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CHAP.I'ER I 

INTRODUCTION 

Background 

The past 15 years has been a period of ferment in mathematics. In 

particular , there has been a vast amount of time and energy expended in 

an attempt to determine the appropriate scope and sequence of mathe­

matics instruction from the grammar school level to the graduate level. 

Questions have arisen as to the reasons for instigating some rather 

radical changes in a curriculum, which has remained relatively static 

for a long period of time. !t appears that there are at least two maJor 

f ac t ors t hat have influenced those concerned. One has been the extra­

ordinary growth of pure mathematics in recent times. The other 1s the 

increasing dependence of scientific thought upon mathematical methods, 

coupled wit h an urgent demand for the services of scientists in almost 

every phase of endeavor . Thus, regardless of profession, the oontention 

i s t hat mathemat i cs will profoundly influence the life or modern man. 

Unfortunately, scrutiny of the mathematics curriculUln of a decade 

ago indicat es t hat most of the mathematics presented to students up to 

19 or 20 year s of age was at least 200 years old. Paradoxically, it has 

been conservatively estimated that more mathematics has been discovered 

in the last 100 years than in all of the previous history of mankind. 

A maJor contention t hen is that the educated man, whom we envision as 
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the end product of our educational process, should not be left 200 years 

behind the times in mathematics. 

One outgrowth of the almost universal concern for the direction of 

the mathematics curriculum has been the establishment of several national.. 

and international committees. Many of these groups have convened for 

the express purpose of determining the content and tenor of mathematics 

instruction in the immediate future. 

A few of these groups, most notably perhaps the School Ma.thematics 

Study Group, have established writing committees in an effort to produce 

instructional materials commensurate with their recommendations. In the 

main, however, these groups have been content to make suggestions regard­

ing the appropriate general content and sequence of the mathematics 

curriculum. The result has been that many of the topics recommended for 

inclusion, particularly at the secondary level, are not readily avail­

able to those who teach on this level. The complex number system is 

included among these. In order to implement the curriculum suggested, 

it appears both desirable and expedient to produce self contained 

papers that might be used by the instructor and students to gain the 

required insight into those areas where there is a deficiency of avail­

able materials. The production of such materials seems best-fitted to 

those with a backlog of teaching experience on the secondary level, 

considerable mathematical maturity, and time. These three ingredients 

appear necessary in order to insure that the most significant aspects 

of the material will be presented in a consistent, rigorous, and teach­

able manner. It was with these thoughts in mind that this work was 

undertaken. 
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ObJectives 

The paper focuses on certain algebraic and geometric aspects of 

complex numbers that might be presented to an audience having a founda­

tion in elementary algebra, coordinate geometry, the real number system, 

trigonometry, and elementary functions, with a degree of rigor and 

completeness. Specifically, the presentation is accomplished without 

recourse to the limit concept, the sole exception being the fundamental 

theorem of algebra. The work is self-contained to the extent that 

results used, which are not generally encountered in the aforementioned 

five areas, are either stated without proof or demonstrated. In general 

the results stated without proof are readily available in standard texts 

on modern algebra or complex variables. 

Although several classical results are demonstrated, or illustrated 

in some detail, the intent was to direct attention to those aspects of 

complex numbers that are not currently treated on either the high 

school or undergraduate level. Little of what is included can be termed 

truly original, although a review of the literature seems to suggest 

that the setting in which many of the results appear is somewhat unique. 

Scope and Sequence 

The initial portion of the paper is concerned with the development 

of complex numbers as an algebraic system. In addition to a detailed 

presentation of the complex number system as a two dimensional extension 

of the real numbers, attention is given to the allied question of the 

existence of a 3, 4, 5, ••• , n dimensional extension of the real 

numbers. The discussion points up the unique algebraic position of the 
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complex number system as a field extension of the reals, while providing 

a natural setting for an acquaintance with some significant algebraic 

structures that fail to possess all the characteristics of a field. 

The progressive nature of the theorems in Chapter IV was deemed desir-

able from the standpoint of the audience prescribed and the relative 

sophistication of the terminal results. This is in keeping with the 

overall tone of the presentation. 

The second ma.Jor aspect of the work deals with a mathematical model 

of the complex number system, namely the isometries of the Euclidean 

Plane. The focus here is on the algebraic development of these trans-

formations, although the impetus is clearly geometric. Throughout this 

portion of the paper the associated geometry is used to motivate, 

illustrate and clarify the basic propositions. 

Review of the Literature 

A broad survey of the literature was made initially in an attempt 

to determine those aspects of complex variables that might profitably 

be discussed '«ithin the limitations of the paper. After delimiting the 

scope 0£ the paper, an intensive review of the literature pertaining to 
• 

·the selected areas was undertaken. The M&thematio&l Review 1 1nd1oes to ----------
book 1n print, the card catalog, indices of The American Matheme.tioal 

Monthly, and bibliographies of texts served as primary tools. !n 

general, there was a dearth of reference material relating directly to 

this work, although some portion of the literature was suggestive of 

almost everything undertaken. 



CHAPl'ER II 

A HISTORICAL OVERVIEW 

The purpose of this chapter is to give the reader some insight into 

the etiology of the complex number concept. There are three principal 

reasons for including such a discussion. First, it was felt that such 

an initial chapter would provide a framework to which the reader could 

relate all subsequent aspects of the work. Secondly, in view of the 

rather formal nature of the work in Chapters III through VI it seemed 

desirable to give the prescribed audience some insight into the rather 

erratic and informal historical evolution of the number concept. 

Finally, for the sake of completeness, material has been included which 
• 

alludes to the physical applications of complex numbers. In the 

authors eyes such an inclusion has the additional advantage of giving 

credence t o complex numbers, where the reader is reluctant to accept 

them on a purely mathematical basiso 

It is the author's contention that most beginning students fail to 

see the human element in the development of mathematics. Too often they 

envision mathematics as having evolved in the same continuous deductive 

fashion in which it appears in their texts. It is hoped that a brief 

exposure to the history of the complex number concept will, among other 

things, reveal the fallacy of such a notion. 

The early history of complex numbers is strikingly similar to that 

of the negative reals, a record of blind manipulations unrelieved by any 
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serious attempt at interpretation. The first recorded evidence of 

recognition of imaginaries is that of Mahavira·, the Indian mathematician 

of the ninth century. He was content to observe that ffin the nature of 

things a negative number has no square root." [ 3; 175] The next intru-

sion of imaginaries came in the sixteenth century with the work of the 

Italian mathematicians; specifically Card.an and Bombelli. Card.an in his 

quest for a solution to the reduced cubic was the first to symbolize the 

imaginaries, although he apparently rejected them as numbers. The crux 

of the matter was that Cardan's formula for the reduced cubic gave a 

quite satisfactory result for the real root of a cubic having, as we 

know it today, two complex roots. However, in the case where all three 

roots were real the formula gave illusory results for one of the real 

values. Card.an, and later Bombelli, were bold (or foolish, according to 

the readers whim) enough to attempt to manipulate these conjured, and 

admittedly fictitious symbols, in an effort to achieve a complete solu-

tion. 

Consider, for example, the equation x3 = 15x + 4 treated by 

Bombelli in his algebra published in 1572. [10] The equation has 

t hree real solutions -2 + J°3, -2 - Ji, and 4, yet application of the 

Cardan formula lead to the mystic expression o/ 2 + .J -121 + ~ 2 - .J -121 , 

in place of the rational value 4. It occurred to Bombelli that the two 

radicals might represent expressions of the form a + J:b, a - J:b where 

a and bare positive, in which case the sum would be independent of the 

imaginary symbol .J:b. With some effort, and no small amount of misgiv-

ing over the undertaking, he was able to show that the two radicals did 

indeed resolve into 2 + J:i and 2 - J:i, the sum of which is 4. 

Encouraged by his initial success, Bombelli proceeded to develop rules 
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for operations on these mystic beings. Apart from notation the gifted 

Italian had all the rules in essentially their current form. It is not 

surprising that Bombelli's operational rules would parallel current 

definitions when one realizes that it 'WB.S a widely held belief in his time 

that algebraic consistency was dependent on obediance to the manipula­

tive principles for positive numbers. 

Thus, we see a mathematician, emminent in his own time, devising 

rules for manipulating meaningless, though not altogether useless, 

symbols. The work of Bombelli marks the beginning of an era of blind 

formalism in connection the complex number symbol, a period that lasted 

approximately two hundred years. Listed among those who followed 

Bombelli in this mysterious play on symbols are some of the great 

mathematicians of the seventeenth and eighteenth centuries. 

There are a couple of observations worth bringing to the fore in 

connection with the development of complex numbers to this point. First, 

it is interesting to note that at the time Bombelli was taking the 

initial steps in the area of complex numbers the real number system was 

ent irely without foundation as we know it today. [10] As a matter of 

fact , negatives were not fully understood nor widely accepted in his 

dAy! Secondly, we note that in contrast to the logical current practice 

of int roducing complex numbers following a discussion of quadratic 

equat ions , they initially came to the fore during an attempt to solve 

the cubic. The foregoing provide graphic illustration of the fact that 

mathemat ics in the making often bears little resemblance to the syste­

matic exposition of the textbook. 

The imaginary beings of Bombelli found little acceptance, had no 

real foundation, nor were they given any interpretation for over two 
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hundred years, yet it is · interesting to note that f'ormalis-m alone 

produced· some results of considerable significance. [3] About 1710 an 

Englishman, Cotes, discovered what later was recognized as the equivalent 

of Eulers famous relationship between e, i, ,r, and l, namely that 

i9 = log (cos e + i sine). The second result of this period was 
e 

DeMoivres' discovery of the trigonometric identity which bears his 

name, namely that cos ne + i sin ne = (cos e + i sin e)n, n a natural 

number. This relationship gave the mystic numbers a new air of perma-

nency by linking them to trigonometry. The prolific Euler introduced 

t he transcendental e and extended the result of DeMoivre to arbitrary 

int egral values for n. The famous special case of the foregoing result 

ilf which bears Eulers name being e + 1 = o. Even today one can but 

marvel at t his simple ident ity that involves some of the most important 

symbols of mathematics, each of historically disparate origin. 

I n addit ion to the preceeding developments it was reasonable to 

inquire as to whether the system created by the ad.Junction of complex 

numbers was adequate for the solution of the fundamental problem of 

algebra : det ermining the root of the most general polynomial equation. 

In view of the Cardan formula and its predecessor the quadratic 

formula , i t was evident in Bombelli's time that the complex numbers 

provided a complete solution for polynomial equations of degree three or 

less having real coefficients. The Ferrari method for solving the 

quartic , developed contemporaneously with Cardans' result, allowed 

extension of the above conclusion to degree four. The quest for a 

sharper result in this connection was centered around a necessarily 

fut ile att empt to derive expressions for the roots of higher ordered 

equations in terms of the coefficients and the basic arithmetic 
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operations. Of course, the impossibility of producing such formulas was 

not established until the ingenious, but ill-fated, Galios provided the 

answer in 1830. By this time Gauss had already published (1799) his 

proof of the now classical Fundamental Theorem of Algebra. The combined 

results of Gauss and Galois answered with finality the age old questions 

of existence and radical solvability. That the foregoing questions were 

raised and completely answered prior to the acceptance of the complex 

number system is additional testimony to the logical irregularities in 

the development of mathematics. The following comment due to Euler 

(1770), though somewhat predating the works mentioned, was apparently 

characteristic of this period, and surely serves to dramatically 

illustrate the status of complex numbers at that time. 

All such expressions as J"-1, J"-2, etc., are consequently 
impossible or imaginary numbers, since they represent roots 
of negative numbers; and of such numbers we may truly assert 
that they are neither nothing, nor greater than nothing, nor 
less than nothing, which necessarily constitutes them 
imaginary or impossible. [10;191] 

Certainly, the etymology of the word imaginary as applied to roots of 

negative reals needs no further clarification! 

Pa.rt of the difficulty in accepting complex numbers stemmed from 

the fact that no one had been successful in giving a consistent, useful 

interpretation of them prior to Gauss' time. It is true that both the 

Norweg1an, Wessel (1797), and the Swiss, Argand (1806), preceded Gauss 

in giving the now familiar vector interpretation. [12] Unfortunately, 

their results were not widely recognized, and it remained for Gauss to 

rediscover and present the essence of their works. Interestingly 

enough, Just at the time when the long sought interpretation was 

achieved, the mathematical world arrived at a level of sophistication 



which deemed inacceptable a geometric foundation for a number system. 

In response t o this, Gauss gave the first recorded formal treatment of 

complex numbers as ordered pairs in 1831. At last, man had given the 

mystical numbers of Bombelli both a postulational foundation and an 

intuitively appealing interpretation. 

10 

To one unfamiliar with the pattern of mathematical history it might 

appear that 1831 marks t he terminus of one phase of endeavor. Quite the 

contrary, our vantage point reveals that this merely signaled the end 

of the beginning. The immediate stimulus for extensions of the number 

concept was the geometric description of the rotations of the plane 

afforded by Gauss' interpretation of complex numbers. The response was 

almost immediate. 

The Irishman, Hamilton, reasoned that it should be possible to 

generate a number system that could be used to describe rotations in 

the space of three dimensions. The hurdle that blocked Hamilton's path 

in his initial attempts t o achieve the desired algebraic description was 

that any such system would lack the commutative property. It must be 

recognized that in Hamilton's time t he opinion was still widely held 

that one could avoid contradictory results only by adhering to the 

properties inherent in the rational numbers. Hamilton ultimately had 

the conviction t o proceed in the endeavor, and in 1843 he presented his 

quaternion algebra. [16] Hamilt on subsequently devoted the greater 

portion of life in a vain attempt to convince physicists and geometers 

that his quaternions held the key t o ma.Jar advances in the:1.r disciplines. 

Although they never recei ved the attention that their inventor imagined, 

they do find some current application in both areas. 

In the long run, the permanent residue of Hamilton's labor seems t o 
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be that he demonstrated a self consistent algebra in which the commuta­

tive law fails to hold. In so doing he paved the way for a host of 

algebras, in which one after another of the principles of rational 

arithmetic were discarded or modified. It is interesting to note that 

the appearance of an abstract approach to algebra coincides historically 

with the freeing of geometry from the bond.age of Euclid's fifth 

postulate. Thus, almost simultaneously, geometers and algebraists 

perceived that mathemat ical syst ems are not supernaturally imposed on 

human beings, rather they are creations of the mind. In retrospect, it 

seems surprising that such a notion was so long in coming to the fore. 

In addition to Hamilton, history reveals another very fertile mind 

at work in the area of hypercomplex numbers during this period. [3] 

The German mathematician, Grassman, essentially considered the much more 

general problem of defining a product on ordered n-tuples. in such a way 

that i t sat isfied certain predetermined properties. The unfortunate 

aspect of Grassmans work was t hat his notation and style of writing were 

so unusual that his work found little acceptance in his own time. The 

scope of his theory was not fully appreciated until the current century 

when it was revealed t hat his work not only included complex numbers and 

quaternions as a potential det ail, but aspects of matrices and tensor 

calculus as ~ell. Thus, hist ory shows that an unfortunate method of 

presentation .obscured a work which might have advanced this area of 

algebra some fifty years. 

After Hamilton's epochal revelation, the development of hypercom­

plex numbers , or linear algebras as they are often called, follows in 

hree principal phases. [3] The f irst phase was represented by such 

work as that of the American, B. Pierce, who was very active in the 
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1870 1s. His efforts were directed toward the problem of exhibiting all 

linear associative algebras of a given finite dimension, having real or 

complex coordinates. The second phase is exemplified in the works of 

the German mathematician, Frobenius, who established a general result 

that described the nature of the totality of linear associative algebras 

of finite dimension over the real field. In addition, his work suggest­

ed the extension of the discussion of hypercomplex number systems to 

n-tuples whose coordinates were from fields other than the real or com­

plex. The third phase is characterized by the work of the Scotchman, 

J.H.M. Wedderburn. In the early 1900 1 s he established a series of 

theorems that in essence exposed the fundamental structure of a linear 

associative algebra of arbitrary dimension over any field. Subsequent 

efforts in the area of hypercomplex numbers have been directed toward 

the discovery of the analog of Wedderburns results for non-associative 

systems. One can but speculate that if this quest is successful 

mathematical desire for generality will culminate in a search for a 

theory linking the associative and non-associative algebras. 

At this point a pri.ncipal historical sequence, which originated 

with Cardan's mystical symbols, has been traced to current research in 

the area of linear algebra. In addition to being instrumental in the 

achievement of previously stated obJectives, the development provides an 

example that serves to illustrate the usual path to abstractness and 

generality in mathematics. 

The final portion of this chapter .is devoted to a brief considera­

tion of the applications of complex numbers. It must be remarked in 

passing that the study of complex numbers, or more generally complex 

function theory, requires no further Justification for the pure 
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mathematician then the inherent beauty of the structure. Nevertheless, 

it seems quite satisfying to see that a branch of mathematics, as 

unmotivated by physical observation and experience as complex numbers, 

does find application in physics. Hopefully, the reader recognizes that 

any relationship that finds expression in terms of complex variables can 

be formulated solely in terms of reals. The fact is that the complex 

representation often provides a much more elegant and penetrating 

formulation in physics. 

The areas of physics that have proven most amenable to complexifi-

cation are quantum mechanics, electricity, and optics. (15][31] In the 

main, the applications of complex representation occur at fairly high 

level sophistication in these disciplines, thus making discussion of 

them difficult here • . A single example from the field of optics was 

selected because of its availability to the reader and its striking 

illustration of the extent to which complex numbers find an interpretive 

reality. 

In elementary physics, Snell's Law asserts that if light passes 

sin i from one transparent media to another then the ratio 1 is constant. 
s n r 

[30] In this expression i and r represent the magnitudes of the angles 

between the direction of propagation of the incident and refracted 

rays and the respective directed normals. In keeping with both experi -

mental results and Huygen's wave model of light the constant value of 

this ratio turns out to be the ratio of the velocity of light in the 

incident media ( v 1 ) to that of light in the refracting media ( v r). 

Thus, if the velocities are known and the angle of incidence is given, 

the angle of refraction can be determined. 

In 1823 the French physicist, Fresnel, took an additional step 
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toward the completion of' a comprehensive theory of' light o Beginning 

with a. limited number of propositions a.bout the behavior of' light, he 

was able to show that for light polarized in the plane of reflection the 

sin(i - r) 
ratio of amplitudes of' reflected and incident light is - sin(i + r) o 

[ 33] This relationship had been previ.ously suggested by empirical 

evidence. 

In connection with the foregoing result, Fresnel recognized that if 

vi 
~ = k < 1, then there exists a value x, 0 < x < ~/2, such that for 
V 

r 

i > x, sin i > k. If' the sine function is restricted to the real 

field, then in this case there is no corresponding solution for r. If, 

however, one considers the extended sine function, then the equation 

sin i sin r = k has a solution for all real values of' i. [27] The multi-

valued complex solution .for r when sin i > k has no recognizable physi-

cal interpretation as an angle, however, Fresnel consid.ered these 

solutions in connection with his result relating the amplitudes of 

reflected and incident light. In particular, he observed that for these 

sin(i - r) 10 e values of r the ratio -6 -1n-(""'i_+_r...,.) = e , reaL Fresnel conjectured 

that this indicated that total reflection occurs, and ·that the incident 

and reflected waves have the same amplitude, but differ in phase by an 

amount e. These statements were subsequently completely confirmed by 

experimentation! [5] The fascinating aspect of Fresnel's work here is 

that · one sees complex numbers playi.ng a ro:Le in physics that supercedes 

·that of merely providing an elegant symbolic formulation of an already 

conceived. theory. In particular, one sees laws of nature being abstract-

ed from a branch of mathematics that is not at all an obvious abstraction 

from the physical world .. Contemporary physics reveals that Fresnel's 

work me.rely set the stage for more extensive exploitation of complex 
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variables in physics. 



CHAPTER III 

THE COMPLEX FIELD 

The focus of the current chapter is on the development of the 

complex field and the basic properties of the system that are either 

necessary in the sequel or desirable for completeness. The initial 

stimulus for the development is the desire for an algebraic solution to 
'-' 

polynomial equations over the real field. Specifically, attention is 

directed to the problem of enlarging the real number system in such a 

2 way that the equation x ~ -1 will have a solution. 

Some of the results of this chapter are readily available else-

where and the proofs of these were omitted where it was felt that such 

a demonstration would contribute 11 t·tle toward the achievement of the 

obJectives of the paper. These theorems are recognized by the fact that 

an appropriate letter of the alphabet follows the identification number. 

Throughout the paper references to all definitions, theorems, and 

corollaries are indicated by the corresponding number preceded by D,T 

and C respectively. 

In order to implement the development certain preliminary notions 

a.re introduced. 

Definition 3.1. A non-empty set Fon which two binary operations+ and 

• are defined is a field 1:f' and only if the following conditions hold: 

(i) Fis closed with respect to+ and•, 

16 



(ii) +and• are commutative; 

(iii) +and• are associative; 

(iv) There exist distinct elements O,l in F such that x + 0 = x, 

x•l = x, for every x € F; 

(v) For each x € F there exists - x € F such that x + (-x) = O; 

( ) 1 -1 vi For each x € F, x I o, there exists x € F such that 

-1 x•x = l; 

(vii) • distributes over+. 

17 

In connection with the above definition the operations+ and• will 

be referred to as addition and multiplication respectively. Further, 

for y ~ o, the symbol~ is defined to mean x·y-1 • In like manner x - y 
y 

mea.ns x + ( -Y). Finally, when the operations of two different fields 

are used in a single setting, it is assumed that the context will 

suffice to clarify the meaning. 

In general, it is presumed that the reader is famili.ar with the 

basic properties of a fi.eld, having encountered them in the development 

of the rat1onal number system. The following examples of fields will be 

referred to on occas:l'..on and the associated symbols will be used to 

expedite this • 

Example :;.1. The set of ra"tional numbers with ordinary addition and 

mul tiplica,tion forms a field denoted Q. 

Example 3.2. The set of in·tegers mod p, p prime, with the usual modular 

sum and product will be designated I . . p 

Example 3.3. The set of expressions of the form a+ r,[2, where a,b ~ Q, 

with (a+ o/2) + (c + &!2) =([a+ c] + [b + d}[2) and (a+ r:;[2)(c+ &1"2) 
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= ([ac + 2bd] + [ad+ bc}[2), forms a field denoted Q(J°2). 

The following concept plays a significant role in subsequent work 

with fields. 

Definition 3.2. If K is a subset of a field F, then K is a subfield of 

F if and only if K is a field with respect to the operations on F. 

Example :;.4. The set of all elements of Q(J°2) of the form a + o ... [2 

forms a subfield of Q, (J°2). 

The following characterization of a subfield will prove useful in 

practice. 

Theorem 3.1. In order that K, a non-empty subset of a field F, be a 

subfield it is necessary and sufficient that: 

(i) -1 i K; 

(ii) Whenever x,y e K, then x + y, x•y e: Kand, provided x ~ o, 
-1 

X ~ K. 

Proof. The necessity is almost immediate from the fact that K is a 

field. 

The sufficiency requires showing that K possesses the properties 

(i) - (vii) of D,3.1. That K is closed with respect to+ and• follows 

from T 3.1. (ii). The commutativity and assoc:i.ativity of + and • is 

apparent since Kc F. Now -11\t K, hence (-1)(-1) € K, or le K., Also 

l + (-1) <SK, or O € K; thus, D :;.L(iv) is satisfied. If x e K, then 

(-l)x e K, or -x e Kand D 3.1.(v) follows. Similarly, if x € K, x Io, 
-1 then x ~ K. The distributivity of• over+ in K is again a result of 

·the fact that Kc F. 
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Definition 3.3. A field F is said to be totally ordered if and only if 

there exists a non-empty subset of F, denoted P, such that: 

(i) For every x e F exactly one of the following holds: x = 0 or 

X e; p or -x E P; 

(ii) If x,y E P, then X + Y, x•y E P. 

The set Pis called a set of positive elements of F. 

The next result sheds some light on the structure of a totally 

ordered :field. 

Theorem 3.2. If Fis a totally ordered field, then there exists a 

relation < on F such that for every x,y ,z e: F the following hold: 

(i) X < x; 

(ii) x :'.: y and y :'.: x implies x = y; 

(iii) x :'.: y and y ~ z implies x < z; 

( 1 v ) x :'.: y or y :'.: x; 

(v) x :'.: y implies x + z :'.: y + z; 

(vi) x '.:: y and z ~ 0 implies x•z '.:: y 0 z. 

Proof. Define x :'.: y if and only if x = y or y - x e P. In view of the 

similarity of technique used in showing (1) - (vi) only the demonstra­

tion of (iii) is presented here. If x :'.: y and y :'.: z, then x = y or 

y - x e Pandy= z or z - ye P. If x = y, then x • y = z or 

z - x • z - y , P, hence in either case x < z. I:f' y - x c P, then 

Z - X = y - X i P or Z - X = ( y - X) + ( Z - y) 6 P and X < Z • 

Therefore, in any case, x ~ z. 

In the sequel the relation~ is assumed to be defined as in the 

foregoing argument unless otherwise indicated. 

The converse of T 3.2 is also valid thus providing a characteriza-
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tion of total ordering. 

Theorem 3.3. If Fis a field and< is a relation on F such that for 

x,y e F, x ~ y if and only if x < y or x = y and~ satisfies (1) - (vi) 

of T 3.2, then P = {x e FI x > a) is a set of positive elements for a 

total ordering of F. 

Proof. Clearly P <,:: F. Since O,l,-1 e F and 1 F o, then (iv) implies 

that l < O or O < 1. In case 1 > o, then 1 e P and PF p. If 1 < O 

then -1 + l < -1 + o, or O < -1, hence ~1 e P. Thus, in any event, 

Let x e F, x F o, then as in the case of l either x e P or -x e P. 

Suppose both x e P and -x e P, then x > O and -x > o, whence 

x + (-x) > x + o, or O > x. Thus, x > O and O > x and (ii) implies 

x = o, which is a contradiction. Therefore, for every x e F, exactly 

one of the following holds: x = o, x e P, -x e P. 

Now if x,y e P, then x > 0 and y > o, hence x + y.::: x + 0 = x. 

Utilizing (111) x + y,::: o. Suppose x + y = o, then y • -x and -x e P. 

But x e P and -x e Pis in contradiction to the result of the preceding 

paragraph. Therefore, x + y > o, or x +ye P. Finally, for x > o, 

y > O (vi) implies that x•y.::: x•O = o. However, x•y F o, since x and y 

are nonzero elements of a field. Thus, x•y > o, or x•y e P, which 

completes the proof. 

Example 3.5. The field of rational numbers with the usual ordering is 

a totally ordered f:l.eld. 

Definition 3.4. If G is a nonempty subset of an ordered field and there 

exists an x « F such that x.::: y for every ye G, then xis said to be an 
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upper bound for G. If G is bounded above and there exists an upper 

bound z e F such that z ~ y for every upper bound y, then z is said to 

be the least upper bound for G. 

Definition 3.5. If Fis an ordered field and every nonempty subset of 

F that is bounded above has a least upper bound, then Fis said to be a 

complete ordered field. 

Definition 3.6. If F and F' are fields and f:F ~ F' is a one to one 

mapping of Finto F1 such that for every x,y € F: 

(i) f(x + y) = f(x) + f(y); 

(ii) f(x•y) = f(x) • f(y ); 

Then f is called an isomorphism of F into F' and F and f(F) are said to 

be isomorphic. In case F = f(F), then f is called an automorphism. 

The following result establishes the nature of the range of a 

field isomorphism. The proof furnishes an application of T 3.1. 

Theorem 3.4. If F,F' are fields and f:F ~ F' is a field isomorphism of 

Finto F' then f(F) is a subfield of F'. 

Proof. Clearly f(F) ~ F' and f(F) r ¢• If f(x),f(y) E f(F), then 

x,y e F, hence f(x + y) e f(F). However, f(x + y) = f(x) + f(y), thus 

f(x) + f(y) € f(F). Similarly, f(x) • f(y) e f(F). Now, there exists 

O t F and for every x e F, f(x) = f(x + o) = f(x) + f(O) = f(O) + f(x). 

Specifically then, f(x) = f(x) + f(O) •. Moreover, since F' is a field 

-f(x) E F' and from -f(x) + f(x) = -f(x) + [f(x) + f(O)], it follows 

that f(O) = o. Also note that f(l) a f(l• .. l) a f(l) • f(l). However, 

Since F' i.s a field and :f'(l) 'f' O, then [f(l)r1 E F'; hence the 

preceding equality can be used to show that f(l) = 1. Now, 
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0 = f(O) = f(l+-1) = f(l) + f(-1). Consequently, f(-1) = -f(l) = -1, or 

-1 E f(F). Finally, if f(x) € f(F), f(x) r O, then x e F and x f o. 

Hence x-l e F. Therefore, 1 = f(l) = f(x•x-1 ) = f(x) • f(x-1 ), or 

since F1 is a field and f(x) r o, then the result that f(x-1 ) = [f(x)]-l 

:i.mplies [f(x)]-l € f(F). The hypothesis of T 3.1. being satisfied, it 

follows that f(F) is a subfield of F'. 

In view of the definition and T 3.4. it is reasonable to interpret 

a field isomorphism as a one to one correspondence between two fields 

that preserves the operations. Even more loosely speaking, two fields 

are isomorphic if they differ only in notation. The following will 

serve to clarify this important concept. 

Example 3.6. The mapping f:Q(.f2) .... Q(•,f2) such that f(a + W2) = a-W2 

is an automorphism of Q (.f2). 

Example 3.7. If Fis any field, the identity map g:F ~Fis a field 

automorphism of F. 

Ex.ample 3.8. The function h:Q ~ Q(.f2) such that h(a) = a + 0 • ..f2 is 

an isomorphism of Q into Q(..f2). 

Having introduced the necessary preliminary concepts, the following 

definition :i.s formulated. 

Defini'tion 3. 7. A field F is called a field of real numbers if and 

only :i.f F j,s a compl.e·te o:rdered field. 

It is of note tha.t the :foregoing defin1 tion a.dmi·ts the possi'bility 

of more than one example of a real number system. Indeed this is the 

c:ase. The read.er may find this a li.ttle perplexing since it i.s common 
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practice to use the term in the singular. As one might anticipate, it 

can be shown that, within an isomorphism, all complete ordered fields 

are identical. [4] In view of this, the convention of referring to a 

particular model of a complete ordered field as the real number system 

seems appropriate. Thus, in the sequel the symbol R will be used to 

denote the familiar set of real numbers. In addition, R with its usual 

structure will be referred to as the system of real numbers. 

Although the properties of the real number system are assumed in 

this development, it is of interest to note that without recourse to 

sophisticated techniques one can give credence to the foregoing 

definition. Observe that the familiar fields Q and IP, which are 

obviously not isomorphic to R due to differences in cardinality, also 

fail to satisfy the conditions for a complete ordered field. Specif-

ically, the rational number system is an ordered field yet fails to be 

complete in that such sets as (xi QI x2 < 2} are bounded above but 

have no lea.st upper bound in Q. On the other hand IP does not possess 

a total ordering. To see this suppose~ is a nonempty set of positive 

elements of I and let x € H, then the sum of p x's, denoted px, must p p 

again be an element of H. It suffices to note that px = o, mod p, and 
p 

that O I H • p 

A currently popular pedagogical device for motivati.ng the various 

extensions of the number concept, when one develops the real number 

properties from those of the natural numbers, is to allude to the 

insolvability of certain si.mple polynomial equations in a given system. 

In keeping with this approach, consider the problem of extending the 

2 concept of number so as to obtain a field in which the quadratic x = -1 

has a solution~ It is clear that in developine; such a system it would 



be desirable to do so in such a way that the additional algebraic 

strength afforded by the real number system not be sacrificed. In 

particular, consider the necessary properties of a field containing a 

2 subfield isomorphic to Rand an element e such that e = -1. 

Theorem 3.5. If F is a field that contains a subfield R' that is 

2 isomorphic to R, and there exists e E F such that e = -1, then: 

(i) D = (x + ey I x,y ER'} is a subfield of F; 

(ii) R' is a subfield of D. 

Proof. (i) T 3.1. is applied. Clearly Dis a nonempty subset of F. 

Let x1 + e•y1 , x2 + e•y2 ED, then 

(1) (x1 + ey1 ) + (~ + ey2 ) = ([x1 + x2 ] + e(y1 + y2 ]) 

an:d (2) 2 = ([x1x2 + e y1y2] + e[x1y2 + ~y1 )) 

= ([x1x2 - y1y2 ] + e[x1y2 + x2y1 ]), 
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using the distributive, commutative, and associative properties of the 

field F.. Furthermore, since R• is a subfield of F and 

x1y2 + x2y1 ER' .. Therefore, Dis closed with respect to addition and 

multiplication ... Since e = 0 + e•l, then e E D and the closure of D 

relative to multiplication yields the immediate result that -1 ED. 

Now note that o + O•e ED and (x + ey) + (o + e•O) = (o + e•O) 

+ (x + ey) = (x + ey) for every x + ey ED. Hence O + e•O is the 

additive identity. If x,y ER' and x + e 0 y F O + e•O, then x F O or 

y ~ o. Since R' is isomorphic to R, it possesses a total order~' thus 

utilizing the properties in T 3.2. it can be shown that for x and y as 

above x2 + y2 > o. But x2 + y2 c R1 and x2 + y2 r o, thus 
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___ x_ -Y e: R'. Froqi the foregoing it follows that 
2 2 ' .,,.2 2 

X + y A. + y 

~ + e 0 

2 2 
-Y e: D. ~ 2 

Now, using (2) and the field properties of 
X + y X + y 

R' it is clear tl)at 

2 
(x + e •y) • ( x ... + e·• -Y 2) = x 2 - y(2.y) + e • 2 2 . 2 

X +:y X +y X +y 
[x(-y) + Y•XJ 

2 2 
X· + y 

2 2 
X +y Ll O ~ = 2 . 2 + e • . 2 2 
X +y X +y 

= .1 + e 0 0 

= l 

X -Y The foregoing shows that 2 2 + e • 2 2 is the multiplicative 
X + Y X + Y 

inverse of x + e•y. Thus, (x + e 0 y)-l € D. Therefore, the conditions 

of T 3.1. are satisfied and Dis a subfield of F and (i) is established. 

(ii) That R' is a subfield of Dis apparent from the fact that for 

every x e: R', x = x + e•O. 

The preceding result sheds light on the nature of any field con­

taining a system of real numbers and a solution of x2 = -1, but it does 

not insure the existence of such a field. Nevertheless, the conclusion 

of the theorem, coupled with (1) and (2), give direction to the forma-

tion of the desired system. The following construction produces a 

field satisfying these necessary conditions. 

Theorem 3.6. There exists a field G containing an element e such that: 

2 (i) e = -1; 

(ii) A subfield of G, denoted R', is isomorphic to R; 

(iii) For each z e: G there exist unique elements x,y e: R' such 
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that Z = X + e•y. 

Proof. Let G =Rx Rand for every ("J_,y1 ),(x2,y2 ) € G define 

(l) (xl,Yl) = (x2,Y2) if and only if x1 = x2 and y1 = y2, 

(2) (xl,yl) + (x2,Y 2) = (xl + x2, Yi+ Y2), 

and (3) (xl,Yl) • (x2,Y2) = (xlx2 - Y1Y2 ' x2yl +, xly2) 

Clearly, addition and multiplication are well defined binary operations 

on the nonempty set G. Furthermore, the closure, commutativity, and 

associativity of addition and multiplication in G follow from the 

corresponding properties of R. In like manner it can be shown that • 

distributes over+ in G. It is not difficult to show that (o,o) and 

(l;O) are therespectiveadditive and multiplicative identities and that 

-(x,y) = (-x,-y). Finally, for (x,y) € G,(x,y) f (o,o), it follows by 

direct application of the definition of multiplication that 

(x,y)-l = ( 2 x 2 , 2 -Y 2 ) . Therefore, G forms a field with 
X + Y X + y 

respect to the prescribed operations. 

(i) is established by letting e = (O,l) and noting that 

2 
e = (O•l - i•l, O•l + O•l) = (-1,0) = -(1,0). 

Using T 3.1. it is almost immediate that R' = ((x,O) € G) is a 

subfield of G, however, consider f:R ~ R', where for every x € R, 

f(x) = (x,O). That f is a function is clear. Furthermore, f is one to 

one, since if x1 ,x2 €Rand f(x1 ) = f(x2 ), then (x1,o) = (x2,o) which 

implies that "J. = x2 • It is apparent that f maps R onto R'. Finally, 

if x,y € R, then f(x + y) = (x + y,o) = (x,O) + (y,O) = f(x) + f(y). 

Similarly, f(x•y) = f(x) • f(y), hence f preserves the operations. 

Therefore, f is an isomorphism of R onto R', or Rand R' are isomorphic. 
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The conclusion (ii) is now verified by applying T 3.4. 

(iii) follows by noting that for (x,y) € G, (x,y) = (x,-0) 

+ (0,1) • (y,o). Recall that (a,b) = (c,d) if and only if a= c and 

b = d. 

The foregoing theorem provides an affirmative reply to the initial 

question regarding the existence of a field containing an isomorphic 

2 copy of Rand a solution to x = -1. Although the approach to the above 

problem may be new to the reader, it is anticipated that the constructed 

field is a familiar one. Having experienced success in producing a 

concrete example of a field satisfying the necessary conditions of 

T 3.5., the question naturally arises as to what extent the solution is 

unique. The answer is provided in T 3.8. The following theorem 

expedites the proof T 3.8. and other subsequent results. Actually the 

symmetry property of field isomorphisns, which is stated formally below, 

was tacitly assumed in D 3.6. The proof of this result is well within 

the means of the reader, but is not presented here. 

Theorem 3.7.A. If F, G, and Hare fields and f:F ~ G and g:G ~Hare 

-1 field isomorphisms onto G and H respectively, then f and f 0 ,. g are 

isomorphisms of G and F ont o F and H respectively. [20] 

Theorem 3.8. If G1 and G2 are two fields satisfying the hypothesis of 

T 3.6., then G1 is isomorphic to G2 • 

Proof. Let e1 and e2 represent the elements of G1 and G2 respectively 

whose square is the additive inverse of unity. Also, denote the subsets 

of G1 and G2 that are isomorphic to R by s1 and s2 respectively. By 

T 3.7. s1 is isomorphic to s2, thus let g:S1 ~ s2 bean isomorphism from 
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s1 onto s2 • Now, every element in G1 has a unique representation in the 

form x + e1y, where x,y e s1 , hence f:G1 ~ G2 such that f(x + e1y) = 

g(x) + e2 °g(y) is a well defined mapping of G1 into G2 . That f is onto 

G2 follows from the fact that g maps s1 onto s2 and each element in G2 

has a unique representation in the form a+ e2b, a,b e s2 . Furthermore, 

if x1 + e1y1 , x2 + e1y2 e G1 and f (x1 + e1y1 ) = f(x2 + e1y2 ), then 

g(x1 ) + e2 ·g(y1 ) = g(x2 ) + e2 •g(y2 ). Again utilizing the uniqueness of 

the representation in G2 , the foregoing implies that g(x1 ) = g(x2 ) and 

g(y1 ) = g(y2 ). The fac t that g is one to one yields~= x2 and y1 = y2, 

or x1 + e1 •y1 = x2 + e1 •y2 , hence f is one to one. Finally, if 

x1 + e1 •y1 , x2 + e1y2 € G, then the statements (1) and (2) of T 3.5. 

insure t hat f([x1 + e1y1 ] + [x2 + e1y2 ] ) = f(x1 + e1y1 ) + f(x2 + e1y2 ) 

and f([x1 + e1y1 ].[x2 + e1y2 ]) = f (x1 + e1y1 )·f(x2 + e1y2 ) . Therefore, 

f is an isomorphism of G1 ont o G2 and G1 is isomorphic to G2 . 

Theorems 3.6 and 3.8 est ablish the exist ence and uniqueness , 

within an isomorphism, of a field sat isfying t he conditions of T 3.5. 

In view of this the following defi nition is in order. 

Definition 3.8. A field G is called a field of complex numbers if and 

only if: 

(i ) 

(ii) 

(iii) 

2 There exists an element e e G such that e = -1; 

There exists a subfield R' of G isomorphic t o R; 

For every z e G there exist unique elements x,y e R' such 

that Z = X + e•y. 

As in the case of a real field, a particular model of a field of 

complex numbers is singled out and given special stat us. I n this paper 

the field developed in the following theorem is the designat ed one and 
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will subsequently be referred to as the field of complex numbers. The 

symbol C will be used to represent this field. 

Theorem 3.9. If C is the set of expressions of the form a+ bi, where 

a,b €Rand equality, addition, and multiplication are defined by the 

following: 

(i) (x1 + y1i) = (x2 + y2i) if and only if x1 = x2 and y1 = y2, 

(ii) (x1 + y1i) + (x2 + y2i) = [x1 + x2 ] + [y1 + y2 ]i, 

(iii) (x1+ y1i)•(x2 + y2i) = [x1 •x2 - y1 .y2 ] + [x1y2 + x2 •y1 ]i, 

then C is a field of complex numbers. 

Proof. The argument completely parallels T 3.6. 

The elements of C of the form a+ Oi will be referred to as real 

complex numbers, or simply real numbers where there is no ambiguity. 

The expressions in C of the form O + b•i, or briefly denoted bi, will 

be called imaginary numbers. 

The following theorem, which is almost immediate, provides an 

alternative definition of a field of complex numbers. 

Theorem 3.10. A field G is a field of complex numbers if and only if G 

and Care isomorphic. 

Proof. If G is a field of complex numbers, then the isomorphism of G 

and C is immediate from T 3.8. 

If C is isomorphic to G and f:C ~ G is an isomorphism of C onto G, 

where R' is the subset of C isomorphic to R, then f(R') <:: G is also 

:1.somorphic to R. The foregoing is Justified in view of T 3.7. Since 

2 i €Candi = -1, then, utilizing the argument in T 3.4, where it was 
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shown t hat g ( -1) = -g(l) = -1 for any field isomorphism g, it follows 

that f(i2 ) = f (-1 ) = -1, Thus, f(i) is an element of G whose square is 

the additive inverse of the multiplicative identity. Finally, if z e G, 

then since f is a one-to-one mapping of C onto G there exists a unique 

element w € C such that f(w) = z. But , corresponding to every we C 

there are unique elements x,y e Rv such t hat w = x + yi. Thus, 

f(w) = f(x + y 0 i) = f(x) + f(y)·f(i) = z, since f preserves operations. 

In view of the foregoing the elements f(x) and f(y) are clearly the only 

elements of f (R') satisfying the condition that z = f{x) + f(i)•f(y), 

Thus, the conditions of D 3.8. are satisfied and G is a field of complex 

numbers. 

In order that t he reader be aware of the fact that there exist 

examples of complex fields where the isomorphism with C is not trans-

parent, another model is considered. A prerequisite of the development 

of this model is a brief acquaint ance with matrices. In particular, it 

is assumed that the reader is familiar with the matrix operations of 

sum and product . The following theorem is t he focal point of this 

discussion. 

Theorem ;.11. The set G of all real 2 x 2 matrices of the form ( ba b), 
- a 

with the usual matrix oper ations , is a field of complex numbers. 

Proof. Although D 3.8. affords a simple proof of this result the 

characterization of T 3.10. is used since it seems to find wider 

application. Consider the relation f :C ~ G, where f(a +bi) = (_:!) 

for every a+ bi e C. f is a function, since if a+ bi, c +di€ C 

and a+ bi= c + di, then a = c and b = d , Hence, 



Thus, f(a +bi)= f(c + di). By essentially reversing the foregoing 

argument it follows that f is one to one. Now, if ( ab b) i G, then 
- a 
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a,b e R; thus, a+ bi c C and f(a +bi)=(_::). Therefore, f is onto 

G. Finally, if a+ bi, c + di I c, then f[(a + bi)•(c + di)] 

( ) ( ) ] ( ac - bd ad + be ) = f[ ac - bd + ad + be i = -[ad + be] ac _ bd • By applying the 

definition of matrix product and the field properties of R, 

( ) ( ) ( a b) ( c d) ( ac - bd ad + be) 
fa+ bi •f c + di = -b a• -d c = -[ad+ be] ac - bd • Thus, 

f[(a + bi)•(c +di)]= f(a + bi).f(c + di). It follows similarly that 

f[(a +bi)+ (c +di)]~ f(a +bi)+ f(c + di). Therefore, f is an iso~ 

morphism of C onto G and by T 3.10. it follows that G is a field of 

complex numbers. 

It is of interest to note that the set G discussed in the preceding 

theorem is a subset of the set of all real 2 X 2 matrices, which does 

not itself form a field with respect to the given operations. 

For the reader familiar with the role that matrices play in the 

theory of linear transformations on a vector space the foregoing matrix 

model of a field of complex numbers gives some insight into their 

geometry. An acquaintance with this application of matrices will not be 

assumed in the sequel. 

At this point, having developed in detail a number system contain­

ing a subsystem isomorphic to Rand a solution to x2 + 1 = o, the 

question arises as to what extent the field C provides solutions for 

other real polynomial equations • The answer is truly amazing. The 

fact is that the field C not only contains a root to every real poly-

nomial equation, but provides a solution to every polynomial equation 

having complex coeficients as well. !he reader is undoubtedly familiar 

with this result which is generally termed the Fundamental Theorem of 
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Algebra. As noted earlier it was first demonstrated by Gauss in 1799. 

In a sense the Fundamental Theorem of Algebra is not an algebraic 

theorem at all, since every known proof relies on notions which are 

foreign to algebra. [4] Close examination of this result leijds one to 

suspect that any proof will lean heavily on topological notions and 

continuity. Thus, the proof of this result is beyond the scope of this 

paper. Nevertheless, the theorem is used on occasion and is stated here 

precisely for reference. 

Theorem 3.12.B. If f(z) is a polynomial of degree n, n:: 1, having real 

or complex coefficients, then the equation f(z) = 0 has at least one 

root in C. [27) 

I n view of the foregoing result it is clear that no further 

generalizat ion of the number concept can logically be based on the desire 

for algebraic completeness. As noted in Chapter II there are several 

interest ing extensions based on other considerations. One of these is 

examined in Chapt er IV. The remainder of the current chapter is devoted 

primarily t o an exposition of the fundamental algebraic properties of C 

necessary in the sequel. The following result is of this nature. 

Theorem 3.13.c. If P(x) is a polynomial with real coefficients, then 

P(x ) can be expressed as a product of factors each of which is of the 

2 form ax+ b or ex + dx + e, where a,b,c,d,e € R. [4] 

The proof of the foregoing, though not presented here, is readily 

accessible to the reader. In connection with the above theorem the 

necessity of P(x) having real coefficients should be carefully noted. 

In view of the inherent strength afforded the real number system by 
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the total ordering that it possesses, it is reasonable to consider the 

possibility of imposing such an ordering on C. The futility of such a 

quest is pointed up in the following theorem. 

Theorem 3.14. The field C is not totally ordered. 

Proof. The proof is by contradiction. Suppose that Pis a nonempty 

subset of C satisfying D 3.3. Now i € C and i -/= o, hence either i €. P 

or-ii P and not both. In case 1 ~ P, then i•i € P, or -1 € P. 

Reapplying the second condition of the definition yields ~1°1 e: P, or 

-1 ~ P, which is a contradiction. A similar argument shows that -i e P 

leads to a contradiction. Therefore, i /= o, i p. P and -i ,- P; hence 

the initial assumption regarding the existence of P must be invalid. 

Therefore C is not totally ordered. 

The widespread uti.lity of order relations in algebraic structures 

in general leads to an inquiry into the possibility of defining an 

ordering on C that possesses some of the desirable features of a total 

order. This is indeed possible and an examination of the properties of 

a total order exposed in T 3.2. leads to the followi.ng result. 

Theorem 3.15. The field C possesses an ordering< such that conditions - . 

(i) - (v) of T 3.2. are satisfied. 

Proof. If x,y € C and x =a+ bi, y = c + di, then define x ~ y if and 

only if a< ,c, or a= c and b ~ d. ~ as used in connection with 

a,b,c,d is the standard order on R. Let x,y,z € C with x =a+ bi, 

y = c + di, z ~ e + fi, then; 

(i) clearly x ~ x. 



(ii) If x ~ y and y 5, x, then elimination of the impossible cases 

produces a= c, b 1 d, and d ~ b, or a= c and b = d. Thus, 

a+ bi= c + di, or x = y. 

(iii) If x 5. y, then a< c, or a= c and b ~ d. If also y ~ z, 

then c < e, or c = e and d 5. f. In considering each of the 

cases the conclusion a~ e and b ~ f is valid, thus x 5. z. 

(iv) Since a,b,c,d s Rand~ is a total ordering on R, then a= c, 

a < c or c < a and b < d or d < b. A casewise discussion is - -
a.gain in order. If a.= c and b ~ d, then x ~ y. If a= c 

and d 5. b, then y ~ x. In case a< c, then x ~ y, and if 

c < a., then y 5. x. Thus, in any event either x 5, y or y ~ x. 

(v) If x ~ y, then a< c, or a = e and b ~ d. Now, either 

a.+ e < c + e, or a+ e = c + e and b + f < d + f; hence 

x+z~y+z. 

In light of the results of T 3.3. it is apparent that the ordering 

outlined in the foregoing proof fails to be a total ordering of Conly 

on one count. It is of interest to note that the order relation describ-

ed in T 3.15. is compatible with the standard ordering on R. By 

compatability with the conventional ordering of R, it is meant that if 

x and y represent complex numbers of the form a+ Oi and c + Oi 

respectively, then x 5, y if and only if a~ c. The ordering of C out­

lined in T 3.15. might appropriately be termed a lexicographic ordering. 

Since the concept of a linear ordering is so well established in 

mathematics, it is worth mentioning that the lexicographic ordering of 

C is also a linear ordering. A linear order on a set is one satisfying 

conditions (i) - (iv) of T 3.15. 
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In view of the fact that C fails to possess a total ordering, it is 

clear that the notion of completeness, as it was defined in D 3.5., 

cannot be extended to the complex field. It turns out that there is a 

characterization of completeness for ordered fields that can be extended 

to certain fields that fail to possess a total ordering. This property 

is enjoyed by the field of complex numbers. [24] The development of 

this characterization is beyond the scope of this paper. 

The following theorem exposes a unique relationship that exists 

between certain pairs of complex numbers. 

Theorem 3.16. If z1 ,z2 € C with z1 =a+ bi and z2 = c + di, d ~ o, 

then z1 .z2 and z1 + z2 are both real complex numbers if and only if 

a= e and b = -d. 

Proof. Suppose z1 •z2 and z1 + z2 are both real. Now z1 •z2 = (ac - bd) 

+(ad+ bc)i and z1 + z2 =(a+ c) + (b + d)i. The fact that the sum 

and product are both real imply that b + d = 0 and ad + be "" 0. From 

the first equation it follows that b = -d. Substituting b =•din the 

second equation produces ad= de= o, or (a - c)d = o. Since d, o, 

then a= c. In summary a= c and b = Qd, or a+ bi= c - di. 

Conversely, if a= c and b = -d, then the conclusion that z1 °z2 

and z1 + z2 are real complex numbers follows readily. 

The foregoing theorem motivates the following definition. 

Definition 3.9. If z e C and z •a+ bi, then a - bi is called the 

conjugate of z and is denoted z. 

Theorem 3.16. rephrased in terms of the preceding terminology 



asserts that the sum and product of two nonreal complex numbers are 

both real if and only if the two numbers are conjugates of each other. 

The following algebraic results involving conjugation will be 

necessary in the sequel. If z = a + bi, the notatio:n Re(z) and Im(z) 

will be used to denote a and b respectively. 

Theorem 3.17.D. If z1 ,z2 € C and z1 =a+ bi then 

(i) zl + z2 = zl + z2, 

(ii) zl • z = z 2 l • z2, 

(iii) z ... 
l z2 = zl - z2, 

-
(iv) 

~) = 
1 - ' z2 

(v) 

(vi) 

(vii) 

(viii) z is real if and only if z - z = O. 

The proofs of the foregoing results are readily accessible to the 

reader. [27J Parts (i) and (ii) of T 3.17.J). suggest that conjugation, 

considered as a mapping of C into itself, might well be an automorphism. 

This is indeed the case and is stated formally in the following 

theorem. 

Theorem 3.18. -The function f:C ~ C such that f(z) • z is an automor-

phism of c. 



Proof. The brief argument required uses the uniqueness of representa-

tion in C and the results of T 3.17.D. 

It can be shown that the conjugation map outlined above is the only 

nonidentical automorphism of C that sends real complex numbers into 

themselves. Furthermore, although it is not developed here, it can be 

demonstrated that there are no nonidentical automorphisms of the 

rational field or the real field. [34J The foregoing facts tend to 

suggest that the conjugation automorphism is a very fundamental feature 

of the complex field. The following characterization of a field of 

complex numbers supports this point of view. [28] 

Theorem 3 .19. In order that a field G be a field of complex numbers it 

is necessary and sufficient that G satisfy the following: 

(i) G = (x2 Ix e G}; 

(ii) There exists a function ':G ~ G such that for every x,y € G 

the following hold: 

(1) (x + y) I : XI + y I j 

(2) (x • y)' • x' .'.yv; 

(3) (x') ' = x; 

(4) If x and y are nonzero, there exists z € G, z ~ o, such 

that xx'+ yy' = zz'; 

(5) 2 2 
If x = x', then there exists z € G such that x = (zz'); 

(iii) If R' = (x €GI x = x'} and P = (x e GI there exists y 6 G, 

y ~ o, and x = yy') and A,B are :nonempty- subsets of G such that 

A - B • {a - b I a € A and b e B} SP, then there exists 

c e R' such that A - ( c} S P U ( o} and ( c} - BS, P U ( o} • 



Proof. The conditions (i) - (iii) are sufficient. The procedure is 

to verify that D 3.8. is satisfied. 

R' is a subfield of G. Clearly R' S G. Using (2) and (3) 

X•l' = (x'.1)' = (x')' = x for every x e: G. In like manner l'•x = x 

for every x e: G. Thus, l' = 1, ·or 1 € R' and R' y: ¢. Similarly, 

o' = ( O •O' ) ' = O' • ( O') ' = O' .o = 0 and O e: R' • Furthermore, (1 + -1) 

= 0; hence (1 + -1) ' = 0' = 0, or 1 ' + ( -1) ' = 1 + ( •l) ' = 0. Thus, 

(-1)' = -1 and -1 e: R'. Now, if x,y e: R', then applying (1) and (2) 

yeilds (x + y)' = x' + y' = x + y and (x 0 y)' = x'•y' = X•Y· Hence, R' 

is closed with respect to addition and multiplication. If x e: R', 

x :/: O, then x(x-1 ) = 1 and [x(x ... 1 )J' = 1 1 • 1. Also, Cx• (x-1 )J' 

= x'•(x-1 )• = x•(x-1 )•. Thus, x•(x-1 )' = 1, or (x-1 ) 1 • x-1 and 

-1 x e: R'. Therefore, the conditions of T 3.1 are satisfied. 

P totally orders R'. P :/: ¢, since 1 • l•l'. PS R', for if 

x e: P, then x = yy' for some ye: G and x' = (y•y')' • y'•y = Y·Y' = x. 

Now, if x,y e: P, then there exist a,b e: G, a:/: o, b :/: o, such that 

x = a 0 a' and y = b•b'. Thus, x 0 y = (a.a')(b•b') • (a.b)(a'•b') • 

(a 0 b)(a 0 b)', where a•b :/: o. Also, x + y = a•a' + b•b' and (4) assures 

the existence of c e: G, c :/: O, such that a.a'+ b•b' = e•c'; hence 

x + y = cc'. Combined, the preceding imply that X•Y, x +ye: P, or 

that Pis closed with respect to addition and multiplication. If 

x e: R' and x = 0, then x J P; for suppose O e: P, then there exists 

ye: G, y :/: o, such that O = Y·Y'· However, y.y' = 0 implies y' = O; 

thus using (3), (y')' = O', or y = o, which is a contradiction. If 

x e: R' and x :/: o, then x = x' and (5) guarantees the existence of z e: G 

~ 2 such that x = (zz') • Thus, x = zz' or -x = zz'. Furthermore, 

z :/: 0 since x :/: o. From the foregoing either x e: P or -x e: P. 
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Finally, not both x € P and -x € P, for if so, then using the previously 

established closure x + (-x) € P. But x + (-x) = 0 and OJ P, hence a 

contradiction. 

R' is complete. Let ~ be the order induced by P as described in 

T 3.2. Consider H, a nonempty subset of R' that is bounded above and 

define A = { x € R' I x > c for every c € H} and B = { x € R' I x ~ c 

for some c € H). From the fact that His nonempty and bounded above, 

it follows that A rJ ¢ and B rJ ¢. Now, if a € A and b € B, then a> e 

for every c €Hand b ~ c for some c € H; thus, there exists c0 € H 

such that a.> c0 ~ b. Therefore, a. >b, or a - b > o. Thus, a. - b € P 

and A - BS. P. (iii) insures the ex:istence of c1 e R' such that 

A - c1 S. P U (o)and c1 - BS P U [o}. From the preceding and the 

definition of ~ it follows a .. e1 ~ 0 and c1 - b ~ o, for every a. e A, 

b e B. Clearly, c1 is an upper bound for H, since HS B. Furthermore, 

if d £ R' and dis an upper bound for H distinct from c1 , then d·e A; 

hence d> c1 • Therefore, c1 is the lea.st upper bound for H. 

In summary R' is a system of real numbers. 

There exists an element e in G such that e2 = -1. This follows 

from (i) and the fact that -1 e G. 

Every element of G has a unique representation in the form 

x + e 0 y, where x,y € R'. By an argument paralleling that0 of T 3.14. 

it follows that e ~ R', thus e rJ e'. Since e2 = -1 and -1 e R', then 

e2 = (e2) 1 = (e 1 ) 2, hence e' = -e. Also, l € R' and R' is closed 

under addition and nonzero division; thus, 2 e R' and 1/2 e R'. Now, 

if z e G, then z = l/2(z + z') + l/2(z' - z) = l/2(z + z') 

+ e[1/2(z - z' )eJ. But, [l/2(z + z' )] ' = (1/2) '(z + z')' • l/2(z' + z) 

= l/2(z + z.') and (l/2(z - z')e]' = (1/2)'(z ... z')'e' = 
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· l/2(z' - z){-e) = l/2(z - z')e. Therefore, l/2(z + z'), 

l/2(z - z')e e; R', or z ~ x + ey, where x,y e: R'. Finally, the 

representation is unique, for suppose a,b,c,d e; R' and a+ eb = e + ed, 

then a - c = e(d - b). However, a - c e: R', thus e(d - b) e: R' and 

[ e ( d - b) J ' = e' ( d' - b ' ) = ( -e )( d - b) = -[ ~ ( d - b) J • From this it 

follows that e(d - b) = o, or d = b. Also, since a - c = e(d - b) = o, 

then a= c. 

The proof of the necessity is sketched. If G is a field of complex 

numbers, then the isomorphism f:G ~ C guaranteed by T 3.10., coupled 

with the fact that C = (x2 I x e c}, leads to verification of (i). 

Furthermore, since the conjugate automorphism of C possesses all the 

properties outlined in (ii), then it follows that there exists an 

automorphism of G satisfying (ii). Finally, the isomorphism of G and 

c, together with the fact that 8 = {z e: C I z = z) and T = (z e; C I 
there exists ye: c, y ~ o, and z = yyj represent a field of real numbers 

and its positive elements, can be used to show that the corresponding 

elements of G satisfy (iii). 

It is of note that the foregoing theorem not only presents a 

characterization of a complex field that focuses on the role of the 

conjugate relationship, but also provides a definition that does not 

explicitly assume the existence of a real subfield. The proof of 

T .3.19., though lengthy, does afford a rare opportunity for the reader 

to become better acquainted with the definitive properties of the real 

number system. 

A very important notion in the real field is that of absolute 

value. This concept can be extended to the complex field in the.follow-

ing way. 



Definition 3.10. If z € C, z =a+ bi, then the absolute value of z, 

denoted lzl, is defined to be ~~2 + b2 • I.e., lzl=Ja2 + b2 • 

It is of note that if z is a real complex number, then the absolute 

value of z agrees with absolute value as defined in R. Furthermore, the 

following theorem shows that absolute value as defined in C shares the 

main properties of the absolute value function in R. The proof of this 

result is readily accessible to the reader. [27] 

Theorem 3.20.E. If z1,z2 6 c, then 

(i) I z1 l ~ 0 and I zl = 0 if and only if z = o, 

(ii) I z1z2I = I z1I I z2I , 

(iii) 2-. 
""' 

12-.1 if z2 /: O, 
z2 I z21' 

(iv) I zl + z2I < I z11 + lz21, -
(v) I zl - z2I < II zl I - / z2II , -

With the foregoing theorem the principal properties of the complex 

field that do not hinge on geometric or trigonometric notions have been 

presented. In particular, those algebraic aspects of C that are 

necessary for the development in Chapter IV have been exposed. Cb.apter 

V provides an appropriate setting for the pres'entation of those results 

that have a geometric flavor. 



CHAP '!'ER J.V 

BYPERCOMPLEX NUMBER SYSTEMS 

The intent of this chapter is to view the complex field from 

another vantage point. The development here is concerned with the area 

of algebra outlined historically in Chapter II. Specifically, atten­

tion is directed toward an elementary exposition of certain results that 

might appropriately be included in a study of finite linear algebras 

over the real field. In view of the approach taken in this paper it 

will be unnecessary to define formally the concept of a linear algebra. 

The informed reader will recognize that most of the theory of this 

section could have been presented much more elegantly (and esoterically) 

in a vector space setting. Furthermore, it will be noted that the 

approach taken in this chapter is again a progressive one, where 

brevity is often sacrificed in an effort to motivate subsequent aspects 

of the work. In the main, the propositions in this section are unique 

to this paper. However, there are references that contain results that 

relate directly to certain aspects of the development. [ 21] [ 22] 

Historically the initial stimulus for the development of hyper­

complex number systems was geometric in nature. As noted in Chapter II, 

Hamilton's discovery of the real quaternion algebra was the initial 

step in this direction following Gauss' treatment of complex numbers as 

ordered pairs of real numbers. The reader will be in a better position 

to appreciate the geometric considerations which stimulated Hamilton 
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after viewing the simplicity afforded the study of the rigid motions of 

the plane using complex numbers. Nevertheless, the appeal at this 

point does not rely on a knowledge of such. 

In Chapter III the definition of a complex number system was preci­

pitated by the desire for a field containing a solution to a certain 

polynomial equation and having a subfield isomorphic to R. It was observ­

ed that the field C fulfilled these conditions and furthermore that it 

contained a root to every polynomial equation with complex coefficients. 

Having achieved complete success in one direction it is in the nature of 

a mathematician to seek alternative avenues of generalization. Specifi­

cally, after viewing the construction of a field whose elements are 

ordered pairs of real numbers (see T 3.6.) it is reasonable to raise the 

question as to the possibility of defining sum and product for ordered 

triples of real numbers in such a way that the resultant system is a 

field. Finally, it is recognized that there is nothing magical about the 

number three, thus the foregoing question might well be posed for syste!IJ3 

where the elements are ordered n tuples of real numbers. This question 

forms the framework for the investigations in this chapter. 

The perceptive reader will recognize that the scope of the 

presentation here ,could readily be enlarged by considering the 

possibility of defining binary field operations on n tuples where the 

coordinates are from fields other than R. In addition, one could 

further broaden the development by allowing infinite tuples or 

by surpressing certain of the field axioms. Of course, the 

· intent here is not to encompass the field of linear algebra, 

but to focus on a single aspect of it that is compatible with the 

central theme of the paper. In keeping with this, all subsequent 



references will be to real n tuples. A system whose elements are 

ordered n tuples will be referred to a.s n dimensional. 

In an effort to reduce the problem to manageable proportions it is 

necessary to impose certain restrictions on the definitions of sum and 

product. The appropriate conditions are suggested by both algebraic 

and geometric considerations. From an algebraic standpoint it is 

reasonable to seek a definition of sum and product in such a way that 

the base f'ield Risa subfield of the proposed system. Geometrically 

it is the vector interpretation of ordered pairs, and more generally of 

ordered n tuples, which gives direction to the quest for an appropriate 

set of restrictions. It is assumed that the reader.has been exposed to 

vector methods in plane geometry, thus putting him in a position to 

recognize that if an algebra. of n tuples is to find application in 

geometry the operations defined on them should reflect basic vector 

operations. 

Specifically, vector considerations point directly to defining the 

sum of two n tuples component-wise. The appropriate restriction on the 

product is not as apparent. However, a structure isomorphic to R can 

be attained by demanding that multiplication of an arbitrary n tuple 

by one having at most a nonzero entry in the first position also be 

defined component-wise. Geometrically such a restriction on the 

definition insures that the product of an arbitrary n tuple (vector) 

and a real n tuple (one 1:laving zeroes in the 2nd through nth position) 

will produce a result analogous to that of scalar multiplication. 

Fina.lly, both algebraic and geometric considerations suggest the sort 

of uniqueness of representation inherent in a component-wise definition 

of equality. 



It is under the restrictions outlined in the preceding para.graph 

that the investigations of the current chapter are carried out. The 

following theorem is presented to expose the necessary- conditions 

imposed on the definition of multiplication in the two dimensional case. 

To expedite the demonstration of this result and subsequent similar 

theorems then tuples of the form (x,o,o, ••• ,o) will simply be denoted 

x on occasion. Furthermore, these n tuples possess all the properties 

of R, the isomorphism being.transparent in light of the restrictions. 

In view of this, these elements will be termed real elements of the 

system or briefly, real numbers. The context will cla.r?-fY the meaning. 

Theorem 4.1. If G =Bx Risa field, where for all x,y-,u,v. R 

(i) (x,y-) = (u,v) if and only if x • u and y = v, 

(ii) (x,y) + (u,v) = (x + u, Y' + v), 

(iii) (x,o)(u,v) = (xu,xv), 

then (iv) (x,y)(u,v) • (xu + yvm, xv+ yu + yvn), where (m,n) = (O,l) 2 

2 and m + 4n < o. 

Proof. Note that for (x,y) c G, (x,y) = (x,o) + (o,y) = (x,0)(1,0) + 

(y,O)(O,l), or using the aforementioned convention (x,y) = x(l,O) + 

y(O,l). Thus, if (x,y),(u,v) 6 G, then (x,y)(u,v) = [x(l,O) + y(O,l)J• 

[u(l,O) + v(O,l)]; using the field properties (x,y)(u,v) = xu(l,0)2 

+(xv+ yu)(l,O)(O,l) + yv(o,1)2 • Further simplification produces 
2 (x,y)(u,v) = (xu, xv+ yu) + yv(O,l) • Thus, letting 

2 
(O,l) = (m,n), m,n « R, (x,y)(u,v) • (xu + yvm, xv+ yu + yvn). 

However, G being a field requires that for ea.ch (x,y) i G, (x,y) ~ (o,ot 

there exists a unique (u,v) « G, such that (x,y-)(u,v) = 
(xu + y-vm, xv+ yu + yvn) = (l,O); (1 10) clearly being the 



multiplicative identity for G. But (xu + yvm, xv+ yu + yvn) = (1,0) 

implies that (ym)v + xu =land (x + yn)v + yu = O. However, this 

system of equations possesses a unique solution for u and v if and only 

if X 

,;. 0, 
x+ yn Y 

or equivalently if and only if y2m - x(x + yn), O. The foregoing can 

be expressed in the form x2 + (yn)x - y2m; o, and treating this as a. 

quadratic in x produces 

J22 2 ~ -yn + n + 4y m Xr • 
2 

Thus, the condition that every nonzero (x,y) have a unique inverse 

fails to be satisfied if and only if there exists an (x,y); (o,o) 

such that 

x. (·n ;1;.J~2 + 4m) y, 

Now, if this requirement fails it does so for nonzero y. For suppose 

y = O and 

( -n + J n 2 + 4m ) 
X• - y 2 , 

then x = O; hence (x,y) • (o,o), which is a contradiction. However, 

given ye; R, y ,- 0 1 there exists an x in R such that 

x . (-n :':. J:2 + 4m )Y 
2 . 2 

if and only if n + 4m ~ O; since if n + 4m < o, then 

(-n + J n 2 + 4m ) - . y 
2 

is not real. Therefore, since G is a field it is necessary that (m,n) 

be such that n2 + 4m < o. The conclusion follows from the foregoing 



and the fact that (x,y)(u,v) • (xu + yvm, xv+ yu + yvn). 

The reader has undoubtedly recognized that the model of a complex 

field developed in T 3.6. satisfies all the conditions of the hypot­

thesis in the preceding theorem. In that particular two dimensional 

field the square of (O,l) was defined to be (-1,0) which is, of course, 

in keeping with the results of T 4.1. e.g., o2 + 4(-1) < 0 and 

(x,y)(u,v) = (xu ... yv, xv+ yu) = (xu + yv(-1), xv+ yu + yvO). 

The series of equivalent statements occuring in the proof of the 

foregoing theorem suggest that the conditions of the conclusion may be 

sufficient to insure that the set G satisfying (i) - (iii) be a field. 

Indeed this is the case and as a matter of fact the resultant fields 

have a familiar structure. 

Theorem 4.2. If G =RX Rand G satisfies conditions (i) - (iv) of 

T 4.1., then G is a field of complex numbers. 

Proof. The result is established by: 

(1) verifying that with the given hypothesis G is a field; 

(2) exhibiting an isomorphism between C and G and invoking T 3 .1.0; 

The demonstration of the fact that G is a field with respect to 

the prescribe.d operations is tedious but straightforward and is l.eft to 

the reader. It should be observed that the if and only if statements 

of T 4.L are sufficient to insure the existence of a multiplicative 

inverse for each nonzero element of G, thus establishing the most 

difficult portion of this proof. 

To show that C is isomorphic to G consider the relation f:C ~ G 

such that for every a+ bi e C, 
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f(a + bi) = (. a + bn j n2 -1 
+ 4m 

' -2b j 2 -1 ·i . 
n + 4m 

The righthand member of the foregoing equality is an element of G, since 
I 
I 

a, b, n, j ~ -l e R. 
n + 4m 

Note that 

J 2 -1 € R 
n + 4m 

2 is insured since, by hypothesis, n + 4m < o, which implies that 

-1 
2 > o. 

n + 4m 

To facilitate the presentation 

j n2 :
1

4m 

will be denoted e throughout the remainder of the proof. In this 

notation f(a +bi)= (a+ bne,-2be). 

The relation f defined above is a function, since if a+ bi, 

c +di€ C and a+ bi= c + di, then a= c and b = d. Hence a+ bne 

= c + dne and -2be = -2de. Thus, from the definition of equality in G 

it follows that (a+ bne, -2be) = (c + dne, -2de), or f(a +bi)= 

f ( c + di) • Furthermore, the mapping is one to one, for if a + bi, 

c +di€ G ~nd f(a +bi)= f(c + di)i then (a+ bne, -2be) = 

(c + dne, -2de), or a+ bne = c + dne and -2be = -2de. Since e F 0 

the last equality implies that b = d and substituting into its 

predecessor yields a+ bne = c + bne, from which it follows that a= c. 

Therefore, a+ bi= c + di. 

To show that the function maps C onto G consider (x,y) e G. Then 

f is onto G if and only if there exists a+ bi 6 C such that 



f(a +bi)= (x,y), or equivalently if and only if there exist real 

numbers a and b such that a+ bne = x and -2be = y. However, the 

existence of a real solution to these equations is assured since the 

coefficients are real and It _ ~= l = -2e ~ O. Therefore, the range of 

f is G. 

To verify that the operations are preserved under f let a+ bi, 

c +die c, then f[(a +bi)+ (c +di)]= f[(a + c) + (b + d)i] = 

([a+ c] + [b + d]ne, -2[b + d]e). utilizing the definition of addition 

in G and the field properties of R, it follows that 

([a+ c] + [b + d]ne, - 2[b + d]e) = (a+ bne, -2be) + (c + dne, -2de). 

Thus, f[(a +bi)+ (c +di)]= f(a +bi)+ f(c + di) and sums are 

preserved under f. Now, f[(a + bi)(c +di)]= f[(ac - bd) +(ad+ bc)i] 

= ([ac - bd] +[ad+ bc]ne, -2[ad + bc]e). Employing the definition of 

multiplication in G leads to f(a + bi)•f(c +di)= (a+ bne, -2be)• 

(c + dne, -2de) =([a+ bne][c + dne] + [-2be][-2de]m, [a+ bne][-2de] 

+ [-2be][c + dne] + (-2be][-2de]n). To see that the preceding ponderous 

expression does indeed reduce to the expression for f[(a + bi)(c + di)] 

consider the first component [a+ bne][c + dne] + [-2be][-2de]m. Using 

the field properties of R this can be written ac + bde2[n2 + 4m] 

+[ad+ bc]ne. However 
2 -1 e =-.,,---

n2 + 4m 

and substituting this produces, 

ac + bd 2 - · [n + 4m] +[ad+ bc]ne = [ac - bd] +[ad+ bc]ne, ~ 1 J 2 
+ 4m 

which is the first component in the expansion of f[(a + bi)(c + di)]. 

A similar approach can be used to verify the equality of the second 

components, hence f[(a ~ bi)(c +di)]= f(a + bi)•f(c + di). 
I 



Therefore, f is an isomorphism of C onto G, or C and Gare isomorphic. 

In addition to showing the necessity and sufficiency of condition 

(iv) of T 4 .1. the preceding two theorems establish the uniqueness 

(within an isomorphism) of the complex field as a two dimensional 
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extension of the real field. It is of interest to note that conditions 

(i)-(iv) expose a means of constructing a variety of ordered pair models 

of the complex field where multiplication is strikingly ( though not 

abstractly) different . from the model in T 3. 6. At this point the 

reader might reasonably raise the question as to whether or not there 

exists a simple distinguishing feature which separates the familiar two 

dimensional complex field of T 3.6. from the infinitude of distinct 

complex fields assured by T 4.2. That such a condition does exist is 

established by the following theorem. [17] 
I 

Theorem·4.;. If G = R xR satisfies (i)-(iv) of T 4.1. and for every 

(x,y),(u,v) e GI (x,y)(u,v)I = J (x,i)II (u,v)I, where I (x,y)I ~ ~x2 + y2, 

then (x,y)(u,v) = (xu - yv, x:v + yu). 

Proof. First note that I (x,y)(u,v)I = I (x,y)jj (u,v)I implies that 

I (x,y)(u,v)l 2 = I (x,y)j 21 (u,v)j 2• Now, using the definition of product 

in Gin condition (iv) and the definition of absolute value, the fore­

going can be written (xu + yvm)2 +(xv+ yu + yvn)2 = (x2 + y2 )(u2 + v2). 

Expanding and rearranging terms into a convenient form yields 

(1 ) ( 2 2> 2 2 c· · > < 2- 2> 1 - m - n y v = 2 in + l xyuv + 2n uvy + xyv • 

However, I (m,n)I = I (0,1)21 = I (0,1)11 (O,l)j, or equivalently m2 + n2 

= (o2 + 12 )(02 + 12 ) = 1. Hence, m2 + n2 = l, or alternately 

1 - m2 .. n2 = o. Substituting O for 1 - m2 - n2 in (l) produces 

(2) O = 2(m + l)xyu.v + 2n(uvy2 + xyv2). 



Since x,y,u,v are arbitrary elements of R, then in particular (2) is 

valid for u = v = y = 1 and x = o, in which case the equality becomes 

0 = 2n. Therefore, n = o. Replacing n by O in (2) and letting 
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x = y = u = v = 1 yields O = 2(m + 1), whence m = -1. Upon substituting 

m = -1 and n = 0 in (iv) the conclusion follows. 

In view of the algebraic and geometric significance of the absolute 

value function as defined in D 3.10. The foregoing theorem suggests 

that no other ordered pair model of the com;plex field could play the 

functional role of the model of T 3.6. The importance of the product 

relationship for absolute value in Rand C points to the desirability of 

seeking hypercomplex fields which satisfy the prescribed conditi.ons and 

also have this feature. Unfortunately no such field exists for dimen-

sion n, n > 2. In fact, no higher dimensional fields exist that satisfy 

only the three initial restrictions. Because the proof of the last 

result is somewhat more sophisticated the weaker theorem is also 

demonstrated here. It is perhaps instructive to note that the author 

developed the weaker implication after initial efforts to prove the 

stronger result failed. 

The symbol Rn will be used henceforth to denote the set of all 

ordered n tuples of real numbers. 

Theorem 4 .4. n If G = R, n > 2, and+ and• are binary operations on G 

l ::: i ::: n, 



(iii) (x1,o,o, ••• ,o)(y1,y2, ••• ,yn) = (x1y1 ,~Y2,e • .,x1yn), 

(iv) l(x1,x2, ••• ,xn)(y1,Y2, 000 ,Yn)I = 

l(x1 ,x2, ••• ,xn)I I (y1 ,Y2, 00 •,Yn)I, 
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0 O 0 + x2, then G is not a field. 
n 

Proof. The proof is by contradiction. To expedite tbe argument let ei 

denote the element of G having 1 in the ith position and zeroes 

elsewhere. E.g., e1 = (1,0,o, ••• ,o), e2 = (0,1,o,o, ••• ,o), etc. 

n Suppose G = R, n > 2, is a field satisfying the given conditions, 

then each element of G can be written in.the form a1e1 + a2e2 + ••• + aneri 

where ai is a· real element of G. Also note that I a1 e1 + a2e2 +. • .+ anenl 

= Ja~ +a~+ ••• + a~. In particular, let e~ = b1~ + b2e2 + ••• + bnen' 

where bi is real, 1 S i S n. Utilizing the assumed f'ield properties of 

2 2 2 G and the fact that e1 = e1 produces (e1 + e2 )(e1 - e2 ) = e1 - e2 

= e1 - (b1e1 + b2e2 + .... bnen), or simply (e1 + e2 )(e1 e2 ) 

- b e • n n Thus, condition (iv) yields 

( 2 2)( 2 2) ( )2 2 and substituting 1 + l 1 + l = l - b1 + b2 + 2 ••• + b • 
n 

2 2 2 Equivalently (l) 4 = l - 2b1 + (b1 + b2 + ••• + bn). Now, 

I 212 I I 4 I 12 2 2 2 e2 = e2 = b1e1 + b2e2 + ••• + bnen = b1 + b2 + ••• + bn. Also, 

le214 = I (o,1,o,o, ••• ,o)j4 = 1. Therefore, bi+ b~ + ••• + b! =land 

substituting into (l) produces 4 = l - 2b1 + l. Hence b1 = -1 and 

2 + b • n 
b2 2 2 Thus, 2 + b3 + ••• +bn = o, 



from which it follows that b2 = b3 = ..• = bn = o. Therefore, 

2 e2 = -e1 • Since n > 2, e3 6 G and precisely the same argument can be 

2 2 2 
used to show that e3 = -e1 • Thus, (e2 + e3)(e2 - e3) = e2 - e3 = O. 
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Since neither e2 + e3 nor e2 - e3 is zero the foregoing contradicts the 

fact that in a field there a.re :no divisors of zero. Hence the assump-

tion that G is a field is.invalid and the conlusiqn follows. 

The foregoing theorem assures the futility of any further quest 

for a field over R of dimension greater than two/ which possesses the 

desirable features outlined in the hypothesis of T 4 .4. It is of note 

however, that Ha.miltons quaternion algebra does satisfy conditions 

(i)-(iv) and, in fact, fails to be a field only in that multiplication 

is not commutative. A system satisfying all the field properties 

except the comm.utative law of multiplication is called a. skew field. 

In light of the historical significance of Hamilton's system and its 

relevance to the material of this chapter the essential structure of 

quaternion algebra is outlined. Many of' the details are omitted. 

4 
If for each x,y £ Q = R, x = (x1,x2,x3,x4 ), y = (y1,Y2,Y;,Y4), 

equality and addition are defined component-wise and multiplication is 

performed according to the equation below, then the resultant system is 

the real quaternion algebra.. 

(xl,x2,x3,x4)(yl,Y2,Y3,Y4) = ([xlyl - x2y2 - X3Y3 - X4Y4], 

[xly2 + x2Y1 + x3Y4 - x4Y3l, :-[~Y3 + X3Y1 + X1i-Y2 - X2Y4l, 

[xly4 + X4Y1 + X2Y3 - X3Y2]). 

With the exception of the associative and inverse properties of 

multiplication it is relatively easy to show that the conditions for a 



skew field are satisfied by the foregoing system. To prove that every · 

nonzero quaternion has a multiplicative inverse define the conjugate of 

x = (x1 ,x2,x3,x4) to be x* = (x1 ,-x2,-x3,-x4). Note that 

* 2 2 2 2 ti..~t * i ti 1 ,._ xx = x1 + x2 + x3 + x4, so .ua. xx s a non-nega ve rea num1:1er. 

Now it is readily seen that the absolute value of x, defined by 

I xi = .Jxx*, satisfies I xi = J;;; = .Jx*x = Jx~ + x~ + x~ + x~. From 

this it is clear tha.t lxl > o, if x F o. Thus, for 

x F o, (l~l 2 ,o,o,o) e Q, or briefly lxt2 € Q. By direct application 

l -l of the definition of multiplication it follows that ~x* = x , for 
lxl 

x f o. The brute force approach could be used to validate the associa-

tive property, but there is a slightly simpler attack outlined in 

Birkhoff. [ 4] 

At this point it is not difficult to show that Q satisfies 

conditions (i) ·- (iv) or T 4.4. The first three are almost immediate. 

To establish (iv) consider x,y,z € Q, where x and y are arbitrary and z 

is real, then one can verify that (xy)* = y*x* and xz = zx. Using these 

two facts and the associative property of multiplication it follows 

that I xyj 2 = (xy )(xy )* = (xy )(y*x*) = x(yy* )x* = (xx* )(yy*) = I xi 21 YI 2 • 

Hence, jxyj = lxllYI. Thus, Q is a four dimensional skew field over R 

having all the features of the hypothesis of T 4.4. 

The reader has undoubtedly suspected by now (see T 4.1.) that the 

essence of the problem of defini.ng a produ.ct on Rn so that the resultant 

system will be a field satisfying the given conditions, is that of 

defining multiplication for the units of the system. In the notation 

of T 4.4. the units are the elements e1, l ~ i ~ n, having l in the 1th 
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n position a.nd zero elsewhere and such that each xi R ca.n be written in 

the form a1e1 + a2e2 + ••• + anen, where ai is real. Similarly, for 

the four dimensional quaternion skew field multiplication is determined 

once the unital products are given. Thus, although the prospect of 

finding the product of two quaternions is frightening at first glance, 

the essence of multiplication is embodied in the following table. 

0 el e2 e3 e4 

el el e2 e3 e4 

e2 e2 -el e4 -e; 

e3 e3 -e4 -e 1 e2 

e4 e4 e3 -e2 -el 

In the event -the reader has not already confirmed the noncommutati v-

ity of multiplication an examination of the unit products above will 

expose this. E.g., e2e3 = -e3e2 • Furthermore, associativity could be 

established by considering the various combinations of unit products 

and noting that real quaternions associate. 

In addition to the basic properties of quaternion algebra outlined 

above this system has several other interesting features that are not 

pursued here. For example, it has been shown that every polynomial 

equation over Q. contains a root in Q, a result analogous to the 

Fundamental Theorem of Algebra. [25] In view of the rather nice 

behavior of quaternions it is not surprising that mathematicians have 

addressed themselves to the question of the existence of other similar 

structures. An eight dimensional system, .called the Cayley algebra, 



was d:i.scovered about 1850 by the man whose name it bears. This system 

failed to be a field in that multiplication was neither commutative nor 

associative. [21] However, in spite of these deficiencies, Cayley 

numbers can be shown to possess all the desirable features of T 4.4. 

Although considerable effort was expended in this direction between 

1850 and 1950, it has only recently been shown that, aside from isomer-

phic copies of the quaternion algebra and Cayley algebra, "all other 

hypercomplex systems are degenerate to the point of having d:i.visors of 

zero. [6][7] This result is incompatible with the development here, 

nevertheless the following theorem is a step in this direction. 

Theorem 4.5. There exists no field of dimension n, n > 2, over R 

satisfying conditions (1) - (iii) of T 4.4. 

Proof. The proof is by contradiction. n Suppose G = R , n > 2, is such 

a field and that ei, i S i S n, are the uni ts. Consider the elements 

n n-1 e2, e2 , • • • , e2 • The assertion is that there exist real elements 

n n-1 1 
xn, xn-l' ~··, x1 , x0 E G, such that xne2 + xn_1e2 + ••• + x1e2 + x0 = O, 

where at least one xi r o. This is clearly equivalent to claiming that 

e2 is a root of a real polynomial of degree n, where n > 2. Now let 

i 
e2 = ai1e1 + a12e2 + ••• + a1nen and note that in view of conditions 

(1) - (111) the existence of xi's satisfying the foregoing is contingent 

of the existence of a nontrivial solution to the following system of n 

real homogeneous equations inn+ l variables. 



•• 0 

a x + a( ) x n2 n n-1 2 n-1 + ••• = 0 

• 
• • 

a x + a( ) x + nn n n-1 n n-1 0 •• = 0 

However, such a system always has a nontrivial solution in R. Thus, 

let x , x 1 , ••• 1 x1, x0 be real elements of G satisfying the above, n n-
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Moreover, T 3.13.c. asserts that every polynomial with real- coefficients 

can be expressed as a product of quadratic and linear factors having 

real coefficients. Since e2 satisfies (1) and is not real, then it must 

be a root of an ir~educible quadratic polynomial equation with 

2 coefficients in R. ·· Suppose ae2 +. be2 + c = o, where a,b and c are real, 

is such an equation,. Then, 

-b + Jb2 - 4ac e2 = , or alternately 
2a 

= .. 1. 

Letting 

the preceding can be written (~e2 + ~)2 = -1, where k1 and k2 are 

2 . 7 2 
real since b · - 4ac < 0 implies 4ac - b > o. Using an argument 

parallel to the above 1 t follows that there exist .e.1 , .e.2 real such that 

(.t1e3 + .t2 )2 = -l. Now note that in view of conditions (1) - (iii) 

.t1e3 + .e.2 ~ ! (k1e2 + k2); for if so, then .t1e3 - k1e2 = k2 - .e.2, or 



t1e3 + k1e2 = -k2 - .t2 • Considering the first case in the original 

notation yields the. equivalent condition (o, -~,.t1 ,o,o, ••• ,o) 

= (~ - .t2,o,o, ••• ,o), which implies that k2 - .t2 = -~ = .t1 = o. This 

2 2 leads to (~e2 + k2) = ~ = -1, which is impossible since k2 is real. 

Similarly, .t1e3 + .t2 f -(k1e2 + ~). Letting ~e2 + k2 = i and 

2 2 .t1e3 + .t2 = j, it follows that i - J = 0 1 where if! j. Using the 

assumed commutativity of multiplication and distributivity of multipli­

cation over addition, the preceding can be written (i + j)(i - j) = o. 

Since neither i + J nor i - j are zero this contradicts the fact that 

for elements of a field ab= 0 if and only if a= 0 orb= o. 

Therefore, the assumption ma.de is false and the result is established. 

In summary the theorems of this chapter point up the unique 

position of the complex field as a finite dimensional extension of R. 

In addition to the central theme, the discussion affords the reader a 

glimpse of a branch of algebra that is a direct descendent of investiga-

tions of the complex field. Furthermore, the development provides a 

natural setting for an exposure to some recent fruits of mathematical 

research. 



CHAPrER V 

GEOMJ?!RY OF COMPLEX NUMBERS. 

The current chapter is devoted to an elementary exposition of 

certain results which might appropriately belong in a study of the com­

plex analytic geometry of the plane. Most of the propositions presented 

here are available elsewhere. [13][35] There are two principal reasons 

for including such a discussion in this paper. First of all, any 

introductory treatment of the complex field would be incomplete without 

some reference to the geometric interpretation of complex numbers 

provided by Wessel, Argand and Gauss. One might well Justify attention 

to their interpretation solely on a historical basis. However, the 

writer draws support for the inclusion from the fact that the geometry 

of the complex plane can be a significant intuitive aid in studying· 

functions of a complex variable. Second, al.though the treatment of the 

isometries of Euclidean two space as presented in Chapter VI is basical­

ly algebraic, it is clear that the motivation ·for such a discussion is 

geometric. In view of this subsequent chapter the reader might 

anticipate that the current section would show a bias in favor of those 

results which are pertinent to the development in Chapter VI. Indeed 

this is the case. 

Before directing attention to the central notions of the chapter 

it is appropriate to point out that the ensuing presentation is not as 

axiomatic as in the two preceding sections. The somewhat informal .. ' 
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approach taken in this chapter is not on~y e:irpedient, but is in keeping 

with the fact that in this paper geometry is utilized primarily as a 

vehicle for motivating the work in Chapter VI. In addition to the 

foregoing, the reader will note that the development in this section 

relies heavily on results from trigonometry as well as elementary 

geometry. This is consistent with the background assumptions made at 

the outset. 

The point of departure for a geometric interpretation of complex 

numbers is T 3.6. This theorem suggests that it is natural to represent 

elements of C as points of the plane. The obvious correspondence is 

that of associating the complex number x + iy with the point having 

Cartesian coordinates (x,y). When used in this fashion for the purpose 

of displaying complex numbers the rectangular coordinate system is 

generally referred to as the Argand plane, or simply the complex plane. 

The horizontal and vertical axes are referred to as the real and 

imaginary axis respectively. 

With the foregoing representation in mind it is not difficult to 

see that the conjugation mapping corresponds to a reflection in the real 

axis. Similarly, it is almost immediate that the additive inverse of z 

corresponds to the image of the point associated with z under a reflec­

tion inthe origin. Finally, it is clear that lzl is representative of 

the distance from the origin to the point corresponding to z. Figure 

5.1 illustrates the foregoing. 



(-,.~,-l} 

(o,o) 
·0~0 

• .:2 .. 1= .. (2+1) 

Figure 5.1. 

( 2·, l) 
2+1 

(2,-1) 
• 2-1•2+1 

In addition to the point interpretation of complex numbers it is 
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apparent that each complex number z can be identified with the directed 

line segment, or vector, from the origin to the point associated with z .. 

Those familiar with a vector approach to geometry will recognize that it 

is more appropriate to identify z with all directed segments in the 

plane having the same length and sense as the vector from the origin ·to 

the point corresponding to z. This association between complex numbers 

and classes of directed segments will, on occasion, provide the most 

revealing interpretation of Co In other instances the point interpreta-

tion of z will be more appropriate. The symbol z will be used 

interchangeably to represent the number, the associated point, and the 

corresponding class of vectors. The context will clarify the meaning. 

The phrase 'the vector z' will be used to refer to any element of the 

class of vectors identified with z. 

The geometric representation of the elements of C as points of the 

plane, or vectors, is not revealing in itself. The aspect of these 

in't;erpretations that provides insight into the structure of C is a 

result o:f' the fact that to each of the fundamental operations on complex 
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numbers there corresponds a geometric construction. These constructions 

form the basis for the analytic geometry of the Argand plane. 

If z = x + iy and w = u + iv, then z + w = (x + u) + i(y + v) and 

it is easy to verify that the point representing z + w can be obtained 

from the points o,z,w by completing the parallelogram having Oz and Ow 

as a pair of adJacent sides. The fourth vertex of th!s quadrilateral is 

the point corresponding to z + w. Of course, this is essentially the 

parallelogram rule for finding the vector sum in the plane. See 

Figure 5.2. 

i(y+v} 

iv 

iy 

z+w 

u x x+u 

w 

z 

-w 

Figure 5.3. 

After observing that z - w = z + -w the construction of z - w can 

be accomplished using the method outlined for addition. Vectorially, 

z - w can be represented by a vector from the point w to the point z. 

See Figure 5.;. 

The construction for the product and quotient of the complex 

numbers is somewhat more complicated than that for addition or 

subtraction. To expedite the discussion of these it is desirable to 

consider an alternate representation of complex numbers. The reader is 

hopefully acquainted with plane polar coordinates, thus recognizing 



that if z = x + iy, then x = r cos 0 and y = r sine, where 

r = Jx2 + y2 = I zl and tan e = y/x. With this in mind 

z = r(cos 0 + i sine). The expression r(cos e + i sin 0) is called 

the polar :form of the complex number z. The angle 0 (determined only 

up to multiples of 2,c) is referred to as the argument of z, or briefly 

e = arg z. The relatio~hip between x,y,r,e is depicted in Figure 5.4. 

O+iO X 

Figure 5.4 

If z = r(cos 0 + i sin 0 ), -'JC :S 0 < 1t, then e is often denoted 

Arg z and is called the principal argument of z. Observe that for 

r > O and -'JC< 0 < ,c, every complex number determines a unique 

I 2 2 -1 x -1 y 
r = ~x + y and a unique e • cos - = sin -· In case z = o, then r r 

and z2 = r 2 (cos e2 + i sin e2 ), then z1 = z2 if and only if r 1 = r 2 and 

e1 = e2, w~ere equality of angles is up to multiples of 2,c. It will be 
•,,...._ 

apparent that '·eq_uality is used in this sense in the sequel. 
''·,., 

'-,., 

A third form 1s· frequently used for expressing complex numbers. 

If z = r(cos 0 + 1 sin 9), then z = re19 , where e19 = cos e + i sine. 
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The notation e19 for cos 9 + i sin 9 can be Justified, but the 

discussion is beyond the scope of this paper. 
19 The expression re is 

referred to as the exponential form of the complex number z. In case 

r = 1, z is called a turn. The letters sand twill be used to 

represent turns in the remainder of this work. 

To expose the relationship between the algebraic operation z•w and 

its geometric interpretation consider the product in polar form. 

Suppose z = r 1 (cos 9 + i sin 9) and w = r 2 (cos ¢ + i sin¢), where 

I zl ·= r 1 , lwl = r 2 , 9 = arg z and¢ = arg w, then 

z •w = rlr2{(cos 9 cos¢ - sin 9 sin¢)+ i(sin 9 cos¢+ cos 9 sin¢)} . 

From trigonometry it follows that 

and 

cos 9 cos¢ sin 9 sin¢= cos (9 + ¢) 

sin 9 cos¢+ cos 9 sin¢= sin (9 + ¢) . 

Therefore, Z•w = r 1r 2{cos(9 + ¢) + i sin(9 + ¢)}, or alternately 

i(e + ¢) = r1r2e . From this it is clear that arg Z•w = arg z + argw, 

where it is understood that the equality is valid within a multiple of 

2~. The following theorem is a formal summary of the foregoing 

discussion. 

Theorem 5.1. If z,w € C, z = r 1 (cos 9 + i sin 9 ), w = r 2 (cos ¢ + i sin¢), 

then z •w = r1r 2{cos (9 + ¢ )+ i sin(9 + ¢)}. In exponential form z•w = 

i (9 + ¢) r1r 2e • 

Geometrically the length of the vector z·w is equal to the 

products of the lengths of z and w. The angle between the directed 

segment z•w and the positive real axis is the sum of the angles arg z 

and arg w. Figure 5.5 illustrates the situation. 



z,w V 

z 

c:l+iO 

Figure 5.5. Figure 5.6. 

In addition to the preceding graphic relationship between factors 

and their product it is of interest to note that multiplication can be 

performed by purely geometric means. In particulat, if z and ware 

arbitrary points of the plane and c is the point corresponding to 

1 + iO, then the point corresponding to z •w is the third vertex of the 

triangte Owv which is directly similar to triangle Ocz. The essence of 

the construction is suggested by Figure 5.6. 

The following special produets merit some attention. If z is an 

arbitrary complex number and tis a turn, th~n the point corresponding 

to zt can be obtained by rotating z about O through arg t. In case z 

is arbitrary and r is a real complex number, then the point associated 

with rz lies on the ray Oz at a distance rlzl from o. In a vector 

setting the relationship would be one of rz being a scalar multiple of 

z. 

Since division is the inverse of multiplication the problem of 

determining v so that 

z = vw. Thus, if z = 

v = ~, w -/= o, is equivalent to finding v so that w 
r1ei91, w = r 2ei92, v = rei9 , then r and e must 



be Such that 191 i9 102 rr e1(0 + 02) r 1 e =re •r2e = 2 • However, this 

implies that r1 = rr2 and e1 = 9 + 02 • Since w 'f O, then r 2 > 0 and 

it follows that r = r 1/r2 and e = e1 - e2 • The following theorem 

provides a concise statement of this result. 
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Theorem 5.2. If z,w e; c, z = r1 (cos e1 + i sin (3i), 

rl 
w = r 2 (cos e2 + 1 sin e2 ) f o, then i = r/cos(e1 - e2 )+1sin(e1 - e 2 )}. 

z rl 1(91- 92) 
In exponential form - = ~ e , 

w r 2 

Corollary 5.2. - 1 -1 If tis a turn, then t = t = t • 

Geometrically the length of the vector z/w is the quotient of the 

lengths of the vectors z and w respectively. The inclination of vector 

z/w to the positive real axis is arg z - arg w. Of course the quotient 

can be constructed by essentially inverting the process of 

multiplication. These purely geometric means of determining the 

product and quotient will play no role in the sequel. The graphical 

relationship between the divisor., dividend, and quotient will prove a 

valuable intuitive guide and is illustrated in Figure 5.7. 

Figure 5.7 



Consider T 5.1 . in the case where z = w. If z = r(cos 0 + i sin 9) 

= w, t hen z •w = z2 = r 2 (cos 20 + i sin 29). This suggests the follow-

i ng t heorem, which is generally referred to as DeMoivres theorem. The 

pr oof i s within the grasp of the reader acquainted with mathematical 

i nduction arguments. [24] 

Theorem 5.3.A. 
10 If n is any integer and z = cos 0 + i sin 0 = e , then 

zn = (cos e + i sin e)n = cos n0 + i sin ne. In exponential form, 

n in0 
z = e 

The significance of DeMoivres Theorem becomes apparent in the 

f ollowi ng result . This is essentially a corollary of T 5.3.A. 

Theorem 5.4.B. I f a = r(cos 0 + i sin 0) and n is a positive integer , 

lli e + 2k1f e + 2krc) then the numbersr·,cos + i sin , k = 0,1,2,3, •• • ,n - 1 
n n 

n are the r oots of t he equation z = a . I.e., the nth roots of a. These 

number s ar e dist inct if a f o. 

Geometrically i t is clear from our identification of complex 

number s with poi nts of the plane that T 5.4.B indicates that the nth 

r oots of a F Oar e represent ed by n points spaced equally around a 

circle of radius lall/n. See Figure 5 .8 . for the ca~e where n = 5. 

Observe t hat i f a€ C, a F o, then there exist exactly two 

el ements z ,w € C such that z2 = w2 = a. Furthermore, it follows from 

T 5.4.B. t hat precisely one of these numbers will be such that 

O ~ Ar g z < ff• The symbol ..fa will henceforth be used to refer to this 

r oot of a. I n keeping with this convention ..fa will be used to denote 

the square r oot of a having an argument equal to Arg ..fa - ff• 
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a 

Figure 5.8. 

At this point, having considered the geometric interpretation of 

the funds.mental operations on complex numbers, attention is focused on 

certain linear aspects of the analytic geometry of the Argand plane. 

The point of departure for such a development is a recognition of the 

relationship between the cartesian coordinates of a point and the 

complex number identified with the point. Specifically, note that if 

(x,y) and z = x + iy are the respective labels for a point of the plane, 

then 
z + z z - z x = 2 and y = 21 • 

With this in mind the initial step in the direction of the complex 

analytic geometry of the line is the following theorem • 

. Theorem 5.5. The general equation of a line in the Argand plane is of 

the form az + ciz + 13 = o, where a F o and~ is real. This line contains 

~a the point ~. 
alal 



Proof. The general equation of a line in Cartesian coordinates is 

2 2 .1 ax+ by+ c = o, where a,b and care real and a + b ; o. Using the 

aforementioned relationship between ordinary rectangular coordinates 

and the associated complex number, one gets upon substitution 

(z + z) (z - z) ( -) ( )b(z - z) a 2 + b 21 + c = O, or a z + z + -1 (-i)(i) + 2c = o. 

The preceding can be written (a - ib)z +(a+ ib)z + 2c = O. Letting 
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a= a+ ib, ~ = 2c, this becomes the indicated equation . Thus, if tis 

a line in t he plane J, has an equation of the form az + az + ~ ::: 0, 

where a/= 0 and~ is real. Conversely, it is not difficult to see that 

an equation of this form can be written in the form ax+ by+ c = o, 
2 2 where a,b,c are real and a + b /= O. Thus, the corresponding locus is 

a line. That -f3a 2 is on the line follows by substitution. 
2lal 

Corollary 5.5. Every line in the complex plane has an equation of the 

form z - az - b = o, where a,b € c, lal = 1. 

Often in t his work no distinction will be made between a certain 

locus of points and the corresponding equation. For example, an 

equation of the f orm az + az + ~ = o, a/= o, ~ real, will be referred 

to, on occasion, as a line. 

The following result establishes the analytic condition for 

perpendicularity of lines in the Argand plane. 

Theorem 5.6. If t 1 :az + az + r = 0 and t 2:~z + ~z + p = 0 are lines in 

the complex plane, then t 1 is perpendicular to t 2 if and only if 

~ + 5i3 = o. 

Proof. It is clear from the demonstration of T 5.5. that if 
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Cartesian coordinate equations of t 1 and t 2 respectively, then 

a = a1 + ib1 and 13 = a2 + ib2 • For b1 f O f a2 , .e.1 ..L .e.2 if and only if 

al b2 - '5i" = a2 , or equivalently if and only if a1a2 + b1b2 = o. Now observe 

alternately if and only if .e.1 j_.e.2 . A similar discussion disposes of 

the case where b1 = 0 or a2 = O. 

Corollary 5.6. If .e.1 :z - mz - p = O and .e.2 :z - nz - q = 0 are lines, 

then .t1 .1. t 2 if and only if m = -n. 

The following definition extends the notion of perpendicularity 

to vectors in the natural way. 

Definition 5.1. If a,b € c, a~ O ~ b, then vector a is perpendicular 

to vector b if and only if t 1 is perpendicular to .e.2 , where .e.1 ,.e.2 are 

the lines passing through the origin containing a and b respectively. 

A nonzero vector a is perpendicular to a line .e. if and only if the line 

determined by a and O is perpendicular to J,. 

The ensuing analytic characterizations of the above notions prove 

useful. 

Theorem 5.7. If a,b G c, a f O ~ b, then vector a is perpendicular to 

vector b if and only if ab+ ab= o. 

Proof. Observe that O and a are on .e.1 : Iaz + iaz = O and O and b are on 
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.t2: Ioz + ibz = o. Thus, a _l_b if and only if .t1 .l .t2 , or alternately 

if and only if (ia)(Io) + (la)(ib) = o. However, (ia)(I'b) + (Ia)(ib) 

= ao + ab and the conclusion follows. 

Corollary 5.7. If a,b € C and a_i_ b, then r1a 1.. r 2b, for every nonzero 

real choice of r1 and r 2 • 

Theorem 5.8. If c € c, cf o, and .t:az + az + b = O is a line, then .t 

is perpendicular to C if and only if ac - ac = 0. 

Proof. Since O and care on .t:icz + icz = o, then cl..t if and only if 

a(ic) + a(ic) = o. But a(ic) + a(ic) = -i(ac - ac), hence c.l_J, is 

equivalent to ac - ac = o. 

Corollary 5.8. If .t:az + az + b = 0 is a line, then a J_ .t. 

The reader will note that C 5.8. together with T 5.5. indicates 

t hat .t :az + az + b = 0 is the line perpendicular to a and at a vector 

distance ( -b 2)·a from o. In view of this it is not difficult to see 
2lal 

t hat if .t1 :az + az + b = 0 and .t2 :az + az + C = 0, then the directed 

( C - b) distance from .t1 to .t2 is - 2 a. 
2lal 

In particular, if lal = 1, then 

-( c - b) t he vector distance from .t1 to .t2 is 2 a. Figure 5.~ illustrates 

t he situation where a is a turn. 

Having developed a set of necessary and sufficient analytic 

conditions for perpendicularity in the Argand plane, attention is now 

centered on the analogous results for parallelism. The proofs of these 

theorems are omitted, since they generally parallel the demonstrations 

of the preceding propositions. The reader will find it instructive to 
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fill in the details. 

S %az+az+c=O 

Figure 5.9. 

Theorem 5.9.c. If .tl:iz + az + b = O and .t2:cz +CZ+ d =Oare lines 

in the complex plane, then .t1 is parallel to .t2 if and only if 

ac - ac = o. 

Corollary 5.9. If the equations of lines t 1 and .t2 respectively are 

written in the form z - mz - p = O and z - nz - q = o, then .t1 I J .t2 

if and only if m = n. 

Parallelism is extended to vectors in the following definition. 

The reader should note that this characterization of parallel vectors 

is not the usu.al one. This anomalous definition causes no difficulty 

in this work and is expedient because it leads to a particularly simple 

a.naJ.ytic characterization of parallelism. 
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Definition 5.2. If a,b € c, a r Orb, then vector a is parallel to 

vector b if and only if o, a, and bare collinear. A nonzero vector a 

is parallel to a line t if and only if the line containing O and a is 

parallel to t. 

Theorem 5.10.D. If a,b € c, a f Of b, then in order that vector a be 

parallel to vector bit is necessary and sufficient that ao - ab= o. 

Corollary 5 .10. If a, b € C and a 11 b, then r 1 a 11 r 2b for every nonzero 

real r1 ,r2 • 

Theorem 5.11.E. If a€ c, a f O and t:cz + cz + d = 0 is a line, then 

a is parallel to J, if and only if ac + ac = o. 

Corollary 5.11. If t:cz + cz + d = o is a line, then ic I It. 

Observe that in view of T 5.2. and T 5.11.E. it follows that if 

t 1 :az + az + b = 0 and t 2 :cz +CZ+ d = 0 are lines, then the directed 

ia angles between t 2 and t 1 (in that order) are given by Arg Ic and 

-ia 
Arg ic· 

ia a 
Since Arg ic = Arg c = Arg ac, these angles are alternately 

denoted Arg ac and Arg(-ac). Figure 5.10. illustrates the situation 

for lines through the origin. 

There is one remaining result of a linear nature that provides 

some insight into the work in Chapter VI. The proposition involved is 

contingent on the concept of proJection. To introduce the notion in a 

complex setting consider a nonzero vector band a line t parallel to 

the vector c, Without loss of generality one can suppose lcl = 1. 

See Figure 5.11. In the traditional sense of the word the proJection 



Ji. : az+az+b""O 

Arg(-ao) 

. Figure 5.10. 

of b on J, would be lb cos 9 I, where 9 = Arg c - Arg b. In a vector 
·.'· 

treatment of geometry (lbl cos 0)c would be the projection of b on J,. 

Interestingly enough the foregoing can be expressed somewhat more 

elegantly in our complex setting. 

9=.A.rg( c -.A.rg(b) 

Figure 5.11. 
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Theorem 5.12. If b,c 6 c, b -/: o, lei = 1, and t is a line parallel to 

c, then the vector proJection of b on J. is 

c~+ b 
2 • 

Proof. Let 0 = Arg c and ¢ = Arg b, then c = cos 9 + i sin 0 = e19 • 

Thus, the vector proJection of b on J. is [lbl cos(9 - ;)le = 

lbl {~os(9 - ~) cos 9 + 1 cos(9 - ~) sin 9}. Using the appropriate 

trigonometric product identities, the preceding can be written 

':'{[cos¢+ c6s(29 - ¢)] + i[sin(29 - ¢) - sin(-¢)]} 

= 1:1 {[cos(29 - ¢) + i sin(29 - ¢)] + [cos ¢ + i sin¢]] 

l'bl ( 1(29 - ¢) i~} = ~ e + e 

I b I( 2 D. ...E..-} 
= T C O lbl + lbl 

c2ti" + b 
= --2-· 

Although the foregoing result is not esiaential to the proof of 

any of the theorems in Chapter VI the reader will find it invaluable 

when seeking a geometric interpretation of certain propositions in 

that section .. 



CHAPTER VI 

THE ISOMErRIEB OF '.J:HE ARGAND PLANE 

The current chapter is directed toward a systematic analytic 

development of the Euclidean transformations. The significance of 

these mappings in plane geometry is widely recognized. The intent here 

is not to dwell on the geometric aspects of these transformations, 

rather to focus on the problem of algebraically developing the relation­

ships between them in a complex setting. The treatment is not 

exhaustive in this regard. In particular, attention is given to those 

results which lend themselves to a logical exposition of the fundamental 

nature of reflections. 

The informed reader will recognize that few of the propositions in 

this chapter are truly original. However, the literature suggests that 

these results have been given only cursory attention in the setting in 

which they appear here~ [3][13] It is the writers contention that the 

elegance afforded by a complex analytic treatment justifies their 

inclusion. In addition to the foregoing, the well versed reader will· 

observe that the notion of a group could have been utilized to unify 

certain aspects of the discussion. This notion was not introduced in 

an effort to keep to a minimum the number of concepts marginally 

related to the central theme. Finally, although the allied geometry is 

given little attention in this paper, the reader will find it instruc­

tive to interpret the various propositions in this chapter geomet:d.cal.ly. 
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The formal development is initiated by giving careful attention to 

the technical terms used rather glibly in the preceding paragraphs. 

Definition 6.1. A function f:A -·Bis a transformation if and only if 

f is one to one and onto. 

In this paper the only transformations of interest will be those 

having the complex field as domain and range. These will be referred 

to as complex transformations. The reader will note that if f and,g 

are complex transformations, then the composition, f.g, is a complex 

transformation. If h = f•g, then h will be referred to as the product 

off and g, or variously f and g will be called factors of h. In 

addition to the foregoing, it is clear that if f,g a.nd hare complex 

transformations, then (f•g)•h is well defined and (f•g)•h = f.(g•h). 

-l Furthermore, since f is both one to one and onto c, then f exists and 

is itself a complex transformation. Finally, it is not difficult to 

show that (f•g)-l = g-l.f-1 • 

In general the transformations of interest are those which have an 

invariant feature. In particular, attention here is focused on those 

complex transformations that preserve distance in the absolute value 

sense. The following definition presents the concept formally. 

Definition 6.2. If f:C - C, then f:is an isometry if and only if 

jf(z1 ) - f(z2 )1 = lz1 - z21, for every z1,z2 € C. 

The following two results are basic to any discussion of 

isometries. The proof of each is almost immediate. 

Theorem 6.1. If f and g are isometries, then f•g is also an isometry. 



Proof. f•g is a well defined complex transformation since f and g are 

complex transformations. Furthermore, as a result of the fact that f 

and g are isometries 

6 -1 Theorem .2. If f is an isometry, then f is an isometry. 

Proof. The details are omitted. 

In light of the descriptive nature of definition 6.2. it is 

reasonable to seek a constructive characterization of the isometry 

concept. The following theorem provides this. 

Theorem 6.3. f:C ~ C is an isometry if and only if f(z) = az + b or 

f(z) = az + b, where a,b EC and lal = 1. 

Proof. The sufficiency is not difficult. If f(z) = az + b, where 

a,b e: c, lal = 1, then it follows readily that f is a one to one mapping 

of C onto C. Furthermore, lt(z1 ) - f(z2 )j = I (az1 + b) - (az2 + b)j 

= ja(z1 - z2 )j = lallz1 - z21. Since a is a turn the distance preserv­

ing quality off is apparent. A similar discussion disposes of the 

case where f(z) = az + b, a,b' c, lal = lo 

Now, suppose f is an isometry, th.en lf(z) - f(l)I = jz -11, for 

every z 6 c. This implies the identity lf(z) - f(l)l 2 = lz - 11 2 • 

. Using T 3.20.E. it follows that (f(z) - f(l)](f(z) - f(l)] = 

[z - l][z - l], or f(z)f(z) - f(z):f(I) - f(z)f(l) + f(l)f(l) 

= zz - z - z + 1, or 

(1) lr(z)j 2 - f(z):f(I) - f(z)f(l) + lf(l)j 2 = lzl 2 - z - z + L 
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In the event that f(O) = o, then lf(z)I = lzl, or a alternately 

jf(z)l 2 = lzl 2 • Thus, when the origin is preserved under f equation 

(1) can be written -f(z)f('l) - f(z)f(l) = -z - z, or 

(2) f(z)f(l) + 'f(z)f(l) = z + z. 
Since f(l)f(z) = f(l)f(z), then (2) coupled with T 3.17.n. implies that 

(3) Re[f(l)f(z)] = Re(z), for every z € C. 

Also note, however, that under the assumption that f(O) = 0 it follows 

that lf(l)f(z)l 2 = lf(l)l 21f(z)l 2 = lf(z)l 2 = lzl 2 • The fact that 

lf(l)f(z)l 2 = lzl 2 is equivalent to the statement tha·I; 

(4) 2 2 2 2 [Re(f(l)f(z))] + [Im(f(l)f(z))] = [Re(z)] + [Im(z)] • 

utilizing the previous observation that Re(f(I')f(z)) = Re(z), then (4) 

can be used to assert that [Im(f(l)f(z))]2 = [Im(z)]2, or 

(5) Im(f(l)f(z)) = .:!:. Im(z). 

Identities (3) and (5) combined imply that 

(6) f(l)f(z) = z or f(l)f(z) = z. 

As previously noted, under the assumption that the origin is mapped 

onto itself it follows that f(l) is a turn-. Thus, [f(l)r1 = f(l) 

= f(l), by c.5.2. Using this fact the equalities (6) can be written 

(7) f(z) = f(l)z or f(z) = f(l)z. 

Hence if f(O) = o, the result is apparent. 

Now, suppose that f:C-+ C is a: distance preserving transformation 

and f(O) ~ o. Consider the function g:C ~ C such that g(z) = z - f(O). 

g is an isometry from the sufficiency argument, hence g 0 f(z) = 
f(z) - f(O) is an isometry by T 6.1. Clearly g•f(O) = o. Thus, it 



follows that g•f(z) = [g•f(l)]z, or g•f(z) = [g•f(l)]z. But, g•f(z) 

= f(z) - f(O). Therefore, 

f(z) - f(O) = [f(l) - f(O)]z or f(z) - f(O) = [f(l) - f(O)]z. 

After adding f ( 0) to ea.ch member of the foregoing equations and 

observing that lt(l) - f(o)I = 11 - ol = 1, the conclusion follows. 
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In view of the geometric interpretations of addition and multipli­

cation as outlined in Chapter V it is not too surprising that the 

isometries take the two general forms exhibited in T 6.;. Of course, 

the reader has observed that it requires some algebraic finesse to 

establish a result that, at least in retrospect, is geometrically 

apparent. 

Theorem 6.;. suggests an initial classification of isometries 

according to the form of the functional relationship. This turns out 

to be appropriate and the following definition is reasonably well 

established. 

Definition 6.;. A func~ion f:C ~ C of the form f(z) = tz + b, where 

t,b; C is called a direct isometry. Any isometry that is not direct is 

opposite. 

The above terminology has its roots in the elusive concept of 

orientation. A mathematically exact description of this notion is not 

appropriate here. 

The reader is perhaps familiar with the following expression. 

Definition 6.4. If f is an isometry and z « C such that f(z) = z, then 

z is called an invariant point under f. There is an isometry under 

which every point is invariant, namely f(z) = z. This function will be 
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referred to as the identity, or variously the trivial isometry. 

It turns out that an examination of invariant points leads to an 

appropriate subclassification of direct isometries. The following 

simple result exposes the conditions under which a direct isometry has 

an invariant point. 

Theorem 6.4. If f(z) = tz +bis a non-trivial isometry, then f has an 

invariant point if and only if t fo 1. For a nonidentical direct 

b 
isometry there is at most one such point, namely 1 _ t • 

Proof. A point z is preserved under f if and only if z = tz + b. 

However, z = tz +bis equivalent to (1 - t)z = b, and where bf O this 

has a solution if and only if 1 - t f o. It is clear that the number 

b ..--..-- is the only root when a solution exists. 
1 - t 

Geometric considerations suggest the appropriateness of the 

following terminology. 

Definition 6.5. A distance preserving transformation of the form 

f (z) = z +bis called a translation through b, or simply a translation. 

I t should be noted that , aside from the identity transformation, 

t he translations are precisely t hose direct isometries that have no 

invariant points. In addition, it is not difficult to see that if f is 

a translation through b, then f-1 (z) = z - b. Furthermore, it is almost 

immediate that the product of two translations is a translation. On 

occasion, the suggestive notation T(b) will be used to refer to the 

function f(z) = z + b. Using this notation it is apparent that 

[T(b)]-l = T(-b) and T(a)•T(b) = T(b)•T(a) = T(a + b). The latter 
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result is stated as a theorem for reference pusposes. 

Theorem 6.5. If f and g are translations through a and b respectively, 

then f•g is a translation through a+ band f•g = g•f. 

In the event that a function of the form f(z) = tz + b has a 

b single fixed point c = 1 _ t, a little algebra can be used to verify 

that f(z) = t(z - c) + c. It is not difficult to see that such a 

representation off is unique. In this paper the foregoing form of 

such a transformation will be called canonical. The canonical form of .,. 

a direct isometry having exactly one invariant point indicates that 

such a function is the product of T(-c), g(z) = tz, and T(c). Since 

t ~ 1 is a turn, the geometric interpretation of multiplication given 

in Chapter V suggests that g might be termed a rotation about the 

origin. The foregoing observation and the fact that f = T(c)•g•T(-c) 

indicates that f might appropriately be called a rotation about the 

point c. This is in keeping with the following definition. 

Definition 6.6 • .A direct isometry f is a rotation if and only if f has 

an invariant point. In case f(z) = tz + b has exactly one fixed point 

c, f will be called a rotation of arg ta.bout c. 

The notation R(t,c) will be used to denote the rotation of arg t 

about c. With this convention the canonical form of a rotation f, of 

arg t about c, becomes f = T(c) •R(t,O) •T(-c). Conversely, it is clear 

that every product of the form T(c)•R(t,O)•T(-c) is a rotation of ~rg t 

about c. These observations.are summarized in the next theorem. 

Theorem 6.6 • .A nontriviia,1 direct isometry f is a rotation of arg t 



about c if and only if f = T(c)•R(t,O)•T(~c). 

Observe that the identity transformation is the only direct 

isometry that is both a rotation and translation. Furthermore, a 

little computation reveals that if f(z) = tz +bis a rotation, then 

f-1 (z) = tz - tb. Additional computation shows that the canonical form 

of f-1 , for a nonidentical rotation f, is T(c)•R(t,o)•T(-~), where 

b -1 c = 1 _ t • Thus, if f is a rotation of arg t about c, f is a 

rotation of -arg t about c. 

The following special type of rotation merits individual 

attention. 

Definition 6.7. A rotation of the form f(z) = -z + 2b is called a half 

turn about b. 

In keeping with the ,earlier convention a half turn about b can be 

written R(-1,b). On occasion it will prove more suggestive to write 

H(b) in place of R(-1,b). 

The following result establishes an interesting relationship 

between translations and half turns. 

Theorem 6.7. If f and g are half turns about a and b respectively, 

then f•g is a translation through 2(a - b). Symbolically 

H(a)•H(b) = T(2[a - b]). 

Proof. f(z) = -z + 2a, g(z) = -z + 2b, hence f•g(z) = -(-z + 2b) + 2a 

= z + 2(a - b). Therefore, f•g = H{a)•H(b) = T(2[a - b]). 

The foregoing theorem suggests the possibility of factoring any 

translation into the product of two half turns. This can be done and 



it is easy to see that such a decomposition is not unique. The next 

proposition, which is essentially a corollary of T 6.7., establishes 

the nature of such a factorization. 
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Theorem 6.8. If f(z) = z + a, then f can be factored into the product 

of two half turns. Specifically, T(a) = H(b)•H(c), where b = c +;. 

Proof. Apply T 6.7. 

The reader has perhaps observed that the set of direct isometries 

is closed under composition. With this in mind it is clear that 

product of two rotations is either a rotation or translation. Theorem 

6.7. indicates that the set of rotations is not closed under composi-

tion, although the set of translations is (T 6.5.). The conditions 

under which the product of two rotations is again a rotation are 

exhibited in the following proposition. 

Theorem 6.9. If f(z) = tz + a and q(z) = sz +bare rotations, then 

-f•g is a translation or nontrivial rotation according to whether t = s 

or not. 

Proof. f•g(z) = t(sz + b) +a= (ts)z + (tb + a). Thus, f•g is a 

translation if and only if ts= 1. However, ts= 1 is equivalent to 

t = s as a result of the fact thats is a turn. Since the product is 

either a translation or nontrivial rotation this completes the 

demonstration. 

The preceding result suggests the possibility of generalizing 

T 6.8. This is possible, but there will be no reason to state this 

formally. The reader will do well to consider the geometry associated 



with the two alternatives in T 6.9. 

Attention is now centered on the opposite, or indirect, distance 

preserving complex transformations. An initial observation in this 

direction is that the composition of two opposite isometries is a 

direct isometry. In particular, if f(z) = tz + a, g(z) == sz + b, then 

f•g(z) = t(S'!. + b) +a= (ts)z + tb + a. Again, it is an examination 

of invariant points that leads to the appropriate classification of 

opposite isometries. 

Theorem 6.10. If f(z) = tz + a, then a necessary and sufficient 

condition for the existence of an invariant point under f is that 

ta + a == o. 

Proof. In case z is an invariant point under f, then z == tz + a. 

However, z = tz + a implies that z = tz + a. Substituting tz + a 

for z in the former equation yields z = t(tz +a)+ a, or 

z = (tt)z +ta+ a= z +ta+ a. From this it follows that ta+ a= O 

and the necessity is established. 

To see that the condition is sufficient observe that if 

- a a a ta + a ta a ta+ a= o, then 2 = 2 + 0 = 2 + 2 = 2 + a.= f(2). In other 

a 
words 2 is an invariant point under f. 

Although the foregoing theorem exposes a simple condition which 

characterizes point invariance under an opposite isometry, it is not 

too geometrically revealing. The following result sheds some light 

in this direction. 

Theorem 6.11. If f(z) a tz + aj a F o, then ta+ a= 0 if and only if 



a is perpendicular to t:J:t. z + J:t z = o. When f has an invariant 

point, then the set of all such points is the line 

m:..r::; z + ..[::; z - -J-t a = o. 

Proof. ta+ a= 0 implies that -ta - a= o, or alternately, 

(1) .J:t J:t a - a = o. 

Since t 1.s a turn it follows that -t and ..f":t are also turns. Thus, 

1 - -
(J-t)- = .J:t. Multiplying (1) by J:t and applying C 5.2. yeilds 

(2) J:t a - J--:;; a = o. 
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But, the preceding equality is precisely the condition required for the 

perpendicularity o:f' a and J.. The converse follows by essentially 

reversing the foregoing steps. 

When ti + a = o, then {z I z = tz + a} is the set o:f' invariant 

points. However, Z. = tz + a can be written 

(3) z - tz - a= o. 

Again using the fact that J:t is a turn and multiplying both sides of 

(;) by J:t produces 

(4) ,r.:; z + J:tz - J:t a= o. 

Now, the preceding is the equation of a line in the Argand plane if 

J:t a is real. But, T 3.17 .D. insures that J-t a is real if 

.J:; a - J-t a = o, and this was established in (2). Therefore, 

m:..f":t z + J-::; z - J:t' a = 0 is the set of points preserved under f. 

The foregoing theorem suggests the appropriateness of the 

following terminology. 



Definition 6.8. An opposite isometry f is a line reflection if and 

only if f has an invariant point. 

In light of the proof of T 6.11. and the observations following 

Corollaries 5.8 and 5.11, it can be seen that the invariant line m, 

under f(z) =ti+ a, is parallel to i~-t and at a vector distance 
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~ from O. Since i J:t 11 .ft, one can also write m I l .ft. Moreover, a 
2 

line tis determined if a vector parallel to the line is given and a 

point through which t passes is knqwn. As a result of this it is 

fitting to denote the reflection in m by E(..ft, i>· More generally, 

the reflection int, where l II c and passes through d, will be 

symbolized by E(c,d) .. Using this notation it is not too difficult to 

see that E(..ft, ;> = T(i)·E(..ft,o)•T(- ;).. To establish the correspond­

ing factorization in the more general case it helps to first verify 

that if t:az + az + b = 0 is a line, then the reflection int is the 

() a- b transformation f z = - = z - =. It now follows that the reflection 
a a 

in the line m:ic(z - d) + ic(z - d) = o, parallel to c and passing 

through d, is f(z) = ~(z - d) + do 
C 

From the foregoing it is relatively easy to see that 

E(c,d) = f = T(d)·E(c,o)•T(-d). Conversely, it is almost immediate 

that every product of the :form T(d)•E(c,o)•T(-d) is a line reflection. 

These observations result in the following characterization o:f an 

opposite isometry having an invariant point. 

Theorem 6.12. An opposite isometry :f has an invariant point if and 

only if f = T(d)•E(c,O)•T(-d). 

Proof. The argument is sketched in the preceding para.graph. 
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In general the product of T(b) and E( c, d), where b 1.. c, is a line 

reflection. This result concerning the composition of reflections and 

translations is manifest in the following proposition. 

Theorem 6.13. The product of a translation through b, b IO, and a 

reflection in J,, in either order, is a reflection if and only if b 1- J.,. 

Specifically, T(b)·E(c,d) = E(c,d + b/2), if b l..c. 

Proof. Let E(c,d) be a reflection in J, I I c. Now, by the discussion 

following D 6.8. E(c,d) = f, where f(z) = ~(z - d) + d. Also g = T(b), 
C 

where g(z) = z + b. Consequently, g•f(z) = ~(z - d) + d + b = ~ z 
C C 

-c -+ - d + d + b. Since g•f is an opposite isometry, then in accordance 
C 

with T 6.10. it will be a reflection if and only if~[-~ d + d + b] 
C C 

-C - C [ -c - ] -C - C -
+ - d + d + b = O. However, = = d + d + b + = d + d + b = -d + - d 

C ' C C C C 

+ ~ ~ + -~ d + d + b = ~ o + b. Therefore g•f is a reflection if and -C C C 

C -only if= b + b = o, or alternately if and only if cb + cb = o. Howeve~ 
C 

the latt er is precisely the analytic condition for the perpendicularity 

of band c. Since c I I J, it follows that g 0 f is an opposite isometry 

with a fixed point if and only if b J_ J,. 

To see that T(b)•E(c,d) = E(c,d + b/2) when b j_.t, note that 

g•f(d + b/2) = d + b/2, and that the invariant line under g•f is paral­

lel to .t. 

The demonstration is similar when f•g is considered. 

Before outlining the principal composition theorems for reflections 

a couple of other observations merit some attention. First, as one 
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might anticipate, every reflection is its own inverse. This can be 

readily verified by direct composition. Second, although the general 

significance of the condition ta+ a= O is apparent in T 6.10.-T.6.1}., 

one can give a direct geometric interpretation of this equality. In 

particular, if f(z) = tz + a is a reflection, then ta+ a= 0 and 

t :J:t z + J:t z - J:t a. = O is invariant under f.. In keeping with 

C 5.11. and the projection theorem at the end of Chapter V, it follows 

ta+ a that· 2 is the projection of a on ..e. Appropriately this is zero 

when a is perpendicular tot. 

The reader will recall that a primary objective of the current 

chapter was to give a motivated exposition of the fund.a.mental nature 

of reflections. The following two results are pivotal in this regard. 

Theorem 6.14. The product of two reflections is a translation or non-

trivial rotation according to whether the inV1:1.ria.nt lines a.re parallel 

or intersect in a single point. 

Proof. Let f(z) = tz + a and g(z) = sz + b be reflections in ..e1 and 

t 2 respectively. Then f•g(z) = t(sz + b) +a= (ti)z + tb + a, which 

is a direct isometry. Thus, f•g is a translation or nontrivial 

rotation depending on whether ts= 1 or ti~ l respectively. 

In case ts= 1, then t = s, since sis a turn. However, 

.t1 : z - tz - a = 0 and .t2: z - sz - b = o, and in keeping with C 5.9. 

t 1 II ..e2 if and only if t = s. Therefore, f•g is a translation if 

and only if t 1 I I t 2 • This~,ssentially completes the proof, since if 

t 1 and t 2 a.re not parallel, then they intersect in a single point and 

it follows that t f s, or alternately ti~ 1. 
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Theorem 6.14 suggests the possibility of factoring any direct 

isometry into the product of a pair of line reflections. The validity 

of this conJecture becomes apparent in the following theorem. 

Theorem 6.15. If his a direct isometry, then h can be factored into 

the product of reflections in a pair of parallel or intersecting lines 

according to whether his a translation or nontrivial rotation. 

Proof. In case h(z) = z + c consider f•g, where f and g respectively 

are reflections in tl:cz +CZ+ a= 0 and t2:cz +CZ+ b = o. Here b 

is an arbitrary real number and a= b - lcj2. By an earlier discussion 

a .c b c ( c _ ~c) f(z) = - ; z - = and g(z) = - = z - =. Thus, f•g(z) = - = -= z 
C '· C C C C C 

- ! . = z + (o - a) However, D - a = I C 12; hence f. g ( z ) = 
C C 

lcl 2 
z + - = z + c. Therefore, h = f•g. 

C 

Now, suppose h(z) = az + c, jal = 1, a r 1. 
C 

Let u = l - a 

see that h can be factored into reflections consider the isometries 

To 

g(z) = t(z - u) + u and f(z) • s(z - u) + u, where st= a. In light of 

T 6.12. f and g are reflections. By direct composition f•g(z) 

= s [t(z - u)+u-u] + u = (st)z - stu + u. But, st= a, hence f•g(z) 

= az - au+ u = a(z - u) + u. However, the last expression is 

precisely the rotation h in canonical form. Consequently, h = f•g. 

Finally, since f•g is not a translation the lines of reflection must 

intersect by T 6.14. 

Although T 6.15 is algebraically complete, it requires some 

inspection to gain insight into the geometry of the indicated products. 
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Of course, there are certain results in the preceding chapter that the 

reader will find pertinent to a geometric interpretation of T 6.15. 

However, perhaps the best approach is the synthetic one, with subse­

quent reference to the analytic results of Chapter V. In any event, 

one should observe that the factorization of a direct isometry into a 

pair of reflections is not unique. This is suggested algebraically by 

the arbitrariness of one of the constants in each of the factorizations 

outlined in the proof of T 6.15. Specifically, in the case of a 

translation any line m perpendicular to the translation vector c can be 

selected as the initial line of reflection. The second line must be 

the image of m under a translation through c/2. In factoring a rota­

tion about u, of arg a, lal = 1, into reflections, any line t 

containing u can be picked for the initial invariant line. The second 

line of reflection must be the image oft under a rotation about u 

through 1/2 arg a. Symbolically these factorizations can be written 

T(c) = E(ic,a)•E(ic,b), where a= b + c/2, and 

R(a,u) = E(s,u)•E(t,u), wheres= vfa. 

The preceding observations terminate the investigation into the 

matter of decomposing direct isometries into a product of reflections. 

Attention is now focused on the opposite isometries having no fixed 

points. 

Definition 6.9. If f(z) = tz + a, then f is a glide reflection if and 

only if ti+ a f o. 

The appropriateness of the foregoing terminology becomes apparent 

in the following proposition. 
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Theorem 6.16. If f(z) = tz + a is a glide reflection, then f = g•h 

where his a line reflection and g is a nontrivial translation parallel 

to h. 

Proof. Write f(z) = (tz - [ta 2 a])+ ta~ a= (t(z - a/2) +a/2)+t~+a 

Let h(z) = t(z - a/2) + a/2 and g(z) = z + 
ta+ a 

2 
Then his a 

reflection by T 6.12. Furthermore, the invariant line under his 

J, :..f::t z + .f-t z - .f":t a = O. Thus, it remains to show that the non-

ta + a -zero vector 2 is parallel tot, or alternately that -ta - a is 

parallel tot. T 5.11.E. and a little algebra can be used to verify 

this . 

Since the product of a translation and an opposite isometry is 

again an opposite isometry, T 6.13. can be used to establish the 

converse of the preceding result. 

In connection with glide reflections it is not difficult to see 

how to construct the isometry that corresponds to a reflection in a 

given line followed by a nontrivial translation parallel to that line. 

Specifically, the synthesis of such a f'unction could be accomplished 

by constructing the appropriate line reflection by the procedure out-

lined earlier, then composing this with the given translation. It is 

of note that such a product can be shown to be commutative. 

In reflecting on the proof of Theorem 6.16 the reader might well 

seek some motivation for the factorization given. The interpretation 

f ta+ a 
o 2 outlined in the discussion preceding T 6.14. proves 

enlightening in this regard. 
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Theorem 6.16 not only serves to disclose the geometric nature of 

a glide reflection, but it is the final result needed to exhibit the 

fund.a.mental character of line reflections. In particular, the follow­

ing proposition is a consequence of T 6.15. and T 6.16 . 

Theorem 6.17. Every isometry f can be expressed as the product of no 

more than three line reflections. If f has an invariant point, then 

no more than two factors are required. 

Proof. Theorem 6.15 insures that every direct isometry can be so 

factored. Theorem 6.16 implies that a glide reflection can be written 

as the product of a reflection and translation. But the translation 

can be factored into two reflections, hence the glide reflection can be 

written as the product of the three reflections. A reflection trivially 

satisfies the conclusion, thus the first part of the theorem is 

established. The second part is immediate, since only the glide 

reflection requires three such factors and it has no invariant points. 

The foregoing is the focal point of the chapter in view of the 

stated obJectives. However, there is one additional result of a 

similar type that brings to light the fundamental nature of reflections 

in a broader sense. The term reflection used in the more encompassing 

sense refers to any isometry of the form f(z) = tz + a, ta+ a= o, or 

f(z) = -z + 2b. The reader undoubtedly recognizes the appropriateness 

of calling a transformation of the latter form a reflection, or more 

specifically a point reflection. Such terminology was not adopted in 

this paper to eliminate any ambiguity in' the use of the term 

reflection. Of course this convention will be continued, nevertheless 



the following results appear to be more in keeping with the spirit of 

the chapter if both half turns and line reflections are viewed as 

reflections. 

In connection with the thought posed in the preceding paragraph, 

it is clear in light of T 6.17. that any interesting result regarding 

the decomposition of isometries into reflections, in the broader sense, 

must involve no more than two factors. Furthermore, previous considera­

tions indicate that, with the exception of glide reflections, every 

isometry can be written as a product of no more than two line 

reflections. Thus, to establish the possibility of factoring every 

isometry into one or two reflections, in the more encompassing sense of 

the word, it remains to represent a glide reflection as the product of 

a half turn and line reflection. A reasonable approach to the problem 

of determining whether such a decomposition exists, would be to 

multiply a line reflection and half turn and see if the product could 

take on the form of a glide reflection. To this end consider the 

following theorem. 

Theorem 6.18 . The product of a half turn about band a reflection in 

..tis a glide reflection if and only if bis not on ..t. 

Proof. Let f(z) = tz + a and g(z) = -z + 2b be the given reflection 

and half turn. Note that the invariant line under f is ..t: z -tz - a = o. 

Now, f•g(z) = t(-z + 2b) +a= (-t)z + 2tb + a. Clearly f•g is an 

opposite isometry, thus it is a glide reflection if and only if 

-t(2tb +a)+ (2tb + a) f o. Moreover, -t(2tb +a)+ 2tb + a 

= -2b - ta+ 2to + a= -2b - ta - a+ 2tb + 2a. But, -ta - a= o, 
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hence -t(2tb +a)+ 2tb +a= -2b + 2tb + 2a. From this it follows 

that f.g is a glide reflection if and only if -2b +2th+ 2a f O, or 

equivalently if and only if b - tb - a f O. However, b - tb - a f O is 

precisely the condition that b not be incident with L. 

In addition to being a logical antecedent of any proposition 

regarding the desired factoring of a glide reflection, the foregoing is 

of note in another respect. In particular, observe that multiplying a 

half turn and reflection always results in an opposite isometry, thus 

in light of T 6.18. such a product will be a reflection if and only if 

b lies on L. Hence a corollary of the foregoing theorem provides a 

necessary and sufficient condition for incidence of a point and line in 

terms of a product of reflections (in the broad sense). Actually the 

condition can be refined somewhat, by verifying that the product of a 

half turn and a reflection is a reflection if and only if it is 

commutative. At any rate this result is one of several such proposi-

tions which afford a characterization of a geometric notion in terms 

of a condition on the product of half turns and reflections. [32] 

These are not developed here. 

The following theorem provides the answer to the question which 

precipitated T 6.18. 

Theorem 6.19. If f(z) = tz + a, ta+ a f o, then f = g•h, where his 

a half turn and g is a reflection. 

P:roof. Consider g(z) = -tz +band h(z) = -z + 2c, where bis such 

~ (b - a) that -to+ b = 0 and c = 2t • Then by direct composition 

g•h(z) = -i(-z + [b ta])+ b = tz - b +a+ b = tz + a. 
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The appropriate factors in the foregoing were suggested by the 

demonstration of T 6.18. Again the decomposition is not unique. 

Geometrically the preceding is not very revealing, but the reader 

should recognize that the choice of -t as the coefficient of z, is 

equivalent to selecting t, the invariant line under g, perpendicular 

tom, the reflection line under f. The arbitrary nature of b 

corresponds to the fact that, aside from the aforementioned perpendi-

cularity condition, the choice of l is arbitrary. The restriction on 

c is somewhat more obscure, but it can be shown to imply that c is 

d the point on mat a vector distance - 2 from the point of intersection 

oft and m. Here dis the translation vector under f. In spite of the 

interesting geometric implications of T 6.19. it was developed here 

primarily because it leads to the following result. 

Theorem 6.20. Every isometry can be written as the product of no more 

than two reflections (point or line). 

Proof. The result is apparent in view of T 6.17. and T 6.19. 

The foregoing proposition, coupled with T 6.17., firmly 

establishes the fundamental character of point and line reflections. 



CHA.Pl'ER VII 

A FINAL ANALYSIS 

Summary 

The salient features of this paper were sketched in Chapter I. 

However, there are certain aspects of the presentatd.on which are more 

appropriately examined in retrospect. In Chapter II the following 

three things are apparent. First, the development was such that the 

disparity between mathematics in the making and the formal presentation 

of the subJect was brought to the fore. Second, the discussion was 

encompassing enough to provide a historical framework for all subse­

quent aspects of the work. Finally, some attention was given to 

external applications of complex numbers. Chapter III provided a 

rigorous development of the complex field motivated by the classical 

desire for algebraic completeness. Following certain preliminary 

results the basic properties of the real number system were exposed in 

D 3.7. Comparative reference was made to these properties after the 

development of the complex field. 

In Chapter IV the possibility of constructing a field extension of 

R, satisfying conditions markedly different from those of the preceding 

chapter, was explored. The endeavor seems appropriate from two stand­

points. First, it provides a glimpse of a currently fertile branch of 

mathematics, distinct from complex analysis, which evolved out of mans 
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investigation of complex numbers. Second, after viewing the complex 

algebraic treatment of the isometries of the plane outlined in Chapter 

VI the geometric significance of constructing a higher dimensional 

field extension of R becomes apparent. The results of Chapter IV 

suggest that any algebraic treatment of the isometries of higher 

dimensional Euclidean spaces must be based on number systems which fail 

to satisfy certain of the field properties. Simultaneously these 

theorems serve to establish the unique position of the complex number 

system as a finite field extension of R. Thus, Chapters III and IV 

point to the peculiar position of the field C from two different 

vantage points. 

Chapter V provided a desirable link between the arithmetic opera­

tions on C and the geometry of the plane. These results are instrumen­

tal in interpreting the propositions in Chapter VI. Perhaps the most 

significant aspect of Chapter VI is that it utilizes complex numbers to 

produce an algebraic model of a geometric notion. 

Educational Implications 

It often happens that the sincere student of mathematics is 

formally introduced to the complex field in a graduate level course in 

complex analysis. In part, this appears to be due to the fact that 

little has been written on the subJect with the undergraduate in mind. 

It is anticipated that this paper will contribute to the literature by 

making available a compendium of results about the complex field, which 

are accessible to one having the mathematical maturity of a good high 

school senior or undergraduate. It is foreseeable that the audience 

might well include secondary teachers of mathematics. It is hoped that 
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an acquaintance with the development in this thesis will not only leave 

the reader better informed regarding the complex field, but promote a 

continuing interest in mathematics. 

The writer can personally attest to the fact that this paper has 

already proven to be a valuable educational device. 
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