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INTRODUCTION

The techniques and results of homological algebra are currently
being used in many areas ofﬂmathematics. In particular, the functors
derived from a.giVen functor are very ugeful in the investigation .of
algebraic and topological problems. One of the central activities in
homologiéal algebra is the investigation .of derived functoers in parti-
cular, the discovery and axiomatization of derived functors and the
demonstration of the existence of a suitable product oﬁ the derived
functors.

Milnor and Moore, [167], and Gugenheim, [11] discussed the functor,
cotensor product of comodules over a coalgebra. The functor Cotor,
derived from the cotensor product, was defined and used by Moere in
Cartan Séminaire, [18] page 7-25, for calculating some properties of
differential frojective modules over a ring .which are glso_comodules
over a coalgebra. Howevér, the Cotor functor has not been.investigated
"in full detail. This paper giveg such an iﬁvestigation and presents a
derived functor Coext which is new and of importance equal to ﬁhat of
Cotor.: |

This study is begun-in Chapter I by developing the theory, relative
to an injective class of seqﬁences of derived functors. The theory
includes an axiomatiéation. The author preseﬂts in this.chapter two
classical examples, one ffom the theory‘éf R-modules aﬁd the other from

the theory.of sheaves. These examples involve the classical injectiwve



class of sequences, namely the class of all exact sequences; therefore,
an example is presented in Chapter'Ii where the injective class of
sequencesbis not equal to the class of all exact sequences.

Since the cotensor product is shown in Chapter III to satisfy the
conditions of Chapter I, Cotor is axiomatized. Using the same class of
sequences as used for: cotensor product the author shows that the
functor HomA~satisfies the conditions of Chapter I; consequently, there
exists a derived functor for HomA, which he calls Coext. TImmediately,
Coext is axiomatized by Chapter I. .Finally, in Chapter III, some
relations between Ext, Tor, Coext and Cotor are established.

In Chapter IV it is shown that Cotoer and Coext each have a preduct
and that the preoduct for Coext yields an algebra. A summary of the
results and a ﬁresentation of some problems for further research are
given in Chapter V.

The notation and techniques of Eilenberg and Moore, [6], are used
extensively in this paper. Numbers in brackets refer to the Biblio-
graphy at the end of the paper. For example, [3] refers to
Bibliography reference number fhree and t5—13] refers to Bibliography

reference number three, page 13.



CHAPTER I
RELATIVE COHOMOLGGY THECRY

S. Eilenberg and J. C. Moore, [6—7], introduced the concept of a
cohomology theory.ra;ative-to a particular injective class of sequences,
€, and refer tovan ugﬁublished work. Since-the'detailsrof this have noet
yet appeared, the theory is developed in this chapter as preparatien for
the author's work appearing in later chapters.
Considerable work has been done on the case where € is the class of

all exact sequences, denoted by €., in an abelian category or exact

1
category; MacLane [14], Buchsbaum [5], Heller [12] and Uehara.[20].

This case will be referred to as "Absolute" cohomology theory.
Definition of Relative Cohomology Theory

Definition 1.1: Let U be an additive caﬁegory with cokernels, B an

abelian category, T:¥ = B an additive functor, € an injective class in

9 with € 4. A cohomology theo?y H, relative to € over T is a

sequence of functors gy - B; n > 0; such that:

L 5 J > A" =0 in € and for

Axiem I: For each sequence E:0 = A'
each n > 0 there exists a morphism ég € Hom(Hn(A”), Hn+l(A'))

satisfying the "naturality coendition!; i.e., for a-commutative diagram



() > AV - T UL
E :0 = A! = A=A =0

(P' CP cp”
o) - R - '-* 'IV -
EE,O B B B 0

of two. sequences E E in € the diagram-

l,

51’1

E .
P (A1)t P+ (a1

H (") l
v
' B (B! ) Hn+l(B' )
6'.t'l
°E,

n+l(

H ®')

is commutative.

Axiom IT: TFor each sequence E:0 = A' —= A=l A" ~0 in &, the

sequence
%L

e Ty R0y B e By B,

is . exact in 8.
Akiom III. There -exists a natural equivalence N:T ~'HO.

Axiom IV: For each A € ¥ there exists i:A = I; where 1 € Mand T € I;

such that H'(i) = 0.for n >0, (€ M.

For clarity the:definiti@ps-ef e é;m?and“mt§>e are included. .They

are dual to the definitions ofi paragraph L in Eilenberg and Meoore [6],

Definition 1.2: € %M means £ € T A ~— A; if and only if

AR

O = A——sA' € E.
Definition 1.3: $?§>6. The - sequence E: A > A > A", where

c:1s the cokernel of i, belongs to € if and only if 4 € T



Existence of the Relative Cohomology Theory

Let ¥ be an additive category with cokernels, B an abelian

category and € an injective .class in ¥ with € 5y e I m.

‘Definitien 1l.4: A functor-T:ﬂ -8 is said to be €~left exact if and

only if for any sequence O —A' —=3 A = A" =0 in € the sequences

0-- T(A') —I'(—i—)—)“'T(*A)- éIld T(A') T(i) T(:l)

> PCA)- >P(A") are exact.

Let T:¥ =B be an additive, covariant, €-left exact functer. . Let
A be-any object in ¥ and X an €-injective reselution of A, one such
exists by the dual of Propesition 3.1, Eilenberg and Moore [6]. The

folleowing notation will be used:

and A —§—>X denotes X.

Then there is a complex

T(X) : 0 - T(XO) —]EreT(Xl) ————>T(X2)»~ o a.T(Xn) —-——5T(Xn+l).q ceo
T(37)

inB. Since® is an abelian category, for each naone has the diagram

601 5%
see o T(Xn_l) ——-—-———»T(xn) —-————9T(Xn+l) - .o
b Sk
Ny
n
L] pn
(T (X))

Diagram 1.1.

where»kn is the kernel of=5n, b is uniquely determined by the

n-1



-definition of kernel since 6n6n—1 = 0, and pn is the cokernel of bn 1

H*(T(X)) can be shown to depend only on.A, up to:a natural equivalence.
Hence, for each n > O one defines the derived functors 9 - B by (1)
H'(A) = E(T(X)) for each A in ¥ and (ii) H(£):H"(A) - H*(A'), for each

‘ : '
morphism f:A - A' in ¥, defined by Diagram 1.2; A —ELQX, A —EL—QY}

ee o T(X ) >I(X ) = PP ) = e
n \\\\\ER\A
1 (A)
fn—l fn-l Hn(f) ‘ fn fn+1
FHT(A")
y ////{///
bn‘// 7 \E»
. n 4
e T<Yn—l> n-1 : >T(Yn> 1 >'T(Yn+l> oot
AGY v 6Y

Diagram 1.2.

where -each square is commutative.
Remark 1.1: If A -i-*B is any morphism in U, then A---£—> B —=C is in
€ where c is the cokernel of f.

Proof: Let I € J. Then consider

* % : ‘
Hom(C,T) =S Hom(B,T) = Hom(A,I). Let g € ker £*. From the

definition of cokernel there exists a unique £ € Hom(C,I) such that

c*(4) = g and A =B S ¢ € €.



Remark 1.2: If A is any object in 9 and A ~89B is an

A-835B -0 € 8.

Proof: (Immediate).

i

If 0 ~ 2 >

3

.Lemma 1.1: is-in &, then

1 2
T(fé)
——f~7———ﬁ¥T(Zg)~is“exact:

T(f;)
0 = T(Zl) w———f—___quzé)

Proof: Let cirZ:'

_epic, then

7*'Ci be the .cokernel of fi and consider the diagram

i+l
f f
0 - Zl Bt >Z2 2 >Z3

2\, A N\

_/ﬁpl _ C2
\ \

0 0 0

Since f2fl = 0 there .exists a.unique h:Cl *‘ZB such that hcl = f2

‘because - ¢

1 is a coekernel of fl' By Remarks 1.l and 1.

sequences are all in €.

f c
1 1
Zl > Z2 > Cl
f c
2 2
Z2 ,Z3 rCE
c
l \ N\
Z2 ,Cl > 0O
c
2 . N
Z3 '02 > 0
. h : 02 L . preees B P
It can now be shown that O - Cl ——f>Z3 : >02 -0 is

and consider:

(1) Hom(z,1) A Hom(C,,1) = O.

. ' ‘ * -
Let @ € Hom(Cl,I), Then ac, € Hom(Za,I) and fl(acl) = @cC

2 the following

in &. Let I €.J

£

15y = 0-



f f :
Since Z. = = > 2 2 > 27, 1s in &, it is known that there exists a

1 2 . 3
‘ . ch - = * = = » e . = -
B € Hom(Zz,I) such that acy f2(B) Bf2 » thl. ‘Hence o = Bh
Therefore, O —»/cl-‘—‘h—éz3 € 8.
*

C
(i1) Hom(Cz,I) —-EL—-;Hbm(ZB,I) -3Eie-Hom(cl,I).

.Let & € ker h*. Then 6f2 = éhcl = 0 and 6 € ker f*. Since

2
fa 2 :
7, >Z3_ ' >02-€ €, there exists a.y € Hom(Ca,I) such that
c
CE(Y) = 8. This implies v € im-czvand C, —2;923 ’2->02—€ e.

Since ‘T is:€-left exact, in the diagram

(£, ) T(£,)
0 - 7(z) ————3=-—éfP(Z ) ——————-—a‘T(z )

T(C\}\\\g Ti/y/ﬂ'r(o

i;?l) T(CZ)
0
T(f.) T(c,)

1 1

the - sequences 0 = T(Zl) - >T(Z2) ————4———9'T(Cl) and

: T(c.)
0 - T(Cl) ——ggﬁl——;T(ZB) ————42——9'r(02) are exact.

Therefore, T(fl) and T(h) are»monics‘and T(fl) is:a kernel of'T(ol).
TofshOW'T(fl) is-g kernel of T(fé), let g:G - T(Zz),be-any morphism
such that T(fa)g = 0. Then T(h)T(gl)g ='O; Hence, T(gl)g = 0 because
T(h) iS»é.monic. Therefore, there exists a unigue #:G ~~T(Zl) such

that T(fl) L= g and the proof is: completed.

.The ‘theory of. abelian categories is discussed in detail in

Mitchell [17], Freyd [8] and Uehara [20].



L

Theorem 1.1:: There exists a natural equivalence ﬂ:T'ﬂ'HQ.

Proof: From the definition of HO(A), HO(A) = Zy. Moreover, T is E-left

e, 50 | .
exact. Hence O = T(A) -—ﬂ——a'T(XO) ——-—éT(Xl)vis-exact and €, is a -
T(€)

. k
monic. Therefore, €, = T(€) is a kernel of 60. .But HO(A) ——9->T(X)O

is.a kernel of 50. Hence, there exists a unique isomerphism

B,iT(A) » HO(4) such that b8, = €,.

Now, define M:T *'HQ. For any A in ¥ let M(a) =B Then M is:a

Ao

natural equivalencé. Commutativity can . be verified using Diagram l1l.2.

Theorem 1.2: TFor each A in ¥ there exists i:A = I where 1 €M, T €

and (i) = O for n > O.

Proof: By the dual of Propositien 4.1 of Eilenberg and Moore-E6], it
is known that for each A in ¥ there exists 1 € M such that i:4 =1

where I € J. It can be verified that O = 1 -;ﬂ>I'-*O”-*O“-'--- is an

T(I) if n = O

€-injective resolution of I. Therefore, HHI) = Oif >0

Lemma 1.2: If ¥ is an .additive category, € an injective class in ¥

with € 53 and if {i_:A_—A | o =1,2} is a biproduct in ¥ then

il ‘ m i2 ﬂl ‘ . .
Al —> A >4, and AZ,————§A_———ﬁ>A1 are in €. In fact
lcl néz : ‘
0~ Ac — A >A0'f'0.1s-;p'§ yhere 0149, € {1,2}‘§nd o) % SP

1 . 2 R

Proof: Let I € 3 and let £ € ker if, then f:A =T and fi, = O.

= f because 1 = im o+ AT, .Hence,

Consequently, fi2:A = I and fien

2 2

il n2 i i2 ﬁl
n;(fiz) = f and Al —_—— A >A2 is in €. Similarly A2 > A ——-ﬁ>Al
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is.-in €.

i*
Cotisider Hom(A,I)f—;——>Hom(Al,I) -0, Let f € Hom(Al,I). Then

one has'thevfamily {f:A:L - TI; 0:A ~~I}. ~Since {il’iE} is a coproduct,

2
there exists a unique morphism k € Hom(A,I) such that ki, = f.
i
Therefore, 0 - Al ——AH>A belongs to €., To complete the proof one needs
v rx
‘to show 0 - Hom(AE,I) 2 > Hom(A,I) is exact; i.e., show m is-a
monomorphism. Let f € Hom(AE,I) such that fﬂ2 = Q. Then f = O because
™, is an epic.
Remark 1.3: In an additive category ¥ for any Al, A2, X in ¥

Hom(A) + A5, %) = Hom(A,X) + Hom(AE;x), MacLape [15- 250].

Proof: Let QG;AG - Al +vA2 , g =1,2 }be the biproduct of Al

‘Let ¥: Hom(A) + A,,X) ~ Hom(a,,X) + Hom(4,,X) be defined as follows:

and A2.

for any £ € Hom(A) + A,,X), ¥(£) = (fil,fiz). Tt is clear that ¥ is a

homomorphism. Let f, g be any morphisms in Hom(A, + A,,X) such that

|
b(£) = ¥(g). Then fi) = gi, and fi, = gi,. Since {i;,ilisa

coproduct, f = g.
.Let (g,h) € Hom(Al,X) + Hom(Az,X). By ‘the definition of coproduct

there exists a unique morphism k:A1 + A, =X such that ki, = g and

2 1

ki, = h, hence ¥ is surjective.

Lemma 1.3: Let € be a pointed category and € an injective class .in €

with € 538, Tf 0 = A'=23 A =iy A" =0 is in € and O — A" 5 X

is an €-injective reselution of A", then.A'—i—bA,-§j4>X

o and
€+ aO
A ——J—axd——-—>xl are in €.

' 0]
. . . a )
Proof: Note that A'—E;%A.—égﬁéxo and A ~§J~>Xd————éxl are sequences.
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‘Let T € & and consider the'following-diagrams:
(a) Hom(X,,I) L& s poma, 1) 2 Hom(ar, 1)

hAa

Hom(A” I)

COLEN (€4)*
(b)  Hom(X,,I) > Hom(X ), 1) ————> Hom(4,T)

E*

Hom(A",I)

/]

.0

In (a) let f € ker i*. From the hypothesis, im.j* = ker i* and €*
 is surjective. Hence, there exists h € Hom(XO,I) such that

(€j)*(h) = f, and A' -—i-—)A —ijexo is in €. Similarly, using (b) one

€5 30
can show -that A >XO >Xl is in E.

Definition 1.5: A sequence of complexes; O — X —£;>Y -£L9Z'—r0 where

={£ X -1 | a1l n} and G = {g,:¥, ~ 2, | a1l n}; is .called an

8-séquence of complexes if and only if X, Y, Z are in € and for each n

the following conditions are satisfied:

fn g1’1 :
>Y —237 2.0 is in €,
n n

(1) o *'Xn



1z

(ii) the diagram

fn g
0-X — Y 257 -0
n n n
_‘an an n
X aZ
f g
0 - Xn+l \n+1 >Yn+l D+l >Zn+l*-0 is commutative.

Theorem 1.3: If 0= A -2;93 L3¢ -0 is in €, then there exists an
F G

8-sequen¢e‘of complexes O = X —=>Y ——> 7 -0 and augmentations
61 _62 63
61, 62, 63 such that A —==>X, B —>Y and C —> 7 are €-injective

resolutions for A, B and C, respectively.

€ €

Proof: One constructs A--—l—»x and C ——;L>Z in the usual manner;

Eilenberg and Moore [6].

Define Y by the following construction (see -Diagram 1.3).
(1) Let Y =X +72 . By Proposition 2.2 of [6]; T €d forn > 0.
For ‘notational purposes, let fn = iﬁ and g, = ﬂi. Then by Lemma

fn s
>Y =237 - 0.is in €.
n n

l.2, 0 =X
. n .

(2) Augmentation: O = A : f 3 belongs to € andeO € I hence there

'exists-an o:B = X_ :such that of = €

0 1° Let 62 =f

S/ |
da + 106 .Then

38"

Y i} .
€f = (foa/ + 1o€3g)f = fof = £4€, and g€

€

In order to show O — B —Qé—>Yd

€z
that given any I € J the sequence Hom(YO,I) —2 5 Hom(B,I) =0 is exact;

‘belongs to € it needs to.be shown

i.e., ShOW'G% is surjective. By Lemma 1.2 and Remark 1.3 the: diagram
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O )
. A f . B # > C O
-
-
-
< _ - = :
6‘1 Pl 62 €,
-
.
//
f ge .
;__._...‘___;___.___( \Z‘__._...._.._:E_.__._:‘:.:T’ Z.U O
T ‘o -
o - o
a ,/“/ o BZ
e
e F Y e
X FTITT I I T e S T L L*“—'—’—Z"————‘“:JZL O
| ﬂ]_x LL ///
-7 t
-7 { aZ
- Ao |
/FL—/ Y ‘1
-7 ~
- £ Ja y) O
,z(_—_——"_*x*“"“"— T T e s T e T L
1y L
R
. F)’) Jn
>Xn<___.._._._; T 2 Yn W :.—‘Z;*;:;"N;_._/_{ 'Z,«n**‘ - O
(o “n oo
T oA
- an
,ff/ ¥
-7 e}
& Foee Intl .
Xg=—= g V= b O
t —
Tl:wi nes -
ntl //// n+l
f))( ] //// ntt 32
/n't’/ a\('
= . ' )Cnr)_. \ ,gﬂ"l 5 7 e =3 (D
O Xf\r.:l_ - 7(.* Tt anﬁ: - 2T - zn”’ i
Trﬂf—l . Anrl
~

Diagram 1.3



14

0] -0
e
»Hom(X JI) -———éHom(A I) = O
. A
Hom(X ,I) P - B
+ = Hom (Y, 1) g 5> Hom(B,I) =—> 0
' ’
- Hom(Z,T) Al g
*

Hom(Z,,,T) ey Hom (G, T) = 0

r

0] 0]

is obtained with rows 1, 3 and columns 1, 2-exact.> Note, p(h) = hfo'for

any’hie Hom(Yo,I) and for any k € Hom(ZO,I), 1(k) is the unique

morphism in Hom(Yo,I) such that l(k)ig = k and t(k)fo = 0. Then each

square 1s commutative because given any k € Hom(ZO,I), GE(t(k))

I

) k€_g and g*(E%(k)) =

= l(k)(f a + i 63g 3

s s *p Xk
Similarly Elp £ 62.

K€ g.
38"
Therefore, by the Fivé:Lemma, 65 is surjective.

, o €.g
(3) Define 53: By Lemma 1.3, A_—E;QC ——EL—QZ

o belongs to €. Moreover,

0 ' . , B¢
aXaf =0, hence there ex1sts.Bo.ZO Xl such that BOGBg = axq.
Define 83 by

o . 0. X . 2:0
o = o) 3
y = 1 xTT | go) *+ 119780"

.One -can immediately verify that each square is commutative. One still

needs to show:

BO

(a) v&5 =0
.62 .ag | .
(b) B rYO >Y, belongs to €.
o, _ 0X - Z~0
(a). BYGZ = [fl(axﬂg —»v ) + llaZgO](f @ + i EBg)
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=1 (aoﬂx (f @ + i EBg) + 125 (f @ + i EBg)
= 1. 3% 0 0
= f,0.@ - leOGBg = £,0. flaxaf = 0.

(b). .Let I be any object in 4. Then the folldwiﬁg diagram is obtained

o 0

0
/ A
o i
a * . |
X \ 1 X
Hom(Xl,I) ,Hom(xo,I) - > Hom(4A,T)
Af NS A
1| N || ~
AN * ~
N N ag v € ~
Hom (Y. ,I) . ,Hom(YO,I) —> Hom(B,I)
A; N Al /
g* ! B*\ g* l g*
v N Y
Hom(Z. ,I) L > Hom(Z, . ,I) > Hom(C,I)
A
A 7 E%

where columns 1, 2, 3 are exact, rows 1 and 3 are exact and every
square of solid arrows is commutative. Then row 2 is exact by the

following remark from the category of abelian groups.  Hence

aO
2 > ¥ N 8 i
B 'YO zYl belongs to C.

Remark 1.4: Consider the following diagram where the objects and

morphisms are in ‘the .category of abelian groups,

£
o 5 o — 3 am
Nt A0~
N ! Ly N Y
1N o|ro N
v f, v 85 ™\
G, + .G —=—G_ + G —————> A
I BN (¢ ‘ 0 A
| EN
™ 2o}y Mo P
G — G > A

.
Hy
(@]
o8]
]
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and the following conditions are satisfied on .the ﬁorphisms:
(1) rows 1, 2, and column 3 are exact sequences (i.e., ker = im),
(ii). B is a monomorphism,
(iii) commutativity in each square of solid arrows,
(iv) Bg 8! = §f3 and Y§.= B3
(v) g, = Emi + Bg My
(vi) £, = (B4, - 15M + 3T

£ g
Then Gl + Gi ——2—5G6-+uG6 ‘ 2 >A-is-an exact sequence.

lo

Proof of the remark: g2f2 = 0 by an argument similar to that used to

0 - . | Vool .
show aYGZ = 0, so im fa»Ciker'gz. Now, let (x,x') €'ker‘g2. This
implies ‘that O = ga(x,x') ~-Bgl(x) +E(x'). By commutativity

gz(x')’= Yga(x,x') =0, hence»xf € ker'g3 = im T Thgrefore, there

3
exists y' € Gi such that fB(y') = x'. Now, consider
z =x + 8'(y') € Gy Bgl(z) :IBglg'(y') + Bgl(x) = §f3(y') + Bgl(x)v

= E(x") +‘Bgl(x) =0. Bis a monomérphism, hence z € ker gl'= im £

_and there exists y-€ Gl such that fl(y) = z. Then fa(y,y') =

1

E(ic')f3 - io§')ﬂi + ioflnlj(y,y') ; (iéf3 - iog')(y') + iofl(y)

i

iéfB(y') - 18yt + Lo(z) = 1) - 18 Gy + 1B (") +'io<x)

= (x,x").
0
. 1 ' - S o
- Define o : rom. Lemma 1. e sequence r 7 elongs
(k) Define 9y: From L 1.3 the seq B Zq > %, bel

X

1 1
. o O.B - =
to €. Also XBO€3g ol 1 5

B%& = 0. Hence,vthere-existslﬁl:z ~ X such
0 1 S R |
-B.o” =29 ' . 3 .
that Bl 7 XBO' Now define O by sett;ng

1 1K 71
a = | N
y = £004m + Big) +'1aazg1'
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One -can readily verify -that 3ls faal and . gaal = aZgl It remains to

Y 1
be shown that BY has ‘the following properties:

(2) 5153

30 at

Y. N
(b) YO > Y ,Y2

belongs to €.

A straightforward calculation establishes (a). To show (b) consider

the following diagram for any I € J.

@) () .
HOT(XE,I)> ,Hom(Xl;I)vv wHom(XO;I)
M 4
RSN RN Jix,
fa:( 2) fl:( 1) AN fo!( O)
k ) (ai)* % ) h (ag)* w( )
Hom(Y.,I Hom (Y., T) - > Hom(Y ., T
O‘] 2 AN N iﬁ 1 AN iw ©
&)1 CATNCEY N HES
‘ 1 ~ ! 0 N
v (az)* N\ ' (BZ)* Y
%m@?I) >%m@r1) >%m@yI)

where rows 1 and 3 are-exact and the columns are direct sum diagrams.

By the remark which follows fhis proof, the middle :row is exact and

Yo

o)
aY

AN

7

> Y

2

is in €.

(5) Assume, for k < n, there exists Bk:Zk

B Bk -1 Biﬁk N and that a? has been defined by
k k+1
) 1(8}(ﬂX -1 R ) 1 azgk

with the properties

= 0,

k+1

- X such that
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k-1 k
aY , aY
®) Ve — >Y, | belongs to &,
k k k
d =
(c) Oyfy = £, 19 and g 19 =98
_ an-1 P
(6) Define~5§+l: Since Zn—l Z v >Zn Z >Zn+lvbelongs to-€ and
Ji+lg an-l _ autlan = 0. . , v
B x OyxP,_ = O there exists B .:Z . =X . such
' n n+l o+l
=3
that Bn+1az X Bn. Now define a by
an+l - an+l _ n+e Z an+l .
Y fh42% TT§+1 + (-1) Bre18uil’ * 1042z Bnn

Commutativity can be verified without difficulty. The following

‘two properties aré also satisfied:

an+lan -
(a) y - 0

an an+l
(b) ¥ ——3V —2— 37 _ belongs to E.
n B+l n+2 ' _
gmln__ md _nyB+2 : .2 o+l
(a) 9 s nX + (1) Bn+lgn+l) T tni2’z Bnal

S n+1l .2 n
°[ ?n+l(axﬂ§ + (-1) Bngn) * ln+laZgn]

= (f +2 §+ln§ + (- l)n+2 n+2sﬁ+lgn+l ii+25;+lgn+l)o
O(fn+la§n§ * (-l)n+lfn+ls S ln+l ;gnj
| = fnfza;+lﬂi+1fn+l an n+lf +2a§+lv§+lfn+lsngn. 
+ fn+2 §+1ﬂ§+lii+la;gn +‘<-l)n+2 n+2an+lgn+lfn+l ? n
+ (- l)2n+3 n+2sn+lgn+lfn+lB g + (- l)n+2 n+2sn+lgn+1ii+la;gn
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. iZ an+l £ n X - i (- 1)n+1 Z an+l

n+2 7 gn+1 n+l X B8

n+2 Z 'gn+l n+l n°n

7 gn+l .2

. n
2z ‘gn+11n+l‘Zgn

n+1
n 2 X B

1 ya+l a0+l S\
(-1) fpe2 LBX 5n _'Bn+laZJ'gn'—lo'

(b) ‘Let I € J and consider the diagram

n+2 8

n+1
(-1) n+2

- e
n + ( 1) n+l Zgn

i

Homgxn+2,l) - .>Hom§Xn+l;I) o ’x - - ‘HonXn ,I)
N i o |
fn+2 ¥n§+2) \ f;+l Fn§+l)\\\\ ” M fni)
| | \\\ n+l l N 31 V
v (0, )* (9)*
Hom(Y .,I) =1 S Hom(Y  _,T) §\ X > Hom(Y_,T)
n+2 \ B n+1 \B* n’
f | \'n+l M . n / | .
g;+2 rln+2)* \ gn+1 Fl 1)* \\\\ g; fln)*
| \ | \ |
v ' : 3\ \ N v
Hom(Zn+2,I) (33*1)* >Hom(Zn+1,I)‘ (ag>* >Hom(zn 1)

where rows L and 3% are exact and the-columns are-direct sum diagrams.

By the remark that fellows, the middle row is exact and

B én+l .

Y - ' . 3 et
Yn ‘ >Yn+1 i > Yn+2 belongs to €. This completes the desired
construction.

Remark 1.5: Consider the following diagram where the objects and

morphisms are in the-éategory of abelian groups:'
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g
p) p)
G! > G! > G!
'12 _ Py! | ,|o
| IR |
™ I |\ 1 I |\ 1 l'v
i N ™ SRR m | 15
l N | AN ‘

. v | \\82 \ v ' N £, X | '
2/+‘G2 N 'Gl + Gl < 'GO/+ GO
| \ B M N l
i |lm h i :TT h i ““
21 2 AN 1 1 N "ojl o
| N N
; N Ne
2 gl 1 fl _ 0

If the following conditions are satisfied on the morphisms:
(1) the rows 1 and 3 are:exact sequences,
(ii) the columns are direct sum diagrams;

(iii) commutativity in each square with solid arrows,

(1v) Sg, = 1,57,
oy K, ovey . s o
(v) £, = ipfy + (-1) 1O§)ﬂl +iE M,
(vi) g, = (ilg, + (D gm 43 gm
2 183 1> T &

then row 2 is an exact seguence in the sense that inm g, = ker f2'

Proof: By a direct computation, as done previousiy, it can be verified

that f = 0. DNow, let (x,x') € G, + G! such that fz(x,x') = 0. Then

282 1M
by commutativity, fB(X') = 0. Hence x' € ker f_ = im gB-and there

3
exists y' € Gé such that gB(y‘) =x'.

Consider z = x + (-1)kgr (1) €>Gl. Theﬁ iofl(Z) =

RO (-1)%3,£,8' (3") = 1E,m

Geyx') o+ (1)1 g ()

= ioflﬂl(x,x') + (—l)kiogﬂi(x;x') = fz(x,x') f'iéfBﬁi(X7X') = 0.
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Hence z € ker £, = im 8, because i, is a monomorphism. Let y € G, such

2
(y)

0

that gl(y) = z, then ga(y,y') = (i!

1e5 + ((DLEN G 1

181

k+li
1

k+l,

= ii(X') + (~1) Er(y') + il(z) = ii(x') + (=1) 115'(y') + il(x)

+ (—l)kilE'(y')

= 1]'-(}(') + 11(}() = (X’X') and the pI‘OOf iS completed,

. 31 _ P
. X Y
M = > - - >
Lemma 1.b; Tf X = {X —=—X | n >0} and ¥ {Ynf'_”ml’ n > 0}
are chain complexes in B and if £ = {X —=>7Y | n >0} is a
. 'n n+l -
sequence of morphisms with the property; for each n > O,
£ al’l - al’l+l . > . B
n+1°x y En, then for each n > O there exists a morphism
ARt ) - 1Y),
Proof: Consider. the follewing diagram (recall Diagram 1.1):
an—l 3B
, X X
eee = X . > X > X . = .
b .
n-1
\ .
. 7z
Pn
B (X)
= n n
gn—l gn A : ' §n+l
A
. T (Y)
n+l
v
. ot A ,
n n . k' 1
/ | ! / /
ese — Yn . an . ,Yn+l an-;-l ,Yn+2 - e ae
Y

Diagram 1.4
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By commutativity a;gnkn = §n+la§kn = 0, hence there exists a unique

= . N ' ' = - ' . . an"fl
En Zn Zn+l such that kn+l§n gnkn because kn+l is the kernel of v -

: vt ' S E kb . =E Rl o
Also, by commutativity, kn+l§nbn—l gnknbn—l .Ean‘ an—l

i,

— 1 —_
= by 510 PhaSaPpan =

i

k! D! 3

k! is .a monic, hence & b
n+ln “n-1" “n+l ’ EQ

n~-1

= ' b! = ! i p ',
Py .10 gn.l.andxﬁﬁlbn §n , = 0 because p; , is the cokernel of bl

Thus there exists a unique morphism A™:H (X) - 1 (x) such that

n ., T
A Py = pn+l§n'

Proposition 1l.1l: For each sequence E:0 —A -i;>B —EE>C =0 in € and

n+l

for each n > O there exists a morphism AE:Hn(C) - H ~(A) such that the

following is a sequence.

0 - o) T, o) L), ng) —E— ) —51553—>H (B) = «-

An—l n

e By O ey @) ey BB

Proof: First A% will be constructed and A%T(g) =0 = Hl(f)A% will be
verified. Ffom Lemma 1.k, theré-exist morphisms AE:HH(C) - B for
all n > 1. AéHl(g) =0 = Ha(f)Aé will be shown. The proof that
A%Hn(g) =0 = Hn+l(f)Ag is exactly the same, taking into coensideration
the defiﬁition of B? for n > 1.

By commutativity, GiT(BO)T(EB) = T(Bl)agT(EB) = 0. 'Therefore,

there exists a unique morphism Y:T(C) - Z, such that k vy = T(BO)T(EB)'

Define A% = p,Y- vI(g) = bOT(a) because k. is a monic and klyT(g)

1

= T(BO)T(EB)T(g) = 5§T(a) = klbOT(a). Using this commutativity and
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. 0 |
the fact that p) is the cokernel of bO’ AET(g) = plyT(g)»—.plbOT(a) = 0.
T 1.1
o prove ALH (g) = 0, recall three facts:

(a) From Lemma 1.4, P, T(515 = A%;l, T(Bl)il = sz(Bl);

1 1 1
(b) 8 = T(BY) )

781

l. 4
T[fa(axﬂi + Blgl) + 128

It

1., X
T(fz)[T(ax)T(ﬂl) + T(Bl)T(gl)]

£ TGN

i

1 7,1 ,
T2, (8T () + T(BIT(g))] + T(7)6, T(g,);

(¢c) by commutativity

C L Zel - .7 1=
T(lE)GZT(gl)kl = T(la)T(gE)éY k, =0

» 1 X\ 1 . X = 1- _
T(fa)éxT(ﬂl)kl = GYT(fl)T(ﬂl)kl = 8yk, = 0.

Therefore, T(fE)T(Bl)T(gl)El 0. T is additive, hence preserves

biproducts. T(fE) is a monic,.therefore T(Bl)T(gl)Ei = 0. Now,

————

0 = T(Bl)T(gl)El = T(Bl)ﬁiéo = k,T(8) éo' k, is a monic so

= = - _ 1.1, \= _ ,l==— =
T(Bl) gy = 0. Using cgmmutat1v1ty, AGH (g)pl.~ AEplgO = paT(Bl) gy = O-

Py is an epic, hence AéHl(g) = O.

NN 0X 2.0 0.2
Slnce.BY = flaxﬂo = leOgO + %18Zg0, §YT(1O)T(€5)
: - = — - ‘7
= _T(fl)T(BQ)T(EB) = -T(fl)kly = —klny. Therefore, klbOT(lo)T(GB)

== = s Dymie N = 1 o .1
= -k, f vy and —bOT(lo)T(GB) = IyY. Now, H (f)AE = H (f)plY

e _ - -
= p Ty = plbOT(lO)T(GB) = O because p, is a cokernel of Ty,-

- 2 1 N N NI N -
Similarly H (f)AE = O because kEblT(ll)kl = GYT(ll)El = T(fE)T(Bl)kl

T(B.) and, since k. is a monic, b T(iZ K

= T(fz)kaT(Bl) = k5T 2 it T}




2k

o @) @
, T(f) — T
T(4) T@) T > T
‘ s <
// - /,
p -
/ 7
- /s
g PR
Ve ~ -
/ e :
Teet), T(E,) PRGN T
T(€,) P g s
-~ s
v ’ P -
7/ g e g ’ < g
Ve {\ - <
Py 7 I - s
) 7~
p _ . i /
_ ] (F ) - T( ¢ ) E
T(Xo) e > T0Yo)~— ! 2 T(Zo)
7~ e g '
\ - v N ~7
g_ P , g - =l
_ e 5 -~ "
Nz“ s+l // > QN‘ = ~ : NT
- 7 [t ! P = — - /’ - !
\ - e / SY > - ~
§° \ s {Pn i -7 ! 7 ol 59
X Y ke ¥ - 7 ‘
Te e B~ C Eee E e
A= = = o I o - z—f T - E\j K
~ E P =t ~ ~ «
P - \ - _ ”
- \-‘ 7 Ve \‘
T{/l")/ - ~ g
¥ ~ - \ -
s T(H) ” RN ()
i L IR
- - -
k T ~ // -7
- - -
-~ P -7
T "l -
| _ > -
1 s -~ -
1 - . £~ /ox -
8)( '\ P / » g
:f‘\f: = > Ei. - £
. z 3 _Z 5t
/ T AN
T —
B V /./‘ - A
e f : (d: ’
) T () e T TR

Diagram 1.5




Therefore H2(f)A%

) 1
H (f)AE = O.

Theorem 1.4: (Naturality Condition) Fer a cdmmutative'diagram

B, = H(D)pTB) =

is commutative.

Proof: The following notation will be used throughout this proof:

El:O - Al L > > A" = 0
Gp' Qp"
Eam-ﬂB', h > > B" -0
-of two sequences E1 E2 in € and for each n > O the diagram
n
n AEl n+l
H(A") - >H 7 (AY)
H (") 2 (1)
9 P
£ (8") - sE* (B
b

? .
(1) 0 - A' £ >
c! : €
0 = X' - >

n
'
where X' = {X! ———JL——§X'

n n+l

and B X" - X! for n > 0.
n'n n+l -

N =0

n > 0}; similarly for X and X"

25



0 i i
(ii) © —»%' & — B K > B" =0
ﬂ'l ﬂj ﬂ"\
0 =~y H 5 Y K >YM =0
an_ . _
!
where Y' = {Yﬁ ———EL—>Y£+1 | n >0}, similarly for ¥ and Y" and
P32 § JEFSN 1 >
gn'Yn Yn+l for n > O.
i) X
(1ii) Let W1 ——-——f>T(Yi) denote the kernel of 8y, and
a |
7y ——i—-;‘»T(Xi) the kernel of &,.
Consider the diagram:
. y .
T(a") T > T(x)
1" 1]
2™ (xv) T(ep)
1" i
e 0
(D) :
1Al .
YA (V) Yau TGl (rmpy TR
W' :
kl
Wy = 1(1)
(I1)
A .
© T(e)) (
[ . N LM []
z! 7 ; >T(X])
) .

Diagram 1.6

where I, II and IV are known to.be commutative.

= 0. Therefore, there exists a

1 Zn 1 2
Now GY'T(wi)kl = T(wé)éxkl

A ut
unique ¢:Zi *'Wi such that kwl

A '
Q = T(¢i)k§ . In the diagram
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-
1t 144
r(amy ZED S nix (XYY = wen =) —E TR ) = e
< el T

- N s SIE NiRE
> % = = e ElR
~ 0 :\ —~ - \f
e v N S I
<° - K - =

y : / # {

! 1 JPU—— 1) et ec0g - f

W > () —3 > T(TY) T ) AT L)

k] 55, 5

Y'

each square is commutative, therefore, if there exist: merphisms An’ for

all n >0,
IKO:T(XS) - Wi
}n:T(xg) = T(Y))
such that Ygu T (")~ $ Y % AOT(G")

1" » t — W~' O
TEITeE) - T(PIT(RY) = k. Ay + A8y,

and for n. > 0 _ _
: n. n
T(gn)T(wH) - T(w£+l)T(Bn)‘= 5Y'hn + Kn+15X"

then the theorem will be proved because the "homology morphisms induced

by homotopic chain maps are_equal. It can be verified that these are

chain maps.

lst Step. Definition of Koland kl.

0 0 _X' X0
) d -
Recall that dy = £ ( X,ﬂgﬂ Bogy) *+ 1] Oxugy and

0 o _y PALNG;
87 = - + 1 .
y = B CpTy = Egkg) + 17 dyuky
: .X" 0 _ 0 0] t
Therefore, (1) i aX"gO = §X - fl(ax,ﬂé - BOSO),

X0 ~O. X"
(2) 1] Ogy = dyig + £18o
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=‘n§'agwoi}é" + ﬂi{'hlwiﬁo,
(4) ﬂg'égmoién = (ag'ﬂg'— §Oko)moi§" because ﬂ§'i§" = 0 and
ﬂi'hl = 1,
= 375 %to - Soo%to.
= 3 ooty - go‘pb'goié"_
= 3, to - S
Substituting (4) inte (3) one‘obtains
and |
Now letbul = —ﬂ§'¢ii§" agd kl'; T(u1). Recall, T(Bg,) = 53, = kg'bg'.
So let A = bg'T(ﬁg'moié"); .fheﬁ ky'xo’+ xlégn = T(E,)T (o)~

- T(e!)T(B).

Moreaver, ki AJT(€M) = T(E,)T(gU)T(EM) - T(p!)T(BIT(EM

L Wt " i 6
=k @Y,y - K YB"T(Q ) from Diagram 1.6.

] /\ WI .
. . 11 - -
kl is a monic hence kOT(E ) =0 YA" kl YB"'

' "o
Now for each k > 1 define e = (—l)kﬂ'Y @kiﬁ and let Kk = T(uk).

k
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2nd Step: Induction Hypothesis. Assume that for each k < n the

following condition is satisfied

| " . ) oK ok
TEITOR) - Tlop ) )TB) = by by + Ay e

2rd Step: Show that
T(E )T(eM) - T(p! IT(B )

n n .
Oyihy + kn+1éx"'

"o o_ [ _=a .
IfE o n+an Y laX" then the proof will.be complete
Recall that

(@) 3=z Q% (1B g ) 41k OF
n-n

n+l X' n n+l X8’
A . 3 Y _1 R+l LS o
(o) éY‘—‘Pn+l( Y'nn * (»l) gnkn) +':I'n+laYY'kn
Now,
a - n+l Y X" an
L LJ'n+l, xn ( l) n+l¢n+l n+l X"
(2) from (a)
X" sn ! n X' n+l
1n+laX"gn =% - fn+l(aX'n>rE + (=178 ) and
.X" n. X n+2
n+laX" a n (’l) fn+an’
! KM sn Y n X" n+2. Y
(3) n+lcp +1 n+laX" - rrn+lcpn+laX1n + (1) n+l¢n+l n+an
e X' n+e _, -
dB
n+l Y(p 1 + (-1 n+an
and from (b)
Y \n .X" n X n+l X"
d = -
(&) M Ywn n 5 ﬂ w ipo+ (-1) §nkn¢n1n ;
. Y" LXM n+l X"
=0 'nn Ppip T ( 1) gncpggnln K
n_Y' .x» n+l "
- aY'ﬂn Pty * + (=1) gn n’
Substifuting (4) into (3) one-obtains
Y' " !
n+l¢n+l §+1ax" an “Y @ + (-1 n+l[§ @" - B 1.

n+l n
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Therefore,
Y XM oan n Y' X" n+l
T o - = (- 1o nt
n+l@n+lln+l Xn Y'ﬂn ?nln (-1) [gn@n 'wn+an]-
and ‘
"o et o (op)Bteyn YL X! Yt X! an
gncpn cpn+an = (-1) , Y'ﬂh cpnln + (-1) T.rn+lcpn+11'1r1-'+l X

n n
aY‘un + un+laX"'

Theorem 1.5. 1If B has a projective generator P, then for each sequence

B:0 = A —i;>B L0 -~01in & the sequence
T(f) () by 1 B () 1oy BR(g), o1
0 = T(A) ~2ly 7(B) —=Bly p(0) g g (p) ~Edddyp(p) 2Bl ph(o) ~

1

A )
—E5H2a) .

is exact.

Proof: By 5.2 of (6] B is projectively perfect. Moreover, ? € GH
where Cl :)@l. Therefore the functﬁor B(P,~-) = Hom.,_.B(P,—) :B -'Gé
where % is the category of‘abelian groups, has the properties:
(L) preéervés and reflects exactness hecause P GCg; amd 61 is
closed; |
(ii) is faithful; from the'definition of projective generator;
(iii) pfeserves monics, kernels aﬁd producté'because is the
adjoint of a functor (Propasition 5;l_in [6—19]);
(iv) preserves biproducts because is additiﬁé;»Proposition 6.4
in [17];
(v) reflects epics and. monics and exéct,sequences (Proposition 1.1

and 1.2 in.[6]).
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 Now apply B(P,—) to Diagram 1.5. Récall, for n >0

b
T(Xn_l) ~a-d 2 =5 ' (A) =0 is exact because p 1s the cokernel of
‘ ko 8y
b,_,- Similarly for Z amd Y. Also, recall, O = Z_ ——EfﬁT(Xn) >

- T(X_ .) is exact.
n+1

(1) ker H'(g), < im H(£),.

Let x € ker H'(g),, then there exists y € Hom(P,E#) such that

1]

(5£)*(y) = x. Then (En)*ggn-l)(y) = Hn(g)*(5£)*(y) 0. By exactness

there exists z E_Hom(P,T(Zn_l))such‘that (gn_l)*(z) = (g,_1)+(¥)-

T(gn—l)* is surjective hence there exists w E‘Hom(P,T(Yn_l)) such that

T(g, )u(w) = 2. Let a = (E),(y) - 63710 € Hom(P,2(y)).

‘Then T(g ), (a) = [T(g ), (&), 1) - [T(e )85 Tw)

An

= E).G, ). - 65 me, ). = E).G,_ ). - 7M@) = o.

Therefore, by exactness, there exists b € Hom(P,T(Xn)) such that

. n N
T(fn)*(b) = a. Moreover, T(fn+l)*g§(b) = GYT(fn)*(b) = 53(a)

AN o— o A - A '
= 5§(kn)*(y) - 53 Q? l(w) = Of Hence 5;(b) = 0 and there exists

€ Hom(P,Z_) such that (k ), (c) =b. T(f ),(k ), (c) = T(f ), (b) =a
n n n n n

Q

1l

(Eg)*(y) - gﬁ—l(w), hence (¥£—1)*(C) =y - (%£—l)(W) because G%n)*

is injective. Therefore, by commﬁtativity, Hn(f)*(pn)*(c) =
= 0 ).F @) = G - G = G ). = x

(2) ker AL C im H'(g),.
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T (f) T(3n-1)a

Hom(PH" {Al}———————-——ﬁfnn (P H""(8))

Hom (T = _—_»::;?-:;«:-:; ey /‘fvm(PT{yr)e——— e S Herm (BT (2,,))
\( . T(I"L)X' T(LZ ) ~ S )
ba-i), W - Gy
\d . ( < V. «"// . - - V)7/
_ P s . ~ = ~
Wem{ £, 2,0) - ; 0 Nem(PZ) (Jndx (P, 7.,)
%“J \f’,\ (ﬁ")" \ i ’ (i\). . R — - E /
X W) / - _ - .z gn..
HUM(P HAl) -———-———ﬂh’m(P, v Nom (P Hn(m)/__ﬁ__(_y__)_"_, IW(P HO(O)) \ z
- -7\ </ \
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Let x € ker AL. (En)* is surjective, hence there exists

y-EvHom(P,ﬁn) such that (En)*(y) = Xx. By commutativity,‘T(Bn);(y)

€ ker (pn+l)*’ and there exists z € Hom(P,T(Xn))»such that‘<bn)*(z)
= (Bni*(y). TLet a = T(fn)*(z) ; (-l)nT(iﬁ)*(En)*(y) € Hom(P,T(Y#)). .

A =
Then 82(a) = T(¢, 1), 82(2) + (-1 Dz 0,106, B ). () + O

An =
- T(fn+l)*[6x(z) -.T(Bn)*(ﬁh)*(Y?]

= (2, )Lk )4 (0 ), (2) - 2B ), (R ), ()]

n+l
= T(fn+l)*[(kn+l)* T(Bn5%(y) - T(Bn)*(ﬁn)*(y)l = O because of

commutativity. Hence, there -exists b E’Hom(P,§£) such that G;n)*(b)= a.
()&, )4 = (g ), (&), (1) = T(g ), (&) = (-1)E ), (y). Hence

(&, )(®) = (1% Tet ¢ = (-1 ), (b), then H'(g),(c) =

= (D), (5. (0) = CDRE), G, D0 = (UGG = X

(3) ker B (£), < im A%

Let x € ker H*™H(£),.

. . : k3 k3 . 3 t .
(pn+l)* is surgegtlve so there exists

y € Hom(P,Zn+l) such that (pn+l)*(y) = x. (5£+l)*(?;?*(y) =

= Hn+l(f)*(x) = O and (fﬁ)*(y) iS'in‘the ker'(5£+l)* = im (gn)*' Hence

there exists z € Hom(P,T(Yn)) such that (En)*(z) = (fﬁ)*(y)-

@;T<gn>*<z> - T<gn+l>*@n<z> - g, )& ). E ). (2) =

= T(gn+1)*(kn+l)*(fn)*(y) = T(gn+l)*T(fn+l)*(kn+l)*(y),= 0, so thege
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exists w € Hom(P,zn) such that((ﬁn)*(w) = T(gn)*(z). By commutativity
() TET, () = (B 1), (E ), ().
Teta =y - (6),10%),(2) and show that TET, (1)) = a. e
so, then by commutativity and‘because (p,q)e (0 )y =‘o; Af(in)*((-l)nw)

. AN ' 3
= x and x € im 4,. T(fn+l)*(kn+l)*(a + (=1) T(an*(w))-=

e Da(k ) (a) + (DD

n+l"* “n+

Dale 1)y TB_T, ()

)6, ey - T

1]

T(f n+l"*

el ), (b ), T i(2) +

0 .
+ (-1)"T(f (kn+l)*T(Bﬁ5*(W)

n+l)*

SR NCHR NG R L REOR

n+l"*n+l

n
b (DR, ), 0G), M, ), (=)

&, 0. E), @ - o, DI, ()« (0ME )10, ()]

n+1

&), (), () -vT(fn+1)*[$§T(ﬁ§)* ¢ (DM, T, 1)

n ’ | Aﬁ X ’ n+l . .
(8] - 2, D8R+ (6 206 @)

An _ . . An
T(gn+l)*6 T(gn)*(z) = 0 by Qeflnltlon of 8, and because
4% =
ZT(gn)*(Z), O.

. , ‘ _ . VEETY -
Since T(fn+ ), and (kn+ ), are monics, a + ( l) T(Bn)* 0.

1 1
- () ker Ag C im T(g), (Diagram 1.8).

Let x € ker.Ag. Then (pl)*Y*(x) = Ag(x) = 0 and Y, (x) € ker (pl)*.
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Diagranﬁ 1.8

®
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Hence there exists y € Hom(P,T(XO)) such that (bo)*(y) =v,(x). Let
a = T(fo)*(y) + T(ig)*T(EB)*(x) € 3om(P,T(YO))} Then gg(a) =

B0 () + Bor(D) .16, 60 = ) B - 202,208, TCE ), (0

]

@O

X(y) - (kl)*v*(x)]'= T(fl)*[(kl)*(bo)*(y) - (kl)*y*(x)]

T(£), [

T(fl)*[(kl)*Y*(x) - (kl)*Y*(x)] = 0. Therefore;.there exists

i}

o’

€ Hom(P,T(B)) such that'T(ez)*(b) = a, By commutativity,
T(€;),T(8), (0) = T(gy),1(E,), (b) = T{ge).(a) = T(E,), (x) and
T(g),(b) = x.

(5) ker HY(£), € im 4%,

Let x € ker Hl(f)*. There exists y € Hom(P,Zl) such that

(p)u(y) = x. By commutativity (51)*(?6)*(y) = Q0 and from exactness
there exists z € Hom(P,T(Y,)) such that (b,),(z) = (?6)*(y). Now -

Bor(ey).(2) = T(e)),85(2) = T(g)), (KD, (5), (=) = T(g ), (5D, (B ()
= T(gl)*T(fl)*(kl);(y) = 0. Therefore, there exists w € Hom(P,T(C))

such that T(EB)*(W) = T(go)*(z).v Let a = -y + (bo)*T(ﬂg)*(z) in

Hom(P,Zl). If v,(w) = a, then A8(~w) = x because (pl)*(b0)¥ = O.
Y, (w) = a if T(fl)*(kl)*[a —.Y*(w)] = O because composition of two

monics is a monic. T(fl)*(kl)*[a —.Y*(W)J = T(fl)*(kl)*(a) -

- (£, (k) ¥, () = - T(2)),Ge), (1) + (2D, (k) (B), (), (@) -
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- T(£)),78),T(€5), () = (KD, F), () + 102, [0, (2) -

= 1B, Te), ()] = =(k)), (5. (2) + T(e ), [800() () -
- T(B), gy, ()] = - 82(z) + (2, (80T, - 1(8,),T(e,),1(=) = 0

A
because of the:definition of 63(2) and because @gT(go)*(z) = O.

The examples cited in Chapters II and III have projective genera-
tors. In fact, the usual examples that one i1s interested in do. have
projective generators. But this is not true for all abelian categeries

as the following example shows.

Example:b

Definition-[2—70]: An abelian group A is called a torsion group

if for each a € A there exists a natural number n, # 0 such that

Let(% be the abelian category of all abelian groupé. Define a
full éubcategory J of (% by letting the objects of J be the torsion

groups and HomJ (4,B) = Hom, (A,B) for any A,B in J . It will first be

shown that 7 is-an abelianfiategory, second that the only projective
objects of 7 are the null objects and finally that a null object
cannot be a generator.

That <7 is a poiﬁted category and Hom(A,B) is an abelian group
with the distributive laws satisfied are readily seen as inherited from
(% . Also inherited from % is the fact that any morphism can be

factored as the composition of an epic with a monic. 8o only three

properties need to be shown:
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(1) 7 has finite biproducts,
(2) every morphism has a kernel and cokernel,

(3) given a sequence E:A' = | =——L—) A" with i a monic and J

an epic, then i is a kernel of j if and eonly if j is a

cokernel of i.

(1) <7 has finite biproductsé

For any ohjects A, B of o/ consider the abelian group A + B
={(a,b) | @ € A, b € B}, Then for any element (a,b) € A + B consider
the integer n_n, £ 0, nanb(a,b) = na(nba, nbb) = na(nba,O} :.(nanba,O)
= (nbnaa,O) = (0,0). The usual properties on injections and projections

hold.

(2) Every morphism has a kernel and cokernel:

Given any morphism A —i;>B, consider the abelian grbup ker ¥ C A.

This is a torsion group and k:ker (f) = A defined by k(a) = a, for any

) G T .
a € ker f, is the kernel morphism of f. Similarly consider B rf—’B/lmvf
where T(b) = b + im f for any b € B. B/im f is an abelian group and for
S'E.B/im f; nb(g) = nbb\é 0, hence B/im f is a torsion group and T is a

cokernel of f.

(3) Let E:A' —=—4 —lspn be a sequence in J with a monic i and an

epic j. Then i is a kernel of j if and only if j is a cokernel of i.

(i) If A —&—>A' is a monic in <« then i is an injective functien

(hence is a monic in'% R
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‘Proof of i): Assume’ there exist x ,x

1% € A such that 1(x1) = 1(x2)

but Xy # Xs5e A is a torsion group hence there exists ny # 0, na.# 0

‘such that n)x) = 0 = nx,. Consider 2 +2_. This is in «/. Define

171 272 1 n,
fl:znl +,Zn2 - A by fl(l,O) = x, and fl(O,l) = xa‘
f2=Zn +2  —Aby fz(l,O) = x, and fa(O,l) = Xy

1 2

Then fl 2 £, but if, = if This is a contradiction to the definition

2-

of menic.

(ii): If A =L A' is an epic in J then j is a surjection (hence j is

an epic in %).

Proof of ii): 'If j is not a surjection then im j # A', hence

3 1
A —Lsa —g—>A /im j where mj = 0j = O but 7 £ O, contradiction.
Proof‘of‘B):

I) Assume i is a kernel of j.

A o ‘ 0y
Let f:A - B such that fi = 0. - Tk s '
v
Define h:A" = B by h(a) = £(b) /’/ &
- 4 i N i
where j(a) = b. Let b,, b, € A At P> A —— > A"
1 2 o /ﬁ/
. B : e
such that g(bl) = J(ba). _Then, | f P
. v
. - ’ .‘- ‘
if f(bl)vz f(ba), h will be well- "B
defined. bi - b2 € ker j and there exists ny # 0 such that
no(bl —~b2)-=’0. Consider Zh0>1n 7 and define g:?no - A by

g(l) = bl - b2. Then jg-= 0 and there exists a uniquéfk:Zn' - A'
‘ ‘ : ’ 0]

such that ik = g. Therefore ik(1) = g(1) = b, - b,. Hence
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2
is unique with thebproperty that hj = f.

f(bl - b.) =0. It can be verified that h is a group homomorphism and:

II) Assume j is a cokernel of i. Then j is equivalent to the morphism:

c:A = A/im i and without loss of generality, assume j = c.

B Let f:B =A be suc¢h that jf = O.

7
7
& £ Then im £ C ker j = im i, Now
, |
£ 1

>X d >A/im i define g:B = A' by g(b) = a where
i(a) = £(b). -Since i is a monic,
it can be réadily verified that g

is a function, a group homomorphism and is unique with the property

ig = f. The proof of 3) is therefore completed.

It is shown in [6-23] that the only projective objects of §7 are

the null objects and a null object cannot be a generator of <7 Dbecause

il

consider Z, €, £.:Z2. =7

, 1'% 7 % | 2’
defined by fZ(l) = 0. Then f, # f, but TN(fl) = TN(fZ) vhere T\ is the

defined by fl(l) ‘1 and £3%,~ 7

functor Hom(N,~). Hence T, is not faithful. This complefes the

N

example.

In the casevwhere.ﬁ does not have a,ppojecfive generator; the
First Embedding Theorem [8], éan be used; which says; given any small
abelian category ﬂ?there exists an exact covariant additive embedding
T:M - % where Cﬁ is the categorj of abelian groups. Therefofe, T has
the following properties:

1) T is both right - and left-exact [8-65],

2) ‘T preserves biproducts because is additiﬁe,

3) reflects exactness by Proposition 1.2 in (61,
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L) - for each pair of objects 4, B in M there exists a

group monomorphism @, : Homw(A,B) = Hom , (T(A),T(B)).

G

Consider -the -full subcategory %O of B defined in the following
manner:
i) objects: all objects appearing in Diagram 1.5,

ii)  morphisms, for any Ar B in ﬁo, Hom%O(A,B) = Homg(A,B).

Since ﬁa has only a countable number of cbjects, Eo is a smail
subcategory of 8 and full. Then, by Lemma 2.7 of [17-101], there exists
a small, full, abelien subcategory‘ﬁl of B such‘that Eo is a subcategory
of El. .Now by the aforementioned embedding theorem there -exists an -
exact covariant additive embedding T:iﬂl - (3 . By a-direct diagram

chasing argument, similar to the one used on the;proof of Theorem 1.5,

the long sequence of homologies is exact. This completes existence.

‘Uniqﬁeness-af the Cohbmology Theory (Uehara -~ [20]).

Definition 1.6: Let He K& be two cohomology theories relative to €
over a functor T:¥ = B, They are said to be~eguivaleht if and oﬁly if
. ‘ ' . n.gR n-
there exists a sequence of natural equivalences ¢ : =K’ forn >0
‘such that:
1) for each sequence E:0 = A' = A = A" =0 in & andvfor each

n > 0 the diagram

An
H (A") - > 1 (ar)
(Pn(A".) . c‘p-'fl'i":-]- (AY)
zn
K2 (am) = > K2 (ar)

is commutative, ‘ ’ .
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2) T I > 10
)
J¢
2 -0 .
K is commutative.

Theorem 1.6 Let H,K be cohomology theories relative to € over the
functors S,T:¥ = B, respectively, and let v:iS = T be a natural trans-
formation, then there exists a sequence éf natural transformations
cpn:Hn - K" such that:

1) TFor each sequence E:0 = A' = A = A" =0 in € and for each

n > 0 the following diagram is commutative:

An
H™ (A") E__ >E*(ar)
n o ‘ il
o (A") _ o (A')
. -
N7 A
K™ (M) — £ >k an)
2)  §—————>T
M T
0 o 0 | |
B —f——>K is a commutative diagram of functors and

natural transformations.

Proof: For each A in ¥ define wO(A):HO(A) ~x°(a) by mO(A) =
o= v ). Then wolis a natural transformatioh and 2) is
satisfied because T gnd ﬁ-arevnatural equivalences.

Now, assume that cpi:Hi - Ki.have been constructed fdr all i<n
so as to sétisfy the commutativity conditions of the theqrem.

By Axiom IV, for each A in U, there exists a morphism i:A = I where
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i €Mand I € I such that ﬁn(i)'= 0 for n > d. (In fact by the proof §f
Theorem 1.2 for any o:A = I' where @ € Mand I' € J one has Hn(d)
for n > 0.) By Remarks 1.1, 1.2, E:0 =4 N —J—9Q - O is in € where
j is the cokernel of 1. Then‘by Axiom II and the induction hypothesis
there exists a commutative diagram with exact rows | m

n-1:

. b '
oo = L) it E_{) n‘1<1>--—$12>Hn'1<Q>---»Hn(A> -£&->Hn<1>~---

n-l(

otw)| @@ | ()
vee = kP (a) — >k (1) "rIZT‘">Kn (Q) = K" (8) —---——)K (T)me e
K™ (1) K (3) [5 K1)
n-1
H*(i) = 0 and i (Q) —4§L——?HP(A) —Eiiil—i'Hn(I).= 0 is exact,

hence A n-1 1s‘an epic.' Consider

E .
1 ¢ AE—I '
B (D) () - (Q)_———>H“(A) _

where k is a kernel of Ag-l and £ is an epic. Since.AE_l’is an epic;

An-—l

g is a cokernel of k. Moreover, Z%-l¢n_l(Q) Hn_l(j) =

= 4 K

-n-1 _n- l
£ (e (I)

0. Hence there exists a unique morphism

o (A): Hn(A) - K (4) such that o (A)An’l = ZIEH ¢®™H(Q). Tt must be

shown that thls definition is 1ndependent of E.

Ly ‘ v :
Let E':0 = A =——>I' —l=—3Q' = O be another choice and obtain
¢'n(A).- Since U has biproducts there exists a unique morphism

@:A =TI 4+ I' such that p¥ = i and p'e = i' where p, p' are the
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projections. Denote the injections by k,k'. Then B (a) =

= Hn((kp + k'p')q) = B (ki %vk'i') = 0. Moreover, 0 -~ A-25T 4+ I ce
because given any J € J and any f:A — J there exists g€ Hom(I,J) such
that gi = f. Consider gp € Hom(I + iﬂJ). Then gpe = gi = f and

cC—-A —2L>I + I' € €. Hence the seguence E":0 = A o1 +‘I'—E—§Q"v~ 0
is in € where‘B is the cokernel of @. Then E" defines w"n(A) in.a

similar manner as wn(A) and w'n(A) are defined by E and B', respectivelw

Now, cdnsider the following commutative diagram:

Ei0 = A —=1 des @ = 0
] A
!
1y P [a
]
M0~ A IS T4 —B—s Q= 0

Since jpx = ji = O,'there-exists‘a unique.morphism q:Q" — Q such that

gB = jp. Therefore, the diagram

HIl"l(Qﬂ) | Hn—l(Q)
aet
1) =1
H'nb(A) A
cprl"l(Q‘”)

Q)
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is known to have every square commutative except the inside one. Since

Agn” is an epic the inside square commutes and @"(A) = @ (A).

- 8imilarly, @'"(A) = ©""(A). Therefore ¢ (A) is well-defined.
To ‘complete the proof it must be shown that wn satisfies the

commutativity condition and that wn is a natural transformation.

Let E:Q = A' —=>A —L>A" =0 be in €. For A, there exists
kA =T withk € Mand I € J such that H'(k) = O for n > 0. Now,

consider O = A' —EE—>I and show that ki € M. This will be true if

. belongs to €. Let J € J and consider

Hom(I,J) (k#)* .>Hom(A',cj‘) =0
k¥ ‘
Hom(A,J)
AN
0

Since k,i € M i* and k* are surjective hence (ki)* = i*k* is surjective

ki

and 0 —» A" =531 € €. Then E':0 — A >I —25Q =0 is in & where

g is the cokernel of ki and E' defines wn(AY). Consequently, the

diagram An—l
17 (Q) E S5t
@nfl(Q) | o (A)
Zn—l
K7 L SxPa)

Q)

is commutative.
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Now, consider the commutative diagram: -

B:Q = A! sy f ey a1 o 0
: |
1, k| | 4
B0 A S 578 3040

Then there exists a unique £4:A" = Q such that 4 = gk because g is the

cokernel of ki. Hence, one has the diagram

' 5 An—i :
#h (am) " T
-1 ‘ . '
H 7 (4) | H(1,,)
An-—l v
Q) £ > EP (A1)
| o) | g2(ar) | @(ar)
| o
K2t (Q) E_ >KT(AY)
21(g) | Kn(l:?}\\ N
4
K — SK™(a)

where all squares, except the outside one, are known to be commutative.
Since Kn(lA,) is a monic, the outside square commutes and the desired
commutativity helds for mn.

The ‘remaining task is the verification of the natﬁrality of ¢n.

Let f:A = B be any morphism in ¥. Let E:0 » A ~=T —l=3Q - 0 and

st ] ’ ’ v
E':0 = B ———I! ——3Q' - 0 be sequences in & defining @ (A) and ¢ (B)
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respectively. Then by the<definition of bipreduct there exists a
unique morphism @:A = I + I' such that p¥ = i and p'@ = i'f where p,p'
are the projections of the biproduct. To shew O = A —2—51 +I' is in €,
let J € J and g:A - J.-.Then,there-exists h:T = J such tha£ hi = g..
Consider hp: I + I' =J, then hpw = hi = g and 0=4-E3T 4+ I is in €.

Then EM":0 = A 5T 4+ I -jié Q" = 0 is in € where B is the cokernel of

®. Hence E" defines o™ (A).
The diagram

B0 = A _EL,'I + I _jiq.Qn -0
l
I
I

£ p' q

it 1 \V
1 J :Qq -0

E':Q - B > I!*

is commutative, therefore, since B is a cokernel of &, there exists a

unique morphism q:Q" = Q' such that gB = j'p'. Consider the diagram:

’ -1 , ‘
(%) ]

n-1l

Ao -
Hn(A)b _ Hn(f)

. n n | . n-1,.,
(f41@7 W ¢ (A) ¢ (B) (3) o (Q')

KP(1) Kn(f)

-1 ) (2)

X AEH . .
kP L (gm)
Kn—l(q) .
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There is -commutativity in
(1) because ¢” satisfies the commutativity condition of the
theorem,
(3) similar to (1)
(2) and (4) by Axiom I.

The outside sguare commutes because ¢n-l is assumed to be a natural

n-l
E"

n o, .
¢ is a natural transformation.

transformation. Since A is an epic, the inside sqguare commutes and

Theorem 1.7: Two cohomology theories over the same €~left exact

functor T:¥ = B are equivalent.

Proof: Let H and K be two cohomology theories over T, and let lT:T =T
be the identity transformation. Then, from the previous theorem, - there
exist maps @:H =K and ¥:K ~ H such that Yo:H = H and @:K = K are
~identity maps. Using induction, one can prove that mn, ¥* are natural
equivalences‘for each n > O, so that the pro§f is completed,

The techniques of this section are similar to those used by Uehara

[20] for the absolute~case.
Examples of Classical Cohomology Theory

If U is the abelian category of R-modules where R is a commutative
ring with identity and B is the abelian category of abelian groups, then
it is well known that the class € of all exact sequences is an injective
class in Y. The functor T = Hoﬁm(A,—O:ﬁ - B, for an R-module A, is
a covariant additive functor. Moreover T is €-left exaét,‘MacLane [15];
Therefore, there -exists a unique cohbmology theoi& He relative to €

over T. One defines Ext™(A,B) te be H'(B) for B € Y.
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A second example is from the theory of sheaves, Swan [19]. Let ¥
be the abelian .category of sheaves over a fixed space X and commutative
ring R with identity. The morphisms are - sheaf homomérphisms
f:(8,m,X) = (8',m,X), Uehara [20] and Swan [19]. Let B be the abelian
category of R-modules and T:¥ = B be the functor which associates with
a sheaf % = (8,7,X) the R-module Homgl(/\,%) where A = (XxR,7,X). . Then
T is a covariant additive functor.

Consider the class € of all coexact sequences. Then € is an
injective -class, the proof of this invelves establishing a pair of
adjoint functors between YU and the category of protosheaves. This has
been done by Professor H. Uehara in [20; 5.12-5.18]. Moreover, T is
an €-left exact functor. Therefore, by the general theory developed

above, there exists a unique cohomology theory He relative to € over T.



CHAPTER II
THE DERIVED FUNCTOR.EXT FOR MODULES OVER AN ALGEBRA

Let (A, .4, M) be a graded R-algebra over a commutative ring R with
unity where pA@A- A 18 the multiplication and T:R = A is the unit. &m
denotes the category of graded left A-modules; [16] and [15]; where the
morphisms are the A-module homomorphisms.of degree.zero and M denotes
the category of graded R-modules with R-homomorphlsms of degree zero.
&m and mlafe abelian categories. ‘W% denotes the category of graded
right A-modules.

Properties of the Category &m (m%)

Let T:AQT—'mlbe the forgetful functor and let S:MI*_&m be defined
by S(A) = A ® A for any object A in M where the A-module structure of
A® A is given by Aon® = W ® 1. Then it can bhe shown that
S——ﬁT:(Aﬂh M. It follows from [6], that T preserves monics, products
and kernels. DMoreover, since T is a faithful kernel preserving
functor, T reflects epics and exact sequences. It can also be shown
that a morphism is an epic in Km if and only if it is a surjective
function. T, therefore, preserves epics.

Similarly, a morphism in &m is a meonic in Km if and only if it is
an injecﬁive function. Therefore, by the corollaries to the Kan

Adjoint Theorem; [6-15,16]; M is projectively perfect.

The following notation will be used, for any objects A, A' in M

50
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Homg(A,A') denotes the set of all R-homemorphisms of degree d > O from

A to A' and Homy(A,A') = {Homg(A,A') | a>0}. Then Homp(A,4') is a

graded R-module.

Proposition 2.1: Given.any A in M there exists an R-homomorphism of

degree zero,

0:ih ® HomR(A,A) - HomR(A,A),

such that (HomR(A,A), ®) is a left A-module.

Proof: For any f € HomR(A,A) and A, \' € A define "~ . oA ® £)(A')

= (~l)lkllfl+'kllk'lf(lk'). Then it needs to be shown that o(A ® f)

M € Hom (A,A), |rg| = A + |£] ana (Hom_(A,A), . 9) is a left A-module.
The verification that Af is an R-homomorphism of degree |A| + |f]
is straightforward, so omitted here.
Let A, A, € A, then (MM = A (A,2); because given any ) € A,
[ )e]00) = (—1)Ef(xxlx2), € = el « Dollel « InTIAl + I LA,
and [\ (LI = CLPEOLH AR, oy = Il = D llel + gl

= (DPr), 0, = oy + Inllel + DI+ Bl ]. similarly,

one can show T(1)f = f and the proof is completed.
i
For the following theorem one needs to refer to paragraph 4 of [6]

and verify the dual statements for categories with cokernels.
Theorem 2.1: &m is injectively perfect.

Proof: The following characterization of injectively perfect will be

verified for the category &m:
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A category ¥ with cokernels is injectively perfect
if and only if given any object A in ¥ there exists a
‘monic 1:A = I, where I is an injective object.

Let Q be an injective module in M. Then‘HomR(A,Q) is an injective
object in &m because given any monic i:M = M' and any A~morphism
e:M *'HomR(A,Q) it can be shown there exists a A-morphism

B:M' - HomR(A,Q) such that Bi = o.

‘In M, consider @':M = Q defined by @'(a) = @(a)(e) for any a € M,
where e = N(1) € A. Then @' is an R-homomorphism and Ia'l = 0., Mis

injectively perfect hence there exists B':M'~- Q such that B'i = o'.

Define B:M' - HomR(A,Q) setting B(m)(A) = (—l)lk'lmlﬁ'(km) for any
m€ M and A € A.

I

1. B(m) € HomR l(/\,Q) for anym € M'. If m € Mé, then for any A € An’

Am € M'  and, since IB'I =0, B'(Mm) € Q _. Therefore, IB(m)l = !ml
s+n S+n :

and |B| = O.

Furthermore, for any A, A' € AS, Blm)(A + \') =

- (_l)lk+k',ml57((k + A)m) = (—l)'kl'mlﬁ'(km) +-(—l)lk'|lm’B'(X'm)

[l

Bm)(A) + B'(m)(A"). Similarly, B(m)(zX) = rB(m)(X) for A € A,
r € R.

2. B is a A-module homemorphism, because given any m € M' and
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o en, sowan = (oM halgganny ool nlg g,
axd 8@ = (< MIB@LDII gy 60y,
oMl g oy gy = Ml e lshoal lol gy

= ol lnlg g,

3. Bi=o. For anym €M and A € A, B(A(m))(\) =

_ Mg i) - oM Ilgr s omyy (—l)lx,,mlaf(xm)

= oMleleomer = el b @

= (—l)'x,‘a(m)lflxl'el[Ka(m)](e) =a(m)(\). .Hence Bi = o and HoméﬁA,Q)
is an injective object.
&m consider M in M. Then, there exists an

injective object Q in M and a monic i':M = Q. .From the above

Now, given any M in

HomR(A,Q) is an injective object in &m. Define i:M = HomR(A,Q) by

i(m)(\) = (—l)lxllmli'(Xm) for m € M and A € A. Then i(m) € HomR(A,Q)
and ,i(m)l =‘lml. Moreover, 1 is a zero-degree A-homomorphism. If it
can be shown that i is an injective set function, then the proof will
be completed.

Let i(m) = i(m') for m,m' € M. Then i(m)(e) = i(m')(e) and

it(m) = i'(m'). Hence m =m',
Construction of Adjoint Functors T—S8' (M, &m)

The procedure of the above paragraph implies there exists a
functor S':It - &m such that S' is an adjoint of T where T is the
forgetful functor. The following theorem states this. (Subsequent to
the ooﬁpletion of this dissertation the author has noticed that

S. Eilenberg and J. C.. Moore have also obtained this result, [7-397].)
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Therefore, if € is an injective class in M, T—l(ﬁ) is an injective class

in A@L Kan Adjoint Theorem for injective classes.

Theorem 2.2: There exists a functor S':ﬂ?*‘&m such that T—8' where

T:&m =M is the forgetful functor.

Proof: Given any A in M let S'(A) = HomR(A,A) with multiplication

1
defined by Y1) = (- IM Tl ’f(l’h). If giA - B is a
morphism in M, then define S'(g) = g*:HomR(A,A)rﬂ HOmR(A,B). It can be
verified that g, is an R~homemorphism of degree zero where g, (o) = gu

for any @ € HomR(A,A). Moreover, g, is a A-homomorphism because given

any A ,A' € A and o € HomR(A,A); g, ) (A) = [gha) (M) = g(O@)(A'))

- (_1),K,'al+'xllx',g(a(xyx)) = (_1)lxl,8*(a)'+lxllx'l[g*(a)](x.x)

g, @)JA"); ice., g, 0) = Ag, (a).
To complete the proof it must be shown that there exist set

functions (for each pair (A,M) with A in T and M in &m)
0] 0]
b:HomR(T(M),A) - HomA(M,S'(A)) and

azHom) (M,8' (A)) = Hom (T(M),4)

such that ab = 1 and ba = 1.
For any f € Homg(T(M),A) define b(f) by, for any m € M and X € A,

b(£)(m)(\) = (—l),xllmlf(lm).' Then |b(£)m) ()| = |£(m)] = |An]

= |A] + [m|. Consequently, |b(f)] = 0. Moreover, b(f)(m) is an
R-homomorphism for each m € M and b(f) is an R-homomorphism. Therefore,
it need only be shown that b(f) is a A-homomorphism.

For any A\,A' € A and m € M, B(£) Am) (A1) = (—1)|X"’xmlf(x'xm)

= oMl gy, meo, Dw@@Inn -
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= M@ @I T oy ayqay = oy M Tl Tl o s

=PI el ey ana vee) G = a0(E) ().

To define a, consider an arbitrary g:M = Homy(A,A) and set
a(g)(m) = g(m)(e) for any m € M. THen |a(g)(m)| = |gm)(e)| = |g(m)]
= Iml. Therefore, |a(g)| = O and one can verify that a(g) is an

R-homomorphism.

Let £ € Homg(T(M),A). Then (ab) (£) = a(b(£)):T(M) =A is defined

by a(b(£))(m) = b(f(m))(e) = £(em) = £(m) for any m € M. Hence ab = 1.
Also, if& € Homlo\('M, S'(A)), then for any m € M and A € A;

[(oa) @) 1) = vla@) @) = 1M 2laamye

- oMl g @) - (-l)lxlla(m)l+lxllelkq(m)(e) = am ().

So, for any m € M, (ba)(@)(m) = a(m) and (ba)(@) = a.

Definition of EXtA,El and EXtA;EO

Given left A-modules M,M'; HomA(M,M') = {Homi(M,M') l d >0} is

an R-module and the functor HomA(M,—J:AQZ—'W?is a covariant additive

functor.

Theorem 2.3: Given an exact sequence
0 -1 S ut s’ -0
in &m and given any object M in &m, the sequence
1, i 2 Jx 5
0 - HomA(M,M ) ——*—?HbmA(M,M ) >HomA(M,M )

is exact in M.

Proof: To prove this it is sufficient to show that given any d > O
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the -sequence
(1)

(3,)
——-—-———-9Hom/d\(M,M2) ~d

0 - .Homi(M,Ml) —d Homi(M,MB)

is ‘exact as a sequence of (ungraded) R-modules.

Consider f,g € Homi(M,Ml) such that‘(i*)d(f) = (i*)d(g). This

implies if = ig. Assume f # g. Then there exists n > O such that

1

fn # gn'where fn,gn:Mn - Mn+d'

Therefore, there exists x € Mn such

that fn(x) # gn(x) and 1n+d(fn(x)) # ln+d(gn(x)). This is a contradic-

tion, hence (i*)d is injective.

/M Now, let f € Homi(M,Ma) such that (J,) (f) = 0.
ARF: 2
/ Then for each n; f M =M and
L/g n'n n+d
VIV IV im £ C ker j =imi .
n n+2 ©Tn+d

Define gn:Mn - Ml

—_ 1 t 3 3
. BY gn(m) = m' where m' is the unique element

1 . N .
of M . such that ln+d(m ) = fn(m). ‘Then, for each n, g 1s an

R-homomorphism of degree d andv1n+dgn = fn. To complete the proof it

must be shown that g = {gn ] n > 0} is a A-homomorphism. For any m € M

and A € A, £(Am) = (~l),x"fle(m). Hence there exists a unique

m' € Ml such that i(m')

i

f(m) and since i is a zero degree homomor-

-phism, i((—l)'xl'flkm’) = (—l)lx,lflki(m') = f(Am). By the definition
of g and since i is an injection, g(Am) = (—l)lx[llem'

= (—l)lx’lglkg(m) and the proof is completed.

1 et denotes the class of all exact (exact = coexact in M)
sequences in M and 80 denoteé the class of all split exact sequences in
M, then et ang e are.injective classes in M. Hence.by the Kan Adjoint

Theorem, gt - T~l(81) and €0 = T_l(ﬁo) are injective classes in &m.
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Moreover, by properties of T, it can be shewn that-E@ is the class of
all exact sequences in &m and Ep is an exact class of sequences not

equal to Ei., By Theorem 2.3, given any M in Mt the functor HomA(M,—J

A
is both Ei—left exact and %p-left exact.

From Chaﬁter I there exist uniaque cohoemology theories over

HomA(M;—) relative to &  and Ep, respectively. These derived functers

are denoted by Ext™ _ (M,~) and Ext" ), respectively, and are

A A, EO

obtained in the following manner. Given M' in &m there -exists an
%ﬁ—injective resolution of M'. Let

' 1 n
X:O"M' E X _a__>x — see = X a

n >Xn+l T

denote this resolution. Then one obtains

(€,) ot

Homi(M,X):o - Homi(M,M')-——————1>Hom (M, X ) d >Hom (M,X 2) = e
for each d > O and Ext” (M M') = Hn(HomA(M,X)); Extn NUSIDR
' A‘E AE
3 ,
{Ext™ % M) | d > 0}. Similarly, define Ext™
A ’ 'y ?50

The Canenical €p~injective Reselution

Proposition 2.2: For any A,B in M, HomR(A ® A, B) is a left A-module.

Proof: For f:A ® A = B define A\f:A® A - B, for any A € A, by the

following:
AN ® a) = (-l)'xllfl+,xl,x"f(K'l ® a) for any \' € A, a € A.

By extension Af is an R-homomorphism and lel = lxl + lf[. Mereover,
for any A,A' € A and any f € HomR(A ® A,B), (AA')f = A(A'f) because

oyl el e fan]

k[(xx')f](x"'® a) = fOAMA ® a)



58

o | |
= (-1) lf(l"lk' ® a), where Py =.lx’,fl + ,X"’fl + IXI]X", + lk',lk"l,
and DI @ =) = (0 MV EINT Gy 6 0
= (—l)pzf(X"Xk' ® a), where o5 = I+ I gl + I o+ I g] o+
w s [ .
. ] P2
One can verify that (-1) ~ = (~1) “.
Similarly, N(1)f = f. Therefore, Homy(A ® A,B) is a left A-module

with respect to the above multiplication.

Proposition 2,%: TFor any A,B in T, HomR(A, HomR(A,B)) is isomorphic to

HomR(A ® A,B) as left A-modules.

Proof: Define w:HomR(A,HomR(A,B)) - HomR(A ® A,B) setting

P(E)(A® a) = £(A)(a) for any f:A - Hom,(A,B) and A € A, a € A. By
extension §(f) is an R-homomorphism and |¥(f)| = [£]. It can be
shown that ¥ is an R-homomorphism of degree zero. Moreover, ¥ is a

A-module homomorphism because for any f € HomR(A, HomR(A,B)), A, AT E A
and a € 4, D@10 @ &y = (DM 6060
oM 000 () ana v0 00 @ &) = T A I@)

t .
= (_l)]K"fl+|Xl[K If(l’l)(a). "It is straightforward to show ¥ is
surjective. To complete the proof, consider f,g € HomR(A, HomR(A,B))

such that ¥(f) = ¥(g). For any a € A, ¥(f)(ML) @ a) = ¥(g) (M) ® a)

\

Y
and £(M(1) (a) =_ggﬂ(l)(a). Then, for any X € A, f(A)

|
- oML iaay - <-1>|X"8'xg<n<1>> = g\). ¥(£) = ¥(g) implies

that Ifl = lgl; consequently, £ = g and the proof is completed.

From [6—10—17], there exists a canonical @p-injective resolution
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of the A-module M constructed in the following manner, where

(A, p, My, €) is a graded augmented R-algebra.

Remark: (A, w, N, €) is an augmented graded R-algebra so the seguence

0 *'Q<=%?=91\¢r£;=>R = 0 is split exact as a sequence of R-modules
Il

where Q = ker €. Then A =Q +.M(R).

It has already been shown that there exists a functor S':M = ,AER
defined by.S8'(A) = HomR(A,A) for any A in M, such that T—{8' where

T:Aﬁl—'M?is the forgetful functor. The morphisms
1o b 0
HomR(T(M),A)e:ﬁ;ﬁ%HomA(M,S'(A))

are defined by:
v @ = M Elom
alg)(m) = glm)(M(1)).
Let c:%? —»m? be the cokernel coresolvent of 80 in M, see paragraph 6
of [6]. By a corollary to the Kan Adjoint Theorem; [6]; there exists
a coreselvent e for %Q in Km. Given any f:M - M' in &m consilder
£f:M > M in M. Then c(f):M‘bﬂ coker £ and
e(f) = b(c(£)):M' = Homp (A, coker £); e(£)(m)(A) = (fl)lx'lmlc(f)(Xm)
for any m € M' and any A € A.  Now, construct an %Q—injective resolution

for M using the coreselvent e of @Q_ This resolution is called the

canonical resolution of M relative to the coresolvent e; [6-10].

Theorem 2.4: The canonical resolution of M relative to the coresolvent

e is the cochain complex

o 80 et . N
- ] ____' B . .7 2 .--<_____' 7 —
0 M %t_l BO Q'to Bl <& tl B2 <« Bn <—tn Bn:l

1 én

N
7 e s e
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‘where:
0) a(m () = (—l),xtlm,xm form € M, A € A;
1) B_ = Hom (A ® QM) for k >0 and @ = Q ® ... ® Q(k factors);
31) +7Y(E) = £(N(1) for £ € Homp, (A, M)

‘o k
iii) tT(EO® 6@ ®... ®q

£ E‘Bk+l, N €A g €Qandk >0;

) = £(MN() ® p(\) ® 6 ® ... ® qk) for

iv) 65 = [(ue 1%(r @ 17* +
+ igl(—l)i[(l ® et ®pP® ... 1 ® ... T ®..0 1)]*
+ (1 (o), for k > 0.

Notation: B*(g) = gB and (MmT)*(g) = MwT(g'® 1). T is the twisting

morphism, [16-213].

Proof:
1

> M. lM is a cokernel of OM.

Therefore @ = e(0,) = b(1,) and from the definition of b

1. Conisder, in M, the sequence O - M

a(m)(A) = (—l)lk,lmlkm for any A € A, m € M. By the construction of b,
@ is a A-hemomorphism. This will always be true when b is used to

define the merphism se will net be peinted out each time.

Define t7{:Bo - M by £71(e) = £(MQ)) for any f:A = M. Then

t_l(a(m)) =a(m)(M(1)) = NM(Wm = m and t 7y = 1, Moreover,

B, = Re“<oM) = Hom, (A, M) -

O -1 _at™t. 1t can be

2. Define dO:HomR(A,M) - HomR(A,M) by o
considered that-aO:HomR(A,M) A'HomR(Q,M) because the'sequence

0 = Hom(Q,M) —Ii;>ﬂme(A,M) —ﬂ:—éﬂme(R,M) -0
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0

is exact and M*« 0. ﬂ*ao = 0 because if f € HomR(A,M) and r € R,

then (M%°)(£)(x) = [2()N](x) = 2E) M) = (1 - at™)(E)(M(x))

1]

£(N(x)) - 6™ M) = £(M(x)) - (£ (M)
f(MN(r)) - Me)EM@W) = £(M(x)) = £(M))-=0. °

1

]

0 0o .. PSSO \
Moreover, & & = 0 and ker @« C im @. Therefore, if @ is an epic,

o° is a cokernel of . Let f € HomR(,Q,M). Define g:A = M by setting

g(\) = £(p(\)) for any A € A. Then ao(g)(q) = g(q) —'a(t-l(g))(q)
= £(q) - a(@M@WN(Q) = £(q) - qf(MQ))) = £(q) because pN = O.

Therefore,fb‘(ao):HomR(A,M) - Homp (A, Homp (Q,M)) and
HomR(A,HomR(Q,M)) &= HomR(AA® Q,M) where; for any f:A =M, A € A gnd
e e 0@@M @ = nMIELOG @) - |

- oMl S e ann@ -

oMl e @) - acan @ @)

oMl gy @)+ cnzlslad el qeymay)

- oMlaleny + (nladlEW 0y moresore,

éO;HomR(A,M) - HomR(A ® Q,M) = B, is given by 80 - (Wt)* - (M@T)*.

1

8% =0 because given any m € M, A € A and q € Q, éo(d(m))(x ® q)

lo(mpr](A ® q) - [MwT(a(m) ® ]\ ® q)

= oMy @y @y - cplalle@ol oy,

(*l)lKIlQI+IQXIImI(qx)m + ('l)lqilm|+'qllxl+lxllm,+lq(lm)

- (,l)'xlIQ|+IQ'lml+lxl'm,(qx)m + (_l)|QIlm|+|QIlKI+,K|imI+?q(xm) = 0.

Now, define tO:HomR(A ® Q,M) *'HomR(A,M), for any f:A® Q = M

and A € A, t2(2)() = £(MQ) ® p(A)). t° is an R-homomorphism of
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-1

degree zero and, for any g:A = M, A € A, (ot +,toéo)(g)(l) =

= atE)) + £206%E@N ) = aeM@MN M) + %) M@ ® p())

_ oMlelhgman + gwon - colMlelyqgman.

A € A, hence A = p(A) + N(r) where p(A) € Q and r € R. If |A] =0,
then (@™ + %69 (@) () = () + M) gM1)) + glrW)) - p(M)g(M@))
= Mr)g(M1)) + glo(A)) = g(Mx) + p(\)) = g(A). If |A| A O then

~1
-+

T(r) = 0 and A = p(A). Therefore, (at £9%9 () (\) = g(A) and

at™t 4 1% = 1,
By

3. Consider the morphism al =1 - éoto. In a similar manner as in the
previous step it will be shown that im = HomR(Q-® Q,M) and the

sequence
50 1

B = Hom_ (A,M) < —= Hom_ (A ® Q,M) ~=
0 R 0 R

>HomR(Q-® Q,M) is

well-defined.
The seguence

0 - HomR(Q ® Q,M) —(M—)—*»HomR(A ® Q,M) M>HomR(R ® Q,M) -0
is exact. So, if (1 ® 1)*a® = 0, im o’ Homg (Q ® Q,M). Let |
f:A® Q - M, then, for any r € R and any gq € Q, [(ﬂ@&)*(al(f))](r ® q)

= T (E)(M()eg) = [f - 62:2(ENTMEIRY) = £(MEIBY) - s%°(£)) (M(z)eg)

1l

0
c@) @ @) - [0 @) - oled @06 men

£F(M(r) ® q) Lol 1t0)]
@) - £ @ ra) + (-1) ar) @ p1G)))

= f(M(r) ® g) - T(M(r) ® g) = O.

‘One can readily verify that o 80 = 0 and ker o' < im 6°. So, if

al is an epic, al will be a cokernel of 60. Let £:Q ® Q - M and define
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g:AN®Q -~ Mby, for any A € Aand q € Q, g(A® q) = f(p(l) ®q).
Consequently, for any q,q' € @, '(g)(¢g ® q') = (1 —‘6Qto)(g)(q‘®‘q’)

89t%()) (g ® g') = £(q® q') - 8°(t%(g)) (g ® ')

1}

glqg ® q')

. . , o
£(qg ® q') - (_l)IQI,q Ito(g)(q'q) N (_l)lq Ik (g)(q)lq'to(g)(q)

H

\ 0
o q) - (oldllgnay e g 4 (@@l ma) 6 o

fh®q0—(dﬂdhwﬂﬂmn)®ww+

, 0
@l @Ol pman e o

f(q ® q') because pN = 0. Then

2(8%) = b(@®) rHom, (A ® Q,M) = Homy (A, Homy(Q @ Q1))

and HomR(A,HomR(Q-® Q,M)) = HomR(A ® Q® Q,M) =B Now, for any

-
£:A® Q- Mand any A € A, 0,q' € Q, b@)(E)W) (g ®q') =
oMt o g e o = oMl - 509 aey e o)
- oMl o - 02036 © qn)
_ oMl gy e an + cnyMIEllallatls o000
. oMl TPan@l 064y
- ol e gy o cnMEllalla g may e g
. colMIgla e on @l L aryma) @ @
_ (yldl lklﬂq)\ ® q') + (plalalaizg g 'a)
. (plalltoed] g g o

@] ®qg®q') -[fAOp A ®T]IA®q®q')

1]

+ .[Mcp'r(f ® IA® g®q').
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‘Define él:HomR(A ® Q,M) - HomR(A ® Q® Q,M) by
FLa. (e )(r®1)]* - [(1ewer)]* +'(me)* |

and define tl:HomR(A.® Q® Q,M) “‘HomR(A ® Q,M) by tl<f)(x-® q) =
= £(MN(1L) ® p(A) ® q).

To complete this step of the constructien it must be verified that

5Oto + tlél = lB . From theoretical considerations

1
ste0 - 0 but it will be shown here by direct calculation. This will

§16° - 0 ana

i}

not be done in further steps. Let T € B, and let A € A,q,q' € Q. Then
oL@ e g o) = (1Ml e g

+ -l 1000 8 1)

. cplelP@aedl 00 0e o)
_ (_l)lkllq|+|qkllq'ff(q,qx) _ (_l)lkllqlflq'llf(ql)iq.f(qx)

N (_l)lq'llql+|q'qffkl¥lf(q.qx) |

. platlal+laral sl e,

. (pylallsf@oe q)l+|qHKlq,f(qX>

)lquéo(f)O\ ® q),"‘l(ﬂlf()‘)'q'qf()\j

. (1
= 0 because
1) Iallal + fatllet@) | = In[fal + lar[lz] + Ta'[la] + [a']]2]

and [q']]8°8)(n @ )] + [a]]A] =
= lalle] « a1l + [a'llal + lal |2l

11) a8 e o)) + o] le)] =
= a2l + la'lal + latllal + lall2] + lal[a] and
la'[la] + la'all£0)] =

= latllal + latlle] + farlIn] + lalle] + lal]n].
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1,1

To show 60t° + £16 let £:A® Q = M. .Then

= lBl’
(%9 4ty ve o) = 2PEN e @) + tHETEN (A ® )
- ol Moy @y -l P00 0 | s ammenmen
= ol ey o p@y - ol OO ey 8 50

s oMW oy e ) - coylallP®lma) o o)

v (0 lallEM@eeM 2y g L)

- cldMema) @ o) + o 8 @) - UM a@ema.
The following two remarks complete this step of the‘construqtioht
i) plah) = pla(p(\) + MN(x))) = plap(A)) + p(aN(r)) = qp(A) + rq
because p is an R-homomorphism and p = lQ'
| f g
ii) A = Q + MN(R) means AO = Qb + N(R) and An = Qn for n > 0.
tO

Hence A = p(\) + N(x). If |a| = 0, then (6%t9 + t161)(£) (h&q)

f(M@) ® qp(A)) + £(M(1) ® rq) + £(p(N) ® q) - £(M(LI®p(A))

1

il

f(M(r)®) + £(p(A) ® q) = £(A ® q). On the other hand if
[A] #0 then N(x) = 0 and (8%t° + tTeD) () (A-® q) =

- pldema) o ap(\))

r 0 8 o) - (DU ema) & g

f(A-® gq). Hence (6Oto + tlél) =1

t

and this step of the
Bl

construction is completed.
4). Assume, for each 1 < k < n,

0) e(ékwl) - 8" is A-module homomorphism of degree zero where

k

6 = [(p® 1) (r @ 1)1

B D18 .. B ® e ®1)(1® . BT ® .a. ®1)TF

i=1

M=
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+ (<15 or), ana 66570 = 0;
1) Re(8%) = Bk = Homy, (A ® Qk+l M)
ii) there exists an R-homomorphism of degree zero, tk:B - B

k+l k'

defined by t*(£)(A\ @ g ® ... 8 q) =

= f(MN(1) ® p(\) ® 9® ... ® qn) such that

-1 k-
6k lt * + tkék = lB .

k
5). Consider the -function an+l =1 - 8"t" where
«™iB - Homy(h @ @),

n+1l

n+1

Then it can be shown that the im ™% < Hom (Q ® @  ,M) because the

n+l)*an+l

following sequence is ecact and (T ® 1 = 0,

n+l n+1l
0 ~ Hom, (484 el gy (8L )Y o A®Qn+l wy 8L 7)% 4 m, (REQ el

,M) - 0.

n+l)*an+l

To show (1 ® 1 = 0, let £:A ® Q™" =M and r,q, be arbitrary

n+1

in R and Q, respectively. Then [ (N ® 1%™)*™](r ® 4 ®...®q )=

1
o™t

i

(£)(M(r) ® 9 ®...® qn+i),

n

n, n
(£ - 2 EHDN M) 8 q) ® ... B g )

i

f(Mr) ® g ® ..o ®q_ ) - (M) (M) ® 9 ® ... ®q )

il

f(M(r) ® a4y ® ... ® qn+l) - tn(f)(rql ® ... ® qn+l)
+ irzzll(— )l+l+[q1+l'lqiltn(f)(ﬂ(r)®ql® ;e ®aq, a® ... ®q )

n .
v cnneelag e (f)<“(r)®qr®--°®qn)'qn+ltn<f><n<r>®ql®...®qn)

I

f(M(r) ® 6 ® ... 8 qn+1) -f(M1Q) ® rg) ® ... ® qn+l)
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i+l+lq.

+ iil(—l) 1+1l'qi'f(ﬂ(l)@p(ﬂ<r)8qi®,..®qi+lqi®...®qn+l)

n
+.(—l)n+2+lqn+l,lt (f)(ﬂ(r)8q1®...®qn)'qn+l

£(1(1)@p (N(x) )8 BurBq )

= f(M(r) ® 4 ® ... ® qn+l) - £f(M(r) ® 4 ® ... ® qn+l) = O because

el

It

0. Therefore,

n,n '
3 -]-':—E)—-E—-»HomR(Q, ® &)

n

n
Hom_ (A'® Q% M) e Hom_(A'® Q7T M)
R : L0 R
is a sequence, (1 - 6°t")8™ = 0 and ker (1 - 8™t™) < im 8". Now, let
n+1 . n+l .
f:Q ® Q = M and define g:A ® § — M by setting
g(h ® a4y ® ... ® qn+l) = f(p(\) ® a4y ® ... ® qn+l)' Then
n.n ' Z -
(1-8¢t)(g)e;®q; ® ... ® qn+l) = glgy ® ... ® qn+l)

n n
- & (¢ (g))(qo ® vou ® qn+l)

flagy® +ox ®q_ ) - (—1)'qo'|q1|tn(g)(qlqo ®q, ®... ®q )

1

i+l+lqi+l”qiltn(g)(qo ® ql ® ... ®q. . R ... ® )

v .8 (1)
g L 1414 Qn+l

n
+ (~l)n+2+lqn+lHt (g)(qd@ .- ® qnlqn+ltn(g)(qd8 4® ... ® qn)

)

H

vf(qo ® ... ® qn+l) + (—1)'qollqll+lg(n(l) ® 99, ® -en ®q

i+l+,q. I'q.1
i+ g(ngl) ® q,® 9,®...® qi+lqu...® qn+l)

n
+ igl(~l) 18

+ (—1)n+2+lqn+l"tn(g)(qd®...® q )’

n qn+lg(ﬂ(l) ® §®-..8 qn)

)

£(qy ® .0 ® qn+l). ‘Hence (1 - 6™t™) is an epic and (1 - 8"™t") is a
cokernel of 8". Therefore, 6n+l = e(6™) = b1 - s™tD);

6n+l Qn+l

. N ] N+l .
.HomR(A ® M) HomR(A,HomR(Q ®Q ,M));

and Homp (A, Hom,(Q ® &) = Hom, (A ® Q™ M). .Now, let
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B ., = Homy (A ® P2 M). To caleulate 651, let £ B

nap A€ A and

n+1’

q; € Q- Then

o(1 -,5ntn)<f)<x)<qo®...® q,,1) = <-1)lk,,f’(1 - 5ntn)<xf)<qd®...8qn+l)'

= <~1)IX"fI<Xf)<qO®...® a1+ (-l)'k'lfl+16n(tn(Xf))(qd®...® a )

n+1

(_1),qollx'f(qok ®a; ® e ®q o)+

T+,

+ (-1),X|'f’+l+,q1'qo'tn<xf)<qlqo ® ... ®q )

1

i+ ] 2] +14]q

& Haglinogy (o :
+ 35 (1) 14111 (D) (g B0, 8. . o8y ;8. 0.8 ) )

)n+l+lX|'fl+l+|qn+l||tn(Kf)(qo®,..8qn)|q

n
+ (-1 a1t (kf)(qd@...@qn)

= (_1)lq0”xlf(qol ®q, ®...®q )

1

; jio(—l)j+l+lx‘lfl+,qj+l"qjl(Xf)(ﬂ(l)@qd@...@Qj+lq.®...®

3 qn+l)

n
v o leldag,, | ’t‘ O‘f)(qo&"@qn)lqn+l(?\f)(ﬂ(l)®qo®...®qn)

= (-1)Iqo' I7":?(%)\ ® q ® ... ® qn+l)

n i
_ydla, (e, ‘
+ jgo( 1) J41' A F(N ® 98-+ -® qj+lqj®...® qn+l)

n+2+|q ||T(A ® . ®...® q )]
+ (-1) nfl 0 n qn+lf(K ® qd®_..® qn)

[f(ug® ln+l)(7»® ln+l

JRECN ®q,®q ®...8 qn+l)

)

& _1y3+l
+ jgo( 1) [f(r@...®w®...®1)(y®...@n@...@l)](x®qd®...®qn+l

+ (_l)n+2[ ).

Mot ® l)](K\®-qO ® ... ® A1
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Therefore, 6n+l = [(M ® ln+l)(T ® ln+l)]*

+ :éi(—l)i[(l ®...® L ®...0 1)(1 ®..8 T ®...8 1)]*

+ (1P (0m),
Then, from theoretical considerations; i.e., the Kan Adjoint Theorem;

ghtleh O because (1 - §%t™)6" = 0.

1 n+2 n+l

Define t°F tHom (A ® @7, M) = Homy(A-® Q"77,M) in the following

manner, for any f:A ® Qn+2 - M, A €A, a4 € Q, set

n+1 ‘ .
TN ® 9 ®q,®...0 qn+l) = £(M(1) ® p(X) ® 4 ® ... ® qn+l)'

Then by linear extension f is an R-homomorphism of degree zero.
To complete the proef of this theorem it must be shown that

6ntn + tn+16p+l .

=1 . Let £:A® Q™ - M, A € A and q, € @ Then
. _

nn n+16n+l

(67t + t )(f)(>\®ql®...®qn+i)=

1

(N ® @8 g ) + FLEFE) @ o) 8.8 )

1 1

- Ml ln
= (-1) 16 () (A ®q, ® ... ®q 1)

1

= i+, e[ n
+ igl(—l) i+l HRETE) (A ® aq ® ... 8 419 ® .. ®q )

n+1

: n
+.(—l)n+l+'qn+lllt (D ® %8...® qnﬂqn+ltn(f)(k»® qr@...@ qn)

+ O MW @ p() @ g, @ ... B g )

1

= E(—l)hl!qllf('ﬂ(l) ® p(ql)\) Rq,® ... 8 ,qn+l)

= ivla, o l]a] ,
+ igl(—l) i+1M P E(MQ) @ p(N) ® 9,®...® qi+1qi®'°'® qn+l)



.
" (_1)n+1+'qn+1"f(n(l)gp(*)8q1®"‘8qn)‘qn+lf(ﬂ(1)®p(x)®qi®...eqn)]

+ [£(p(\) ® 4 ®...®q, )

1

)

n »
_yita, el
+ jEO( 1) J+LMPE () @ p(M) ® 9;®...® qj+lqj®...® qn+l

qo=p(k)

L el HEM@eptoey 8. . .eq | f(ﬂ(l)ep(x)®q£8...eqn)]

n qn+l

- coMlalema o p(g\) ® 4, ® ... ® a,,)
+,f(p(x)8q1®...@qi®...®qn+l) -

- (—1)'q1'lp(x)'f(ﬂ(1) ® q;p(\) ® 1, ©...8 q_.;)
= (-1)'xl|q1'f(ﬂ(1> ® qlp(x) ® q, ®...®'qn+l)

+ (—1),x"q1’f(ﬂ(l) ® rq, ® g, ®...0 qn+l) + f(p(\) ® q,®...® qn+l)

-~ olalle®laa) 84000 @, 880 )

= (—l)lx’lqlf(n(r) ® ql® qé&...@ qn+l) + f(p() ® ay ®...0 qn+l) where

A =p() + N(r). Then, by the remarks made in step 3,

(6ntn ) n+16n+l)(f)

+ -t = f and by induction the proof is completed.

An E@—injective Resoiution

Let M be any A-medule. Then, by using the forgetful functor, M

can be considered as an R-module. There exists an injective module QO‘

A .
in M such that 0 = M —2;>Qb is in 81. From the lemma to the Kan

Adjoint theorem it is known that

& .
0 m4———>HomR(A, QO)
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is in E@ where @ = b(&); recall the definition of b. Moreover,

HomR(A,QO)»E 31 where 7t §>31. &m is an abelian category hence there

such that ™. is a cokernel of «.

exists a morphism ﬂo:HomR(A,QO)‘ = Cy 5

. m
Consider M -9L>Hme(A,QO) -—£L>(k)in M. Then there exists an injective

‘nmodule Ql‘and a monic io:Co - Ql such that the sequence

gO

‘ A
M -%HomR(A,QO) —3Q, is in 81, where 8° = i_m . Then

1 00

éO

M == Hom,, (A,Q,)) —>Hom  (A,Q,) is in AN

1
Homy, (A,Q) € J .

Assume that, for each k < n, the following sequence has been

constructed :
oanap S,p S, Ly B0 ST
BRG k-2 k-1 'k

which is in & and such that B, € I for each 0 < i < k.

ék—l ™ . »
Now, consider Bk—l .er "'Ck in &m'where ﬂk is the cokerﬁel
k-1 . - . . .
of 6 . Then there exists an injective module Qk+l and a monic, in
k-1 Ak '
.o ' § ) o 1 A S
m, lk'Ck Qk+l such that Bk—l >Bk >Qk+l,ls in & § = im .-

Hence by the lemma to the Kan Adjoint Theorem,

k-1 - Lk

. ol _ ~
"HomR(A’Qk+l) is in & and B, , = HomR(A’Qk+l) € Jd.



CHAPTER III

THE DERIVED FUNCTORS COTGR AND COEXT

FOR COMODULES OVER A COALGEBRA

Let (A,A,€) be a graded coalgebra over a commutative ring R with
unity where A:A - A ® A is the comultiplication and €:A = R is the
counit; see Milnor and Moore [16] and Gugenheim (117. ©Let “m and Wﬁ
denote the categories of left A-comodules and right A~comodules;
respectively, where the morphisms are the A-homomorphisms of degree
zero. Let M denote the category of graded R-modules with
R-homomorphisms of degree zero. Then Am and Wﬁ are additive categories
with cokernels and M is an abelian category. If A is a flat R-module

then 4m and mﬁ are abelian categories; Milnor and Moore [16].
Construction of Adjoint Functors T—{S(ﬁh&m)

Let T be the forgetful functor and let S(A) = A ® A where the
A-comodule structure is given by Azn® = A®1:A®A-ARAN® A,

Moreover, if. f:A = B is in M then define S(f) =1 @ f:A ® A - A ® B.

Proposition %.1: S is an adjoint functor of T.

Proof: Define functions
e 0
b.HomR(T(M),A) - HomA(M,S(A))

a:Homy (M,8(A)) - Homg(T(M),A)

72
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for any M in by and any A in M such that ab = 1 .and ba = 1.
For any f:M — A in M define b(f):M = A ® A by the following

diagram:

M > ASM
b(£) 1®F

> ARA

Then b(f) is an R-homomorphism of degree zero. Moreover, the diagram

b(f)

M —> A®A

M? | A@s”

pay —80E) | onen

commutes because it can be written as

®
M M 5 NBM - 181 A®h
u® (1) ARL (I1) ARL
\4
ASM Tye > A®NRM R > ARARA

where (I) commutes by the definition of a A-comodule and (II) is an
identity. Therefore, b(f) is a A-comodule homomorphism.
For any g:M = A ® A in'mm define a(g):M = A by the diagram

M—-2—_— e

ER1
alg) BRA ‘ |
e £ where €(r ® a) = ra is the
A natural isomormorphism.

Then a(g) is an R-homomorphism of degree zero.

Now, for any £:T(M) = 4; (ab)(f) = a(b(f)) =al(l & £)y0)



7l

=800 ®Nm=8E®f)o=E187)(€E®1)0 =7 because

1

f(m). Hence

H

E(1®£)(€® 1) 0m) = E1L &)1 ®n) = E(1 8 £(n))
&b = 1. |

Also ba = 1 because given g:M = A ® A in MU (ba)(g) = b(E(c ® 1)g)
=1eEEelglle= 1881 BERLIA B g)po.
Consider the following COmmutative-diaéram:

ARL

M & > \®A

> NRARA
VAl ' A®1 1R6Q1
Vv YV
ASM —-—EE—-—% NNRA TR 5 AQRXA W ADA

Hence (ba)(g) = (1 ®E)(1 ®€® LA ®Llg =g becausé E(1 ® €)A = Ly

Furthermore, one can verify that a and b are R-homomorphisms.
Therefore, T has the following properties:
i) faithful (by the definition of T),
ii) reflects epics and monics (because it is faithful),
iii) preserves epics, coproducts and cokernels (because it is a
coadjoint functor of S),
iv) reflects coexact sequences (because it is faithful and cokernel
preserving).
But T does not preserve monics as the following example shows.
Moreover, from adjoint properties S preserves monics, kernels and

products.

Example 3.1: T does not necessarily preserve monics.
To do this it will be shown that there exist monics in @m which

not injective functions. Recall; S preserves monics, hence, if
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f:A ~A'" is a monic in Mthen 1 @ f:A® A - A®A' is a monic in M,
Let R = Z, then Mis the category of all graded abelian groups.
Let A = (Z,ZE,O,O,...). .Then

i) (A®‘A)O=Z®Z; (A®A)l=‘Z‘®Z + 2.8 7 (A‘®A)2=Z

2 *+ 2y ® Z,

2
and (A®A)m=0form>2;

11) (A®A®A)O=Z®Z®Z; (A®AB N, =28287, +

+ Z® Z2 ®Z2 +72.0272Q Z;

2

(A@A-@A)Z:zZ@z.@zZ+22®22®Z+Z®z ®Za;

2

(—A®A®A)3=ZZ®ZZ®ZZ; (A® A® A), =0 for k > 3.

Define A:A = A @ A by:

byiZ = 2 ® Z; Ao(l) =1®1;

Al:za—-2®22+za®z; Al(1)=‘1®1+1®1

A =0 form?>1.
m

Then A is a Z-homomorphism of degree zero. Moreover the following

diagram commutes:

A > AN
A 1A
MR, i DI
because;
i) Oth degree
Leap,1 =00a,081)=104,1) =18181,
(6 ®1)p,(1) = (bR 1), (181) = .Ao(l')'ﬁeg 1=2101®1;

ii) 1st degree:
(1® A)lAl(l)

1}

1® A)l(l ®T+1®1) =1 ®A1('1') +1® Ao(l)
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=1®10®1+1®1Q01+181®1;

el @M =001,08T+181) =41 &1+

+ Al(l) ® 1 =
=1®1®1+1®10®1+181®1.
Now define €:A = Z by; EO = lZ and El = O. Then € is a Z-homomorphism

of degree zero and the diagram

7N — - N — N7,
€®1T < 71@6
A A
af///
RN AN is commutative because:

i) Oth degree
(€® 1)OAO(1)

(€®1)O(1®1) =1 Q®1 and (l®€)o(l'®l) =
=1®1;

ii) 1lst degree
(€® 1)1A1(1)

1}

=
®
=

1!

(e®1),( ®1 +1®1)

i}

[
®
Ja

1

(1® G)lAl(l) (1® 6)1(1 ®1 +1®1)
Therefore, (A,A,€) is a Z-coalgebra.
Now, 1:2Z — Z defined by i(2) = 2 is a monic in M hence

1®1:A®272 - A®Z is a monic in Qm but is not an injection because

(1 ® 1)1(1 ® 2) = 0 where (1 ® 1)1:22 ® 27 *‘Zz ® 7.

By the Kan Adjoint Theorem one knows that if € is an injective
. T -1 . . . . &m .
class in M, then € = T ~(€) is an injective class in M. In particular,
if we consider the class e? of all split exact sequences in M, the
class & = T_l(ﬁo) is a coexact injective class in AML Note that a

sequence.Ml —i;éMz —ELQMB’is in @Q if and only if it is a .split

. *
exact sequence when .considered in M. Also 30; where Ep :>3p;
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consists of all retracts of objects A ® A for any A in I
Definition and Properties of the Cotensor Product

Definition 3.1, (16-219]: If N is = right A-comodule and M is a left

defined to be the R-module such that the sequence

5 Py ®L~18® P
O=~NOM—>N®M —>N®A®M
A

is exact as graded R-modules where Py and MP are the multiplications of

N and M respectively; i.e., NOM = ker(wN ®1-18® Mw).
o A '

Proposition 3.2: Given a A-comodule homomorphism of degree zero,

f:M = M', there exists a unigue morphism 10£:NOM~-NOM' in M for

each right A-comedule N.

Proof: Consider the diagram:

i Since f is a comodule homomor-
NO M 10f ydw phism, , o = (1® £) 0.
. 19 f I Hence (1818f) (@1 - 18,0) =
N ®M > N & M!
' , . (cpN®1 - 1®M,cp)(1®f) and
wﬁ@ 1 - : '¢ﬁ8 1 - . ,
1 ® g : 10,0 (cp_N®1 —-v.l®M,cp)(l®f)1 = 0.
N - Hence there exists a unigue
NereMiZE Ly ene

" morphism 1 0 £:N O M - N O M' such that (1 ® £)i = i'(1 O £).

Proposition %.%: If N is in Wﬁ and M,M',M" are in Gm, then the
following properties are satisfied:
i) 1y E]lM =1y 0O
ii) 4if f,g:M = M' are morphisms in Py then 1 0 (f + g) =
10O + 1L0Og);
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iii) if £:M - M' and g:M' = M" then (1 D gf) = (10 )10 £).

‘Proof: i) and iii) are immediate from the previous proposition and

because of the uniqueness which the kernel guarantees. To prove ii)

consider:
10 , We know that (1 ® (f + g)) =
NOM- T >N O M
, g - (1®f) + (1L®g) and
i it
1®1®@(f+g) =1®12®F +
v 1®f
. > !
N @M 1®¢g >N & H . 1®1®g. Hence i'(If + g))
= (1® (f+g)i
y | .
| 19018 f , o=laen + @egl
N®A®M lv®l®g,N»®A®M

it

(1® )i+ (1®g

1'10f) +1'Q0g) and

the proof is completed;

From the above properties an additive covariant functor can be
defined N E]_;Aml—'MIfor each N in Mﬁ. Moreover, this functor is

Ep~left exact as the following theorem shows.

Theorem %.1: If ‘O - Ml z_éthzz:é—:}MB =0 is in EO, then for each N in
s g :

ar

0 ""NDMl ..._.l_.g__f)Nv[] M2 _ﬂ&.&l\ﬂj M3

is an exact sequence in M.

Proof: Consider the following diagram (in M):
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] } !
N O M 10 £ >N D M, 10e SN DN,
ll 12 13
4 /
0N B M et e e N B M, e 188 == ® 1, —0
1® s 1® ¢
A |
0—N8A®M e=mitll SNole M, et Bes N ® A ® My =0
1918 s > 18100

where the three columns are exact and the bottom two rows are exact from
a property of tensor producﬁ. 10 f is an injection because if
QO = QD HG) then 1,10 &) =110 £)(y) and

1e f)(il(x)) = (1 ® f)(il(y)). 1® f is an injection hence

il(x) = il(y) and x = y. By the previous theorem (1 O g)(1 0 f) =0

and the im (1 0 f) S ker (10 g). So te complete the proof one need
only show; ker (10 g) € im (1 O f). Let x € ker (1L O g). .Then

iz(x),E’ker (1® g) =im (1 ® f). Hence, there exists y € N ® M, such

that (1 ® £)(y) = i2(x). Thus (1 ® 1 ® f)(cpN ®1-18® Mcp)(y)
_ _ ]

:= (cpN@ 1-1® Macp)(l ® f}(y) = (cpN ®1-1® Macp)(ia(x)) =0, so

there exists z € N E]Ml such that il(Z) = yv because 1 ® 1 ® f is an

injection. Therefore (1 0 f)(z) = x.

The following example shows that the condition of being split

exact as a sequence of R-modules is necessary in the abeve theorem.

Example 3.2: Define &:R > R® R by &(r) =1 ®r and € = 1:R = R then
(R,A,€) is an R-coalgebra. Given any R-module A define AP R® A by

A,c'p(a) =1 ®a. Then (A,Am) is a left R-comodule. Similarly define
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right R~comodules. Then A[JB = A ® B and it is well known that tensor
R R

product does not preserve monics.
Definition of the Derived Functer Cotor and the Cobar Construction

Let (A,A,€) be an R-coalgebra where R is a commutative ring with
unity. VAD)?, 20'/\ and M are the »‘categories of left A-comodules, right
A-comodules and R-modules, respectively. It has been shown that there
exisbts a functor S:I - ’\m such that S is an adjoint of the forgetful
functor T:Mm =M. Consider the injective class 0 ot all éplit exact
(exact = coexact in M) sequences in M, thenTﬁl(eO) = %0 is a coexact
injective class in A‘IR and the @Oninjective objects are the retracts of
S(A) for any A in M. : -

If N is a right A-comodule the functor N D_,_:/\_JJ? - is an additive,
‘ A

covariant, Eo—left exact functor. So by Chapter I there exists a

unique cohomology theory over N [ _ relative to EO Define
A

Cotor (N,_) to be the derived functor of N[J __. This means given

7,20 | A

any M in ADZTZ consider an Eo-ninjective resolution
' o
O *Me=—=—X

of M. Then Cotor (N,M) = H(N.O X), [18] page 7-25.

A2 A

From now on in this paragraph it will be -assumed that A is an
augmented R-coalgebra with augmentation T:R — A. Hence the following

seguence
0 5 Q gmmi— N e=moma R = O
I Ll
ker €

isinsoandAE’—‘Q+R.
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The cobar resolution, Adams [1], for a left A-comodule is given by

Mw 6O 5l 6n—l 5™
O Ms=38 (A,M) —> B (A,M)FT?-J--- =28 (A,M)g:-::ﬁ---'
-1 0 o 1 I (el i

where {tn:n.z -1} is a contracting homotopy and

By (A, M) = A ® M;
Bn(A,M) =A®Q® ... ®Q®M, forn > 0;
n factors
n n . n i
5 =4 ® 1Q L, +1® [igl(—l) 1Q ® .. LR ... ® lQ ® 1M]
an+l o o1 N A
+ (=1) lA ® %Q ® @ for n > 0

tn(x®ql® e ®q, @) =€)y ® 4, ® ... ® g ®m, for n >0,
and tal(X ® m) = €(A\)m. Therefore, the cobar construction is an
%p—injeptive-resolution of M.

Let e:mﬁ —»m? be the -cokernel functor, then e is a coresolvent for

e? and e' = b(e(T(f))) is a coresolvent for %p.

Theorem 3.2: The cobar resolution is the canonical [6~10]

%p-injective resolution determined by the coresolvent e'.

Proof: Let (M,M@) be a left A-comedule and consider the sequence

v 1y = e(@)
0= Mee—————— =>M in M. Then b(e(OM)) = (lA ® lM)M@ = @ and
1
M

M@ e'(OM)

O ->M—>A®Mis precisely O = M —-+———————>Re'(oM).
Now, in the diagram,
: " o i 0
0 VR . VNS VI I R - L Y
T 0
t t
-1
1 —.Mmt
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-1
e 1l - th
the sequence M — > M - >Q ® M is exact because

l1e®1) - Mcpt’ O and if x € ker (1 - Mcpt"l), then

=
RS
i

=
as]

=
S
i

X = M¢t_l(x). Moreover, 1 ® 1 - ot ~ is an epic because given any

G®mMEQRO®M; ¢ ®m+ 0O EAN®Mand (1 ®1 - ¢t—l)(q ®m) =g®nmn

M

because g € Q = ker €. Hence 1 ® 1 -~ M¢t~l is a cokernel of ng e(M¢) =
=1®1 ~ Mcpt"l and e'(Mcp)= b(l®1 -

-1y _ - ~1ye
Ot )= (1®1®1 1@ ot )
0

*A®1) =4®1 - (1.®Mcp)<1®e® D@®1) =40®1-18 ,0=2¢5.

So the only thing left to verify at this step is that the

im 1®1 -

Yth—l) C Q® M. But this is true because

Ny ioemio~qoen—28L sy EB8L spew

(€@1)1®1 -~ 0t

is exact.

In the third step we consider the diagram:

0 1
A®Mem | ® Q ® M L2oAIBL - IOA] + 18I0 )\ 9 qQqe QoM

£© 1

1 - %0
Q® QM

First it must be verified that the im (1 - 5Oto) CQ®Q® M. But the

seqguence.

1®1Q®1 M ER®R1®1

0-~Q®Q®M A®Q® >R® Q® M -0

is exact and (€E® 1. ® 1M)(1 —ﬂéoto) =

Q

1

0
(e ® 1Q ® 1M)(1A® 1Q® 1M) -(e®11)A® Iy =1, ® Mcp]t

FE®1®1 -~ (€®l®l)(A®l)tO+(€®1®1)(1®Mcp)tozo
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~because (€ ® 1)A =1, and, for any A ® g ®m € AN ® Q® M,

A

(€®1811® NN ®q8n) = (€818 1)(eM)g® o)

= €ME(Q) 8 o) = o.

§° 1 - §%°
Secondly, A®Me=——Q 8 M

tO

»Q ® @ ® M is exact

because (L - 6°t96° = 67 - £%%) = 6% - -'th’l)) = 5Oth'1 =0

and for any x € ker (1 -'6oto), X = éo(to(x)). .Moreover, 1 = éoto is

an epimorphism, hence 1 —~6oto is a cokernel of 60. Therefore, E(SO) =

1-8%C ana (8% =01 -6%% = e @ -%"N0ue1e1)

1]

H

0,0y 4.
(1, 81,81, Bl -1858% )(A®1® 1)

te181-00ae1’0@191) + 1816 000 e1®1)

i3

i

4®181-1®481+1®18 0 since t2(A®181) =L,

Similarly, one can verify that g = e?(én—l) and the theorem is

proved.

It should be noted that in a similar manner one can verify that the
bar construction of Maclane, [15-3%06ff.], is the .canonical resolutien
of EO’ based on the kernel functor as a resolvent for the projective -
class 80, of all split exact sequences in ﬂlwhere %b is a projective

Km, considering A as an augmented graded R-algebra.

class in
Commutative Coalgebra

The following discussion yields a useful computational technigue
for working with comodules over a coalgebra A.  An -example of the

technique will be :given in this section. The technigue will also be
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‘used extensively in Chapte;.IV.

Let R be -a commutative ring with identity, ﬁ?the category of all
graded R-modules where the morphisms are the R-homomorphisms of degree
zero. For each object X in M define a covariant functor TX:mI-lﬂlby

i) for each object ¥ in IR, T, (¥) = ¥ ® X;

ii)‘ for each morphism f£:¥ - Y¥', TX(f) =1 ®1,.
Similarly, define a covariant functor Sx:ml-'MIby SX(Y)1= X ® Y.

All tensor products are over R.

Definition 3.2, [16-215]: For X, Y in T the morphism T:X ® ¥ - ¥ ® X
defined by

T(x®y) = (—l),xl,yly ® x where x € Xlxl and y € Y,Vl

is called the twisting morphism on X ® Y. (Note that T is an

R~homomorphism of degree zero.)

Proposition 3.4: For each object X in M there exists a natural

=T ).

equivalence T1,:T, SX (qX:SX <

XX

Proof: Let X be any object of M. For each Y let TX(Y) be the
twisting morphism on ¥ ® X (GX(Y) the twisting morphism on X ® Y). TFor
any £:¥ = Y' in M the diagram

f&®1

4 4
| N '
TX(Y) | GX(Y) GX(Y )‘ TX(Y )
1 . |
1
XI®Y - T8 7 > X ® Y
is commutative because lff = 0. Furthermore; GX(Y)TX(Y) = lY ® X and

TX(Y)GX(Y) = 1y ® v
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Definition 3,3, [16-215): The R-coalgebra (A,A,€) is said to be
-commutative if the diagram

A® N =———DN\

is commutative where T is the twisting merphism on A ® A.

Theorem 3.3, [11-355]: If (A,A,€) is a commutative R-coalgebra, then

any left A-comodule -can be considered as a right A-comodule.

Proof: Let (M,Mw) be any left A-comodule with multiplication

M$:M = A® M. Define M¢':M = M ® A by the composition of the morphisms;

P T (A) v .
M —EL—AA ® M ——Eg%pﬁf—>NL8%A. Then Mw' is an R-heomomorphism of degree
A .

zero. To complete the proof one needs to verify commutativity of the

. following diagrams:

]
W
M SM ® A M® R ' — R
@' » |
M (a) 1® A ' |1®e
. i . 5 . . .
M® A —~f§$T§E——>M ® A'® A ’ M® A
(a) can be written as
) T, (A)
M M ew M —> M3
: (5) ' '
e e
Ty (ASA) :
P (1) A®L ANV ——————> MRARN
' () \\\{A(M)®l
( 18,0 / L@oA(M) N
ARM > NOARM —= , ‘ > \SMDA
QA(M), (2) o, (@) - (3) o, (MBA)
MRA el > ABMIN 5, (DL > MSARA



86

where (1) is:commutative because (M,Mm) is a left A-comodule and (2),
(3), and (5) are commutative by the proposition.

et A® A" ®m € A® A®M. Then (TA(M) ® l)(‘TM(A@ A))Y(O@N'®m) =

= (TA(M)®1)[(~1)'m”>‘®"',(m®x®>\')] = plrl Ml a M o] gegy i
=ﬂ®aﬁmﬂh®w®m)md@)mcmmmﬁm.Smif |

(GA(M ® A))(TA(M) ® 1)(1 ® A) =1 ® A, the proof will be complete.
Since A is commutative, one need only show GA(M ® A)(TA(M) ®L) =18
where T is the twisting morphism on A ® A. |

et 1 ® A ® N € M® A® A. Then cA(M@ A)(TA(M) ® L)(m®\® A\ )=

5, (1 ® oMo e n ey = o=l '“@"(m &N @2

- MMl aernen s cenmeren.

Similarly one can show (b) is commutative by writing (b) as

7. (R)
M® Ré—
1®¢ T (2)
M® A\ TM(A)

where (1) is cemmutative because (M,Mw) is a left A-comodule and (2) is

commutative by the proposition.

From the above theorem, if A is a commutative -coalgebra, the

cotensor product is a bifunctor on the -category of all left A-comodules.
Definition of the Derived Functor Coext

R is a commutative ring with unity and (A,A,€) is a graded

R-coalgebra. Let M be-any left A-comodule. Recall that

Hom, (M,M") E{Homi(M,M') | a>0)for M in M.
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Proposition 3.5: HomA(M,M') is a graded R-module.

Proof: For each & > 0 it will be shown that Homi(M,M’) is an R-module.

For any f € Homi(M,M') and any r € R let (r£)(m) = rf(m). Then
,(rf)(m)[ = |rf(m)| =‘lf| + |m| and 'rf[ = d. Moreover, (1 ® rf)(A ® )

SA® (rf)(m) = A ® rf(m) = r(A ® £(m)) = r(1 ® £)(m).

Proposition 3.6: HomA(ML_):Qm =M is a covarisnt additive functor-

for any M in'&m.

Proof: Given any M' in ™R it has already been shown that Hom, (M,M') is
in M Now let f:M' = M" be any morphism in'&m and define -

Hom, (M,£) = £, :Hom (M,M') = Hom (M,M") by £,(g) = fg for any |

g € HomA(M,M')i Then fg is an R-homomorphism of the same degree as g.
Moreover, fg is a A-comodule homomorphism because the following diagram
is commutative. |

M g >M! M

N[c'p M 1 (.P Mﬂcp

A®M —3 [\ ® MV

>A® M

1®g 1®f

So f, is an R-hememerphism of degree>zéro and HomA(M,_) is a covariant
functor.
Moreover HomA(M,_) is an additive functor because gilven
fog:M' = M", (f + g),(h) = (£ + gh =fh + gh = £,(h) + g,(h) =
= (£, + g4)(h) for any h € HomA(M,M').

Theorem 3.h: If B:0 - M e M° =E—M> =0 is a sequence in &,
ol B

then for any M in'&m the -sequence
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0 = HomA(M,Ml) ——iﬁh—éHomA(M,MZ) ——E&——>HomA(M,M3)

is -exact in M.

Proof: Note that lfl = ,g1 =0 and f, 1 ® f are injective set
functions because E is split exact when considered in T

For each.d > O we need to show that

(g,)

(£,)
45 o 0,47 e o 1,2)

0 - Hom® ——— Eom (4,

1
A )

(M,M 2

4 s an injection and ker (g*)d = im (f*)d'

Suppose h,h':M = M' such that |h| = |h'| = d and fh = fh', Then h = k'

is exact; i.e., show (f,)

because if h # h', then there exists n>0and x € Mn such that

n (x) #n' (). But £, (b (x)) =2 (' (x)) and fh+ is an

d n+d d
injection. Contradiction, therefore h = h' and (f*)d is an injection.

We know (g*)d(f*)d = O hence need only show ker (g,), € im (f*)d'

d
Let h:M =M such that |n| = d and gh = O. Since ker (g), = im (f)
for all k > O, one can define an R~homomorphism k:M *er; of degree d,
by setting k(m) = m' where m' is the unique element of Ml such that
£f(m') =bh(m). In order that k be a A-comodule homomorphism the

following diagram must be commutative

©
M i SN ® M
k 1 ® k
lQP
mt M Sh® M

we know f and h are A-comodule hemomerphisms, hence for any m € M;

[1® f)Mlmk](m) =.[M2mfk](m) =.[M2mh](m) = [(1'® h)yo](m)

=[1®Hae k)Mm](m). Since (1 ® k) is injective, vk = (1® k)
M
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and k'is a A-comodule homomorphism.

Frem the above propositions and theorem one sees that, for each M
in M where (A,A,€,M) is an augmented graded R-coalgebra, HomA(M_) is a
covariant, additive, Ep—left exact functor from Nm to M. Hence, from
Chapter I, there exists a unique cohomology theory MHEO relative to @Q

" (
A,2°

over HomA(M,_). We will call this derived functor Coext M, ) and

define Coext™ _(M,M') as HT. (M').

A% M0

A natural question to ask is whether the conditions on E in

Theorem 3.4 can be weakened and still have the desired result; i.e.,

if Bi0 = MF i 42 By P = 0 15 in O then is

0 - HomA(M,Ml) ~Lis Hom, (4,1) ——5&—4'HomA(M,M3) exact? The answer

is no as the followlng example shows.

Example 3.3: Consider R = Z; A = (&, Z., 0, O, ...) and the Z-coalgebra

2,
(A,4,€) where A and € are defined as in the example on p. 7h4. Let
1

)

M" = (2Z, 2., O, O, ...

ot and @:M' = A ® Ml be -defined by;

.57 - - 1
$yi2% » 2 ® 22 = (A® M),

Pnl2) =1 ® 2;

o o e L
¢1:2, 2 Z2® L, +Z,®2% = (A®M )1

and wk =0 for k > 0. Then the following diagrams are -commutative

1 ' 1
Mt P SA® M 7 ® M . M
® 1 1
peu —=2% i enre A ®NE

and (Ml,¢) is a left A-comodule because:



i) Oth degree
(A ® 1)Ocpo(2)

(1® o). (2)

o%o

(€ ® 1)Ocpo(2)

ii) 1st degree
(a® 1)l_cpl(1)
)

(1® cp)lcpl

(€ ® 1)lcpl(T)

A
Let M° = A and A:M° = A ® ¥° be defined by

>

-Ao:

)

b, =
N
1485

Then (A,@) is a left A-
i) Oth degree
"
(4 ® 1)OAO(1)
A A
1e® AO)AO(l)
/\ .
(€ ® 1)OAO(1)
ii) 1st degree
A
(4 ® 1)1Al(1)
AL AN —
(1® A)lAl(l)
A —
(e ® 1)IA1(1)
Define Ve by; W = (z

21

»ao(l) =1®1 . and @ =

commutative and (MB,a)

= (A®l)o(l®2)=Ao(l)®2=l®l®2,
=(l®vcpo)(l.®2)=l®cpo(2).—.l®l®2,
=(€®1)O(1®2)=1®2;
=(A‘®l)l(l®_l-)=Ao(l)®f=l®l®_l',
=(l®cp)l(l.®'f)=l®gpl(1-)=l®lv®'i-,
=(e®1>l(1®3)=1®1
27207
_ A e s
28D, + 72,87 where A1(1> =1 ® 1.
comodule because:
=(A»®1)O(1®1)=AO(1)®1=1®1®1,
A A . v
:_(1®A)O(l ® 1) = l®AO(l) =1®1®1,
= (€®1)o(1'® 1) =1® 1;
= (0®1).(1 ®1) = 8,1 ®1=1018T1,
A — A — —
.:(1®A)1(1®1):1®A1(1)=1®1®1,
=(€®1) Qe 1) = €,(1) T =1®71.

0, 0, +..) and QM2 - \® M where

0 for k> 0. Then the following diagrams are

is a left A-comepdule;

90
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Ve & SA® M 7 ® M M
qL lA'@ll ER JT 2
D - wd 3
A®M T o >A® A®M A®M
because

(a-® 1)0040('1') = ae1),0e 1) =1®1®71 and (1O a()oafo(T) =

=(18w),1eD =10q,DM =101 ®T. Similarly, (€ ® l)o =1 5
M
Now consider the sequence
0 =4t ? B ? 4 0
where fo = 1:22 = Z
fl = lZ :Z2 - 22
2
&y = MMz - Z2
g1 '—:-O:Z2 - 0.

Then we can .show f,g are zero-degree A-comodule homomorphisms.

)42 © o\ eut Oth degree
¢ 1 ® f 1e® f)ocPO(2) = (1® f)o(l ®R2) =182
. A NG A B A _ A A
A A A® A Aofo(2) = .Ao(z) = ‘Ao(l) + vAo(l)

S1®1+1®1 =18 2.

1st dégree
1® f)lcPl(l) = (1® f)l(l ®1) =101

A - A —_ .
A, £, (1) :‘Al(l) = (1 ®1) and f is a A-comodule homomorphism.

1), A A ® A Oth degree

18g (181 = 1®g,1®1)

w—2 spew =187, g,(1) =o,M =18T;
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1lst degree

AN = . —_
(1® g)lA1<1) =(1® g)l(l ®1) =0
A - A . .
Algl(l) =VA1(O) = 0 and .g is a A-comodule homomorphism.

Now consider M = A, then (A,A) is a left A-comodule. Define

— 2 . . - . — ~— . —_ —_
h:M =M™ by: h.:Z = Z; ho(l) =2and h) =1, :Z, 27, Then gh =0 and

0 2

h is a A-comodule homomorphism of degree zero because

A —————AL————aA-® A Oth degree
«hl . ll ® h (1 ® h)OAO<1) = (1® ha(l ® 1)
A

A ———3 A ® A e al DNy LN oy L S
=1 ® 2; tho<1) N‘Ao(a) =1 ® 2;

lst degree

<1®Mﬁf®:(1®Mﬁ1®f+3®1>ﬁ1®%€>+ﬁ®%u>

Sl e -

, - N = A e
=1Q®Ll+1®2=1Q 1; Alhl(l) =.Al(l) =1® 1.

: . 1
But there does not exist a A-comodule homomorphism k:M = M such
that fk = h because we know that k:M - Ml defined by;
k_ 12 = 2%: ko(l) =2

kl:Z2 - Z2; kl = lZ
2

is unique such that when considered as Z-homomorphisms, fk = h. But k

1s not a A-comodule hemomorphism because in the lst degree,

(1® k)IAl(I) = (1® k)l(l T +1®1) =1®71+1®2 and

@lkl(l) =‘@l(1) =1® 1.
Some.Relatiops Between Derived Functors

Let R be a commutative ring with identity and let M be the

category of graded R-modules. (If the ungraded case is to be



93

specifically considered this will be noted in the particular theorems.)
- If M is a graded R-module define M* = {M* = Hom (M ,R) | n >0} (for a
discussion of dual module see [15-146-1487) where HomR(Mn,R) is all
R-homomorphisms from the module Mn to R. .Then'M* is a - graded R-module
‘and is in Th  We will assume (A,u,M,€) is an augmented graded R-algebra
and A is projective of finite type; i.e., for each n > O'An is a
finitely generated projective R-module. Then one can verify that
(A*,u*,€*,M*) is an augmented R-coalgebra.and Q* = ker M*. It can also
be shown, if (M,M$) is a graded left (right) ‘A-module, then (M*,M$*) is

a graded left (right) A*-comodule.

Lemma 3.1: If (M,Mw) is a right A-module, projective of finite type,

then (M Qh N)* = M* [J N* for any left A-module N.
A*

Proof': Consider the diagram:

($M @l -1® Nw)*
(M ®, N)* > (M® N)* > (M @ A ® N *
wﬁ ®1-19® N@*
M* [J N* e, M* @ N* - - —>M* ® A¥ ® N*
A*
Convention: ‘HomA(M,N) = {Homﬁ(M,N) f p € Z}

Homy, (M,N) = {Homg(M,N) | p € z3.

Remark 3.1: HomA(A ® M,N) = HomR(M,N) and Hom,, (N*, A* ® N*)

A*

= HomR(N*,M*) for left A-modules M,N.

‘Proof: To do this it needs to be shown that Homi(A ® M,N) ¥ Homg(M,N)

for d € Z. The technique is the same as that for d = O which was
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proved on pp. 72 - .74. For d € Z define bd:Homi(A‘® M,N) = Hom%(M,N)

by the diagram
b, (£)

>N

M
e
® N ®1

M >N QM

R

for any f € Homi(A ® M,N), and define a :Homg(M,N) ~ Homi(A ® M,N) by

d

the ‘diagram

A®M
P
M ad(g)
M —————e—3N
g .
for any g € Homz(M,N). One can verify that b, and a, are
R~homomorphisms and adbd =1, bdad = 1.

S8ince the direct summand of a projective R-module of finite type

]

is also projective of finite type, § kér € 1g a finitely generated
projective Re-module. Recall, from the Universal Coefficient Theorem,
[15-771, if K is a chain complex of frec abelian groups K and if G

is any abelian group, then HY(X,C) asHorﬁz(Hn(K),C) + Ext%(Hn_l(K),C).

Moreover, if K is a chain complex of vector ‘spaces Kn over ‘a field F

and C is a vector ‘space over F, then H (K,C) = HomF(Hn(K),C).

Theorem %.5: If R is a field and M is a finite dimensional vectér
space over R, where (M,wM) is a right A-module, then for any left

A-module (N,Nw)
[TorA(M,N)]*'EPCOtorA*(M*,N*).’

Proof: Let B(N) denote the bar resolution for N where B(N)k =

=A® Qk~® N for k > O. Then~TorX’p(M,N) = Hn([M~8% B(N)]p) where the
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kt term of the . complex [M 8% B(N)]p is [M 8% (A® Qk~® N)]p. Passing

to the dual we have [Tor'P(M,N)]* = Hom (H ([M®, BMN)] ),R). But
A R'n A P

B(N)*; where B(N); = A* ® Q*k ® N*; is the cobar resolutien for N* and

Cotori;p(M*,N*) =H ([ O B(N)*]p) where the kit term of the complex
A*

M O BAD*] is [M* O (A* ® @*° ® N*)] . From Lemma 3.1,
A* 1Y A* 1Y ‘

(M® N)* =M+ N* and for k > 0; (M® (A ® QF-® N))*

=M (A* ® Q*k ® N*). Therefore, Cotorilp(M*,N*) 2 Hn([M QK_B(N)] ,R1
A* p

Hence, by the Universal coefficient theorem, for any n > O and for
any p € 2, [TorX’p(M,N)]* = Coﬁorilp(M*,N*) and [Tor, (M,N)]*

B CotorA*(M*,N*).

Lemma 3.2: R ®A(A ® Qk»® N) a?Qk ® N for any left A-module N and

k > 0.

Proof: Consider R as a right A-module with multiplication-wR:R ® AR
defined by @R(r ® ) = ré€(A) = €(M)r for any r € R and any X € A.
Then consider the foliowing diagram, for any k > O:
(Notation: qk =qy ® q2 ® ... ® G where the q; are arbitrary
in Q.)

P ®1 -18u®1

R®A®NA® QO N SROA®QON L3R ® (A ® @ ® N)

I . [

A®A®QON SA® Q® N

where (f ® 1)(A ® \' ® qkl® n) = QA ® qk ®n - A\' ® qk ® n, which
belongs to Q ®-Qku® N because € 1s an algebra homomorphism .and

EEOIA" = A') = 0. Now, A® QP ®N =R® QG ®N +.Q® ¢ ® N hence
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if Q® QF-@ NC im(f ® 1), the proof is complete.

Consider g ® qk.® n€Qe® QF:@ N. Then x = -g ® (1) ® qki® n is

in A®A®G®@N and (£ ® 1)(x) = q ® ¢* ® n because q € Q = ker €.

-Lemma .3,%: If (M,Mw) is a left A-module and trivially graded, then

Hom (RE eh M,R) = HomA(M,GR).

Proof': ER is a left A-module with respect to Rcp:A ® R = R defined by

5P\ -® r) = €(\)r. Let f:M = R be a left A-homomorphism. Then

€
f(m) = €(N\)£(m) for any A € A and any m € M. Now consider; where
Y(r ® m) = rm;

P 1L -18 N?
R.®AN®M — - 7R ® M _‘_*ﬁ>R ® M

€
lg
R

If f¢(¢R~® 1-1® Nw) = 0, then there exists a unique R~homomorphism

. -
=2 <—m

—-—-———————-——9

giR. ®, N = (R such that = gm. f¢(¢R ®1-1 ®,N¢)(1 @ \A®m) =

= fPEM) ®@m - 1 ® Am) = £(€WIm - Am) = €A)f(m) --€N)f(m) =

Now, define-w:HomA(M,eR) Hom (RE ®, M,R) by w(f) = g. Then w is an

A
R-homomorphism and is injective because | is an -epic.
Let g:R_ ® M~ R and let f = gﬁ¢—l. Then ¥f = gT and f is an

R-homomorphisn. If f is a left A-homemorphism, then ®w is an isomor-

phism; i.e., if fi0 = Rw(l ® f). Let A ®m € A® M, then me(x ®m) =

2(m) = g(1'® M) and 0(1 @ HA®m = o ® £m)) = e(\)f(m)

€Mg(l @, m) = g(€() ® m). Now, if €() ®m -

-1®\m € im(@R ®1-109® Nm) then the proof will be completed.
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Butv(¢R ®1-10 01 &@A®m =€1) &n - 18 hn.

For the following theorem we will use the subsequent notation

*
because ER and RE are trivially graded.

ER - -denotes R as a left A-module and

c*
R? - denotes R as a right A-comodule.

P M - -
HomA(M,ER) [f.Mp 4€R} for any left A-module M.

‘Homﬁ(M,Rj = {f:Mp - R} for -any R-module M.

Theorem 3.6: If (N,Nm) is a left A-module, then

Ext (N, R) = Cotor (RE N*).
- pe B0

Proof: For any n,p>0 (because -0of our convention above) it needs to be

. *
shown that Ext™P (N, R) = Cotor™P (RS ,0%). TLet

bl
WA A+, B2
' o 6 P
B(N): L e—ane_—n—anSI—-‘ L ‘._—lBl a,—‘];-,BO&N——J\N g O
g (o} g
n 1 0

. be the bar resolution for N; (Bk = A® Qk ® N); and consider

HomA(B(N),ER):O - HomA(N,ER) - HomA(BO,ER) - opee o HomA(B R) = =ee;

n’€

see [Hml1-185]; and

p . = p — e s s — p — e o e
HomA(B(N),ER).o HomA(N,ER) : HomA(B R) .

n'e

s n, P
By definition, EXtA,gb(N7ER) Hn(HomA(B(N),ER)).

-Now, by considering Lemmas 3.1 and 3.2 and the remark of this
section, keeping in mind the notation assumed just previous to this

theorem, one obtains, fer k > O,

P _ P k o~ PrAK
HomA(Bk, R) = HomA(A ® Qg & N,GR) HomR(Q ® N,R)

€
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i}

k. ek . k £l o k .
HomR((Q '® N)p,R) = (@ ® N)p] = [(@ ®N) Jp (Ré8A(A ® Qm®-N))p

o E* * - *k- * P, = E* * |
(RSO A* ® Q*" ® N*)_ and Hom; (N, R) = (R~ I N*)_ by Lemma 3.3.
A* 1Y A € A* b
. *
€* N*) because Cotorn’p~o(RE V%)

Hence Exti"% (N’ER) = cotor'? (R
A N

A*, B

=1 (REDTBE)*) ).
n A* jo

.Theorem 3.7: (ungraded case) Assume R is a field (A is a finite
. dimensional vector space over R). If (M,Mw) is a right A-module and
M is a finite dimensional vector space over R, then’ExtA(RE,M) =

CotorA*(M*,E*R).

Proof: Let
6 6

B(R)ts+s m=n\ ® Qng“—:z@%‘nu == A ® Qg—-:-j—"‘f}/\&‘eé}Ré = 0
o & nm =
n 1 _

be the bar resolution for R. and consider .

€
HomA(E(R),M):O - HomA(RE,M) - HomA(A,M) - e,
By definition EXtR(RG’M) = Hn(HomA(B(R),M)). Moreover,

€

. | D
B(R)*:0 = © Re==d A m==d\* ® Q== ... &==2\*® Q== 1"

* *
is the cobar resolution for RS and CotorX*(M*,e R) = H_O1* O B(R)*).
. ' A*
Ko\ Koy o K .
For k > 1; HomA(A-® Q,M) —-HomR(Q M) =3 HomR(Q ,R) where dim M = s.
| z }

Therefore HomA(A ® Qk,M) =3 Q*k. Now M* [J (A* ® Q*k)
S A*

=M® (8¢ =z R® (A®Q¢))* =5 g+,
A s - A &
- To complete this proof it needs to be shown that

Hom, (R_,M) = M* O €' and Hom (A,M) = (M* [J A*). But if Hom, (A,M)
A€ e A e A

o . ' : E *
= (M* %h A*), then, by the Five Lemma, HomA(RE,M) = M*IE*R .
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Hom, (A,M) = Hom, (A ® R,M) = Hom_(R,M) =M and (M* O A*) = (M Q, A)*
A A R e A

2y (R® AMN*=3% (R® (A®R))* =35 R* =),
S A S A s

In a similar manner by being careful with the grading one .can
verify this theorem for the graded case.

Recall the following remarks about ungraded R-modules.

Remark 3.2: If M is a free R-module then for any R-module N there
-exists a monomorphism ¢:HomR(N,M) = Hom(M*,N*) where, for any f:N =M,

Vv (£) (@) = of for a:M - R.

Remark 3.%: . If M,N are finitely generated free R-modules then

HomR(N,M) ax HomR(M*,N*).

Theorem 3.8: (ungraded case): If A is a free finitely generated
R-modulej M,N are left A-modules and are free finitely generated

B

R-modules then EXtA,?6<M’N> i:COGXtA*,?O(N*AM*>‘

Proof: Let
6n 61 M@
B(M):... b_)Bn e.__.>Bn<__.I.q—> ees e—f————)BlF!:\BO zr=== M = O
Iy 91 %

be the bar resolution for M. Then Extnzg (M,N) = H (Hom, (B(M),N)),
, Ay n A
where [HomA(B(M),N)]k = HomA(A ® Qk-® M,N). Then for any n >0

HomA(A ® Qkﬁ® M,N) = HomR(Qk ® M,N) by adjoint properties and

Qp* 6*,

CU*) 10 = M¥ s BY =3 BY b .. R
06 o*
n

is the cobar resolution for M* where BY = A* ® Q*k @ M* = (A® Qk ® M)*,

By definition Coext,, o (N,M) = H_(Hom ,(N*,C(M*))) where
’ A ] 0 n A
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[HomA*(N*,C(M*))]k = Hom, ,(N*, A* ® Q*k“® M*). Then for any k > 0, by

A*

" properties of adjoint functors, Hom,, (N*, A* ® Q*k<® M*)

A*
= HomR(N ,Q¥T ® M*) = HomR(N ,(Q ® M)*). By remarks 3.2 and 3.3

k - k
HomR(Q ® M,N) —-HomR(N*,(Q ® N)*). .Therefore, for k > O,
Hom, (A @ <@ M,N) = Hom, , (N*, A* ® @ ® M*). By the Five Lemma,
Hom (M,N) = Hom ,(N*,M*). Therefore Ext) p (M,N) = Coext” __ (N*,M*).

A A A, « 20
0 A%,
The -aboveé theorem can also be proved for the gréded case by an

argument similar to that for the ungraded case.



CHAPTER IV
"PRODUCTS FOR THE DERIVED FUNCTORS COTIOR AND COEXT

The classical derived functors Tor and Ext each have, in addition
to the axioms, a property called preoduct. In this chapter it is shown

that Cotor and Coext each have a product.

Properties of the Cotensor Product

—

Some of the properties presented heré—ére stated by V. Gugenheim;
[11]; or J. W. Milnor and J. C. Moore; [16]. They are included by the

author for completeness.

Let (A, A, €) and (A', A', €') be graded cgg%gebras&a&er@a'commu-

tative ring with unity., Let € = € ® €' and define A by the diagram

A®A'

A® A >)A®A® A QA

1®1T®1

v
A®A®A®A.

Proposition 4.1: (A ® A', A, €) is an R-coalgebra, [16 -218].

Proof: The diagran

A® A 5 SA® A'® A® A
5| , 1® 4
A®A®A® A T SA@ NG AB NGNS A

"101
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can be written as Diagram 4.1 where (1) is commutative because
(A,A,€) -and (A',A",€') are coalgebras, (2) and (3) are commutative by
naturality and (%) is anvidentity. The commutativity of (5) can bve
computed ‘directly by a set theoretic argument.

Similerly one can verify the commutativity of

R ® A®1\) ————— A QA ——— (A® A') ®R
(A®A)® (A® AY) (AL®A)® (A®A).

. Proposition 4.2: If (M,@M) is a right A-comodule and (M',¢M,) is a

right A'-comodule then M ® M' is a right A ® A' -comodule. A similar

theorem is true for left comodules, [11-355].

Proof: Define :M O M' - M® M' ® A & A' by the composition

oy ® By 1®UA(M‘)®1
t ' | S
M® M! ——————>M® A ® M'® A T8, (A 6 1)

SM@ M' @ A® A",

Consider Diagram 4.2 where (1) is commutative by the definition of
comodules, (2) and (3) are commutative by naturality and the
commutativity of (4) is readily verified by a set-theoretic

computation. Similarly one can verify the commutativity of
(M®M)®R , M® M

o
ler

M®M)®A® A

Proposition 4.3: If (M,@M), (M',@M,) are right A-, A'-comodules,
respectively, and (N,N¢), (N',N,¢) are left A-, A'-comodules,
respectively, then there exists a unique.R-homomorphism, of degree

zZero,
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VeV O VY e Y B TOT 8T \.4\9.«_\3@7«\@ Ve«

A

(S)

VRV VR e : ‘
P e YV e 7 i @7 @ T

/2333 (h) 885\

VeV VOV SrErvsaT VOV OVeTeY

r~

TOTIOVEF  (g)  TBVET®]

VOVOVY v er

A : o .
JOTOIR20T  1g18(VeV) 207

/ voveTeT 1 evever
1 . |\ i
. 197)"% @
(<) .
WerBNEY YOy < Cgravar 7 e e
OBV V®
- VOV — Sy veovr

Diagré.m L1
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VRV BVEOYOWBWY <

N

T8(7) 2@ TOTFTF

1@7T@19(7) 297

T, 7O WY ®T®7

(#)

.u\em\@ﬂawﬂ@,ssa« ToveT) "2 87 ;
VAVATI®T VOTOVAT
(&)
W TV ) 287

.a\ BY® _.—\8.\_.{ BVBW<

A~

—YBY8WR TRV BW«

JVONWOY dW <

1978 Hha"P

(2)

TIATNN Y

YOVSWOW
A

TO Y @1V

(F)

VRWRVeW
y

h

\..e% @ee%

:&% ® Eku.

WO W

Diagram 4,2
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a:(MOM® M ON) - (M M)D (N® N').
N X' AN
(A theorem similar to this is stated by Gugenheim, [11-357], but with

stronger conditions on ‘the comodules.)

Proof: Consider the diagram:

MON)e MON') - ——— — —— — 5 (MM )DO (N®N')
A A ‘ RN
i i’
2 7, ()8l v
MRNSM'@N* : S MIM'QNQN'
B (*) : Py 1L - 181y o @
~
MRAQNIM 'S/ '@ ! ” > MM ' ®ADN 'QNSN !

where 1,1i' are the injections, the right column is exact and

[l

B=logPl+1®9)0q,®1] -[10 90 (g, ®1+1&,¢)]

a=(1®1l®l®rT,,(N)® L)(L TM,”(A‘@ N)®1l®1l).

A
+ . LI “ B . . R N 2
Since 1i' is -the kernel of ?M ® M,® 1® 1L = lv® 1 ®N ® NP if
iB = 0 and (*) is commutative, there exists a unigue R-homomorphism

a:(MON)® (M'ON') »M®M [ N® N' such that 1'a = (1®TM, (M) L1)i.
A A AN _ :

Notice that (@ 1+ 180)® ,® Ll =g, @18 ®1+18 0®q®1
and 1®N¢®(¢M,®1+1®;N,¢)=1®N¢® 9 ®1+1@0® 18, ¢and

B

Py ® 1Q® Ve ® 1 -1@® NP ®1L® N'® Or one can write
B=loy®1l-1® 0)® ,,9®1] +[1®¢ ® (g, ®1 -1® ,9)].

Therefore, Bi.= O because MO N = ker (QM ®1-1® ) and
A N

M! %'N' = ker '(cpM, ®1-18Q N,cp).
The square (*) can be written as Diagram L4.,3. Because of
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TOM L9 TRI9T

(NN, VRV WBWS

NS, YONDY O WRW

W
e7@TOV) 297 (% %) TBTO(NOY)'"2 B
v |
TE(V)'2 8TOT g7 |

JNONG, Y WOVW< 5 NBFONENGY DY
SN TO(VeWhoTe7 N
\E . o [
703" P @' . aeseq@s%
N VONDYONWBW— — — —— — — — — — — —— —— = NOYJWBANYYBW

oV
b a%z@ 10T

FaTe(NeT)M2 8T |
| 5 o7 97

. NOWDNOW
TRN)M2RT=T8(,WM®7 !

Diagram 4.3
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naturality conditions -if one can show commutativity in (x* ), “then (*)
.is commutative -and the proof will be completed. (**)“is commutative
because (TML(A)”®'1”® 1)(1 ®‘GN(M?“® AP X® n@m'® \N') =
.y 1 1. 11 ‘
(-pylel B =l I+ = T g @ ar @ n) sna Lo 1 T, (W)

o(r, ("eN) @) (A ®n®n & 1) =

- (pliihesly g, &7, (N)m" @ r®n®r) =

= (—l)'lm‘ |'|)\"|+lm' |_|n|+|n| I)\"I (ml ® )\'® )\'x®n). ‘
An External Product on Cotor

In this section we will use A,B,C,D for designating R-coalgebras
as well as A,\', where R is a commutative ring with unity.
Let (A, By > EA) and (B, Ay GB) be‘R=coalgebras. ~An

R-homomofphism oA - B is called a coalgebra homomorphism 1f the

diagrams
. A €
A ————éé—>A ® A A —————é———-DR
a o ® a a
1 s
B = >B ® B B
B

are commtative, Milnor and Moore [16]. Let (M,qy,) be a right
A-comodules 1l.e., A € mﬁ; and let (M*,¢M,) be a right B-comodule. We
are always considering graded objects unless specifically stated

otherwise.

Definition 4.1 [11-353). An R-hémomorphism f:M - M' is called an

o-right comodule homomorphism if and only if the diagram
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M £ > M!
Py P
M® A ——————>M'®B is commutative.
f®«a

Similarly, define a-left comodule homomorphism.

Note that if A = B then an A-comodule homomorphism is a lA-right

comodule homomorphism.

Proposition 4.4: If o:A = B is a coalgebra homomorphism, f:M - M' is

an a-right comodule homomorphism, and g:N - N' is an a-left comodule
homomorphism, then there exists a unique R-homomorphism

fOg:MON->M ON'.
o o B

Proof: Consider the diagram

. o, ®1 -18® o
o-’MgN‘————l-——ﬂM@N M N M®A®N
| (1) '
If E]g fF®g FRa®g
. ‘L it | cPMt® L - l®1\'['qJ
0 = WJ N —F—)E I SM'® B ® N

where (1) is commutative because f is an a-right comedule homomorphism
and because g 1s an a-left comodule homomorphism. Therefore,
(wM, ®1 -1® N,¢)(f ® g)i = 0 and there exists a unigue

R-homomorphism £ (0 g:M O N - M'0O N' such that (f ® g)i = i'(f @ g)
< A B

(i' is the kernel morphism of g ®1 -18® N,Q).

Proposition 4.5: Assume A, B, C are R-coalgebras, a:A = B and B:B = C

are coalgebra homomorphisms. If
f:M - N is an a~-right comodule homomorphism,

g:N =L is a B -right comodule homomorphism,
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£1:M' = N' is an a-left comodule homomorphism,
g!:N' = 1L' is a B-left comodule homomorphism,
then i) gf:M = L is a Be-right comodule homomorphism,
ii) g'f':M' = L' is a Bw-left comodule homeomorphism,
cand iii) gf O g'f' = (g0 g)(£O£Y).
Bo 8 !

Proof: Consider the diagrams

M f ‘ ) g

N 51
wM[ le | l¢i
Mo A —2% . syes—=ESE 18
M £ SN g SL!
@ @ 0@

-Since each.subdiagram commutes, gf is a Po-right comodule homomorphism
and g’f' is a Ba—left comodule homomorphism.

From the commutativity of the diagram

By ®1-1 ®M,¢

MO M —————3 N ® M SM® A® M
A .
{g 0 g |t e s | f®a ® £
o
v _ { Oy ®1 - l.@N'w 4
N N' >N ® N' AN ®B ® N'
B
gUg g®g m g®B ® g
B ' '
] 5 / o, ®1-18,9 /
LOL >L ® L' - : —L ®C® L'
c .

and because of the uniqueness guaranteed by the kernel morphism i,
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(g0g)(tDt') =gt Og'f'.
B o B
Now, consider the following situation. If A,B,C,D are
R-coalgebras; «:A = B, B:C = D, §:B = D, and ¥:A = C are coalgebra
homomorphisms; f is an o-right, f' is an o-left, h is a y-right, h' is
a Y-left, k is a §~right, k' is a §-left, g is a B-right and g' is a
B-left comodule homomorphism, then, if By = §o, kf = gh and k'f' =g'h',

the diagram

1
M O M < >N O N
A : B
h O ht kO k'
Y 6
KOK!' SO >LOL'  is commutative.
c Bg 8 D

Theorem 4.1: If A, B are R-coalgebras, M,M' are right A-,B-comodules,
respectively, and X, Y are cochain complexes of left A-,B-comodules,
respectively; then there exists a cochain map
e:(MEX)® M OY) - MM ) D K Y).
A B ARB
50 5o
Proof: Let X:0 - XO ——§;~>xl e ——}L_;
0 : n

o} & ‘ -
Y0 — YO_._._X___.}Yl - cea Yn%Yn-*-l —)’---’ then

Xn+l ..

MO X:0 » M XO v —
A A A A A

and

0 n
108 10)6
M‘% ¥:0 - M'% 0 —-——B—i—»M'g v oo ... _—»vag N —E——Y—mvﬁg vl

are complexes. The complex ((M[E X) ® (M'[g Y), §) is given by
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[(Mox)eMmONP= ¢t mox®) @ M3 1Y) and
A B pt+g=n A B

'm®x®m' ®y)

(Ae 8y) (m ® x)]®n' ®y +
+ ((1)Pmexe® [ ® SY)(m' ®y) =
=m® éi(x) ®m' ®y + (-1)’m® x®mn' ® 5%(y) for any

m®x®m' @y € [(M®X) ® (M ® Y)]" and extend by linearity on

(M EIX) ® (M’|% Y)]n, where x € XP and y € ¥4,

By. Proposition 4.3, for each pair (p,q) such that p + q = n, there

exists a unique R-homomorphism o(p,q) such that

MOx®) @ (M OvY) o (p,q) >Me M) O e Y
A - B ABR

1@ 7, &) @1
M) e wm o 1) s

>(M M) ® (xF ®@ 1Y)

is commutative., Define

. H n -— 1 “ p q —
an.[(MLEm ® (M %Hz)] p+§=n[(M® M )AgB(x ® Y] =
\ n
= (M ®M )A%B(X®Y)

as, o = p+§=ﬁy(p,q). The proof will be completed if o = (an%iiz o
commutes with the coboundary where the coboundarng = (En) for the
complex (M ® M')A%%(X ® Y) is given by; 6 = IA%EPEQN and

éigq(x ® y) = 5§(X) ®y + (-1)Px ® 5%(y) for any p,q 2 O such that
P +qg=nand x € Xp, y € Y%, In other words, the proof will be

completed if?ﬁyn =

Since any element z € (Ml% ) ® (M'lg ¥%) is a finite linear

combination of elements of the formm ® x ® m' ® y it is sufficient to

show,.gnan(m ® x®mn' ®y) = an+16n(m ® x®m' ® y) for any m € M,
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m' €M, x € X and y € v, 'gna mM®x®m' ®y) =5 alp,q) (H®@n'y)

=8 [( l)fxllm ,m ®m' ® x®y] = (- l)lxllm ,(l E]é )(m ®m'® x® y)

= (-1)lelm'[[m ® m x®y)] =

n
]
® sx0y

-yl =l |m' | n®n' @ 5§(x) @y + (-1)Pn®m ® x® 6%(y)]

el , v
and.an+16 mM®x®m' @ y) =

o +l[m ® Sﬁ(x) ®m' ®y+ (-1)mn®x®n' ® 5%(y)]

I}

alp + 1,q)[ m ® Qﬁ(x).® n' ®y] +alp,g+ V(-1)PYmox@m ® 5%(y)]
= (-l)lm',}xlm ®m'® si(x) ®y + (—l)?+lm',lx’m @m' ® x ® 6%(y),

because {6£(x)l = |x|, and the proof is completed.

Now, .consider the following whene K,L are cochain complexes of

graded R-modules:

‘60 : 6n-l
K_:o —)KO .—.—.—.——5—...—.._}}{1 — pea — K_n_l K )K_n — ese e
0 =1
(6.2 (8.7 ,
K4 . n~1 K 4 n
H --—--—--—-—-———? $6 0 o T Y — e
KZOAK!@ Kz“‘ Kﬂ, ,K,@
2 def.
g AK) w5 ®,)-
50
Lo » 10 —2 51t 4 T
0
(6.7)
L :O—)LO_—__I'—_r_.__Ll—»LZ—D..- —»Ln_l —»..Ln—)o-o
T r r T T r
L) = B ).
T
n _ P g : p q
Moreover (K ® L)Z = (p+%:nK ® L )Z p+%—n a+§ £ ® L

Therefore} considering MacLane [15—163—166] and Theorem 4.1, there
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exists an R-homemorphism

e m,q _, DM, g :
(1)(n,p)¢(m,q>}rn (MEA1X)®H (M %]Y) i ( (MR )AgB(X®Y)),

for-all n,p,m,q > O.

Proposition 4.6: If A,B are R-coalgebras and «o:A — B is a coalgebra

homomorphism then there exists a functor Ta:mﬁ -'WP where mﬁ(wﬁ) is the
‘category of all right A-comodules (right B-comodules). A similar

proposition is true for left comodules.

Proof: Let»(M,wﬁ) be a right A-comodule. Define ?y(M,mﬁ) = (M,mﬁ)

where wﬁl4'*M ® B is defined as the composition

A

haY  1®y
M———>M® A ————> M @ B. Then the appropriate diagrams cemmute

because @ is a coalgebra homemorphism and (M,mﬁ) is a right B-comoedule.:
Suppose f:M - M' is an A-cemodule homomofphism, then

T(f) = f:M = M' is a B~comodule homomorphism because the diagram

A
G

M Y Suea 122 sueB

£ . lf@l lf@l
vl

M SM'® A 1®a  ,uwgn

is commutative.

Proposition 4,7: If :A - B is a coalgebra hemomorphism and M‘E'mﬁ,

then there exists a canonical R-homemoerphism frem M to qy(M) which is

an .o-right cemodule homomorphism.

Proof: Define RM:M ﬂvqy(M) by‘RM = lM when considered as an

R-homemorphism. Then the diagram
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R
M M ST (M) = M
o
A B
Py Py
\
M® A S SM ® B

‘is commutative because, by definition, mﬁ = (lM ® a)mﬁ = (RM ® a)m&.

Proposition 4.8: «tA » B is & 'coalgebra hdmomorphism end A,B ere aug-

mented R-coslgebras. IfiN‘EﬁAwL then there exists an a-left cochain map

0:B(A,N). = B(B, aT,(N:)). where B(A,N) is the.cobar resolution.for N in the

coalgebra‘A,)similarlwaor;%(B,GT(N)),;paragraph 3 of Chapter III.

Proof: A sequence of R-homomorphisms, p = (pn), must be defined such
that p is a chain map and each P, is an o-left comodule homemorphism.
Recall, where Q = ker € and Q' = ker €',

i €

0 = Qe==As===—R -0
: P
&
0~ Q oo B SR - 0.
Qe-—ﬁ-;—r <_-.TT'_/ 0.
Consider the diagram
N‘PA 50 | 5§t p)
B(A,N):0 AN PSA®N ————3LQ QO N —AQ Q®N - ...
RN a0 ®1
Po™ @ a1 P>
NQPB 50 AL 2
EB(B,Q/T(N)):O*%ﬁB@N——%B@Q'@N——ﬁB@(Q',)®N—*---
T(N)
o

Define P =Ry and Py =o® (a')k-® 1 for k > O where
a' = a,Q:Q - Q' The first thing that must be verified is

im(a'Q) C Q'. Then it must be shown that p is a cochain map and each
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Py for m > 0, is an a-left comodule homomorphism.
Since €'al = €1 = 0 and 1 is an injection, im(a ]Q) « Q{. Also, Dby
the definition of N@ » NP RN DON@ .

For k > O the diagram

Lot eN S A®A®Q ®N
0.= | ® (m’)%8 1 a® p
k , k
1k \k
B® (Q')®N : JB®B® (')® N
. by ® L

is commutative because o i1s a homomorphism of coalgebras; i.e.,

(o0 ® a)AA = A_a. Hence pk is an a-left comodule homomorphism for k 2_0.

B
Recall
X k _ o .k k i
1) 8 =0, @Y + 1, 8.5 ((-1) 1 ®...88 ®...01L &1L+
' k+1 k A
+ (-1) 1y ® 1 ® o
and
1) B ope1f @1+ e [L5(-1)h ®...01,®1.]
A Q' N - "B i=l- Q’®"'®AB e Q! N
+(-1)k+11 ®1Q, B.
Since o is a coalgebra homomorphism and by the definition of NmB,
_ ' k , A K+L \ K
for k > 0, Prp® = (¢ ® (a') ® lN)6

k :
! tk» 1. ! 2 !
@@e)s, ® (@) @1y +a® [Z(-1)a'® ... ® (2'®a')s,®...8'8L ]

K+l
)

4+ (-1 @ ® (ou')k ® (o' ® l)NcpA

k k i .
1 _ Ay _’ 1
b ® (') ® Iy +a® [iél( o' ® ... 8 Aﬁy 8;’“ o' ® lN] +

)k*‘la‘

+ (-1 ® (@')k ® NmB

o

K and the proof is completed.



116

"Proposition 4.9: A,B are augmented R-coalgebras and a:A = B is a

coalgebra homomorphism. If M E”mﬁ and N € AML then there exists a

cochain map v:M O B(A,N) - T (M) O0B(B, T(N)).
A @B @

Proof: Let vy = RME] p.

Therefore, if A,B are augmented R-cocalgebras, aw:A = B is a
coalgebra homomorphism and if M € mﬁ, N € AML there exists, for each

n, p > 0, an R-homomorphism

~0 =0

(2) v :Cotor ™2 (M,N) = Cotor™?® (M,N).
P ALE B,E

Let (A, A, €, M) and (A', A', €', ') be augmented R-coalgebras

A N?

t
and let N € AML N' € ©* M with cobar resoclutions N ——————>$(A,N),

1 P )
——H————éﬁ(A‘,N'), respectively. (A1l mosules and coalgebras are

N!
assumed graded unless specifically stated otherwise.) Then it is known

t
that N g N' € Ny ana

® 1P
AR .8

(3) N®N' (A;N)®£B(A,;NY):

is a cochain complex. If (3) is an Eo—injective resolution of N ® N',
then the homology groups calculated using (3) or by using the cobar
resolution for N ® N' will be the samé up to a natural equivalence.
The following theorem shows that (3) is an Ep—injective reéolution for
N®N'.

Theorem 4.2: Under the assumptions of the above paragraph

P P
0 -N® N' ——N;———EL——éﬁ(A,N) ® B(A',N') is an Eo-injective resolution

for N® N'.
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"Proof: Recall that the cobar resolution is

o) 1

¢ 2
B(A,N):0 —~N4=§-_T_>A® NF—%—_—>A®Q®N%_—>/\®Q @ N ew...
S S S

where {sl’l i > -1} is the contracting homotopy and %B(A N);O%(A )
b J

Similarly
® 6] 1
1 H 1 N’ 1 1 6 1 1 Y 1 6 |'2 1
B(A'N'):0 = N G—:i:)/\ @ N <:-_O_-—.>A Q' ®N <:-.?:‘»A®(Q)®N ==...
o ’ o c

: . . , -
is the cobar resolution of N' and %B(A',N3~O$(A‘,N')' Therefore, by
Proposition 9.1, [15-164], there exists a contracting homotopy

t = {tk | % > -1} of R-homomorphisms for the cochain complex (3). To
complete the proof,

[3(A,N) ® B(A,N')]" = head?en)® (A'® @)*®N'), for n >0,

&
b+g=n

must be shown to be an & -injective object.

BN
~0
4 \en

exists an A € M and comodule homomorphisms c,r such that,

. H
»To show an object M E}NgA Mmis in ,» one needs to show there

Me===(A®A') ®A and rc = L. Recall that direct sums of objects in
- _

~0 =0 , . , , .
JN@A' are in JN&A” [6], hence the proof will be completed if
heeeN) e (A'® Q) ® N') is in :9?@/\, for any p,q > O.
Consider the diagram |
e, | (W)®1
(v)e(r'eN') — ——————t = \®)\ ' QNS *
1@r (AT)8L
o o = A®L
v ‘ 181917, (A" )®1 . 4
(AA' )BL (ABN)B(A'GN' ) ] e (AQN' )R(ARN ' )R(NGN ' ).

vhere gy = (L@ lolerA)el)ael)1ler, (N)®1l). If

AY
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A
Mel=1 TN(A') ® 1. Then from the definition of

(A®N® N\ ®N', ‘Po) is a left A ® A'-comodule, letc =1Q@7,,(N)® 1
and r = 1® cA,
¢O’ r, ¢ are A-comodule homomorphisms and re = 1,

The~diagram

Acpo
ARNRA'@N' > (AN )R(ASTRA'SN ')
Po ! &,
(AN )@ (NSNRA'QN" ) — 5 (ASA' ) @(ARNRA'®N" )

can be written as Diagram 4,4 where (i) is commutative by definition of

©g> (ii} is commutative because ¢ is coscalar multiplication and (iii)

-~

is an identity. $Similarly, one can verify the commutativity of

R® (ASNRA'@N" ) — ASNN' QN

el

(ARN" )@ (ASNSN'EN' )
Define for each p,q > O with either p # 0 or q # O,

e e A @)WN - hena)e WedfaNe a'e (@)% N')

®p,q
by the diagram
. | 187, (Pem)e1dtt o
PRI (R R L | S~ YT/~ (A R0
' = . D+q+2
¢b,q ARL
1
1018180, , (Q°eN)eL"
(ren e(realemon'@(Q ) e ) =0~ (en) e (aleme(@ ) %N )

and the reader can verify, as done for p = 0 = ¢, that

(A ® Qp NN ® (Q’)q ® N', o, q) is a left A ® A'-comodule.
J

Therefore, by (1) and Theorem 4,2, for n, m, p, 4 > O, there exists

an R-homomeorphism™
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(veVONeY)B (VB¢ (N8 VeNOT)&(VEY)
A TEI®I®TIY _ _
1B(vY20T9T8T878F (177) 18 (12078797
. =+
(~vaM @YY< EYETY ~(nen)RVOY) <
A ;\.. N.v - : A m
o
| 3
4 a
adidd (77) b
(INa NG Y BY)O(VAY)— = Y NO NOVOY
: IS ST = A
@2 @7

192 81@TeF

(7)

W, YINOY)R(Y®Y)«
L2, (y®7) 19(,¥)"2 @ 19197

NOYBN® ¥

~-NONE (VS — 4
_1? ? Aﬁ «\y A.“ @N Bx&?@h\@.ﬁﬂ JSAZV.UG.“ ’
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) Cotor™P (M, N) ® Cotor™® _(M!,N') = Cotor™ P % (MMt NgN' )
(n)p)'(m)q_) A’E'o AC’E‘O ' A®A"E‘O

Nop wnere (n, 8, € 1) and

.‘"—- ‘
forany M e, W e My, M e and W' €
(A', A', €', n') are augmented R-coalgebras. "

If (A, Ay, by €, M) 1s a Hopf algebra where p:A ® A = A is the

multiplication and M:R-A is the unit, then p 1s a coalgebra homomorphism;

Milnor and Moore [16-227]; thus, by (2), there exists, for n,m,p,q > O,

m , n-+m, p+ .
(0, 2)P (m, )7 COtOr T (4,N) @ Cotor™ 2 (', N') = Cotor™ 3P (ugM , gN" )
, A AE | AE

for M,M' € o and N,N' € My, Further, if we consider N = eR and
M = R, then
: P m,q oo n+m, p+q ‘
(.08 (m,q)" COEOr 2 J(LR) @ Cotor™ L (R,N') = Cotor™ T2 (e, 1)
A)E: A,a A,e

An Internal Product for Coext

Let (A, A, €, M) be an augmented graded R-coalgebra where R is a
conmutative ring with identity. It will be shown that for each M,N,L

in @m and for each m,n,p,q > O there exists an R-homomorphism.

¢:cOextn’fO(M,N) ® cOextm’EO(N,L) - cOextn”’Tép*q(M,L).
A€ A€ , AE

A similar result can be obtained for right A-comodules.

Lemma 4.1: If M is a left A-comodule, A an R-module, then for any

d >0, Homg(M,A) esHomi(M, A ® A) as R-modules.

Proof: For each & > 0 define bd:Homg(M,A) - Homi(M, A ® A)by the

diagram
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for any f € Homg(M,A) and define ad:Homi(M, A®A) - Homg(M,A) by the

diagram

M & S\ ® A

€E® 1l

for any g € Homd(M, A®A). Then, one can verify that b

A 4 and a, are
R-homomorphisms and adbd = 1 baad = 1,
Theorem 4,3: If E:M:L £ > M2 g M3 ig in @p and I € 30, then for
any d > 0, the sequence
* *
Homi(M3,I) ——-—g————)Homi(MQ,I) ——f——-—)Homi(Ml,I)

is exact.

Proof: Without loss of generality, assume I = A ® A where A is an
R-module. Since f*g*= 0, it needs only be shown that ker f* < im g*.
Because of Lemma 4.1, if the sequence

(1) Homg(MB,A) g’ >Homg(M2,A) L}Hom;(Ml,A)

is exact, then the proof will be completed.

The sequence E i1s R-split exact, so there exists an R-homomorphism

m:Mg/im f- M3 and e:M3 - Me/im f such that g = mc, where c 1s the



cokernel of f, m is

Since hf = 0, there

kc = h, Then keg kemc

(1) is exact as a sequence

Let M,N,L be

cobar resolutions

left A-comodules.

a monomorphism, e is an epimorphism and em

ke = f and f

o
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1.

exists a unique morphism k:M?/im f = A such that

of R-modules.

M2 g 3
02%1
h\M/m

im f
v
Yk

Let B(N) and B(L) denote the

of N and L; i.e,, the cancnical Ep-injective

resolutions of N and L, respectively, see paragraph 3 of Chapter III.

B(N) and B(L) are

0

: P =
B(L):0 = L@ﬂzfq,Eo o=

|

o)

The HomA gedUences are

Hom

»A(M,B(N)):O - HomA(M,l\T)

Hom

A(N,B(L)):O - Hom, (

A N,L)

Hom

A(M,B(L)):O - HomA(M,L)

and, for each 4 > O,

Homd(

N M,B(N)):0 - Homd(

, (4 N)

Homi(N,B(L)):O - Homi(N,L)

Homi(M,B(L)):O - Homi(M,L)

Then, for each n,p,m,q > O;

® . n
B(N):O-—bNg-i:l\I.-—-z-r_}B (:“‘.:'.‘g"_‘.-?‘)B g.-:—.}...@*_ﬁB,(:::‘:g:‘:-}B< o= ...
-1 0 1 1 n n n+L

8

An

5

.u@;:}Bn@u
G

6qk

> Hom

NUE:N

8%

—*  SHom (N,B.)

A

./6\0
———> Hom ( —F

A (0,3

o)

(o, )
NP, ‘d 5 Hon(

A M,BO)

( cg-:)
LY /a a
—_—t HomA(N,BO)

;o ) :
LY, ’d a, =
—_— HomA(M,BO)

e

n

g = ==\ #
n+l €=

>---

> e e

¢ ..
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0 N . xer (67)
Coext ”EO(M,N) = K (Hom, (1,3(}))) = —i—}% ,
A€ im (8 )
D
Am
ker (6« )
Coextm’gb(N,L) = Hm(Hom%(N,B(L))) = Am—lq
A€ im (%)
| q
and
cOexth"fép*q (M,L) = Hn+m(Homi+q(M, B(L))).
As€
To define an R-homomorphism
;é:cOextn’fo(M,N) 8 Coextm’EO(N,L) - COextn+f6p+q(M,L)

A)e A)e A)e

consider the following diagram where f € Homi(M,Bm) and §"f = O;

powp . A TP (S,
g € HDmA(M’Bm) and &g = 0.

M
: o 0 n-l lf n
BN):0 =N 2y S up 4. o by 8 4y .
‘ ’O /tl In*l /l ’|n+l
| | | I
lNJ %, &1 Bn-1 ) gn+l‘l
|
k i i, pm-n-1 \ fum+n v
Kg;o - 0 g 2" pm Pl T P T B 7 Pnanl
Diagram 4.5

By Theorem 4.3 we can define a A-cochain map G:B(N) - Kg’ i.e., a

sequence of A-comodule homomorphisms gk:Bk - Bm+k’ for k > 0, such that
k Am+k _ . . .. =50
gk+16 =19 &y and lgkl = ]g]. Since O = N = BO is in €7 and

Eﬁ € jo, there exists a A-comodule homomorphism gO:BO - Eﬁ such that

ngQ = glN. Then gmgONQ = %mg = 0 and there exists a A-comodule

such that gléo = @m

homomorphism gl:Bl - Eﬁ go. Assume there exists

+1
é\m+n—lg

a A-comodule homomorphism gn:Bn - Eﬁ+n such that gnén_l = ol
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n-1 n
Aamtn o n-1  Amtnpm+n-1 - 8 6
Then 9 gné = § & 8,1 = 0. Bn-l ,Bn >Bn+l
s 50 = ~0 ‘ . .
is in € and Bm+n+l € J°, hence there exists a A-comodule homomorphism

_ n _ Amtn

n+l:Bn+l - Bm+n+l such that gn+l6 =90

g g, - Therefore, G 1is

constructed by induction.

Let §(f ® g) = é;f-where f denotes T + im (éf:l)p, similarly for
g and g T. To show § is well-defined it must be verified that the
definition 1s independent of the choice of the representative of the
cosets, independent of the Ep-injective resolutions of N and L and
independent of the choice of the A-cochain map G, Since the homology
groups are independent of the particular Eo~injective regolution the
definition of P is independent of the choice of resolution.,

Let G' = {gi:Bk - §£+k 1 k > 0} be another A-cochain map derived
from lN. Then using Theorem 4.3, one can show G is homotopic to G',
i.e., there exists a sequence of A-homomorphisms {tk:Bk - Eﬁ+k-l | x >1}

k Am+k -1

i A 1
- = - + >

Amtn-1 Npn -1 n
- ! i - 1 =
Then (gn gn)f € im § , because (gn gn)f 8 PR f
= ®m+n-ltnf. Therefore, the definition of ¢ is independent of the

cochain map.

Now suppose g = O. Then g € im (@T'l)q and there exists a
Am-1

A-comodule homomorphism of degree g, h:N - Eﬁ-l gsuch that § h =g.
L) . - = - . — = . >
From h, one obtains a A-cochain map H [hi.Bi Bm—l+i l i > 0} where
H:B(N) ~K;
0
N? 5
B(N):0 = N >B, —>B, = ++- =B
1 hO lh n
Y n e
Kh:O - N >Bm—l )Bm - = Pnin-1 T ’
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consequently,
B(N):0 » N >B, PBy = eee o Bn -
L 8y| B gll b g |
K =K oo Q. 5 yE ~% A
g ém-lh' @m-lh ““m “Tm+l " Tmin
where hi = @m+k~lhk for k > 0. Therefore H' ~ G and there exists a

sequence {pn:B |'n > 0} of A-comodule homomorphisms such that

n - Bm+n-l

Ama+n =1, n Ni+0 -1
- - h! - .
g, -l =78 Py + Ppyy 8 - Then (gn hn)f 8 pf and
o _ Amen-l Am+n -1 _ Mmin.l
g f =5 p £+ 8 h f =8 (pnf + hnf) and
. Am+n -1,
g f € im (6*‘ )p+q.

Finally, suppose T = 0, then there exists a A-comodule

homomorphism £:M - Bn of degree p such that 5n‘lz = f. Thus

~1

Am+n~lg n-1 (6?+n_l) Therefore

) n_lz = gn ) L = gnf and gnf € im

p+q’
¢ is a function. It can readily be verified that ¢ is an R-homomorphism

and the proof of the following theorem is complete.

Theorem 4. 4: If M, N, L are left A-comodules, then tnere exists for

each n,m,p,q > 0 an R-homomorphism

¢:cOextn’fO(M,N) ® Coext"’ [ (N,L) - COextnff6P+q(M,L).
AE AE - AE

Theorem 4.5: If M is a left A-comodule, then

C = {Coextn’EO(M,M) l n,p > 0} is a bigraded R-algebra.

)

Proof: One can readily verify that C is a bigraded R-module. ILet
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C denote Coext™® (M,M) for n,p > 0. Define
n’:p A,EO -

LiC®C = C

by lettlngv (n,p)“(m,q) = ¢, where ¢ ig defined in the proof of Theorem'

L.k, for n,p,m,q > 0. Define

®C

:C C
(n,p)* (m,0) "0, © “myq T Tnam,pig

n:R = C oy 1(1) = @, € Hom (M, A ® M) i.e., n(1) = @ € co,o.

Then commutativity must be verified in the diegrams

cocec 8l o R® C Y —C S
, II '
1®ul (1) lu- ﬁ@ll( )
C&C ey C 6
m

1) Commutativity in (I):

Let%"ecn andﬂecr . Then p(p ® L)(f ® g ® ) =

)p 2

g€ C
’gel m,q

=g foh)=h (g7 and p(l@p)(f®eg®h)=ulfe®hg) = (el T

" By considering the following diagrams and because of chain homotopy,

hm+ngnf - (hmg )nf' M
lf
0 -M M‘P >BO - - Bn -
1 ‘
gO gn
N 4
O-M ——B = -+ B -
g m m+n
1 h h
m m+n
v 4
O -—M h g > Bm+r—' m+n+r-‘
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O -M Mcp 3B = . - B =
0 n
1 (n &)y (ng),
0-M hmg 2 Bm+rﬁ ~ Chintr T

2) Commutativity in III (Similarly in II):

Let T €C__then (1®7)(f®1) =f®1and w(f® =7

J

by construction of the chain maps from Kf.



CHAPTER V
SUMMARY AND .CONCLUSIONS

This paper is concerned with two objectives, an investigation of
the properties of the cotorsion functor and a presentation of the
functor cbextension. ‘Relative homological algebra is the principal teol
used in this research.

An exposition of derived functors relative to an injective class
of sequences is given and then in Chapter II an exampls, Ext, is stated
where the injective class considered, EQ, is not equal to the class of
all e#act sequenceés. The writer also shows that fhe category, Km, of

left modules over a given algebra A is injectively perfect. It is also

shown that the functor HomR(A,——) from M to M is an adjoint functor of

the forgetful functer. The canonical Ep—injective resolution is
constructed. |

Using the theory of Chapter I, it is shown that the Cotor functor
can be derived, relative to the injective class %p, from the cotensor

product. Furthermore, the writer shows that Hom,, relative to @p,

A
satisfies the conditions of Chapter I. Hence, a derived functor exists
which is called Coext.

Finally, in Chapter IV, products are obtained for Cotor and Coext.
It is also shown that the product for Coext yields an algebra.

In relation to this investigation and subsequent to its completion

Professor N. Shimada, Professor H. Uehara and the author have found that
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triple cohomology (M. Barr and J. Beck [4], M. Barr [3], S. Eilenberg
and J. C. Moore [7]) can be discussed as a derived functor in the
relative homological algebra of [6]; invparticular the standard complex
used in [4] is a resolution with respect to a suitable projective class
in a category of functors. Hence,ithe Acyclic Model Theorem (Théorem
3.1, [4]) is exactly the comparison theorem (Proposition 3.2, [6]).
(The ‘author has noticed that S. M;cLane reported a similar result in
the April, 1967 issue of the Notices of the American Mathematical
Society.) This discovery unifies ali known cohomology theories of
algebras including Lie algebras, from the standpoint of relativé
homological algebra.

By consideration of Grothendieck's fibred category (Grothendieck
[10] and Gray [9]) it is proposed that the product of Chapter IV can be
added to the axioms of a derived functor, discussed in Chapter I. This
proposal has the effect of unifying cohomology and homology theory in
relative homologilcal algebra. Preliminary investigation indicates that
this can be done.

Another preposal for further research is to apply the results of
this paper, to the calculation of the Ext functor of modules over the
Steenrod algebra. It is proposed that this application can then be
used to study not only the usual multiplicative structure but also some
characteristic features of the cohomology of Hopf algebras--for example,
the algebraic Steenrod operations defined in the cohomology

(A. Liulevicius [13]).
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