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CHAPTER I
INTRODUCTION

‘The procedure used to obtain tolerance regions can be stated as
follows: the result x of an experiment E 1is used to obtain a region
R(x) in which it is predicted that a proportion p of future repli-
cates y of E will occur. For examplé, a manufacturer of transistors
may wish to predict the lifetime which will be exceeded by 95 per cent
of a batech of transistors. From a sample of the batch he obtains an
interval, R(x) = [r, o) in which it is predicted 95 per cent of the
transistor lifetimes will occur. In slightly less general terms 1t is
predicted that the interval obtained will cover the upper 95 per cent of
the distribution of lifetimes.

The determination of tolerance intervals for distribution free
variates was first developed by Wilks [9], who utilized the distribution
of thé order statistics., Others, including Bain [4] and Wald and
Wolfowitz [87, obtained tolerance intervals for variables whose distri-
butlon belonged to some specific family of distributions. For the
example of the previous paragraph, if the menufacturer had reason to
believe that the lifetimes of each batch of transistors he obtained had
a normal distribution, and that only the parameters changed from batch
to batch, then he would use the results of the latter approach. If he
could not assume a specific family of distributions, then he would use

the results of Wilks.



Until 1964, when Aitchison [1] formulated a Bayesian approach, the
field of tolerance regions had not attractedbthe interests of the
Bayesians. This approach extends the parametric approach by assuming
that the parameters of the family of distributions have some known dis-
tribution. ' It is with this approach that we shall be concerned and in
particular-it is the purpose of this thesis to investigate criteria of
accuracy for Bayesian tolerance intervals and to relate these criteria
to the determination of sample size. Since the Bayesian assumption of
a prior distribution for the parameters of the family of densities of
interest is a touchy one, we shall also investigate the sensitivity of
tolerance intervals for the exponential distribution to inaccuracies in

the assumption of the prior distribution.

Formulation of the Problem

Let xl,n represent the observations X1 Xgs eeey X from an
experiment E, where the x, come from the density f(-le). Let y
be a future observation from f(-le) where the indexing paremeter 6
has the same value for X, n end y. The coverage of a region,

J

R(x, _), is defined as

1,n

C(Rl@)éf £ (y|0)dy.

R Xl,n

We shall consider two types of tolerance intervals. The first is
a ¢ tolerance interval for p coverage. The interpretation of this
interval is that we have q confidence that the coverage will be at
least p. This will be the topic of Chapter II. The second type, to be

discussed in Chapter III i1s a p-expected coverage tolerance interval,



Throughout this “thesis we shall be concerned with intervals of the form
[r, »), or in other words, we shall be interested in obtaining a lower
tolerance limit, r. However, upper tolerance limits can be obtained by

replacing q and p by 1 -g¢ and 1 -~ p, respectively.
The Bayesian Approach

Let f'(6) represent the density of 6 defined on the parameter
space {2, where 6 1s the parameter of f(-‘@). Then, by Bayes'

theorem, we obtain

f(xl’nle)f'(e)

) ,
L,n £ ( 8)f'(68)ds
IQ Xl,nI

f"(elx

the posterior density of 6, conditional on xl,n' Thisg density will
be used to obtain Bayesian tolerance limites and tolerence intervals,

We may be led to make the essumption of a prior deneity, £'(8),
if 0 is actually & random varleble or 1f 6 1s fixed, but unknown,
and f'(8) represents the "state of knowledge" sbout 6, The first
reason would be appliceble to the example at the first of this chapter.
The average lifetime of & batch might be 6, and this would vary from
batch to batch in accordance with f£'(8).

For the Bayesian approach we will be concerned with probabilities

arising from f"(@lxl n)' The non-Bayesian approach is concerned with
)

probabilities arising from f(x IG) and which are interpreted as the

1,n

relative frequency arising from repeated experimentation, so that we

shall refer to this as the frequentist approach.



Notation

Let U be a random variable which has the chi-square distribution
with m degrees of freedom. Then we shall denote its density by x?(m)
and its cumulative distribution function evaluated at u as C(uz m).
The solution for u of C(u; m) = g will be 'xi(m) and will be
referred to as the q probability point of U. If U has a noncentral
t distribution with m degrees of freedom and noncentrality parameter
c, then its density will be denoted by t‘(m, c) and its g probabil-
ity point by té(m, c). These same quantities will be denoted by +t(m)
and tq(m) for the central t distribution. The density for a
normelly distributed random variable with mean pu and variance 02
will be denoted by N(u, 02). The q probability point of a standard
normal variable will be denoted by zqn The expression

Pr{u: statement | v} = ¢ will be interpreted as follows: Let S(u) be

the values of u which satisfy the statement. Then

q =:Is(u)dF(ulv)°



CHAPTER II
q TOLERANCE INTERVALS FOR p COVERAGE

Our objective is to obtain an interval R(x. ) = [r(x, ), ») in
l,n 1,n

which we have q confidence that C(RIG) is at least p. The

frequentist approach is to determine R(x ) so that

L;n

Prix, . : C(R|6) > plo} = ¢ for all .
3

This is accomplished by solving F(dl_p(e)le) =1 - p, where

a
F(dle) = F f(ylo)ay, for a; p(e) and substituting a g confidence

=C0

limit on @ for 6 in 4 p(@)u If dl_p(e) is a decreasing function

of 6, then an upper ¢ confidence limit is used, since we wish to

have @ confidence in obtaining a value less than dl (). 1If

dl_p(a) ig an increasing function of 6, a lower q confidence‘limit

is used. The interpretation of the interval obtained l1s that if samples

of size n are repeatedly taken and r(x obtained, then 100q per

l,n)
cent of the intervals [r(xl n), w) will cover the interval
5

(d, (8), »), regardless of what value 6 has.

1-p
The Bayesian approach, as formulated by Aitchison [1], differs from
the frequentigt in that instead of substituting a g confldence iimit
on © into 4, (0), & a probability point of f"(elxl}n) is sub-
stituted. An upper g probability point is used when dl_p(e) is a

decreasing function of 6 and a lower ¢ ©probability point when 1t is



an increasing function of 6. To better see this, let & ( be

a Xl,n)
the g oprobability point of f”(@lxl n) and consider the case where
J

dl_p(e) is a decreasing function of 6, Then

q = Pr{g:0 < 6q(xl}n)‘xl}n}

= o <.
Pr{o: dl_p(éq(xl}n)) dl_p(e)lxl}n}.,
Thus 1f we take r(xl}n) = dl-p(éq(xl,n))’ we will have q confidence
that the interval [r(xl n)’ ) covers the interval [dl p(@), w). If
, -
dl_p(e) is an increasing function of 6, then
qa=Pr{o:06 2 él-q(xl,n)lxl,n}
= . <
Pr{o : dl_p(al_q(xl}n)) dl_p(e)lxl)n}
and r(xl,n) = dl~p(6l-q(xl,n)) will be the Bayesian lower tolerance

Llimit for this case.
The interpretation of this approach is that if we consider the set
of values of 6 for which the coverage of our interval 1s at least p,

then this set has probability measure, given x of 4. In other

1,n’
words, the probability is g that the value of the 6 we drew was one
of those for which the coverage of the interval was at least p. For

the experimenter who just has one opportunity to obtain an interval of
P coverage, and who is willing to make the assumption of a prior dis-

tribution, this interpretation may be more acceptable than the frequen-

tist interpretation.

An Accuracy Criterion

Since we can obtain Bayesian g tolerance intervals for p



coverage for any sample size, the question arises as to what properties
of the interval obtained depend on sample size and what properties
measure accuracy in some sense. Since g 1is the probability, given the
sample, that the 6 we drew is one for which the coverage is at least
p, we may want to comnsider £he probability, given the sample, that the
6 we drew is one for which the coverage is at least p', where p' 1is
between p and 1. If we call this probability q', our télerance
interval would become more accurate as q' decreases in the sense that
we have q - q' confidence that the coverage is between p and p'.
Thus as a measure of the accuracy of a Bayesian lower tolerance limit we

shall consider

q' = Pr{ig:r(x, ) < dl-p'(e)lxl,n}' (2.1)

1,n

This is analogous to & frequentist accuracy criterion proposed by
Goodman and Madansky [6] and investigated by Faulkenberry [5]. In order
thet (2.1) be used to predetermine the sample size necessary in order %o

obtain & limit r(x ) with a specified asccuracy qé, q4' should not

L,n

be & funetlon of x and should be a decreasing function of n, As

L,n
we shall see, these conditlons are met for some famlllar distributlons,

The interpretation of a Bayeslan tolerance limit and the proposed
accuracy criterion (2.1) are illustrated in Figure 1, For a given

sample x , r(x ) is obtained, and the coverage of the interval

1;n l,n

R(x, ) = [r(x, _), ») 1is obtained as a function of 6. This is the
l,n 1,n
function which we defined in Chapter I as C(R|0). We plot C(R|6)
and superimpose f"(Gle n)" (The ordinates for C(Rle) and for
J

f"(elxl n) are not necessarily the same.) The Bayesian tolerance
, ;

interval then has the property that the set of 6's for which C(RIQ)



is at least p comprises 100q per cent of the density f"(elxl n)'
2

Thus the value of 6 for which C(R{6) =p is & (

a xl,n)° If a

different sample were obtained; C(R\@) ‘would change as would
f"(elxl,n) but in such a way that the q probability point of
f"(e‘xl,n) would still correspond to C(R|8) = p. The accuracy of the
limit obtained is the probability of the set of 6's for which C(R|6)
is at least p' and so C(R|6) = p' corresponds to the value

6 =156 ,(x

q' ¥1 n)n For a larger sample size we would expect the situation
2

in Figure 2, that is, a smaller q°.

ke
ke

Figure 1 Figure 2

We now consider Bayesian tolerance limits and the accuracy

criterion (2.1) for some specific distributions.
The Exponential Distribution

Let

-0x

£(x|0) = oe x> 0; 6> 0.



We shall consider here a gamma prior density

£1(8) = p26% e ™0/r(a) 6>0;a>0,b>0.

Applying Bayes' theorem gives
f"(elxl n) = (b + z)a+n6a+n—le-(b+z)6/r(a +n), 6 > 0,
J

n
where 2z = % Xy

(-~}

-0x -84 . . .
- Now, I Be dx = e and setting this equal to p we obtain
a

dl%p(e) = (-1n p)/6, a decreasing function of 6. Since 26(b + z)

has a x?(Ea + 2n) distribution, & (x. ) = xi(Ea +2n)/2(b + z).
a7 L,n _

Thus, substituting this for 6 in (dl p|6), we obtain

2( + z)ln p
r(x =d 5 (x = . 2.2
Gy ) = ay ey e s o (2.2)
We note that the frequentist solution for r(xl n) i1s obtained by
J
taking a =b = 0.
To determine the accuracy of the limit r(xl n) we need to
) 5
evaluate
| - o .
q' = Pr{6 °r(xl,n) < dl{p'(e)lxl,n}
o : - 1
- Pr{o: Eéb +2z)lnp _ 12 D le n}
xq(Za + 2n) ’
In p' 2
= ° <
Prig:2(b +2)o < s xq(Ea + 2n)|xl’n}
In p' 2 ‘ .
= <
Pr{u oD xq(Ea + 2n)}, , (2.3)

where u has a X?(Ea + 2n) density. This is a decreasing function of



10

n, as we can see from Table I which tébulates values of q' for some
combinations of ‘¢, a + n, p', and p. The corresponding frequentist -
accuracy '1s obtained by taking a = 0 and thus the Bayesian'limit for
a % 0 will be more acturate than the frequentist limit for the same
saﬁple'size. Larger values of a will lead to a smaller sample size
necessary to obtain a given accuracy. That this should be true 1s seen
by considering the mean and variance of 6 which are a/b and a/be,
respectively. If we increase a and also increase b such that fhe
mean remains constant, then the variance will decrease. This improving
state of knowledge or decreasing variability of 6 1is reflected in the
requirement of a smaller sample size, Since ¢q' does not depend on
xl,n’ we canbdetermine the sample size necessary to obtain a q toler-
ance interval for p coverage and a given coefficient of aecuracy, q'.
TABLE T
ACCURACY CRITERION FOR BAYESIAN LOWER g TOLERANCE LIMITS

FOR p COVERAGE FOR THE EXPONENTIAL DENSITY

P .90 .95

p' - 950 975 .90 975 975 990 975 .990

a+n

5 .350 .06 460 .073 .361 .022 | Rial .036

10 .161 | .003 .2kl 006 | .171 | .o01 | .253 .001
15 .073 .123 .080 .133
20 .03k .061 - .038 .068
25 .015 .029 0L .03k

30 .006 .01k .008 ,016
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Suppose for a specific problem we wish to obtain a Bayesian .95
tolerance interval for .90 coverage and that the prior distribution .
has parameters a =3 and b =2, If we wish to determine this 1limit
such that q' will be equal to .15 for p' = .95, we see from
Table I that a + n should be about 13 and thus we will need a

sample of size 10. If the sample sum is 6, then the tolerance limit is

) = 2(2 + 6) 1n .90
X o (26)
.95

= ,043,

The coverage of the interval [.0k3, «) is

o
c(rle) = f oe PFax = e-.ouge,
.0k3

which is greater than .90 for 6 1less than 2.431, the .95 proba-

bility point of f”(@lxl n)' Had the sample sum been 10 we would have
2

obtained C(RIG) = e_°0656

and the .95 probability point of
f"(9|xl’n) to be 1.621, and so for 6 less than 1.621, C(R|9) will
be greater than .90.

The exponential distribution is often encountéred in life-testing
situations and a procedure often used in this context is to put m
units on test and record the times of the first n failures. We now
derive the lower Bayesilan tolerance limit for this case.

m m

Let X1 xm, ceey X=X be the first n order statistics
2 n n,m

from a sample of size m. Then

£(x ) = m. ene-e(z ¥+ (m - n)x

lo
n,m
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Taking f£'(8) = baea‘le'be/r(a), as before, we obtain

" (b+2)
_«‘{ 6a+n—le— +7 Gde

0

J

n
where 2z =X X? + (m - n)xﬁ. Thus the posterior distribution of 6 1is
1
a+n, a+n-1 -6(b+z)
1 (b +Z) e e
= > 0,
f (elxn,m) I'fa + n) > 92>0

Hence, (2.2) and (2.3) give the Bayesian tolerance limit and accuracy,
where =z 1s defined as above for this case rather than the preceeding.
Tobdetermine m, the number of units put on test, it would be necessary
to relate this functionally to n(e.g. 2n = m).

As an alternative to the gamma prior density for 6 consider the

uniform density

£1(g) =

0<a<6<hb,

=0 - elsewhere,

Since the posterior density, given' the sample, is equal to the posterior

density, given a sufficient statistic, we consider the density of

. n 0 m m .
z =Xx, (or z=%x, +(m -n)x., when order statistics are used).
1 1 1 1 n
f(z]o) = zn~16ne-GZ/F(n)
Zn—lene—ez
f(z|o)rt (o) =

v - a)l(n)



13
= £"(6]z)n(z).

Thus

This implies that

n+l n -6z
£ (g]z) = 2 6 "/T(n + 1) e <6 <h,

o
J i+l 024
a I'(n+ 1)

)

which is a truncated gamma distribution. In order to obtain 6q(xl N
b

we need to solve the equation

(ey )

q = f : £ (6]z)as.

Since 260z has a truncated x?(En + 2) distribution, this equation

becomes

C(226q(xl n); 2n + 2) - C(2za; 2n + 2)
—_ 2
4= C(ozb; 2n + 2) - C(2za; 2a + 2)  °

and with the aid of chi-square or incomplete gamma tables this could be

solved for 6q(xl,n)’

dl_p(e) to obtain r(x

and this in turn would be substituted into

).

1,n

The accuracy is

-ln p -ln p'
q' = Pr{o: < lx. 3
: 6q(xl,n) 6 1,n
1
= Pr{6:0 < mp g (x, )x. 3

Inp g 1,n



1k

In p' ) ‘ .
oD Sq(xl,n), n + 2) - c(2zg, 2n + 2)

C(2zb; 2n + 2) - C(2za; 2n+2)

c(2z

Since this depends on x we cannot use this to predetermine the

1l,n’
sample size necessary for a specific value of ¢'. However, we can meet

a specified accuracy qé if we sample sequentially, calculating q' at

each step, until it becomes less than qé.
The Normal Distribution

For this example 6 = (u, 0). We shall consider three cases,

namely ¢ known, p known, and p and o unknown. In all cases the prior
distribution f'(6) will be the natural conjugate prior. (For a dis-

cussion of natural conjugate priors, see Raiffa and Schlaifer [71«)
Case 1. o known,
Let

N(y, o°)

£ (x|u)
and let the prior density also be a normal density

£1 () = N, o°/b).

il

Applying Bayes' theorem results in the normal density

ab + nx 02 )
% J

1" _
f (u|xl,n) = N( b+n’b+n

where x 1is the sample mean. To determine the lower Bayesian tolerance

limit we note first that dl p(p) is pn - zpd, an increasing function

of p. Thus we need Si

—q(xl,n) vhich is (ab + nx)/(b + n) -

zqo/(b + n)%. Hence



Teking b = 0 gives the frequentist result.

The accuracy criterion for this case is

1 — .
q - Pr{“' . r(xl,n) = dl_p| (H)Xl,n}
ab + nx 2q° |
= Prip: == — -2z 0<yu -z_0/%x _}
b +n (.b + n)'g : lJn
gb + nx
b + . 1/2 ‘
= Prip: — 2 (z_, -z )(b +n) /2 _ z |xl n}
/(b + n)= p ’
= Pr{z 2 (z -z )(b + n)é -z}, (2.5)
p' D a

where z has a N(O, 1) distribution. Hence q' is a decreasing
function of n and does not depend on the sample Xi,n’ so that we
can predetermine the sample size necessary for a given accuracy.

Table II tabulates (2.5) for some values of p, p', ¢, and b + n.

We note that the entries in Table II are larger than the corresponding
entries in Table I. That this might bé expected is seen from the fact
that more probability is in the left tail of the exponential density
than is in the left tail of the normal density. Hence for the same

sample size we would expect to be more accurate in obtaining a lower

tolerance limit for the exponential than for the normal.



TABLE II

ACCURACY CRITERION FOR BAYESIAN LOWER g TOLERANCE

. LIMITS FOR p COVERAGE FOR THE NCRMAL

DENSITY WITH KNOWN VARTANCE

P .90 B2

q .90 5 .90 .95

p' | .90 | 975 | .950 | .975 | .975 | .990 | .975 | .990
b+n

5 .682 .4o9 .798 .55k .719 405 .8a7 549
10 .555 .195 691 .310 .613 .192 .The .306
15 453 .090 .596 . 164 .536 .088 .665 .159
20 | 368 | .ovo | 510 | 083 | so | 039 | 593 | .oer
25 .299 .018 3k .01 .385 .07 .528 .039
30 .2k .008 .368 .020 .329 .007 .468 .019
35 .195 .003 .310 .609 .281 .003 413 .009
4o .157 ,00L '.259 .00k .239 ,001 .36k .00k
45 .126 .217 | .00z | .203 .320 | .oo02
50 .101 .180 173 .280
Case 2, u known.
Without loss of generality we can let pu be 0. Then
f(x|o§ - --EI—-e'Xe/ece.
(em)®g
The prior density is
£1(0) = (§>W+1e'wv/2“2, 5> 0,



and this results in the posterior density

2
where u = xl.

HMB

W+

£ (olxy ) = (3)

The prior density,

density of Raiffa and Schlaifer

{7l.

n+1

£' (o),

To dete

e-(wv+u)/2cr2

b

17

is the inverted gamma-2

rmine & (x
q

1,

) we first
n

note that (wv + u)/c2 has a x?(w +1n) distribution. Hence

Thus

n)}

v u 2
q = Pr{y—;%——-s xq(w +
= Prig = _EX_i_E;_.% .
Lo l:xtgl(w + n)] :
3
b (x. ) =|yvruw 1%
q l,l’l [X]E__q(w + Il)]

If we require that p > .5, then dl_p(c) = ;zpo is a decreasing

function of g,

and hence the lower Bayesian tolerance limit is

r(xl,n).z _Zp[ 5

X1

WV + U

_q(w + 1)

Taking w = 0 gives the frequentist 1limit,

The accuracy criterion is

q!

]

Prioc :r(x

"

l,n) = "prglxl’n}
z -
P WY 4+ U
Z J lxl,n}



= Prioc: ¥ ; 2
: o
2
Zp'
=1-¢C ((E——9
b

2
Z
P\ 2
2 (Z—) Xl—q(w + n)‘lx
b
2
Xi-q(w +1n); W+ mn),

}

1,n

by the distribution of (wv + u)/cg. Since xi_q(w +1n) is an

increasing function

and since it is not a function of the sample

X

1,n

)

of w+mn, q' is a decreasing function of w + n

it can be used to

determine the sample size necessary for a specified accuracy. Some

values of q'

are presented in Table III.

TABLE IIT

ACCURACY CRITERION FOR BAYESIAN LOWER g TOLERANCE

LIMITS FOR p COVERAGE FOR THE NORMAL

DENSITY WITH KNOWN MEAN

18

p .90 .95

q .90 .95 .90 .95

p' .950 975 . 950 975 975 . 990 975 990
wHn 8

5 .75k .585 .865 .750 .808 666 .898 .808
10 .629 .331 LTTh 51k LT3h 465 .848 6Ll
15 522 JL7h .68k .353 .669 .31k .800 487
20 430 | .087 | .98 | .190 | .609 | .206 | .753 | .358
25 .352 | .0k2 .518 106 | .555 .133 .709 .256
30 287 .020 L6 .058 .505 .085 662 178
Lo .187 .00k | .323 .015 418 .027 BTT .083
50 .120 , 001 .22k .00k | .3ue .012 k99 .036




19

Case 3. p and o unknown.

Aitchison [1] derives an upper tolerance limit for this case and we
shall present here a parallel derivation for a lower tolerance limit,
Two corrections must be made, howéver, in order that his results can be
obtained. In equation (24) of [1] the exponent of 1/c should be
w + 1 rather than w and the change of variables in (29) should read
n = V%VGQ

For this case
2
£(x|p, o) = N(u, o)

and the prior density is Jjust the product of the densities considered in

the first two cases

2
b, u-a
(B2
, 1, 205 ) vl -wv/202
£'(n, 0) = (g)e (g e

L4

Applying Bayes' theorem yields

B,u-A .
(e, olx )« (L e—g(“——-c ) ol W+le'fWV/202
Ho S8 n o o - ?
where
— w+ n, > 0;
A-agiix,B=b+n;W={ ,
w+n-1, b= 0;
V= (w + ba® + in - BAg)/W.
Since dl-p(“’ ) = pu - 2,05 we wish to determine r(xl’n) such that

Pef(u, ) ixlx ) s u - zolx 1= q (2.6)

Y
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Let

- -V
N = ——= V=
o

Then 7 has a N(0, 1) distribution, v has a {y?(W)/W} distribu-
tion, and n and v are independent. In terms of 7 and v, ‘the
inequality in (2.6) becomes

B%(r(x

1
v

n

W) -a-zo)d
:

< V%

which is

wl

B (r(xl,n) ~A)

vE

< (n - zpB%)/v%.- | (2.7)

From the distributions of n and v, it follows that the right-hand
side of the inequality has a noncentral +t distribution with W
degrees of freedom and noncentrality parameter —ZPB%. Thus, in order

that (2.6) holds, we must have
r(x15n) = A + EE ti-q(w’ -zpB ). (2.8)

If we let b = w= 0, we obtain the frequentist result which is

) = x + sf-ti_q(n -1, - zpn%).

To evaluate the accuracy criterion for this case, we replace p by p'

and substitute (2,8) into the inequality of (2.7) which yields
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1
2

}

2
il

Pe{(n, o) 12 (0, -2 38) < (-2 38/ Blx

1

L
> 4! 2
Priu tl_q(w, zpB 131,

where u has the t'(W, -zp,Bé) density. Since this is a function of
p, p', 4, b +1n, and also w + n, we will not attempt to tabulate it.
However, we note that this function does not depend on Xl,n and that
it could be used to predetermine the sample size necessary for a given
accuracy.

In these examples we have seen that for the exponential and normal
densities and for "nice” choices of a prior density the proposed
accuracy criterion (2.1) is a decreasing function of the sample size and
is not a function of the sample. Therefore, for these cases, the cri-
terion can be used as a guide to obtaining Bayesian tolerance limits
with a given accuracy. For cases where the accuracy criterion depends
on the sample obtained, it can be used to measure the accuracy of the

tolerance limit obtained and a decision made as to whether an

additionalvsample is warranted,
Concluding Remarks

In this chepter we have considered a Bayesian approach to
obtaining q tolerance intervals for p coverage, The Bayesian and
frequentist approaches are essentially the.same in that an upper or
lower g ‘'"confidence limit" for 8 is substituted'into the lower p
probability point of f(-le); The difference is that the Bayesian ¢
"confidence limit" is obtained from the posterior distribution of 6,

f”(@lxl n), rather than from f(xl nle). We have also seen that by
) b

letting the parameters of the prior distribution become those for an
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improper density (i.e., infinite variance) the two approaches give the

same result. ‘This is not meant to imply that the frequentist theory is
a special case of the Bayesian, but rather to provide the reader with a
connection between the two approaches.

As a measure of accuracy we have adapted a frequentist measure of
the probability of having coverage greater than that desired to the
Bayeéian approaéh. Faulkenberry [5] obtained "uniformly most accurate
tolerance limits" from uniformly most accurate confidence limits, which
are in turn obtained from Neyman-Pearson uniformly most powerful tests.
In the absence of Bayesian uniformly most pOWerfulvtesgs it is not clear
at this time whether an analogous theory of most accurate Bayesian
tolerance limits can be developed. |

In the next chapter we will consider a Bayesian approach to
expected coverage tolerance intervals, as formulated by Aitchison and

Sculthorpe [3], and a measure of accuracy for these,



CHAPTER III
p-EXPECTED COVERAGE TOLERANCE INTERVALS

We now consider a Bayesian approach to cbtaining intervals of the

form [r(x, _), «) for which the expected coverage of the interval is

L,n

P. The frequentist or classical approach is to determine R(x such

1,n)

that E[C(R|6)] = p for all 6, where the expectation is with respect

to f(xl nle). For the Bayesian approach we shall also want to deter-
J ' .

mine R(x such that E[C(R|6)] = p, but instead the expectation -

l,n)

will be with respect to f”(elxl n)' Thus to obtain a Bayesian lower
J

tolerance limit for expected coverage b, we will need to solve the

):

following equation for r(x
T hn

p = JQC(RlG)f”(Glxl,n)dG

= J J . f(y|e)dy f”(e‘xl n)d@.
Q r(XI'L,n) ’

By interchanging the order of integration, we obtain
ff(yle)f'%elxl' )ae dy
Q &

h”(ylxl,n)dy, (3.1)

where h”(ylx:L n) is the posterior density of a future observation Y,
2

e3
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given x Thus we see that r(x ) is the 1 - p ‘probability

1,n 1,n

point of h (y[xl,n).

An interesting result of Aitchison [2] is that r(xl n) is
. 3
equivalent to the value obtained by minimizing the expected cost, given

X for the following cost function:
,n’

r -y if y=sr

C(l", y) ={ .
ANy -r) if y>r.

A case where this type of cost function would be employed would be where

y represents a demand, r the amount to be supplied, and A the ratio

of the cost per unit of having demand exceed supply to the cost per unit

of having supply exceed demand. The Bayesian solution is to choose r
so that IC(r, y)h”(y|xl n)dy is minimized., Equating the partial
J

derivative with respect to r of this function to zero yields, after
some manipulation,
-
1

I h"(ylxl,n)dy = T (3.2)

Thus, letting p = 1/(N + 1), the solution to (3.1) is the same as that
for (3.2). The frequentist approach to these twb situations, that. of
‘expected coverage and that of a linear cost function, does not have
this equivalence,

For a fixed value of 0O the‘frequentist lower tolerance limit has
expected coverage p, since this is how the limit is derived. However ]

this does not hold for the Bayesian limit. That is
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-]
jx fr(x £ (y|e)ay f(xl,nle)dxl,n = p(6),
l,n L,n ,
where X is the product space of x and p(6) 1is not

1,n 1,n’

necessarily equal to p, However,

f(y|e)ay f(xl,nle)dxl,nf'(e)de

fﬂp(e)f' (6)a6 = fﬂ le,n |

r(xl,n
(-}
—_ =331
- JX jr(x ) IQ £(y|e)r (elxl,n)dedyf(xl,n)dxl,n
1,n “1l,n
[- <}
= h" (y|x dy f(x dx
| jr(x (vlxy oy £y dax)
1,n 1,n

Thus averaging over 6 gives expected coverage p. In the context of
the example of manufacturing batches of transistors, taking a sample

and finding the Bayesian tolerance limit for - p-expected coverage,

this means that for any one batch of transistors the expected coverage
may not be exactly p, but over the long run of batcﬁes it will be p.
The frequentist iimit gives expectéd coverage of p for each batch and
thus élso over the long run. This may be an advantage but, as wekshall'
see in the next chapter, the coverage may vary more for the fregquentist
limit than for the Bayesian., Thus if the experimenter is willing to-
assume his choice of f'(8) +truly describes the situation, he may be

better off in the long run by using a Bayesian tolerance limit.
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There ‘is~also an important distinction in the‘interpfetation of the
two approaches. The frequentist obtains a certain expected coverage
where the expectation is with respect to repeated sampling. The
Bayesian considers the coverage obtained for each 6 and then obtains
a weighted average of these, where the weights are obtained from

f"(elxl n)’ such that this weighted average is equal to p.
b
An Accuracy Criterion

Bayesian tolerance intervals for p-expected coverage can be
obtained for any sample size, and so the Question again arises as to
what should be used to measure accuracy and how might this measure be
influenced by sample size, Since the coverage, on the average, will be
P, but may vary considerably about it, we may wish tb have some degree
is fairly close to 4. _(8),

1-p
the lower p probability point of f(yle). Thus we are led to the

of confidence that the estimate r(xl n)
3

following measure of accuracy which we will denote by q.
o =Prie: [r(x) ) -a; (6)] salx . (3.3)

. The interpretation 1s that 1f we consider the set of 8's for which
the limit we obtained is within & of the 1 - Pp probability pointvof
f(yle), then the probability, given the sample, of the 6 we drew
5eing in this set is q. If this i1s actually to be & measurement of
accuracy, then we would expect q to increase as the sample size
increases, and if we are to utilize this to determine the sample size
necessary to obtain e tolerance limit with a given accuracy, then ¢

should not be a functlion of the sample, X p However, as we shall
b

.

~see, this latter condition is not met for some common densities.



27
If q 1is a function of Xl 0’ then we may be able to modify (3.3)
2

by replacing A by a multiple m of a function of x , say k(x

1,n l,n%

so that q will not be a function of the sample. Thus we will be able
to predetermine the sample size necessary for having q confidence that

the limit obtained is in the interval [dl (6) + m-k(xi n)] for
- b

-P
specific values of p, ¢, and m,

If it is desired to obtain p-expected coverage tolerance limits
of a specified accuracy q, for an exact deviation, A, rather than a
proportional deviation, m, then the following multi-stage sampling
procedure will accomplish this.

1, Choose an initial value of m and determine the sample size

necessary so that (3.3), with A replaced by m-k(xl n)" will hold .
)

for the specified values of ‘p and g. If k(0) % O, - then a choice:

for the initial value of m might be m = Ak(0).

2. TFor the sample size determined, n take a sample of that

l)

). If this is less than or equal to A,
1

size and calculate ml-k(x

L,n
then our limit will have accuracy greater than or equal to the specified
q, and sampling will stop.

3. If m, -k(x ) 1is greater than A, then a second and

1 l,nl
smaller value of m will be cbtained by letting m, = A/k(xl 0 ), and
!
the sample size determined for qo and m, . Letting this be n, the

additional sample size necessary is ny, =10 - n.
4, The additional sample is obtained and from it and the previous

gample m.-k(x ) is calculated and compared with A as before,
2 l,nl+n2
The process is then repeated until mi'k(xl,nl+n2+...+ni>v is less than

or equal to A.

This algorithm will lead to a tolerance limit with accuracy qo
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for chosen p and A. We will now illustrate Bayesian p-expected
coverage tolerance intervals and the accuracy criterion, (3.3), for the

same distributions considered in Chapter IT.
The Exponential Distribution
As in Chapter II, we have

t(yle) = 0™, y>o0;6>0

and
" a+n a+n-1 -9 (b+z) o
felx, ) = (b + z)% g e /T(a +n), 6>0; z =5 x_.
1,n 11
Thus
) ® (o + Z)a+n6a+ne-9(b+z+y)de
b (ylxl n) =Lfo I'(a + n)
_ (2 + n)(c + z)a+?
(.b + 7 o4 y)a+n+l

To determine the Bayesian lower tolerance limit for an interval of

p-expected coverage we need to determine r such that

o]

o0 a+n
)

(a + n)(b + =
)a+n+l

dy
r(b+z+7y

a+n
b+ 2 ]
b+ 2z +r1

Solving this for r(x. ) yields

1,n
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We note that taking a = b = 0 again gives the fregquentist result and

that for the linear cost function mentioned above the minimizing value

)l/n+a

of r is (b + z)((n+1 - 1).

(.
The coverage of the interval [r(xl n), ®) is J Ge_aydy
’ r(x, )

1,n
-0r (x
which is equal to e

)
Lo’ The expected coverage for a given value

of 68 1is .

1
) g o0 +z)(@ " - 1)

1

= e—@b'}' E e-QZ')” v (3-)'1')
e
where 7 =p "% _ 1, The expectation in (3.4) is just mz(-ey), where
mz(t) is the moment generating function of 2z, which in this case is
L B .
(L - 5) , since 2z has the gamma distribution with parameters n
and 6. Thus (3.4) becomes

‘ -r (x; ) |
, E e L,n® _ e-@by(l + 7)-n

L
e-@bypn+a'
If a = b = 0, then this quantity is p for all 6 as it should be’
for the frequentist limit, Also this function of 6 approaches the

constant function p as n becomes infinite. The expectation of this

n
with respect td f£'(g) is p T2 my(-by) which is equal to
B
n+a L\ =8
P o(L+7y)" = p.

The accuracy criterion is
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q = Pr{6 :lr(xl,n) - dl_p(e)l < Alxl,n}

Prio: A< (b+z)y + lg 2 <alx

it

l,n}

-In p

. . -ln D
b+ z)y+ AT

Pr{o = (b +z)y -A

)

}

il

l Xl,n

-2(b + z)ln p
(o +2z)y -A

. 2(b + z)ln p
b+ z)y + A

Pr{6 <2(b + z) < | xl,n} (3.5)

Il

C(ug; 2a + 2n) - C(ul; 2a + 2n),

wvhere u, and u., are the right- and left-hand terms, respectively, in

2 1
the inequality of (3.5). Since Uy and u, are functions of Xl n
2
we need to find a function k(xl n) such that setting A equal to
s ;
m-k(xl n) will make (3.5) independent of x, , and an increasing func-
2 2

tion of n. By letting k(x, ) = (b + z)/(a + n), which will be

1,n

approximately equal to the sample mean, equation (3.5) beccomes

q = C(ug; 2a + 2n) - C(ul; 2a + 2n), (3.6)
where
-2 1lnp , -2 Inp
Yo T m ol A ’
7 T @ Yt am

and thus g will not be a function of the sample. Table IV tabulates
(3.6) for p equal to .90 and .95.

To illustrate the concepts presented above consider the example of
this section in Chapter II wheré the parameters of the prior were chosen
tobe a =3 and b =2 and the sum of, 10 observations was 6.

Then for p = .90,
e
) = (2 +6).90 13 - 1]
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ACCURACY CRITERION FOR BAYESIAN LOWER TOLERANCE LIMITS FOR

p-EXPECTED COVERAGE FOR THE EXPONENTIAL DENSITY

31

p = .90

m |.01 .02 .03 ot .05 .06 | ,07 .08 .09 .10
a+tn

L1641 .323 | LT3 | 603 | .TO5 | .T775 | .816 | .843 | .867 | .885
10 | .233 | .4s0 | .631 | .763 | .8k | .889 | .917 | .937 | .952 | .96k
15 {.285 |.537 | .728 | .846 | .906 |.938 | .958 | .972 | .981 | .987
20 | .327 | .60k | .792 | .893 | .9k0 | .96k | .979 | .987 | .992 | .995
25 | .364 | .657 | .839 | .924 | .961 | .979 | .989 | .99% | .997 | .998
30 |.396 | .709 | .873 | .945 | .97k | .987 | .99k | .997 | .999 .999‘
35 | .k25 |} .737 | L899 | .959 | .982 | .992 | .99T7 | .999 | .999
bo .41 | .769 | .918 | .970 | .988 | .995 | .998 | .999
5 75 795 | W93k | 97T | L992 | .99T | .999
50 | .4k97 | .818 | .9k6 | .983 | .99k | .998 | .999

p=.9

m .00 |.o2 |.03 | .ok |.05 6 .07 |.08 |.09 | .10
a+n | ,
| .333 | .617 | .782 | .87 | .887 | .915 | .936 | .951 | .963 | .970
10 | %61 | .774 | .893 | .9k0 | .966 | .980 | .988 | .993 | .996 | .997
15 |.550 | .85k | .9k2 | .97k | .988 | .995 | .998 | .999 | .999
20 |.616 |.900 | .967 | .989 | .996 | .999
25 | .670 | .929 | .981 | .995 | .999
30 |71k | .obo | .989 | .998 | .999
35 | .750 | .963 | .993 { .999
Yo |.780 | .972 | .996 | .999
us | .807 | .979 | .08 |
50 | .829 | .98k | .999
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= ,067

e-.o67e

The coverage for this interval, [.067, =), is , which is

plotted in Figure 3, as is 'f"(9|xl n)' To determine the accuracy of
,
the 1limit obtained, we will evaluate (3.5) for A = .05, Thus

2(2 + 6) 1In .90

_ a _ -2(2 +6) 1n .90 _
o~ 067 - .05 43.07, uy = 067 + .05 6

.26,

and

q = C(h3.o7; 26) - c(6.26; 26)
= .980.

Dividing uy and u2 by 2(b + z) 1in order to obtain the limits on 6

in the line above (3.5) yields the results that for 6 between .39

and 2,75, r is within ,05 of dl;p(e) and this interval contains

98 per cent of f”(lel n). If the sample sum had been 10, instead of
, _

6, then r(x, _) would have been .10l and the coverage of the inter-

1,n
. -,1018 . .
val obtained would be e . For this case u, = 21.54 and

Figure 3 Figure b
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ul = 7.27 and thus the accuracy of the limit obtained is

q = C(21.54; 26) - c(7.27; 26)

= .287.

Thus for 6 between .30 and .90, r = .101 1is within .05 of

).

d; p(e) and this interval contains 28,7 per cent of f"(@lxl o
- . ;

This latter situation is shown in Figure U4,
In order to investigate the average sample size for the multi-
stage sampling procedure described abbve, a.Monte.Caflo study was done

for some selected values of p, @, A, and for a and b, the

parameters of f'(6). As a choice for 6, we choose the case where 6
takes on its expected value which is a/b. This may appear to be a
utopian choice, but it is our intention to show the behavior of our
sampling procedure in the expected situation and not the possible
extreme situations. TFor the distributions under consideration, the
procedure given on page 27 becomes:

1. Let m = AJk(0) = an/b and determine n. such that (3.6)

1

holds for the specified p, g, and m, .

2. Take a sample of size n, from £(x|9 = a/v), calculate

1 n) = ml(b + z)/(a +n), and compare this with the chosen A,
)

3. If m, -k(x ) is less than or equal to A, then (3.6) is
1 l,nl

satisfied. If it is greater than A, we adjust m downward, cbtaining

m, = A/k(xl,nl) = (a + nl)A/(b + z), determine the number of
additional observations required, and take the additional sample. Then

m, -k ( ) is compared with A and the decision made as to

2 xl,n +1,

12
whether or not an additional sample is required.

To i1llustrate this, let
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Thus, assuming 6 has a prior distribution which is a gamma with
parameters a =3 and b = 2, we wish to obtain a lower tolerance
limit for expected coverage of .90 and in addition we want to have
95 per cent confidence in being within .06 of the actual lower .90
probability point. As an initial choice of m in equation (3.6) we

take m, = A/k(0) = aA/b = .09, and from Table IV we see that a + n

1

should be ten and thus the initial sample size is seven, Suppose the

sum of these seven observations is z = 8. Then m'k(xl n )
. J l

= .09(2 + 8)/(3 + 7) = .09, which is larger than A = ,06, and an

additicnal sample is required. The next choice of m 1is

)

we see that for g = .95, a + n should be 17, . and so an additional

= (a + nl)A/(b + zl) = 10(.06)/10 = .06. Interpolating in Table IV

seven observations are required. If the sum of these seven observations

is six, then m -k(xl’n o ) = mg(b +2)/(a + n) 1is equal to

2
L06(2 + 14)/(3 + 14) whichgis less than the chosen A. Thus in two
gsteps we have obtained a lower tolerance limit for .90 expected
coverage and with the specified accuracy. Table V presents the
average sémple size for this procedﬁre for some values of 'p, g, A, a,
and b, Each entry is the average of 100 repetitions of the sampling
procedure, Three entries are blank since the program was limited to
a +n = 50, |

As an alternative to letting A = m-k(x n) we may let

l’
A =—m[var(y‘9)]i and (3.5) will then be the posterior probability that

r(x is within m standard deviations of dl_P(e). Since the

l,n)
variance of the exponentiai distribution is 1/62, (3.5) becomes
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TABLE V
AVERAGE SAMPLE SIZE FOR BAYESTAN LOWER TOLERANCE LIMITS

FOR p-EXPECTED COVERAGE FOR THE EXPONENTIAL DENSITY

P ' .90
q .90 | .95
A .06 .08 .10 .06 .08 .10
a,b
1,3 36.37 25.91 21.95 - —-- 31.28
1,2 23.06 21.16 15.85 --- 31.73 25.29
2,3 19.74 14, 9k 9.3k4 30.65 © 23,77 15.59
1,1 12.30 - 8.52 6.19 19.19 13.0k 10.23
2,2 | 11.34 7.42 i.98 18.15 12,148 8,34
3,3 9.79 6.52 4,31 17.80 10.59 7.43
3,2 5.69 3.22 1.59 9.02 5,28 3.70
2,1 L.20 2.61 1.8k 6.75 L.79 3.93
3,1 1.47 1.46 1.50 2.68 1.59 1.49
p .95
q .90 .95
A .06 .08 .10 .06 .08 .10
~a,b
1,3 11.91 8.77 7.91 17.82 13.39 12.16
1,2 8.43 7.78 6.07 12,70 11.84 9.47
2,3 6.73 L, 71 2.91 10,84 8.02 5.79
1,1 5,16 . 3.86 2.8k4 7.55 5.1k4 L.12
2,2 3.89 2.67 1.68 6.11 b1k 2.86
3,3 2.93 1.58 1.61 5.37 2.97 1.73
3,2 1.64 1.L48 1.54 2.83 1.58 1.k0
2,1 1.45 1.43 144 2.53 1.63 1.39
3,1 1.49 1.43 1.53 1.53 1.51 1.57
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q=Pr{o:|(d + z)y + lg Pl s g-‘ xl,n}
= pr{o: e(ﬂ%u)s 2(b + 2)8 < 2(“233—-11) | %, 1.

Since 2(b + z)8 has the x?(Ea + 2n) density and since q is not a

function of x this function can be used to determine the sample

1,n’
size necessary to obtain a p-expected coverage tolerance interval with

a glven confidence q that the limit obtained is within m standard

deviations of dldp(e).
The Normal Distribution

We shall consider the same three cases as in Chapter IT.
Case 1. o known,
For this case

2, 2
P(yly) = o~ (H)/2T

£1(0) o« o o(n-a)?/20"

2 2
. -{b+n ~-A 20
£ (ulx, ) e (o+n) (u )»/ g

b4

and
: 2 2
.‘ B(y-2)?/20
h (ylxl’n) x e 4 }
where
ba + nx b»%‘n
A= +n 7 B b +na+ 1
Thus, r(x, _), the lower p probability point of h"(ylxl n)’ is
’
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’ 1
r(xl‘n) =A - z_pc/Bg.

Taking b = 0 gives the usual frequentist limit. The accﬁracy is

o)
il

1 -
. 2
Prip: |A - ch/B - {p - zpo)l <A | Xl,n}

1l

Pr{p :(b+n)%[zp(B‘%-1) - &fe) sz < (b+n)%1zp(3f%-1).+ INEIEY

where 2z has a N(Q,l) distribution. Note that q 1is an increasing
function of n, and for fixed n, a decreasing_function of o, Dboth
of which results we would expect intuitively. Also q is not a

function of xl,n so that we can predetermine the sample size neces -

sary for a given accuracy. Table VI gives values of ¢q for some values

of p, b +n, and Afo.

TABLE VI
ACCURACY CRITERION FOR BAYESTAN LOWER TOLERANCE
LIMITS FOR p-EXPECTED COVERAGE FOR THE

NORMAL DENSITY WITH KNOWN VARIANCE

p .0 .95
A/o‘ 2 3 b 5 2 3 L 75
b+n

5 .333 .82 611 .719 .326 72 .600 .708
10 465 .648 .785 .879 460 642 .780 .875
15 .555 .T48 87k .9kl .552 LTS 871 ] .ok2
20 624 .816 .923 .973 .621 .813 .922 .972
25 679 .863 .953 .987 676 .861 .952 .986
30 .72k .897 .971 .99k .721 .896 | .970 .993
35 761 .922 | 981 | 997 | .759 | .921 | .98L | .997
40 792 | o1 | .988 | .998 | .790 | .90 | .988 | .998
L5 .818 . 955 .993 | .999 .817 .95k .992 .999
50 Bul | .965 | .995 80 | .965 | .995




- Case 2. u known.

For this case

2 2
1 - 20
f(.YlG) o E‘ € v / ’
w+1l 2
HORYO RS
w+l 2
" 1 -WV/2¢
f (Glxl,n) < (E) e ’

and
W+1

- m—

2., 2
n'(ylxy ) e Dv+ v

where W=w +n and V= (wv + Zx?)/w. In order to obtain r(xl

we first make the change of variable in (3.7) of
y = u-V%.

Then

and so u = y/V% has Students t distribution with W degrees of
freedom. Hence

) = tl_p(w + n)V%

= tl_p(w + n)(wv + Zx?)%/ﬁv+ n)%.

The accuracy of the limit in this case is

}

¢ =Pri{o: |t (W)V% - zpcl <A | %)

P n
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. 1
tp (W‘)V% t, (w)ve
= Pr{o P - A s.c < = + 4| Xl,n} (3.8)
P P
for p > .50. In this case g 1is a function of X] 4 and hence in
. 2

order to apply the algorithm for obtaining a limit with a given degree

of accuracy we need to find a function k(x such that by letting A

l,n)

equal m-k(xl ), (3.8) will be independent of x Letting

PR 1,n

t (W) - t (W
q = Pr{o p( )1 - < L < p( )1+ - I X }
z W2 (wv)® z WE o
P
EW 2W
= Prio i 5 < w—g—s s = | % .} (3.9)
(t_ (W) + m) o (t_ (W) - m) n
p P
= C(uz; W) - C(ul; W),

where Uy and Uy are the right and left side of (3.9) since as noted
on page 17, WV/G2 has a x?(w) distribution. Table VII gives values
of q for some values of p, w +n, and m.. .

As an alternative we might choose A equal to mo. Then (3.8)

becomes

= Prio: |t W'V% - 7 0| € mo X
q = Prio: |t (W) o°l JESN,
o 2
W(z_ - W
) Wz, -m)T gy Wz s m)
= Prio: P CET -—E’(——)—l %) nd
£t (W o £ (W
P P
= C(ug; W) - Cluy; W)
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where U, and u, are the right and left sides, respectively, of the

above inequality. Thus we can determlne the sample size necessary to

have q  confidence that r(xl’n) is within m standard deviations‘of
dl_p(o).
TABLE VII
ACCURACY CRITERION FOR BAYESTAN LOWER TOLERANCE
LIMITS FOR p-EXPECTED COVERAGE FOR THE
NORMAL DENSITY WITH KNOWN MEAN
P | .90 | .95
m .25 .50 .25 .50
w+n . ‘
5 375 709 .25k 513
10 573 893 433 779
15 . .689 .97 .548 .88k
20 .788 .970 .630 . 933
25 .821 .982 .693 ' .958
30 .860 .989 .Th3 - 972

Case 3. p and o unknown

vFor this case
2 2
1 -(y- 20
f(YlH)G) oca_.e (v |J~) / ’

and as in Chapter II

w+le~wv/202

and



b1

Thus

W+1

" 2 2
" (ylx, ) = WV + (v - A)°B/(B + 1)] °,
J .
where A, B, V, and W are defined on page 19. Thus the variable
i
u= (y - A)[B/V(L + B)]® has a Students t distribution with W degrees

of freedom, and so

r(xl,n-) = A + tl_P(W)[V(l + B)/B]%
= ba+n§'+ t (w+n)[(wv+ba2+2x2 - iEEiEg}EQ(b+n+l)/(w+n)(b+n)]% (3.10)
b+n 1-p i b+n

This is the result for b > 0. If b =0, then w+ n is replaced by

w+n - 1. Note that if b =w =0,

)= T4t n - DIEG, - D/ - 1)@+ 1)/aF

i

n

- n+ 1-%
X + tl_p(n - l)s[——ﬁ——]-,

which is the usual frequentist result. To determine the accuracy of the

tolerance limit (3,10) we need to evaluate

}

@
i

Pr{(u, o): [a + ¢ (DIVQ + 8)/B1% - (u. szl ==

Pr{(u,_d) HI Y

l_P(W)[V(l + Bv)/B]% A<y - A - 2,0 <

tl_P(W)[V(l + B)/B‘jiF + A | xl,n}..‘
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@

Makirig the change of variables 1 = B%(u -A)/oc and v = V/ce, as in

Chapter II, page 20, the accuracy is

No)
I

Pr{(n, v) @ tl_p(w)(l + B)% - AB%/V% < (q - zpB%)/v <

b (L + )% 4 aB3/vE). (3.11)

Pr(ul <us< ue),

where uy and Uy are the left and right sides, respectively, of the
1

inequality in (3.11) and u has +t'(W, -zpBE) distribution. Since

) in

(3.11) is a function of x we need to replace A by mrk(x

1,n’
order that (3.11) will not be a function of x

l,n

1,n° Letting

k( = V% will accomplish this and our algorithm for multi-stage

Xl,n)
sampling can be applied to obtain a lower tolerance limit for

Pp-expected coverage and ¢q accuracy.

Concluding Remarks

In this chapter we have considered a Bayesian approach to p-
expected coverage tolerance intervals and have_proposed a criterion for
measuring the accuracy of the tolerance limits obtained., The criterion
is the probability, conditicnal on the sample, Xl,n’ that the value pf
the 6 we drew was one for which the tolerance limit, calculated for
the sample, was within some amount, A, of the true . p probability
point of f(YIQ). If this probability was inﬁependent of Xl,n then
the sample size could be determined so that a tolerance limit with a

given accuracy could be obtained and if not, a multi-stage sampling

procedure was developed so that a specific accuracy could be obtained.



CHAPTER IV

SENSITIVITY OF BAYESIAN TOLERANCE INTERVALS TO AN

INCORRECT CHOICE OF THE PRIOR DISTRIBUTION

As we have observed in the two previous chapters, if the experi-
menter is willing to assume that his choice of a prior distribution for
the parameter of interest actually describes the true situation, then
the Bayesian approach will provide more accurate tolerance limits for a
fixed sample size. To speak of the prior actually describing the frue
situation we must limit ourselves to-the situation where the parameter
is ‘a random variable. If we consider the parameter fixed but unknown
and choose a prior distribution to describe our state of knowledge, then
it is illogical to talk about the inaccuracy.of our "state of knowledge"
distribution, since we presumably chose 1t to describe our state of
knowledge as well as possible, Thus if @ 1s actually a random vari-
able and we are faced with the task of selecting a function which
describes its distribution, we need to be aware of the risk of making a
wrong selection.

As an illustration, and for tractability, we will consider
p-expected coverage tolerance intervals for the exponential distribu-

tion. As we showed on page 29, the expected coverage at each 6 1is

n 1 '
er97Pn+a, where ¥ =1p e 1, and the expected coverage in the long
run is p when the prior distribution of 8 1is actually a gamma

distribution with parameters a and b. But suppose the actual

k3
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distribution of 6 ‘is still one of the gamma family, but with

parameters a' and b'. Then the expected coverage in the long run is
2 2
-8y _n+a n+a
E e 7p = m6(4b7)P
n

il

(1 + by/or) @ p*8, (4.1)

where mu(t) is the moment generating function of the random variable
u. This expectation is equal to p when a =a' and b =Db'., For
fixed a, a', b, and b' the expected coverage approaches p as n
increases. 1In fact as n becomes infinite it makes no difference what
the prior distribution is, or was thought to ﬁe.

| Consider now the mean square error (MSE) of the coverage. We

need to evaluate

-or(x, )
MSE (coverage) = E(e Lin® p)2
3 Or(x. ) -or(x. )
= varfe L ] + (Be Ln®_ p)2,
L
' “n+a )
where r(xl n) = (b + z)(p -1) = (b + z)y. We first evaluate
3 .
~or(x, . '
var[e ’7 71 by the familiar relationship
var (u) = var(EulV) + B var(ulv), (%.2)
, -er(xl n)
where for our case u = e ’ and v = 8. Now
ke (x ) —I.l—. | _.2_1_1.
E(e Lo le) = e-6b7Pn+a and the variance of this is pn+avar(e-eb7l

We next obtdain -



b5

2

var(e_eby) = E e 2007 _ (E e—eby)

-a!

It

(1 +2by/0') 72" = (L4 by/or) 28",
Thus the first term on the right side of (4.2) is

2n
na ot _Oat
p e [(1 £ 20y /o) L (14 by o) R ].

Evaluating the second term, we first obtain

var (e—er(xl,n)le) = var (e~e(b+z)7le)

e 27 yar (e-ezyle)

1l

e-26b7[E(e—2627b) _ (Ee-ezyle)EJ

-26b - -2n
= e 7[(1+27) B (14y) ]. (4.3)
Taking the expectation of this with respect to 6 gives

-6r (

E[var'(e Xl,n)[e)] = (1 + 2b7/b')—a'[(l +en) ™ (1 7)-2n]

and thus (4.2) becomes

. -Or (X ) 1 !
var[e Lo ] = (1+2by/o') ™ (1+2y) 7 - (l+7)'2n(l+b7/b')-2a , (4.4)

-1

where we have replaced p o by (L+7y). If a=a' and b ="'

then this reduces to

)-(a+n)

(1 + 2y - (1 + 7)-2(a+n). (%.5)

Note that if we let a =b = 0 1in (4.3) we will obtain the veriance of
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the coverage for the frequentist interval which is just (4.5) with

a = 0. 8ince this is a decreasing function of a + n, the variance of
the coverage for the Bayesian limit is less than that for the frequen-
tist for a fixed sémple size 1f the correct prior is assumed.

Combining (4%.4) with the bias squared we obtain

-2'a

- 1
S 1+ by/p') +

14 2n) o (14 ) Y

MSE (coverage) = (1 + 2by/b')

[(L+by/o)2 (1 + )™ -pF

-a'( )-n 2

- ‘ -
= (1 + 2by/p") B+ 2y)™ < op(l o4 by/o') 1+ + D .

Table VIII gives the expected coverage and MSE (coverage) for some
assumed and actual prior distributions and sample sizes, To illustrate
Table VIII suppose that a Bayesian lower tolerance limit was obtained
for p= .90 and n = 10, If the prior density was assumed to have
parameters a = 1 and b = l; and the actual parameters were a = 3
and b = 1, then in the long run the expected coverage would be .883
and the mean. square error of the coverage would 5e .001213, For the
same situation a sample size of thirty would lead to an expected
‘coverage of .89% and mean square error of 50003Ll. The values of a
and b are listed in order of increasing a/ﬁ, that is, in increasing
order of the mean of the prior distribution. Note thaﬁ the expected
coverage decreases as a/b increases. We would expect this intui-
tively since for 6's which are larger than those expected, the 1 -p
pro%ability point will be smaller than that expected under the assumed
prior, and thus we will be less likely to actually cover the proportion,
p. Conversely, for 6's actually less than those expected we will be

more likely to cover more than the proportion, p. The terms on the
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diagonal'of Table VIII are the mean and variance‘of the coverage for
each of the priors. These quantities are the séme as those for the
frequentist tolerance limit 5ased on a sample of a + n. Thus.if it can
be determined that the prior distribution of 6 is gamma with a = 2,

b =>3, then, over the long run, the variance of the coverage for thé
Bayesian tolerance limit for sample of size 10 will be the same as
that of the frequentist limit fof'sample size 12. Another fact to note
is that for fixed a, b, and n, the MSE (coverage) is a decreasing
function of p. Thus the coverage of intervals of the form [O; r]
will vary more than the coverage of interval of the form [r, =], where

in both cases p-expected coverage tolerance limits are desired for

P > .5.



TABLE VIIT

EXPECTED COVERAGE AND MEAN SQUARE ERROR FOR

BAYESJAN LOWER TOLERANCE LIMITS FOR

THE EXPONENTIAL DISTRIBUTION*

L8

p = .90
n =10
Actual a,b '
Assumed

a,b 13 1,2 '2}3 1,1 2,2 3,3 3)2 2}1 3,1
1,3 900 .896 .891 .883 .883 .883 .870 .858  .83L
810 910 okl 1608 1315 1213 2025 3565 6599
1,2 .903  .%00  .897 .892  .891 .891 .883 .875 .858
783 810 805 1079 941 893 - 1213 1884 3210
2,3 .908 .90k  ,900 .892 .892 .89 .881L .869 .87
756 780 743 1197 91 853 1368 252k L797
1,1 .906  .904  ,903  ,900 .900 .900 .896  .891  .883
787 781 766 810 e 761 803 941 1213
2,2 .911  .908 ..905 .900 .900 .900 .892 .88k  .869
e 756 710 863 743 702 - 853 1310 2212
3,3 .915 ~ ,911  .907 - .900 .900 .900 .889 .879 .858
: 816 783 698 989 76k 686 977 1834 3518
3,2 917  .915 .912  .907 .907  .907  .900  .893  .879
868 816 740 803 698 662 686 980 1558
2,1 913 .912 .911 .908 .908 .908 .90k  .900  .892
821 o4 T60 756 725 71k 687 Th3 853
3,1 .920  .918 .917 .915 .915 .915 .911 .907  .900
oLk " 903 855 816 789 779 703 696 686

*MSE (coverage) = lO"6 times quantity in the table.



TABLE VIII (Continued)

kg

p=.90
n = 30
Actual a,b
Assumed
a,b 1,3 1,2 2,3 1,1 2,2 3,3 3,2 2,1 351
1,3 900 .898 .897 .89k .89k .89k .889 .885 .876
289 302 306 395 354 341 LL7 659 1079
1,2 .901 .900 .899 .897 .897 .897 .89k .891 .885
286 289 288 324 306 300 341 430 607
2,3 .903  .901 .900 .897 .897 .897 .893 .888  .880
e 282 285 280 347 309 296 371 545 891
1,1 .902  .902 .90l .900 .900 .900 .898 ,897 .89k
286 285 = 284 289 28L 283 288 306 341
2,2 .90k .903 .902 .900 .900  .900 .897 .894 .888
‘ 285 282 275 297 280 274 296 363 Los
3,3 .906  .904  .903 .900 ,900 ..900 .896  .891  .883
292 287 273 320 28L 272 318 459 738
3,2 .907  .906 .905‘ .903 .903  .903 .900  .897 .891
300 292 280 290 273 268 272 319 L2
2,1 .905 .90k .90k  ,903  .903 .903 .901.  .900  .897
291 287 283 282 278 276 272 280 296
3,1 .908 . .907 .907 .906  .906 .9% .90%  .903 .900
311 305 292 288 286 27k 273 272

298




TABLE VIII (Continued)

50

p=.9
n = 10
Actual a,b
Assumed >
a,b 1,3 1,2 2,3 1,1 2,2 { 3,3 3,2 2,1 3,1
1,3 950 .948  .946 - .94l .94l .94l  .935 .98  .915
215 243 252 438 355 327 552 990 1860
1,2 951 .950 .949  .946  .946  .946 .94l  .937 .928
207 215 214 290 252 239 327 514 885
2,3 .954  .952 .950 .96 .96 946 940  ,93h  .922
199 206 197 323 252 228 370 696 1341
1,1 .953  .952  .951 .9H0 .950 .950 948 = .9k6 9Ll
207 206 202 215 205 202 214 252 327
2,2 .955 .95k 953 .9%0  .950  .950 .96 .9k2 93k
203 199 187 229 197 186 228 354 605
3,3 .958 956 .95k 950 .950  .950 .94k .939 = .928
213 205 183 264 203 182 263 502 977
3,2 .959 .98 .956 .95k .95k .95k 950  .9k6  .939
226 213 194 211 183 174 182 263 423
2,1 95T L9566 .955 .95k .95k 95k 952 950  .9L6
215 208 199 199 190 188 181 197 228
3,1 960 .959 .99 .98 .958 .958 .56 .95k .950
o5 235 223 206 203 184 183 182

213
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TABLE VIII (Continued)

p = .95

n = 30
Actual a,b
Assumed ‘

a,b 1,3 1,2 2,3 1,1 2,2 3,3 3,2 2,1 | 3,1,
1,3 950  .949  .9k8  .9h7 947  .9hT .945 .9h2 .38
76 8 81 105 oL 91 120 177 292

1,2 .951 ,950  .949 .9@ .ok8 L9488  ,oh7 945  9h2
75 76 | 76 86 81 79 9l 115 163

2,3 .952 .951  .950 .o48 .98 - .9h8  ,946 .ok 939
S Th 75 T4 92 82 79 99 146 2h1

1,1 .951  .95L  .951  .950  .950  .950  .949  .948  ,9h7
76 [CEEN 76 5 P, 76 81 91

2,2 .952  ,952 .951  .950 .950 .950  .948  .9h7  .ohk
5T+ T3 79 T+ 73 18 97 133

3,3 | .953 .952 .951 .950 .950 .950 .948 ,9L6 .okl
7 iP) T2 85 > 72 8l 123 199

3,2 | 2953 .953  .952 .95l  .951 . .951 .950 .949  .9k6
9 - T7 Th 76 72 L 72 85 110

2,1 2953 .952  .952  ,952  .952  .952 .951  .950  .9u8
oo ™ 73 73 72 Th T8

3,1 .95k .95k .953 .953 .953 .953 .952 951 .950
82 80 78 7 6 75 72 T2 T2




CHAPTER V
SUMMARY AND EXTENSIONS

In this thesis we have investigated a Bayesian approach to
tolerance intervals and have proposed criteria which can be used to
measure the accuracy of the tolerance interval obtained or to determine
the sample size neceséary for a tolerénce interval to have a specified
accuracy. In Chapter Ii we considered ¢q tolerance intervals for p
coverage, that is, intervals in which we have q confidence that the
coverage will be at least p. In Chapter III we considered p-expected
coverage tolerance intervals and in Chapter IV we investigated the
sensitivity of Bayesian p-expected coverage tolerance intervals for the
exponential density to the aséumption of a prior density on the parame-
ter 6.

In Chapter IT, 'we measured acgufaCy by considering the probability,
given the sample, that the 9 we drew was onebfor Which the coverage of
the intgrval obtained was ét least some proportion p', greater than
the desired coverage p. Denoting this probability by q', we saw that
for some cpmmon-densitieé and priors, q' was a decreasing function of
the sample Size.aqd was not a function of the actual Sample. One
question to be answered would be whether these properties were due to
choosing natural conjugate priors, good fortune, or both.. In other
words, for. what class of prior densities is q' a decreasing function

of sample size, but not a function of the actual sample.

52
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For a specifieq prior aﬁd any statistic, - t(xl,n)’ it is fossible,
although perhaps urltractable, to find f"(elt(xl,n)), and from this to
determine a Bayesian tolerance limit, and also the accuracy, say q'(t).
The question then arises as to whether there exists a statistic t*(xl,n)
such that q'(t¥*) < q'(t) for all +t. Thus it would be of interest to
determine what priors and what statistics, if any, lead to most

accurate Bayesian tolerance intervals,

The accuracy criterion we considered for Bayesian p-expected
coverage tolerance intervals was the probability, given the spmple, that
the limit obtained was within A of the iower p. probability point of
f(y|6). For the case when this probability is a funetion_of the sample,
we proposed a nmulti-stage éampling procedure and did a Monte Carlo
investigation of the average sample size required to obtain a specified
accuracy. 'Again in this case it would be of interest to explore the
possibility of the existence of a statistic t*(xl’ﬁ) which would lead
to most accurate tolerance limits,

Other possible areas of investigation include an empirical Bayes
approacﬂ to tolerance intervals, discrete prior densities, and multi-
parameter densities such as the Weibull and generalized gamma. Hence it
appears that there are several aspects of a Bayesiah approach to

tolerance limits to be investigated in addition to the sample size

determination aspect with which this thesis has been concerned.
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