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ABSTRACT

Optimal planning or the determination of an optimal 
strategy for developing an oil field is considered. A 
mathematical model based on system theory notation is for­
mulated to approximate the actual reservoir behavior and to 
simulate the development operations. This model and an 
optimization procedure based on dynamic programming are 
used to find a chronological schedule for drilling and equip­
ping the field. The schedule obtained for the study period 
maximizes the profit made in the operation and satisfies 
the desired production requirements.
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OPTIMAL FIELD PLANNING VIA DYNAMIC 
PROGRAMMING TECHNIQUE

CHAPTER I 

INTRODUCTION

A specific engineering problem rarely has a 
unique solution. In most cases, rather, it has a multi­
tude of solutions each of which in a practical sense is 
satisfactory. A measure of value can be associated with 
each solution by evaluating some economic indicator of 
its performance (such as the cost index, index of perfor­
mance, etc.). The value of the economic indicator will 
probably be different for each solution, and the criterion 
for determining which solution is best is based on maximiz­
ing or minimizing it. The solution corresponding to the 
best value of the economic indicator is called the optimum 
solution. The process of searching for the optimum solu­
tion out of all possible ones is referred to as optimiza­
tion.^^ This process is taking on an extremely important 
role in all the areas of engineering.

Some of the reasons behind searching for an op-
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perform in the best possible fashion and a changing world 
in which he is faced with problems of overpopulation, 
pollution of all types and an ever-shrinking supply of 
natural resources. Furthermore, in the presence of severe 
competition, only those engineering solutions which are 
optimal in some defined sense can be accepted if a company 
is to survive.

Oil reservoir development, being an engineering 
problem and requiring a trem> idous capital investment.needs 
an optimal program for its development and operationc The 
optimum program here, defines a drilling and production 
rate schedule that results in the best economic criterion 
when practical constraints are in effect. One such economic 
criterion is the overall profit made in the operation with­
in a given study period. The question in this case con­
cerns the drilling and production policy that must be 
adopted to maximize the profit made in a field.

This apparently simple question, being associated 
with a great deal of uncertainty, poses a very complex 
problem. The problem in fact is one of strategy deter­
mination under uncertainty. Presently no definite solution 
to the problem exists partly because of its complexity. 
However, the main reason for the lack of a satisfactory 
solution is that so little work has been done on a problem 
of this type.



There appear to be two ways of attacking this prob­
lem. One is to treat it in a probabilistic manner in which 
the uncertainty is recognized explicitly. A second way is 
the simulation method in which the physical problem is rep­
resented by a suitable model.

Conventional mechanistic models have been developed 
in the literature to describe the behavior of the petroleum 
reservoirs. A model of this type approximates the internal 
mechanics of the pool by a combination of such tools as a 
material balance equation and Darcy's law. The usefulness 
of such models are normally marred by the presence of param­
eters whose values are not accurately known. Examples of 
these uncertain values are the amount of original oil and 
gas in place, rate of water invasion into the reservoir and 
properties of the formation rock.

An alternative approach in establishing a model is 
the systems theory. In this technique the reservoir is 
considered to be a dynamic system whose behavior is described 
by a set of differential equations. The coefficients of the 
equations are to be obtained from the information on pro­
duction and pressure. These coefficients can be updated as 
time elapses. In the absence of accurate data the coeffi­
cients may be obtained by using the mechanistic equations.
In either event this unconventional modeling approach does 
not require specification of uncertain parameters. One has 
to compute the coefficients of the state differential



equations, instead. Since identification of the coeffi­
cients is more convenient and a great deal of optimization 
literature is closely associated with modern systems theory, 
the latter approach will be followed in this research.

The object of the report would then be the deter­
mination of an optimal development plan tor an oil field 
which is operated as a unit under the control of a single 
operator,

When using the systems theory terminology, the field 
is the system whose development operation is to be optimized. 
A set of algebraic and ordinary differential equations is 
chosen to define the state of the field in its various 
stages of development and depletion

The equations chosen to represent the reservoir be­
havior are either algebraic equations or linear differential 
equations whose constant coefficients may be updated as time 
elapseso The economic criterion function selected to judge 
the various possible solutions is the total profit made in 
the operation within a given study period.

Having the development model, the criterion func­
tion and the practical constraints, the dynamic programming 
technique of optimization is applied to determine the best 
development schedule for the field.

Previous Research 
The oil industry became aware of optimization pro­

cedures through the work of Charnes, Cooper and Mellon, 3̂



Their achievement was applied to the optimization of refin­
ing processes. They applied linear programming to obtain an 
optimum solution to the problem of blending aviation gas­
oline. A complete refinery operation was also optimized
and presented by C o n w a y . 6̂

Many segments of the oil industry were reported to 
be using optimization techniques to determine "best" oper­
ating plans for their operations. Garvin, Crandall, John 
and Spellman surveyed a number of areas of the oil indus­
try in which linear programming was being applied to obtain 
optimal policies.24 in the area of production they gave an 
example from the Arabian American Oil Company involving 
production from several oil fields. The authors demonstrated 
a method for obtaining a production schedule for each field 
so that their composite behavior satisfied a commitment on 
the total production from all reservoirs (such as keeping a 
pipeline full or a refinery supplied). The objective was to 
determine the production schedule for each field so that the 
profit over a given number of years became a maximum. The 
model, the constraints and the objective function were all 
assumed to be linear. The linear programming technique, 
therefore, was applicable for the solution of the problem.

A great number of linear programming applications 
noted by these authors were in the area of petroleum refin­
ing optimization- An example, contributed by rhe Atlantic



Refining Company, was related to a refinery producing gas­
oline, furnace oil and other products, A large number of 
crude oils with different properties and yielding different 
volumes of finished products, could supply the refinery. 
Specific volumes of some of the crudes had to be refined to 
satisfy some of the requirements of the special products. 
From the remaining crudes, which were available, volumes 
were to be selected which could supply the required products 
most economically- Marketing and distribution were also 
reported as other segments of the oil industry to which the 
linear programming technique was being applied. A great 
deal of work had been done in this area, particularly by 
oil companies.

The authors concluded that linear programming had 
made a place for itself in the oil industry, particularly 
in the manufacturing phase. They also mentioned that not 
everything in this world is linear and therefore a great 
deal more basic research on optimization methods in the 
universities and industrial laboratories was needed.

Later work related to the optimal scheduling done 
by Aronofsky and Lee pertained to crude oil production.7 
As an example the authors started with the scheduling of 
shipments of a commodity from, a number of sources to a num­
ber of destinations- According to the authors, if shipments 
were to be made from, say, ten sources to several hundred



destinations, even a competent and experienced scheduler 
might find it difficult to obtain a reasonable solution=
Such a problem requires choosing from a very large number 
of combinations, all of them being possible solutions.
Without access to modern digital computers little could be 
done with such problems. The answer to the problem, how­
ever, was easily obtained by the use of linear programming 
technique and utilization of high speed digital computers.

The authors then proceeded to apply the optimiza­
tion techniques to a production scheduling problem. Admit­
ting the fact that even the simplest reservoir behavior is 
nonlinear, they nevertheless elected to describe the system 
and the constraints by linear expressions. The problem was 
to determine the schedule of crude oil production from five 
reservoirs which, over a given period and subject to certain 
restrictions, results in maximum profit. They assumed that 
all of the reservoir parameters remained constant throughout 
the study period. Further assumptions included the presence 
of an infinite water drive and applicability of the radial 
flow equations. The authors divided the study period into 
equal time increments and then used the linear programming 
technique to obtain a schedule for the rate of production 
for all periods from each reservoir. The plan was shown to 
maximize the profit for the given study period.

The desirability of the extension of linear program­
ming techniques, to the area of reservoir planning was noticed



Qby Aronofsky and Williams. The authors confirmed that the 
method of linear progrcuraning had been used extensively in 
the oil industry. They, none the less, declared that very 
little work had been done in extending this technique to the 
area of underground oil production.

It is true that even the simplest reservoir problem 
is nonlinear and does not lend itself readily to linear pro­
gramming models. However, they contended that this same 
objection had been made to all the other areas to which 
linear programming had been applied. The research dealt 
with the development of a model for a group of crude oil 
resources, such as inland reservoirs, whose produced fluids 
were delivered to a facility of a known capacity. A pos­
sible interpretation of this facility was a trunk pipeline 
"consuming" the crude oil. The behavior of the underground 
reservoir was described by

Pq - P^(t) = q-f(t)

It was assumed that the function f(t) had been precalculated 
for discrete values of time. In the equation Pq was the 
initial reservoir pressure, P^Xt) the flowing well pressure 
at any time t and q was the constant flow rate of crude oil. 
This expression, a relation between flowing bottom hole 
pressure and flow rate, was the linear model selected to
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simulate the reservoir behavior. A set of relations de­
scribing the practical constraints, all in linear form, were 
also chosen. The purpose of the optimization was to com­
pute that production schedule for these sources over a 
series of time periods for which resulting profit became a 
maximum.

The authors then turned to solution of a somewhat 
different problem. In this part it was desired to obtain 
the optimum drilling schedule of wells in a given reservoir. 
The production rate of any well was assumed to decline in a 
specified manner. To solve the problem, the reservoir was 
divided into small cells and one well was associated with 
each cell. A decline function, h^(t) was used to define 
the production rate of the nth well at time t. The pur­
pose was to determine that schedule of drilling that resulted 
in an optimum rate of return.

By taking a close look at the investigations sur­
veyed so far the following observations can be made.

1. Very little effort has been spent to extend the 
optimization techniques to the area of reservoir planning 
and underground oil production.

2. The only optimization procedure which has been 
utilized is that of linear programming which incorporates 
the assumption of linearity of reservoir behavior.



Recent research in the area of reservoir optimal 
planning was carried out by Rowan and Warren.54 The exten­
sion of systems notations and nonlinear models to the reser­
voir behavior was introduced by these authors for the first 
time.

The reservoir was considered as a system whose be­
havior was characterized by the pressure-production history 
or by the reservoir and fluid p r o p e r t i e s.40 The mathemat­
ical model selected to describe the behavior of the system 
was the following set of equations.

In The pressure-production relation was the first 
order linear differential equation

+ yAP = R(q - q^) •

In this equation y and R were the constant coefficients.
2. The expression relating the rate of production 

with the number of wells was the linear relation

q = n^ • I (Aq- AP)

where B was a numberical constant.
Identification of the system which in fact is equivalent to 
computing the numerical values of the coefficients was also 
carried out. The economic criterion function was the pre­
sent worth of net cash flow from the operation. The purpose
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of the research was to find a drilling and production policy 
for the development operations such that the criterion func­
tion became a maximum.

Formulation of the Problem 
An oil field, newly discovered or partially developed, 

which is operated as a unit under a single company management 
IS considered for further development. The entire assemblage, 
as shown in Figure 1, is the production system whose best 
development plan is to be determined. To schedule such an 
operation a planning horizon must first be set. In this 
study a planning horizon of 5 years has been adopted, A 
crude oil market demand with a constant percentage annual 
increase in demand has been assumed. Within the framework 
of these requirements and the production system character­
istics there is an optimum plan for producing and equipping 
the field over the study period. The selected optimality 
for judging various possible solutions is the total profit 
made in the operation. The profit function is nonlinear and 
reservoir properties vary with time. Thus it is necessary 
to use nonlinear programming procedures to solve the prob­
l e m .  65,28 T h e  planning horizon, the characteristics of the 
production system, the crude oil market demand function and 
the profit function all affect the results obtained from 
the optimization. However, it is not the objective of this 

work to systematically study the effects of these parameters



on a particular system. Rather, it is intended to develop 
an optimization technique which can be applied to this pro­
blem. Consequently, the determination of the optimum devel­
opment schedule of an oil field using the dynamic program­
ming optimization technique is the subject of this report.
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production-
Unit Gas Free Oil

Wells

production
Unit Gas Free Oil

Figure 1. Schematic of the System.



CHAPTER II

THE MATHEMATICAL MODEL

To Study a practical optimization problem it is 
necessary to represent the physical system by means of a 
suitable mathematical model. Furthermore, an appropriate 
performance criterion for the evaluation of the various 
possible solutions is also required. The model must 
describe correctly the features of the practical system in 
the range of the possible operating conditions, and the 
criterion function must be a valid representation of a 
practical optimality. The model, however, has to be simple 
enough for the manipulation and handling if it is to be of 
any engineering v a l u e . 27

Representation of the practical systems by the 
mathematical models is, by no means, an easy task. Phys­
ical systems are, as a rule, very complex, time variant, 
nonlinear, and they contain sources of uncertainty. Obser­
vations and measurements being always clouded by the pos­
sibility of experimental error leave the systems undetermin- 
istic, and the physical laws used to establish the models 
are approximate.

14



since the incorporation of all the above mentioned 
details is not convenient, the models can not be a complete 
representation of the real system. Thus in establishing a 
mathematical model for a system one is faced with a compro­
mise between accuracy and complexity on one hand and approxi­
mation and simplicity on the other.

For the particular problem in hand we are faced with 
an oil field which we want to develop. Not enough informa­
tion is available on the internal characteristics of the 
reservoir and the future behavior of the market. One can 
state, however, that any change in production will be 
reflected in a change in reservoir pressure and the actual 
magnitude of pressure change depends upon the internal 
mechanism of the reservoir. Furthermore, the previous be­
havior of the market may be extrapolated into the future. 
Thus the behavior of the field is a dynamic, time-varying 
phenomenon and presumably could be described by manipulat­
ing the following set of relations and differential 
equations.40

State Equation of Pressure 
This equation as developed in appendices A and B is

4- Y = AP - R' (q-i-q̂ p-q̂ ) (IÎ-1)
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where
ÀP = - P.
Pq = the original reservoir pressure
P^ = the average reservoir pressure at time t

Y

K

Kt
N'C

= the water influx constant as in = K^’AP 
q„p = the rate of water production
qg = the rate of water influx
q = the rate of oil production, stock tank

volume per day 
q^ = the rate of fluid injection into the reservoir
R = 1/N'C
N = the volume of the original oil in place
C = the compressibility factor of oil

The solution of this state equation as obtained in Appendix 
E is

-1} /
dt r

J Y'dt t/-= e o » < 1+ --- / R°(q+q^p-q^)'e ° "dT

State Equation of the Production Rate 
This equation as developed in Appendix C is



where

q = the rate of oil production in stock tank
volume per day

§t = Y + 1 ^^t 
. dtA t

At = n-t * Pt
^t = the number of oil wells in production at

t̂ = N-C
= a constant as in q=n^*A^* [A^-AP]

"o = Pq - ■ Pw
= the original reservoir pressure

^w = the flowing bottom hole pressure
AP = Pc - - Pt
P. the average reservoir pressure at time tL ya

= (q. "3wr, R  ) *

The solution of this equation as obtained in Appendix E, is

_g_
V o

rc

L + V o
So

ya. Bt)dt
dT > •
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Productivity Equation 
The following relation between the number of wells, 

rate of oil production, and the field pressure drop is also 
assumed to exist.

r  A A T"» n  /  f  f  / I  \

where
q = the rate of oil production 

= proportionality constant 
Other variables were previously defined.

From this last relation the number of wells in 
production, as a function of the rate of production, could 
be obtained as follows:

= A. • LA^ - API

Number of Separation Stations 
Separation stations may be designed to handle various 

amounts of crude oil per day. This value, denoted by Cp^, 
is the stock tank volume of crude handled by the production 
unit per day. The necessary number of separation stations 
at any time then becomes



where
SU^ = number of separation stations

= the production rate of the field in terms 
of stock tank volume per day



CHAPTER III

COST ANALYSIS

Considering a given study period during field de­
velopment, expressions are formulated to calculate the 
cost pertaining to the entire study period. This value is 
referred to as the total cost of development.

Dividing the study period into small time increments, 
called stages, there will be a cost corresponding to each 
individual stage. This latter value is denoted as the de­
velopment cost of an individual stage.

Both of these two costs are composed of the cost of 
drilling and the cost of oil and gas separation. Expressions 
are developed in the following for computation of the total 
and the individual stage costs.

Total Cost of Development 
This cost, as mentioned above, equals the cost of 

wells plus the cost of separation. In equation form this 
becomes

T = C + C (III-l)c w s

20
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where

= total costc
= cost of wells 

Cg = cost of separation.
The cost of the wells is made up of drilling and operating

= Cg + =o <111-21

where
= drilling cost of wells 
= operating cost of wells.

The drilling cost is the product of the total number of 
wells drilled in the study period by the drilling cost of 
a well, 
or

Cj = <2h -3)

where
n^ = total number of wells drilled to the end of

the study period 
n^^ = number of wells existing at the beginning

of the study period 
= average cost of drilling a well.

The operating cost may be obtained from
-T=t

. . . .  'I° ° JT=t„ AP], ■
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where

= operating cost of one well in a unit of time 
q

- "r.— ._T is the number of producing wells A^LAo - APJt
at time t .

t^ = the time at which the study period started
t = the time at which the study period ended

By summing these two costs, becomes

/ T=t

A [A - APJ *
=to T o T

(III-5)

In order to obtain an expression for the cost of separation 
it is assumed that all of the production units are of the
same capacity Cp. The necessary number of production units
built within the study period then becomes

where
cp

*̂ max ~ highest production rate from the field
in the study period 

= the production rate from the field at the 
beginning of the study period.

The cost of separation is equal to the initial cost plus the 
operating cost of the production units;



= C.IS
‘̂max - qto

cp

r=t

+ 0.cs
T=tO

%
cF

wnext;

C. = the initial cost of the oroduction unitIS
= the operating cost of the production unit 

in a unit time.
Having and the expression for the total cost of devel­
opment becomes

’’c = =dwf"t - "to] + Cow L o a pT dT +

IS
2max__5to 

Cp
rr=t

+ °cs I 
J -'x=to

Cp dr.

Development Cost of an Individual Stage 
An oil field which is being developed assumes a 

multitude of conditions or states during a given study 
period. The variables which typify these states are the 
number of wells and separation stations present in the 
field. Using the previous terminology one may say that the 
system is transformed from one state to the next as the
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development operations proceed. Assuming that these devel­
opment operations are carried out at discrete time points 
separated from each other by the constant time increment. A, 
the transformation will have the schematic presentation of 
Figure 2. The study period begins with the system in the 
Ith stage. The field contain n^ number of producing wells 
and SUj number of separation stations at this time. It will 
be assumed that wells are drilled and separation stations are 
installed at the beginning of each individual stage.

The summation of the initial cost of a stage and the 
operating cost of the lapse time between that stage and the 
next one is the total operating cost of any stage. This 
value is termed the development cost of an individual stage. 
To obtain expressions for computation of the individual 
stage cost fyrther simplifying assumptions are made as 
follows ;

1. The number of wells in production at any time 
point can be obtained from

4̂- = TTT T-IFT ' (III-9)t A^LAq - AP]

where
= production rate from the field in stock tank

volume per day 
[Ag-AP]^ = pressure drawdown

n^ = number of wells in production
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Figure 2. System's Transformation
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2, Number of production units in operation at any­
time t equals

, (III-IO)

where
SU^ = the number of production units in operation 

at time t.
= the rate of production from the field at time t, 

Cp^ = the capacity of the production unit that began 
operation at time t.

Dividing the length of the study period into I equal
time increments, the system goes through 2 different stages
during the study period. Numbering these stages backward, 
the system starts at stage I and passes through the stages
I-l, ... n, n-1, ... 3, 2, 1 and finally reaches the stage
0. Figure 3 shows the stages the system passes through 
during the development period. The number of time incre­
ments, I, is obtained from

_ length of the study period 
~ length of the time increment

3. There will not be any drilling and installation 
operation in the final stage of the study period (i.e. 
stage 0) and, therefore, there is no corresponding cost 
attributable to that stage.



â = Period corresponding to an individual 
stage cost.A ----

Study period

I-l1+1

Figure 3. Study Period and the Time Increment between E:tages,



Based on the above comments and assumptions various 
components of the development cost of an individual stage 
are computed in the following.

Drilling Cost of Wells 
The cost of drilling at any stage of the system is

Cd(n) = ^n+1
- APJn ■ - APln+1 ^dw'

n — I» I™lp«»««»?3j2,l. (Iil“ll)

where
the rate of production from the field

3n
[A^-AP]^ = the pressure drawdown

= the productivity constant.
All of the three terms mentioned above pertain to the time 
point, n.

C = the drilling cost of a well 
C^(n) = the drilling cost incurred when the system

is at the stage, n.
When the term inside the bracket has a positive sign, drill­
ing of new wells may be necessary.

Operating Cost of Wells 
Wells in production at the nth stage have to be 

operated for a A lapse of time. After which the system 
enters (n-l)th stage. Thus the operating cost of the wells
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can be formulated as

where

Co(n) =

n = I, I-l, 3, 2, 1. (IÏI-12)

™n/^n+l

A
C.ow

c^(n)

= the average production rate of the field 
within the time increment A.

= the time increment between the stages.
= the operating cost of a well for one 

unit of production.
= the operating cost of wells while the 

system passes from .stage n to stage n-1.
Total cost pertaining to the wells is the summation 

of the two equations (Ill-ll) and (III-12).

c„(n) =
-  Afin ' ^dw

(III-13)

Initial Cost of a Separation Station 
As mentioned before, the number of production units 

in operation at any stage is q^/Cp^. Additional number cf 
production units, required at the nth stage would then be
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%n+l
=Pn ’ =Pn+l

Thus the initial cost of separation units at the nth stage 
becomes

^n ^n+1
■̂Pn ^Pn+1

where
= the installation cost of one production unit 

Ĉ (n) = the initial cost of separation units at the 
nth stage

Operating Cost of a Separation Station 
The operating cost of separation stations when the 

system is in the nth stage of development would be

q» + qn+iC_=(n) = — — ' • A • n = I, I-l, 3, 2, 1.os

where

cs
(111-15)

= the operating cost of a production station 
for one unit of production 

A = the time interval between any stage and the
subsequent one 

C^g(n) = the operating cost of production unit
incurred in the nth stage of development
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= the average rate of production from the 
field within the time increment

Total cost of oil and gas separation is the summation 
of the two equations (III-14) and (III-15) .

C^in) = q.n ^n+l

n = I, I-l...... 2, 1. (III-16)

Overproduction Costs 
Any production exceeding that of the market demand 

is not desirable. Excessive production requires storage 
facilities and brings about handling expenses. Furthermore, 
it may waste the reservoir energy and the potential reserves. 
In order to eliminate the additional costs and discourage 
excessive production, an overproduction cost is considered. 
This term is assumed to be directly proportional to the 
square of excessive production, (q̂  - MD^). The expression,

Cop(n) = 0^- (q̂  - MD^)^* A, n = I, I-l, ..., 3, 2, 1

(III-17)

is chosen for computation of this cost. 0^ in this expres­
sion is the constant of proportionality, A is the time 
interval between stages, and MD^ is the market demand.



32
Cgp(n) is the cost of overproduction in the nth stage of 
development.

Addition of all the terms so far computed composes 
the total expense incurred at any stage of the field devel­
opment. The sum is

T^(n) = in+1
'dw

n+1 A ' Cow + W l
Cp„ Cp,n n+1 ^is +

^n ^ 9n+l 2—  " A ' Oca + 0,(9^ - MD*):. A

n = I, I-l, 2, 1. (III-18)

Tc(n) in this relation is the development cost of an indi­
vidual stage.

Total development cost of the entire study period 
is the summation of Tc(n) terms of all the stages from 
n = I to n = 1. A concise notation would be

n=l
T = E T (n). 
^ n=I ^

Profit Function 
Assuming that the only revenue in the operation 

comes from the sale of crude oil, the amount of income at



j j
at the nth stage would be

I(n) = A • Ppc

Pp^ in this relation is the price of one barrel of crude oil 
paid to the company at the port.

The nth stage profit Tp(n) is computed from

Tp(n) = I(n) - (n)

Tp(n) = 5b- L 2 b±i  . â .

9n+l
An+l^Ao-AP^n+l

In + %+l
A ' Cow +

*n+l
cpn+1 ^is +

9n + 9n+l
A' °cs +

°c • (9n - MDn) • A V- (ni-19)

Total profit pertaining to the entire study period 
then becomes

n=l
(III-20)T = Z T (n). 

n=I

Variables of this function are subject to practical con­
straints such as mentioned below.



The production rate should not exceed the current 
market demand.

In many cases it is necessary to maintain a lower 
limit of production from the field. Examples of this are 
the situations when we have to keep a pipeline full or a 
refinery supplied.

Production units require large investments and can 
not be economically designed for capacities lower than a 
minimum value.

Cumulative pressure drop of the field is a positive 
value for all times.

The restrictions on the variables are further 
explained in Chapter V of this report.

The purpose of optimization is to maximize the total 
profit Tp subject to the practical constraints of the field.



CHAPTER IV

DESCRIPTION OF PARAMETERS

The expression obtained for the individual stage 
profit is

%+l

_2n_ ^n+1
=Pn ■ =Pn+l

9n ^n+1 2
 2 A'Ocs + °c* (9n- ^^n)

^is +

(IV-1)

Total profit of the operation pertaining to the entire study 
period is the summation of the profits made in all of the 
stages, i.e.

n=l
T = S T (n). 
^ n=I ^

(IV-2)

Prior to the commencement of actual maximization of the 
profit function, one has to find numerical values or suit­
able functions for the parameters in the expression for the

35



total profit. Description and/or evaluation of these 
parameters are carried out in the present chapter.

^n
is the rate of oil production in terms of stock 

tank volume at the time point n. It is one of the variables 
based on which the maximization is to be carried out.

2.
is the difference between the original reservoir 

pressure and the flowing bottom hole pressure P^. Since 
P^ is assumed to be constant throughout the study period 
would also be a constant value, in the form of an equation 
we will have

Ao = Po -

3.
AP^ is defined by the following expression 

A^n = - '’n-

Here P^ is the original reservoir pressure and P^ the 
average reservoir pressure at time n.

is a parameter that possibly varies with time 
and was defined through the expression

\^^o" (IV-3)

n^ in this relation is the number of wells in production at
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time t. The equation could also be written as

9t =

qt = n^-At[P - P„]t (IV-4)

Solving for A, from this expression yields

A_ = 
or

=

t = n^. [P - P„j^

1 9t 
"t LP -

The definition of productivity index, on the other hand, 
17,52IS

J = p (lV-5)
w

Dividing both sides of this relation by n^, there will 
result

"t p - p«

Thus one concludes that

A. = . (IV-6)

In this relation J is the productivity index, and n^ is 
the number of wells in production at time t.
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^dw
This item denotes the drilling cost of one well.

The best source from which this information may be obtained
is past experience. Data collected from the wells previously
drilled in the same or a similar field could be of great
assistance. Figures for the cost of drilling are also
gathered in the literature.This information is available
for different areas of the country. Tables 1 and 2 show

32 35several values for the drilling cost of a well. ' , The
change in the cost, cf drilling is normally surveyed and 
reported annually in the industry's publications.
Extensive data on the cost of equipment, labor, and utilities 
abroad as compared to the united States costs are gathered 
in the literature. Various articles by Nelson in the Oil 
and Gas Journal and its reprints can be helpful in estimating 
the cost of overseas operations.

6. A
This item is the time increment selected to divide 

the study period into equal intervals. For the purpose of 
optimal planning this time increment is taken to be six 
months. Since most of the modifications and preparations 
in an oil field need about a few months to be carried out, 
a six month interval seems appropriate. It is possible, 
however, to shorten the time step size and detect any change 
in the results obtained. Emergence of drastic changes in 
the results is an indication of too large a time increment
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TABLE 1 
DEEP WELL DRILLING COST

Area Number of 
V7ells

Total Footage 
(feet)

Total 
Drilling Cost 
(dollars)

Louisiana onshore 488 8,257,633 329,238,989.00
Louisiana offshore 186 2,998,695 184,058,766.00
West Texas 121 2,231,312 133,475,168.00
Texas (remainder) 130 2,301,370 98,756,991.00
Mississippi 53 879,442 24,724,387.00
Oklahoma 39 652,791 21,286,723.00
New Mexico 7 124,783 6,924,562.00

Total 1,024 17,446,029 798,465,588.00

Average drilling cost/ft = $45.76
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TABLE 2
AVERAGE DRILLING COST/FT (IN DOLLARS)

Area Average Drilling Cost/ft 
(dollars)

Mississippi 28.11
Oklahoma 32.61
Central Texas

Gulf Coast
38.89

Louisiana Intermediate 39.27
Central Louisiana 40.46
South Texas

Gulf Coast
40.53

Upper Texas Gulf Coast 
East Texas

44.63

Louisiana Above
Intermediate

45.16

New Mexico 55.49
West Texas 57.25
West Louisiana offshore 61.25
East Louisiana offshore 60.68
Texas Panhandle 88.49



in the previous run. it is preferred, then, to repeat the 
computations with the shorter time increment.

^ow
C . is the operating cost of a well for one unit of ow ^

production. The operating cost in this report refers to the 
overall cost which is composed of the costs of running, 
testing, maintenance and possibly reworking of the wells. 
Furthermore, salaries paid to the employees of the related 
sections, such as geological and petroleum engineering sec­
tions, are also considered to be parts of this operating 
cost. To obtain realistic values for the operating cost 
one has to make use of previous experience in the same field 
or a similar one. Based on the past data, an average fig­
ure for the operating cost can be obtained to be used for 
the entire study period. Furthermore, one can project these 
data into the future and compute values for any particular 
time interval. In the case of the absence of all the pre­
vious information one may use the estimates available in the 
literature. An expense of $1 per barrel or 25% of the net
yearly income of the well are the operating costs estimated

33by some of the cost analysts.

8. CPn
The variable Cp is the capacity of the production n -

unit at the nth time interval of the study period, it is 
the number of barrels of stock tank crude oil processed by 
the separation station daily.



The capacity of the oil and gas separation facilities 
can vary within a wide range of values at the operator's 
option. To obtain the best processing capacity it was 
decided to consider it as a second variable of the profit 
function. The optimization is then carried out with respect 
to both the production rate from the field and the capacity 
of the production unit. The numerical value obtained for 
the capacity has to be a positive one.

The answer obtained from the optimization calcula­
tions would be the optimal capacity of the production unit 
which is to be installed in the nth time interval of the 
study period.

^is
Initial cost of the separation station could

be obtained from the past experiences. Quotations pertain­
ing to the units build previously may be utilized to esti­
mate the cost of the unit at hand. These values are up­
dated and modified for changes with time and differences 
in capacity, as described below;

1. Previous data on a similar production unit are 
based on the economic conditions at some time in the past. 
Some method must be used to convert the costs applicable 
to a past date to equivalent values at the present time.^^ 
Several cost indexes are published regularly in the litera­
ture for this p u r p o s e . A  cost index for a given
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year is a number which shows the cost at that time relative 
to the cost at a base year. If the cost at some time in the 
past is known, the present cost can be obtained from

present cost = previous cost . isdçx.,at the present time ^ previous index

2. The cost of a unit with a different capacity 
can be estimated when the cost of a given unit is known.
The concept is known as the six-tenths factor rule according 
to which^^'

cost Of unit B = cost Of unit A • .

Using these ideas and utilizing some of the quotations given
in manufacturer's catalogs, the initial cost of a production
unit with a capacity of 150,000 BPD is estimated at
$500,000.00. The cost of a similar plant with a capacity
of Cp_ then becomes n

Cfs = SOO'OOO <Î5ÏÏ7?ÔÔ>

Cfs ' (CPn)-'

Cis = 394 (CP„)-®
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Cp^ in this expression is in terms of barrels per day and 

in dollars.

10' °cs
Using the idea of operating cost per barrel of oil 

as discussed by Nelson, one can obtain a value for the 
operating cost of the production unit.^^ Owing to the 
absence of more specific data, an operating cost of 20 
cents per barrel is assumed for the numerical computations. 
More accurate data can be obtained from past experience.



CHAPTER V

THEORY

As discussed in the previous chapters, total profit 
made in the operation can be expressed by

n=l
"p = n:l ’’p'"’-

(V-1)

In this expression n is a decreasing integer index running 
between I and 1, and T^(n) is the total profit made in the 
nth stage of development. The value of T^fn) is computed 
by using the relation given below.

Tp(n) «n + 9n+l ■A'P _ -< pc
*n+l

■  An+l^Ao-AP^n+l 'dw

^n+1
CPn Cpn+1

• A'°cs+°c' (9n-

=is +

\ . (V-2)

It is desired to obtain a particular combination of Cp^ and 
for all stages, so that the total profit, Tp, becomes a

45
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maximum. Presence of the practical constraints limit the 
range of values that can be assumed by the variables Cp^ and
q^. The restrictions on the variables are discussed below.

1. and Cp^ are positive values for all times.
2. The production rate of the field should never 

exceed that of the current market demand. Market demand 
values can be obtained by using forecasting techniques which 
will not be covered here. A simple case of the market
trend is when a constant percentage yearly increase in
demand prevails.

If the percentage increase is denoted by d, we will
have

dMD„
" = dMD_ • dt n n

or
fl/n MD„ = d • t + Sn C n n

in which fin C is the constant of integration and MD^ is the 
market demand pertaining to the nth stage of development. 
The expression could be simplified as

fin (MD^/C) = d't^

Assuming that the market demand at the initial time t̂ , is 
MD_, the constant C becomes

MD
C = d“ t̂
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Substituting for C in the previous expression it becomes

or

2n
MD„

d.t,r d'tn
MDj/e

d* t.
MD_ • e d* t

MD, = e

and finally

MD„ = MDt • e n I
d.(Vti)

The value of t^-t^ according to Figure 4 is (I-n)-A and

MD_ = MD^•e n I
d.[(l-n)•a ] (V-3)

The rate of production of the field should be less than or
equal to the demand value, MD^.
Thus

d[(I-n).A]

3. In general there will be more than one production 
unit in the field and the capacity of the production unit is 
less than or equal to the total production rate of the field,
i.e.
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~t -t

study period

time0

stage number

(I-n)- A n- A

Figure 4. Time Interval between the Ith and the nth 
Stage.
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Production units requiring fairly large investment can not 
be designed for capacities lower than a minimum value, 
CPmin* Assuming that this minimum capacity is 50,000 
barrels per day we will have

cp^ ou,uuu.

Similarly the lower limit for the rate of production of the 
field is assumed to be equal to 20 per cent of its upper 
limit. Thus

,n > .20 . MD„

In this study the development process of the field 
is assumed to be of discrete and deterministic nature. The 
decisions are made at the beginning of each individual 
stage. The behavior of the system during each stage depends 
upon the condition of the system at the time of decision 
and upon the decision itself. Therefore each decision 
affects the next immediate stage and all the other subse­
quent stages of development.

Maximization of T^ under the conditions imposed by 
the above constraints and assumptions is a multistage deci­
sion making process which will be solved by using the 
dynamic programming optimization technique. The obtained 
solution is a sequence of values for the variables q^ and
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Cp^ for all the stages of development which maximizes the 
total profit made in the operation.

The Recursion Equation of Dynamic Programming
The application of dynamic programming to a problem 

of this nature is carried out by the use of the principle 
of optimality. According to this principle any optimal 
policy has the property that the remaining decisions must 
constitute an optimal policy with regard to the state result­
ing from the previous decision.

By use of this principle a multistage decision pro­
cess can be translated into a number of one-stage subprob­
lems. Other concepts necessary for this transformation are

1. The resulting profit at any stage does not de­
pend on the decisions made afterwards. This simply means 
that the decisions made in a later date do not affect the 
previously decided developments.

2. The maximum value of the function h^(u^) + 
h 2 (û , U 2 ) with respect to û  ̂and U2  could be obtained by

max [h, (u,) + max h-(u,, u_)].
Ui U2

In the form of an equation

max [h, (u, )+h_ (u, ,uJ]= max[h, (u, )+max h- (u, ,u_)] 
“l'“2 "1 “2

(V-4)
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Bringing the maximization with respect to Ug inside the 
outside bracket is a crucial step and results from the fact 
that h^ is a function of u^ only.

3. There are I stages in the study period each one 
of them having two variables. Maximization of starting 
with the present condition of the field is equivalent to 
finding 2 l unknown variables. However, if we start from 
the final condition there would be only two unknown variables 
which could be obtained by maximizing the final stage profit 
function. Knowing the optimum values of the variables of 
the final stage we can proceed step by step to the initial 
state of the system and find all the other variables. This 
procedure is referred to as the backward multistage problem 
solving and will be followed in this research. If we want 
to have the subscripts of all the stages to agree with the 
order in which the variables are determined, it is necessary 
to number the stages in reverse order. Therefore the back­
ward indexing is being followed throughout this work.

Utilizing these ideas to the profit function, T^,
11 1 Qwe will have '

max T = max [t ]
qj, ... q^jCpj. . .Cpĵ

max T = max
q^,... q^,Cp^...Cp^

n=l 
Z T (n) 
n=I P



max T = max / T^(I) +
qi-CPj] P qj.j,

max
. . . .Cp^

n=I-l
Tp(n)

and finally.

max T = max / T (I) + max
^ *Cpj I ^ qj_2^, . . .q^,CPj_2^<, . . ,Cp^

[Tp(l-l) + ... + Tp(D]

max T _r in this relation is the maximum profit made in the P,I
development operations of the field from the beginning of 
the Ith stage to the end of the study period. It could be 
noticed from the last relation that the original problem 
is transformed into two smaller optimization problems as 
shown below.

The first one is an (I-l)-stage optimization problem,
namely

max [Tpd-D + Tp(I-2 ) +.„.+ Tp(l)l.



Using the maximum profit notation this item could be denoted 
by max The second problem is a one-stage optimiza­
tion which is

max T  ̂= max Tp(I) + max
q^-1 , . . .q-, jCp^ _i , . . -Cpi

[Tp(I-l) +...Tp(l)]J

or
max _ = max Lt_(I) + max _ ,] P.I P (V-5)

This final form is the recursion equation of dynamic pro­
gramming which will be used for computing the optimal devel­
opment policy. The solution to this equation could be 
obtained by a single stage optimization operation only when
the value of max T _ , is already defined. The value ofp,I-l
max Tp could be obtained by the repeated use of the 
same recursion equation as given below.

max T maxP.I-l - ^ [Tp(I-l) + max Tp,;,;]



1̂ 4

max T q = max [T (3) + max T «] 
q;.CPj P P ' 2

and finally

max T  ̂= max [t (2) + max T ,]. 
9" qz, cp, ^

since it had been assumed that the stage number 1  was the 
final time increment in which any development operation took 
place, the value of max T , can be computed without usingp, 1
the recursion equations. Furthermore, since Tp, 1 pertains 
to the final stage of development it is equal to T^fl).
In other words

-p,l
qi + q?

Tp(l) = »A.Ppy

qi + qz 
^dw 2  'A'Cow + Cp, Cp.

q, + q,
Cis +

'Ogg + Og" (q̂  - MD^) .A\ . (V-6)

q^, q,j AP^, AP,, Cp^ and Cp, are unknown values in this 
equation. By maximizing the function one can obtain numer­
ical values for two of these variables. Therefore, it is 
necessary to have realistic estimates for q^ and AP^. Know­
ing AP^ and using the state equation of pressure, AP, can
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be calculated. Furthermore, we may assume that Cp^ = Cpg. 
Under these conditions, numerical optimization techniques 
can be followed to compute the optimum values for the vari­
ables. Values thus obtained increase the profit of the 
operation to its highest feasible level while meeting the 
conditions imposed by the constraints. A discussion related 
to these numerical techniques will follow in the next 
section.

Maximization of the profit 
The recursion equation of the previous section 

involves the maximization of the individual profit func­
tions of all the stages. The variables in these functions 
are the rate of oil production from the field and the 
capacity of the production units. General form of the 
profit function and a set of pertaining constraints are 
given below.

Tp(n) / n ^n+ 1

KLio-»PJn ■

with

Cdw+
in+ 1

CPn Cpn+ 1

Oç,“(q^-MD^) -A

Cis + A- (Co»+°cs*

q„ < qj- ed[(I-n)-A]
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9n ^ °

CPn > 0

CPn ̂  %

> •2 0 *qj.*e,L (I-n) -A]

Cp^ > 50,000 B.P.D. (V-7)

The profit function in its concise mathematical notation 
form is expressed as

Tp(n) = Tp(q^,Cp^). (V-8 )

For a differentiable Tp(n) the Lagrange multiplier optimize-
23 18tion technique can be applied. ' An alternative approach 

which is more conveniently adaptable to numerical computa­
tions and nondifferentiable functions is the multidimensional 
geometry technique. The method is a trial and error procedure 
for computation of a set of operating conditions yielding a 
value of the criterion function which is close to the best 
possible. Every effort is made to utilize the basic con­
cepts of multidimensional algebra to design an experimental 
plan in which the search will be completed with a minimum 
number of trials, ordinarily a search plan of this type is 
comprised of three phases. At the beginning when nothing 
at all is known about the function one has to explore the 
situation by running randomly chosen experiments. In the



middle of the search, an effort is made to get close to the 
optimum point with as few experiments as possible. Finally 
when close to the optimum, further exploration becomes neces­
sary to attain any improvement in the situation.

Looking at the profit function, T^fn) =
Beginning Experiments 
the profit function, 

it could be noticed that for each pair of values on the 
and Cp^ axis, we can compute a value for T^fn). A series 
of these pairs sketches a surface in the three dimensional 
space of q^, Cp^ and T^fn). This surface will be called 
the profit surface or the criterion function. Since T^fn) 
is a complicated function we have no advance information 
about the shape of the surface. A group of opening trials, 
therefore, are necessary to show the corresponding eleva­
tions on the criterion surface. Based on the information 
obtained from these initial experiments it becomes possible 
to find the way to the maximum point of this surface. To 
begin the experiments we start with an arbitrarily chosen 
point in the q^ - Çp^ plane. Caution must be exercised, 
however, to select this point in the region where all the 
constraints are satisfied. Denoting this point by 
and substituting these values in the profit function the 
corresponding profit, ^^^(n), (shown in Figure 5) is computed. 
In order to locate the position of the following trials it 
is necessary to know the general slope of the criterion
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Tp(n)

po
cp.

cp.no

•no

Figure 5. Three Dimensional Space of Cp^ and 
Tp(n). "Beginning Experiments"
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function in the neighborhood of Tp^(n). To find the slope
of the profit surface in the direction, an experiment
with Cpĵ  = Cp^ is run. The value of should, however, be
slightly different from q . The new trial would then be at^no
the point (Q^i'Cp^g)• The slope of the criterion function in 
the direction parallel to q^ becomes:

n
^ Tpl(n) - Tpo(")

9nl - %
(V-9)

no

In this relation T^^fn) is the elevation on the profit sur­

face corresponding to the point (q^l'^^no^ * ^ similar ex­
periment with the previous q^ and slightly different Cp^ 
furnishes the slope of the surface in the direction parallel 
to the Cp^ axis. This third experiment then has the property
of

CPnZ CPno

and is positioned at the point (q^o'^Pn2 ^" Using the infor­
mation obtained from this last trial the slope of the surface
in the Cp^ direction becomes

Is Tp(n) \
SCPn CP„ 2  - cp (V-10)

no



6 0

The slope thus obtained pertains to the locations in the 
neighborhood of the initial point is
the value of the profit function calculated in the third 
experiment. Having these data, it becomes possible to deter­
mine the plane approximately tangent to the profit surface. 
The equation of such a tangent plane could be found with 
the aid of deviations of Cp^ and T^fn) from the initial
point, (q^QfCp^^). It could be proved that this equation

49is in the form of

(n) = m 'Aq^ + m -ACp^, (V-11)

where
ATp(n) = Tp(n) - Tp^(n)

*̂̂ n ^nl ^no 

ACPn = CPn2  - Cp^^-

nuj and m_ are the calculated slopes in the q and Cp 
\  CPn ^ " n
directions respectively. The tangent plane so obtained shall 
be used as an approximate representation of the criterion 
function T^fn) in the vicinity of the original point. This 
approximate representation will be used as a guide for 
locating the future trials. Taylor's series expansion of



51
the profit function proves that for sufficiently small
deviations the tangent plane approximates very closely
the behavior of the criterion function.

To raise the value of the profit function one must
find a combination of Aq and ACp for whichn n

ATp{n) > 0 .

It is desired, therefore, to obtain a solution to the in­
equality

m "Aq^ + m 'ACp^ > 0. (V-12)
^n n

Graphically speaking the expression

depicts a straight line on the q^ - Cp^ plane. This line 
divides the plane into favorable and unfavorable regions. 
Based on the information gained from the beginning experi­
ments, a large section of q^ - Cp^ plane will become unfavor­
able for further exploration, and one gets a rough idea vdiere 
to conduct the next experiments.

Middle Strategies 
After the elementary exploration of the beginning 

experiments one must decide where to look for further 
improvement in the value of the profit function. Starting
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in the favorable section of the experimental region which 
was isolated by the beginning work, one guides the new 
search in the direction which gives the greatest rate of 
change of the criterion function. This simply suggests 
following a path in which the slope of the function is the 
g r e a t e s t . T h u s  the idea of ascending the steepest 
path is the basis for this middle search strategy which is 
called the gradient method. Even though the direction of 
the movement may change from point to point, it should 
always be in the direction perpendicular to the local 
contour of the profit surface.

Determination of the local contour to the profit 
surface should be carried out by following the steps given 
below.

1. By running three experiments in the favorable 
section of - Cp^ plane the equation of the tangent plane 
to the profit surface becomes available. This equation is 
in the form of

ATp(n) = mq -Aq^ + • ACp^ (V-13)

where

ATp(n) = Tp(n) - T^^tn)

m = slope of the profit surface in the direction parallel
9n
to the q^ axis



63
= slope of the profit surface in the direction parallel

■̂n
to the Cp„ axis

ACPn = CPn2  ' =Pno

2. The contour at any point of the profit surface 
has the property of AT^fn) = 0. This same relation holds 
for the contour line located at the point of tangency of the 
tangent plane to the profit surface. Thus the line of inter­
section of the tangent plane with this contour has the 
equation of

V  + “cp • ACPn = 0 

This equation could also be written as

ACPn = - %  /"cp > -A9nn

3. The projection of this line on the q^ - Cp^ plane 
has the very same equation

ACPn = - (iHg /m^p ) -Aq^ (V-14)
"n ^n

This line is called the contour tangent. The slope of this
line on q^ - Cp^ plane is - (m /m ).

n •̂ n
4. The direction in which the value of the profit 

function increases most rapidly is the one perpendicular to
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the contour tangent. This direction has a slope of (m /m )

■̂ n n
This is the direction of the gradient of the criterion func­
tion and is the suggested path to follow for the middle stage 
trials.

An index for the effectiveness of this operation is 
the value of the profit improvement divided by the profit 
at the previous point. The movement in the gradient direc­
tion should be continued as long as this index shows any 
significant improvement.

Final Search
As a result of the beginning and middle stage ex­

periments we are close to the optimum point and reaching 
the near-stationary region of the profit surface. An 
extension of the previous techniques, as suggested by Box
and Wilson, calls for the utilization of the derivatives of

12higher order for the next stage of exploration. The 
reason behind their suggestion for the use of higher deriva­
tives is discussed below.

All of the approximation techniques applied so far 
were of the linear type. The tangent to the profit surface 
at the vicinity of the maximum point, however, is close to 
a horizontal plane. Thus the values of the slopes parallel 
to q^ and Cp^ axis in this zone are negligible. The coef­
ficients of the linear terms of the approximating equation 
in that neighborhood are very small and other nonlinear
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effects become overwhelming there. Therefore we are led to 
fit the unknown criterion function by a nonlinear (quadratic 
or higher degree) expression.

The nonlinear exploration is carried out through the 
use of the Taylor expansion of the profit function in the 
region of interest. The form of this series neglecting the 
terms of higher than the second degree is

ATp(n) = niq^.Aq^ + +

1
2

where
(V-15)

m _ = second derivative of the profit function
9R

with respect to qn

"'q̂ ĈPĵ  = second derivative of the profit function 
with respect to q^ and Cp^ in that order 

m _ = second derivative of the profit function
with respect to Cp^.

The rest of the terms were defined previously.
A simpler expansion would result if the interaction 

term is neglected. This simplified form is
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AT (n) = m • Aq^ + m -ACp^ +
n

"g: "'cpg’<“ Pn>^ (V-16)

A check measurement which will be described later serves to 
indicate whether this simplified form or the one with the 
interaction term should be used.

1. The Noninteractinq Taylor Series Form. In 
practice one begins with fitting this simplified form of 
the Taylor expansion to the profit function. This approxi­
mation is then used to estimate the location of the maximum 
profit. In the case that the check measurement calls for 
the inclusion of the interaction term, the necessary adjust­
ment is made after the calculations with the noninteracting 
form have been made.

In order to fit the series to the criterion function 
and find its maximum point, one may follow the steps given 
below.

1. Beginning with the last experiment of the 
middle stage exploration, one selects four new points in the 
experimental region. The points are positioned on a cross­
like arrangement with the last experiment being located in 
the center of the cross. The distance of all the points 
from the center one is selected to be the same. Denoting
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the center point by (q^Q,Cp^Q), the other four points (as 
shown in Figure 6 ) must have the coordinates of (q^^.Cp^^),

(Qno'CPn3 )'(Sn2 'CPno) and (q„o.Cp^4 )• The value of the 
criterion function at these points are designated by T^^fn), 
Tpjfn), Tpp(n) and T^^fn) respectively.

2. Applying the simplified expansion, the value of 
the criterion function at the point (q^^.cp^^) is computed 
from

ATp^(n) = | (Aq„^)^.

In this expression ATp^(n) = T^^fn) - T^^fn) and Tp^(n) is 
the value of profit at the center point. Similarly the 

value of the profit function at the point (q^g'^Pno) "'ay 
be obtained from

ATpjtn) = ">q^-Aq„2 + ^ (Aq^^) ̂

where

ATpj(n) = Ip2  (n) - Tj^(n)

Since Aq^ 2  = - Aq^^, then

ATp2 <") = - + i “qg- W9nl>^-

Addition of the last equation and the one pertaining to the
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Cp,n

■no'

no

po

nlQno

Figure 6 . Crosslike Arrangement of the Final Search
Experiments when Neglecting the Interaction 
of the Variables.
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(Snl'CPno) gives
AT , (n) + AT -(n)

Subtraction of the two equations gives

ATol(n) - AToz'n)
"In 2 -ASnl

(y-ie)

3. Repeating the step number 2 above on the points 
(q^^.Cp^g) and (q^^.Cp^^), similar relations for the calcula­
tion of m^ , and m_ are obtained.<-Pn

ATp3 (n) = mcp^-acpn] + ^ m<,pg‘ <^=Pn3> ̂  

iTp4(n) = m^p^.acp„4 + | ""cp/ <''=Pn4> ̂

where
ATpa(n) = Tpa(n) - Tp^(n)

ATp4 (n) = Tp4 (n) - Tp^(n)

Since ACp^^ = - ACp^^' then

i T p 4 ( n )  =  -  m ^ p ^ - i C p ^ 3 +  I  % c p 2 - ( a c p n 3 ) 2 .

Similar operations as in step number 2 result in
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AT (n) + at (n)
"CPS =

and

... ■- II U J

Now that all the coefficients of the simplified Taylor 
expansion is computed, the noninteracting approximation of 
the criterion function is known.

4. Differentiating the AT^fn) expression partially 
with respect to Aq^ and ACp^ we will have

BAT (n)

bat (n)

Setting these partial derivatives equal to zero, values for 
Aq^ and ACp^ are computed as given below.

= - 5—  <V-23)

and
"cp

ACPn = -lÿ—  • 
CPS
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These values are the corrections computed from the 
final search which should be considered when shifting the 
previously calculated maximum point to its more accurate 
location.

The maximum point of the profit function thus ob­
tained is the maximum of the fitting of noninteracting form 
of the Taylor series to the criterion function. This pro­
cedure will be satisfactory when the contour lines of the 
profit surface are close to circles or ellipses. However, 
if the contours are irregular curves, it becomes necessary 
to include the interaction term, Aq^-ACp^ in the series.

2. The Interacting Form of the Taylor Series. In 
order to determine the necessity of the inclusion of the 
interaction term in the Taylor series a new experiment 
should be run. This trial, as suggested by Wild, should 
be located at the point (q̂ g, C p ^ g ) T h i s  point, as shown 
in Figure 7, has a profit of T^^fn).

Ordinarily a different value of profit will be ob­

tained by substituting the (<ïn2 ‘’̂ ^n3  ̂ into the simplified 
Taylor series expansion. Denoting this second value by 
Tp5 T(n), the decision as to whether the discrepancy

is tolerable or not is based on the value of the ratio
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•no'
(n)

A n3

no nono
po

n4no

■n2 nl■no

Figure 7. Final Search Experiments with the 
Interaction Term.
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<Tp5 (n) - Tp5 j(n))/Tp5 (n).

If this ratio is less than some specified value (0.01 was 
used in this problem), the previously computed maximum point 
is taken for the true maximum. On the other hand if this 
ratio 13 not less than the specified value, it indicates 
that the variables are interacting so strongly that the 
simplified expansion cannot be used. The more suitable 
form of the Taylor series, for approximating purposes, then 
is

AT (n) = m -Aq^ + m -ACp^ + 
^n ^n

1
2

By applying this expansion to the points shown in the pre­
vious figure we will have

lo For the point (%p»Cp^o^'
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"'cpj' <“ Pn3>

4. For the point (qno'̂ Pn4'̂  '

ÛTp^(n) = r>icp^-(-aCp 3̂ )+ f "■cp2 ' (-ACPnsI

5. For the point (q̂ g, Cp^^),

AT (n) = m -(-Aq„3)+ m • (ACp„3) +
n

V  <-ASnl) + 2 m ■ (-Aq^^-ACPn;)n n  ̂n

■"Cp2 - <''=Pn3>  ̂n

By using the first four expression one can compute the numer­
ical value of m , m_ # m „ and m_ Substituting these 

%  92 cpg
values in the expression number 5, we will be able to compute
the value of m _ . Having all of the coefficients of the

^n Pn
new Taylor series expansion, a better approximation for the 
profit function is now available. This new approximate is 
a fitting of the interacting form of the Taylor series to 
the criterion function, and it is in the form of
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"•n n

1
2 m •(Aq^)2+ 2m ■ (ûq^'Acp^) + m (ACp„) ̂

-"II

To find the maximum point of this series, its derivatives 
with respect to Aq^ and ACp^ should be set equal to zero. 
The results are

BAT (n) ^
  = m +q. 2%Aqn

2 m ■ Aq + 2 m .ACp„
^n ^n ^n

= 0

bat (n) ,
= "cp/  2BACpn n 2  ”cpg-“ Pn+ 2  % C p / ' ' % = 0 .

or

■"qg-^<3n +  m q ^ f p ^ - A C P n  =  - " q n

VPn'"'*" " ■ -"cp^

The answers to this set of simultaneous equations are

=
"qnCPn'^CPn- "cp2 'mqn

"'q2 - ”cp 2- < V s ’n’ '

and
ACp^ = V P n ’V"'îg'"'=Pn2m _°m_ (m _ )

Sn^Pn



The newly computed Aq^ and ACp^ are the deviations of the 
more accurate maximum point from the center point, (q^^.Cp^^U

The final search operations just described will not 
be reliable without investigating whether the obtained 
corrections correspond to the minimum or the maximum point. 
Theoretically, setting the first derivative equal to zero 
may identify the coordinates of either of the maximum or 
the minimum point of a function. The second derivative, 
however, has a negative value at the maximum point.
Therefore it is necessary to compute the numerical value 
of the second derivative of the profit function at the 
point in question. Determination of the second deriva­
tive can be carried out by following the steps given below.

1. Consider a function F(t) defined by

F(t) = Tp(g^.Cp^) = Tp(q„j+h-t,cp„j+k.t),

in which h and k are constants and t is a variable, q^^ 
and Cp^^ are the coordinates of the point at which the 
final search began.

2. The first two derivatives of F(t) can be obtained 
by differentiating with respect to t.

S dq g dcp
^n ^ n

« %



and

F" (t) = STp'Sn'CPn) S "STp(qn'CPn)'
dt ' acPn

L /
&Cpn
dt r  M n

^£.«în'=Pn>
acp.

^ 3
dt âCpn

n'^Pn' IJ n
dt

or

F"(t) =

ôCpn

3. The numerical values of and Cp^ at the final
point are

9n = % t  +

' CPnf + Acpn-

Aq and ACp in these relations are the corrections obtained n n
via the final search operationso

4. The value of F";t) at the final point can be 
calculated by setting



t = 1  

h = Aq^ 
k - ACp,n

In this case F"(t) at the final point is equal to F"(l)

P»a, . , 2  ^■ 2  ■ -n

•

»^Tpl9nf+ ASn'CPnf+ ^Cp^) ^
2  ° (ACp̂ )

scp„

Having the value of the second derivative at the final 
point, one can inspect as to whether it is a positive or 
a negative value. The corrections obtained by the final 
search will be taken into consideration only if the second 
derivative is negative.



CHAPTER VI

NUMERICAL ANALYSIS AND CODING

Application of the theoretical considerations of 
the previous chapter to the actual development of a petro­
leum production system is not an easy task without access 
to digital computers. Performing such a heavy load of 
mathematical operations either by hand or on desk calcula­
tors is not feasible. It is necessary, therfore, to make 
these calculations on the computer. The Fortran coding and 
numerical analysis of these operations are presented in 
this chapter. A parallel correspondence between the 
order of the suggested computations and the sequence of 
discussions will be maintained.

The coding comprises a main program and two function 
subprograms as explained below.

The beginning statements of the main program read 
in the following data:

present rate of production, QI
yearly percentage increase in market demand, D 
the time increment used for discretization of 
the study period, DT
number of years in the study period, YRS

79
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water influx constants for various stages, WIC(IWIC)
volume of original oil in place, 0 0

compressibility factor of oil, COMP
cost of drilling a well, CDW
cost of operating a well, COW
coefficient of the initial cost function of a
separation unit, CIS
operating cost of a separation station, OCS

Ao = Po - Pw = DO
constant of productivity, AT,

In order to attach the same values to these codes for the
entire program, COMMON statements are included both in the

22,41main and subprograms.
To enter the optimization routine at the nth stage 

of development, it is necessary to feed the optimum decisions 
of the stage, computed previously, into the program. The 
results of the computations are the optimal decisions 
pertaining to the (n + l)th stage. By repeating the same 
procedure, as shown in Figure 8  similar optimal values for 
all the other stages are obtained. In the first stage, 
however, there are no prior computations and estimated 
values have to be used to start the sequential calculations 
The following statements are included in the program for 
this purpose.

QTS = Ql 
PTS = PI



%-l
I-l "Pl- 1

9l_l

APi n+ 1
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Figure 8 . Sequential Decision Making in Various Stages of 
Development.
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Ql and Pi are the estimated values of the production rate 
and cumulative pressure drop at the end of the planning 
horizon.

Preliminary Observations 
To begin the optimization at any stage n, the 

predicted market demand for that period is calculated from

MD^ = MD^-e^"

The upper limit of the production rate of (n + l)th stage 
in Fortran language, then becomes

0 = QI’̂EXP (D*DT* (YRS/DT-FN-1.0) )
Since the capacity of a production unit is always less than 
the total production rate of the field Q is also considered 
to be the capacity of the unit in the first trial. The 
statement

C = Q
in which C is the capacity of the unit is provided for 
this purpose. To make an elementary exploration the opera­
ting range of the variables is divided into ten equal 
intervals. The value of the profit function at these 
points are computed. By comparing the result of these 
computations the highest profit among the ten values is 
found. The corresponding point is the suggested location 
at which to start the beginning experiments. The value of 
the profit function at any point is obtained by using the
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subprogram PFT explained in the next section.

Subprogram PFT 
The function subprogram PFT supplies the main 

program with the value of profit made in any stage of devel­
opment; The necessary parameters v.’hich should be transferred 
to the subprogram are

the stage number, AN 
production rate of the nth stage, QK 
capacity of the production unit installed at 
the nth stage, CK
water influx constant of the (n + l)th stage, SKX 
AP^ = P^ - P^ of the nth stage, PK 
estimated production rate and the capacity of 
the (n + l)th stage, QX and CX

The computed profit pertains to the (n + l)th stage of
development.

A COMMON statement makes the supplied data applicable
to both the main program and the subprogram.

The estimated production rate QX has to be within 
that particular range of values permitted by all of the 
pertaining restrictions. To keep the value of QX within 
this range the following provision is made.

Production beyond the limits of the market demand 
is discouraged by considering a cost which is invoked in 
the event of excessive production. The cost of
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overproduction is assumed to be proportional to the 
square of extra production. When the production is less 
than or equal to the current estimated demand, it is set 
equal to zero. The following statements in the PFT 
function, compute the value of excessive production cost.

IF(QX - 0)700,700,701
700 OVPC = 0.0
701 OVPC = 365.*DT*OC*{(QX-Q)**2.) 

Other costs include the drilling and operating cost
of wells, and the installation and operating costs of 
separation stations. These terms are computed by the 
following set of statements 

FT = QK/(AT*(DO-PK))
FUPD = (365.*DT*QX*R-PK)/(365.*DT*FNU-1.0)
ST = QX/(AT*(DO-FUPD))
TT = QK/(CK)-QX/CX 
FRT = 182,5*(QK + QX)*DT 
FIT = (CX)**.6 

29 CST = (FT-ST)*CDW+FRT*(COW+OSC)+TT*FIT*CIS+OVPC 
Statement number 29 calculates the total cost of one stage 
of development. Defining the value of profit as the 
difference between the sale of production and the total 
cost, the profit function becomes

PFT = 182.5*DT*PPC*(QX + QK) - CST 
The expressions for calculation of total cost of 

operation are slightly different when in the first stage.
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In that stage the first five statements are replaced by 
FT = Ql/(AT*(DO - Pi))

FUPD = (365.*DT*QX*R-P1)/(365. *DT*FNU-l-0)
ST = QX/(AT*(DO - FUPD))
TT = (Q1-QX)/CX 
FRT = 182.5*(Ql-QX)*DT
The sixth statement will remain the same for all 

stages. A RETURN and an END statement will return the 
control of computations to the main program. Figure 9 shows 
a flow chart for the subprogram PFT.

Statement Function DLP 
C'umulative pressure drop of the field is shown by

AP^ and defined by

APt = Po - ?t

To compute the value of AP^ at any stage of develop­
ment a statement function DLP is provided in the main 

25program. The function is the Fortran equivalent of the 
numerical solution of the state equation of pressure. This 
equation, as discussed before, is a linear differential 
equation which describes the variation of the cumulative 
pressure drop of the field with time. The state equation 
of pressure, as derived in Appendices A and B, is in the 
form of

dAP^
dt- + Yt'APt = R.qt
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esno

OVPC=OC* (QX-Q ) **2 .

yesno AN=1.0

Compute
Production

Costs
Compute

Production
Costs

CST=Production Costs + OVPC 
PFT=Sale of Production - CST

Figure 9. Flow chart of the PFT Subprogram.
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The value of dAP/dt can be approximated by

dAP _ APn ~ 
dt “ At

Thus the approximate form of the state equation becomes

or
a iixx lA-Tj- n-rx

APn-APn+l + • it • = R-it-q„.+ i-

Solving for AP^^^ we will have

APn+1 “ (K-A-qn+i-APnl/lYn+i'AT-l.)-

The equivalent statement function is

DLP(G,P,W,) = (365.*DT*G/00/COMP-P)/(365.*DT*W/00/COMP-1.)

To obtain the value of AP^, this function should be supplied 
with

1. the estimated production rate of the field at 
(n+l)th stage, G

2. cumulative pressure drop of the field at the 
nth stage, P

3. water influx constant of the (n+l)th stage, W. 
The computed result DLP is rhe cumulative pressure drop of 
the field at the (n+l)th stage cf development.



The value of AP^, however, has to meet certain 
requirements as discussed below,

1, To acquire any flow from the reservoir into the 
wellbore, the reservoir pressure has to be higher than the 
bottom hole pressure.

or

By manipulating this inequality we obtain

or

Po - - iP'o -

Aq - AP^>0

and finally

2. Normally there is a decline in reservoir 
pressure with time and is greater than

Po - Pt>°

APj.>0



If the cumulative pressure drop of the nth stage, 
fed into the DLP function is unrealistically high it may 
overpower

365 o *DT*G/00/COMP

The result of the computations in this case would be a 
negative AP. To avoid this situation the function sub­
program GPTS is developed. This function tests the value 
of DLP and if it is a negative number a new P will be 
calculated, GPTS subprogram should be supplied with

1. the estimated rate of production, QIN
2. the pressure drop obtained from the DLP 

statement function, BP
3. pressure drop of the nth stage, EPTS
4. water influx constant of (n+l)th stage, SK.

The outcome of the subprogram is the modified value of the 
nth stage pressure drop. Substituting this value in the DLP 
statement function creates a positive pressure drop.

Beginning Experiments
Beginning experiments are the trials made at the

start of à search to decide which zone on the q - C plane
^ ^n

is favorable for further exploration. Starting at the point 
which was selected among the ten experiments, one begins to 
find the slopes of the profit function along both axes. 
Denoting this starting point by (QOB, COB) the value of its
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corresponding profit function would be

TPOB = PFT(QOB,COB,WIC(ISK),FN,QTS,CTS,PTS)

By running two other experiments in the neighborhood 
of (QOB,COB) and designating the pertaining profit values 
by TPlB, and TP2B we will have

TPIB = PFT(Q1B,C0B,WIC(ISK),FN,QTS,CTS,PTS)

TP2B = PFT(Q0B,C2B,WIC(ISK),FN,QTS,CTS,PTS).

Then the slopes of the profit surface in this vicinity and 
along and Cp^ axes are

m = SPIQM = (TP1B-TP0B)/(Q1B-Q0B) 
^n

and

= SPiCM = {TP2B-T0B)/DCB

Having m and m the slope of the line, 
^n ^n

-ACP.̂  - 0

becomes ;
SPOL = -SPlQM/SPlCM

Considering a point on this line with = QOL, its
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corresponding Cp^ will be

COL = COB + SPOL*(QOL-QOB)

Raising the value of COL by DCB, while keeping the previous 
= QOL. a new point (QOL, COL+DCB) will be located. The 

variation in the value of profit function,. DTPB is obtained 
by the statement

DTPB = SPlQM*(QOL-QOB)+SP1CM*(COL+DCB-COB)
Based on the sign of SPOL and DTPB one can decide which 
region of the - Cp^ is favorable for further exploration. 
Figure 10 is a flow chart of the routine which isolates the 
favorable segment of the plane. The results are in terms of 
whether to raise or lower the values of the variables when 
moving in the direction perpendicular to the line

Middle Strategies 
Having obtained the favorable section of the q̂ - Cp^ 

plane for further exploration, one tries to find the direc­
tion in which the profit function increases most rapidly.
This direction, referred to as the steepest ascent direction, 
has a slope of

TAN = SPIQM/SPICM

The movement along this path should continue as long as any 
significant improvement in the value of the profit function
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Figure 10. Determination of ALFA and BETA for the 
Middle Strategies.
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Final Search 

Final search begins from the point at which the 
middle strategies were terminated. To create the crosslike 
arrangement of the final search, an initial point (QF,CF) is 
located by

QF = QM 
CF = CM

Two other points, (QFl,CF) and (QF2,CF) having the same 
horizontal distance from (QF,CF), are also considered.
Their coordinates are:

QFl = QF + DQF 
CFl = CF

and
QF2 = QF - DQF 
CF2 = CF

Adopting new notations, the center of the cross has the 
coordinates of

GRFO = (GRFl + GRF2)/2.
CF = CM

where
GRFl = QFl 
GRF2 = QF2

The value of the profit function at the center point is 

TPF = PFT(GRFO,CF,WIC(ISK),FN,QTS,CTS,PTS)

The coordinates of the end points of the cross will be



(GRFl.CF), (GRF2,CF), (GRF0,CF3), and (GRF0,CF4). CF3 and 
CF4 in these coordinates are computed from

CF3 = CF + DCF 
CF4 = CF - DCF

The value of the profit function at each of the points is 
obtained from

TPFl = PFT(GRF1,CF,WIC(ISK),FN,QTS,CTS,PTS)
TPF2 = PFT(GRF2,CF,WIC(ISK,FN,QTS,CTS,PTS)
TPF3 = PFT(GRF0,CF3,WIC(ISK,FN,QTS,CTS,PTS)
TPF4 = PFT(GRF0,CF4,WIC(ISK)FN,QTS,CTS,PTS)

The following statements are used to compute values for AT̂  
at the end points of the cross.

DTPFl = TPFl - TPF 
DTPF2 = TPF2 - TPF 
DTPF3 = TPF3 - TPF 
DTPF4 = TPF4 -- TPF

Having values for AT^ at the end points, various slopes of 
the profit function can be determined as follows

m = SPIQ = (DTPFl - DTPF2)/(2.*(GRFl - GRFO))

m̂ .p = SPIC = (DTPF3 - DTPF4 )/(2. *DCF)

m „ = SP2Q = (DTPFl + DTPF2)/((GRFl-GRFO)*(GRFl-GRFO))9?,

'^n = SP2C = (DTPF3 + DTPF4)/(DCF»DCF)
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In order to determine which of the noninteracting 
or the interacting form of the Taylor series is more suitable 
for approximating the profit function a fifth point (QF5,CF5) 
is also selected. The coordinates of this point are

QF5 = GRF2 
CF5 = CF + DCF

The profit function at this point has a value of

TPF5 = PFT(QF5,CF5,WIC(ISK),FN,QTS,CTS,PTS)

Various terms of the Taylor series expansion of the profit
function at this fifth point are

m = Tl = SPlQ*DQFl

mcp *ACp^ = T2 = SP1C*DCF1

T3 = .5*SP2Q*DQF1*DQF1
T5 = .5*SP2C*DCF1*DCF1

Values for DQFl and DCFl in these statements are obtained 
from

DQFl = QF5 - GRFO
DCFl = CF5 - CF

Approximating the value of the profit function at (QF5,CF5) 
by the noninteracting form of the Taylor series gives

ÎPF5T - TPF + Tl + T2 + T3 + T5
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When the two values TPF5 and TPF5T are close enough, the 
noninteracting form of the Taylor series is suitable for 
purposes of a approximation and the :xnal search corrections 
are

CDQFl = - SP1Q/SP2Q 
CDCFl = - SP1C/SP2C

Presence of an intolerable difference, however, is an 
indication of the necessity of inclusion of the interaction 
term in the series. The following set of statements compute 
the final search corrections for this case.

FNUMQ = SPQC*SP1C - SP2C*SPlQ 
FNUMC = SPQC*SP1C - SP2Q*SPlC 
FDEN = SP2Q*SP2C - SPQC*SPQC 

CDQF2 = FNUMQ/FDEN 
CDCF2 = FNUMC/FDEN

The variables CDQF2 and CDCF2 are the correction values and 
SPQC is eqivalent to the slope m _ .

The corrections obtained in both of the noninter­
acting and interacting approximations are valid only if they 
are confirmed by the maximum point test. In accordance with 
this test the value of

at the maximum point has to be a negative one. and
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ACp^ 2  in this expression are the computed corrections in 
either of the two cases which are also shown by H and XK.
Thus if the value of

TST = SP2Q*H*H+2.*SPQC*H*XK+SP2C*XK*XK

is negative the more accurate maximum point or the profit 
function has the coordinates of

QF = GRFS(1)+H 
CF = CF+XK

The flow chart of Figure 11 pertains to the final search 
segment of the program.

Sequential Decision Making 
All phases of the search procedure described above 

must be carried out for every stage of the study period.
The values QF and CF which are computed at any stage n are 
the optimal values of the variables pertaining to the (n+l)th 
time interval of the planning horizon. Feeding these values 
back into the routine at the (n+l)th stage, one computes 
optimal values for the (n+2)th stage. By repeating this 
procedure the optimal values of the variables are obtained 
for all times. An exception to this general practice is the 
first stage of the period. Since there are no computations 
prior to the first stage we have to have estimated values
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Figure 11. Final Search Flow chart.
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for and before the start of optimization. These 
values must be read into the program in the form of known 
data, Q1 and Pi.

A complete list of the program as executed on IBM 
1130 is shown below.

List of the Program
// JOB T 
// FOR
*ONE WORD INTEGERS 
*EXTENDED PRECISION

FUNCTION GPTS(QIN,BP,EPTS,SK)
COMMON 00,COMP,DT,PPC,CDW,COW,CIS,OCS,Ql,DO,AT,Pl,Q
GPTS=BPTS
IF (BP)471,471,472

471 R=1.0/(00*COMP)
FNU=SK/(00*C0MP)
DESC=365.*DT*FNU-1•0 
IF(DESC)671,671,672

671 GPTS=1.01*365.*DT*QIN*R 
RETURN

672 GPTS=0.99*365.*DT*QIN*R
472 RETURN 

END
// DUP
* STORE WS UA GPTS
// FOR
*ONE WORD INTEGERS 
*EXTENDED PRECISION

FUNCTION PFT(QX,CX,SKX,AN,QK,CK,PK)
COMMON 00,COMP,DT,PPC,CDW,COW, ClS,OCS,Q1,DO,AT,Pi,Q 
R=1.0/(00*COMP)
FNU=SKX/(00*C0MP)
GQPFT=.98*(365.*DT*FNU*DO-DO+ PK)/(365.*DT*R)
IF(QX-GQPFT)475,475,474 

475 XPDC=0.0 
GO TO 481 

474 XPDC=365.*DT*((QX-GQPFT)**2.0)
481 IF(QX-Q)700,700,701
700 OVPC=0.0 

GO TO 702
701 OVPC=365.0*DT*.0022*((QX-Q)**2.0)
702 IF(AN-1.0) 25,25,27
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25 FT=Q1/(AT*(DO-Pl) )

FUPD=(365.*DT*QX*R-Pl)/(365.*DT*FNU-1.0)
ST=QX/(AT*(DO-FUPD))
TT=(Q1-QX)/CX 
FRT=182.5*(Ql+QX)*DT 
FIT=(CX)**.6 
GO TO 29 

27 FT=QK/(AT*(DO-PK))
FUPD=(365.*DT*QX*R-PK)/(365.*DT*FNU-1.0)
ST=QX/(AT*(DO-FUPD) )
TT=QK/CK-QX/CX 
FRT=182.5*(QK+QX)*DT 
FIT=(CX)**.6

29 CST=(FT-ST)*CDW+FRT*(COW+OCS)+TT*FIT*CIS+OVPC+XPDC 
PFT=182.5*DT*PPC*(QK+QX)-CST
RETURN
END

// DUP
* STORE WS US PFT
// FOR
*IOCS(CARD, 1132 PRINTER, DISK)
*ONE WORD INTEGERS 
*EXTENDED PRECISION 
*NAME OPTMM
** EBNOLNASSIR ENI00201

DIMENSION QKPT(40) ,CKPT(40) ,PKPT(40) ,TPBX(10) , 
IQBEX(IO) ,CBEX(IO) ,PBEX(IO) ,WIC(20) ,GRFS (3)
COMMON 00,COMP,DT,PPC,CDW,COW,CIS,OCS,Ql,DO,AT,Pi,Q 
DLP(G,P,W)=(365.*DT*G/00/C0MP-P)/(365.*DT*W/00/C0MP-L) 

C G=GR,P=PB,ANDW=WIC)
1=2
J=3
READ(I,10)Q1,QI,D,DT,YRS,DPO 

10 FORMAT(2F10.0,F8.3,F10.5,F5.1,F10.2)
READ(I,30)00,COMP,Pi,PPC

30 FORMAT(2e 10.3,F10.1,F10.3)
READ(1,40)CDW,COW,CIS,OCS,DO,AT

40 FORMAT(F10.1,F10.4,F10.1,F10.4,FI0.1,F10.2)
READ(I,50)IC,CMIN 

50 FORMAT(14,FlO.O)
FWIS=YRS/DT
IWIS=FWIS
READ(I,400)(WIC(IWIC),IWIC=1,IWIS)

400 FORMAT(FlO.O)
CTS=0.0 

200 SUI4=0.0 
FN=I.0 
QTS=Q1 
PTS=P1

1 PWR=D*DT*(YRS/DT-FN-1.0)
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Q=QI*EXP(PWR)
C=Q
QMIN=.2*Q
WRITE (J, 22) Q,C,QMIN,CMIN 

22 FORMAT (lOX, 15HQ,C,QMIN, CMIN, 4EI4.6)
SCHC=FN+1.0
ISK=SCHC
SZQ=(Q-QMIN)/1G.0
SZC={C-CMIN)/10.0
SSQ=ABS(SZQ) TV T» r* / o  \

rxuo \ o J
DO 58 IBX=1,I0 
XIBX=IBX
QBEX(IBX)=Q-XIBX*SSQ 
CBEX(IBX)=C-XIBX*SSC 
BPBEX=DLP(QBEX(IBX),PTS,WIG(ISK))
GQ=QBEX(IBX)
PBEX(IBX)=DLP(GQ,PTS,WIC(ISK) )
TPBX(IBX)=PFT(GQ,CBEX(IBX),WIG(ISK),FN,QTS,GTS,PT5)

58 GONTINUE
TEMPP=TPBX(I)
DO 42 JBX=1,10
IF(TEMPP-TPBX(JBX) ) 203,203,42 

203 IG2=JBX
TEMPP=TPBX(JBX)

42 GONTINUE
WRITE (J, 220) QBEX (IG2) ,GBEX(IG2) ,PBEX(IG2) , TPBX (IG2) , IG 2 

220 FORMAT(lOX,25HQBEX,GBEX,PBEX,TPBX,IG2,4E14.6,15) 
QGIBX=QBEX(IG2)
GGIBX=GBEX(IG2)
DQB=.02*SSQ
DGB=.02*SSG
NIPG=0
IBXG=1

501 BPOB=DLP(QGIBX,PTS,WIG(ISK))
QOB=QGIBX
GOB=GGIBX
PTS=GPTS(QOB,BPOB,PTS,WIG(ISK) )
TPOB=PFT(QOB,GOB,WIG(ISK),FN,QTS,GTS,PTS) 
BP1B=DLP(Q0B+DQB,PTS,WIG(ISK))
QlB=QOB+DQB
PTS=GPTS(Q1B,BP1B,PTS,WIG(ISK))
TPlB=PFT(QlB,GOB,WIG(ISK),FN,QTS,GTS,PTS)
TP2B=PFT(QOB,GOB+DGB,WIG(ISK),FN,QTS,GTS,PTS)
SPlQM= (TPlB-TPOB)/(QlB-QOB)
IF(SPlQM)01,54,51 

54 WRITE(J,140) IBXG 
140 FORMAT(1OX,28HN0 STEEPEST DIREGTION EXISTS,15)

QF=QOB 
GF=GOB 
GO TO 65
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61 SP1CM=(TP2B-TP0B)/(DCB)

S POL=(-1.0*SP1QM)/SPICM 
ÏAN=SP1CM/SP1QM
WRITE(J ,820) TPlB,TP2B,SPlQM.TAN 

820 FORMAT(lOX,21HTP1B,TP2B,SPlQM,TAN,4E14.6) 
BPOL=DLP(QOB+DQB,PTS,WIG(ISK))
QOL=QOB+DQB
PTS=GPTS(QOL,BPOL,PTS,WIC(lSK))
COL=COB+SPOL*(QOL-QOB)
DTPB=SP10M* fQOL-OOB)+SPlCM*(COL+DCB-COB) 
IF(SPOL)151,151,153 

151 IF(DTPB)155,155,157 
155 ALFA=-1.0 

BETA=-1.0 
GO TO 5 3 

157 ALFA=1.0 
BETA=1.0 
GO TO 53 

153 IF(DTPB)159,159,161 
159 ALFA=1.0 

BETA=-1.0 
GO TO 53 

161 ALFA=-1.0 
BETA=1.0 

53 ISAC=0
WRITE(J,810)DTPB,PTS,ALFA,BETA 

810 FORMAT(lOX,20HDTPB,PTS,ALFA,BETA,2e 14.6,2F5.2) 
57 TPOM=PFT(QOL,COL,WIC(ISK),FN,QTS,GTS,PTS) 

BQM=QOL+ALFA*DQB 
B PM=DLP(BQM,PTS,WIG(ISK))
QM=BQM
PTS=GPTS(QM,BPM,PTS,WIG(ISK))
ADQ=ABS(QM-QOL)
POSDC=ABS(ADQ*TAN)
GM=GOL+BETA*POSDG
GRTR2=PFT(QM,GM,WIG(ISK),FN,QTS,GTS,PTS)
GRTRN=(GRTR2-TP0M)/TPOM 
IF(GRTRN-.OOOS)62,55,55

62 NIPG=NIPG+1 
QBEX(NIPG)=QM 
GBEX(NIPG)=GM 
QM=QBEX(1)
GM=GBEX(1)
GO TO 59 

55 ISAG=ISAG+1 
NIPG=0 
QOL=QM 
GOL=GM
IF(ISAG-20)57,57,59



59 IBXC=IBXC+1
IF(IBXC-S)505,505,65 

505 QGIBX=QM 
CGIBX=CM 
GO TO 501 

65 DQF=.005*SSQ 
DCF=.005*SSC
WRITE(J,II)QM,CM,CRTR2,IBXC,ISAC 

11 FORMAT(lOX,23HQM,CM,CRTR2,IBXC,ISAC,3E14.6,2l5) 
QF=OM 
CF=CM 
ISP=I 

713 QFI=QF+DQF 
CFI=CF
BPFI=DLP(QFI,PTS,WIC(ISK) )
GRFI=QFI
PTS=GPTS(GRFl,BPFI,PTS,WIC(ISK))
TPFI=PFT(GRFI,CFI,WIC(ISK),FN,QTS,CTS,PTS)
QF2=QF-DQF
CF2=CF
BPF2=DLP(QF2,PTS,WIC(ISK))
GRF2=QF2
PTS=GPTS(GRF2,BPF2,PTS,WIC(ISK))
TPF2=PFT(GRF2,CF2,WIC(ISK),FN,QTS,CTS,PTS) 
GRFO=(GRFI+GRF2)/2.0 
GRFS(ISP)=GRFO
TPF=PFT(GRFO,CF,WIC(ISK),FN,QTS,CTS,PTS)
DTPFI=TPFI-TPF
DTPF2=TPF2-TPF
QF3=QF
CF3=CF+DCF
TPF3 =PFT(GRFO,CF3,WIC(ISK),FN,QTS,CTS,PTS)
DTPF3=TPF3-TPF
QF4=QF
CF4=CF-DCF
TPF4=PFT(GRFO,CF4,WIC(ISK),FN,QTS,CTS,PTS) 
DTPF4=TPF4-TPF 
IF(ISP-l) 730,731,730 

731 WRITE(J,482)GRFO,CF,TPF,BPFI,PTS 
482 FORMAT(IOX,22HGRFO,CF,TPF,BPFI,PTS,5E14.6)
730 SP2Q=(DTPFI+DTPF2)/((GRFl-GRFO)* (GRFl-GRFO)) 

SPIQ=(DTPFI-DTPF2)/(2.0*(GRFl-GRFO))
SP2C=(DTPF3+DTPF4)/(DCF*DCF)
SP1C=(DTPF3-DTPF4)/(2.0*DCF)
QF5=GRF2
CF5=CF+DCF
TPF5=PFT(QF5,CF5,WIC(ISK),FN,QTS,CTS,PTS)
DQFI=QF5-GRF0
DCFI=CF5-CF
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T1=SP1Q*DQFL
T2=SPlC*DCPL
T3=.5*SP2Q*DQF1*DQF1
T5=.5*SP2C*DCF1*DCFI
TPF5T=TPF+TL+T2+T3+T5
DIFF=TPF5-TPF
T6=DQF1*DCFI
SPQC=(DIFF-T1-T2-T3-T5) /T6 
WRITE(J,483)TPF1,TPF2,TPF3,TPF4

483 FORMAT(lOX,2iHTPFl,TPF2,TPF3,TPF4,5EI4.6) 
WRITE(J,484)5P2g,SPiQ,5P2C,5PiC

484 FORMAT(10X,21HSP2Q,SPIQ,SP2C,SPIC ,5E14.6) 
WRITE(J,485)TPF5,TPF5T,DIFF,SPQC

485 FORMAT(lox,22HTPFS,TPF5T,DIFF,SPQC,5E14.6) 
IF(ISP-l)711,711,712

711 TOL=(TPF5-TPF5T)/TPF5
IF (ABS (TOL)-.01) 81, 81, 73 

81 CDQF1=-(SPlQ)/SP2Q 
CDCF1=-(SP1C)/SP2C 
H=CDQF1 
XK=CDCF1 
DQF=H 
DCF=XK 
GO TO 717 

73 FNUMQ=SPQC*SPlC-SP2C*SPlQ 
FNUMC=SPQC*SPlQ-SP2Q*SPlC 
FDEN=SP2Q*SP2C-SPQC*SPQC 
CDQF 2=FNUMQ/FDEN 
CDCF2=FNUMC/FDEN 
H=CDQF2 
XK=CDCF2 
DQF=H 
DCF=XK 

717 ISP=ISP+1 
GO TO 713

712 TST=H*H*SP2Q+2.*H*XK*SPQC+XK*XK*SP2C 
IF(TST)3,5,5

3 QF=GRFS(1)+H 
CF=CF+XK
WRITE(J,230)QF,CF,H,XK 

230 FORMAT(10X,12HQF,CF,H,XK,4E14.6)
5 OPPFT=PFT( QF,CF,WIC(ISK),FN,QTS,CTS,PTS) 
SUM=SUM+OPPFT
WRITE(J,20)QF,CF,OPPFT,SUM,FN 

20 FORMAT(lOX,20HQF,CF,OPPFT,SUM,FN,4E14.ô,F5.1) 
IF(FN-1.) 12,12,14 

12 GRFS(3)=PTS 
14 QTS=QF 

CTS=CF
PTS=DLP(QF,PTS,W1C(ISK))
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FN=FN+1.0 
SIND=YRS/DT-FN+I.0 
IS=SIND 
QKPT(IS)=QF 
CKPT(IS) =CF 
PKPT(IS)=PTS 
IF(FN-YRS/DT)1,100,100 

100 EIND=YRS/DT 
IE=EIND 
QKPT(IE)=Q1 
CKFT(IE) =CKPT(IE-1)
PKPT(IE)=GRFS(3)
DO 291 JWR=1,IE 
IF(CKPT(JWR)-CMIN)815,817,817 

815 CKPT(JWR)=CMIN
817 WRITE(J,34)QKPT(JWR),CKPT(JWR),PKPT(JWR) 
291 CONTINUE 
34 FORMAT(3E16.6)

STOP
END



CHAPTER VII

APPLICATION

The theoretical and numerical techniques of the 
last two chapters will be utilized to study the case 
described in this Chapter. Most of the numerical values 
used for this purpose are taken from papers published by 
Nahai, Ion and Graham on a govamment owned field in the 
Middle East.^G'^G'^S

The field was discovered with an original reservoir
pressure of 3559 psi. The estimated value of the reserves 
is 8.5 billion barrels of tank oil with an average compress­
ibility factor of 6 .8 *1 0 "’̂ psi” .̂ Refinery limitations
do not; allow any water production from the field and

!
artificial lift, and fluid injection are not practiced as 
as of this date, A pressure drawdown of 50 psi resulted in 
a production rate of 14,288 BPD from one well. It is 
estimated that a constant bottom hole pressure of 2200 psi 
prevails throughout the entire study period. The value of
A is then

Q

Ao = pQ -

— 3553 — 2200 = 1359 pai
107



The average value of the productivity constant is 
estimated to be 10.2 BPD/psi/well. The average reservoir 
pressure at the beginning of the study period is 3525 psi. 
Thus the initial pressure drop, AP^ = P^ - P̂ , becomes

AP_ = 3559 - 3525 = 34.0 psi

The jjroductxon rate of the freld at thrs txme is

q = 85,000 BPD.

Considering a five year study period and dividing it into 
ten equal time intervals, we have

At = .5 years = 6 months

In other words there will be ten stages in the dynamic 
programming optimization in this example. Water influx 
constants K are estimated for each one of the stages and 
recorded in Table 3. Cost analysis parameters are

1. cost of drilling a 6000. _foot well with a 
$40.0/ft becomes

C^^ = $240,000.

2. initial cost of a production unit with a 
capacity of 150,000 BPD is estimated at $500,000. The 
initial cost of a unit with a capacity of C^^ is computed 
from

C^g = 500,000. *(C ^/150,000)'G
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TABLE 3 
ESTIMATED WATER INFLUX 

CONSTANTS OF THE VARIOUS STAGES

n 1 2 3 4 5 6 7 8 9 10

1230 1260 1300 1354 1427 1523 1652 1829 2067 2382

TABLE 4
COMPUTED OPTIMUM VALUES OP THE VARIABLES

Time Period Production Rate 
BPD

Optimum Capacity Increase of 
the Processing Facilities, BPD

1 .851*10^ .873*10®
2 .886*10^ .968*10®
3 .923*10^ .982*10®
A .958*10^ .101*10®
5 .997*10^ .105*10®
6 .103*10^ .109*10®
7 .108*10^ .119*10®
8 .112*10^ .279*10®
9 .117*10^ .500*10®
10 .127*10® .500*10®
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or

=is =

3. Operating cost of the well is taken to be 80* 
per barrel.

4, Operating cost of the production unit is 
estimated at 20* per barrel.
Market demand is assumed to have a constant annual increase 
of 8 per cent, and a sale price of two dollars per barrel of 
crude oil is used in calculations.

To enter the optimization routine, estimated values 
for the production rate and the cumulative pressure drop of 
the first stage are required. Following values are used for 
this purpose.

AP- = ? - P̂ , = 3559-3449 = 1101 o tl

qi = q^*e"°G*5 = 8S,000*e'^ = 127,000

The output is summarized in Table 4. Some of the results 
computed by the machine were checked by means of hand 
calculations.

To observe the effect of time increment on the 
computational results, two separate runs were made, one with 
a six month and another with a three month time interval.
The computed production rates of the two runs were in 
excellent agreement. However, a mild oscillation in the 
value of the processing capacity was noticed.



CHAPTER VIII 

CONCLUSIONS

1. A mathematical model, based on the system 
theory notation, for simulation of the development opera­
tions of an oil field was devised.

2. Various elements of the development cost of a 
production system are computed by using a set of derived 
expressions.

3. To discourage excessive productions beyond the 
market demand or over the reservoir potential, an expres­
sion is introduced to compute the overproduction cost.
This cost which acts as a penalty function increases very 
rapidly with the overproduction and allows only small 
amounts of excessive production in some of the stages.

4. A function for computation of the total profit 
of a typical oil field operation is developed.

5. To determine numerical values for the parameters 
of the profit function suitable expressions, procedures, and 
sources of information are given.

6. Practical constraints on the variables of the 
field are pointed out.

Ill



7. The recursion equation of dynamic programming 
for determination of the optimum development plan of the 
field is obtained.

8. A procedure, based on the steepest ascent con­
cept and the Taylor series expansion of the profit function, 
is developed to determine the optimum points of the criterion

IS •

9. Fortran coding and the numerical analysis per­
taining to the entire routine is worked out and presented 
in the report.

10. A production system of unlimited potential with 
a constant annual increase in the demand is presented for a 
numerical example. The procedure proved to be applicable 
for determination of the optimum values of the variables of 
the system.

11. Necessity of further research using more crit­
ical field variables is hereby acknowledged. The optimum 
solution to a production system is sensitive to the form of 
the criterion function and the values of its parameters.
The related sensitivity analysis should be made in the 
future. Maximization of the profit functions containing 
more than two variables is also recommended as a subject 
for new investigations.



NOMENCLATURE

A^ = constant in productivity equation
Bg = gas formation volume factor
Bgi = initial gas formation volume factor
Bq = oil formation volume factor

= initial oil formation volume factor

®t = Sc
C = the compressibility factor of oil
Cj = cost of drilling

= cost of drilling a well 
= initial cost of a separation station 
= cost of operating a well per unit time

Cp = the capacity of a separation station in stock tank
barrel of crude processed per day 

= cost of wells
d = constant percentage of yearly increase in the market

demand
A = time increment between two subsequent stages of

the system
Aq  = original reservoir pressure minus the average

bottom hole pressure

113
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AP original reservoir pressure minus the average 

reservoir pressure at time, t
AP, value of AP at the initial time point, t^.

AT^ (n) pi

ÛV

E(P;

change in reservoir fluid volume 

^  = ®o- »oi+ Bg '«si- (Bg- Bgi)

= X,

YÂ
Qi" + T

E' (P) dE(P)
dP

F(P) cp,W ^s®g

F' (?) -dF(P)
dP

CPr

B,
mB .

Bo- Boi+ Bg<*si- - bT  'Bg- Bgi)9—
^O- ^s' Bq

mB .
Bo- Boi+ B (R,i- R,) + (B - B )

g i   ̂ ^

cp,.. mB
Bo- Boi+ Bg(R,i- R,) + 5 ^  (Bg- Bgi)

= cumulative volume of gas produced, standard
conditions
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cPr
H(P) =Bg

H' (P) =

= ^t ’ NC

m = ratio of initial gas-reservoir volume to initial
reservoir oil volume

MDj, = market demand at the nth stage of development
m = the slope of the profit surface in the q
^n

direction
m__ = the slope of the profit surface in the Cp_n

direction
N = volume of original oil in place, stock tank

conditions

Y = A
= number of producing wells at time, t 

0^ = proportionality constant of the overproduction
function

= operating cost of a separation station per unit 
production 

= reservoir pressure at time, i
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Pq = original reservoir pressure
Ppg = sale price of one barrel of crude oil

= average reservoir pressure at time, t 
Q = cumulative volume of oil produced in terms of

stock tank volume 
= cumulative volume of water injected into the 

reservoir
= dW/dt = the rate of water influx at time, t 
= dGp/dt = the rate of gas production at time, t, 

standard volume per unit time 
q^ = dQ^/dt = the rate of water injection at time, t
q = dQ/dt = the rate of oil production at time, t
q„_ = dW /dt = the rate of water production at time, twp p

^ NC
Rp = producing gas oil ratio
Rg = solution gas oil ratio
R g = initial solution gas oil ratio
SU^ = number of separation stations in operation at time, t
t = time
Tp = total profit of the entire study period
T _ = cumulative profit made beginning from the IthP» 1

stage to the end of the study period
Tp(n) = profit of the nth stage
max T _= maximum value of TPol p,I
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Wg = volume of encroached water
W = cumulative volume of produced water

1
= I" + ■ "dt
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APPENDIX A

STATE EQUATION OF PRESSURE - ABOVE BUBBLE POINT

Reservoir pore volume, assumed to be a constant, is 
a container for N stock tank barrels of original oil in 
place. When the pressure on the oil within this container 
is reduced the volume of oil changes. Any increase in the 
volume of oil would be equal to the amount of oil withdrawn 
(produced) from the container. The definition of compress­
ibility factor of oil at constant temperature is^^

r = ZÉY _  AV
VdP “ V-AP

or

c = —  ^2-^1 _ _  change in the volume of original oil
VfPg-Pi) N(P^-Pq )

Now the volume change of N is really equal to the 
amount of production minus the volume of the material which 
has entered the reservoir pore volume. With these details 
one can conclude that

Q+Wp-Qi-We Q+W^-Q^-W^
N(P^-P^) N(P^-P^)
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from which

"o - ^  = sè [O+Wp-Qi-W^]-

Differentiating this last expression with respect to time, 
t , we will have

dAP 1 r 14̂- “ Mr J *

Water Influx Rate
In may cases a steady state water influx may be

, 55 The rate at which water enters a field is assumed.
directly proportional to the decline in reservoir pressure.
Assuming that the pressure in the water bearing strata
remains the same, the pressure difference between that
and that of the oil and gas reservoir is P. - P • P is ̂ t o o
the original reservoir pressure and P^ is any subsequent
value.. The flow of water to the reservoir, by Darcy's law, 
.15,43IS

%,e = %  = K[Pp-P^] = K-iP

where K is the water influx constant.
Using q^^=K*AP in the previous state equation of 

pressure it may be concluded that

_ L- Cq+q^n-q.-K'AP] dt ~ NC wp 1



I /o

and
ÉÙ2 + _K .AP = ^ — "hdt ^ NC NC

Let Iç, =Y and ^  = R, then

%  + Y-AP = r -(q + q„p ~ q^)

This last expression is the state equation of pressure of an 
oil field above bubble point.



APPENDIX B

STATE EQUATION OF PRESSURE - BELOW BUBBLE POINT

In order to obtain an expression explaining the 
variation of pressure with time, which could be applicable 
to both above and below the bubble point pressure, one may 
make use of the material balance e q u a t i o n . T h i s  equation 
is a statement of the law of conservation of matter as 
applied to the gross fluid contents of the oil reservoir.

Upon the start of production from an oil reservoir, 
there will be changes in volumes of oil, gas and water 
present in the reservoir. However, the volume of the reser­

voir is assumed to remain constant. Thus the general mate­
rial balance equation is a volumetric balance which states 
that the algebraic sum of the changes in volumes of oil, 
gas and water must be zero. In the form of an algebraic 
equation the following relation is valid.

NB^^- (N-Q) B q
NmB .
- B ^  + HR3. - QEp -(M-OIRg

= [Wa + Qi - Op ] •
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i^b
The symbols used in this balance are defined below.

N = stock tank volume of original oil in place
B . = initial oil formation volume factoror
Q = cumulative stock tank volume of oil produced
B = oil formation volume factor^' o
rr\ —  V O + - - Î / - H  *~\ f  V C 5  o  Û  T V" /-f a  c  3  T T 1 11 m  o  f- r\ Y“ o e o v —

voir oil volume
Bg^ = initial gas formation volume factor

= initial solution gas-oil ratio
Rp = producing gas-oil ratio
Rg = solution gas-oil ratio
Bg = gas formation volume factor
W = cumulative volume of encroached watere

= cumulative volume of injected water
Qp = cumulative volume of produced water

If this expression is solved for N, the following 
result will be obtained.

mB .
Bo- Boi+ B (Rsi- Rs)+ -g-T (B - B .) ̂ gi  ̂ ^

Now according to Tracy, we can define cp̂ , cp̂  and cp̂  as
59follows

=
Bo- V g

Q mB_i
Bo- B 0 I+ Bg(R,i- Rg)+ (Bg- Bgi)



=G mB .
Bo- ®oi + BgfBsi- "s>+ Ë 5 7  <Bg- »gil

mB .
Bo- Boi + Bg(Rsi- Rs)+ B--- (B^- Eg^)

Since cpg, cp̂ and cp̂  are functions of reservoir pressure 
only, the expression for N could be rewritten as given 
below.

N = Q'9g(P)+ Gp-cp̂ (P) - (Wg+ Q^- Wp)cp^(P).

If we divide both sides of this equation by cp̂  and make 
some rearrangements the following relation will be obtained

[«e+ Qi- Wp] = Q ̂  + Gp ̂

Now let

®o- «S- Bg
and



then

[Wg+ Q^- Wp] = Q«F(P)+Gp- H(P)-N-E(P).

Differentiating this expression with respect to time will
give

at Qi- ^[Q-F(P) +Gp-H(P)-H-E;p)

dw dQ. dw.
 r. A i _dt dt dt

dG
II °F(P)+ ^  °H(P) - H “E(P) +

or
dG

9e+ %i- %wp = dt "F(P)+ dt 'H(P) +

denoting

' ^ 3 ^  and ^ 11^ by F'(P), H' (P) and E' (P)

respectively, this equation becomes

[n -E- (P)-Q-F' (P)-G -H' (p)] • H  = g-F{P)+q -H(P)

9i- %p)



Numerical value of E'(P) could be obtained by plotting E(P) 
against pressure. The slope of these curves at any partic­

ular pressure is the value of E ‘(P) at that pressure. Values 
for F '(P) and H'(P) can be computed in a similaj fashion.

At a given reservoir pressure let us adopt the fol­
lowing notations

E' (P) =

F ‘ (P) =

H'(P) = Cg

and
q

instantaneous producing water-oil-ratio = = a^

Siinstantaneous injecting water-oil-ratio = = a^

instantaneous producing gas-oil-ratio = 

Substituting these values in the last equation we will have

^N'a^- Q°C^- j - ^  - q^F(P)+q = Rp = H(P) - q̂

or

[N»a^~ Q.C^- Q.Rp C^] ■ If = q [F{P)+Rp»H(P)+a3- a^ j -q.



Adopting a further notation AP=P^-P and assuming that 
could be obtained from the steady state equation qg=K*Ap 
then the previous differential equation becomes

[ « • « r  o ( C i +  R  - C j ) ]  • 1 ^ 1  =  q -K-A P

dAp ^ ________K__________
dt N-a^- 0(Ci+R Cg) AP -

q • lF (P) +Rp“H (Pj+a^-a^]
N-a^- 0(Ci+R -Cg)

The form of this equation is the same as the one 
in the previous appendix, i.e.

dAPdt" + Y'AP = R(P) f(q,qwp,qi,qg)



APPENDIX C 

STATE EQUATION OF RATE OF PRODUCTION 

The state equation of pressure developed in Appen­
dix A is

dAp
dt + Y'AP = R"(q + - q̂ )

The rate of production was assumed to be represented by 

q . n^-A^CPt- P„] = n^.A^.Cp^- P^- (P^- P^)] 

q = n^-A^[A^- AP] 

q = n^"N*C»3^-[A^- Ap]

^ “ R ””t°^t°^^o~

q = (^^/R) '[Ag- AP] 

from which

AP = A^- (R.q/X^)
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Differentiating the expression for q with respect to time t 
we will have

É3 = 1dt R

dq 1 
dt - R

É3 _ 1dt R

at- dt [A^- Ap]

dt- LAo- APJ+
dA o dAp
dt dt

dA
dt ^^o dt "t dt '̂ t

Since it was assumed that the flowing bottom hole pressure 
remains the same throughout the operation then

dA
[P_- P,J =

dP_ dp
dt dt o w dt dt =  0

and
É3 = 1dt R

dA.
dt- [a - AP] -

dAP
dt

Considering

and from the previous appendix

dAP
dt = R ” (q + q ^ -  q^) -y °AP

then



JL J D

R

ÊSldt

ÊS.dt

É3dt

l / m a  fit _ XR\ X, d u u R (S+Swp-Si'-Y'Ao- f^>]

^ l i
JJ

H''‘odA.̂_
' d±- - ^t% - ^t^wp+^t'^i+ R - Yq-

After some rearrangement and factorization

YA,
\?p R

Let

and
YA,

q, -■‘I t'

the state equation of rate of production would then become

at + %t- 9 =



APPENDIX D

SOLUTION OF THE STATE DIFFERENTIAL EQUATIONS

The state equations developed in the previous 
appendices are of the general form of

Il + y.f (x) = g(x) .

The solution of such a differential equation can be obtained
by making a total derivative out of the left hand side of

gthis differential equation. To accomplish this task one 
has to multiply both sides of the equation by a function 
cp(x) . The result would be

<?(x) Il + y-cp(x) -f (x) = cp(x) .g(x) .

In order to have a total derivative in the left hand side, 
cp(x) “f(x) must be equal to dq)(x)/dx. In an equation form we 
should have

= <P(x) 'f(x)

From this last equation one may compute the value of 
unknown function cp(x) as carried out below.

1 3 6



t3cp(x)
dx = cp(x) • f (x)

or
dcp(x)
cp(x) = f (x) " d>

One particular solution to this equation is

^ cp (x) = I f (x) dx

or

cp(x) = eff(x) -dx
Having the exact expression for cp{x) the original 

differential equation can be written as

/ ‘f (x) dx I f (x) dx
dy

' a; + y-s
f (x) dx 

f(x) = e °g(x)

or
yi (x) dx ‘

dx y» e
f (x) dx 

= e ”g{x)

and
rE (x) dx J f(x)dx

d Jy - e = e -g(x) dx.

By integrating this expression we will get

J~f(x)dx r J'f(x)dx

l g { x )  '
J

y e  =  l^ g { x )  ’ B  -dx + C



1 lO

from which r r r
f (x) dx r /f(x)dx -/f(x)dx

y = e °jg(x) e -dx + C e

or

■dx + C
f (x) dX|- ̂  Jf (x) dx

y = e IJg(x) e

This expression holds for all values of x, i.e.

y = e
[-[f ( X) dx]
V x=x

[rf(x)dx]
/g(§)e-' dS

§=x
+ c)

To evaluate the constant of integration C one has to sub­
stitute the initial condition in this solution.

Yo = e

from which

f - f  f (x) dx] , [ f f  (x) dx]
g(5)e J x=5 d§ + c

l=x.

c = y^ e
[jf (X) dx]

x=x
[jf(x)dx]

fa(5)e^ - 5 , 5
§=X,

Having obtained the value of C the general solution 

would be



1 39

-f
f (x) dx

y = e x=x 9(5) e
J f (x)dxj

x=§ d§ +

r r . . .  . . 1o -|J9lS)e - asj
S=x,

One can factorize y^e , and then

[ - I f (x) dx] [ ff (x) dxl
x=x g ; Jx=x.

I fr> Ljf(x)dxJ
jg(§)e d

1 +

If9(5) e' d§

o y^e

5—Xn

[Jf (x) dx]
New since e * is a constant, it can go under the
integral sign of the numerators. Therefore

^o
5=x _

V /g,5)
Jf(x)(X)dx]

X=§

x=x

Jf (x) dx]
x=x

ys=x o
G(§)

I -

i f

[x) dx 
'x_ iFIF I

J?=x



By the same token

1_
9(5) e

Jf (x) dx]
x=§ d§ §=x.

(x) dx]
x=x

9 (5)
f[ff{x)dxl -[ff(x)dxl 1

.2 ^  }a;

5 J
Ç  J f (x) dx -j
Jg(5)e*o dsj

S=X.

y. §=x.

Substituting these two expressions in the previous general 
solution for y we will have

y = y^e
[-If (x) dx] [ [ If (x) dx]

J  x=x )  ^ x=x 1 +

./■
/ f (x) dx

9(5) e*o dS
§=x ^o

f(x)dx

9(5) e*o dg
§=x

or
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-<[Jf(x)dx] -[Jf (x) dx]
y = y^e I x=x x=x

f (x) dx
1 X n\i. + —  j gibjc -

■'X

and finally

/

J L
Yr.

i X

= e
- I f (x) dx

( 1 +
f(x)dx

) e^° d§ )-

\



APPENDIX E

SOLUTION OF DIFFERENTIAL EQUATIONS 
OF AP AND q

Appendices A, B and C were devoted to the develop­
ment of state equations for AP and q.

The general format for all of these equations were 
of the form

^  = f (x) -y = g(x) .

The solution for AP and q therefore, is simply the
application of Appendix D to these equations.

1. Solution for AP.
The state equation is

dAP
dt + Y-Ap = R" (q + q„p- q̂_)

whose solution according to Appendix D is 

■t
y "dt

AP R“ (q + q^- qj
L T

Y°dt
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2. Solution for the Rate of Production, q.

The state equation of q, as developed in Appendix C is

I t  + h-'ï = ’If

Tliê aui.uuj.uii uu UiiLS ul lu e ^e n u ±a u  uj_uu J.a

A dt r t

+ y-j n -e^° dT).
^o t

Substituting for the variables §. and r). one will have

I IT - tRT dt]‘•to to T- j dT

[["(v+xpat i - ^ d t ]

now since64

r + f -  f
to=

2n X

= e
0n

to _= e



and

-r r dt - f
dX
X ~ Iki X S/n X X

= e = e = e

then

g _t gto YA,

or

eto
o

-J (Y+^t)dt

J" (Y+k^)dt
e^° dT>

/■

Y_A j
1  + j| (qi- q^pf -ir^ie"o t

y  (Y+^t)dt  ̂
dT>

doing some substitutions, the expression for q/q^ finally 
becomes

- f

%

(Y+n^p^)dt r

( 1  +

fV o
\  ^wp' R •■
o

I ) o dt
dT

This is a relation between the rate of production and the 
number of wells drilleo at any time t.


