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CHAPTER I 

INTRODUCTION 

The concept of a P + 1 dime~sional surface is an algebraic concept. 

However, statisticians call upon their intuition developed from observing 

surfaces and objects in the world around us to describe the relationship 

between controlled variables X1, x2, ••• , Xp and a response variable Y. 

The possible values of Y graphed against the values of the controlled 

variable are thought of as tracing out a surface in the P + 1 dimensional 

space. Actually we are. interested in the surface generated by the true 

or basal response, rather than the observed respQnse Y. 

If this true response is a function f of the controlled variables, 

then Y is given by 

. 
where e is an experimental error. One problem of interest is to deter-

mine the level, or levels, at which each Xi should be set in order to 

maximize (or minimize) f. If the function f is known, then the pro-

blem is a standard optimization problem which may be solved by some 

optimization technique such as linear progranming (7), dynamic pro-

gramming (2), nonlinear programming (8), or one of the many other optimi-

zation techniques. However, in most response surface problems, the func-

tion f is not known; and in these cases a different formulation is 

required. In order to determine the level, or levels, at which each 

Xi should be set in order to maximize f, one must employ some search 

1 



tech~ique. When the function f is not known, the difficulty of the 

problem is compounded further, by the fact that, while performing our 

experiments, we are measuring the Y responses and not the f responses. 

2 

Some of the more popular search techniques at this time __are the 

single-factor method (5), the method of steepest ascent (4), the method 

of random search (12), and Kempthorne's method of parallel tangents (10). 

Unlike the problem where a single response is of interest, the 

problem where there are multiple responses of interest has received 

very little attention in mathematical literature. The responses may 

be written: 

Y1 = f 1(X1,X2,•••,Xp) + e1, 

Y2 = f2(X1,X2,•••,Xi,) + e2' 

. . ., . . . . . . . . . . , 

The problem of selecting the settings, (X!, X!,•••, x;) of the con

trolled variables to simultaneously optimize the, say N, responses of 

interest is the main subject of the following chapters. Note that 

above we have said optimize rather than maximize (or minimize) because, 

in general, it is not possible to find a set of v~lues x!, x2~ ... , x;, 
which will maximize all N responses simultaneously. Therefore, we 

search for some "best 11 points. In Chapter II, we will consider only 

maximization problems because if one.of the responses of interest, say 

Yi, is to be minimized, we may consider a new variable, say z1 = -Y1, 

and then maximize the Zi. 

The subsequent chapters are concerned with methods for solving 

problems simila~ to the following examples: Suppose one wishes to 



develop a fertilizer from ni.trogen, phosphorus, and potash which will 

simultaneously produce a maximum yield for wheat, alfalfa, and corn. 

We would be very surprised if there exists some level of nitrogen, x1, 

phosphorus, X2, and potash, X3, which would maximize the yield of 

wheat, Y1, alfalfa, Y2, and corn, Y3, simultaneously. Thus we are 

interested in the settings of (X1,X2,X3) which have associated with 

3 

them some optimum property. In this example we note the number of con-

trolled variables is equal to three. Also the number of responses of 

interest is equal t.o three. 

It is of interest to mention that the units in which each res-

ponse is measured need not be the same for the methods of the following 

chapters to apply. That is, no matter what units are used to measure 

the responses, wheth~r they be the same for each response or different 

for each response, the set of optimum settings, x0 •s, obtained by 

applying the methods developed in the following chapters will be the 

same. Since the units of measure of different responses may be differ-

ent, a linear combination of the responses may or may not have much 

meaning. For example, suppose one wishes to develop a coolant which has 

maximum density, Y1, and maximum boiling point, Y2, as two of its res

ponses of interest. A linear combination of Y1 and Y2 has very little 

meaning. 

As a second example, suppose one is interested in building a boat 

of specified size and shape. It is desired to have a boat with maximum 

strength, Yl' and minimum weight, Y2• One may choose any level (amount) 
,. 

of wood, Xi, fiber-glass, X2, or steel, X3, to construct the boat. 

Again it is obvious that no combination of the three materials, the con-

trolled variables, will simultaneously maximize the strength and 
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minimize the weight of the boat. Therefore, we a.re interested, ~s 

before, in the combination of the controlled variables which has assoc-

iated with it some optimum property. 

To introduce a concept which will be developed inthe next chap-

ter, we present a third example. Suppose there are two controlled 

variables. Suppose the first controlled variable has three possible 

values and the second controlled variable has two possible values. 

Suppose there are three responses of interest and we wish to maximize 

each. It is possible to construct the following table where each 

entry is a vector representing (Y1, Y2, Y3). 

TABLE I 

RESPONSES WITH DISCRETE CONTROLLED VARIABLES 

VARIABLE 2 

1 2 

(1, 2, 3) (2, 4, 5) 

(1, 5, 5) (1, 3, 3) 

> 

3 0, o, 1) (2, 4, 4) 

It is obvious that the variable combination (1, 2) is better 

than (1, 1), (2, 2), (3, 1) and (3, 2), but we are unab.le to say whether 

(1, 2) or (2, 1) is better. We shall develop in the following chapters 

methods for handling sucb problems when certain conditions are met. 



CHAPTER II 

ADMISSIBILITY AND COMPLETENESS 

The purpose of this chapter is to develop some basic theorems 

which will prove to be valuable tools in the later chapters. The 

following notation and definitions will facilitate this development. 

1. The symbol Xi will represent the ith controlled variable. 

Unless otherwise stated, i = 1, 2, ••• , P. 

2. The letter X will denote a P-dimensional vector of control-

led variables; that is, X = (X1, X2, ••• , ~). Each point 

Xis a point in the domain of the response functions of inter-

est. Unless otherwise stated, in the development that follows, 

the domain of the response functions of interest will be the 

points in Ep. 

3. The jth response function of interest is denoted by Yj. Un• 
I 
'less otherwise stated, j = 1, 2, ••• , N. The point Yj(X), 

X e El>, is the image of X under Y j. 

4. The letter Y will denote the N .. dimensional vec~o; o! the 

response functions of interest; that is, Y = (Y1, Y2, ••• , YN)• 

s. The symbol VYJ will represent a P-dimensional vector of deriva-
ay; ~Y; ay4 

tives; that is, VYj = (_.t., ~' ••• , ~). This vector 
c)Xl aX2 CJ'_""P 

is called the gradient vector. 

It was explained in Chapter l that any minimization problem can 

be changed to a maximization problem. Therefore, each problem we will 
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consider can be put into the following context. There are N response 

functions of interest Y1, Y2, ••• , YN, and one wishes to choose the 

set of values for the P controlled variables, (x1, X2, ••• , ~ ), which 

will simultaneously give the highest possible values for a.11 the res-

ponse functions of interest. 

In Chapter I we mentioned associating some optilllQlll property with 

a point. In order to be able to determine if a point has such a pro-

perty, one must first b~ able to compare different points. This moti-

vates the fol.lowing definition. 

Definition 1: A point x0 e Ep is better than a point x1 e EP 

for the response functions of interest, (Yi, Y2, , •• , YN) if 

(1) Yj(x0 ) ~ Yj(x1) for l~N and 

(2) Yk(x0 ) > Yk(X1) for at least one k, l<k<N. 

If (1) of Definition .1 holds, then x0 is at least as good as xl. 

· Definition 2: The point x<> t Ep is an ad!Qissible point fo~ the 

response functions of interest, (Y1, Y2, ••• , YN), if there exists no 

point x1 in Fp better than X°. 

We are obviously interested in the admissib.le points and, in 

case there exist more than one admissible point, in the set of all 

admissible points. On the other hand suppose we wish to find a better 

point than a given point. Where should we search? This .leads us to 

the question of whether there is a set of points such that we are sure 

of finding a point in the set which is better than th~ given point. 

Such a set is now defined. 

Definition 2_: A complete set of points is a set S of points such 

that, given any point X° in Ep not in the complete set, there exists a 

6 
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point x1 e S that is better than x0 • 

It may also be of interest to speak of an essentially complete set. 

Definition 4: An essentially complete set of points is a set of 

points such that, given any point x0 eFp not in the essen,i$11y complete 

set, there exists a point xl e E pin the set which is at least as good .. 

It is seen from the preceding definitions, that a complete set is 

an essentially complete set; whereas an essentially complete set need 

not be a complete set. 

Another, even more important, set of points which we will make 

use of is a minimal complete set of points. 

Definition 2_: A minimal complete set of points, if it exists, 

is a complete set of points such that no.proper subset is a complete 

set of points. 

Definition 6: A contour re of Yj is the {x I Yj(X) = c} where C 

is an arbitrary real constant. 

A minimal essentially complete set of points could also be defined, 

but we make no use of such a set. Likewise, one could define an inad

missible point x0 as a point such that there exists a point xl that is 

better than x0 • 

From Definition 2 and Definition 5, one rea.lizes that an admissible 

point and a minimal complete set are closely related. Theorems I and 

II 1 that are stated below, serve to express some of the properties of 

an admissible point and the minimal complete set. The proofs of Theo-

rems I and II are essentially the same as the proofs for similar theo-

rems concerning decision rules given in reference (13). 

Theorem I: If a minimal complete set of points exists, it. is 

equal to the set of admissible points. 
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Theorem!!= A necessary and sufficient condition for the existence 

of a minimal complete set of points is that the set of admissible points 

be a complete set. 

We note that if a minimal complete set, A, exists, then for any 

point x0 not in A there is a point in A which is better than x0 • There-

fore, if A exists, it is of special interest. It is clear from the 

above definitions that a minimal complete set is unique •. However, there 

may be any number of complete sets. For example, let P = 1 and N,.. 2. 

If Y1 (X) = 2X and Y2(X) = x3, then the set 

is a complete set for any real number a, but the minimal complete set 

does not exist. As an example of when the minimal complete set does 

exist, let P = 1, N = 2, Y1 (X) = 4 - x2 and Yi(X) = -(x .. 2)2. This 

situation is shown in Figure 1. It is seen from Figure 1 that the 

minimal complete set is 

{x I x e @, ~}. 

Since we are interested in the minimal complete set, if we had 

some way of analyzing the response functions of interest and determining 

if the minimal complete set exists or not, it would be a powerful tool. 

As of now we have no such tool, but Antle (l) has proved a theorem 

stating sufficient conditions for the existence of a minimal complete 

set., Use will be made of this theorem in the following chapters. 

Theorem III: If Yj is everywhere continuous for all j and at 

least one of the sets Sj(a) = {x I Yj(X) ~ a} is bounded for all a, 

then the minimal complet~,set of points for the response functions 



Figure 1. Two Responses of Interest, P = 1. 

Y1, Y2' ••• , YN exists. 

Proof: See Antle (1), page 6. 

Let us next consider the following example with P = 1, N = 2, 

2 Y1(X) = -x and Y2(X) = X + 2. Then, since both Y1(x) and Y2(X) are 

continuous everywhere, and the set S1 (a) = { X I Y1 (X) :::, a} is bounded 

for all a, we see that the minimal complete set for Y1(x) = -x2 and 

Y2(X) = X + 2 exists. The minimal complete set is seen to be 

{xjxe@,-)}. 

9 
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Perhaps even more important than being able to determine if the 

minimal complete set exists, is being able to identify the admissible 

points. If we are able to identify the admissible points and if the 

minima.I complete set of points exists, then we can identify the mini-

mal complete set as the set of admissible points. 

In the preceding examples, the sets of admissible po~nts were 

easily identified; however, when considering problems with P ~ 2, 

the admissible points may be difficult to identify. The problem of 

finding a necessary and sufficient condition that a point be an admis-

sible ·point was studied by Antle (1) and a necessary condition was 

obtained. Antl& stated that if vY1, vY2' ••• , vYN exist at a 

0 0 point X, then a necessary condition for X to be an admissible point 

is that there exists a vector a such that 

and 

~ O'i = 1 • 

This theorem is not true as stated because the proof assumes that 

each response increases as we move in the direction of the gradient. 

Although this is categorically stated to be the case in many calculus 

textbooks, it is easy to construct examples where the gradient does 

not lead us to higher responses.but in fact leads us to lower responses. 

Of course the utility of Antle's theorem is not decreased by such 

examples in that from an applied point of view, we would expect the 

theorem to hold on response surfaces actually encountered. However, 

it is desirable to determine what restrictions must be placed upon 

the functions Y1, Y2, ••• , YN in order that Antle's theorem hold. In 
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the theorem which follows we simply for~late restrictions which agree 

with the intuitive concept that the response increases in the direction 

of the gradient. 

Theorem !!_: If VY1 (X), VY2(X), ••• , VYN(X) exist at a point 

x" and for every i with vY1(x"),;,. + and every U with a positive com

ponent in the direction of vY1 (X0 ) there exists a 6 (i, U) > 0 such 

that Yi(x0 + tU) > Yi(x°) when O<t<6(i, U}, then a necessary condi• 

tion for X° to be an admissib.le point is that there exists a vector 

a such that 

Proof: Assume no such vector a exists. Then none of the vY1 (xO) 

are equal to the nul,l yector, and the convex huU generated by the 

vectors r' + VY1(x0 ) do.es not contain x". Ca.11 this hull Do Since 

x0 and Dare convex and disjoint, there exists a hyperplane that stric-

tly separates them. Call this hyperplane H. Thus H divides 1t, into 

+ two half spaces: the half space H which contains D and the half 

space u· which contains x0 • Let the norma.1 to H that is directed 

toward D be v. Therefore v•x" < 0 since x0 is in u·. Also 

v•'J:Btfj0 + VYi(x0f/ > 0 for all Bi~ O, ~Bi= 1 since :i,B1jJ.0 + VYi¢e'U 

are the points i~ D and Dis in H+. But V•~Bt/J." + vY1(x0i}'> 0 

implies~ Bt V• vY1 (x") > 0 for all B1 ~ O, ~ Bt == 1. This implies 

that v• vY1(x0 ) > 0 for all 1. Therefore, each VY1(x") has a post"'.' 

tive component in the direction of v. By hypothesis there exists a 

e,1 for each 1 such that 



Let 6 = min 6 1• Then 

for all i. Therefore x0 + tV (O<t<6l is better. than .xO; hence x0 is 

not an admissible point. This completes the proof of Theorem IV. 

Theorem IV would be a much more powerful too.l if it specified 

both a necessary and sufficient condition for a point to be an 

admissible point... However, it is easily seen from the next example 

that the conditions given in Theorem IV are not sufficient conditions. 

Let P = 2, N = 2, Y1 (X) = x1 + X2 and Y2 have contours as shown 

in Figure 2. 

Figure 2. Contours for Two Response Functions of Interest 
for N = 2, P = 2. 

12 
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It is easily seen that the set 

satisfied Theorem tv. However, the set 

is the set of .. admissible points. Hence, the theorem does not provide 

sufficient conditions for a point to be an admissible point. It is 

of interest to ·note that the conditions of Theorem III are satisfied, 

so the set of admissible points forms the minimal complete set of 

points for the given.response functions. 

Although~he restrictions imposed by the hypothesis of Theorem 

IV are not.strict.and although they are suggested by intuitive notions 

about the gradient, it would be difficult, in general, to ver~fy that 

the hypothesis of Theorem IV is satisfied. Therefore, it is desirable 

to have condition$· which can be more easily examined, even if the 

class of surfaces satisfying the conditions is further restricted. 

Thus we state as a corollary: 

Corollary !; If each Yi~ Y2, ... , Yu has a differential at Xo, 

then a necessary condition for x0 to be an admissible point is that 

there exist a vector a such that 

N 
~ a 1 VYi (X0 ) == +, O'i ~ 0 for a.11 i, 
i==l . -

and 
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Proof: It will suffice to show that if each Yj has a differential 

at~~ then the conditions of Theorem IV are satisfied. Let VY. (X0 ) :f:: 
J 

+; then we need to show that for every vector U such that U•vY/X0 ) > O, 

there exists a 5'U) such that 

Y j (x0 + tU) > Y j (:XO) when O<t<lo(U). 

Let Ube any vector such that vYj(x0 )•U = b, b>O. Since Yj has 

a differential at x0 , vYj(x0 ) 0 U = DuYj(X0 ). 

lim Yj(xO + tU) • Yj(X0 ). Therefore lim 

But DuY/X9) = 
Yj(XO + tU) • Yj(X0 ) = b. 

t t..,_O t t~O 

From the definition of a limit we know that for every number e>O, there 

is another number 6>0 such that whenever O<t<6, then 

Yj(XO • tU). Yj(XO) 
-------· ..... -- - b < e t 

Let e=e.. Then there is another number 6>0 such that whenever O<t<6, 
2 

then 

or 

< b 
2 • This implies 

that bt But ~>O. Therefore Yj(x0 - tU) 

> Yj(X0 ) whenever O<t<o.· This completes the proof of Corollary 1 .. 

With a first reading of the preceding text, one may be led to the 

false conclusion that if the set of admissible points can be found, 

the problem is solved. However, this is the case only if the minimal 

complete set exists. The following example illustrates that thert: are 



cases where points other than the set of admissible points need to be 

considered. Suppose P = 1, N = 2, Y1(X) =lxf, and 

Y2(X) = 2, if X = 0 

= 1, if X + O. 

15 

This situation is depicted in Figu;re 3. Note that the only adm~ssible 

point is X = O. However, if one is interested in large values of Y1(X), 

he would never choose X close to O. Thus, one would be interested in 

points other than the admissible point. Clearly there exists no mini-

mal complete set of .points for these two respon~e functions. If one 

did exist, then we would need to consider only the admissible pointso 

It should be mentioned that many of the theorems developed in this 

chapter do not apply for response functions Y1 and Y2 of Figure 3. 

Figure 3. A Graph of the Two Response Functions of 
Interest. 

In applyi~ Theorem IV, it is generally more convenient to use 

the result stated in Corollary 2. 



Corollary 2: If N = 2, Y1 and Y2 satisfy the conditions of 

Theorem IV, VY1(X0 ) + +, VY2(X0 ) =I=+, then a necessary condition 

for x0 to be an admissible point is that there exist a negative number 

-c such that 

In studying response surfaces, the device of sketching contours 

is very helpful. Although one must be careful not to be misled by 

11special casesn we shall rely heavily upon such sketches throughout 

this thesis. 

By inspecting the contours of two response surfaces, it seems 

intuitively obvious that points satisfying T~eorem IV are, in fact, 

points at which a contour of one surface is "tangent" to a contour 

of the other su1:face. The concept of tangent points is therefore 

explored. 

16 

Definition 7: Let x0 be a point in Fp where vY1(X0 ) and vY2(x0 ) 

exist. The point x0 is a tangent point for the response functions Y1 

and Y2 if there exist numbers b1 and b2, both not zero, such that 

Of course, the set of tangent points is, in general, a larger set 

than the set of points satisfying the necessary condition of Theorem 

IV, so it might be argued that we are complicating our task of finding 

the admissible points by considering a larger set. However, the tan"' 

gent points are easily obtained and we shall make use of them in this 

thesis. Considering Theorem IV and Definition 7, we are led to the 

following theorem: 



Theorem V: If the hypothesis of Theorem IV holds, then a neces~ 

sary condition for x0 to be an admissible point is that it be a tan~ 

gent point. 

17 

It is obvious, but it should be stressed, that the condition stated 

in Theorem Vis not a sufficient condition. 

When one is searching for admissible points, it is very desirable 

to be able to eliminate some of the points in the P-dimensional space 

of the controlled variables as being not possible· for admissible pointso 

Theorem V sometimes aids us in performing such an operation. From 

Theorem V we are able to eliminate all points except the tangent points. 

Another such tool is the subject of the next theorem. 

Theorem VI: If N = 2, Y1 has a maximum response at some point, 

say x1, Y2 has a maximum response at some point, say xJ, then the set 

of admissible points is contained in the intersection of sets A and B, 

where 

and 

Proof: Suppose x0 is an admissible point and not contained in A. 

Then Y1(X0 ) < Y1(X2) and Y2(X0 ) ~ Y2(x2); that is, x2 is better than 

x0 • This contradicts the assumption that X° is admissible; therefore 

x0 is contained in A. Similarly we can show x0 E: B. Therefore x0 e 

A()B. 

Theorem VI will prove to be a very powerful tool when N = 2 and 

both Y1 and Y2 have maximum responses. One may then wonder if there 

exists such a tool for the equally important problem when Y1 has a 



maximum response and Y2 has a minimum response. The answer is in the 

affirmative as is shown in Theorem VIIo 

Theorem VII: If N = 2, Y1 has a maximum response at a point, 

say x1, Y2 has a minimum response at a point, say x2, then the set of 

admissible points is contained in the set A, where 

Proof: To show all admissible points are contained in A, we show 

that for any point, say x0 , not in A, there ~s a point in A which is 

better than x0 • Hence, any point not in A would not be admissible. 

First, note that xl is in A, because 

Let x:' be any point not in A. Since x0 is not in A, this implies that 

Y2(X0 ) < Y2(xl). From the statement of Theorem VII, 

because Y1 has a maximum at x1• Therefore, xl is better than xo. 

However, x0 was any point not in A, and x:' is not admbsible; hence, 

all admissible points are in the set A. 

In attempting to characterize the set of tang~nt points in the 

case of two families of ellipses, it was noticed that when the tangent 

point lay on two contours which intersected (other than at another 

tangent point) that the given tangent point could not be admissible. 

This led to the formulation of Theorem VIII. 

Before stating Theorem VIII, let us first prove the following 

lemma. 

18 



Lenma: If :x° is a point which is not an admissible point and x1 

is a point such that 

then x1 is not an admissible point. 

Proof: Y(X1) ~ Y(X0 ) implies Y1(xl) ~ Y1(x0 ) for all i, l~i~N .. 

Since x0 is not an admissible point, then there exists some point, 

say x2, that is better than .XO. That is, 

and 

But 

Hence, x2 is better than xl so x1 is not an admissible point. This 

completes the proof of the lemma. 

Now we are prepared to state and prove Theorem VIII. 

Theorem VIII: If N = 2, Y1 and Y2 satisfy the conditions of 

Theorem IV for aU X, vY1(x) is not equal to+ for any X such that 

Y1 (X) = C1, 'i7Y2(X) is not equal to + for any X such that Y2(X) ·""' C2, 

then if the contours with values C1 and C2 intersect other than at 

a tangent point, there exists no admissible point, say xl, suph that 

Yi (xl) = c1 and Y2(xl) = c 2• 

19 



Proof: Let x0 be a point where the contours with values c1 and 

c2 intersect, and not be a tangent point. From the definition of c1 

and c2 

Suppose there exists a point x1 such that 

Then 

Then from the lemma, since x0 is not an admissible point, xl is not 

an admissible point. Thi.s completes the proof of Theorem VIIIo 

Many times in practice, the set of admissible points, hence the 

minimal complete set if it exists, will be much easier to determine if 

one knows where one of the admissible points is located. For a simple 

illustration of this, suppose N = 2, Y1 has circular contours and Y2 

has circular contours. Theorem V implies that if there exists an 

admissible point, the point must lie on the line through the center 

20 

of both sets of circular contours. Therefore, if one admissible point, 

say x0 , can be found, it is known that the set of admissible points 

is on a .line through the point x0 • Of course, if two admissible points 

are found, then the line is completely determined. To assume circular 

contours may seem unrealistic but the point we wish to make by this 

example is the importance of being able to determine at least one 

admissible point. 

The following theorem will be of much use in helping us determine 

an admissible point. 
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Theorem,!!: If Y1, Y2, ••• , YN are the response functions of inter

est and Yk has a unique maximum at xk, then xk is an admissible point. 

Proof: Suppose xk is not an admissible point. Then there must 

exist some point, say x0 , which is better than xk. That is, 

or 

and 

Suppose i = k. Then since xO is better than xk 

But this contradicts the statement that Yk has a unique maximum 

at the point xk so the assumption that xk is not an admissib.le point 

is false. This completes the proof of Theorem IX. 

The importance of Theorem IX is further emphasized by noting that 

there exist simple search techniques, steepest ascent, one factor at 

a. time, parallel tangent, etc., to determine the xk mentioned in the 

theorem when there is only one response function of interest. When 

we find the maximum response of Yk, we have found. Xk, hence an admis-

sib le point •. 

It should be noted that Theorem IX is also true if there are n 

response functions of interest (Y1, Y2, ••• , Yu) each of which has a 

unique maximum. That is, j,f there exist n points, each of which is a 

unique maximum for one of the Y1, then each of then points is an 

admissible point. 



As an illustration, consider the example 

P :s 2, N = 4 

Y1(x) = 3 - xf - xi 

: .. x2 - 3x2 Y2(X) = 5 + e 1 2 

and 

AU the Yi(X) have unique extrema so we know that for each Yi(X) 

that has a unique maximum, there is at admissible point (namely the 

point where it attains its maximum) associated wtth it. One notes 

that Y1(X) has a maximum response at (O,O), therefore (O,O) is an 

admissible point. Likewise, Y2(x).has a maximum response at (0,0) 

so again (O,O) is an admissible point. The response function, Y4(x), 

has a maximum response at ( .. 2,1) so (-2,1) is an admissible point. 

Since Y3(X) does not have a maximum response, Theorem IX does not 

apply. 

It is regrettable that efforts to find a sufficient condition 

for a point to be an admissible point have failed. It was possible 

22 

to state a theorem for N c 2, P = l which gives a sufficient condition 

for a local property of admissibility but the obvious generalization 

of the theorem to P > 1 is not true. The theorem for P = l is now 

stated. 

Theorem X: If Y1 and Y2 have derivatives at each point of E1 

and if at some point x0 , the derivatives are of opposite sign, then 



23 

there is a neighborhood of x°, N(x0 ,6) such that there is no point in 

the neighborhood which is better than x". 

Proof: Without loss of generality suppose Y 1' (X0 ) > 0 and Y2' (x") 

< O. From the definition of a derivative there exist N(X°,6 1) such 

that for every X eN' (X° ,61), Y1 (X) < Y1(X°) if X < x0 and Yi (X) > Y1 (:x°) 

if X > x0 • Also there exist N(x0 ,6 2) such that for every Xe N•(x",62), 

Y2(X) > Y2(X0 ) if X < x0 and Y2(~) < Y2(X0 ) if X > :x0. Let 6 == 

min (61,6 2). Then there is no point Xe N(X°,6) which is better than 

x0 • This completes the proof of Theorem X. 

In the remaining paragraphs of this chapter we wish to discuss 

the problem of scale. It is well known, for instance, that the steep-

est ascent method for finding an optimum of a response surface is not 

scale invariant. Other techniques have been shown to be invariant 

under scale transformations. Naturally we shou.ld ask whether the set 

of admissib.le points is scale invariant. Fortunately, the answer is 

affitmative. 

We have already stated that we shall make heavy use of sketches 
' 

of the contours in the characterization of the sets of admissible points. 

It is important ~o note that, under changes of scale, elliptical con-

tours are transformed into elliptical contours, parabolic into para• 

bolic, and hyperbolic into hyperbolic. 



CHAPTER III 

ADMISSIBLE POINTS FOR SOME RESPONSE FUNCTIONS WITH 

SPECIAL TYPES OF CONTOURS: N = 2• P = 2 

Many times• while perfoming the exploration of a response surface 

with P = 21 it has been found that the contotl?'s of the response su:roface 

al'EI sufficiently close to some family of quadratic curves so that a 

function which has this family of quadratic curves as contours is em-

ployed as the basic model. For this reason, one sees that it is impor

tant to be able to find the set of admissible points for response func-

tions havi»g families of quadratic curves ·as their contoUX's. 

Models such as the following are but a few of those which have fam-

iliea of quadratic curives as their contours. 

2 2 
Y1(X) =Kl+ ~Xl + K3X2 (4) 

2 2 
Yi (X) = Kl + K2 exp(K3X1 + K4X2) ( 5) 

Kax! + K4x; + K5Xl + K6X2 + 1(7 
. Yi(X) • Kl + (K2) • K2 0 (6) 

In the development of this chapte~i we will translate axes, rotate 

axes, and use the change of scale technique whenever necessary to make 

the pN>blems as simple as possible. It is easily seen that a rotation 

or translation does not change the set of admissible points, also it 

can easily be shown that the change of scale technique likewise leaves 

the set of admissible points unchanged. If one wishes to determine the 

24 
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equation of the admissible points in the original coordinate system, he 

can go through the inverse transfottma.tions to get that :result. However, 

here we are interested only in finding the admissible points for the 

simple pl'Ol>lem. because , as was stated in Chapter Il the set of admissi-

ble points for the simple problem will be on the same type of curve as 

the set of admissible points for the original problem. 

Admissible Point for Y 1 Having Elliptic .,Cont~u?is and a Maximum 

Response. Y2 Having Elliptic Contours and 

a Maximum Response 

As our first problem• let us suppose that the contours of Y1 form a 

family of ellipses with a maximum response at the center Ch1 , k1). Let 

the contours of Y2 form a family of ellipses with a maximum response at 

the center Ch2, k2). 

Then, without loss of generality, one may translate the axis and 

have the Y1 contours centered at (0 10) and the Y2 contours centered at 

(h2• k2). Now applying the change of scale technique, one may treat the 

problem as though Y1 has circular contours centered at (0 1 0) and Y2 has 

elliptic contours centered at Ch2, k2). After applying a rotation 

the new situation is: Y 1 bas circular contours centered at 

(0 10) and Y2 has elliptic contours centered at (h, k), h !. 0 1 k .!. Oo 

The major axis of the Y2 contours is paral~el to one of the coordinate 

axes. Therefore• we may write the equations of the contours as followso 

The equation of the Y1 contours is 

(7) 

and the equation of the Y2 contours is 
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2 2 
a(X1 .. h) + (X2 ... k) = ~ (a > 0) e (8) 

We will first determine the set of tangent points, knowing the set 

of admissible points·is contained in the set of tangent points from 

Theorem V, by setting ax2/ax1 = x2 from Equation 7 equal to ax2/ax1 = x2 
from Equation a. 

Taking the derivatives of the functions in Equa.tions 7 and a we have 

(9) 

and 

(10) 

Solving for x2 in Equations 9 and 10,we obtain 

(ll) 

and· 

a(X1 - h) 
X2 = - X k • 

2 -
(12) 

Setting x2 of Equation ll equal to x2 of Equation 12. we have 

• (13) 

or 

(14) 

If a~ 1 9 that is, if the Y2 contours are not circular, Equation 14 is 

the equation of a hyperbola. 

Rewriting Equation 14, one has 
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0 (15) 

Taking the limit of the right sid~ of Equation 15 as x1 +•to de

termine the horizontal asymptote of the hyperbola, we find the limit to 

be k/1-a. Therefore, x2 = k/1-a is the horizontal asymptote of the 

hyperbola. Rewriting Equation 14 agaiP1we have 

ahX2 
X =---.......... -1 (a - l)X2 + k • (16) 

Taking the limit of the rz.ght side of Equation 16 as x2 +•to de

tel"l!line the vertical asymptote of the h)'perbola, we find the limit to be 

ah/a•l. Therefore, x1 = ah/a-1 is the vertical asymptote of the hyper-

bola. 

Noting there are two cases (a< l or a> l), we may now draw the 

graph of the asymptotes in each case. 

(h,k) 

X1 = ah 
a - 1 

Figure 4. Tan.gent Points for Two Responses with 
E:lliptic Contours, a< 1 



~~~~~~~~~~~~...-~~~~~~~~~~~~~~xl 

k ---------,--,-----=::::=~-- X2 = ~1---. 

Figure s. Tangent p.oints for Two Responses with 
Elliptic Contours, a > 1 
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From the asymptote•• and noting that the hyperbola passes through 

the point• (0 10) and (h 1k) 1 one can now draw the graph of the byperbolao 

For convenience in referring to the different branches of the hyper-

bola• we ahall call the branch which passes through the origin, He, and 

the branch which does not pass through the origin, ~. 

We show in Appendix A that for each tangent point on HN correspon

din1 to a Y1 and a Y2 contour, with values, say c1 and c2, respectively, 

the contours with values c1 and c2 also intersect. We have already 

shown in Chapter II (Theorem VIII)that there exists no admissible point, 

say x0
, havina Y1Cx0

) a c1 and Y2(x0
) = c2 since contours with values 
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c1 and C2 intersect; hence there are no admiaaible points on f'No 

Consider Figure 4, aince there are no admissible points on HN• no 

admissible point has its x
1 

coordinate less than ah/a-l. Let us look at 

the point• whoae x1 coordinates satisfy ah/a-l < x1 < o. Consider any 

point x0 on He and ah/a•l < X~ < o • . If we draw a line from x0 through 

(h,k} and we move 6 unite, some infinitesimal amount, along that line, 

toward (h 1k} 1 to a point 1 say x1
1 we increase both the Y1 response and 

the Y2 response. Thus, x1 is a better point than x0
, therefore x0 is 

not an admisaible point. From thia 1 since x0 
was any point on He with 

x1 coordinate satisfying ah/a-l < x1 < 0 1 one knows there are no admis

aible point• with x1 coordinates less than zero. 
o;I o 

Likewise, considering a point, say X • on He with x1 >hand draw-

ing the line from x0 through (h 1k) 1 ·we find that after moving 6 units 

alon1 this line, toward (h 1k) 1 one increases both the Y1 response and · 

the Y2 responae. Thua 1 there exist no admiaaibl• point• corresponding 

to xl > h. 

From this, it ia seen that all admissible points must lie on He and 

th• x1 coordinate of all admissible points is bounded by zero and h. It 

ia also easily seen that each point on He with x1 coordinate satisfying 

o ! x1 ! h ill I in fact 1 . an admiss~le point because as one moves ( along 

He) from the origin to the point (h 1k} 1 the Y1 response decreases while 

the Y2 response increaaes with each move. Then, the set of admissible 

points for the case where a< l is given by 

In a like manner, one can consider Figure s and find that the set 

of admissible points for the case where a> l is 
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Clearly, from the preceding work one know• that if Y 1 has elliptic 

contoura with a Mximum response at the center of the ellipses and Y2 

baa-elliptic contours with a maximum response at the center of the el

lipaea1 then the set of admissible points lie on a section of a hyperbola 

connectin1 the two . maximum reaponses. The points on the section of the 

hyperbola are, of course, points in the set of tangent points. 

It should be noted that the conditions for both s1(a) and s2(a) of 

Theorem 111 are satisfied. Hence, the set of admissible points is in 

fact the minimal complete aet. 

Admissible Points for Y1 Having Elliptic Contours and a 

Minimum Reaponse and Y2 Having Elliptic Contours 

and a Maximum Response 

Let us suppose, for our next .problem, that the contours of Y1 form 

a family of ellipaea with a minimum response at their center Ch1 ,k1 ). 

Let the contours of Y2 form a family of ellipses with a maximum re

sponse at -their center (h2 ,k2). Once again, we may go through transla

tions, rotationa 1 and change of scale techniques to obtain the following 

situation. The contours of Y1 form a family of circles with a minimum 

reaponse at their center (O,O). The contours of Y2 form a family of 

ellipses with a maximum response at their center (h,k), h > o, k > o. - -
The major axes of the ellipses are parallel to one of the coordinate 

ax••• 

One should note that the contours of this problem and the contours 

of the first problem are the same, hence the set of tangent points are 
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the sae. Now, kna11ing what the set of tangent points is, we are ready 

to deteraine the set of admissible points. As before, there are no ad-

llissible points on 8a (Appendix .A); so we need mly deteraine which 

points on He are admissible points. 

First, referring to Figure 4, let r' be ·any point on He with X~ < h. 

Draw a line passing through x0 and through (h,k)~ Move along the line 

to (h,k), say the distance traYelled is d, then aove d units further 

along the line to a point, say x1• Since (h,k) is the 'center of the el

liptic contours, the Y2(x1) response is equal to the Y2(x
0

) response. 

It is seen that the distance from x0 to (O,O) is less .than the distance 

froa x1 to (O,O) (radius of Y1(x0
) and Y1(x1) contours, respectively). 

1 0 Since the Y1 contours increase with increasing radii, Y1 (X ) > Y1 (X ) • 

Therefore, x1 is a better point than x0
; so x0 is not an admissible point. 

0 0 However, X was an arbitrary point on He with x1 4' h. Therefore, there 

are no admissible points with x1 coordinates satisfying x1 c: h. 

Clearly, each point on He with x1 coordinate satisfying x1 2 his 

an admissible point. If we start at (h,k) and move along He in an in

creasing x1 direction, each move increases the Y1 response while decrea

sing the Y2 response. Furthermore, siuce the sets··S2(a) ·satisfy Theorem 

III, this set of admissible points is, in fact. the·miniaal complete set. 

One can go through a similar argument for Figure 5, and the results 

will be similar. The set of admissible poinu when· a::,, 1 is given by 

{<Xi- X2> t (a - l)X1X2 - ahX2 + kXl • 0, a ~ l > xl > h} • (19) 

One sees from the preceding work, if Y1 has elliptic contours with 

a mini1111m respClll8e at the center of the ellipses and Y2 has elliptic con

tours with a maximum response at the center of the ellipses, then the 



set of admissible points, in fact, the minimal complete set, lies on a 

section of a hyperbola passing through the Y2 center and directed away 

from the Y1 center. The points on the hyperbola are points in the set 

of tan1ent points. 
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It may, at this time, seem natural to consider the problem where Y1 

haa elliptic contours and a minimum response at its center and Y2 has 

elliptic contours and a minimum response at its center. However, after 

close observation, it is seen that for this problem there exist no ad-

miasible points. By choosing x1 or x2 larger and larger• one may 

simultaneously make Y1 and Y2 as large as one wishes. Hence 1 this prob

lem is not of interest. It could 1 of course 1 be of interest if there 

were boundary coaditions placed on x1 and x2• 

Admissible Points for Y1 Having Elliptic Contours and a 

Maximum Response and Y2 Having 

Hyperbolic Contours 

As our third problem1 let us determine the set of admissible points 

for the following responses. The Y1 contours form a family of ellipses 

with the maximum response at their center, (h1 ,k1 ). The Y2 contours 

form a family of hyperbolas with center (h2,k2). By rotating 1 transla

ting, and applyin1 the change of scale technique (much the same as was 
~ 

done in problem one of thi, chapter) 1 we may reduce all problems of this 

type to one of the following type. The contours of the Y1 response form 

a family of .circles with a maximum response at their center (0 10). The 

contours of the Y2 response form a family of hyperbolas with center 

(h 1k) 1 h > o, k > o. One may then write the equations of the contours - -
as follows. 
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The equation of the Y1 contours is 

(20) 

and the equation of the Y2 contours is 

(21) 

From the framework of this problem, one is able to use much of what 

waa done in problem one to finally obtain the equation of the tangent 

point• (~uation 14). As before, the equation of the horizontal asymp-

tote of the hyperbola ia x2 c k/1-a and the equation of the vertical 

aaymptot• of the hyperbola is x1 = ah/a-1. However, since in this case 

(a< o), we can draw a aingle figure showing the uyq,totes of the hyper-

bola given by Equation 14 (see Figure 6l. 

~~~~'?"-~-r=fh:-----t~~~~~~~~~~xl 

He 

X 
_ ab 

1 - a - 1 

Figure 6. Tangent Points for Elliptic and ijyperbolic Contours 
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Since we know the hyperbola passes through (O,O) and (h 1k) 1 we can 

now draw the hyperbola corresponding to the set of tangent pointso Let 

x0 be any point on HN with h > X~ > ah/a-lo Draw a line through x0 and 

parallel to the x2 axiso Follow the line through the point x2 = k to 

X~ • k units below the line x2 = k, call this point x1 • 

l O 1 Therefore, Y2(X) = Y2(x ) 1 but the distance from X to (0 10) is 

leas than the distance from x0 to (0 10)0 Thus 1 the Y1 contour passing 

through x1 has smaller radius than the Y1 contour passing through x0
o 

l o Since smaller radii correspond to larger Y1 responses 1 Y1(x) > Y1(X )o 

Therefore, x1 is a better point than x0
• Since x0 was an arbitrary 

point on 8N with 

8N with -X~ < h. 

ah/a-1 < x0 
< h, there is no admissible point 1 x0

1 on 
l 

0 · 0 Next, let X be any point on HN with x
1 

> h, Consider the line 

passing through x0
, parallel to the x1 axis. The point on this line 1 

X~ - h units to the left of the line x1 = h (call this point x1) is 

better than x0 because Y
1
(x1) > Y1(x0

) and Y2(x1) = Y2(x0
)~ Therefore, 

there is no admissible point on~ with x1 coordinate greater than h. 

It is seen that (h 1k) is not an admissible point from the fact that 

one can follow one of the asymptotes of the family of hyperbolas 1 hence, 

keeping the Y2 constant. equal to say b,~o a point closer to (0 1 0) than 

is (h,k) and this point will be a better point than (h 1k). 

From the three preceding arguments, ah/a-1 < x1 < h, x1 = h, 

x1 > h; we now conclude that there · are no admissible points on HN. 

Since all admissible points are -again on He and each Y1 contour 

crosses He twice, once on the part of He with O < x1 < ah/a-1 and once 

on the part of He with - • < x1 < 0 1 one may expect that in some cases 

the admissible points will be on one part of He (0 < x1 < ah/a-1) 
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while at other time• the admissible points will be on the other part of 

He(-•< x1 < O)o We now ahow that this is in fact th• case. From the 

fact that the ec;iuation of the contours of Y2 can be written as Equations 

we know the axis of the hyperbolas (the axis of the Y2 contours corres

pondin1 to value• of the response function greater than zero) is either 

the line x1 • h or x2 s ko First, suppose the axis of Y2 contours, for 

contour values ~ater than zero, is x1 = ho That is, if one starts at 

the point (h ,k) and moves along the Una x1 • h to values of ~ · >,,k ·· ( or 

x2 < k), then the Y2 values increa&eo And if one starts at (h,k) and · 

moves alon1 the line x2 • k to values of x1 > h (or x1 < h), then the 

value of the Y2 contours decrease. Now, we will show that the set of ad

miaaible point• ia the part of H with O < x1 < ah/a•l. First, one ob-
c -

aervea that each point on He with O ! x1 < ah/a-1 is, in fact, an admis

sible point because as we move from (O,O), where Y1 has a maximum re

aponse, alon1 He with increasing values of x1 the Y1 response decreases 

while the Y2 response increases. 

We need to show that no point on He with x1 < O is an admissible 

point. To do this, let x0 be any point on He with X~ < o. If we consi

der a point, x1, an infinitesimal distance to the ri1ht of x0 along the 

Un• x2 • X~, then we note that in moving to the right we have increased 

both the Y1 response and the Y2 reaponse. Hence, x1 is a better point 

than x0 • But x0 was an arbitrary point on He with its x1 coordinate 

leas than Oo We then have the set of admi8sible points which can be ex-

presaed aa 

ah 
0 ~ xl < a - r> 0 

(22) 

We can go through a similar argument for the case when the axis of 
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the Y
2 

conto\ll"S is x2 = ko In this case we would find that the part of 

He with O < x1 < ah/a•l does not correspond to any admissible point and 

that th• set of admiaaible points would be given by 

Again the sets S1(a) satisfy the conditions of Theorem III, so that the 

above sets of admissible points are in fact the minimal complete setso 

From this, one sees that the minimal complete set with the Y1 con

tours elliptic, with a maximum response at the center and the Y2 contours 

hyperbolic is the set of points described as follows. This set is a 

section of the branch of the hyperbola, ·corresponding to a subset of the 

set of tangent points, which begins at the point where Y1 has its maximum 

response and continues through the points where the contours of Y2 in

crease. This part of He is the minimal complete set. 

An algorithm for determining the minimal complete set for a problem 

of this type is given as follows: 

(1) Determine the equation of the tangent pointBi this will be the 

equation of some hyperbolao 

(2) Draw the branch which goes through the point where Y1 has its 

maximum response (the branch that goes through (h1 ,k1) in the 

previous problem). 

(3) Determine which end of this branch corresponds to large Y2 

responseso 

(4) The section of this curve from the point where Y1 has its max

imum response toward the end which corresponds to large values 

for the Y2 response is the minimal complete set. 

One can easily observe from the set of tangent points that if the 
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Y 1 response had elliptic contoI1rs and a minimum response at the center• 

then there would be rio admissible point since both Y1 and Y2 could be si= 

multaneously increased without boundo This problem would only be of in= 

terest if there were boundary conditions on x1 and X2 o 

Admissible Points for Y1 Having Elliptic Contours and a 

Maximum Response and Y2 Having 

Parabolic Contours 

As our fourth problem, we will consider the case where the Y1 con

tours form a family of ellipses with maximum response at the center 

(h19k1 ) and the Y2 contours form a family of parabolas with axis 

x2 = mX1 + b and their vertices at different points on x2 = mX1 + bo 

One may perform rotationss translations, and change of scale techniques 

to obtain a new situationo The new situation is stated as followso 

The Y1 contours form a family of circles with maximum response at their 

center (0 80) and the Y2 contours form a family of parabolas with axis 

x1 = h > 0 and their vertices at different points along the axiso. We 

may then write the equations of the contours for this new situation as 

follows. 

The equation of the Y1 contours is 

(24) 

and the equation of the Y2 contours is 

(25) 

Depending upon the probleme the contours of Y2 will either increase 

as a increases or they will decrease as a increases. The sign of b tells 
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us if the parabolas are concave up or concave down (if b > o, then con-

cave up, if b < O, then concave down)o 

Again we go through the procedure of determining the set of tangent 

points by determing x2 for each set of contours and setting these x2•s 

equalo 

From Equation 24,we have 

(26) 

and from Equation 25,we have 

X~ = 2b(X1 - h) o (27) 

Therefore, the set of tangent points is given by the equation 

(28) 

which is the equation of a hyperbolao 

Rewriting Equation 28,we have 

0 (29) 

Hence, the horizontal asymptote is 

Again rewriting Equation 28,we have 

2bhX2 
X = ----1 2bX2 + 1 0 (30) 

Therefore, the vertical asymptote is x1 = ho 

From Equation 28 9 we see (O,O) is a point on the hyperbola so that 

we may now draw the hyperbolao 



39 

Figure 7 o Tangent Points for Elliptic and Parabolic oontours I b > O 

Consider Figure 7 (b > 0) o 
0 

Let X. be any point on 8No Now, the 

point with coordinates (2h = X~, X~) has the same Y2 response as the 

0 0 0 point X and a larger Y1 response; therefore the point (2h - x1 , x2) is 

a better point than X0 o Thus 9 x0 is not an admissible pointo Since x0 

was an arbitrary point on HN, we know there are no admissible points on 

HN; hence all admissible points are on Hco Likewise, we could argue for 

Figure 8 (b < O) that there are no admissible points on HN; hence all 

admissible_points are on Hco 

In order to facilitate the study of the problem, we designate the 

shaded area, A, in Figure 9 as the inside of the parabolao The region 

A will be referred to as the outside of the parabolao Therefore, when 

we say the gradient is directed toward the inside of_ the parabola, this 

means the gradient is in the direction indicated by the arrows in 
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b < 0 
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Figure 9o Also 9 if we say the gradient is directed toward the outside 

of the parabola 0 the vectors will be in the direction opposite to that 

indicated in Figure 9o 

Table II will help us to see the relationship between a, b, (of 

Equation ~5) and the direction of the gradient of Y2• The listings in 

the tabl.e indicate which.values of a correspond to large values of the 

Y2 contourso 



Figure 9, Region of a Parabolic Contour 

TABLE II 

DIRECTION OF GRADIENT 

INSIDE OUTSIDE 

b > 0 small a 

J:, < 0 small a large a 

One can see that there are fou~ cases which must be considered in 

order to solve the preceding problerni one must specify whether the 

gradient is directed toward the inside or outside, then he must say if 

bis greater or less than zeroo 

Let us first. consider the,casewhe?'e b > 0 and the gradient of Y2 

is directed toward the inside of the parabolic contours (large Y2 

41 
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response& correspond to large values of a).. We now wish to show that 

the points He• with their x1 coordinate less than zero 111 can not be admis= 

sible points., To show this 0 we will si.iow tiiat for any of these points 9 

say x0 , we can find a point better than x0 • 

Let x0 be any point on He with. X~ < o. Consider the point (-X~, X~)., 

• • 0 • • This point has the same Y1 response as X but it has a higher Y2 response 

since it is on a Y2 contour which has a larger value of a associated with 

it than did tbe Y20C0 ) contouro therefore, c-x~. X~) is .a better point 

than X0 o Since x0 was an arbitrary point 

not an admissible point, then there is no 

on He with X~ < o and x0 is 

admissible point (X0 ) on H 
C 

with X~ < Oo However!) one can see that the points on He with their x1 

coordinates greater than zero are each ·admissible points because if one 

starts at (0 90) and moves along He {as x1 gets larger), each time he 

moves he will increase the Y2 response while decreasing the Y1 response., 

It should be noted that the sets s1(a) satisfy the conditions of 

Theorem III; hence the minimal complete set existso Therefore, if b > O 

and the gradient of Y2 is directed toward the inside of.the parabolic 

contours, then the minimal complete set is 

( 31) 

We can ·go through similar arguments for the other three cases to 

obtain the following resultsg 

If b > o and VY2 is directed toward the outside of the parabolic· 

contours'II then the minimal cc;>~lete set is 

(32) 

If b < O and VY2 is directed toward the inside of the parabolic 



contours, then the minimal complete set is 

If b < 0 and VY 2 is directed toward the outside of the parabolic 

contours, then the minimal complete set is 
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(34) 

From the preceding results; one is able to construct the following 

algorithm for determining the minimal complete set for the original 

problemo 

(l) Determine the equation of the set of tar1gent points; this will 

be the equation of a hyperbolao 

(2) Draw the branch of this curve which passed through the maximum 

of the Y1 responseo 

(3) Determine which end of the drawn curve corresponds to large 

Y2 responseso 

(4) The section of the curve starting with the point where Y1 has 

its maximum response and moving toward the end which corres= 

ponds to large Y2 responses is the minimal complete seto 

As one can easily see~ if the Y1 response had a minimum response 

at its center instead of a maximum response, then the set of admissible 

points would not existo In fact 9 there would be no admissible point 

since both Y1 and Y2 could simultaneously be increased without boundo 

Admissible Points for Y1 Having Hyperbolic Contours and 

Y2 Having Hyperbolic Contours 

The fifth problem we wish to consider is of the type where the Y1 
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contours form a family of hyper>bolas with center (h11k1) and the Y2 con= 

tours form a family of hyperbolas with center (h2 ,k2 )o One should note 

that in many cases the set of admissible points does not exist for these 

type contourso After translating 9 rotating, and applying the change of 

scale technique, we may reduce all problems of this type to a situation 

which is as follows o The contours of the Y1 respQnse form a family of 

hyperbolas with x1 = x2 and x1 = -x2 as their asymptotes and x2 =Oas 

their axiso The contours of the Y2 response form a family of hyperbolas 

with center (h,k), h > 0 1 k > Oo .... 
Let us now determine the set of admissible points for this problemo 

The equation of the Y1 contours is 

(35) 

while the equation of the Y2 contours is 

It should be noted that the cases where the Y2 contours are of the 

form 

are not considered hereo For these cases there exist no admissible 

points since both Y1 and Y2 responses can simultaneously be increased 

without boundo 

We will go through the procedure which was performed in problem one. 

First, determine.the set of tangent points by setting x2 from Equation 

35 equal to x2 from Equation 36; then from this set of tangent points we 

eliminate those points which are not admissible points which leaves the 
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&et of admissible pointso 

From Equation 3~ we have 

(37) 

From Equation 36,we h~ve 

21CX1 ~ h) + b(X2 - k) x~ i; $ m!!_. LI!UII.L t 

2 ~(x2 $ k) + b(K1 - h) 
(38) 

Setting x2 of Equation 37 equal to x2 of Equation 38, we have the equa

tion of the set of t@fij@nt ~gi~tsg 

!1 t1 e 7a(X1 SB h) ,t, ~O<_a "' k) 

X2 2CX2 ""k) + b(X1 = h) 
0 (39) 

&imp.lifying Equation 39 9 we obtain 

After inspecting ~{iY~tion 40 9 one sees that (a+ 1)2 - D2 may be less 

than 9 equal to or Sflfilat@~ than §@~~s If fq + 1>' ~ b2 is less than 

zero" th!& indicates that the tangent points lie on an ellipse 11 However, 

fl'om observing the Y 1 {;@nt9urs 0 it i~ gpv,i.Q\Ui lftg't the 1et of admissible 

points can not lie on an. ellipleP. Hence 1 for thia case, the set of ad

missible pointa goes not existo 

If (a + l)2 "" 1;12 .ie equal tc;, ;~rr,g 1 th@n f:lq,Yi.tion '+0 is the equation 

of a pa!'abolao There aJ:'e two PQi@Lbl@ 011•• when the tangent points lie 

on a parabolao Case I is when OP~- §@eti~n·of th• parabola corresponds 

to large Y1 and Y2 reaponaes 1 while the othe~ section corresponds to 

small Y1 and Y2 responses. Case II is when one section of the parabola 

correspond& to li\1/!S~ Y 1 responses and small ¥. ~ N&ponaes I whi.le the 

other' section cor:reapend$ to. small Y1 responi@I and large Y2 responses. 
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In Case I there are no admissi..ble points since by the correct choice of 

,x19 x2) one can simultaneously increase both Y1 and Y2 without boundo 

However 9 for Case II 9 the set of admissible points will be the complete 

parabolao 

Now if (a+ 1)2 = b2 is greater than zero 9 then Equation 40 is the 

equation of a hyperbola and in order to determine the set of admissible 

points 9 when they exist 0 we must break the problem into different caseso 

That is 9 we must consider subsets of the problem in which one is given 

more information about a and b o In each case, the set of tangent points 

will lie on either a branch of the hyperbola going through (0 90) and 

,h 9k) referred to as He or on the other branch of the hyperbola referred 

to as ~o If the set of admissible points exists, it will be the branch 

of the hyperbola referred to as HNo Therefore, we need to determine 

conditions on a and b for the admissible points to existo 

To help us determine when the admissible points exist, we note the 

following: 

(41) 

= + ,; .. 

0 (42) 

The plus or minus sign is =.determined from the problem but in the follow-
.,. 

ing work we will·only consider problems in which the plus sign is appro= 

priateo However 9 it should be noted that if we determine that the set 

of admissible points exists for certain values of a and b by using the 

plus sign 9 then for these values of a and b the admissible set does not 

exist with the minus signo Thus 9 if the problem implies the use of a 
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Another tool which we will find v""ry useful is the ability to write 

the equation of th~ asymptcrtes of a hypt..irbola from the equation of the 

hyperbola (see (11) page 151)0 

From r,eferience (11) 9 we see that the slope® mv of the asymptotes of 

Equation 36 is given by 

=b + tb2 = 4a 
0 (43) 

Now, using m1 to r•epresent the slope of the a:::ymptote with maximum slope~ 

we have 

0 (44) 

Using m2 to represent the slope of the asymptote with minimum slope, we 

have 

=b = ~ 2 "" 4a 
m2 a; ==-2 (45) 

One should note that m1 # m2 since b2 = r1a is greater than zero from the 

fact that Equation 36 is the equation of a hyperbolao 

As a first cai:Hll 0 let us consider a )J O 9 b > 0 o Then Figure 10, will 

help us determine the con.di tio:ns for t:ne set of admissible points to 

existo Th~ arrows in Fi~ure 10 indicate the direction of the Y2 grad= 

ients. These directions were obtained from Equations 41 and 420 Equa= 

tions 41 and 42 are easily applied along x1 .= hand x2 = Ko One can see 

from the direction of the Y2 gradients and knowing the direction of the 

Y1 gradients 9 that the set of admissible points does not existo If a 

point Cx1 ,o) is chosen with x:1 very large 0 we see that both Y1 and Y2 

responses may be increased without boundo 



Figure lOo Asymptotes of Hyperbolic Contours, 
a > 0 0 b > O · 
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Next, let us consider the case when a> 0 5 b < o. Then the asymp-

totes of Equation 36 can be drawn as in Figure 11. 

From Figure 11 one can easily see that there exist no admissible 

' points for this case. One can take points on the line x2 = O with x1 

very large and we can see that both Y1 and Y2 responses may be increased 

without bound. 

The third case we will consider is a< 0 9 b > o. The asymptotes of 

Equation 36 for this particular case are drawn in Figure 12. From 

Figure 12 (noting the direction of the g1··adients of Y 2 and knowing the 

direction of the gradients of Y1 ) 9 we see the set of admissible points 

exists if and only if m1 >land m2 < =lo 
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~--~---=+-~~~~~~~~~~~~~~~~~~~~~--~-x1 

(O,O) 

Figure 11. Asymptotes of Byperbolic Contours, a> 0 1 b < O 

0 0 

Figure 12 o Asymptotes of Hyperbolic contours,a < o, b > O 
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For the last caseJ~ a< 0 21 b < O'i) we may draw the asymptotes of Equa= 

tion 36 as is done in Figu:re 130 Clearly~ from Figurie 13, one sees that 

the set of admissible points exists if and only if m1 >land m2 <: =lo 

Figure 130 Asymptotes of Hyperbolic O;mtours 8 a< o, b < 0 

It may be convenient to show the results of the preceding situa= 

tions in a table (Table III)o It is of interest to note that if a given 

problem requires that we use the minus sign with Equations 41 and 42 in= 

stead of the plus sign 0 then the new table would be the image 9 through 

the b axis® of Table IIIo 

If Equation 35 is the equation of a hyperbola and Equation 36 is 
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TABLE !II 

ADMISSIBLE POINTS FOR HYPERBOLIC CONTOURS 

The set of admissible points 
if and only if m1 > 1 and m2 

The set of admissible points exist 
if and only if m1 > 1 and m2 < =lo 

There exist no admissible pointso 

There exist no admissible points. 

a 

the equation of a hyperbola, we will use the preceding work to construct 

an algorithm which detenninesg (1), if the set of admissible points 

exists. and (2) if the set of admissible points does exist 8 then the set 

of admissible points"' 

Cl) Put the problem into a form having contours with Equations 35 

and 360 This may require·rotations 11 translations, and change 

of scalea 

(2) By looking at a and b and referring to Table III (or the image 

thereof, if one has the minus sign associated with Equations 

41 and 42) 0 determine if the admissible set existso One may 

have to calculate m1 and m2 by using Equations 44 and 450 

(3) If the set of admissible points exist, then calculate the set 

of tangent points (Equation 40)o 

(4) From this set of tangent points, pick the branch of the hyper-

bola which does not pass through the points (0 1 0) or (h,k) 

(that is 9 8N)o This is our set of admissible points for Y1 

and Y2 o 
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Having Hypet•bolic Contours 
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As the sixth problem of this chapter~ we will consider the problem 

of determining the set of admissible points, if it exists, when the con-

tours of the Y1 response function form a family of parabolas with verti

ces on the line x2 ~ mX1 + b (X2 ~ mX1 +bis also the axis of each par

abola), and the contours of the Y2 response function form a family of 

hyperbolas with center (h2,k2)0 

Without loss of generallty~ since we have at our disposal the tools 

of rotation 0 translation 0 and change of scale, we need to consider only 

problems of the following typeo The contours of the Y1 response func

tion form a family of parabolas which has x1 :i.,• 0 as its axiso The con

tours of the Y2 response function form a family of l)yperbolas which has 

its center at the point (h®k)s h > 02i k > Oo After determining the set 
= -

of admissible points (say A) for this new situation, if the set of ad-

missible points exist 9 one may obtain the set of admissible points for 

the original problem by performingi on A$ the inverse of the operations 

that were performed to get the original problem into the new problem 

formato 

From the preceding discussion 9 we see that the equations of the 

contours for the response functions of the new problem may be as followso 

The equation. of the contours for the Y1 response may be written as 

(46) 

The equation of the contours for the Y2 response may be written 
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(47) 

The following discussion will be for the plus sign in Equations 41 

and 420 It is obvious that the gradient of the Y1 response must be 

directed toward the inside of the parabolic contours in order that the 

set of admissible points existo Therefore® we will consider only prob= 

lems with VY 1 directed toward the in.side of the parabolic contours o 

Applying Theorem V, we know that if we determine the set of tangent 

points for the contours, given by Equations 46 and 47 0 then the set of 

admissible points~ if they exist© is a subset of this set of tangent 

pointso 

To determine the set of tangent points, we determine x2 from Equa= 

tion 46 and X2 from Equation 470 Setting these two :x:2as equal, we have 

the equation of the set of tangent pointso 

From Equation 46,we have 

and from Equation 47 we have 
' 

2a(X1 = h) + b(X2 = k) 

2(X2 = k) + b(X1 = h) 

(48) 

(49) 

Setting these two x2us equal© we find that the equation of the set of 

tangent points is 

2a(X1 = h) + b(X2 = k) 
=2dXl a:. ~":"""'k) + b(Xl = h) o 

Now 9 simplifying Equation 50,we have 

(50) 
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We recognize that (Sl)is the ~quation of a hyperbola., Therefore 9 

the set of tangent points lies on a hyperbola, hence if the set of admis

sible points exist 0 it will lie on a section of a hyperbolao 

Solving Equation 51 for x2 we have 

From Equation 52 one notes that the hyperbola has vertical asymp-

tote x1 = =b/4do Alsoj noting that the hyperbola of tangent points 

passes through (h,k) 1> we have an idea of what the graph of Equation 51 

looks likeo For the remainder of this discussion, we will choose d = l 
2 (that is, the equations of the Y1 contours will be x2 = c = x1 ) in order 

to limit the number of cases it is necessary to considero (One might 

just as well choose d = =1 and go through the following discussiono) 

Putting d = l in Equation 521) we have 

2bX1(x1 = h) + 2a(X1 = h) =bk= 4kX1 
X2 = = """"""""""""""""""""""'""""'""""'"""""'""""'"""""""""',,,,_ ............ ,,,.,.,,""""....,;;;., o 

4X1 + b 

Dividing the numberator of Equation 53 by the denominator, we have 
b2 

b 2bh = 2a + 4k + '2"""+ constant 
X2 ~ ~ 2 X1 + 4 ¢~1 + b a 

(53) 

(54) 

Noting that as x1 -+-..., the last term of Equation 54 approaches zero, we 

have the equation of the other asymptote of the hyperbolao 
b2 

b 2bh = 2a + 4k + 'T"" 
X2 = = 2 Xl + . (55) 

Note that the slope of this asymptote is =b/2 which is the same as the 

slope of the axis of the hyperbolao 
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To better understand the hyperbola around the ve1•tical asymptote 

(X1 ~ =b/4)~ let x1 :ii; =b/4 in the numerator of Equation 530 The numera

tor of equation 53 reduces to 

= """21 (,_2 •• )l'h b) .J.J ~~ -ta ,., + 4 " (56) 

We know b2 = &4-a is greater than zero 0 since Equation 47 is the 

equation of a hyperbola~ so the sign of the numerator of Equation 53 

depends upon (h + b/4)o 

If (h + b/4) is greater than zero, then the hyperbola goes to - co 

as x1 -.. (-b/4) from the right+ and the hyperbola goes to+ co as 

x1 + (=b/4) from th@ left o 

If (h + b/4) is less than zero& then the hyperbola goes to+ co as 

x1 ~ =b/4_from the right+ while the hyperbola goes to - co as x1 + -b/4 

from the left=., 

For convenience!) we will refer to the branch of the hyperbola which 

passes through (h,k) as H1 and the other branch will be referred to.as 

H2 o 

As our first,case we choose a> Oil b > Oo However, as one can see 

from Figure 10 1 if a> 0 0 b > 0$ then ml <·0 0 m2 < o, and from Equation 

42 

> 0 

Hencee we see that we can choose points on the line x1 =hand x2 very 

large whichwill simultaneously increase Y1 aud Y2 without bound., 

Therefore!) if a> Oro b > 0 0 there i~ no a<lmissible point. 

As Case II let us consider a> 0 0 b < 0., Again from Figure 11, or 
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x1 "' h 

we see that bi:»th Y 1 Md Y 2 ~~r.it b~ ill1l«;:!".'e,1'.lta:~d without bound as x2 is in

creased o Theiref@ite, n© adm:la;J~:!Lble po:b:11t '1:ilnstsio From the two preced-
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Then the gt'&Jtd:i~nt:s of th'1:il Y2 ir~~p@nse (.a$ .shown by the arrows: in Figures 

10, 11, 12, <i:llnd 13) will bi~ IQlppo:s:lLt<e th~ dilteic:ti@n shown in Figures 10, 

with giradient ve«::tors @f Y2 iirn ©JPlJPl©Site diire«::UIQln) o · There ,mre two sit

uations we :sh@uld «::@nsid(!!;Jr" li:.rst~ let -b/4 be g1reater than ho Figure 

Clearly, the p«:liiirnu @11], ~l .atlf~ nlOlt ii.!tdmisid.ble points (For the points 

0 . 0 D on H1 (say X ) with h ~ Xr the pc(j)int (h,k) bl better than X ) " For the 

points on H1 ($'.ay X©J) witlh X~ ~ h~ wie: ic:M f:imid a pit»int better than x0 

by moving .allOlng the line g«:»ing ttJ:llI'@llllgh X© with slope -b/2 until we get 

to a p(Qlintt (si~y x 1) wh~ir~ y2 (X
1) :s 1f 2 (X

0 ) ~ Y 1 (X
1) will bie greater th.an 

IQl 
Y1 (X ) , rn>r we «::M r~feir t@ Appcendix B f©J'.1'.' a piiro©Jf that there are no 
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0 admissible points on H1a)a Also, each point, X, on H2 is the point with 

highest Y2(X) value such that Y1 (X) "" Y1 (X
0 )" If we move from one point 

1 on H2 (say X ) so as to increase Yl' then we will decrease Y2 o That 

1 0 1 0 is, if Y l (X ) > Y l (X ) , then Y 2 (X ) ~ Y 2 (X ) ~ 

0 0 

Figure l4o 

/ 
/ 

X b 
l = - -

4 

Tangent Points for Hyperbolic and Parabolic 
Contours, -b/4 > h 

Next, suppose that -b/4 is less than b; a typical figure for this 

case is Figur! 15. Clearly, as is shown in Appendix B, we see that 

there are no admissible points on H1 • Therefore, we are interested in 
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only the points on H2 o If we let a and b take on differ•ent values, we 

will always find that the set of admissible points, if they exist 9 will 

-

(O,O) 
X - b 1--4 

Figure 15" Tangent Points for Hyperbolic and Parabolic 
Contours 8 =b/4 < n 

If Y1 has parabolic contours and Y2 has hyperbolic contours, then 

from the preceding work we can now state an algorithm which determines 

(l) if the set of admissible points exists and (2) the set of admissible 



59 

points when it existso 

(1) Check the direction of the gradient of the parabolic contours 

(Y1 contours). If the gradient is directed toward the inside 

of the parabola. then proceed. If the gradient is directed 

toward the outside of the parabola 9 then there exist no admis

sible points. 

(2) Use a rotation, translation, and a change of scale to transform 

the problem into a new situation having contours with equations 

given by Equations 46 and 47. 

(3) Check to see if the sign of Equations 41 and 42 should be plus 

or minus. If the problem implies the sign should be plus, then 

there exist no admissible points. If the problem implies the 

sign should be minus, then proceedo 

(4) Determine the set of tangent points (H1 and H2, that is. the 

hyperbola given by Equation 51)3 

(5) From the set of tangent points determine the branch (H2) which 

does not go through the center of the hyperbolic contours 

(h 9k). This branch (H2) is our set of admissible points for 

Y1 and Y2• 

Admissible Points For Y1 Having Parabolic Contours and 

Y2 Having Parabolic Contours 

As the final problem in this chapter• we need to consider the fol

lowing situation. Suppose the Y1 contours form a family of parabolas 

with axis x2 = m1x1 + b1 and the Y2 contours form a family of parabolas 

with axis x2 = m2x2 + b2• 

After performing a rotation I translation, and a change of scale, we 
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may state any of the pre~eding situations as the following new situa-

tion,. Now Y1 has parabolic contours with x1 = o as their axis and Y2 

has parabolic contours with axis x2 = m3x1 + b3,. We may write the equa

tions of the contours for response functions Y1 and Y2 as followso 

For the response function Y1 , the equation of the contours is 

d = + l (57) -
For the response function Y2, the equation of the contours is 

where b2 - 4a = O. (58) 

Clearly, if the gradient of Y1 or Y2 or both Y1 an.d Y2 is directed 

toward the outside of the parabolic contours there is no admissible 

point since we will be able to simultaneously increa$e Y1 and Y2 -without 

boundo Therefore. let us suppose, in the following discussion, that 

VY1 and VY2 are directed toward the inside of their respective parabolic 

contourso In order to limit the number of cases we need to consider 9 

let d = lo We could just as well used= -1. 

Before going any further we should mention that Equation 58 does 

not cover the case where the parabolas have parallel axeso If the par-

abolas have parallel axes and the gradients of Y1 and Y2 are in differ

ent directions (both being directed toward the inside of their respec-

tive contours), then the set of admissible points will be the line of 

tangent points. If the gradients of Y1 and Y2 are not in different 

directions, then there exists no admissible pointo 

To determine the set of admissible points, we will first determine 
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the set of tangent points,, To determine the set of tangent points, we 

set x2 from Equation 57 equal to x2 .from Equation 58. 

Calculating x2 from Equation 57, with d = 1 ~ we have 

(59) 

Calculating x2 from Equation 58 5 we have 

(60) 

or 

2aX1 + bX2 + e 
xu ~ = = ............... ""-='~==,,,,,,,.;===== 

2 bX1 + 2X2 + f 
(61) 

Setting X2 of Equation 59 equal to Xz of Equation 61, we find that 

the equation of the set of tangent points is 

-(2aX1 + bX2 + e) 
(62) 

Rewriting Equation 62,we have 

(63) 

We notet by observing the discriminant of Equation 63 9 that Equa= 

tion 63 is the equation of a hyperbola. 

Solving Equation 63 for x2 "we have 

2bX2 + 2(a + f)X1 + e 
x2 a:: = """""" J. -= £ . 

4X1 + b 
(64) 

From Equation 64 we see that the hyperbolas which is the set of 

tangent points, has vertical asymptote x1 = =b/4o 

For convenience, let us call the branch. of the hyperbola, which 

approaches+~ as x1 ~ ~b/4, H1 o The branch of the hyperbola 9 which 
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approaches ... .,,. as x1 -+ =b/4 9 we will call H2 o 

It is easily seen, from an argument similar to the argument in 

Appendix B 9 that there are no admissible points on H2 • Furthermore, if 

the section of H1 which corresponds to the large values of Y1 , that is, 

the aection of H1 for x1 values close to =b/4 1 also corresponds to 

small values of Y2 , then H1 is the set of admissible pointso However. if 

the section of H1 which corresponds to large Y1 values also corresponds 

to large Y2 values then there exist no admissible pointso 

From the preceding work, we may state an algorithm for determining: 

(l) if the set of admissible points exists and (2) the set of admissible 

points (given the set of admissible points does exist) for response 

functions Y1 and Y29 when Y1 and Y2 have parabolic contourso 

(1) Check the direction of the gradients of Y1 and Y2 o If both 

gradients are directed toward the inside of their respective 

contours, then proceedo If one or both gradients are directed 

toward the outside of their respective contours, then there 

exists no admissible pointo 

(2) Determine the equation of the set of tangent pointso This 

will be the equation of a hyperbolao 

(3) From the set of tangent points determine which brarich of the 

hyperbola corresponds to large values of Y19 that is, deter

mine H1 o 

(~) Check the section of H1 which corresponds to large Y1 valueso 

If this section corresponds to small Y2 values, then H1 is 

the set of admissible points., If the section of H1 which 

corresponds to large Y1 values also corresponds to large Y2 

values, then there exist no admissible points., 
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Summaey 

In this chapter there is introduced a procedure for det.ermining a 

set 1 the set of tangent points. which contains the set of admissible 

points, if the set of admissible points exists (when N = 2)., Using 

theorems of Chapter II, Appendix A• Appendix B, and various similar tools 

we were able to determine (1) if the set of admissible points exists and 

(2) {given that the set of admissible points exists) the set of admissi

ble points for N = 2 0 P = 2, Y 1 having any family cf qua)mtic cu:r:-ves as 

its contours, and Y2 having any family of quadratic curves as its contourso 



.. CHAPTER IV 

ADMISSIBLE POINTS WHEN THERE IS A LINEAR CONSTRAINT ON 

THE CONTROLLED VARIABLES: N = 2 1 P = 2 

Many times it is of interest to consider problems when the con-

trolled variables are in some way constrainedo In this chapter we will 

consider what effect a linear constraint on the controlled variables has 

on the set of admissible points for response functi,ns having the con

tours considered in Ghapter III. We will use the letter L to represent 

the line which is the linear con$traint. L divides the plane of the 

controlled variables into two sets: the set A which is the set of 

points (x1 , x2) that are permissible points (that is, the points which 

satisfy the constraint) and the set A which is the set of points (Xl' 

x2) that are not permissible. The following definitions. will facili

tate the study of these linear const~aints on the controlled variableso 

Definition a~ The point X = (x1 , x2) is: a feasible point if it is 

contained in the set A, 

Defini.tion 9J The point x0 is a feas.ible admis.1;1ible point if x0 is ------
feasible, that is 1 if x0 is in At and considering only the points in A, 

x0 is an admissible pointo 

Definition !Q= A complete set of feasibie points is a set of· points 

in A such that, given any point x0 in A which is not in the complete set 

of feasible points, there exists a point Xi in the complete set of feas

ible points that is better . than XO. 

64 
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Definition 11: A minimal complete set of feasible points, if it 

exists, is a set of points in A which is a complete set of feasible 

points such that no proper subset is a complete set of feasible points. 

Definition 12: The point x0 is a feasible tangent point if x0 is ___ _,,,,_""-"' 

feasible (that is• if x0 is in A) and x0 is a tangent point& 

We are interested in obtaining• if it exists, the minimal complete 

set of feasible pointso One should also note from the definitions that 

if an admissible point 9 for the problem without the linear constraint 1 1 

is feasible, then it is a feasible admissible pointo Furthermore, if 

the minimal complete set• for the problem without the linear constraint 

L1 is feasible, then the minimal complete set is in fact the minimal 

complete set of feasible points. 

At first one may not know where to begin in his search for feasi-

ble admissible pointso However 9 from the proof of Theorem IV (S.eepage 

11) one sees that in order for a point to be a feasible admissible 

point it must either be a point satisfying Theorem IV (or Theorem V 

since we are considering only cases where N = 2) or it must be ··a point 

on L, the linear constrainto 

Again 9 since the set of tangent points contains all admissible 

points, for the problem without the linear constraint, in order to de-

termine the set of feasible admissible points we will determine the set, 

say Te of feasible tangent pointso We know the set of feasible admis-

si:ble points is contained in the union of T and L. 

In Chapter II it was shown that the admissible points are invari

ant under the change of scale techniqueo That is, if x0 is an admissi

ble point in the original problem, then X0
9 transformed by change of 

scale, is an admissible point for the new problem; and if z0 is an 
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admissible point for the new problem, then x0 is an admissible point for 

th& original problem. Likewise, one can show that a feasible admissible 

point is invariant under the change of scale techniqueo If x0 is a feas

ible admissible point for the original problem 1 then ZO is a feasible 

admissible point for the new problem; and if z0 is a feasible admissible 

point for the new problem 1 then x0 is a feasible admissible point for 

the original problem. 

It is seen that a rotation or translation does not change the set 

of feasible admissible points. Therefore, we see that we may translate, 

rotate• and use the change of scale technique to change the original 

problem into a new situation which has contours that are easier to study. 

After determining the set of feasible admissible points (if it exists) 

for this new situation, we may find the set of feasible admissible points 

for the original problem by applying the inverse change of scale,. inverse 

translation, and the inverse rotation (that is, the inverse of those 

applied to obtain the new situation from the original problem) to the 

set of feasible admissible points of the new situation. Hence, we need 

to consider only contours of the types considered in the seven problems 

of Chapter III. 

As our first problem, let us consider Y1 contours which form a 

family of ellipses with a maximum at their center (h1 ,k1 ) and Y2 contours 

which form a family of ellipses with a maximum at their center (h2 ,k2). 

As was done in problem one of Chapter III, the new situation can be 

stated as follows: The Y 1 contours form a· far.;ily of circles with a max

imum at their center (0 10). The Y2 contours form a family of ellipses 

td.th a maximum . at their center (h ,k) , h ,!_ 0 9 k > 0 and the major axes of 

the ellipses are parallel to one of the coordinate axesa 
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The equation of the Y1 contours is given by 

0 (65) 

The equation of the Y2 conto\ll'S is given by 

(66) 

The equation of the linear constraint Lis 

X2 .!, mX l + b , - oo < b < • " - oo < m < • 8 (67) 

For convenience let m be greater than zero and a be less than oneo 

Figure 16 will help us to determine the set of feasible admissible 

points in the different cases. There are five different cases we will 

consider a 

Figure 16 o Linear Constraints on Elliptic Contours 
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Case I is the simplest of the five caseso It is the case when all 

admissible points are feasible; hence the set of feasible admissible 

points is just the set of admissible pointso Also the minimal complete 

set of feasible points is just the minimal complete seto 

Case II is the case where the admissible points which correspond to 

large values of the response function Y1 are permissible but the admis

sible points which correspond to large values of the response function 

Y2 are not permissibleo Let P2 be the ppint wheN L2 intersects the 

curve of admissible points (that is, P2 is the point where L2 intersects 

the hyperbola and the x1 coordinate of P2 is between zero and h) o Let 

P2 be the point where L2 is tangent to one of the elliptic contours of 

the Y2 response function. Then the set of feasible adm4isible points 

for Case II is: (1) the points on the curve of admissible points from 

the point (0 1 0) to the point P2 ; (2) the points on the line L2 from P2 

to P2 .. 
Case III occurs when the admissible points corresponding to large 

values of Y1 are permissible and the admissible points corresponding to 

large values of Y2 are permissible, but the admissible points corres

ponding to mid-range values of both Y1 and Y2 are not permissibleo 

Let P3 and P3 be the points where L3 intersect the curve of admis

sible points., Also let the x1 coordinate of P3 be less than the x1 

coordinate of P3., 

lows: 

Then the set of feasible admissible points for Case III is as fol-

Cl) The points on the curve of admissible points from (0 90) to P3• 

(2) The points on L3 from the point P3 to the point P3• 
(3) The points on the curve of admissible points from P3 to (h,k). 



Case IV occurs when the admissible points associated with large 

values of Y1 are not permissible and the admissible points associated 

with large values of Y2 are permissibleo Let P; be the point where 14 

is tangent to one of the circular contours of Y1 o Let P4 be the point 

where L4 inters:ects the curve of admissibie points o 
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Then the set of feasible admissible points for Case IV is given as 

follows: 

(1) The points on L4 from P4 to P4o 

(2) The points on the curve of admissible points from P4 to (h,k)o 

Case Vis the case when none of the admissible points are permissi-

bleo Let P5 be the point where 15 is tcmgent ·to one of the circular 

contours of Y 1• Also let P 5 be the point where Ls is tangent to one of 

the elliptic contours of Y2o The set of feasible admissible points for 

Case Vis the set of points on Ls from the point Ps to the point P5o 

As one can see from the first problem 9 which is possibly the simp

lest problem we can consider• the number of cases one must consider in 

order to solve the general problem is large; and we have not solved the 

general problemo 

As our second problem let us consider Y1 contours which form a 

family of circles with a maximum response at their center (0 90)0 Let 

the Y2 contours form a family of hyperbolas -with center (h,k), h !. o, 

k !, 0 and axis x2 = ke Figure 17 will help us in our search for the 

set of feasible admissible pointso 

FI"Om Chapter III we know the set of admissible points for this 

problem is the set 
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where a is given by Equation 210 

Let us consider the problem of determining the set of feasible ad-

missible points when the linear constraint is given by L • Figure 17 ., 

Let P be the point where L intersects the curve of admissible pointso 

Let P' be the point on L such that Y(P'} is equal to Y(P") where P" is a 

point on HN., 

L 

Figure 170 Linear Constraint on Elliptic and Hyperbolic 
Contours 

The set of feasible admissible points for this problem. is then the 

set described as follows: 
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(1) The set of points on the curve of admissible points from (o,o) 

to P. 

(2) The points on L from P to P'. 

(3) The points on HN from P" toward the section of HN which cor

responds to large values of Y2o 

In Chapter III there were some cases when the set of admissible 

points did not exist because 9 by choosing x1 , x2 or x1 and x2 in acer

tain manner 9 one was able to increase both Y1 and Y2 without boundo 

Many times. even though the set·of admissible points does not exist 9 the 

set of feasible admissible points does exist. We illustrate thisby the 

last example in this sectiono 

Suppose the contours of the response function Y1 are parabolic and 

have the following equation. 

(68) 

Let the contours of the response function Y2 be parabolic and have 

Equation 69. 

(69) 

Furthermore, let the gradients of Y1 and Y2 be directed toward the 

inside of their respective contours" It is obvious then that the set 

of admissible points does not exist" Now let us impose the linear 

constraint 

(70) 

Then one sees that the set of feasible admissible points is the set of 
. . 

points on x2 = 4 with x1 coordinates between O and 3 1 which written in 
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set notation is 

Summary 

In this chapter we considered what effect a linear constraint on 

the controlled variables would have on the set of admissible points. It 

should be mentioned that the results we obtained in the cases treated 

are in agreement with the conclusions reached by Antle (l). An example 

was also considered in which the set of admissible points did not exist, 

but the set of feasible admissible points did existo The results of 

applying linear constraints to the controlled variables 1 of the seven 

problems considered in Chapter III, should be catalogued. Also the 
... 

problems where the sets of admissible points did not exist should be 

considered. 



CHAPTER V 

TANGENT POINTS FOR RESPONSE FUNCTIONS WITH SPECIAL 

CONTOURS: N = 2 9 P = 3 

In Chapter III and Chapter IV, the procedure used to obtain the set 

of admissible points consisted of first determining the set of tangen~ 

points 9 and then from this set of tangent points determining the set of 

admissible pointso Clearly 9 one may use the same procedure when P = 3o 

Let the response function Y1 have contours which form a family of 

ellipsoids with center (h1 ,k1,P1)o Let the response function Y2 have 

contours which form a family of aty quadra~c surfaces with center 

(h2 ,k2 9P 2 ) o After applying the techniques used in Chapters III and IV, 

for changing the original problem into a simpler problem, we have the 

following situationo The Y1 contours form a family of spheres with 

center (h,k,P) !, (o,o,o). The Y2 contours form a family of quadratit 

surfaces with center, if there is a center, at (o,o,o). The equation of 

the Y2 contours will be in standard form. From the preceding discus= 

sion we see that the contours of the response functions for this new 

situation have the following equations. 

The equation of the contours of the Y response function is 
l 

(71) 

.The equation of the contours of the Y2 response function can be of 

the formi 

73 
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(72} 

Equation 72 is the form of all quadratic surfaces except the parabo-

loids. To represent the families of paraboloids we need an equation of 

the form: 

( 73} 

We will first consider the: cases where the Y2 contours do not form 

families of paraboloids. That is• we will find the equation of the set 

of tangent points for Equation 71 and Equation 72. 

~an Corollary 2, since N = 2 and the conditions of Theorem IV are 

met 9 we know 

VY1 = = c VY2 0 {74) 

Now using Equation 74, we have 

2{X1 • h} 2aX1 {76) 

2(X2 ... k} = -c 2bX2 (77) 

2{X3 - P) 2X3 0 (78) 

Dividing the terms of Equation 76 by 2ax1 , dividing the terms of 

Equation 77 by 2bX29 and dividing the terms of Equation 78 by 2x3, we 

have 

X1 - h 
= - C 

aX1 
.. ... (79) 

X2 - k 
= - C 

bX2 • (80) 
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X3 - p ...... --= - C 0 (81) 

Setting •c of Equation 79 equal to -c of Equation 80 • one obtains 

~ - k =--- (82) 

or rewriting Equation B2e we have 

(83) 

We note that Equation 83 is the equation of a hyperbolic cylinder 

unless a= b when Equation 83 i~ the equation of a planeo 

Next setting •c of Equation 80 equal to -c of Equation 81 1 we obtain 

x2 - k X3 ~ P· ---=·--- (84) 

or rewriting this, we have 

(85) 

Equation 85 is the equation of a hyperbolic cylinder unless b = 1 

,when Equation 85 is the equation of a planeo 

If one wants to analyze Equation 83 or Equation 85 more closely,9··he 

can write them in matrix notation and use the results (page 230 of ref-

erence (6)) to determine what each surface looks likeo 

That is, if we write Equation 83 as 

·o a-b 0 -ak Xi 

a-b 0 0 bh X2 
(x1 , x2 , x3, 1) = 0 

0: 0 0 0 X3 

-ale bh 0 0 1 
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and if we write Equation 85 as 

0 0 0 o-- X1 

0 0 b-1 -bP X2 
(Xp X21 x3, l) = 0 

0 b=l 0 k X3 

0 =bP k 0 l 

then from (6) page 230 we are able to tell exactly what type of surface 

Equations 83 and 85 describeo 

The results of an analysis of the preceding type may be best dis

played in the following figure o Figure 18 ahows, for the given values 

of a and b 9 the type of surface described by Equation 83~ 

intersecting 
planes 

b 

Figure 18. Tangent Surf ace I 

plane 

, intersecting 
planes 

For all points (a,b) not otherwise marked, Equation 83 describes a 

hyperbolic cylindero 
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We can also display similar results for Equation 850 Figure 19 

shows, for the given values of a and b, the type of surface which satis

fies Equation es. 

b 

0 1 

Figure 19.·'· Tangent Surface II 

For all points not othEirwise marked 1 Equation es describes a 

hyperi>olic cylinder. We could also ha,v~ a figure showing the type of 

surface described by Equation 72 for different values of a and bo 

From Figure 18 and Figure 19 and knowing a and b, we know what 

surfaces Equations 83 and 85 describe. The intersection of the surfaces 

described by Equations 83 and 85 is the set of tangent points for the 
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response functions having contours described by Equations 71 and 720 

Let us next consider response functions whose contours are given by 

Equations 71 and 730 

Again apply.Ing Corollaty 2, that is, Equation 74, we have 

(86) 

= - c 2aX2 (87) 

2(X3 "" P) 2b (88) 

Dividing the terms of Equation 86 by 2Xl' ~ividing the terms of Equation 
. ' :),>{.,...:, 

87 by 2aX2, and dividing the terr11s of Equation 88 by 2.b • we obtain the 

following equations. 

X1 "" h 
~-=-!2-- = C ( 89) 

X1 

X2 - k 
= - C (90) 

aX2 

X3 - p 
= - C 

b 
(91) 

Setting ... c of Equation 89 equal to -c of Equation 91 and setting -c 

of Equation 90 equal to •C of Equation 91 9 we have 

(92) 

and 

(93) 

Clearly Equations 92 and 93 are again hyperbolic cylinders or planes. 
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Therefore, the set of tangent points is again the set of points which is 

the intersection of some combination of hyperbolic cylinders and planes. 

In the same manner that we have found the set of tangent points for 

one response function with a family of ellipsoids forming its contours 

and another response function with any family<£ q~ic surfaces forming 

its contours, we can find the set of tangent points for a response func

tion with 1 say, a family of hyperboloids of one sheet forming its con

tours, and another response function with any familYofquadratic surfaces 

forming its contourso However 9 it should be noted that the mathematics 

for some of these cases will be much more difficulte 

After one obtains the set of tangent points, he still has the prob

lem of picking, from this set of tangent points 1 the set of admissible 

points if the set of admissible points existe At this point we are able 

to say what the set of admissible points is only when the contours of 

both response functions are ellipsoids. 



CHAPTER VI 

ELLIPTIC CONTOURS WITH MOVABLE CENTERS 

When multiple responses are of interest, two things we must consi-

der when choosing a model to fit a given response surface are: (1) how 

well the model fits and (2) if we use a certain model, then can we deter-

mine the set of admissible pointso We mention this here because, as 

will be seen, the set of admissible points is sometimes difficult to de-

te%'111ine. · 

As one may expect there are many cases when the qu~dratic curves of 

Chapter III do not approximate the contours of a response function suf

ficiently close to merit their use in a model. In an effort to obtain a 

model which will approxi~'te the contours of a given response function 

sufficiently close, one may be led 'to consider a family of quadratic 

curves (as in Chapter III) with the center of the family moving in a 

given path. That is, each contour has·a center which is on some given 

path, 

Let us suppose one came to the conclusion that a family of non

intersecting.ellipses with centers along a line, parallel to the major 

or minor axis, was iin appropriate model for the contours. of ;given ~

sponse function Y1• Furthermore, let us suppose the model which seemed 

appropriate for the response function Y2 was a model with a family of 

circular contours with a common center. 

Suppose we are confronted with the preceding problem, we first 

80 
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need to determine the set of tangent points. Let us suppose the line 

along which the elliptic contours of Y1 have their center, is the non

negative part of the x1 axis. 

The equation of the contours of the response function Y1 may be 

written 

2 2 2 (Xl • d) + aX2 = (cd) , c > 1 

where dis the x1 coordinate of the center of the ellipse. 

The equation of the contours of the :response function Y2 may be 

written 

• 

(94) 

(95) 

In order to determine the set of tangent points for response func-

tions Y 1 and Y 2, we first obt·ain x2 from Equations 94 and 95 o 

Taking the derivative of the functions in ~quation 95 and solving 

· for x2 1 we have 

0<1 - h) 
X' = .. ----2 (X2 - k) 

0 (96) 

Taking the derivative of the functions in Equation 94 and solving 

for x2, we have 

(X1 - d) 
X' = - ----2 aX2 

0 (97) 

Setting the x2 of Equation 96 equal to the x2 of Equation 97 • we 

have 

• (98) 
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Equation 98 determines the set of tangent points; but with the vari-

able din Equation 98, we are unable to tell much about what the graph 

of the curve looks like. 

Solving Equation 98 for d 1 we find 

(99) 

Now to eliminated from Equation 99 and obtain the equation of the set 

of tangent points in a form we can analyzei we soive Equation 94 for do 

From Equation 94 9 we have 

• (100) 

Setting d from Equation 99 equal to d from Equation 100 1 we have 

-----------=------------- .. X2 • k c2 • 1 
(101) 

Multiplying Equation 101 by Cc2 - l)(X2 - k), we have 

(102) 

Squaring both sides of Equation 102, we have 

(103) 

Dividing both sides of Equation 103 by c2 - 1 1 we obtain 
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(104) 

Rewriting Equation 104 9 we have 

Writing Equation 105 in descending powers of x21 we have 

0 (106) 

Now, if we know the values of c 1 h 1 k, and a 1 we should be able to 

determine the type of curve given by Equation 106. 

We may find it easier to determine what the set of tangent points 

looks like if we write Equation 105 in descending powers of x1 o 

Writing Equation 105 in descending powers of x1 , we have 

2 2 2 2 2 
aX2[ah + (X2 - k) - cab]= 0. (107) 

Again, if we know a 1 c 1 h 1 and k, we will be able to determine the 

type of curve given by Equation 107. As an example, let a= 1 1 c = 2 1 

h = k = lo Then the set of tangent points are illustrated in Figure 200 

From the preceding example one can readily see that problems of 

this type can become very difficult to treat. However, problems of this 

type are very important; hence, there should be further study in this 

area a 
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X 

Figure 20~ Tangent Points for Contours with Mo,vable Ce,nte!' 
,-~ •. --



CHAPTER VII 

SUMMARY 

When considering a problem which has multiple responses of inter

est, one must realize that, in general, we are unable to maximize all 

responses simultaneouslyo This led us to define admissible pointso The 

definition of an admissible point led to the definition of a complete 

set 1 and then to the definition of a minimal complete seto 

In Chapter II so1,119 very useful tools I which allow us to determine 

· the set of admissible points for given response functions, and in some 

cases the minimal complete set, were introduced. We also showed that 

some of the theorems given in Chapter II could be very useful when one 

is searching a response surface for admissible points. 

Chapter III dealt with cases where N = 21 P = 2 1 and the response 

functions of interest had contours which formed families of quadratic 

curves .. Results for all different combinations of the quadratic curves 

were given. The results showed if the set of admissible points existed, 

then, if the set of admissible points :tlid exist, described this f:?et of 

admissible pointJ. 

Realizing that many times one is ,constrained to a certain region of 

the controlled variables I we considered I in Chapter IV I the effect on 

the set of admissible points of a linear constraint. Only a few prob

lems were considered. All problems of Chapter III should be considered 

and their feasible admissible sets tabulated (if they exist)o The idea 
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of feasibility naturally came about with the introduction of constraintso 

Some less familiar concepts were introduced, such as the idea of a feas

ible tangent point, feasible admissible points and minimal complete set 

of feasible pointso Besides the case of one linear constraint, one is· 

also interested in the case where there is more than one linear con

straint9 Moreover, one is interested in all types of constraints; and 

this is an area where some future research should be done. 

A procedure, for the cases when N = 2 1 was introduced in Chapters 

III and IV, in which one first obtains the set of tangent points, and 

then from this set of tangent points determines the set of admissible 

points. In Chapter V we determined the set of tangent points for some 

response functions which have special types of contours. The problem 

was considered for the cases N = 2 and P = 3. Only a limited number of 

cases was given in Chapter V and much more.work could be done hereo 

In Chapter VI a method of building a model for a response,surface 

by using families of quadratic curves with movable centers to approx.imate. 

the contours was introduced. In Chapter III we considered the center 

of all families of quadradc curves as being fixed. If one allows the 

center of the ql&dratic curves to move along diffe~nt paths, a very good 

model can be built for many problems. However, as was seen by an exam

ple9 the set of admissible points are usually difficult to determinee 

Only the case with the centers of a family of ellipses moving along a 

line was considered 1 however, there are many other cases which should be 

consideredo Thus, this is ah area where much further study may be doneo 
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APPENDIX A 

The following problem will illustrate that if one has two families 

of elliptic contoun. one family with center at the origin. then only 

those tangent points on He• the branch of the hyperbola through the or

igin• are possible admissible pointso Without loss of generality we can 

let a2 of Equation 108 be greater than b2 of Equation 1090 Therefore, 

to show this• we will show that all tangent points whose x1 coordinates 

have values less than the value of the x1 coordinate of the vertical 

asymptote are tangent points for contours which are tangent at one point 

and intersect at others. 

Let the equation of the contours of one response be 

(108) 

and the equation of the contours of the other response be 

(109) 

2 Solving Equation 108 for x2 , we have 

X2 k 2x2 
2 = 1 - a 1 ·• (110) 

E d . E . 109 d 1· . . X2 b . E . 110 h xpan ing quation . an e iminating 2 y using quation • we ave 

0 (111) 

Squaring both sides of Equation 111 and using Equation 110 to 
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eliminate the X~ term• we arrive at the following fourth degree equation~ 

2 2 2 4 2 2 2 3 2 2 4 2 2 2 2 
(a - b) x1 + 4b h(a - b )X1 + [4k a + 4b h - 2a b h + 

4 2 2 2 2 2 2 2 2 2 2 
2b h· - 2a k. + 2b k .. 2a k1 + 2b k1 + 2a k2 - 2b k2]x1 

4 3 2 2 2 2 + [•4b h ~ 4b hk ~ 4b hk1 + 4b hkz]X1 + 

{112) 

If we let a2 be greater than b 2 and solve for the tangent points of 

Equations 108 and 109• we find that the set of tangent points is a hyper-

bola (He) corresponds to points with x1 coordinates greater than 

•b2h/a2-b2o We wish to show that the contours which are tangent on HN 

also intersect at other points~ 

Let c··be the x1 coordinate of any point where two elliptic contours 

are tangent 9 that is• any point in the set of tangent points. Therefore 

CX1 a c) 2 must divide the Equation 112 evenly. 

Dividing the terms of Equation 112 by (X1 - c) 2 and using the fact 

that (X1 .. c) 2 must divide the terms of Equation 112 evenly, we have the 

following: 

2 2 2 2 . 2 2 2 2 2 
[ ( a - b H-c {a - b } + 2 {k2 - k1 - k - b h + 4b he + 

2 2 2 4 2 2 2 
2c {a - b } } ) + 4b h + 4k a ] = O . 

' 
(113) 
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2 2 2 2 2 2 2 2 2 
•2c[{a - b ){•c {a • b} + 2{k2 - k1 - k - b h + 4b he+ 

2 2 2 2 2 2 2 2 2 2 · · 
(a - b H•c )(4b h + 2c{a - b }) + 4b h[k2 - k1 - k - b h ](114) 

2 2 2 2 2 2 . 2 2 2 2 
c [(a - b )(•c {a • b} + 2{k2 - k1 - k - b h + 4b he+ 

2 2 2 ~ 2 2 2 
2c (a - b ) } ) + 4b h + 4k a ] = 

Equation 113 is the quotient of Equation 112 and (X1 - c)2• Equa

tions 114 and 115 are from the x1 coefficient and constant term respec

tivelye (We use the fact that (X1 - c)2 must divide Equation 112 even

ly). One should note the right side of Equation 115 is also equal to 

Solving Equation 114 for k2 - k1 we have 

(116) 

The discriminant of Equation 113 is 

2 2 2 2 2 2 2 2 2 2 2 -4(a - b) [(a • b )({a - b }{-c) + 2{k2 - k1 - k - b h 

(117) 
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Since we are only interested in the sign of the discriminant and 

lt(a2 - b2)2 is positive, we will not change our conclusions if we divide 

the discriminant by 4(a2 - b2)2 • Dividing the terms of 117 l)y 

4(a2 - b2)2 , expanding, and simplifying, one has 

2 2 2 2 2 
2k Ca - b) - 2(a - b )(k2 - k1) (118) 

Substituting for k2 - k1 from Equation 116, factoring 

-2 
I 

and simplifying, one sees the sign of the discriminant will be given by 
,, ;:: ~ . ·-:,- ! ). 

the sign of the following expression: 

• (119) 

But 2a2b2hk2 is greater than zero, so the sign of the discriminant will 

be given by the sign of 

•. (120) 

We want to d~termine which values of c give rise to only tangent 

points, that is, for what values of c is the sign of the discriminant 

~ less than zero. Thus, we must determine for what values of c Equation 

121 is greater than zero. 

q21) 

We note that Equation 121 is greater than zero if and only if 

Equation 122 is satisfied. 
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(122) 

2 2 2 But• x1 = -b h/a •b is the vertical asymptote of the hyperbola which 

makes up th• set of tangent points. Hence, tangent points with their x . 1 

coordinates greater than the x1 coordinate of the vertical asymptote (of 

the hyperbola which~- the set of tang@nt point1) are only tangent 

pointso Further, t•n11nt potnt1 with th•i~ x1 coordinates less than the 

x1 coordinate of tho vertlc:!:!l ~§lffiP't@t, Al"e not only tangent points but 

also give rise to contours which are both tangent and intersect at other 

points. Tbe11ef~p@ 1 t'Jler can not give rise to ~g,ml!iiible points (Theorem 

VIII).. 



APPENDIX B 

Consider the response functions given by Equations 46 and 47. It 

is obvious from the geometry of the set of tangent points (Figures 16 1 

17, etc.) that any admissible point with a large Y1 value must occur on 

H2• Also we note that as we move on H2 so as to increase the Y2 re

sponse1 then the Y1 response is decreased. However1 as we search for 

admissible points which have large Y2 responses 1 it is not obvious that 

the admissible points are on H2• Thus I we need to show that all the ad

missible points are in fact on H2• 

First, since there are admissible points on H2 corresponding to 

large Y1 responses and since Y1 and Y2,ar-e continuous functions 1 then in 

order for there to be an admissible point on H1 there must first be 

points, one point on H1 and one point on H21 which have the same Y1 re

sponse and the same Y2 response. That is 1 there must exist a point x1 

on H1 and x2 on H2 such that Y(X1) = Y(X2). 

In the following we will show that there exist no points x1 on H1 

and x2 on H2 such that Y(X1) = ~(X2). This shows that all admissible 

points are on H2• To show that x1 and x2 do not exist we will assume 

they do exist and show that we reach a·condition that is true only in a 

special degenerate case. 

Suppose there exist xl on H1 and x2 on H2 such that Y(X1) = Y(X2). 

This implies that Y1(x1 ) = Y1(x2) 1 or that both (X1 ) and (X2) are points 

on the same Y1 contour. Let 
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(123) 

be the equation of this Y1 contour. 

Now Y(X1) = Y0(2 ) also implies that Y2(x1 ) = 
x1 and x2 are on the same Y2 contour. Let 

2 Y2(X ), therefore that 

(124) 

where b2 - 4a > 0 be the equation of this Y2 contour. 

If we solve Equations 123 and 124 simultaneously• we will obtain 

two values for x1 (also x2). One of these values will correspond to a 

point on H1 and the other to a point on H2• Since these points are in 

fact tangent points they will each give rise to double roots. 

Let us use Equation 123 to eliminate x2 in Equation 124. Then 

a(Xl - h)2 + b(Xl - h)(X~ + C - k) + cxf + C - k)2 = k2 0 (125) 

Equation 125 is a fourth degree equation in x1 ; but since x1 and 

x2 are tangent points which give rise to double roots. Equation 125 can 

be written as 

(126) 

where e and fare X~ and X~ (the x1 coordinate of point x1 and the x1 

coordinate of point x2) respectively. 

Expanding Equation 125 1 one obtains the following: 

4 3 2 . x1 + bX1 + (a - bh + 2c - 2k)X1 + (cb - kb - 2ah)X1 

+ ah2 + bhk - bhc + c2 - 2ck + k2 - k2 = 0 o 

Expanding Equation 126 1 one obtains 
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4 3 2 2 . 2 2 x1 - 2(f + e)Xl + [(f + e) + 2ef]X1 - 2ef(f + e)X1 + e f = Oo (128) 

Considering the coefficients of like powers of x1 , we obtain the 

following equations. 

From the coefficient of xf, we have 

b = -2(f + e) • (129) 

2 From the coefficient of x1 , we have 

a - bh + 2c - 2k = (f + e) 2 + 2ef (130) 

From the coefficient of x11 we have 

cb - kb - 2ah = •2ef{f + e) • {131) 

Eliminating f + e in Equation 130 and 131 by using its value from 

Equation 129 1 we have 

b2 
a - bh + 2c - 2k = 4 + 2ef (132) 

and 

cb - kb - 2ah = bef • (133) 

Multiplying the terms of Equation 132 by band the terms of Equa-

tion 133 by 2 1 we have 

(134) 

and 

2bc - 2bk - 4ah = 2bef • (135) 



Subtracting the terms of Equation 135 from the terms of Equation 

134, we obtain 

2 b 3 
ab-bh+4ah=,r. (136) 

I . 

Now rewriting Equation 136 and multiplying each term by four, we 

have 

• (137) 

Factoring bout of the first two terms and 4h out of the last two 

terms • we obtain 

b(b2 - 4a) + 4h(b2 - 4a) = O (138) 

or factoring b ~ - 4a from both terms• we have 

. (b + 4h )(b 2 - 4a) = O • (139) 

Since b2 - 4a is greater than zero, this implies t.hat 

b + 4h = 0 or: h= .. ;, • (140) 

But •b/4 is the vertical asymptote of the hyperbola which mak'es up 

the set of tangent points. If h = -b/4, then the hyperbola, which is 

the set of tangent points, degenerates into two straight lines. 

From the preceding, we see that the only time that points x1 and x2 

exist is when h = -b/4o In this case the set of admi~sible points is 

the union of sets A and B where 
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If -b/4 ~ h 1 then the set of admissible points is the set of points 
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