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CHAPTER I 

INTRODUCTION 

Graphical analysis of experimental data is an important 

tool in many fields of study. In particular, the investiga-

tion of response surfaces in geology, meteorology, mineral-

ogy, oceanography, and other related fields often involves 

one aspect of graphical analysis, namely, contour mapping. 

The problem of estimating response surface contours for the 

purpose of plotting contour maps is the subject of this 

thesis. 

Contour plotting in a three dimensional situation is 

simply a way of reducing an unwieldy three dimensional graph 

to the more familiar two dimensional graph. Consider a 

function of two variables, z=f(x,y). For a given value of 

z, say ZO' define P ={(x,y) lf(x,y)=z0 }. 
ZO 

The locus of the 

set of points p 
zo 

is called a contour of zo· A graph show-

ing contours for various z values is called a contour plot 

of the function f(x,y). The reader may consult Cochran and 

Cox (1) for a further discussion of contouring. 

Given a known function, one should, theoretically, al-

ways be able to construct a contour plot. For functions 

such as the quadric surfaces, contours of equal response are 

easily found by analytic methods. Even if the function is 

1 
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not as well behaved as the quadric surfaces, it can be eval

uated at enough points to construct contours. Unfortunately, 

in experimental situations where a contour plot is desired, 

the function in question is rarely known except at sample 

data points. In fact, determining estimated contours of the 

function may be the major purpose of the experiment. To do 

this, one must have an algorithm for estimating certain 

values of the function between sample data points. 

Before the advent of high-speed computing equipment, 

the construction of surface contour maps from experimental 

data was generally done by hand. That· is, the researcher 

plotted the experimental data points on a graph, and, with 

the assistance of a French curve or some similar device, 

drew the contours where he thought they should lie. The 

time required to complete computations prohibited, for the 

most part, the use- of numerical methods ·for estimating 

contours. 

Since computers have become widely available there have 

been two basic . . approaches to the probiem of contour estima

tion. The first of _, these approaches -is the least squares 

polynomial fit. In this process the ' researcher selects a 

model to fit -to the experimental data;.:" This model is usual

ly a polynomial. in x and .y of order two · or higher. The 

coefficients .of., .the polynomial are · obtained by finding the 

set of coefficients which minimizes the- sum of squares of 

deviations between the, polynomial model and the observed 

response points. Con,tours . of equaL, response may be plotted 
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once the set of · polynomial coefficients · is known. 

The least squares fittin~ technique has a disadvantage 

because irregular surfaces may iequir~the use of high order 

polynomials to achieve a good fit to the, data. It is well 

known that high O'rder polynomial surfaces·· may fluctuate 

widely over small areas of ·the x-y plane. Thus, the result 

may be that, between data points, the polynomial representa

tion of the surface, behaves in a manner not characteristic 

of the true response surface ( 5) • Since .·surface fitting 

techniques have be.en thoroughly discussed· ±n the technical 

literature, no further description wi'l'L be made in this 

study. For the reader" interested in ' the·se techniques, Krum

bein (7) is suggested~s a reference. 

The technique of nonlinear precise--da·ta-fi t is the sec

ond approach to the problem of cont6ur: estimation. This 

approach attempts · to overcome the difficulties which arise 

in least squares' f.i tting as a resuTt of using ·high order 

polynomials. Basically, the precise-data~fit techniques fit 

a series of surfaces over small areas of the x-y plane, and 

then combine these surfaces to form a highly nonlinear 

representation of the response surface, over the area of data 

collection. Working on small sections of the area of data 

collection allows the use· of ' low order . polynomial models for 

each section. The representation which results fits the 

data precisely and is not allowed to behave in an unrestrain

ed manner between data points. Two estimation procedures 

which make the precise-data-fit approach to contour mapping 
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will be described in Chapter II. From· the discussion of 

these methods it shall become evident that · a new procedure 

is needed to produce accurate contour estimates for randomly 

spaced data points. 

In Chapter III a method is developed, ·fo·r obtaining con

tour estimates of a s·ingle valued continuous function of two 

variables with no restrictions on the· spacing of data points 

in the x-y plane. A detailed description of the computer 

algorithm for this method is included along with a discus

sion ·,of the mathematical principles upon which the ·technique 

. is based. 

Because of the · tremendous abili:ty of computers to pro

cess large amountso£ data in short periods of time, too 

many researchers seem willing to as·sume· that the answers the 

computer prints out are the answers to the problem. However, 

in a computer program which processes experimental data 

there are three sources of errors: round--off ·errors which 

are inherent in the computer, experimental errors in the 

data, and errors' ·in the computing algorithm. A thorough 

program produces not only resul·ts but some ' 'analysis of these 

errors. Chapter ; :DV· i ·s a discussion of the nature of these 

errors for the contour estimation problem and provides 

procedures for . a·na·l,yzing them. 

Chapter V presents results obtained by using the estima

tion method of -Chapter ·III. Also included· in this chapter 

are results of the error analysis and · ·a comparison of all the 



methods of contour estimation which have, been- ·included in 

this study. 
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CHAPTER II 

TWO EXISTING PLOTTING METHODS 

To indicate the usual approachto" contour estimation 

in precise-da,ta-,fit techniques and ·· to consider the need for 

a new procedure, two methods will be di,scussed here. The 

discussion wi1,1 be general in nature because, for each 

method, there, are details which may diff·er according to the 

application. The first method will be called the grid 

method and the · second will be known as the quadrilateral 

method. 

These two methods, as well as the ' procedure to be 

described in Chapter III, have in common; a technique known 

as triangulation. Let A be a spe'cified area in the Euclid-

ean plane. In the case of the contour estimation proce-

dures, A is .the · area of data collection. Triangulation of 

A, according to Moise (8)~ is simply the process of sub

dividing A into a ·set of triangles {A : } such that A.OA.=, 
· 1 1 J r 

for all i and j when i "f j, and UA.=A. For the contour 
. 1 1 1= 

estimation methods a further restriction imposed upon the 

. triangulation of A is that each tri·angle vertex be a point 

at which some estimate of the respohse·.variable is known. 

This triangulation lends itself to · a · simple mathematical 

6 



procedure for estimating contours, · whi:ch will be described 

later. 
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All the methods discussed in this study differ from one 

another in the manner of achieving triangulation. The grid 

method uses the sample data to find estimates of the response 

surface at certain ·points on a prede:f-ine<i 'triangufar system. 

The method developed- i ·n Chapter I!I fits a triangular system 

to the sample· dat-a poi:nts themselves,. The ' quadrilateral 

method uses a technique which lies somewhere between these 

two extremes. 

- T·riangulation in the Grid Method 

The first -step in '·the grid method i 's the selection of 

a rectangular grid to be superimposed on the area of data 

collection in; ;·.the x-y p'l·ane. · The researcher must determine 

the size and positioning of this · grid~ ··The next step is 

to obtain an ·estimate of the response :variable at the mesh 

points of the grid. · In order to estimate · the functional 

value at a mesh point- there must be nearby a sufficient 

number of val0ues which - adequately surround the point. The 

estimate is a weighted · average of the sample responses at 

these nearby points. There is no specific rule which dic

tates the number o-f sample points · to be averaged or the 

weighting factor to be used. As a simple example consider 

the situation illustrated in Figure L One function for 

estimating the response at the mesh 'point· 'Shown could be 
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4 
E Z./d. 

l. l. 

zm = i=l 
4 (2.1) 

E 1/d. 
i=l l. 

where the zi are the observed· respons'es, at the four data 

points neares,t the mesh point and · d > ·represents· the· distance 
l. 

between th& · (·x·,Y')' ·c·oordinates of ·the ith · point and the mesh 

point. To reduce 'extrapolation it would be desirable to 

place some restriction ·on the magrtitllde of t;he di. 

Once responses at · these mesh points are estimated, the 

mesh values may be used in an interpolation surface to esti-

mate responses on a smaller grid befo~e proceeding to tri-

angulation. If this is done, a nonlin·ear interpolation 

method such as ·Newton's- Interpolation Formula or LaGrange's 

Interpolation Method (9) is generally u~ed. 

When the grid size is sufficiently small, the triangu- . 

lation is effected by dividing intd'.- t--riangles the rectangles 

formed by the grid/ One simple rule · ror division of the 

rectangles would be to construct the di·agonal which runs 

from the lower left · corner to the upper ·right corner of the 

rectangle. In practice a more complicated rule may be- used 

to divide the rectangle -into more than two triangles. 

International Business Machines has programmed one version 

of the grid met~od for use on an IBM 1620 digital computer. 

The User's Manual (lO) ' for this program explains in detail 

the procedures us,ed in this version for' estimating mesh 

values, reducing grid size, and triangii'lating the 

rectangles. 
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Triangulation in the Quadrilateral Method 

The quadrilateraL .. method differs~·fr;om. the grid method 

in that it attempts to . f ,ft · the triang:l:es :to , ·the data points 

rather than the .data .points to the triangi·es. · ... This method 

trades the simple .mathematics of thegr±dmethod for a more 

generaL figure ... and .a : mo:re direct attack. 

A grid size is chosen• by· the researcher. ·such that 

there is approximately. one, .and oniy onet.:dat.unr. point inside 

each rectangle .. ... When two or more po·ints :l:i'e within a rec

tangle, some weighted average ·of the points:. is used to re

duce the number of points to one point·. One could, for 

example, find the . simpu.e· arithmetic· average :of· all the data 

point responses within a rectangle and consider .this to be 

an estimate of,. the · response' at the x;-y centroid of the 

points. When a rectangle is void of data~andthere are a 

significant number: of. surrounding points, . · another weighted 

average is used to supp'ly an es·timated response for that 

rectangle. An estimation function similar to the one men..

tioned in the grid method would · be applicable here. An 

optimum size o-f · grid ds·· one which leaves: the· ·fewest number 

of rectangles which are ,either void of· da<ta· .or contain 

more than one data point. 

Having established · the grid,, all pos-si.ble sets of four 

rectangles having a conunon vertex are chO"Sen, · and, for each 

set, the four data points within a set form· a quadrilateral. 

Triangulation is completed by constructing:. the shorter di

agonal, thereby forming two triangles within each 
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quadrilateral. • . Although~ :.tlre~:au:thor-·knows~ of:' no published 

version of .the quadrilateral ·method, orai:.,conversation with 

Mr. Jim Stewart of the ,Pan·. ·Aineri·can: Petr.oil:eum ·company indi

cates that it has been· used by . that· company. 

From T.riangulation to . Contour- Estimates 

Once triangulation. -0-f:· the., area·. ·of:· ·da:ta- c·o,11·ection has 

been accompli·shed , · both t-he· grid· ·method :and· :the·. quadrilateral 

method use .the s.ame, ,procedure.· for · obtaining contour esti

mates. For each .triangle, linear- interpolation between the 

vertices is done .. to determine· the ·points where a given con

tour enters and leaves-' the triangle. ··· In general there wi 11 

be two such points, · and these are joined ·by a straight line 

segment which is taken as the estimate· of· the path of the 

contour through the triangle. 

There are three special cases which arise when one or 

more vertices of a triangle have a response· equal to the 

value of the contour. If only- one· vertex has ·a response 

equal to the val-ue -.o-f · the contour and· this·' response is the 

maximum or minimum response of all three vertices, then 

this one point becomes '.the e·stimate .of the· ·contour in the 

triangle. If the response at the- v~ex ±sc" not the maximum 

or minimum response, on-· the triangle, . the 0 ·contour enters the 

triangle at the vertex and must leave·the, triangle at some 

point on the side opposite the vertex • .rn: the: case where 

two vertices have responses equal to the· contour value, the 

side of the triangle joining these vertices is taken as the 
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contour estimate. The case where all three vertices of a 

triangle have a response equal to the contour value presents 

several options, one of which is to regard the triangle 

boundary itself as the contour estimate. 

When the contour has · been estimated· ·in"·every triangle 

by a line segment, these· line segments form a continuous 

broken line as the final contour estimate~ · The procedure 

above is repeated until estimates of all desired contours 

have been constructed. 

Smoothing Procedures 

For aesthetic reasons it may be desirable to smooth 

the continuous line segments which result from the above 

estimation procedure. In the grid method a closer approx

imation to a smooth curve can be achieved by reducing the 

size of the grid system. As the grid ~ize decreases, the 

line segments comprisinga contour become shorter so that 

a smooth curve is more closely approximated. Another pro

cess which can be applied to any method is to fit some con

tinuous curve through a series of vertices of the contour 

estimate. Since contours, in general, are not single valued 

functions in the x-y plane, an equation· for' the smoothing 

curve could not be written in functicma-1 notation. At best, 

it might be possible to express the equation of the curve 

in parametric form. Because of this, the mathematics could 

become very cumbersome. Hand smoothing· may-prove to be the 

most economical method. However, experience will show that 



no two people smooth a .. curve" th·e· same ' way; ·and,,. therefore, 

the original broken line estimate should ,not' be discarded. 

· Conclusions 

13 

In the previous sections· of ·this · chapter·the grid and 

quadrilateral methods have been descri:befr -wi:thout regard to 

the consequences of-.using these procedures. That is, no 

attempt has been made · ,to· justify or cri:ticci·ze ,·any portion of 

these methods. The author feels there are· some points in 

both procedures which need to be discussed because of their 

effects on the resulting contour estimates. 

Grid Size and Placement 

Both the grid and the quadrilate±al methods require 

the researcher to determine the size and · location of the 

grid system to be used. Since these two factors will in

fluence the contour estimates, the researcher may be faced 

with the temptation to experiment with different grid sizes 

and various grid placements until the resu•l ting contours are 

as he theorizes them to be. In this case, the researcher's 

experiments with the· grid may influence the contour esti

mates more than the data he collected. 

Aside from disposing with the gri:d ·· sys·tem·· al together, 

one solution to the,. -above P'roblem would be to make the 

determination of grid size and location"anintegral part 

of the estimation procedure itself. That is, some criterion 

should be developed which specifies an appropriate grid 
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system for producing accurate estimates~. · The condition for 

the quadrilateral method of using the system which has the 

fewest number of grids to be modified is s·uch a requirement. 

However, because of the large numberof · pcssible grid sys

tems, it ma~, be di.ffi:cu1t · to meet · thi s . requirement in prac

tice. Further restrictions, based upon · experience, would 

be in order . . her e~. Of course, in the quadrilate·ral method, 

data collected -on, a:. fairiy · regular system will not require 

modification of any grids. 

Estimation o'f· ·Mesh ~.Points · and Grid ·Responses 

The next step in the grid methodof" estima:ting response 

values at mesh points of the grid system· is · particularly 

unpalatable to the statistician since~it- consists in a sense 

of throwing away. information. Responses are estimated at 

points where no data was collected and- the- original data 

points are discarded in further computations. In addition 

to the experimental error already inherent in the data, this 

procedure of estimating mesh· responses · introduces interpola

tion error in the data. · This makes optimi'Zation of the grid 

system for the quadrilateral method desirable and shows one 

advantage of the quadrilateral methodoverthe · grid method. 

Grid Reduction 

The grid method allows the researcher the option of 

reducing grid size before· obtaining final contour estimates. 

This option should be- exercised with caution because, as 
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the IBM User's Manual (10), p. 10 states:, : "The derived grid 

is not more accurate." · There caii be· no· more· inf·ormation in 

the derived points on a smaller grid than :in the original 

data, so attempts to improve accuracrby-reduc,ing the grid 

size are futile. One asks · then, what is- :the' purpose of 

reducing grid size? · As · mentioned before·, :· ·a · smaller grid 

size wi.11 tend ,to· .pro:duee· smoother contours· than a larger 

one, so -that .if, one desires above• all '· a : 'Smooth·· contour, grid 

size reduction .. wiLL help· achieve this goa·i ·~ ... ,Jdso, there is 

a process whereby two· contour maps ma:y!-be~· -compared, which 

may require the deri;vation· of a smaller grid. 

Improving Accuracy 

One procedure which might· be used· to· ·increase accuracy 

in the contour .estimates in nonlinear interpolation. How

ever, this requires a priori knowledge· about· the nature of 

the true response surface. There are· so many unknown fac

tors in nonlinear estimation that one' may· actually be de

feating his purpose by using this method'. to obtain accuracy. 

Also, there is the temptation to searcfr :through many models 

until one is found which- pleases the" teaeareher or supports 

his theory without regard to finding · the· true response model. 

These are some of the reasons why linear·i'nterpolation has 

been used to obtain contour estimates· from ·the t 0riangulation. 

There is at least one step which can be taken to im

prove the accuracy of estimates obtained' by· tinear interpo

lation. According to Conte (3), accuracy is dependent upon 
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the interval of interpolation, smaller intervals yielding 

more accurate estimates. If data are collected so that the 

distance between points is small, and if · some attempt is 

made to minimize the lengths of the sides of the triangles 

to be used, linear interpolation can provi.deaccurate esti

mates. This is the reason the shorter diagonal· o.f the quad

rilateral is used -. in triangulation for the quadrilateral 

method. 

Advantage of Li'near,, .rnterpolation 

Using linear interpolation on the triangles derived 

in the grid and quadrilateral methods has some definite 

advantages. The first is that two contours of different 

responses will not cross, which is necessary in describing 

a single valued continuous response surface such as is 

considered in this study. If two contours· ·were to cross, 

it would indicate a point where the surface has two values 

and is, therefore, undefined or discontinuous. To prove 

that the contour estimates will not cross, it ·will suffice 

to consider a triangle with responses z 1 , z 2 , and z 3 at the 

vertices p 1 , p 2 , and p 3 , such that z 1 <~~<z 3 • Suppose that 

the estimated contours for responses c 1 and · c 2 are such that 

z 1 <c 1 <c 2 <z 3 • By the previously discussed algorithm these 

two contours must pass through the triangle. Let c 11 and 

c 12 be the points where the contour estimate of c 1 enters 

and leaves the triangle. Likewise, let c 21 and c 22 be the 

points of entry and exit of the contour e~timate of c 2 as 



in Figure 2. Let 

I ab I denote the distance in the x-y p 1Lane · from point 

a to point b. 

Then I c 21p 3 I< I c 11p 3 I along the path' ,f rrom p·1 to p 3 , 

17 

and I c22P3 I< l·cr2P3 I along the · path from P1 ·to P2 to P3. 

This means that the entire ;· ·line s ·egment from c 21 to c 22 is 

nearer p 3 than the, ·line :segment from c 11 . to c 12 , and, thus, 

the segments cannot cross ·. Since the, entire' area is covered 

with triangles, the ·above proof for one general triangle 

is sufficient to prove that no contours · cro·ss in the entire 

data area. 

One problem in the grid method is, that contour esti

mates may be drawn .on the wrong side of the data points. 

That is, a sample point with a response of 47 will not 

always lie where it is expected to ' lie, namely between the 

40 and 50 contours. It is reasonable · to expect a sample 

point to lie between the two contours which bracket the 

value of the observed response since the expected value of 

experimental error is assumed to be zero. In the quadri

lateral method, if no grid values have~·to be estimated, the 

contours will always be drawn- on the proper side of data 

points. This is a second important feature of· linear inter

polation from the triangles when the ' tri-angles have data 

points as vertices. 

A Criticism of Smoothing Procedures 

The final step of smoothing contours · is a difficult 
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task. Under certain smoothing . t ·echniques_:,: two· contours may 

cross as in Figure 3, which · would be cont:tary :to the defi

nition of a single valued continuous· funct-ion~ Since smooth

ing is a final. step, . hand smoothing ·might·'·be 'acceptable were 

it not that each person' wii'l ' smo·oth the·' com:ours differently. 

Therefore, the, broken,· ;l ·ine,· segments shou.l.'d not be destroyed 

or completely disregarded. As a resU'J..ti .:o:f 'dis,cuss,ions with 

researchers, the author feels that the only.' reason estimates 

need to be smoothed, is · that researchers · are accustomed to 

seeing the smooth contours which were· made by hand before 

computers made contouring by applied· mathematical methods 

practical. Consequently; attempts should be made to con

vince the researcher that broken line contours are at least 

as accurate and have as much meaning as smoothed contours. 
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CHAPTER III 

DEVELOPING A NEW TECHNIQUE 

The following description is of a contour estimation 

technique which attempts to improve upon the flexibility 

of the quadrilateral method of the preceding chapter. The 

quadrilateral method will yield accurate contour estimates 

with very little discarded information if the data are col-

lected in at least a semiregular system. However, if the 

data points are irregularly or randomly spaced, the accuracy 

of estimates obtained by the quadrilateral method becomes 

questionable since information will be discarded and re-

sponses estimated at points where no data is taken. The 

method of this chapter does not use a grid system and needs 

only observed responses at data points: i.e., regularly 

spaced data points are not required. 

As a preliminary step to the procedure, the data points 

are read into the computer and stored as three vectors: 

X={x.}, Y={y.}, and Z={z.}, i=l,2, ••• ,N, where {x.,y.,z.) 
1 1 1 1 1 1 

is the Cartesian representation of the ith datum point. 

Some sorting of the elements in the X and Y vectors is done 

to determine if there is any replication. Replication 

occurs when an x-y combination appears in the data more 

than once. For ease of computing error terms, it is 
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necessary that the experiment be balanced which means that 

there is equal replication at all data points~ This study 

shall be restricted to balanced experiments. · If there is 

replication, the responses at each point are averaged to 
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obtain the element of the Z vector which corresponds to that 

point. After this is accomplished, the number of elements 

in the vectors X, Y, and z· is reduced to rt, where rn=N, and 

r equals the number of replications. 

The three major steps in generating .the contour esti-

mates are: (1) finding a set, · {Pk}' of convex· polygons such 

that PkC:Pj for j<k, (2) joining these polygons by straight 

lines to complete triangulation, and (3) interpolating .with-

in each triangle to find estimates of all contours which 

pass through the triangle. 

Constructing Convex Polygons 

The first step of finding the set of convex polygons 

is merely a convenience which facilitates the formation of 

triangles over the area of data. The polygons order the 

data in a fashion which allows a quick search to find ap-

propriate triangles, thus avoiding a time-consuming contin-

ual search through all the data points. 

According to Karlin (6), the convex hull of a set X 

is defined as the smallest convex set which contains X. 

The first polygon to be constructed is~the convex hull of 

the set of data points~ The reason· for · constructing the 

convex hull of the data is that the convex hull defines 
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the maximum area of estimation without extrapolation. 

Using all data points as vertices of the triangles, 

it may be shown that all triangulations of the convex hull 

of the data result in the same number of triangles. Suppose 

that the convex hull has m data points as vertices. If 

there are n data points, (n-m) points will lie within P. 

From plane geometry, the sum of the interior angles of P 

is (m-2)180 degrees. When drawing triangles between the 

n points, each. of the (n-m) interior points of P will rep-

resent 360 degrees. The total (n-m)360+(m-2)180 represents 

the number of degrees to be divided among the triangles. 

Each triangle will use 180 degrees so that there are exactly 

(n-m) 3 60+(m- 2 )lSO = 2n-m-2 triangles which may be formed. 
180 

The method of constructing the convex· hull consists 

first of a search through the vectors X and Y for the mini-

mum and maximum x. and y .• By assuming lines drawn parallel 
l l 

to the x and y axes through these points, a rectangle is 

formed which contains all the data points. Let the sides of 

this rectangle be labeled XL' XU, YL, and YU as in Figure 4. 

During the search the minimum and maximum x. 
l 

on YL and Yu 

are found along with the minimum and maximum y. on XL and 
l. 

XU. This produces eight points, some of which may be dup-

licates. An octagon is formed by joining ... these points, 

beginning at the maximum y. on XL and continuing counter-
l 

clockwise around the rectangle. This octagon may be degen-

erate if some of the eight vertices are duplicates. The 

data points which will make up the convex hull are found on 
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L u X 

Figure 4. Construction of Convex Hul.l of Set of Data Points 
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or outside of this octagon, but on or within the rectangle. 

To increase the speed of the search for vertices of the 

polygon, some sorting of the points in the · area between the 

octagon and the rectangle is done. The' . next problem is to 

determine which of these · points are vertices o.f the convex 

hull. Consider a polygon of p sides and form .vectors of the 

sides with the vectors · directed counterC'lockwi'se around the 

polygon. It is easily shown that the p-olygon is convex if 

and only if the cross product ··of the vector pointing toward 

a vertex with the vector pointing away from the vertex is 

nonnegative for all p vertices. 

Suppose that one side of the convex polygon is known. 

The above idea is used to find points . which · may qualify 

as being the next vertex of the polygon. Of course, there 

may be many points which form vectors such that their cross 

product as defined above is nonnegative. This means that 

another criterion must be used to decide which point is, in 

fact, the vertex of the desired polygon. The point in ques

tion is the one which forms the largest interior angle with 

the preceding vertex. These criteria are used repetitively, 

working counterclockwise around the poiygon, until all ver

tices are established. 

If the data points on the boundary of the convex hull 

are disregarded, another convex hull may· be generated in 

the same way for the remaining data points. Using this 

procedure repetitively, the series of convex polygons is 

obtained. 
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In the computer the elements in the vectors X, Y, and 

z are reordered to match the order of the vertices of each 

polygon. The ordering begins with · the0 point having the 

maximum y value on XL and proceeds counterclockwise around 

the polygon. No distinction is made in X, Y, or z to indi

cate when a new polygon is started. Therefore, another 

short vector is defined ·to indicate the ·,staxting. points of 

each polygon, and the number of polygons gene,rated is noted. 

Care must be taken he·re in that the innermost · polygon may 

contain only one or two points. If this is the case, the 

polygon will not have positive area, . bu.t in general terms 

it is still a convex polygon. 

Triangulation 

The second major step is to find connecting lines to 

form triangles between the polygons. The criterion used 

for constructing the triangles is the fact that the errors 

of linear interpolation are dependent upon the interval of 

interpolation. Clearly, triangles with short sides should 

produce more accurate contour estimates · than triangles with 

longer sides. Therefore, for every choice of lines to 

construct triangles, · the shortest line · will be used. 

The first line may be selected from the set of all lines 

joining vertices of the first two polygons, excluding lines 

which pass through the inner polygon. To save time, any 

convenient point on the inner polygon is chosen, and the 

shortest line between it and any point on the outer polygon 
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which is wholly between ·the two is chosen ·as a starting 

place. Then, moving counterclockwise, :around the polygons, 

consider the next point of the inner polygon. and the next 

two points on the outermost polygon • . Us±ng the points at 

the ends of the original· line segment and: .. these ·new points, 

three triangles are drawn as in Figure::.5:;; • The, first tri

angle has as vertices the two original· points and the next 

point on the outermost· polygoni. · The vertice·s of the second 

triangle are the· two original points and the next point on 

the inner polygon. The third triangle has vertices at the 

original point on the outermost polygonand the next two 

points on this same polygon. It is noted that each of the 

three triangles has one side S, say, which is not a side of 

either polygon. The three triangles are compared, and the 

one for which the side Sis shortest is selected as the 

triangle to be used. When the choice between these three 

triangles is made·, at least one of the other :two triangles 

is excluded as a possibility. In addition, if the side S 

is such that the triangle includes area other than the area 

between the two polygons, the triangle must be discarded. 

This restriction on · the triangles assure~ nonoverlapping 

triangles over the entire area of data collection. 

To continue, the side S is now s·ubsti tuted for the 

original line in the case · that one of the first two trian

gles is chosen. The side Sis substituted for the original 

two sides of the outer polygon if the third case is selected. 

The search is continued, again moving · in a counterclockwise 
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direction. Once all triangles between the·: two outermost 

polygons are established, the procedure moves in to consider 

the next two adjacent polygons. 

When triangles, have been drawn: in ,all pairs. of adjacent 

polygons, a check must be ·made on the· area· of:,'.:the innermost 

polygon. .If· this .area,;: is , nonzero, tr±angl:es ·must be drawn 

within the inne-rrnost, polygon in order: ·to:· comple·te the con

figuration. If the polygon is a triangle, no ·further steps 

are necessary. However, if the polygoffhas ·four or more 

sides, a series of steps is repeated until the area is di

vided into triang:Les ·.. Consider four points in series around 

the polygon and form a convex quadrilateral by· joining the 

first and last points as in Figure 6. The shorter diagonal 

of this quadrilateral is found and becomes the third side of 

a triangle within the polygon. Deleting this triangle from 

the polygon, these steps are repeated until the entire 

polygon is divided• into triangles. 

· Interpolation 

Once the triangles have been generated~ · the third major 

step of interpolating· to· ·get contour ·estimates ·may be per

formed. This procedure is the same as described in Chapter 

II. The vertices are ordered according to·· increasing 

responses to aid the procedure. 

In practice, the computer program for this procedure 

does not find all the triangles before proceeding to inter

polation. In order that no computer storage be wasted in 
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saving the triangles, the program. interpo:la:tes, to find the 

estimates immediately after each .triangl·e ' ,is generated. 

The contour estimates are recorded on- aux±J.,iary storage, 

again saving . internal memory. The program· then returns to 

generate another triangl·e and find contour···estimates, 

continuing until all t riangles have .been. generated. 

Analysis of the Method 
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Consider now the reasons why this method of estimation 

is preferred over those of Chapter II. Fi-rst, only original 

data points are used directly in linear interpolation. 

Second, there is no need for a preanalysis of the data to 

find a convenient grid size with which ·to .work. The fact 

that the linear interpolation to the estimates is made di

rectly from the data -points · contributes to the ·accuracy of 

the procedure, and guarantees that the contour estimates 

lie on the proper side of the data points. · Furthermore, 

no two contours wi ll cross. One last benefit · of the method 

is that it enables one to find an estimate of the accuracy 

of the contours.. This subject will be discussed in Chapter 

IV. 

Of course, there are disadvantages to this method. 

The use o f convex polygon~ restricts the · confi guration of 

triangles in such a way that the ideal configuration may 

not be found. This repr esents a comprom±-se, in order to 

keep compute r time wi thi n reasonable bounds. Also, in 

the course of deciding which line is to be· used in defining 



a triangle, there may be a situation· where :. :twoi lines have 

equal merit, and the chotce of :one .·line. may ·produce dif

ferent results than if the · other line ·!l:s: selected. See 

Figure 7. 
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CHAPTER IV 

ERROR ANALYSIS 

As mentioned in Chapter I, an estimation procedure can

not be considered complete without some analysis of the 

errors involved. The errors incurred in computer oriented 

contour estimation procedures such as the ones discussed in 

this study are these: round-off error, experimental error, 

lack of fit error, and procedural error. By examining these 

errors, the quality of both the method of data collection 

and the estimation procedure may be determined. To the 

author's knowledge, no error analysis has been made for the 

grid and quadrilateral methods of Chapter II. This chapter 

is concerned with error analysis for the estimation proce

dure developed in Chapter III. 

Notation 

For ease of reading, a summary of the notation to be 

used in this chapter is presented in Table I. For a given 

response surface z(x,y) Table I lists and defines briefly 

each basic symbol to be used. Figure 8 illustrates these 

terms for a hypothetical response surface. 
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Symbol 

n 

r 

z .. 
lJ 

z. 
l 

z. 
l. 

e .. 
lJ 
2 s. 
lZ 
2 s z 

z. 
l 

K 

P13 =P24 

2 13 

2 24 

2 13T=Z24T 

el3 

e24 

dl3 

d24 

2 13T 

2 24T 

TABLE I 

NOTATION 

Definition 

ith datum point in the x-y plane 

number of data points, i=l,2, ••• ,n 

number of observations at each datum point, 
j=l, 2, ... ,r 

jth observed response at p. 
l 

observed response at p. when r=l 
l 

mean of the r z .. 'sat p. lJ l 
experimental error in z .. 

lJ 
variation among z . . 'sat p. 

lJ l 
pooled variation of z . . 's 

lJ 
calculated response at p. 

l 

true response at p. 
l 

number of independent quadrilaterals formed over 
data area, k=l,2, ... ,K 

point where line p 1p 3 intersects the line P2P4 

response at P13 calculated from zl and Z3 

response at P24 calculated from z2 and Z4 

true response at p 13 or P24 

error at P13 interpolated from el and e3 

error at P24 interpolated from e2 and e4 

component of error at P13 

component of error at P24 

response at P13 calculated from zlT and z3T 

response at P24 calculated from z2T and z4T 
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Round-off Error 

Some round-off error is inherent in any computer opera-

tion. This error may be controlled by efficient programming 

and careful development of the computing algorithm. The 

contour estimation method of Chapter III has no complicated 

formulas and is not iterative. Hence, an efficient program 

of this method will not produce any significant round-off 

errors. 

Experimental Error 

Experimental errors include many types of extraneous 

variation of which two main sources may be distinguished: 

(1) inherent variability in the experimental material, and 

(2) variability caused by lack of uniformity in the physical 

conduct of the experiment. If the responses are greatly 

influenced by experimental error, an analysis of this error 

should give some insight as to the precision of the response 

estimation. Such an analysis should provide the conditions 

under which it is possible to estimate the variance of this 

type of error. 

For the contour estimation problem it will be assumed 

that each observed response z . . is composed of a constant 
lJ 

ziT' sometimes known as the true response at the ith point 

in the x-y plane, plus an experimental error e. . • 
lJ 

That 

z . . =z.T+e . . , i=l,2, .•• ,n, j=l,2, .•. ,r • 
lJ 1 lJ 

is, 

Here, i represents the ith (x,y) position in the coordinate 

space, and j indexes the replication of data at the ith 
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Position. It is further assumed that thee .. 's are normally 
. 1J 

and independently distributed with mean zero and variance 

2 
a • Using these 

2 Var ( z . . ) = a • 
1J 

assumptions, it follows that E ( z .. ) =z. T , 
1J 1 

and If there are r observations at a given 

datum point, it is well known that if 

z -i.-
1 r 
- E r j=l 

z . . 
1J 

then E(z. )=z.T 
1. l 

2 1 r - 2 
and if s . = - 1 E ( z . . - z . ) 

lZ r- j=l 1J l. 

then E(s~ )=cr 2 
lZ 

the expectation being taken over all possible sets of r 

observations that can be made at the ith point. 

Now, suppose there are r observations at all n data 

points and that the experimental errors at each of the data 

points have the same distribution. Then, let 

2 
s = z 

1 n 
E 

n i=l 

2 s . 
lZ 

from which it follows that E(s 2 )= cr 2 • z 

variance unbiased quadratic estimator 

[4.1] 

s 2 is the minimum z 

for cr 2 ( 4) • 

The above formulas provide the methodology for estimat-

ing the variance of the experimental errors if the responses 

at each datum point are at least duplicated. However, there 

are cases where it is not feasible, and sometimes not pos-

sible, to provide replicated observations at a datum point. 

If no replications exist, the above methods are not appli-

cable. It would be desirable, therefore, to have an 
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e~timator for cr2 which could be used when r=l. The remain-

der of this section on experimental error will attempt to 

indicate the conditions under which an estimator for the 

variance of experimental error is possible. 

As a preliminary step to developing a general estimator 

2 for cr when r=l, consider the special case in which the mesh 

points of a rectangular grid system are the data points. 

Figures 9 and 10 are provided for orientation purposes. 

Suppose that then data points determine K independent rec-

tangles, where two rectangles are said to be independent if 

they have no common vertex. In figure 10, let p 1p 2p 3p 4 be 

the kth such rectangle, and let z 1 , z 2 , z 3 , and z 4 be the 

responses at the points p 1 , p 2 , p 3 , and p 4 , respectively. 

The point p 13 =p 24 is the intersection of the two diagonals 

p 1p 3 and p 2p 4 . Calculate, as indicated, two independent 

estimates of response, z13 and z 24 , the first associated 

with the points p 1 and p 3 and the second associated with the 

points p 2 and p 4 , and then consider their difference qk. 

1 1 
z13= 2(z1+z3) and z24= 2(z2+z4) 

Since z . =z.T+e . 
J. J. J. 

qk=zl3-z24 

1 1 ] =[2(zlT+z3T-z2T-z4T)]+[2(el+e3-e2-e4) 

= Qk + ek 

where Qk is the first term and ek is the second term in 

brackets in the equation. 

Let E1 be the expectation over all possible replica

tions of the experiment which provide responses at these 
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Figure 9. Formation of Quadrilaterals for Regularly Spaced 
Data 

z 

X 

y 

Figure 10. Observed and Estimated 'Responses for kth Rectangle 



same specified mesh points p 1 , p 2 , p 3 , and p 4 • Then, 

1 
El (qk)= 2(zlT+z3T-z2T-z4T)=Qk 

I 

and Var(qk)=Var(ek) 

=Var[~(e1+e 3-e 2-e4)] 

1 2 2 = 4 (4cr )=cr 

The next step is to estimate the variance of qk which 

is equal to the cr2 of experimental error; However, with 

41 

r=l, there is only one value for qk' and it is not possible 

to estimate the variance of qk from the kth rectangle. It 

shall be necessary, therefore, to re~ort · to the considera-
I 

tion of the several random variables qk=Qk+ek, k=l,2, ••• ,K. 

From the experiment there is one value for each of the K 

random variables qk. Under what conditions can the values 

of the K random variables be considered a · random sample of 

size K from a common distribution? 

If the "true responses" at the four vertices of the kth 

rectangle were coplanar, then Qk=O. Moreover, if this were 

true for each of the K rectangles, then qk=ek' and it would 

be possible to consider the K values as normal deviates with 

d . 2 
mean zero an variance cr. Similarly, if the Qk's were all 

equal, the K values could be considered as normal deviates 

. h d . 2 wit mean Q an variance cr. Under each of these conditions 

an estimate of the variance of the experimental errors could 

be obtained by using the standard format 

2 1 K - 2 1 K 
sq= K-l E (qk-q) , where q= K E qi. 

k=l k=l 

The distribution of the qk obtained from repeating the 
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experiment by obtaining responses at n mesh points will 

depend upon the nature of the response ·surface being fitted. 

For surfaces with no interaction, that is, surfaces 

which may be written in the functional form 

z(x,y) = f(x)+g(y) 

it is easily shown that Qk=O. Let the coordinates of the 

vertices of the kth rectangle be as follows: p 1=(x,y), 

p 2=(x+6x,y), p 3=(x+6x,y+6y), and p 4=(x,y+6y). Then the 

true responses are these: 

z 1T=f(x)+g(y) 

z 2T=f(x+6x)+g(y) 

z 3T=f(x+6x)+g(y+6y) 

z 4T=f(x)+g(y+6y) 

Now, Qk=l/2(z1T+z 3T-z 2T-z 4T) is obviously zero. Since the 

vertices of any rectangle will be related in the same manner 

as above, it may be concluded that Qk=O for all rectangles 

when the surface has no interaction. 

For surfaces with only linear by linear interaction, 

Qk will be constant for a given rectangular grid system. In 

this case it will be possible to write z(x,y)=f(x)+g(y)+cxy. 

If the coordinates of the vertices of the kth rectangle are 

the same as in the above paragraph, the true responses may 

be written as follows: 

Now, 

z 1T=f(x)+g(y)+cxy 

z 2T=f(x+6x)+g(y)+c(x+6x)y 

z 3T=f(x+6x)+g(y+6y)+c(x+6x) (y+6y) 

z 4T=f(x)+g(y+6y)+cx(y+6y) 

Qk=~[cxy+c (x+6x) (y+6y) -c (:>t+6x) y-cx (y+6y) J 
1 

= ~6x6y=Q 



Surfaces with more complicated interactions will not, 

in general, meet the condition that Qk be constant for all 

of the K rectangles. One may, in certain problems where 

there is no prior information about any interactions, be 

willing to assume that the conditions on the distribution 
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of the qk are approximately correct, and that the resulting 

inflation of the estimate of the variance of the experimen-

tal error is negligible relative to the variance of experi-

mental error itself. 

To return to the general problem, let the data points 

be randomly spaced over the x-y plane. Join the data points 

to form K independent convex quadrilaterals such that no 

datum point lies within a quadrilateral. With these re-

strictions, it may not be possible to use all the data 

points. Number the vertices of the kth quadrilateral as 

illustrated in Figure 11. Estimate the responses z13 and 

z 24 at the point where the line between p 1 ' and p 3 crosses 

the line between p 2 and p 4 using the forms 

z13=az1+(1-a)z 3 and 

z 24=sz 2+ (1- B) z 4 

Then, since z.=z.T+e. , 
1 1 1 

Z13=azlT+(l-a)z3T+ael+(l-a)e3=z13T+e13 

Z24=Bz2T+(l- B)z4T+Be2+(1-B)e4=Z24T+e24 

The values a and Bare weights for linear interpolation. If 

h 1 is the distance from p 1 to p 13 and h 3 is the distance 

from p 3 to p 13 , 

then Similarly, 
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Figure 11. Formation of Quadrilaterals for Randomly Spaced 
Data 



In comparing this general case with ·the special case 

previously discussed, one can see that here the a and a are 

playing the role of the constant factor 1/2 in the special 

case of regularly spaced data; i.e., in the special case 

a=B=l/2. For a fixed or specified quadrilateral, a and 

Bare constants depending only on the position of the data 

points. However, since the p. are randomly spaced, the h. 
1 1 

are random variables, and this implies that a and Bare 

random variables. 

Again, let 

qk=zl3-z24 

=zl3T-z24T+el3-e24 

and consider. the conditional expect~tion and conditional 

variance of qk' where the condition is specified as fixing 

the data points, and where the expectation E1 is taken over 

all possible sets of responses at these four points. 

El(qk)=zljT-z24T=Qk 

Cond. Var (qk) =Cond. Var[ae1+0.;...a) e 3-f3e 2- (1-S) e 4 ] 

· =[a 2+ (1-a) 2+ e2+ (1-B) 2 Jcr 2 

If the experiment~ iS' ''considered to provide: K independent 

quadr.ilateraLs. as:. indicated .above-~ · there are· then K values 

of .. a and,. £, - a:nd; upom repea t:i:ng .the :experiment one must 

consider.. the .. dis.tr.i.b~tion. of ak and f\?· , · An empirical study, 

the results. .. o.f .·.whi.c~ --are •. found, ·inYAppendix:·A, has shown that 

the joint dis.tribution of ak and :8k is approximately uni

form.; i .... e., f ·(a,k'.,8k)-=1, O<ak<l, O<Bk<L Since ak and Bk 

are independent,_,_ it follows that · E2 (a.k) =E2 ( Sk) =1/2. This 
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implies that 

2 2 2 2 2 
E2 [cond. Var(qkj =E 2[ak+(l-ak) +8k+(l-Sk) ]cr 

4 2 
= 30 

E2 being taken over all possible repetitions of the experi

ment. 

Now, the problem of estimating the variance of the 

experimental error is still difficult due to the lack of 

sufficient evidence about the values of the qk for the 

quadrilaterals. Any study of the nature of the qk for this 

case is much more complicated than the study encountered in 

the special . case of regularly spaced data. Certain assump

tions can be made, or an empirical study can be performed 

for specific types of surfaces. However, this thesis in-

eludes no special advice about the type of assumptions that 

I 

should be made, nor does it report on any empirical studies 

in this area. In short, for randomly spaced data points, 

the recommendation of this thesis is that some replication 

of data should be included in the experiment to provide an 

estimate of the variance of experimental error by conven-

tional methods. 

Lack of Fit Error 

In addition to experimental error, it is desirable to 

inv~stigate the failure of the triangulation model to esti-

mate the true response surface. Since the responses at the 

n data points all lie on the fitted model, there are no 

observations other than those used in the fitting procedure 
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to measure the failure of the fitted model, unless additional 

observations can be obtained. These additional observations 

are either a part of the primary collection of data or are 

obtained over and above the points deemed necessary for the 

surface fitting process. 

If both experimental error and lack of fit error are to 

be assessed, one may take repeated observations at each datum 

point as well as the additional observations at points other 

than then data points. These data could be used to estimate 

bdth sources of error using standard technique (2). Since 

replication or additional observation may not be feasible, 

it would be desirable to investigate these errors when r=l. 

The rest of this section will be devoted to this problem. 

To indicate the nature of the problem of estimating 

lack of fit error when r=l, a procedure which could be used 

for measuring this error if data were available shall be 

examined. Suppose p 1p 2p 3 is one of the triangles produced 

by the triangulation procedure of Chapter III. Let PlJ be 

a point on the side of this triangle determined by p 1 and 

p 3 . Let a =h3/ (h1 +h3), where hi and h3 are the line segments 

determined by PlJ· Figure 12 provides visualization of this 

situation and the following relations. The estimated re

sponse at p 13 is ~ 13=az 1+(1-a)z 3 . Suppose that it were 

possible to measure the responses at p 1 and p 3 without error. 
A 

In this case, z1 3=az1T+(l-a)z3T=z13T. In addition, suppose 

that one were able to observe the true response at p 13 ; that 
,.. ,.. 

is, z13=z 13T. Then, the quantity d 13=z13-z1 3=z13T-zlJT 
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z 

X-Y Cut 

Figure 12. Diagram of Errors as Observed in a Cross Section 
· of the Response Surface 
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would be a measure of lack of fit error • . · of course, it is 

not possible to measure the responses without error. Rather, 

one would observe z 1=z 1T+e1 and z 3=ziT+e 3 • The estimated 

response is then 

z13=az1+(1-a)z 3 

=[az 1T+(l-a)z3TJ+[ae1+(1-a)e3 ] 

= zl3T + el3 

If an observation were available at p 13 , it would have the 

form z13=z 13T+e13 • Let 
A A 

dl3=zl3-zl3 
A A 

=(zl3T-zl3T)+(el3-el3) 

Then, taking the expectation over repetitions of the experi-

ment at these same points, 
A A 

E(dl3)=E[zl3-zl3] 
A A 

=E[(zl3T-zl3T)+(el3-el3)] 

=zl3T-zl3T=dl3 
A A 

and Var(d13 )=Var[e13-e13 J 

=Var[ae 1+(1-a)e3-e13 J 

=[a 2+ (1-a) 2+1] cr2 

The quantity d 13 is then an estimator for d 13 , the measure 

of lack of fit error. Since an observation at p 13 is not 

available, it is not possible to estimate d 13 • However, 

subsequent results in this chapter require additional know-

ledge about d 13 . If the point p 13 is selected at random 

from the points on the side p 1p 3 of a triangle which is 

selected at random, d 13 may be considered as a random vari

able. To find the distribution of d 13 , it is necessary to 
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restrict considerations to response surfaces with the prop-

erty of equal concavity and convexity. That is, select at 

random any point on the surface, and slice· the surface, in a 

random direction, with a plane perpendicular to the x-y 

plane through the selected point. If the function described 

by the intersection of the plane and the surface has equal 

probability of being concave or convex at the selected point, 

the surface is said to be equally concave and convex. An 

example of such a surface is the hyperbolic paraboloid. 

For surfaces with equal concavity and convexity, the 

results of empirical studies, shown in Appendix A, indicate 

that it is reasonable to assume that the d13 •s are indepen

dently normally distributed with mean zero and variance cr~. 

The results which follow in this chapter make use of this 

assumption; any application of the results may strictly be 

made, therefore, only to surfaces of equal concavity and 

convexity. 

Procedural Error 

The procedural etror is the failtire. of . the triangula-

tion model to give a unique result in fitting the response 

surface. It is obvious that, for a given set of n points, 

there are many possible triangulations, and each triangula-

tion might result in a different fitted surface. The var-

iation among these different fitted surfaces will be refer-

red to as procedural variation. The program for the method 

of Chapter III will provide the same triangulation if it is 
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applied repeatedly to the same set of data· points because 

the computer is instructed to begin forming the first tri-

angle at a specific point. If the computer had been in-

structed to begin triangulation at random, each repetition 

of the program on the same data could,· conce,ivably, provide 

a different triangulation. The program was written to start 

at a specific point in an attempt to minimize the lengths 

of the sides of the triangles which are used in linear in-

terpolation. In addition, the amount of computer time need-

ed to permit the computer to begin triangulation at random 

is so large that the method would be impractical. 

In the following section on interval estimation it will 

be necessary to consider procedural variation. At a given 

point in the x-y plane, let z' be an estimate of the re-

sponse surface obtained from applying the method to one tri-

angulation, and let z" be an estimated response obtained 

from using a second triangulation. The difference in these 
A A 

estimated responses, q=z'-z", represents procedural varia-

tion at the given point. 

Confidence Intervals 

Return now to the situation described in the section on 

experimental error where the sample data points are randomly 

spaced over the x-y plane, and from K independent convex 

quadrilaterals as before. For the kth quadrilateral, z13k 

and z 24k are estimates of response at the crossing poi nt of 

the diagonals of the quadrilateral, z 13k being obtained by 



linear interpolation between the responses at the vertices 

p 1 and p 3 and z 24 being obtained in a similar manner from 

the responses at p 2 and p 4 • This means, essentially, that 
~ 

z13k is an estimate of the response obtained from one tri-
~ 
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angulation, and that z 24 k is an estimated response obtained 

from a second triangulation. The difference, qk=z 13k-z 24 k' 

represents procedural variation at the point p 13 ~p 24 . 

The experiment will yield one value of qk for each of 

the K quadrilaterals. Consider now the statistic obtained 

by performing a sum of squares of these K values of qk. 

That is, let 
1 K ~ 2 1 K 2 

H= K E (zl3k- 2 24k) = K E qk 
k=l k=l 

If the mean of the qk is assumed to be zero, and if the 

distribution of the qk is assumed to be the same for each 

of the K quadrilaterals, then the statistic His an esti-

mator for the variance of the qk. 

Empirical studies could be made to determine the types 

of surfaces for which the above assumptions are true. This 

thesis does not provide any such studies, nor does it at-

tempt to state conditions under which the assumptions may 

be approximately correct. 

Supposing that these assumptions are correct, it would 

be desirable to obtain the expected value of Hover replica-

tions of the experiment for all possible sets of K convex 

quadrilaterals. 

From the section on lack of fit error, 
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Add and subtract z13T from the right hand side of the equa

tion. Then 

zl3k=zl3T+(zl3T-zl3T)+el3 

=zl3T+dl3+el3 

Similarly, z 24 k may be written as 

z24k=z24T+d24+e24 

Assume that the d .. 's are independently normally dis
lJ 

tributed with mean zero and variance crd2 , and that thee . . 's 
lJ 

are distributed independently of the d .. 's as normal vari
lJ 

ates with mean zero and variance 2 cr . Under the condition 

that then data p9ints are fixed, 
A 

Cond. Var(qk)=Cond. Var(z13k-z 24 k) 

=Cond. Var[ (zl3T-z24T)+(di3-d24)+(el3-e24)] 
A A 

=Cond. Var[(d13-d24 )+(e13-e24 )] 

2 2 2 2 2 2 
=2crd+cr [ak+(l-ak) +Sk+(l-3k) ] 

If the random variables ak and 6k are distributed jointly 

and independently as uniform variates on the unit square, 

2 4 2 
E 2 (H)=E 2[cond. Var(qk)]=2crd+3 cr 

where E2 is taken over repetitions of the experiment. 

Under the above assumptions about the distribution of 

the random variables dij' eij' ak, and Sk1 the statistic 

KH 
2 4 2 

2 crd+3 cr 

has a Chi-square distribution with K degrees of freedom. A 

data point cannot be used in more than one quadrilateral if 

the terms in Hare to be independent. The above statistic 

is an approximate x2 if data points are used in more than 
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one quadrilateral. 

Using this result, confidence intervals may be set on 

the true response at any point on an estimated contour. 

Since the response model for a point on a side of a triangle 

which lies on an estimated contour is 

then 

2 13- 2 13T 
"' N(O,l) 

/cr~+}cr 2 

Therefore, the quantity 

is at distributed variable with K degrees of freedom. 

Knowing this distribution one may perform at-test or cal-

culate a confidence interval as follows: 
A A 

P[ z13-t 812 (K) IH/2 < z13T < z13+t 812 (K) IH,72']=1- 6 

The interval 

( 2 13-t o/2 (K) /H72 ' 2 13+to /2 (K) /H72) 

is a o confidence interval about z13T. 

[4.2] 

If replications exist, the variance of e 13 changes. 

However, the resulting confidence interval is the same since 

the correction is made in both the normal and the Chi-square 

variables. 

For a point of a contour which does not lie between two 

data points another confidence interval is necessary. Though 

the general equation for estimating the response at such a 

point involves four data points, the response is actually 
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calculated only from the three points making·· up the triangle 

around the point . Therefore two of the points in the equa-

tion are equal, so that if · p 1 =p4·, say, then 
A 

z 1234=y(az 1+(1-a ) z 3 )+(1- y ) (Bz 2+(1- B)z 4 ) 

=z 12 3 4T+dl234 +y ael + y ( 1-a ) e3 +(1- y ) B e2+ (1- y ) ( 1-B) e 4. 
A 

E(zl234)=zl234T 
A 2 

Var(z1234 )=E[d1234+yae1+y (l-a)e3+(1- y ) Be 2+(1-y) (1- B)e4 ] 

2 2 1 1 1 1 1 1 1 1 
=a d+a [ g+g+g+g+ 2 (t+TI_6_8)] 

[4.3] 

The substitution of 2/3 for 19/36 in equation [4.3] will 

give an approximate confidence interval which will then 

be the same as that calculated in equation [4 . 2]. 

Empirical tests on the validity of the confidence 

intervals are found in Appendix C. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Nonlinear precise-data-fit techniques constitute one 

of the basic ways of approaching the problem of contour 

mapping of response surfaces. The two existing precise

data-fit methods have undesirable properties which, for 

the most part, result because the methods require the use 

of a rectangular grid system. To remedy this situation, a 

new estimation method which does not use a grid system has 

been developed. 

A computer program has been written to implement the 

triangular contour estimation method described in Chapter 

III. This program will also perform the error analysis of 

Chapter IV. For easy conversion between machines, the 

program was written entirely in Fortran IV. Two existing 

versions of the program allow operation on either the IBM 

7040 or the IBM System 360/40G. Appendix E provides the 

information necessary for the operation of these programs. 

Results obtained by using the triangular method may 

be seen in the four plots displayed in Appendix B. The 

plots are contour maps of two representative surfaces: a 

circular paraboloid and a hyperbolic paraboloid. The data 

used in constructing each plot were sampled from the known 
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function with no experimental error in the responses. For 

each function, one plot was constructed from responses at 

data points selected on a rectangular grid, whereas the 

other plot was constructed from responses at data points 

which were randomly spaced . 

To support the triangular estimation method of Chapter 

III, an error analysis was performed. In experiments with 

replication it was noted that s 2 (equation 4.1) is the z 

minimum variance unbiased estimator of the variance of 

experimental error. In the case of regularly spaced data 

when there is no replication, it has been shown that the 

variance of experimental error may be estimated by conven-

tional methods for surfaces with no interaction of order 

higher than linear by linear, if the researcher is willing 

to assume that other errors in an estimated response are 

negligible relative to experimental error. 

For surfaces of equal concavity and convexity it was 

possible to develop confidence intervals on the value of the 

response at any point on a computed contour. To test the 

validity of this error analysis, empirical tests were con-

ducted on the confidence intervals. The results of this 

testing are shown in Appendix C. In a series of experiments 

with a hyperbolic paraboloid, 95% confidence intervals on 

the response were computed at various points on the contours. 

The average number of points which fell within the appro-

priate confidence intervals was about 90%. The failure of 

this percentage to be nearer 95% can be explained as the 
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accumulated results of the assumptions made in developing 

the t variable used in compilation of the confidence inter-

vals. That is, as shown in Appendix A, the d .. 's are not 
1J 

distributed exactly as normal variables, and they are not 

independent since the correlation between d13 and d 24 is 

approximately 0.1. Cbnfidence intervals were also computed 

for functions which are not of equal concavity and convex-

ity. For 95% confidence intervals, the average number of 

points which fell within the confidence interval on the 

response was approximately 82%. The failure of this figure 

to be 95% is largely due to the fact that the surfaces are 

not equally concave and convex. From these results, one 

may conclude that in any application of the confidence in-

tervals to surfaces of equal concavity and convexity, the 

confidence levels are somewhat inflated. For other surfaces, 

the confidence levels may be severely inflated. However, 

from the results in Appendix C, it is evident that the in-

tervals are at least an "educated guess'' and should not be 

completely discounted. 

Before the triangular procedure of Chapter III is ac-

cepted in preference to the older methods of contour esti-

mation, an investigation and comparison is in order. The 

triangular method represents the response surface by a 

series of plane segments which have the property that the 

responses at data points are fitted exactly. This means 

that the surface is as free as an n-termed polynomial in 

fitting the data and has the added advantage of being a 
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simple surface between data points. From this point of view 

the triangular method is superior to least squares polynom

ial fitting techniques. 

To aid in comparing the triangular method with the grid 

and quadrilateral methods, each method was applied to the 

same set of semiregularly spaced data. The results of each 

method are plotted in Appendix D. For the grid method plot, 

note that about half of the 403 responses fall on each side 

of the 400 contour. In the quadrilateral method plot there 

is one point with a 403 response which does not lie between 

the 400 and 450 contours. In both cases the failure of the 

points to be on the proper side of contours is the result 

of averaging datum point responses for use in linear inter

polation. In equation [2 . 1] it can be seen that if all four 

data points lie on one side of the mesh point, the average 

may be biased o For the triangular method all responses lie 

on the expected side of the contours. Consider now regions 

A and Bon each plot. In these regions contours for the 

grid method curve in a manner which is unexplained by the 

data. These deviations are caused by deriving responses for 

linear interpolation in areas where no observed responses 

are available . The quadrilateral method does not produce 

contour estimates in the regions A and B. The algorithm for 

constructing quadrilaterals fails to include one datum point 

in each of these regions . Thus, the failure of the method 

to produce contours can be attri buted to loss of information c 

In the triangular method plot there is one irregularity in 



the 450 and 500 contours which is caused by poor selection 

of triangles. 
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When the data points are irregularly or randomly spaced, 

the contours produced by the gr i d and quadrilateral methods 

will contain more regions s i milar to regions A and B of 

Figures 21 and 22. There will also be more points which do 

not lie on the proper side of the contours. Krumbein(?) 

states, in essence, that a set of n regularly spaced data 

points contains more information than a set of n randomly 

spaced points. This follows because of the tendency of ran

domly spaced points to form clusters which are nearer to 

replication than additional information. It is obvious from 

the figures of Appendix B that the triangular method wi l l 

suffer from lack of information along with the other methods 

when the data points are not regularly spaced, but the tri

angular method does not discard any information or attempt 

to create information where none exists. The contour esti

mates of the triangular method are an accurate representa

tion of the data and do not g i ve rise to the irregularities 

which are possible in the grid and quadrilateral methods . 



BIBLIOGRAPHY 

(1) Batcha, J.P. and Reese, J. R. "Surface Determination 
and Automatic Contouring for Mineral Exploration, 
Extraction, and Processing." -- · Quarterly of the 
coiorado School of Mines, Vol . 59 . (October, 
1964) I 1-14. 

(2) Cochran, William G. and Cox, Gertrude M. Exper i mental 
Designs. New York: John Wiley, 1950, 352 . 

(3) Conte, S. D. Elementary Numerical Analysis . New York: 
McGraw-Hill, 1965, 75-76. 

(4) Draper, N. R. and Smith, H. Applied Regression 
Analysis. New York: John Wiley, 1966, 17- 32. 

(5) Hildebrand, F. B. Introduction to Numerical Anal ys i s. 
New York: McGraw~Hill, 195"6"; 258 . 

(6) Karlin, Samuel. Mathematical Methods and Theory i n 
Games, ProgrammiI13_, and Economics-. --London: 
Addison-Wesley, 1959, 399-400. 

(7) Krumbein, W. C. "Trend Surface Analysis of Contour
type Maps -with Irregular Contro l -poi nt Spacing . " 
Journal of Geophysical Research, Vol . 64 . (July, 
1959 ) I 823-834. 

( 8) Moise, Edwin E . 
Standpoint. 
324-350. 

Elementary Geometry f rom~ Advanced 
London: Addison-Wesley, 1963, 

(9) Salvadori, Mario G. and Baron , Melvin L. Numerical 
Methods in En~ineering. Englewood Cliffs, N. J.: 
Prent i ce~Hall, 1964, 87-89. 

(10) 1620 Numeri cal Surface Te_shniques · and Con t our r;1ap 
Plotting, White Plains, N. Y.: IBM Publications. 

61 



APPENDIX A 

EMPIRICAL STUDY 

To find the nature of certain unknown distributions, 

some testing was done using a computer. The results of this 

testing can be found following a short discussion. 

The first experiment was performed to · study the distri

bution of the random variables a and B defined in Chapter 

IV. To do this, four points were chosen at random in the 

unit square on the x-y plane. That is, the eight coordinates 

of the four points were independently uniformly distributed 

on the interval [O,l) o If the points did not define the 

four vertices of a convex quadrilateral, the set was dis

carded. Of the five thousand sets of four points used in 

the testing, about 3400 seLs formed convex quadrilaterals. 

For each convex quadrilateralf corresponding values of a and 

B were calculated . The histograms obtained for a and f3 are 

shown in Figures 13 and 14 . 

The assumptions about d13 and d 24 were also tested in 

the experiment above. To do this, a hyperbolic paraboloid 

was assumed as a true response surface over the unit square 

in the x-y plane. For each convex quadrilateral, the re

sponse surface was evaluated at the four vertices and at the 

point where the diagonals of the quadrilateral crossed. 
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Estimated responses at the crossing point of the diagonals 

were then computed by linear interpolation between the two 

pairs of opposite vertices . It was possible to obta i n t he 

true values of d13 and a24 since the response surface was 

known. Histograms of the results are shown in F i gures 1 5 

and 16. 
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E(d24 )=0.00148 

Var(a24 )=0.00434 

p(d24'd13>=-0.16539 

Figure 16. Histogram for a24 
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APPENDIX C 

EMPIRICAL STUDY OF CONFIDENCE INTERVALS 

To test the validity of the confidence intervals devel-

oped in Chapter IV, an error analysis was performed on 

sample data selected from several known surfaces. For each 

of six response models, ten samples of size 50 were drawn 

at random from the region R={(x,y) IO<x<8, O<y<8}. The 

response models used were these: 

2 2 z.=x.-y. 
1 1 1 

2 2 z.=x.+y1 1 1 

2 2 z.=x.+8y . 
1 1 1 

2 2 z . =x.-y.+e. 
1 1 1 1 

2 2 z.=x.+y.+e. 
1 1 1 1 

2 2 z . =x.+8y.+e. 
1 1 1 1 

For the models with experimental error, e . ~NID(0,1/4). 
1 

Contours were estimated for every twenty units in the 

response variable z. For example, in the hyperbolic parab

oloid z=x 2-y2 , the contours of z= -60, -40, -20, 0, 20, 40, 

and 60 were estimated. Confidence intervals were computed 

on the true response at the end points and midpoints of the 

broken line segments making up an estimated contour. The 

true response at each of the above points was calculated, 

and a check was made to see whether or not this response 

fell inside the computed confidence interval. The results 

of this check are tabulated for each of the six models in 

Tables II, III, and IV. 
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The four columns of each table are described as follows: 

Col. 1 K, the degrees of freedom of H 

Col. 2 Mean square H defined in Chapter IV. 

Col. 3 % of true responses at end points which fell inside 

the confidence interval. 

Col. 4 % of true responses at midpoints which fell inside 

the confidence interval. 

TABLE II 

RESULTS OF CONFIDENCE INTERVAL TESTING FOR THE 

HYPERBOLIC PARABOLOID, 2 2 
z=x -y 

Without Experimental Error With Experimental Error 

End Mid- End Mid-
K H Point Point K H Point Point 

% % % % 
34 2.14101 90 91 34 2.77206 79 78 
39 4.07525 88 91 34 1. 95098 91 93 
36 5.16563 91 91 33 5.15863 83 88 
44 3.04004 98 98 41 5.48978 88 87 
33 3.99320 97 97 35 4.57380 94 96 
36 2.67606 82 84 28 2.65088 91 90 
35 5.00882 79 80 36 2.93224 98 95 
36 4.07378 94 94 31 4.32608 96 99 
37 4.40000 82 78 38 2.25550 91 86 
32 3.60938 91 90 36 6.57157 93 93 
Average% 89.2 89.4 Average% 90.4 90.5 
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TABLE III 

RESULTS OF CONFIDENCE INTERVAL TESTING FOR THE 

CIRCULAR PARABOLOID, 2 z=x +y 2 

without Experimental Error witfi · Experimental Error 

End Mid- End Mid-
K H Point Point K H Point Point 

% % % % 
33 1. 55617 76 74 37 2.20099 84 84 
42 2.11937 76 78 35 3.12220 81 78 
39 4.78946 90 91 37 2.71459 77 77 
36 4.37617 84 83 -10 1. 91029 75 73 
34 1.77424 85 87 36 3.67513 92 92 
31 2.88453 83 80 37 2.13270 88 82 
34 2.28204 78 70 37 2.94569 91 87 
41 4.02237 91 87 36 3.06212 85 83 
32 4.36839 76 81 41 2.64807 86 83 
41 2.91650 87 87 33 4.95650 89 90 
Average% 82.6 81. 8 Average % 84.8 82.9 

TABLE IV 

RESULTS OF CONFIDENCE INTERVAL TESTING FOR THE 

ELLIPTIC PARABOLOID, 2 2 z=x +8y 

Without Experimental Error With Experimental Error 

End Mid- End Mid-
K H Point Point K tt · Point Point 

% % % % 
42 170.72200 86 83 35 86.79742 92 92 
30 138.17799 88 91 37 36.80585 71 71 
36 47.02765 82 81 33 50.48413 83 81 
36 62.62494 87 87 31 79.30219 89 92 
36 77.86133 83 79 29 64.18718 69 65 
40 236.49677 85 83 28 24.50569 67 67 
35 73.42567 92 91 34 46.49091 59 57 
33 26.07060 69 69 35 39.79968 73 71 
31 75.15530 78 78 44 39.16206 77 77 
36 75.84314 76 76 45 124.76241 94 98 
Average% 82.6 81. 8 Average% 77.5 77.1 
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Figure 22. Quadrilateral Method Plot 
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Figure 23. Triangular Method Plot 



APPENDIX E 

OPERATION OF THE PROGRAM FOR TRIANGULAR CONTOUR ESTIMATION 

To aid in the operation of the computer program for the 

triangular method of contour estimation, a general descrip

tion of the input and output for the program is given here. 

Details of the input may be obtained from comments at the 

beginning of the program. 

Input 

The input to this program consists of two parts. 

Control cards give the following information: 

a) Problem identification 

b) Number of observed responses 

c) Minimum x, y, and z 

d) Maximum x, y, and z 

e) Scaling factor of x and y or size of axis for x and 

y 

f) Distance between response values of contour estimates 

Some of these values are optional because they can be found 

from the input data or from other control values. 

For the data it is required to have the coordinates 

(x,y,z) for each observation. The Fortran programming 

system allows many changes in the exact card format to be 
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made easily. 

Output 

The final output of the program is a listing of the 

error analysis and a data set which is on disk or tape, 

giving the (x,y) coordinates of the line segments which make 

up a contour. To put these segments on paper, another 

program is needed. A separate program is used here because 

of the variety of ways the contours can be plotted. 

Two devices for plotting are considered. The first 

will print asterisks on continuous form listing paper. 

These asterisks will simulate very roughly the line for each 

contour. If the resulting plot is too wide for one sheet, 

the listing is made so that sheets may be attached to form 

the entire picture. 

Another method for plotting is the punching of cards 

giving the (x,y) coordinates of the contours in such a form 

that a simple IBM 1620 program, which is written, can be 

used to plot the curves with a Calcomp plotter connected 

on-line to the 1620. 
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