frames by an iteration procedure 

in which a state of deformation such as some plastic mechanism is 

assumed and then the corresponding loads are determined by reconstitu

tion of the frame which initially has a hinge inserted at each joint. 
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Gauger (9) applied the string-polygon method to the problem of 

determining the inelastic joint rotations in elastic-plastic frames and 

Tuma (29) devised the matrix-polygon method as a matrix formulation of 

the string-polygon method. 

Experimental work has been conducted by Augusti (1), Hrennikoff 

(14), Van Kuren and Galambos (30), and Yen, Lu, and Driscoll (32). 

Especially to be noted is the work of Ketter, Kaminski, and Beedle (15) 

in determining the moment-curvature relationship for wide-flange steel 

shapes. 

The previous methods of nonlinear analysis have used either the 

stiffness method, a trial and error process for enforcing compatibility, 

or an initial-value approach. The method developed herein is a new 

approach to the problem in which the nonlinear effects are included as 

corrections to an elastic flexibility analysis using the matrix-polygon 

method. 



CHA.PI'ER II 

FIRST ORDER ELASTIC-PLASTIC ANALYSIS 

Both the elastic · and the plastic concepts of structural behavior 

provide useful methods for the analysis of planar frames. With many 

conditions of loading, however, a frame cannot be considered as per-

fectly elastic or perfectly plastic. An example is the problem of 

finding the distribution of moments in a rigid frame in which some 

yielding has taken place. This chapter will describe a method for 

evaluating these moments taking into account the formation of plastic 

hinges and reduced plastic moment values. 

2.1 Moment-Curvature Relationship 

The first order elastic-plastic analysis is based on the assumption 

of a moment-curvature relationship of the type shown in Figure 1. It is 

assumed that the curvature at any cross-section of a member varies 

linearly with the moment acting at that section until the plastic moment 

value is reached after which no further increase in moment occurs. The 

full plastic moment value M is reduced to M as the result of axial p pc 

compression in the member. 

4 
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Figure 1. Elastic-Plastic Moment
Curvature Diagram 

In accordance with the assumption of an elastic-plastic moment-

curvature relationship, neglecting for the present the effects of geom-

etry change and bowing of members, a structure will behave elastically 

with increasing load until at some point in the structure the moment 

reaches the value of M pc Thereafter with further increases in load, 

assuming no reversals of stress, the moment at this "plastic hinge" 

will remain equal to M • It will be assumed that strain-hardening pc 

does not take effect so that M may be further reduced if the comprespc 

sion in the member increases with increasing load on the structure. 

Eventually a second and a third plastic hinge will form until a suffi-

cient number of hinges develop for the structure to become a mechanism 

at which time it is incapable of carrying any additional load. 

2.2 Augmented Flexibility Matrix 

Using the flexibility method to formulate the problem, a structure 

is considered to be jointed at the points of load application and at 

points of discontinuity in the structure. The moments at these joints 
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are the unknowns and the angular deformations are expressed as functions 

of these moments . The angular deformations are referred to as "elastic 

weights" because they can be related by the principles of statics. A 

difficulty arises with this approach, however, as soon as a plastic 

hinge forms in that at the hinge location the moment becomes known and 

the angular deformation becomes unknown. This difficulty is resolved 

by augmenting the frame flexibility matrix with additional terms expres-

sing the conditions that the moments at the hinges are equal to M pc 

One additional equilibrium equation is required for each hinge. Thus 

the augmented flexibility matrix for a one bay rigid frame will be of 

order 3+N where N is the number of hinges formed. 

The basic matrix equation for the flexibility analysis of an 

elastic portal frame is 

[A][F][Ai[RJ+[AJ[F][BM] = [o] = [o] 

where the matrices are defined as follows: 

Certain 

[A]= linear transmission matrix 

[F] = member flexibility matrix 

[R] = redundant matrix 

[BM]= basic moment matrix consisting of any set of 
moments that satisfy the conditions of equilib
rium for the loaded frame 

[o] = matrix of displacements of the frame trans
ferred to the origin of the coordinate system. 

abbreviations will be used subsequently: 

[AFAJ = [A][F][A]T = frame flexibility matrix 

CAFBM] = [A][F][BM] = displacements at origin due to 
basic moments. 

(1) 

The redundants are found by premultiplying both sides of equation (1) by 
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the inverse of the frame flexibility matrix. Thus, 

[RJ+CAFA Tl CAFBM] = [o] 

or 

(2) 

Finally the moments [M] at the joints are found: 

(3) 

When plastic hinges have formed in the structure, the condition 

that the moments at the hinge points are equal to M is expressed by pc 

where 

[A I JT [RJ+[BM' J "' [M J 
pc 

[A•]= linear transmission matrix for the hinge 
locations (3xN) 

[BM']= matrix of basic moments at the hinge points 
(Nxl) 

[Mpc] = matrix of reduced plastic moment values at 
the hinge points with the signs of the moments 
at the hinge points (Nxl) 

The inelastic rotations [y] of the plastic hinges are also of 

interest and may be found: 

CAFA][RJ+[AFBMJ+[A' J[ yJ • [oJ 

Combining equations (4) and (5) the complete formulation becomes: 

Solving for the unknowns, we obtain 

(4) 

(5) 

(6) 
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lR] = [AFA A ']-l [ -AFBM ] 
y A'T O · M •BM' 

pc 

(7) 

The final joint moments are determined from equation (3). 

The augmented flexibility matrix in equations (6) and (7) would 

appear to be ill-conditioned due to the zeros on the main diagonal. In 

the examples, however, (Chapter V) the inverse was found by the method 

of partitioning (12) and no difficulty was encountered using this 

method. The augmented flexibility matrix will become singular when a 

sufficient number of hinges have developed to form a collapse mechanism. 



CHAPTER III 

NONLINEAR BEAM-COLUMN ANALYSIS 

3.1 Lambda Values 

The ordinary flexibility functions are not quite adequate when the 

columns in a structure are subjected to relatively large axial compres-

sive forces,e.g. the columns in the lower floors of a multi-story 

building. The presence of secondary moments resulting from the axial 

forces will sometimes call for a more exact analysis. In addition, any 

yielding that may occur at the column ends prior to the formation of a 

plastic hinge may also need to be accounted for in the analysis. The 

angular functions due to these effects have been lumped together and 

will be referred to as lambda values. Lambda values represent additional 

angular rotations at the ends of a beam-column and are included in the 

formulation as follows: 

[AFA][R] + CAFBM] + [A][A] = [o] (8) 

[R] = CAFAr1 [-AFBM-AA] (9) 

Lambda values may also be included when the augmented flexibility matrix 

is used to account for plastic hinges: 

[
R] = [AFA A']-l [-AFBM-AA] 

11. A'T O M -BM' 
pc 

(10) 

In computing the lambda values, it will be assumed that the end 

moments and axial force acting on the beam-column are known and that no 

9 
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intermediate loads are applied. If intermediate loads were present, the 

beam-column would have to be cons:i.de:red in segments. 

3.2 Column Deflection Curves 

The basis of the nonlinear beam-column analysis is the column 

deflection curve which represents the shape of a pin-ended column having 

the same axial load, cross-sectional dimensions, and material proper-

ties as the beam-column under consideration (5, 24). Figure 2 shows a 

column deflection curve and related beam-columns. Any beam-column sub-

jected only to end loads is equivalent to a portion of some column 

deflection curve. 

If the initial slope a of the.column deflection curve is known 
0 

or can be easily determined, analysis of the beam-column becomes a 

relatively simple matter. We will consider a beam-column in double 

curvature, Figure 3, since in the examples to follow the columns will 

deform in this manner. The derivation is general in that either end 

moment may be positive and the other negative, however, a slight 

modification in the signs would be required for a beam-column in single 

curvature. It will be assumed that the angle~ between the chord of the 

beam-column and the axis of the column deflection curve is sufficiently 

small so that Q can be taken equal to P without appreciable error. 

The conditions relating the column deflection curve to the beam-

column are: 

= L 

M a 

{ll) 

(12) 

(13) 
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Q 

Figure 2. Column Deflection Curves and Related Beam-Columns 

X a 

+y 

X 

-I 

Figure 3. Beam-Column in Double Curvature 
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In accordance with these relationships, the angle a is found as 
0 

12 

follows. Assuming an elastic beam-column, the shape of the deflection 

curve is governed by the differential equation 

2 
Py + EI d ~ = 0 

dx 

Taking the origin at the inflection point, the boundary conditions are: 

y = 0 and~= a at x = O. The solution then becomes a portion of a 
dx o 

sine wave: 

and 

where 

a 
0 sin y =-k 

a .. ~ ... a 
dx 0 

k •""" fL"" Vii 

(kx) (14) 

cos (kx) (15) 

With the solution of the differential equation it is now .possible 

to solve for a. Rewriting equation (14) and substituting the end 
0 

values of the beam column (Figure 3), the result is 

or 

ky 
a a=-~--o sin(kxa) 

From equation (11) we write 

= sin(~) 

Substituting the trignometric identity for sin(~-kL), we obtain 



Dividing by cos(~) gives 

Rearranging and solving for tan(~) yields 

ybsin(kL) 

Thus, 

or, utilizing equations (12) and (13) 

Finally 

1 -1 
~=~an 

kyb 
Cit = ------

0 sin(~) 

sin(kL) 

or in terms of Ma,~, and P 

f cos (kL) -Ma/~] 
2 

1 +t sin(kL) 

Equation (19) is also valid with very little error for an inelastic 

13 

(16) 

(17) 

(18) 

(19) 

beam-colwnn with reversed curvature since yielding will only occur over 

a short distance near the ends and will not appreciably affect Ya and yb. 

They-displacements of the inelastic as well as the elastic column de-

flection curve are therefore correctly given by equation (14). The end 

slopes, Ota and~ in Figure 3 are affected by yielding, however, and 

must be determined by a numerical integration procedure using an 

appropriate nonlinear moment curvature relationship. Such relationships 

have been derived theoretically and verified experimentally (15). 

Figure 4 shows a set of nondimensionalized M-0 curves for an 8WF31 
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section and Figure 5 shows the comparison of one of the curves with 

those of other wide-flange sections. It is seen that there is very 

little variation in the shape of the curves for a wide range of 

sections. 

It will be assumed that the moment-curvature relationship (Figure 

4) becomes nonlinear when the extreme fiber stress in the beam-column 

reaches a, i.e. when 
y 

or when 

where 

P = Aa 
y y 

and r is the radius of gyration of the cross-section. 

(20) 

When the moment reaches M , the curvature becomes indeterminate pc 

and a plastic hinge fonns. M is detennined from the following 
pc 

equations: 

or 

l 
M =M -4aw pc p y 

if O s: P s: a w(d-2t) 
y 

d 1 2 
M = 2 (Py-P)-~ (Py-P) 

pc y 

if a w(d-2t) s: P s: P 
y y 

(21) 

(22) 

where w is the web thickness, dis the depth of the section, tis the 

flange thickness and bis the flange width (31). 
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Figure 4. Nonlinear Moment-Curvature 
Diagram 
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Figure 5. Comparison ·of M-f Curves 
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In the present study the moment curvature relationship is expressed 

by 

0 M 
if M ::;; M =-

EI y 

(lj - .1! ~::'.E.£r-Ml'.-r if M :::;; M :::;; M (23) - EI+ EI M -M y pc pc y 

Equation (23) consists of a parabola of degree n connecting the elastic 

and plastic regions of the moment-curvature diagram. The coefficient 

h represents the ratio of inelastic curvature to elastic curvature at 

formation of a plastic hinge. By varying n and h this equation can be 

made to approximate quite closely most moment curvature diagrams. In 

the example problems, values of four and three were used for n and h 

respectively to represent the curves in Figure 4. 

3.3 Numerical Integration 

The slope o: of the elastic portions of the column deflection curves 

may be obtained directly from equation (15). When the moment M=Py 

exceeds M, the curvature is nonlinear and the slopes are obtained by y 

integration using the curvatures given by equation (23). Referring to 

equations (14) and (15), we let 

M 
Y = ..:t. 

e p 

o: = o: cos(kx) e o e 

(24) 

(25) 

(26) 

these are the starting values for the numerical integration (Figure 6). 

A suitable increment !::ix, between one and four times the radius of gyra-



tion of the cross-section, is selected and the slope a
1 

is determined 

at ·x = x + tsx. The average moment in the interval is taken as 
i e 

Pa . !sx 
Mi= Pyi = ko sin [k{xe + ""1')] 

y 

Figure 6. Numerical Integration 

The curvature 0. in the interval is assumed to be constant and is ob-
1 

tained from equation (23). The slope at xi becomes 

In general 

17 

(27) 

(28) 

(29) 



The numerical integration proceeds until xi+ Ax~ xa at which time 

Finally 

Pa 
0 

Mi+l = ksin 

and 

Ax' 
[k(xi + 2) J 

18 

(28a) 

(29a) 

The calculation for C,, is similar and may be carried out simultaneously 

with the calculation for a. It is convenient to perform the numerical 
a 

integration using positive values, correcting the signs at the end. The 

sign of aa and of c,, is the same as that of a
0 

which in turn is the same 

as~· 

The end slopes of the beam-column may now be determined. The axis 

of the beam-column deviates from the axis of the column deflection 

curve by the angle~ (Figure 3) where 

Yb - Ya 
~ = ------L 

and the end slopes are 

9 = a - ~ a a 

(30) 

(31) 

(32) 

These theta values may be broken down into the linear and nonlinear end 

rotations. Denoting by A the nonlinear rotations , 

Ma ~ 
9a = JEi' + 6EI + "'a 

from which 

(33) 
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(34) 

The lambdas may be broken down into temporary (elastic) end rotations 

due to the axial force in the beam-column and permanent (plastic) end 

rotations due to yielding. The· permanent end rotations A are equal to p 

the difference between the end slopes of the column deflection curve as 

calculated by equation (15) and by equation (29a): 

A = a - a cos (kx ) ap a o a 

The temporary end rotations A are: 
e 

:>i. = A - A ae a ap 

(35) 

(36) 

(37) 

(38) 



CHAPrER IV 

NONLINEAR FRAME ANALYSIS 

4.1 Method of Nonlinear Analysis 

Although a structure which is subjected to a large enough load will 

become nonlinear as the result of yielding or excessive deflection, in 

most cases it is still primarily elastic. In frames of the type consid

ered in this thesis, subjected to horizontal forces, the moment gradients 

(change in moment along a member) are high so that yielding is confined 

to rather small areas. Rather than treating a nonlinear frame, then, 

as an assemblage of inelastic elements that must be joined together in 

some way so as to satisfy the conditions of equilibrium and compat.ibil

ity, we will deal with a frame which is essentially elastic but which 

has finite discontinuities at the points of yielding. 

The most severe discontinuity that can develop in a frame is the 

formation of a plastic hinge. The angular relationship of the members 

at the joint can no longer be determined by the application of Hooke's 

law. A major modification to the frame flexibility matrix is required. 

This was accomplished in Chapter II with the first order elastic-plastic 

analysis based on the augmented flexibility matrix. 

The next most severe influence on the behavior of a flexible frame 

is the effect of sidesway deflection onthe equilibrium of the frame. 

This is taken into account by formulating the equilibrium conditions in 

terms of the sidesway deflections which are then determined by iteration. 

20 
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Unless the frame is on the verge of i nstability , the deflection should 

converge after one or two cycles of iteration. 

Finally, small discontinuities will occur at the joints as the 

result of nonlinear behavior of individual members. These fall into two 

classes: (1) partial yielding at the ends of members when the moment is 

greater than M but less than M , (2) bowing of the member when the 
y pc 

axial force is sufficiently large to produce additional end rotations in 

a bent member. These effects are included also by iteration after the 

approximate end moments and axial forces become known. 

4.2 Outline of Procedure 

The steps in the nonlinear analysis are as follows: 

(1) Perform a flexibility analysis assuming the frame to be 

elastic, equations (2) and (3), to determine the moments of the joints 

and the axial forces in the members. 

(2) Compute M for each member, equation (21) or (22), and com
pc 

pare with the joint moments. Place plastic hinges at joints where the 

moment i s grea ter than M by augmenting t he frame flexibility mat r ix 
pc 

with rows and columns giving the locations of the hinges, equation (6). 

If no plastic h inges are found, go to step (4). 

(3) Perform an elastic -plastic analysis, equation (7), and recalcu-

late the joint moments, equation (3). Determine the axial forces in the 

members and repeat step (2) if the change in moments is appreciable. 

(4) Compute t he deflections of the joints and recalculate the 

basic moments using the deformed structure to formulate the equilibrium 

conditions. Go back to steps (1) or (3), depending on whether hinges 

have formed, if the change in deflection is appreciable. 



(5) Compute M for eac h member, equation (20), and compare wi th 
y 
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the joi nt moment s . If any moment is between M and M , detennine the 
y pc 

lambda values, equations (33) and (34), f or t he affected member and per-

form a nonlinear analysis, equations (9) or (10) . If there are no 

moments between M and M , go to step (6). y pc 

(6) Iteration is continued unt il (a) the s idesway deflection and 

joint moments converge in which case the structure is stable, (b) the 

sidesway deflection diverges (elast i c instab i lity), or (c) a sufficient 

number of plastic hinges form to create a collapse mechanism. 

(7) If the collapse load is desired it may be determined by a 

systematic procedure whereby a sequence of increasing loads i s appl i ed 

to the frame. An analysis is performed at each load until at sane load 

a collapse mechanism develops or the sidesway deflection fails to con-

verge. The maximum load lies between this load and the previous l oad. 

4.3 Unloading 

When unloading or load reversal takes place after partial yielding 

of the frame ha s occurred, permanent angular deformations will exist at 

the joints t hat have undergone yielding. If only partial yielding of a 

member has occurred (M <M ), the permanent deformations A are given 
pc P 

by equations (35) and (36). If full yielding has taken place, i.e. if 

plastic hinges have formed, the permanent angular deformations Y a re 

determined from equation (10). These will be combined into a single 

term y where 

[y] = [ y] + [ A J 
p 

Equation (10) becomes then 

(39) 



[
R ] = [ AFA A 

1 

] -l 

y A'T 0 [

-AFBM-AA-A y ] 

M - BM' pc 
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(40) 

Note that the sign of M will change if the sign of the corresponding pc 

joint moment changes. 

As the result of load reversal, a frame is likely to return to the 

elastic state with previously formed plastic hinges becoming inactive. 

Furthermore, new plastic hinges may form in different locations from the 

original ones. This means that it is necessary to start a new analysis 

assuming an elastic frame each time reversal of loading takes place. 

Thus for the first calculation the flexibility equation would have the 

form of equation (9) instead of equation (10): 

[R] = CAFAT1 [-AFBM-AA-Ay] (41) 

The permanent joint rotations [y] must be included in all subsequent 

computations in accordance with equations (40) and (41). 



CHAPIER V 

NUMERICAL RESULTS 

5.1 Example Frames 

A number of frames have been analyzed using a computer program 

written for the IBM 7040 electronic computer at Oklahoma State Univer-

sity. A flow diagram of the program is included in Appendix A and some 

of the details of solution are given in Appendix B. 

The frames which were analyzed are all similar to the configuration 

shown in Figure 7 with the exception that the second group (11-16) has 

pinned bases. Listed in Table I are the properties of the frames and 

the maximum loads according to the three most significant theories, 

simple plastic, elastic-plastic with reduced plastic moment, and non-

linear (including geometry change, bowing, and nonlinear moment-curvature 

relationship). 

p 
V 

p p 

1... B = 30' (all example~ 

Figure 7. Example Frame 
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Frame 
No. 

1 
2 
3 
4 

5 
6 
7 
8 

9 
10 
11 
12 

13 
14 
15 
16 

H, ft. 

15 
15 
15 
15 

20 
15 
15 
20 

20 
30 
15 
15 

15 
20 
20 
30 

Beam 

Section M, kip-ft. 
p 

21WF127 953.4 
21WF127 953.4 
10WF45 165.0 
10WF45 165.0 

10WF45 165.0 
8WF35 104.1 
8WF35 104.1 
8WF35 104.1 

8WF35 104.1 
8WF35 104.1 

21WF127 953.4 
8WF35 '104.1 

8WF35 104.1 
8WF35 104.1 
8WF35 104.1 
8WF35 104.1 

TABLE I 

SUMMARY OF RESULTS 

Columns 

Section M, kip-ft. 
p 

14WF119 632.7 
14WF119 632.7 

8WF40 119. 7 
8WF40 119.7 

8WF40 119. 7 
8WF20 57.3 
8WF20 57.3 
8WF20 57.3 

8WF20 57.3 
8WF20 57.3 

14WF119 632.7 
8WF20 57.3 

8WF20 57.3 
8WF20 57.3 
8WF20 57.3 
8WF20 57.3 

Loads 
p max' kips 

p /P 
h 

1.5 
1.5 
1.5 
2 

2 
1.5 
2 
2 

2 
2 
1.5 
1.5 

2 
2 
2 
2 

p /P Simple Elastic 
v Plastic Plastic 

0 97.2 95.0 
4 97.2 82.5 
4 17.8 16.5 
6 16.0 13.5 

6 12.0 11.0 
4 10.2 9.0 
6 7.64 6.8 
6 5.73 5.4 

10 5.73 5.0 
10 3.82 3.5 

4 56.3 50.0 
4 5.10 4.8 

6 3.82 3.6 
6 2.86 2.8 

10 2.86 2.7 
10 1.91 1.8 

Note: Frames 1-10 have fixed bases and frames 11-16 have pinned bases. 

Nonlinear 

95.0 
77 .5 
15~0 
12.0 

9 . 5 
7. 6 
5.8 
4.6 

4.0 
2.7 

45.0 
3.8 

3.0 
2.2 
1.9 
1.2 

N 
VI 
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According to the s imple plastic theory, the maximum load is deter-

mined by equating the external work of the loads to the internal work of 

the plastic hinges as the collapse mechanism is moved through a small 

displacement. The elastic-plastic method, as used in the examples, 

assumes a reduction in plastic moment values but includes no other non-

linear effects. 

5.2 Graphs of Results 

Figure 8 shows the variation in moments as the loads increase pro-

portionally for Frame No. 1 according to the elastic-plastic method. 

The numbering of the moment curves corresponds to the numbering of the 

joints. The graph consists of segmented straight lines with breaks 

occurring at loads corresponding to the formation of plastic hinges. 

The column loads P are zero for this frame so there is only a slight 
V 

reduction in the plastic moment values. Figure 9 shows the moment 

variation for the same frame when it is subjected to column loads and 

the nonlinear effects are i ncluded in t he analysis. 

The moment variation for a more s lender frame is shown in Figure 

10 and the relat i onship between load and deflection for this frame 

according to the three theories is shown in Figure 11. (Simple plastic 

theory assumes zero deflection until the collapse load P is attained, 
p 

then unlimited deflection). The results of the analysis of frames with 

pinned bases are shown in Figures 12, 13 and 14. 

To illustrate the versatility of the method of nonlinear analysis 

presented herein, the loading of frame No. 2 was modified to include a 

change in direction of the horizontal force Ph . The loads were in

creased proportionally until seven-eighths of the maximum load was 
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reached at which t i me Ph was gradual ly r eversed in direc tion . There

after the loads wer e aga i n increased proport ionally until failure. 

Figure 15 shows the resulting deflection curve with t he start of y ield

ing indicated at A and the reversal of load taking place at B. Yielding 

again occurs at C and failure comes at D. The moment curves, Figures 

16 and 17, show the moments increas ing uniformly until first yielding 

occurs, and then plastic hinges develop at joints 5 and 6. Upon 

reversal of the loading, the moments at joints 1, 2, 5, and 6 change 

sign while the signs of the moments at joints 3 and 4 remain unchanged . 

5.3 Discussion of Results 

Frame No. 1 is essentially the same f r ame that was analyzed by 

Richard and Gol dberg (25) who i ncluded in their analysis only the effect 

of a nonlinear moment-curvature relationship. A comparison of Figure 8 

with Figure 7 on page 46 of the reference will show that the primary 

effect of the nonlinear moment-curvature r e lationship is a rounding of 

the moment curves. In this example, the error introduced by neglecting 

the reduction in plastic moment values and the effect of geometry change 

(sidesway) is nearly negligible. 

With the addition of column loads equal to 4P, however, the effec ts 

of reduced plastic moment and of sidesway are no longer negligible as 

is seen from Figure 9 (Frame No. 2). The reduction in plastic moment 

values is about 17 per cent of the full plastic moment at maximum load 

and the maximum load according to simple plastic theory is in error by 

about 25 per cent if these factors are not taken into account . Note 

that the plastic hinges form first at joints 5 and 6, then at joint 1, 

and finally at joint 3. 
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Frame No. 9 (Figures 10 and 11) is more fl exible so the reduction 

in plastic moment values is not as great , only 8 per cent, and t he 

effect of sidesway is more pronounced . The error in the maximum load 

if sidesway is neglected is 24 per cent and if sidesway and reduced 

plastic moment are both neglected the error is 43 per cent. In this 

case the last plastic hinge was formed at joint 2. 

Frames with pinned bases naturally tend to be more flexible than 

frames with fixed bases. For these frames the effect of sidesway is 

more significant than is the effect of the reduction in plastic moment 

values as shown in Figures 13 and 14. The gradual deviation of the non

linear load-deflection curves from the elas tic - plastic curves is the 

result of the sidesway effect. This is also evident in the gradual 

curving of the moment curves in Figure 12. The magnitude of the effect 

of the reduced plastic moment values is indicated by the difference 

between the maximum elastic-plastic and the maximum simple plastic loads. 

The ef fect of reversing the direction of the horizontal force 

after plastic hinges have formed at two of the joints (joints 5 and 6) 

is shown in Figures 15, 16, and 17. It will be observed that the 

frame behaves elastically during most of the load reversal. Plastic 

hinges then form on the opposite side of the frame (joints 1 and 2) and 

eventually one of the original hinges (joint 6) yields in the opposite 

direction. The final hinge forms in the beam at joint 4. 

Due to the permanent angular deformations of the joints, the side

sway deflections to the left of the vertical position are less than the 

deflections to the right at corresponding loads without load reversal. 

As a result, the sidesway effect is less severe and the maximum load 

(80 kips) is greater than in the case of loading in one direction. 



CHAPI'ER VI 

SUMMARY AND CONCLUSIONS 

6,1 Suumary 

A method has been presented for the nonlinear analysis of rectangu

lar plane frames. The method is based on an elastic flexibility analysis 

to which corrections are applied to account for the nonlinear effects. 

The corrections applied to individual members include the beam

column effect due to axial force and the effect of yielding due to non

linear moment-curvature relationship. These effects are calculated by 

numerical integration of the curvature function along the beam-column. 

An equation is derived for determining the initial slope of the column

deflection curve associated with the beam-column. This makes possible 

the direct determination of the end slopes of an inelastic beam-column 

with yielding at the ends. 

The nonlinear corrections applied to the frame as a whole include 

the effects of geometry change and of the fonnation of plastic hinges. 

The effect of geometry change is accounted for by formulating the 

equilibrium equations on the deformed shape of the frame. Plastic 

hinges are accounted for by augmenting the flexibility matrix with 

additional rows and columns expressing the conditions that the moments 

at the hinges are known values and the hinge rotations are unknown. The 

reduction in plastic moment values due to axial compression is also 

included. 

39 
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Real hinges in a frame may easily be accounted for in the analysis 

by simply setting the plastic mome nt values equal to zero at the hinges. 

Reversals of loading are taken care of by calculating the permanent 

angular deformations at the joints and then carrying these values along 

through the subsequent analysis. 

The criteria for the determination of ultimate load is the forma

tion of a sufficient number of plastic hinges to create a collapse 

mechanism or the nonconvergence of the sidesway deflection. When suffi

cient hinges have developed for the formation of a mechanism, the aug

mented flexibility matrix becomes singular. The largest load for which 

the flexibility matrix is nonsingular is taken as the ultimate load. 

The essence of the method is that the linear and nonlinear effects 

are considered separately in the analysis. The elastic frame forms a 

reference to which the nonlinear effects are attached as small correc

tions. In this way the proper relationship between the linear effects 

and the nonlinear effects is maintained. 

6.2 Conc l us ions 

It has been demonstrated that the matrix-polygon method of 

structural analysis can be adapted to the nonlinear analysis of rectan

gular plane frames. Corrections in the form of inelastic weights are 

applied to the conjugate frame and the correct solution is obtained by 

iteration. Equilibrium is formulated on the deformed structure. 

The method has several advantages over other existing methods. In 

addition to the collapse load, the method provides the moments at each 

joint in the frame for any load. The method is based on a systematic 

iteration procedure, rather than trial and error, for which convergence 
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is rapid when the nonlinear effects are considered in the proper rela

tionship. 

It has been illustrated i n the exampl es that in frames having high 

column loads such as the lower floors of tall buildings an elementary 

plastic analysis may be highly unconservative. The significant factors 

are the reduction in plastic moment capacity resulting from the axial 

force in the columns and the effect of geometry change on equilibrium. 

It appears that the effect of residual stresses and shape factor 

on the moment-curvature relationship (causing rounding of the M-0 

diagram) and the spread of plastification are significant only in deter

mining the moments just prior to the formation of a plastic hinge. They 

have very little, if any, influence on the ultimate load which is 

dependent on the fully plastic moments. 

The effect of bowing appears to be negligible for columns in double 

curvature. It is certainly the least significant of the nonlinear 

effects that were considered and probably could just as well have been 

ignored. With the pinned-base frames, however, the columns of which 

are in single curvature, this factor is of greater importance. 

In analyzing each example frame, a series of incremented loads was 

applied in order to determine the behavior of the frame throughout the 

entire loading range up to the maximum load. The increments were be

tween one-twentieth and one-fortieth of the maximum load. Using this 

approach satisfactory convergence of the joint moments and sidesway 

deflection was obtained after two cycles of iteration in most cases. 

Convergence was not quite so good just prior to the formation of 

the plastic hinges when the lambda values would have the greatest effect . 

The deflection and the moment values had a tendency to oscillate and in 
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those cases, the values from the first and second, or from the second 

and third cycles of iteration were aver a ged f or plotting the curves. 

Although this was not serious, the tendency of the values to oscillate 

could be reduced by decreasing the values of the parameters n and h in 

the curvature expression, equation (23). This would increase the slope 

of the moment-curvature diagram at the point where a plastic hinge is 

assumed to form making the curvature less affected by small changes in 

moment. 

If the frame becomes elastically unstable, the sidesway deflection 

will not converge. This was very nearly the case with example frame 

No. 16 (Figure 14) although failure was by the formation of plastic 

hinges due to the moments resulting from the large deflection. 

The effect of geometry change was included in several ways with 

about the same results in each case. To be completely correct, the 

linear transmission matrix [A] should be adjusted for each change in 

sidesway deflection and the frame flexibility matrix CAFA] recalculated. 

This is unnecessary, however, with rectangular frames as long as the 

basic moments are reasonably close to the final moments so that the 

redundants are small. In all cases the basic moments are formulated on 

the deflected structure. 

6.3 Possible Extensions 

The possibilities for extending the matrix-polygon method of non

linear analysis are practically limitless. It should be possible to 

include the nonlinear effects in the analysis of any structure for which 

the string-polygon or matrix-polygon methods can be used. Further 

investigation is needed, however, before the method can be applied to 



highly redundant structures such as multi-story rigid frames and 

structures with several degrees of freedom. 
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Consideration also needs to be given to the effect of strain 

hardening (4, 14, 16). This factor could very well have a greater 

influence on frame behavior than the effects of bowing or of nonlinear 

moment curvature relationship. 
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APPENDIX A 

COMPUTER FLCM DIAGRAM 

The flow diagram which follows represents essentially the manner 

in which the -computer program was set up for solving the example prob-

lems. On the diagram N indicates the number of hinges and I represents 

the number of cycles of iteration. It is assumed that the maximum load 

has been reached when four hinges have formed or when the sidesway de-

flection fails to converge after four cycles of iteration. 

Read member properties, frame 
dimensions, and loads 

Comeute flexibility matrices 
LF] and L\FA J, set I = 1 

Compute basic moments (BM] and 
displacements at origin CAFBM] 

no 

Assume an elastic frame, solve for 
redundants [R] and joint moments [M] 

Compute plastic moment values [Mpc] 

no 
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no~ 

~ 

Set up augmented flexibility matrix, 
solve for [R], [ y], [MJ 

')...:'nc.:.
0
--~ set I • 2 

Compute yield moments [M] 

no 

Compute [>..] 

Compute A 

Print P, A, [M] 

yes Increment P, 
set I= 1 
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>-"-y_e_s~set I • I+li---~--" 

Stop 



APPENDIX B 

AUGMENTED FLEXIBILITY MATRIX 

The columns of frame No. 1 are 14 WF 119 sections with I• 1373.1 

in4 and M = 632.7 Kip-ft and the beam is a 21 WF 127 section with 
p 

Is 3017.2 in4 and M = 953.4 kip-ft. Steel having a yield point of 36. 
p 

ksi is assumed for all the examples. The joints are numbered from one 

to six as shown in Figure 7. 

The member flexibility matrix for frame No. 1 is 

[F] = 17.48 
8.74 

8.74 
22.78 
2.65 

2.65 
10.60 

2.65 
2.65 

10.60 
2.65 

2.65 
22.78 
8.74 

8.74 
17.48 

where the diagonal terms are the sum of the flexibilities of the mem-

bers at each joint, e.g • 

... , ...1... _ 15 (144) 10 (144) 
F22 L.3EI - 3(30,000)(1373.1) + 3(30,000)(3017.2) = 

The off diagonal terms are the carry over values, e.g. 

L 15 (144) 
F12 = 6EI = 6(30,000)(1373.1) = 

-6 8.74 X 10 

-6 22.78 X 10 

Choosing the origin of coordinates at the center of the base, the linear 
. 
transmission matrix is 

[A] = [y i] '"' t 0 x. -15 
11 1 

15 15 
-15 -5 

1 1 
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The frame flexibility matrix is found by matrix multiplication: 

CAFA] = [A][F][A]T. [18060 

1.502 

0 
27.18 

0 ] 

-3 
1.~02 X 10 

0.1526 
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The first plastic hinge forms at joint five and the augmented flexibil-

ity matrix is written 

CAFAl J • [18.60 0 1.502 I 15 ] 
o 27 .18 o I 15 

1.502 o 0.1526 I 1 - rs- - - rs- - - -1- - -,- -0-

For the second and third hinges, which form at joints six and one respec-

tively, the augmented flexibility matrix becomes 

18.60 0 1.502 I 15 0 0 
o 27.18 o I 15 15 -15 

1.502 O 0.1526 I 1 1 1 - Ts- - - -1s - - - I - -,- -o- - o - - o 
O 15 1 I O O O 
o -15 1 I o o o 

The fourth hinge will develop at joint three. The addition of one more 

row and column to the flexibility matrix to represent this condition will 

result in a singular matrix, therefore this represents the collapse 

condition. 



APPENDIX C 

DERIVATION OF MATRIX POLYGON EQUATIONS 

The matrix polygon method is based on the concept of representing 

the members of a frame as strings for which the angle changes are 

analogous to forces which are in equilibrium according to the equations 

of statics. The points of intersection of the "strings" are referred 

to as joints and are usually selected at points of discontinuity in the 

frame or at points of application of concentrated loads. 

The moments at the joints are the sum of the basic moments and 

the moments due to redundants where the basic moments [BM] are defined 

as any set of joint moments which satisfy the conditions of equilibrium 

for the loads on the frame. Moments are considered positive when they 

produce compression on the outside of the frame. At joint i, Figure 

18, the moment is 

In matrix form this is expressed 

I.M] • [BM] + [Af [R] 

where 

1 1 1 

and [R] = 

1 
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R 
X 

(42) 

(43) 
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Figure 18. Basic Frame and Redundants 
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When the change in geometry is taken into account, the x-coordinates of 

joints 2-5 are functions of the sidesway deflection~, for example at 

joint 5, x5 = B/2 +~where Bis the width of the frame. 

The angle changes at the joints (elastic weights), designated P, 

are functions of the joint moments and the loads on the members between 

joints. For member ij, at end i: 

(44) 

and at end j: 

(45) 

in which fij is the end rotation of end i due to a unit moment at i; 

gij is the end rotation of end i due to a unit moment at j; and Tij and 

Tji are angular functions due to the loads on the member. 

At joint j the elastic weight is the sum of the elastic weights at 

the joint for each member. Thus, 

(46) 

or 



Figure 19. Elastic Weights Applied to 
Conjugate Frame 
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(47) 

In matrix form 

equation (47) becomes 

(48) 

In this thesis, it is assumed that all loads are applied at the joints, 

therefore, [T] = [OJ. Additional angle changes are present, however, in 

the form of lambda values resulting from bowing and from yielding at the 

ends of members. Thus [T] will be replaced by [A] and equation (48) 

becomes 

LP] = [F][M] + [A] (49) 

Plastic hinge rotations [y] are included in a similar manner. 

The condition that the displacements [o] at the origin must be zero 

for a rigid frame is expressed by the following stereo-static equations 

(Figure 19) : 

0x = I: p iy i "" O 

0 = I: Pixi = 0 y (SO) 

0 = I: p ·- 0 z i 
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In matrix form this may be expressed 

[6J = [AJLPJ = [oJ (51) 

where [A] was defined previously. 

Equations (49) and (51) may now be combined to give 

[6] = [AJ[FJCMJ + [AJLAJ ~ [oJ 

Finally, substituting the expression for [M] from equation (43), the 

matrix polygon equation may be written: 

[6] = [AJ[FJ[BMJ + LAJ[FJ[AJT[RJ + [A]LAJ = Lo] 



APPENDIX D 

COMPARISON WITH METHOD OF RICHARD AND GOLDBERG 

Frame No. 1 (Table I) is similar to the one analyzed by Richard 

and Goldberg (25). Figure 20 shows the comparison of their results with 

the author's in the determination of the nonlinear moments. 

The discrepancies between the two sets of curves are primarily due 

to the fact that Richard and Goldberg neglected the effects of sidesway 

and reduced plastic moment values. The maximum load determined by 

Richar~ and Goldberg's analysis (P s 114 kips) is based on steel max 

having a yield point of 42 ksi and is the same as the simple plastic 

load. According to the author's analysis, using a yield point of 36 

ksi, the maximum load is 95 kips whereas the simple plastic load is 

97.2 kips. Since the curves are nondimensionalized, the influence of 

using different yield points is negligible except that the sidesway 

effect would be more pronounced with the higher yield point steel. 

Using the value of 95 kips rather than 97.2 kips for the maximum load 

accounts for a difference of about 2.3 per cent in the nondimension-

alized loads. This is offset somewhat by the sidesway effect which in 

general tends to increase the moments at a given load. 
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Figure 20. Comparison .of Nonlinear Moment vs. Load Curves 
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