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PREFACE 

A study was undertaken in which the flow properties about a 

cone-cylinder configuration were approximated for two different 

transient conditions of interest, those of entering and exiting 

diametrically from a spherical blast of large radius. A complete case 

was computed for ideal gas and equilibrium real gas. 

This work was completed under the sponsorship of Sandia 

Corporation, Albuquerque, New Mexico, and constitutes a single 

segment in the overall program of developing the capability of predict­

ing phenomena which occur when a blast wave and a ballistic vehicle 

intersect. Three associated studies at Oklahoma State University 

preceded this undertaking; all three used numerical techniques. 

Dr. L. D. Tyler studied a plane shock as it emerged into both still and 

supersonic streams; Dr. W. N. Jackomis considered the transient flow 

field resulting from a blast wave intercepting a stationary cone; and 

Dr. W. F. Walker devised a method whereby the interaction of a moving 

shock wave with a turbulent mixing region could be studied. 

Investigations into other aspects of the blast intercept problem 

are presently being conducted at Oklahoma State University under the 

Sandia contract. Mr'. R. J. Damkevala is undertak,ing a laboratory exper­

iment in which a supersonic projectile will be photographed as it is 

intercepted from the side by a blast front, and Captain J. J. Prentice 

is studying the flow phenomena about a sharp cone at an angle of attack. 
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CHAPI'ER I 

INTRODUCTION 

In order to know and understand the flow field about a cone-cylinder 

as it enters and leaves a large spherical blast diametrically, it is 

necessary to study the two proGesses which occur as a projectile enters 

or exits axially through a plane blast front. By this study loads on 

the cone-cylinder may be calculated. These loads, in turn, can be used 

to specify the design shape of future cone-cylinders. 

The configuration to be studied for the entering case is shown in 

Figure l. Sketch "a" illustrates the cone-cylinder approaching the 

shock from the low pressure, undisturbed atmosphere; sketch 11b 11 shows 

the cone in the process of entering the shock front; and sketch 11 c11 

indicates the new steady-state condition within the blast sphere. 

Figure 2a shows the cone-cylinder approaching the shock from the 

high pressure side within the blast sphere. The projectile during its 

transient exiting state is illustrated by Figure 2b. Sketch 11 c11 of 

Figure 2 shows the new-steady-state condition in the. undisturbed 

atmosphere. 

The only study made previously on a similar configuration (cone­

forebody) in this environment was made by W. S. Wolff (1). He only 

suggested the phenomena that might occur, but did not extend his study 

to a com;plete analysis. A complete study of the problem has not been 

1 
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previously undertaken because of the difficulties involved in solving 

the controlling flow equations which are quasi-linear partial differen­

tial equations. Recently developed numerical techniques make it 

possible to approximate the solutions of the flow equations for transient 

and steady states. Many of these finite difference schemes use a mathe­

matical "viscosity". This "viscosity" or blurring term allows a shock 

to be represented as a steep continuous gradient of properties rather 

than as a discontinuity. The gradients can then be handled numerically. 

These methods stem from the original work of J. von Neumann and 

R. D. Richtmyer (2). 

The particular method used in this paper, which has been previously 

applied to other configurations, was developed by V. V. Rusanov (3). 

Tyler (4) applied it to a shock propagating into a cross flow; Jackomis 

(5) used it to describe the flow at the downstream blunt end of a c one; 

Walker (6) applied the method, with the addition of turbulent viscous 

terms, to a turbulent mixing region. None of the previous studies con­

tains a stagn~tion point, nor do they have a bow shock existing in their 

steady-state field. However, this paper incorporates the above features, 

as well as a transient shock-on-shock and real gas effects; references 

(3) through (6) have been done for ideal gas only. 

The study was divided into three phases. Phase 1 establishes a 

steady-state bow shock over a cone-cylinder configuration, which provides 

the initial data for Phase 2. Phase 2 consists of passing the cone from 

a high pressure, low velocity region into a low pressure, high velocity 

region, simulating the exiting of the body from a large diameter blast. 

Part 3 uses the steady-state flow field of Phase 2 for initial data. 



5 

The cone-cylinder is passed, during Phase 3, from the high velocity, 

low pressure region to a higher velocity, high pressure region. This 

simulates the entering of a projectile into a blast sphere from the 

undisturbed atmosphere. 
- .:...r·.: 

The phases were computed in numerical order. Thus, the exiting 

problem was computed prior to the entering problem. This sequence was 

chosen so that the steady state obtained from the exiting case, Phase 2, 

could be used as initial data for the entering case, Phase 3. 

Consequently, the number of asymptotically approached steady-state 

solutions required were only three, whereas the enter-exit sequence 

would have required four. 



CHAPI'ER II 

LrrERATURE SURVEY 

The analysis of the reference material used in this study is 

presented in three sections: analytical, numerical, and experimental. 

Almost all discussed works deal with shock waves interacting with cones 

or wedges. A complete listing of related studies can be found in Walker 

and Tyler (7) or Tyler (4). 

Analytical 

Lighthill (8) considered the behavior of a :plane shock wave, which 

was initially at rest with respect to the surrounding air, progressing 

along a wall and intersecting a small angle corner. Chester (9) extended 

the problem to the case of an infinite wedge at an angle of attack. By 

using the assumption that the shock meets the boundary nearly perpen­

dicularly, he obtained a linearized solution of the pressure field. 

Extending the work of both Chester and Lighthill, Smyrl (10) found the 

pressure field, in closed analytical form, for the region behind an 

arbitrary plane shock which encountered a thin airfoil moving at super­

sonic speed. The problem which Smyrl linearized contained a new aspect, 

that of a contact discontinuity resulting from the shock collision. 

The transient pressure field behind a plane shock wave of arbitrary 

strength which encounters a slender supersonic cone head-on was 

6 
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theoretically predicted by Blankenship (11) by using a coordinate 

system f'or which time independent solutions for cones appliedo The 

controlling flow equations were linearized in a manner similar to 

Smyrl's (lO)o The resulting system was solved iteratively by the method 

of successive over-relaxation, employing a relaxation f'actor to accel­

erate convergence. 

Whitham (12), (13), and (14) developed an approximate theory for 

the prediction of shock patterns associated with the interaction of a 

blast wave with two-dimensional (plane and axi-symmetric) stationary 

bodieso Essentially based on kinematics considerations, the theory 

predicts only the shock wave patterns. Whitham's study did not yield 

the pressure distribution over the diffracted body, nor the flow field 

following the shock, and did not predict the shape or curvature of 

reflected shockso Miles (15) extended Whitham's treatment of shock­

shock diff'raction to the diff'raction of' a shock wave moving into a region 

of uniform flow; the pressure profiles were also foundo The results were 

applied to the dif'f'raction of a blast wave by a thin wedge traveling at 

supersonic speed; and the pressures on the wedge immediately behind the 

blast wave were compared with those inferred from a complete solution of 

the boundary-value problem, Smyrl (10). Miles I method is considered to 

be approximate and Smyrl's exact; the results compare quantitatively. 

The f'light conditions analyzed by Wo::Lf£ (1) are more similar to the 

conditions considered in this paper than any previous studyo Wolf.f's 

work included the case of a cone forebod.y entering a spherical blasto 

He analyzed several types of interaction by assuming that the incident 

and reflected shock waves f'orm a triangular pattern which grows with 
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time in .. a- self'~similar manner;; Therefore, by a suitable translation of 

coordinates; the triangular shock pattern could be treated as a locally 

steady flow. Some discussion was also given for the cone leaving the 

blast sphere. 

Numerical 

Tyler (4) reported on the history of the development of numerical 

techniques. His work will not be duplicated here; instead, only 

articles appearing in the literature since May, 1965, and earlier 

articles not mentioned by Tyler will be discussed. 

Burstein (16) calculated the steady hypersonic inviscid flow, 

including a detached shock around a blunt cylinder. The steady-state 

condition was obtained from the limit of the time dependent equations. 

Stable calculations were achieved by adding artificial viscosity terms 

and a solution was obtained using a variant of Richtmyer's two-step 

version of the Lax-Wend.raff difference scheme. 

A survey of numerical solutions of problems in gas dynamics, 

obtained in recent years in the u.s.s.R. with the aid of high-speed 

electronic computers, was presented by Maurice Holt (17). Brief 

discussions of some of the works of von Neumann, Richtmyer, Godunov, 

Okhotsimekil, Vlasova, and Rusanov were given. 

Richtmyer (18) described several finite-difference approximations 

to the hyperbolic equations of fluid dynamics, and their qualities were 

assessed. Richtmyer' s discussion included the schemes normally used 

and, for comparison, unstable and completely stable implicit schemes. 

Acc-µracy and stability were discussed. The Lax-Wend.raff method, for a 



system of'· conservation laws, was considered f'or problems in one and two 

space variables. 

9 

Gary (19) a-pplied two finite dif'f'erence techniques of' second order 

accuracy,· the Lax-Wendrof'f' and iterative methods, to the equations of 

viscid and inrtscid flow~ An empirical stability criterion was obtained 

for the-·Lax;..Wendroff scheme as applied to viscid flow. A stability 

criterion was obtained for the iterative method of van Neumann. The 

accuracy of these methods and their effectiveness for flows which con­

tain a shock are also discussed by Gary. 

Experiment~l 

Several experimental studies have been undertaken to describe the 

transient flow that exists over cones and wedges which are intersected 

by shock fronts. In some cases the intersected body was initially 

stationary with respect to the surrounding air, while in others, the 

body progressed at a supersonic speed, opposite in direction to the 

shock front. The latter cases simulate the entering phase (Phase 3) 

of Chapter I. No experimental work has been done for the exiting phase 

(Phase 2). 

Merritt and Aronson (20) studied the head-on interaction between a 

9 degree cone in supersonic flight and a moving shock wave. Models, 

launched in a ballistics range with a 40 millimeter smooth bore powder 

gun, were flown into a shock front. A sequence of photographs of the 

interaction were taken through windows in the shock tube wall. Both 

model and shock wave Mach numbers were varied from two to five • 

. An experimental analysis of the axisymmetric case (head-on 
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interaction with a cone) was carried out by Brown and Mullaney (2l) for 

slender "bodies by cunducting a series of tests using a 0.300 caliper 

gun-launched c-one;.;cylinder model interacting with a plane shock wave 

generated by a conventional shock tube. Cones of 10 degrees and 20 

degrees were fired into the shock front at 4000 and 3700 feet per second, 

respectively. In a coittpanion article, Brown and Mullaney (2~) ·-a"TIB.lyzed 

the photographic results obtained in (21) with the use of the work done 

by Smyrl (10). 

Bryson and Gross (23) presented experimental results of shock 

diffractions by several cones with different apex angles at shock.Mach 

numbers between 3.5 and 4.o. The work was performed at Harvard 

University in air in a 4 inch x 12 inch x 40 feet shock tube. The 

experimental results were compared with the numerical results of 

Whitham's analytical studies. 

Klein (24) used the hydraulic analogy to compressible gas flow for 

two-dimensional flow patterns to study the interaction of a shock wave 

and a wedge~ Cases were run for both strong and weak shocks striking 

a wedge which was either in supersonic motion or stationary. The results 

were compared with the analytical results previously obtained by Smyrl 

(10). 

Although several analytical, experimental, and numerical studies 

have been completed for cones and wedges in different phases of flight, 

no study has been made of a cone-cylinder configuration exiting from a 

blast using either numerical technig_ues or experiment, and the entering-

the-blast case has been done only experimentally and by approximate 

analytical methods • 
... ' 
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Afterstudying the numerical procedures available, it was concluded 

that the method of Rusanov (3) would be most applicable for application 

to the exiting.;;.entering problem. Based on Walker ts (6) findings all 

transient shocks appearing in the flow field are more confined by 

Rusanov's method than other similar numerical techniques. 



CHAPI'ER III 

GOVERNING DIFFERENTIAL EQUATIONS 

The -governing axi-syrnmetric flow eq_uations in a conservation form 

are: 

Continuity, 

op+ o(pu) + o(pv) + pv = O· 
at oz or r ' 

'Z-momentum, 

2 
o(pu) + o(p+pu, ) + o(puv) + puv = O· 
at oz or r ' 

r.-momentum, 

2 2 
o(pv) + o(puv) + o(p+pv) + pv = O· 
at oz or r ' 

Energy, 

ae o(e+p)u o(e+p)v (e+p)v _ O 
at + oz + or + r - • 

Also req_uired is a relationship between energy and pressure. 

eq_uation for ideal gas is, 

e == _g__+ pjvl:a 
y-1 2 " 

(3-1) 

(3-2) 

(3-3) 

(3-4) 

This 

(3-5) 

The derivation of these eq_uations can be found in reference (4), .Tyler. 

Eq_uations (3-1) through (3-4) are identical in form and can be written 

elf oFz eFr 
at + az"° + or + W = O' 

where f, Fz, Fr, and '1t for the four eq_uations, respectively, are 

12 



( 
P ) - ( pu ) ( pv ) f = pu Fz = p+pu2 Fr = . puv 
pv ' . puv ' p+pv2 ' 
e = (e+p)u (e+p)v 

1jr = !. ( ~u). (3-6) r pv 
e+p 

~he restrictions required by the above flow equations are: 

1. Body and viscous forces are neglected, 

2. No heat addition to fluid, 

3. The only work is flow work, 

4. Fluid obeys the ideal gas equation of state 

(res.tricts equation ( 3-5) only), and 

5. Flow is axi-symmetric and compressible. 

The five equations must be solved simultaneously in order to obtain the 

five unknowns p, p, v, u and e. As of this date, there are no analytical 

methods available by which a complete and exact solution may be obtained. 

Even the classical methods of finite difference analyses will not pro-

vide a solution when the flow field involved contains local steep 

gradients or discontinuities of the dependent variables. For this 

reason, much attention has been given to the development of new 

numerical techniques which will handle strong gradients or shocks. One 

such development has been the evolution of a technique which uses an 

artif·icial dissipative term. The basis of this concept was provided by 

von Neumann and Richtmyer (2), in 1950". Since that time, a number of 

authors have investigated numerical solutions of this type (3), (25), 

(26). A history of the development of these methods is given in 

Chapter II, reference (4), Tyler. 

The particular method used in this study was originated by Rusanov 

(3); the detailed derivation of Rusanov' s work has been given by 
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Tyler (4). The principal feature of this method is that by adding 

second order blurring terms to the original flow equations, the disc on-

tinuities present in the flow field can be made to diffuse over a finite 

distance. By diffusing the strong gradients, the classical difference 

techniques are adequate to obtain approximate solutions of the partial 

differential equations throughout the entire flow field. Since the 

terms added are based on curvature, their magnitude is appreciable only 

near large changes in slope. 

The characteristics which the additional terms must possess are 

specified by van Neumann and Richtmyer (2) in their original paper: 

1. The general flow equations with the addition of the 

"blurring" terms must possess solutions without 

discontinuities; 

2. The thickness of shocks present must be of the same order 

as the distance between grid mesh points (6x); 

3. The effect of the "blurring" terms must be negligible 

outside the shock regions; 

4. The Rankine-Hugoniot equations must hold across the 

shocks. 

Blurring Terms 

The general form of the flow equation with the additional blurring 

terms for two-dimens:i,onal rectangular coordinates (x,y) is: 

(3-7) 
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where A(x,y,t) and B(x,y,t) are the blurring coefficients which are 

evaluated by applying the Fourier stability technique to the above 

differential equation (References 3 and 4). The transformation of 

equation (3-7) from rectangular coordinates (x,y) to axi-symmetric 

coordinates (r,z) gives an added w term on the left hand side. Also, 

all x-coordinates are replaced by z-coordinates and ally-coordinates 

are replaced by r-coordinates. Appendix A presents the transformation 

of the blurring terms [the right hand side of equation (3-7)]. The 

final form of the transformed equation is 

1 o of o of 
- '.:l>-(rB(r,z,th-) + s-(A(r,z,t)s-). (3-8) r or or oz oz 

Numerical Difference Scheme 

Rusanov' s technique requires that the field of interest be divided 

into a mesh point system. Figure 3 indicates how the cone-cylinder 

configuration fits into the mesh point system. The cone surface coin-

cides with the diagonal of the mesh point array and the cylinder surface 

lies on a row of mesh points. Figure 4 shows the details of the mesh 

net used. The increment of the independent variables (r,z,t) is denoted 

in the differencing scheme as (h2,b1,r). A point is located in the mesh 

by (r,z,t) = (th2 ,mh1,nr). 

The derivatives of equation (3-8) will be approximated by using a 

truncated Taylor series. Centered differences will be applied to 

spatial derivatives for points lying interior to the boundaries, and 

derivatives with respect to time approximated with forward differences. 

A discussion of the specific boundary conditions is given in Chapter IV. 
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Equation (3-8) can now be approximated for field points (points lying 

within the mesh point boundaries) by using the above information and 

the mesh net notation as: 

fn+l _ fn m, i, m, i, 
'T 

( )n ( )n Fz - Fz Fr - Fr 
m+l,J, m-1,J, m,J,+l m,J,-1 

+ 2h + 2h + 
1 a 

.2:.. (An (f - f )n - An 1 (f - f )l+) 
ha m+i, i, m+l, i, m, i, · m2 , i, m, i, m-1, i, 

l 

The following symbols are defined.: 

a 
An ~ n 

m, i, = 2 a.m, J,' 

and 

A 1 n = !(A 1 n + A n), B n.s..1_ = !(B n 1 + B n), m~,J(J m+ ,J(J m,J(J m,Jfl,13" m,J<J+ m,J(J 

K1 = K sin( x) and K2 = K cos ( x). 

(3-9) 

(3-10) 

(3-11) 

(3-12) 

(3-13) 

(3-14) 

(3-15) . 

(3-16) 

Upon substituting equations (3-9) through (3-15) into equation (3~8) and 

solving for fn+l the following is obtained: 
m,V 
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+ aP (f + f - 2f )n 
m,L m+l,L m-1,L m,t 

3 
Ct- - ) ( n n ) ( )n) - __ :a 13 n l + 13 n f . n- f n l • 
(L-l) m,h- m,h m,h m,h-

(3-17) 

The stability criteria given by Rusanov (3) specify 

and 

where cr is the maximum value of cr in the flow field at time n. The 
0 

equations for a. and 13 relate the amount of artific.ial dissipation · 

and the time increment. The value of cr in conjunction with (w+c) o max 

determines the time increment between any two successive time steps. 

From the stability criteria crn n = K(w+c t n, then crn = K(w+c)n • m,h m,h o max 

The summation of time ellapsed is then givenby 

an 
0 

I:K = .E ( ::-:-::-TI'.l 0 w+c 1:::. max 

A detailed presentation may be found in Walker (6). 

(3-18) 

Equation (3-17) can be used only to determine properties at field 

points; other techniques must be applied at the boundaries to approximate 
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local first and second partials. At the upper boundary the first 

partial in the r-direction at (m,t) was approximated by a backward 

difference using properties at (m, t) and (m, t-1). The second partial in 

the r-direction was approximated by using properties at (m,t), (m,t-1), 

and (m,t~2). At the right hand boundary, points (m,t) and (m-1,t) were 

used to obtain first partials in the z-direction, while the second 

derivative in this direction was obtained by using (m,t), (m-1,t), and 

(m-2,t). At the axis of symmetry and the cylinder surface, all first 

partials were forced to zero by using the reflective principle. This 

technique required the properties. one !row of ·mesh ppints be lbw the I.me or 

symmetry to be given values identical to the properties one row above 

the line of symmetry, except for the value of r-velocity which was given 

identical magnitude and opposite direction. The cone surface was treat­

ed as if it were a two-dimensional wedge, as in Rusanov's investigations 

(3). Details of this approximation and other attempted methods are 

given in Chapter IV. Although other methods were investigated at all 

boundaries, the ones presented above proved to be the most satisfactory. 

During the real gas study, all of the above equations and ideas 

were used with the exception of equation (3-5). The development of this 

equation required the assumption of an ideal gas. In order to avoid 

ideal gas concepts, a relationship other than equation (3-5) was used to 

relate pressure to the other flow properties for the real gas case. 

This was accomplished by using a "semi-physical fit" to the equation of 

state of air, 

p = (y-l)pE. (3-19) 

Doan and Nickel (27) curve-fit tabulated. data provided by the National 
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Bureau of Standards; the maximum error of the resulting curve is five 

per cent. The quantity (y-1) can be found knowing density and internal 

energy, which is computed from the continuity and energy equations. 

Using these quantities, pressure can be found directly from equation 

(3-19). 

Presented below is the final form of Doan's equations: 

where 

[expr€-€11 
-1 

fl = + l] 
6€1 

[exp(~)] 
-1 

f3 = 
6€~ 

( P f 0157 €· = 45.0 - , 2 Po 
( 

0.05 
6€ 1 = 0.975 ~o) , 

6€2 ( P )°.085 = 4.o - , 
Po 

€3 = 160.0 and 6€3 = 6.o. 

Non-Dimensionalizing Dependent Variables 

In order to simplify the numerical calculations the terms of the 

flow equations are made dimensionless by applying the following proce-

dure: pressures are divided by p1, densities by p1, and velocities byp/Pi· 
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.The energy term becomes, in turn, dimensionless with respect to p 1 • 

The properties in region 11 111 were selected to be the ones which 

initially surround the cone-cylinder in Phase l. Therefore, the final 

data obtained in all three phases can be returned to their dimensional 

form by multiplying each property by its respective non-dimensionalizing 

quantity. 

The dimensional values in the Phase 2 free stream of the real gas 

case are standard atmospheric conditions at an altitude of 40,000 feet. 

They are made dimensionless in such a way that the free stream dimen­

sionless pressure and density are identical to the corresponding pressure 

and density in the ideal gas case •. These values were selected to :rpake 

it convenient to compare the two theories. 



CHAPI'ER IV 

BOUNDARY STUDY , 

The method by which the boundary mesh points are treated greatly 

influences the solution throughout the mesh point array. For this 

reason a considerable amount of time was spent investigating each of the 

seven boundaries included in the cone-cylinder problem, in order to 

obtain a viable solution. These boundaries, indicated by number in· 

Figure 5, are: 

1. axis of symmetry, 

2. stagnation point, 

3. cone surface, 

4. cone-cylinder intersection, 

5* cylinder surface, 

6. right hand boundary, and 

7. upper boundary. 

The property values at the upstream left boundary are specified and 

therefore no special numerical technique is required. The method used 

to evaluate the flow properties at each boundary will be discussed sepa­

rately, except where coupling between two boundaries were observed. 

Axis of Symmetry 

The axis of symmetry (r=O) was treated by applying the reflection 

22 
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Figure 5. Seven Boundary Locations 
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principle, as discussed in Chapter III. The principle is valid at this 

boundary because the boundary is, in fact, an axis of symmetry. One 

difficulty which does occur at the axis is the evaluation of the term 

(v/r). At r=O (l=l), this term is undefined, because vis also zero. 

The approximation made is 

Stagnation Point 

The stagnation point is extremely difficult to handle by numerical 

methods because it is mathematically a branch point. Although most 

analytical methods avoid the point, satisfactory results were obtained 

by the following numerical procedure. When the property values at the 

stagnation point were obtained by linear extrapolation using surrounding 

mesh points, the resulting stagnation pressure and density were always 

too low. Treating the point like a wall perpendicular to the free 

str.eam flow also gave stagnation properties that were too low. The best 

results at the stagnation point were obtained by isentropically stagnat-

ing the properties at one mesh point upstream. From isentropic 

relations: 

-1 I l 
p(stagnation) = pm-l, 1(1 + \ M )'r-T and 

'Y-1 _ _a 'Y. 
p(stagnation) = pm-l, 1(1 + 2 M )'r-T, 

where M is the Mach number at (m-1, 1). 

This approximation works well for cases in which the bow shock is 

detached far enough from the cone nose so that the first mesh point in 



front of the nose is downstream from the shock. Because higher Mach 

numbers force the bow wave to stand closer to the cone nose, this treat­

ment was more effective for Phase 1 calculations than for Phase 2 or 

Phase 3. 

Cone Surface 

Two different coordinate systems and two methods of extrapolation 

were tried on the cone surface; each of the methods had advantages and 

disadvantages. The one ultimately selected for use was chosen because 

it produced reasonable results and was not too cumbersome numerically. 

In the first method the flow equations were derived in the spherical 

coordinate system. All partials with respect to~ were then set equal 

to zero (see Figure 6). This coordinate system was applied only to 

points lying on the cone surface; it was not used throughout the flow 

field. Instability always occurred at the first mesh point downstream 

from the cone nose when the spherical coordinate system was used. A 

study was made using a 30 degree half-angle-wedge to investigate the 

possibility of extrapolating toward the surface to evaluate the four 

flow properties at this boundary. One case consisted of us;ing the aver­

ageJinear extrapolations in the r- and z- directions toward the surface. 

This resulted in steady-state surface pressures that were approximately 

70% too high. Further, when extrapolation was carried out only in the 

r-direction, the surface pressures were approximately 30% too low. But 

when the extrapolation in the r-direction was used only to obtain the 

pressure, density, and z-mass flux, and the r-mass flux was obtained by 

requiring that the total velocity vector be in the direction of the body 
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-------
Figure 6. R,i,e Coordinate System Used on the Cone Surface 
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surface, the error in the surface pressures dropped to approximately 

10%. However, the pressures were 40% too low, when the same extrapola-

tion procedure was applied to a 13.347 degree half-angle-cone. Thus, 

the accuracy of the met.hod var:i.ed with body configuration and apex 

angle. The undesirable effect of all the extrapolation procedures for 

wedge and cone configurations -was that it caused the pressure at (I,2) 

to be too low (where I is the z-coordinate location of the nose), 

consequently distorting the front of the bow wave. 

The second coordinate system investigated, and the one ultimately 

used, was a two-dimensional rotation of the axis about a mesh point on 

the cone surface. The cone surface was treated, in accordance with 

Rusanov 1 s methods, as if it were locally two-dimensional •. This two-

dimensional treatment was an approximation •. The flow equations, in 

rectangular coordinates, were rotated through the angle x., and these 

transformed equations replaced by difference equations. Thus, the 

coordinates of calculation were along and perpendicular to the body 

surface. There was no need to calculate the r-momentum equation in the 

rotated coordinate system because r-momentum was identically zero. The 

artificial viscosity terms perpendicular to the wall were set equal to 

zero •. This required that shocks intersecting the body be perpendicular 

to it at the point of intersection. 

The mesh points used for numerical calculations at (m,.e,) were 
,• 

(m, .e,), (m+l, i,+1), (m-1, 1,-1) and (*') (see Figure 7). Properties at (*) 

were obtained by linear interpolation between (m,t+l) and (m-1,.e). The 

location* is at a point lying perpendicular to the surface from mesh 

point (m,t). Partials perpendicular to the surface were approximated 
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Figure 7. Mesh Points Along the Cone Boundary 
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by an off-centered difference, which was found by using properties at 

(*) and (m,t). The partials along the wall were calculated using mesh 

points (m+l,t+l), (m,t) and (m-l,t-1). The final form of the equation 

is: 

All quantiti'es with the sign ( ..... ) were computed by the same formula as 

the corresponding quantities in equation (3-17) without this sign:, but 

u and v are replaced by u and v, where: 

u= u cos(x) + v sin(x)J and 

v = -u sin(.x.J + v cos(x). 

It is noted that, on the cone surface 

(p~)m,t = (pu)m,t cos(x), 

(pv) n = (:pr) .n sin(x), 
. m, x, m, x, 

e :::: e n and m,t m,x, 

With the rotated coordinates, as with the (r, e) coordinates, the 

calculations at the first mesh point back of the cone riose had a tendency 

to become unstable. In an attempt to eliminate the instability behind 

the nose, ~he artificial viscosity term at this location was increased 
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by a factor of two •. This increase helped the local property values but 

they were still unreasonable. 

On large angle cones (30 degrees), calculations at the first mesh 

point behind the cone nose were satisfactory, while on small angle cones 

(13.347 degrees), the instability mentioned above always occurred. To 

investigate the possibility that this instability problem might be con:­

nected with the relative mesh rectangle dimensions, a different cone 

mesh combination was investigated. A mesh point system was devised in 

which the cone did not pass through the diagonal of the mesh point array 

but, instead, was constructed according to Figure 8. As the figure 

indicates, a more nearly square mesh point array could be used for a 

small angle cone. 

The mesh points lying on the cone surface were treated in the same 

manner as the surface mesh points in the previously discussed two­

dimensional rotation system. The properties, for the (n+l) time plane 

at mesh points geometrically similar to point C (Figure 8, points lying 

a distance !ha from the cone surface), were calculated using nth time 

plane properties at points B, c, D, E, and F. Since point Bis not a 

regular mesh point, properties at this location were calculated by using 

a linear interpolation between points A and C. Similarly, for the 

properties at D, a linear interpolation between F and G was employed. 

With these values, point C was treated as a regular field point, 

making the necessary adjustment for the decreased distance between 

points in the r-direction •. The new mesh system did not relieve the 

problem of instability behind the cone nose; the calculations at point G 

became unstable. 
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The first mesh point behind the cone nose is located in a region 

containing high expansion gradients •. The flow goes from zero velocity 

at the stagnation point to a supersonic state at a short distance 

downstream •. The applied numerical schemes were not adequate ~o handle 

this phenomenon •. Therefore, to avoid expanding the flow along the cone 

from zero velocity to high speed flow, the body shape was changed 

slightly in the nose region (see Figure 9). . This new configuration will 

be discussed in detail, because it was the configuration ultimately used. 

The cone was blunted by moving the stagnation point downstream one mesh 

point to location F (see Figure 9). The properties at point F were then 

calculated by isentropically stagnating the properties at C. Point C 

was treated in the same manner as the other points l~ng on the axis of 

symmetry. Point D was considered to be on the cone surface; therefore, 

points A, B, C, D, and E from time plane n were used to calculate the 

properties at D for time plane (n+l). As a result of using the blunted 

cone configuration, the calculations at point D do not involve a mesh 

point with zero velocity and mesh points with large velocities. For 

cones with small apex angles, flow properties calculated by this 

method were superior to those obtained by any other method. 

Cone-Cylinder Intersection 

The mesh point lying on the cone-cylinder intersection was treated 

by two methods. In the first, the point was assumed to be on the cylin­

der and was considered the same as other cylinder points. The three 

nearest mesh points were used for the calculations. In the second 

method, the mesh point was considered to be on the cone surface. The 
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Figure 9. Blunt Nose Cone Configuration 



scheme used at other cone mesh points was e~loyed at the cone-cylinder 

mesh point •. Flow property values obtained by the first procedure were 

similar to those obtained at the other cylinder points, and the second 

procedure gave property values similar to those at other neighboring 

cone mesh points. The results of both methods were reasonably realistic, 

so the mesh point was considered as a cone surface point for all produc-

tion runs. 

Cylinder Surface 

The method which was used on the cylinder surface was suggested by 

Rusanov (3). This treated the point as though it lay on a surface of 

symmetry. As this procedure gives reasonable results and the cylinder 

is downstream from the region of primary interest, no other boundary 

condition was investigated. 

Upper Boundary 

When a strong shock extends through the upper boundary the numerical 

technique at this location becomes critical. An infinite cone configura-

tion, i.e., a cone which extends to the right boundary, was used to 

investigate this region to a~lify the difficulty. Because the shock 

was not weakened by the termination of the cone, the shock wave extended 

through the upper boundary. Three methods were used to study the 

problem • 

. First, a second order extrapolation was applied at this boundary 

using 
fn+l 

m, .e max 
= 3fn+l 

m,.e -1 max. 
3fn+l + fn+l 

m,.e -2 m,.e -3° max max 
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Instability:,· vrhich originated in the region where the shock extended 

through the upper boundary, resulted. The instability in this region 

quickly spread to other parts of the flow field, Although this second 

order extrapolation had been used by other authors, they did not use 

it on boundaries through which a strong shock passed. Second, a linear 

extrapolation toward the upper boundary was accomplished by using 

fn+l 
m,.t max 

= 2fn+l 
m,.t -1 max 

fn+l 
m,.t _ -2° max 

The calculations at the upper boundary remained stable and the results 

were reasonable. 

The third method applied the differenced form 9f the partial 

differential equations. All first partials in the r-direction were based 

upon points (m,.t) and (m,.t-1). These partial derivatives were uncentered; 

consequently the accuracy was one lower order than partials approximated 

by central differences •. The second derivatives were based upon points 

(m,.t), (m,.t-1), and (m,.t-2) •. This approximation held the curvature at 

(m, .t) and (:rn, .t-1) equal for time plane n. The difference equation based 

upon these premises is: 

fn ,,,n K1 (Fz _ Fz )n K (Fr Fr )n 
m,.t - r,m,.t - ~ m+l,.t m-1,.t - · s m,.t - m,.t-1 

'+ ~ (a. (f - f ) + a, (f . -f ). 
~ m+l,.t m+l,.t m,.t m-1,.t m-1,.t m,.t (3-19) 

+ a. (f + f - 2f ) + j3 n(f n - f ) m,.t m+l,.t m-1,.t m,.t m,~ m,~ m,.t-1 

+ 13 (f - f ) + 13 (f + f - 2f ~ m,.t-2 m,.t-2 m,.t-1 m,.t-1 m,.t m,.t-2 m,.t-11. 
This method of calculation was the most consistent with the field point 

method and provided realistic results. 



Right Boundary 

The treatment of the right boundary was not as critical as the 

treatment of the upper boundary since the flow upstream was supersonic. 

Two different methods worked equally well and a third caused instability. 

The first, which was ultimately used, employed the same technique on the 

right boundary as was used on the upper boundary. The first partials in 

the z-direction were calculated using points (m,L) and (m-1,L); the 

second partials were based upon points (m,L), (m-1,L), and (m-2,L). 

These approximations resulted in 

+ . a. (~ - f ) + a (f - f ) 1 ( 4 • -m,L m,L m-1,L m-2,L m-2,.t m-1,.t 

+ a (f + f - 2f ) + ~ (f - f ) m-1,.t m,.t m-2,L m-1,.t m,.t+l m,L+l m,L 

+ 13 (f - f ) + 13 (f + f - 2f · ) n m, L-1 m, L-1 m, .t . m, .t m, .t+l m, .t-1 m, .t) • (3-20) 

The second successful method shifted the properties from the (N-1) 

column to the Nth column during each time plane. This means that at 

every time plane the slope at the right boundary equaled zero, or: 

th A third method, linear extrapolation along a row toward the N column, 

gave unstable results. The instability started during the period of 

time when the shock passed through the boundary. Figure 10 indicates 

how the linear extrapolation, when applied at the moment the shock 

passed out of the field, resulted in negative values of pressures, which 

caused instability. The negative slope taken from the first two mesh 



points to the left of the right mesh boundary was so large that it 

yielded a negative pressure at that boundary. 

37 



PRESSURE 
= 44.1 

PRESSURE = 0 !J 

• PRESSURE RESULTING FROM 
LINEAR EXTRAPOIATION 

RIGHT 
MESH 
BOUNDARY 

PRESSURE 
= 1.0 

Figure 10. Shock Front as It Moves Through the Right 
Boundary 



CHAPl'ER V 

APPLICATION OF NUMERICAL TECENIQUE TO THE 

EXJTING AND ENTERING PROBLEM 

The numerical technique presented in Chapter III, together with the 

boundary conditions discussed in Chapter IV, were applied to the cone­

cylinder configuration for the three different Phases. The initial da,ta 

for the ideal gas, were obtained with the aid of the ideal gas tables, 

reference 28. The real gas tables, reference 29, were used for the real 

gas case. 

Phase 1 consisted of allowing a normal shock to propagate over the 

cone-cylinder, which was initially surrounded by air at zero velocity. 

The same flow could be obtained experimentally by testing a cone­

cylinder model in a single diaphragm air/air shock tube, with the 

initial pressure ratio across the diaphragm approaching infinity. 

After the shock propagated over the body, a steady-state, low supersonic 

flow existed, such as the state which could exist about a cone-cylinder 

within a blast sphere immediately prior to exiting through the blast 

front. Initial data for this;phase are listed in Tables I and II under 

regions 1 and 2. 

A normal shock was introduced at the left boundary of the mesh 

point array during the initial time plane of Phase 2. The initial data 

for this ~base were that of the final time plane of Phase 1, in addition 

39 
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TABLE I 

INITIAL FLOW DATA FOR IDEAL GAS 

Regionl- Density z-Mass Flux r-Mass Flux Pressure 

1 1.0 o.o o.o 1.0 

2 5.301 31.23 o.o 44.1 

3 1.140 12.83 ' o.o ·2.205 

TABLE II 

INITIAL FLOW DATA FOR REAL GAS 

. 1 Density z-Mass Flux r-Mass Flux Pressure Specific Region .' 
Heat Ratio 

1 1.0 o.o o.o 1.0 1.405 

2 5.52 32.11 o.o 44.1 1.375 

3 1.140 12.78 o.o 2.205 1.405 

4 5.52 91.5 o.o 44.1 1.375 

\the regions are defined as follows: 
1 Downstream from the normal shock which initially exits 

in Phase 1 
2 Left boundary of the mesh point array during Phase 1 
3 Left boundary of the mesh point array during Phase 2 
4 Left boundary of the mesh point array during Phase 3 
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to the data listed for region 3 in Tables I and II. The data given for 

region 3 were overlayed in the first column of mesh points. The normal 
! 

shock which was inserted in this manner propagated toward the right 

boundary. This simulated exiting of the cone-cylinder from the high 

pressure, low relative velocity region inside the blast sphere, into 

the low pressure, high relative velocity region outside the blast 

sphere. The duration of Phase 2 was continued until a new steady-state 

bow wave was established over the cone-cylinder, representing the 

projectile moving through the undisturbed atmosphere at a relatively 

high Ma.ch number. This se~uence of events is demonstrated by Figure 2. 

It was found after calculating Phases 1 and 2 that the difference 

in the results between the ideal and re&l gas case was insignificant. 

Therefore, only the real gas problem was computed for Phase 3. The 

initial data for Phase 3 consisted of inserting a normal shock at the 

left boundary of the last time plane of Phase 2. The properties to the 

left of the shock are listed under region 4, Table II. As the normal 

shock propagated from left to right, it interacted with the initial 

steady-state bow wave of Phase 3. The transient flow of Phase 3 

simulated the passing of the body from a high velocity, low pressure 

region outside the blast front into a region of higher relative velocity 

and pressure. This second region corresponds to the location immedi-

ately inside a large radius blast sphere (see Figure le). 

All production was done on the Oklahoma State University IBM 7040 

digital computer. Twenty-eight mesh points in the z-direction and 

forty-nine points in the r-direction were used for the ideal gas 

program. The real gas problem was programmed with 28 by 45 mesh points 
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in the z- and r-directions, respectively. Fewer mesh points were used 

for the real gas problem, because additional storage was required to 

store an array of specific heat ratios. The machine time required for 

the ideal gas program was approximately four-tenths of a minute per 

time plane; the real gas program took slightly longer. The flow diagram 

for the computer program is listed in Appendix C. 

The half apex angle of the cone was 13.347 degrees. The cone nose 

was located at m = 8; the cone-cylinder intersection at m = 20; and the 

ratio of specific heats for the ideal gas was set equal to 1.4. The 

magnitude of the artificial damping coefficient (ro) was 1.5, and the 

time increment o = 0.5. 
0 

Phase One Results 

The main purpose of running Phase 1 (Figure 12) was to obtain a 

steady-state bow wave which could be used as initial data for Phase 2. 

There are, however, some aspects of the transient state worth noting. 

The sonic circle, predicted in an analytical study by Smyrl (10) and 

observed by Klein (24) in a water table analogy, was not observable in 

the small angle cone case. However, when the same shock front was 

passed over an infinite cone with a half apex angle of thirty degrees, 

the sonic circle was present, as can be seen in Figure 11. 

The cone-cylinder configuration was calculated for both real and 

ideal gas. In each case a steady state was obtained in which the 

maximum pressure change for one time plane was less than o.13i. The 

steady-state condition can be seen by comparing Figure 12, Parts "e" 

and "f". · They show that the shape of the steady-state shock pattern 
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(a) TP=50 (ZK=2.702) 

-4 3 2 10 

(b) TP=l50 (~=7.983) 

Figure 12. Constant Pressure Lines for Phase I: Normal Shock Passing 
Over Stationary Body (Initial Conditions are given in 
Table II) 



------------------ - -----

. {c) TP=250 (LX=l3.046) 

(d) TP=350 (LX=l8.ooo) 

Figure 12. {continued) 
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(e) TP=450 (.EK:=23.217) 

(f) TP=550 (.EK:=28.512) 

Figure 12. (continued) 



remained practically unchanged for 100 consecutive time planes. The 

program for the real gas case was run for 550 time planes, or 100 more 

time planes than the ideal gas case. Data for time planes 450 and 550 

are tabulated so that the ideal case can be directly compared with the 

real gas case, and the final steady state of both cases can be compared 

to data obtained by other methods. Table III indicates how the results 

of Phase 1, real and ideal, compare with those given by gas tables, NACA 

1135 (28), and Ballistic Research Laboratory (30). The cone-surface 

pressure is represented in Table III by the pressure which exists at the 

third surface mesh point upstream from the cone-cylinder intersection; 

the cylinder pressure is taken from the third mesh point downstream from 

this junction; and the angle of the bow wave is determined by the angle 

of the constant pressure curve whose value is the average of the pres­

sures immediately upstream and downstream from the shock. As can be 

seen from Table III,the numerical results agree well with the standard 

gas tables and there are no big differences between the real and ideal 

gas cases. 

Phase 1 for ideal gas was also run with an "artificial dissipation" 

value (m) of 1.0, which worked well for this phase. The resulting bow 

shock was not as diffused and the influence of the stagnation point was 

more confined. But the difficulty with the lower value for the blurring 

term occurred while calculating Phase 2. The dissipative effect of 

m = 1.0 was not great enough to keep the pressure immediately outside 

the blast sphere from going negative. Once obtained, the negative 

pressures caused instability which quickly spread throughout the field. 

Because the value of this parameter affects the conditions of all 
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TABLE III 

COMPARISON OF PHASE 1 STEADY STA~E 

WJTH STANDARD GAS TABLE VALUES 

Source of Data Stagnation Cone Cylinder Bow 
Pressure Surface Surface Wave 

Pressure Pressure Angle 

Reference 28 and 30 190.0 61.6 30.2 38° 

Ideal Gas,_.,TP 450 177.9 62.31 30.08 35° 

Real Gas, TP 450 188.8 61.87 29.83 33° 

Real Gas, TP 550 187.9 62.83 30.59 37° 



steady states, ID = 1.5 was used to obtain the final results in all 

phases, even though ·with this value the Phase 1 steady-state results 

were more diffused. 

Phase Two Results 

The anticipated transient state shock patterns for Phase 2 are 

given in Figure 2, :('Hb\(;:anaei-!1cl'}~ These results are the same as those 

predicted by Wolff (1) for shocks with zero thickness, i.e., the shock 

thickness is much smaller than any other significant configuration 

dimension. This is not the case with solutions obtained by numerical 

methods. In most instances, normal shock waves are diffused over a 

region of approximately three to four mesh points. In this study, 

however, the total length of the cone for all three phases is twelve 

mesh points. Thus the thickness of the diffused shock is approximately 

3oi of the total length of the cone. By expanding the normal and 

oblique shocks of Figure ~b over a finite distance and representing 

them by isobars, Figure 13 was obtained., This figure shows the type 

of result which can be eXJ;>ected by numerical techniques when the dis­

tance between two mesh points is one order of magnitude less than the 

total cone length. 

The numerical results of this phase are given by Figure 14. 

Figure 14, Parts "e11 and "f", which show the transient flow, do in fact 

compare favorably with Figure 13. The new bow shock can be seen devel­

oping as the normal shock front passes over and the flow field down­

·$tre.am from>the shock front is essentially unchanged. Although the 

details of the transient interactions are lost because of the restricted 
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Figure 13. Effect of Finite Shock Thickness on Phase 2 
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5 1525 35 

10 20 30 40 

(a) TP=50 (I:K=l.944) 

5 1525 35 
10 20 .JO 40 

--------

{b) TP=lOO (I:K=3.888) 

Figure 14. Constant Pressure Lines for Phase 2: Cone-Cylinder 
Exiting From Blast Sphere (Initial Conditions are 
given in Table II) 
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(c) TP=l50 (EK:=5.776) 

(d) TP=200 (r.K=7.634) 

Figure 14. (continued) 
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(e) TP=250 (n<:=9.516) 

(f) TP=300 (DC=ll. 402) 

Figure 14. (continued) 



---------

(g) TP=350 (n<:=13.282) 

(h) TP=400 (n<:=15.162) 

Figure 14. (continued) 
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(i) TP=450 (lle=l7.046) 

(j) TP=500 (llC=lB.930) 

Figure 14. (continued) 



(k) TP=550 (21<:=20.822) 

(t) TP=600 (IX=22.715) 

,. Figure <14. '':. _(cont ihued) 
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(m) TP=650 (I:K:=24.619) 

10 

(n) TP=700 (~K=26.528) 

Figure 14. (continued) 



( o) TP=750 (r.K=26. 442) · 

(p) TP=800 (r.K:=30.361) 

Figure 14. (continued) 
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2. 

5.0 

7.5 

{q) TP=850 (n<:=32.289) 

5.0 

(r) TP=900 (n<:=34.21~-) 

Figure 14. (continued) 
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(s) ·_· T~950 (r.K:=36.135\}~' 
. . \ ... ~ . . 

(t) TP=lOOO (r.K:=38.055) 

Figure 14. (continued) 
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number of mesh- points, the three shocks (normal shock front, old bow 

wave, and new bow wave) blend together in a manner similar to Figure 13. 

Phase 2 requires that a large number of time planes be calculated 

to obtain a steady state. Since the actual time increment between time 

planes is determined in part by (v+w)-l and the maximum velocity (v) 
max 

existing in the flow field is high, the time step (T) is small. The 

relative movement of the shock front with respect to the body is also 

quite slow so that the interaction takes place over a long period of 

time. Although high velocities with respect to the ground are involved, 

the projectile is relatively slow in moving through the blast front, 

which is traveling in the same direction as the body. A total of 1001 

time planes were run for Phase 2. The maximum pressure change between 

the 1000th time plane and the 1001th time plane was less than o.12i. 

With more time planes, the percentage change could have been reduced; 

however, the cost of computer time could not justify additional 

computations. A better steady-state shock wave was obtained for this 

case than Phase l · Figure 14 Parts "r" "s" and "t" which portray a 
' ' ' ' 

time differential of 100 time planes, indicate that the shape of the 

bow wave is fixed. Also, the pressure flow field has become steady 

with time. 

The vital statistics of the Phase 2 steady state are given in 

Table IV. The cone surface pressure is taken three mesh points upstream 

from the cone-cylinder junction, and the cylinder pressure is taken 

seven mesh points downstream. The cone pressures for both cases were 

nearly the same and the shock angies were equal. The shock angle, that 

angle maintained by the constant pressure line of 6.05, represents 
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TABLE IV 

COMPARISON OF PHASE 2 STEADY STATE WITH 

STANDARD GAS TABLE VALUES 

Source of Data Stagnation Cone Cylinder Bow 
Pressure Surface Surface Wave 

Pressure Pressure Angle 

Reference 28 and\90 136.0 11.1 1.57 17 .20 
·I. 

Ideal Gas, TP 1000 169.3 14.40 1.591 20.5 
0 

Real Gas, TP 1000 191.9 14.69 1. 717 20.5 
0 



one-half of the pres·sure rise across the shock. The free stream Mach 

number of this phase for real gas is 6.9; there~ore, the flow approaches 

the hypersonic regime. The largest difference between the real gas and 

ideal gas occurs at the stagnation point, Use of the assumption that 

the sonic velocity was equal to ~7P/P resulted in a larger Mach number 

for the real ga_s case at the first mesh point upstream from the nose. 

Consequently, when the flow was isentropically stagnated, the resulting 

stagnation pressure was larger. The J,arger free stream Mach number of 

Phase 2 forced the shock wave closer to the cone nose. As a result, the 

first mesh point upstream from the nose did not experience the proper 

entropy increase nor stagnation pressure loss. 

So that the influence which the cone-cylinder has on the flow 

region upstream from this junction could be determined, the cone was 

extended five mesh points, ·and a new Phase 2 steady state was obtained. 

The pressure at the previo~s cone-cylinder intersection increased 3~; 

the next surface point upstream increased 1.5,; and all other surface 

points changed less than l.OJ. The surface pressure on the extended 

portion of the cone continued to decrease asymptotically toward the 

theoretical pressure of 11.1. 

Phase Three Results 

The steady-state results of Phase 2 provided a satisfactory set of 

initial data for Phase 3. The results ~f Phase 3 are given in Figure 16. 

This phase simulates a cone-cylinderi configuration entering a blast 

front from an undisturbed atmosphere. For shocks of zero thickness, the 

results anticipated by Wolff (1) for the transient state of this phase 
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are shown in Figure lb, and the anticipated results for a numerical 

solution are given in Figure 15. This figure was obtained by expanding 

the normal and oblique shock waves in Figure lb over a finite distance. 

Although the computer limitations restrict the amount of detail that 

can be expecte~the pressure profiles illustrated in Figure 15 resemble 

the numerical results achieved (Figure 16b) in the following ways. As 

the normal shock passes over the projectile, a new bow shock is formed 

and the portion of the original bow shock downstream from the normal 

shock remains essentially unchanged. The new pressure levels imposed 

along the cone surface, while the normal shock passes over, are 

approximately the same levels as those maintained after steady-state 

conditions are achieved. The detail is insufficient to observe the 

sonic circle as predicted by Smyrl (10). 

A steady-state condition was obtained in which the pressure change 

between the time planes 550 and 551 was no more than 0.3~. Although 

the bow wave was stabilized, the larger changes occurred toward the 

right boundary. Because the final data were not to be used as initial 

data for future phases, additional time planes were not computed. 

Table V gives the steady-state properties of Phase 3, The cone-surface 

pressure was taken from the third surface mesh point in front of the 

cone-cylinder intersection; the cylinder pressure was taken seven mesh 

points downstream. The constant pressure line of 80, which represents 

one-half the pressure rise across the shock, was us ed to represent the 

bow shock angle. The large free stream Mach number of 4.96 forces the 

portion of the bow shock which lies at the axis of symmetry to move 

within one mesh point of the nose. Consequently, the reduced entropy 



rise which occurs at the stagnation point is very nearly the same as 

that which occurred in Phase 2. As Table V shows, the surface pressure 

correlation becomes ·worse close to the stagnation point. While the 

error in pressure on the cylinder is less than 10% the stagnation point 

error is greater than 45~. This correlation substantiates the concept 

that part of the bow shock is within one mesh point of the cone nose. 
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Figure 15. Effect of Finite Shock Thicknes s on Phase 3 
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(a) TP=50 (r.K=l.253) 

(b) TP=lOO (r.K:=2.497) 

Figure 16. Constant Pressure Lines for Phase 3: Cone-Cylinder 
Entering Blast Sphere (Initial Conditions are 
given in Table II) 
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(c) TP=l50 (r.K=3. 739) 

{d) TP=200 {LK=4.977) 

Figure 16. (continued) 
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200 

400 

20.0 

(e) TP=250 (~K=6.2o4) 

(f) TP=300 (~K=7.402) 

Figure 16. (continued) 
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{g) TP=350 (DC=8.635) 

(h) TP=400 {n<:=9.884 ), 

Figure 16. {continued) 
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(i) TP=450 (EK=ll.139) 

(_j') .· TP=500 (ix=l2.393 ). 

Figure 16. (continued) 
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(k) ·TP=550 (lX=lJ.648) 

Figure 16. (continued) 
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TABLE V 

;~COMPARISON OF PHASE 3 STEADY STATE wrrH 

STANDARD GAS . TABLE VALUES 

Source of Data Stagnation Cone Cylinder Bow 
Pressure Surface Surface Wave 

Pressure Pressure Angle 

Reference 28 and 30 1420.0 140.6 30.7 18.3° 

Real Gas, TP 550 2093.4 180.0 32.93 22.0° 



CHAPI'ER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The primary objective of devising a method by which flow about a 

cone-cylinder configuration can be obtained has been accomplished. The 

results show that the impulse rece~ved upon an entering body is of such 

a nature as to cause the body to implode; while the body, upon exiting 

from the blast front, would have a tendency to explode. For the case 

presented having a blast pressure ratio of 20, the pressure ratio change 

on the cone surface is greater than 12 after entering and less than 6 

upon exiting. Although the larger pressure ratio imposed upon the 

entering cone-cylinder appears to be more extreme, the sudden decrease 

in pressure that occurs during the exiting phase might be the more 

difficult design requirement. For the 13.347 degree cone, there were 

no local transient pressure pulses which· exceeded the steady-state 

pressure values. 

Several conclusions may be arawn from the use of the numerical 

techniques. The conditions imposed on the boundaries of the mesh point 

array are extremely important, for the manner in which they are treated 

greatly affects the properties obtained at the boundaries, and, conse­

quently, can have an effect on the entire flow field. The final 

technique which was used at the stagnation point always gave stable 
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results. Consequently, this method is completely adequate for computa­

tions, where the free stream Mach number is 1.7. But, where the free 

stream Mach numbers were higher, the results were less accurate. The 

problem of obtaining accurate stagnation properties becomes even more 

acute as the cone apex angle decreases so that the :ratio of the stagna­

tion pressure to the cone surface pressure increases. Thus,the larger 

this ratio, the larger the cone surface pressure error. For studies 

involving Mach numbers greater than 1.7, additional numerical techniques 

must be developed for the stagnation point region. 

The cone surface boundary was one of the most complex mathematical 

aspects of the study. Although several different techniques provided 

stable results, none was completely acceptable. The applied method 

yielded surface pressures which were too large with respect to the 

s~rrounding field points. The result was a slight distortion of the 

pressure field close to the cone surface. This inconsistency was 

attributed to the use of forward differences on the cone surface. 

The numerical treatment of the right boundary was not as critical 

as the treatment imposed on other boundaries. An impulse created at 

the boundary when it is poorly treated does not propagate upstream any 

appreciable distance. This result was not entirely unexpected because 

the mesh points of interest lie at the downstream edge of a supersonic 

flow field. The upper boundary was treated in a fashion similar to the 

right boundary and this treatment proved to be satisfactory~ However, 

the technique used at this location was critical because its effects 

could be propagated to other parts of the flow field. The results at 

this boundary were reasonable, as well as stable, under all transient 



conditions. .There is a tendency for the constant pressure lines in the 

region of strong pressure gradients to bend slightly forward, indicating 

that the border pressures in this region are somewhat high. The incon­

sistency-in this case was again attributed to the application of the 

"off-centered", or "backward" differencing method. 

The numerical technique remained stable when the constant specific 

heat ratio (y) was replaced by a curve-fitted variable. Thus the 

numerical solution is good not only for an ideal gas but also for a real 

gas in equilibrium. Consequently, results can be obtained for condi­

tions under which the ideal gas equation of state fails. There was 

very little difference between the real gas case computed.and the ideal 

gas. Although the flow properties varied a small percentage, the 

resulting shock patterns were almost identical. 

Additional detail could be obtained by use of the numerical tech­

nique if a much larger number of mesh points were used, so that the 

effective width of the shock became smaller. If the number of mesh 

points in each direction were increased by a factor of tbree, the 

results would be far superior. Not only would this require a computer 

with a much larger memory, but it would also be preferable to have a 

faster machine. . The suggested increase in the quantity of mesh points 

would increase the computing time by a factor of approximately nine. 

On the IBM 7040 computer, the time required to compute a case would 

then be approximately one hundred hours. 

Recommendations 

Based upon the information obtained from this study, the following 
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recommendations are made: 

1. An investigation should be conducted to develop a mesh :point 

system that would not include the stagnation :point. One such 

technique is currently vsed by Mr. Ken Royer in his study of 

boundary layer shock interaction for viscous flow~ The mesh 

:point array is arranged so that the center line of the cone 

lies half-way between two rows of mesh :points; thus, no direct 

calculation needs to be done for the stagnation :point. 

2. If a larger and faster computer were available, the :problem 

could be re-run using the original mesh system or the one 

recommended above. By using the maximum feasible number of 

mesh :points, a solution with more detail could be obtained. 

The ideal solution would be one in which the effective width 

of a shock would be insignificant with respect to all other 

typical configuration dimensions. 

3. The configuration investigated in this study was a two­

dimenBional (r,z) axi-symmetric :problem. The theory might be 

extended to three dimensions (r,z,qi) so that the movement of 

the oncoming blasts would not be restricted to the direction 

of the axis of symmetry. 
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APPENDlX A 

TRANSFORMATION OF BLUIUUNG TERMS 

The dissipative terms for. two-dimensional rectangular coordinates 

given in Chapter III, equation (3-7), are 

ox 
(A-1) 

It may be noted that A= B, and were distinguished earlier for clarity 

in subsequent algebraic steps, By expanding this concept to three 

dimensions, the equation becomes 

o (A of) o (A of) o (A of) 
ox + oY + oz (A-2) 

ox oY oz 

In order to represent these "dissipation" terms in cylindrical 

coordinates, a transformation is made using 

X = r COS 8, y = r sin 8 and Z = z. (A-3) 

The following transformation equations are obtained by applying 

the chain rule: 

0 e o 1 . e 0 -= cos - - - sin oe' ox or r (A-4) 

a sin e 0 l e a -= -·- + - cos oe ' oY or r (A-5) 

0 Q_ -= . oz oz (A-6) 

Upon using equations A-4, A-5, and A-6 in equation A-2, the dissipative 

terms in rectangular coordinates become 
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L(A cos ( e /~f) - -9-..(~ sin ( e) of ) + L(A sin ( e ) of ) 
ax or ax r ae oy or 

+...L(~ cos(e)af) + o(A~) • oY r or az (A-7) 

2 a 
After substituting (sine+ cos e = 1) into equation (A-7) one obtains 

o (Aaf 1 ( . :a e Aof . e eL(A of ) 
= or or + r S J.n . or - S J.n COS oe or 

sin2 e _g__(Aof) sine cose Aof 2 of 
+ r ae ae + r oe + cos e Aor 

a of 
cose sine Aaf cos e (Aor)) 

r ae + r oe 

The above can be simplified by collecting terms to give 

of 
= ~A of) + ~ of + l:. .Q_(A of) + a (Aoz) 

or or r or raae oe oz 7 

or 

For axial symmetric systems· ~e is identically zero; therefore, the 

dissipative terms for axial symmetric flows are 

(A-8) 



APPENDIX B 

INITIAL CONDITIONS 

Ideal Gas 

The initial bow wave for ideal gas (Phase 1) was obtained by 

passing a normal shock over a body which had a relative zero velocity. 

Given below is the development of the equations which provide the 

initial data for Phase 1. The coordinate system for stationary shock 

is shown in Shock I. 

_Shock I 

u' :::: 0 s 

p~ p; 

u' a u' 
l + z 

p' a P{ 

This stationary normal shock problem can be solved with the aid of ideal 

gas shock tables (reference 28). In order to obtain zero velocity on 

the right hand side of this shock, u{ is superimposed in the positive 

z-direction. 



Shock II 

u = u' 
s l 

Pa = p' Pi Pt a 

ua = u( u' ul 0 i a 

P2 = p' Pi = p' a l 

From Shock II the dimensionless velocity then becomes 

and the free stream Mach number is derived to be 

where M; and~ are the Mach numbers on the low and high pressure 

sides, respectively:, of a standing shock wave. It is noted that 
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(B-1) 

Pa 
- == the dimensionless pressure on the left hand side of the shock, and 
P1 

Pa 
~=the dimensionless density on the left hand side of the shock. 
Pi 

All of the parameters for Phase 1 are determined by selecting 
Pi 

Therefore, the dimensionless input data are: 



Pa P1 
RH02 = - RH01 = -= 1.0 

P1 P1 

~ =U ..... RH02 ZM1 o.o "" = g 

and 

~ = o.o R~ = o~o 
Pa P1 

pa = pl = -= 1.0 . 
P1 Pi 

After the initial bow wave is established (Phase 1), a new set 

of properties, representing the state of the air outside the blast 

front, is placed in the first column of mesh points. This blast or 

shock front will then propagate back over the cone (Figure 17). 

To evaluate these properties, the normal shock {Figure 17) is 

transformed to coordinates, where u' = o, by adding u to all 
s s 

velocities. 

Shock III 

u' = 0 s 
I 

I p3 p2 

u~ = -u + ~ u' = -us+ us s 2 

= ff! = ~ M:{ 'Y ~ P3 P2 
(B-2) 

This transformation allows the use of the normal shock tables to relate 

conditions on both sides of the shock. 

from (B-2) as, 

An expression for u is obtained 
s 



P3 

~ 
P3 

u s 

P2 

~ 

P2 

I ... 
I 

, 
I .,., __ 

I,,;_ ,. '', 

u = o.o cone 

,, , ,, 

" 

Figure 17. Initial Conditions for Phase 2 
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r;: 
u ::::; u - M 1,Jy--;::.- • s !!I -13 ·p 

·2 
(B-3) 

By solving (B-1) for u3 the resulting exoression is 

(B-4) 

Equation (B-3) can be used in (B-4) to give 

~ 1Pa 
+ .fi <~v .;- - M.;v ~) . 

P13 P2 

The dimensionless velocity can be obtained as follows: 

u = u 3 l,l 

The free stream Mach number for Phase 2 is 

P;a 
The remaining required data,(-),~,~ can be obtained from NACA 1135 

P1 

tables, by choosing a shock strength 
p 
(~). 
:P3 
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These data are: 

P3 P2 
RH03 = --

P2 P1 

ZMs = U3 >!< RH03 , 

R~ = o.o, and 

P3 P2 
p3 --

P2 P1 

Real Gas 

The initial Phase 2 free stream properties for the real gas case 

were chosen so that the dimensional velocity and dimensionless RHO and 

P were identical to those used for the ideal gas study. The proper 

reference values were discussed in Chapter III. 

The pressure ratio across the Phase 2 shock for ideal and real gas 

case was also set equal. Using this given pressure ratio across a 

P2 , , P2 
stationary shock, the corresponding values of -, u3 , and u , p-, ~, 

Pi 2 l 

T2 
and - can be obtained from "Normal Shock Wave Parameters in Equilibrium 

Tl 

A:ir", (reference 29). 

Shock IV 

u' 0 
s 

p I I 

3 
Pa 

u' 3 u' 
2 

p; p' a 



This coordinate system is then transformed so that u1 is eg_ual to the 

actual velocity in the ideal gas case: or 

u3 = u~ + vel = u3 (ideal gas), so 

u = u' + vel. The transformed coordinate system is 
2 2 

Shock V 

u = vel s 

P3 = p~ P2 = p' 2 

U3 = ~ + vel u2 = u' + vel a 

P3 - p I - 3 Pa = p I 
2 . 

The initial bow wave for Phase 1 real gas was obtained in the same 

manner as in the ideal gas case. For both the real and ideal gas cases 

the dimensionless properties in region two above were used along with 

RHO = 1.0, 

ZM - 0.0, 

RM = o.o and 

F = 1.0. 

Entering Conditions for Real Gas 

The steady-state condition for the second phase of the exiting 

case was used for the initial condition of the entering case. The 

conditions across the blast to be entered are obtained from reference 

29 for a stationary shock: 



u = 0 
s 

P4 
I P:, 

u' 
4 

u' 3 

P4 p~ 

The coordinate system is then transformed. to make u1 equal to the free 

stream velocity of Phase 2 of the exiting case: 

P4 = P4 

U4 
I + u = -U4 

P4 P4 

s 

u 
s 

P3 

U3 

Il3 

= p; 

= ua 

p; 

The initial conditions used. for Phase 3 are given in Figure 18. 
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u s 

u = o.o cone 

Figure 18. Initial Conditions for Phase 3 
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APPENDIX C 

COMPUTER LOGIC DIAGRAM 

The definitions of the terms used in the flow diagram are as 

follows: 

I 

N 

IMAX 

NN 

NDEL 

OMEG 

ALPO 

MS TAR 

RHO 

RHOl 

ZM 

ZMl 

RM 

RMl 

p 

Pl 

EN 

ENl 

one mesh point upstream from the nose 

number of mesh points in z-direction 

number of mesh points in r-direction 

total number of time planes 

number of time planes between printouts 

defines amount .of artificial damping 

defines time step 

z-loc1;3.tion of cone -cylinder intersection 

d ·t th t· 1 a.· ' 1 ensi y, n ime pane, imension ess 

density, (n+l)th time plane, dimensionless 

th t. 1 d' . l mass flux in z-direction, n ime p.ane, imension_ess 

· mass flux in z-direction, (n+l)th time plane, dimensionless 

mass fl a. . t· th t' 1 a.· . 1 ux in r- irec ion, n ime p ane, 1.mension ess 

mass flux in r-direction, (n+l)th time plane, dimensionless 

pressure, nth time plane, dimensionless 

pressure, (n+l)th time plane, dimensionless 

th t· 1 a· · 1 energy, n 1.me p ane, .imension ess 

energy, (n+l)th time pla:ne, dimensionless 
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J 

WC 

WC MAX 

TIME 

ALP 

BET 

M 

L 

MM 

JJ 

counter - time planes between printouts 

local velocity modulus plus sonic velocity, dimensionless 

maximum value of WC 

running index of dimensionless time 

coefficient of artificial viscosity in z-direction 

coefficient of artificial viscosity in r-direction 

mesh point index in z-direction 

mesh point index in r-direction 
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index which keeps calculations above cone-cylinder surface 

counter - total number of time planes 



FLOW DIAGRAM 

READ I, N, LMAX, NN:, NDEL, OMEG, ALPO, GC, ZI 

8 

READ MSTAR 

3 

READ RHO, ZM, RM, P 

4 

TIME = 0.0 

Solves for initial energy 

5 
WRITE RHO, ZM, RM, P 

6 

JJ == JJ + 1 

7' 

J = J + 1 

Calculates WC at all mesh points and 
saves largest value (WCMAX) 

Q = ALPO/WCMAX 



10 

TIME = TIME + Q 

11 

Calculates ALP, BEI' 

12 

DO 29 M = 2, N 

13 
GO TO 16 No 1----...;;;.:....;;._ __ ~ IF (MSTAR = M) 

Yes 
14 

GO TO 16 No IF (M - I == 1) 
Yes 

15 
MM=MM+l 

16 

DO 29 L = MM, LMAX 

GO TO 19 No IF (M - L + 1 = I) i----..------,r__ ___ ~ _ __;_ _ __J 

Yes 
18 

GO TO 24 No IF (M = MSTAR)· t-~~~~--L.. __ :___,~~~ 

19 

20 

Yes 

Calculate RHOl (density) for mesh point 
not lying on cone surface 

Calculate ZMl (mass flow) in z-direction 
for mesh points not on cone surface 

21 

Calculate RMl (mass flow) in r-direction 
for mesh points not on cone surface 
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Calculate ENl (energy) for mesh 
points not on cone surface 

Calculate Pl. (pressure) from energy 
mass flux and density. 

GO TO 29 

24 

G0 TO 26 No IF (M = I) 1--~~~~~~--t 

25 

26 

Yes 

Calculate properties at the stagnation 
point of the cone 

GO TO 19 

Calculate RHOl (density) on cone surface 

27 

Calculate ZMl and RMl (z and r mass flux) 
on cone surface 

28 
Calcul~te ENl (energy) on cone surface 

Comment: This completes the calculations for all mesh points at one 

time plane. 



RHO ::;: RHOl 
ZM = ZMl 
RM .:: RMl 
P = Pl 
EN = ENl 

for all mesh points except 
(N, LSTAR) and (N, IMAX) 

30 

At (N, LSTAR), set RHO, ZM, RM, P, and EN equal 
to their respectiYe values at (N-1, LSTAR) 

31 
At (N, LMAX), set RHO, ZM, RM, P, and EN equal 

to their respective values at (N-1, I.MAX) 

GO TO 7 1---_.:::;.:N..;;;.o ___ -1 IF J == NDEL 

Yes 

GO TO 6 

32 
WRITE J, I, N, LMAX, NN, NDEL, OMEG, 

ALPO, GC, ZI, TIME 

33 
WRJTE RHO, ZM, RM, P for all mesh points 

Yes IF jJ = NN 

0 

END 
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