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CHAPTER I

INTRODUCTION

Background

The past 15 years has been a period of ferment in mathematics. In
particular, there has been a vast amount of time and energy expended in
an attempt to determine the appropriate scope and sequence of mathe-
matics instruction from the grammar school level to the graduate level.

Questions have arisen as to the reasons for instigating some rather
radical changes in a curriculum, which has remained relatively static
for a long period of time. It appears that there are at least two major
factors that have influenced those concerned. One has been the extra-
ordinary growth of pure mathematics in recent times. The other is the
increasing dependence of scientific thought upon mathematical methods,
coupled with an urgent demand for the services of scientists in almost
every phase of endeavor. Thus, regardless of profession, the contention
is that mathematics will profoundly influence the life of modern man.

Unfortunately, scrutiny of the mathematics curriculum of a decade
ago indicates that most of the mathematics presented to students up to
19 or 20 years of age was at least 200 years old. Paradoxically, it has
been conservatively estimated that more mathematics has been discovered
in the last 100 years than in all of the previous history of mankind.

A major contention then is that the educated man, whom we envision as



the end product of our educational process, should not be left 200 years
behind the times in mathematics.

One outgrowth of the almost universal concern for the direction of
the mathematics curriculum has been the establishment of several national
and international committees. Many of these groups have convened for
the express purpose of determining the content and tenor of mathematics
instruction in the immediate future.

A few of these groups, most notably perhaps the School Mathematics
Study Group, have established writing committees in an effort to produce
instructional materials commensurate with their recommendations. In the
main, however, these groups have been content to make suggestions regarad-
ing the appropriate general content and sequence of the mathematics
curriculum. The result has been that many of the toplcs recommended for
inclusion, particularly at the secondary level, are not readily avail-
able to those who teach on this level. The complex number system is
included among these. In order to implement the curriculum suggested,
it appears both desirable and expedient to produce self contained
papers that might be used by the instructor and students to gain the
required insight into those areas where there is a deficiency of avail-
able materials. The production of such materials seems best-fitted to
those with a backlog of teachling experience on the secondary level,
considerable mathematical maturity, and time. These three ingredients
appear necegsary in order to insure that the most significant aspects
of the material will be presented in a consistent, rigorous, and teach-
able manner. It was with these thoughts in mind that this work was

undertaken.



Objectives

The paper focuses on certain algebraic and geometric aspects of
complex numbers that might be presented to an audience having a founda-
tion in elementary algebra, coordinate geometry, the real number system,
trigonometry, and elementary functions, with a degree of rigor and
completeness. Specifically, the presentation is accomplished without
recourse to the limit concept, the sole exception being the fundamental
theorem of algebra. The work is self-contained to the extent that
results used, which are not generally encountered in the aforementioned
five areas, are either stated without proof or demonstrated. In general
the results stated without proof are readily avallable in standard texts
on modern algebra or complex variables.

Although several classical results are demonstrated, or illustrated
in some detail, the intent was to direct attention to those aspects of
complex numbers that are not currently treated on either the high
school or undergraduate level. Little of what is included can be termed
truly original, although a review of the literature seems to suggest

that the setting in which many of the results appear is somewhat unique.

Scope and Sequence

The initial portion of the paper is concerned with the development
of complex numbers as an algebraic system. In addition to a detailled
presentation of the complex number system as & two dimensional extension
of the real numbers, attention is given to the allied question of the
existence of a 3, 4, 5, ..., n dimensional extension of the real

numbers. The discussion points up the unique algebraic position of the



complex number system as a field extension of the reals, while providing
a natural setting for an acquaintance with some significant algebraic
structures that fail to possess all the characteristics of a field.

The progressive nature of the theorems in Chapter IV was deemed desir-
able from the standpoint of the audience prescribed and the relative
sophistication of the terminal results. This is in keeping with the
overall tone of the presentation.

The second major aspect of the work deals with a mathematical model
of the complex number system, namely the isometries of the Euclidean
Plane. The focus here is on the algebraic development of these trans-
formations, although the impetus is clearly geometric. Throughout this
portion of the paper the assoclated geometry 1s used to motivate,

illustrate and clarify the basic propositions.
Review of the Literature

A broad survey of the literature was made initially in an attempt
to determine those aspects of complex variables that might profitably
be discussed within the limitations of the paper. After delimiting the
scope of the paper, an intensive review of the literature pertaining to

the selected areas was undertaken. The Mathematical Review, indices to

books in print, the card catalog, indices of The American Mathematical

Monthly, and bibliographies of texts served as primary tools. In
general, there was a dearth of reference material relating directly to
this work, although some portion of the literature was suggestive of

almost everything undertaken.



CHAPTER II
A HISTORICAL OVERVIEW

The purpose of this chapter is to give the reader some insight into
the etiology of the complex number concept. There are three principal
reasons for including such a discussion. First, it was felt that such
an initial chapter would provide a framework to which the reader could
relate all subsequent aspects of the work. Secondly, in view of the
rather formal nature of the work in Chapters III through VI it seemed
desirable to give the prescribed audience some insight into the rather
erratic and informal historical evolution of the number concept.
Finally, for the sake of completeness, material has been included which
alludes to the physical applications of complex numbers. In the
authors eyes such an inclusion has the additional advantage of giving
credence to complex numbers, where the reader is reluctant to accept
them on a purely mathematical basis.

It is the author's contention that most beginning students fail to
see the human element in the development of mathematics. Too often they
envision mathematics as having evolved in the same continuous deductive
fashion in which i1t appears in thelr texts. It 1s hoped that a brief
exposure to the history of the complex number concept will, among other
things, reveal the fallacy of such a notion.

The early history of complex numbers is strikingly similar to that

of the negative reals, a record of blind manipulations unrelieved by any



serious attempt at interpretation. The first recorded evidence of
recognition of imaginaries is that of Mahavira, the Indian mathematician
of the ninth century. He was content to observe that “in the nature of
things a negative number has no square root." [5;175] The next intru-
sion of imaginaries came in the sixteenth century with the work of the
Italian mathematicians; specifically Cardan and Bombelli. Cardan in his
quest for a solution to the reduced cubic was the first to symbolize the
imaginaries, although he apparently rejected them as numbers. The crux
of the matter was that Cardan's formula for the reduced cubic gave a
quite satisfactory result for the real root of a cubic having, as we
know it today, two complex roots. However, in the case where all three
roots were real the formula gave illusory results for one of the real
values. Cardan, and later Bombelli, were bold (or foolish, according to
the readers whim) enough to attempt to manipulate these conjured, and
admittedly fictitious symbols, in an effort to achieve a complete solu-
tion.

2 15x + 4 treated by

Consider, for example, the equation x
Bombelli in his algebra published in 1572. [10] The equation has

three real solutions -2 +~3, -2 -2, and 4, yet application of the

Cardan formula lead to the mystic expression %/ 2 ++ 121 +?J 2 - 'JTEI ’
in place of the rational value 4. It occurred to Bombelli that the two
radicals might represent expressions of the form a +-Jt5; a -»Jts'where
a and b are positive, in which case the sum would be independent of the
imaginary symbol J:SZ With some effort, and no small amount of misgiv-
ing over the undertaking, he was able to show that the two radicals did
indeed resolve into 2 + va and 2 - 'JI, the sum of which is L.

Encouraged by his initial success, Bombelll proceeded to develop rules



for operations on these mystic beings. Apart from notation the gifted
Italian had all the rules in essentially thelr current form. It is not
surprising that Bombelli's operational rules would parallel current
definitions when one realizes that it was a widely held belief in his time
that algebraic consistency was dependent on obediance to the manipula-
tive principles for positive numbers.

Thus, we see a mathematician, emminent in his own time, devising
rules for manipulating meaningless, though not altogether useless,
symbols. The work of Bombelll marks the beginning of an era of blind
formalism in connection the complex number symbol, a period that lasted
approximately two hundred years. Listed among those who followed
Bombellil in this mysterious play on symbols are some of the great
mathematicians of the seventeenth and eighteenth centuries.

There are a couple of observations worth bringing to the fore in
connection with the development of complex numbers to this point. First,
it is interesting to note that at the time Bombelli was taking the
initial steps in the area of complex numbers the real number system was
entirely without foundation as we know it today. [10] As a matter of
fact, negatives were not fully understood nor widely accepted in his
day! Secondly, we note that in contrast to the logical current practice
of introducing complex numbers followlng a discussion of quadratic
equations, they initially came to the fore during an attempt to solve
the cublc. The foregoing provide graphic illustration of the fact that
mathematics in the making often bears little resemblance to the syste-
matic exposition of the textbook.

The imaginary belngs of Bombelll found little acceptance, had no

real foundation, nor were they given any interpretation for over two



hundred years, yet it is interesting to note that formalism alone
produced some results of considerable significance. [3] About ;710 an
Englishman, Cotes, discovered what later was recognized as the equivalent
of Eulers famous relationship between e, i, n, and 1, namely that

10 = loge(cos © + i sin ©). The second result of this period was
DeMoivres' discovery of the trigonometric identity which bears his
name, namely that cos n6 + 1 sin nd = (cos & + i sin 6)", n a natural
number. This relationship gave the mystic numbers a new air of perma-
nency by linking them to trigonometry. The prolific Euler introduced
the transcendental e and extended the result of DeMoivre to arbitrary
integral values for n. The famous special case of the foregoing result
which bears Eulers name being eijt + 1 = 0. Even today one can but
marvel at this simple identity that involves some of the most important
symbols of mathematics, each of historically disparate origin.

In addition to the preceeding developments it was reasonable to
inquire as to whether the system created by the adjunction of complex
numbers was adequate for the solution of the fundamental problem of
algebra: determining the root of the most general polynomial equation.

In view of the Cardan formula and its predecessor the gquadratic
formula, it was evident in Bombelli's time that the complex numbers
provided a complete solution for polynomial equations of degree three or
less having real coefficients. The Ferrari method for solving the
quartic, developed contemporaneously with Cardans' result, allowed
extension of the above conclusion to degree four. The quest for a
sharper result in this connection was centered around a necessarily
futile attempt to derive expressions for the roots of higher ordered

equations in terms of the coefficients and the basic arithmetic



operations. Of course, the impossibility of producing such formulas was
not established until the ingenious, but ill-fated, Galios provided the
answer in 1830. By this time Gauss had already published (1799) his
proof of the now classical Fundamental Theorem of Algebra. The combined
results of Gauss and Galols answered with finality the age old questions
of existence and radical solvability. That the foregoing questions were
raised and completely answered prior to the acceptance of the complex
number system 1s additional testimony to the logical irregularities in
the development of mathematics. The following comment due to Euler
(1770), though somewhat predating the works mentioned, was apparently
characteristic of this period, and surely serves to dramatically
illustrate the status of complex numbers at that time.

All such expressions as'J:l, Jia, etc., are consequently

impossible or imaginary numbers, since they represent roots

of negative numbers; and of such numbers we may truly assert

that they are neither nothing, nor greater than nothing, nor

less than nothing, which necessarily constitutes them

imaginary or impossible. [10;191]

Certainly, the etymology of the word imaginary as applied to roots of
negative reals needs no further clarification!

Part of the difficulty in accepting complex numbers stemmed from
the fact that no one had been successful in giving a consistent, useful
interpretation of them prior to Gauss' time. It is true that both the
Norwegian, Wessel (1797), and the Swiss, Argand (1806), preceded Gauss
in giving the now familiar vector interpretation. [12] Unfortunately,
thelr results were not widely recognized, and it remained for Gauss to
rediscover and present the essence of their works. Interestingly

enough, Just at the time when the long sought interpretation was

achieved, the mathematical world arrived at a level of sophistication
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which deemed inacceptable a geometric foundation for a number system.
In response to this, Gauss gave the first recorded formal treatment of
complex numbers as ordered pairs in 1831l. At last, man had given the
mystical numbers of Bombelli both a postulational foundation and an
intultively appealing interpretation.

To one unfamiliar with the pattern of mathematical history it might
appear that 1831 marks the terminus of one phase of endeavor. Quite the
contrary, our vantage point reveals that this merely signaled the end
of the beginning. The immediate stimulus for extensions of the number
concept was the geometric description of the rotations of the plane
afforded by Gauss' interpretation of complex numbers. The response was
almost immediate.

The Irishman, Hamilton, reasoned that it should be possible to
generate & number system that could be used to describe rotations in
the space of three dimensions. The hurdle that blocked Hamilton's path
in his initial attempts to achieve the desired algebraic description was
that any such system would lack the commutative property. It must be
recognized that in Hamilton's time the opinion was still widely held
that one could avoid contradictory results only by adhering to the
properties inherent in the rational numbers. Hamilton ultimately had
the conviction to proceed in the endeavor, and in 1843 he presented his
quaternion algebra. [16] Hamilton subsequently devoted the greater
portion of life in a valn attempt to convince physicists and geometers
that his quaternions held the key to major advances in thelr disciplines.
Although they never received the attention that their inventor imagined,
they do find some current application in both areas.

In the long run, the permanent residue of Hamilton's labor seems to
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be that he demonstrated a self consistent algebra in which the commuta-
tive law fails to hold. In so doing he paved the way for a host of
algebras, in which one after another of the principles of rational
arithmetic were discarded or modified. It is interesting to note that
‘the appearance of an abstract approach to algebra coincides historically
with the freeing of geometry from the bondage of Euclid's fifth
postulate. Thus, almost simultaneously, geometers and algebraists
perceived that mathematical systems are not supernaturally imposed on
human beings, rather they are creations of the mind. In retrospect, it
seems surprising that such a notion was so long in coming to the fore.

In addition to Hamilton, history reveals another very fertile mind
at work in the area of hypercomplex numbers during this period. [3]
The German mathematician, Grassman, essentially considered the much more
general problem of defining a product on ordered n-tuples in such a way
that it satisfied certain predetermined properties. The unfortunate
aspect of Grassmans work was that his notation and style of writing were
0 unusual that his work found little acceptance in his own time. The
scope of his theory was not fully appreciated until the current century
when it was revealed that his work not only included complex numbers and
quaternions as a potential detail, but aspects of matrices and tensor
calculus as well. Thus, history shows that an unfortunate method of
presentation obscured a work which might have advanced this area of
algebra some fifty years.

After Hamilton's epochal revelation, the development of hypercom-
Plex numbers, or linear algebras as they are often called, follows in
three principal phases. [3] The first phase was represented by such

work as that of the American, B. Plerce, who was very active in the
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1870's. His efforts were directed toward the problem of exhibiting all
linear associative algebras of a given finite dimension, having real or
complex coordinates. The second phase is exemplified in the works of
the German mathematician, Frobenius, who established a general result
that described the nature of the totality of linear associative algebras
of finite dimension over the real field. In addition, his work suggest-
ed the extension of the discussion of hypercomplex number systems to
n-tuples whose coordinates were from fields other than the real or com-
plex. The third phase is characterized by the work of the Scotchman,
J.H.M. Wedderburn. In the early 1900's he established a series of
theorems that in essence exposed the fundamental structure of a linear
assoclative algebra of arbitrary dimension over any field. BSubsequent
efforts in the area of hypercomplex numbers have been directed toward
the discovery of the analog of Wedderburns results for non-associative
systems. One can but speculate that if this quest 1s successful
mathematical desire for generality will culminate in a search for a
theory linking the associative and non-associative algebras.

At this point a principal historical sequence, which originated
with Cardan’s mystical symbols, has been traced to current research in
the area of linear algebra. In additlion to being instrumental in the
achlevement of previously stated objectives, the development provides an
example that serves to illustrate the usual path to abstractness and
generality in mathematics.

The finsl portion of this chapter .is devoted to a brief considera-
tion of the applications of complex numbers. It must be remarked in
passing that the study of complex numbers, or more generally complex

function theory, requires no further Jjustification for the pure
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mathematigian then the inherent beauty of the structure. Nevertheless,
it seems quite satisfying to see that a branch of mathematics, as
unmotivated by physical observation and experience as complex numbers,
does find application in physics. Hopefully, the reader recognizes that
any relationship that finds expression in terms of complex variables can
be formulated solely in terms of reals. The fact is that the complex
representation often provides a much more elegant and penetrating
formulation in physics.

The areas of physics that have proven most ahenable to complexifi-
cation are quantum mechanics, electricity, and optics. [15][31] In the
main, the applications of complex representation occur at fairly high
level sophistication in these disciplines, thus making discussion of
them difficult here. A single example from the field of optics was
selected because of its availability to the reader and its striking
illustration of the extent to which complex numbers find an interpretive
reality.

In elementary physics, Snell's Law asserts that if light passes
from one transparent media to another then the ratio g%g—% is constant.
[30] In this expression 1 and r represent the magnitudes of the angles
5etween the direction of propagation of the incident and refracted
rays and the respective directed normals. In keeping with both experi-
mental results and Huygen's wave model of light the constant value of
this ratio turns out to be the ratio of the velocity of light in the
incident media (vi) to that of light in the refracting media (vr).

Thus, if the velocities are known and the angle of incidence is given,
the angle of refraction can be determined.

In 1823 the French physicist, Fresnel, took an additional step
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toward the completion of a comprehensive theory of light. Beginning
with a limited number of propositions about the behavior of light, he

was able to show that for light polarized in the plane of reflection the

sin(i - r)

ratio of amplitudes of reflected and incident light is - SR T )

[33] This relationship had been previously suggested by empirical
evidence.
In connection with the foregoing result, Fresnel recognized that if
R
o =
I
i>x, sini > k. If the sine function is restricted to the real

k < 1, then there exists a value x, 0 < x < /2, such that for

field, then in this case there 1s no corresponding solution for r. If,

however, one considers the extended sine function, then the equation
sin 1

k
valued complex solution for r when sin i > k has no recognizable physi-

gsin r = has a solution for all real values of i. [27] The multi-
cal interpretation as an angle, however; Fresnel consldered these
solutions in connection with his result relating the amplitudes of
reflected and incident light. In particular, he observed that for theée
values of r the ratio 2%%%%—{—%% = eie, 6 real. Fresnel conjectured
that this Indicated that total reflection occurs, and that the incident
and reflected waves have the same amplitude, but differ in phase by an
amount 0. These statements were subsequently completely confirmed by
experimentation! [5] The fascinating aspect of Fresnel'’s work here is
that one sees complex numbers playing a role in physics that supercedes
that of merely providing an elegant symbolic formulation of an already
conceived theory. In particular, one sees laws of nature being abstract-
ed from a branch of mathematics that is not at all an obvious abstraction
from the physical world. Contemporary physics reveals that Fresnel's

work merely set the stage for more extensive exploitation of compl ex



variables in physics.
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CHAPTER III
THE COMPLEX FIELD

The focug of the current chapter is on the development of the
complex field and the basic properties of the system that are either
necessary in the sequel or desirable for completeness. The initial
stimulus for the development is the desire for an algebraic solution to
polynomial equations over the real fielio Specifically, attention is
directed to the problem of enlarging the real number system in such a
way that the eguation x2 = .1 will have & solution.

Some of the results of this chapter are readily available else-
where and the proofs of thege were omitted where it was felt that such
a demonstration would contribute little toward the achievement of the
objectlves of the paper. These theorems are recognized by the fact that
an appropriate letter of the alphabet follows the identification number.
Throughout the paper references to all definitions, theorems, and
corellaries are indicated by the corresponding nﬁmber preceded by D,T
and C respectively.

In order to implement the development certain preliminary notions

are introduced.

Definition 3.1l. A non-empty set F on which two binary operations + and
- are defined 1s a field if and only if the following conditions hold:

(1) F is closed with respect to + and - ;

16
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(11) + and - are commutative;

(111) + and - are assoclative;

(iv) There exist distinct elements 0,1 in F such that x + 0 = x,
x°l = x, for every x € F;
(v) For each x ¢ F there exists - x € F such that x + (-x) = 0;
(vi) For each x € F, x # 0, there exists xL ¢ F such that
x«x_l = 1
(vii) - distributes over + .
In connection with the above definition the operations + and - will

be referred to as addition and multiplication respectively. Further,
for y # 0, the symbol ; is defined to mean xay"1° In like manner x - y
means x + (-y). Finally, when the operations of two different fields
are used in a single setting, it is assumed that the context will
suffice to clarify the meaning.

In general, it is presumed that the reader is familiar with the
baslic properties of a field, having encountered them in the development
of the rational number system. The following examples of fiélds will be
referred to on occaslon and the assoclated symbols will be used té

expedlte this.

Example 5.1. The set of rational numbers with ordinary addition and

multiplication forms a field denoted Q.

Example 3.2. The set of integers mod p, p prime, with the usual modular

sum and product will be deslignated Ip°

Example 3.3. The set of expressions of the form a + bJé,»where a,b € Q,

with (a + bJé) + (c+&2) = ({a +cl +[b+daN2) and (a + Wa)lc+ a/2)
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= {([ac + 2bd} + {ad + bc}Jé), forms a field denoted Q(N2).
The following concept plays a significant role in subsequent work

with fields.

Definition 3.2. If K is a subset of a field ¥, then K is a subfield of

F if and only if K is a field with respect to the operations on F.

Example 3.4. The set of all elements of QGJé) of the form a + waé

forms a subfield of QW2).

The following characterization of a subfield will prove useful in

practice.

Theorem 3.1. 1In order that K, a non-empty subset of a field F, be a
subfield it is necessary and sufficlent that:

(1) -1 e K;

(11) Whenever x,y € K, then x + y, x°y € K and, provided x # o,

x"l € K.

Proof. The necessity is almost immediate from the fact that K is a
field.

The sufficiency reguires showing that K possesses the properties
(1) - (vii) of D.%.1. That K is closed with respect to + and . follows
from T 3.1.(i1). The commutativity and associativity of + and - is
apparent since K< F. Now -1 ¢ K, hence (-1)(-1) € K, or 1 € K. Also
1+ (-1) €K, or 0 ¢ K; thus, D 3.1.{iv) is satisfied. If x € K, then
(-1)x € K, or -x ¢ K and D 3.1.(v) follows. Similarly, if x € K, x # 0,
then x'l € K. The distributivity of - over + in K is again & result of

the fact that K c F.
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Definition %3.3. A fleld F is sald to be totally ordered if and only if
there exists a non-empty subset of F, denoted P, such that: |
(i) For every x € F exactly one of the following holds: x = O or
X € Por xe P
(ii) If x,y € P, then x + ¥y, x°y € P.
The set P is called a set of positive elements of F,
The next result sheds some light on the structure of a totally

ordered fleld.

Theorem 3.2. If F 1s a totally ordered field, then there exists a
relation < on F such that for every x,y,i € F the following hold:

(1) x

AN

X3
(11) x <y and y < x implies x = y;
(111) x <y and y <z implies x < z;

(iv)

M

SyorySx;
(v) x <y implies x + 2z <y + 2;

(vi) x <y andz >0 implies x°z < y-z.

Proof. Define x S yifandonly if x =y ory - x e P. In vliew of the
similarity of technique used in showing (1) - (vi) only the demonstra-
tion of (1i1) is presented here. If x <y and y <z, then x = y or
Yy-xePandy=2zorz-yeP. Ifx =y, thenx =y =12 or
zZ -X =2 -y & P, hence in elther case i‘S z. Ify -x € P, then
z-x=y-xePorz-x=(y-x)+(z-y)ePandx<z.
Therefore, 1n any case, x < 2.

In the sequel the relation 5 1s assumed to be defined es in the

foregolng argument unless otherwlse indlecated.

The converse of T 3.2 is also valid thus providing a characteriza-
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tion of total ordering-.

Theorem 3.3. If F is a fleld and < i1s a relation on F such that for
x,y € F, x <y if and only if x <y or x = y and < satisfies (1) - (vi)
of T 3.2, then P = {x € F | x >0} 1s a set of positive elements for a

total ordering of F.

Proof. Clearly PC F. Since 0,1,-1 ¢ F and 1 # 0, then (iv) implies
that 1 <Oor 0<1l., Incasel >0, thenl e Pand P# p. If1<0
then -1 + 1 < -1 + 0, or 0 < -1, hence -1 € P. Thus, in any event,

P £ P

Let x € F, x # 0, then as in the case of 1 either x ¢ P or =x ¢ P,
Suppose both x ¢ P and -x € P, then x > 0 and -x > 0, whence
x+ (=x)>%x+0, or 0>x. Thus, x >0 and 0 >x and (11) implies
X = 0, which is a contradiction. Therefore, for every x € F, exactly
one of the followlng holds: x =0, x€¢ P, -x € P,

Now if x,y € P, then x > O and y >0, hence x + y >2x + 0 = X,
Utilizing (iii) x + y > 0. Suppose x + y = O, then y = -x and -x ¢ P.
But x ¢ Pand -x € P is in contradiction to the result of the preceding
paragraph. Therefore, x +y >0, or x + y € P. Finally, for x > 0,

y >0 (vi) implies that x°y > x0 = 0. However, x-y # 0, since x and y
are nonzero elements of g field. Thus, x-y >0, or x°y € P, which

completes the proof.

Example 3.5. The field of retlonal numbers with the ususal ordering is

a totally ordered fleld.

Definition 3.%. If G is & nonempty subset of an ordered field and there

exlists an x € F such that x >y for every y € G, then x is sald to be an
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upper bound for G. If G is bounded above and there exists an upper
bound z € F such that z < y for every upper bound y, then z 1s sald to

be the least upper bound for G.

Definition 3.5. If F is an ordered field and every nonempty subset of
F that 1s bounded above has a least upper bound, then F 1s said to be a

complete ordered field.

Definition 3.6. If F and F' are fields and f:F — F! is a one to one
mapping of F into F' such that for every x,y € F:

(1) fx+y)=12()+ 1y

(11) £(xey) = £(x) - £(y);
Theﬁ f is called an isomorphism of F into F' and F and f(F) are said to
be isomorphic. In case F = f£(F), then f is called an automorphism.

The following result establishes the nature of the range of a

field isomorphlsm. The proof furnishes an application of T 3.1.

Theorem 3.4, If F,F' are fields and f:F = F' is a field isomorphism of

F into F' then f(F) is a subfield of F'.

Proof. Clearly f(F) C F' and £(F) # p. If £(x),f(y) € £(F), then

x,y € F, hence f(x + y) ¢ f(F). However, f(x + y) = £f(x) + £(y), thus
f(x) + £(y) € £(F). Similarly, f(x) « f(y) € £(F). Now, there exists
0 ¢ Fand for every x € F, f(x) = f(x + 0) = £(x) + £(0) = £(0) + £(x).
Specifically then, £(x) = f(x) + £(0). Moreover, since F' is a field
-f{x) € P! and from -f(x) + £(x) = -£(x) + [£(x) + £(0)], 1t follows
that £(0) = 0. Also note that £f(1) = £(1.1) = £(1) « £(1). However,
since F' is a fileld and £(1) # O, then [£(1)]1™ € F'; hence the

preceding equality can be used to show that £(1) = 1. Now,
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0 =7(0) = £(1+-1) = (1) + £(-1). Consequently, f(-1) = -f(1) = -1, or
-1 ¢ £(F). Finally, if f(x) ¢ £(F), £f(x) # 0, then x € F and x # O.
Hence x™~ ¢ F. Therefore, 1 = f£(1) = f(x»x'l) = f(x) o f(x’l); or
since F' is a field and f(x) # O, then the result that f(x“l) = [f(x)]'l
implies [f(x)]“l ¢ £(F). The hypothesis of T 3.1. being satisfied, it
follows that f(F) is a subfield of F'.

In view of the definition and T 3.4. it is reasonable to interpret
a field isomorphism as a one 10 one correspondence between two fields
that preserves the operations. Even more loosely speaking, two fields
are isomorphic if they differ only in notation. The following will

serve to clarify this important concept.

Example 3.6. The mapping £:Q(N2) = QW2) such that f(a + W2) = a-B2

is an automorphism of QGfé)a

Example 3.7. If F is any field, the identity map g:F — F 1s a field

automorphism of F.

Example 3.8. The function h:Q = Q(2) such that h(a) = a + 0 - V2 1is

an isomorphism of Q into QW2).

Having introduced the necessary preliminary concepts, the following

definition is formulated.

Definition 3.7. A fleld F is called a field of real numbers if and

only if F is a complete ordered fleld.

It 1s of note that the foregoling deflnition admits the possibility
of more than one example of a real number system. Indeed this is the

case. The reader may find this a little perplexing since it 1s common
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practice to use the term in the singular. As one might anticipate, it
can be shown that, within an isomorphism, all complete ordered fields
are identical. [4] 1In view of this, the convention of referring to a
particular model of a complete ordered field as the real number system
seems appropriate. Thus, in the seguel the symbol R will be used to
denote the familiar set of real numbers. In addition, R with its usual
structure will be referred to as the system of real numbers.

Although the properties of the real number system are assumed in
this development, it is of interest to note that without recourse to
sophisticated techniques one can give credence to the foregoing
definition. Observe that the familiar fields Q and Ip, which are
obviously not isomorphic to R due to differences in cardinality, also
fail to satisfy the conditions for a complete ordered field. Specif-
ically, the rational number system is an ordered field yet faills to be
complete in that such sets as {x € Q | x2 < 2} are bounded above but
have no least upper bound in Q. On the other hand Ip does not possesgs
a total ordering. To see this suppose Hb is a nonempty set of positive
elements of Ip and let x ¢ Hi, then the sum of p x's, denoted px, must
again be an element of Hbo It suffices to note that px = 0, mod p, and
that 0 ¢ B

A currently popular pedagogical device for motivating the various
extensions of the number concept, when one develops the real number
properties from those of the natural numbers, is to allude to the
insolvability of certain simple polynomial equations in a given system.
In keeping with this approach, consider the problem of extending the
concept of number so as to obtain a field in which the quadratic x2 = -1

hag a solution. It is clear that in developing such a system it would
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be desirable to do so in such a way that the additional algebraic
strength afforded by the real number system not be sacrificed. In
particular, consider the necessary properties of a field containing a

subfleld isomorphic to R and an element e such that e2 = wl,

Theorem %.5. If F is a field that contains a subfield R' that is
isomorphic to R, and there exists e € F such that e2 = -1, then:
(1) D={x+ ey | x,7y € R*} 1s a subfield of F;

(11) R? is a subfield of D.

Proof. (1) T 3.l. is applied. Clearly D is a nonempty subset of F.

Let Xt ey, X

(1) (x; +eyy) + (x, + eyy) = ([x) + x,] + elyy +y,1)

t ey, € D, then

]

. _ 2
and (2) (xl + eyl) (x2 + ey2) ([xlx2 + e ylyg] + e[xly2 + x2yl])

i

([xlx?_ - ylye] + e[xly2 + xgyl]))
using the distributive, commutative, and associative properties of the
field F. Furthermore, since R' is a subfield of F and

’ ¢ ]
xl,yl,x2,y2 ¢ R', then xl + yl, x2 + y2 g R' and XXy - ylye,

X + X € R'. Therefore, D is closed with respect to addition and

172 * %oy
multiplication. Since e = O + e-l;, then e ¢ D and the closure of D
relative to multiplication yields the immediate result that -1 € D.

Now note that O + O-e ¢ Dand (x + ey) + (0 + e°0) = (0 + e°0)

+ (x +ey)=(x + ey) for every x + ey € D. Hence O + e-0 is the
additive identity. If x,y € R' and x + ey # O + €0, then x # O or

Yy # 0. Since R' 1s isomorphic to R, it possesses a total order <, thus
utilizing the properties in T 3.2. 1t can be shown that for x and y as -

above x° + y2 >0. Bub x° + y2 ¢ R! and x> + y2 # 0, thus



25

2 z 5 ) 5 nh ~ € R'. From the foregoing 1t follows that
x +3y x" + ¥
T?'{’_? + e o _.é_:ﬁ’_é. e D. Now, using (2) and the field properties of
X +y X +y

R 1t 1s clear that

2
X +y

(x + ey) - e — N 2 y(y), .. O

X +y X" +y X~ + ¥

#

X +Y e 0
2 2 2.2

X +y X" +y
=1 + €0
=1

The foregoing shows that —5-5——§‘+ e o _§_:2_§ 1s the multiplicative
X"+ y X +y

inverse of x + e-y. Thus, (x + ea;)r)'l ¢ D. Therefore, the conditions
of T 3.1. are satisfied and D is a subfield of F and (i) is established.
(i1) That R' is a subfield of D is apparent from the fact that for

every x € R', x = x + e°0,

The preceding result sheds light on the nature of anyrfield con-
taining a system of real numbers and & solution of x2 = -1, but it does
not insure the existence of such a field. Nevertheiess, the conclusion
of the theorem, coupled with (1) and (2), give direction to the forma-
tion of the desired system. The following construction produces a

field satisfying these necessary conditions.

Theorem 3.6, There exists a field G containing an element e such that:
(1) e = -1;
(1i) A subfield of G, denoted R', is isomorphic to R;

- (ii1) For each z € G there exist unique elements X,y € R' such
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that z = x + esy.

Proof. Let G = R x R and for every (xl,yi),(xe,yz) € G define

(1) (xp,¥;) = (x,,¥,) if and only if x; = x, and y; = ¥,,

(2) (xl’yl) 5 (XQ,YQ) (xl + X5 Yl & }'2):

and (3) (x,¥) « (x5¥,) = (X%, - ¥y, 5 %¥; + %¥5)

Clearly, addition and multiplication are well defined binary operations
on the nonempty set G. Furthermore, the closure, commutativit&, and
associativity of addition and multiplication in G follow from the
corresponding properties of R. In like manner it can be shown that -
distributes over + in G. It is not difficult to show that (0,0) and
(1,0) are therespective additive and multiplicative identities and that
-(x,y) = (=x,-y). Finally, for (x,y) e G,(x,y) # (0,0), it follows by

direct application of the definition of multiplication that

=S HE

(x,y)-l = = e-y = | - Therefore, G forms a field with
x +y x +Y

respect to the prescribed operations.

(1) is established by letting e = (0,1) and noting that

& m (01 = o1, 0oL + 0:1) = (<1,0) = =(1,0).

Using T 3.1l. it is almost immediate that R' = {(x,0) € G} is a
subfield of G, however, consider f:R - R', where for every x € R,
f(x) = (x,0). That f is a function is clear. Furthermore, f is one to
one, since if x,,x, € R and f(xl) B f(xe), then (xl,O) = (12,0) which
implies that xl = x2. It is apparent that f maps R onto R'. Finally,
if x,y € R, then f(x + y) = (x + y,0) = (x,0) + (y,0) = £(x) + £(y).
Similarly, f(x-y) = £f(x) * f(y), hence f preserves the operations.

Therefore, f is an isomorphism of R onto R', or R and R' are isomorphic.
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The conclusion (ii) is now verified by applying T 3.k.
(11i) follows by noting that for (x,y) € G, (x,y) = (x,0)
+ (0,1) * (y,0). Recall that (a,b) = (c,d) if and only if a = ¢ and

b=d.¢

The foregoing theorem provides an affirmative reply to the initial
question regarding the existence of a field containing an isomorphic
copy of R and a solution to x2 = -1. Although the approach to the above
problem may be new to the reader, it is anticipated that the constructed
field is a familiar one. Having experienced success in producing a
concrete example of a field satisfying the necessary conditions of
T 3.5., the question naturally arises as to what extent the solution is
unique. The answer is provided in T 3.8. The following theorem
expedites the proof T 3.8. and other subsequent results. Actually the
symmetry property of field isomorphisms, which is stated formally below,
was tacitly assumed in D 3.6. The proof of this result is well within

the means of the reader, but is not presented here.

Theorem 35.7T.A. If F, G, and H are fields and f:F = G and g:G = H are
field isomorphisms onto G and H respectively, then £t and f-g are

isomorphisms of G and F onto F and H respectively. [20]

Theorem 3.8. If Gl and G, are two fields satisfying the hypothesis of

T 3.6., then G, is isomorphic to Gye

1

Proof. Let & and e, represent the elements of Gl and G2 respectively

whose square is the additive inverse of unity. Also, denote the subsets

of Gl and G2 that are isomorphic to R by Sl and 82 respectively. By

T 3.7, Sl is isomorphic to 82, thus let g:S, = S, bean isomorphism from

& 2
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Sl onto 52. Now, every element in Gl has a unique representation in the

form x + ey, vhere x,y € S,, hence £:G, =G, such that fx + ely) =

g(x) + ee-g(y) is a well defined mapping of G, into G,. That f is onto

L

i onto 82 and each element in 62

has a unique representation in the form a + eab, a,b € 52. Furthermore,

G2 follows from the fact that g maps S

if x, + ¥, X, + &Y, €G, and f(xl + elyl) = f(x2 + elyé), then

g(xl) + ee-g(yl) = g(xe) + ee-g(yé). Again utilizing the uniqueness of
the representation in G,, the foregoing implies that g(xl) = g(x2) and
g(yi) = g(ya). The fact that g is one to one yields X, = %, and ¥, = Yy
or xy t e oY, =X, + € Yy, hence f is one to one. Finally, if

X, + € °¥y, X, + €7, € G, then the statements (1) and (2) of T 3.5.
insure that f([xl + elyl] + [xe + ely2]) = f(x.l - elyl) + f(xe - elye)
and f([xl + elyl]a[x2 + elyel) = f(xl + elyl)vf(x2 + elyé). Therefore,

f is an isomorphism of Gl onto C-2 and G, is isomorphic to Gz.

1
Theorems 3.6 and 3.8 establish the existence and uniqueness,
within an isomorphism, of a field satisfying the conditions of T 3.5.

In view of this the following definition is in order.

Definition 3.8. A field G is called a field of complex numbers if and
only if:
(1) There exists an element e € G such that 32 = =13
(11) There exists a subfield R' of G isomorphic to R;
(111) For every z € G there exist unique elements x,y € R' such

that z = x + e°y.

As in the case of a real field, a particular model of a field of
complex numbers is singled out and given special status. In this paper

the field developed in the following theorem is the designated one and
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will subsequently be referred to as the field of complex numbers. The

symbol C will be used to represent this field.

Theorem 3.9. If C is the set of expressions of the form a + bi, where
a,b € R and equality, addition, and multiplication are defined by the
following:
(1) (x1 + yii) = (x2 + yéi) if and only if x, = x, and y, = ¥,
(12) (= + 338) + (x, +92) = [x, + =z, + [y + 37,00,
(111)  (xp+ 31)(xy + yp1) = [x) 0%, - ¥y7,) + x5, + %507, 14,

then C is a field of complex numbers.
Proof. The argument completely parallels T 3.6.

The elements of C of the form a + 01 will be referred to as real
complex numbers, or simply real numbers where there is no ambiguity.
The expressions in C of the form O + b-i, or briefly denoted bi, will
be called imaginary numbers.

The following theorem, which is almost immediate, provides an

alternative definition of a field of complex numbers.

Theorem 3.10. A field G is a field of complex numbers if and only if G

and C are isomorphic.

Proof. If G is & field of complex numbers, then the isomorphism of G
and C is immediate from T 3.8.

If C is isomorphic to G and f:C = G is an isomorphism of C onto G,
where R' is the subset of C isomorphic to R, then f(R') € G is also
isomorphic to R. The foregoing is Justified in view of T 3.7. Since

i1 eCand 12 = -1, then, utilizing the argument in T 3.4, where it was
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shown that g(-1) = -g(1) = -1 for any field isomorphism g, it follows

2) = f(-1) = -1. Thus, f(i) is an element of G whose square is

that f(1
the additive inverse of the multiplicative identity. Finally, if z € G,
then since f is a one-to-one mapping of C onto G there exists a unique
element w € C such that f(w) = z. But, corresponding to every w € C
there are uniqué elements x,y € R' such that w = x + yi. Thus,

f(w) = f(x + yei) = £(x) + £f(y)-f(1) = z, since f preserves operations.
In view of the foregoing the elements f(x) and f(y) are clearly the only
elements of f(R') satisfying the condition that z = f(x) + £(1)-f(y).
Thus, the conditions of D 3.8. are satisfied and G is a field of complex

numbers .

In order that the reader be aware of the fact that there exist
examples of complex fields where the isomorphism with C is not trans-
parent,, another model is considered. A prerequisite of the development
of this model is a brief acquaintance with matrices. In particular, it
is assumed that the reader is familiar with the matrix operations of
sum and product. The following theorem is the focal point of this

discussion.

b
> 2

Theorem 3.11. The set G of all real 2 ¥ 2 matrices of the form (-'b 5

with the usual matrix operations, is a field of complex numbers.

Proof. Although D 3.8. affords a simple proof of this result the
characterization of T 3.10. is used since it seems to find wider

application. Consider the relation f:C = G, where f(a + bi) = (_% :)
for every a + b1 € C. f is a function, since if a + bi, ¢ + d1 € C

and & + bi = ¢ + di, thena = c and b = d. Hence, (_z 2) = (_; S).
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Thus, f{a + bl) = f(c + dl). By essentially reversing the foregoing
argument it follows that f is one to one. Now, if (_; :) ¢ G, then

a,b ¢ R; thus, a + bi ¢ C and f(a + b1) = (_; 2). Therefore, f is onto

G. Finally, if a + bi, ¢ + di € C, then f[(a + bi)-(c + d1)]

ac - bd ad + bc)

ad + be] ac - bd By applying the

= f[{ac - bd) + (ad + be)i] = (-T

definition of matrix product and the fleld properties of R,

¢ -bd ad + bc)
d + bel ac - bd’”’

f{(a + pi):(c + d1)] = f{a + bi).f(c + di). It follows similarly that

ab cd 8 :
fla + bi)f(c + at) = (_b a) (-d c) = <»[a Thus,
fl{(a + b1) + (¢ + ai)] = f(a + bi) + f(c + d1). Therefore, f is an iso-
morphism of C onto G and by T 3.10. it follows that G is a field of

complex numbers.

It is of interest to note that the set G discussed in the preceding
theorem is a subset of the set of all real 2 X 2 matrices, which does
not itself form a fleld with respect to the given operations.

For the reader famlliar with the role that matrices play in the
theory of linear transformations on a vector space the foregoing matrix
model of a field of complex numbers gives some insight into their
geometry. An acqualntance with this application of matrices will not be
assumed in the sequel.

At this point, having developed in detall a number system contain-
ing & subsystem isomorphic to R and a solution o x2 + 1 =0, the
question arises as to what extent the field C provides solutions for
other real polynomial equations. The answer 1s truly amezing. The
fact is that the fleld C not only contains a root to every real poly-
nomial equation, but provides a solution to every polynomial equation

having complex coeficients as well., The reader ls undoubtedly familiar

with thils result which 1s generally termed the Fundamental Theorem of
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Algebra. As noted earlier it was first demonstrated by Gauss in 1799.
In a sense the Fundamental Theorem of Algebra is not an algebraic
theorem at all, since every known proof relies on notions which are
foreign to algebra. [4] Close examination of this result leads one to
suspect that any proof will lean heavily on topological notions and
continuity. Thus, the proof of this result is beyond the scope of this
paper. Nevertheless, the theorem is used on occasion and is stated here

precisely for reference.

Theorem 3.12.B. If f(z) is & polynomial of degree n, n 2’1, having real
or complex coefficients, then the equation f(z) = O has at least one

root in C. [27]

In view of the foregoing result it is clear that no further
generalization of the number concept can logically be based on the desire
for algebraic completeness. As noted in Chapter II there are several
interesting extensions based on other considerations. One of these is
examined in Chapter IV. The remainder of the current chapter 1s devoted
primarily to an exposition of the fundamental algebraic properties of C

necessary in the sequel. The following result is of this nature.

Theorem 3.13.C. If P(x) is a polynomial with real coefficients, then
P(x) can be expressed as a product of factors each of which is of the

form ax + b or cx- + dx + e, where a,b,c,d,e € R. [4]

The proof of the foregoing, though not presented here, is readily
accessible to the reader. In connection with the above theorem the
necessity of P(x) having real coefficients should be carefully noted.

In view of the inherent strength afforded the real number system by
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the total ordering that 1t possesses, 1t is feasonable to consider the
possibility of imposing such an ordering on C. The futility of such a

quest is pointed up in the followling theorem.
Theorem 5.14. The field C is not totally ordered.

Proof. The proof is by contradiction. Suppose that P is a nonempty
subset of C satisfying D 3.3. Now 1 € C and i # 0, hence either i ¢ P
or -1 € P and not both. In case i € P, then i1 € P, or -1 € P.
Reapplying the second condition of the definition ylelds -1+i € P, or
-1 ¢ P, which is a contradiction. A similar argument shows that -i e¢ P
leads to a contradiction. Therefore, 1 # 0, 1 ¢ P and -1 ¢ P; hence
the initial assumption regarding the existence of P must be invalid.

Therefore C is not totally ordered.

The widespread utility of order relations in algebraic structures
in general leads to an inquiry into the possibility of defining an
ordering on C that possesses some of the desirable features of a total
order. This is indeed possible and an examination of the properties of

a total order exposed in T 3.2. leads to the following result.

Theorem 35.15. The field C possesses an ordering < such that conditions

(1) - (v) of T 3.2. are satisfied.

Proof. If x,y e Cand x = a + bi, y = ¢ + di, then define x € y if and
only if a <.¢c, ora = c and b < d. < as used in connection with
a,b,c,d is éhe standerd order on R. Let x,y,z € C with x = a + bi;
y=c¢+ di, = = e+ fi, then;

(i) clearly x < x.
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(i1) If x <y and y < x, then elimination of théjimpossible cases
produces & = ¢, b< d, and d < b, ora =c and b = d. Thus,
a+bli=c+di, orx=y.
(iii) If x <y, thena < c, ora =c and b € d. If also y < z,
then c < e, or ¢ = e and d < f. In considering each of the
cases the conclusion a € e and b € £ is valid, thus x € z.
(iv) Since a,b,c,d ¢ R and < is a total ordering on R, then a = ¢,
a<corc<aandb<dor d<b. A casewlise discussion is
again in order. if a=ceand b<d, thenx<y. Ifa=c
and d < b, then y € x. In case a < ¢, then x €y, and if
c < a, then y € x. Thus, in any event either x < y or y < x.
(v) If x<y, thena<c, ora =c and b < d. Now, either
ate<ct+e orat+e=c+eand b+ f<d+ f; hence

x+z<y+z.

In 1light of the results of T 3.3. it is apparent that the ordering
outlined in the foregoing proof fails to be a total ordering of C only
on one count. It is of interest to note that the order relation describ-
ed in T 3.15. is compatible with the standard ordering on R. By
compatability with the conventional ordering of R, it is mesnt that if
% and y represent complex numbers of the form a + 0i and ¢ + 01
respectively, then x € y if and only if a € c¢c. The ordering of C out-
lined in T 3.15. might appropriately be termed a lexicographic ordering.
Since the concept of a linear ordering is so well established in
mathematics, it is worth mentioning that the lexicographiec ordering of
C is also a linear ordering. A linear order on a set is one satisfying

conditions (i) = (iv) of T 3.15.
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In view of the fact that C fails to possess a total ordering, it is
clear‘that the notion of completeness, as it was defined in D 3,5;,
cannot be extended to the complex field. It turns out that there is a
characterization of completeness for ordered fields that can be extended
to certain fields that fail to possess a total ordering. This property
is enjoyed by the field of complex numbers. (24] The development of
this characterization is beyond the scope of thié paper.

The following theorem exposes a unique relationship that exists

between certain pairs of complex numbers.

€ Cwith z, =a + biand z, =c+di, d #0,

Theorem‘3516o If 2,2, 1 2

then 2z, .z, and z, + z., are both real complex numbers 1f and only if

172 1 2

a=c¢and b = =4,

Proof. Suppose z;°z, and z, + z, are both real. Now z,°z, = (ac = bd)

+ (ad + be)i and z, + 2z, = (& + ¢) + (b + d)i. The fact that the sum

1 2
and product are both real imply that b + d = 0 and ad + bc = 0. From
the first egquation it follows that b = =d. BSubstituting b = =4 in the
second equation produces ad - dc = 0, or (a = c)d = 0. Since d # O,
then a = ¢, In summary a = c and b = =4, or a + bi = ¢ = di.

Conversely, if & = ¢ and b = -d, then the conclusion that z, -z

1 2

and Zy + z, are real complex numbers follows readily.
The foregoing theorem motivates the following definition.

Definition 3.9. If z ¢ C and z = & + bi, then a ~ bi is called the

conjugate of z and is denoted z.

Theorem 5°l6o‘rephrased in terms of the preceding terminology



asserts that the sum and product of two nonreal complex numbers are

both real if and only if the two numbers are conjugates of each other;
The following algebraic results involving conjugation will be

necessary in the segquel. If z = a + bi, the notation Re(z) and Im(z)

will be used to denote a and b respectively.

Theorem 3.17.D. If 2152, € C and z) =at bi then

(1) 2, * 2, =2 +1z

(ii) =z, - z

1}
N
o
N

(iii) 1z, = Z, = 2, = Z

1 1 2’
Z. z.
(iv) 2] = =,
2 22
(V) -Z.l= ZlJ
. - 2 2
(vi) 2«2, =8 +b,

(vii) z. + z.

N 1 =2 Re(zl) and z, -

L -7 =2l Im(zl),

(viii) =z is real if and only if z = z = O.

The proofs of the foregoing results are readily accessible to the
reader. [27] Parts (i) and (ii) of T 3.17.D. suggest that conjugation,
considered as a mapping of C into itself, might well be an automorphism.
This is indeed the case and is stated formally in the following

theorenm.

Theorem 3.18. The function £:C = C such that £(z) = z is an automor-

phism of C.
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Proof. The brief argument required uses the uniqueness of representa~
tion in C and the results of T B;lT;D.

It can be shown that the conjugation map outlined above is the only
nonidentical automorphism of C that sends real complek numbers into
themselves; Furthermore, although it is not developed here, it can be
demonstrated that there are no nonidentical automorphisms of the
rational field or the real field. [5#] The foregoing facts tend to
suggest that the conjugation automorphism is a very fundamental feature
of the complex field. The following characterization of a field of

complex numbers supports this point of view. (28]

Theorem %.19. In order that a field @ be a field of complex numbers it
is necessary and sufficient that G satisfy the following:
(1) @ = [x2 |x e 6};
(ii) There exists a function ':G = G such that for every x,y € G
the following hold:
(1) (x+y) =x"+7';
() (x-y)' =x" .y
(3) (x')' = x;

(4) If x and y are nonzero, there exists z € G, z # 0, such

(5) If x = x*, then there exists z € G such that x2 = (zz')a;
(iii) IfR' ={x e G| x = x'} and P = {x € G | there exists y ¢ G,

Y # 0, and x = yy'} and A,B are nonempty subsets of ¢ such that

A-B={a~-Db]| achandb ¢ B} CP, then there exists

¢ € R' such that A - {e} € P U {0} and {c}- B PU {0}.
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Proof. The conditions (1) - (4ii) are sufficient; The procedure is
to verify that D 5n8; is satisfied;

R' is a subfield of G; Clearly R' € G. Using (2) and (3)
x.1' = (x'.1)' = (x')' = x for every x € G. 1In like manner 1'.x = x
for every x € G. Thus, 1' =1, or 1 ¢ R' and R' # ¢. Similarly,
0" = (0:0')" = 0'-(0')" = 0':0 = 0 and O € R', Furthermore, (1 + -1)
= 0; hence (1 + =1)'=0'"=0, or 1" + (~1)' =1 + (-1)' = 0. Thus,
(-1)' = =1 and -1 € R'. Now, if x,y € R!, then applying (1) and (2)
veilds (x + y)' = x"+y' = x + y and (x-y)' = x'+y' = x.y. Hence, R'
is closed with respect to addition and multiplication. If x € R,
X # 0, then x(xnl) =1 and [x(x'l)]' =1'=1. Also, EX°(x"l)]'
= x’o(xnl)' = x»(x“l)’° Thus, x»(x-l)' =1, or (x'l)' = xL and

x-l € R'. Therefore, the conditions of T 3.1 are satisfied.

H

P totally orders R'. P # ¢, since 1 = 1-1', P C R', for if

X € P, then x = yy' for some y € G and x' = (yey')' = yley = y+y' = X,
Now, if x,y € P, then there exist a,b ¢ G, & # 0, b # 0, such that

x =g8.a' and y = beb’. Thus, x-y = (a-a')(b:b') = (a.b)(a’-b') =
(a-b)(a-b)', where a-b # 0. Also, x + y = a-a' + b-b' and (4) assures
the existence of ¢ € @, ¢ # 0, such that a.a' + b*b' = c.c'; hence

t

X+ y=cc’, Combined, the preceding imply that x.y, x + y € P, or
that P is closed with respect to addition and multiplication. IT

x € R' and x = 0, then x ¢ P; for suppose O € P, then there exists

y €G, y # 0, such that 0 = y.y'. However, y.y' = O implies y' = 0;
thus using (3), (y')' = 0', or y = 0, which is a contradiction. If

x € R' and x # O, then x = x' and (5) guarantees the existence of z ¢ G

such that x° = (zz’)2° Thus, x = zz' or =x = zz'. Furthermore,

z # O since x # 0. From the foregoing either x € P or =x ¢ P.
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Finally, not both x ¢ P and -x ¢ P, for if so, then using the previously
established closure x + (=x) € P. But x + (=x) = 0 and 0 ¢ P, hence a
contradiction. |

R' is complete; Let € be the order induced by P as described in
T 5;2; Consider H, a nonempty subset of R' that is bounded above and
define A ={x ¢ R' | x> c forevery c ¢ H} and B={xeR'| x<c
for some c € H}. From the fact that H is nonempty and bounded sbove,
it follows that A # ¢ and B # . Now, if a e Aand b € B, thena> ¢

for every c ¢ H and b € ¢ for some ¢ € H; thus, there exists o € H

such that a > COZb° Therefore, a >b, or a =« b> 0, Thus, a - b € P

and A - BC P. (iii) insures the existence of ¢, e R' such that

A=-c CPU {o}and ¢, - BC PU {0}. From the preceding and the

1

definition of € it follows a = c 2. 0eand e =D > 0, for every a ¢ A,

b € B. Clearly, c, is an upper bound for H, since HC B. Furthermore,

1

if 4 € R' and 4 is an upper bound for H distinct from c., then d ¢ A;

l)

hence d > c,. Therefore, ¢, is the least upper bound for H.

1 1

In gummary R' is a system of real numbers.

There exists an element e in G such that e2 = ~1. This follows
from (i) and the fact that =1 € G.

Every element of G has'a. unique representation in the form
X + e.y, where x,y € R'. By an argument paralleling that’of T 3.1k.
it follows that e ¢ R', thus e # e'. Since e = -1 and -1 ¢ R', then

e2 - (e2

)= (e’)z, hence e' = -e. Also, 1 € R' and R' is closed
under addition and nonzero division; thus, 2 ¢ R' and 1/2 ¢ R'. Now,
if z € G, then z = 1/2(z + 2') + 1/2(2' -~ z) = 1/2(z + z')

+ e[1/2(z - z")e]. But, [1/2(z + z' ' = (1/2)'(z + 2z")' = 1/2(z" + z)

=1/2(z + 2z') and [1/2(z - z")e]}"' = (1/2)'(z = z')'e =
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vl/2(g' ;‘z)(-e) = 1/2(z - z')e. Therefore, 1/2(z + z'),

l/2(z ; z'jé e‘R','or’z = X + ey, where x,y € R', Finally, the
repfesentaﬁion is unique, for suppose a,b,c,d € R' and a + eb = ¢ + ed,
then & = ¢ = e(d = b). However, a - c € R', thus e(d - b) € R" and
fe(@ ~1)]'=¢e'(d" =b') = (-e)(d = b) = Le(d - b)]. From this it
follows that e(d = b) =0, or d = b, Also, sincea - c = e(d - b) = 0,
then a = c;

The proof of the necessity is sketched. If G is a field of complex
numbers, then the isomorphism f:G = C guaranteed by T 3.10., coupled
with the fact that C = [x2 l X € C}, leads to verification of (i).
Furthermore, since the conjugate automorphism of C possesses all the
properties outlined in (ii), then it follows that there exists an
automorphism of G satisfying (ii). Finally, the isomorphism of G and
C, together with the fact that S ={z e C | z =72} and T = {z ¢ C |
there exists y € C, y # 0, and z = ¥y} represent a field of real numbers
and its positive elements, can be used to show that the corresponding
elements of G satisfy (iii).

It is of note that the foregoing theorem not only presents a
characterization of a complex field that focuses on the role of the
conjugate relationship, but also provides a definition that does not
explicitly assume the existence of a real subfield. The proof of
T 3.19., though lengthy, does afford a rare opportunity for the reader
to become better acquainted with the definitive properties of the real
number system.

A very important notion in the real field is that of absolute
value. This concept can be extended to the complex field in the follow-

ing way.



b1

Definition 3.10. If z € C, z = a + bi, then the absolute value of z,

denoted |z|, is defined to ben$52 + b2, T.e., |z|=va® + b7 .

It is of note that if z is a real complex number, then the absolute
value of z agrees with absolute value as defined in R. Furthermore, the
following theorem shows that absolute value as defined in C shares the
main properties of the absolute wvalue function in R. The proof of this

result is readily accessible to the reader. [27]

Theorem 3.20.BE. If Zys%p € C, then

(1) |z,] > 0 and |z =0 ir and omly if z = 0,

(11) l leel = l le ‘ ZE' J

z z
s s I Y B
(1ii) ;; = '22!, if z, £ 0,

(iv) ‘zl + zel < Izll + lzel,

IA

(V) lzy =zl < Tzl = Il

. 2 2 2 2

(vi) lzl + 22] + lzl - 22‘ = Elzl| + 2'22{ ,
(vii) lzl|2 =27,
(viii) lzll = IEiI,

With the foregoing theorem the principal properties of the complex
field that do not hinge on geometric or trigonometric notions have been
presented. In particular, those algebraic aspects of C that are
necessary for the development in Chapter IV have been exposed. Chapter
V provides an appropriate setting for the presgntation of those résults

that have a geometric flavor.



CHAPTER IV
HYPERCOMPLEX NUMBER SYSTEMS

The intent of this chapter is to view the complex field from
another vantage point. The development here is concerned with the area
of algebra outlined historically in Chépter IT. Specifically, atten-
tion is directed toward an elementary exposition of certain results that
might appropriately be included in a study of finite linear algebras
over the real field. In view of the approach taken in this paper it
will be unnecessary to define formally the concept of a linear algebra.
The informed reader will recognize that most of the theory of this
section could have been presented much more elegantly (and esoterically)
in a vector space setting. Furthermore, it will be noted that the
approach taken in this chapter is again a progressive one, where
brevity is often sacrificed in an effort to motivate subsegquent aspects
of the work. In the main, the propositions in this section are unigue
to this paper. However, there are references that contain results that
relate directly to certaln aspects of the development. [21] [22]

Historically the initial stimulus for the develoPmént of hyper-
complex number systems was geometric in nature. As noted in Chapter IT,
Hamilton's discovery of the real quaternion algebra was the initial
step in this direction following Gauss' treatment of complex numbers as
ordered pairs of real numbers. The reader will be in a better position

to appreciate the geometric considerations which stimulated Hamilton

42
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after viewing the simplicity afforded the study of the rigid motions of
the plane using complex numbers. Nevertheless, the appeal at this
point does not rely on a knowledge of such.

In Chapter III the definition of a complex number system was preci-
pitated by the desire for a field containing a solution to a certain
polynomial equation and having a subfield isomorphic to R. It was observ-
ed that the field C fulfilled these conditions and furthermore that it
contained a root to every polynomial equation with complex coefficients.
Having achieved complete success in one direction it is in the nature of
a mathematician to seek alternative avenues of generalization. Specifi-
cally, after viewing the construction of a field whose elements are
ordered pairs of real numbers (see T 3.6.) it is reasonable to raise the
question as to the possibility of defining sum and product for ordered
triples of real numbers in such a way that the resultant system is a
field. Finally, it is recognized that there is nothing magical about the
number three, thus the foregoing question might well be posed for systems
where the elements are ordered n tuples of real numbers. This question
forms the framework for the investigations in this chapter.

The perceptive reader will recognize that the scope of the
presentation here could readily be enlarged by considering the
possibility of defining binary field operations on n tuples where the
coordinates are from fields other than R. In addition, one could
further broaden the development by allowing infinite tuples or
by surpressing certain of the field axioms. Of course, the
intent here is not to encompass the field of linear algebra,
but to focus on a single aspect of it that 1s compatible with the

central theme of the paper. In keeping with this, all subsequent
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references will be to real n tuples. A system whose elements are
ordered n tuples will be referred to as n dimensional.

In an effort to reduce the problem to manageable proportions it is
necessary to impose certain restrictions on the definitions of sum and
product; The appropriate conditions are suggested by both algebraic
and geometric considerations. From an algebraic standpoint it is
reasonable to seek a definition of sum and product in such a way that
the base field R is a subfield of the proposed system. Geometrically
it is the vector interpretation of ordered pairs, and more generally of
ordered n tuples, which gives direction to the quest for an appropriate
set of restrictions. It is assumed that the reader has been exposed to
vector methods in plane geometry, thus putting him in a position to
recognize that if an algebra of n tuples is to find application in
geometry the operations defined on them should reflect basic vector
operations.

Specifically, vector considerations point directly to defining the
sum of two n tuples component-wise. The appropriate restriction on the
product is not as apparent. However, a structure isomorphic to R can
be attained by demanding that wmultiplication of an arbitrary n tuple
by one having at most a nonzero eﬁtry in the first position also be
defined component-wyise. Geometrically such a restriction on the
definition insures that the product of an arbitrary n tuple (vector)
and a real n tuple (one having zeroes in the 2nd through nth position)
will produce a result analogous to that of scalar multiplication.
Finally, both algebraic and geomeﬁric considerations suggest the sort
of uniqueness of representation inherent in a component-wise definition

of equality.
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It is under the restrictions outlined in the preceding paragraph
that the investigations of the current chapter are carried out; The
foilowing theorem is presented to expose the necessary conditions
imposed on the definition of multipliecation in the two dimensional case.
To expedite the demonstration of this result and subsequent similar
theorems the n tuples of the form (x,0,0,v.o,O) will simply be denoted
¥ on ocecasion. Furthermore, these n tuples poSéess all the properties
of R, the isomorphism being transparent in light of the restrictions.
In view of this, these elements will be termed real elements of the

system or briefly, real numbers. The context will clarify the meaning.

Theorem 4.1, If G = R X R is a field, where for all x,y,u,v € R
(i) (x,¥) = (u,v) if and only if x = u and y = v,
(11) (x,y) + (u,v) = (x + u, y + v),
(iii) (x,O)(u,Q) = (xu,xv),
mm@ﬂ@JWﬂhﬂm+mhm+w+mmwmemm=®m2

and m2 + hkn < 0,

Proof. Note that for (x,y) € G, (x,y) = (x,0) + (0,y) = (x,0)(1,0) +
(y,0)(0,1), or using the aforementioned convention (x,y) = x(1,0) +
y(0,1). Thus, if (x,y),(uw,v) € G, then (x,y)(u,v) = [x(1,0) + y(0,1)]-
Lu(1,0) + V(O,l)j; using the field properties (x,y)(u,v) = xu(l,O)2

+ (xv + yu)(1,0)(0,1) + yv(O,l)2° Further simplification produces
(x,y)(u,v) = (xu, xv + yu) + yv(O,l)za Thus, letting

(O,l)2 = (m,n), myn € R, (x,y)(u,v) = (xu + yvm, xv + yu + yva).
However, G being a field requires that for each (x,y) € G, (x,y) # (0,0),
there exists a unique (u,v) € @, such that (x,y)(u,v) =

(xu + yvm, xv + yu + yvn) = (1,0); (1,0) clearly being the
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multiplicative identity for G. But (xu + yvm, xv + yu + yvn) = (1,0)
implies that (ym)v + xu = 1 and (x + yn)v + yu = O, However; this
system of equations possesses a unigue solution for u and v if and only

if ym X

# 0,

X+ yn y

or equivalently if and only if yem - x{x + yn) 74 0. The foregoing can
be expressed in the form x2 + (yn)x - y2m # 0, and treating this as a

quadratic in x produces

x # ~yn ;I-_!\/yen2 + hygm - = -_t-_«/n2 + bm

2 2

NS

Thus, the condition that every nonzero (x,y) have a unigue inverse
fails to be satisfied if and only if there exists an (x,y) # (0,0)

-1 -_I-.’Jn2 + hm

= st

2

such that

Now, if this requirement fails it does so for nonzero y. For suppose

~n ;!_;-Jng + hm

2

y = 0 and

|}

X

Vs

[}

then x = 0; hence (x,y) = (0,0), which is a contradiction. However,

given y € R, y # 0, there exists an x in R such that

=n f_\/ng + b

2

X =

if and only if n® + hn > 0; since if nZ + bm < 0, then

-n 5!_-_\/n2 + b

2

v

is not real. Therefore, since G is a field it is necessary that (m,n)

be such that n2 + bm < 0, The conclusion follows from the foregoing
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and the fact that (x,y)(u,v) = (xu + yvm, xv + yu + yva).

The reader has undoubtedly recognized that the model of a complex
field developed in T 3.6. satisfies all the conditions of the hypot;
thesis in the preceding theorem. In that particular two dimensional
field the square of (0,1) was defined to be (=1,0) which is, of course,
in keeping with the results of T L.1. e.g., O2 + 4(~1) < 0 and
(x,y)(u,v) = (xu = yv, xv + yu) = (xu + yv(-1), xv + yu + yv0).

The series of equivalent statements occuring in the proof of the
foregoing theorem suggest that the conditions of the conclusion may be
sufficient to insure that the set G satisfying (i) - (iii) be a field.
Indeed this is the case and as a matter of fact the resultant fields

have a familiar structure.

Theorem 4.2. If G = R X R and G satisfies conditions (i) - (iv) of

T 4.1,, then G is a field of complex numbers.

Proof. The result is established by:
(1) verifying that with the given hypothesis G is a field;

(2) exhibiting an isomorphism between C and G and invoking T 3.10%

The demonstration of the fact that G is a field with respect to
the prescribed operations is tedious but straightforward and is left to
the reader. It should be observed that the if and only if statements
of T 4.1, are sufficient to insure the existence of a multiplicative
inverse for each nonzero element of G, thus establishing the most
difficult portion of this proof.

To show that C is isomorphie to G consider the relation f:C - G

such that for every a + bi € C,



fla + bi) = (a + bn / -‘h , -2b / h )
+ bm + bm

The righthand member ofithe foregoing equality 1s an element of G, since

1
|

a,b,n, —§—JE—— € R,
n~ + bm

. =1
y 7T ¢R

n~ + Um

Note that

is insured since, by hypothesis, n° + bn < 0,

o -1 > 0.
n” + 4m
To facilitate the presentation
-1
N T
n~ + hm

will be denoted e throughout the remalnder of

notation f(a + bi) = (a + bne,-2be).

which implies that

the proof.

In this

The relatlon f defined above is a function, since 1f a + bi,

c+dlieCenda+bl=c+dl, thena =c and b = d. Hence a + bne
= ¢ + dne and -2be = -2de. Thus, from the definition of equality in G
it follows that (a + bne, -2be) = (¢ + dne, -2de), or f(a + bi) =

f(c + di). Furthermore, the mapping is one to one, for if a + bi,

c+dleGand fla + bi) = £lc + di), then (a + bne, -2be) =

(c + dne, -2de), or a + bne = ¢ + dne and -2be = -2de.

Since e # O

the last equality implies that b = d and substituting into its

48

predecessor ylelds & + bne = ¢ + bne, from which 1t follows that a = c.

Therefore, a + bl = ¢ + di.,

To show that the function maps C onto G consider (x,y) € G.

f 18 onto G if and only if there exlsts a + bi ¢ C such that

Then
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f(a + bi) = (x,¥y), or equivalently if and only if there exist real
numbers a and b such that a + bne = x and -2be = y. However, the

existence of & real solution to these equations 1s assured since the
1 ne

0 - 2el= 2e % 0. Therefore, the range of

coefficients are real and

f is G.

To verify that the operations are preserved under f let a + bi,
c +dl e C, then f{(a + bi) + (c + ai)] = f{(a +c) + (b + d)i] =
([a + c] + [b + dlne, 2[b + dle). Utilizing the definition of addition
in G and the field properties of R, 1t folloﬁ% that
({a + ¢l + [b + dlne, - 2[b + dle) = (a + bne, -2be) + (c + dne, -2de).
Thus, f{(a + bi) + (c + d1)] = f(a + b1) + f(c + d1) and sums are
preserved under f. Now, fl(a + bi)(c + di)] = fl(ac - bd) + (ad + be)i]
= ([ac - bd] + [ad + bclne, -2[ad + bcle). Employing the definition of
multiplication in G leads to f(a + bi)ef(c + di) = (a + bne, -2be)"*

(c + dne, -2de) = ([a + bnellc + dnel + [-2bell[-2delm, [a + bnel[-2de]
+ [-2bellc + dne] + [-2bel[-2deln). To see that the preceding ponderous
expression does indeed reduce to the expression for f{(a + bi)(c + ai)]
congider the first component [a + bnellc + dne] + [-2bel(-2de]m. Using
the field properties of R this can be written ac + bdee[n2 + hm]

+ [ad + bclne. However
2 -1

n° + hm
and substituting this produces,

-1 2
ac + bd[ - ][n + 4m] + [ad + bclne = [ac - bd] + [ad + Dbeclne,
n”~ + hm
which is the first component in the expansion of f{(a + bi)(c + di)].
A gimilar approach can be used to verify the equality of the second

components, hence f[(a + bi)(c + ai)] = f(a + bi):flc + di).
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Therefore, f is an isomorphism of C onto G, or C and G are isomorphic.
In addition to showling the necessity and sufficiency of condition
(iv) of T 4.1. the preceding two theorems establish the uniqueness
(within an isomorphism) of the complex field as a two dimensional
extension of the real field. It is of interest to note that conditions
(1)-(iv) expose a means of comstructing a variety of ordered pair models
of the complex field where multiplication is strikingly (though not
abstractly) diff;rent‘from the model in T %.6. A% this point the
reader might reasonably raise the question as to whether or not thére
exists a simple distinguishing feature which separates the familiar two
dimensional complex field of T 3.6. from the infinitude of distinct
complex fields assured by T 4.2, That such a condition does exist is

established by the following theorem. [17]

Theorem 4%.3. If G =R XR satisfieé (1)-(iv) of T k.1. and for every
(x,7), (w,v) € & | (5,7)(w,v)| = | (x, )] (w,v)], where | (x,y)] =" + 35,

then (x,y)(u,v) = (xu - yv, xv + yu).

Proof. First note that | (x,y)(u,v)| = | (x,y)|](u,v)] implies that
»I(x,y)(u,v)lg = I(x,y)lgl(u,v)lg° Now, using the definition of product
in G in condition (iv) and the definition of absolute value, the fore-
golng can be written (xu + yvm)2 + (xv + yu + yvn)2 = (x2 + ye)(u2 + v2)o
Expanding and rearranging terms into a convenient form yields

22

(1) (1 - e - n2)y v© = 2(m + 1)xyuv + 2n(uvy2‘+ xy've)°

However, |(m,n)| = 1(0,1)21 = | (0,1)]](0,1)], or equivalently we + n°
= (02 + 12)(02 + 12) = 1, Hence, me + n° = 1, or alternately

1l - m2 - n2

i

0. Substituting O for 1 - me - n° in (1) produces

(2) 0 =2{(m + 1)xyuv + 2n(uvy2 + xyvg)°
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Since x,y,u,v are arbitrary elements of R, then in particular (2) is
valid for u = v =y = 1 and x = 0, in which case the equality becomes

O = 2n. Therefore, n = O. Replacing n by O in (2) and letting

fl

X=yYy=u=%v=1ylelds O = 2(m + l), whence m = -1, Upon substituting

m

il

-1 and n = 0 in (iv) the conclusion follows.

In view of the algebraic and geometric signlficance of the absolute
value function as defined in D 3.10. The foregoing theorem suggests
that no other ordered pair model of the complex field could play the
functional role of the model of T 3.6. The importance of the product
relationship for absolute value in R and C points to the desirability of
seeking hypercomplex fields which satisfy the prescribed conditions and
also have this feature. Unfortunately no such field exists for dimen-
sion n, n > 2, In fact, no higﬂer dimensioﬁal fields exist that satisfy
only the three initial restrictions. Because the proof of the last
result is somewhatf more sophisticated the weaker theorem is also
demonstrated here. It is perhaps instructive to note that the author
developed the weaker implication after initial efforts to prove the
stronger result failed.

The symbol Rn wlll be used henceforth to denote the set of all

ordered n tuples of real numbers.

Theorem 4.4, If G = Rn, n > 2, and + and ° are binary operations on G
such that for every (xl,xa,ooo,xn), (yl,ye,ooo,yh) € G
(1) (xl,xeya.u,xn) = (yl,ye,oqo,yn) if and only if x, = y,,
1 <i<n,

(12)  (xsxpseees® ) + (Fys¥pseees¥y) = () + ¥5%y + YopooesX + V)
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(iii) (xl)o)o) o0 °)O)(yl)Y2) e °)yn) = (xlyl)xlyz) °o® °)xlyn))
(iv) I(xl’x2’°'°’Xn)(y1’y2’°°°’yn)l =

l(xl’x2’°°°’xn)ll(yl’y2’°°°’yn)l’

2 2 2 .
where l(xl’x2’°°°’xn)l = V;l + X5 oo + X, then G is not a field.

Proof. The proof is by contradiction. To expedite the argument let e,

denote the element of G having 1 in the ith position and zerces

elsewhere. E.g., e, = (1,0,0,...,0), e. = (0,1,0,0,...,0), etc.

1 2 _
Suppose G = Rn, n >2, is a field satisfying the given condlitions,

then each element of G can be written in the form a.e, + a.€. +...+ &_€
171 272 n o

where a, is a real element of G. Also note that |a.e, + a2e

i l l +ooot a»nenl

2

‘J 2 2 2 . 2
= Yay ta, t .. toa. In particular, let e, = blel + b2e2 + oo + bnen,

where bi is real, 1 S i S n. Utilizing the assumed fleld properties of

2 2
G and the fact that e = e, produces (el + e2)(el -e) =€ -

1 1 2)

]

- (b,e, + be

e 161 ot oeee bnen), or simply (el + 62)(e1 - e2)

i

(r - bl)el - bye, - oo. - b e . Thus, condition (iv) ylelds

!el + ezllel - 62' = I(l - bl)el - b2e2 - coe = bnenl, or upon squaring

and substituting (l2 + 12)(12 + 12) = (1 - bl)2 + bg F oeeo + bi,
2 2 2
Equivalently (1) 4% =1 -2b, + (bS + bS + «o. + b_). Now,
1 1 2 n
212 h 2 2 2 2
legl = |e2l = ]blel + b2e2 + aoe + bnen = bl + b2 + sea + bno ;Also,
]eglh = I(O,l,o’o,oao,o)lu = 1, Therefore, bi + bg + so00 + bi = 1 and
substituting into (1) produces 4 =1 - 2b, + 1. Hemce by = -1 and

.2 2 2 2 2 2 , 2 2 2
l—bl+b2+uoo+bn=l +b2+ouo+bno Thus’ b2+b5 +ooo+bn=o,
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from which 1t follows that b2 = b3 = so0e = bn = O. Therefore,
eg = -ey- Since n > 2, e3 € G and precisely the same argument can be
used to show that e> = -e.. Thus (e, + e;)(e, - e,) = e - e = 0.
3 1 > 2 3702 3 2 3
Since neiﬁher e. + e, nor e, - e, 1s zero the foregoing contradicts the

2 3 2 >3

fact that in a field there are no divisors of zero. Hence the assump-
tion that G is a field is invalid and the conlusion follows.

The foregding theorem assures the futllity of any further quest
for a field over R of dimension greater than two, which possesses the
desirable features outlined in the hypothesis of T 4.k. It 1s of note
hoﬁever, that Hamiltons quaternion algebra does satisfy conditions
(1)-(iv) and, in fact, fails to be a field only in that multiplication
is not commutative. A system satisfying all the fleld properties
except the commutative law of multiplicatlion is called a skew fleld.
In light of the historical significance of Hamilton's system and its
relevance to the material of this chapter the essentlial structure of
quaternion algebra 1s outlined. Many of the detalls are omitted.

If for each x,y € @ = Rh, X = (xl’x2’x3’x4)’ y = (yl,ye,yB,yh),
equality and addltion are defined component-wise and multiplication is
performed according to the equation below, then the resultant system is
the real quaternion algebra.

(ry 502502, My 595509, ) = ([209) - %% - %595 - 13,

[xly2 M LR xhy5],_[xly3 + Ayt Y, - %, 1

[xlyh MR OIS O x5y2])n

Wilth the exception of the agsociative and inverse properties of

multiplication it 1s relatively easy to show that the conditions for a
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skew field are satisfied by the foregolng system. To prove that every
nonzero quaternion has a multiplicative inverse define the conjugate of

X = (xl,xe,x5,xh) to be x¥* = (xl"xa’-XB’-xh)° Note that

2
+ X

3

2 2
xxX% = x_ + X

1 5 + xﬁ, so that xx%* is a non-negative real number.

Now it 1s readily seen that the absolute value of x, defined by

le = Nxx%, satisfies lxl = Nxx* = Nx¥x =\/xi v xe

2 2
-+ X, + xu. From

2 3

this it is clear that |x| >0, if x # 0. Thus, for

x £ 0, (TETE ,0,0,0) € Q, or briefly T—Eg € Q. By direct application
X X .

of the definition of multiplication it follows that -l—znx* = x , for
X

X # 0. The brute force approach could be used to valldate the associa-
tive property, but there 1s a slightly simpler attack outlined in
Birkhoff. [4]

At this point it is not difficult to show that Q satisfies
conditions (1) - (iv) or T 4.k. The first three are almost immediate.
To establish (iv) consider x,y,z € Q, where x and y are arbitrary and z
1s real, then one can verify that (xy)* = y*x* and xz = zx. Using these
two facts and the associative property of multiplication 1t foliows
that |xy|® = (o) (ar)* = Goy) (%) = x(zy*)xx = Gat)(vye) = [x]%[y]2.
Hence, Ixyl = lxllylo Thus, Q 1s a four dimensional skew field over R
having all the features of the hypothesis of T 4.k,

The reader has undoubtedly suspected by now (see T 4.1.) that the
essence of the problem of defining a product on R® so thaf the resultant
system will be a field satisfying the given conditions, is that of
defining multiplication for the units of the system. In the notation

of T 4.4, the units are the elements e,, 1 <1 <n, having 1 in the ith

i’
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position and zero elsewhere and such that each x € Rn can be written in
the form 818 + 8,8, + .00+ B €, where a; is reél. Similarly, for
the four dimensional quatetnion skew field multiplication 1s determined
once the unital products are given. Thus, although the prospect of
finding the product of two quaternions is frightening at first glance,
the essence of multiplicatlon is embodied in the following table.

el,eg,eB, and ey, represent the units of Q.

° e €, ey &,
e el €5 e ey
€ e2' -ey ey, -3
e ea‘ -€) -e; e,
&, ' e, e -e, -ey

In the event -the reader has not already confirmed the noncommutativ-
ity of multiplication an examination of the unit products above will
expose this. E.g., e2e5 = -e3e2° Purthermore, associlativity could be
establlished by considering the various combinations of unit products
and noting that real guaternions associlsate.

In additlon to the basic properties of quaternion algebra outlined
’above this system has several other interesting features that are not
pursued here. For example, it has been shown that every polynomial
equation over Q contains & root in Q, & result analogous to the
Fundamental Theorem of Algebra. [25] In view of the rather nice
behavior of quaternions it 1s not surprising that mathematicians have

addressed themselves to the questlon of the existence of other similar

structures. An eight dimensional system, called the Cayley algebra,
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was discovered about 1850 by the man whose name i1t bears. This system
failed to be a field in that multiplication was neither commutative nor
associative. [21] However, in spite of these deficiencies, Cayley
numbers can be shown fo poésess all the desirable features of T 4.k,
Although conéiderable effort was expended in this direction between
1850 and 1950, it has only recently been shown that, aside from isomor-
phic coples of the quaternion algebra and Cayley algebra, all other
hypercomplex systems are degenerate to the point of having divisors of
zero, [6]}{7] This result is incompatible with the development here,

nevertheless the folldwing theorem is a step in this dlrection.

Theorem 4.5. There exists no field of dimension n, n > 2, over R

satisfying conditions (i) - (iii) of T L.k,

Proof. The proof is by contradlction. Suppose G = Rn, n > 2, 1s such

a fleld and that € 1 <1i<n, are the units. Consider the elements

eg, e;-l, soe 5 €ye The asgertion 1s that there exist real elements
n n-l 1 =0
X0 X, s 00y Xy X5 € G, such that x,8 T X, 18 Feeet Xy€5 + Xy = U,

where at least one xi f O. This 1s clearly equivalent to claiming that

& is a root of a real polynomlial of degree n, where n > 2. Now let

i
e2 = ailel + aige2 + 500 + ainen and note that in view of condltions

(1) - (1i1) the existence of x,'s satisfying the foregoing is contingent

i
of the existence of a nontrivial solution to the following system of n

real homogeneous equations iIn n + 1 variables.
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anlxn + a(n-l)lxn-l + eo0o + allxl + xo =0

anexn + a(n—l)an-l + o600 + alle = O
Y ) L

a *n + a(n-l)nxn-l + oeo + alnxl = 0

However, such a system always has a nontrivial solution in R. Thus,
let X9 Xy g0 cees Xy Xy be real elements of G satisfylng the above,

n-1

then e, is a root of (1) xnyn +x Y + aoe ¥+ x, =0,

2 il 0

Moreover, T 3.13.C. asserts that every polynomial with real coefficlents
can be expressed as & product of quadratic and linear factors having

real coefficients. Since e satisfies (1) and is not real, then it must

be a root of an irreducible quadratic polynomlal eguation with

coefficients in R. Suppose aeg + be2 + ¢ = 0, where a,b and c are real,

is such an equation. Then,

2
b+ /b2 - hac 2a.e2 + b o4

e, = , or alternately | m——————
2 2a 2
Viac - b

Letting

28 b

k., = kK = @ e—e s

t Vhiac - b2 E Nhac - b2

2 = .
e, + ka) 1, vhere k, and k, are

the preceding can be written (kl

real since ba - hac < 0 implies hac - ba > 0. Using an argument

parallel to the above it follows that therevexist 2 ze real such that

l’

(zle3 + 22)2 = -1l. Now note that in view of conditions (1) - (111)

Lieg + 4, £+ (klea + k2); for if so, then 4,e, - kie, = k, - 4

1%3 163 ~ %1% » OT

2
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L e3 + k e, = -k2 -.22° Considering the first case in the original

notation ylelds the equivalent condition (o,-kl,zl,o,o,,co,o)

= (k2 - 12,0,0,,..,0), which implies that k2 - 22 = -kl = El = 0. This
leads to (kle2 + k2)2 = kg = .1, which is impossible since k2 is real.
Simllarly, £, ey + 2y £ - (k ey + X, Letting ke, + k, = 1 and

)3 185+ %, = J, 1t follows that 12 - J = 0, where 1 # + J. Using the
agsumed commutativity of multiplication and dlstributivity of multipli-
cation over addition, the preceding can be written (1 + J)(1 - J) =
Since neither 1 + j nor 1 - J are zero this contradicts the fact that

for elements of a fleld ab = 0 1f and only if a = O or b = O,

Therefore, the assumption made is false and the result 1s established.

In summary the theorems of this chapter point up the unique
position of the complex field as a finlite dimensional extension of R.
In additlion to the central theme, the discussion affords the reader a
glimpse of a branch of algebra that 1s a direct descendent of investiga-
tions of the complex field. Furthermore, the development piovides a
natural setting for an exposure o some recent frults of maﬁhematical

research.



CHAPTER V
GEOMETRY OF COMPLEX NUMBERS

The current chaphter is devoted to an elementary exposition of
certain results which might appropriately belong in a study of the com-
plex analytic geometry of the plane. Most of the propositions presented
here are available elsewhere. [13][35] There are two principal reasons
for including such a discussion in this paper. First of all, any
introductory treatment of the complex field would be incomplete without
some reference to the geometric interpretation of complex numbers
provided by Wessel, Argand and Gauss. One might well Justify attention
to their interpretation solely on g historical basis. However, the
writer draws support for the inclusion from the fact that the geometry
of the complex plane can be a significant intuitive aid in studying
functions of a complex variable. Second, élthough the treatment of the
isometries of Euclidean two space as presented in Chapter VI is basical-.
ly algebraic, it is clear that the motivation for such a discussion is
geometric. In view of this subsegquent chapter the reader might
anticipate that the current section would show a biag in favor of those
results which are pertinent to the development in Chapter VI. Indéed
this is the case.

Before dlrecting attention to the central notions of the chapter
it is appropriate to point out that the ensuing presentation is not as

axiomatic ag In the two preceding sections. The somewhat informal

59
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approach taken in this chapter is not only expedient, but 1s In keeping
with the fact that in this paper geometry is utilized primarily as a
vehicle for motivating the work in Chapter VI. 1In addition to the
foregoing, the reader will note that the development in this gection
relies heavily on results from trigonometry as well as elementary
geometry. This 1s consistent with the background assumptions made at
the outset.

The point of departure for a geometric interpretation of complex
numbers is T 3.6. This theorem suggests that it is natural to represent
elements of C as points of the plane. The obvious correspondence is
that of associating the complex number x + iy with the point having
Cartesian coordinates (x,y). When used 1n this fashion for the purpose
of displaying complex numbers the rectangular coordinate system is
generally referred to as the Argand plane, or simply the complex plane.
The horizontal and vertical axes are referred to as the real and
imaginary axis respectively.

With the foregoing representation in mind 1t is not difficult to
see that the conjugation mapping corresponds to a reflection in the real
axis. Similarly, it is almost immedliate that the additive inverse of z
corresponds to the image of the polint associated with z under a reflec-
tion inthe origin. Finally, it is clear that 'zl is representative of
the distance from the origin to the point corresponding to z. Figure

5.1 1llustrates the foregoing.
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(%1)
= . \ 2+
Y
(0,0)| &
(#2,-1) (2,-1)
o w2eima(2+1) o 2-122+1
# ‘%
Figure 5.1.

In addition to the point interpretation of complex numbers 1t is
apparent that each complex number z can be identified with the directed
line segment, or vector, from the origin to the point associated with z.
Those familiar with a vector approach to geometry will recognize that it
is more appropriate to identify z with all directed segments in the
plane having the same length and sense as the vector from the origin to
the point corresponding to z. This association between complex numbers
and classes of directed segments will, on occasion, provide the most
revealing Interpretation of C. In other instances the point interpreta-
tion of z will be ﬁore appropriate. The symbol z will be used
interchangeably to represent the number, the associated point, and the
corresponding class of vectors. The context will clarify the meaning.
The phrase 'the vector z' will be used to refer to any element of the
class of vectors identified with z.

The geometric representation of the elements of C as polnts of the
plane, or vectors, is not revealing in itself. The aspect of these
interpretations that provlides insight into the structure of C 1z a

result of the fact that to each of the fundamental operatlons on complex
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numbers there corresponds & geometric construction. These constructions
forﬁ the basis for the analytic geometry of the Argand plane.
Ifz=x+1iyandw=mu % iv, then z + w = (x + u) + 1(y + v) and
it is easy to verify that the point representing z + w can be obtalned
from the points 0,z,w by completing the parallelogram having Oz and Ow
as a palr of adjacent sides. The fourth vertex of this quadrilateral is
the point corresponding to z + w. Of course, this 1s essentially the
parallelogram rule for finding the vector sum in the plane. See

Figure 5.2.

ifywe) [———— = Z+W
- w ! w
iv i 2..”
i 1
| J z
Wy rf T o=z
i
u X x+Q
ZtaW
W
Figure 5.2, Figure 5.3,

After observing that z - w = z + - the construction of z - w can
be accomplished using the method outlined for addition. Vectorially,

Z - W can be represented by a vector from the point w to the point z.
See Figure 5.3.

The construction for the product and quotient of the complex
numbers is somewhat more complicated than that for addition or
subtraction. To expedite the discussion of these it is desirable to
congider an alternate representation of complex numbers. The reader is

hopefully acquainted with plane polar coordinates, thus recognizing
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that if z = x + iy, then x = r cos 6 and y = r sin 0, vhere

r=xt 4 y° = |z| and tan 8 = y/x. With this in mind

z = r{(cos 8 + 1 sin 6). The expression r(cos 8 + i.sin 8) is called
the polar form of the complex number z. The angle 6 (determined only
up to multiples of 2x) is referred to as the argument of z, or briefly

6 = arg z. The relationship between x,y,r,0 1s deplcted in Figure 5.4,

0+i0 x

Figure 5.4

If z = r(cos & + 1 sin9), -x <O < xt, then  is often denoted
Arg =z and is called the principal argument of z. OCbserve that for

r >0 and -x <0 < %, every complex number determines a unique

2 -
r =4x + y2 and a unique 6 = cos 1

r=0ando is arﬁftraryq Note also, that if z

= sin™t %. In case z = 0, then

HRiX

1 = rl(cos 61+J.sin 91)

and z, = r2(cos 6, + i sin 62), then z, = z, if and only if r; = r, and

el = 62, where equality of angles is up to multiples of 2x. It will be
apparent thatmequality 1s used in this sense in the seguel.
A third form is -frequently used for expressing complex numbers.

If z = r(cos 8 + 1 sin 6), then z = reie, where ¢ = cos 8 + 1 sin 8.



The notation eie for cos  + 1 sin @ can be justified, but the
discussion is beyond the scope of this paper. The expression reie is
referred to as the exponential form of the complex number z. In case
r =1, z is called a turn. The letters s and t will be used to
represent turns in the remainder of this work.

To expose the relationship between the algebraic operation z.w and
its geometric interpretation consider the product in polar form.
Suppose z = rl(cos @ +1sing) and v = rg(cos $ + i sin P), where
|z] = ry, |w] = r,, © = arg z and $ = arg w, then

z*w = r,1,{(cos 8 cos f - sin @ sin ) + 1(sin @ cos P + cos & sin §)}.

From trigonometry it follows that
cos 8 cos f - sin 6 sin P = cos (8 + P)
and sin @ cos P + cos 6 sin P = sin (8 + @).
Therefore, z.w = rlrz[coa(e + §) + 1 sin(e + §)}, or alternately

ei(e + @)

Z oW Ty « From this it is clear that arg z.w = arg z + arg w,

=rl
where it is understood that the equality is valid within a multiple of
2n. The following theorem is & formal summary of the foregoing

discussion.

Theorem 5.1. If z,w € C, z = rl(cos 0 +1s8in0), w = ra(coa p+1 sin @),

then z-w = rlre{cos(e + p)+ 1 sin(6 + P)}. In exponential form z-w =

i(e + @)
rlree N

Geometrically the length of the vector z-°w is equal to the
products of the lengths of z and w. The angle between the directed
segment z-°w and the positive real axis is the sum of the angles arg z

and arg w. Filgure 5.5 illustrates the situation.
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r ez
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e:1+10
Figure 5.5. Figure 5.6.

In addition to the preceding graphic relationship between factqrs
and thelr product it is of Interest to note that multiplication can be
performed by purely geometric means. In particular, if z and w are
'arbitrary points of the plane and c¢ 1s the point corresponding to
1 + 10, then the point corresponding to z.w is the third vertex of the
triangle Owv which is directly éimilar to tria.ngle’Ocz° The essence of
the construction is suggested by Figure 5.6. |

The following specisl products merit some attention. If z is an
arbitrary complex number and t is a turn, thgn the point corresponding
to 2t can be obtained by rotating z about 0 through arg t. In case z
is arbitrary and r is a real complex number, then the point associated
with rz lies on the ray Oz at a distance rlzl from 0. In a vector
setting the relationship would be one of rz being & scalar multiple of
Z,

-Since division is the inverse of multiplication the problem of
determining v so that v = %,‘w % 0, is equivalent to finding v so that

i0o 16

e <, v=re , then r and & must

z = vw. Thus, if z =r eiel, W=

1 2
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be such that r el = rele"rze192 = rr2e1(e +02) However, this

1
= = o s >
implies that r, = rr, and 6, =6 + 92 Since w # 0, then r, >0 and

it follows that r = rl/r2 and 8 = 0, - 6,. The following theorem

provides a conclse statement of this result.

Theorem 5.2, If z,w € C, z = rl(cos 0, +1 sin 91),

r
. s z "1 ;
W o= r2(cos 6, + 1 sin 92) # 0, then = = ;—{cos(el- 92)+i.51n(el - 92)}.

2
Ty 1(6,-9
In exponential form - —E e ( 1 2)°
Vo'
- 1 -1
Corollary 5.2. If t is a turn, then t = T= t .

Geometrically the length of the vector z/w is the quotient of the
lengths of the vectors z and w respectively. The inclination of vector
z/w to the positive real axls is arg z ~ arg w. Of course the quotient
caﬁ be congtructed by essentially inverting the process of
multiplicationo. These purely geometric means of determining the
pfoduct and quotient will play no role in the sequel. The graphical
relationship between the divisor, dividend, and quotient will prove a

valuable intultive guide and is illustrated in Figure 5.7.

Figure 5.7
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Consider T 5.1. in the case vhere z = w. If z = r(cos & + i sin )
= w, then z*w = 2 u re(cos 29 + 1 sin 20). This suggests the follow-
ing theorem, which is generally referred to as DeMoivres theorem. The
proof is within the grasp of the reader acquainted with mathematical

induction arguments. [2k4]

Theorem 5.3.A. If n is any integer and z = cos 6 + 1 sin 6 = eie, then

n

z (cos ® + 1 sin 6)® = cos nd + 1 sin nd. In exponential form,

[}

n in6

Z = e °

The significance of DeMoivres Theorem becomes apparent in the

following result. This is essentially a corollary of T 5.3.A.

Theorem 5.4.B. If a = r(cos 8 + 1 sin 0) and n is a positive integer,

then the numbersr;ﬁkcos + 1 8in

ﬁ__:.lﬂ o ,050,5 el K

e+2k5f)
n 2

are the roots of the equation 2® = a. I.e., the nth roots of a. These

numbers are distinct if a # 0.

Geometrically 1t 1s clear from our identification of complex
numbers with points of the plane that T 5.4.B indicates that the nth
roots of a % 0 are represented by n points spaced equally around a

circle of radius |a|l/n. See Figure 5.8. for the case where n = 5.

Observe that if a € C, a # 0, then there exist exactly two
elements z,w € C such that ze = w2 = &, Furthermore, it follows from
T 5.4.B. that precisely one of these numbers will be such that
O <Arg z <=. The symbol*J; will henceforth be used to refer to this
root of a. In keeping with this convention JJ& will be used to denote

the square root of a having an argument equal to Arg Ja - x.
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&l

Figure 5.8.

At this point, having considered the geometric interpretation of
the fundamental operatiéns on complex numbers, attention 1s focused on
certain linear aspects of the analytic geometry of the Argand plane.
The point of departure for such a development 18 a recognition of the
relationship between the cartesian coordinates of a polnt and the
complex number ldentified with the point. Specifically, note that if
(x,y) and z = x + 1y are the respective labels for a point of the plane,

then

2+2% a2 2
5 Y = =57

°

With this in mind the initial step in the direction of the complex

analytic geometry of _the line is the following theorem.

Theorem 5.5. The general equation of g line in the Argand plane is of
the form &z + OZ + p = O, where & ;é O and B is real. This line contains

the point -'Eg-g .

2|af
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Proof. The general equation of a line in Cartesian coordinates is
ax + by + ¢ = 0, where a,b and ¢ are real and a® + d° # 0. Using the
aforementioned relationship between ordinary rectangular coordinates

and the associated complex number, one gets upon substitution

(z+E b(z - 2)

ET)‘}b(z—;)‘!‘C:o, 0ra(z+€)+(—i)m)m—+20=00

The preceding can be written (a - ib)z + (a + ib)z + 2¢c = O. Letting
@ =a + ib, B = 2¢, this becomes the indicated equation. Thus, if £ is
a line in the plane £ has an equation of the form @z + @z + B = O,
where @ # 0 and B 1s real. Conversely, it is not difficult to see that
an equation of this form can be written in the form ax + by + ¢ = 0,
where a,b,c are real and a® + - # 0. Thus, the corresponding locus is
a line. That £%— is on the line follows by substitution.

2|al®
Corollary 5.5. ZEvery line in the complex plane has an equation of the

form z - az - b = 0, where a,b ¢ C, ]a| = 1.

Often in this work no distinction will be made between a certain
locus of points and the corresponding equation. For example, an
equation of the form @z + 0Z + B = 0, @ # 0, P real, will be referred
to, on occasion, as a line.

The following result establishes the analytic condition for

perpendicularity of lines in the Argand plane.

Theorem 5.6. If zl:&h +0zZ +r =0 and zzzﬁh +BZ + p = 0 are lines in
the complex plane, then zl is perpendicular to 12 if and only if
of +3 = 0.

Proof. It is clear from the demonstration of T 5.5. that if
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= 0 are the corresponding

a.x + bly + ¢, =0 and a.x + b2y t C,

1 1 2

Cartesian coordinate equations of Zl and 22 respectively, then

x=a + 1b, and B = a5 + 1b

2 2 i
1 1 For by £0 4 8y, 4y 4 o 1f and only if

20

o'

a
1 2
- EI = E; ; or equlvalently if and only if aj8, + blb2 = 0. Now observe

that of + OB = (a,l + ibl)(a.2 - ib2) + (a.l - ibl)(a2 + ib2)

= 2(a1a2 + blb2)° Thus, 0B + OB = 0 if and only if a,a, + b;b, = 0, or

alternately 1f and only if zl_L.zg. A gimilar discussion disposes of

the case where bl = 0 or a2 = Q.

Corollary 5.6. If ﬁl:z -mz -p =0 and Lyiz - nz - ¢ = 0 are lines,

then Ll_L %, if and only if m = -n.

The following definition extends the notion of perpendicularity

to vectors in the natural way.

Definition 5.1. If a;b € C, a # 0 # b, then vector a 1s perpendicular
to vector b if and only if Ll is perpendicular to L2, where zl,zg are
the lines passing through the origin containing a and b respectively.

A nonzero vector a is perpendicular to a line 4 if and only if the line

determined by a and 0 1s perpendicular to 4.

The ensuing analytic characterizations of the above notions prove

useful.

Theorem 5.7. If a,b € C, a # 0 £ b, then vector a is perpendicular to

vector b if and only if ab + ab = 0.

Proof. Observe that 0 and a are on‘Ll:IEE + iaz = 0 and O and b are on
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2,:Tbz + 1bz = 0. Thus, a 1b if and only if 51.1.52, or alternately
if and only if (ia)(I%) + (I&)(ib) = 0. However, (1a)(IF) + (I&)(ib)

= ab + ab and the conclusion follows.

Corollary 5.7. If a,b € C and a_ L b, then r.a l.reb, for every nonzero

&

real choice of r1 and r2.

Theorem 5.8. If c € C, c # O, and £4:az + az + b = O is a line, then £

is perpendicular to ¢ if and only if ac - ac = O.

Proof. Since O and ¢ are on £:Icz + icz = 0, then ¢ L £ if and only if
a(Ic) + a(ic) = 0. But a(ic) + a(ic) = -1(ac - @c), hence ¢ L £ is
equivalent to ac - ac = 0.

Corollary 5.8. If f4:8z + aZ + b = O is a line, then a L £.

The reader will note that C 5.8. together with T 5.5. indicates
that f£:az + az + b = O is the line perpendicular to a and at a vector
distance (-:E—QJ-a from O. In view of this it is not difficult to see

2|a
that if Ll:Eh +az + b =0 and LQ:Eh + az + ¢ = 0, then the directed

c -b
distance from £l to ze 13-{5r;—§)a. In particular, if |a| = 1, then

c =D
2

the vector distance from £, to £, 1s <

the situation where a is a turn.

)a. Figure 5.3 illustrates

Having developed a set of necessary and sufficient analytic
conditions for perpendicularity in the Argand plane, attention is now
centered on the analogous results for parallelism. The proofs of these
theorems are omitted, since they generally parallel the demonstrations

of the preceding propositions. The reader will find it instructive to
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£111 in the details.

\1‘2 18z+az+o=0

i8z+azZ+b=0
!

Figure 5.9.

Theorem 5.9.C., If Zl:Eh + 8z + b = 0 and zE:Ei +¢cZ + & = O are lines
in the complex plane, then zl is parallel to £2 if and only if

ac ~ ac = 0.

Corollary 5.9. If the equations of lines ‘1 and ze respectively are
written in the form z - mz -p = 0 and z - nZ - ¢ = O, then Elll EE

if and only if m = n.

Parallelism is extended to vectors in the followlng definition.
The reader should note that this characterlzation of parallel vectors
1s not the usuwal one., This anomalous definition causes no difficulty
in this work and 1s expedlent because 1t leads to a partlcularly simple

analytic characterization of parallelism.
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Definition 5.2. If a,b € C, a # O # b, then vector a is parallel to
vector b if and only if O, &, and b are collinear. A nonzero vector a
is parallel to a line £ if and only if the line containing O and a is

parallel to £.

Theorem 5.10.D. If a,b € C, & # O # b, then in order that vector a be

parallel to vector b it is necessary and sufficient that ab - ab = 0.

Corollary 5.10. If a,b € C and a ||b, then rla ||r2b for every nonzero

real rl,r

2

Theorem 5.11.E. If a € C, a # 0 and £:¢z + ¢z + d = O i8 a line, then

a is parallel to 4 if and only if ac + ac = 0.
Corollary 5.11. If £:cz + cz + d = O is a line, then ic ||£.

Observe that in view of T 5.2. and T 5.11.E. it follows that if

Ll:Eh +8Z + b = 0 and LE:EE + ¢z + d = 0 are lines, then the directed

angles between £_ and £1 (in that order) are given by Arg %% and

2
Arg '%%. Since Arg %% = Arg % = Arg ac, these angles are alternately

denoted Arg ac and Arg(-ac). Figure 5.10. illustrates the situation
for lines through the origin.

There is one remaining result of a linear nature that provides
some insight into the work in Chapter VI. The proposition involved is
contingent on the concept of projection. ‘To introduce the notion in a
complex setting consider a nonzero vector b and a line £ parallel to
the vector c. Without loss of generality one can suppose |c| = L.

See Figure 5.11. In the traditional sense of the word the projection
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£y 18z+azeom=0

Arg(-ad) e gRArg(ad) 4, taecTea=o
[

. Figure 5.10.

of b on 4 would be |b cos 6|, where § = Arg ¢ - Arg b. In a vector
treatment of geometry (Ibl cos 6)c would be the projection of b on 4.
Interestingly enough the foregolng can be expressed somewhat more

elegantly in our complex setting.

e=Arg(cp-Arg(h)

Figure 5.11.
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Theorem 5.12. If b,c € C, b # 0, Icl = 1, and 4 is a line parallel to
¢, then the vector projection of b on £ is

%5 + b

——— ¢

Proof. Let © = Arg c and § = Arg b, then ¢ =cos 8 + 1 sin @ = eie°

Thus, the vector projection of b on £ is [|b| cos(e - #)lc =
]bl{éos(e -p) cos ® + 1 cos(6 - @) sin 6}. Using the appropriate

trigonometric product identities, the preceding can be written

l%ﬁ{[cos P + cos(20 - B)] + 1[sin(20 - P) - Siﬂ(“¢)]}

= l—_g.l-{[cos(2e -9) +1sin(20 - )] + [cos § + 1 sin P]}

_ %l{ei(ee - B, i

Althoﬁgh the foregoing result is not essential to the proof of
any of the theorems in Chapter VI the reader will find it invaluable
when seeking a geometric interpretation of certain propositions in

that section.



CHAPTER VI
THE ISOMETRIES OF THE ARGAND PLANE

The current chapter is directed toward a systematic analytic
development of the Euclidean transformations. The significance of
these mappings in plane geometry is widely recognized. The intent here
is not to dwell on the geometric aspects of these transformations,
rather to focus on the problem of algebraically developing the relation-
ships between them in a complex setting. The treatment is not
exhaustlive in this regard. In particular, attention is given to those
results which lend themselves to a logical exposition of the fundamental
nature of reflections.

The informed reader will recognize that few of the propositions in
this chapter are truly original. However, the literature suggests that
these results have been given only cursory attention in the setting in
which they appear here. [3][13] It is the writers contention that the
elegance afforded by a complex analytic treatment Jjustifies their
inclusion. In addition to the foregoing, the well versed reader will -
observe that the notion of a group could have been utilized to unify
certain aspects of the discussion. This notion was not introduced in
an effort to keep to a minimum the number of concepts marginally
related to the central theme. Finally, although the allied geometry is
given little attention in this paper, the reader will find 1t instruc-

tive to interpret the various propositions in this chapter geometrically.
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The formal development is initiated by glving careful attention to

the technical terms used rather glibly in the preceding paragraphs.

Definition 6.1. A function f:A - B is a transformation if and only if

f is one to one and onto.

In this paper the only transformatlions of interest will be those
having the complex field as domalin and range. These willl be referred
to as complex transformations. The reader will note that if f and g
are complex transformations, then the composition, f.g, 1s a complex
transformation. If h = feg, then h will be referred to as the product
of f and g, or variously f and g will be called factors of h. In
addition to the foregoing, 1t is clear that if f,g and h are complex
transformations, then (feg)-h is well defined and (f-g)°h = f.(g-h).
Furthermore, since f 1s both one to one and onto C, then f"l exists and
is itself a complex transformation. ¥Finally, it is not difficult to

S R B
)T =g et

show that (f.g
In general the transformations of interest are those which have an
Invariant feature. In barticular, attention here is focused on those

complex transformations that preserve distance in the absolute value

sense. The following definition presents the concept formally.

Definition 6.2. If £:C - C, then f.is an isometry if and omnly if

If(zl) - f(ze)l = ]zl - 22], for every z € C.

1%

The following two results are basic to any discussion of

isometries. The proof of each is almost immediate.

Theorem 6.1, If f and g are isometries, then f-g is also an isometry.
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Proof. f-g is a well defined complex transformation since f and g are
complex transformations. Furthermore, as a result of the fact that f
and g are lsometries

lfog(zl) - fvg(zz)l = lf[s(zl)] - f[g(22)1| = Is(zl) - 8(x)| = lzl— ZQL
for every z.,z, € C.

1’72

Theorem 6.2. If f is an lsometry, then £1 15 an isometry.
Proof. The details are omitted.

In light of the descriptive nature of definition 6.2. it is
reasonable to seek a constructive characterization of the isometry

concept. The following theorem provides this.

Theorem 6.%. f£:C = C is an isometry if and only if f(z) = az + b or

£(z) = aZ + b, where a,b ¢ C and |a| = 1.

Proof. The sufficiency is not difficult. If f(z) = az + b, where
a;b ¢ C, fal = 1, then it follows readily that f is & one to one mapping

of C onto C. Furthermore, If(zl) - f(z2)| = l(a.zl + D) - (a._z2 + )|

= la(zl - z2)| = Iallzl - 22|° Since a is a turn the dlstance preserv-
ing quality of f is apparent. A similar discussion disposes of the
case where £(z) =az + b, a,b € C, |a] = 1.

Now, suppose f 1s an isometry, then |f(z) - £(1)| = |z - 1|, for
every z € C. This implies the idemtity |£(z) - £(1)|% = |z - 1|Z.
. Using T 3%.20.E. it follows that [f(z) - £(1)}[F(Z) - T(T)] =
[z - 11{Z - 1], or £(2)T(2) - £(2)F(I) - T(z)£(1) + £(L)E(D)

=22 -2 -2 + 1, or

1) [£(2)|® - £(z)TT) - F)e(a) + [e@)]® = |2]® -z - 7 + 1.
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In the event that £(0) = 0, then |f(z)| = |2z|, or a alternately
If(z)l2 = |z|2, Thus, when the origin is preserved under f equation

(1) can be written -£(z)T(1) - T(z)f(l) = -z - 2, or

(2) £(2)F(X) + T(2)r(1) =z + Z.
Since £(1)F(z) = T(1)f(z), then (2) coupled with T 3.17.D. implies that

(3) Re[Ff(T)f(z)] = Re(z), for every z e C.
Also note, however, that under the assumption that £(0) = 0 it follows

that |F(D)2(2)|2 = |TO)[%)£(2)|? = |£(2)|% = |2|®. The fact that
lfrf)f(z)lz = |z|2 is equivalent to the statement that
() [Re(FT)£(2))1% + [In(FT)£(2))12 = [Re(z)1® + [In(z)I2.

Utilizing the previous observation that Re(F{I)f(z)) = Re(z), then ()

can be used to assert that [Im('f_"('i')f(z))]2 = [Im(z)]e, or
(5) Im(FT)(z)) = + Im(z).
Identities (3) and (5) combined imply that
(6) T(M)f(z) = z or T(T)£f(z) = Z.
As previously noted, under the assumption that the origin is mapped

onto itself it follows that T(1) is a turn. Thus, [?TI)]"l = T(1)

= £(1), by C.5.2. Using this fact the equalities (6) can be written
(7) f£(z) = £(1)z or £(z) = £(1)zZ.

Hence if £(0) = 0, the result is apparent.

Now, suppeose that f:C = C is & distance preserving transformation
and f(0) # 0. Consider the function g:C = C such that g(z) =z - £(0).
g 1s an isometry from the sufficiency argument, hence g-f(z) =

£(z) - £(0) is an isometry by T 6.1. Clearly g-f(0) = 0. Thus, it
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follows that g-f(z) = [gef(1)]z, or g-£(z) = [g-£(1)]z. But, g-£(z)
= f(z) - £(0). Therefore,

£(z) - £(0) = [£(1) - £(0)]z or £(z) - £(0) = [£(1) - £(0)]z.
After adding £(0) to each member of the foregoing equations and

observing that |£(1) - £(0)] = |1 - 0| = 1, the conclusion follows.

In view of the geometric interpretatiqns of addition and multipli-
cation as outlined in Chapter V it i1s not too surprising that the
isometries take the two general forms exhibited in T 6.3. Of course,
the readér has observed that it requires some algebraic finesse to
establish a result that, at least in retrospect, is geometrically
apparent.

Theorem 6.3, suggests an initial classification of isometries
according to the form of the functional relationship. This turns out
t0 be appropriate and the following definition 1s reasonably well

established.

Definition 6.3. A func%ion f:C = C of the form f(z) = tz + b, where
t;b € C is called a direct isometry. Any isometry that is not direct is

opposite.

The above terminology has its roots in the elusive concept of
orientation. A mathematically exact description of this notion is not
appropriate here.

The reader is perhaps familiar with the following expression.

Definition 6.4, If f 1s an isometry and z € C such that f(z) = z, then
z 1s called an invariant point under f. There is an isometry under

which every point is invariant, namely f(z) = z. This function will be
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referred to as the identity, or variously the trivial isometry.

It turns out that an examination of invariant points leads to an
appropriate subclassification of direct isometries. The following
simple result exposes the conditions under which a direct isometry has

an invariant point.

Theorem 6.4. If f(z) =tz + b is a non-trivial isometry, then f has an
invariant point if and only if t # 1. For a nonidentical direct

isometry there is at most one such point, namely i-g_? .

Proof. A point z is preserved under f if and only if z = tz + b.
However, z = tz + b is equivalent to (1 - t)z = b, and where b # O this

has a solution if and only if 1 - t # O. It is clear that the number

b

R is the only root when a solution exists.

Geometric considerations suggest the appropriateness of the

following terminology .

Definition 6.5. A distance preserving transformation of the form

f(z) =2 + b is called & translation through b, or simply a translation.

It should be noted that, aside from the identity transformation,
the translations are precisely those direct isometries that have no
invariant points. In addition, it is not difficult to see that if f is
a translation through b, then f'l(z) = 2 - b, Furthermore, it is almost
immediate that the product of two translations is a translation. On
occasion, the suggestive notation T(b) will be used to refer to the
function f(z) = z + b. Using this notation it is apparent that

[T(b)]ﬁl = T(-b) and T(a)+T(b) = T(b)*T(a) = T(a + b). The latter
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result is stated as a theorem for reference pusposes.

Theorem 6.5. If f and g are translations through a and b respectively,

then f-g 1s a translation through a + b and feg = g-f.

In the event that a function of the form f(z) = tz + b has a
single fixed point ¢ = i;gfg , & little algebra can be used to verify
that f(z) = t(z - ¢) + c. It is not difficult to see that such a
representation of f is unique. In this paper the foregoing form of
such & transformation will be called canonical. The canonical form of
a direct isometry having exactly one lnvariant polnt indicates that
such a function is the product of T(-c), g(z) = tz, and T(c). Since
t % 1l is a turn, the geometric interpretation of multiplication given
in Chapter V suggests that g might be termed a rotation about the
origin. The foregoing observation and the fact that f = T(ec)-g*T(-c)
indicates that f might appropriately becalled a rotation about the

point ¢. This is 1n keeping with the following definition.

Definition 6.6. A direct isometry f is a rotation if and only if f has
an invariant point. In case f(z) = tz + b has exactly one fixed point

¢, T will be called a rotation of arg t about c.

The notation R(t,c) will be used to denote the rotation of arg t
about ¢. With thls convention the canonical form of a rotation f, of
arg t about ¢, becomes f = T(c)°R(t,0)*T(-c). Conversely, it is clear
that every product of the form T(e)°R(t,0)T(-c) is a rotation of arg t

about ¢. These observations are summarized in the next theorem.

Theorem 6.6, A nontrivial direct isometry f is a rotation of arg t
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about ¢ if and only if f = T(c)*R(t,0)«T(-c).

Observe that the ldentity transformation is the only direct
isometry that is both a rotation and translation. Furthermore, a
little computation reveals that if f(z) = tz + b is a rotation, then
f'l(z) = %z - Tb. Additional computation shows that the canonical form

of f-l, for a nonldentical rotation f, is T(c)vR(E,O)°T(-é), where

T L r - Thus, 1f T 1s a rotatlon of arg t about c, £l is a

rotation of -arg t about c.

C =

The following specilal type of rotatlion merits individual

attentlion.

Definition 6.7. A rotation of the form f(z) = -z + 2b is called a half

turn about b.

In keeping with the earlier convention a half turn about b can be
written R(-1,b). On occasion it will prove more suggestive to write
H(b) in place of R(-1,b).

The following result establishes an interesting relationship

between translations and half turns.

Theorem 6.7. If f and g are half turns about & and b respectively,
then f+g is a translation through 2(a - b). Symbolically

H(a) H(p) = T(2[a - b]).

Proof. f(z) = -z + 2a, g(z) = ~z + 2b, hence f-g(z) = ~(-z + 2b) + 2a

=z + 2(a - b). Therefore, f-g = H(a)-H(b) = T(2[a - bl).

The foregolng theorem suggests the possibllity of factoring any

translation into the product of two half turns. This can be done and



it is easy to see that such a decomposition is not unique. The next
proposition, which is essentially a corollary of T 6.7., establishes

the nature of such a factorization.

Theorem 6.8. If f(z) = z + a, then f can be factored into the product

of two half turns. Specifically, T(a) = H(b)*H(c), where b = ¢ + g :
Proof. Apply T 6.7.

The reader has perhaps observed that the set of direct isometries
is closed under composition. With this in mind it is clear that
product of two rotations is elther a rotation or translation. Theorem
6.7. indicates that the set of rotations is not closed under composi-
tion, although the set of translations is (T 6.5.). The conditions
under which the product of two rotations is again a rotation are

exhibited in the following proposition.

Theorem 6.9, If f(z) = tz + a and q(z) = sz + b are rotations, then
feg is a translation or nontrivial rotation according to whether t = &

or not.

Proof. f-g(z) =t(sz + b) +a = (ts)z + (tb + a). Thus, f-g is a
translation if and only if ts = 1. However, ts = 1 1s equivalent to
t = 8 as a result of the fact that s is a turn. Since the product is
either a translation or nontrivial rotation this completes the

demonstration.

The preceding result suggests the possibility of generalizing
T 6.8. This is possible, but there will be no reason to state this

formally. The reader will do well to consider the geometry associated
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with the two alternatives in T 6.9.

 Attention is now centered on the opposite, or indirect, distance
preserving complex transformations. An initial observation in this
direction is that the composition of two opposlte isometries is a
direct isometry. In particular, if f(z) = tZ + &, g(z) = sz } b, then
feg(z) = t(s2 + ) + & = (t5)z + tb + a. Again, it is an examination
of invariant points that leads to the appropriate classification of

opposite lsometries.

Theorem 6.10. If f(z) = tZ + a, then a necessary and sufficient
condition for the existence of an invariant point under f is that

ta + a = 0.

Proof. In case z is an invariant point under f, then z = tZ + a.
However, z = tz + a implies that Z = Tz + a. Substituting Tz + a
for z in the former equation yields z = t(%z + a) + a, or
z = (t¥)z + ta + & = z + ta + a. From this it follows that t& + a = 0
and the necessity is established.

To see that the condition is sufficient observe that if

ta + a = 0, then & .2,0-= ta Z g tg +a.= f(g)° In other

2 2

nof o
+

a
words 5 1s an invarlant point under f.

Although the foregoing theorem exposes a simple condition which
characterizes point invariance under an opposite isometry, it is not
too geometrically revealing. The following result sheds some light

in this direction.

Theorem 6.11. If f(z) = tZ + &, a # O, then ta + a = 0 if and only if
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a is perpendicular to 4N -t z +~N-t Z = 0. When f has an invariant

polint, then the set of all such points is the line

mN-t z + ¥t 7 -N-t a=o0.

Proof. ta + & = O implies that -ta - a = O, or alternately,
1) vtNt & -a=o0.

Since t is a turn it follows that -t and ¥-t are also turns. Thus,
( --’c)-l = -t. Multiplying (1) by ¥-t and applying' C 5.2. yeilds

(2) J:{:‘E-J__-Ta=oo

But, the precedlng equallty is precisely the condition regquired for the
perpendicularity of a and 4. The converse follows by essentially
reversing the foregoing steps.

When t& + a = O, then {z | 2 = tZ + a} is the set of invariant
points. However, z = tz + & can be written

(3) z -tz -a =0,
Again using the fact that V-t is a turn and multiplying both sides of

(3) by ¥ -t produces
(B) Nt z +Nt Z Nt a=o.
Now, the preceding is the equation of a line in the Argand plane if

N-t a is real. But, T 3.17.D. insures that ¥ -t a is real if

N & -Vt a = 0, and this was established in (2). Therefore,

com— ———

mw-t z +N-t Z -N-t a = 0 is the set of polnts preserved under f.

The foregolng theorem suggests the appropriateness of the

following terminology.
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Definition 6.8. An opposite isometry f is a line reflection if and

only if f has an invariant point.

In light of the proof of T 6.11. and the observations following
Corollaries 5.8 and 5.1l1, it can be seen that the invariant line m,
under f(z) = tz + &, is parallel to -t and at a vector distance
% from O. Since i Jtz-il.J%,vone can also write m ]I Nt Moreover, a
line 4 is determined if a vector parallel to the line is gilven and a
point through which £ passes is knawn. As a fesult of this it is
fitting to denote the reflection in m by EGJ%, %), More generally,
the reflection in £, where £ Il c and passes through 4, will be
symbolized by E(c,d). Using this notation it is not too difficult to
see that EWt, %) = T(%)°E0f%20)°T(- %)« To establish the correspond-
ing factorization in the more general case 1t helps to first verify
that if £:az + az + b = 0 1s a line, then the reflection in £ is the
. It now follows that the reflection

zZ -

transformation f£(z) = - g

@l o

a
in the line m:Ic(z - 4) + ic(Z = d) = 0, parallel to c and passing

through d, is f(z) = E(E*:'E) + d.

From the foregoi;g it is relatively easy to see that
E(c,d) = £ = T(d)°E(c,0) T(-d). Conversely, it is almost immediate
that every product of the form T(d)-E(c,0)T(-d) is a line reflection.

These observations result in the following characterization of an

opposite isometry having an invariant point.

Theorem 6.12. An opposite isometry f has an invariant point if and

only if £ = T(d)°E(c,0)-T(-d).

Proof. The argument is sketched in the preceding paragraph.
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In general the product of T(b) and E(c,d), where b lc, is a line
reflection. This result concerning the composition of reflections and

translations is manifest in the following proposition.

Theorem 6.13. The product of a translation through b, b ﬁ 0, and a
reflection in £, in eilther order, is a reflection if and only if b 1.

Specifically, T(b)*E(c,d) = E(e,d + b/2), if b Le.

Proof. Let E(c,d) be a reflection in 4 || c. Now, by the discussion
following D 6.8. E(c,d) = f, where f(z) = %ﬁz -d) + d. Also g = T(b),
c

where g(z) = z + b. Consequently, g+f(z) = g(z -d)+d+b=—2
c

Qllo

+ 23 +d+b. Since g-f is an opposite isometry, then in accordance
c
with T 6.10. 1t will be a reflection if and only if =["= T + d + b]

c c
b T =
+ 23+d+b=0. However, 3[ —d+d+b]+ ot O S R
c e c c c
+ 254+ SEvA4 e % P + b. Therefore g+f is a reflection if and
c c c

only if ; b +b =0, or alternately if and only if c¢b + Cb = 0. However,
c

the latter is precisely the analytic condition for the perpendicularity
of b and c. Since ¢ || £ it follows that g.f is an opposite isometry
with a fixed point if and only if b | £.

To see that T(b)*E(c,d) = E(c,d + b/2) when b | £, note that
g-f(d + b/2) = 4 + b/2, and that the invariant line under g-f is paral-
lel to 4.

The demonstration is similar when f-g is considered.

Before outlining the principal composition theorems for reflections

a couple of other observations merit some attention. First, as one
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might anticipate, every reflection is its own inverse. This can be
readily verifled by direct composition. BSecond, although the general
significance of the condition ta + a = 0 is apparent in T 6.10.-T.6.13.,
one can glve a direct geometric interpretation of this equality. In

particular, if f(z) = tz + a is a reflection, then t& + a = O and

ANt 2 +N-t Z -N-t a = 0 is invariant under f. In keeping with
C 5.11. and the projection theorem at the end of Chapter V, it follows

ta + a
that — is the projection of a on 4. Appropriately this is zero

when a is perpendicular to 4.
The reader will recall that a primary obJective of the current
chapter was to give a motivated exposition of the fundamental nature

of reflections. The following two results are pivotal in this regard.

Theorem 6.14%. The product of two reflections is a translation or non-
trivial rotatlon according to whether the Invariant lines are parallel

or intersect In a single point.

Proof. Let f(z) =tz + a and g{z) = sZ + b be reflections in %, and
122 respectively. Then f°g(z) = t{sz + b) + a = (t8)z + tb + &, which
1s a direct isometry. Thus, f-g is a translatlon or nontrivial
rotation depending on whether ts = 1 or s % 1 respectively.

In case ts = 1, then t = 8, since s 18 a turn. However,

zl:z -tz -&a =0 and 22:z - 82 -b =0, and in keeping with C 5.9.

zl ll 22 if and only if t = s. Therefore, f-g is a translation if
and only if Zl Il 220 This essentlally completes the proof, since if
El and 22 are not parallel,'ﬁhen they lntersect in a single point and
it follows that t # s, or alternately ts # 1.



Theorem 6.14 suggests the possibility of factoring any direct
isometry into the product of a pair of line reflections. The validity

of this conjecture becomes apparent in the following theorem.

Theorem 6.15. If h is a direct isometry, then h can be factored into
the product of reflections in a pair of parallel or intersecting lines

according to whether h is a translation or nontrivial rotation.

Proof. In case h(z) = z + ¢ consider f-g, where f and g respectively

are reflections in zl:Eh + ¢z +a =0 and 32:Eb +4Cz+b=0. Herebd

is an arbitrary real number and a = b - Ic|2. By an earlier discussion
c— & c— b c c= Db

f(z2) = -=%2 -—and g(z) = -=% -=. Thus, feg(z) =-=[-=2 - =
& - Vg 13 c el ¢ c

- Do ({-a) . However, D - a = |c12; hence f°g(z) =

c c
|e|®
zZ + = 2z + ¢c. Therefore, h = f*g.

c

Now, suppose h(z) =az +c, |a| =1, a # 1. Let u = To

c
e

see that h can be factored into reflections consider the isometries
g(z) =t(z -u) + uand f(z) = s(z - u) + u, vhere s¥ = a. In light of

T 6.12. f and g are reflections. By direct composition f-g(z)

= g[t(z - u)+u-u] + u = (s¥)z - sbu + u. But, st = a, hence f-g(z)
=az -au +u = a(z - u) + u. However, the last expression is
precisely the rotation h in canonical form. Consequently, h = feg.
Finally, since f+«g 1s not a translation the lines of reflection must

intersect by T 6.1k.

Although T 6.15 is algebraically complete, it requires some

inspection to gain insight into the geometry of the indicated products.
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Of course, there are certain results in the preceding chapter that the
reader will find pertinent to a geometric interpretation of T 6.15.
However, perhaps the best approach is the synthetic one, with subse-
quent reference to the analytic results of Chapter V. In any event,
one should observe that the factorization of a direct isometry into a
pailr of reflections is not unique. This is suggested algebraically by
the arbitrariness of one of the constants in each of the factorizations
outlined in the proof of T 6.15. Specifically, in the case of a
translation any line m perpendicular to the translation vector ¢ can be
selected as the initial line of reflection. The second line must be
the image of m under a translation through 3/2. In factoring a rota-
tion about u, of arg a, |a| = 1, into reflections, any line £
containing u can be picked for the initial invariant line. The second
line of reflectlion must be the image of 4 under a rotation about u
through 1/2 arg a. Symbolically these factorizations can be written
T(c) = E(ic,a)-E(ic,b), where a = b + ¢/2, and
R(a,u) = E(s,u)E(t,u), where s = ta.

The preceding observations terminate the investigation into the
matter of decomposing direct isometries into a product of reflections.
Attention is now focused on the opposite isometries having no fixed

points.

Definition 6.9. If f(z) = tz + a, then f is a glide reflection if and

only if ta + a # O.

The appropriateness of the foregoing terminology hecomes apparent

in the following proposition.



Theorem 6.16. If f(z) = tz + a is a glide reflection, then f = g:h
where h is a line reflection and g is a nontrivial translation parallel

to h.

Proof. Write £(z) = (t7 - [252]) + L8 (4(77a/2) +e/2): 502

Let h(z) = t(z - a/2) + a/2 and g(z) = z + 45 ; & . Thenh is a

reflection by T 6.12. Furthermore, the invariant line under h is

LNt oz +-J:t z -N-t a =0. Thus, it remains to show that the non-
ta + a
2
parallel to L. T 5.11.E. and a little algebra can be used to verify

zero vector is parallel to £, or alternately that -ta - a is

this.

Since the product of a translation and an opposite lsometry is
again an opposite isometry, T 6.13. can be used to establish the
converse of the preceding result.

In connection with glide reflections it is not difficult to see
how to construct the isometry that corresponds to a reflection in a
given line followed by a nontrivial translation parallel to that line.
Specifically, the synthesis of such a function could be accomplished
by constructing the appropriate line reflection by the procedure out-
lined earlier, then composing this with the given translation. It is
of note that such a product can be shown to be commutative.

In reflecting on the proof of Theorem 6.16 the reader might well
seek some motivation for the factorization given. The interpretation

ta + a
2

of outlined in the discussion preceding T 6.14. proves

enlightening in ihis regard.
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Theorem 6.16 not only serves to disclose the geometric nature of
a glide reflection, but it is the final result needed to exhibit the
fundamental character of line reflections. In particular, the follow-

ing proposition is a consequence of T 6.15. and T 6.16.

Theorem 6.17. Every isometry f can be expressed as the product of no
more than three line reflections. If f has an invariant point, then

no more than two factors are required.

Proof. Theorem 6.15 insures that every direct isometry can be so
factored. Theorem 6.16 implies that a glide reflection can be written
as the product of a reflection and translation. But the translation
can be factored into two reflections, hence the glide reflection can be
written as the product of the three reflections. A reflection trivially
satisfies the conclusion, thus the first part of the theorem is
established. The second part is immediate, since only the glide

reflection requires three such factors and it has no invariant points.

The foregoing is the focal point of the chapter in view of the
stated objectives. However, there is one additional result of a
similar type that brings to light the fundamental nature of reflections
in a broader sense. The term reflection used in the more encompassing
sense refers to any isometry of the form f(z) = tz + a, t& + a = 0, or
f(z) = -z + 2b. The reader undoubtedly recognizes the appropriateness
of calling a transformation of the latter form a reflection, or more
specifically a point reflection. Such terminology was not adopted in
this paper to eliminate any ambiguity in the use of the term

reflection. Of course this convention will be continued, nevertheless
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the following results appear to be more in keeping with the spirit of
the chapter if both half turns and line reflections are viewed as
reflections.

In connection with the thought posed in the preceding paragraph,
it is clear in light of T 6.17. that any interesting result regarding
the decomposition of isometries into reflections, in the broader sense,
must involve no more than two factors. Furthermore, previous considera-
tions indicate that, with the exception of glide reflections, every
isometry can be written as a product of no more than two line
reflections. Thus, to establish the possibility of factoring every
isometry into one or two reflections, in the more encompassing sense of
the word, it remains to represent a glide reflection as the product of
a half turn and line reflection. A reasonable approach to the problem
of determining whether such a decomposition exists, would be to
multiply a line reflection and half turn and see if the product could
take on the form of a glide reflection. To this end consider the

following theorem.

Theorem 6.18. The product of a half turn about b and a reflection in

4 is a glide reflection if and only if b is not on 4.
Proof. Let f(z) = tz + a and g(z) = -z + 2b be the given reflection
and half turn. Note that the invariant line under f is £:z -tz -a = 0.

Now, f-g(z) = t(=z + 2b) + a = (-t)z + 2¢tb + a. Clearly f.g is an

opposite isometry, thus it is a glide reflection if and only if
-t(2tb + a) + (2tb + a) # 0. Moreover, -t(2tb + a) + 2tb + a

= -2b -ta+2thb+a=-2b -t& -a +2th + 2a. But, -ta -a = 0,



95

hence -t(2tb + a) + 2tb + a = -2b + 2tb + 2a. From this it follows
that f.g is a glide reflection if and only if -2b + 2tb + 2a # 0, or
equivalently if and only if b - tb - & # 0. However, b - tb - a # 0 is

precisely the condition that b not be incident with Z£.

In addition to being a logical antecedent of any proposition
regarding the desired factoring of a glide reflection, the foregoing is
of note in another respect. In particular, observe that multiplying a
half turn and reflection always results in an opposite isometry, thus
in light of T 6.18. such a product will be a reflection if and only if
b lies on 4. Hence a corollary of the foregoing theorem provides a
necessary and sufficient condition for incidence of a point and line in
terms of a product of reflections (in the broad sense). Actually the
condition can be refined somewhat, by verifying that the product of a
half turn and a reflection is a reflection if and only if it is
commutative. At any rate this result is one of several such proposi-
tions which afford a characterization of a geometric notion in terms
of a condition on the product of half turns and reflections. [32]
These are not developed here.

The following theorem provides the answer to the question which

precipitated T 6.18.

Theorem 6.19. If f(z) =tz + a, ta + a # 0, then f = g+h, where h is

a half turn and g is a reflection.

Proof. Consider g(z) = -tZ + b and h(z) = -z + 2c, where b is such

that -tb + b = 0 and ¢ = (EE%—E). Then by direct composition

8°h(z)=-1(-z+[——:E——M]')+b=ti-b+a+b=t5+a.
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The appropriate factors in the foregolng were suggested by the
demonstration of T 6.18. Again the decomposition is not unique.
Geometrically the preceding is not very revealing, but the reader
should recognize that the choice of -t as the coefficient of z, is
equivalent to selecting 4, the invariant line under g, perpendicular
to m, the reflection line under f. The arbitrary nature of b
corresponds to the fact that, aslde from the aforementioned perpendl-
cularity condition, the choice of £ is arbitrary. The restriction on
c is somewhat more obscure, but it can be shown to imply that c is
the point on m at a vector dlstance - g from the point of intersection
of L and m. Here d 1s the translation vector under f. In spite of the

interesting geometric implications of T 6.19. 1t was developed here

primarily because it leads to the following result.

Theorem 6.20. Every isometry can be written as the product of no more

than two reflections (point or line).
Proof. The result 1s apparent in view of T 6.17. and T 6.19.

The foregoing proposition, coupled with T 6.17., firmly

establighes the fundamental character of point and line reflections.



CHAPTER VII

A FINAL ANALYSIS

Summary

The salient features of this paper were sketched in Chapter I.
However, there are certain aspects of the presentation which are more
appropriately examined in retrospect. In Chapter II the following
three things are apparent. First, the development was such that the
disparity between mathematics in the making and the formal presentation
of the subject was brought to the fore. Second, the discussion was
encompassing enough to provide a historical framework for all subse-
quent aspects of the work. Finally, some attention was given to
external applications of complex numbers. Chapter III provided a
rigorous development of the complex field motivated by the classical
desire for algebraic completeness. Following certain preliminary
results the basic properties of the real number system were exposed in
D 3.7. Comparative reference was made to these properties after the
development of the complex fleld.

In Chapter IV the possibility of constructing a field extension of
R, satisfying conditions markedly different from those of the preceding
chapter, was explored. The endeavor seems appropriate from two stand-
points. First, it provides a glimpse of a currently fertile branch of

mathematics, distinct from complex analysis, which evolved out of mans

97
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investigation of complex numbers. Second, after viewing the complex
algebraic treatment of the lsometries of the plane outlined in Chapter
VI the geometric significance of constructing a higher dimensional
field extension of R becomes apparent. The results of Chapter IV
suggest that any algebraic treatment of the isometries of higher
dimensional Euclidean spaces must be based on number systems which fall
to satisfy certain of the field properties. Simultaneously these
theorems serve to establish the unique position of the complex number
system as a finite field extension of R. Thus, Chapters III and IV
point to the peculiar position of the field C from two different
vantage points.

Chapter V provided a desirable link between the arithmetic opera-
tions on C and the geometry of the plane. These results are instrumen-
tal in interpreting the propositions in Chapter VI. Perhaps the most
significant aspect of Chapter VI is that it utilizes complex numbers to

produce an algebraic model of a geometric notion.

Educational Implications

It often happens that the sincere student of mathematics is
formally introduced to the complex field in a graduate level course in
complex analysis. In part, this appears to be due to the fact that
little has been written on the subject with the undergraduate in mind.
It 1s anticipated that this paper will contribute to the literature by
making available a compendium of results about the complex field, which
are accessible to one having the mathematical maturity of a good high
school senior or undergraduate. It is foreseeable that the audience

might well include secondary teachers of mathematics. It is hoped that
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an acqualntance with the development in this thesis will not only leave
the reader better informed regarding the complex fleld, but promote a
continuing interest in mathematics.

The writer can personally attest to the fact that this paper has

already proven to be a valuable educational device.
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