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CHAPTER I 

INTRODUCTION 

The procedure used to obtain tolerance regions can be stated as 

follows: the result x of an experiment E is used to obtain a region 

R(x) in which it is predicted that a proportion p of future repli­

cates y of E will occur. For example, a manufacturer of transistors 

may wish to predict the lifetime which will be exceeded by 95 per cent 

of a batch of transistors, From a sample of the batch he obtains an 

interval, R(x) := [r, co), in which it is predicted 95 per cent of the 

transistor lifetimes will occur. In slightly less general terms it is 

predicted that the interval obtained will cover the upper 95 per cent of 

the distribution of lifetimes, 

The determinati.on of tolerance intervals for distribution free 

variates was first developed by Wilks [9], who utilized the distribution 

of the order statistics. OthersJ including Bain [4] and Wald and 

Wolfowitz [8], obtained tolerance intervals for variables whose distri­

bution belonged to some specific family of distributions, For the 

example of the previous paragraph, if the manufacturer had reason to 

believe that the lifetimes of each batch of transistors he obtained had 

a normal distribution, and that only the parameters changed from batch 

to batch,then he would use the results of the latter approach, If he 

could not assume a specific family of distributions, then he would use 

the results of Wilks. 
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Until 1964, when Aitchison [1] formulated a Bayesian approach, the 

field of tolerance regions had not attracted the interests of the 

Bayesians. This approach extends the parametric approach by assuming 

· that the parameters of the family of dis·tributions have some known dis-

tribution. It is with this approach that we shall be concerned and in 

particular it is the purpose of ·this thesis to investigate criteria of 

accuracy-for Bayesian tolerance intervals and to relate these criteria 

to the determination of sample size. Since the Bayesian assumption of 

a prior distribution for the parameters of the family of densities of 

interest is a touchy one, we shall also investigate the sensitivity of 

tolerance intervals for the exponential distribution to inaccuracies in 

the assum.ption of the prior distribution. 

Let X l,n 

Formulation of the Problem 

represent the observations x1, x2 , ... , xn from an 

experiment E, where the come from the density f(· le). Let y 

be a future observation from f, • I e > where the indexing parameter e 

has the same value for X l,n and y. The coverage of a region, 

R(x1 ), ,n is defined as 

c(Rle>'·= J f(yle)dy. 
R(x1 ) ,n 

We shall consider two types of tolerance intervals. The first is 

a q tolerance interval for p coverage. The interpretation of this 

interval is that we have q confidence that_ the coverage will be at 

2 

least p. This will be the topic of Chapter II. The second type, to be 

discussed in Chapter III is a p-expected coverage tolerance interval. 
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Throughout this ·thesis we shall pe coricerned with intervals of' the form 

[r, co), or in other words, we shall be ·interested in obtaining a lower 

tolerance limit, r, However, upper tolerance limits can be obtained by 

replacing q and p by 1 - q and 1 - p, respectively. 

The Bayesian Approach 

Let f' (e) represent the density of e defined on the parameter 

space 0,- where e is the parameter of f(· je). Then, by Bayes' 

theorem, we obtain 

f"(elx ) l,n = J f(x1 le)f' (e)de ' 
0 ,n 

the posterior density of e, conditional on This density will 

be used to obtain Bayesian tolerance limits and tolerance intervals. 

We may 'pe l('!ld to make the auumption of a prior density, :f'' (a), 

i:f' 9 is actually a rand.om variable or if 9 is fixed., but unknown, 

and f' (9) represents the "state o:f' knowledge" about e, The first 

reason would be applicable to the example at the first of this chapter. 

The average lifetime of a batch might be e, and this would vary from 

batch to batch in accordance with f'(e). 

For the Bayesian approach we will be concerned with probabilities 

arising from f"(elx ). l,n The non-Bayesian approach is concerned with 

probabilities arising from f(x1,nje) and which are interpreted as the 

relative frequency arising from repeated experimentation, so that we 

shall refer to this as the frequentist approach. 
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Notation 

Let U be a random variable which has the chi-square distribution 

with m degrees of freedom. Then we shall denote its density by 2 
X (m) 

and its cumulative distribution function evaluated at 11 1;3.s C(u; m). 

The solution for u of C(u; m) = q will be 
2 

.'Xq_ (m) and will be 

referred to as the q probability point of U. If U has a noncentral 

t distribution with m degrees of freedom and noncentrality parameter 

cJ then its density will be denoted by t' (m, c) and its q probabil-

i ty point by t~ (m, c). These same quanti.ties will be denoted by t (m) 

and tq(m) for the central t distribution. The density for a 

normally distributed random variable with mean µ and variance 
2 

(J 

will be denoted by N(µ, a2). The q probability point of a standard 

normal variable will be denoted by zq, 'rhe expression 

Pr[ u : statement v} = q will be interpreted as follows: Let S(u) be 

the values of u which satisfy the statement. Then 

q = J dF(ulv). 
S(u) 



CHAPTER II 

q TOLERANCE INTERVALS FOR p COVERAGE 

Our objective is to obtain an interval R(x1 ) = [r(x1 )) oo) in 
.in ,n 

which we have q confidence that C(RJe) is at least Po The 

frequentist approach is to determine R(x.1 ) 
Jn 

so that 

Pr[x1 : C(Rle) > pJe} = q for all Bo 
Jn 

This is accompUshed by solving 

d 

F(d1 (e)le) = 1 - PJ 
-p 

where 

F(~le) = J f(yje)dy, 
-oo 

for d.1 (e) and substituting a q confidence 
-p 

limit on e for e in a.1 _p(e)o If dl-p(e) is a decreasing function 

of eJ· then an upper q confidence limit is used, since we wish to 

have q confidence in obtaining a value less than d1 (e) 0 

-P 
If 

d1 _P(e) is an increasing function of e, a lower q confidence limit 

is used., The interpretation of the interval obtained is that if samples 

of size n are repeatedly taken and obtained, then 

cent of the intervals [r (x1 n) .i oo) wi.11 cover the interval 
J 

[dl (e)J oo)J regardless of wbat value e haso -p 

lOOq per 

The Bayesian approach, as formulated by Aitchison [1].i differs from 

the frequentist in that instead of substituting a q confidence limit 

on e into d1 ... p (e L 

stitutedo An upper 

a q probability point of f" (e I x1 ) is sub -
.in 

q probab:i.li ty point is used when dl-p (e) is a 

decreasing function of e and a lower q probability point when it is 

5 



an increasing function of B, To better see this, let 6 (x1 ) be 
g_ , n 

the g_ prubabili ty point of f"(elx ) l,n 
and consider the case where 

d1 _P(e) is a decreasing function of B. Then 

g_ Pr[ e : e :.,:; 6 (x1 ) I x1 } 
g_ ,n ,n 

Pr[B: d1 (6 (x1 )) :.,:; d1 (e)lx1 }, 
-p g_ , n -p , n 

Thus if we take r(x1 ) = d1 (6 (x1 )), we will have g_ confidence 
, n -p g_ , n 

that the interval [r(x1,n), oo) covers the interval [d1 _p(e), oo), If 

d1 _P(e) is an increasing function of e, then 

= Pr[B: d1 (6 1 (x1 )) :.,:; d1 (e)lx1 } 
-p -g_ , n -p , n 

and r(x1 ) = d1 (6 1 (x1 )) will be the Bayesian lower tolerance 
, n -p -g_ , n 

limit for this case, 

The interpretation of this approach is that if we consider the set 

of values of e for which the coverage of our interval is at least p, 

then this set has probability measure, given x1 n·' of g_, In other 
J 

words., the probabili.ty is q_ that the value of the e we drew was one 

of those for which the coverage of the interval was at least p, For 

the experimenter who just has one opportunity to obtain an interval of 

p coverage, and who is willing to make the assumption of a prior dis-

tribution., this interpretation may be more acceptable than the frequen-

tist interpretation, 

An Accuracy Criterion 

Since we can obtain Bayesian g_ tolerance intervals for p 

6 



7 

coverage for any sample sizeJ the question arises as to what properties 

of the interval obtained depend on sample size and what properties 

measure accuracy in some sense, Since q is the probability, given the 

sample, that the e we drew is one for which the coverage is at least 

pJ we may want to consider the probability, given the sample, that the 

e we drew is one for which the coverage is at least p' J where p' is 

between p and L If we call this probability q 1 , our tolerance 

interval would become more accurate as q' decreases in the sense that 

we have q - q' confidence that the coverage is between p and p 1 , 

Thus as a measure of the accuracy of a Bayesian lower tolerance limit we 

shall consider 

q' = Prfe: r(x1 ) s;; d1 , (e)lx1 }. 
, n -p , n 

(2, 1) 

This is analogous to a freg_uentist accuracy criterion proposed by 

Goodman and Madans'ky [6] and investigated by Faulkenberry [5]. In order 

that (2,1) be used to predetermine the sample size necessary in order to 

obtain a limit r(x1,n) with a specified accuracy g_~, g_' should not 

be a function of x:l ,n s.nd should be a decreasing function of n. 

we shall see, these conditi.ons are met for some familiar distributions, 

The interpretation of a Bayesian tolerance limit and the proposed 

accuracy criterion (2,1) are illustrated in Figure L For a given 

sample x1 , r(x1 ) ,n ,n is obtained., and the coverage of the interval 

= [r(x1 n), co) 
J 

R(x1 ) ,n 
is obtained as a function of e. This is the 

function which we defined in Chapter I as C(Rle). We plot C(Rle) 

(The ordinates for C(Rle) and for and superimpose 

f 11 (a IX ) t · 1 th ) " are no necessari y e same. l,n 
The Bayesian tolerance 

interval then has the property that the set of B's for which C(Rle) 



is at least p comprises lOOq_ per cent of the 

Thus the value of e for which C (RI e) = p is 

density f"(elx1 ). ,n 

o (x1 ) , If a q_ , n 

different sample were obtained, C (RI e) would change as would 

f"(elx ) but in such a way that tl).e q_ probability point of 
l,n 

f"(elx ) would still correspond to C(Rle) == p. The accuracy of the 
l,n 

limit obtained is the probability of the set of e's for which C(Rle) 

is at least p' and so C(Rle) = p' corresponds to the value 

e = o 1 (x1 ) . For a larger sample size we would expect the situation q_ , n 

in Figure 2, that is, a smaller q'. 

p 

f"(elx 
,; l,n 

8 

o 1 (x1 ) 
q ,n 

e ----:-(-~----5-.( ..... xl-.... )- e 
oq, xl,n q ,n 

Figure 1 Figure 2 

We now consider Bayesian tolerance limits and the accuracy 

criterion (2.1) for some specific distributions. 

The Exponential Distribution 

Let 

X > 0; 8 > 0. 



We shall consider here a gamma prior density 

e > O; a> o, b > 0. 

Applying Bayes'· theorem gives 

where 
n 

z = I: x .. 
1 J. 

Cl) 

Now, J ee -exdx = 
d 

-ed e and setting this equal to p 

e > o, 

we obtain 

d1_P(e) = (-ln p)/e, a decreasing function of e. Since 2e(b + z) 

has a x2 (2a + 2n) distribution, 6. (x1 ) = x_2 (2a + 2n)/2 (b + z), q ,n ·q 

Thus, substituting this for e in (d1_ple), we obtain 

9 

r (x1 ) = d1 ( 6 (x1 ) ) 
, n -p q , n 

-2 (b + z )ln p = _2 _______ ___ 
(2.2) 

Xq_(2a + 2n) 

We note that the frequentist solution for r(x1 ) ,n is obtained by 

taking a= b = 0, 

To determine the accuracy of the limit r(x1 ) we need to ,n 

evaluate 

q 1 = Pr{ e : r (x1 ) $; d1 , ( e) I x1 } 
,n -p ,n 

= Pr[e: -2~b + z)ln P $; -1~ p' lx1,n} 
Xq_(2a + 2n) 

..... 1n p' 2 I 
= Pr[e: 2(b + z)e ""ln P Xq_ (2a + 2n) x1,n} 

= Pr{u s ln P 1 2 (2 2 ) } ln p Xq_ a + n , (2 ,3) 

where u has a x2 (2a + 2n) density, This is a decreasing function of 
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n, as· we can see from Table I which tabulates values of q_' for some 

combinations of q_, a + n, p', and p. The corresponding ·freq_uentist 

accuracy is obtained bytaking a 0 and thus the Bayesian limit for 

a f. O will he more accurate than the frequentist limit for the same 

sample size. Larger values of a will lead to a smaller sample size 

necessary to obtain a given accuracy. That this should be true is seen 

by considering the mean and variance of e which are a/b and a/b2, 

respectively. If we increase a and also increase b such that the 

mean remains constant, then the variance will decrease. This improving 

state of knowledge or decreasing variability of e is reflected in the 

requirement of a smaller sample size. Since q_' does not depend on 

x 1 , we can determine the sample size necessary to obtain a q_ toler­
,n 

ance interval for p coverage and a given coefficient of acc·uracy, q_'.. 

TABLE I 

ACCURACY CRITERION FOR BAYESIAN LOWER q_ TOLERANCE LIMITS 

FOR p COVERAGE FOR THE EXPONENTIAL DENSITY 

p .90 .95 

q_ . 90 .95 . 90 . 95 

p' . 950 .975 . 950 .975 .975 .990 .975 .990 
a+n 

5 .350 .o46 .460 .073 .361 .022 .471 .036 
' 

10 .161 .003 .241 .006 .Hl .001 .253 .001 

15 .073 .123 .080 .133 

20 .034 .061 : .038 .068 

25 .015 .029 .017 .034 

30 .006 .014 .008 .016 
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Suppose for a specific problem we wish to obtain a Bayesian .95 

tolerance interval for ,90 coverage and that the prior distribution 

has parameters a= 3 and b = 2, If we wish to determine this limit 

such that q' will be equal to .15 for p' = .95, we see from 

Table I that a+ n should be about 13 and thus we will need a 

sample of size 10. If the sample sum is 6, then the tolerance limit is 

r(x1 ) 
,n 

-2(2 + 6) ln .90 
2 X _95 (26) 

.043, 

The coverage of the interval [.043, oo) is 

-.o43e 
e ' 

which is greater than .90 for e less than 2.431, the .95 proba-

bility point of f" (e Ix ) . Had the sample sum been 10 we would have 
l,n 

obtained C(Rje) -.065e e and the .95 probability point of 

f"(elx ) to be 1.621, and so for e l,n 

be greater than .90. 

less than 1.621, c (RI e) will 

The exponential distribution is often encountered in life-testing 

situations and a procedure often used in this context is to put m 

units on test and record the times of the first n failures, We now 

derive the lower Bayesian tolerance limit for this case. 

Let ::: X 
n,m be the first n order statistics 

from a sample of size m. Then 

n 

f (x I e) n,m 
m! 8n -e(~ x~ + (m - n)xm). 

= (m - n) ! e 1 l n 



12 

Taking f'(e) = baea-le-b8/r(a), as before, we obtain 

co 

f (x ) = J f (x I e )f' (e )de n,m n,m 
0 

, CIO 

.oc I ea+n-le -(b+z)ede, 
0 

n 
where z = ~ x~ + (m - n)x:. Thus the posterior distribution of e is 

1 l 

f"(elx ) n,m 
(b + z)a+n8a+n-le-e(b+z) 

r(a + n) e > o. 

Hence, (2.2) and (2.3) give the Bayesian tolerance limit and accuracy, 

where z is defined as above for this case rather than the preceeding. 

To determine m, the number of units put on test, it would be necessary 

to relate this functionally to n(e.g. 2n = m). 

As an alternative to the gamma prior density for e consider the 

uniform density 

f' (e) = 
b 

1 
- a 

o s: a < e < b, 

= 0 elsewhere. 

Since the posterior density, given;the sample, is equal to the posterior 

density, given a sufficient statistic, w:e consider'the density of 

n 
z = t xi (or z = n m m r. x. + · (m - n )x · , 

l i n 
when order statistics are used). 

f(zle) 

f(zle)f' (e) 
n-1 n -ez z e e ' 

= (b - a )r(n) 



= f"(ejz)h(z). 

Thus 

This implies that 

f"(elz) 

which is a truncated gamma distribution. 

we need to solve the equation 

a< e < b. 

a< e < b, 

In order to obtain 6 (x1 ) 
q ,n 

o (x1 ) 

I q n 
q = ' f"(elz)de. 

a 

Since 2ez has a truncated 2 X (2n + 2) distributio~ this equation 

becomes 

C(2zo (x1 ); 2n + 2) ~ C(2za; 2n + 2) 
- q ,n 

q - C(2zb; 2n + 2) - C(2za; 2ri + 2) ' 

13 

and with the aid of chi-square or incomplete g-amma tables this could be 

solved for 6 (x1 ), and this in turn would be substituted into 
q ,n 

to obtain r (x1. ) . . ,n 

The accuracy is 



ln p' 
C(2z1 5 (~1 ); 2n + 2) - C(2za; 2n + 2) n p q ,n . 

Since this depends on 

C(2zb; 2n + 2) - C(2za; 2n+2) 

xl ' ,n 
we cannot use this to predetermine the 

14 

sample size necessary for a specific value of q'. However, we can meet 

a specified accuracy q' 
0 

if we sample sequentially, calculating 

each step, until it becomes less than q I• 
0 

The Normal Distribution 

For this example e = (µ, a). We shall consider three cases, 

q' at 

namely a known, µ known, and µ and a unknown. In all cases the prior 

distribution f'(e) will be the natural conjugate prior. (For a dis-

cuss ion of natural conjugate priors, see Raiffa and Schleifer [7] o) 

Case 1. a known. 

Let 

2 
= N(µ, a ) 

and let the prior density also be a normal density 

f ' ( µ) = N (a, a2 /b ) . 

Applying Bayes' theorem results in the normal density 

2 
N(ab + nx a ) 

b+n'b+n' 

where x is the sample mean. To determine the lower Bayesian tolerance 

limit we note first that d1 _p(µ) 

of µ. Thus we need 

z_q a/ (b + n)i'. Hence 

51. (xl ) 
-q ,n 

is µ - z a, p 
an increasing function 

which is (ab + nx)/ (b + n) -
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r(x1 ) 
,n 

ab + nx 
b + n 

z cr q_ 
z cr. 
p 

(2. 4) 
(b + n)2 

Taking b = 0 gives the freq_uentist result. 

The accuracy criterion for this case is 

q' = Pr[µ: r(x1 ) :;; d1 , (µ)x 1 } , n -p , n 

z cr q_ r ab + nx 
= Prtµ .: b + n 1 

(b + n)2 

ab + nx 
µ - b + n 1/2 I 

Pr[µ: -·---.....- :'2: (zp' - z ) ('b + n) - z x1 } 
/( ) """ p . q_ ,n 

cr b + n "' 

Pr[z :'2: (z , - z )(b + n)! 
p p - z }, q_ (2. 5) 

where z has a N(O, 1) distribution. Hence q' is a decreasing 

function of n and does not depend on the sample xl , ,n so that we 

can predetermine the sample size necessary for a given accuracy. 

Table II tabulates (2.5) for some values of p, p', q, and b + n. 

We note that the entries in Table II are larger than the corresponding 

entries in Table I. That this might be expected is seen from the fact 

that more probability is in the left tail of the exponential density 

than is in the left tail of the normal density. Hence for the same 

sample size we would expect to be more accurate in obtaining a luwer 

tolerance limit for the exponential than for the normal. 



p 

q 

p' 

b+n 

5 

10 

15 

20 

25 

30 

35 

4o 

45 

50 

TABLE lI 

ACCURACY CRITERION FOR BAYESIAN LOWER q TOLERANCE 

LIMITS FOR p COVERAGE FOR THE NORMAL 

DENSrTY WITH KNOWN VARIANCE 

. 90 .95 

"--. 90 . 95 . 90 

,950 ,975 . 950 ,975 ,975 ,990 . 975 

.682 .409 ,798 ,554 ,719 .405 .827 

.555 .195 .691 ,310 .613 .192 .742 

,453 .090 .596 .164 .536 .088 .665 

.368 .040 .510 .083 .450 .039 .593 

.299 .018 .434 .041 .385 .017 .528 

.242 .008 .368 .020 .329 .007 .468 

.195 .003 .310 .609 .281 .003 .413 

.157 .001 .259 .oo4 .239 ,001 ,364 

.126 .217 .002 .203 .320 

.101 .180 .173 .280 

Case 2, µ known. 

Without loss of generality we can let µ be O. Then 

f(xlcr) 1 -x2 /2cr2 
- .......... ~e • 
(2TT) 2 cr 

The prior density is 

w+1 I 2 
f, (cr) o: (~) e -wv 2cr , cr > O, 

16 

.95 

,990 

.549 

,306 

.159 

.081 

.039 

.019 

.009 

.004 

.002 



and this results in the posterior density 

w+n+l ( )/ 2 
f" (crlx ) o: (! .. ) e - wv+u 2a 

l,n a ' a> o 

n 2 where u = I: xl. The prior density, f'(a), is the inverted ga:rnma-2 
1 

density of Raiffa and Schlaifer [7]. To determine o (x1 ) we first 
q_ 'n 

note that (wv + u)/a2 has a 2 x. (w + n) distribution, Hence 

Thus 

q_ Pr[wv + u 2( )} 
2 :;;;Xq_w+n 

a 

d,. 

Pr[a ~[ ;v + u ]2}. 
x (w + n) 
q 

6 (x1 ) 
q_ 'n 

= [ 2 WV + U J~. 
X1 (w + n) -q_ 

If we require that p > .5, then d (a) = -z a 
1-p p is a decreasing 

function of a, and hence the lower Bayesian tolerance limit is 

l. 

[ WV + U J2 . 
-zp · x2 (w + n) 

1-q_ 

Taking w = 0 gives the freq_uentist limit, 

The accuracy criterion is 

q_ t Pr [ a : r (x1 ) :s;; -z , a I x1 } ,n p ,n 



2 
Z I 2 

1 - C ((_E__) X, (w + n); w + n), 
z J..-q 
p 

by the distribution of (wv + u)/r/. Since x~ (w + n) J..-q 
is an 

increasing function of w + n, q_' is a decreasing function of w + n 

and since it is not a function of the sample x1 , it can be used to 
,n 

determine the sample size necessary for a specified accuracy, Some 

values of q' are presented in Table III. 

TABLE III 

ACCURACY CRITERION FOR BAYESIAN LOWER q TOLERANCE 

LIMITS FOR p COVERAGE FOR THE NORMAL 

DENSITY WITH KNOWN :tv:IEAN 

p .90 . 95 

q .90 ,95 .90 . 95 

p' .950 .975 ,950 ,975 ,975 . 990 ,975 ,990 
~ 

v1,1-n ' ., 
5 .754 .585 .865 .750 .808 .666 ,898 ,808 

10 .629 ,331 ,774 .514 ,734 .465 .848 .641 

15 .522 .174 .684 ,353 .669 .314 .Boo .487 

20 .430 .087 ,598 .190 .609 .206 ,753 ,358 

25 ,352 .. 042 ,518 .106 .555 , l-33 .709 .256 

30 ,287 .020 .446 .058 .505 .085 .662 .178 

40 .187 .oo4 .323 .015 .418 .o~n ,577 .083 

50 .120 ,001 .224 .oo4 .342 .012 ,499 .036 

18 

. 
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Case 3. µ and cr unknown. 

Aitchison [1] derives ap upper tolerance limit for this case and we 

shall present here a parallel derivation for a lower tolerance limit. 

Two corrections must be made, however, in order that his results can be 

obtained. In equation (24) of [1] the exponent of 1/cr should be 

w + 1 rather than w and the change of variables in (29) should read 
l. 

ri v·~jcr. 

For this case 

2 N(µ, cr ) 

and the prior density is just the product of the densities considered in 

the first two cases 

Applying Bayes' theorem yields 

where 

Since 

A= 

f" ( crlx ) o:: µ, 1 n 
' 

2 
B (µ-A) 

1 - 2 cr 1 W+l -WV /2.i 
(-)e (-) e , cr cr . 

ab + nx 
b + n 

{
w + n, 'I;> > o; 

, B = b + n; W = 
w + n - 1, b = O; 

d (µ, cr) = µ - z cr, 
1-p p 

we wish to determine r (xl. ) ,n such that 

(2 .6) 
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Let 

Tj ::; 

1 
B~ (µ - A) 

a 

Then ri has a N(O, 1) distribution, v has a [-x.2 (W)/w} distribu-

tion, and ri and v are independent. In terms of Tj and v, the 

inequality in (2.6) becomes 

which is 

.de. 
B 2 (r(x1 ) - A) - i 1 
---'~n ___ ~ (ri - z B"'Z)/v~. 

vi - P 
(2.7) 

From the distributions of ri and v, it follows that the right-hand 

side of the inequality has a noncentral t distribution with W 

degrees of freedom and noncentrality parameter Thus, in order 

that (2.6) holds, we must have 

(2.8) 

If we let b = w = O, we obtain the frequentist result which is 

r(x1 ) ,n x + s- t 1' (n - 1, - z nl). 
X -q p 

To evaluate the accuracy criterion for this case, we replace p by p' 

and substitute (2,8) into the inequality of (2.7) which yields 
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q' = Pr[(µ, cr) : t 11 (w, -z Bi) s: (T) 
-q p 

1 
= Pr(u ~ t 11 (W, z B~)}, 

-q p 

where u has the t' (W, -zp, :si) density. Since this is a function of 

p, p', q:, b + n, and also w + n, we will not attempt to tabulate it. 

However, we note that this function does not depend on x · and that l,n 

it could be used to predetermine the sample size necessary for a given 

accuracy. 

In these examples we have seen that for the exponential and norm.al 

densities and for "nice'' choices of a prior density the proposed 

accuracy criterion (2.1) is a decreasing function of the sample size and 

is not a function of the sample. Therefore, for these cases, the cri-

terion can be used as a guide to obtaining Bayesian tolerance limits 

with a ~iven accuracy. For cases where the accuracy criterion depends 

on the sample obtained, it can be used to measure the accuracy of the 

tolerance limit obtained and a decision made as to whether an 

additional !;!ample is warranted. 

Concluding Remarks 

In this chapter we have considered a Bayesian approach to 

obtaining q tolerance intervals for p coverage. The Bayesian and 

frequentist approaches are essentially the same in that an upper or 

lower q "confidence limit" for e is substituted into the lower p 

probability point of f(·le): The difference ·is that the Bayesian q 

"confidence limit" is obtained from the posterior distribution of e, 

rather than from f (x1 I e). We have also seen that by ,n 
letting the parameters of the prior distribution become those for an 

/ 
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improper density (i.e., infinite variance) the two approaches give the 

same result. This is not meant to imply that the frequentist theory is 

a special case of the Bayesian, but rather to provide the reader with a 

connection between the two approaches. 

As a measure of accuracy we have adapted a frequentist measure of 

the probability of having coverage greater than that desired to the 

Bayesian approach. Faulkenberry [5] obtained "uniformly most accurate 

tole:riance limits" from uniformly most accurate confidence limits, which 

are in turn obtained. from Neyman-Pearson uniformly most powerful tests. 

In the absence of Bayesian uniformly most powerful tests it is not clear 

at this time whether an analogous theory of most accurate Bayesian 

tolerance limits can be developed. 

In the next chapter we will consider a Bayesian approach to 

expected coverage tolerance intervals, as formulated by Aitchison and 

Scul thorpe [3 ], and a measure of accuracy for these, 



CHAPTER III 

p -EXPECTED COVERAGE TOLERANCE INTERVALS 

We now consider a Bayesian approach to obtaining intervals of the 

form [r (x1 ) , =) for which the expected coverage of the interval is ,n 

p. · The frequentist or classical approach is to determine R(x1 ) ,n such 

that E[C(Rle)J = p for all e, where the expectation is with respect 

to f(x1 le). For the Bayesian approach we shall also want to deter­,n 
mine R(x1 ) such that E[C(Rje)J = p, but instead the expectation ,n 
will be with respect to f"(elx1,n). Thue to obtain a Bayesian lower 

tolerance limit for eXpected coverage p, we will need to solve the 

following equation for · r (x1 ) : . ,n 

P = J c(Rle)f"(elx1 )de n ,n 

By interchanging the order of integration, we obtain 

CD 

= I h" (y1x1 )dy, 
r (xl ) . ,n 

,n 

(3 .1) 

where h" (ylx1 ) is the posterior density of a future observation y, ,n 
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given x1··· . Thus we see that r(x1 ) is the 1 - p probability ,n ,n 

point of h" (ylx ) • 
l,n 

An interesting result of Aitchison [2] is that r(x1 ) ,n is 
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eq_uivalent to the value obtained by minimizing the expected cost, given 

x1 , for the following cost function: ,n 

r - y if 
C(r, y) == { 

11.(y -r): if 

y ~ r 

y > r. 

A case where this type of cost function would be employed would be where 

y represents a demand, r the amount to be supplied, and 11. the ratio 

of the cost per unit of having demand exceed supply to the cost per unit 

of having supply exceed demand. The Bayesian solution is to choose r 

so that JC (r, y )h" (ylx1, n)dy is minimized. Equating the partial 

derivative with respect to r of this function to zero yields, after 

some manipulation, 

1 
(3. 2) 

/1. + 1 

Thus, letting p == 1/(11. + 1), the solution to (3.1) is the same as that 

for (3.2). The frequentist approach to these two situations, that. of 

expected coverage and that of a linear cost function, does not have 

this eq_uivalence. 

For a fixed value of e the frequentist lower tolerance limit has 

expected coverage p, since this is how the limit is derived. However 

this does not hold for the Bayesian limit. That is 



where x1 ,n 

CIO J J f(yle)dy f(x1,nle)a.x1,n = p(e), 
x1 r (x1 ) . ,n ,n 

is the product space of xl ' ,n and p(e) is not 

necessarily equal to p, However, 

IIO 

I p(e)f' (e)de = J J J f(yle)dy f(x 1 le)dx1 f' (e)de 
0 0 X r (x ) 'n , n 

l,n l,n 

Cl) 

= J J · J f(yle)f"(elx1 )dedyf(x1 )dx1 
X r (x ) n 'n , n , n 

1,n l,n • 

CD 

=J J h"(ylx1 )dyf(x1 )dx1 
X r (x ) 'n , n , n 
l,n l,n 

= I 
X l,n 

= .P• 

p f(x1 )dx1 . . ,n ,n 

Thus averaging over e gives expected coverage p. In the context of'. 

the example of manufacturing batches of transistors, taking a sample 

and finding the Bayesia,n tolerance limit for p..expected coverage, 

this means that for any one batch of transistors the expected coverage 
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may not be exactly p, but over the lqng run of batches it will be p. 

The frequentist limit gives expected coverage of p for each batch and 

thus also over the long run, This may be an advantage but, as we shall 

see in the next chapter, the coverage may V$ry more for the f'requentist 

limit than for the Bayesian. Thus if. the. experimenter is willing to 

assume his choice of f' (e) truly describes the situation, he may be 

better off in the long run by using a Bayesian tolerance limit. 



There ·is · also an ·important distinction in the interpretation of the 

two approaches. The frequentist obtains a certain expected coverage 

where the expectation is with respect to repeated sampling. The 

Bayesian considers the coverage obtained f-or each e and then obtains 

a weighted average of these, where the weights are obtained from 

f"(elx1 n), such that this we;i.ghted average is equal to p. 

' 
An Accuracy Criterion 

Bayesian tolerance intervals for p-expected coverage can be 

obtained for any sample size, and so the question again arises as to 

what should be used to measure acc11+acy and how might this measure be 

influenced by sample size. Since the coverage, on the average, will be 

p, but may vary considerabJ_y about it, we may wish to have some degree 

of confidence that the estimate r(x1 ) is fairly close to d1 (e), 
,n -P 

the lower p probability point of f(yle). Thus we are led to-the 

following measure of acc1,ll'acy which we will denote by q. 

q = Pr(e: lr(x1 ) - d1- (e) I s: b.lx1 } . , n -p , n (3 .3) 

. The interpretation is that if we consider the set of e's for which 

the limit we obtaineQ is within b. of the 1 - p probability point of 

f(yle), then the probability, given the sample, of the e we drew 

being in this set is q. If this is actually to be a m1;ia:surement of 

accuracy, then we would expect q to increase as the sample size 

increases, and if we are to utilize this to determine the sample size 

necessary to obtain a tolerance limit with a given accuracy, then q 

should not be a function of the sample, xl ' ,n However, as we shall 

see, this latte:!;' condition is not met for some common densities. 



27 

If q is a function of xl ' ,n then we may be able to modify (3.3) 

by replacing I::::. by a multiple m of a function of xl ' ,n 
say k(x1 ), 

,n 

so that q will not be a function of the sample. Thus we will be able 

to predetermine the sample size necessary for having q confidence ~hat 

the limit obtained is in the interval [d1 _p(e) :t:.m·k(x1,n)J for 

specific values of p, q, and m. 

If it is des ired to obtain p-expected coverage tolerance limits 

of a specified accuracy q0 for an exact deviation, 6, rather than a 

proportional deviation, m, then the following multi-stage sampling 

procedure will accomplish this. 

1, Choose an initial value of m and determine the sample size 

necessary so that (3 .3), with .6 replaced .by m•k(x1. ) , : will hold .. 
,n 

for the :spe~ified values of , p arid q. If k (0) /:- o, then a cl:).oice. 

for the tn:Ltial value of m might be m1 = 6/k(O). 

2. For the sample size determined, n1 , take a sample of that 

size and calculate m1 ·k(x1 ) . If this is less than or equal to !::::., 
. ,nl 

then our limit will have accuracy greater than or equal to the specified 

q and sampling will stop. 
0 

3. then a second and 

smaller value of m will be obtained by letting m2 = 6/k(x1 ) , 
,nl 

the sample size determined for and ~- Letting this be n, 

additional sample size necessary is n2 = n - n1 . 

and 

the 

4. The additional sample is obtained and from it and the previous 

sample m ·k(x ) is calculated and compared with I::::. as before. 2 l,n1+n2 
The process is then repeated until m.·k(x1 ) is less than 

J. ,n1+n2+ ..• +ni. 

or equal to 6. 

This algoritl:).m will lead to a tolerance limit with accuracy q0 
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for chosen p and 6.. We will now illustrate Bayesian p-expected 

coverage tolerance intervals and the accuracy criterion, (3 .3), for the 

same distributions considered in Chapter II. 

and 

Thus 

The Exponential Distribution 

As in Chapter II, we have 

f(yje) -ey 
= ee ' y > o; e > o 

f"(elx ) 
l,n 

(a+ n)(b + zt+n 

(b )a+n+l + z + y 

n 
= Li ;x: •• 

1 l 

To determine t_he Bayesian lower tolerance limit for an interval of 

p-expected coverage we need to determine r such that 

p = f~ (a + n)(b + z)a+n d 
)a+n+l Y r (b + z + y . 

= [b b ja+n + z 
+ z + r · 

Solving this for r (x1 ) 
,n yields 

1 

r (x1 ) = (b + z) (p -ri+a" - 1) ~ 
,n 
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We note that taking a = b = 0 again gives the frequentist result and · 

that for the 1:inear co·st function- -mentioned ·above the minimizing value 

of r is (b + z)((A + l)l/n+a - 1). 

The coverage of the interval [r (x1 ) , oo) 
,n 

· .,er (x1 ) 
h . h 1 t · ,n w ic is equa o e , The expected coverage for a given value 

of e is . 

1 
.. er (x1 ) 

Ee ,n = E e-e(b+z)(p n+a - 1) 

-eby E -ezr e e , (3 .4) 

where 'Y = p 

1 
n+a 

1. The expectation in (3. 4) is just m (-ey ), where z 
mz(t) is the moment generating function of z, which in this case is 

t -n 
(1 - e) , since z hes the. gamma distribution with parameters n 

and e. Thus (3.4) becomes 

-er (x1 ) 
E e 'n = e -8by ( 1 + y) -n 

n 
-Bby n+a = e p 

If a= b = O, then this quantity is p for all .e as it should be 

for the frequentist limit, Also this function of e approaches the 

constant function p as n becomes infinite. The expectation of this 

with respect to f' (e) 

n 

pn+a(l + r)-a = p. 

n -n+a ( ) is p me -by 

The accuracy criterion is 

which is equal to 
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q = Pr(e: lr(x1 ) - d1 (e)I ~ blx1 } , n -p , n 

= Pr(e -ln P < e ~ 
: (b + z )'y + 6 -

-1n p I 1 (b + z )y - 6 xl, n 

Pr ( e : -2 (b + z) ln p ~ 28 (b ) -2 (b + z ) ln p I } 
(b + z)y + 6 + z ~ (b + z)y - 6 xl,n (3.5) 

where u2 and u1 are the right- and left-hand terms, respectivel-y, in 

the inequality of (3. 5). Since u2 and . u1 are functions of x1 , n 

we need to find a function k(x1 ) such that setting 6 equal to ,n 

m·k(x1 ) will make (3.5) independent of x1 and an increasing func-,n ,n 

tion of n. By letting k(x1 n) = (b + z)/(a + n), which will be 

' 
approximately equal to the sample mean, equation (3.5) becomes 

where 

= -2 ln p • 
u2 . m ' 

y - a+n 
u = 1 

-2 ln p 
m 

'V + -' a+n 

(3.6) 

and thus q will not be a function of the sample. Table IV tabulates 

(3.6) for p equal to .90 and .95. 

To illustrate the concepts presented above consider the example of 

this section in Chapter II where the parameters of the prior were chosen 

to be a= 3 and b = 2 and the sum of. 10 observations wes 6. 

Then for p = .90, 
1 

r(x1 ) - (2 + 6)[.90-13 - 1] ,n 
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TABLE DI 

ACCURACY CRITERION FOR BAYESIAN LOWER TOLERANCE LlMI'.IS: FOR 

p-EXPECTED COVERAGE FOR THE EXPONENTIAL DENSITY 

p ::::; .90 

.01 .02 .03 . 04 .05 .06 . .07 .08 .09 

.164 .323 .473 .60;3 .705 . 775 · .816 .843 .867 

.233 .450 .631 .763 .844 .889 .917 .937 ,952 

.285 .537 .728 .846 .906 .938 .958 .972 .981 

.327 .604 .792 .893 .940 .964 .979 .987 .992 

.364 .657 .839 .924 .. 961 .979 .989 .994 .997 

.396 .709 ,873 . 945 .974 ,987 .994 . .997 .999 

.425 .737 .899 .959 .982 .992 -997 .999 .999 

.451 .769 .918 .970 .988 ,995 ,998 .999 

.475 . 795 . 934 .977 .992 .997 .999 

.497 .818 .946 .983 . .994 .998 .999 

.01 .02 .03 .04 .05 ,.06 .07 .08 .09 

.333 .617 .782 .847 .887 ;915 .936 .951 ,963 

,461 .774 .893 .940 .966 ,980 .988 .993 .996 

.550 .854 ,942 .974 .988 .995 .998 .999 ,999 

.616 . 900 .967 .989 .996 ,999 . 

.670 .929 .981 .995 .999 

.714 .949 ,989 .998 .999 

.750 .963 . 993 .999 

.780 .972 .996 ,999 

.807 .979 .. 998 

,829 .984 .999 
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.10 

.885 

.964 

,987 

.995 

.998 

.999 

.10 

.970 

.997 



= .067 

The coverage for this interval, [ . 067, co) , is -.067e e , which is 

plotted in Figure 3, as is ·f"(elx1 ). To determine the accuracy c,f ,n 

the limit obtained, we will evaluate (3.5) for 6. = .05 •. Thus 

-2 ( 2 + 6) ln . 90 
u2 = .067 - .05 

= 43 07 = -2(2 + 6) ln .90 = 
· ' ul · . 067 + , 05 6.26, 

and 

q = c(43.07; 26) - c(6.26; 26) 

;::: . 980. 
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Dividing u1 and u2 by 2(b + z) in order to obtain the limits on e 

in the line above (3.5) yields the results that for e between .39 

and 2.75, r is within .05 of d1 _p(e) and this interval contains 

98 per cent of f" (e lx1 n), If the sample sum had been lO, instead of 
' 6, then r(x1 ) would have ·been .101 and the coverage of the inter­,n 

Val bt . d ldb -,lOle F th· 2154 d' o a ine wou e e . or · is case u2 = • an 

1.0 1.0 

.30 .90 

Figure 3 Figure 4 



u1 = 7.27 and thus the accuracy of the limit obtained is 

q C(21.54; 26) - C(7.27; 26) 

.287. 

, Tht,1s for e between . 30 and . 90, r = . 101 is within . 05 of 

d1_p(e) and this interval contains 28.7 per cent of f"(elx1,n). 

This latter situation is shown in Figure 4. 

In order to investigate the average sample size for the multi-

stage sampling procedure described above, a Monte. Carlo study was done 

for some selected values of p, q, 6., and for a and b, the 
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parameters of f' (e). As a choice for e, we choose the case where e 

takes on its expected value which is a/b. This may appear to be a 

utopian choice, but it is our intention to show the behavior of our 

sampling procedure in the expected situation and not the possible 

extreme situations. For the distributions under consideration, the 

procedure given on page 27 becomes: 

1. Let m1 = 6./k(O) = a.6./o and determine n1 such that (3. 6) 

holds for the specified p, q, and 

2. Take a sample of size n1 from f(xle = a/b), calculate 

m1 •k(x1,n) = m1 (b + z)/(a + n), and compare this with the chosen 6.. 

3. If m1 -k(x1 ) is less than or equal to 6., then (3.6) is 
,nl 

satisfied. If it is greater than 6., we adjust m downward, obtaining 

~ = 6./k(x1,n1) = (a+ n1)6./(b + z), determip.e the number of 

additional observations required, and take the additional sample. Then 

m2 ·k(x1 ) is compared with 6. and the decision made as to 
,nl +n2 

whether or not an additional sample is required. 

To illustrate tb.is, let 



p = ,90; q = ,95; 6. = .06; a= 3; b 2. 

Thus, assuming e has a prior distribution which is a gamma with 

parameters a= 3 and b = 2, we wish to obtain a lower tolerance 

limit for expected coverage of ,90 and in addition we want to have 

95 per cent confidence in being within . 06 of the actual lower . 90 

probability point. As an initial choice of m in equation (3.6) we 

take m1 = 6./k(O) = e.6./b = ,09, and from Table IV we see that a + n 

should be ten and thus the initial sample size is seven. Suppose the 

sum of these seven observations is z = 8. Then m·k(x1 ) 
,nl 

= .09(2 + 8)/(3 + 7) = .O~ which is larger than 6. = .06, and an 

additional sample is required. 'l'he next choice of m is 

~ = (a+ n1)6/(b + z1 ) = 10(.06)/10 = .06. Interpolating in Table IV 

we see that for q = ,95, a + n should be 17, . and so an additional 

seven observations are required. If the sum of these seven observations 

is six, then m...•k(x1 . ) = m2 (b + z)/(a + n) is equal to 
~ ,nl+n2 

.06(2 + 14)/(3 + 14) which is less than the chosen 6. Thus in two 

steps we have obtained a lower tolerance limit for ,90 expected 

coverage and with the specified accuracy. Table V pre)septs the 

average sample size foT this procedur~ for some values of p, q, 6., a, 

and b, Each entry is the average of 100 repetitions of the sampling 

procedure, Three entries are blank since the program was limited to 

a+ n = 50, 

As an alternative to letting 6. = m•k(x1 n) we may let 
' 

6. =· m[var(yle)Jf and (3,5) will then be the posterior probability that 

r(x1,n) is within m standard deviations of a1_P(e). Since the 

variance of the exponential distribution is 1/e2, (3,5) becomes 
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TABLE V 

AVERAGE SAMPLE SIZE FOR BAYESIAN LOWER '.IOLERANCE LIMITS 

FOR p-EXPECTED COVERAGE FOR THE EXPONENTIAL DENSITY 

p .90 

q .90 . 95 

6. .06 .08 .10 .06 .08 .10 ---- ~ 
I 

a,b 

1,3 . 36.37 25.91 21.95 --- --- 31.28 

1,2 23.06 21.16 15.85 --- 31. 73 25.29 

2,3 19.74 14. 94 9.34 30.65 23.77 15.59 
1,1 12.30 8.52 6.19 19.19 13.04 10.23 

2,2 11.34 7,42 4.98 18.15 12.48 8,34 

3,3 9,79 6.52 4.31 17.80 10.59 7.43 

3,2 5.69 3.22 1.59 9.02 5.28 3,70 

2,1 4.20 2.61 1.84 6,75 4.79 3 ,93 

3,1 1.47 1.46 1.50 2,68 1.59 1.49 

I 
. 95 I p 

' q . 90 . 95 
i 

6. .06 .08 .10 .06 .08 .10 

a,b 

1,3 11.91 8.77 7,91 17.82 13.39 12.16 

1,2 8.43 7,78 6.07 12.70 11.84 9.47 

2,3 6.73 4.71 2.91 10.84 8.02 5.79 
1,1 5.16 - 3.86 2.84 7.55 5.14 4.12 

2,2 3,89 2.67 1.68 6.11 4.14 2.86 

3,3 2. 93 1.58 1.61 5.37 2,97 1. 73 
3,2 1.64 1.48 1.54 2.83 1.58 1.40 

2,1 1.45 1.43 1.44 2.53 1.63 1.39 

3,1 1.49 l 1.43 I 1.53 1.53 1.51 1.57 
I 



q = Pr[e : I (b + z}y + 1~ P I s: i I x1 ,n} 

= Pr[e: 2("'m-ln ·R) s: 2(b + z)e s: 2(m-ln P) I xl }. 
Y Y. ,n 

Since 2(b + z)e has the i(2a + 2n) density and since q is not a 

function of x1 , this function can be used to determine the sample 
. 'n 

size necessary to obtain a p-expected coverage tolerance interval with 

a given confidence q that the limit obtained is within m standard 

deviations of d1 (e). 
-P 

and 

where 

Thu13, 

The Normal Distr.ibution 

We shall consider the same three cases as in Ghapter II. 

Case 1. cr known. 

For this case 

· 2/ 2 ( I .) -(y-µ) 20' f y µ ~ e , 

2/ 2 f' (µ) ~ e-b(µ-a) 2cr, 

f " ( I ) -(b+n) (µ ~A )2 /2cr2 
µ x 1 · ~ e , 

,n . 

ba + nx 
A= 

b + n ' 
B = b +. n 

b+n+1· 

r (x1 ) , 
,n the lower p probability point of h"(ylx1 ), ,n is 



1 
r(x1 ) = A - z cr/B2. 

,n p 

Taking b = 0 gives the usual frequentist limit. The accuracy is 

1 
q = Pr{µ : IA - z cr/B2 - (µ - z cr) I ~ 6 I x1 } p p ,n 

where z has a N(0,1) distribution. Note that q is an increasing 

function of n, and for fixed n, a decreasing function of cr, both 

of which results we would expect intuitively. Also q is not a 

function of x1 n so that we can predetermine the sample size neces­, 
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sary £or a given accuracy. Table VI gives values of q for some values 

of p, b + n, and 6/cr. 

TABLE VI 

ACCURACY CRITERION FOR BAYESIAN LOWER TOLERANCE 

LIMITS FOR p-EXPECTED COVERAGE FOR THE 

NORMAL DENSITY WITH KNOWN VARIANCE 

p . 90 .95 
-

6/ cr .2 .3 ~4 .5 .2 .3 .4 .5 
b+n 

5 .333 .482 .611 ,719 ,326 .472 .600 .708 
10 .465 .648 .785 .879 .460 .642 .780 .875 
15 .555 . 748 .874 . 944 .552 ,745 .871 .942 
20 .624 .816 . 923 .973 .621 .813 .922 .972 
25 .679 .863 . 953 .987 .676 .861 .952 .986 
30 .724 .897 .971 ,994 .721 .896 .970 . 993 

.35 .761 .922 ,981 . 997 ,759 . 921 ,98~ .997 
40 .792 . 941 ,988 ,998 ,790 .940 .988 .998 
45 .818 . 955 . 993 .999 .817 ,954 .992 .999 
50 .841 .965 .995 .840 .965 .995 



Case 2. µ known. 

For this case 

and 

f(yler) 
2/ 2 1 -y 2er 

ex: - e er . ' 

w+1 I 2 
f ' ( er ) ex: ( ~) e -wv 2 er ' 

f"(erlx ) ex: 
l,n 

(-ler)w+le -WV/2cr2, 

W+l 

h" (ylx ) ex: [WV + y2J- 2 . 
l,n (3. 7) 

where W = w + n and V = (wv + "i;x~)/w. In order to obtain r(x1 . ), 
1 ,n 

we first make the change of variable in (3. 7) of 

Then 

y = u·vi. 

W+l 

h"(µlxl n) ex: (1 + if/w)-r· 
' 

and so .u = y/vi has Students t distribution with W degrees of 

freedom. Hence 

r(x1 ) ::; t 1 ('w + n)vi 
,n -P 

The accuracy of the limit in this case is 
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t (W)vi 
= Pr[cr: P -6.:S: 0$ 

z (3. 8) 
p 

for p > .50. In this case q is a function of x1 and hence in ,n 

order to apply the algorithm for obtaining a limit with a given degree 

of accuracy we need to find a function k(x1 ) ,n 
such that by letting 6. 

equal m,k(x1 ), (3.8) will be independent of 
,n xl . ,n 

Letting 

WV + 'i.,x~ ' 

k(xl,n) = [ w + n ij ' which is approximately the standard deviation of 

x, will accomplish this. Equation (3.8) then becomes 

t (W) - m 
q = Pr[cr: ~P-· -.......-­

z w2 
p 

t (W) + m 
:s: cr $ P I x } 

(wv)f z w2 1, n 
p 

z 2w 
Pr [ cr : ___ P ___ s; WV s; 

( t (W) + m) 2 cr2 
p 

(3. 9) 

where u2 and u1 are the right and left side of (3.9) since as noted 

17 WV/cr2 on page , has a 2 
X (W) distribution. Table VII gives values 

of q for some values of p, w + n, and m .. 

As an alternative we might choose 6. equal to mcr. Then (3.8) 

becomes 

q = Pr [ cr : It (W)V~ - z cr I :s: mcr I x1 } 
p p ,n 

W(z - m)2 

= Pr[ cr: . P · 
t 2(W) 
p 

WV w.(z + mf 
s; - s; ___ P--=--- I xl, n} 

/ t 2 (W) 
p 

•· •, 
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where u2 and u1 are the right and left sides, respectively, of the 

above inequality, Thus we can determine the sample size necessary to 

have q confidence that r(:x1 ) is within m standard deviations of 
,n 

d1 ( cr) • 
-P 

TABLE VII 

ACCURACY CRITERION FOR BAYESIAN LOWER TOLERANCE 

LIMITS FOR p -EXPECTED COVERAGE FOR THE 

NORMAL DENSITY WITH KNOWN MEAN 

p ,90 . 95 

m .25 ,50 ,25 

w+n 

5 ,375 ,709 .254 

10 ,573 ,893 .433 

15 .689 ,947 ,548 

20 ,788 ,970 .630 

25 .821 ,982 .693 

30 .860 .989 .743 

Case 3. µ and cr unknow~ 

For this case 

2/ 2 
f ( I ) 1 - ( y -µ ) 2 cr 

Yµ cr cc-e 
' cr ' 

and as in Chapter II 

2 
-~(~) w+1 I 2 

f , ( µ, cr) cc (}) e 2 cr (}) e -wv 2 cr , 

and 

,50 

.513 

.779 

.884 

. 933 

,958 

,972 



Thus 

W+l 

h"(ylx1 ) ex: [WV+ (y - A) 2B/(B + 1)]-2 , 
,n 

41 

where A, B, V, and W are defined on page 19. Thus the variable 

l. 
u = (y - A)[B/V(l + B)]2 has a Students t distribution with W degrees 

of freedom, and so 

r(x1 ) =A+ t 1 (W)[V(l + B)/B]i ,n . -p 

= b:+nx + tl (w+n)[(wv+ba2+r.x~ - (b~+nx) 2 )(b+n+l)/(w+n)(b+n)Jt (3.10) 
+n -P i +n 

This is the result for b > O. If b = O, then w + n is replaced by 

w + n - 1. Note that if b = w = O, 

r(x1 ) = i + t 1 (n - l)[(r.(x. - i)2/(n - l))(n + 1)/n]i 
,n -P i 

n + 1 1 = x + t (n - l)s[ .. J2, 1-p n 

which is the usual frequentist result. To determine the accuracy of the 

tolerance limit (3.10) we need to evaluate 

l. 
q = Pr[(µ, cr): IA+ t 1 _p(W)[V(l + B)/B]2 - (µ.., zpcr)I:,;; 6 I x1,n} 

= Pr[(µ, cr): t 1 (W)[V(l + B)/BJ~ - 6:,;; µ - A - z cr:,;; 
-p p 

t 1 _p (W)[V(l + B )/B]t + 6 I x1 , n}. 
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Making the change of variables T) = Bi(µ - A)/ cr and \I = v/ cr2, as in 

Chapter II, page 20, the accuracy is 

(3 .11) 

= Pr(u ~ u ~ u2 ), . 1 

where u1 and u2 are the left and ri~ht sides, respectively, of the 

inequality in (3.11) and u has distribution. Since 

(3.11) is a function of xl ' ,n we need to replace 6 by m·k(x1,n) 

ord~r that (3.11) will not be a function of x1 . Letting ,n 

k(x1 ) = vi will accomplish this and our algorithm for multi-stage 
,n , 

sampling can be applied to obtain a lower tolerance limit for 

p-expected coverage and q accuracy. 

Concluding Remarks 

In this chapter we have considered a Bayesian approach to p-

in 

expected coverage tolerance intervals and have proposed a criterion for 

measuring the accuracy of the tolerance limits obtained. The criterion 

is the. probability, conditional on the sample, xl ' ,n that the value of 

-the e we drew was one for which the tolerance limit, calculated for 

the sample, was within some amount, 6., of the true p probability 

point of f(yle). If this probability was independent of x then l,n 

the sample size could be determined so that a. tolerance limit with a 

given accuracy could be obtained and if not, a multi-stage eampling 

procedure was developed so that a specific accuracy could be obtained. 



CHAPTER IV 

SENSITIVITY OF BAYESIAN TOLERANCE INTERVALS TO' AN 

INCORRECT CHOICE OF THE PRIOR DISTRIBUTI0N 

As we have observed in the two previous chapters, if the ex;peri -

menter is willing to assume that his choice of a prior distribution for 

the parameter of interest actually describes the true situation, then 

the Bayesian approach will provide more accurate tolerance limits for a 

fixed sample size, To ,~peak of the prior actually describing the true 

situation we must limit ourselves to the situation where the parameter 

is a random variable, If we consider the parameter fixed but unknown 

and choose a prior distribution to describe our state of knowledge, then 

it is illogical to talk about the inaccuracy of our "state of knowledge 11 

distribution, since we presumably chose it to describe our state of 

knowledge as well. as possibl.e, Thus if e is actually a random vari-

able and we are faced with the task of selecting a function which 

describes its distribution, we need to be aware of the risk of making a 

wrong selection. 

As an illustration, and for tractability, we will consider 

p-expected coverage tolerance intervals for the exponential distribu-

tion. As we showed on page 29, the expected coverage at each e is 

n 
-b97 n+a e p where 

1 
n+a 

'Y = p - 1, and the expected coverage in the long 

run is p when the prior distribution of e is actually a.· gamma 

distribution with parameters a and b, But suppose the actual. 
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distribution of e is still one of the gamma family, but with 

parameters a.' and b'. Then the expected coverage in the long run is 

n n 
E -ey n+a ( ) n+a e p = me -by p 

n .~ 
(1 + by/b' )-a pn+a, (4.1) 

where m (t) is the moment generating function of the random variable 
u 

u. This expectation is equal to p when a= a' and b = b'. For 

fixed a, a', b, and b' the expected coverage approaches p as n 

increases. In fact as n becomes infinite it makes no difference what 

the prior distribution is, or was thought to.be, 

Consider now the mean square error (MSE) of the coverage. We 

need to evaluate 

;MSE (coverage) 
-er (x1 ) 2 

= E(e ,n - p) 

-er (x1 ) -er (x1 ) 2 
= var[e 'n J + (Ee 'n - p) 

1 ---
where r(x1 ) = (b + z)(p n+a - 1) 

,n (b + z)y. We first evaluate 

-er (x1 . ) · 
var[e ,n] by the familiar relationship 

var (u) = var(Eulv) + E var(ulv), (4.2) 

where for our case 
-er (x1 ) 

u = e ,n and V;:: e. Now 

-er (x ) ..,E._ 
1 n eby n+a E(e ' le)= e- p and the variance of this is 

2n 
n:+a ( -eby) p var e , 

We next obtain ,. 



2 
( -eby) __ E e-28by _ (E e-eby) var ·e 

-a' -2a' = ( 1 + 2by /b I ) . - ( 1 4" by /b I ) , 

Thus the first term on the right side of (4.2) is 

2n 

pn+a [(1 + 2by/b' )-a' - (1 + by/b' )-2a'J. 

Evaluating the second term, we first obtain 

( -e (b+z )y I 8. ) = var e 

= e -28by[ E ( e ~2ezyle) - (Ee -ezyl e )2] 

= e-28by[ (1+2y)-n - (l+y)-2n]. (4.3) 

.Taking the expectation of this with respect to e gives 

and thus (4.2) becomes 

[ -er (:x:l n)J 
var e ' = 

where we have replaced 

then this reduces to 

- 1 
n+a p by (1 + y). lf a= a' 

( ) -(a+n) (l )-2 (a+n) 1 + 2y . - + y • 

(4.4) 

and b = b' 

(4.5) 

Note thai;. i:f' we let a= b = 0 in (4,3) we will obtain the variance of 
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the coverage for the frequentist interval which is just (4,5) with 

a = O. Since this is a decreasing function of a·.+ n, the variance of 

the coverage for the Bayesian limit is less than that for the frequen-

tist for a fixed sample size if the correct prior is assumed, 

Combining (4.4) with the bias squared we obtain 

MSE (coverage)= (1 + 2by/b')-a' (1 + 2y)-n - (1 + y)-2n(l + by/b')-2 'a + 

[ ( 1 + by /b' ) -a' ( 1 + 'Y) -n - p J2 

= (l + 2by/b')-a 1 (l + 2y)-n - 2p(l + by/b 1 )-a 1 (1 + y)-n + p2 • 

Table VJ;II gives the expected coverage and MSE (coverage) for some 

assumed and actual prior distributions and sample sizes. To illustrate 

Table VIII suppose that a Bayesian lower tolerance limit was obtained 

for p = ,90 and n = 10, If the prior density was assumed to have 

parameters a= 1 and b = 1, and the actual parameters were a= 3 

and b = 1, then in the long run the expected coverage would be .883 

and the mean square error of the coverage would be .001213, For the 

same situation a sample size of thirty would lead to an expected 

" coverage of .894 and mean square error of ,000~41. The values of a 

and b are listed in order of increasing ·a/b, that is, in increasing 

order of the mean of the prior distribution. Note that the expected 

coverage decreases as a/b increases. We would expect this intui-

tively since for e's which are larger than those expected, the 1 - p 
.. 

probability poin;t will. be smaller than that expected und~r the assumed 

prior, and thus we will be less likely to actually cover the proportion, 

p. ConverseJ..y, for e.' s actually .less than those expected we will be 

more likely to cover more than the proportion, p. The terms on the 



diagonal of Tabl~ VIII are the mean and variance of the coverage for 

each of the priors. These qvanti ties are ,the same as those for the 

frequentist tolerance limit based on a sample of a+ n. Thus if it can 

be determined that the prior distribution of e is gamma with a "" 2, 

b = 3, then, over the long run, the variance of the coverage for the 

Bayesian tolerance limit for sample of size 10 will be the same as 

that of the frequentist limit for sample size 12. Another fact to note 

is that for fixed a, b, and n, the MSE (coverage) is a decreasing 

function of .p. Thus the coverage of intervals of the form [o, r] 

will vary more than the coverage of interval of the form [r, oo], where 

in both cases p-expected coverage tolerance limits are desired for 

p > .5. 
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TABLE VIII 

EXPECTED COVERAGE AND MEAN SQUARE ERROR FOR 

BAYESIAN LOWER TOLERANCE LIMirs FOR 

THE EXPONENTIAL DIS'.['f\IBUTION* 

p = .90 

n = J..O 

Actual a, b 
Assumed 

,-, 

a,b 1,3 1,2 £,3 1,1 2,2 3,3 3,2 2,1 3,1 

1,3 .900 .896 ,891 .883 .883 .883 .870 .858 .834 
810 910 941 1608 1315 1213 2025 3565 6599 

1,2 .903 .900 .897 .892 .891 .891 .883 .875 .858 
783 810 805 1079 941 893 1213 1884 3210 

2,3 .908 .904 .900 .892 .892 .892 .881 .869 .847 
756 780 743 1197 941 853 1368 2524 4797 

1,1 .906 .904 . 903 .900 .900 .900 .896 .891 .883 
787 781 766 810 774 761 803 941 1213 

2,2 .911 .908 .. 905 .900 . 900 .900 ,892 .884 .869 
7'74 756 710 863 743 702 853 1310 2212 

3,3 .915 .911 .907 .900 .900 .900 .889 .879 .858 
816 783 698 989 764 686 977 1834 3518 

3,2 .917 . 915 .912 .907 · .907 .907 ,900 .893 .879 
868 816 740 803 698 662 686 980 1558 

2,1 .913 .912 .911 .908 .908 .908 .904 .900 .892 
821 794 760 756 725 714 687 743 853 

3, 1 . .920 .918 .917 .915 . 915 .915 .911 .907 .900 
944 903 855 816 789 779 703 698 686 

*MSE (coverage) = 10-6 times quantity in the table. 



TABLE VIII (Continued) 

p = ,90 

n = 30 

Actual a b ' Assumed 
a,b 1,3 1,2 2,3 1,1 2,2 3,3 3,2 2,1 3,1 

1,3 ,900 .898 ,897 ,894 ,894 ,894 .889 .885 ,876 
289 302 306 395 354 341 447 659 1079 

1,2 ,901 ,900 ,899 ,897 ,897 ,897 ,894 ,891 .885 
286 289 288 324 306 300 341 430 607 

2,3 ,903 ,901 ,900 ,897 ,897 .897 ,893 .888 .880 
282 285 280 347 309 296 371 545 891 

1,1 ,902 .902 ,901 ,900 ,900 ,900 ,898 ,897 ,894 
286 285 284 289 284 283 288 306 341 

2,2 ,904 . 903 ,902 ,900 ,900 .900 .897 ,894 .888 
285 282 275 297 280 274 296 363 495 

3,3 · .906 ,904 ,903 ,900 .900 ,900 .896 ,891 .883 
292 287 273 320 284 272 318 459 738 

3,2 ,907 ,906 ,905 .903 ,903 ,903 ,900 . ,897 .891 
300 292 280 290 273 268 272 319 .412 

2,1 ,905 ,904 ,904 ,903 ,903 ,903 ,901 ,900 ,897 
291 287 283 282 278 276 272 280 296 

3,1 ,908 ,907 ,907 ,906 ,906 ,906 ,904 ,903 ,900 
311 305 298 292 288 286 274 273 272 
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TABLE VIII (Continued) 

P = .95 

n = 10 

Actual a b . 
Assumed \ 

a,b 1,3 1,2 2,3 1,1 2,2 3,3 3,2 2,1 3,1 

1,3 .950 .948 .946 · .941 .941 .94;1.. .935 .928 .915 
215 243 252 438 355 327 552 990 1860 

1,2 .951 .950 .949 .946 .946 .946 .941 .937 .928 
207 215 214 290 252 239 327 514 885 

2,3 .954 .952 .950 .946 .946 .946 .940 ,934 .922 
199 206 197 323 252 2~8 370 696 1341 

1,1 .953 .952 .951 .950 .950 .950 .948 .946 .941 
207 206 202 215 205 202 214 252 327 

2,2 .955 .954 .953 .950 .950 .950 .946 .942 .934 
203 199 187 229 197 186 228 354 605 

3,3 .958 .956 .954 .950 .950 .950 .944 .939 .928 
213 205 183 264 203 182 263 502 977 

3,2 .959 ,958 .956 .954 · .954 .954 .950 .946 .939 
226 .213 194 21;1.. 183 174 182 263 423 

2,1 .957 .956 .955 .954 .954 .954 .952 .950 .946 
215 208 199 199 190 188 181 197 228 

3,1 .960 .959 .959 .958 ,958 .958 .956 .954 .950 
245 235 223 213 206 203 184 183 182 
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TABLE VIII (Continued) 

P = ,95 

n = 30 

Actual a, b 
Assumed 

a,b 1,3 1,2 2,3 1,1 2,2 3,3 3,2 2,1 · 3, 1. 

1,3 ,950 . 949 ,948 ,947 . 947 ,947 . 945 ,942 ,938 
76 Bo 81 105 94 91 120 177 292 

1,2 ,951 ,950 . 949 ,948 ,948 ,948 ,947 ·. 945 ,942 
75 76 76 86 81 79 91 115 163 

2,3 ,952 . 951 ,950 ,948 ,948 .948 ,946 . 944 . 939 
74 75 74 92 82 79 99 146 241 

1,1 ,951 ,951 . 951 ,950 . 950 ,950 ,949 .948 ,947 
76 75 75 76 75 75 76 81 91 

2,2 ,952 . 952 ,951 . 950 . 950 . 950 ,948 ,947 ,944 
75 74 73 79 74 73 78 97 133 

3,3 ,953 . 952 ,951 .950 . 950 ,950 ,948 ,946 ,941 
77 75 72 85 75 72 84 123 199 

3,2 ,953 ,953 .952 ,951 ,951 .951 ,950 .949 .946 
79 77 · 74 76 72 71 72 85 110 

2,1 . 953 ,952 ,952 ,952 ,952 ,952 .951 ,950 . 948 
77 76 74 74 73 73 72 74 78 

3,1 ,954 ,954 . 953 ,953 . 953 .953 .952 .951 ,950 
82 80 78 77 76 75 72 72 72 



CHAPTER V 

SUMMA.BY AND EXTENSIONS 

In this thesis we have investigated a Bayesian approach to 

tolerance intervals and have proposed criteria which can be used to 

measure the accuracy of the tolerance interval obtained or to determine 

the sample size necessary for a tolerance interval to have a specified 

accuracy. In Chapter II we considered q tolerance intervals for p 

coverage, that is, intervals in which we have q confidence that the 

coverage will be at least p. In Chapter III we considered p-expected 

coverage tolerance intervals and in Chapter IV we investigated the 

sensitivity of Bayesian p-expected coverage tol.erance intervals for the 

exponential density to the assumption of a .prior density on the parame­

ter e. 

In Chapter II, 'we measured ac<:uracy by considering the probability, 

given the sample, that the e we drew was one for which the coverage of 

the interval obtained was at least some proportion p', greater than 

the desired coverage p. Denoting this probability by q', we saw that 

for some common densities and pri?rs, q' was a decreasing function of 

the sampte s'ize and was not a function of the actual sample. One 

.question to.be answered would be whether these properties were due to 

choosing natural conjugate priors, good fortune, or both. In other 

words, for. what class of prior densities is q' a decreasing function 

of sample size, but not a function of the actual sample. 



53 

For a specified prior and any statistic, t(x1 ), it is possible, 
,n 

although perhaps untractable, to find f" (e I t(x1 ) ) , and from this to 
,n 

determine a<Bayesian tolerance limit, and also the accuracy, say q'(t). 

The question then arises as to whether there exists a statistic t*(x1 ) 
,n 

such that q' (t*) ~ q'(t) for all t. Thus it would be of interest to 

determine what priors and what statistics, if any, lead to most 

accurate Bayesian tolerance intervals. 

The accuracy criterion we considered for Bayesian p-expected 

coverage tolerance intervals was the probability, given the s;:imple, that 

the limit obtained was within 6. of the lower p probability point of 

f(yle). For the case when this probability is a function of the sample, 

we proposed a multi-stage sampling procedure and did a Monte Carlo 

investigation of the average sample size required to obtain a specified 

accuracy. Again in this case it would be of interest to explore the 

possibility of the existence of a statistic t *(x1 ) 
,n 

which would lead 

to most accurate tolerance limits. 

Other possible areas of investigation include an empirical Bayes 

approach to tolerance intervals, discrete prior densities, and multi-

parameter densities such as the Weibull and generalized gamma. Hence it 

appears that there are several aspects of a Bayesian approach to 

tolerance limits to be investigated in addition to the sample size 

determination aspect with which this thesis M.s been concerned. 
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